

U P 0 ATE
LAN G U AGE

DOC U MEN TAT ION

o 1 OCT 1 9 8 5

SECTION

1
1.1
1.2
1.3
1.4
1.5
1. 5,.1
1. 5.2
1. 5.3
1. 5.4
1. 5.5
1. 5.6

2
2.1
2.2
2.3
2.4
2.5
2.6
2.6.1
2.6.2
2.6.3
2.6.4
2.7
2.7.1
2.7.2
2.7.3
2.7.4
2.7.5
2.7.6
2.7.7

3
3.1
3.2
3.3
3~4

3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20

TABLE OF CONTENTS

INTRODUCTION
Introduction
How the UPDATE language works
Defini tions . . '. . .
Database aspects
Design considerations
Using multivalues .
Concatenated values .
AMC and VMC limits
Secondary file limits
Secondary file data storage
Generated field limits

SYNTAX
The UPDATE Statement
Interaction with Select lists
UPDATE Expressions
The WINDOW and END-WINDOW connectives
Field identification
Typical screen format
UPDATE statement for above screen
The HEADING connective
The FOOTING connective
The NEXT-SCREEN connective
Options .
A option
B option
M option
N option
R option
V option
X option

DICTIONARY DEFINITIONS
Dictionary attribute definitions
The IDO and other item-id definitions
Dictionary attribute 1 - D/CODE

AMC - Attribute nU,mber
TAG or HEADING
STRUCture CODE
CONVERSION CODES
CORR or correlative codes
JUSTIFICATION . . .
MAXIMUM LENGTH field
MINIMUM LENGTH field
REQUIRED FIELD flag .
PRE EXT SUB or pre-data-entry subroutine
POST EXT SUB or post-data-entry subroutine
DEFAULT VALUE or automatic value
HELP MSG - help message . . .
MORE HELP SUB external subroutine
EXTERNAL STRUCTURES - secondary file links
VALUE LINKS
Subroutine calling

PAGE

2
2
2
3
4
4
4
4
5
5
5
5

6
6
6
7
8

10
11
12
12
12
13
14
14
14
14
14
14
14
14

15
15
15
16
16
16
17
18
21
22
22
23
23
24
25
26
27
27
28
32
33

3.21
3.22
3.23
3.24
3.24.1
3.24.2
3.24.3

4
4.1
4.1.1
4.1. 2
4.2
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.4
4.5

5
5.1
5.2
5.3

Subroutine interface
COMMON variables
C.ERRCODE Variable 1/0 values
Examples of user subroutines
Conditional updating
Complex validation
An extended "Help" routine

DATA ENTRY
Modes of data entry
The INPUT mode
The EDIT mode
Paging of data within windows
Cursor movement
The RETURN key
The LINEFEED key
The Up-arrow or Caret key
The BACKSPACE key
Summary of cursor movement
Trap characters

UTILITIES
UPD-DEF uti 1 i ty
UPD-VALIDATE utility
LIST-UERRORS

33
34
35
35
35
35
36

37
37
37
37
38
39
39
39
39
39
40
41

42
42
42
42

CHAPTER 1

INTRODUCTION

1.1 Introduction

The purpose of the UPDATE language is to provide a generalized
methodology for updating Ultimate databases via non-procedural,
non-programmed UPDATE statements. UPDATE statements normally provide a
screen-oriented and interactive approach toward editing data fields.

A programmed language is called "procedural" because the user has to
specify both what the process is to achieve, as well as how to achieve
it. With a non-procedural language, such as UPDATE, the user does not
specify how the process is to act, but merely what it is to achieve.
The significant advantage of a non-procedural language is simplicity
since the user does not have to be a programmer in order to create the
desired function.

1.2 How the UPDATE language works

The UPDATE language utilizes the dictionary of the file(s) being
updated to define the nature of data storage, validation, etc. The
dictionary definitions are an extension of those used by the RECAll
language, as described later.

The UPDATE language processor is invoked by an UPDATE statement at the
TCl level. This statement calls into effect the set of dictionary
definitions that are used to define and validate the affected fields.

Page 2

UPDATE language Introduction

1.3 Definitions

Term Defini tion

UPDATE statement This is the TCl statement used to invoke the UPDATE
processor. It contains the set of UPDATE
expressions and the options or connectives.

UPDATE expression An UPDATE expression consists of an attribute name
from the dictionary of the file being updated,
along with elements that specify the cursor
location of the field, whether it is part of a
"window' or not, the "tag" associated with the
field, etc.

Primary file The filename explicitly specified in the UPDATE
statement. Just as in RECAll, an UPDATE statement
may reference only one file explicitly. The
dictionary of this file contains information used
by the UPDATE processor (the USING connective of
RECAll is invalid in an UPDATE statement).

Secondary file More than one file may be updated by the UPDATE
statement since the primary file dictionary can
have links established to other files, which are
known as secondary files.

Field An attribute in the item being updated; a field may
be either single or multiple valued. The UPDATE
language does not allow sub-multiple values.

Controlling field The controlling field is a multi valued attribute
which has a 'C' code defined in the V/STRUC field
of its dictionary definition item. It is the
primary field used in an Associated data structure,
and may have one or more Dependent fields
associated with it.

Dependent field A dependent field is a multi valued attribute which
has a 'D' code defined in the V/STRUC field of its
dictionary definition item. There may be one or
more dependent fields associated with each
Controlling field; the entire set is called an
Associated data structure.

Generated field A definition in the dictionary that has an AMC of
zero and a Function (RECAll style, Algebraic or F;)
used to create a new data value, which may be
mathematical compuation, string manipulation,
concatenation, etc.

Page 3

UPDATE language Introduction

1.4 Database aspects

RECALL and UPDATE are both dictionary-driven languages, where the
dictionary definitions serve to define the database. Since RECALL is a
retrieval-only language, it can have unlimited freedom in its data
definitions. RECALL cannot affect the database adversely if its
definitions are not consistent.

UPDATE cannot afford the same freedom, since the integrity of the
database can easily be affected if improper dictionary definitions are
used. A major goal of the implementation of the UPDATE language is to
ensure against inadvertant destruction of the database, especially
since both dictionary definitions and the UPDATE statements that use
them can be changed so readily.

For this reason, the dictionary definitions used in UPDATE must follow
more rigid patterns than used in RECALL. Also, the dictionary
definitions must be validated by a utility program, UPD-VALIDATE,
before use. This utility checks the entire set of definitions in all
related files for consistency, and also performs some
"pre-compilation" steps which improve the efficiency of the UPDATE
processor.

In general, existing RECALL definitions can be used by UPDATE in a
"display-only" mode (which is non-destructive of data); definitions
used by UPDATE to actually affect data must be validated before use.

The format of such dictionary definitions is described later.

1.5 Design considerations

The following considerations should be kept in mind when designing
applications using the UPDATE language.

1.5.1 Using multivalues

Try to make the primary file have as much data as possible, including
"associated" multivalues such as is typical in a "line-item" of
invoices and orders. Storing such information in secondary files is
possible, but considerably less efficient.

If it is absolutely necessary to create a "detail line-item" file,
there is an alternative to using the secondary file technique built
into the UPDATE language. It may be more efficient to use the "after
read" and "before write" subroutines to copy the secondary information
as multiple values into the primary file item for the duration of the
update.

1.5.2 Concatenated values

Concatenated values may be used freely for item-id's, both in the
primary and the secondary files.

Page 4

UPDATE language Introduction

Attributes may have concatenated values as well, though the processing
time increase may not make their use worthwhile if an alternative is
available.

Secondary attributes defined
complete value; that is, you
secondary concatenated value.

as concatenated
cannot store into

must be stored as a
only a segment of a

Segments of a concatenated value must use the same separator; that is,
a value such as A*1111*9877 (three segments) is acceptable, but
A*1111#9877 is not (where "#" is meant as a separator) .

1.5.3 AMC and VMC limits

AMC limitations: The UPDATE processor can update files with a maximum
of 99 attributes. Do not try to use UPDATE for existing files with
items containing more than 99 attributes, or the data will be
truncated.

VMC limitations: An attribute defined as multivalued can have up to
99 multiple values.

Sub-multiple values are not supported.

1.5.4 Secondary file limits

Up to nine secondary files can be defined.

1.5.5 Secondary file data storage

You cannot store into a secondary file Controlling-Dependent
relationship. Therefore, the best way to design secondary files is to
make them have single-valued attributes except when a "cross-index"
type of file is being updated. A cross-index file typically has a
field or fields with multivalues, but they are not "associated"
fields.

1.5.6 Generated field limits

Up to twenty computed fields may be defined.

Page 5

UPDATE language Syntax

CHAPTER 2

SYNTAX

2.1 The UPDATE Statement

The UPDATE processor is invoked via a TCl statement. The UPDATE syntax
is an extension of the RECAll syntax (and may also be used to generate
reports only).

" The general form of an UPDATE Statement is:

UPDATE filename
update.expression.for.item.id

{ modifiers J
{ (options) J

{ update.expression }

As can be seen, the minimum UPDATE Statement consists of the UPDATE
verb, the filename and one update expression for the item-id. The
filename specified in the statement is called the "primary file". The
UPDATE language can be used to update other files as well; these are
called "secondary files" and the dictionary definitions in the primary
file contain links that define the nature of these secondary updates.

UPDATE expressions are used to position the updated fields and are
described below. A maximum of 70 expressions may be specified.

Standard RECAll modifiers such as HEADING, etc. are valid in an UPDATE
statement, although the meanings of some of these may be different
somewhat in the UPDATE context.

2.2 Interaction with Select lists

The UPDATE statement may be preceded by a SELECT, SSElECT, GET-lIST or
QSElECT statement.

In this case, the first item-id from the select li~t is brought up for
editing; when that item is filed, the item-id still displays and may
be re-edited by using the Backspace key at the IDO prompt. If a RETURN
is entered, the next item from the select list is brought up, and so
on until the list is exhausted.

An 'EXT' or 'STOP' entered at the Edit request line unconditionally
exits from the UPDATE language.

Page 6

UPDATE language Syntax

2.3 UPDATE Expressions

An UPDATE expression
screen-oriented UPDATE
expression is:

is the main element
statement. The general

used to
form of

create a
an UPDATE

@(x,y) : "tag field" : @(x) attributename [substring expression]
... optional optional

where:

(x,y) is the cursor address where the literal "tag field" is to
be displayed.

"tag field" is a literal field that is used to describe the datum
on the screen. This field and the next are optional.

(x) is used to specify the leftmost position of the datum.
If absent, the field starts just after the "tag field".

"attributename" is a name from the dictionary of the primary file
being updated. If this is absent, the expression is used only to
generate a literal on the screen.

The following rules apply to the 'x' and 'y' values.

'y' should be in the range 1 through 21. Rows 22 and 23 on the
screen are normally reserved for the EDIT line request and error
messages, respectively.

'x' should be greater than 3 and in
tag and/or field will fit in the
processor automatically prefixes a
field identification (field-id) to

a range such that the entire
terminal width. The UPDATE

two digit or single character
the tag field.

The optional "substring expression" is similar to that used in
BASIC, and is used to limit the width of the output, mainly for
descriptive fields, without having to define a synonym dictionary
attribute definition. If a substring expression exists, the
associated field is automatically considered "display only", that
is, it cannot be updated and the cursor will bypass it during the
update process.

Spaces may be included between elements of an UPDATE expression for
clarity, but are not needed.

Examples of UPDATE expressions are:

@(10,12) : "Address line 2" : @(25) ADDR2
@(15) : NAMEX
@(3,20) DESCRIPTION [1,20]
@(5,11) : 'This is only a literal string
ZIP

Page 7

UPDATE language Syntax

2.4 The WINDOW and END-WINDOW connectives

These two connectives are used to specify
multi-valued attributes and of Associated data

the screen format of
sets. A single valued

attribute requires only the 'x' and 'y' cursor locations to locate the
field on the screen. A multi-valued attribute also needs a
specification indicating the number of displayed multiple values.

A subsection of the screen may be designated as a "window· by using
the WINDOW and END-WINDOW connectives. The WINDOW connective specifies
the 'x' and 'y' cursor locations of the top left-hand corner of the
window, and the 'y' cursor location of the last row of the window.

Each 'window line' may use one or more rows on the screen; the default
is one row per line. The number of rows per line is also specified in
the WINDOW parameters. Its format is therefore:

WINDOW @(x,y,z,r) 'literal' : @(x) 'literal'
. optional

Note that the syntax of the WINDOW parameters is analogous to a BASIC
'FOR row = y TO z STEP r' statement. The optional section of literals
will print next to the field-id (see next section) assigned to the
window.

Each WINDOW connective may be followed by one or more UPDATE
expressions; such expressions use the 'x' cursor as usual to specify
the column location where the field begins. The 'y' cursor location
is, however, optional and defaults to 1, which is the first row of
each 'line' of the window. In the case of multiple-row window lines,
the 'y' location may be used to specify which row in the line the
field is to appear.

For example, on a window set up by a 'WINDOW @(3,10,17,2)', which has
two rows per window line, the cursor location '@(30)' would position
the field at x-cursor 30 on the first row; the location '@(30,2)'
would do so on the second row.

All UPDATE expressions between a WINDOW and its corresponding
END-WINDOW connective are considered to be part of that window, and
must reference multi-valued data. Single-valued expressions should not
be specified within the scope of these connectives. The END-WINDOW
connective has no parameters.

The UPDATE statement may contain any number of WINDOW-END-WINDOW
pairs.

Page 8

UPDATE language Syntax

An example of a window:

Column -> 1 2 3 4
1234567890123456789012345678901234567890

Row
4 ... ff
5 ... 01.aaaaaaaaaaaaaaaaaa ... bbbb .. cccccc.
6 ... 02.aaaaaaaaaaaaaaaaaa ... bbbb .. CCCCCC .

7 .. . 03.aaaaaaaaaaaaaaaaaa ... bbbb .. cccccc.
8 ... 04.aaaaaaaaaaaaaaaaaa ... bbbb .. cccccc.
9

The fields are represented by 'a' and 'b' and 'c'. 'ff' is the
field-id for the first field in the window. This window may be set up
by the following UPDATE expressions:

WINDOW @(7,5,8)
@(34) :attribute.c

@(7) :attribute.a
END-WINDOW ...

Page 9

@(28) :attribute.b

UPDATE language Syntax

2.5 Field identification

Each field in the UPDATE statement that can be updated (except the
item-id) is assigned a field-id by the UPDATE processor. This is
normally a number starting from 1 up to 70. The UPDATE language allows
up to 70 fields to be updated on one screen. Optionally, the field-id
can be the alphabetic characters 'a' through 'z'; see the 'A' option.
In this case, the number of fields on one screen are limited to 26.

The field-id is used by the operator when the cursor
positioned on a field by explicitly using that number or
from the EDIT line prompt.

The field-id is displayed as follows:

is to be
character

1. For fields that are not within a window, the field-id is prefixed
to the tag and thus appears three columns to the left of the tag.
For example, if the UPDATE expression is:

@(25,10):"Name":CNAME.

and the field-id is "7", the field would appear as:

2 3
col: 01234567890123456789

7.Name xxxxxxxxxx

2. When a window is defined, it is assigned a field-id, which appears
three columns to the left of the 'x' cursor defined in the WINDOW
connective. and one row before the 'y' parameter. If there is a
literal defined with the window, it prints on the same line as the
field-id.

Fields within the window do not have field-ids, since they can be
referenced only after going to the first field of the window.

For example,

.WINDOW @(4,10,18):" INVOICE# INV-DATE" @(9) :INV.NUM @(17) :INV.DATE
123 4

col: 01234567890123456789012345678901234567890
row

9 c. INVOICE# INV-DATE
10 01 invnum mm/dd/yyyy
11 02 invnum mm/dd/yyyy
12 03 invnum mm/dd/yyyy

etc.

Page 10

UPDATE language Syntax

2.6 Typical screen format
1---

OIOrder Entry Program
11
21

1765
943 Name

31 ORDER NUMBER
4la.Customer Id
5lb.Shipping Addr
61c.

17678 San Pablo Avenue

7ld.City
8le.State
9lg.Salesman id

10

Berkeley
CA
178

f .Zip
Name

OE.02 01 May 1983 10:01:01

ACME Screw Fasteners Inc.

94000
Smith, John

"I

"2
"3
"3

11 h.
12 01
13 02

Inv# Description Qty ord Qty shp Price
P-100A Screws, 2x12 Galv 100 100 10.20

Extension "4
1,020.00 "5

14
15
16
17
18

P-150A Screws, 2x15 Galv 150 150 12.50 1,875.00

19 i.Discount: 150.00
20

j.Freight: 50.00 Order total: $2,795.00

21
22 Enter field id to change, " to void, or RETURN to post
23

"1- Heading line
"2- Item-id of file
"3- Fields with field-identifiers
"4- "Window" fields
"5- Multiple associated values
"6- "Edit request"
"7- Reserved for error messages

Page 11

"5

"6
"7

UPDATE language Syntax

2.6.1 UPDATE statement for above screen
UPDATE ORDER @(3,3) "ORDER NUMBER ."

@(3,4) "Customer id ."
@(47) "Name ."
@(3,4) "Shipping Addr
@(3,5)
@(3,6) "City
@(3 , 7) "S ta te
@(47) "Zip ."
@(3,9) "Salesman id
@(47) , "Name ' "

IDO
@(20) CUST.NUM
@(54) CUST.NAME
@(20) SHIP.ADDR1
@(20) SHIP,ADDR2
@(20) SHIP.CITY
@(20) SHIP,STATE
@(54) SHIP.ZIP
@(20) SALES.NUM
@(54) SALES.NAME

@(4,1l):" Inv# ." Description .. ,
Qty ord Qty shp Price Extension"

WINDOW @(3,12,17)
@(7) PART.NUM
@(15) PART.DESC
@(54) QTY,SHIP
@(70) EXTEN

END-WINDOW
@(3,19):
@(32)
@(55)

"Discount
"Freight: "
"Order total:"

HEADING "Order Entry Program

2.6.2 The HEADING connective

@(47)
@(61)

@(14)
@(42)
@(70)

QTY,ORD
PRICE

DISCOUNT
FREIGHT
ORD.TOTAL

OE.02 'T'" (A)

The HEADING connective operates exactly the same as in RECALL and may
be used to provide a non-variable heading for the screen, In the
absence of the HEADING connective, no heading is displayed.

The standard RECALL codes for time and date may be used in the
HEADING. The page number code is reserved to display a Screen number
if multiple screens are used. The page number has no direct meaning
during interactive updates, but contains the screen number when
multiple screens are used and may be displayed as a indicator to the
operator,

Headings may be any number of lines in length,

2.6.3 The FOOTING connective

The FOOTING connective has a special function in an UPDATE statement.
In its absence, the UPDATE processor displays the default EDIT request
on line 22 of the screen:

Enter field id to change, * (EXit), RETURN (FIle)

If a different message is desired, the FOOTING connective may be used
to display it, The message is automatically displayed on line 22 of
the screen, and should contain no more than 70 characters (ten
positions are required as a minimum for the data entry prompt on this
line) ,

As with the HEADING, standard codes for time, date and "page" number

Page 12

UPDATE language Syntax

(actually the screen number) may be included.

2.6.4 The NEXT-SCREEN connective

The NEXT-SCREEN connective is used exclusively in UPDATE statements,
and allows multiple screens on a single update statement, usually used
when there are too many update or display fields to fit comfortably on
one screen.

NEXT-SCREEN may not appear within a WINDOW - END-WINDOW set, or just
after the item-id definitions.

When multiple screens are specified, the operator may move from one
screen to another from the Edit Request line, by using the Backspace
or Return keys. The Screen number may be displayed by using the "'P'"
code in a HEADING statement.

Page 13

UPDATE language Syntax

2.7 Options

Options are single characters enclosed in parentheses at the end of
the UPDATE statement. For example, '(A)' or '(A,R)'

2.7. 1 A option

The UPDATE processor normally uses numbers as field identifiers so
that the operator can reference a field from the EDIT line. If the A
option is used, lower-case alphabetic characters are used instead of
numbers, that is, 'a', 'b', 'c', etc. If this option is in effect,
only up to 26 fields can be present.

2.7.2 B option

Normally, the BREAK key is enabled while in UPDATE (except that, after
any secondary file items have been written, it is disabled to ensure
data-base integrity until the primary item has been written or
deleted) .

If the BREAK key is to be always disabled while in UPDATE, the B
option may be used.

2.7.3 M option

This option is called the "noModify" option; if used, existing items
can be displayed but not edited; new items can be created and edited
while on the screen.

2.7.4 N option

This option prevents New items from being created; existing items can
be retrieved and edited.

2.7.5 R option

Normally, when the maximum number of characters specified in a field
are entered, an automatic carriage-return is assumed. If the R option
is used, a carriage-return must be entered to terminate the field.

2.7.6 V option

This option is called the View option; if used, existing items can be
retrieved for display only; no changes can be made.

2.7 .7 X option

The entire primary item can be deleted only if the X option is used.

Page 14

UPDATE language Dictionary definitions

CHAPTER 3

DICTIONARY DEFINITIONS

3.1 Dictionary attribute definitions

The UPDATE processor is driven by a special set of definitions in the
Dictionary of the primary file that is being updated. The Dictionary
definitions are an extension of those used by RECALL for listing and
reporting purposes.

As far as possible, compatibility is maintained with the existing
RECALL structure. Every Dictionary item used in an UPDATE expression
must however have a D/CODE of 'U'; an existing RECALL Dictionary item
with its already-defined attributes may not be used except as a
display-only field.

An UPDATE Dictionary item-id cannot be numeric.

3.2 The 100 and other item-id definitions

The UPDATE
define the

Dictionary
item-id of

definition "100" is mandatory and
the data file. All fields in this

is used to
dictionary

item are as usual, with the exception that some fields are unused; the
UPD-DEF utility will skip over unused fields.

The V/DEFAULT, V/PRESUB and V/POSTSUB

fields (described later) are used

differently in the 100 item.

In the case of an item-id that is comprised of several concatenated
segments, there must be one dictionary definition for each segment.
The definitions must be called 100, 101, etc. Each such definition
must have a Group extract Correlative, and must be in correct
sequence with no missing segments.

Example: if the
"string*code*date" ,

Name
Correlative

item-id has three segments such
there would be three dictionary definitions:

100
GO*l

101
G1*1

102
G2*1

All 10 Dictionary definitions must have an AMC of zero.

Page 15

as

UPDATE language Dictionary definitions

3.3 Dictionary attribute 1 - D/CODE

Dictionary definitions used to update fields must have a code of 'U',
and must be edited by the UPD-DEF utility rather than the system
EDITOR. The UPD-DEF utility automatically stores the 'U' code.

The set of 'U' code Dictionary definitions must also be validated by
the UPD-VALIDATE utility (described later) before the UPDATE processor
can be invoked. The Dictionary validation performed by the utility
ensures that a self-consistent set of definitions have been built for
use by the UPDATE processor. Changes in any of the 'U' code
definitions require the validation process to be run again.

3.4 AMC - Attribute number

The AMC field in an UPDATE Dictionary definition is identical to that
in a RECALL definition, with the restriction that its value in a 'U'
code definition must be in the range 0-99.

Zero is reserved for the item-id definitions (IDO, ID1, etc.) and for
"generated" fields which have Functions used to generate, but not
store, data in the primary file. If a field with a Function
correlative has a non-zero amc, the generated value is stored in the
primary file. Generated fields are usually used to perform some
function on the data (such as multiplication of price by quantity) for
storage in secondary files; the function may involve mathematical or
string manipulation.

3.5 TAG or HEADING

The tag or heading field (S/NAME) in an UPDATE Dictionary definition
is identical to that in a RECALL definition.

It is used to "tag" an UPDATE expression when the user doea not
specify one. For example, ,in the expression:

@(10,3):PRICE

the S/NAME of the PRICE definition would be used to the left of column
10 as a "tag". If S/NAME is null, "PRICE" itself would be used.

For complete
expression:

control of screen tags, specify the

@(10,3):"List price":@(22):PRICE

tag in the

In order to inhibit the t~g entirely, use an explicit null tag:

@(10,3):"":PRICE

Page 16

UPDATE language Dictionary definitions

3.6 STRUCture CODE

The structure code (V/STRUC) is particularly important in UPDATE
Dictionary definitions. This is where the Controlling-Dependency
relationship of multi-valued fields is specified.

Fields that contain Single values must have no entry (Null) in their
structure code.

Fields that may contain Multiple values must have one of the following
structure codes:

a. Controlling fields

[Internal format] C(n) ;dependent1;dependent2;

[UPD-DEF display] C(n) dependent1
dependent2

"C" defines this field as a Controlling field.

(n) is optional and specifies a limit to the number
multiple values; the maximum number allowed is 99. If
specified, 99 is assumed.

of allowable
(n) is not

dependent1, dependent2, etc. are the names of the fields which
are dependent on this controller. These names must also exist as
UPDATE Dictionary definitions, or the dictionary will not be
validated.

Example: if the multi-valued PARTNO field controls PRICE, QUANTITY
and EXTENSION, (all of which are UPDATE Dictionary definitions), the
structure code of PARTNO would be:

C PRICE
QUANTITY
EXTENSION

b. Dependent fields must have the following code:

[Internal format]
[UPD-DEF display]

D;controller
D controller

"controller" is the name of the UPDATE Dictionary attribute which
controls this dependent field.

c. Multivalued fields which are not related to other fields

M(n)

Note - the majority of multivalued fields fall into the Controlling
or Dependent categories. Multivalued fields which are neither
Controlling nor Dependent must have a structure code of "M"; the (n)
is optional and specifies a limit to the number of allowable
multiple values; the maximum number allowed is 99. If (n) is not
specified, 99 is assumed.

Page 17

UPDATE language Dictionary definitions

3.7 CONVERSION CODES

The conversion codes field (V/CONV) in an UPDATE Dictionary definition
is identical to that in a RECALL definition, except that it is more
restrictive.

Multiple Conversion codes are
left-to-right on Output, which is
right-to-left to verify data entry.

allowed. They
the normal RECALL

The acceptable Conversion codes are:

are processed
convention, and

a. Date - Any Date Conversion such as "0", "02/" etc. This should be
the last code if multiple codes are used.

b. Number - Any Mask Decimal code, with or without format masking, for
example "MR2", "MR2,$#10" etc. This should be the last code if
multiple codes are used.

Special notes:
1. For numbers without decimal pOints such as Quantities, a
Conversion of "MRO: will force data entry of valid numbers
only. If numbers with leading zeroes are to be stored, use
instead a Format Mask field such as "MR%%%" or "MR%3"

2. To force positive numbers only, use the 'N' option on the
Mask Decimal code, such as "MRON" , "MR2N,$#10" , etc.

c. Format masks - this may be combined with the Decimal Conversion as
shown above, or used by itself. This should be the last code
if multiple codes are used.

If used by itself, a
strings; a Mask starts
(left-justified), an "R"
exact match) .

Mask may be used to validate text
with an "M", followed by an "L"
(right-justified), or a "V" (verify

Following this are the standard format codes

- Accept ANY character in this position.
- As for "#".

% - Accept NUMERIC characters only.
& - Accept ALPHABETIC characters only.

Anything else - Accept (but do not store) matching character
IF IT EXISTS, else IGNORE (that is, special
characters are always optional).

Page 18

UPDATE language Dictionary definitions

Example: For a telephone number, the mask "MR%3-%4" may be
used, and will accept data in the form nnn-nnnn OR nnnnnnn (n
is any number); here the - is optional on entry and is not
stored.

A social security number may be entered via a mask of
"MR%3-%2-%4"

Other examples follow:

Value entered

123-4567
1234567
12345X
12345
123-4567
1234567
12345
ABC.100
AB100
ABC9

Mask

MR%3-%4

MV%3-%4

ML&3.%%%

Value stored

1234567
1234567
Rejected
12345
1234567
1234567
Rejected
ASC100
Rejected
ABC9

(see note below)

(see note below)

NOTE: when the value entered is SHORTER than the mask used and
the justification is NOT "V", it will be accepted if it
"satisfies" the mask from the left or the right, depending on
the justification. If a "V" is used, the value must match the
mask exactly.

d. Translate - A File translate is used to verify and Convert data,
and must be one of the forms:

Tfilename;X;iamc;oamc or Tfilename;C;iamc;oamc

only (that is, the codes V, I and a are not allowed). If X is
used, a forced verification occurs, that is, if the translated
field or item is missing, the data entry will not be accepted.
If C is used, a missing value will not cause an error; the
untranslated data entry will be stored.

e. Pattern Matching - the "P ... " code may be used to perform pattern
matching beyond that allowed by Format masks.

Example: if a code must begin with the letter "A" or "S"
followed by 3 numbers, the Pattern match code would be
"P('A'3N) ;('S'3N)" (note multiple patterns may be specified).

f. Range Checking - the "R ... " code may be used to force numbers to be
in one or more ranges of values.

Example: to ensure that a value is in the range 1-100, the
code "R1 ; 100" may be used. Remember to allow for decimal
Conversions; if the value had two decimals and was entered
using a "MR2" decimal mask, you must use "R100;10000".

g. Time - Any Time Conversion such as "MT", "MTHS" etc.

Page 19

UPDATE language Dictionary definitions

h. Mask Character Conversions - The "MCU" , "MCl" and "MCT" Conversions
may be specified, and are used as Output (display) Conversions
only; they do not affect data storage.

Note that other Conversio~ codes such as "MX" , "MP" etc. are invalid,
and will be rejected during Dictionary validation.

Page 20

UPDATE language Dictionary definitions

3.B CORR or correlative codes

The correlative field (V/CORR) in an UPDATE Dictionary definition is
identical to that in a RECALL definition, except that only Functions
and Group extracts may be used. Multiple Correlative codes are not
allowed.

a. Group extracts are used to split fields which have been stored in a
concatenated manner. Thus more than one field can be stored within
the same data attribute; this is mostly useful to generate a
complex item-id. The format of a Group code is:

G n c m

where "n" is the number of segments to skip;
"c" is the character separator;
"m" is the segment copy count, and must be 1.

A given set of Group codes referencing the same attribute must
use the same separator chararacter, and all segments of the
value must be specified (that is, segments cannot be skipped
over or left undefined).

Note that each Dictionary attribute has its own Conversion codes
for data verification and display, its own external and internal
data links, etc.; each segment is indeed a separate entity.
Segments of a value may be specified as Controlling or Dependent
via Structure codes.

Example: three fields which store data in the form
"xxxx*yyyy*zzzz" would use three Dictionary definitions, the first
of which would have a Group code of "GO*l"; the second "G1*1" and
the third "G2*1".

b. Function codes may be "A" (Algebraic format) or "F" format. The
value generated by the Function code is stored in the primary file
item if there is a non-zero value in the amc; if the amc is zero,
the generated value is not stored in the primary item, but is used
only for display purposes or to be stored in a secondary file via
a file-link.

Generated fields may be used just for data display, like RECALL
definitions with Functions. The difference is that a Generated
field is automatically recomputed (and redisplayed if necessary)
whenever any of the values that affect it are changed. A RECALL
definition is only recomputed under the same condition if you
explicitly request it by setting up entries in the V/LINK of the
fields that affect it (see later)

Example: If the values of PRICE and QUANTITY are to be multiplied
so that the result displays and stores in a secondary file, an
UPDATE Dictionary attribute would use the Correlative:

A;N(PRICE)*N(QUANTITY)
If PRICE and QUANTITY were multivalued, their sum may be generated
by using the Funtion:

A;S(N(PRICE)*N(QUANTITY))

Page 21

3.9 JUSTIFICATION

The justification field (V/TYPE) in an UPDATE Dictionary definition
is identical to that in a RECALL definition.

Codes of "L", "r' and
Right-justified. In all
length will be truncated.

"U" are treated as Left-justified; "R" is
cases, values longer than the defined field

If a format mask is specified, its justification code will override
the V/TYPE.

3.10 MAXIMUM LENGTH field

The maximum length field (V/MAX) in an UPDATE Dictionary definition
is identical to that in a RECALL definition.

This value is used to limit the data entry length.

If a format mask is specified, its length will override the V/MAX
specified on display.

Example: if V/MAX is 12, and the format mask is "MR2,$#12" , the
displayed field is 12 characters, and 12 will be accepted on input,
which is not correct, and the display will be truncated. Therefore, a
V/MAX of 7 is probably better - that is, a maximum entry of 9999.99 (7
characters) will redisplay as "$9,999.99" (9 characters). An entry of
9999999 (7 characters) will redisplay as "9,999,999.00" (12
characters). Note even in this case, the "$" is lost on output. An
appropriate Range check should be used if entry values are to be
limi ted.

Page 22

3.11 MINIMUM LENGTH field

The minimum length field (V/MIN) in an UPDATE Dictionary definition
is used to force a mlnlmum data entry. A null or zero V/MIN indicates
that there is no minimum length limit.

If the value entered, after masking, is shorter than V/MIN, the data
entry is rejected with a message. Note that a non-zero V/MIN does not
force the field to be a "Required field"; the V/REQD entry does that.

3.12 REQUIRED FIELD flag

The required field flag (V/REQD) in an UPDATE Dictionary definition
is used to prevent a null entry from being accepted.

A value of "R" indicates that this field cannot be set to null.

If a Controlling field is set up as a Required field, at least one
controlling value must be entered.

If a Dependent field is set up as a Required field, a value must exist
for each corresponding controlling value.

Page 23

3.13 PRE EXT SUB or pre-data-entry subroutine

This field in an UPDATE Dictionary definition is used differently in
the 100 definition than in non-ID definitions.

a. In the 100 definition, an entry in this field is used to call a
BASIC subroutine just after the primary item has been read in. The
subroutine is called even if the item was not on file.

It is acceptable to read or write other files in this subroutine,
but maintaining the integrity of the database is then the
programmer's responsibility.

b. On non-ID definitions, an entry in this field is used to call a
BASIC subroutine before data entry.

The subroutine can determine whether to allow the update of the
field or not, depending on special circumstances.

It is recommended that no other files be written via this
subroutine call. This is because there are conditions when the
data in this field may change, but the subroutine is not called.
For example, if this field is a "dependent" and its "controlling"
value is deleted, the appropriate dependent multi-value is
automatically deleted also, but since there was no data entry to
this field, its subroutine is not called.

Subroutine interface is described later.

The subroutine must be cataloged in the user's Master Dictionary.

Page 24

3.14 POST EXT SUB or post-data-entry subroutine

This field in an UPDATE Dictionary definition is used differently in
the IDO definition than in non-ID definitions.

a. In the IDO definition,
BASIC subroutine just
deleted, or voided.

an entry in this field is used to call a
before the primary item is to be written,

It is acceptable to read or write other files in this
but maintaining the integrity of the database
programmer's responsibility.

subroutine,
is then the

b. On non-ID definitions, an entry in this field is used to call a
BASIC subroutine after data entry.

Note that the subroutine call only takes place if there was data
entry; a "Return", cursor-control, or "Trap" character entered
will not call the subroutine.

The subroutine can perform additional checks on the validity of
the entered data, and accept or reject the entry.

It is recommended that no other files be written via this
subroutine call. This is because there are conditions when the
data in this field may change, but the subroutine is not called.
For example, if this field is a "dependent" and its "controlling"
value is deleted, the appropriate dependent multi-value is
automatically deleted also, but since there was no data entry to
this field, its subroutine is not called.

Subroutine interface is described later.

The subroutine must be cataloged in the user's Master Dictionary.

Page 25

3.15 DEFAULT VALUE or automatic value

The default field (V/DEFAULT) in an UPDATE Dictionary definition is
used differently in the ID Dictionary definitions than in all other
definitions.

a. In the ID definitions (that is, in IDO, ID1, etc.), the purpose of
the V/DEFAULT is to automatically generate a new numeric value.
This automatic value is maintained in attribute two of a special
item in the same Dictionary. The item-id of this special item is
stored in the V/DEFAULT field.

If V/DEFAULT is set up in this way, remember to edit and file the
special item into the Dictionary.

To get the next automatic value when the cursor is positioned
on the item-id request, a LINEFEED (or Control-J character)
causes the next value to be generated.

Example: The IDO Dictionary definition in the CUSTOMER file
contains the value "NEXT.CUST" in its V/DEFAULT field. The item
NEXT.CUST is intially stored in the same Dictionary, with
attribute 2 set to "1000".

When the automatic value is first requested, a value of "1000" is
returned, and attribute two of NEXT.CUST reset to "1001". The next
time, the returned value is "1001" and NEXT.CUST is reset to
"1002", etc.

b. In all UPDATE Dictionary definitions other than the ID definitions,
V/DEFAULT is used to generate an "automatic" or "default" value on
a one-time basis when a field is first referenced. This happens on
new records as each field is reached, and additionally on
dependent fields whenever a new controlling value is added.

An automatic value may be overridden by the operator.

The V/DEFAULT field contains an "A" (Algebraic) or "F" code, just
like the Correlative field.

Example: In order to generate today's date automatically, the
following function may be used:

A;D

Another example: If, after entering a customer number into the
primary file's attribute number 3, an address field is to be
obtained from the CUSTOMER file's attribute 7, the V/DEFAULT would
be:

A;3(TCUSTOMER;C; ;7)

Page 26

3.16 HELP MSG - help message

This field in an UPDATE Dictionary definition is used to assist the
data entry operator by prin~ing a "help" messsage on the screen.

The text of the message can be up to 65 characters long, and it is
printed whenever the "help" trap character, "?", is entered by the
operator.

If additional assistance is needed, a BASIC subroutine may be called
(see the next section).

3.17 MORE HELP SUB external subroutine

This field is used
operator requires
message.

to call a BASIC
more assistance

subroutine when
than provided for

the data entry
by the V/HELP

After the above message is printed, if there is a value in this field,
the message:

? for more

will display; the operator can now enter another "?" to invoke the
BASIC subroutine.

Typically, the subroutine may be used to Execute a RECALL statement to
list data from a file.

Subroutine interface is described in a separate section.

Page 27

3.18 EXTERNAL STRUCTURES - secondary file links

The external structures field (F/LINKS)
definition is a multi-value~ field that
files.

in an
contains

UPDATE Dictionary
links to secondary

Secondary file items are locked when read, to ensure database
integrity in a multi-user environment.

Secondary file items are written when 1) the secondary item-id is
changed; 2) (if the secondary item-id is defined from a window) when
the cursor moves off the window line; or 3) when the primary item is
written or deleted. If any secondary item has been written, voiding of
the primary item update is inhibited and the BREAK key disabled, until
the update is completed by either writing or deleting the primary
item.

Up to nine secondary files may be defined.

Each link consists of three parts:

1. The secondary file-name.
2. A storage code.
3. The name of the Dictionary attribute (in the secondary file) in

which to store the data, unless this is a link to the item-id of
the secondary file, in which case this value is nUll.

a. Generating a link to the secondary file's item-id.

There must be a link that generates the item-id of the secondary
file from some field in the 'primary file. UPD-VALIDATE will ensure
that such a link exists, and that it conforms to the definition of
the item-id of the secondary file.

A link to the secondary item-id has a storage code of nIDn.

The field that links to the secondary item-id may be
single-valued, multivalued, a controlling or a dependent value, or
the item-id of the primary file.

If the secondary file's item-id is composed of concatenated
segments, it is necessary to define a ngenerated field n in the
primary file which generates the secondary item-id. The Dictionary
definition of the generated field must contain the link, while the
definitions of the individual fields in the primary file that
compose the secondary item-id must not have any links to the
secondary file (see example later).

b. Storing data in fields of the secondary file.

Each field in the primary file that stores data in a secondary
file's attribute must have a link.

The field that links to the secondary attribute may be
single-valued, multivalued, a controlling or a dependent value, or
the item-id of the primary file.

Page 28

The storage code defines the method used to transfer the data from
the primary file to the secondary file.

storage code Meaning

SV

A

S

MV

MA

Restrictions:

gopies the value as a Single Value to the
secondary file's attribute.
Adds the value to the secondary file attribute,
which must be singlevalued and numeric.
Subtracts the value from the secondary file attribute,
which must be singlevalued and numeric.
Copies the value as a Multiple Value to the
secondary file's attribute.
This code also deletes the appropriate multivalue
in the secondary attribute when the primary value
is changed or deleted.
Copies the value as a Multiple Value to the
secondary file's attribute.
This code does not delete the appropriate multivalue
in the secondary attribute when the primary value
is changed or deleted. The main purpose of this code
as opposed to the MV is when several primary file
items may update the same multivalue ("n-to-l
relationship), and when one of these primary values
is deleted or changed, you do not want the secondary
to disappear. Use this code with care, since
it tends to leave "footprints" in secondary files.

a. You cannot store into a field of the secondary file that is
defined as a concatenated value.

b. You cannot store into a Controlling-Dependent relationship in
the secondary file.

UPD-VALIDATE will attempt to ensure that the "from" and "to" values
match; you cannot add into a Date secondary field, for example.

It is best to set up UPDATE Dictionary definitions for all related
files at one time and run UPD-VALIDATE against them all. If any
changes are made in a Dictionary that has links to or from other
files, they should all be re-validated; this is the responsibility of
the applications designer since it is not forced.

Page 29

Examples:

1. The primary file is ORDER; the secondary file is BOOKING.

Action required: every time an order is assigned a Customer number,
the BOOKING file is updated with an item whose item-id is the
Customer number. A~so, the item-id of the ORDER is stored in the
ORDER# field of the BOOKING file. Since there may be more than one
order per customer, the ORDER# field is a multivalued field.

To establish the link to the BOOKING file's item-id, the F/LINK
value in the CUST# definition in the ORDER Dictionary is:

BOOKING ID (no attribute name)

To establish the data storage link, the F/LINK value in the IDa
definition of the ORDER Dictionary is:

BOOKING MV ORDER#

The file layout is

ORDER -----\ 1--> BOOKING
1 ORDER-DATE \1 1
2 CUST# ------1\ 2

\--> 3 ORDER#

Data base integrity is automatically maintained
conditions, even if the ORDER item is deleted, or
number in the order is changed, etc.

under all
the customer

2. Modifying the above, instead of just the customer number, we want
to use a concatenation of the CUST# and ORDER-DATE to form the
item-id in the BOOKING file.

Since the secondary file's item-id is concatenated, we need to
create a "generated field" as mentioned earlier.

If the generated field is called CUST#.DATE, it will be defined in
the Dictionary of the ORDER file with an AMC of zero, and a
Correlative of A;N(CUST#):'·' :N(ORDER-DATE). Note that Dictionary
definitions CUST# and ORDER-DATE do not need F/LINKs; however,
CUST#.DATE must have an F/LINK of:

BOOKING ID

(The F/LINK of the IDa item in the ORDER dictionary is the same as
before) .

Page 30

The file layout is now:

ORDER ----\ /--> BOOKING
1 ORDER-DATE -I \I 1
2 CUST# -I /\ 2

1 / \--> 3 ORDER#
v /

(0) CUST#.DATE --I

3. In the same files, let us now
Controlling-Dependent relationship;
controls the QTY-ORD field.

assume that
the mul tivalued

there
PART#

is a
field

Action required: as parts are ordered, the quantity ordered is to be
subtracted from the ON-HAND field in the INVENTORY file.

Note that the secondary file (INVENTORY) is updated as each line in
the window is modified, added or deleted.

First establish the link to the item-id of the INVENTORY file, which
is the PART# in the ORDER file. The F/LINK value in the PART#
definition of the ORDER Dictionary is:

INVENTORY ID

Next establish the quantity link; the F/LINK value in the QTY-ORD
definition of the ORDER Dictionary is:

INVENTORY 5 ON-HAND

The file layout is now

ORDER
1 ORDER-DATE
2 CUST#

(0) CUST#.DATE

6
7

PART#
QTY-ORD

---\ /--> BOOKING
-I \I 1

-I /\ 2

1 / \--> 3 ORDER#
v /
--I

----------------------> INVENTORY
----------\

\
\------> 5 ON-HAND

Page 31

3.19 VALUE LINKS

The value links field (V/LINKS) in an UPDATE Dictionary definition is
a multi-valued field that contains the names of any RECALL definitions
affected by this field.

RECALL definitions (with an 'A' code) may be used to display data on
the screen. If the RECALL definition has a Function that is affected
by a value on the screen, the Function should be re-computed whenever
a value is changed. The V/LINKS field ensures that the re-computation
takes place.

If the computed value is from an UPDATE definition with a Function
Correlative, there is no need to place its name in the V/LINKS field;
the re-computation in this case takes place automatically.

Example: Assume that the RECALL definition
Function of PRICE minus COST (that is, it
"A;N(PRICE)-N(COST)", where PRICE and COST
definitions.

MARGIN is defined as a
has a Function such as
are UPDATE Dictionary

To ensure correct re-computation, the V/LINKS fields of both PRICE and
COST should contain the value "MARGIN".

Page 32

3.20 Subroutine calling

In general, the UPDATE processor can handle the majority of data
validations and data manipulations. If non-standard processing is
needed, a BASIC external subroutine may be called from a number of
different areas of the UPDATE processor.

The subroutine must be cataloged in the user's Master Dictionary.

A subroutine may be called under the following conditions:

a. Just after reading in the item from the file (even if the item does
not exist on file) - subroutine name is in "PRE EXTernal SUB"
field of the IDO Dictionary definition.

b. Just before writing, deleting or voiding the item - subroutine name
is in "POST EXTernal SUB" field of the 100 Dictionary definition.

c. Just before accepting data entry from the operator - Subroutine
name is in "PRE EXTernal SUB" field of the Dictionary definition
for the field.

d. After data entry from the operator has been accepted by any Masking
and other Conversion validations, but before storing the data in
the field - subroutine name is in "POST EXTernal SUB" field of the
Dictionary definition for the field.

e. When the user requests "additional help" - Subroutine name is in
"MORE HELP SUB" field of the Dictionary definition for the field.

It is not recommended that subroutines in categories (c), (d) and (e)
perform file writes. See the warning under Dictionary description.

3.21 Subroutine interface

The external
conditions;
subroutine:

subroutine interface is
the followini must be

SUBROUTINE name
$INCLUDE SYSLIB UPD.COMMON

the
the

sam~

first
for
two

all the above
lines of the

The "included" item contains the COMMON variables accessible by the
subroutine. The C.ERRCODE variable allows the subroutine to determine
the condition under which it has been called (see table later); the
C.CLEARSCREEN variable may be set by the user to ONE to cause the
screen to be refreshed on return from the subroutine.

Note = the UPDATE processor runs with ~ PRECISION of ZERO, which is
set by the included item UPD.COMMON. The subroutine cannot have a
different precision.

Page 33

3.22 COMMON variables

Warning - Variables marKed with an "*" should not be altered by the
user subroutine. All COMMON variables from UPDATE begin with "C."

C.DICTPRIMFILE
C.PRIMFILE
C.ITEMID
C. ITEM (100)
C. ITEM. EXISTS
C.NO.VOIDING

C.AMC
C.VMC
C.OLD.DATA
C. NEW. DATA
C.X
C.Y
C.VCONV

C.RCONV

C.MASK
C. GL--DBALF
C.PR,IMFILENAME
C.DEBUG
C.ERRCODE
C.CLEARSCREEN

C.USER(15)

C.DELETE.OPT
C.VIEW.OPT

C.ITEM.CHANGED

File variable of dictionary of primary file.
File variable of data section of primary file.
Item id of primary file.
Primary item.
a for NEW items, 1 for existing items.
a if no secondary files items have been written;
1 if any have been written.
Current field attribute number.
Current field multivalue number.
Original value from item (Note 1)
Operator-entered value (Note 1)
x cursor location.
y cursor location.
Output conversion code
(may be used in OCONV).
Input conversion code
(may be used in ICONV).
Output "mask" code.
"Options" from UPDATE sentence.
Name of primary file.
If non-zero, UPDATE debugger is
See table in next section.

Meaningful
for "Before data
entry" and "After
data entry"
subroutines only.

in effect.

This variable is zero on entry; the user
subroutine may set it to one if the screen is
to be refreshed on return to UPDATE.
USer-definable for parameter passing. This array is
set to null on initial execution of UPDATE.
1 if the statement allows item deletion (X option)
1 if the statement is inquiry (V option);
Also set to 1 when editing an EXISTING item
and the Nomodify (M) option is in effect.
1 if Primary item has been modified since read.

Note 1: Value is in "internal format"; that is, before Output
Conversion for OLD. DATA, and after Input Conversion for NEW. DATA.

Page 34

3.23 C.ERRCODE variable I/O values

When called

Just after reading
item

Just before writing
item

Before data entry

After data entry

Help request

Value on entry
to .subroutine

0

0 Writing item
1 Deleting item

3 Voiding item

o

o

No meaning

Value on exit
(set by user)

0
1

0
1

3

o
1

o
1

Accept item.
Reject item (don't
allow any updates).

Accept action.
Reject action (return
to "Edit line").
Void all updates

(see Note 1).

Accept data entry.
Disallow data entry
(skip this field).

Accept and store data.
Reject data entry
(repeat data request).

No meaning

Note 1: By setting C.ERRCODE to 3, all updates are voided (as in EXit
command in the EDITOR). If the C.NO.VOIDING flag has a value of one,
this will not be accepted because at least one secondary file has been
written, and database integrity would be lost if the void is allowed.
The user may change C.NO.VOIDING to zero at his own risk to force
acceptance of a void command. Maintenance of database integrity is
then the user's responsibility.

3.24 Examples of user subroutines

3.24.1 Conditional updating

A field can be accessed for change only if attribute 1 of the item
contains an "A"; no error message is needed. The following subroutine
can be called from the PRE EXT SUB field:

SUBROUTINE ACODE.PRE
$INCLUDE SYSLIB UPD.COMMON

C.ERRCODE = (C.ITEM(1) = 'A')
RETURN

3.24.2 Complex validation

A set of "From" and "To" quantities is to be entered into a
multi-valued discount schedule. For example:

Page 35

From To
1 25

26 100
101 500

We need to ensure that the "To" quantity is greater than the "From"
quantity, and less than the next "From" quantity. The following
subroutine can be called from the POST EXT SUB field of the "To"
attribute (assume the "From" attribute number is one less than the
"To" attribute number):

SUBROUTINE TO.POST
$INCLUDE SYSLIB .UPD.COMMON
IF C.NEW.DATA < C.ITEM(C.AMC-1)<l,C.VMC> THEN

PRINTERR 'To quantity must be > From quantity'; C.ERRCODE 1
END ELSE

NEXT.FROM = C.ITEM(C.AMC-1)<l,C.VMC+1>
IF NEXT. FROM #" & NEXT. FROM < C.NEW.DATA THEN

PRINTERR 'To quantity must be < Next From quantity'
C.ERRCODE = 1

END
END

RETURN

A similar subroutine is needed to validate the "From" values.

3.24.3 An extended "Help" routine

The following subroutine may be used to help the operator find a
customer number:

SUBROUTINE CUSTNO.HELP
$INCLUDE SYSLIB UPD.COMMON
PRINTERR 'Enter customer name or portion'
INPUT SEARCH: THEN

EXEC 'LIST CUSTOMER-MASTER WITH NAME "[' : SEARCH: ']" (C)'
PRINT 'Type return to continue':; INPUT SEARCH,l:
C.CLEARSCREEN = 1

END
RETURN

Page 36

UPDATE language Data entry

CHAPTER 4

DATA ENTRY

4.1 Modes of data entry

The UPDATE processor first requests the item-id or key of the file. A
null entry to this terminates the UPDATE statement.

After entering the item-id, the UPDATE processor operates in two
distinct modes of data entry, INPUT and EDIT.

4.1.1 The INPUT mode

The Input mode is entered automatically when the key of a NEW item is
entered by the operator.

In this mode, the UPDATE processor steps sequentially through the
fields as they appear in the UPDATE statement. After each field is
entered and validated, the cursor is positioned at the next logical
field.

In the case of Associated data sets, if the Controlling value is
entered, data entry will be requested for all corresponding Dependent
values. If a null is entered at the Controlling value, this section of
data entry is terminated.

Backward cursor positioning is allowed during this phase; this allows
the operator to correct mistakes even after the field or fields have
been entered. The section on Cursor Controls describes this.

4.1.2 The EDIT mode

The Edit mode is entered:

1. After all fields have been entered in the INPUT mode for a NEW
item, or

2. When an EXISTING item is being updated.

In this mode of operation, control passes back and forth between the
EDIT request line and data entry. The EDIT request is a line,
typically at line 22 on the screen, of the form:

Enter field id to change, • (EXit), RETURN (FIle)

The above message is the default generated by the UPDATE processor; a
different message may be specified by using the FOOTING connective in
the UPDATE statement.

Page 37

UPDATE language Data entry

A field id of the forms:

n n.m a a.m

may be entered; Un" is field n~mber; "n.m" is a specific line "m" in a
window whose field number is Un"; the "a" forms are used if alphabetic
field-ids are used.

In addition, the Editor-like commands 'FI', 'EX' and 'FD' may be
entered to File the primary item, Exit without filing, or Delete the
primary item. An 'EXT' returns to TCl even if a select list is being
used.

The 'DEBUG' command may be entered to turn on the UPDATE Debugger.

4.2 Paging of data within windows

When a window is initially setup by the UPDATE processor, values are
stored starting at the first multi-value on file until such values are
exhausted or the window is filled. Data in the window may be "paged"
in several ways:

1. If the cursor is positioned on the ending multi-value of any field
and the lINEFEED key is entered to page down, or on the beginning
multi-value and the Cursor-Up or Backspace key is entered to page
up.

2. If a specific multi-value
via the 'n.m' command,
example, entering '7.11'
multi-value of field #7;
if that field was not on

is requested from the EDIT request line
where 'm' is the sequence number. For
will position the cursor on the 11-th.

the window data will be paged up or down
display.

Page 38

UPDATE language Data entry

4.3 Cursor movement

The movement of the cursor from field to field on the screen is made
as simple as possible.

4.3.1 The RETURN key

The RETURN key is used as the most frequent termination of data input
or to move from one field to another. A RETURN without any data input
preceding will maintain the current field value (if any) with no
change.

4.3.2 The LINEFEED key

The LINEFEED key (equivalent to the Cursor Down key if this exists) is
equivalent to the RETURN key if the cursor is on a single-valued
field. It has a different action only when within an Associated data
set, or when on the item-id field(s).

If within a window, linefeed moves the cursor down to the next
corresponding multi-value without changing fields (that is, it causes
a downward motion of the cursor).

If the cursor had been postioned on the last value of the field as
displayed, and there are more values on file, the entire window will
"roll up" one value to display the new value. If there are no·more
values on file, the LINEFEED is ignored.

If on an item-id field, linefeed invokes the "get next automatic id"
feature if this has been defined in the dictionary

4.3.3 The Up-arrow or Caret key

The Up-arrow or Caret key (equivalent to the Cursor Up key if this
exists) is equivalent to the RETURN key if the cursor is on a
single-valued field. It has a different action only when within an
Associated data set. It then moves the cursor up to the previous
corresponding multi-value without changing fields (that is, it causes
a upward motion of the cursor).

If the cursor had been postioned on the first value of the field as
displayed, and there are previous values on file, the entire window
will "roll down" one value to display the new value. If there are no
previous values on file, the Cursor Up is ignored.

4.3.4 The BACKSPACE key

The BACKSPACE key (or Cursor Back if it exists) is used normally to
erase the last input character.

If, however, the BACKSPACE is entered when the cursor is positioned on
the first character of the field, it causes the cursor to back up to

Page 39

UPDATE language Data entry

the previous
it:em-id if
edited if on
field of the

logical field, if on a data field; to get the previous
on the item-id field; or to go back to the last field
the Edit line. If the cursor was positioned on the first
screen, no action takes place.

BACKSPACE is also used to go to the previous screen from the Edit line
when multiple screens are used.

4.4 Summary of cursor movement

BACKSPACE

Previous
Field,
Value,
or
Screen

UP-CURSOR
or

CARET (A)

Move up
in window

LINEFEED

Move down
in window

OR
Get auto-idl
on ID fieldl

Page 40

RETURN

Next Field

UPDATE language Data entry

4.5 Trap characters

The following are special or "trap" characters that cause the UPDATE
processor to take the specified action.

The column headed "location" indicates where the action takes place -
when data is entered to a field, or at the "Edit line".

Character Location

Edit line

Data entry

? Anywhere

Edit line

Data entry

Anywhere

Action

DELETE entire item;
(requires 'confirmation from operator).
'FD' is an equivalent entry.
DELETE value if not a Required field;
if a Controlling value is deleted, all
associated Dependent values are also deleted;
that is, the window line is deleted.

Print HELP message; request if HELP
subroutine is to be called, if any.

VOID updates; accepted only if
nothing has been written to a secondary file.
'EX' is an equivalent command.
SKIP field or window line.

REFRESH screen.

+ Data entry only INSERT a new line in the window.
while on controlling
field within a window

Escape Data entry Enters the WORD PROCESSING mode
(valid for left justified fields only);
only the 0 (delete character), I (insert text)
and R (replace text) are implemented; use
RETURN to terminate input/replace text.
Control-X quits Word processing mode without making
any changes.

Page 41

UPDATE language utilities

CHAPTER 5

UTILITIES

5.1 UPD-DEF utility

You must use UPD-DEF instead of the system's EDITOR to edit UPDATE
Dictionary definitions. If any changes are made to a Dictionary
definition, UPD-DEF forces re-validation of the Dictionary for safety.

To call UPD-DEF, enter at TCl:

UPD-DEF filename

You are now in the UPDATE processor, and may enter an item-id to edit.
Help messages (using ?), cursor controls, etc. are now in effect.

5.2 UPD-VAlIDATE utility

You must run UPD-VAlIDATE
before using UPDATE, and
via UPD-DEF.

to validate the Dictionary definitions
every time you change any Dictionary items

To validate a Dictionary, enter at TCl:

UPD-VAlIDATE filename {(P)}

where the optional (P) is used to route messages to the printer.

If validation errors are found, an error listing is generated (see
next to generate the same listing).

5.3 lIST-UERRORS

Errors detected by UPD-VAlIDATE can be listed by entering at TCl:

lIST-UERRORS filename {(P)}

Page " 42

A correlative
A option
A storage code
AMC

21,26
14
29
16

Alphabetic field ids
Associated fields

10,14
3,8,9,17

16 Attribute number
Attribute number of zero

16,21,32
Automatic carriage-return 14
Automatic item-id 26,39
Automatic value 26
B option 14
BACKSPACE key 39
BASIC subroutines

24,25,27,33
BREAK key
C.CLEARSCREEN variable
C.ERRCODE variable

14,28
33
33

C.ERRCODE variable values 35
COMMON variables 34
Carriage-return, forced 14
Computed values 16,21,28
Concatenated item-id 15
Controlling field 3,8,17
Conversion code 18
Correlative code
Cursor control
Cursor positioning
Cursor-up key
D/CODE
Data input, modes
Data, justification
Data, maximum length
Data, minimum length
Data, paging in windows
Data, pattern matching
Data, required
Data, translation of
Data, validating
Data, verifying
Database aspects
Date, verifying
Debugging
Deleting items
Deletion of lines

21
39,40

7,7
39
16
37
22
22
23
38
19
23
19
18
18

4

18
38
14
41

Dependent field 3,8,17
Design considerations 4
Dictionary definitions 4,15
Differences in IDO definition

24,25,26
Disabling the BREAK key

Display only
END-WINDOW connective
EXT command
Edit mode
Edit request line
Item-id, selected
Justification code

14,28
14

8
6,38

37,39
12,37

6
22

Editing dictionary definition -
s ~,~

Exiting without data change
41

Expressions, UPDATE statement
6,7

Expressions, literal
External subroutines

7

F correlative
FOOTING connective
Field
Field heading
Field id
Field names
Field number
Field, associated
Field, cenerated
Field, controlling
Field, dependent
Field, generated

Field, multivalued

File design
File links
File, primary

24,25,27
21,26

12
3

7,16
7,8,10,37

10
16

3,8,9,17
29

3,8,17
3,8,17

3,5,16,21,28

File, secondary
Format masks
Formatting the screen

3,17,29,38
4

28
3,6

3,6,30
18

7
Function code
G correlative
GET-LIST
Generated field
Generated fields
Generating data
Glossary
Group extract code
HEADING connective
Heading for a field
Help routine
IDO definition

21,26
21

6
3,5,16,21,28

29
21

3
21
12
16

27,33,36,41
15

IDO definition differences
24,25,26

Identifying fields on the scr -
een 10

Input mode 37,39
Insertion of lines 41
Interface to BASIC subroutine -

s 33
Internal links 21,32
Item deletion 14
Item-id prompt 37
Item-id, automatically genera -

ted 26,39
Item-id, concatenated
Item-id, primary file
Item-id, secondary file
Screen format, typical
Screen, formatting

15
15
28
11

6,7

LINEFEED,key
LIST-UERRORS
Length code

39
42

22,23,23
Limitations, attributes and m-
ultivalues 5

Limitations, secondary files
5,29

Lines in a window 41
Link to secondary file id
Links, file

28
28

Links, internal 21,32
Listing validaton errors 42
Literal expressions 7,8
M option 14
MA storage code 29
MCl conversion 20
MCT conversion 20
MCU conversion 20
Ml conversion 18
MR conversion 18
MV storage code 29
Mask character 20
Mask code 18
Masks, format 18
Maximum length
Minimum length
Modes of data entry
Movement of the cursor
Multiple screens
Multivalued fields
N option
NEXT-SCREEN connective
No modification
No new items

22
23
37

39,40
13

8,17,38
14
13
14
14

Number verifying 18
Number, verifying range 19
Options on UPDATE statement

P storage code
Paging within windows
Pattern matches
Prevention of changes
Prevention of new item

on
Primary file
Primary file item-id
R option
RETURN key
Range checking
Redisplaying the screen

Refreshing the screen
Related fields
Required field
S/NAME
SV storage code
Variables in COMMON
Verifying dates
Verifying numbers
Veri fying times

14
29
38
19
14

addi ti-
14

3,6
15
14
39
19

33,41
33,41

17
23
16
29
34
18

18,19
19

Screen, redisplay 33,41
Screens, multiple 13
Secondary file 3,6
Secondary file item-id 28
Secondary file limitations

Secondary file storage
Secondary file storage

Secondary files
Select lists
Single values
Special characters

code

5,29
28

29
30

6,38
17

Special editing of fields
Storage code, secondary file

41
41

Structure code
Subroutine calls
Subroutine example
Subroutine interface

29
17

24,25,27
35,35,36

33
Subroutine variables
Syntax of UPDATE statement
Tag for a field

34
6

7,16
Tag for a window
Terminating the UPDATE
Time, verifying
Translates
Trap characters
Typical screen format
UPD-DEF
UPD-VALIDATE
UPDATE expression
UPDATE statement
Up-arrow key
V option
V/CONV
V/CORR
V/DEFAUlT
V/HElPSUB
V/LINK
V/LINKS
V/MAX
V/MIN
V/POSTSUB
V/PRESUB
V/REQD
V/STRUC

8
37
19
19

27,41
11

16,42
4,16,42

3,6,7
3,6

39
14
18
21

26,27
27
21
32
22
23
25
24
23
17

V/TYPE 22
Validating data 18
Validation of dictionaries 4
Values, automatically gene rat -

ed 26
Values, computed
Values, multiple
Values, related
Values, single
Window field id
Window lines
Window literal

16,21,28
17,29

17
17,29

8
8,41

8
Windows with multivalues 8

View option
Voiding data updates
WINDOW connective

14
41

8

Windows, paging of data
Word processing mode
X option

38
41
14

•
.. -

