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The UniFLEX® Operating System 

I. Introduction 

This document provides an overview of the UniFLEX® Operating System 
(UniFLEX® Registered in U.S. Patent and Trademark Office). Several of 
the important system features are described including a look at the user 
interface, the file system, and the program environment. 

II. The User Interface 

After a user "logs in" to the system, a prompt will be displayed on the 
terminal, signifying that the system is ready to accept commands. A 
program called the shell program is responsible for issuing this prompt. 
The shell program is the primary interface between a user and the 
operating system. It collects and interprets the commands typed from 
the terminal and send the necessary information to the operating system 
so that it can perform the requested operation. 

Each command in UniFLEX has a unique name, which is somewhat descriptive 
of the actions it performs. As an example, typing "date" will cause the 
command named "date" to be executed. This command will display the 
current date and time on the terminal, just as the name implies. In 
general, a command line has the following form: 

<command_name> <ar&-list> 

where <command name> is the name of the program (file) to b.e executed, 
and <ar&-list> is a list of arguments that is collected by the shell 
program and passed to the program to be executed as an array of strings. 
Because the shell program collects the arguments, individual programs do 
not have to be concerned with parsing the command line. The shell 
program will look several places in the system for the command name 
specified, including the user's working directory. This allows a user 
to have a "local" command with the same name as a system command. 

When a command is executing, the user will usually wait until it 
finishes, at which time the shell program issues a new prompt. It is 
possible to interrupt most commands by typing the interrupt character (a 
control-C on most systems). This character will cause premature 
termination of the command and immediate display of a new prompt. 
Another s~milar character is the quit character (a control-\ on most 
systems) which will do exactly the same thing as the interrupt 
character, but which will also create a "core dump" in the user's 
working directory. A core dump is an exact image of the running 
program's memory contents at the time the quit character was typed. The 
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operating system supports several utilities which allow a user to 
examine this core file, which includes the contents of the processor 
registers and the stack at time of termination. This feature is 
obviously a very handy debugging aid. 

When a command is executed, it will initially have three files 
associated with it. These are called the standard I/O files. One 
"file" is the user's keyboard (standard input); one is the user's 
terminal (standard output); and the last one is also the user's terminal 
(standard error). Most commands which perform I/O operations work with 
the standard I/O channels. 

As an example, the "list" command will list or display the contents of a 
file or group of files on the standard output device. Since the 
standard output is norm~lly the terminal, the file's contents will be 
displayed on the terminal. The shell program can change the meaning of 
the standard output to some other file. This process is called output 
redirection and can be done as follows: 

list file >outfile 

This command line would invoke the "list" command and pass the string 
"file" to the "list" command as an argument. The string ">outfile" 
would not be passed to the command because the symbol '>' has a special 
meaning to the shell program. This character tells the shell program to 
redirect the standard output from the terminal to the file whose name 
follows. In this example, the output of the "list" command would go 
into the file named "outfile" instead of to the terminal. If this file 
did not previously exist it would be created, and if it did exist, it 
would be truncated to zero length before being used. The fact that the 
shell program takes care of this redirection of output means individual 
commands do not need special code to handle the situation. 

Input may also be redirected. As an example, the text editor normally 
gets its input from the terminal. It is, however, possible to create a 
file of commands which may be sent to the editor as follows: 

edit file <script 

In this case, the file of commands is called "script", and the input is 
redirected by the shell program as informed by the '<I character. This 
method of I/O redirection is quite powerful. It should be noted that 
this convention, as well as most of the other conventions in the UniFLEX 
shell program, have been closely modeled after the UNIX~ shell program 
(~Unixisa trademark of AT&T Bell Laboratories). 

The mechanisms involved in the standard I/O scheme can be used to an 
even greater extent with the implementation of "filters". A filter is a 
program which takes some input data, manipulates the data in some way, 
and outputs the result. If a program reads the standard input for its 
data and outputs its results to the standard output, it can be used in a 
very powerful way. In particular, the output of one command may be used 
as input for another command. As an example: 
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sort test-data A reject A spr 

This command line consists of three commands, "sort" with the argument 
"test-data", "reject", and "spr". The 'A, character is another special 
character detected by the shell program. This separator causes any 
standard output generated by the command to its left to be sent as 
standard input to the command on its right. In this example, the sort 
command will sort the file "test-data" and send the sorted output to 
standard output. Since the shell program has set this output to go to 
the standard input of the next command, "reject" will operate on these 
data. The "reject" program reads standard input, removes all adjacent 
duplicate lines, and sends its output to standard output. Again, the 
shell program will send this output to the next command, "spr", which is 
a printer spooler. The spooler will take its standard input and print 
it on the printer. Note that all three commands are essentially run 
simultaneously. Any data output by the first command is immediately 
available to the second. This example shows how you can take three 
totally independent programs and make them work efficiently together. 
The mechanism used to connect these filters is called a pipe and is 
another feature in UniFLEX which has been modeled after UNIX. There are 
many filter programs in UniFLEX. Their power should be obvious. 

The shell program can understand more than one command at a time. As an 
example: 

dir; list rugs; date 

The ';' character is used as a command separator and instructs the shell 
program to continue parsing the command line after the specified command 
has finished executing. In this example, the commands "dir", "1 ist", 
and "date" would be executed in a sequential fashion. 

It is also possible to have the shell program execute mUltiple commands 
simultaneously, or in the "background". The '&' character used as a 
command terminator (or separator) will cause the shell program to 
execute the specified command and immediately issue another prompt. As 
an example: 

rel68k test it >output & 

will invoke the assembler ("re168k") on the file "testit" and redirect 
the output to the file "output". Since the command is terminated with 
an '&', the shell program will run the assembly in the background and 
not wait for it to finish before issuing the prompt. When the prompt 
appears, the user may run another command even though the assembly is 
not complete. The shell program will report a task identifier number 
(task ID) for all background commands executed. This identifier may be 
used to terminate the task if desired. Since the '&' may also be used 
as a command separator, the following is also valid: 
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rel68k filel >outl & re168k file2 >out2 & 

This line will cause two assemblies to be run in the background, one on 
"filel" and one on "file2". These assemblies could have been run 
sequentially in the background with their output sent to the same file 
with this command: 

(re168k filel; re168k file2) >output & 

The parentheses act like those in expressions, grouping parts of the 
command line which belong together. This same line without the 
parentheses would have run the assembler on "filel", sending its output 
to the terminal. When it finished, a new assembly would be run in the 
background on "file2", with its output redirected into the file named 
"out put" • 

As mentioned previously, the shell program performs all of the command 
line parsing and simply passes the collected arguments to the executed 
command as an array of strings. Command line arguments may contain 
special pattern-matching characters recognized by the shell program. 
There are several forms of these matching characters. One is the 
asterisk, '*', which will match anything. Another is the question mark, 
'1', which will match any single character. Finally, the construct 
"[x-y]" will match any character or range of characters contained in the 
brackets. Several examples will demonstrate this feature. 

list text* 
re168k source?a 
list *test [a-dr] 

The first line will list all files which start with "text" and have , 
anything following. The second line will assemble the files which start 
with "source", have any character next, followed by ".a". The last 
example will list all files which end with "test" followed by one of the 
characters 'a' through 'd' or the letter 'r'. The shell program not 
only does the matching, but also alphabetically sorts the resulting list 
of arguments. 

Since the shell program is no different from any other program, it may 
also be executed as a command. An application of this is connnand files. 
A command file is nothing more than a file containing a list of 
commands, exactly as they would be entered to the shell program. As an 
example. suppose the two commands "date" and "dir" were executed one 
after the other frequently. A file could be created which contained the 
following lines: 

date 
dir 
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Assume this file has the name "dd". This file can be passed as input to 
the shell program with the following command line: 

shell <dd 

Because the shell program reads standard input for commands (which is 
normally the terminal), the input may be redirected to a file. In this 
example the shell program will read the file, execute the commands, 
"date" and "dir" , and terminate. This example is not useful, but 
suggests how complex command files may be constructed and executed. It 
is actually possible to directly execute a command file without having 
to type "shell <", but this method will not be described here. 

The shell program has many more features. Since it is the primary 
interface between the user and the system, it is important that it be 
powerful and easy to use. The UniFLEX shell program is both, and it 
will undoubtedly gain additional features in the future. 

III. The File System 

The UniFLEX operating system has three main functions: file maintenance, 
I/O control, and task scheduling. The structure of the file system is 
probably the most important, since design flaws here will impair almost 
every program run on the system. Here again, the system was modeled 
after the UNIX system. 

The operating system supports three basic types of file: ordinary, 
directory, and special. The majority of files are ordinary files. 
These files are simply a collection of bytes without any special 
meaning. There is no concept of records and no forced structuring of 
data. All files may be accessed either sequentially or randomly and may 
be as large as one billion bytes. 

Each file in the system is protected by a set of permission bits. These 
permission bits determine whether or not a file may be read, written, or 
executed. Two bits exist for each of these modes. One defines the 
permission for the file's owner; the other, for all other users. As an 
example, the owner of a file may set the permissions such that she or he 
may read or write the file, but all others may only read it. 

The second file type is the directory. A directory is a specially 
constructed file that contains the names and identifies the locations of 
other files. The directories on the system form a hierarchical tree 
structure. The root of the tree is called the "root" directory. Any 
directory may contain entries which are names of other directories (or 
subdirectories). Each user of the system is assigned a directory. When 
a user "logs in", the assigned directory becomes the working directory. 
There is no limit to the number of directories on the system. 
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Since many files and directories exist on the system, a mechaniSIll is 
needed for specifying a particular file in a specific directory. This 
mechaniSIll is known as a file specification (or path name). A file 
specification is a description of the most direct path from the root 
directory through the directory tree to the file in question. A file 
specification is independent of the user's location in the directory 
tree because it always starts in the root directory. Because the slash 
character, 'I', is used to represent the root directory, a file 
specification always begins with a slash. In addition, slash characters 
are used to separate the components of a file specification. For 
example, the file specification "/usr/ john/test" tells the system to 
start in the root directory (specified by the leading '/' in the file 
specification), find the directory named "usr" in the root, then scan 
that directory for the directory named "john", and finally scan the 
directory "john" for the file named "test". 

A path describing the whereabouts of a file that does not begin in the 
root directory is a file name, not a file specification. The system 
always begins such a search in the user's working directory, which can 
be anywhere in the directory tree. A file name describes the path from 
the user's working directory to the file in question. Thus, the same 
file has different names depending on the working directory. 

The last component of a file specification is sometimes called the 
"simple file-name" or, more loosely, just the "f ile name". A simple 
file-name may not contain more than fifty-five characters. If the user 
specifies a longer name, the operating system truncates it. 

Each entry in a directory may use up to 64 bytes. The operating system 
deals with these bytes in groups of 16. Each group of 16 bytes that is 
not currently in use consists entirely of null bytes. The first two 
bytes ot each group of 16 are reserved for the number of the file 
descriptor node (fdn), if appropriate. The fdn is simply a 16-bit 
number used to identify the file on the disk. These first two bytes are . 
used only in the first group of 16 bytes in any entry. If more than one 
group of 16 bytes is used in an entry, the first two bytes of the 
additional groups remain null bytes. 

The third through sixteenth bytes in each group are used as necessary 
for the characters of the simple file-name. With one exception, the 
last character in a directory entry must be a null byte, which signifies 
to the operating system the end. of the entry. Only if the simple 
file-name is exactly 14 characters long is there no such null byte. 
This behavior is necessary to maintain compatibility with the 6809 
operating system. If the simple file-name is more than 14 characters 
long, the operating system turns on the upper bit of the third byte in 
the first group (the first character of the file name) to indicate that 
the line is incomplete. This behavior allows the system to distinguish 
between a file name that contains exactly fourteen characters (no bit 
set) and one that contains more than fourteen characters without having 
to look at the next line in the directory. 
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If the simple file-name contains more than 14 characters, the operating 
system must use more than one group of 16 bytes. When it adds the 
second or a subsequent group of bytes to an entry, it turns on the upper 
bit in the third byte of the new group (remember the first two bytes in 
all groups beyond the first remain null bytes) to indicate that the line 
is a continuation of an entry. It then uses as many bytes of that group 
as necessary for the name of the file and the null character that must 
terminate the name. Because the operating system truncates any name 
longer than 55 characters, the last character in the fourth group of 
bytes is always automatically a null byte. 

All directories have at least two entries, one named ".", and one named 
" •• ". These names are purely convention. The file ". II represents the 
directory itself, and the file name II II represents this directory's 
parent directory. The "." entry is useful in referencing the working 
directory without knowing its name, and the " " entry is used for 
reverse traversal of the di rectory tree. 

The permission bits previously described also apply to directories. If 
the user who owns a directory read protects it, other users will not be 
able to display the contents of that directory. If the directory is 
write protected, no new files may be placed in the directory. If a 
directory is execute protected,it may not be searched for a specified 
file name or used as part of a file specification. 

As an extension to the directory tree structure of a file system, 
another file system (disk unit or units) may be mounted at any node of 
the tree. The mounting process effectively replaces an existing node 
(directory) with the root directory of the mounted file system. As an 
example, a system with two disk drives will use one of the drives as the 
system root device, that is, the drive containing the directory known as 
'/' to the system. In order to access the directories and files on the 
second drive, it is only necessary to mount this device on an existing 
directory of the root device. The mounting operation will cause- the 
contents of the selected directory to become inaccessible, replacing its 
contents with the root of the directory tree on the second drive. An 
unmount operation will restore the original directory. This procedure 
logically extends the notion of file names to allow access to any file 
on any currently mounted file system. 

A specific example will clarify the mount operation. Let's assume there 
is a directory named "user2" in the root directory of the main system 
disk. Let's also assume that we have another disk which contains a file 
named "test" in a directory named "source" in the root directory of that 
disk. Performing a mount of this second disk onto the directory "user 2" 
will now allow access of the file "test" with the following file 
specification: 
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/user2/source/test 

Note that no mention of device name or device type was necessary to 
access this file. This structure allows several file systems to be 
connected together as one big tree, greatly simplifying overall file 
organization. 

The third type of file in UniFLEX is the device (or special) file. All 
devices on the system appear as file names i~ directories, just as 
regular files do. All of the devices are normally kept in the directory 
"/dev". This means that programs which read and write file data may 
just as easily read and write data to and from a device. As an example, 
to write data to a printer, the program could write to the file 
"/dev/printer". Treating I/O devices in this way allows fairly device 
independent I/O, in that file and device I/O operations are very 
similar. It also allows the same protection scheme used for files to 
work for devices. This mechanism of device files, or special files is 
identical to that used by the UNIX operating system. 

Since files and I/O devices are so similar, the same system I/O calls 
may be used for both. The UniFLEX system calls to perform I/O allow 
files to be created, opened, read, written, and deleted. The following 
examples show the calls as procedure calls in the C language. The call 
to open a file looks like this: 

open(pathnam, mode) 

where "pathnam" is the address of a character string containing a path 
name to the file to open, and "mode" specifies whether the file should 
be opened for read, write, or update (both read and write). The "open" 
call returns a value called the file descriptor, which is used to 
identify the file for future I/O operations. The file descriptor is 
simply a number which the operating system associates with the open 
file. 

The "open" call requires that the specified file already exist. To 
create a new file (or truncate an existing file to zero length), the 
"creat" system call is used: 

creat(path, perms) 

This call also returns a file descriptor. The argument "perms" 
specifies which permission bits should be associated with the file. 
Once the "creat" has been executed, the file is left open for write. 

To read data from an open file, the system call "read" is used: 

read(fildes, bufad, nbytes) 
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The argument "fildes" is the file descriptor for the open file from 
which to read data. The argument "bufad" is the address of a buffer 10 

which the system will place the data from the file. The argument 
"nbytes" specifies the number of bytes wanted from the file. The 
corresponding write operation is similar: 

write(fildes, bufad, nbytes) 

In ~ this case, the system writes "nbytes" bytes from the buffer at 
"bufad" to the file represented by the file descriptor. Both the "read" 
and the "write" calls, return a value which is the actual number of 
bytes read or written. When writing, the returned value should always 
be equal to the number of bytes requested, or an error has occurred. 
The value returned by a "read" call need not equal the number of bytes 
requested. A returned value of 0 represents the end-of-file condition. 

Reading and writing may take place in any part of the file. Each open 
file has a file pointer associated with it. Reads and writes start at 
the current position of this pointer and advance the pointer by the 
number of bytes transferred. An open operation sets the file pointer to 
the beginning of the file. The "lseek" system call allows repositioning 
of the file pointer. It has the following form: 

lseek(fildes, offset, type) 

where the file descriptor selects the file, and the "offset" is a byte 
count representing the relative position from the file's beginning, end, 
or current position, determined by the value of "type". This call 
returns the actual value of the resulting file pointer (bytes from the 
file beginning). Seeking beyond the end of a file and reading results 
in an end-of-file condition, while writing simply extends the file to 
include the written data. When the operating system extends a file, it 
allocates just enough disk space to record the new data. For example, 
although performing a seek to byte 10,000 in a file which has length of 
100 and writing one character will produce a file of logical length 
10,000, the system allocates only two disk blocks to the file. Reading 
data from the file will yield null bytes where no disk space is actually 
present. 

The disk I/O facilities of UniFLEX are quite efficient, allowing full 
processor overlap with disk I/O transfers. The system maintains a 
disk-block buffer cache in main memory which may contain copies of from 
eight to sixty-four of the most recently accessed disk blocks (the 
actual number is system-dependent and may be altered by the "tune" 
command). When a program requests data from a particular disk block: 
the system either searches the buffer cache for that block or copies the 
data directly into the space allocated to the user, depending on which 
method is more efficient at the time. 
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UniFLEX . also supports full read-ahead and write-behind data transfers. 
Read-ahead implies that whenever the system needs to read a block of a 
file, it will automatically read the next sequential block as well. 
Since the disk read operation is overlapped with the CPU operation, 
little, if any, time is wasted doing the additional read. Write-behind 
means that any information to be written to the disk is simply placed in 
one of the cache buffers and written at a convenient time. Programs 
writing data are not delayed until the write actually occurs. This 
combination of read-ahead, write-behind, and the buffer cache gives 
UniFLEX a superior I/O transfer rate. . 

UniFLEX also supplies a mechanism for locking records. This is one area 
where the UNIX operating system falls short. The following system call: 

lrec(fildes, count) 

will lock "count" bytes from the current file pointer in the file 
represented by the file descriptor. The count size or record size may 
be anywhere from 1 to 65535 inclusive. The locking action is more of a 
convention than an actual hard lock operation. After one program has 
locked a section of a file, other programs may still read or write that 
section of the file without error. If, however, another program tries 
to lock a section of a file which is already locked, an error will 
result. This structure has proven to be very efficient in that programs 
dealing with data-base files may make use of the lock mechanism and 
preserve the integrity of the data while those working with regular 
files need not be concerned. A locked record may be unlocked by another 
"lrec" call from the same program, by closing the file, or by issuing 
the "urec" call specifically to unlock the record. 

There are several additional system calls in UniFLEX pertaining to r/o. 
These include calls to close, delete, and link a file as well as calls 
to create new directories, change a file's owner and permissions, and 
get a file's status. 

IV. Task Structure 

Each program under UniFLEX runs as a separate task. When a task is 
actively running, it has its own dedicated address space. This means 
that the task has the complete address space of the CPU and any part of 
this space will either contain memory or be totally void. No I/O 
devices or system code is present when the task is running. Each task 
is assigned enough memory to hold its program, data, and stack. The 
program (or text) size is set at the initial execution of the task and 
remains fixed. The data and stack segments may grow or shrink 
dynamically. The text part of a program may be shared among all tasks 
currently . executing the same program. Sharing is accomplished 
automatically and tends to make more efficient use of available main 
memory. Optionally associated with each task is an "environment", which 
contains strings which may be meaningful to certain programs. The 
operating system keeps a large amount of information about each active 
task, including which user started the task, the task identifier, the 
current program size, amount of CPU time used, age of the task, and task 
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actlvLty information. Tasks are scheduled CPU time based on their 
priority. The priority value is constantly adjusted by the system to 
reflect the current status. 

New tasks are created by the "fork" system call. The fork call causes 
the calling task to duplicate itself, or split into two identical tasks. 
The complete address space of the calling task is duplicated for the new 
task, as well as the task's complete environment, including open files, 
and so forth. The new task starts execution upon return from the fork 
call. It may be distinguished from the parent in only one way. The 
fork call will return a value of 0 to the new child task, and a value 
which represents the child's task identifier (never 0) to the parent. 
This allows each task to determine if it is the child or the parent. 
The return from the "fork" is a lit tIe different at the assembly 
language level. Here, the return to the original task is two bytes 
beyond that of the new task. This allows the new task to perform a 
"branch" instruction before continuing. The child's task identifier is 
still returned to the parent task. 

The operating system places no restrictions on what the new task can do. 
Normally, it will perform an "execl" system call which will invoke a new 
program. The form of the "execl" call is as follows: 

execl(path, [argO, [argl, ... ,[ argn,]]] nullp) 

where "path" is the address of the character-string containing the path 
name of the file containing the program to execute. The calling task's 
address space is replaced by that of the called program. The 
"arguments" are made available to the new program as an array of 
strings. The first argument, "argO", is by convention the name of the 
new program. Note that a return from an "execl" to the calling task is 
an error condition, usually because the specified file name was not 
found or not executable. The "exec!" call can be thought of as a type 
of jump instruction where control passes to the first instruction of the 
called program. Most of the task's environment parameters, such as open 
files, are preserved across the "execl" call. Leaving files open 
permits the easy implementation of the standard I/O mechanism. All 
tasks usually start with the three standard I/O files already open. The 
file descriptors for these files are a for standard input, I for 
standard output, and 2 for standard error. 

A task which "forks" another task may "wait" for the child task to 
terminate. The wait system call will block the calling task until one 
of its child tasks terminates. Upon termination, the "wait" call will 
return to the caller, returning the task identifier and the termination 
status of the dead task. Tasks normally terminate by the "exit" system 
call. It has the form: 
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exit(code) 

where "code" is the termination code to return to the parent. A status 
of zero indicates normal termination, while a nonzero status specifies 
an error condition. A task may also be terminated by a program 
interrupt. Tasks have a cholce of ignoring or catching these interrupts 
to avoid termination. As an example, the interrupt character 
(co'ntrol-C) is sent as a program interrupt to all tasks associated with 
the terminal producing it. Normally, this will terminate the task, but 
programs like the UniFLEX Text Editor choose to catch this interrupt and 
take special action such as re-issuing the prompt to accept another 
command. 

The operating system assigns a priority to each task. The task with the 
highest priority is always being run. A task's priority is constantly 
being adjusted to reflect its size, age, and CPU activity. 

The system supports virtual memory for all tasks. When the system runs 
out of memory, it takes a 4-Kbyte page of memory from some task and uses 
that page (after writing its contents to the paging device if 
necessary). The page is restored from the paging device to the original 
owner when necessary. UniFLEX's scheduling routine is quite complex and 
tries to take in as many factors as possible when making scheduling 
decisions. As an example, tasks which have been ignored for a long time 
tend to increase in priority, and those which are monopolizing the 
system's resources are penalized. The idea is to be as fair as possible 
to all tasks in the system. 

The amount of memory available to the task table is the only limit that 
the system imposes on the maximum number of tasks that can coexist. The 
number of tasks allowed may vary from 8 to 128. The system manager may 
adjust this number with the "tune" command. The restriction to a 
maximum of 128 tasks does not tend to be a serious restriction because 
hardware limitations are more likely to determine the useful maximum. 

Several other system calls also pertain to tasks. 
to get a task's identifier, its owner, and one to 
the priority over a small range. This last call is 
for setting lower priorities for tasks which are 
jobs. 
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