
Document Production Software
USER MANUAL

SCRIBE

Document Production System

User Manual

UNILOGIC, Ltd.

June, 1985

Published by UNILOGIC, LTD., Suite 240, Commerce Court, Four Station Square,
Pittsburgh, PA 15219-1119

Fourth Edition.

First Printing: April, 1984
Second Printing: June, 1985

Previous Editions: August 1978, August 1979, May 1980

"UNILOGIC" is a registered trademark of UNILOGIC, LTD.

"Scribe" is a registered trademark of UNILOGIC, LTD.

Copyright © 1985 UNILOGIC, LTD.

The following are trademarks of the Digital Equipment Corporation, Maynard, MA: DECsystem-IO, VAX,

DECsystem-20, VMS TOPS-10, GIGI, TOPS-20, ReGIS, DECwriter, VAX-11. The following are trademarks of

Xerox Corporation: Diablo, HyType, 1700, Xerox, 9700, 2700. Lasergrafix 1200 is a trademark of Quality Micro

Systems, Inc. The following are trademarks of the Imagen Corporation: Imagen, Imprint, imPRESS. UNIX is a

trademark of Bell Labs. Symbolics is a trademark: of Symbolics, Inc. Prlme and PRIMOS are trademarks of Prime

Computer, Inc. PosTSCRIPr is a trademark of Adobe Systems, Inc. Apple is a trademark of Apple Computer.

Preface

Scribe is a system that makes producing attractive documents as easy as creating a text file.
No special typographical knowledge is required, even if you want to use color, special charac
ters, multiple fonts, foreign alphabets, and complex mathematics. All you have to know is
how to log in to a computer and use a simple editor. Scribe is designed to take the pain out of
document formatting. If you leave something out or make inconsistent requests, Scribe
straightens everything out for you.

It does this straightening by dividing up the work of document preparation. You, the user,
must provide the content, which consists of text and a small number of commands that tell
Scribe where various pieces of the document begin and end. The appearance of the document
- how big the margins ought to be, what type sizes and styles are appropriate, where foot
notes should be place, how headings should be numbered - all are provided for and standar
dized by Scribe under your control. This typographical information resides in a large
Database that is supplied with Scribe. The Database is so extensive that Scribe even has its
own Database management system so that it can find what it needs at the right time. The
Database can be modified or expanded locally to include all sorts of customized document
styles.

Scribe was originally designed and implemented by Brian K. Reid while he was a graduate
student in the Computer Science Department at Carnegie-Mellon University in Pittsburgh.
UNILOGIC was formed in 1979 to continue the development and popularization of Scribe. In
1982, Dr. Reid was honored by the Association for Computing Machinery with its Grace
Murray Hopper Award, given annually to that individual who, while under thirty years of age,
has made the most significant contribution to the computer industry.

Earlier editions of this manual were written by Brian Reid and Janet H. Walker. Portions
have been revised extensively by the staff of UNILOGIC, Ltd.

This manual was produced entirely with Scribe and the POSTSCRIPT Driver, except for the
outside cover and the line drawing on page 171. It was compiled on a VAX/VMS system and
printed on an Apple LaserWriter with a resolution of 300 dots per inch. This printer deposits a
very black, smooth character on the paper and is excellent for reproduction.

The fonts used in this manual were supplied courtesy of The Allied Corporation. The basic
body size is 11-point. Their selection of mathematical and special characters is extensive, as
you will see by leafing through the manual.

The Scribe Mathematics Facility is derived from a macro package known as MATHLM,

ii SCRIBE USER MANUAL

built by Louis Monier of Carnegie-Mellon University. Bibliography formats for different
journal styles have been contributed by many different Scribe users and sites. We hope you
will let us know how you extend Scribe to fit your needs.

CONTENTS

Table of Contents

1. Introduction

1.1 Some Explanation for Non-Programmers
1.2 Some Explanation for Programmers

2. Getting Started

2.1 The General Picture
2.2 Preparing Input for Scribe
2.3 Processing Your File with Scribe
2.4 Printing Devices

3. Simple Formatting Environments

3.1 Delimiting Characters
3.2 Environments for Changing Typeface
3.3 Environments to Change Format
3.4 Unfilled Environments

3.4.1 Verbatim and Format
3.4.2 Center, FlushLeft, and FlushRight
3.4.3 Display, Example, and ProgramExample

3.5 Filled Environments
3.5.1 Text
3.5.2 Quotation and Verse
3.5.3 Itemize and Enumerate
3.5.4 Description

3.6 Simple Environments for Mathematical Text
3.7 Color Output

3.7.1 Using Color
3.7.2 Coloring Pieces of Text

4. Simple Commands

4.1 Footnotes and Endnotes
4.2 Storing and Re-Using Text: The @String and @Value Commands
4.3 Using Predefined Internal Strings

iii

1

2
2

5

5
6
6
8

11

11
13
14
16
16
16
19
22
22
22
24
24
24
28
29
29

31

31
32
33

iv

4.4 Simple Indexing
4.4.1 The @Index Command
4.4.2 The @IndexEntry Form

4.5 Adjusting Document Formats: The @Style Command
4.6 Page Headings, Page Footings, and Page Numbers
4.7 Comments in Manuscript Files
4.8 Special Characters

4.8.1 Printing Predefined Special Characters
4.8.2 Faking Special Characters

CONTENTS

35
35
37
39
41
42
43
43
44

5. Organizing Manuscript Files 47

5.1 Document Types 47
5.2 Which Commands Go Where? 48
5.3 Details of Particular Document Types 48

5.3.1 The Text Document Type 48
5.3.2 The Letter and LetterHead Document Types 54
5.3.3 The Sectioned Document Types: Thesis, Report, Article, and Manual 54

6. Titles, Sections, and the Table of Contents 59

6.1 When There is No Table of Contents 59
6.2 When There is a Table of Contents 60
6.3 Title Pages 62

7. Numbers, Labels, and Cross References 65

7 .1 Numbering and Scribe Counters 65
7 .1.1 Current Values of Counters 65
7.1.2 Changing Values of Counters 66

7.2 Cross Referencing 67
7 .2.1 Marking a Place: The @Label Command 67
7 .2.2 Marking a Thing: The @Tag Command 68
7 .2.3 Distinguishing Places and Things 68

7.3 Forward References 69

8. Figures and Tables 73

8.1 Generating Figure and Table Bodies 74
8.1.1 The @Blankspace Command 74
8.1.2 The @Picture Command 74
8.1.3 Drawing Lines: The @Bar Form 76

8.2 Generating Captions 76
8.3 Figure Numbers and References to Figures 77
8.4 Lists of Figures and Lists of Tables 77
8.5 Full-Page Figures 77

8.5.1 Examples of Figure and Table Command Usage 78
8.5.1.1 An Ordinary Figure with a Cross Reference Tag 78
8.5.1.2 Two Figures Together on a Figure Page 78

8.6 Multiple-Page Figures 78

CONTENTS

9. Format Control: Tabs and Columns

9.1 Tabs and Tab Settings
9 .1.1 Setting Tabs
9.1.2 Tabbing to a Tab Stop: The@\ Command
9.1.3 Centering, Flushing Left, and Flushing Right: The@= and@>

Commands
9.1.4 The Lifetime of Tab Settings

9.2 Fancy Cursor Control
9.2.1 Dynamic Tab Settings: The@" Command
9.2.2 Overprinting
9.2.3 The Return Marker
9.2.4 Replication: Filling Behind Tabs

9.3 Multiple Columns

10. Hyphenation

10.1 Hyphenation
10.1.1 Hyphenation Dictionaries
10.1.2 Hyphenation by Algorithm
10.1.3 Hyphenation Methods
10.1.4 Using Hyphenation
10.1.5 Text Hyphens
10.1.6 Discretionary Hyphens
10.1. 7 When Does Scribe Hyphenate?
10.1.8 Verifying Scribe's Hyphenation
10.1.9 The@I Command: Where to Break a Word without a Hyphen
10.1.10 Significant Blanks: Where Not to Break a Word

10.2 Sentence Breaks
10.3 Line Breaks
10.4 Paragraph Breaks
10.5 Page Breaks
10.6 Widows and Orphans

11. Mathematical Output

11.1 Output Devices
11.2 Including Mathematics in Your Document
11.3 Mathematical Environments and Forms

11.3.1 Properties of the Mathematical Environments
11.3.2 Normal Text in the Mathematical Environments

11.4 Spacing
11.5 Special Characters
11.6 Other Special Notations

11.6.1 Common Mathematical Text
11.6.2 Ellipsis
11.6.3 Numeration
11.6.4 Miscellaneous

11. 7 Multi-Line Formulas

v

81

81
81
82
82

85
87
87
87
88
88
90

93

93
94
96
97
98
99
99
99

101
102
102
103
105
105
106
107

109

109
109
110
110
111
111
112
115
115
117
117
118
118

n CONTENTS

12. Producing Bibliographies with Scribe 123

12.1 An Example 124
12.2 About the Format of Citations and References 125
12.3 The @Cite Command 128
12.4 Placing the References Section 130
12.5 Bibliography Database Files 130

12.5 .1 Its Organization and Contents 131
12.5.2 Building Your Bibliographic Database 132

12.5.2.1 Strategy 132
12.5.2.2 Classification 132
12.5.2.3 Field Names 134
12.5.2.4 Abbreviations 136

12.6 Some Examples 137

13. Producing Large Documents 139

13.1 Breaking a Manuscript into Several Smaller Files 139
13.2 Separate Processing of Component Files 141

13.2.1 Component Files as Separate Documents 141
13.2.2 Separate Processing of Component Parts: The @Part Command 142
13.2.3 String Definitions in Multiple Part Documents 143

13.3 Filenames and the@Use Command 143
13.4 Managing Cross References and Document Organization 144
13.5 Word Counts and Vocabulary Construction 145

14. Messages From Scribe 147

14.1 Informational Messages 147
14.2 Warnings and Errors 149
14.3 Error Message Texts and Explanations 150

15. Changing Things 159

15.1 Defining Command-Name Synonyms: The @Equate Command 160
15.2 Environments 160
15.3 Modifying Environments 161

15.3.1 Local Changes 161
15.3.2 Global Changes: The @Modify Command 162

15.4 Defining New Environments 163
15.4.1 New Environments From Old 163
15.4.2 New Environments From Scratch 163

15.5 Environment Attributes for the @Define and @Modify Commands 163
15.6 Library Files for Commands 170

15.6.1 Multiple-Level Indexing 172
15.6.1.1 The @lndexSecondary Form 172
15.6.1.2 The @SeeAlso Form 173

15.7 Counters 174
15.8 Templates 175
15.9 Fonts 177

CONTENTS

16. Epilogue and Sermon

Appendix A. Operating Systems Dependencies

A.1 TOPS-10 Systems
A.2 TOPS-20 and TENEX Systems
A.3 VMS Systems
A.4 UNIX Systems
A.5 Apollo/Aegis Systems
A.6 Prime/Primos Systems

Appendix B. Printing Devices

B.1 Line Printers
B.2 Diablo Typers and Similar Devices
B.3 Photocomposers
B .4 Laser Printers

Appendix C. Character Codes and Type Fonts

C.1 Keyboards and Characters
C.2 Font and Character Considerations for Multiple Font Devices
C.3 A Note About the ASCII Character Set

Appendix D. A Few Examples

Appendix E. Summaries

E.1 Processor Options
E.2 Document Types
E.3 Environments
E.4 Commands
E.5 Punctuation-Character Commands
E.6 Predefined String Names
E. 7 @Style Parameters
E.8 Bibliography Formats
E.9 Bibliography Entry Types

E.9.1 The lAPA and AnnAPA Bibliography Reference Formats
E.9.2 The Annoted Bibliography Reference Formats
E.9.3 The APA Bibliography Reference Formats
E.9.4 The CACM Bibliography Reference Format
E.9.5 The Closed and STD Bibliography Reference Formats
E.9.6 The IEEE Bibliography Reference Format
E.9.7 The IPL Bibliography Reference Format
E.9.8 The SIAM Bibliography Reference Format

E.10 Bibliography Field Parameters

vii

179

181

181
182
182
182
183
183

185

186
186
187
187

189

189
189
191

193

203

203
204
205
209
215
216
217
221
223
223
225
227
228
230
232
234
235
237

viii

Appendix F. Syntax Summary

F .1 Environments and Delimiters
F.2 Commands and Delimiters
F.3 Spaces
F.4 Carriage Returns
F.5 Code Names for the @Tag and @Label Commands
F.6 String and Environment Names
F.7 Parameter Commands
F.8 Numbers and Distances

Appendix G. Mathematical Formulas

Index

CONTENTS

239

239
239
240
240
240
240
241
241

243

255

CONTENTS ix

List of Figures

Figure 3-1: A Comparison of Fixed-Width and Variable-Width Fonts 18
Figure 3-2: An Exampled of the Itemize Environment 25
Figure 3-3: An Example of the Enumerate Environment 26
Figure 3-4: Sample Input and Output for the Description Environment 27
Figure 5-1: An Example of a Manuscript File in the Text Document Type 50
Figure 5-2: Sample Output on a Line Printer (Device LPT) 51
Figure 5-3: Sample Output on a Diablo HyType II (Device DIABLO) 52
Figure 5-4: Sample Output on a Xerox 2700 Laser Printer 53

(Device X2700)
Figure 5-5: Sample Manuscript File for a Personal Letter 55
Figure 5-6: The Skeleton of Manuscript File for a Thesis 56
Figure 7-1: An Example Showing a Forward Reference and an Undefined 71

Label
Figure 8-1: An Example of the @Picture Command 75
Figure 9-1: An Example of Two-Columned Output 91
Figure 13-1: Sample Root File 141
Figure 15-1: Page Layout 171
Figure 15-2: Codes for Numbering Templates 176
Figure C-1: Greek Characters Available with @G 190

x CONTENTS

CONTENTS

Table 2-1:
Table 3-1:
Table 3-2:
Table 6-1:
Table 6-2:
Table 10-1:
Table 11-1:
Table 11-2:
Table 11-3:
Table G-1:
Table G-2:
Table G-3:
Table G-4:

List of Tables

Devices Known to Scribe
FaceCodes
Basic Environment Types
Results of Sectioning Commands
Other Sectioning Commands
Dictionary Punctuation with Special Meaning
Special Punctuation Characters in the Mathematical Facility
Special Characters for the Apple LaserWriter (POSTSCRIPT)
Common Mathematical Text
Special Characters for the Dover
Special Characters for the Dover
Special Characters for the Santee
Special Characters for the Imprint-IO

xi

10
14
17
61
61
94

111
114
116
249
250
252
254

Chapter One

Introduction

Scribe is a computer program that helps writers practice their art. Used in conjunction with
a text editor, it takes care of all of the tedious aspects of producing printed text.

To use Scribe, you prepare a manuscript file using a text editor. You process this manu
script file through Scribe to generate a document file, which you then print on some con
venient printing machine to get paper copy.

Scribe controls the words, lines, pages, spacing, headings, footings, footnotes, numbering,
hyphenation, tables of contents, indexes, and more. It has a Database full of document format
definitions, which tell it the rules for formatting a document in a particular style. Under
normal circumstances, writers need not concern themselves with the details of formatting,
because Scribe does it for them.

For example, when you ask for the Thesis format, Scribe knows to leave a one-and-a
quarter-inch left margin; it knows where to put the page number; it knows that footnotes are
numbered sequentially throughout the document and are placed in a section at the end called
Notes, and so forth. On the other hand, if you ask for the Report format, Scribe knows to
produce a document with numbered chapters, sections, subsections, and paragraphs; it knows
to produce a title page; it knows to leave 1 inch margins, and so on.

Scribe also smooths over the differences among printing devices. You ask for what you
want and Scribe does its best with the printing device it has. For example, if you request that
a word be printed in italics, l;>ut the printing machine cannot print italics, then Scribe under
lines it instead. When printing a heading, Scribe uses larger letters if the printing machine can
change letter size; if not, then it uses some other style, such as capitalizing and centering the
heading.

Scribe tries to assist you with several aspects of the document assembly task. It provides
you with an outline of the manuscript under construction, generates an Index and Table of
Contents, and can provide you with a sorted list of words used in the document, as well as
generating a Bibliography, List of Figures, and List of Tables.

You will find that Scribe appears to know a great deal about how documents should be
formatted, what type sizes and alphabets are available on different printers, where footnotes
should go, and other typographical details. Most of this knowledge is stored in a separate set
of files known as the Scribe Database. The Database can be extended or modified as needed

2 SCRIBE USER MANUAL

at individual sites. For example, there is no limit on the number of customized document
styles that may be added. When your computer center purchases new fonts for its laser print
er, for example, there is a way of telling Scribe about them by updating the Database.

Maintaining the Scribe Database is difficult and time-consuming work. For this reason, it
is kept out of the hands of users and is assigned to a Scribe Database Administrator, or DBA,
at each site. Scribe provides a large set of facilities to permit the DBA to create new document
types, add support for additional output devices, and perform other chores. Most of these
tools are not even hinted at in this manual. The DBA has to read another whole manual that is
even thicker than this one. Should you have any difficulty in using Scribe, the DBA should be
your principal source of help.

This manual is organized primarily as a tutorial and designed for sequential reading. We
suggest that you read Chapters 1 through 5 before you try to use Scribe. You can safely
ignore material in the later chapters until you have gained experience with the program.

1.1 Some Explanation for Non-Programmers

Preparing a document requires, in addition to the actual text, understanding how the text is
to be formatted. When a secretary types a document, he applies his knowledge of typing and
formats and his understanding of what the words and sentences mean, and chooses a reason
able format for various pieces of the text. When a typographer typesets a document for
publication, he needs editor's marks, in colored pencil, to show him what to do.

Computers are at a double disadvantage in the production of documents. They are not
clever, like secretaries, nor can they read penciled proofreader's marks, like typographers.
Computers can recognize the 95 characters on their keyboard, but not penciled notes.
Somehow, using only those 95 characters, we must devise a means of communicating to the
computer all of the various kinds of information that secretaries can figure out for themselves
and typographers get from the pencil marks. Scribe has such a scheme, using special se
quences of characters to represent formatting commands, and, if it sometimes seems to you as
though a certain construct is too cumbersome, please understand why it must be that way.

1.2 Some Explanation for Programmers

The Scribe system was designed to make document production easy for nonexperts, allow
ing them to make small changes to the formats and styles without needing to learn much about
how the program works. Scribe is not a programming language.

Scribe does not have 'commands' in the usual sense of the word: its commands are not
procedural. A Scribe command specifies the result that is desired rather than the method of
achieving it. For example, the usual convention for the appearance of a quotation in running
text requires that you switch to single spacing, indent the left and right margins, place the
quotation, and then change back again to normal margins and spacing. In Scribe, you place
@Begin(Quotation) before the text of the quotation and @End(Quotation) after its text. The
specifications for changing spacing and margins (and anything else necessary to print a
quotation) are stored in Scribe's Database.

The nonprocedural nature of Scribe typically gives fits to people who have grown accus-

INTRODUCTION 3

tomed to procedural document formatters. Programmers are used to thinking in terms of
procedural commands, and are used to having the full power of the document formatter avail
able at the command level. The design of Scribe was predicated on the belief that portability
and procedurality don't mix, and therefore discourages procedurality.

Scribe has been in use since January 1978 and in general distribution since summer of
1979. It is now used regularly by tens of thousands of people at hundreds of sites. We have
found that even experienced programmers can learn how to use Scribe effectively, but that
they must learn to think differently before they are comfortable with it. People who aren't
programmers or experts at older document systems have had no difficulty learning to use
Scribe.

4 SCRIBE USER MANUAL

Chapter Two

Getting Started

This chapter is for beginners who have never used Scribe before (or have never used any
text formatting program) and who would like to learn how to use it for producing simple
documents.

2.1 The General Picture

You are starting with some material either in your head or handwritten, and you want a
printed version of it. You know the purpose of your material - a letter, a memo, an article
for a scientific journal, a chapter of a book, a draft of a thesis, a ransom note, or whatever -
and that means you have preconceptions about what appearance and form the material must
take.

Scribe has been designed also to have preconceptions about the components and appear
ance of difference kinds of documents. These preconceptions are contained in Scribe's
Database of specifications for the appearance of different kinds of documents. (Chapter 5
explains the document types.) It would be nice if your needs matched Scribe's assumptions,
but even if they don't, you aren't stuck. Later on in this manual, we explain how to change
things (Chapter 15).

Scribe is a formatting program and, like all useful programs, it accepts input and produces
output. The input to Scribe is a file containing both the text for your document and the
instructions telling Scribe what kind of document it is and what components it has. Using the
information in your file and the formats in its Database, Scribe creates an output file tailored
for your particular printer, which you then print to get paper output.

You follow the same general sequence of actions for any document. First, decide what you
want to do, and choose the appropriate Scribe document type. Then, create the input file
containing your manuscript (called a manuscript file in this manual).1 Whenever you want to
see how the document will look, run Scribe to produce a document file that you can print.
Then make any necessary revisions to the manuscript file, process it through Scribe again,
print it again, and so on.

1 Create the file with any convenient text editor.

6 SCRIBE USER MANUAL

That's what it is all about. The rest of this manual explains everything you need to know to
use Scribe, starting with the simplest case. If you are a beginning Scribe user, you will find it
helpful to read this manual from the beginning rather than hopping around. As you become
more experienced, you will find the reference appendixes and the index more useful than the
tutorial, but please read the tutorial at least once to become familiar with our terminology.

2.2 Preparing Input for Scribe

A manuscript file that you prepare for Scribe consists primarily of text, but it also has
whatever instructions are necessary to get it formatted properly. Both you and Scribe recog
nize instructions by the fact that they are prefixed by an "@" character. Since the @-sign has
this special meaning to Scribe, to get a literal @-sign to appear in your output, you must type
twice as many as you really want. For example, type two @-signs to get one printed; type
four @-signs to get two printed. The next few sections concentrate on simple text; later
chapters describe the"@" commands that control the format of the text.

Normal text is composed of words, sentences, paragraphs, and, sometimes, larger units like
chapters or sections. For Scribe to format your text properly, it must be able to recognize
these units. For example, when it recognizes a sentence, it puts two spaces after the final
period. It puts one space after a period that does not end a sentence. It normally indents the
first line of each paragraph. Remember these simple rules that Scribe uses:

1. Words are separated by spaces or end-of-line.

2. Sentences are ended by a full stop character("." or"?" or"!") having at least
two spaces after it. The end of a line counts as two spaces.

3. A paragraph is ended by one or more blank lines. By ''blank line'' we mean a
line that looks blank when printed on your terminal.

You now know enough about Scribe to produce a simple document. Just don't use any
''@'' signs in your text.

2.3 Processing Your File with Scribe

Suppose that you have created a manuscript file, and now you want to process it into a
document file for printing. For example, suppose that you have built a manuscript file named
TRIAL.MSS, with the contents as shown below. Notice the label "Manuscript Form" in front
of it. In this manual, there are many examples showing pieces of a manuscript file and the
document form that results when you process that manuscript file with Scribe; we use the
labels "Manuscript Form" and "Document Result" to identify them.

Manuscript Form:

M& M Enterprises verged on collapse. Milo cursed
himself hourly for his monumental greed and
stupidity in purchasing the entire Egyptian
cotton crop, but a contract was a contract and
had to be honored, and one night,
after a suitFtuous evening meal, all Milo's fighters
and bombers took off, joined in formation directly

GETTING STARTED

overhead, and began dropping bombs on the
group.

He had 1anded another contract with the
Germans, this time to bomb his own outfit.
Mi1o's p1anes separated in a we11-coordinated
attack and bombed the fue1 stocks and the
ordinance dump, the repair hangars and
the B-25 bombers resting on the 1o11ipop-shaped
hardstands at the fie1d. His crews spared
the 1anding strip and the mesa ha11s so that they
cou1d enjoy a hot snack before retiring.

7

The blank line indicates the end of one paragraph and the beginning of another. To process
this file, we run Scribe. The particular way of running Scribe varies from one computer to
another. Appendix A shows you how to run Scribe on many different computers. On most
systems, you type either R SCRIBE or just SCRIBE. Scribe responds by typing its sign-on line
and Llien printing an asterisk to wait for you to type something:

@r scribe
Scribe 4(1400) Copyright (C) 1981, 1984 UNILOGIC, Ltd.

*
In response to the prompt, type the name of the manuscript file that is to be processed. We've
built a sample file named TRIAL.MSS, so we will type its name in response to the asterisk:

Scribe 4(1400) Copyright (C) 1981, 1984 UNILOGIC, Ltd.
*tria1.mss

Scribe begins processing the file when you press the RETURN key. It prints on your terminal a
running account of what it is doing. You should see something like this example:

@r scribe
Scribe 4(1400) Copyright (C) 1981, 1984 UNILOGIC, Ltd.
*tria1.mss
[Processing TRIAL.MSS

]
1.

[Device "LPT"]

[Document type "TEXT"]

**TRIAL.LPT for device LPT has 1 page.

@

We'll talk later on about what device and document types are; right now, notice what it told
you about the formatted document file:

**TRIAL.LPT for device LPT has 1 page.

LPT is computerese for Line PrinTer, and TRIAL.LPT is the name of the file that Scribe has

8 SCRIBE USER MANUAL

produced. When you print this file on your line printer, it looks somewhat like this result:2

Document Result:

M & M Enterprises verged on collapse. Milo cursed himself
hourly for his monumental greed and stupidity in purchasing
the entire Egyptian cotton crop, but a contract was a
contract and had to be honored, and one night, after a
sumptuous evening meal, all Milo's fighters and bombers took
off, joined in formation directly overhead, and began
dropping bombs on the group.

He had landed another contract with the Germans, this time
to bomb his own outfit. Milo's planes separated in a
well-coordinated attack and bombed the fuel stocks and the
ordnance dump, the repair hangars and the B-25 bombers
resting on the lollipop-shaped hardstands at the field. His
crews spared the landing strip and the mess halls so that
they could enjoy a hot snack before retiring.

Compare this output with the manuscript file. Notice that Scribe has made two normal
looking paragraphs by filling up the lines with words and adding some blanks to line up the
right margin.

You're invited to try this example on your own computer right now. Use your favorite text
editor to produce a file named TRIAL.MSS, and then process it with Scribe to produce the
formatted file TRIAL.LPT. Take a look at it either by printing it on your line printer or by
typing it on your terminal.

2.4 Printing Devices

The manuscript file that you prepare for Scribe does not contain anything that constrains it
to any particular printing device. However, when Scribe processes a manuscript file into a
document file, it does so with a particular printing device in mind. It must have some partic
ular printing device in mind in order for it to know how many characters to fit on a line, how
many lines to fit on a page, how to print headings or italics, and so forth.

When you don't tell Scribe anything one way or another about printing devices, it assumes
that you are preparing a file for the standard printer at your site. Often the default device is
the LPT printer, which is the simplest and least attractive printing device. On the other hand,
if you have some better printing device and want to use it, you have to tell Scribe to produce
output for that device. You can specify the device by including a command-line option when
you give Scribe the name of the file to process. The term command-line option is a general
piece of computerese. What it means here is that you must follow the filename with some
character and the code for the printing device. There is a table of the options recognized by
Scribe for all operating systems on page 203 in Appendix E.l. (Appendix A, which discusses
operating system dependencies, lists other options that are available for some operating sys
tems and gives the appropriate command-line character for each operating system.) For exam-

2 From Catch-22, by Joseph Heller (Simon and Schuster, 1961).

'

GETTING STARTED 9

pie, on a VAX/VMS system, typing trial.mss/device:lg1200 indicates that you would
like output for a QMS Lasergrafix 1200 Laser Printer, and trial .mss/x9700 means that
you would like output for an Xerox 9700 Printer. The syntax of using command-line options
differs with operating systems. If you used an LG 1200 on a TOPS-20 system, the whole
script would look like this sample:

@r scribe
Scribe 4(1400) Copyright (C) 1981, 1984 UNILOGIC, Ltd.
*tria1.mss/device:1g1200
[Processing TRIAL.MS$

]
1.

[Device "LG1200"]
[Document type "TEXT"

[FontFami1y RomanlO]
]

**TRIAL.LG1200 for device LG1200 has 1 page.

@

Compare this example with the example shown for the line printer. Notice that the for
matted file has a different name this time, to remind you that it was built to be printed on a
different printer.

Scribe doesn't have a different command-line option for every possible output device, just
the most common ones. You can specify any device on Scribe's command line, though, by
using the Device option. It is explained in detail in Appendix E.1.

You can put a command into your manuscript file that tells Scribe which device to use. It
is the @Device command. Suppose your file starts with the following command:

@Device(Lg1200)

This command tells Scribe to process the file for "Lg1200" instead of for "LPT" as the
default device when it processes that file. If your file says one thing and you say another
when you run Scribe, Scribe listens to you. That is, your option overrides the @Device
command in the file. Thus, if your manuscript file has the aforementioned @Device(Lg1200)
command in it, but.you include the option x9700 when you run the program, it uses "x9700"
and not "Lg1200" for the device. The devices currently known to Scribe are shown in Table
2-1 on page 10. More detailed explanations of the various printing devices are in Appendix B.
As you look at the list of devices that Scribe supports, remember that it is always growing and
that the list reflects the devices available at the time that this manual was written.

Not every feature provided by Scribe can be realized on every output device. The line
printer, for example, cannot print Italics or Greek. It can, however, generate boldface by
overstriking. The Diablo can go into its so-called graphics mode and generate special charac
ters, but it cannot print letters of varying size.

The manuscript file that you prepare for Scribe is supposed to describe the text, not de
scribe some particular way of printing it. Suppose you have a foreign word; just ask for
italics. If your document is being printed on a device that cannot italicize (a Diablo or a line

10 SCRIBE USER MANUAL

Device File Page Page
Name Type3 Length Width Description

Agile .POD 11 inches 8.5 inches Agile A 1 Series Data Terminal
AJ832 .POD 11 inches 8.5 inches Anderson-Jacobsen 832
AJ833 .POD 11 inches 8.5 inches Anderson-Jacobsen 833
CAT4 .GSI 11 inches 7.75 inches GSI CAT-4 Photocomposer
CG8600 .CG 11 inches 7.5 inches Compugraphic 8600
CRT .DOC 24 lines 79 cols CRT Display
Diab lo .POD 11 inches 8.5 inches Diablo HyTyper Printing Terminal
Dover4 .PRESS 11 inches 8.5 inches Xerox Dover Printer
File .DOC no limit 79 cols Simple on-line documentation file
Gigi .GG 479 rasters 767 rasters DEC VKlOO (GIGI) Terminal
GP300 .POP 11 inches 8.5 inches Philips GP 300
OSI .OSI 11 inches 7.75 inches OSI CAT-8 Photocomposer
Imagen300 .IMP 11 inches 8.5 inches Imagen 8/300
Imagen480 .IMP 11 inches 8.5 inches Imagen 5/480
ImprintlO .IMP 11 inches 8.5 inches Imagen Imprint-10
LA36 .TXT 66 lines 132 cols DECwriterll
LG1200 .LG1200 11 inches 8.5 inches QMS Lasergrafix 800, 1200 & 2400
LGPl .LGP 11 inches 8.5 inches Symbolics LGP-1
LPT .LPT 57 lines 132 cols Line Printer
Omni tech .OMNI 11 inches 8.5 inches Mergenthaler Omnitech/2000
PagedFile .DOC 57 lines 132 cols ''File'' but with page marks
PostScript .PS 11 inches 8.5 inches Apple LaserWriter (POSTSCRIPT)
Printronix .LPT 57 lines 132 cols Printronix Printer
Santee .VFX 11 inches 8.5 inches Santee S700 Veriflex
Spin Writer .POD 11 inches 8.5 inches NEC Spin Writer Terminal
Talaris .LG1200 11 inches 8.5 inches Talaris 800, 1200 & 2400
TI700 .TXT 66 lines 80 cols TI Silent 700
TI725 .TXT 66 lines 80 cols TI Silent 725
VIP .VIP 11 inches 7.5 inches Mergenthaler Linotype VIP
X2700 .X27 11 inches 8.5 inches Xerox 2700
X2700II .X27 11 inches 8.5 inches Xerox 2700 II
X9700 .X9700 11 inches 8.5 inches Xerox 8700 & 9700 Printer

Table 2-1: Devices Known to Scribe

printer, for example), the word comes out underlined. But if someday your text is being
printed on a machine that can print italics, then you won't need to make any changes if you've
asked for italics in the first place.

In Appendix B, we discuss low-level details of various printing devices that you can use
with Scribe.

3 The "file type" of a file is sometimes referred to as its "extension". In this manual, we will use the
terminology "file type".

4 Scribe also drives the Penguin printer. Since it is very much like a Dover printer, they are both in this category
and both specified by the @Device(Dover) command.

Chapter Three

Simple Formatting Environments

You now know how to build a manuscript file that contains plain text and how to run it
through Scribe to produce a document. In this section, we describe how to tell Scribe more
about the appearance of the text, using italics, footnotes, and so forth.

Let's start with an example then get to a more general explanation. To get italics, surround
the letters that you want italicized with @i[text to be italicized], like this example:

Manuscript Form:

The inscription read, ''@i[De minimis non curat lex].''

This line produces the following output:

Document Result:

The inscription read, "De minimis non curat lex."

You can probably guess what happened here. The instruction @i means ''use italics'', and
the square brackets just tell Scribe how much of the text to italicize. The name i is an
environment. Scribe text is formatted according to the rules of the environment that contain it.
The environment i requests italics. Most formatting effects in Scribe are achieved by placing
the text in an appropriate environment.

In all Scribe command and environment names, letter case is completely unimportant. As a
matter of consistency, we will show all of them with initial capitals for easy readability, except
for the one-character environments, which will be shown in lower case.

Before going on with more kinds of formatting environments, we ought to talk about some
nuts and bolts definitions.

3.1 Delimiting Characters

The square brackets [J used in the example above are called delimiters. They delimit
(surround) the characters being italicized. Computer keyboards contain several pairs of
matching left and right delimiters. You can use any of the pairs equally well. For example,
you could have put @i(De minimis ...) or @i<De minimis ... >. It doesn't really matter which

12 SCRIBE USER MANUAL

kind of delimiter you use, as long as the closing delimiter matches the opening delimiter. If
you tried @i<De minimis ...], Scribe would just keep italicizing until it came to a ">" char
acter.

Scribe recognizes the following delimiter pairs.

(...), [...], { ... }, < ... >, ' ... ',' ... ',and" ... "

(In the line above, the fifth pair of delimiters is just a pair of normal apostrophes; in the sixth
pair, the opening delimiter is the left quote character, or backwards apostrophe, and the clos
ing delimiter is the normal apostrophe. On some printing devices, you can't tell them apart.)

In this manual, we usually use (parentheses) as delimiters, for no particularly good reason.
(It probably helps to develop consistent habits about delimiters.)

Scribe allows you to combine requests for text characteristics. Suppose that you wanted an
italic superscript. Normally for italics, you use @i(...) around the text to be italicized. For a
superscript, you put@+(...) around the text to be superscripted. You can combine the two
without worrying about their interaction:

Manuscript Form:

Why would anybody want @i(@+(italic superscripts))?

Document Result:

Why would anybody want italic superscripts?

Putting one environment completely inside another is called nesting of the environments.

The concept of nesting should be familiar to everyone in the notion of quoting a source
inside a quotation; the inner quotation is delimited with single quotes, and the outer quotation
is delimited with double quotes:

Macomber said, ''But the sign said 'No Hunting'.''

Scribe is clever enough to let you nest delimiters that look the same without getting itself
confused, but you can use different delimiters if you want:

Why would anybody want @i<@+(italic superscripts)>?

If you want to include a delimiter character (like a parenthesis) inside a pair of delimiters, you
have to be careful. Suppose, for example, that you wanted to put an underlined")" character
in your text. An attempt to produce this output the wrong way might look like the following
example:

Manuscript Form:

there is an @u(incorrect '')'' here)

In this case, the result that you really intended was the following:

Document Result:

there is an incorrect 1 here

SIMPLE FORMATTING ENVIRONMENTS 13

However, Scribe would treat the first ")" it found as the end of the request for underlining,
and it produces something looking like this line:

Document Result:

there is an incorrect:..:._•' here)

You might think that our heeding is a useless warning, but the situation comes up in mathe
matical formatting. Equations and formulas are frequently printed with italicized variable
names and frequently contain parentheses. To get the sequence "2*(4+y)-b" correctly
italicized, we must be careful not to use parentheses as delimiters: @i [2* (4+y)-b] works,
but @i (2* (4+y)-b) does not. It prints as "2*(4+y-b)", which is very subtly wrong.

3.2 Environments for Changing Typeface

Standard practice in publication calls for certain words to be set in italic or boldface.
Sometimes it is useful to use small capitals. We sometimes want to put Greek letters in text.
All of these effects, and more, amount to changing the typeface in which the letters are
printed, without changing the letters themselves.

Typefaces and fonts are confusing, and the ambiguous terminology makes them more so.
The English word font, for example, is mightily ambiguous: it can mean something like
"italic" or "boldface"; it can mean something like "Helvetica"; it can mean "Helvetica
italic''; it can also mean the bowl in a church where people are baptized.

Scribe uses a three-level scheme for naming type faces:

•a FontFamily, which is a group of fonts that have been chosen by a document
designer to look harmonious when used together. Examples of FontFamilies are
"Times Roman" or "News Gothic". You can specify the FontFamily for your
document by using the @Style command, which is explained on page 39.

•a Font, which is some particular member of a FontFamily, for example,
"Body Font" or "SmallBodyFont". Scribe users seldom need to be concerned
with this information.

•a FaceCode, which is a particular component within a Font. Kinds of FaceCodes
include italics, boldface, and Greek. When you ask for the italic FaceCode in the
heading Font while printing a document in Times Roman, you get whatever
typeface the document designer has chosen for heading italics in Times Roman.
In this section of the manual, we explain the various Scribe environments that
select new FaceCodes.

Scribe recognizes all of the FaceCodes listed in Table 3-1. Whether the requested
FaceCode actually appears in the document depends on the nature of the final printing device
being used. If Scribe cannot produce a particular code on a particular printing device, it at
tempts a reasonable compromise. For example, if you ask for Greek letters and your printing
device is a line printer, Scribe just echoes the @g command, printing "@g(a)" instead of
"ex".

14 SCRIBE USER MANUAL

Environment Result

@r [phrase] Roman (the normal typeface)

@b [phrase] Boldface

@i [phrase] Italics

@p [phrase] Bold Italics

@c [phrase] SMALL CAPITALS

@u [phrase] Underline non-blank characters

@ux [phrase] Underline all characters

@un [phrase] Underline alpha-numerics (but not punctuation or spaces)

@t [phrase] Typewriter font

@+[phrase] superscript

@-[phrase] subscript

@g[phrase] Greek (EA.A.ev)

Table 3-1: FaceCodes

3.3 Environments to Change Format

You now know how to produce paragraphs of text with various fancy effects for the, ap
pearance of the text, like italics and underlining. In this section, we describe alternate appear
ance of text, things other than ordinary paragraphs. Anything put into running text is called an
insert. Inserts can be quotations, examples, equations, tables, or what have you. In Scribe,
inserts are created by putting the inserted text in a named formatting environment. For the
sake of brevity, we will, in general, just call them environments rather than formatting envi
ronments.

You must mark (delimit) the beginning and end of each piece of text that you want to have
formatted in some special environment. There are two ways to do this marking - a short
form and a long form. You have already seen the short form; we used it in our discussion on
font-changing environments (Section 3.2, page 13). Both forms yield the same result; one is
easier to type, but more prone to errors while the other is tedious, but generally easier to get
correct.

Consider the Quotation environment. The long form requires you to mark the beginning
and the end of the environment with two commands, @Begin and @End:

SIMPLE FORMATTING ENVIRONMENTS

@Begin{Quotation)
Body of quotation.
@End{Quotation)

15

The short form requires you to mark the beginning and end of the environment with opening
and closing delimiters:

@Quotation {
Body of quotation.
)

If your quotation is short, you can specify it all on one line:

@Quotation{Body of quotation)

As long as the "@" character for the environment is the first character on a manuscript file
line, it doesn't matter whether or not you put the delimiters on the same line as the text of the
environment. That is, the following two cases would have exactly the same effect:

@Quotation[
Delimiters on different lines.

@Quotation[Delimiters on the
same line.]

The cases become different when the "@" character is on some position other than the
first one in the line. In the following case, Scribe treats the carriage return following the
command as if it were two leading spaces in the body of the environment.

The French have a word for it.@Quotation[
Chacun a son gout.
]

Since many filled environments (like Quotation) discard leading spaces, this difference often
doesn't matter. However, you don't want to have to remember which environments drop
leading spaces and which ones don't, so just remember to put the @-sign at the beginning of
the line, and it won't matter.

The short form of an environment might be more convenient or easier to read when the text
is short, but the long form has the advantage of being immune to problems with delimiters.
Obviously, the short form requires that the body of the quotation not contain the right delim
iter that closes the quotation. For example, the following long form specification works just
fine.

@Begin{Quotation)Body of {short) quotation.@End{Quotation)

A similar short form quotation with parentheses in the body would not work because the
parenthesis after the word ''short'' would act as the closing delimiter for the quotation.

@Quotation {
Body of {short) quotation.
)

Table 3-2 on page 17 lists the set of simple environments in Scribe that are available in all
document types. (Some document types might have specialized environments that are not

16 SCRIBE USER MANUAL

generally applicable. Those environments are not included in Table 3-2.) They can be used in
either the long form, using the @Begin and @End commands:

@Begin[Center]
Text of the environment.
@End[Center]

or the short form, using delimiters:

@Center[Text of the environment.]

3.4 Unfilled Environments

The next few sections describe unfilled environments. In an unfilled environment, Scribe
does not fill the lines by adding words until the line is full, meaning that each line in the
manuscript file produces exactly one line in the document file. However, when a line in the
manuscript file is too wide to become a line in the document, Scribe prints a warning message
and discards the end of that line. (See Chapter 14 on Scribe's messages.)

3.4.1 Verbatim and Format

Verbatim and Format are similar unfilled environments. They produce text exactly as you
type it, without moving margins or justifying text or any other kind of formatting. Verbatim
and Format differ only in the typeface they specify. Verbatim specifies a fixed-width font;
Format specifies a variable-width font (if the designated printing device has one).

With Verbatim, text appears exactly the same as you type it. Therefore, Verbatim is good
for short tables. If the columns line up on your terminal, they will line up in the final docu
ment. This assured alignment is not true for Format where you must use Scribe's tabbing
commands (see Chapter 9) to line up columns. On the other hand, fixed-width fonts look
peculiar in a document that is set primarily in a variable-width font, so it is generally better to
use Format when you can.

The "@" signs in a Verbatim environment are not taken literally; that is, @-signs still
indicate Scribe commands. You can, therefore, nest any other Scribe commands or environ
ments within either Verbatim or Format.

See Figure 3-1 on page 18 for a vivid example of the difference between Verbatim and
Format.

3.4.2 Center, FlushLeft, and FlushRight

The Center, FlushLeft, and FlushRight environments cause each line within them to be
centered, set flush left, and set flush right, respectively. Within each of these environments
each line in the manuscript file produces one line in the finished document.

SIMPLE FORMATTING ENVIRONMENTS 17

Environment

Center

Description

Display

Enumerate

Example

FlushLeft

FlushRight

Format

Itemize

ProgramExample

Quotation

Text

Verbatim

Verse

Description

Unfilled environment. Each manuscript line centered.

Filled environment. Outdented paragraphs. Single spacing with
wider margins.

Unfilled environment. Normal body typeface. Widens both margins.

Filled environment. Numbers each paragraph. Widens both margins.

Unfilled environment. Uses fixed-width typeface for examples of
computer type-in or type-out. Widens both margins.

Unfilled environment. Prints the manuscript lines, in the normal
body font, flush against the left margin.

Unfilled environment. Prints the manuscript lines, in the normal
body font, flush against the right margin.

Unfilled environment. Normal body typeface. No changes to mar
gins. Any horizontal alignment that is needed should be done with
tabbing commands.

Filled environment. Marks each paragraph with a tick-mark or bul
let. Widens both margins.

Unfilled environment. Appropriate for formatting sample pieces of
computer programs. Similar to Example, but different typeface.

Filled environment. Single-spaced. Widens both margins. Indents
each paragraph.

Filled environment. Indented paragraphs. Double-spaced. Most of
ten seen as a document's running text. This environment is in effect
when no other environment has been specifically mentioned.

Unfilled environment. Fixed-width typeface. No changes to mar
gins.

Semi-filled environment. Fills lines, but starts a new line for each
line break in the manuscript. Widens both margins.

Table 3-2: Basic Environment Types

18 SCRIBE USER MANUAL

Manuscript Form:

@begin(Verbatim)
Directory listing

Name Extension Len Prot
5-May-83 2:22:41

Creation Version

LESCAL SAV 34 <255> 6-Aug-80
TTYCHR SAV 7 <155> 1-Sep-81 22-1
PASCAL SAV 2 <155> 2-Feb-83
IMP COM SHR 25 <155> 2-Feb-83 10D(72)-3
WATCH SHR 11 <155> 30-Jan-79
CLOCK LNK 48 <155> 3-Nov-79

Total of 127 blocks in 6 files on DSKB: [l,4]
@end(Verbatim)

Document Result:

Directory listing
Name Extension Len Prot

5-May-83 2:22:41
Creation Version

LES CAL SAV 34 <255> 6-Aug-80
TTYCHR SAV 7 <155> 1-Sep-81 22-1
PASCAL SAV 2 <155> 2-Feb-83
IMP COM SHR 25 <155> 2-Feb-83 10D(72)-3
WATCH SHR 11 <155> 30-Jan-79
CLOCK LNK 48 <155> 3-Nov-79

Total of 127 blocks in 6 files on DSKB: [l, 4]

Document Result Using FORMAT instead of VERBATIM:

Directory listing 5-May-83 2:22:41
Name Extension Len Prot Creation Version

LESCAL SA V 34 <255> 6-Aug-80
TIYCHR SA V 7 <155 > 1-Sep-81 22-1
PASCAL SAV 2 <155> 2-Feb-83
IMPCOM SHR 25 <155> 2-Feb-83 10D(72)-3
WATCH SHR 11 <155> 30-Jan-79
CLOCK LNK 48 <155> 3-Nov-79
Total of 127 blocks in 6 files on DSKB: [1,4]

Figure 3-1: A Comparison of Fixed-Width and Variable-Width Fonts

SIMPLE FORMATTING ENVIRONMENTS

Manuscript Form:

@Begin(Center)
This is a CENTER environment.
It contains
severa1 1ines.
@End(Center)

Document Result:

This is a CENTER environment.
It contains

several lines.

19

The FlushRight and FlushLeft environments work analogously; each line inside them is
moved so that its right (left) end is aligned with the right (left) margin of the document. (You
can align text with something other than the document margins. See Chapter 9.)

Manuscript Form:

@F1ushRight(This 1ine is f1ushed right.)
@Begin(F1ushLeft)
These 1ines are
f1ushed 1eft.
@End(F1ushLeft)

These lines are
flushed left.

Document Result:

This line is flushed right.

If you think that you want boldface centering and find yourself wondering whether you
should say @b(@Center(Mynah Birds)) or @Center(@b(Mynah Birds)), the chances are that
what you are really doing is making a heading and should use @Heading(Mynah Birds) in
stead; see Chapter 6. (In any case, the order doesn't matter; refer to Section 3.1 regarding
nesting.)

3.4.3 Display, Example, and ProgramExample

Display, Example, and ProgramExample are three very similar unfilled environments.

The Display environment is used more frequently than either of the other two similar envi
ronments. Text inside a Display has wider left and right margins, and each line in the manu
script file produces one line in the document. Display environments appear in the normal
body typeface.

Here is an example using the Display environment within the context of ordinary filled
text Notice what happens to the margins and to the line breaks from the manuscript.

20

Manuscript Form:

For the cultured, these hints are sufficient;
but some elaboration of the matter seems
worth while, in the interest of the partly
cultured and the ignorant. Now observe, the
points noted as concerns the card -- and they
are exceedingly important -- are as follows:
@Begin(Display)
Its texture.
Style of engraving.
Hour of leaving it.
@End(Display)

SCRIBE USER MANUAL

If these fall short of the standard established by social
law, the visitor is placed in a ''disagreeable attitude''.

Document Result:

For the cultured, these hints are sufficient; but some elaboration of the matter
seems worth while, in the interest of the partly cultured and the ignorant. Now
observe, the points noted as concerns the card -- and they are exceedingly important
-- are as follows:

Its texture.
Style of engraving.
Hour of leaving it.

If these fall short of the standard established by social law, the visitor is placed in a
"disagreeable attitude" .1

Example is just like Display, except that it uses a different typeface. It is designed for
showing examples of computer type-in and type-out (useful in user's manuals). Its text ap
pears in a typeface that is designed to look like computer output.

ProgramExample is just like Example except for its typeface. Its text appears in a small
fixed-width typeface that is appropriate for the printing of some computer programs.

Here is an example using the Example environment in the context of ordinary filled text.
Notice what happens with the margins, line breaks, and spaces at the beginnings of lines.

1 From Letters from the Earth, "From an Unfinished Burlesque of Books on Etiquette", by Mark Twain.

SIMPLE FORMATTING ENVIRONMENTS

Manuscript Form:

If the array A contains N integers, this
set of two nested loops will sort that
array into descending sequence, albeit
somewhat slowly:
@Begin(Example)
for I := 1 step 1 to N-1 do

for J := I+l step 1 until N do
if A[I] < A[J] then A[I] swap A[J];

@End(Example)
This is the simplest case of the algorithm
known as a ' 'bubble sort' ' ; it will execute
the inner statement N@+[2]/2 times.

Document Result:

If the array A contains N integers, this set of two nested loops will sort that array
into descending sequence, albeit somewhat slowly:

for I := 1 step 1 to N-1 do
for J := I+l step 1 until N do

if A[I] < A[J] then A[I] swap A[J];

This is the simplest case of the algorithm known as a "bubble sort"; it will execute
the inner statement N2/2 times.

Here is a similar case, using ProgramExample instead of Example:

Manuscript Form:

If the array A contains N integers, this
set of two nested loops will sort that
array into descending sequence, albeit
somewhat slowly:
@Begin(ProgramExample)
for I := 1 step 1 to N-1 do

for J := I+l step 1 until N do
if A[I] < A[J] then A[I] swap A[J];

@End(ProgramExample)
This is the simplest case of the algorithm
known as a ''bubble sort''; it will execute
the inner statement N@+[2]/2 times.

21

22 SCRIBE USER MANUAL

Document Result:

If the array A contains N integers, this set of two nested loops will sort that array
into descending sequence, albeit somewhat slowly:

for I := 1 step 1 to N-1 do
for J := I+l step 1 until N do

if A[I] < A[J] then A[I] swap A[J];

This is the simplest case of the algorithm known as a ''bubble sort''; it will execute
the inner statement N2/2 times.

If your only Scribe printing devices are those that cannot change fonts (such as the Diablo
printer), then the typeface styles of the Example, Display, and ProgramExample environments
all look identical, and you might be tempted to ignore the distinction among them. It is wise
to plan ahead, though, and use the environments appropriate to the material if there is any
chance your document might be saved and printed elsewhere.

3.5 Filled Environments

The next few sections describe filled environments. In a filled environment, Scribe doesn't
pay any attention to where the lines end in the manuscript file. It fills each line in the docu
ment with words from the manuscript file until the line is full. The example in Section 2.3
showed how Scribe fills lines.

Lines in filled environments can also be justified. Justifying means arranging the words on
the line so that the right ends of the lines are all aligned. Filled lines are not automatically
justified; you can have filled lines that are not justified. You can control overall justification
in your document with the @Style command (see page 39).

3.5.1 Text

Text is a filled and justified environment. It is the environment which produces the running
text of the document (even though you do not need to say @Begin[Text] ... @End[Text].)
Text is the simplest environment, producing filled and justified text, with indented paragraphs.
This description of the Text environment has in fact been formatted using the Text environ
ment.

3.5.2 Quotation and Verse

Quotation is a filled environment. It formats prose quotations in running text:2

2 From The Soul of Man under Socialism by Oscllr Wilde, 1895

SIMPLE FORMATTING ENVIRONMENTS

Manuscript Form:

@Begin(Quotation)
The fact is, that civi1ization requires s1aves.
The Greeks were quite right there. On1ess there
are s1aves to do ug1y, horrib1e, uninteresting
work, cu1ture and contemp1ation become inpossib1e.
Human s1avery is wrong, insecure, and
demora1izing. On mechanica1 s1avery, on the
s1avery of the machine, the future of the wor1d
depends.
@end(Quotation)

Document Result:

The fact is, that civilization requires slaves. The Greeks were quite right there.
Unless there are slaves to do ugly, horrible, uninteresting work, culture and con
templation become impossible. Human slavery is wrong, insecure, and demoraliz
ing. On mechanical slavery, on the slavery of the machine, the future of the world
depends.

23

Verse is an environment very similar to the Quotation environment. It too is single-spaced,
with wider margins. It differs from Quotation in that Verse starts a new line in the final,
document for each end-of-line in the manuscript file, regardless of whether the document line
is full. If Verse needs to use more than one line of the document to hold the text from one line
of the manuscript, the second and following lines are indented a bit from the left. (In our
example here, we are not using the standard "Manuscript Form" typeface because we want to
show what happens with very long lines.)3

Manuscript Form:
@Beqill (Ver-)
Along the .roada the telephone pol•• atand alone like worda in a broken con-..raation

The wire betw-n th- h-. a aoliloquy in an endl••• encore with no oY&tion
Like all the poetry that haa poured frca ay lipa to fall on fielda,ty of -r•

Qood land i• proae, but what grow• there ia the poetry of y-r• and y-r•.
@ll:nd(Ver••)

Document Result:

Along the roads the telephone poles stand alone like words in a
broken conversation

The wire between them hums a soliloquy in an endless encore
with no ovation

Like all the poetry that has poured from my lips to fall on fields
empty of ears

Good land is prose, but what grows there is the poetry of years
and years.

3 From Awaiting th£ Illinois Winter by Rich Warren, Chicago, The Unrequited Press, 1975.

24 SCRIBE USER MANUAL

3.5.3 Itemize and Enumerate

Itemize and Enumerate are another pair of very similar environments. They produce nicely
formatted lists. The only difference between them is that Enumerate numbers the items in the
list and Itemize marks the items in the margin. Writers and editors argue endlessly over when
numbered lists are appropriate and when tick-mark lists (often called bulleted lists in honor of
the largish dots in the margin) are appropriate.

Itemize and Enumerate each justify the paragraphs and widen the margins slightly. They
both expect a sequence of paragraphs, where each paragraph is a separate item. There are
instances, however, when a single item must be more than one paragraph. For that situation,
use the Multiple environment. Text in @Multiple environment delimiters is considered a
single item, regardless of paragraph breaks. Use of this environment is illustrated in Figure
3-2 with the Itemize environment, and Figure 3-3 shows the Multiple environment used within
the Enumerate environment.

3.5.4 Description

A Description environment is designed for the "command description" style that is so
common in reference manuals. The first line of a paragraph in a Description environment
begins at the left margin of the page. The second and remaining lines are indented substan
tially, so that the word or phrase at the head of the description stands out.

You often need a means for separating the heading word from the rest of the text in a
description item. Use the Scribe tab command @\, which in this case means "tab to the
indented margin". (The @\ command is described in detail in Chapter 9.) If the heading
phrase was long enough to reach the margin, then the text following the @\ command starts
on the next line at the indented margin. See Figure 3-4, on page 27 for an example of input
and output using the Description environment.

3.6 Simple Environments for Mathematical Text

Scribe has two features to help in producing mathematical output. The first is a set of basic
environments that are available in all document types: Theorem, Lemma, Proposition,
Definition, Proof, and Equation. The second and much more powerful feature is the Scribe
mathematics facility, described in Chapter 11. The basic math environments all work in
roughly the same way. Scribe prints the environment's text in the format defined for the
environment and automatically provides whatever prefix and number is appropriate for the
environment. Consider the following examples:

SIMPLE FORMATTING ENVIRONMENTS

Manuscript Form:

@Begin(Itemize)
The bullets in an Itemize environment
are filled in by Scribe. Some styles use
hyphens or asterisks instead of bullets.
@Begin(Itemize)
When you nest one Itemize inside another, the margins are
adjusted appropriately.

25

The switch from one kind of bullet to another is specified
in the Scribe Database file for the output device being used.
@End(Itemize)

@Begin(Mu1tip1e)
Normally, each blank line starts a new item
because each paragraph is a new item.

When you need more than one paragraph in a single item, use
@@Multiple or the @@Begin(Mu1tip1e) and
@@End(Mu1tip1e) commands.
@End(Mu1tip1e)

When you close the Multiple environment, the next paragraph
is a new item.
@End(Itemize)

Document Result:

•The bullets in an Itemize environment are filled in by Scribe. Some styles use
hyphens or asterisks instead of bullets.

• When you nest one Itemize inside another, the margins are adjusted ap
propriately.

• The switch from one kind of bullet to another is specified in the Scribe
Database file for the output device being used.

• Normally, each blank line starts a new item because each paragraph is a new
item.

When you need more than one paragraph in a single item, use @Multiple or
the @Begin(fylultiple) and @End(Multiple) commands.

• When you close the Multiple environment, the next paragraph is a new item.

Figure 3-2: An Exampled of the Itemize Environment

26 SCRIBE USER MANUAL

Manuscript Form:

@Begin(Enumerate)
The numbers in an Enumerate environment are filled in
by Scribe. Some styles use roman numerals instead of numbers.
@Begin(Enumerate)
When you nest one Enumerate inside another, the numbers and
margins are adjusted appropriately.

The switch from numbers to letters is specified in the
Scribe Database file for the output device being used.
Deeper nesting will produce other kinds of
numbering.
@End(Enumerate)

@Begin(Multiple)
Normally, each blank line starts a
new item because each paragraph is an item.

When you need more than one paragraph in a single item,
use @@Multiple or the @@Begin(Multiple) and
@@End(Multiple) commands.
@End(Multiple)

When you close the Multiple environment, the next paragraph
is a new item.
@End(Enumerate)

Document Result:

1. The numbers in an Enumerate environment are filled in by Scribe. Some
styles use roman numerals instead of numbers.

a. When you nest one Enumerate inside another, the numbers and mar
gins are adjusted appropriately.

b. The switch from numbers to letters is specified in the Scribe Database
file for the output device being used. Deeper nesting will produce
other kinds of numbering.

2. Normally, each blank line starts a new item because each paragraph is a new
item.

When you need more than one paragraph in a single item, use @Multiple or
the @Begin(Multiple) and @End(Multiple) commands.

3. When you close the Multiple environment, the next paragraph is a new item.

Figure 3-3: An Example of the Enumerate Environment

SIMPLE FORMATTING ENVIRONMENTS 27

Manuscript Form:

@Begin(Description)
Segment@\One of the parts into which something
natura11y separates or is divided; a division, portion,
or section.

Section@\@Mu1tip1e[A part that is cut off or separated; a
distinct part or subdivision of anything,

as an object, country, or c1ass.

The act of subdividing some object into its distinct parts.]
@End(Description)

Segment

Section

Document Result:

One of the parts into which something naturally separates or is divided; a
division, portion, or section.

A part that is cut off or separated; a distinct part or subdivision of any
thing, as an object, country, or class.

The act of subdividing some object into its distinct parts.

Figure 3-4: Sample Input and Output for the Description Environment

Manuscript Form:

@Theorem(The c1osed interva1 (a,b) is compact)
Text of the document.
@Begin(Theorem)
A c1osed bounded subset of R@+[n] is compact.
@End (Theorem)

Document Result:

Theorem 1: The closed interval (a,b) is compact

Text of the document.

Theorem 2: A closed bounded subset of Rn is compact.

28 SCRIBE USER MANUAL

Manuscript Form:

@Begin(Equation)
@i[x]@-[n+l] = @i[x]@-[n] - F(@i[x]@-[n])/F' (@i[x]@-[n])

or

@Tag(Newton)@i[x]@-[n+l]=(@i[x]@-[n]+@i[c]/@i[x]@-[n])
@End (Equation)

Document Result:

or

(3-12)

In the normal document types, Theorems, Lemmas, Propositions, and Definitions are all
numbered together: There will not be a Theorem 5-1 and also a Definition 5-1. Equations are
numbered separately. Proofs are not numbered at all. Every Theorem, Lemma, Proposition,
and Definition has a number. For equations, only those Equations that contain a cross-refer
ence tag (@Tag command) actually receive a number. To make proper use of this numbering
facility, you should use the Scribe cross-referencing mechanism, which is described in
Chapter7.

You might also find the @Blankspace command (described in Chapter 8), to be useful.
@Blankspace allows you to leave space to either write in the equation by hand or paste in an
equation produced by some other means.

3.7 Color Output

The use of color in ordinary text is an unfamiliar notion even today. If you look around at
magazines and display advertising, you will see color used to great advantage, but look at a
textbook and you will see black and white. ·In rare cases, color will be used in the background
to highlight an example, but as a general matter color is not used in text. With the advent of
affordable color graphics terminals and hardcopy devices, authors of documents now have the
ability to use color in a meaningful way to prepare manuscripts and presentation slides.

Scribe provides color support for devices capable of printing in color. In other words,
Scribe makes no attempt to change color on devices for which manual intervention is required;
Scribe only supports changes that can be accomplished via commands included in files
shipped to the device. Even though a Line Printer, for instance, will print in red if you replace
the printer ribbon and an ordinary CRT terminal will display a different color if you replace
the CRT itself with one having a different phosphor.

SIMPLE FORMATTING ENVIRONMENTS 29

3.7.1 Using Color

Within Scribe, ''Color'' refers to the color of the text that is being printed, while
"BackgroundColor" refers to the color of the surface on which printing occurs. A device
may be able to vary either, both, or neither of these areas. You have the ability to specify
color in any of those areas without being concerned about what your device can and can not
do. As with everything else in Scribe, a reasonable default will be chosen to compensate for
differences in device characteristics in a reasonable way. For example, on Line Printer and
Robot Typewriter devices, you will get black ink on white paper. On the GIGI, you'll get
white text on a blue screen. On a Concept-108 terminal, you will get white characters on a
dark screen.

To change the color of the text to red, use the command @Style(Color Red). To make the
background green, you would say @Style(BackgroundColor Green). See Section 4.5 for fur
ther details.

3.7.2 Coloring Pieces of Text

Frequently, you will want to have a single symbol, word, or sentence appear in a color
different from that of the surrounding text. To make this change as easy as possible, Scribe
provides a number of standard color environments. They are used in exactly the same way as
other standard environments such as @i, @b, and @Center. The standard color environments
are listed below:

Dark
Red
Yellow

Black
Green
Magenta

White
Blue
Cyan

"Dark" and "Black" are the same color, and it is the default color for most devices and
document types. Be warned that Scribe's interpretation of the colors is not necessarily literal.
On all CRT's, for example, Scribe considers the color of the writing to be Black, even though
the screen may have a white or green phosphor.

As with all environments, the color environments can be used in either the short form

@Red [Text to appear in red.]

or the long form

@Begin(Red)
Text to appear in red.
@End(Red)

As was already stated, if the requested color is not available on your output device, a
suitable alternative will be supplied. In the case of color output on devices which simply
cannot change color, that alternative is to do nothing. You will receive no error messages, and
there will be nothing special done to the text.

Different portions of the text can be colored consistently throughout the document using
single-line commands. It is possible to make all page numbers come out in blue, footnotes in
green, quotations in red, and so forth by using the environment attribute ''Color''. See the
discussion of the @Modify command on page 162 to learn how to produce these changes.

30 SCRIBE USER MANUAL

Chapter Four

Simple Commands

Environments, such as those described in Chapter 3, are defined in Scribe's Database and
can differ from one document type to another. Scribe also has a set of commands, which are
imperative instructions to the Scribe program. Commands have the same meaning for all
document types and all devices. In this chapter, we describe a few of the simpler commands.

4.1 Footnotes and Endnotes

Scribe places and numbers footnotes for you automatically. To get a footnote1 into running
text, simply insert an @Foot command into your text at the point where the superscripted
footnote marker should appear:

@Foot(body of footnote)

Always place the @Foot command at the point where you want the superscripted footnote
number to appear. The footnote in the previous sentence was generated by the following line.
Notice the lack of space between the word ''footnote'' and the @Foot command.

To get a footnote@Foot(Like
this one.) into running text,

Scribe automatically generates footnote numbers and puts them in the proper places; don't put
the numbers in yourself.

When you are generating output for devices such as File, which do not have separate pages,
footnotes are converted into parenthetical notes and left in the text. This alteration is done
because there is no page bottom to which the notes can be moved.

An endnote is a note that appears not at the bottom of the page or within the text as a
parenthetical phrase, but at the end of the document. You generate endnotes with the @Note
command:

@Note(This is the text of an endnote.)

Scribe assigns a number to the endnote, places the number in your text at the point where the

1 Like this one.

32 SCRIBE USER MANUAL

@Note command occurs, and moves the text of the note to the end of the document, where it
appears in a "Notes" section.

4.2 Storing and Re-Using Text: The @String and @Value
Commands

The @String command provides a way to define abbreviations or the text of phrases that
you might need to change. You take a string of characters, and give it a code name by using
the @String command. Choosing the name is up to you; Appendix F gives the full set of rules
for what is permitted in the @String command (and other commands like it). If you will limit
your names to letters and use delimiters the same way we do, you don't have to read the
appendix.

In the following example, the code word is on the left, and the string of characters is on the
right. The string of characters must be surrounded by a pair of Scribe delimiters. Be sure to
choose a delimiter pair that does not appear as part of the string!

@Strinq(USPS="the United States Posta1 Service")
@Strinq(CACM="@i[Communications of the ACM]")
@Strinq(OurName="[We'11 think of something to put here.]")

The @Value command retrieves the text string associated with a code name. It puts the
string into the document at the point where the @Value command occurs in the manuscript,
exactly as if you had typed the string in your manuscript. For example, suppose the following
manuscript lines appear somewhere after the definitions above.

Manuscript Form:

In the rate increase request, @Va1ue(USPS) a11eqes ...

Prior work was pub1ished in @Va1ue(CACM).

Our new corrpany name, @Va1ue(Ourname),
was carefu11y chosen to ...

The resulting document text looks like these lines:

Document Result:

In the rate increase request, the United States Postal Service alleges ...

Prior work was published in Communications of the ACM.

Our new company name, [We'll think of something to put here later],
was carefully chosen to ...

You can use the @String command to define a new string whose contents are the same as
an old string by providing the name of an existing string as the value for the new string instead
of providing delimited text.

SIMPLE COMMANDS

Manuscript Form:

@String(BillingAddress="1234 Main St, Peoria")
@String(ShippingAddress=BillingAddress)

Bill to: @Value(BillingAddress)
Ship to: @Value(ShippingAddress)

Document Result:

Bill to: 1234 Main St, Peoria
Ship to: 1234 Main St, Peoria

You can also copy the value of a counter into a string; see Section 7 .1.2 on page 66.

4.3 Using Predefined Internal Strings

33

The "text string" mechanism just described allows you to define names for text strings and
retrieve their values with the @Value command. Scribe predefines some text strings for you,
containing various characteristics of the Scribe run and of the document being processed.

For example, using @Value, you can obtain the name of the file being processed, when
that file was created, what time the run began, and other bookkeeping information. A com
plete table of predefined internal strings appears in Appendix E.6. The next few pages contain
some examples of how to use them.

As an example, the predefined string named Date holds the current date, so @Value(Date)
produces the current date at the point in the document where that command is found. Suppose
your manuscript file contains this sentence:

Manuscript Form:

This document was produced on @Value(Date).

The document would contain a sentence like the following:

Document Result:

This document was produced on 15 July 1985.

The precise format in which the date is printed is controlled by the Date parameter for the
@Style command. The normal format for the date is like the one above: "15 July 1985".
However, you can change the date style (at any point in the file) so that @Value(Date)
produces almost any format at all. To make this change, you give the Date parameter a value
that represents the date March 8, 1952, in any format that you want. (The date March 8, 1952
must be used in the @Style command.) Scribe analyzes your string, figures out the format
that you have used to specify the date March 8, 1952, and uses that format for the current date.
You can use nearly any notation; month and day names can be in English, Spanish, German,
or French. Scribe does not, however, recognize numerical dates (for example, eighth, ninth,
tenth) in other languages. Some examples are shown below:

34

Manuscript Form:

@Sty1e(Date="03/08/52")
Today is @Va1ue(Date).

@Sty1e(Date="8th of March, 1952")
Today is @Va1ue(Date).

@Sty1e(Date="Saturday, 8th of March")
Today is @Va1ue(Date).

@Sty1e(Date="08-MAR-52")
Today is @Va1ue(Date).

SCRIBE USER MANUAL

@Sty1e(Date="the eighth day of March, nineteen fifty-two")
Today is @Va1ue(Date).

@Sty1e(Date="Samedi 1e B@+[e] Mars, 1952")
Aujourd'hui c'est @Va1ue(Date)

@Sty1e(Date="8 Maerz 1952")
Beute ist der @Va1ue(Date)

Document Result:

Today is 07/15/85.

Today is 15th of July, 1985.

Today is Monday, 15th of July.

Today is 15-JUL-85.

Today is the fifteenth day of July, nineteen eighty-five.

Aujourd'hui c'est Lundi le 15e Juillet, 1985

Heute ist der 15 Juli 1985

@Value(Weekday) gives you the name of the current day of the week, for example,
''Monday''.

@Value(Time) tells you the time, to the nearest minute, when the current Scribe run began;
for example, "15:07". This time is normally a 24-hour time, but you can specify a printing
style for the time. The method is the same as for the date style. Use the Time parameter for
the @Style command to provide a sample format for the time 4:30 p.m. (Again, as with the
Date specification, a certain time must be used: 4:30 p.m.) Scribe then analyzes the format
you used to represent 4:30 p.m., figures out the format that you have used to specify the time
4:30 p.m., and applies that format to printing the current time string.

SIMPLE COMMANDS 35

@Value(TimeStamp) produces both the date and the time when Scribe began processing
your .MSS file. Its default style is "15 July 85 15:07". You can change the style in which
timestamps are printed by specifying a value for the TimeStamp parameter in an @Style
command. Use the same scheme as for Date and Time, with the same standard date and time
(March 8, 1952 and 4:30 p.m.).

Scribe provides three ways for you to inquire about the files that it is working on.
@Value(Manuscript) tells you the name of the manuscript file that Scribe is processing, for
example, "USERl.MSS". @Value(FullManuscript) tells you the name of the manuscript file
that Scribe is processing, complete with device and directory specification, for example,
"DSKC:USERl.MSS[SMITH]". @Value(SourceFile) tells you the particular place in the manu
script file or the included subfile that Scribe is processing at that moment, for example,
"COMAND.UMl, 2840011". @Value(FileDate) tells you the date and time that the current man
uscript file was last updated, for example, "7 June 1985 at 14:38". If you are using multiple
files to hold your manuscript (see Chapter 13), then @Value(RootFileDate) tells you the date
and time that the root file was last updated, for example, "19 June 1985 at 12:02". The
format in which both @Value(FileDate) and @Value(RootFileDate) are printed can be
specified by using the FileDate parameter for an @Style command. Use the same scheme
(and the same standard date and time) as described above for Date and Time.

@Value(Scribe Version) tells you the version of Scribe that is doing the processing, for
example, "4(1400)", and @Value(UserName), for example "Smith", gives you the name of
the current user according to the local operating system.

Several predefined strings contain information about components of the document. These
are useful in @PageHeading commands. @Value(Page) tells you the current page number,
for example, 35. If you are producing a document with a Table of Contents, then you can
retrieve the number or title of the current section. @Value(SectionTitle) gives you the title of
the most recent section command (chapter, section, subsection, or whatever is appropriate), for
example, "Using Predefined Internal Strings". (Go back and look at the heading at the begin
ning of this section (4.3) on page 33.) @Value(SectionNumber) gives you its number, for
example, 4.3.

4.4 Simple Indexing

Some document types request that an Index be generated at the end of the document. This
Index does not magically become full of entries; rather, you have to tell Scribe what to put in
it. Scribe provides two indexing commands that will produce a single-level index entry,
which has the Index term and the reference number. There are two other commands that
produce a multiple-level Index, but they are not explained in this chapter. Refer to page 172
in Section 15.6.1 for details on those commands.

4.4.1 The @Index Command

The @Index command is the simplest indexing command. All that you need to specify
when using it is the Index term. Scribe fills in the correct page number and puts the entry in
alphabetical order in the Index according to the collating sequence used on your computer.
The syntax of the command is

36 SCRIBE USER MANUAL

@Index (index-entry)

where index-entry is the text you want to appear in the Index. You can put the command at
any point in the .MSS file. @Index works like @Foot in that it doesn't interrupt the sequence
of the text. Nothing appears in the running text of the output at that point, but the entry
appears in the Index with the correct page number. This manuscript form would produce the
document result shown here, although the result would be in the Index, of course, and not in
the running text:

Manuscript Form:

@Index(Text to be indexed)

Document Result:

Text to be indexed 36

The @Index command can be on the same line as text or on a line by itself in the manu
script file. If it is on its own line, Scribe ignores the carriage return that follows it. The
@Index command should be tied as closely as possible to the term in the manuscript file that it
is referencing to ensure correct reference numbers in the Index. In a filled environment, you
cannot be certain where the page breaks in the output will be, and the further the @Index
command is from the appropriate term in the manuscript file, the better the chances that there
will be a page break between them and that the Index number will be one page off. Consider
the following example, which shows the true document result - the entries are actually in the
Index.

Manuscript Form:

Place the peaches and apples@Index(Peaches)
@Index(Apples)in a glass jug and pour in the
wine.
@Index(Wine)
A few teaspoons of sugar may
be added if a sweeter drink is preferred,
though it is not normally done.

Document Result:

Place the peaches and apples in a glass jug and pour in the wine. A few teaspoons
of sugar may be added if a sweeter drink is preferred, though it is not normally done.

You can consult the Index of this manual (under "Apples", "Peaches", and "Wine") to
see how those three entries look.

Only text should be put in the @Index command. If you include any Scribe command or
environment in the text to be indexed, you will get unexpected and unsatisfactory results. For
specialized formatting in Index entries, use the @IndexEntry form.

SIMPLE COMMANDS 37

4.4.2 The @lndexEntry Form

The @Index command allows you to put simple text strings into the Index. As you just
learned, Scribe will add a page number to each entry, sort them into alphabetical order, and
print them. One drawback to this command, however, is that any Scribe commands or envi
ronments that are contained in it are processed after the entry is sorted alphabetically; there
fore, not all entries made via the @Index command are alphabetized as you would expect.
Consider this example. The following command is included in a .MSS file:

@Index[@i(Scribe User Manua1)]

The result would be an entry alphabetized by "@". The @IndexEntry form allows you to get
around this problem and have that entry listed under' 'S' '.

A form is an advanced Scribe construct roughly analogous to a command in its invocation.
Environments contain text; forms contain delimited strings as parameters. While a complete
description of forms is contained in the Scribe Database Administrator's Guide, you don't
need to understand that material to use the @IndexEntry form. Just follow the instructions in
this section.

The format of the @IndexEntry form is

@IndexEntry [Key=" text-to-be-alphabetized-as",
Entry=" text-to-be-indexed",
Number=" reference-number"]

Each of the parameters is described below. Two of the three are required.

Key

Entry

The sort key. Required. This text will be used to determine the alphabetic
position of the Index entry.

The text of the entry. Required. This text will not participate in the
sorting, but it will be used to test for the merging of adjacent entries in the
Index.

Number The reference number indicator. Optional. This parameter determines, by
its absence or presence, whether a reference number will be assigned to
the entry and, if one will be assigned, what that number will be. If it is
missing, then the entry will not be given a number. If it is present but has
no value, then the current page number will be used. If it is present and
has an argument, then that argument will be used to number the entry.

A typical @IndexEntry form and its resulting output is

Manuscript Form:

@IndexEntry(Key="Joy of Cooking",Entry="@i[Joy of Cooking]",
Number)

Document Result:

Joy of Cooking 37

@IndexEntry also gives you the freedom to alphabetize random text at any point in the
Index. Since you supply the sort key and the text to be indexed separately, they need not be
related in any particular way. "Fancy Indexing" can be alphabetized as though the entry was
"Misleading Entries" by this line:

38

@IndexEntry[Key=<Misleading Entries>,
Entry=<Fancy Indexing>, Number]

SCRIBE USER MANUAL

If you look in this manual's Index under "M", you'll see that entry.

All of the parameters for the @IndexEntry form can have either delimited strings or
@String names as a value. If, for example, the Key parameter is given the value [ABC] (a
delimited string), then the sort key will be the literal text "ABC". If it is given the value
ABC (no delimiters), then the value of the string named ABC and defined with the @String
command will be used. In other words, the sort key will not be "ABC", but rather the
contents of a defined string named ABC.

Consider this situation. A string dbag is defined this way:

@String[dbag="@i(Scribe Database Administrator's Guide)"]

and the following @IndexEntry form is included in the manuscript file:

Manuscript Form:

@IndexEntry[Key="Scribe", Entry=dbag, Number]

The resulting Index entry would be this line:

Document Result:

Scribe Database Administrator's Guide 38

Let's take that same example and extend it a bit to include several examples of what the
@IndexEntry form can do.

Manuscript Form:

@IndexEntry[Key="Scribe User Manual",
Entry="@i(Scribe User Manual)"]

@IndexEntry[Key="Documentation",
Entry="@i(Pocket Reference)", Number=17]

@IndexEntry[Key="Scribe",
Entry=dbag, Number]

The resulting Index entries would look like these entries:

Document Result:

Pocket Reference 17
Scribe Database Administrator's Guide 38
Scribe User Manual

SIMPLE COMMANDS 39

4.5 Adjusting Document Formats: The @Style Command

The @Style command gives you the ability to change some aspects of the appearance of a
document. For example, suppose you want to use the Text document type, which is normally
single-spaced, and, for some reason, you need a double-spaced document. All is not lost. You
need not spend days trying to understand how to design your own document type. Use an
@Style command with the parameter and value you need to make the change. In this case,
you would use @Style(Spacing 2).

The @Style command provides parameters for many aspects of document appearance, for
example, indenting, spacing, fonts, justifying, footnote numbering, etc. These aspects all have
values predefined in the Database for the document type you are using. However, by placing
an @Style command at the beginning of your manuscript, you can specify values that override
the ones in the Database. Any @Style command that changes the overall appearance of the
document has to come at the beginning of the .MSS file. You cannot change overall styles in
mid-document.

Some changes are too complicated to be effected with simple @Style commands. If you
really must have changes beyond those that the @Style mechanism provides, the @Modify
and @Define commands to do these things are documented in Chapter 15 and in the Scribe
Database Administrator's Guide. But don't even think about trying modifications of this
magnitude until you have become familiar with the basic system.

Let's consider some examples. Suppose you want your document to have the properties
listed below.

Printed in red:2

@Style(Color Red)

A five character indent instead of none:

@Style(Indent 5 Characters)

A ragged right margin instead of a justified one:

@Style(Justification Off)

A specific text body width:

@Style(LineWidth 6.7inches)

Footnotes flagged with superscripted asterisks instead of numbers:

@Style(Footnotes "@@+[@*]")

Pages numbered with the word "Page" included:

@Style(PageNumber "Page @1")

Appendix E.7 and the Scribe Pocket Reference contain a complete list of @Style
parameters. We include a list of the more common ones here with a brief description for each.

2 Remember that true color output is only available on some output devices and that the color produced, since it
depends on the capabilities of the printer, may not be the color you request See Section 3.7 for more details.

40 SCRIBE USER MANUAL

Background Color Specifies what color the background of the document should be. Takes a
value from the set {Dark, Red, Yellow, Black, Green, Magenta, White,
Blue, Cyan}. Other values may be available for your site. Check with
your DBA for details.

BottomMargin

Color

FontFamily

Footnotes

Indent

Justification

LeftMargin

Line Width

PageNumber

Singlesided

RightMargin

Top Margin

Specifies the bottom margin of the page - the distance between the last
line of text and the bottom edge of the paper. Takes a vertical distance as
a value. PaperLength, TopMargin, and BottomMargin all affect the length
of the printing area on the page.

Specifies what color the text of the document should be. Takes a value
from the set {Dark, Red, Yellow, Black, Green, Magenta, White, Blue,
Cyan}. Other values may be available for your site. Check with your
DBA for details.

Specifies the FontFamily for the document. Takes a FontFamily name as
an example. For example, @Style(FontFamily <HelveticalO>) or
@Style(FontFamily <TimesRoman8>). Not every output device is capa
ble of changing fonts; not every font is available even on those output
devices that can change fonts. Consult with your DBA to find out what
fonts are available on your printing device.

Specifies the numbering style to use for marking footnotes in the text and
in the footnote itself. Takes a numbering template as a value. (See
Section 15.8 on numbering templates.)

Specifies how much space to indent the first line of each paragraph in the
text. Takes a horizontal distance as a value. Negative indent values are
valid for hanging indents (' 'outdented paragraphs'').

Specifies whether the right margin is printed "ragged" or aligned. Takes
a Boolean value. Most document types have justified right margins. The
following line creates a ragged right margin: @Style(Justification Off).

Specifies the width of the overall left margin on the page. Takes a hori
zontal distance as a value. The margin is really the white border along the
edge, so a bigger number means more white space and a shorter print line.

Specifies the width of a print line. Takes a horizontal distance as a value.
LeftMargin, RightMargin, and LineWidth all provide means for control
ling the line layout. You can specify any two of the three, but not all three
of them.

Specifies the style of the page number. Takes a numbering template as a
value. (See Section 15.8 on numbering templates.) Most documents are
defined to be numbered sequentially, beginning at 1, but you may change
that number style with this @Style parameter.

Specifies that the printing of the document is to be on one side only.
Takes a Boolean value. Some document ty11es are set up for double-sided
reproduction, which means that chapters are set to begin on a right-hand
(odd) page, and the left and right margins are varied from even to odd
page to make room for the binding. If you don't want these effects, spec
ify @Style(Singlesided).

Specifies the width of the overall right margin on the page. Takes a hori
zontal distance as a value. The margin is the white border along the edge,
so a larger right margin means a shorter print line.

Specifies the amount of white space between the top of the paper and the
first print line on the page. Takes a vertical distance as a value.

Left heading Center heading Right heading

4.6 Page Headings, Page Footings, and Page Numbers

The information printed at the top or bottom of each page is called a page heading or page
footing, respectively. One of the most common items in a heading or footing is the page
number. Normally, Scribe numbers the pages for you, putting a page number centered at the
top of all pages after the first. This convention is the default page heading supplied by most
document types. You can change the page headings to any text that you want.

The page heading and footing areas are divided into three parts: a left part, a center part,
and a right part. These parts are printed at the left, center, and right sides of the heading or
footing area. The headings and footings of this page are labeled to show you the position of
these six fields.

Page headings and footings are declared with the @Pageheading and @Pagefooting com
mands. The commands that set the page heading and page footing for this page are shown
here:

@Pageheading(Left "Left heading",
Center "Center heading",
Right "Right heading")

@Pagefooting(Left "Left footing",
Center "Center footing",
Right "Right footing")

The text fields inside the delimiters (the delimiters are quotation marks in this example) can
contain any manuscript-file text, including Scribe commands. Several Scribe commands pro
vide information useful for including in running heads. Use @Value(Page) to get the current
page number. Use @Value(Date) for the current date. The following command would put the
words "Reference Manual" in the top left comer, the current date in the top center, and the
page number in the top right corner:

@Pageheading(Left "Reference Manua1",
Center <@Va1ue(Date)>,
Right <@Va1ue(Page)>)

(Section 4.3 tells you more about the @Value command.)

Not all of the three parameters "Left, Center, Right" need to be specified in an
@Pageheading or @Pagefooting command. However, Scribe assumes that if you do not spec
ify a parameter, you do not want any text in that position. For example, let's say that the first
10 chapters of a manual were to have the page number in the left comer of the page. The
Scribe command for that output is

@Pageheading(Left "@Va1ue[Page]")

If you wanted to change the page heading beginning with Chapter 11 so that the title of the
manual was in the right corner of the page, then the command necessary is this one:

@Pageheading(Left "@Va1ue[Page]", Right. "Manua1 Tit1e")

If you had not repeated the "Left" setting, you would have only received text in the right
comer of your pages.

You can define page headings and footings at the beginning of the manuscript and at any

Left footing Center footing Right footing

42 SCRIBE USER MANUAL

point in the manuscript. Normally, when Scribe see an @Pageheading or @Pagefooting com
mand, it continues processing the .MSS file to complete the output page that it is currently
creating and then produces the specified heading or footing on the next output page.
However, the @Pageheading and @Pagefooting commands can include an argument,
Immediate. If the Immediate argument is present, then the heading or footing changes on the
current page. In that case, Scribe stops processing text and redraws the page heading or
footing for the current output page.

@Pageheading(Immediate,Left "Left heading", ...)

In the absence of the Immediate argument, the newly-declared heading or footing takes
effect on the following page.

You can declare different page headings to be used on odd and even pages. If you are
going to be reproducing your document printed on both sides of the paper, then you might
want odd and even headings to be the mirror image of one another. Use two different
@Pageheading commands, one containing the parameter Odd and the other containing the
parameter Even. The commands that generated the page headings for this manual are:

@Pageheading(Even,Right "@c[Scribe User Manual]",
Left "@c[@Value(Page)]")

@Pageheading(Odd,Left "@c[@Title(Chapter)]",
Right "@c[@Value(Page)]")

(The @Title command is described in Section 7 .1.1).

For even and odd page headings to work properly, the document must be defined as
doublesided. Some document types are defined to be doublesided by default for certain output
devices. If you want a document that is normally singlesided to be doublesided so that the
even and odd page headings print properly, then included the @Style(DoubleSided On) com
mand in your .MSS file. If an even and odd page heading is defined for a singlesided docu
ment, Scribe will not produce any error message, but the odd page heading will be used
throughout the document.

Since not all of the three @Pageheading command parameters (Left, Center, Right) need to
be mentioned and if one is missing, no text is inserted in that position, erasing the page
heading for a document is simple. Just include this command at the top of your manuscript
file:

@P ageheading ()

No page headings will appear in the document beyond the first page. ''Immediate'' can be
included in that command and then no page heading will be printed on any page, including
page one:

@Pageheading(Immediate)

4.7 Comments in Manuscript Files

You can put text in the manuscript file that you do not want to come out in the finished
document by using the Comment command. Scribe totally ignores any text that you specify
with the Comment command, no matter what it contains.

SIMPLE COMMANDS 43

Comment does not let you nest delimiters. This restriction is necessary because Scribe
does not process any commands or environments inside Comment, so it cannot know about
their delimiters. In the following example, the word "Typewriter" will appear in the docu
ment even though it was not intended to because the first right-curly-bracket character acts as
the closing delimiter for the comment.

Manuscript Form:

@Comment{He bought a @i{Royal} typewriter.}

Document Result:

typewriter.}

It is legal to have Scribe commands within the body of a comment. However, they will not
be processed. Just be sure that none of them uses the same delimiters as the Comment com
mand:

@Comment{He bought a @i[Royal] typewriter.}

The @Begin/@End construction may be used with comments, allowing you to avoid de-
limiter problems completely.

@Begin{Comment}
He bought a @i{Royal} typewriter.
@End{Comment}

4.8 Special Characters

A computer terminal keyboard normally has only 95 characters on it. People frequently
want to include special characters, whether a Greek letter like IT or ~ or a mathematical
symbol like = or $.

These special characters are not available on the keyboard as individual keys. If you are
using an output device that is capable of printing special characters, you can get Scribe to print
them for you. If you are not using such an output device, you can ask Scribe to leave space
for you to write in the characters by hand.

Do not try to get special characters by putting control codes into your .MSS file. Scribe will
have no idea what the widths of the characters are supposed to be and will be unable to format
your text properly.

4.8.1 Printing Predefined Special Characters

Scribe lets you specify special characters for printing by pretending that they are a font
change; for example, the Greek character Alpha is simply the ''Greek Font'' representation of
the letter "a". Each printing device provides some means of printing the special characters,
though the means may be different on different devices. The method for representing Greek
characters is as follows:

44

Manuscript Form:

if A < B then @g(l) must be O

Document Result:

if A < B then A must be 0

SCRIBE USER MANUAL

Font-change codes were described in Section 3.2. A full table of Greek letters available
with @g appears in Appendix Con page 190.

Printing mathematical characters is accomplished via the Scribe mathematical facility
described in detail in Chapter 11.

On some computer systems, the non-printing (control) characters on your keyboard can be
used to specify special print characters. This use of control characters is not recommended, as
there is no standardization from one printing device to the next and from one site to the next.
Nevertheless, Scribe does process otherwise unassigned control codes as text characters when
it finds them in your manuscript file.

4.8.2 Faking Special Characters

Scribe's internal information about printing devices includes knowledge about what char
acters and fonts it can print. Scribe automatically leaves a blank space when it encounters a
character that it can't print on a device, allowing you to write the character in by hand.

Scribe also has a command that allows you to request blank space for a special character.
You can use it if you don't want to learn the special characters or if you need Chinese charac
ters or something else that really isn't available.

The@# command leaves a blank space large enough to write one character. (In printer's
terminology, the space it leaves is called an em-space or a quad space.)

Suppose your manuscript file contains the following words:

Manuscript Form:

Kaiser Wilhelmstra@#e

Scribe replaces@# with an em-space (or the closest equivalent on your device):

Document Result:

Kaiser Wilhelmstra e

In addition, Scribe makes a note of the page and line number in the error log file (see page
147). This record means that when you take pen in hand to write in the missing character, you
can find the right spot in the document.

Document Result:

Kaiser Wilhelmstral3e

SIMPLE COMMANDS 45

You can request blank space either with the @# or the @'-' (an @-sign followed by a
space; see page 102) command. The @# mechanism makes an entry to a list of special
characters for each@#, whereas the@'-' command does not. Choose whatever mechanism is
appropriate.

46 SCRIBE USER MANUAL

Chapter Five

Organizing Manuscript Files

We've told you about a lot of commands but haven't said much about how and when to use
them. In this chapter, we discuss the overall structure and sequence of commands in your
manuscript file.

5.1 Document Types

Each time Scribe produces a document, it must know two things:

1. What kind of document are you making?

2. What is the printing device?
These two items of information are called the Document type and the Device type. We already
showed you how to tell Scribe about printing devices (Section 2.4, page 8). To tell it about
document types, you need to put a command at the beginning of your file, before any of the
text (see Section 5.2). The command name is @Make, and you use it by putting the name of
the kind of document to make inside delimiters:

@Make(Letter)
@Make "Manual"

The name Letter tells Scribe that you are producing a document whose name is Letter. Scribe
turns to its Database, finds the definition of Letter, and discovers that letters consist of a return
address, an inside address, a greeting, a body, a closing, a signature, and possibly some nota
tions. It expects you to provide the text for some or all of those various pieces.

Had you begun your manuscript file with the command @Make(Manual), then Scribe
would have consulted its Database to discover that a Manual consists of a title page, a Table of
Contents, possibly a Preface and/or an Introduction, then a series of Chapters, then possibly
some Appendices, and finally an Index. You are responsible for providing those pieces, in the
right order and properly labelled.

So the details of document organization depend on what you are doing. Any general rules
are necessarily vague. We can, however, give you some guidelines and some specific exam
ples.

48 SCRIBE USER MANUAL

5.2 Which Commands Go Where?

It is customary, but by no means required, to have the first two commands in the manu
script file be the @Device and @Make command. The only firm rule for the sequence of
commands is that all commands that change Scribe's overall processing must come before the
first text. For example, @Style commands defining the overall appearance of a document
must appear in the manuscript file before any text in the document.

We often say things like, "Command thus-and-so must be at the beginning of the file".
By ''beginning'', we mean the group of Scribe commands that comes before the first text of
the document and not literally the first line of the file. Please note that the @Include com
mand pulls text into the document and so is itself considered text. Therefore, no Scribe
command that alters the document as a whole may be inserted after either text or an @Include
command. (See Section 13.1 for more information about this command. If you've never
heard of it, don't worry; it won't affect you.)

If you make a mistake and put some commands to change things after the first text in the
file, Scribe normally prints a warning message reminding you of your mistake, ignores the
misplaced command, and does what was initially defined in the .MAK file (the document
definition file), the .DEY file (the device definition file), or the beginning of the document.
(See Chapter 14 for an explanation of Scribe messages.)

5.3 Details of Particular Document Types

Many installations using Scribe have their own customized document types, so it's not
possible to discuss all of the document types on your system in this manual. In this section,
we tell you how to use the basic document types and formats that are part of Scribe when it is
distributed.

Some installations support additional variant forms of the regular document types. A
variant form is one that has the same set of pieces and uses the same commands, but produces
a different output format. You request a variant form by adding a parameter to the @Make
command:

@Make(Article,Form 1)

If your installation has a Form-1 Article definition in its Database, then Scribe uses that alter
nate form for your document. (Find out what is available by contacting your DBA.)

Some document types have optional parameters; you specify these parameters in exactly
the same way that you specify a variant form. For example,

@Make(LetterHead,Phone "(412) 281-5959")

(Again, consult your DBA or documentation for details.)

5.3.1 The Text Document Type

The default document type (the one you get when you don't specify any document type in
your .MSS file) is called Text. If you don't put an @Make command in your file, Scribe acts
as if you had used @Make(Text). This default format is very simple; it has no Table of

ORGANIZING MANUSCRIPT FILES 49

Contents, no numbered sections, no figures or tables, no title page. It is intended to be used
for simple or small documents with no fancy characteristics.

All of the environment types described in Chapter 3 can be used in the Text document type.
Since Text has no chapters, the Theorem and Equation environments are numbered sequen
tially rather than within chapters.

The standard Text document type does not indent its paragraphs. If you want indented
paragraphs, use an @Style command to set a value for indenting (see @Style in Section 4.5,
beginning on page 39). For example, the following command requests that the first line of
every paragraph be indented 3 spaces.

@Sty1e(Indent 3)

Figure 5-1 is a short example of a complete manuscript file that uses document type Text.
Figures 5-2 through 5-4 show the Scribe output of this file on different output devices. The
.MSS file uses some commands that we haven't discussed yet- namely the@> and@\ (flush
right and tab, respectively) commands (they are described in Section 9.1.2, beginning on page
82, but the format of document type Text is still clearly shown in the figures.

50 SCRIBE USER MANUAL

@Heading(lS-211: Fundamental Structures of Computer Science
Homework Assignment 5)
@Begin(Format)
@TabDivide(3)
Assiqned:@>lS October@\@\Instructor:@>Bill Wulf
Due:@>l November@\@\T.A.:@>Brian Reid
@End(Format)

We have been studying the data structures known as
@i[graphs] and @i[trees]. To a genealogist, a family tree
is a chart showing a group of people and how they are
related to one another. There are two kinds of links:
marriage links and offspring links.
@Begin(Enumerate)
Design a data structure that can be used to represent a
simple family tree. By "simple", we mean that each person
marries only once, and that no person in the tree marries
incestuously. Hint: Represent each person with a record;
each record would have a @i[spouse] field, a @i[parent]
field, etc.

Modern families are not so simple. Family trees are often
family DAGs. People divorce and remarry. Revise your data
structure to be able to handle multiple marriages. Suppose
that a person marries his first cousin. Will your data
structure be able to handle this?

Write a Pascal program that will build this data structure.
Its input should be a series of lines identifying events:
"John marries Susan" or "Bill is born to John and
Susan". Feel free to devise your own synta:x: to make the
input processing as easy as possible.

Write a relationship-finding program. This program will
tell you the relationship, in English, between any two
people in the graph. For example, if you give it names
"John" and "Mary", it might print out "John is Mary's
father" or "John is Mary's 3rd cousin 2 times removed."
@Foot<Hint: To find the relationship between nodes @i[A] and
@i[B], find the nearest common ancestor, say @i[C]. Let X
be the number of generations between @i[A] and @i[C], and Y
be the number of generations between @i[B] and @i[C]. If X
is equal to Y, then A and Bare (X-l)@+[th] cousins. If X
is not equal to Y, then without loss of generality assume X
less than Y; @i[A] and @i[B] are then (X-l)@+[th] cousins
@w[Y-X] times removed.> Some relationships have specia1
names: a zero'th cousin is a brother or sister, a first
cousin once removed is an aunt, uncle, nephew, or niece.
@End(Enumerate)

Figure 5-1: An Example of a Manuscript File in the Text Document Type

ORGANIZING MANUSCRIPT FILES SI
15•2111 FUNDAMENTAL STRUCTURES or COMPUTER SCIENCE

HOMEWORK ASSIGNMENT 5

l ~ tlctorier
l ~·ovem~er

Instructor:
T.A.:

Bill Wulf
Brian Reid

e have b~en studyin~ tr.e data structures known as ~J:.aQJls and t.J:.&&S. ro
oenealogist, d fa~ilv tree is a cnart snowinq a group of people and

o~ they are related to on~ another. There are two kinds of linksl
arriaoe lin~s and oftspring lln~s.

1. CesiQn ~data structure that can be used to represent a
simple family tree. By ''simple'~, *e mean that each person
~arries only once, and that no person in the tree marries
incestuously. ~inti Represent each pers~n with a recordr
eacn rec~rd would have a ~g,ciaa field, a ~AQJ:. field, etc.

?. ~odern fa~illes are not so simple. ~amity trees are often
family OAGs. People divorce a~d r~marry. Revise your data
structure to ~e able to handle multiple ma~riages, Suppose
that a person marri-.s his first eousin. Will your data
structure oe able to handle this;

3. ~rlt~ a Pascal ?roqram that will bUlld this data structure.
Its in~ut should he a series of lines 1dent1fyinq events•
''Jonn ~arries Susan'' or ''~111 is born to ~ohn and Susan''•
Fe~l tree to devise your own syntax to ma~e the input
~rocessinq as easv d5 possible.

1. ~rit~ a relationship•flndtng program. This program will tell
vou th'! r~Hations-hip, in e:nqlish1 between arw two oeople in
tne graph, For exa~ple, if you qlve it names ''John'' and
"<+ary", it f"iqht rt!'if\t out "Jonn is Mary's father'' or

".Joh-r1 is ~ary's- 3rd eousin 2
relatio~snips ~ave special namesz

1
tiftles r~oved.''
a zero'th cousin

Sonie
is a

~---_.--.. ~---..--
1
Hint: To fi~d tne relat1o~sh1P bet~een nodes ~ and a, find the

ear~st co~mon ancestor, say c. Let x be t~e number of generations
et•een 1 an~ :, a"d t oe the nu~ber of generations between a and c. If

is e~ual to Y, t~en -
, th~n Without loss of

tl'I
~nd B are CX•lJ cousins. If X is not equal to
genera 11 t y assum-e- x 1-es s than 'it 1 anti a are

th
hen (X•1) cousins v-x times removed•

Figure 5-2: Sample Output on a Line Printer (Device LPf)

52 SCRIBE USER MANUAL

15-211: FUNDAMENTAL STRUCTURES OF COMPUI'ER SCIENCE
lKHM>RK ASSIGIM!lrl' 5

Assigned: 15 October
l November

Instructor: Bill Wulf
Brian Reid I:Xle: T .A.:

We have been studying the data structures known as graphs an:! trees. To a

genealogist, a family tree is a chart sha.ling a group of people and how they

are related to one another. There are two kinds of links: marriage links and

offsr:riny links.

1. Design a data structure that can be used to represent a simple
family tree. By "simple", we mean that each person marries only
orx::e, an:! that no person in the tree marries incestuously. Hint:
Represent each person with a record; each record would have a
SfQUSe field, a parent field, etc.

2. Modern families are not so simple. Family trees are often family
DAGs. People divorce and remarry. Revise yoor data structure to
be able to handle rultiple marriages. Su{:P)se that a person
marries his first cousin. Will yoor data structure be able to
handle this?

3. Write a Pascal program that will build this data structure. Its
input should be a series of lines identifying events: "John
marries Susan" or "Bill is torn to John and Susan". Feel free to
devise your <:Mn syntax to make the input processing as easy as
µ:>ssible.

4. Write a relationship-firoing program. This program will tell you
the relationship, in English, between any two people in the graph.
For example, if you give it names "John" and "Mary", it might print
out "Jo~ is Mary's father" or "John is Mary's 3rd cousin 2 times
raooved." Sane relationshit=e have special names: a zero'th cousin
is a brother or sister, a first cousin once removed is an aunt,
uncle, ne~ew, or niece.

!Hint: To find the relationship between nodes ~ aro !!_, find the nearest
comnon ancestor, say £· Let X be the number of generations between ~ and £,
and Y be the number of generations between !! aro £. If X is equal to Y, then
A aro B are (X-1) th cousins. If X is oot equal to Y, ~n without loss of
generality assume X less than Y; A aro B are then (X-1) t coosins Y-X times
raooved.

Figure 5-3: Sample Output on a Diablo HyType II (Device DIABLO)

ORGANIZING MANUSCRIPT FILES

15-211: Fundamental Structures of Computer Science
Homework Assignment S

Assigned: 15 October
1 November

Instructor: Bill Wulf
Brian Reid Due: T.A.:

We have been studying the data structures known as graphs and trees. To a genealogist,
a family tree is a chart showing a group of people and how they are related to one
another. There are two kinds of links: marriage links and offspring links.

1. Design a data structure that can be used to represent a simple family tree.
By ·simple·, we mean that each person marries only once, and that no person
in the tree marries incestuously. Hint: Represent each person with a record;
each record would have a spouse field, a parent field, etc.

2. Modern families are not so simple. Family trees are often family DAGs.
People divorce and remarry. Revise your data structure to be able to handle
multiple marriages. Suppose that a person marries his first cousin. Will your
data structure be able to handle this?

3. Write a Pascal program that will build this data structure. Its input should be
a series of lines identifying events: ·John marries Susan· or ·em is born to
John and Susan·. Feel free to devise your own syntax to make the input
processing as easy as possible.

4. Write a relationship-finding program. This program will tell you the
relationship, in English, between any two people in the graph. For example, if
you give it names •John• and ·Mary•, it might print out •John is Mary's father"
or •John is Mary's 3rd cousin 2 times removed:1 Some relationships have
special names: a zero'th cousin is a brother or sister, a first cousin once
removed is an aunt, uncle, nephew, or niece.

1Hint: To find the relationship between nodes A and B. find the nearest common ancestor, say C. Let X be
the number of generations betwee~ A and C. and Y be the number of generations between 8 and C. If X is
equal to Y, then A and B are (X-llth cousins. If X is not equal to Y, then without 1011 of generality assume X
less than Y; A and 8 are then IX-lit cousins Y-X times removed.

Figure 5-4: Sample Output on a Xerox 2700 Laser Printer (Device X2700)

53

54 SCRIBE USER MANUAL

5.3.2 The Letter and LetterHead Document Types

The document type Letter is designed for making standard personal letters. The document
type LetterHead is designed for making business letters on company stationery. Since every
installation using Scribe has its own format for company stationery, we suggest that you con
tact your DBA for the details of LetterHead at your site.

Most letters are composed of several components. Some personal letters might have just a
greeting, a body, and a closing; most business letters contain all of the following components:

• A return address
•An inside address (of the person receiving the letter)
•A greeting
• The body of the letter
•A closing
• A signature
• Notations, usually in the lower left comer

To make a letter with Scribe, you put the text for each component in an appropriate envi
ronment, in the right sequence. See Figure 5-5 for a sample personal letter. (Consult your
DBA for the names of the environments defined for Letter at your site.)

5.3.3 The Sectioned Document Types: Thesis, Report, Article, and Manual

Sectioned documents are those consisting of major logical sections. The real difference
between Text and a sectioned document is that sectioned documents can produce title pages,
numbered sections, and automatic tables of contents.

Figure 5-6 shows the general organization of commands in a sectioned document. In this
case, the document type is Thesis and the device type is Diablo. This thesis has a title page,
two prefatory sections, two chapters, and an appendix.

The details of title page environments are in Section 6.3, beginning on page 62. The
sectioning commands @Chapter, @Section, and so forth are described in Section 6.2, begin
ning on page 60.

ORGANIZING MANUSCRIPT FILES

@Make(Letter)
6937 Penn Avenue
Pittsburgh, PA 15208

@Value (Date)

@Begin(Address)

Manuscript Form:

Mr. John Jones
Subscription Manager
@i[Pittsburgh] Magazine
6023 Fifth Ave
Pittsburgh, PA 15213
@End(Address)

@Begin(Body)
@Greeting(Dear Mr. Jones:)
Several months ago, in response to a WQED
fund-raising drive, I sent in a check for $25. It
was my understanding that this contribution would
also entitle me to a subscription to
@i[Pittsburgh] magazine. I have not yet received
my first copy. Could you please try to find out
why?
@End(Body)
Sincerely,

Brian K. Reid

Figure 5-5: Sample Manuscript File for a Personal Letter

55

56

@Make(Thesis)
@Device(Diablo)

@Begin(TitlePage)
title page text goes here

@End(TitlePage)

Manuscript Form:

@PrefaceSection(Foreword)
text of Foreword

@Unnumbered(Preface)
text of Pref ace

@Chapter(First Chapter Title)
text of the first Chapter

@Section(First Section)
text of the first Section

@Section(Second Section)
text of the second Section

@Section(Third Section)
text of the third Section

@Chapter(Another Chapter)
text of another Chapter

@Appendix(The Appendix)

@Section(First Section)
text of the first section of the Appendix

@Section(Second Section)
text of the second section of the Appendix

SCRIBE USER MANUAL

Figure 5-6: The Skeleton of Manuscript File for a Thesis

ORGANIZING MANUSCRIPT FILES

Note

You have now completed the introduction to "straightforward Scribe". With what
you have read so far, you now know enough to produce documents with reasonably
complex requirements.

We suggest that at this point you review these chapters and try out some of the
examples to help establish the basic concepts in your mind; we further suggest that
you not try to use any of the advanced commands until you are comfortable with the
basic ones.

57

58 SCRIBE USER MANUAL

Chapter Six

Titles, Sections, and the Table of Contents

Almost every document has a title. Some have title pages. Others have headings and
subheadings here and there in the text. This chapter explains how to get various kinds of titles
and headings.

As usual, we'll start with some terminology. A document can have many headings.
Sometimes you need to put a few subheadings inside a heading. When you give numbers to
headings or subheadings, then they become sections or subsections. At the top and bottom of
every page are the page headings and page footings, respectively, sometimes known in the
printing business as running headers.

Different document types use different schemes to produce headings or sections. This
manual, for example, was produced using the document type Manual; it is divided into num
bered chapters, sections, and subsections and has a Table of Contents. A smaller document
might need sections but not chapters; a short piece of text might have just a heading or two.
The particular Scribe commands that you should use to get headings in your document depend
on what kind of document you are producing.

6.1 When There is No Table of Contents

A simple set of heading environments produces headings for simple document types (ones
without Tables of Contents). They are simple because all they have to do is print the heading:
they don't have to give it a number or put it in the Table of Contents.

Major Heading prints large-size letters, boldfaced and centered.

Heading prints medium-size letters, boldfaced and centered.

SubHeading prints normal-size letters, boldfaced and flush to the left margin.
(Of course, on different printing devices, these headings might be quite different in appear

ance from the ones you see here.)

A simple example follows.

60

Manuscript Form:

@MajorHeading(This is a Major Heading)
@Heading(This is a Heading)
@SubHeading(This is a SubHeading)

Document Result:

This is a Major Heading

This is a Heading

This is a SubHeading

SCRIBE USER MANUAL

That's all there is to it. Since these particular heading commands are really just environ
ment names, you can use the "long form" specification for them also. The following manu
script form produces the same results as the previous example.

@Begin(MajorHeading)
This is a Major Heading
@End(MajorHeading)
@Begin(Heading)
This is a Heading
@End(Heading)
@Begin(SubHeading)
This is a Subheading
@End (SubHeading)

6.2 When There is a Table of Contents

A set of sectioning commands produces headings for documents that need Tables of
Contents. The sectioning commands are different from the heading commands of the previous
section because they must both print the headings in the text and make an entry in the Table of
Contents. Usually these commands automatically number the chapters and sections, although
in some document types they do not.

For the purposes of this discussion, we are going to describe the general case, in which
parts of the document are numbered. Almost everything we describe applies to the unnum
bered documents, except for the presence of numbers.

When you use any of these sectioning commands, Scribe prints the appropriate section
number followed by the title you specify in the sectioning command. The appearance of the
title (placement on the page, capitalization, font, and so on) depends on how the document
type that you are using has defined that kind of heading.

The sectioning commands available for any document type form a hierarchy. Scribe as
sumes that one particular kind of heading is the most general and that the others are numbered
within that one. You are probably already familiar with this kind of numbering scheme. (This
manual uses it.)

TITLES, SECTIONS, AND THE TABLE OF CONTENTS 61

The standard sectioning commands in Scribe have names chosen to be mnemonic for the
position of that section within the hierarchy and the level of number that appears for the
section title. The names of the levels in the hierarchy are Chapter, Section, Subsection, and
Paragraph (or Subsubsection). Remember that these names are just reminders for the kind of
numbering you get; it doesn't mean that you have to think of something as being a chapter just
because you use an @Chapter command to number it. (Although the @Chapter and
@Appendix commands print out the words "Chapter" and "Appendix" for a few document
types.)

Different document types have different depths of numbered section hierarchies. Report
and Manual have a four-level hierarchy; Article (usually with less complex heading
requirements) has a three-level hierarchy. Table 6-1 shows what level of section numbering
you get using the sectioning commands for the various document types. There are two other
section commands available to all document types that do not produce numbers. They are
shown in Table 6-2.

Commands

Level Numbering Article Report and Manual

1 1. @Section @Chapter
2 1.1. @Subsection @Section
3 1.1.1. @Paragraph @Subsection
4 1.1.1.1. @Paragraph
1 A. @Appendix @Appendix
2 A.1. @Section @Section

Table 6-1: Results of Sectioning Commands

Comm.and

@PrefaceSection(Title)

@UnNumbered(Title)

Purpose

Marks the beginning of a document segment
that does not have a number and whose title
does not appear in the table of contents.

Marks the beginning of a major section for
which you do not want a number. Its title,
which usually looks just like a chapter title,
does appear in the table of contents.

Table 6-2: Other Sectioning Commands

62 SCRIBE USER MANUAL

A sectioning command marks where a new section starts in a document. In addition, the
sectioning command specifies a title for the new section. For example, the following com
mand appeared in the manuscript file to start this chapter:

@Chapter(Titles, Sections, and the Table of Contents)

The following command appeared to mark the beginning of the current section:

@Section<When There is a Table of Contents>

You might have noticed that we are calling these statements sectioning commands unlike
the heading environments in Section 6.1. This distinction between commands and environ
ments is very important here. You cannot use @Begin and @End with command names; you
cannot say, for example, @Begin(Chapter). (The Comment command is the only exception to
this rule.)

Most document types define other sectioning commands that are not part of the hierarchy
for the main body of the document. They are designed for other purposes, and their names are
mostly self-explanatory.

The best way to understand all this information is to create a small manuscript containing a
number of sectioning commands, run it through Scribe, and print the result. (If you create
several .MSS files using different document types and variant forms, you obtain a menu of all
the heading styles available at your site.)

If you run a set of sectioning commands through Scribe, look closely at the listing of the
results. See how the different kinds of headings differ in appearance. Scribe finds the defini
tion for each of the sectioning commands in the document type Database and applies it to
printing the section title. In some document types, certain commands start a new page and
others do not. For example, in document type Manual, the @Chapter command always starts
each chapter on a new page.

6.3 Title Pages

The sectioned document types (Report, Manual, and their variations) include a simple
mechanism for generating title pages. The title page prints on a page by itself with centered
text.

There are many standards for title pages. Most organizations that have their own letterhead
also have their own format for a title page. The Modem Language Association suggests one
format for the title pages of dissertations; many universities and research institutions use other
formats. Different Scribe sites use different conventions for title pages, so we cannot docu
ment them all here. Instead, we try to give you the general flavor of title pages by showing
you how one particular title page format works, and entreat you to consult your DBA for
details of your local title page format.

A titlepage is defined in the Scribe Database to have four major component environments:
a TitleBox (which contains the manual title), a CopyrightNotice, a ResearchCredit (a para
graph at the bottom), and the text of the TitlePage itself (lines containing author names, af
filiation, and so on).

Assemble the information for your title page. Sort the information according to the compo-

TITLES, SECTIONS, AND THE TABLE OF CONTENTS 63

nent to which it belongs. Then use the following guide to organize the manuscript for the title
page. The title page appears in the document wherever you put the @TitlePage environment
in the manuscript. The best place to put a titlepage is at the beginning. This position results in
a title page as the first page of your document, with no interference from page headings or
page numbers.

The TitleBox, CopyrightNotice, and ResearchCredit components must be nested within the
Titlepage environment. Thus, the framework of commands for a standard title page looks like
this.

@Begin(Tit1ePage)
@Begin(Tit1eBox)

text of the title
@End(Tit1eBox)

text of the titlepage
@CopyrightNotice (name of the copyright holder)
@Begin(ResearchCredit)

paragraph describing the document
@End(ResearchCredit)
@End(Tit1ePage)

Technical report title pages have a "box" containing the title, author, and publication date.
This box always has to be in a certain position on the page. The TitleBox environment
automatically places its text in the correct page position.

When you specify @Begin(TitleBox), the next line of text is placed right at the top of the
title box region. Use the @MajorHeading or @Heading commands (see Section 6.1, begin
ning on 59) to get large- or medium-sized letters for the title box text.

When you say @End(TitleBox), Scribe moves to a region of the page below the title box.
There it puts any text that is within TitlePage but not inside any of the other environments of
the TitlePage.

The CopyrightNotice environment puts a copyright notice with the current year on the title
page. Suppose you typed this text into the manuscript file:

@CopyrightNotice(L. Frank Baum)

Scribe would put the following line on your title page, at the standard spot near the bottom
of the page.

Copyright © 1985 L. Frank Baum

The ResearchCredit environment puts a research funding credit (or any other text you
want) at the bottom of the title page. Any text that you put between @Begin(ResearchCredit)
and @End(ResearchCredit) appears in an appropriate spot at the bottom of the page, justified
and single-spaced.

64 SCRIBE USER MANUAL

Chapter Seven

Numbers, Labels, and Cross References

One of the most useful characteristics of Scribe is its automatic numbering of various
things in your document. Each chapter and section has a number. Each page has a number.
Theorems and footnotes and figures all have numbers. This numbering is automatic, which
means that you never have to worry about fixing the numbers after adding or removing a
chapter or footnote or figure. However, the automatic numbering means you need a special
method for cross referencing. You cannot simply refer to the numbers, because you don't
know in advance what number Scribe is going to assign to something. In this chapter, we
explain how to use Scribe's numbering, counting, and cross reference mechanisms.

7 .1 Numbering and Scribe Counters

Scribe has a general facility for counting and numbering. You have seen several instances
of it already: page numbering, chapter and section numbering, footnote numbering,
@Enumerate numbering, and so forth. Some counters are directly built into Scribe; others are
defined as part of the document type.

Like other Scribe entities, each counter has a name. The name of the counter for page
numbers, for example, is "Page". The name of the counter for figure numbers is
"FigureCounter". Counters are divided into two groups conceptually - those that number
things and those that number places. By our definition, Figures, Tables, Equations, and
Enumerate items are things; Chapters, Sections, and Appendixes are places. (A Page is nei
ther, or both, depending on how you look at it.)

7.1.1 Current Values of Counters

Scribe provides a means for you to print the value currently associated with a counter.
Every counter has a current numeric reference value. The @Ref command retrieves and prints
the counter value. For example, @Ref(Chapter) produces 7, the value of the current chapter;
@Ref(Section) produces 7.1. Section 7.2 describes using @Ref with a codename to produce
cross references.

Remember in Section 4.3 we described @Value(SectionNumber). Notice the distinction
between it and the @Ref(Section) command. @Value(SectionNumber) gives you the number
produced by the most recent sectioning command (whatever its level), and @Ref(Section)

66 SCRIBE USER MANUAL

gives you the value of a particular counter (the counter named Section). Thus, for this page,
@Ref(Section) produces 7 .1 while @Value(SectionNumber) produces 7 .1.1.

Some counters have titles as well as numeric values, such as the ones for the sectioning
commands. The @Title command retrieves and prints the current value of the title of the
counter named as its argument For example, @Title(Chapter) currently produces "Numbers,
Labels, and Cross References''. At this time, Scribe has no mechanism for doing cross
references to titles of counters, although you could imitate that effect using @String. See page
32.

The difference between@Value(SectionTitle) and@Title(Section) is analogous to that just
described for numeric values. @Title is most useful in running headers.

7 .1.2 Changing Values of Counters

Normally, Scribe automatically takes care of changing values of counters. For example, it
changes the page counter every time it starts a new page. However, you can change the value
of any counter directly when necessary by using the @Set command. It sets counters to
particular numeric values. For example, suppose the first page in your document has to be
page 4 for some reason. The following example sets the current page number to 4, regardless
of what it used to be.

@Set(Page=4)

You can also change the value of a counter relative to its old value. When the number has a
plus or minus sign, Scribe will add or subtract the number from the previous counter value.
The following example increments the chapter counter by one.

@Set(Chapter=+l)

The next example subtracts one from the current footnote number.

@Set(FootnoteCounter=-1)

It is possible, but more complicated, to change the way a counter's number is printed. This
modification is done using templates. See Chapter 15 for details.

You can also use the @Set command to set one counter equal to another or to set a counter
equal to the contents of a string:

@String(StartingPageNumber="7")
@Set(Page=StartingPageNumber)

@Set(Appendix=Chapter)

This example sets the page number to 7 and the appendix number to be the same as the current
chapter number.

Similarly, you can use the @String command (see Section 4.2) to set a string to the current
(numeric) value of a counter:

@String(CopyofPage=Page)

The string CopyofPage would be set to the sequence of digits that represents the current
numeric value of that counter, regardless of the numbering or referencing templates.

NUMBERS, LABELS, AND CROSS REFERENCES 67

7 .2 Cross Referencing

If you put your finger down at random on some page in the middle of this manual and try
to explain where your finger has landed to someone at the other end of a telephone, you might
try several methods for describing its position. You could give the page number (67), or you
could give the section number (7 .2). If it happened to land in the middle of a figure or table or
theorem, you could give the figure number or table number or theorem number. You could
give the title of the section, ''Cross Referencing'', and expect your friend to look it up in the
Table of Contents or Index.

A cross reference in a document is an attempt to help your reader find some particular
place elsewhere in the document. Whether you refer to it by page number, by section, or by
title is entirely up to you. It is usually a notation like "see page 13" or "see Chapter 5". If
you are typing a document by hand or with a simple word processor, it is a major feat to get
cross references right, especially page number references, and, if you change anything, they
are suddenly wrong again. The Joy of Cooking, an 800-page kitchen classic, averages 7 to 8
cross references per page. In a previous edition of this manual, we shuddered to think of the
work that it took to get all 5000 to 6000 of them right in each new edition. Since then, we
contacted the publisher to find out. The references are resolved manually using a huge num
ber of 3-by-5 cards. If only they used Scribe!

Scribe does cross referencing automatically, by letting you define codewords to mark
places or things in the text and then filling in the correct page or section number wherever you
refer to the codeword.

When you are going to refer to something, you need to decide whether you are referring to
a thing or a place. Are you going to say ''see Theorem 12'', which is a reference to a thing, or
are you going to say "see Section 12.2", which is a reference to a place. We call these two
kinds of references object (thing) references and place references, and there is a separate
command to label each.

7.2.1 Marking a Place: The @Label Command

The mechanism for marking places is quite simple. You use a command called @Label
with a codename for the place. For example, the codename labelling this section is
@Label(LabelCommand)

The command @Label(codeword') causes Scribe to note both the number of the most recent
sectioning counter and the page number where @Label occurs. @Label can appear anywhere
in the document. You can refer to that location from anywhere else in the document. The
command @Ref(codeword') finds and prints the section number; @PageRef(codeword') finds
and prints the page number.

Codewords are just words made up of letters and digits. If you restrict your codewords to
being just words, then you will never need to consult Appendix F, beginning on page 239,
which gives the detailed rules for what characters are permitted in codeword names.

Here is a very short example of how to set up a manuscript to use place cross references.

68

@Make[Manual]
@Chapter[First Chapter Heading]
@Label[George]

SCRIBE USER MANUAL

This portion is Section @Ref(George) in the document.
There are only two parts to this document.
The other one is Section @Ref(Harry).
@Chapter[Second Chapter Heading]
@Label[Harry]
This portion is Section @Ref(Harry) in the document.
The other one is Section @Ref(George).

The hardest part of using this system involves thinking up the code names for the sections!
Try to use a consistent scheme (perhaps a prefix plus a word from the title of the section being
labelled). Scribe provides an easy way to keep track of the names you have used. Look in
Section 13.4 for discussion of the .OTL file.

7.2.2 Marking a Thing: The @Tag Command

The @Tag command marks things. You use it in exactly the same way as you use @Label.
Instead of noting the section number, Scribe remembers what kind of thing the @Tag com
mand occurs in, for example, a table or a footnote. If @Tag appears within a figure, then the
identity of the object is the figure number. If it appears in a footnote, then the identity of the
object is the footnote number. If it appears in an @Enumerate command, then the identity of
the object is the appropriate paragraph number in the Enumerate list.

As with the @Label command, @Ref(codeword) retrieves and prints the number as
sociated with the labelled object; @PageRef(codeword) finds and prints the number of the
page on which the @Tag command occurred.

7 .2.3 Distinguishing Places and Things

The following example demonstrates the difference between the @Tag and @Label com
mands.

Manuscript Form:

There are three good reasons to take a job at a university:
@Begin(Enumerate)
June

July
@Tag(What)
@Label(Where)

August
@End(Enumerate)
Of these reasons, @Ref(What) is the best; see Section
@Ref(Where).

NUMBERS, LABELS, AND CROSS REFERENCES

Document Result:

There are three good reasons to take a job at a university:
1. June

2. July

3. August
Of these reasons, 2 is the best; see Section 7 .2.3.

69

Scribe always records the page number for both @Label and @Tag commands. This record
means that you can always refer to a page number with @PageRef(codeword) regardless of
whether the codeword marks a place or a thing.

For example, assume that some object has been tagged with @Tag(LetterFig).

Manuscript Form:

Look at Figure @Ref(Letterfig), page @PageRef(Letterfig).

Document Result:

Look at Figure 5-5, page 55.

Figures and Tables place a restriction on where the @Tag command must go. See Section 8.3
for details.

7 .3 Forward References

What happens when you want to refer to something (with @Ref) before Scribe has seen the
corresponding @Label or @Tag command? This situation is called a forward reference.
Scribe processes your manuscript file from beginning to end. Therefore, when it sees @Ref, it
has no way of knowing where the @Tag or @Label is going to be.

When Scribe has finished processing a manuscript file, it stores information about all of the
@Label and @Tag commands in an auxiliary file. When you process the manuscript file a
second time, Scribe uses this information to print your cross references.

The cross reference information stored from one run might be somewhat out of date for the
next run because you normally change the manuscript file in between Scribe runs. At the end
of a run, Scribe tells you if any of the cross references are wrong. Since normal evolutionary
development of a document involves alternate editing and reprocessing, the references are
correct almost all of the time. If you want perfection on a particular run, it is simple enough to
run it through Scribe twice in succession.

Suppose you use @Ref with a codeword that Scribe has not seen so far in the manuscript.
This reference could be a forward reference or it could be a mistake. In any case, Scribe puts
the codeword, capitalized, into the document in place of the number it doesn't have. If the
label is defined later in the document, then it is a forward reference and is resolved correctly
the next time that the document is processed. However, if the label is not defined anywhere in
the document, then it is an undefined label, and Scribe prints an error message to that effect at

70 SCRIBE USER MANUAL

the end of the processing. Figure 7-1 on page 71 shows the appearance of both a forward
reference and an undefined reference after one and two times through Scribe.

The information that Scribe saves for itself from one run to the next is stored in an
auxiliary file, with the file type .AUX. The name of the auxiliary file is the same as the name
of the manuscript file, with the extension .AUX. For example, in processing a manuscript file
named ''TEST5.MSS' ', Scribe generates an auxiliary file named ''TESTS.AUX''.

As a user of Scribe, you will never need to read or understand the contents of an .AUX file.
Never attempt to edit an .AUX file. Scribe assumes that the contents of an .AUX file are
unchanged since it was last written by Scribe and does no error-checking of its contents. If
you alter a .AUX file, you can cause random errors to occur inside Scribe when it is processing
your file.

Scribe also stores its auxiliary information in an outline file in a form suitable for people to
read. This file contains all the entries in the table of contents, all the @Label codewords, and
all the @Tag codewords. For each entry, Scribe records its document page number and its
manuscript file location. The outline file has the same name as the manuscript file with the
extension .OTL. For example, Scribe generates "USER.OTL" while processing "USER.MSS".

The outline file is an invaluable reference for any large document, particularly those written
by more than one author (see Chapter 13).

NUMBERS, LABELS, AND CROSS REFERENCES

Manuscript Form:

@Labe1(Simp1eCommands)

The following sentences occur at some point later in the manuscript (Note the
misspelling of the codeword as "SimpleComands" instead of
''SimpleCommands' ').

In Section @Ref(AdvancedCommands), we wi11 describe
some of the more advanced commands in the program.
The siUF1e commands that we discussed in Section
@Ref(Simp1eComands) may be used in any context.

Still later ...

@Labe1(AdvancedCommands)

Document Form After First Scribe Pass:

In Section ADV ANCEDCOMMANDS, we will describe some of the more ad
vanced commands in the program. The simple commands that we discussed in
Section SIMPLECOMANDS may be used in any context.

Document Form After Second Scribe Pass

In Section 5.3, we will describe some of the more advanced commands in the
program. The simple commands that we discussed in Section SIMPLECOMANDS
may be used in any context.

Notice that the misspelled label is still unresolved after two passes.

Figure 7-1: An Example Showing a Forward Reference
and an Undefined Label

71

72 SCRIBE USER MANUAL

Chapter Eight

Figures and Tables

Scribe provides a means for managing tables and figures in a document. It can place
captions in the figures or tables for you and automatically keep track of their numbers. The
figure and table mechanism is available in all document types that have a Table of Contents -
Article, Report, Manual, Thesis, and so forth.

Note: Almost all of the discussion in this chapter applies to both figures and tables.
Sometimes we say "figure (or table)" and sometimes, to avoid clumsiness, we say "figure".
Unless we explicitly say, "This option works only for figures," you can assume that it also
works for tables.

Figures and tables are inserted into the manuscript file in very much the same way as any
other kind of environment: You mark the beginning with @Begin(Figure) or @Begin(Table)
and mark the end with @End(Figure) or @End(Table). Between those delimiters, you place
the commands necessary to produce the figure.

A figure or table has three parts:

1. A body. The figure or table body can contain either text produced with Scribe,
graphics produced by a graphics package with adequate space left by Scribe via
the @Picture command, or blank space where you later paste in whatever you
want.

2. A caption. All figures and tables must have captions. You provide the text of
the caption and decide (by putting it above or below the body) how the caption
is to be placed with respect to the figure body.

3. A number. Scribe automatically assigns numbers to figures and tables. You use
the standard Scribe cross-reference mechanism with the @Tag and @Ref com
mands to refer to them; see Chapter 7.

Figures and Tables have the property that, if they do not fit on the current page, Scribe is
free to move them to a new page after first filling the current page. We call this property
Float and refer to Figure and Table as floated environments.

74 SCRIBE USER MANUAL

8.1 Generating Figure and Table Bodies

You can generate the body of a figure or table by using any of the standard Scribe environ
ments (such as Format, Verbatim, or Example), by using the @Blankspace command, or by
using the @Picture command. The standard environments will not be discussed again in this
chapter, but the two commands available for creating figures and tables are discussed below.

8.1.1 The@Blankspace Command

The @Blankspace command leaves blank space in the output document so that you can
paste in some picture, table, or chart of a specified size. The syntax of the command is

@B1ankspace (vertical-distance)

The vertical-distance may be expressed in many different units - for example, inches, mil
limeters, points, or lines. Appendix F.8 on page 242 lists all of the ways that you can specify
distance to Scribe.

For example, @Blankspace(3 inches) leaves enough space to paste in a 3-inch high picture.
@Blankspace(l6 cm) leaves a blank space about 16 centimeters high. We say "about" be
cause Scribe always leaves a small margin above and below the blank space that you request.
This extra space means that you can measure the thing you want to paste in without worrying
about how much space to allow around it.

8.1.2 The @Picture Command

You can think of the @Picture command as an automated way of leaving blank space and
pasting a picture in the document; it leaves a specified amount of space and automatically
includes an image that has been produced with a graphics package not included with Scribe.
For example, Figure 8-1 on page 75 was placed automatically by the @Picture command.

The @Picture command only works for certain devices. In particular, the device must have
the physical ability to print images. Contact your DBA for details. Even though the @Picture
command does not work for the LPT, for instance, you can run a file which contains an
@Picture command through Scribe for device LPT without getting error messages.
Blanks pace the size of the picture is left in the document. That way, you can still print an LPT
proof copy of a file that contains an @Picture command and is intended for final printing on
the Xerox 9700 without making any changes to the .MSS file.

The syntax of the command is:

@Picture (Size=vertical-distance, GenericDevice=filename)

The vertical-distance may be specified in any units listed in Appendix F.8.

GenericDevice is a name by which Scribe refers to a class of output devices. Here are
some values of GenericDevice that can be used with the @Picture command.

FIGURES AND TABLES

Cherry

Blueberry

Apple
Vanilla Cream

Boston Cream

January Pie Sales

Device

GIGI

Imprint-IO

Figure 8-1: An Example of the @Picture Command

GenericDevice

Lasergrafix I 200

Santee

X9700

ReGIS

imPRESS

NonScaleableLaser

Santee

X9700

75

The filename is the name of the file which contains the picture to be included. Multiple
device specifications may be given in one command, but the size of the picture must be the
same for all the devices specified. For example, this might be a command included in a .MSS

file that is to be proofed on the Imprint-IO and printed on the Lasergrafix I200:

@Picture(Size=2inch, Impress=[graph.imp],
NonScaleableLaser=[pictur.lgl])

8.1.3 Drawing Lines: The @Bar Form

Horizontal lines are often used in figures and table to set them off from the running text.
Scribe supplies a simple means to draw a horizontal line from the left margin to the right
margin: The @Bar form. @Bar takes no argument, but the opening and closing delimiters are
required. An example of its usage is shown here.

76 SCRIBE USER MANUAL

Manuscript Form:

@Bar()

Document Result:

8.2 Generating Captions

Figure and table captions are generated with the @Caption command. Scribe prefixes the
text that you provide for the caption with the correct figure number and then places the whole
thing in the document in the same position as the original command. That is, if you place the
@Caption command above the figure body, then the caption appears above the figure body; if
you place it below the figure body, then the caption appears below the figure body.

Consider the following example. It would leave 5 inches of blank space and then place the
figure caption below the space left for the figure.

@Begin[Figure]
@BlankSpace(5in)
@Caption(EM Photograph for Sample 3)
@Tag(EM3)
@End[Figure]

The text of the @Caption command becomes the title of the figure or table. Scribe prefixes
the title with either the word Figure or the word Table (as appropriate) and the correct number.

Manuscript Form:

@Caption(Chart Showing Number of Errors per Session)

The appearance of the caption depends on the document type. The environment for captions
is usually unfilled, so you must separate long captions into several lines in the manuscript file.
For this particular document type, a figure caption looks like this example:

Document Result:

Figure 1-7: Chart Showing Number of Errors per Session

The @Caption command is undefined outside the figure and table environments. If you
use it outside a figure or a table, its only effect is to produce an error message.

8.3 Figure Numbers and References to Figures

@Begin(Figure) and @End(Figure) can delimit several distinct figures. That is, if you
need several figures kept together in the document, you can put all of them in the same figure
delimiters. Using one set of delimiters in that case could create a bit of a problem, however,
when it comes to cross referencing. You have to mark for Scribe where one figure ends and
the next one starts by using @Caption and @Tag in the right order.

'

FIGURES AND TABLES 77

Scribe uses the @Caption command to increment the figure number. It assumes that each
figure has one caption; if there are two captions, then there must be two figures. This means
that the @Tag command must come after the @Caption command in order to find the right
number. (Using @Tag before @Caption ensures that your cross-references will be wrong.)

8.4 Lists of Figures and Lists of Tables

Whenever you include a figure or table in the manuscript, Scribe automatically generates a
list of tables and figures in the document as part of the Table of Contents. When you use a
Table environment, Scribe produces a list of the tables; when you use a Figure environment,
Scribe produces a list of the figures.

8.5 Full-Page Figures

You can ensure that a figure or table occupies an entire page by using FullPageFigure or
FullPageTable instead of Figure or Table. The figure then receives a full page to itself.
Captions for fullpage figures will not be placed at the bottom of the page as you might expect,
because there may be more than one caption in a single full-page figure. The caption to a
figure or table will appear wherever you put the @Caption command.

@Begin(Fu11PageFigure)
@B1ankspace(6 inches)
@Caption(Photograph of Specimen 3 after Ompha1oskepsis)
@End(Fu11PageFigure)

You can have Scribe leave a page blank to add a figure later. Use the @Blankpage com
mand to specify how many blank pages to leave. The following command leaves one page
blank for a figure.

@B1ankpage(l)

This figure page has page headings, page footings, and a page number, but nothing else is
printed on it (not even a caption).

You might have seen that there is an @Newpage command (Section 10.5), which starts a
new page and can leave a specified number of blank pages. @Blankpage differs from
@Newpage in a subtle but important way. When Scribe encounters an @Newpage command,
it skips immediately to the top of the next page. When Scribe encounters an @Blankpage
command, it makes a note about the blank page request but continues on the current page.
When it finally comes to the end of the current page, it puts in the extra blank page(s) at that
point.

The following two sequences have exactly the same effect.

@Begin(Fu11PageFigure)
@End(Fu11PageFigure)

and

@B1ankpage(l)

78
SCRIBE USER MANUAL

8.5.1 Examples of Figure and Table Command Usage

Here is a miscellaneous collection of examples of the use of figure and table commands.

8.5.1.1 An Ordinary Figure with a Cross Reference Tag

@Begin(Figure)
@Blankspace(4 inches)
@Caption(Cross-Sectional View of the Drive Shaft)
@Taq(Drive-Shaft-Figure)
@End(Figure)
Figure @Ref(Drive-Shaft-Figure) shows the cross-sectional
view from the left-hand side.

8.5.1.2 Two Figures Together on a Figure Page

@Begin(FullPageFigure)
@Blankspace(S cm)
@Caption(Toxicity vs. Time, Sample 1)
@Tag(Sample-1-Toxicity)

@Blankspace(6 cm)
@Caption(Toxicity vs. Time, Samples 2 and 3)
@Tag(Sample-2-3-Toxicity)
@End(FullPageFigure)

8.6 Multiple-Page Figures

Many reports contain lengthy tables and figures that need to occupy more than one page in
the document. Scribe limits the size of a figure to a single document page. When the material
you provide for the body of the figure exceeds the page size, Scribe issues an error message
and does what it can with the text.

If you must use run-on figures, they must be paginated manually. You might find the
following strategy useful. Find the amount of material that fits in a page and place that much
in a FullPageFigure environment containing an @Caption command and an @Tag command.
Put the next pages of the figure into FullPageFigure environments with no caption or tag
commands. (You don't want to use @Caption again because@Caption would give the page a
new figure number where you want it to be all part of one figure.) You create headings for the
continuation pages of the figure by using a cross reference to the figure number. For example,

FIGURES AND TABLES

@FullPageFigure[
@Blankspace(7inches)
@Caption(Ridiculously Large Figure)
@Tag(Ridic)
]
@FullPageFigure[
@Blankspace(7inches)
@Center(Figure @Ref(Ridic), continued)
]
@FullPageFigure[
@Blankspace(Sinches)
@Center(Figure @Ref(Ridic), concluded)
]

79

People aren't likely ever to look at a 3-page figure, but at least you know how to make one if
you. are interested in putting something intimidating into your document

80 SCRIBE USER MANUAL

Chapter Nine

Format Control: Tabs and Columns

9.1 Tabs and Tab Settings

Scribe has a tab mechanism that works very much like the way tabs on a typewriter work,
rather than the way tabbing usually works with a computer terminal. You can tell Scribe
where to set tabs in any horizontal position. When Scribe encounters a ''tab'' command, it
moves right to the next tab stop and continues formatting there.

9.1.1 Setting Tabs

Clearing and setting Scribe tabs is very simple. The @TabClear command clears all tabs.
It takes no arguments. The @TabSet command sets tabs. We suggest that you use the
@TabClear command immediately before the @TabSet command so that you are sure that no
tabs are already in effect. Both command's syntax are illustrated below:

@TabClear ()
@TabSet [position, position, ...]

where position is any horizontal distance. If the distance is an absolute value, the tabs are set
relative to the prevailing left margin, which is the margin of the environment you're in. (See
Figure 15-1 on page 171 for a view of margins and the page layout.) If the distance is a signed
value, then the tabs are measured from the previous tab setting (or the prevailing left margin in
the case where the first tab setting is a signed distance).

The following sequence first clears any existing tabs and then sets new tabs at 1 and 2
inches from the left margin of the current environment and a third tab 1.5 inches from the
second tab setting (making the third tab setting 3.5 inches from the prevailing left margin).

@TabClear
@TabSet(1inch,2inches,+1.Sinches)

The @TabDivide command divides the formatting area into columns, making them how
ever wide they must be in order to fit the requested number of columns on the page. For
example, the following command creates five columns of equal width, by setting four tab
stops, each l/5th of the way across the page. (The right margin serves as the final tab stop.)

@TabDivide(S)

82 SCRIBE USER MANUAL

9.1.2 Tabbing to a Tab Stop: The @\ Command

The@\ command tells Scribe to move its formatting cursor to the right until it encounters
the next tab setting. This command works exactly like the tab key on a typewriter (except that
you don't see what happened until you get your output file printed). For example:

Manuscript Form:

@Begin(Format)@TabSet(lin,2in,3in)
Left@\ One@\ Two@\ Three
@End(Format)

Document Result:

Left One Two Three

If there is no tab setting to the right of the current cursor position, then Scribe moves the
cursor to the right margin.

The TAB character on your terminal's keyboard does not generate a Scribe tab command.
Instead, it results in enough spaces to move the cursor to the next (hardware) tab position on
your terminal, regardless of where the next Scribe tab stop is set. The terminal's tabbing is
completely independent of Scribe's tab settings and tabbing commands. You can in fact use
both tabbing methods at once, but it can be confusing. In the long run, it is better to take the
time to learn the Scribe system.

Tabbing is only meaningful in unfilled environments like Table, Display, and Format.
Using the@\ command in running ~xt will produce erroneous and unexpected results.

9.1.3 Centering, Flushing Left, and Flushing Right: The@= and@>
Commands

Scribe has commands that take pieces of text and center them or flush them right against
some position. (Left flush, being the normal case for many environments, is no big trick.)

To flush a text fragment right, it must be flushed ''against'' something. To flush a text
fragment to the right, you have to delimit the fragment to be flushed, and you have to tell
Scribe what to flush it against. The code @> (looking vaguely like a right arrow) says ''begin
a flush-right operation''. Usually text is flushed to the global right margin.

@Begin(Disp1ay)
@>1ike this
@End(Disp1ay)

Manuscript Form:

Document Result:

However, text can be flushed right against any tab stop:

like this

FORMAT CONTROL: TABS AND COLUMNS

Manuscript Form:

@Begin(Format)@TabDivide(2)
@>text flushed@\
@>right@\
@>against a tab stop@\
@End(Format)

Document Result:

text flushed
right

against a tab stop

83

The exact placement of something flushed right depends both on the @> command, the
location of tab stops, and whether the @\ command appears later in the line. The general rule
is that the @\ command causes the text to be flushed against the next available tab stop (if
there is one). Without the @\ command, Scribe always flushes the text against the right
margin.

@>text Flush the text to the right margin regardless of whether or not there are
any tab stops on the rest of the line.

@>text@\ Flush the text right against the next available tab stop (or the right margin
if there are no more tab stops on the line).

Now for a more extensive example.

@Begin(Format)
@TabDivide(3)

Manuscript Form:

@>!@>!@>Show the tab stops
1.@>Flushed to right margin
2.@>to tab stop@\
3.@>longer line flushed to different tab stop@\
4.This line starts at the left@>and flushes from here
@End(Format)

Document Result:

1.
2. to tab stop
3. longer line flushed to different tab stop
4.This line starts at the left

Show the tab stops
Flushed to right margin

and flushes from here

Line 1 does not contain a tab command (@\) after the flushright command (@>).
Therefore, the text of the line is flushed against the right margin. Line 2 has a tab command
(@\)at the end. Therefore, the text delimited by@> and@\ is flushed right against the next
tab stop. Line 3 is like line 2, except that the delimited text is longer. Thus, the next available
tab stop is the second one on the line, and the delimited text is flushed against that one. Line 4
is the same case as line 1 and shows a fragment of a line flushed right.

84 SCRIBE USER MANUAL

Before talking about the commands that center, let's talk about what we mean by centering.
Centering requires that there be a left and right marker of some kind and that the text be
centered between them. For example,

this line is centered in the page

this text is centered in
the left half of

the page

this text is centered in
the right half of

the page

Scribe uses tab settings and margins as the reference points for centering. It always uses the
current left and right margins as centering guides when there are no other tabs set. If there are
tab settings, then Scribe uses them too; the left margin is the first guide point, then the tab
settings, and then the right margin.

To center something, you have to mark the left and right ends of the thing to be centered.
Mark the left end always with the @= command. Mark the right end in one of the following
four ways.

1. a tab command(@\)

2. another mark-left-end command(@=)

3. a flush-right command(@>)

4. the end of the line
When you mark the right end of the text with the end of the line, Scribe centers the remainder
of the line using the right margin as the righthand centering guide.

In the middle of a line containing centering or flush-right commands, the same @= or @>
command can function both to delimit the end of the previous text and the beginning of the
next. Strictly speaking, you have to delimit the text on the left with either @= or @> and on
the right with a tab command. However, in sequences of fields, the command marking the
beginning of the next field can simulate the@\ command needed to mark the end of the last
one. For example, the following two lines are the same:

@Beqin(Format)
@TabDivide(2)

Manuscript Form:

@=text to be centered@\@=next centered co1umn@\
@=text to be centered@=next centered co1umn
@End(Format)

text to be centered
text to be centered

Document Result:

next centered column
next centered column

Look at the following example. The stars in line 1 show where the tabs are being set. The
letters in line 2 are centered in the tab zones, as are the ones in line 3. See how lines 2 and 3
have the same effect, although their manuscript forms look different.

FORMAT CONTROL: TABS AND COLUMNS

Manuscript Form:

@Begin(Format)
@TabDivide(4)
1.@*@*@*
2.@=a@\@=b@\@=c@\@=d
3.@=e@=f@=g@=h
4.Left@=Center@>right
5.Left@=Center@>right@\
@TabClear
6.Left@=Center@>right
@End(Format)

Document Result:

1. * *
2. a b
3. e f
4.Left Center
5.Left Center right
6.Left Center

*
c
g

d
h

85

right

right

Line 1 positions three asterisks so you can see where the @Tabdivide command set the tab
stops. In line 1, the@\ command is being used exactly like the tab key on a typewriter. Line
2 has four letters, one centered in each of the four columns. Each of them is in a centering
field marked on the left with@= and on the right with@\. Line 3 produces the same effect
without using the @\ commands; the tab command is implicit in all @= commands after the
first one on the line.

Compare lines 4, 5, and 6. In line 4, @=begins a centering zone; the next command on the
line is @>. There is no tab command to mark the end of the centered zone, but @> serves
both to close the centered zone and to mark the beginning of the flush-right zone. Therefore,
Scribe tabs to the first tab stop and centers the word ''Center'' between the left margin and the
first tab stop. The end of the flush-right zone is delimited by the end of the line rather than by
a tab command. Therefore, the rest of the line (i.e. the word ''right'') is flushed to the right
margin.

Line 5 is identical to line 4 except that @\ marks the end of the flush-right zone.
Therefore, the word ''right'' is flushed to the appropriate tab stop, not to the right margin.

Line 6 has the same commands as line 4, but the tab stops have been cleared by an
@TabClear command. This command makes the ''Center'' right marker be the right margin,
since there is not a tab stop for it to settle on.

9.1.4 The Lifetime of Tab Settings

In most cases, tab settings last as long as the environment in which you define them. At the
end of that environment, the tab settings revert to those that were set before the beginning of
the environment. Any tab settings you define in an environment also apply to any environ
ments nested in that one. This carryover means that any new tabs you define are simply added

86 SCRIBE USER MANUAL

to the ones already defined; tab clearing does not happen automatically when you enter the
environment.

Consider the following example of how tab settings are restored when an environment
ends. (The vertical-bar character I at the left end of each text line shows you the location of
the prevailing left margin.)

Manuscript Form:

@Begin(Format)
@TabSet(l inch, 3 inches)
!Tabs now set 1 and 3 inches from 1eft margin
@Begin(Disp1ay)
@TabSet(l.S inches) ,
IThe 1eft margin is widened inside Disp1ay
IA new tab is set 1.5 inches from the new Disp1ay margin
l@\First@\Second@\Third
@End(Disp1ay)
t@\Fourth@\Fifth
@End(Format)

Document Result:

!Tabs now set 1 and 3 inches from left margin

!The left margin is widened inside Display
IA new tab is set 1.5 inches from the new Display margin
I First Second Third

Fourth Fifth

Notice that the word ''Fifth'' is three inches from the original left margin. The command
@End(Display) caused the tabs set inside the display to be undone, leaving the original tab
settings at 1 inch and 3 inches.

Some environments allow tabs set inside them to remain defined when the environment is
exited. This characteristic is most useful with the @"' command (see Section 9.2.1). The
following example works because it preserves the tabs set inside it.

Manuscript Form:

@b[Provided by the @"Nationa1 Institutes of Hea1th]
@\(Bethesda, Mary1and 20034)

Document Result:

Provided by the National Institutes of Health
(Bethesda, Maryland 20034)

The environments that automatically preserve tabs set inside them are the FaceCode environ
ments (listed in Table 3-1, page 14) and the Subscript and Superscript environments, @+ and
@-. Tab preservation is under user control. The TabExport environment attribute discussed
in Chapter 15 controls what happens to tabs in various environments.

FORMAT CONTROL: TABS AND COLUMNS 87

9.2 Fancy Cursor Control

This section tells you how to achieve more elaborate cursor control. If you don't see how
these features would be useful to you, then they probably aren't.

9.2.1 Dynamic Tab Settings: The@" Command

The @"' command (which may appear as a caret or uparrow on your terminal) sets a tab at
the current cursor position. Thus, in the following sequence, the first line clears any existing
settings (inherited from the surrounding environment), the second line specifies where to set
two new ones, and the third line prints a character at each of the new tab settings.

@Begin(Format}
@TabClear

Manuscript Form:

This line @"is for setting @"tab settings.
@\!@\!
@End(Format}

Document Result:

This line is for setting tab settings.
! !

The exact location of these new tabs depends on the font in use. The first one will be set at the
distance that the letters ''This line '' occupy on the page. The effects of this command are
most predictable with a fixed-width font.

9.2.2 Overprinting

The @Ovp command allows you to overprint things. @Ovp[text] lays down "text" and
then backspaces over it.

Manuscript Form:

Simple example of @Ovp(=)/ overprinting.

Document Result:

Simple example of I= overprinting.

The @Ovp command is a temporary rather than a general solution to the need for special.
characters. Note, for example, that the ''not-equal'' character created above with overprinting
is rather poorly formed. Documents with overprinting are not likely to give satisfactory
results on a printing device other than the one you are used to, because the appearance of
overstruck letters varies markedly from one printing device to another. On lineprinter-like
devices, underlining is achieved by overprinting. For these devices, use the @u environment,
rather than the @Ovp command, to overprint with the underscore character (because different
devices use different characters for underlining.)

88 SCRIBE USER MANUAL

If you are so motivated, you can create real junk with the @Ovp command:

Manuscript Form:

This 1ine is @Ovp(Carefu11y)overstruck

Document Result:

This line is (i)afcftrllyk

9.2.3 The Return Marker

Scribe maintains a return marker, which is a memory of a particular horizontal position on
the page. You set the return marker using the @ ! command in your text. When @ ! occurs,
the return marker is set to the current horizontal cursor position.

When Scribe encounters the @/ command, it moves the cursor to the position remembered
by the return marker. This command works regardless of whether the cursor is to the left or
right of the return marker at the time of the @/ command. One use of the return marker is to
synchronize columns across widely separated parts of a document. For this reason, the return
marker is permanent, that is, it stays set until you move it explicitly. This behavior is different
from that of tab stops, which are usually restored to their old values when an environment
ends.

9.2.4 Replication: Filling Behind Tabs

The @& command allows you to replicate a pattern often enough to reach a tab stop from
the current cursor position. For example,

@Begin(Format)
@TabDivide(3)
A@\B@\C
@&D@\@&EF@\G
@\@&-+=@\!
@End(Format)

Manuscript Form:

Document Result:

A B C
DDDDDDDDDDDDDDDD EFEFEFEFEFEFEFEFEFEF G

-+=-+=-+=-+=-+=-+=-+=-+=- !

The @& command serves as a marker of the left end of the pattern to be replicated. When
Scribe finds the tab command,@\, it moves the cursor to the next tab setting as usual, but the
space over which the cursor moves to get to that tab stop is filled with as many copies of the
pattern as are needed to fill the space.

To draw a line all the way across the current environment, try this command:

'

FORMAT CONTROL: TABS AND COLUMNS

Manuscript Form:

@Format(@TabClear()@&-)

Document Result:

89

The @> command performs synchronous replication. It means that it replicates a pattern
(in much the same way as the @& command), but it forces the pattern to begin in a column
position that is an integral multiple of the pattern's size. This feature is useful for making the
fill patterns line up neatly. For example, in a pattern consisting of dots and blanks, all of the
dots will line up under one another. In the following example, note the difference in behavior
between the @& and@> commands (the example for@& appears first).

Manuscript Form:

@SubHeading(Directory)
@Begin(Format)
@TabDivide(2)
Produce@&. @\l
Meat@&. @\3
Housewares@&. @\6
@End(Format)

Directory

Document Result:

Produce. 1
Meat. . .3
Housewares. 6

@SubHeading(Directory)
@Begin(Format)
@TabDivide(2)
Produce@). @\l
Meat@). @\3
Housewares@) . @\6
@End(Format)

Directory
Produce .
Meat ..
Housewares

Manuscript Form:

Document Result:

1
3
6

90 SCRIBE USER MANUAL

9.3 Multiple Columns

Multiple column output can easily be produced using Scribe. All you need to do is tell
Scribe the basic information about the columns using the environment attributes listed below:

Boxed

ColumnMargin

Columns

Column Width

Specifies that the environment is to be separated vertically from any text
before and after the environment. It must be specified in all multiple-
column environments.

Specifies how much space will be left between columns. This distance
may be specified in any horizontal units.

Specifies the number of columns into which the environment will be set.
The default is 1. Example: Columns 3.

The sum of the ColumnMargin and LineWidth attributes. This distance
may be specified in any horizontal units.

Line Width Specifies the width of an individual column, not the width of the entire
line. This distance may be specified in any horizontal units.

Although all five of the attributes may be used to specify multiple columns, only Boxed
and Columns are necessary.

Using these attributes, you can either define your own multi-column environment or
modify an existing environment to become multi-columned. Defining and modifying environ
ments is discussed in detail in Chapter 15. We will show one example of modification in this
chapter to illustrate the multi-column feature, but please refer to Chapter 15 for further
capabilities.

In producing multiple columns, Scribe will completely fill one column with text and then
move to the top of the next column. For the times when you do not want a column completed,
use the @NewColumn command. It is similar to the @NewPage command in that
@NewColumn begins printing text in the new column immediately in the same way that
@NewPage begins printing text on a new page immediately. Multiple columns are fully
recursive. That is, you may start a multi-column environment while inside one column of
another multi-column environment.

As an example of multiple column output, see Figure 9-1. It is a two-columned reproduc
tion of the enumerated list first shown in Figure 3-3 on page 26.

FORMAT CONTROL: TABS AND COLUMNS

Manuscript Form:

@Modify(Enumerate, Columns 2, ColumnMargin 0.5 inch,
ColumnWidth 2.75 inch, Boxed)

@Begin(Enumerate)
The numbers in an Enumerate environment are filled in
by Scribe. Some styles use roman numerals instead of
numbers.
@Begin(Enumerate)
When you nest one Enumerate inside another, the numbers and
margins are adjusted appropriately.

The switch from numbers to letters is specified in the
Scribe Database file for the output device being used.
Deeper nesting will produce other kinds of
numbering.
@End(Enumerate)

@NewColumn ()
@Begin(Multiple)
Normally, each blank line starts a
new item because each paragraph is an item.

When you need more than one paragraph in a single item,
use @@Multiple or the @@Begin(Multiple) and
@@End(Multiple) commands.
@End(Multiple)

When you close the Multiple environment, the next paragraph
is a new item.
@End(Enumerate)

Document Result:

1. The numbers in an Enumerate
environment are filled in by
Scribe. Some styles use
roman numerals instead of
numbers.

a. When you nest one
Enumerate inside an
other, the numbers and
margins are adjusted
appropriately.

b. The switch from num
bers to letters is
specified in the Scribe
Database file for the
output device being
used. Deeper nesting
will produce other
kinds of numbering.

2. Normally, each blank line
starts a new item because
each paragraph is an item.

When you need more than
one paragraph in a single
item, use @Multiple or the
@Begin(Multiple) and
@End(Multiple) commands.

3. When you close the Multiple
environment, the next para
graph is a new item.

Figure 9-1: An Example of Two-Columned Output

91

92 SCRIBE USER MANUAL

'

Chapter Ten

Hyphenation

Scribe assembles words into sentences, disassembles sentences into lines, and assembles
lines into pages. It chooses the word breaks, line breaks, and sentence breaks using very
simple techniques, which cannot always do the right thing. Scribe sometimes decides to break
a line at an undesirable place; sometimes it might break a page between two lines that really
ought to be together on the same page. This chapter discusses the mechanisms in Scribe that
let you change its selection of word, line, sentence, and page breaks.

10.1 Hyphenation

In Scribe, there are several ways to specify word breaks, depending on what you consider a
word to be. A "word'' can be a sequence of letters with no spaces, or it can be a sequence of
letters and spaces which is to be considered one entity. The method of breaking a word in
each of these cases is different

If you just want Scribe's standard, garden-variety method of hyphenation, there is no
need for you to read the rest of this chapter. Just put the following line near the begin
ning of your document:

@Style(Hyphenation On)

Hyphenation is the usual method of breaking a word. It is used when lines are being filled
and when a "word" contains no spaces. Scribe is equipped with several methods of hyphen
ation - dictionary, algorithm, or a combination of both methods.

There is much flexibility in Scribe's hyphenation: It may or may not care about case
distinctions, one or more dictionaries can be used in a single document, dictionary lookup may
be used throughout an entire document or only in sections of it, algorithmic hyphenation may
be used throughout an entire document or only in sections of it, and dictionary lookup and
algorithmic hyphenation may both be used in the same document. Each of these hyphenation
methods will be discussed in this section. But before we get into the details, let's look at an
overview of the possibilities.

94 SCRIBE USER MANUAL

10.1.1 Hyphenation Dictionaries

The Scribe hyphenation method that allows the most user control is Hyphenation by dic
tionary. It involves user-created dictionaries which contain lists of words with their legal
hyphenation points specified. The procedure, explained very briefly, is that when Scribe
needs to break a word, it looks up that word in the dictionary. If it is there, Scribe checks to
see if any of the specified hyphenation points satisfy the requirements for correctly filling the
line of text, and, if the requirements are met, it hyphenates it according to the dictionary listing
selected. (If the word is not in the dictionary, no hyphenation is performed, and the word is
listed in the .ERR file.)

A hyphenation dictionary is created with either the @DefineHyphenationDictionary com
mand or its synonym @DefineHyphenationDictionaries. The syntax for the commands is
shown here using the @DefineHyphenationDictionary command as an example:

@DefineHyphenationDictionary [dictionary-name= delimited-word-list]

where dictionary-name is the full name of the dictionary, and delimited-word-list is a list of
dictionary entries separated by spaces, tabs, or carriage returns. The same dictionary name
cannot be used for more than one dictionary. Please note that commas cannot be used to
separate the entries in this command. All text characters in hyphenation dictionaries are taken
literally to be part of the word entry, except for a space and the ones listed in Table 10-1 .

• (period) Discretionary hyphen; a possible hyphenation point. This character is the
convention used in ordinary English dictionaries. The '' '' character
(hyphen) is used to represent required text hyphens.

@_(at-underscore)
Discretionary hyphen; a possible hyphenation point and a synonym for
''.'' (period). This option is included so that hyphens can be specified in
the same way in .MSS files and in dictionaries. Its use is not recom
mended, though, because the resulting entries are very hard to read.

- (hyphen) Required (text) hyphen. If the @Style parameter or environment attribute
HyphenBreak (see Section 10.1.5) is On, Scribe will not look up a word
containing text hyphens in any dictionary. Therefore, a match to a dic
tionary entry containing hyphens will only occur when HyphenBreak is
Off.

@@(at-at)

@.(at-period)

@L...J (at-space)

A literal at-sign. Since a single at-sign is taken as the beginning of a
Scribe command, a means for specifying an at-sign in a word is necessary.

A literal period. Since a period is used to designate conditional hyphens, a
means for specifying a period in a word is necessary.

A literal space. Since a space is used as an entry separator in hyphenation
dictionaries, a means for specifying a space in a word is necessary.

Table 10-1: Dictionary Punctuation with Special Meaning

A few lines from a possible dictionary are shown below.

HYPHENATION

@DefineHyphenationDictionary[Typica1 (
aard.vark
aba.cus aba.ci aba.cus.es
ab.bre.vi.a.tion
a1@_ter@_na@_tive
@@DefineTypeCase
Bo1oqna bo.1o.gna
MyFi1e@.Mss
we11-disposed
)]

95

If a word appears in a dictionary without any hyphenation points, as in ''Bologna'' in the
above example, then Scribe will not hyphenate it at all. The hyphenation dictionary entries
need not be in alphabetical order.

In the above example, the words "Bologna" and "bologna" appear. Whether or not case
is important is decided by the method of hyphenation you choose. (Details of the methods are
discussed in Section 10.1.3.) Assuming that you choose a hyphenation method that is case
sensitive, then "Bologna" (a city in Italy and a proper name) would not be hyphenated, but
"bologna" (a kind of meat) would be. The scheme is not perfect, though. When a word that
is not a proper name occurs at the beginning of a sentence and is thus capitalized, Scribe
hyphenates it according to the entry in which the first letter is capitalized. With the above
dictionary entry, the first word of the sentence, "Bologna is better than salami", would not be
hyphenated. However, this problem should be insignificant in most instances because it is
unaesthetic anyway to hyphenate the first word of a sentence.

If a word occurs more than once in a dictionary with different capitalization and you are
not using a case-sensitive method of hyphenation, one of the given hyphenations will be used,
but it is unpredictable which one it will be.

If a word occurs in more than one dictionary but only once in each, you will always be sure
which hyphenation will be used, because Scribe searches dictionaries in the order in which
you specify them. (Details on how you go about telling Scribe what dictionaries you want to
use are discussed later in this section.) Therefore, the hyphenation used will be the one from
the first dictionary searched that contains the word.

After you define a dictionary, you need to tell Scribe that you want to use it.
"HyphenationDictionary" (synonym: HyphenationDictionaries) is both an @Style parameter
and environment attribute. When you want a dictionary to be used for the entire document,
you specify that name in an @Style command, using this syntax:

@Sty1e [HyphenationDictionary="dictionary-name"]

For example, the declaration

@Sty1e[HyphenationDictionary = "Chemica1"]

might be included at the beginning of a document laden with chemical terminology to tell
Scribe to use the dictionary named ''Chemical'' for hyphenation throughout the document.

When you want a dictionary to be used only in a certain environment, then you specify the
"HyphenationDictionary" environment attribute for that environment. Let's say that your
document contained an excerpt from a Physics text book. The following command might be
included in the .MSS file:

96 SCRIBE USER MANUAL

@Begin[Quotation, HyphenationDictionary = "Physics"]

It would tell Scribe to use the dictionary, ''Physics'', 1 for the duration of the quotation. When
the excerpt is completed and the Quotation environment closed, the Physics dictionary is no
longer used.

For Scribe to be able to find your hyphenation dictionary after you've created it, you must
include the following command as the first command in the file:

@Marker (HyphenationDictionary, dictionary-name)

where dictionary-name is the full name of your hyphenation dictionary. Also, the file must be
named dictio.hyp, where dictio is the first six letters of the dictionary name.

10.1.2 Hyphenation by Algorithm

The hyphenation method that is at the opposite end of the spectrum from the completely
user-controlled dictionary method is the automatic hyphenation method: by algorithm. A
modified version of the algorithm for English designed by Donald Knuth and Frank Liang is
part of Scribe. The algorithm is supplemented by an exception dictionary called
AutomaticExceptions which contains correct hyphenations of words on which the algorithm is
known to fail. The algorithm is built into Scribe and cannot be altered.

An exception dictionary is different from a hyphenation dictionary in only one respect: It
is used with the hyphenation algorithm while a hyphenation dictionary is used without the
algorithm. The same commands discussed in Section 10.1.1 apply to exception dictionaries,
so defining an exception dictionary is the same process as defining a hyphenation dictionary.
Exception dictionaries need to be defined when you want to guarantee that a word be
hyphenated in a particular place. Once it is defined, you may want to use it throughout the
entire document or simply in one environment, and the process of specifying that information
is similar to the procedure for hyphenation dictionaries. The "ExceptionDictionary"
(synonym: ExceptionDictionaries) @Style parameter is used to tell Scribe to use one or more
exception dictionaries for the whole document:

@St y1e (ExceptionDictionary=" dictionary-name")

The environment attribute of the same name is used for those times when one or more excep
tion dictionaries are to be used for a particular environment:

@Begin (environment-name, ExceptionDictionary=" dictionary-name")

In both cases, multiple dictionary names are separated by commas:

@Sty1e[ExceptionDictionaries = "Compsci, Math"]

Let's look at some examples. If you had a quotation in British English, and you were using
the algorithm to hyphenate, you could tell Scribe to use a separate British exception
dictionary2 by including the following lines in your .MSS file:

1 The dictionary names, "Chemical" and "Physics", are used for illustrative purposes only. These dictionaries
are not supplied by UNILOGIC.

2 This dictionary is not included with Scribe, either.

HYPHENATION 97

@Begin[Quotation, ExceptionDictionary = "British"]
text of quotation
@End[Quotation]

When Scribe is automatically hyphenating, it will first check each word to be hyphenated
against all user-specified exception dictionaries, searching them in the order in which they are
listed in the @Style command or environment. If the word is found in an exception dictionary,
that hyphenation is used. If it is not found, Scribe checks in the algorithm's own exception
dictionary for the word. If it is found there, then that hyphenation is used. If it is not found,
then, finally, Scribe uses the algorithm to hyphenate it. In the last @Style example above,
Scribe will check the words to be hyphenated against the dictionaries, "Compsci", "Math",
and '' AutomaticExceptions' ', in that order. If the word is not found, Scribe will hyphenate it
according to the algorithm.

10.1.3 Hyphenation Methods

Now that we've discussed dictionaries and the algorithm, we can talk about the different
ways the dictionaries and the algorithm can be used: Should it look in hyphenation dic
tionaries for case-specific words, should it only use the algorithm and its exception dictionary,
should it use both user-specified dictionaries and the algorithm, or should it simply not
hyphenate?

The hyphenation method, or way that hyphenation is accomplished, is controlled by the
@Style parameter and environment attribute, "Hyphenation". There are many different
modes of hyphenation in Scribe. They are described below, listed by value of the
Hyphenation parameter/attribute. In all of the methods, If the word to be hyphenated ends
with a character in the set {. , ; : ! ?} , then the last such character is not considered a part of the
word when hyphenation is attempted.

AutomaticExact Hyphenation is performed by the modified Knuth-Liang hyphenation al
gorithm and exact-case matching in the exception dictionary. Only words
consisting of entirely lowercase letters are algorithmically hyphenated.

AutomaticFolded Hyphenation is performed by the modified Knuth-Liang hyphenation al
gorithm and exception dictionaries with case-folded matching in the dic
tionaries, meaning that capitalization is ignored for hyphenation purposes.
Only words consisting entirely of letters, regardless of case, are algorith
mically hyphenated. Synonyms: On, True, Yes.

DictionaryExact Hyphenation is performed by hyphenation dictionaries only with exact
case matching.

DictionaryFolded Hyphenation is performed by hyphenation dictionaries only with case
folded matching, meaning that capitalization is ignored for hyphenation
purposes.

False

No

Off

Old

No hyphenation is performed. (Hyphenation may still occur at discre- .
tionary and text hyphens, however.) Synonyms: No, Off.

Synonym for False.

Synonym for False.

Scribe 3A/3B hyphenation with case-folded matching is performed, mean
ing that capitalization is ignored for hyphenation purposes. (Included for
upward compatibility.) All hyphenation dictionaries used in this mode

98

OldFolded

OldExact

On

True

Warn

Yes

SCRIBE USER MANUAL

must be in the old format required by Scribe 3A and 3B. Synonym:
OldFolded. UNILOGIC does not recommend using this value, since it will
eventually be phased out.

Synonym for Old.

Scribe 3N3B hyphenation with exact dictionary lookup is performed.
(Included for upward compatibility.) All hyphenation dictionaries used in
this mode must be in the old format required by Scribe 3A and 3B.
UNILOGIC does not recommend using this value, since it will eventually
be phased out

Synonym for AutomaticFolded.

Synonym for AutomaticFolded.

No hyphenation is performed, but a list of words that Scribe wanted to
hyphenate is produced in the .ERR file.

Synonym for AutomaticFolded.

10.1.4 Using Hyphenation

Hyphenation may or may not be used in a document. The following @Style command is
used at the beginning of the .MSS file to enable or disable it for the document as a whole
(subject to change by later environments, however):

@Style [Hyphenation = value]

Valid entries for value are any item from the list in Section 10.1.3. Hyphenation may also be
enabled or disabled in a Database file by the DBA.

You can also turn hyphenation on and off for a specific environment by using the
"Hyphenation" environment attribute. Let's use a quotation as an example again. If you
were using the hyphenation algorithm throughout your document but had an excerpt from a
technical journal that you wanted to have hyphenated by a certain dictionary, you would
simply specify the desired dictionary in the environment that the excerpt was to be in, as
shown in this example:3

@Begin[Quotation, Hyphenation = AutomaticExact,
ExceptionDictionary = "Technical"]

<text of quotation>
@End[Quotation]

When the excerpt was ended and the Quotation environment closed, the hyphenation method
would again be algorithmic.

3 Please notice that this example, similar to the example of a quotation in Section 10.1.2 shows both the
Hyphenation and ExceptionDictionary attributes. Both attributes are necessary for hyphenation. Only the
ExceptionDictionary attribute was shown in previous examples to avoid issues that had not yet been discussed and
could therefore be confusing.

HYPHENATION 99

10.1.5 Text Hyphens

This section deals with the effect of text hyphens, which are hyphens (ASCII minus signs)
that are explicitly inserted into the input file by the user. For example, the user might very
well type in the word ''self-contradictory''. Scribe will not automatically treat this hyphen as
a possible hyphenation point; the decision about whether or not to treat that character as a
possible hyphenation point depends on the setting of the @Style parameter and environment
attribute ''HyphenBreak'', which takes boolean value. If HyphenBreak is set to Off, False,
or No, then text hyphens are treated as ordinary alphabetic characters. If HyphenBreak is set
to On, True, or Yes, then text hyphens are taken as potential hyphenation points. A leading
minus sign is never taken as a hyphenation point; thus, "-131072" will not be divided.

Do not break words across lines yourself by adding a text hyphen at the end of a line.
Scribe will not recombine the pieces into an unhyphenated word because it can't tell whether
the hyphen is discretionary or not.

Never break an other
wise hyphenless word
across lines.

Manuscript Form:

Document Result:

Never break an other- wise hyphenless word across lines.

Even a hyphenated word, such as "strife-tom" should not be broken across lines after the
hyphen, or an unwanted space will appear in the output.

10.1.6 Discretionary Hyphens

A discretionary hyphen is a marker that may be placed in a word to indicate a potential
hyphenation point. If Scribe needs to hyphenate a word and it contains one or more discre
tionary hyphens, Scribe will consider only those user-defined hyphenation points; no other
hyphenation methods that may be in effect at the time will be used. If the word is hyphenated
because of a discretionary hyphen, the hyphen character will be inserted by Scribe automati
cally. If the word does not need to be divided, then no hyphens will appear. The Scribe
discretionary hyphen is indicated by the "@_" (at-underscore) command. It gives the user
flexibility to prevent a single word from being considered for any hyphenation method.

10.1.7 When Does Scribe Hyphenate?

If the next word to be placed on a line is too long to fit, Scribe must decide whether to
place the word on the next line and redistribute the remaining space on the line over the
existing word breaks or to hyphenate the word. Ideally, Scribe wants to place the word on the
next line. Whether or not it does that depends partially on how much inter-word space would
result. Sometimes, moving the word down a line can cause some of the word breaks to appear
unsightly, as in the following example:

100 SCRIBE USER MANUAL

Excruciatingly unattractive
example illustrating
hypothetically unacceptable
accumulations of whitespace.

As Scribe is filling a line with words, it checks to see if the next word will fit. If it does
not, Scribe attempts to justify the line by expanding rubber spaces as equally as possible. If
this can be done without leaving too much space, then there is no problem, and the word that
did not fit will merely be placed on the next line. If, however, the trial fill leaves too much
space, Scribe checks to see whether any hyphenation mode is in effect. If you have requested
no hyphenation or the particular word is not to be hyphenated, then there is nothing more that
Scribe can do. The word will be placed on the next line, the current line will be fill~d and
excessive spaces will be left between words, as was the case in the above example. The only
solution to that situation is for you to reformat the entire paragraph.

How much whitespace is considered unsightly is a matter of choice. Scribe provides the
@Style parameter and environment attribute "WidestBlank" to allow you to choose that dis
tance. (Environment attributes are discussed in Chapter 15. The @Style command was dis
cussed in Chapter 4, Section 4.5, so you know that using WidestBlank as an @Style parameter
effects the entire document. Using it as an environment attribute produces the same result, but
for only the current environment.) WidestBlank takes as value a horizontal distance. For
example:

@Sty1e(WidestB1ank 2.5 chars)

If the above command were in your document, then Scribe would attempt to leave no more
than a 2.5-character space between words.

It is important to note that WidestBlank is not an inviolate parameter. It is a guideline
only. Scribe will attempt to justify lines so that WidestBlank will be obeyed, but may not
always be able to because a word is defined to not be hyphenated or there is no hyphenation in
effect at the time. As we said before, Scribe can do nothing else but override WidestBlank
and place the word on the next line. In fact, of all of the constraints under which Scribe
operates, WidestBlank is the least sacred. Scribe would much rather exceed WidestBlank than
hyphenate incorrectly or allow a word to extend into the right margin.4

You need never wony about setting WidestBlank. A default value is specified in the
document definition file. But if you need to change it for a particular document or environ
ment, the value may be changed with an initial @Style command or with the WidestBlank
environment attribute, respectively. A setting of WidestBlank 0 has a special meaning. It will
cause the word that is broken to be hyphenated at the rightmost possible point. (Since
WidestBlank 0 cannot literally be satisfied, there seems to be no harm in this definition.)

Whether a word will even be looked up in a hyphenation dictionary is determined by the
Hyphenation mode that is in effect (see Section 10.1.3) and by the values of the @Style
parameters ShortestHyphenatable and LongestHyphenatable. These parameters take integer
values indicating, respectively, the length in characters of the shortest and longest words that

4 There are occasions when Scribe will let a word creep into the right margin, however. If a word to be output is
longer than the current value of Line Width, the word will necessarily extend into the margin.

HYPHENATION 101

Scribe should attempt to hyphenate by lookup. For instance, if you did not want any word less
than 6 characters or greater than 20 characters to be hyphenated, then you could include this
command at the beginning of your .MSS file:

@Sty1e(ShortestHyphenatab1e 6, LongestHyphenatab1e 20)

As with WidestBlank, you do not have to specify those parameters. Default values of
ShortestHyphenatable 5 and LongestHyphenatable 99 are in effect when you don't mention
them. You can, of course, specify one parameter without specifying the other. An attempt to
set ShortestHyphenatable to less than five will not succeed. If there are words in the diction
ary whose lengths fall outside the ranges specified by these parameters, such words will not be
used for hyphenation.

10.1.8 Verifying Scribe's Hyphenation

Scribe has two supplementary output files which it can produce upon request that are help
ful in checking the hyphenation of words. The first file, the Hyphenation Decision (.HYD) file,
is a listing of every hyphenation decision that was made in the order that they occurred, where
the word was actually broken, what hyphenation method was in effect at the time, what the
possible hyphenation points were, and where the word occurred in the .MSS file.

A .HYD file is requested through the use of the command-line switch, "HYD". Seeing that
switch, Scribe will produce an additional output file having the same name as the input file,
but with extension .HYD. Here is an example of a Hyphenation Decision file:

@Comment{LinaEndings of SAMPLE.MSS by Scribe 4(1400) onlS July lgas at 11:13}

SAMPLE.MSS, 02300/1:

SAMPLE.MSS, 04600/l:

SAMPLE.MSS, 13700/1:

"bi.o.graph.i.cal" found in dictionary Myown
where the central problem is that biograph

ical

"in.val.i.date" found in dictionary Standard
use not in accord with instructions will in

validate

"in.herited" automatically hyphenated
such traits are not commonly in

herited

The second part of the broken word is shown flushed right underneath the first part for conve
nience. It, of course, is not printed this way in the actual document Words that were
hyphenated because of the presence of a discretionary hyphen will appear in the .HYD file.
Words that were hyphenated because of the presence of a text hyphen when HyphenBreak is
On will not be included.

The second file that Scribe can produce is the Lexicon file (.LEX). It has two forms. The
first version, requested via the "V" or "Vocab" command-line option, contains an alphabeti
cal list of all the words in the document and how many times each word appeared. The second
version of the .LEX file, requested via the "HV" or "HypVocab" command-line switch,
contains each word in the document, with all possible hyphenation points in each word shown
according to the hyphenation method in use at the time the word was encountered. The
second version of the Lexicon file is particularly useful for checking the correctness of hy
phenation dictionaries, exception dictionaries, and the hyphenation algorithm.

102 SCRIBE USER MANUAL

10.1.9 The@I Command: Where to Break a Word without a Hyphen

The @I command is used to inform Scribe where, in a filled environment, it is allowed to
break a word without using a hyphen. It is useful when you have a word in your .MSS file that
can be printed as a single word or as two separate words equally well. For example, if your
text contained '' Abra@lcadabra' ', then the output document could contain ''Abracadabra'' on
a single line or "Abra" on one line and "cadabra" on the next line, depending on how the
text filling took place.

One handy use for the @I command is to permit line breaks in huge numbers. For exam-
ple,

There are exactly 3,025,679,212,512,@1489,
113,206,955 grains of sand at Coney Island.

The @I command actually functions as a null word in a document. Therefore, @I sur
rounded by spaces results in two spaces between words in the document rather than one space
(when the word break wasn't necessary, of course). In proportional fonts, it is often difficult
to see the difference, but in the following example, the difference is clear.

Manuscript Form:
Four score and @I seven years ago

vs.
Four score and@I seven years ago

Document Result:
Four score and seven years ago

vs.
Four score and seven years ago

You do need to have one space, though, either before or after the command, or the two words
on either side of the command run together in the document when no line break is necessary.

10.1.10 Significant Blanks: Where Not to Break a Word

A significant blank is a space that is part of a word (rather than being a word separator).
The need for significant blanks often occurs in mathematical formatting. For instance, if
you're going to write x = y, you don't want the x on one line and the= yon the other. The
blanks in this case are significant ones.

One way to request a significant blank is via the @L...I (@-sign followed by a space) com
mand. Scribe then treats that space as if it were a letter. Thus, you could write the following
line to make a single word out of that equation:

X@L..J=@L...ly

For long and complicated equations, it gets a bit tedious to put @L...I instead of every blank;
it's also quite hard to read. Another way to specify a significant blank is by using the @w
command, which makes all of the blanks in its range significant blanks. So, enclosing the
previous equation within an @w command has the same effect as making the blanks into
significant blanks.

HYPHENATION 103

@w[x = y]

The @I command discussed in Section 10.1.9 tells Scribe where it is allowed to break a word
without hyphenating it. Note that if you use an @I command inside an @w group, the @I
command will win, and a word break will be allowed there.

10.2 Sentence Breaks

Normally, Scribe uses these rules for deciding whether or not a punctuation mark is the end
of a sentence:

1. A '' ?' ', '' ! '', or ''.'' character followed by two or more spaces or by the end of a
line is considered to be the end of a sentence. If closing parenthesis or closing
quote characters come between the sentence-end character and the spaces, it is
still considered to be the end of a sentence.

2. A single capital letter followed by a period followed by any number of spaces is
considered to be part of an abbreviation, and the spaces after the period are
converted into one significant space.

3. A single capital letter followed by a period followed by the end of a line is not
considered to be an abbreviation but to be the end of a sentence. If, however, a
space character occurs between the period and the end of the line, then the se
quence is considered as part of an abbreviation.

Two commands change Scribe's notions of what to do with periods and spaces: the @.
command to create an abbreviation period and the @ : command to force a sentence break.

The full-stop character in each of the following lines is taken as the end of a sentence.

Manuscript Form:

demonstration. Un1ess
government . ' ' They
congress! He
Senator?) However,

demonstration. Unless
government.'' They
congress! He
Senator?) However,

Document Result:

However, the full-stop character in each of the the following lines is treated as part of an
abbreviation.

to Mrs. James
from I. F. Stone

Manuscript Form:

a co:rrputer ca11ed C.mrrp

104

to Mrs. James
from I. F. Stone
a computer called C.mmp

SCRIBE USER MANUAL

Document Result:

Sometimes you need to use a period in the middle of a sentence to end an abbreviation. In
this case, put just one blank after the period, and Scribe treats it as an abbreviation. If you
don't want to worry about the number of blanks, then use @. instead. The @. command is
the abbreviation-period command; it generates a period and forces a (single) significant space
after it. For example,

Manuscript Form:

we heard from Mrs@. Smith that her children had returned.

Document Result:

we heard from Mrs. Smith that her children had returned.

Whenever Scribe finds a single capital letter followed by a period and a space, it assumes
that the letter is an abbreviation, and it reduces all space after it to one significant space. Thus,
these two examples are equivalent:

Manuscript Form:

The journal was edited by I@. F@. Stone.
The journal was edited by I. F. Stone.

Document Result:

The journal was edited by I. F. Stone.
The journal was edited by I. F. Stone.

Under some circumstances, you need to use a single letter at the end of a sentence and,
therefore, would like the period after it to be a sentence-end period instead of an abbreviation
end period. For this purpose, you need to use the @: command, which forces a sentence
break:

or

No one was more gullible than I.@: F. Stone, however,
fell for the ploy coupletely.

We wanted to start numbering with Appendix I.@:

or, worse,

We show a couplete summary in Appendix @Ref(Summary) .@:

HYPHENATION 105

10.3 Line Breaks

In normal text, Scribe adds words to a line until the line is full. (This action is called
filling.) Then, and only then, it starts a new line.

In a filled environment like Quotation or Text, you can force Scribe to start a new line even
though the old one is not full, by using the @* command. In filled text, @* causes a ''line
break'', which is to say that the current line is ended without being justified. Two @* com
mands in a row do not cause a paragraph break. That is, @* is not the same as a carriage
return. When line filling is not taking place (in those unfilled environments like Display that
generate one output line from each input line), then @* has the same effect as an ordinary end
of line.

Warning: most uses of@* are ''incorrect'', in that there is a better way to accomplish what
you are trying to do. @* is included in Scribe primarily for use inside text forms, page
headings, and the like. You should never need to use it in running text, and if you find
yourself wanting to use it in running text, you are probably doing something wrong.

10.4 Paragraph Breaks

Scribe uses a "blank line" to denote a paragraph break. A blank line is defined as one that
has no printing characters between two or more consecutive carriage returns. Thus, any line
that looks blank on your terminal looks blank to Scribe as well.

Sometimes it is ambiguous whether a particular carriage return in a manuscript file is a real
end-of-line carriage return or part of a command. Consider the following example:

1. Quasi-stellar objects @Tag(quasars)
are

2. Quasi-stellar objects
@Tag(quasars)
are

In the first case, the carriage return following the @Tag should be considered part of the
text, whereas in the second case the carriage return following the @Tag should be considered
part of the @Tag command. Scribe, in general, handles carriage returns properly, but some
times its analysis of whether a carriage return is part of the text or part of a command does not
agree with yours. To this end, Scribe has two commands for modifying its handling of car
riage returns.

The @; command is a non-command; it does nothing at all. Computer people refer to this
sort of command as a no-op. However, if you use it in your manuscript file, it ensures that the
carriage return is part of the text. To explain, let's return to our @Tag example from above,
but now put @; commands into it:

1. Quasi-stellar objects @Tag(quasars)@;
are

Scribe always looks around after a command to decide whether or not to throw away the
carriage-return that follows the command. If it does not immediately find a carriage return, it

106 SCRIBE USER MANUAL

stops looking. In this example, during the processing of the @Tag command, Scribe finds not
a carriage return, but an @; command. Therefore, it stops its search for a carriage return.
Scribe next processes the @; command, which does nothing, because that is its job. The
carriage return after the @; command is now certain to be taken as a text carriage return.

Sometime you might need to force Scribe to ignore a carriage-return that it wants to treat as
text For most users, this circumstance is very rare. You can use the @- command for this
purpose. @-causes Scribe to ignore all input characters in the manuscript file until the next
printing character. Here's an example of using@- for entering long lines for a Verse envi
ronment.

Manuscript Form:

@Verse[
A1ong the roads the telephone poles stand @
alone like words in a broken conversation

The wire between them hums a solilo@-
quy in an endless encore with no ovation

Like all the poetry that has poured from @-
my lips to fall on fields empty of ears

Good land is prose, but what grows @-
there is the poetry of years and years

Document Result:

Along the roads the telephone poles stand alone like words in a broken
conversation

The wire between them hums a soliloquy in an endless encore with no
ovation

Like all the poetry that has poured from my lips to fall on fields empty of
ears

Good land is prose, but what grows there is the poetry of years and
years

10.5 Page Breaks

Producing correct page breaks is a very hard problem, and Scribe doesn't in general do a
perfect job of it The interactions among text lines, footnotes, floating figures, and titles result
in some pagination problems with no practical solutions.

Normally, Scribe starts a new page when the old one is full, regardless of what it is doing at
the time. The @Newpage command allows you to force a page break before the current page
is full. Used alone, @Newpage causes Scribe to put the next output at the top of the next
page. The @Newpage command can also appear with a number telling Scribe how many
blank pages to leave before resuming text

@Newpage(3)

@Newpage is the same thing as @Newpage(O); it leaves no blank pages. These pages are not
totally blank; they do have running headers. For completely blank pages, just put blank paper

HYPHENATION 107

in your document at that point and increase the page number with @Set if necessary. (See
also the description of@Blankpage on page 77.)

Normally, when Scribe is processing a manuscript file and a page becomes full, it simply
starts a new page. Some environments, however, have definitions that cause their text to be
kept together on a page, sometimes moved if necessary.

The environments Example and Display have the property that their contents are never split
across a page unless you explicitly permit it. If an Example environment or a Display
environment does not fit on a page, then Scribe starts a new page (leaving white space at the
bottom of the old one) and places the entire environment at the top of the new page. We call
this property Group and call Example and Display grouped environments.

Sometimes grouped environments are very long or contain several groups of lines where it
is acceptable to break the environment across a page. The @Hinge command tells Scribe
when it is allowed to break the environment and start a new page. @Hinge always causes one
blank line to be inserted in the document when the page does not need to break.

Figures and Tables have the property that, if they do not fit on the current page, Scribe is
free to move them to a new page after first filling the current page. We call this property
Float and refer to Figure and Table as floated environments.

10.6 Widows and Orphans

The word "widow" is defined as the final line of a paragraph appearing at the top of a
fresh page instead of appearing with the rest of the paragraph at the bottom of the previous
page. An "orphan" is the first line of a paragraph appearing alone at the bottom of a page. It
is generally agreed that widows and orphans are ugly, but there is no well-defined method for
getting rid of them.

Careful publishers normally eliminate widows by working with the author and copy editor
to rewrite the text so that no widows occur. They find it equally ugly to have pages of
differing length, so the obvious solution (jamming an extra line at the bottom of one page or
the top of another page) is not acceptable. If the widowed line has a footnote attached to it,
then it cannot be forced to a different page, because there wouldn't be room for the footnote
on the other page.

Scribe gives you four options with respect to widows; you select among them by using the
WidowAction @Style parameter.

@Style(Widow Action=Force)
Forces widow lines to appear at the bottom of the page instead of the top
of the next page, even if they intrude slightly into the bottom margin.
When the widow line has a footnote, it is put at the top of the next page
regardless of the setting of this Style parameter. (This value is the default
setting in most document types.)

@Style(Widow Action= Warn)
Prints a warning message but does not attempt to move the widow line.
This action allows you to repair widow lines manually by rewriting the
text.

@Style(Widow Action=ForceWarn)

108 SCRIBE USER MANUAL

Forces widow lines to appear at the bottom of the page instead of the top
of the next page, even if they intrude slightly into the bottom margin, and
prints a warning message.

@Style(Widow Action=lgnore)
Pays no attention to whether a line is a widow line and produces no warn
ings or errors.

Scribe offers no automatic method of controlling orphans. The best way for you to handle
orphan lines in your document is by using either the Group environment or the Group or Need
environment attribute. The Group environment is used when you want to ensure that the text
of an environment is kept together on one page. If, for example, you had an example that was
not to be broken across a page, you would surround the Example environment with the Group
environment:

@Begin(Group)
@Begin(Example)
Text of the example to be printed on one page
@End(Example)
@End(Group)

If text that is delimited by the Group environment fits on the current output page, then
Scribe essentially ignores the Group environment. If, on the other hand, the text does not all
fit on the current page, then Scribe leaves the rest of the current page blank and prints the text
at the top of the next page.

The Group and Need environment attributes are discussed in detail in Chapter 15. Very
briefly, the Group environment attribute simulates the Group environment for the environment
for which it's specified. The Need environment attribute tells Scribe that the environment can
not be printed on the current page unless n amount of space is left on it You can specify n in
any vertical distance.

Chapter Eleven

Mathematical Output

It is easy to specify complicated mathematical equations and formulas in documents
prepared by Scribe with the Scribe mathematical facility. This facility has been designed to
satisfy the needs of most users in a simple way. It has been used to produce highly complex
equations and mathematical manuscripts. The range of conceivable formulas makes it impos
sible to give complete directions for specifying them in this manual. Please contact your DBA
if you need assistance. A wide variety of mathematical examples and how to construct them is
shown in Appendix G.

11.1 Output Devices

The capabilities of the new mathematical facility may be used with any device. However,
only devices capable of fine character positioning and having suitable alphabets will produce
true mathematical output. Other devices will usually produce one-character substitutions for
special characters and are suitable only for proofing your copy. In general, photocomposers
and page printers can be used for quality mathematical output.

11.2 Including Mathematics in Your Document

Scribe's mathematical capabilities are not included in the standard document type defini
tions. If you want to use them, you must include the following command at the beginning of
your .MSS file:

@LibraryFile[Mathematicsn]

where n represents the point size of the document's running text. Normally, n may take the
value 10 or 12. Check with your DBA to find out which values are available at your site. The
@LibraryFile command causes the library file from Scribe's Database that contains all the
definitions for the mathematical facility to be read in.

110 SCRIBE USER MANUAL

11.3 Mathematical Environments and Forms

Mathematical typesetting in Scribe is accomplished with a combination of built-in features
and Database definitions. As a general rule, structures that are font or output device depend
ent are defined in the Database. Invoking these facilities is easy. You will be using a com
bination of environments and mathematical forms. As we stated in Chapter 4, forms are
advanced Scribe constructs roughly analogous to a subroutine or macro. The complete discus
sion of forms is included in the Scribe Database Administrator's Guide, but you do not need
to understand that material to produce math with Scribe. Just follow the instructions in this
chapter.

Two new environments have been defined for the mathematical facility. One of them must
be used when any of the environments or forms discussed in this chapter are used.

1. Math: used for mathematical terms, formulas, equations, etc. in running text.

2. MathDisplay: used for mathematical terms, formulas, equations, etc. in display
format.

A formula in the MathDisplay environment generally is taller that the same formula in the
Math environment and is surrounded by more white space. It may use taller special charac
ters, higher superscripts, and lower subscripts. The formula r:=O n in running text would be
produced by the following manuscript form:

@Math<@Sum(From "x=O", To "5") n>

The same formula looks like this example

5

Ln
X=O

if it is produced by the following @MathDisplay manuscript form:

@MathDisp1ay<@Sum(From "x=O", To "5") n>

Note that this manuscript form is identical to the previous manuscript form except for the
mathematical environment used.

11.3.1 Properties of the Mathematical Environments

The Math and MathDisplay environments are essential to mathematical output. If you
forget to put a formula in one of those environments, it is likely to look unpredictably wrong
in your final document. Except where otherwise noted, definitions for the mathematical
facility work as specified only within the Math and MathDisplay environments. Use of them
in text within other environments may give unpredictable and erroneous results. Both the
Math and MathDisplay environments have the properties listed below.

• Spaces in the manuscript file are ignored; they do not cause word breaks or cause
spaces to appear in the document. Methods for controlling the spaces that appear
in the document are described in Section 11.4.

•Hyphenation is disabled, and text hyphens are not treated specially.

•A "mathematics FontFamily" is used for all characters (except where there is an
explicit switch to some other font, such as @r or @b). In the mathematics font,
all letters appear in Italics.

MATHEMATICAL OUTPUT

• Digits and punctuation marks appear normally, with the exceptions shown in
Table 11-1.

Manuscript Document Comments
Form Result

* a thin space See Section 11.4

- (minus-sign) Differences between the hyphen and
minus-sign are length and possibly
the height above the baseline

* x (multiplication-sign)

(centralized dot) Suitable for indicating multiplication
in some formulas: a·b

% % (division-sign)

(small comma) Result depends on device

Font choice matches - and %

+ + Font choice matches - and %

(prime-sign)

Table 11-1: Special Punctuation Characters in the Mathematical Facility

11.3.2 Normal Text in the Mathematical Environments

111

At times, the special treatment of certain characters, as described in Table 11-1, may be
inconvenient To get the "normal" appearances of these characters from within the Math or
MathDisplay environment, use the r environment: @r(*) or @r(#). Other forms, described
in Section 11.5, are available to print "normal" characters, such as an asterisk.

11.4 Spacing

Because spaces are ignored in the Math and MathDisplay environments, control over the
spacing of mathematical formulas in the document is achieved by means other than the spaces
typed in the .MSS file. Therefore, you must explicitly specify the places where you want
spaces to appear.

Besides the usual mechanisms for tabbing, centering, and right- and left-flushing of text,
the following spacing specifications are available:

112 SCRIBE USER MANUAL

• The # character becomes a thin space (equal in width to the exclamation point
character).

•The command @L..J (@followed by a space) becomes, as always in Scribe, an en
space.

•The form @Quad becomes a quad space (em space).

Here is an example that uses all the above spacings:

Manuscript Form:

Manuscript Form:

@Math(+ # + @L..J + @Quad+)

Document Result:

++ + +

11.5 Special Characters

Various "special characters" which are not among the letters, numbers, and punctuation
marks of the standard (ASCII) set but are used commonly in mathematical text, are available
in the mathematical facility. Some of them are provided in the forms described in Section
11. 7. Most of them, however, are provided by Scribe forms described in this section.

Capital script letters are provided by the environment Ser. Remember that you will only
get Seri pt characters if your output device is capable of printing them.

Table 11-2 completely lists the special characters made available on the Apple LaserWriter
(POSTSCRIPT) device by the mathematical facility. Tables for other devices which can pro
duce true mathematical output are in Appendix G. Each such character may have several
names in informal usage; for instance, the character "*" is known as an "asterisk" and as
''star''. In the table, we give as many names as we can for ease of reference. In the case of
the asterisk, you will find an entry for both Asterisk and Star, but the Star entry will simply be
a cross reference to the Asterisk entry. The Library File of mathematical definitions, however,
only recognizes one name; that name is given in the second column of the table.

The fourth column in the table indicates the availability of the character, which is one of
the following possibilities:

•Normal: The character supplied should be fully satisfactory for all documents.

• Substitute: The character supplied resembles the character requested, but the
resemblance may not be completely satisfactory for some documents.

•Fake: A character or character sequence is supplied. This character or sequence
does not resemble the character requested, but should clearly indicate to the
reader what character was requested.

•Blank: A blank space is supplied.

The same special character may have a different availability on different devices, which is
why the special characters for each device are listed in separate tables.

MATHEMATICAL OUTPUT 113

The same special character may have a different availability on different devices, which is
why the special characters for each device are listed in separate tables.

Of all the capabilities in Scribe, mathematical output is the most device-dependent. Your
site must have a suitable output device, a collection of appropriate fonts, and Scribe Database
support for your site's printer/font configuration. If you are trying to get mathematical output
and are having difficulty, contact your DBA.

114 SCRIBE USER MANUAL

Table 11-2: Special Characters for the Apple LaserWriter (POSTSCRIPT)

Informal name Scribe name Example Availability

Aleph @Aleph ~ Normal
And See "Intersection (logical)"
Angle @Angle L Normal
Approximate equality @Approx "" Normal
Asterisk @Ast * Normal
Back arrow See "Left arrow"
Bottom @Bot _L Normal
Bullet (hollow) @Circ Blank
Bullet (solid) @Bullet • Normal
C-set @CSet c Fake
Circle (small) See "Bullet (hollow)" and "Degrees"
Degrees @De gr 0 Normal
Delta @Delta ti Normal
Divided-by @Div I Normal
Dot-in-circle @ODot Blank
Down arrow @DownArrow .i Normal
Empty set @Empty Set 0 Normal
Equality @Eq = Normal
Equivalence @Eqv - Normal
Existential quantifier @Exists 3 Normal
For-all See "Universal quantifier"
Greater @Gt > Substitute
Greater-or-equal @GtE ~ Normal
Greater-or-less @GtLt Blank
H-bar @HBar Blank
In See "Membership"
Inequality @Neq '* Normal
Infinity @Infty 00 Normal
Integers @ZS et z Fake
Intersection (logical) @And /\ Normal
Intersection (set) @Inter (I Normal
Intersection (square) @Sq Inter Blank
Left angle bracket @LAngle (Normal
Left arrow @LeftArrow ~ Normal
Less @Lt < Substitute
Less-or-equal @LtE ~ Normal
Less-or-greater @LtGt Blank
Membership @In E Normal
Minus @Sub Normal
Minus-in-circle @Ominus Blank
Minus-or-plus @Mp Blank
Much-greater @MuchGt Blank
Much-less @MuchLt Blank
Nabla @Nabla v Normal
Natural numbers @NSet N Fake
Negation (logical) @Not, Normal
Non-equivalence @NEqv :;:. Substitute

MATHEMATICAL OUTPUT

Non-membership
Not
Not-in
Operator (generic)
Or
Partial derivative
Planck's constant
Plus
Plus-in-circle
Plus-in-u
Plus-or-minus
Q.E.D.
Q-set
Right angle bracket
Rational numbers
Right arrow
Similarity
Similar or equal
Slash
Slash-in-circle
Square
Star
Subset
Subset (proper)
Superset
Superset (proper)
Times
Times-in-circle
Top
Triangle
Union (logical)
Union (set)
Union (square)
Universal quantifier
Up arrow
Vertical bar
Vertical bar (double)

@Notln
See "Negation (logical)"
See "Non-membership"
@Op
See "Union (logical)"
@Partial
See "H-bar"
@Add
@OPlus
@UPlus
@Pm
@Qed
@QSet
@RAngle
@RSet
@RightArrow
@Similar
@SimEq
See "Divided-by"
@ODiv
See "Q.E.D."
See ''Asterisk''
@Subset
@PrSubset
@Supset
@PrSupset
@Mult
@OTimes
@Top
See "Nabla" and "Delta"
@Or
@Union
@Sq Union
@For All
@UpArrow
@VBar
@DVBar

11.6 Other Special Notations

11.6.1 Common Mathematical Text

OP

a

+
EB

±

Q
)
R
--7

v
u

v
i
I
II

Normal

Fake

Normal

Normal
Normal
Blank
Normal
Blank
Fake
Normal
Fake
Normal
Normal
Normal

Blank

Normal
Normal
Normal
Normal
Normal
Normal
Blank

Normal
Normal
Blank
Normal
Normal
Normal
Substitute

115

Occasionally, it is desirable to get normal, non-italic text into a formula. Two general
examples are:

• when using standard operators, functions, and other words, such as cos and lim.
These should ordinarily be typeset in a Roman face. The mathematical facility
provides a set of forms to achieve the Roman font; see Table 11-3.

• when using other short phrases in the middle of a formula, such as if, and, or
otherwise. To get the right spacing and font for these phrases, use the environ
ment Sr (which stands for Spaced Roman), as shown in this example:

116 SCRIBE USER MANUAL

Manuscript Form:

@Abs(x) = -x @Sr[if] x@Lt O,@Quad x @Sr[otherwise]

Document Result:

lxl =-x if x<O, xotherwise

There are some words and phrases common in mathematical text that are ordinarily ex
pected to be set in normal (Roman) type to set them off from symbols, that are in Italic, but for
which it is inconvenient to specify the font switching and spacing explicitly by using the Sr
environment. A set of forms for such common text have been supplied. They are listed
below, broken into two groups: Those that take an argument and those that do not.

Table 11-3: Common Mathematical Text

If you want: Use:

arctg @Arctg
a tan @Atan
cos @Cos
cot @Cot
csc @Csc
deg @Deg
det @Det
inf @Inf
lg @Lg
lim @Lim
liminf @Liminf
limsup @Limsup
In @Ln
log @Log
log2 @Log2
max @Max
min @Min
mod @Mod
sin @Sin
sup @Sup
tan @Tan
tg @Tg
trace @Trace

MATHEMATICAL OUTPUT

O(text)
Q(text)
0(text)
det(text)
exp(text)
,gcd(text)
I textl
LtextJ
I text I
lltextll
.../text

@BigO(text)
@Omega(text)
@Theta(text)
@Detrm(text)
@Exp(text)
@Gcd(text)
@Ceiling(text)
@Floor(text)
@Abs(text)
@Norm(text)
@Sqrt(text)

117

Each of the forms in the second group above will produce ugly and possibly unacceptable
output if its parameter is unusually tall. Thus, text that uses the multi-line forms described in
Section 11. 7 is not suitable as a parameter to the forms of this section. This restriction will be
removed in a future release.

11.6.2 Ellipsis

There are two forms for specifying the ellipsis, a series of three dots. @LDots produces
three dots on the baseline, and @CDots produces three dots raised to align with such things as
plus-signs and minus-signs. These forms can be used outside of the Math or MathDisplay
environment as shown here:

Manuscript Form:

a@Down(l), a@Down(2), @LDots, a@Down(k)

1 + 2 + @CDots + n

Document Result:

1+2+ ··· +n

11.6.3 Numeration

There are also four forms for numeration. They are among the few forms from the mathe
matical facility that can be used without being inside the Math or MathDisplay environment
Examples of them are given below:

118

Manuscript Form:

l@st, 2@nd, 3@rd, 4@th.

Document Result:

SCRIBE USER MANUAL

11.6.4 Miscellaneous

In mathematical text, it is preferable to use the @Up and @Down environments rather than
@+ and @-. There are certain special characters that require different sizes depending on
whether they are scripted or not; for example, the integral sign. @Up and @Down will
produce the appropriate size character.

The assignment "operator" :=, common in computer program text, can be obtained with
the form @Get.

The following embellishments can (at present) be used only on single characters. @Vee
and @Overline can be used only on lower case letters; @OverlineCap can be used only on
upper case letters and digits.

v @Vec(v)

v @Overline(v)

V @OverlineCap(@r(V))

11.7 Multi-Line Formulas

The mathematical facility provides forms for constructing multi-line formulas such as sum
mations, integrals, fractions, and binomial coefficients. The forms all have a similar syntax in
that they all take delimited strings as values of their specific arguments. The syntax of the
individual forms is shown below, followed by examples of each form.

@Sum [From=de limited-value, To=delimited-value]

@Prod [From=delimited-value, To=delimited-value]

@Int [From=delimited-value, To=delimited-value]

@Over [Num=delimited-value, Denom=delimited-value]

@Choose [From=delimited-value, Chosen=delimited-value]

@Brace [Top=delimited-value, Bot=delimited-value]

@Limit [As=delimited-value]

@Ss [Sub=delimited-value, Super=delimited-value]

@Smal.l.Fraction [Num=delimited-value, Denom=delimited-value]

An example of each form that produces a multi-line formula follows. Use m the

MATHEMATICAL OUTPUT 119

MathDisplay environment is shown first, followed by the same formulas in the Math environ
ment.

Examples in the MathDisplay Environment

Manuscript Form:

@Sum(From"n=l",To"m")n

@Prod(From "p=2", To "@Infty") p

@Int(From "-1", To "1") xdx

@Over (Num "p", Denom "(p+l) (p+2) ")

@Choose(From "n", Chosen "n-m")

@g(d)@Down(ij)=@Brace(
Top "1 @Quad @Sr[if]i=j",
Bot "0 @Quad @Sr[otherwise]")

@Limit(As "x @RightArrow @Infty")@
f@Down(i) (x)

a@Ss (Sub "j", Super "i")

@Sma11Fraction(Num "1", Denom "2")

Document Result:

p
(p+l)(p+2)

~--={ 1 if i=j
11 0 otherwise

lim~(x)
x-+oo

i a.
J

1
2

120 SCRIBE USER MANUAL

Examples in the Math Environment

Manuscript Form:

@Sum(From "n=l", To "m") n

@Prod(From "p=2", To "@Infty") p

@Int(From "-1", To "1") xdx

@Over (Num "p", Denom "(p+l) (p+2) ")

@Choose(From "n", Chosen "n-m")

@q(d)@Down(ij) = @Brace(
Top "1 @Quad @Sr[if]i = j",
Bot "0 @Quad @Sr[otherwise]")

@Limit(As "x @RiqhtArrow @Infty")
£@Down (i) (x)

a@Ss(Sub "j", Super "i")

@Sma11Fraction(Num "1", Denom "2")

Document Result:

p

(p+l)(p+2)

(,..:n)

8 . .={ 1 if i=j
1J 0 otherwise

lim~(x)
x-+oo

i a.
J

1
2

MATHEMATICAL OUTPUT

The result of one multi-line formula can be the argument to another:

Manuscript Form:

@Over(Num "x+l", Denom "y + @Over(Num [x-2), Denom [x])")

x+l
x-2

y+
x

Document Result:

121

122 SCRIBE USER MANUAL

Chapter Twelve

Producing Bibliographies with Scribe

A scholarly paper normally includes in its text citations to the literature and a Bibliography
or list of references at the end. The citations refer to entries in the Bibliography, which give
complete data about the cited publications.

Citations can have many different "correct" formats. Some journals want a number in
square brackets: [7]. Others want a superscripted number,7 like a footnote. Others want a
parenthesized reference to the primary author and the year of publication: (Knuth 1968) and
some publishers use the first few letters of the author's name followed by the last two digits of
the year: [Knut68] or [KNU68].

Formats for bibliography entries have even more variety than citations. Some authorities
want journal titles abbreviated, others want them spelled out. One journal would like you to
use the abbreviation "J. ACM" to stand for the Journal of the Association for Computing
Machinery, while another journal wants you to use the abbreviation "J. Assoc. Comp. Mch."
to stand for the same thing. A third journal might want dates in parentheses, another would
surround them with commas. Volume and issue numbers might be italicized or boldface or in
parentheses.

Experienced authors tend to handle these nuisance variations in bibliography format rules
by ignoring them and using the same format for all of the papers that they submit, passing to
the journal editors the job of cleaning up the Bibliography. Inexperienced authors tend to
spend days getting every last comma in the right place. To help bring both of these lament
able practices to an end, Scribe provides an automatic Bibliography and citation system to take
care of as many of the grubby details as possible.

To use Scribe's Bibliography mechanism, you need two things - a file containing bibliog
raphy information in a special format and @Cite command in your text. The scheme is very
similar to that for cross referencing (see Chapter 7) in that you use a code word in the @Cite
command to refer to items in the special bibliography file. Scribe finds the items being
referred to and replaces the @Cite commands with the correct citations in the correct format.

Furthermore, once you have cited something, Scribe automatically adds the reference to the
Bibliography at the end of your paper. The Bibliography is printed either in alphabetical order
(by primary author) or in numerical order (by citation sequence), depending on the reference
format that you have chosen.

124 SCRIBE USER MANUAL

To use the Bibliography mechanism in Scribe, you have to do these things:

• Get access to a bibliography database file, and tell Scribe its filename. You can
use someone else's, or you can build your own. Most people will want to build a
personal database containing an entry for every paper, article, or book that is
relevant to their work. Section 12.5 tells you how to make your very own bibli
ographic database.

Scribe always looks first for a bibliography file with the same name as your .MSS
file and extension .BIB. You can tell Scribe to look in a different file to find the
references.

The @Use command with a Bibliography parameter tells Scribe which bibliog
raphy file to read. For example,

@Use(Bibliography="GENERL.BIB")

• Decide on a reference style. If you are submitting a paper to a journal and Scribe
knows about that journal's format, use it Section 12.2 tells you about your op
tions in choosing a reference style.

•For the reference items you want in the Bibliography, put @Cite commands with
codewords into your manuscript file in the spots where citations should appear.

Scribe will do the rest.

12.1 An Example

Let's look at a simple example. We will write a one-sentence paper with one bibliographic
reference and show how all the pieces fit together.

Manuscript Form:

The Fortran I conpiler@Cite(Fortran) is
probably the granddaddy of optimizing conpilers.

The document file has the following sequence as a result.

Document Result:

The Fortran I compiler [Backus 57] is probably the granddaddy of optimizing com
pilers.

Whenever Scribe sees an @Cite command, it knows to create a "References" section in
the document. It does this step automatically at the end of the document, giving it the title
"References".

Manuscript Form:

@Device(Postscript)
@Style(References=STDAlphabetic)
@Heading(The Paper)
The Fortran I conpiler@Cite(Fortran) is

PRODUCING BIBLIOGRAPIDES WITH SCRIBE

probably the granddaddy of optimizing co:rrpilers.

Document Result:

The Paper

The Fortran I compiler [Backus 57] is probably the granddaddy of optimizing
compilers.

[Backus 57]

References

Backus, J.W. et al.
The FORTRAN Automatic Coding System.
In Proceedings of the Western Joint Computer
Conference, pages 188-198. AFIPS, February, 1957.
Also in S. Rosen, editor, Programming Systems and
Languages, McGraw-Hill (1967), pages 29-47.

12.2 About the Format of Citations and References

125

A citation is placed in your text at each spot where you use an @Cite command. The style
of the citation is determined by the reference format that you have chosen. For each different
work cited, a bibliography entry appears at the end of your file. The format and layout of this
bibliography entry is also determined by the reference format that you have chosen.

When you don't ask for a reference format, Scribe uses the one named "STDNumeric".
You can ask for a different format by providing a "References" parameter in an @Style
command (described in detail in Section 4.5). Thus, the following command requests
references in IEEE format.

@Style(References=IEEE)

A reference format is defined by an entry in Scribe's Database. The standard version
Database defines the reference formats listed below. As of the time of this manual (15 July
1985), the bibliography formats have not been made entirely consistent with one another.
They were all written at different sites by different people, and not all of them implement all
forms of all of the reference types. For definitive documentation, look at the Database files
with file type .REF. Some of the .REF files call library files. For those files, look in the file
FILENA.LIB, where FILENA is the first six characters of the parameter inside the @Library File
command.

lAPA

lAPADraft

AnnAPA

AnnAPADraft

Similar to the AP A format except that it contains an Annote
field that is treated as a Comment.

Similar to the lAP A format except that it is double-spaced.

Similar to the lAPA format except that the Annote field is
treated as text.

Similar to the lAPADraft format except that the Annote field is
treated as text.

126 SCRIBE USER MANUAL

AnnotedS TD Alphabetic
Similar to the STDAlphabetic format except it includes annota
tions and has unfilled lines.

AnnotedSTDidentifier
Similar to the STDidentifier format except it includes annota
tions and has unfilled lines.

AnnotedSTDN umeric
Similar to the STDNumeric format except it includes annota
tions and has unfilled lines.

AnnSTDAlphabetic
Similar to the STDAlphabetic format except it includes annota
tions and has unfilled lines.

AnnSTDNumeric Similar to the STDNumeric format except it includes annota
tions and has unfilled lines.

APA American Psychological Association format. Inconsistent and
irregular format, but we try to approximate it.

AP AD raft Similar to the AP A format except that it is triple-spaced.

CACM Packed format, numeric citation, alphabetical order.

ClosedAlphabetic Similar to the STD Alphabetic format.

ClosedNumeric

IEEE

IPL

SIAM

STD Alphabetic

STD Identifier

STD Numeric

Similar to the STDNumeric format.

Packed format, numeric superscript citation, in citation order.
This format is acceptable for IEEE Computer magazine. Many
of the other IEEE journals use different reference formats, al
though we suspect that they claim to have a uniform standard.

Information Processing Letters.

Society for Industrial and Applied Mathematics.

Open format, alphabetic citation.

Open format, reference identifier for citations rather that a
generated label.

Open format, numeric citation.

Citations placed in the text because of your @Cite commands are forward references.
Section 7.3 on page 69 explains the nature of forward references. What this statement means
in the context of bibliographic citations is that if you change reference formats, you have to
run Scribe over the manuscript file twice before the document will show the new citation style
everywhere.

To give you an idea of the various formats available, let's take two bibliography entries and
print them in several of the various formats.

We introduce our examples by showing the way that they would look in the default
STDNumeric format. Citations would be [2] and [l], and the bibliography entries would look
like this example:

PRODUCING BIBLIOGRAPIDES WITH SCRIBE

[1] Backus, J.W. et al.
The FORTRAN Automatic Coding System.
In Proceedings of the Western Joint Computer Conference,

pages 188-198. AFIPS, February, 1957.
Also in S. Rosen, editor, Programming Systems and Languages,

McGraw-Hill (1967), pages 29-47.

[2] Knuth, D. E.
The Art of Computer Programming. Volume I: Fundamental

Algorithms.
Addison-Wesley, 1968.

127

If we were to print these same references in IEEE1 format, both the citations and the order
of the references would change. In IEEE format, our citations would be 1 and 2, superscripted
numbers. In use, they would be put singly1 or in pairs2•3 at the appropriate point in the
document, and the corresponding bibliography entries would look like this example:

1. Knuth, D. E. The Art of Computer Programming. Volume I:
Fundamental Algorithms. Addison-Wesley, 1968.

2. Backus, J.W. et al. The FORTRAN Automatic Coding System. In
Proceedings of the Western Joint Computer Conference, pages 188-198.
AFIPS, February, 1957. Also in S. Rosen, editor, Programming Systems
and Languages, McGraw-Hill (1967), pages 29-47.

Notice that the Bibliography is in citation order, not in alphabetical order.

If we were to change to CACM2 format, then the citations would again be numbers in
brackets, [2] and [1]. The references would now be in alphabetical order and look like this
example:

1. Backus, J.W. et al. The FORTRAN Automatic Coding System. In
Proceedings of the Western Joint Computer Conference, pages 188-198. AFIPS,
February, 1957. Also in S. Rosen, editor, Programming Systems and Languages,
McGraw-Hill (1967), pages 29-47.

2. Knuth, D. E. The Art of Computer Programming. Volume I: Fundamental
Algorithms. Addison-Wesley, 1968.

If we change to STDAlphabetic format, our citations appear as [Knuth 68] and [Backus
57], and our references now look like this example:

[Backus 57] J.W. Backus et al.
The FORTRAN Automatic Coding System.
In Proceedings of the Western Joint Computer Conference, pages
188-198. AFIPS, February, 1957.
Also in S. Rosen, editor, Programming Systems and Languages,
McGraw-Hill (1967), pages 29-47.

1 The Institute for Electrical and Electronic Engineers (IEEE) publishes some 20 journals in the computer and
electronics field.

2 The Communications of the Association for Computing Machinery is a widely-read journal in the computer
science field.

128 SCRIBE USER MANUAL

[Knuth 68] Knuth, D. E.
The Art of Computer Programming. Volume I:
Fundamental Algorithms.
quotation-Wesley, 1968.

The American Psychological Association's official reference format is very irregular and
not at all suitable to automated citation. Nevertheless, Scribe provides a format that comes
close to one form of the AP A requirement. If you changed reference format to AP A, our
citations would come out as (Knuth, 1968) and (Backus, 1957), and the references would look
like this:

Backus, J.W. et al. The FORTRAN Automatic Coding System. In Proceedings
of the Western Joint Computer Conference, pages 188-198. AFIPS,
February, 1957. Also in S. Rosen, editor, Programming Systems and
Languages, McGraw-Hill (1967), pages 29-47.

Knuth, D. E. The Art of Computer Programming. Volume I: Fundamental
Algorithms. Addison-Wesley, 1968.

AP A references are in alphabetical order by the Key field and by year within author.

12.3 The @Cite Command

The @Cite command uses a codeword to find the item you want to cite and puts its citation
into the document. The format of those citations, as we explained in the previous section, is
dependent on the reference format that you have chosen.

In an @Cite command, you must use the codeword that was chosen for the item by the
person who built the bibliographic database. If you are using a personal database that you
built yourself, then of course you know the codewords for the items. In general, we expect
people to use common, shared databases. You need to obtain a list of the items and their
codewords for each reference that you want to cite. The @Cite command should never be
separated from the word it follows. If a blank is inserted, the space added may be subject to
justification and the citation may float away from the point at which it was inserted.

If the bibliographic database is small and if it is not a "binary" file, you can just print it
and look at it. If the database is large or if it has been encoded into a special binary file, you
will need help. Every database should have people responsible for its maintenance; talk to
them.

The standard document type, "Bibliography", produces a Bibliography without an accom
panying document. This two-line manuscript file creates a Bibliography:

@Make[Bibliography]
@Use[Bibliography "MINE.BIB"]

Once you have found the codeword for a reference, you must use it in an @Cite command
to produce a citation. An@Cite command can contain one or more codewords:

PRODUCING BIBLIOGRAPmES WITH SCRIBE

Manuscript Form:

Vo1ka and James@Cite(Bogosity) describe the
origin of "bogus."

... are made by Boo1inan and Quincy@Cite(Boo164,Quincy).

129

Scribe produces a multiple citation formatted according to the reference format when you give
it more than one codeword in a single @Cite command:

Document Result:

Volka and James [9] describe the origin of "bogus."

... are made by Hoolinan and Quincy [3,8].

Many journals require that multiple numbers in a single citation be in increasing order or
alphabetical order, but Scribe does not sort them for you. You have to arrange the codewords
in the appropriate order in the @Cite command itself.

The correct use of citations in sentences is a matter not of technology but of writing style.
Since style is a matter of personal preference and local custom, it is not the place of this
manual to suggest or dictate. For enlightened narrative discussion, copious examples, dogma,
and entertainment, we refer the reader to Mary-Claire van Leunen's wonderful book, A
Handbook for Scholars (Alfred A. Knopf, 1978).3 (No student should begin writing a thesis
without having read it cover to cover.)

Any delimited text inserted in an @Cite command after the codeword is actually included
in the document's text. For example, this command:

Manuscript Form:

Vo1ka and James@Cite(Bogosity ", p. 15") describes the

produces this output:

Document Result:

Volka and James [9, p. 15] describes the

You can flag selected entries for inclusion in the Bibliography without actually citing them
in the document by using the @CiteMark command:

@CiteMark(Jones4)

@CiteMark has precisely the same effect as the @Cite command, except that it does not
generate a citation in the text. The entry still appears in the Bibliography.

A generalized version of what you do with @CiteMark would be to force all of the entries
in your bibliography database file, cited or not, to appear in your document's Bibliography.
The BibSelect parameter in the @Style command requests this inclusion.

3 The Scribe User Manual does not have a Bibliography, as it is not a piece of scholarly writing, so we have
imbedded this reference instead of using a @Cite command.

130 SCRIBE USER MANUAL

@Style(BibSelect=Complete)

This @Style command should be at the beginning of your manuscript file, before the first text.

12.4 Placing the References Section

Scribe normally prints the Bibliography at the end of your document automatically and
includes in it everything that was cited in the text with an @Cite command. It receives a
heading, ''References'', automatically.

You can change either the placement of the Bibliography or the heading it receives. In
fact, to change either, you must specify both of these commands:

@Unnumbered[References]
@Bibliography

This example illustrates how to move the Bibliography. The @Unnumbered command
specifies the heading for the Bibliography. (This way, the heading appears in the Table of
Contents; otherwise it doesn't.) The @Bibliography command tells Scribe to create the
Bibliography at the current spot in the document. You could use @Bibliography to place the
Bibliography before the end of the document (for example, before an appendix). However,
only @Cite commands that occur before the @Bibliography command cause items to appear
in the Bibliography.

To leave the Bibliography at the end of the document as usual but to change the title of it to
''Bibliography'', these commands are necessary at the end of the document:

@UnNumbered(Bibliography)
@Bibliography

Books often need a References section for each chapter or section. Scribe can produce
more than one reference list. You need to use an @Style command with the
MultipleBibliography parameter at the beginning of the manuscript file:

@Style(MultipleBibliography On)

Then you need a heading for each reference section and an @Bibliography command for each
reference section, at the appropriate place in the manuscript. Each reference section includes
the items for all the @Cite commands since the previous @Bibliography command.

12.5 Bibliography Database Files

A database is a collection of information organized in such a way that you can find things.
A computer file with seven telephone numbers typed in to it is just as much a database as the
Social Security Administration's billion-character wonders. Let's just talk about bibliographic
databases, though.

PRODUCING BIBLIOGRAPffiES WITH SCRIBE 131

12.5.1 Its Organization and Contents

The simplest form of bibliographic database would be a file into which you had typed the
information about some books and articles, with a label in front of each one. But Scribe,
being a dumb computer program, wouldn't be able to make much use of that. You must pick
the entries apart like cooked lobsters, telling Scribe what every field should be. The database
entries for the two examples that we used throughout Section 12.2 look like this example:

@InProceedings(Fortran,
Author="J.W. Backus et a1",Pages="188-198",
Tit1e="The FORTRAN Automatic Coding System",
Month="February",Key="Backus",Year="1957",
Pub1isher="AFIPS",BookTit1e="Proceedings of
the Western Joint Conputer Conference",
Note="A1so in S. Rosen, editor, @i[Programming

Systems and Languages] McGraw-Hi11
(1967), pages 29-47")

@Book(Vo1umel,Author="Knuth, D. E.",Key="Knuth",
Tit1e="Fundamenta1 A1gorithms",
Series="The Art of Conputer Programming",Vo1ume="I",
Pub1isher="Addison-Wes1ey", Year="1968")

Look at them carefully. Notice that they define values for various things like "Publisher" and
"Author", which are pretty obvious, but also for things like "Key", which is probably not so
obvious.

Every bibliography entry must have at least three things:

•A type. Our examples above are of type "inproceedings" and "book".

•A codeword. Our examples have "Fortran" and "Volumel" for their
codewords.

•A key, which is used for alphabetization. The keys in our examples above are
"Backus" and "Knuth".

The codeword is necessary to find the entry in the database (it must match the codeword
used in the @Cite command), the key is needed to determine the correct alphabetization, and
the type is needed to determine how to format it.

Here we should confess that a key is not actually required for a bibliography entry, al
though it is very often included. If it is missing, the codeword is used for alphabetizing the
entry. We still suggest that you use a key.

Of course, to be useful, an entry should have other fields, like author and title. Every type
of entry needs a different set of fields. The "book" type shown above uses a "series" field
and a "volume" field. "Series" would probably be meaningless in a journal article, but
"volume" means a lot. On the other hand, a "journal" field in the entry for a book would not
be of much use.

132 SCRIBE USER MANUAL

12.5.2 Building Your Bibliographic Database

Your own bibliographic database file is an ASCII file that you build with your favorite text
editor. It contains only bibliography entries and possibly @String commands to define ab
breviations. Put no other Scribe commands in this file. Because Scribe sorts your
Bibliography into the appropriate alphabetic or numeric sequence, any other commands in the
file would come out in strange places.

12.5.2.1 Strategy

To enter a reference in a database, you have to do these three things:

1. Classify it. Figure out what kind of a reference it is. Book? Article?
Conference proceedings?

2. Find out what fields are needed. Decide upon their value. What is the title?
Who is the author? What is the volume number?

3. Get it into the computer. If you are building a private database, you would type
it in using a text editor into a garden-variety file, in a format similar to the one
used in our examples above. If you are adding it to some public database, you
would use an entry program devised by the keepers of that database; talk to
them.

(Some people have written form-filling programs to help with the tedious business of commas,
field names, and delimiters. Ask around at your site!)

12.5.2.2 Classification

If you think about classification too hard, the task becomes almost impossible. Since you
are classifying a reference only to get its format to come out correctly, you don't have to
worry about the fine details of classification that give librarians ulcers. Scribe has adopted the
naming and classification scheme suggested by van Leunen, and we strongly suggest that you
find a copy of her book if you intend to make serious use of the Scribe Bibliography system.

In van Leunen's book, there are 11 "easy" types of reference,4 8 "hard" types of
reference,5 and 7 "obscure" types.6 Don't think too much - just look over the following list
and figure out which category best suits your reference.

Scribe requires that you classify every reference into one of the following categories. The
field names ("Volume", "Key", and so forth) are defined in detail in the next section. This
list is general; the fields listed as required are those required for all reference formats. The
other fields listed are optional based on the reference format Appendix E.9 lists the required
and optional fields for each reference format individually.

Article An article from an academic journal or a magazine. The required fields

4 Books, compilations, collections, editions with editors, translations, multivolume works, journal articles,
reviews, pamphlets, works not yet published, and theses.

5 Archives, works published by their author, conference proceedings, correspondence, court cases, government
documents, microfilm and microfiche, newspapers, and reference works.

6 Physical buildings, works of art. named computer programs, movies, musical works, radio and television
programs, and unpublished interviews.

PRODUCING BIBLIOGRAPHIES WITH SCRIBE 133

are Title and Journal. The optional fields are Note, Number, Month,
Pages, Volume, Author, Year, FullAuthor, Date, and Key.

Book Something published on its own, usually by a publishing house that is not
the same as the author. cf TechReport. The required fields are Title and
Publisher. The optional fields are Key, Author, Year, Series, Volume,
Address, Note, Editors, Editor, Number, HowPublished, FullAuthor,
and Date.

Booklet Something published and bound, but having neither an explicitly-named
publisher nor a sponsoring institution. Very few scholarly papers refer
ence booklets. The only required field is Title. The optional fields are
Author, Key, Address, HowPublished, Note, Publisher, Month, Year,
and FullAuthor.

Conference The conference name. The required fields are Author, Title, and Year.
The optional fields are Date, Meeting, Month, Note, Organization, and
Society.

InBook If you want to refer to a piece of a book, rather than to the entire book,
then make your entry be of type InBook. The required fields are Title and
Publisher. The optional fields are Series, Volume, Address, Chapter,
Pages, and Note, Author, Editor, Key, Year, BookTitle, Editors,
FullAuthor, HowPublished, Edition, Date, and Number.

InCollection Something composed of papers or chapters previously published else
where. The required fields are Title, BookTitle, Publisher, and Year.
The optional fields are Address, Chapter, Author, Key, Editor, Note,
Pages, Series, Volume, Editors, Number, and FullAuthor.

InProceedings A reference to a paper in a conference proceedings or the like. The re
quired fields are Title and Year. The optional fields are Key, Author,
Organization, Editors, BookTitle, Editor, Address, Pages, Month, and
Note, and FullAuthor.

Manual An instruction manual or piece of technical documentation. The required
field is Title. The optional fields are Author, Address, Edition, Key,
Year, Organization, Note, Date, and FullOrganization.

MastersThesis A Masters' thesis. The required fields are School and Title. The optional
fields are Month, Note, Year, Key, Author, Date, Address, and
FullAuthor.

Misc Any category not mentioned in this list. There are no required fields. The
optional fields are Author, HowPublished, Note, Title, Key, and
FullAuthor.

PhDThesis A Ph.D. thesis. The required fields are Title and School. The optional
fields are Month, Note, Key, Author, Year, Address, Date, and
FullAuthor.

Proceedings The proceedings of a conference or some similar document. The iden
tifying characteristics of a Proceedings are that its publisher and author
are identical and often no editor's name appears. There are no required
fields. The optional fields are Year, Key, Publisher, Editor,
Organization, Title, Address, Note, Date, Pages, Month, and Editors.

TechReport A technical report is similar to a book, except that it is published by a
research institution instead of by a publisher and that it usually has an
assigned ''report number''. Use your judgment in deciding whether some
particular reference is a book or a technical report. A thesis is neither.

134

UnPublished

SCRIBE USER MANUAL

The required field is Title. The optional fields are Institution, Year,
Author, Key, Number, Month, Type, Note, Date, Address, and
FullAuthor.

Some paper that is in preparation or that has been printed but not
published. Many random documents fall into this category. There are no
required fields. The optional fields are Key, Author, Title, Note, Date,
Year, Month, and FuIIAuthor.

12.5.2.3 Field Names

In the previous section, we gave you lists of the required and optional fields for various
bibliography entry types. Now we will tell you what they mean. Not every field is used in
every bibliography entry type.

All entries are specified in the same syntax:

Name="value"

You can leave out the equals sign and, if the value is a number, you can omit the delimiters.
These three forms are all equivalent to one another:

Year="1984"
Year "1984"
Year=1984

If a field is long, you can continue it across more than one line:

Author="Davis, Miles", Title="In a Silent
Way"

Very well; let's get on with the list of fields: (This information is repeated in tabular form
in Appendix E; see page 237.)

Address

Author

Annote

BookTitle

Chapter

Date

Edition

Editor

The address of the publisher. (By convention, the address for a major
publisher is just a city name. For minor publishers, a full address is in
order.)

The name(s) of the author or authors, in the order and style that you would
like them printed out. If you need to abbreviate the author's name for
some journals and keep it intact for others, you can use a FullAuthor field
as well.

A short annotation, one or two sentences at most. It is optional for any
bibliography entry type. The annotation appears only in the various AP A
and STD reference formats.

The title of the book containing the chapter or article being cited. (For
example, with InBook, Title is the title of the chapter and BookTitle is
the title of the book.)

When you are referring to something that is published as part of a larger
work, it helps to pinpoint the particular piece of the larger work. You can
use either Chapter or Pages, not both, to do this pinpointing.

The date of the classification.

The manual's edition number.

The name of the editor of Proceedings, InProceedings, Book, InBook,
and InCollection. The names appear exactly as entered in this field.

PRODUCING BIBLIOGRAPIIlES WITH SCRIBE 135

Editors

FullAuthor

Full Organization

How Published

Institution

Journal

Key

Meeting

Month

Note

Number

Organization

Pages

The name of the editors of Proceedings, InProceedings, Book, InBook,
and InCollection. The names appear exactly as entered in this field.

The "full" name of the author for bibliography types and reference for
mats permitting first names rather than just initials. FullAuthor is always
optional. You can include both Author and FullAuthor fields in any bibli
ography entry.

The ''full'' name of the organization for mailing purposes.

When you are citing something that has not been formally published, then
you don't specify a publisher, but you explain how this thing came to be
in print A reference entry for a canoeing guide, for example, might con
tain the field:

HowPublished="A Pennsylvania AYH Publication"

For technical reports, one provides the name of the sponsoring institution
instead of the name of a publisher.

Institution="Carneqie-Mellon University"

The name of the journal or an abbreviation for it. The reference database
contains definitions for the abbreviations for all the common journals in
the field covered by that journal. When no abbreviation is available for a
journal, you must either type in the name of the journal as a delimited
string, in the exact format you want it printed in, or, in a personal data
base, use @String to define an abbreviation for it.

The Key field is normally the primary author's last name. It is used as the
sort key for alphabetization of the Bibliography, and it is used as the key
author's name in reference formats that need one. The value for Key
should not be an abbreviation defined with an @String command.

The name of the meeting. Used with the value of the Society field name.

The abbreviation for the month:

Month=Oct

You could provide the name of the month explicitly although it is hard to
imagine when that would be necessary.

Month=" October"

Any comment that you care to make about the publication or availability
of the reference. The Note field is printed at the end of the reference, after
the publication entry. Use Note to help the reader find your reference:

Note="Also available on microfilm, # A060494"

The number of the journal containing an article.

The organization that sponsored the conference that generated the pro
ceedings.

Use the Pages field to pinpoint the location in a journal where an article
appears or to pinpoint the spot in a proceedings or a book where some
section appears. In cases where the Chapter field is applicable, you can
use either Pages or Chapter, but not both. This field should contain the
page or pages on which the article appears, not the page or pages to which
you are making specific reference. Typical entries might be:

136

Publisher

School

Series

Title

Type

Volume

Year

Pages="156-202"
Pages="301"

SCRIBE USER MANUAL

The name of the publishing house that published the reference. For
obscure publishers, you should also include an Address field, giving the
address of the publisher.

The name of the School, College, University, or whatever granting the
degree for MastersThesis and PhDThesis.

The number of a book, in a publisher's series.

The title of the item being referred to, whether Article, Thesis,
TechReport. (See also BookTitle.)

A field in TechReport. Scribe assumes that the entry for a TechReport is
actually titled "Technical Report ... " and so prefixes the report number
(when present) with the words "Technical Report". However, the insti
tution publishing the report might actually call it something else, like
''Research Report''. In that case, you would have a field in the entry like
this:

Type="Research Report"

Scribe would then prefix the report number with ''Research Report'' in
stead of ''Technical Report''.

The volume number for a journal containing an article or for a book in a
multivolume set.

The year of publication.

12.5.2.4 Abbreviations

Every journal has its own standards for abbreviating titles, and they are all different. The
standard Scribe Database defines a standard set of abbreviations of journals in the field of
Computer Science, and each reference format provides the correct expansion of those ab
breviations.

To use an abbreviation, just place it, not delimited or quoted, in the spot where you would
normally put some long field inside delimiters. For example, you could replace this field
entry:

Journa1="Communications of the ACM"

with this abbreviated entry:

Journa1=CACM

Every standard reference format type supplied with Scribe contains an expansion for CACM
according to the rules of its journal.

You can define your own abbreviations using @String commands (See Section 4.2). Put
these commands at the beginning of your bibliography database file, before the first data
entry. The abbreviation in the example above would have been defined:

@String(CACM="Communications of the ACM")

Do not use string abbreviations in the Key field, though.

PRODUCING BIBLIOGRAPIDES WITH SCRIBE

12.6 Some Examples

@UnPublished(SapsfordStudy
,Key="Sapsford"
,Year="l978"
,Author="Sapsford, Mark A."
,Title="PDP-10 Usage Study August 78 to December 78"
,Note="The summary results of this study are in a

notebook owned by Richard Swan."
)

@TechReport(PUB
,Key="Tesler"
,Author="Tesler, Larry"
,Title="PUB: The Document Compiler"
,Institution="Stanford University Artificial

,Year=1972
,Number="ON-70"
,Month=sep)

@InCollection(Bell77

Intelligence Project"

,Key="Bell"
,Author="Bell, C. Gordon"
,Title="What Have we Learned from the PDPll?"
,Publisher="Academic Press"
,Year="l977"
,Editor="Jones, Anita K."
,Booktitle="Perspectives on Computer Science"
,Chapter="l")

@Book(Volume3, Key="Knuth", Author="Knuth, Donald E."
,Title="Sorting and Searching", Publisher="Addison

Wesley"

137

,Year="1973", Series="The Art of Computer Programming",
Volume="3",Address="Reading, Mass.")

@InProceedings(Nonprocedural
,Key="Leavenworth"
,Author="Leavenworth, Burt M. and Sammet, Jean E."
,Title="An Overview of Nonprocedural Languages"
,Organization="ACM-SIGPLAN"
,Booktitle="Proceedings of a Symposium on Very High

Level Languages"
,Year="1974"
, Month=" April"
,Note="Published as Volume 9, Number 4, of @I[SIGPLAN

Notices]")

138 SCRIBE USER MANUAL

@Artic1e(CommTypo
,Key::::"Gottscha11"
,Author="Gottscha11, Edward M."
,Tit1e="Communications Typographies"
,Journa1="IEEE Transactions on Professional

Communication"
,Vo1ume="PC21",Year="1978",Number="l",Month="March"
,Pages="18-23")

Chapter Thirteen

Producing Large Documents

Big documents are much harder to produce than small ones. The amount of work needed
to produce one 200-page document is much more than that needed to produce ten 20-page
documents. Bookkeeping becomes a chore. The amount of file space used becomes huge. It
can take an hour or two of elapsed time (though only a minute or two of actual run time) just
to process a 200-page document through Scribe when the system is heavily loaded.

Scribe has several mechanisms that make it easier to produce large documents. These
large-document facilities include:

• An @Include command, that lets you compose a large document from any num
ber of separate files, each one of which is of manageable size.

• An @Part command that lets you process a component file independently of the
whole document, yet still have correct page numbers, section numbers, chapter
numbers, and cross references.

•An @Use command to request that Scribe use some private or custom edition of
its Database.

• An outline of your document, automatically generated by Scribe in a separate
file, showing the sectioning structure of your document and its cross reference
points, to help you manage its organization.

• A word counter and vocabulary analyzer.

13.1 Breaking a Manuscript into Several Smaller Files

Scribe normally reads sequentially through a manuscript file, processing text and com
mands as it comes to them. The @Include command makes Scribe suspend processing of the
main manuscript file, process a second file, and then resume processing of the original manu
script file. For example, suppose you have this manuscript file:

140 SCRIBE USER MANUAL

The Wicked Witch was both surprised and worried when
she saw the mark on Dorothy's forehead, for she knew
we11 that neither the Winged Monkey nor she, herse1f,
dare hurt the gir1 in any way.
@Inc1ude(SUBFIL.MSS)
At first the Witch was tempted to run from Dorothy;
but she happened to 1ook into the chi1d's eyes and saw
how si~1e the sou1 behind them was, and that the
1itt1e gir1 did not know of the wonderfu1 power the
Si1ver Shoes gave her.

This file has a request to include the file whose name is SUBFIL.MSS:

She 1ooked down at Dorothy's feet, and seeing the
Si1ver Shoes, began to tremb1e with fear, for she knew
what a powerfu1 charm be1onged to them.

The finished document file would contain the following text:

The Wicked Witch was both surprised and worried when she saw the mark on
Dorothy's forehead, for she knew well that neither the Winged Monkey nor she,
herself, dare hurt the girl in any way. She looked down at Dorothy's feet, and
seeing the Silver Shoes, began to tremble with fear, for she knew what a powerful
charm belonged to them. At first the Witch was tempted to run away from Dorothy;
but she happened to look into the child's eyes and saw how simple the soul behind
them was, and that the little girl did not know of the wonderful power the Silver
Shoes gave her.

@Include requests can be nested. That is, a file being processed because of an @Include
command can itself contain other @Include commands naming yet more files.

The example above shows how @Include works. However, piecemeal inclusion of text is
more confusing and harder to manage than a system that partitions the document in some way
that reflects its logical structure. One of the best strategies is to build a small root file that
contains any commands that must be specified at the beginning of the document before first
text, such as the @Make, @Device, and @Style commands, followed by a series of @Include
commands to include each of the component files. Note that the @Include command con
stitutes first text. Even though it looks like only a Scribe command, it causes text to be
processed and so is considered to be text. If an @Make command, for example, were placed
after an @Include command in your .MSS file, Scribe will produce an error stating that the
@Make command is only allowed at the beginning of the manuscript file.

It is often convenient to divide a document into separate chapter files, with one @Include
for each chapter, but any division that is convenient for you is acceptable. It also helps to use
comments at the beginning of included files describing their contents or any other pertinent
bookkeeping information that needs to be stored with them. (See the @Comment command in
Section 4.7, page 42.)

Figure 13-1 shows an example root file for a user's manual of a program that generates
graphs and plots. It prints the title page and then includes, in turn, each of the chapter files.

PRODUCING LARGE DOCUMENTS

@Make(Manua1)
@Use (Bib1ioqraphy "<P1ot>P1ot .bib")
@Strinq(Version="9.0 (1)")
@Strinq(P1ot="P@C[1ot]")
@PaqeHeadinq(Left "@C{P1ot User's Manua1}",

Right "@C{Paqe @Va1ue(Paqe)}")
@Inc1ude(COVER.MSS)
@Inc1ude(PREFACE.MSS)
@Inc1ude(INTRO.MSS)
@Inc1ude(BEGIN.MSS)
@Inc1ude(CURABS.MSS)
@Inc1ude(AXIABS.MSS)
@Inc1ude(GRAABS.MSS)
@Inc1ude(TEXABS.MSS)
@Inc1ude(GENERAL.MSS)
@UnNumbered(References)
@Bib1ioqraphy
@Inc1ude(HACKER.MSS)

Figure 13-1: Sample Root File

13.2 Separate Processing of Component Files

141

You can process component files independently as manuscripts in their own right. By
judicious use of the @Part command (described in this section), you can process the com
ponents of a large document separately for draft copy purposes and yet be able to process the
whole thing without having to change any of the components.

13.2.1 Component Files as Separate Documents

It frequently arises that some masterful piece of prose will be published as a chapter of a
larger work as well as being published on its own. By carefully keeping its head in the sand at
the right times, Scribe lets you set up files so that they can serve both as included parts of a
large document and as documents in their own right.

Scribe does not process certain commands when they occur in an included file but
processes the same commands when they occur in a root file. This conditional inclusion lets
you put commands into a file that are essentially ignored if it is part of a larger document but
processed if it is being produced as a document in its own right.

The commands @Device, @Make, and initial @Style commands are not processed if they
are found in an included file when the root file is being run through Scribe (although Scribe
will produce warning messages about them being specified after first text), but they are pro
cessed when the part file is run through Scribe independently. Of course, the commands are
processed if they are found at the beginning of the root file. Therefore, you can put the
commands necessary to process a file as a stand-alone document at the beginning of the file,
trusting that they will not take effect if it is included as part of a larger document.

142 SCRIBE USER MANUAL

13.2.2 Separate Processing of Component Parts: The @Part Command

For very large documents, the processing time for the full document is large enough that it
is wasteful to reprocess and reprint all of the document when only a piece of it has changed.
A person working on a small section of a large document needs to be able to produce a draft
copy of that section without the rest of the document. When each chapter is produced by a
different author, the several authors each need to be able to get proof copies of their chapters
apart from the other text.

For situations like these, Scribe provides an @Part command, which makes it possible to
process fragments of a document separately while maintaining their identity as part of the
document. That is, the part document has page numbers, section numbers, and cross references
appropriate to its position in the document.

To take advantage of this separate compilation facility, include an @Part command as the
first command in the file to be processed ieparately. The @Part command must provide two
items of information: A name for the part, and the name of the root file of the document. Its
syntax is:

@Part (part-name, Root=delimited-root-filename)

The following @Part command defines a Section entitled ''BasicConcepts'' which is a part of
the document whose root file is PRIMER.MSS.

@Part(BasicConcepts, Root "primer.mss")

The name that you choose for the part is just a name and so can be any combination of letters,
digits, and hyphens.

Having put an @Part command, each with a different part name but all specifying the
correct root file, into the various subfiles, you must process the entire document once so that
Scribe can record the part information. When Scribe finds an @Part command in an included
file while processing the root file, it makes a note of the part name and the page and section
numbers at that point. These notes are saved along with the cross reference data in the
auxiliary (.AUX) file for the document.

Once you have an .AUX file for a document with part information stored in it, you can
process any part by itself while maintaining the part's relationship to the whole document.
When Scribe finds an @Part command at the beginning of the file it is processing, it assumes
that the file is part of a larger document. Scribe then enters a special sub-compilation mode.
Scribe does three special things in sub-compilation mode:

1. Finds the root file and processes the commands that are in it before the first text.

2. Sets the page and section numbers to the correct values for the part being pro
cessed.

3. Reads in the cross reference label definitions for the entire document (not just
for the part being processed) from the .AUX file.

The result of this complicated series of acts is that the part document receives the correct
page and section numbers and (if it contains any cross references to labels defined in some
other part), correct cross references. The Index and Table of Contents produced by processing
a part reflect only the contents of that part.

PRODUCING LARGE DOCUMENTS 143

At the end of processing a part document, Scribe updates and rewrites the .AUX file, cor
recting the stored page number information for parts that follow this one, so that page numbers
for the other parts remain correct, even though the number of pages in this part might have
changed. This update will not work properly unless all of the included files, even those that
you do not plan to compile separately, have @Part commands at the front.

When you add a new part, you must process the whole document once in order to incor
porate information for the new part correctly into the .AUX file. Otherwise, Scribe issues some
warning messages and processes the part as if it started on page 1.

13.2.3 String Definitions in Multiple Part Documents

Text strings, defined using @String, are sometimes available when you are processing a
part file separately. Their availability depends on where they were defined. Text strings
defined in the root file, before any text lines, are available to any separate part file because
during subcompilation, Scribe reads the commands at the beginning of the root file.

String definitions are not stored in the .AUX file. Therefore, strings defined in one part file
are not available to another part file during separate processing. Also, because they are not in
the .AUX file, strings must be defined (with the @String command) before they are used (with
the @Value command). That is, forward references are impossible with strings during sepa
rate compilation. (They do work fine, however, when the root file is run through Scribe.)

13.3 Filenames and the @Use Command

The @Use command directs Scribe to use Database, bibliography, and auxiliary files other
than the ones it normally would. For example, Scribe normally looks for an .AUX file with the
same name as the manuscript file: if your manuscript file is "PRIMER.MSS'', then it looks for
"PRIMER.AUX". The following command tells Scribe to look for and use OTHER.AUX as the
auxiliary file.

@Use(AuxFile "OTHER.AUX")

The extension must be .AUX; that is, you cannot ask Scribe to use something like OTHER.TMP

as the auxiliary file.

To request that Scribe use some particular bibliography file, use the @Use command with
the parameter ''Bibliography'':

@Use(Bibliography "<Bovik>PROSYS.BIB")

In this case, you must supply a file extension but any extension is fine; it does not require
file type .BIB.

Normally when Scribe is searching for a Database file, it first looks in its own directory,
and if it fails to find what it is looking for, it then searches your directory. You can use the
@Use command to direct Scribe to search some other directory besides your own when it is
unable to find the file in its directory. The following command at the beginning of a root file
directs Scribe to look in some location other than your directory for all the Database files it
needs but cannot find in its own directory.

144

@Use (Database "<XSCRIBE>")
@Use (Database "[100, 113] ")

SCRIBE USER MANUAL

The precise nature of the location string depends on the details of your computer system. Do
not specify a filename in the @Use(Database) command.

13.4 Managing Cross References and Document Organization

Scribe creates an outline file (with file extension .OTL) containing information about sec
tion numbers, titles, and cross reference labels. The format of the information in the .OTL file
has been designed to help you keep track of labels, tags, section names, and so on as the
document grows. The .OTL file has two parts, a sequential part and an alphabetical part.

The first part of the .OTL file contains all the titles from the Table of Contents, all the
names of @Label and @Tag parameters, the document page where they occur, and their
position in the manuscript source file. The following sample lines from the .OTL file for an
early draft of this chapter show the various fields and their format.

Thirteen Producing Large Documents
BigDocuments

13.1 Breaking a Manuscript into Several Smaller Filas
IncludeCommand
Rootl'igura 13-1

13.2 Separate Processing of Component Filas
SepCom

13.2.1 Component Filas as Separate Documents
13.2.2 Separate Processing of Component Parts: The
13.2.3 String Definitions in Multiple Part Document

AuxNoString
13.3 Filenames and the @Use Command

Us.Command
13.4 Managing Cross References and Document Organizat

OTLfile
13.5 Word Counts and Vocabulary Construction

137 AIDS.UMl,
137 AIDS.UMl,
137 AIDS.UMl,
137 AIDS.UMl,
138 AIDS.UMl,
139 AIDS.UMl,
139 AIDS.UMl,
139 AIDS.UMl,
140 AIDS.UMl,
141 AIDS.UMl,
141 AIDS.UMl,
141 AIDS.UMl,
141 AIDS.UMl,
142 AIDS.UMl,
142 AIDS.UMl,
143 AIDS.UMl,

00200/1
00300/1
05400/1
05500/1
15400/1
15600/1
15700/1
16500/1
20100/1
29000/1
29100/1
31300/1
31400/1
39200/1
39300/1
48900/1

The outline is in the same sequence as your document. Each time Scribe sees a sectioning
command (such as @Section or @Chapter) or a cross reference marking command (@Label
or @Tag), it puts an appropriate line into the outline file. Every line has the manuscript file
name and position and the document page number (137 through 143 in this example); the
entries for @Tag definitions (RootFigure and VocabularyFigure in this example) also show
the number of the thing that the @Tag marks (14-1and14-2).

The second part of the .OTL file contains an alphabetized listing of the codenames for
@Tag and @Label. In each line, it records the codename, the document page on which the
@Label or @Tag command occurred (available from @PageRet), the numeric value as
sociated with the codename (available from @Ref), and the location of the command in the
manuscript file.

For example,

PRODUCING LARGE DOCUMENTS 145

Alphabetic Listing of Cross-Reference Tags and Labels

Tag or Label Name Page Label Value Source file Location

AUXNOSTRING 141 13.2.3 AIDS. UMl, 29100/1
BIGDOC'IJMENTS 137 13 AIDS. UMl, 00300/1
INCLUDECOMM2UID 137 13.l AIDS.UMl, 05500/1
OTLFILE 142 13.4 AIDS. UMl, 39300/l
ROOTFIGORE 139 13-1 AIDS.UMl, 15400/l
SEP COM 139 13.2 AIDS. UMl, 15700/1
USECOMM2UID 141 13.3 AIDS.UMl, 31400/l

If there are codewords that were used but never defined, Scribe produces a table of these
labels showing the location in the manuscript file of the first @Ref command using the
codeword. This table is placed both in the outline file and the error log file. A sample
undefined-label table looks like this example:

Undefined Label

CHARMAP

EXAMPLES
GREEKMAP
MAKEFORM
PRIVATEFONTS
STYLECHAPTER
STYLECOMM2UID
TOPMARGIN

First reference

(ENVIRS.UMl, 02900/19)
(ENVIRS.UMl, 01100/7)
(ENVIRS.UMl, 02600/19)
(SERMON.UMl, 04600/1)
(FORMAT.UMl, 04000/7)
(ENVIRS.UMl, 02200/5)
(TITLES.UMl, 09700/3)
(ATOD.1JM3, 02300/1)

13.5 Word Counts and Vocabulary Construction

Sometimes you want to know how many words are in a document. Some journals have a
minimum or maximum; other times you're just curious. One of the few things that computers
can do flawlessly is count, so Scribe has in it a word-counting mechanism to tell you how
many words are in your document.

Unfortunately, it's not always easy to establish just what is a word and what isn't a word.
For the purposes of this word count, a word is the sequence of characters between two con
secutive word breaks; read Section 10.1 on page 93 if you don't understand what a word break
is.

To get Scribe to count words, just supply the W or WordCount command-line option when
you run the program. Section 2.4, beginning on page 8, talks about options and how to use
them.

When Scribe finishes processing the manuscript file, it prints a line showing the word
count totals on your terminal and in the error log file.

**Word Count: 1200 (1041 in text, 159 in display).

For the purposes of this tally, "display", means any unfilled environment, for example,
Example, Display, Center, or MajorHeading; "text" is everything else. Text in page headings
and page footings is not counted at all.

Scribe can also build you a list of the words that you use in a document, that is, the
document's vocabulary. If you include the V or Vocabulary option, it builds this vocabulary
list in a file. The name of the file is the same as that of the manuscript file; its file extension is
.LEX.

146 SCRIBE USER MANUAL

The vocabulary list contains, in alphabetical order, all of the words that you use in your
document and the number of times that word is used. (If the word is used only once, no
number is shown.) For the purposes of this vocabulary list, a word is any sequence of letters,
numbers, hyphens, and apostrophes.

Below is part of a sample vocabulary list; it's taken from this manual.

ABBREVIATIONS
ABILITY
ABLE
ABOUT
ABOVE
ABOVE-MENTIONED
ABSENCE
ABSOLUTE
ABSOLUTELY
ACADEMIC
ACCEPT
ACCEPTABLE
ACCEPTANCE
ACCEPTED
ACCEPTS
ACCESS

11
3

11
71
51

10

4
2
4
2

2
4

The number in the right-hand column is the number of times that the word appears. If a word
appears only once, then no number is printed. The vocabulary analyzer uses a lot of memory;
if you are making a very big document (500 pages or more) with a big index (500 entries or
more), you might find that your computer doesn't have enough memory to process the whole
file.

Chapter Fourteen

Messages From Scribe

Scribe produces several kinds of information while it is processing a manuscript file. This
chapter describes what Scribe is telling you and what, if anything, you have to do about it.

Three classes of messages appear on your terminal while Scribe is working:

• Phase of processing. You can tell by the information on the terminal whether
Scribe is reading its Database or is actually working on your file.

•Warnings and error messages. Scribe informs you of all problems it finds while
processing the file.

• Final summary. Scribe finishes up with a summary of any problems and a list of
the files it created during the run.

The phase and summary messages are primarily for your information, so you can be sure
that Scribe is actually doing what you intended. The warnings and error messages identify
problems with the run that are caused either by something in your manuscript or by something
in the Database. A discussion of these messages appears in Section 14.2.

14.1 Informational Messages

Let's examine again what happens when Scribe processes a manuscript file. We'll use the
following short but reasonably complicated manuscript file so that you can see the different
kinds of messages that appear.

@Part (MemoDescript, Root "1oca1.mss")
@Chapter[Corporate Memo Document Type]
@Label[MemoType]
A corporate memo requires four environments in
the following order.
@Display<
@@To[•••]

@@From[. ..]
@@Subject [...]
@@Begin[Body]

148

@@End[Body]
>

SCRIBE USER MANUAL

A manuscript fi1e for a sinp1e memo 1ooks 1ike this examp1e:
@Begin(Verbatim)
@Inc1ude(1ocex3.fig)
@End (Verbatim)

This short file is named LOCMEM.MSS. We can see from the @Part command that it is part
of a larger document whose root is named LOCAL.MSS. Also, we can see from the @Include
command that it includes another file named LOCEX3.FIG. Let's examine the information
messages from Scribe as it works on the part file LOCMEM.MSS.

@scribe
Scribe 4(1400) Copyright (C) 1981, 1984 UNILOGIC, Ltd.
*1ocmem
[Processing LOCMEM.MSS.3 (Part MEMODESCRIPT of root LOCAL.MSS)

[Device "LPT"]
[Document type "manua1"]
[Subfi1e LOCAL.AUX.4]

1 (2.3) e 9
[Subfi1e LOCEX3.FIG.3]

10)
(Index has 8 entries)
[#INDEX]

[CONTENTS 11)
i.

Error found whi1e finishing up after the end of the manuscript:
Cross references to 2 1abe1s cou1d be wrong.
Run the fi1e through Scribe again if you need to be sure they

are right.

**LOCMEM.LPT for device LPT has 6 pages.
**LOCAL.AUX written.
**LOCMEM.OTL written.
**LOCMEM.ERR 1ists 1 error.

@

When it begins, Scribe reports the name of the file it is going to process. In this case, the
file is a portion of a larger document, so Scribe also reports both the part name and the name
of the root file. In the next two lines, Scribe reports both the device type it is going to create
the document for (LPT in this case) and the document type it is going to use (Manual in this
case). You can verify that Scribe is going to do what you intended by looking at these lines.
Next, Scribe locates and reads the .AUX file for your whole document, if one is present, and
reports it in the line [Subfile LOCAL.AUX.4]. At this point in processing, Scribe has com
pleted its setup phase and is ready to start working on your manuscript. (The setup phase
takes a few seconds of computer time on a typical document type. On small, slow, heavily
loaded systems, it can take several minutes to complete.)

MESSAGES FROM SCRIBE 149

As Scribe processes the file, it prints page numbers and section numbers on your terminal.
Section numbers are in parentheses. In the example above, page numbers 7, 8, and 9 are
announced, and Section 2.3 is announced.

When Scribe processes the included file, LOCEX3.FIG, it again reports the name of the
subfile it is using. After the last page in the text, it reports writing an Index (with 8 entries in
this case) and a Table of Contents page.

At this point, Scribe starts finishing up. First, a summary of errors found at the end of the
manuscript and then a list of the names of the files that this run is created. In this case, the
main document is in LOCMEM.LPT because we used device type LPT.

Scribe writes an error log file only when some error occurred during the run. So, you can
be sure when it does not report writing an .ERR file that no errors occurred.

You can keep the error messages off your terminal by using Q or Quiet as a command-line
option. Those options stop error messages from printing while Scribe is processing. While it
can be useful to keep messages from appearing during processing, it can also cause problems.
Do not disregard Scribe's error messages unless you know what you are doing and have a
good reason for it. In particular, don't report a problem to your DBA until you have
eliminated all possible errors listed in the .ERR file.

14.2 Warnings and Errors

Scribe produces three classes of messages while it is working.

•Warnings. These are messages of an informative nature that describe cir
cumstances that Scribe suspects are incorrect but that don't necessarily mean that
there is anything wrong. You might want to fix what is causing the message or
you might not.

•Errors. Problems exist in the manuscript that you probably want to fix some day,
but Scribe can process your file fairly well in the meantime. Errors do not
prevent Scribe from producing a document file, but its appearance might be less
than perfect.

• Serious Errors. Serious problems exist in the manuscript file or the Database.
These problems are often fatal, forcing Scribe to give up without producing a
document file. Fatal errors are normally the result of operating system errors,
missing Database entries, or physical limitations imposed on Scribe by the com
puter, such as lack of sufficient memory.

A list of Scribe's message texts follows. Each message is classified according to its
severity and has a short explanation of its meaning. Some of the phrases in the messages are
in italics inside angle bracket delimiters, for example, <filename> or <distance>. These in
dicate spots where Scribe fills in the message with whatever phrase applies to your particular
problem. For example, it would replace <filename> with whatever file it was processing when
it found the problem.

The messages in the table are in alphabetical order according to the non-italic portions of
their text.

150 SCRIBE USER MANUAL

14.3 Error Message Texts and Explanations

A line together with its footnotes is bigger than the page!
(Error) A page can hold a certain number of text lines. Scribe always puts
the text for a footnote on the same page as the line referencing that footnote.
If a line has too many footnotes, or if one footnote is too big, then the line
together with its footnotes cannot fit on one page. Scribe puts as much of the
footnote text as it can on the page with the footnoted line. If you don't think
that your footnote text is too big and are puzzled by this message, check for a
missing delimiter at the end of an @Foot command.

A word is wider than the output line. It will extend beyond the right margin.
(Error) Some environments, such as Enumerate, Quotation, and Display, nar
row the line width by widening the margins when they are entered. If these
environments are nested too deeply, the resulting output line is sometimes so
narrow that long words are wider than the entire line. Sometimes, if you
accidentally omit an @End(Enumerate) or @End(Quotation) or the like, you
end up nesting environments without realizing it.

An integer was required, but you used "<non-integer number>". Truncated to <integer>.
(Warning) Some environment and @Style parameters insist on an integer
value, but you have provided something that is not an integer. If this entry is
not just a typo, then you probably don't understand the meaning of the
parameter and should refresh your memory from the appropriate table in this
manual.

Bad keyword "<name>"; must be <list of legal parameters in this context>.
(Error) Many @Style and environment parameters take on values from a set
of names. For example, the Widow Action @Style parameter must be given a
value that is one of {Ignore, Warn, Force, Force Warn}. If Scribe sees some
thing like the following, then it reminds you, with this error message, of the
list of possible parameters.

@Sty1e(WidowAction 3)

The list of possibilities is printed only if there are six or fewer of them.

Cross references to <integer> labels could be wrong. Run the file through Scribe again if
you need to be sure they are right.

(Warning) This message means that some forward references might be
wrong. Read the section about forward references, Section 7.3, on page 69, to
find out what this term means. If you run the manuscript file through Scribe a
second time, the problem will be cured, but if this copy is not your final draft
of the document, there's no point in doing that.

Current font (font name) does not contain a "<something>" character.
(Error) Not all fonts available on all printing devices contain all 127 ASCII
characters. Your text contains a request for a character that is not present in
the font that you are using. Contact your DBA if you can not fix the problem
yourself.

Database entry "<name>" missing for device <device name>.
(Serious) Scribe cannot continue without the required Database entry. This
error often indicates some problem with the Scribe Database at your site and
is very rarely caused by anything you are doing wrong.

MESSAGES FROM SCRIBE 151

Default database entry missing for <entry name> on <device name>. Can't continue.
(Serious) The DBA at each Scribe site decides what the defaults are for vari
ous formats when you have not explicitly requested one. Scribe is looking for
a Database entry for something that is supposed to be the default, but cannot
find that entry in its Database. Contact your DBA.

Definition file for @Make(document type): no FaceCode clause in Ievel-1 @Begin.
(Serious) This problem is an error in the document type definition in the
Database, not an error in your manuscript file. What it most likely means is
that the document type that you are using has not been defined correctly by
the person who made it, although it is possible for this error to mean that
something awful has happened to one of the ordinary document types.
Contact your DBA.

Definition file for @Make(document type): no Font clause in level-1 @Begin.
(Serious) See above. A slight variation on the previous message. Not your
fault.

Definition file for @Make(<document type>): no text allowed before @Begin.
(Serious) See above. Not your fault.

Device <device name> not known.
(Serious) Scribe will not continue. This error message means that Scribe was
unable to find in its Database a definition file for the device that you have
asked for with the @Device command.

Error in definition or use of <environment name>: the BREAK attribute must be used
with GROUP.

(Serious) The named environment has been defined incorrectly. Scribe has
detected this error at a time that makes it impossible to recover gracefully.

Font <.Font name> does not include <.FaceCode name>. Using R (if possible) instead.
(Error) You have begun an environment that is requesting the named
FaceCode in the named Font. That Font as defined in the Database does not
include that FaceCode. Scribe proceeds as if the environment had asked for
FaceCode R, which is the Regular or Roman FaceCode. This omission might
be an error in the Font definition, or it might be an error in the environment
definition, but it is probably not your fault, unless you have been using your
own FontFamily files.

Font database does not contain <device-specific font name>
(Error) The Scribe font that you have selected with a @Style(FontFamily)
command is referencing a device font that does not exist. This problem might
be an error in the Scribe Database, or it might be an error in the font data
provided by the printer manufacturer. Contact your DBA.

Format error in AUX file : <.problem encountered>.
(Error) Scribe has found something in the .AUX file that does not look right,
indicating that you might have changed the file. The entire line on which the
error was found is ignored.

Format error in file <.Database filename>; line ignored.
(Error) The named Database file does not contain the required @Marker
commands. This is an error in the Database, of course. Contact your DBA.

"<name>" is not a recognized code. Something like "INCHES" or "TRUE" needed
here.

(Error) You have used an environment or @Style parameter with an incor-

152 SCRIBE USER MANUAL

rect value. The list of possibilities for correct arguments is too long to list for
you. Consult the manual.

"<undefined name or parameter>" is used where <particular kind of parameter> is needed.
(Error) Some environment attributes, such as Use, Counter, and Within, must
refer to an existing defined name. This message is printed when you have not
provided a valid predefined name as a value to that parameter or when you
have provided a name of the wrong type.

"defined name", a <wrong type>, is used where <right type> is needed.
(Error) You have provided a name of the incorrect type as a parameter ar
gument. Types include Counters, Environments, Commands, and Integers.

<name> is a <type>, but the <environment parameter> keyword needs a <type>.
(Error) Same sort of error as above.

@Begin(name) is meaningless: name is not a defined environment type.
(Error) Scribe pretends that you said @Begin(Verbatim) instead.

<unknown name> is not a recognized command keyword.
(Error) This message is printed by the parameter evaluator in Scribe when it
is so deeply entangled in processing that it has lost track of what command
you used. The parameter is wrong nevertheless. Check spelling.

<unknown name> is undefined; the <environment parameter> keyword must refer to
<operand type>.

(Error) Some environment parameters, like Use, Counter, and Within, need
an operand of some particular type. This operand is undefined, which means
it has no particular type and is certainly wrong.

<integer> labels were referenced but never defined. See error log file.
(Error) You have made cross references with @Ref to labels that you were
supposed to define with @Label or @Tag, but no definitions were found. The
error log gives you a list of the label names and where you referenced them;
go check their spelling. You can look in the .OTL file for a list of all of the
@Label and @Tag codewords that were defined.

Line too wide; lost "<some text>".
(Warning) Unfilled environments normally chop the lines to fit within the
margins. This line was too long and had to be chopped. Perhaps you should
use an environment like Verse that wraps long lines or perhaps the margins
are set wrong.

@<name> must be followed by an opening delimiter; you have put "<some character>"
instead.

(Error) This message means exactly what it says. You have typed something
like @Begin-Itemize or @End)Enumerate, failing to use appropriate delim
iters.

No <device name> font named ; the default will be used.
(Warning) The font that you have asked for with @Style(FontFamily), or
perhaps the font that the document type designer has asked for with a
@Style(FontFamily) inside the document type definition, is not available.
Scribe uses the default font instead of the one requested.

No <device name> <.Database item type> named <.Database entry name> was found in the
data base.

(Serious) Pieces of the Database are missing; contact your DBA.

MESSAGES FROM SCRIBE 153

No definition found in the database for document type <name> on device <name>.
(Serious) The document type definition that you have requested with the
@Make command cannot be found in the Database for the device you
specified with the @Device command. Scribe cannot continue and must stop
without creating a document file. Verify that you have requested a valid
device in the @Device command and a valid document type in the @Make
command. If you have, then contact your DBA.

Only <integer> fields are needed in the <command name> command (at <where in file>).
The rest are being ignored.

(Warning) You have provided more fields to a command than the command
was expecting. If this error is not just a typo, then you probably don't under
stand the syntax of the command. If this message is printed about a command
in the .AUX file, the real error is probably an invalid character in a @Label or
@Tag name from an earlier run, which for some reason was not detected at
the time.

Only bibliography commands are permitted in a BIB file. <name> is not a bibliography
command.

(Warning) The offending command is actually executed but peculiar things
might happen, since the .BIB file is sorted before it is processed and the com
mand may not be read at the time you expect to see it.

Opening delimiter <some left delimiter> not matched by a closing <right delimiter>.
(Error) Scribe never found the closing delimiter. Maybe you forgot it. If it's
really there, maybe it's so far forward in the file that Scribe gave up looking
for it. You can set the StringMax @Style parameter (Appendix E.7, page
217) to a larger number so that Scribe looks farther ahead without giving up.

Output device <device name> cannot achieve <special effect name>: ignored.
(Error) This problem is usually an error in the device definition in the
Database, but it is not detected until the first attempt to use the incorrectly
defined environment. The output device does not have the ability to perform
some function like underlining or boldfacing, yet the definition of this envi
ronment is asking for that effect. The request is ignored.

String begun at <file location> was never terminated with "@End(Comment) ".
(Serious) You have begun a long-form comment but never ended it. The
entire remainder of your file, beginning at the mentioned file location, has
been ignored.

Tab sequence(@\) used, but cursor has already passed the last tab stop.
(Error) The tab request is ignored. You might have set too few tab stops, or
your text might have carried you past one of them already.

The "<some character>" character that is supposed to be the end of the "name" com-
mand (at <file location>) is missing.

(Error) Scribe was unable to find the end of a footnote, chapter heading, or
other command encompassing text. If the delimiter is really there, then try
increasing the Stringmax @Style value (see page 217).

The <parameter name> parameter to the <command name> command needs a delimited
string.

(Error) Commands such as @Pageheading, in which you provide a series of
text fields, insist that the values of those fields be delimited. Thus, you must
say

@Pageheading(Left="Book")

rather than

154 SCRIBE USER MANUAL

@Paqeheading(Left=Book)

The <environment type> begun at <file location> is too big vertically to fit on one page.
(Error) Figures, tables, equations, and that sort of thing must each fit on one
·page. This one doesn't.

The <command name> command is allowed only in <restricted location>.
(Error) The command is restricted to Database files, as indicated, but you
have used it somewhere else.

The @Caption command is meaningful only inside a figure or table. It is being ignored.
(Error) You have tried to give a caption to something that isn't a table or a
figure or other Database environment for which captions are valid. Check
your delimiters to make sure you haven't accidentally put it in the wrong
place.

The <command name> command needs a <parameter name> keyword, which you have not
provided.

(Error) Some commands require that you provide specific parameter values.

The <parameter name> keyword is not meaningful in the <command name> command.
(Error) You have used a counter attribute in an environment or an environ
ment attribute in a @Style command, or something like that.

The <@Style parameter name> style keyword must be specified at the beginning of the
document, before the first text.

(Error) Some Style parameters are restricted to appear only at the beginning
of the document. This one, for example, is so restricted. If you think that it is
at the beginning of the document and Scribe thinks it isn't, carefully check for
extra closing delimiters and other spurious text. The ''beginning'' of a docu
ment is defined to be that part of it up to but not including the first text or the
first command that, if processed, might cause text to be generated.

The @<environment name> environment begun at <file location> was never closed.
(Error) You forgot the closing delimiter of a short-form environment. The
file location listed is the location of the beginning of that environment; it's up
to you to decide where the end should have been.

The @/ command is not meaningful unless the return marker is defined; it is being
ignored.

(Warning) The@/ command means "move the cursor to the return marker."
The return marker is not set. You probably meant to use the @\ command,
which means "tab to the next tab stop."

The @Begin(environment name) at <file location> was never closed.
(Error) You forgot the @End at the end of a long-form environment entry.
The file location given is the location of the @Begin.

The AUX file <filename> is missing. Page numbering will start at 1.
(Warning) You are compiling a subpart file, but there is no .AUX file. The
processing continues, but the page, chapter, and counter numbers in the sub
part all begin at 1.

The AUX file for this document shows no record of a part named <name>. Page num-
bering will start at 1.

(Warning) You are compiling a subpart file, but the .AUX file shows no
record of it ever having been part of this document. Processing does continue
with all the page, chapter, and other counter numbers in the subpart beginning
at 1.

MESSAGES FROM SCRIBE 155

The bibliography tag "codeword" has already been defined (at <file location>). This one
will not be included in your complete bibliography.

(Warning) You have asked for the entire bibliography file to be included by
specifying @Style(BibSelect Complete). Scribe has found a bibliography
entry whose codeword duplicates a codeword found earlier in this or a pre
vious .BIB file. This later entry will not be included in the bibliography listing
in your document.

The character "<some character>" is invalid as used in the template "<template>".
(Error) Numbering templates are used in counters, like Chapter and Section,
and numbered environments, like Enumerate and Theorem. Errors in
templates are detected when they are first used, not when they are defined.
The current command references a template with an invalid code. Figure 15-2
on page 176 lists the valid template codes.

The characters "<nonsense characters>" are invalid here and are being ignored.
Probable cause: missing close-delimiter earlier in the file.

(Error) In Scribe commands that take parameters, the parameters or
parameter/value pairs are separated by commas. This message is printed
when Scribe finds text after a parameter or parameter/value pair but before a
comma or closing delimiter. The most common cause of this error condition
is failing to put a closing delimiter on a parameter's value earlier in the com
mand, which disrupts the delimiter balance for the rest of the command.

The command <command name> is allowed only at the beginning of a manuscript.
(Error) Some commands are restricted to appear only at the beginning of the
document. If you think the command in question is at the beginning of the
document and Scribe thinks it isn't, carefully check for extra closing delim
iters and other spurious text. The ''beginning'' of a document is defined to be
that part of it up to but not including the first text or the first command that, if
processed, might cause text to be generated.

The current font (font name) does not include special character number <integer>.
(Error) This message indicates an error in a Database file; the precise nature
of the error depends on the printing device. Contact your DBA.

The delimited string beginning at <file location> was never terminated by a closing
<some character>.

(Error) When a parameter gets a delimited string for an argument, as in some
command like @Style (Font "Helvetica 12"), Scribe gets unhappy
when the closing delimiter is missing. If the delimiter is not really missing,
then you need to increase the value of the StringMax @Style parameter.

The label <codeword> has already been defined (at <file location>). This redefinition is
being ignored.

(Error) @Label and @Tag codewords must be unique. You have used one
twice.

The last <integer> tab stops set by this command were past the right margin.
(Warning) You can't set tabs past the current right margin.

The left and right margins overlap; this leaves no room for any text.
(Error) The margins that you have specified are so big that the sum of the
left margin and the right margin is greater than the paper width. Remember
that the right margin value is measured from the right edge of the paper, and
the left margin value is measured from the left edge of the paper.

156 SCRIBE USER MANUAL

The manuscript file contains no text.
(Warning) If you want output, you've got to provide input. Your manuscript
file is either empty or else consists of nothing but setup commands.

The name <name> is used in the @Value command, but it has not been defined with
@String.

(Error) Appendix E.6 on page 216 contains a list of predefined strings. Any
name not in that list must be defined with @String before it can be used in an
@Value command.

The keyword <@Make parameter name> is not part of document type <document type
name>. It is being ignored.

(Warning) @Make commands can take parameters to modify the document
type, but the parameter that you have provided in this @Make command is
not a correct parameter for this document type. Contact your DBA.

The sequence "@<some character>" is not meaningful; treated as text.
(Warning) You have put an"@" character in your manuscript file and fol
lowed it by some punctuation symbol that Scribe does not recognize. If you
really meant to have an @-sign appear in the document, use two in a row.

The symbol <name>, <type name>, cannot be redefined as <different type name> at block
level 0. This statement must go at block level 1.

(Error) This situation is an error in the document type definition file from
Scribe's Database. It means that lines in the Database file are in the wrong
order. Contact your DBA.

This @End does not have a matching @Begin.
(Error) Somehow you have managed to get more @End commands than
@Begin commands or have them improperly nested.

This @Part command is effectively at the beginning of the manuscript and is therefore
being ignored.

(Warning) You don't need a @Part command at the beginning of the very
first subpart file if you have no text at all in the root file.

This @Part command is missing a ROOT parameter. Can't subcompile without it, so
subcompilation mode is being turned off.

(Error) If you want to use subcompilation mode, you have to provide the
name of the root file in the @Part command.

This copy of Scribe has been configured without a driver for device <device name>.
(Serious) The copy of Scribe that you are running does not contain the neces
sary program code to process text for the device that you have selected.
Contact your DBA to find out why.

Too many arguments to <command name>; ignoring all past "parameter"
(Warning) You have provided more parameters to this command than it
knows what to do with.

Unable to access file <filename> because of operating-system problem: <octal code
returned from Operating System>.

(Serious) The operating system has refused Scribe access to the named file,
and it returned the indicated numeric status code as the reason why. You have
to check with a systems programmer to find out what this code means. Tell
her it is an error code from OPEN, ENTER, or GTJFN.

MESSAGES FROM SCRIBE 157

Unmatched names: @Begin(<environment name>) [at <file location>] closed with
@End(environment name).

(Warning) The names in @Begin and @End commands have to match; you
can't say @Begin(Display) and @End(Center), for example. This might
mean that you got confused and have some @End commands in the wrong
order.

We can't let you EQUATE the name <name>, because it's already defined as <some
type>.

Widow line.

(Error) @Equate can only be used to define new names, not change the
meaning of old ones.

(Warning) You have specified either @Style(WidowAction Warn) or
@Style(WidowAction Force Warn) requesting that you be warned about
widow lines. This message is your warning; it printed for each widow line.

You are trying to use @F<some character>, but you haven't defined special font <some
character>.

(Error) Before you can use @Fl or @F2 or other special-font environments,
you must define them with the @SpecialFont command.

You can't define a string named <name> because it's already defined as <type>.
(Error) Names that you define with @String cannot duplicate other names
that you define with other commands, like @Textform or @Define. This
name does duplicate one.

You can't EQUATE something to the undefined name <name>.
(Error) You have attempted to equate a name to something that is not cur
rently defined. Check your spelling and make sure that the @Equate com
mand comes after the definition of the thing being equated to.

You can't specify all three of Line Width, LeftMargin, and RightMargin.
(Warning) No more than two of the @Style parameters LineWidth,
LeftMargin, and RightMargin can be specified in a given document.
Sometimes, the document type designer has specified one or more of them in
the document type definition file, in which case your selection has clashed
with hers.

You have already defined part <part name> (At <file location>). The new definition is
being ignored.

(Warning) The names in @Part commands must be unique; you have used
one of them twice. Scribe keeps the first one it sees and ignores all others
with the same name.

You have nested subscripts and superscripts deeper than the limit of <integer>.
(Warning) Superscript and subscript commands cannot be nested deeper than
the named limit. You didn't really mean@+[@+[@+[@+[@+[@+ [...]]]]]]
anyhow, did you?

You may not start a new paragraph while still inside a subscript or superscript.
(Error) If Scribe encounters a paragraph break while in a subscript or super
script, it closes the scripting. If you really mean to start a new paragraph
inside the script, close the script and reopen it in the new paragraph.

158 SCRIBE USER MANUAL

Chapter Fifteen

Changing Things

We hope you didn't turn here first; you really shouldn't be trying to change the basic
system until you have used it enough to understand it fairly well. Even then, you might
reconsider.

We believe that one of the main reasons Scribe is easy to use is that it predefines almost
everything you need. We believe strongly in the advantages of using standard, unembellished
document types. Perhaps this chapter is a good place to repeat explicitly the major ad
vantages.

1. You don't waste a lot of time thinking about the typographic aspects of what you
are doing. During most of the writing process, you should be concentrating on
content rather than form.

2. When you use a standard document type, your manuscript files are completely
portable. You can move them to any site running Scribe or include parts of them
in any other document, and they always work.

3. When learning a new system, people often find its behavior unexpected or
surprising. This reaction is natural; it's all part of building a mental working
model of the new system. Unfortunately, many experienced programmers react
to their initial feeling by trying to change the system rather than by trying to
change their mental model. We don't want you to change the system. Scribe's
model of the document preparation process is genuinely different from that used
by many previous systems, and we believe it is worth learning.

We do agree, however, that for special applications it is sometimes necessary to modify
some aspects of a document. Most simple changes that apply to the whole document are
handled with @Style commands; changes for individual environments are handled differently.
This chapter outlines the basic procedures for making changes to the appearance of an envi
ronment.

There is nothing in this chapter that you need to know in order to be a marvelously com
petent Scribe user. If you read it, you may find yourself in the twilight zone between being an
experienced user and having the full power of a DBA. You may find that you can't live
without reading the Scribe Database Administrator's Guide. Be forewarned: It's complicated
and even longer than this manual.

160 SCRIBE USER MANUAL

15.1 Defining Command-Name Synonyms: The @Equate
Command

This section actually describes changes to the appearance of your manuscript file rather
than to the appearance of the document. It belongs here, however, because it is a change that
can make your subfiles nonportable.

Scribe environment and command names are full words in every case except the FaceCode
environments. To use any of these names, you must type the full name, properly spelled.
Scribe ignores capitalization, although we show most examples in mixed case because we find
them easier to read. Some people find the extra typing annoying. Remember, though, that the
manuscript is keyed only once but is read many times. Abbreviations in the .MSS file will give
you fits next year when you try to revise the Annual Report.

Scribe does permit you to define synonyms for command or environment names. Use the
@Equate command to define a synonym for any existing name. For example,

@Equate(List=Enumerate)

As a result of that command, you could now use either @Begin(List) or @Begin(Enumerate)
to produce a numbered list. If you are British, you may feel more comfortable with the
spelling of the Center environment created with this command:

@Equate(Centre=Center)

You cannot use @Equate to change the meaning of a command or environment that al
ready exists. That is, you cannot change the definition of one name by equating it to another.

15.2 Environments

Modifications are straightforward in Scribe once you understand the nature of what you are
trying to change. The characteristics of the various formatting environments are declared in
Scribe's Database files. Each environment definition consists of a set of attribute-value pairs.
The attributes specify aspects of the environment, like spacing, left margin, type face, or
filling. The values taken on by the attributes specify what kind of formatting Scribe does.

When you use an environment, say Itemize, Scribe looks up what it found in the Database
for Itemize and uses those attributes and values in processing your text. Thus, to change
anything about Itemize, you would have to figure out which attribute controls the aspect you
want to change and what value for that attribute would produce the effect you need.

Let's examine the definition for Itemize as it comes from the factory. You could go read
the Database file to see it, but we'll print it here to save you the trouble.

@Define(Itemize, Break, Continue, Fill, LeftMargin +5,
Indent -5, RightMargin 5, Numbered<- @,* >,
NumberLocation LFR, BlankLines Break,
Spacing 1, Above 1, Below 1, Spread 1)

Break, LeftMargin, and Blanklines are all attributes. Most attributes have values: The
Blanklines attribute has the value ''Break''. Some of the attributes appear not to have values.
Scribe assumes a default value when you don't specify one. For example, the default value
when you use the Fill attribute is On. On is a Boolean value, which is a value from the set
{On, Off, Yes, No, True, False}.

CHANGING THINGS 161

For many of these attributes, you can probably guess what aspect of the Itemize environ
ment it controls. For example, LeftMargin, Indent, and Spacing all mean exactly the same
things as they do in the context of the @Style command. (See page 39.) Others have remark
ably obscure meanings, but this chapter does not attempt to explain them.

Whenever you have trouble understanding something, go read the Database. All of
Scribe's Database files, except for some font information provided directly by printer
manufacturers, are ordinary text files. Seeing how the various attributes behave in familiar
environments is the best way to increase your understanding of their meanings. Ask the DBA
at your site where to find the Database files. Look at both the .DEV file for the device you are
using and the .MAK file for the document type you are using.

15.3 Modifying Environments

You can modify an environment either locally or globally. A local modification applies
only to one particular instance of an environment - the one you are changing. A global
modification applies to all of the instances of that environment in your document.

15.3.1 Local Changes

A local modification requires that you add an attribute-value pair for the change to the long
form of the environment.

@Begin (environment-name, <list-of-changes>)

Suppose that for just one instance of Itemize, we needed the items to appear without any
blank lines between them. We know that Spread is the attribute controlling the extra space
between items. Therefore, we change the value for the Spread attribute to 0:

Manuscript Form:

@Begin(Itemize,Spread 0)
Tom

Dick

Harry
@End(Itemize)

The result in the document looks like this list:

•Tom
•Dick
•Harry

Document Result:

The change to the value for Spread would last only until the end of this particular Itemize
environment. It would apply to any other environment nested in this one that inherits (rather
than redefines) its Spread value. It would not apply to any other environment following this
one.

162 SCRIBE USER MANUAL

You don't have to worry about "turning off' any of the changes you make. They are
automatically turned off during the @End command. As you can see in the example, the
@End command for the environment has its normal form, without any additional attributes.

If you find yourself using this form of environment modification more than once or twice
in a document, you should consider defining a new environment or making a global change.

15.3.2 Global Changes: The@Modify Command

A global modification requires that you specify the attribute-value changes using a com
mand called @Modify. This command needs the name of the environment being changed and
the list of attribute-value changes to make:

@Modify (Name ,<list-of-changes>)

Suppose you are doing a reference chart for something that uses a lot of short commands.
It is clearly a place for using Description, but you find that Description leaves too much space
(horizontally) between the header word and the descriptive text. Can we change it? Let's
look at the Database definition for Description:

@Define(Description, Break, Continue, Above 1, Be1ow 1,
Fi11, LeftMargin +16,Indent -16, Spacing 1)

Description works by moving the left margin in and then doing a hanging indent (negative
indent) to move the header words out into the margin. Therefore, we can change Description
to suit our needs by changing the values for LeftMargin and Indent:

@Modify(Description,Leftmargin O.Sin,Indent -0.Sin)

@Modify commands may appear at any point in the .MSS file, although we suggest that you
include them at the beginning of the document along witl;i the other commands that define the
document's overall characteristics. The modified form of the environment, Description in our
example, takes effect as soon as the @Modify command is processed. By always including
@Modify commands at the beginning of the manuscript file, you are sure of what form of the
environment you will get. If you put @Modify commands halfway through a document, you
may edit an early portion of the document to use one of the environments mentioned in an
@Modify command and be disappointed by getting the standard form of the environment
instead of the modified form.

@Modify commands can be included in subfiles specified with the @Include command
(see Chapter 13), but when the entire document is run through Scribe (or in other words, the
root file is run through Scribe), the modification is only in effect from that point in the docu
ment on. When a subfile is compiled separately, the modification is only available if the
@Modify command is actually in that file. For example, if you had a root file with four
@Include commands in it and the third included file contained an @Modify(Enumerate,
Spacing 3 Lines) command, the fourth chapter would produce the standard form of
Enumerate when it is run through Scribe itself. Only information stored in the Auxiliary file
is available to subfiles during separate compilation, and modifications are not listed in the
.AUX file.

The essence of using @Modify effectively is to recognize which of the standard environ
ments is most similar to the effect you are trying to achieve. Think carefully about the charac-

CHANGING THINGS 163

teristics of what you are trying to produce. When you can express it as "that's just like x,
except...," then you have the problem solved!

15.4 Defining New Environments

Defining completely new environments is usually the job of a .MAK file, which contains
document type definitions, in the Scribe Database. While you are waiting for the Database
doctor to arrive, you can define your own new environments in a manuscript file. Be wary if
you find yourself wanting a new environment at every step. You might simply not be familiar
with the standard ones provided by Scribe, or you might be able to modify others to suit your
needs.

You can define new environments by basing them on existing environments (much like the
@Modify command) or by creating them completely from scratch. In either case, you use the
@Define command to define a new environment. The guidelines for where to place the
@Define commands and when they are then in effect is the same as for the @Modify com
mand. They can be included anywhere in your .MSS file, but we urge you to place them in the
beginning of the file.

15.4.1 New Environments From Old

Defining a new environment based on an existing one requires both the name of the old
environment and the list of differences:

@Define (NewName=OldName, <li.st-of-differences>)

This command creates a new environment by first copying all of the attributes and values for
the old one. It then takes the list of differences, changes the values for attributes already in the
definition, and adds any new attribute-value pairs. It is much the same as @Modify, except
that it leaves the original environment unchanged.

As an example, suppose you have a document that requires an extra kind of example, one
that is like ProgramExample, but capitalizes all of its text and ensures that the entire text is
together on one page:

@Define(CapProgramExample=ProgramExample,
Capitalized=True, Group)

15.4.2 New Environments From Scratch

Creating completely new definitions can be a tricky business. This chapter does not at
tempt to explain the process in any detail. n

The best way for you to proceed is by analogy with existing definitions. Read the Database
files. Experiment with modifying standard environments until you think you understand what
each of their attributes is contributing. Then launch out with your own @Define commands:

@Define (Newname, <list of attribute-value pairs>)

164 SCRIBE USER MANUAL

15.5 Environment Attributes for the @Define and @Modify
Commands

This section contains a list of the most common attributes and the kinds of values they can
take on. Some attributes take Boolean values: Justification can be On or Off. Some take a
parameter value: Spaces can be Kept, Ignore, Ignored, Compact, Tab, Null, Normalize,
Normalized, or NoBreak. Others take numeric values: LeftMargin can be any kind of hori
zontal distance unit.

This list of the environment attributes is not complete. Some of the Database definitions
use attributes that are not in this list. We have omitted attributes that are either esoteric or
dangerous. Please don't attempt to use any of the attributes that you happen across in the
Database unless they are in this list.

Above

After Entry

After Exit

Anchor

Anchored

Controls the amount of white space above the environment by overlapping
with the Below value for the preceding environment. Use a vertical dis
tance, for example, Above 3Lines.

A delimited text string that is evaluated each time the environment is en
tered. This text will be placed in front of the first actual text of the envi
ronment. For example, AfterEntry=<@TabClear()>.

A delimited text string that is evaluated immediately after the environment
is exited. This text will be placed in front of the text that follows the
environment.

Anchor means the same thing as Group, but it has this name for mnemonic
value in the @Modify command. It turns off Float.

Synonym for Anchor.

BackgroundColor Specifies the color of the background over which this environment will be
printed. This attribute is ignored for devices which cannot change back
ground colors. The value of this attribute must be a color defined for your
site. See your DBA for details.

BeforeEntry

BeforeExit

Below

BlankLines

A delimited text string that is evaluated immediately before the environ
ment is entered. This text will be placed after any text that precedes the
environment but before any text in the environment itself. Differs from
AfterEntry in that the BeforeEntry string appears with the attributes that
are in effect before the environment is entered.

A delimited text string that is evaluated immediately before the environ
ment is exited. This text will be placed after any text that is part of the
environment proper.

Controls amount of white space below the environment by overlapping
with the Above value for the following environment. Use a vertical dis
tance, for example, Below 2cm.

Controls what happens to blank lines in the environment. Use a value
from the set {Ignore, Ignored, Break, Kept, Hinge, HingeBreak,
HingeKeep}. Ignore and Ignored disregard blanklines in the .MSS file
completely, resulting in no paragraph breaks. Break converts blanklines
into paragraph breaks. More than one blankline together results in a single
paragraph break. Kept retains all blanklines. More than one blankline
gives the same number of blanklines in the output Hinge simulates an
@Hinge command for each blank line in the environment. HingeBreak
both simulates an @Hinge command for each blank line in the environ-

CHANGING THINGS 165

ment and causes a paragraph break. HingeKeep both simulates an
@Hinge command for each blank line in the environment and retains all
blanklines in the .MSS file. For example, normal text uses BlankLines
Break; unfilled text uses BlankLines Kept. Default value: Kept.

Boxed The Boxed attributed must be specified whenever the Columns attribute
specifies output in multiple columns. Do not attempt to use this attribute
in other contexts or specify a value for it.

Break Controls whether beginning or ending the environment causes a line
break. Use a value from the set {Before, After, Around, Off}. Before
always causes a paragraph break before an environment. After always
causes a line break for the last line in an environment. (The final line
break may also be a paragraph break. See the Continue attribute.) Around
is the combination of Before and After. Off results in no line breaks
before or after the environment. Default value when Break is mentioned:
Around. Default value when it is not mentioned: Off

Capitalized Controls whether the text is converted to all upper case or left alone. Use
a Boolean value. Default value: True.

Centered Controls placement of a line between prevailing margins. Centered does
not have a value. Centered, Fill, FlushLeft and FlushRight are mutually
exclusive attributes. Only one of them can be in effect at a time.

Color Specifies in what color the running text of the document should be
printed. The value of the attribute must be a color defined for your site.
See your DBA for details.

ColumnMargin A horizontal distance indicating the space between columns in a multi
column environment. Default unit: Characters.

Columns A positive integer indicating the number of columns into which the text of
the environment is to be formatted.

Column Width A horizontal distance indicating the width of each column into which the
text of the environment is to be formatted. It is the sum of ColumnMargin
and Line Width.

Continue Controls whether the line following this environment resumes the same
paragraph or starts a new one. It applies only when this environment
definition also specifies either Break Around or Break After. Use a value
from the set {Allowed, Force, Forced, Off}. Allowed tells Scribe that a
new paragraph may be started after the environment is ended; the final
decision is based on whether there is a blank line between the end of the
environment and the next line of text. Off never produces a new para
graph. Force and Forced always results in a new paragraph. Default value
when Continue is mentioned: Allowed. Default value when it is not
mentioned: Off.

Copy References an existing environment and copies that environment's defini
tion into the new environment. Differs from Use in that the copy is made
right away rather than at the new environment's invocation. The differ
ence is only significant if the environment being copied will be changed
before the new environment's invocation.

Counter Controls which counter applies to the environment and which counter
@Tag finds. Use a counter name as the value, for example, Counter
FigureCounter.

CRBreak Controls whether a carriage return in the manuscript file causes a para-

166

CRSpace

SCRIBE USER MANUAL

graph break in the document. Use a Boolean value, for example, CRBreak
On means every carriage return causes a paragraph break. Default value:
True.

CRSpace causes carriage returns in the environment to be treated nor
mally; that is, as one or two spaces, depending on whether the character
preceding the carriage return is a sentence-ending punctuation mark. It is
the equivalent of CRBreak Off.

ExceptionDictionaries
Specifies the exception dictionary to be used when an Automatic hyphen
ation method is in force. Use a user-defined dictionary name as a value.

ExceptionDictionary
Synonym for ExceptionDictionaries.

FaceCode Selects a FaceCode from those available for the current font. Use a
FaceCode name, for example, FaceCode R.

Fill

Fixed

Float

FloatPage

FlushLeft

FlushRight

Font

Free

Group

Specifies line filling, that is, putting as many words on a line as possible.
Fill has no value to specify. Centered, Fill, FlushLeft, and FlushRight are
mutually exclusive attributes. Only one of them can be in effect at a time.
(See Justification attribute.)

Places text for this environment in a fixed vertical position on the page.
Use a relative vertical distance, for example, Fixed 4.4inches. Positive
values specify the distance of the top of the environment from the top of
the paper; negative values specify the distance of the bottom of the envi
ronment from the bottom on the paper. Default unit: Lines.

Permits text in the environment to be moved along to the first page in the
document where the whole environment fits on a page. Float has no value
to specify. Figure and Table environments have the Float attribute set
normally. Float, Group, FloatPage, and Free are mutually exclusive at
tributes. Only one of them can be in effect at a time.

Moves text in the environment to the next available whole page.
FloatPage has no value to specify. The FullPageFigure and FullPageTable
environments have the Floatpage attribute set normally. Float, Group,
FloatPage, and Free are mutually exclusive attributes. Only one of them
can be in effect at a time.

Flushes each line of text in the manuscript left against the prevailing left
margin. FlushLeft has no value to specify. Centered, Fill, FlushLeft, and
FlushRight are mutually exclusive attributes. Only one of them can be in
effect at a time.

Flushes each line of text in the manuscript right against the prevailing
right margin. FlushRight has no value to specify. Centered, Fill,
FlushLeft, and FlushRight are mutually exclusive attributes. Only one of
them can be in effect at a time.

Specifies a font for this environment. Use a font name (from those
specified in the Database for this device), for example, Font Body Font.

No grouping constraints on the text in this environment. Its major ap
plication is for modifying other grouping attributes. Free has no value to
specify. Float, Group, FloatPage, and Free are mutually exclusive at
tributes. Only one of them can be in effect at a time.

Starts a new page if insufficient space remains on the current page for this
environment. Group has no value to specify. Float, Group, FloatPage,

CHANGING THINGS

Hyphenation

167

and Free are mutually exclusive attributes. Only one of them can be in
effect at a time.

Specifies the method of hyphenation that is in effect for the environment.
Use a value from the set {AutomaticExact, AutomaticFolded,
DictionaryExact, DictionaryFolded, Off, False, No, On, Yes, True, Old,
OldExact, OldFolded, Warn}. See SubSection 10.1.3 for details about the
possible values. Default value when Hyphenation is mentioned: Old.
Default value when it is not mentioned: Off.

HyphenationDictionaries
Specifies the hyphenation dictionary or dictionaries to be used when a
Dictionary hyphenation method is in force. Use a user-defined dictionary
name as a value.

HyphenationDictionary
Synonym for HyphenationDictionaries.

HyphenBreak A boolean that specifies whether hyphens (minus signs) in the .MSS file
can be taken as hyphenation points. This kind of hyphenation is inde
pendent of that specified by the Hyphenation attribute. Default value:
True.

Increment Requires a counter name. Increments the counter each time the environ
ment is invoked.

Indent Controls the displacement of the indented margin from the prevailing mar
gin. Specified by horizontal distance relative to the prevailing left margin.
For example, Indent 0, Indent +3, or Indent -5.

Indentation Synonym for Indent.

Justification Justified text has the words in the text aligned with the prevailing right
margin. Justifying requires filled text (see Fill attribute). Use a Boolean
value. Justification On for an individual environment requires global jus
tification on (see @Style). Default value: True.

LeadingSpaces Controls what to do with leading spaces in this environment. Use a value
from the set {Ignore, Ignored, Compact, Kept, Null, Tab, Normalize,
Normalized, NoBreak}. Ignore and Ignored produce no spaces in the out
put, but the spaces still cause word breaks. Null disregards leading spaces
and does not cause word breaks. NoBreak retains the spaces, but they do
not cause word breaks. Compact reduces the number of spaces to one
between words and after commas and semicolons and two after sentence
ending punctuation. Normalize and Normalized reduce the number of
spaces to one in all cases. Kept retains all spaces, regardless of position.
Tab reduces all cases of three or more spaces to a tab command. Default
value in unfilled environments: Kept. Default value in filled environ
ments: Ignored.

LeftMargin Controls width of the left margin. Use a horizontal distance. Absolute
distances are measured from the global left margin; signed distances are
measured from the prevailing left margin. For example, LeftMargin 5,
LeftMargin +O, or LeftMargin -16. Line Width, LeftMargin, and
RightMargin all contribute to defining line layout. You can specify at
most two of the three.

Line Width Specifies the maximum width of a line of text. Use a horizontal distance,
for example, LineWidth 65. In a multi-column environment, LineWidth
specifies the width of one column of text. Line Width, LeftMargin, and

168 SCRIBE USER MANUAL

RightMargin all contribute to defining line layout. You can specify at
most two of the three.

LongLines Specifies what Scribe is to do with unfilled lines that are too long for the
current margins. Use a value from the set {Chop, Keep, Wrap}. Chop
truncates lines at the right margin and prints an error message. Keep per
mits lines to be printed past the right margin. Wrap prints a line to the
right margin and then continues that line onto the next output line, begun
at the indent margin (see the Indent attribute). Default value: Chop.

Need Starts a new page unless the amount of space requested remains on the
current page. Use a vertical distance, for example, Need 8lines.

NoFill Synonymous with FlushLeft.

Numbered Specifies a format for numbering the paragraphs in the environment. Use
a counter template as a value, for example, Numbered <@1. >. (See
also the Referenced and NumberFrom attributes and Section 15.8.)

Number From Gives an initial value for numbering the paragraphs. Use a numeric value,
for example, NumberFrom 4. (See Numbered.)

NumberLocation Controls where paragraph numbers appear. Use a value from the set
{LPL, LFR, RFL, RFR}. The first letter specifies the margin, left (L) or
right (R). FL and FR stand for Flush Left and Flush Right. LFL and RFR
relate to the global margins; the number is placed within the global mar
gin. LFR and RFL relate to the prevailing margins; the number is placed
outside the prevailing margins. Default value when NumberLocation is
mentioned: LFR. Default value when it is not mentioned: RFR.

OverStruck Specifies the number of extra strikes to obtain boldface on devices capable
of overstriking. Use a numeric value, for example, Overstruck 1.

Pagebreak Controls whether beginning or ending the environment causes a page
break. Use a value from the set {Off, Before, After, Around, UntilOdd,
UntilEven, EvenAround, OddAround}. Before ensures that the environ
ment begins on a new page. After ensures that the text immediately after
the environment begins on a new page. Around is a combination of
Before and After. UntilOdd ensures that the environment begins on an
odd-numbered page, even if an even-numbered blank page must be
produced. UntilEven ensures that the environment begins on an even
numbered page, even if an odd-numbered blank page must be produced.
UntilOdd and UntilEven are the same as Before if the document is
singlesided. Off causes no pagebreaks before or after the environment.
EvenAround is a combination of UntilEven and After. OddAround is a
combination of UntilOdd and Around. (See the @Style parameter
DoubleSided.)

Pageheading Controls what happens to running headers during this environment. Use a
Boolean value. Default value: True.

Pageheadings Synonymous with Pageheading.

Referenced Like Numbered, but provides a template to be used for cross references to
this generated number. The Enumerate environment, for example,
specifies Numbered <@1. >, Referenced <@1>, so that the cross
reference tags won't pick up the period and space in the Numbered
template.

RightMargin Controls width of the right margin. Use a horizontal distance. Absolute
distances are measured from the global right margin; signed distances are

CHANGING THINGS

Script

Sink

Slant

Spaces

Spacing

Spread

Tab Export

Underline

UnNumbered

169

measured from the prevailing right margin. For example,
RightMargin 0.5inch, RightMargin +O, RightMargin -10. RightMargin,
Line Width, and LeftMargin all contribute to defining line layout. You can
specify at most two of the three.

Controls the position of the baseline of this environment relative to the
ordinary text baseline. Use a signed vertical distance, for example,
Script +0.5 lines.

The Sink attribute is similar to Above, save that it specifies a minimum
distance from the top text margin rather than from the previous environ
ment. Sink takes a vertical distance as a value. If an environment has, for
example, the attribute "Sink 2 inches", then the first line of text in that
environment will be 2 inches from the top edge of the normal text area of
the page, which is 2 inches + TopMargin from the top edge of the paper.

Specifies a counterclockwise angle by which the characters in this envi
ronment will be slanted. Meaningful only for devices that can slant char
acters automatically. Positive angles are measured counterclockwise;
negative angles clockwise.

Controls what happens to spaces from the manuscript file in this environ
ment. Use a value from the set {Kept, Compact, Ignore, Tab, Null,
Ignored, Normalize, Normalized, NoBreak}. Ignore and Ignored produce
no spaces in the output, but the spaces still cause word breaks. Null
results in no spaces in the output and no word breaks. NoBreak retains the
spaces, but they do not cause word breaks. Compact and Tab reduces the
number of spaces to one between words and after commas and semicolons
and two after sentence-ending punctuation. Normalize and Normalized
reduce the number of spaces to one in all cases. Kept retains all spaces,
regardless of position. Default value for filled environments: Compact.
Default value for unfilled environments: Kept.

Controls the distance from the baseline of one line to the baseline of the
next in this environment. Use a vertical distance, for example, Spacing 1
means single spacing. Warning: Spacing 2 corresponds to double spac
ing, but because of typographical considerations, it does not use twice as
much space as Spacing 1 produces. See the Scribe Database
Administrator's Guide for more information.

Controls the amount of space that is added to the Spacing value to give the
vertical space between paragraphs. Use a vertical distance, for example,
Spread 1 with Spacing 1 gives one extra line between paragraphs.

Controls whether tab settings from this environment are cleared at the end
of it or left for the surrounding environment. True keeps all tab settings;
False dears them. Default value: True.

Controls which characters in the environment are underlined. Use a value
from the set {Off, Alphanumerics, NonBlank, All}. Off causes no under
lines. All underlines words, spaces, and punctuation. NonBlank under
lines words and punctuation. Alphanumerics underlines words. The envi
ronment "U" specifies NonBlank. The environment "UN" specifies
Alphanumerics. The environment ''UX'' specifies All. Default value
when Underline is mentioned: NonBlank. Default value when it is not
mentioned: Off.

Specifies that an environment does not have numbered paragraphs. Its
only application is for modifying environments with the Numbered at
tribute. UnNumbered has no value to specify.

170 SCRIBE USER MANUAL

Use Takes an environment name as a value and has the effect of including the
definition of the referenced environment in the one under definition. The
effect of Use is not the same as the effect of Copy. See Copy for further
details about their differences.

WidestBlank A horizontal distance which partially controls hyphenation. If Scribe is
about to create a word space whose size exceeds WidestBlank, it will at
tempt instead to hyphenate the first word on the next line to avoid this, if
Hyphenation is specified. Of all of the parameters associated with hy
phenation, WidestBlank is the weakest in the sense that it will be violated
before any of the others. For example, Scribe will never attempt to
hyphenate a word having five or fewer letters, no matter how wide a word
space it must leave. Default unit: Characters.

Within Provides a parent counter for a template defined in a Numbered attribute.
Use a globally-defined counter name, for example, Within Chapter.

Figure 15-1 on page 171 shows pictorially the relationship of some environment attributes
to one another and to the page.

15.6 Library Files for Commands

Section 13.1 described how to include one file in another by using the @Include command.
Files included this way cannot contain any of the commands that must go at the beginning of a
manuscript file. Where should you put commands like @Define and @Modify?

A few definitional commands can just go directly into your manuscript file. Large num
bers of specialized commands should go in a separate document type (consult the Scribe
Database Administrator's Guide). In-between cases are ones where you have a set of custom
definitions large enough to make it tedious to type them separately in each manuscript file but
you don't have enough to make it worth the work of creating a new document type. In these
cases, you need to create a Library file for the definitions.

A Library file is basically just a miniature Database file Gust like the document type and
device type files) containing definitions. You need to tell Scribe in the manuscript file where
to find your definitions by using the @Library File command. It is much like @Include except
that it is for files full of commands instead of files full of text. In fact, a Library file must
contain only commands - no text and no commands that generate text, such as the @Include
command, are permitted.

The syntax of the command is simple:

@LibraryFi1e (library-file-name)

Some examples of possible@LibraryFile commands are

@LibraryFi1e(Fornni1as)
@LibraryFi1e(XnfoKeys)

When it looks for your definition file, Scribe uses the first six letters of the Library
filename and the file extension ''.LIB''. Thus, for the Library files above, Scribe would look
for FORMUL.LIB and INFOKE.LIB.

So much for the manuscript file. In the Library file itself, you need a command line to tell
Scribe the full name of the Library. This line is the @Marker command, and it has to be the
first line in the file. For the example above, the @Marker commands would be:

......
~

CHANGING THINGS

Global

Physical edge of the paper

Left page beading center page beading

Global

top

margin

.~
~-------------------------------- ~

I

T Paper width

I
""- Line width ,....-

I
I
I
I
I
I
I

.....

I
T
I

7;
I
I
I
I
I
I

I Global
I I

IE--left~ Indentation ~rigbt--1

margin ~ext is normally indented and justified within the global pag~ margin
1margins, with extra spaces added to the line to align the right1

:margin. In some environments, there are temporary or:
~vailing" margins, which are in force until the end of the1

Spacing-q .:~~:.i~onment, as shown below. :

Spread~ I The space between lines of text is known as Spacing. The1
1extra amount of space inserted between paragraphs of text isl
:known as Spread.

Prevailing Prevailing I 1. In an enumerated or itemized environment, the
~ left .. T'---........... ~left margin is the margin to which the second ... <----- right ---1

- and succeeding lines are justified.
margin margin

----- Indentation

,;:I d" . d d, n an or mary m ente text environment,
the left margin is also the margin to which the
second and succeeding lines are justified.

-.---------------------------------
Global

bottom center page footing right page footing

margin

Figure 15-1: Page Layout

171

172

@Marker(Library,Formu1as)
@Marker[Library,InfoKeys]

SCRIBE USER MANUAL

If you look at any of the Scribe Database files, you will see more complex-looking
@Marker commands. Explaining those commands is beyond the scope of this manual.

15.6.1 Multiple-Level Indexing

Simple indexing was discussed in Section 4.4. Two Scribe forms produce multiple-level
Index entries: @lndexSecondary and @SeeAlso. These forms are discussed in this Section
because they require the @LibraryFile(MultiLevellndex) command be included in the .MSS

file. The file multil. lib, which is read by Scribe as a result of the @LibraryFile com
mand, contains the definitions of the two multiple-level indexing forms. If you try to use one
of those forms without including the @Library File command, Scribe will produce error mes
sages about the forms @IndexSecondary and @SeeAlso not being defined.

In a multi-level Index, there are two types of Index entries: multiple-line secondary entries
and multiple-line reference entries. The @IndexSecondary and @SeeAlso forms correspond
to those entries, respectively.

15.6.1.1 The @lndexSecondary Form

The @IndexSecondary form gives_you a two-level Index entry; the secondary term is listed
indented and under the primary term. The syntax of the form is

@IndexSecondary [Prima.ry=delimited-primary-entry,
Secondary=delimited-secondary-entry]

The parameters of the form are discussed below.

Primary The primary entry. It is printed flush-left in the Index and does not
receive a page reference.

Secondary The secondary entry. It is printed indented under the primary entry and
receives a page reference.

The primary term of the @IndexSecondary form does not receive a page number. If you
need that term to have a reference, don't fret; you simply insert an @Indexfprimary-term]
command in the text. The @Index command will number the term, and the
@IndexSecondary form certainly won't remove that number.

This line in the .MSS file

Manuscript Form:

@IndexSecondary[Primary="Documentation production",
Secondary=" Scribe"]

will produce this result

Document Result:

Documentation production
Scribe 172

CHANGING THINGS 173

To produce output in which ''Documentation production'' also has a reference number, an
@Index command is required:

Manuscript Form:

@Index[Documentation production]
@IndexSecondary[Primary="Documentation production",

Secondary="Scribe"]

will produce this result

Document Result:

Documentation production 173
Scribe 173

15.6.1.2 The @SeeAlso Form

There are times when under a term in the Index, you want to refer readers to some other
term in the Index. The @SeeAlso form allows you to accomplish that task. The form
produces an entry that, like the @lndexSecondary form, is listed under a primary entry and
indented.

The syntax of the form is

@SeeAlso [Prima.ry=delimited-primary-entry,
Other=delimited-reference-entry]

The parameters of the form are discussed below.

Primary

Other

The primary Index entry. It receives no page reference.

The reference term. It is labeled "See also" and receives no page refer-
ence.

How much the reference term listed as ''See also'' is indented depends on whether or not
there is an@lndexSecondary form which lists the same Primary term as the @SeeAlso form.
Consider the following examples.

Manuscript Form:

@SeeAlso[Primary="Index", Other="Library files"]

Document Result:

Index
See also Library files

Manuscript Form:

@SeeAlso[Pr.imary="Index", Other="Library files"]
@IndexEntry[Pr.imary="Index", Secondary="Multi-level index"]

produce this Index entry:

174

Index
Multi-level index 173

See also Library files

SCRIBE USER MANUAL

Document Result:

The @SeeAlso form does not give any page reference in the entry because it's assumed
that there would be an Index entry for the term listed as "See also'', and so the user would
simply cross reference that term in the Index. The entry for that text can be achieved with the
@Index command or either of the other indexing forms. For example, the above illustration
can be expanded to show the "Library files" entry:

Manuscript Form:

@SeeA1so[Primary="Index", Other="Library files"]
@IndexEntry[Primary="Index", Secondary="Multi-level index"]
@Index(Library files)

Index
Multi-level index 174

See also Library Files

Library files 47

15. 7 Counters

Document Result:

Scribe counters count things. They are similar to environments in that they have defini
tions which consist of pairs of attributes and values. Counters are defined with @Counter
commands.

Scribe counter definitions provide a name, a rule for when to add one to the counter, and a
pair of templates to use for printing the counter value:

@Counter(TheorenCounter, Numbered <@1.>, Referenced
<@1>, IncrementedBy Reference)

This chapter does not explain Scribe counters in enough detail for you to define your own
or to attempt major modifications to existing counters. It does show you how to make minor
modifications, though. Only three attributes of counters are often candidates for modification:
the Numbered, Referenced, and Within attributes. Numbered and Referenced both assume
template values. (femplates are discussed in Section 15.8.) The Numbered template gene
rates the number that is actually printed for the thing being numbered- the page number, the
theorem number, or the chapter number. The Referenced template generates the number that
is used when the thing is cross referenced. The Within attribute works for counters the same
way it does for environments; it provides a parent for the counter to be numbered within.

You modify counters the same way as you modify environments - with the @Modify
command. Two examples are shown below. The first example changes the numbering of the
Appendix to "Appendix A.", "Appendix B.", ... , "Appendix F." and the references to the

CHANGING THINGS 175

Appendix to "A'', "B", ... , "F". The second changes the page numbering from beginning
at one and continuing throughout the document sequentially to being reset at each chapter
(referred to as page numbers within chapters).

@Modify(Appendix, Numbered <Appendix @A.>, Referenced
<@A>)

@Modify(Page~ Within Chapter)

Remember that you can also control the appearance of some counters' values, for example,
page and footnote numbers, with @Style commands. See Chapter 4, Section 4.5 for more
information.

15.8 Templates

Numbering Templates specify the format or appearance of counter values. A template is a
very simple pattern that is used to convert a number into a string of characters that represents
the number. For example, a template can convert the number 1 into the character '' l' ', into
the letters "One", into the characters "001 ",or into the Roman numeral "I".

Templates contain a mixture of template codes and literal text. The template is expanded
to produce an actual text string, which is then processed by Scribe as if you had typed the
expanded form in your manuscript file. Thus, if the expanded template has any Scribe com
mands in it, they are processed as if you had just typed them in.

In a template, all codes are flagged by an "@" character; anything not flagged by an
@-sign is literal text and goes into the expanded string unchanged. To get an "@" character
to appear in the expanded text string so that it can be part of a Scribe command after the
expansion, use the special code, @@@@, which copies an @-sign literally into the output
string.

When templates are expanded into text strings, a literal character in a template is copied
directly into the string for the counter. In strings like "Figure 3-1" and "Figure 3-2' ', the
hyphen is a literal character, but the 3, the 1, and the 2 were generated by template codes.
Every character that is prefixed by an @-sign is a special template code. The template code
controls what goes into the counter string. For example, the template code that puts ordinary
digits into a counter string is @1.

The best way to understand numbering templates is to examine some templates that control
familiar numbers. All templates in this list are delimited by angle brackets, but any delimiter
pair is fine.

Counter

Enumeration counter
<@l. @,@a. @,@i. >
Page number
Chapter counter
SubSection counter
Equation counter
FootNote counter

Template

<@1>
<@1.>
<@#@: .@1>
<(@1)>
<@@+[@l]>

176 SCRIBE USER MANUAL

Appendix counter <@I.>

Although template codes are prefixed with an @-sign, they are not at all similar to ordinary
Scribe commands. There are a small number of template codes that are named the same as
Scribe environments, for example' @i. Even though the same name is used for two very
different purposes, Scribe will not get them confused because there are only a few instances
where Scribe expects to see a template: as values to the Numbered and Referenced attributes
or as a value to the PageNumber or Footnotes @Style parameter.

Figure 15-2 below is a list of the various template codes and what they do.

Code

@l

@2 through @9

@'
@A

@a

@F

@f

@I

@i

@0

@o

@*

@:character

Figure 15-2: Codes for Numbering Templates

Result

Prints arabic cardinal numbers (1, 2, 3, ...)starting from 1.

Prints the specified number of arabic cardinal numbers starting from 1
with leading zeros, if necessary, to fill out the number to the required
length. For example, @4 produces the numbers (0001, 0002, 0003, ...).

Prints abbreviations for ordinals (1st, 2nd, 3rd, ...).

Prints capitalized alphabetical sequence (A, B, C, ...) starting from A.

Prints lowercase alphabetical sequence (a, b, c, ...) starting from a.

Prints ordinal numbers with the first letter capitalized. (First, Second,
Third, .. ., Ninety-Ninth) starting from First.

Prints lowercase ordinal numbers (first, second, third, .. ., ninety-ninth)
starting from first.

Prints "capitalized" Roman numerals (I, II, III, IV, ...) starting from I.

Prints "lowercase" Roman numerals (i, ii, iii, iv, ...) starting from i.

Prints cardinal numbers with the first letter capitalized (One, Two, Three,
.. ., Ninety-Eight, Ninety-Nine) starting from One.

Prints lowercase cardinal numbers (one, two, three, ...) starting from one,
up to ninety-nine.

Prints a sequence of asterisks(*,**,***,****, ...) up to a maximum of
12.

Prints the value of the parent counter for this counter. (The Within at
tribute in a counter definition specifies a parent counter.) For example,
the definition for the SubSection counter includes Within Section, meaning
that the Section counter is the parent counter for SubSection. The number
printed by the @# command is the value of the Referenced attribute, not
the Numbered attribute. (Often the values of the two attributes are iden
tical except for punctuation.)

When a parent counter exists and has a nonnull value, Scribe prints the
specified character following the colon. That is, the character is a literal
that appears only when the counter has a parent counter with a defined
value.

CHANGING THINGS 177

@;character When no parent counter exists (see @#), it prints the specified character
following the semicolon. That is, the character is a literal that is printed
only when there is no parent counter for the counter being defined.

@, Separates templates in a list. With a list of values, Scribe changes to the
next template in the list each time the environment is nested within itself
(for example, Itemize and Enumerate).

@$ Selects one of several literals, depending on the value of the counter.
Unlike other template codes, the @$ code requires a delimited string as an
argument; that delimited string must contain a series of literals separated
by @, sequences. If the value of the counter is 1, the first literal is used; if
the value of the counter is 2, the second literal is used, etc. Since the
characters between the @, sequences are literal, you cannot use other
template codes in there, and you do not double "@" characters if there
are Scribe commands in the literal.

character Any character not prefixed by an @-sign is a literal and will be copied
directly into the output string without interpretation.

@@ Two @-signs in a row result in a Scribe command being executed. In the
example of the Footnote counter on page 175, the two at-signs result in the
superscripting of the appropriate footnote number.

@@@@ Four@ characters in a row result in a literal at-sign in the output

15.9 Fonts

Most changes to fonts involve Database modifications, which are not discussed in this
manual. If you just want to use a private font for your printing device, and you can get enough
local help from systems programmers at your site to know how to get the font file accessible
to Scribe, then all you need to do to use it is to declare it with the @SpecialFont command and
refer to it with one of the special font environments @FO through @F9.

To declare a special font, use the @SpecialFont command:

@Speci.a1Font(F2="Baskervi.lle12BIR")
@Specia1Font(F0="25VG")
@Specia1Font(Fl="SBD40")

These commands declare, respectively, special fonts 2, 0, and 1. The names given to them are
for all accounts and purposes black magic: If you have access to a font named ''25VG' ', then
you will recognize the name instantly; if you don't know what it means, then you don't have
access to it These special fonts are, in general, only available on the various Xerox printing
devices known to Scribe, although it is possible to construct special fonts for most devices.

Having declared a special font, you use it via the environment of the same name:

Text i.n @F2(Speci.al font 2)

@FO[Thi.s text] 1.s 1.n speci.a1 font 0

@Begi.n (Fl)
A whole li.ne of text i.n speci.al font 1
@End(Fl)

178 SCRIBE USER MANUAL

Most uses of the @SpecialFont command are sufficient only for limited purposes, such as
giving you access to a single special character in a manufacturer's font. You don't want to use
@SpecialFont to produce a document in French - it's just too restricted in scope. See your
DBA for more advanced font facilities.

Chapter Sixteen

Epilogue and Sermon

The guiding principle that shaped every aspect of the design of Scribe is that most people
who produce documents don't know, or don't care to know, about the details of the formatting
involved. To this end, those details are determined by information in Scribe's Database and
not by commands from the user.

The benefits of this approach are legion. For those people who really don't care about
details, it is possible to produce attractive formatted output with very little work and even less
decision-making. To produce a document for a different printing device, the simple change of
one @Device command yields a completely different set of formats which were designed to
look attractive on the new device.

The cost of this approach is that it is not always easy to get every character to land on the
page in precisely the spot that you think it ought to. Trying to force Scribe to format one way
while it is trying to format in another way is like pulling teeth: Possible but painful.

Please don't use pliers on Scribe. If you find yourself fighting with Scribe, you are prob
ably not using it correctly. If you catch yourself constantly thumbing through the list of
commands and @Style parameters trying to find the command or parameter that will force
some particular character into a particular column, then you are not using Scribe properly.
Think carefully about what that problem means: Scribe is trying to produce a document in
one format, while you want it to be in another. You have several recourses:

1. Learn to like the standard Scribe formats. This solution is by far the simplest
approach. Not everyone needs to be a typographer.

2. Look at all of the variant styles that are in the Scribe Database. Perhaps one of
them will please you. You can get these variant styles by requesting a different
Form in the@Make command; see Section 5.3 for details.

3. If none of the standard or variant styles pleases you, then you are a very finicky
person. To indulge your finickiness, you are going to have to work hard. If you
are not willing to work hard, go back to step 1; it might be more appealing the
second time around. If you are willing to work hard, then get a listing of the
Database files, take your copy of the Scribe Database Administrator's Guide,
curl up in a comfortable place, and read them "cover to cover". If that doesn't
stop you, then roll up your sleeves, and go make your own document style.

One final behest: If you do break down and design your own document type, and if you

180 SCRIBE USER MANUAL

think it's good enough that other people might want to use it, please send it back to us
(documented) so that it can be included in Scribe distribution for others to use. Share the
wealth.

Appendix A

Operating Systems Dependencies

This Appendix contains information that is operating system-dependent. While Scribe
attempts to be as consistent as possible at the user level across system boundaries, some
differences cannot be hidden. One example is the command you must type at the terminal to
run Scribe. A feature that is not system-dependent is that you may omit the extension .MSS

when specifying a manuscript filename.

Some command-line options are system-dependent Those options are given in this
Appendix. To be consistent with the format of Appendix E.1 in which options valid for all
operating systems are discussed, an option and any of its valid abbreviations are listed on one
line with choices in boldface and separated by commas.

A.1 TO PS-10 Systems

To run Scribe on a TOPS-10 system, type "r scribe". The command-line switch character
for TOPS-10 is "/".

The following command-line switches are valid for TOPS-10, in addition to those listed in
Appendix E.1:

NoH, NoHyp, NoHyphenate
Tum off hyphenation.

NoHV, NoHypVocab
Don't create a Scribe .LEX file. This option differs from NoHyd in that it
turns off the .LEX file that would have listed the hyphenation points of
each word in the document.

NoHyd Don't create a Scribe .LEX file. This option differs from NoHV in that it
turns off the .LEX file that would have listed each hyphenation decision.

On a TOPS-10 system, you can type the following at Scribe's command line:

*output.ext=fi1e. mss

where .ext is the extension that Scribe will use for the OUTPUT file. This line allows you to
specify the name of the output file you desire. In the above example, Scribe would normally
create the ALE.EXT file, but will now create the OUTPUT.EXT file. To look at another example,
if the file DOCS.MSS file had the @Device(x9700) command in it, you could have Scribe

182 SCRIBE USER MANUAL

produce the file OTHER.X97 instead of the expected file DOCS.X97 by typing this line at the
command line:

*other=docs

This same result can be achieved by using the "Doc:" or "Document:" command-line
switch, which is discussed in Appendix E.1 and is available for all operating systems.

A.2 TOPS-20 and TENEX Systems

To run Scribe on TOPS-20 and TENEX, type scribe. You may type the filename on the
command line:

@scribe fi1e.mss

The command-line switch character for TOPS-20 and TENEX is ''I''.

As on a TOPS-10 system, you can type the following at Scribe's command line when
you're on a TOPS-20 system:

*output.ext=fi1e. mss

where .ext is the extension you want for the OUTPUT file. This line allows you to have Scribe
write out the output into a file other than the file it would normally use. In the above example,
Scribe would normally create a file named FILE.LPT file, but will now create OUTPUT.EXT

instead. To look at another example, if the file DOCS.MSS file had the @Device(x9700) com
mand in it, you could have Scribe produce the file OTHER.X9700 instead of the expected file
DOCS.X9700 by typing this line at the command line:

other=docs

If you want to display .LPT and .DOC files at a CRT under TOPS-20, be sure that you have
set "TERM NO INDICATE"; otherwise, the last line of each output page will be overwritten
by a displayed ""L" that is output after each page.

A.3 VMS Systems

Scribe runs on the VAX computers in native mode. To run Scribe under VMS, type
scribe. The command-line switch character for VMS is "/".

A.4 UNIX Systems

To run Scribe on a UNIX system, type scribe. The command-line switch character for
UNIX is "-".

OPERATING SYSTEMS DEPENDENCIES 183

A.5 Apollo/ Aegis Systems

To run Scribe on the Apollo/ Aegis operating system, type scribe. The command-line
switch character for Aegis is '' -''.

A.6 Prime/Primos Systems

To run Scribe on the Primos operating system, type scribe. The command-line switch
character for Primos is ' ' -' ' .

A.7 IBM VM/CMS Systems

To run Scribe under CMS type scribe. IBM Scribe allows filenames to be written with
either . or a space separating the components. For example, a filename can appear as either
TEST MSS A or TEST.MSS.A. Most Scribe documentation uses the . character. The command
line follows normal CMS conventions and can be used to specify device type as follows:

SCRIBE TEST MSS (DEVICE=X9700)

184 SCRIBE USER MANUAL

AppendixB

Printing Devices

We've tried to make the explanations in the main body of the manual relatively inde
pendent of printing-device characteristics. However, at some point, we've got to get down to
the nitty-gritty and talk about the printing devices, what they are, and how to get your files
printed on them.

Piinting devices generally fall into four different classes, often with variations.
1. Line-printer class devices. These devices have fixed character width and

positioning and fixed vertical spacing. They cannot print subscripts or super
scripts and cannot change fonts. The devices in this class include line printers,
most hardcopy terminals (DECwriters, TI Silent 700), and most CRT terminals.

2. Diablo-class devices. These devices are somewhat more flexible than line
printers, because they are able to position characters rather finely, normally to
within 1/100" or so. They can print subscripts and superscripts, and they can
use line spacing that is not an integral number of lines, for example, spacing 1.2.
The Diablo HyType 1600-series terminals, the Xerox 1700-series terminals, the
Agile Al, the Diablo 630 and 630 ECS, the NEC Spinwriter, the Qume, the
Santee S700 Variflex, the DTC300, AJ-832, and the AJ-833 fall into this class.

3. Photocomposers. These devices are optical/mechanical devices that produce
output by forming photographic images of letters on light-sensitive paper and
then developing that paper with standard photographic chemicals. The print
quality is unsurpassed, but they are slow (2 to 10 minutes a page). Scribe can
produce output for the Mergenthaler Linotype VIP, Compugraphic 8600,
Mergenthaler Omni tech 2000, Graphics Systems Incorporated Cl A/T-4, and
Graphics Systems Incorporated C/A/T-8, the equivalent of the Wang 38 and
others.

4. Laser printers. This class of printing devices, also known as non-impact
printers, offers a rather astounding set of capabilities. Now a single printing
device is able to handle reasonably well such diverse applications as high-speed
data printing, letter-quality office applications, and even graphics arts printing
with multiple fonts and point sizes. Laser printers are cleaner than photocom
posers, since they require no chemicals or developers, and quieter than letter
quality and line printers, since they utilize an electronic non-impact technology.
Scribe can produce output for a wide spectrum of these printers, including the
Quality Micro Systems Lasergrafix 1200, Symbolics LGP-1, Xerox Dover,
Xerox 9700, Xerox 8700, Xerox 2700, Xerox 2700 Model II, Imagen Imprint-10
and the other Imagen printers.

186 SCRIBE USER MANUAL

B.1 Line Printers

Most computer users are quite familiar with the line printer, as it is normally their primary
printing device. Scribe produces files for the line printer that already have heading and foot
ing information in them; many systems insist on adding a heading and footing as the page is
being printed, causing the page to overflow. Contact your DBA to find out how to print a file
without having the system generate extra headings. It might be the LIST or PRINT command
that you need to use; you might have to use the COPY command to copy a file directly to the
line printer, or there might be a special command like LLIST or VPRINT.

If your line printer does not have very good print quality, you might find that underlined
letters look more like w-than like w. If this situation is the case, you might want to try setting
the underline character to be a period, using the UnderscoreCharacter parameter to the @Style
command (see page 217 for information about the @Style command<).

The Printronix line printer is inexpensive and popular, but it has a quirk that makes it not
entirely compatible with ordinary line printers. To underline text on a Printronix printer, the
text must be sent first and then followed with an underline. Scribe normally prints the under
line first and then follows with the text, so that if the file is typed on a CRT, the text will be
visible. @Device(Printronix) sets a flag that causes Scribe to generate an underline sequence
that will work on the Printronix; in all other respects, @Device(Printronix) is the same as
@Device(LPT).

B.2 Diablo Typers and Similar Devices

A Diablo is a robot typewriter that is capable of very fine gradations of horizontal and
vertical spacing and can achieve a very superior print quality. Scribe output files for the
Diablo are given the file extension .POD, which stands for Prince Of Darkness (the Spanish
word for devil is ''diablo' '). These files cannot normally be typed directly on the Diablo
because they contain binary control codes that most computers do not process properly during
a "type" or "print on terminal" operation. Therefore, a program may be necessary to print
files on the device. UNILOGIC does not distribute such a program.

When Scribe generates a .POD file, it does so with the assumption that a particular print
wheel is mounted on the Diablo. If the expected typewheel is not mounted, letter spacings
may be wrong. In particular, Scribe controls all of the horizontal and vertical spacing, over
riding the spacing switches inside the machine. Therefore, if you have a Pica typewheel in the
machine and have the switches set to 10-character spacing, Scribe still uses 12-character spac
ing when it prints the file if you specified the Elite typewheel in your .MSS file.

Many Diablo printers are capable of bidirectional printing, in which the print head prints
one line on a left-to-right stroke and another line on the right-to-left stroke. Although it is
fascinating to watch a printer work this way, studies have shown that the true increase in
throughput is less than 5%. Nonetheless, Scribe supports bidirectional printing.

PRINTING DEVICES 187

B.3 Photocomposers

There are three basic types of photocomposers: mechanical, CRT, and laser. Mechanical
photocomposers such as the VIP or the Wang/Graphic Systems C/ A/T Photocomposers are
amazing electromechanical devices. The fonts for these machines are actually photographic
negatives that mount on spinning wheels. In order to use a new font, a new negative must be
obtained.

CRT photocomposers have a cathode ray picture tube (similar to a black and white TV)
that they pass the photographic paper over. New fonts generally arrive on floppy disks.

Laser photocomposers are just high-quality laser printers that have been optimized for print
quality rather than speed.

B.4 Laser Printers

Laser printers are usually xerographic printing engines similar to office copiers, except that
instead of reflecting a bright light off an original to be copied, they use a laser and spinning
mirrors to draw the original on the xerographic drum.

Logically (and sometimes physically) there are two parts to a laser printer. First, there is
the xerographic marking engine, and second, there is the controller that controls what is put on
the page. The marking engine determines the quality of the letters on the page. Buzz terms
for describing printers include ''How many dots-per-inch'' the printer can make and whether
it uses "wet" or "dry" toner. The controller determines how the printer looks to your host
computer, what commands the printer uses, whether or not it can do graphics, etc. Sometimes,
a single marking engine is available with your choice of controllers, or the same controller
might be available for a variety of print engines.

188 SCRIBE USER MANUAL

Appendix C

Character Codes and Type Fonts

One of the least satisfactory aspects of computer document production is the difficulty of
specifying and printing special characters. The ASCII character code, the official
U. S. standard, has 95 printing characters in it; there are several thousand different characters
used in the printing industry. 95 of those many thousand are standardized and available; all of
the rest must somehow be fudged.

Because the availability of special characters is so dependent on the printing device being
used, we discuss separately the availability of special characters for each kind of printing
device.

C.1 Keyboards and Characters

There are 128 different characters that may be stored in a computer file. Some of those
characters are "carriage control" characters: The tab, carriage return, line feed, back space,
and such. A standard keyboard has 95 printing keys on it. That leaves 26 characters that it is
possible to store in a computer file but that it is not possible to type on your keyboard.

Various editors have schemes that allow you to type in those 26 extra characters in various
ways. Some let you use the CTRL key to generate them as control characters while others have
prefix schemes using the ? or ' or " characters. In general, you should not use those control
characters in your manuscript file, because they will not be printed the same way from site to
site and device to device. Scribe does not prevent you from putting those characters into your
manuscript, even though it probably should.

C.2 Font and Character Considerations for Multiple Font
Devices

For use with Scribe, the various character sets have been organized into families, which we
call ''FontFamilies''. A Scribe FontFamily is a set of a dozen or so character sets, which have
been chosen to look attractive when used together. All of the information that defines a
FontFamily is stored away in the Scribe Database by name. If you ask for the NewsGothic

190 SCRIBE USER MANUAL

FontFamily, for example,1 by putting the command @Style(FontFamily=<NewsGothiclO>) at
the front of your manuscript file, then Scribe loads the NewsGothiclO FontFamily definition
from its Database. This definition tells Scribe from what character set to get each of the
FaceCodes in each of the Fonts. For example, it tells Scribe where to get Italic for Body Font
(running text).

When you type @i[text], what Scribe actually does is to switch to a character set known to
contain Italics and prints "text". When you type @g[text], Scribe switches to a character set
known to contain Greek and prints ''text''. Figure C-1 contains a chart of how to print Greek
characters. It is not necessary to change the print wheel on Diablo-class devices to print Greek
characters.

ASCII GREEK ascii Greek Name

A A a a. Alpha
B B b ~ Beta
G r g y Gamma
D /). d 8 Delta
E E e E Epsilon
z z z ~ Zeta
H H h 11 Eta
Q E> q a Theta
I I i 1 Iota
K K k 1(Kappa
L A 1 A. Lambda
M M m µ Mu
N N n v Nu
x .. x ~ Xi
0 0 0 0 Omicron
p II p 1t Pi
R p r p Rho
s :E s CJ Sigma
T T t 't Tau
u y u '\) Upsilon
F <I> f cl> Phi
c x c x Chi
y '¥ y "' Psi
w n w ro Omega

Figure C-1: Greek Characters Available with @G

1 Not every printing device has every Fontfamily, of course, but the mechanism by which FontFamilies are
changed is the same from one device to the next, even though the FontFamilies aren't identical.

CHARACTER CODES AND TYPE FONTS 191

C.3 A Note About the ASCII Character Set

A file stored on a computer is usually a sequence of characters in a code called ASCII. The
ASCII character set (American Standard Code for Information Interchange, pronounced as
key) was proposed in 1963 and approved in 1968 as the official code for the interchange of
information among computers. DEC computers also use it to store information in files. This
dual use of the code for purposes that are very similar causes some confusing situations at
times; it will help you be a better Scribe user if you understand them.

The ASCII character code has 128 distinct characters in it. These are divided into 94
printing characters, 1 space, and 33 "control" characters. When ASCII was first invented,
people had grand visions of what those 33 "control" characters would be used for, but it has
never come to pass. They have exotic names like "End of Transmission" and "Unit
Separator''; on modem computers, they lie essentially unused.

Through the years, different people have tried to use the ASCII control characters for
different purposes. On DEC computers, the "End of Text" character, or control-C, has been
used to mean "stop the execution of this program". On IBM computers, the "End of
Transmission" character, or control-D, has been used to mean "kill this job and hang up the
telephone"; on some Control Data computers, the "End of Transmission" character is used to
mean ''I am done with this line of input''.

A number of years ago, some people at Stanford selected 26 special characters and as
signed them to slots in the ASCII code that are supposed to be slots for control functions. The
particular set of 26 they chose was motivated by their need to print mathematical and logical
expressions. That set of 26 special characters has come to be known as ''Stanford ASCII''.
Many DEC sites have software that uses the Stanford ASCII character code because the folks
at Stanford were (and still are) prolific programmers who produced lots of useful programs
that were widely distributed. In particular, many editors and text formatters in use at DEC
installations use the Stanford ASCII character set or some variant of it.

Meanwhile, the people at DEC who build the computers and write the operating systems
for them had taken that same set of ASCII control characters and assigned various control
meanings to them. For example, the "Device Control 4" code, which you can generate by
typing control-T, is used by DEC as a "probe" command to find out what the computer is
doing with your program.

Both the Stanford and DEC uses of the ASCII control characters are in violation of the
USA Standard Code, but no Federal Marshal is likely to come running out and arrest people
who type control-T to their computers. These misuses are going to stay with us, so you may
as well learn how to use them. As you might expect, when a standard is violated, there are
problems with compatibility among the various groups who have violated it. The people who
violate the standards like to tell you that they have ''extended'' the standards, just as terrorists
will often tell you that they are ''freedom fighters''. It's all a matter of terminology.

The whole problem is exacerbated by the fact that few printer manufacturers supply any
fonts that contain the full printing ASCII character set. This means that Scribe has to play
tricks on the printer by switching fonts at the right time in order to simulate the appearance of
ASCII.

192 SCRIBE USER MANUAL

AppendixD

A Few Examples

This appendix contains miscellaneous examples of Scribe usage. The text on each left
hand page is a manuscript file, and the text on the right-hand page is the resulting document
file. There is no particular logic to the sequence of these examples.

194 SCRIBE USER MANUAL

Manuscript Form:

Let @i[P(n)] be some statement about the integer @i[n]; for
example, @i[P(n)] might be ''@i(n] times (@i[n] + 3) is an even
number,'' or ''if @i[n] geq 10, then 2@+[@i[n]] > @i[n]@+[3] .''
Suppose we want @i[to prove that P(n) is true for all positive
integers n]. An important way to do this is:
@Begin(Enumerate)
Give a proof that @i[P(l)] is true; @Tag(BaseStep)

Give a proof that ''if all of @i[P] (1),
@i[P] (2), ... , @i[P] (@i[n]) are true, then @i[P] (@i[n]+l)
is also true''; this proof should be valid
for any positive integer @i[n]. @Tag(InductStep)
@End(Enumerate)

As an example, consider the following series of equations, which
many people have discovered independently since ancient times:
@equation(
1 = 1@+[2], 1 + 3 = 2@+[2],

1 + 3 + 5 = 3@+[2], 1 + 3 + 5 + 7 = 4@+[2],

1 + 3 + 5 + 7 + 9 = 5@+[2].
)
We can formulate the general property as follows:
@equation{
1 + 3 + . + (2@i[n] - 1) = @i[n]@+[2] @Tag(Induction)
}

Let us, for the moment, call this equation @i[P(n)]; we wish to
prove that @i[P(n)] is true for all positive @i[n]. Following
the procedure outlined above, we have:
@Begin(Enumerate)
''@i[P] (1) is true since 1 = 1@+[2].''

''If all of @i[P] (1), ... , @i[P] (@i[n]) are true, then,
in particular, @i[P] (@i[n]) is true, so Eq. @Ref(Induction)
holds; adding 2@i[n] + 1 to both sides, we obtain
@begin(equation)
1 + 3 + ... + (2@i[n] - 1) + (2@i[n] + 1)

= @i[n]@+[2] + 2@i[n] + 1 = (@i(n] + 1)@+[2]
@End(equation)
which proves that @i[P] (@i[n] + 1) is also true.''
@End (Enumerate)

We can regard this method as an @i[algorithmic proof procedure].
In fact, the following algorithm produces a proof of
@i[P] (@i[n]) for any positive integer @i[n],
assuming that steps @Ref(BaseStep)
and @Ref(InductStep) above have been worked out.

From The Art of Computer Programming Vol. /: Fundamental
Algorithms. D. E. Knuth. 1968: Addison-Wesley, Reading MA

A FEW EXAMPLES

Document Result:

Let P(n) be some statement about the integer n; for examsle, P(n) might be "n
times (n + 3) is an even number," or "if n geq 10, then 2n > n ." Suppose we want
to prove that P(n) is true for all positive integers n. An important way to do this is:

1. Give a proof that P(1) is true;

2. Give a proof that "if all of P(l), P(2), ... , P(n) are true, then P(n+l) is
also true"; this proof should be valid for any positive integer n.

As an example, consider the following series of equations, which many people
have discovered independently since ancient times:

1 = 12, 1 + 3 = 22,

1+3 + 5 = 32, 1+3 + 5 + 7 = 42,

1 + 3 + 5 + 7 + 9 = 52.

We can formulate the general property as follows:

1 + 3 + ... + (2n - 1) = n2

Let us, for the moment, call this equation P(n); we wish to prove that P(n) is true for
all positive n. Following the procedure outlined above, we have:

1. "P(l) is true since 1 = 12."

2. "If all of P(l), ... , P(n) are true, then, in particular, P(n) is true, so Eq. 1
holds; adding 2n + 1 to both sides, we obtain

1 + 3 + ... + (2n - 1) + (2n + 1)
= n2 + 2n + 1 = (n + 1)2

which proves thatP(n + 1) is also true."

We can regard this method as an algorithmic proof procedure. In fact, the fol
lowing algorithm produces a proof of P(n) for any positive integer n, assuming that
steps 1 and 2 above have been worked out.

195

(1)

196 SCRIBE USER MANUAL

Manuscript Form:

@Heading(Cranberry Bread)
This is a moist, nutty cranberry bread, almost a fruit cake
in te:rms of texture, that is easy to make and a wonderful
snack. It's hard to find whole cranberries at any time of
the year other than just before Thanksgiving, so if you
find that you are as addicted to this recipe as we are, you
should stock up on cranberries in mid-November and freeze them.

@SubHeading(Ingredients)
@Begin(Display)
@TabSet(l inch)
@>2 cups @\cake flour, measured after sifting
@>1 cup @\granular white sugar
@>l-1/2 tsp. @\baking powder
@>1/2 tsp. @\baking soda
@>1 tsp. @\salt
@>1 @\Florida orange (juice orange)
@>2 tbsp. @\Crisco, heated just to melting
@\boiling water
@>1 @\lightly-beaten large egg
@>1 cup @\chopped walnuts
@>1 cup @\chopped cranberries, measured after chopping
@End (Display)

@Begin(itemize)
@i[Sift] together the dry ingredients (flour, sugar, baking
powder, baking soda, salt) . Make sure they are well mixed
before adding the liquids.

@i[Grate] the orange peel off of the orange into a measuring
cup, trying not to get too much of the white rind included.

@i[Squeeze] the orange into the measuring cup on top of the
orange peel.

@i[Add] the 2 Tbsp. of melted Crisco to the rind and juice,
then add boiling water to bring the liquid level to 3/4 cup.
Add the beaten egg and stir lightly.

@i[Mix] the wet ingredients into the dry, immediately, before
the egg starts to cook from the heat of the boiling water,
stirring the resulting mixture as little as possible until it
is uniformly moistened.

@i[Add] the chopped nuts and chopped cranberries.

@i[Pour] into 2 well-greased small loaf pans.

@i[Bake] at 350 for 60 to 70 minutes.
@End(Itemize)

From an old Reid family recipe.

A FEW EXAMPLES 197

Document Result:

Cranberry Bread

This is a moist, nutty cranberry bread, almost a fruit cake in terms of texture, that is easy to
make and a wonderful snack. It's hard to find whole cranberries at any time of the year other
than just before Thanksgiving, so if you find that you are as addicted to this recipe as we are,
you should stock up on cranberries in mid-November and freeze them.

Ingredients

2 cups cake flour, measured after sifting
1 cup granular white sugar

1-1/2 tsp. baking powder
1/2 tsp. baking soda

1 tsp. salt
1 Florida orange (juice orange)

2 tbsp. Crisco, heated just to melting
boiling water

1 lightly-beaten large egg
1 cup chopped walnuts
1 cup chopped cranberries, measured after chopping

•Sift together the dry ingredients (flour, sugar, baking powder, baking soda, salt).
Make sure they are well mixed before adding the liquids.

• Grate the orange peel off of the orange into a measuring cup, trying not to get too
much of the white rind included.

• Squeeze the orange into the measuring cup on top of the orange peel.

• Add the 2 Tbsp. of melted Crisco to the rind and juice, then add boiling water to
bring the liquid level to 3/4 cup. Add the beaten egg and stir lightly.

•Mix the wet ingredients into the dry, immediately, before the egg starts to cook
from the heat of the boiling water, stirring the resulting mixture as little as pos
sible until it is uniformly moistened.

• Add the chopped nuts and chopped cranberries.

•Pour into 2 well-greased small loaf pans.

• Bake at 350 for 60 to 70 minutes

198 SCRIBE USER MANUAL

Manuscript Form:

@Define(Kind=Center,FaceCode I)
@Define(Choral=Fonnat,AfterEntry "@TabDivide(2)")
@Heading(Christ Before Pilate)
@Kind(Choral)
@Begin(Choral)
Christ, who knew no sin or wrong,@\He who our salvation won,
Like a thief was taken;@\Falsely was convicted
Led before a godless throng,@\Scoffed at, @-
scorned, and spat upon,
By his friends forsaken.@\As the Word predicted.
@end(Choral)

@Kind(Recitative)
Then led away they Jesus, away to the hall of judgment:
and it was early; and they went not themselves therein,
lest there they should be defiled; but that they might eat
the Passover. Then unto them Pontius Pilate went out, and said:
What accusation bring ye now against this
person? Then they cried aloud and said unto him:

@Kind(Chorus)
If this man were not a malefactor, we had not brought him
here before thee.

@Kind(Recitative)
Then Pilate said unto them: Now come and take ye him,
and judge ye him according to your law.
The Jews therefore said unto him:

@Kind(Chorus)
By death we may not punish.

@Kind(Recitative)
That so might be fulfilled the word of Jesus which
he had spoken, and had signified by what manner of death
he die. Then Pilate entered into the hall, and again he
called in Jesus, and said to him: Art thou King of the Jews,
then? Jesus thus answered him: Sayest thou this thing of
thyself, or did these others tell it thee to say of me?
And Pilate then answered him: Am I a Jew? Thy people and
thy chief priests have brought thee here for judgment before
me: now what hast thou done? And Jesus answered him: My kingdom
is not of this world: for were my kingdom of this world, then
my servants all would fight, yea, battle, that I be not
delivered unto the Jews. Nay then, for not from thence
is my kingdom.

From an English translation of Passionmusik nach dem Evangelisten
Johannes (The Passion according to St. John), Johann Sebastian Bach.

A FEW EXAMPLES

Document Result:

Christ Before Pilate

Christ, who knew no sin or wrong,
Like a thief was taken;
Led before a godless throng,
By his friends forsaken.

Choral

He who our salvation won,
Falsely was convicted
Scoffed at, scorned, and spat upon,
As the Word predicted.

Recitative

199

Then led away they Jesus, away to the hall of judgment: and it was early; and they went not
themselves therein, lest there they should be defiled; but that they might eat the Passover.
Then unto them Pontius Pilate went out, and said: What accusation bring ye now against this
person? Then they cried aloud and said unto him:

Chorus

If this man were not a malefactor, we had not brought him here before thee.

Recitative

Then Pilate said unto them: Now come and take ye him, and judge ye him according to
your law. The Jews therefore said unto him:

Chorus

By death we may not punish.

Recitative

That so might be fulfilled the word of Jesus which he had spoken, and had signified by
what manner of death he die. Then Pilate entered into the hall, and again he called in Jesus,
and said to him: Art thou King of the Jews, then? Jesus thus answered him: Sayest thou this
thing of thyself, or did these others tell it thee to say of me? And Pilate then answered him:
Am I a Jew? Thy people and thy chief priests have brought thee here for judgment before me:
now what hast thou done? And Jesus answered him: My kingdom is not of this world: for
were my kingdom of this world, then my servants all would fight, yea, battle, that I be not
delivered unto the Jews. Nay then, for not from thence is my kingdom.

200 SCRIBE USER MANUAL

Manuscript Form:

@MajorHeading(Blooming Sequence Chart)
@Heading(Plan Carefully for Continuous Spring Bloom)

@Begin(Format)
@TabSet(3 inches,+14,+10)
@b[@=Varieties@\@=Flowering@\
@=in order of appearance@\@=Ti.me@\@=Height]
@Bar()

Snowdrops, Snow Crocus@\@=Early March@\@=3-4"
Windflower@\@=Early March@\@=6"
Spring Snowflakes@\@=Early March@\@=6-9"
Glory of the Snow@\@=March@\@=6"
Crocus@\@=March-April@\@=4-6"
Daffodils (Miniature), Jonquil@\@=March-April@\@=6-12"
Tulips (Kaufmanniana)@\@=March-April@\@=4-6"
Puschkinia@\@=March-April@\@=4-6"
Daffodils (Trwnpet, Large-cupped, others)@\@=April@\@=8-20"
Grape Hyacinth, Siberian Squill@\@=April@\@=6-9"
Tulips (Early Single, Fosteriana)@\@=April@\@=10-15"
Hyacinth@\@=April@\@=10"
Fritillaria@\@=April@\@=24-36"
Tulips (Greigii, Mendel, Darwin Hybrid)@\@=April-May@\@=8-30"
Tulips (Darwin, Cottage, others)@\@=May@\@=15-30"
Wood Hyacinth@\@=May@\@=12-15"
Dutch Iris@\@=June@\@=18-24"
Allium@\@=June@\@=6-12"
@End(Format)

From a seed and bulb catalog

A FEW EXAMPLES 201

Document Result:

Blooming Sequence Chart

Plan Carefully for Continuous Spring Bloom

Varieties Flowering
in order of appearance Time Height

Snowdrops, Snow Crocus Early March 3-4"
Windflower Early March 6"
Spring Snowflakes Early March 6-9"
Glory of the Snow March 611
Crocus March-April 4-6 11
Daffodils (Miniature), Jonquil March-April 6-12 II
Tulips (Kaufmanniana) March-April 4-6 11
Puschkinia March-April 4-6 11
Daffodils (Trumpet, Large-cupped, others) April 8-20"
Grape Hyacinth, Siberian Squill April 6-9 11
Tulips (Early Single, Fosteriana) April 10-15"
Hyacinth April 10"
Fri till aria April 24-36"
Tulips (Greigii, Mendel, Darwin Hybrid) April-May 8-30 11
Tulips (Darwin, Cottage, others) May 15-30 11
Wood Hyacinth May 12-15 II
Dutch Iris June 18-24"
Alli um June 6-12 II

202 SCRIBE USER MANUAL

AppendixE

Summaries

A portion of the information in this Appendix also appears in the Scribe Pocket Reference.

E.1 Processor Options

Various command-line option switches control some of the things that the Scribe processor
does when it runs. You specify an option by including the switch character for your operating
system and the desired option. The switch character for the operating systems that run Scribe
are listed in Appendix A.

The list of valid command-line options is listed below. Often there is an abbreviated
version of an option. All possible options are listed, with choices for the same result separated
by commas. Note that only one of the options is necessary and the commas need not be
specified.

Option

A, Agile

D, Diablo

Result
Use output device Agile.

Use output device Diablo.

Dev:name, Device:name
Use output device name.

Doc:name, Document:name

Dover

Draft

Draft:value
F,File

G,GSI

GG,GIGI

Hv, HypVocab

Produce output file name.

Use output device Dover.

Set "Draft" string to "1 ".

Set "Draft" string to "value".

Use output device File.

Use output device GSI.

Use output device GIGI.

Create a lexicon showing the hyphenation points of each word
in the document.

Hyd Create a lexicon showing each hyphenation decision.

Imp, Imprint, ImprintlO
Use output device ImprintlO.

204

Keep, KeepFiles

L,LPT

LA36

LG Pl

Don't delete Scribe temporary files.

Use output device LPf.

Use output device LA36.

Use output device Lgpl.

PagedFile Use output device PagedFile.

SCRIBE USER MANUAL

Q, Quiet Don't print any error messages on the terminal.

V, Voe, Vocab, Vocabulary
Generate sorted word listing (.LEX file).

W, Words, WordCount
Count the number of words in the document.

X, X9700, 9700 Use output device X9700.

E.2 Document Types

To select one of the document types listed below, put an @Make command in the manu
script file before the first text. For example:

@Make(Report)

Some document types have variant forms. To use those forms, follow the syntax of this
example:

@Make(Artic1e,Form 1)

Type

Article

Article, Form 1

Bibliography

Brochure

Guide

Letter

Letter Head

Description

Simplest sectioned document. Produces numbered Sections,
Subsections, Paragraphs, and Appendixes. Figures and Tables
are numbered within Sections. There is a Title Page and a Table
of Contents, but no Index. ·

Variation of Article with Sections that are not numbered.

Produces a Bibliography only. All other document types are
capable of producing a Bibliography, but this document type
will provide the Bibliography only, without the accompanying
document.

Open, informal layout with lots of white space. Provides num
bered Chapters, Sections, SubSections, Paragraphs, Appendixes,
and AppendixSections. Suitable for producing booklets.

Similar to Brochure but designed to be printed in a handbook
size format.

Produces a business letter to be printed on or copied onto letter
head stationary.

Produces a business letter and provides for the letterhead to be
drawn. The details of this format vary widely from one site to
another. Although any device may be specified when using this
document type, specifying this document type for a device that
can not draw the logo will result in a message asking you to use
Letter.

SUMMARIES

Manual

Manual, Form 1

Mi1Std837A

Ref erenceCard

Report

Report, Form 1

Slides

Slides, Form 1

Text

Text, Form 1

Thesis

E.3 Environments

205

Sectioned document providing numbered Chapters, Sections,
SubSections, Paragraphs, Appendixes, and AppendixSections.
Has a Title Page, Table of Contents, and an Index.
Variation of Manual with numbered Chapters but unnumbered
Sections and SubSections.
Produces a document that conforms to the Military Standard
document 837A.

Used for printing pocket reference guides and cards. The Scribe
Pocket Reference was produced using this document type.

Like Manual, but has no Index.

Variation of Report with only its Chapters numbered; Sections
and Subsections are not numbered.

Makes overhead projector slides. Font sizes and spacings have
been selected to make the slides maximally visible at normal
projection distances. Although any device may be specified
when using this document type, using a device without font
sizes large enough for this type of slide or a device that can not
scale will result in a warning message and proof copies only.

Variation of Slides with small- and medium-sized characters in
addition to the large-sized characters.

Default document type as Scribe is distributed. 1 Unindented,
justified paragraphs on numbered pages. No Table of Contents
or Index.

Variation of Text with indented paragraphs and double spacing.

Satisfies the format requirements for a thesis at the local insti
tution.

These environments are available in all document types. Many document types have ad
ditional environments defined. For more information and explanation of each, see Section 3.3,
page 15.

Name

Abstract

B

Black

Blue

c

Result

Prints text on the title page. Available only for sectioned docu
ments.

Requests boldface printing.

Produces black colored output. The true color printed depends
on your output device and the Scribe Database. Ask your DBA
for further information regarding color at your site.

Produces blue colored output. The true color printed depends
on your output device and the Scribe Database. Ask your DBA
for further information regarding color at your site.

Requests SMALL CAPITAL printing.

1 Consult with your DBA to see whether or not this document type is the default document type for your site.

206

Center

Copyright

CopyrightNotice

Corollary

Cyan

Dark

Definition

Description

Display

Enumerate

Equation

Example

FO through F9

Figure

FileExample

Float

FlushLeft

FlushRight

SCRIBE USER MANUAL

Centers each manuscript line in the body of the environment
between the global margins.

Produces a copyright statement on the title page. Available only
for sectioned documents. Must be followed by a date and name.

Produces a copyright notice on the title page. Available only for
sectioned documents. Must be followed by the name of the
copyright owner.

Simple mathematical environment. Produces appropriately
numbered corollaries.

Produces cyan colored output. The true color printed depends
on your output device and the Scribe Database. Ask your DBA
for further information regarding color at your site.

Produces dark colored output. The true color printed depends
on your output device and the Scribe Database. Ask your DBA
for further information regarding color at your site.

Simple mathematical environment. Produces appropriately
numbered definitions.

Provides paragraphs with header words in a widened left mar
gin. Use a tab command (@\) to separate the header word(s)
from the rest of each paragraph.

Displays each manuscript line that is inside the body of the envi
ronment. Output line breaks correspond to manuscript-file line
breaks. Left margin widened.

Numbers each paragraph within the body. Sets list off from rest
of text with spacing and wider margins.

Simple mathematical environment. Produces appropriately
numbered equations.

For examples of computer input and output. Uses fixed-width
typeface. Breaks lines as in manuscript file. Sets example off
with spacing and wider margins.

Special fonts. Provides a means for using fonts not defined for
the current document. See the @SpecialFont command descrip
tion.

Produces a figure with an appropriately-numbered caption.

Provides environment for showing examples of computer file
contents. Breaks lines as in manuscript file but does not trun
cate long lines.

Allows the environment that it surrounds to be moved from its
place in the .MSS file to a more convenient location in the out
put. Text continues to be placed and filled on the page even
though the floated environment may be located elsewhere.
Figures and Tables are floated.

Aligns the first character in each manuscript line with the global
left margin.

Aligns the last character in each manuscript line with the global
right margin.

SUMMARIES

Format

FullPageFigure

FullPageTable

G

Green

Group

Heading

I

lnputExample

Itemize

Lemma

Magenta

Major Heading

Math

Math Display

Minus

Multiple

0

OutputExample

p

Plus

Proof

207

For manual tabular formatting. Uses variable-width font.
Breaks lines as in manuscript file. Sets body off with spacing.
Does not adjust margins.
Produces a figure, with an appropriately-numbered caption, on
its own page.

Produces a table, with an appropriately-numbered caption, on its
own page.

Requests Greek (eA.A.cv) printing.

Produces green colored output. The true color printed depends
on your output device and the Scribe Database. Ask your DBA
for further information regarding color at your site.

Delimits text in which page breaks are prohibited.

Places its body as an unnumbered heading. Breaks lines as in
manuscript file.

Requests italic printing. Is converted to underlining on printing
devices which cannot italicize.

Used to print examples of computer input. Much like Example,
but the text is indented more and long lines are wrapped (as they
are in the Verse environment).

Flags each paragraph in the margin with special character. Sets
list off from the rest of text with spacing and wider margins.

Simple mathematical environment. Produces appropriately-
numbered lemmas.

Produces magenta colored output. The true color printed
depends on your output device and the Scribe Database. Ask
your DBA for further information regarding color at your site.

Places its body as a top-level unnumbered heading. Breaks lines
as in manuscript file.

Produces mathematical formulas in running text.

Produces mathematical formulas in examples and displays.

Produces subscript. Synonym: @-.

Delimits multiple paragraphs in the .MSS file so that they are
treated as a single paragraph by other environments like
Enumerate and Description.

Requests that text be printed with an overbar. (Not available in
most device types.)

Used for printing examples of computer output. Much like the
Verbatim environment, but OutputExample is indented a bit
more than Verbatim.

Requests bold italic printing.

Produces superscripts. Synonym: @+.

Simple mathematical environment. Produces appropriately
numbered proofs.

ProgramExample For examples of computer programs. Uses an appropriate font;
breaks lines as in manuscript file.

208

Proposition

Quotation

R

Red

SubHeading

T

Text

Table

Theorem

TitleBox

TitlePage

Transparent

u

UN

ux
Verbatim

Verse

w

White

Yellow

SCRIBE USER MANUAL

Simple mathematical environment. Produces appropriately
numbered propositions.

Insets quotation as running text with wider margins and space
above and below.

Requests ordinary roman type style. Intended for use inside @i
or @b or @g where a few ordinary characters are needed.

Produces red colored output. The true color printed depends on
your output device and the Scribe Database. Ask your DBA for
further information regarding color at your site.

Places its body as a subordinate heading. Breaks lines as in
manuscript file.

Requests typewriter font.

Provides plain, running text. All formatting is normally inside
the environment Text unless specified otherwise.

Produces a table with an appropriately-numbered caption.

Simple mathematical environment. Produces appropriately
numbered theorems.

Prints text on the title page in the spot defined as the title box.
Available only for sectioned documents.

Produces the title page. Other environments may be used inside
this one to print text on the title page. Available only for sec
tioned documents.

Has no attributes and does nothing different by itself. Used to
alter the attributes of the current environment.

Requests underlined printing. All nonblank characters will be
underlined.

Like @u, but underlines only letters and digits.

Like @u, but underlines all characters, including spaces.

Like Format, but uses a fixed-width font. Breaks lines as in
manuscript file. Sets off body with spacing. Does not adjust
margins.

Breaks lines as in manuscript file but does not truncate long
lines. Sets off body with spacing and wider margins.

Treats its body as a "word", that is, as a sequence that cannot
be broken across a line.

Produces white colored output. The true color printed depends
on your output device and the Scribe Database. Ask your DBA
for further information regarding color at your site.

Produces yellow colored output. The true color printed depends
on your output device and the Scribe Database. Ask your DBA
for further information regarding color at your site.

SUMMARIES 209

E.4 Commands

(See also the list of environments in Appendix E.3.)

In the following list, boldface is used to indicate parameters or command names that you
must type exactly as they are listed here. Italics are used to indicate text, names, or
parameters where you are free to use any value that you want - a variable in other words.
Bold italics are used to indicate that your choice must be a name from a restricted set of names
that are permitted in that context. {Braces} around something mean that it is optional.
Parentheses are shown as the command delimiter, but any pair of Scribe delimiters may be
used.

Some of the commands in this list have been designated as "advanced" to serve as a
warning that you should not use the command unless you are fully conversant with the
material in the Scribe User Manual. Misunderstanding of the intent or scope of a command
can lead to hours of needless frustration. Any commands marked with a superscripted asterisk
are really forms rather than commands. They are listed in here because their syntax is similar
to command's syntax, and at the user-level, they may be thought of as commands.

Command Result

@Bar()* Draws a horizontal line from the left margin to the right margin.

@Begin(Environment, attribute-value-list)

Marks the beginning of the specified environment. A list of en

vironments is in Appendix E.3. See also @End.

@Bibliography Inserts the bibliography at this point in the document.

Otherwise, Scribe automatically puts the bibliography at the

end. If you use @Bibliography instead of having Scribe place

your Bibliography for you, you must put a heading in front of it

yourself and you may not get a complete Bibliography.

@BlankPage(n) Inserts n pages into the document. The default value for n is 1.

See also @NewPage.

@Blank Space(vertical-distance)

Inserts blank space for a figure. See Appendix F.8 for a list of

valid units of distance.

@Caption(text-of-caption)

Specifies the caption for a figure or a table. Any @Tag com

mands for the figure or table must come after the caption.

210 SCRIBE USER MANUAL

@Cite(parameter{ delimited-string})

Generates a bibliographic citation to the reference entry iden

tified by parameter, places that citation in the document in place

of the @Cite command, and causes that bibliography entry to be

included in the document's Bibliography. More than one

parameter may be given, using commas as separators. If any

parameter is followed by a delimited string, that string will be

included in the citation.

@CiteMark(parameter)

@Comment

Causes the bibliography entry identified by parameter to be in

cluded in this document's Bibliography. No actual citation is

placed in the text.

Produces no output. Provides a means to insert comments in the

.MSS file without that text being printed in the output. Comment

also masquerades as an environment in that it can be used in

@Begin(comment)/@End(comment). It is the only command

having this property.

@Define(N ewN ame{ =OldN ame} ,list-of-attributes-and-values)

(Advanced command.) Defines NewName to be a Scribe envi

ronment, with the specified attributes and values. If the

"=OldName" optional field is present, then the new name is the

same as the old one except for the changes specified by the at

tribute and value list.

@DefineHyphenationDictionaries(dictionary-name= delimited-word-list)

Defines a dictionary to be used with one of the dictionary hy

phenation methods discussed in Chapter 10. Synonym:

@DefineHyphenationDictionary.

@DefineHyphenationDictionary(dictionary-name= delimited-word-list)

Defines a dictionary to be used with one of the dictionary hy

phenation methods discussed in Chapter 10. Synonym:

@DefineHyphenationDictionaries.

@Device(DeviceN ame)

Specifies the printing device for the output. See Table 2-1 on

page 10 for a list of device names.

@End(Environment)

Marks the end of the specified environment. See also @Begin.

SUMMARIES 211

@Equate(NewName=OldName)

Specifies a synonym NewName for an existing Scribe command

or environment named OldName. "Equate" is not allowed as

Newname.

@Foot(text-of-footnote)

Places the text in a footnote, numbers it, and inserts an appro

priate footnote number in the text

@Go To(horizontal-distance)

@Hinge

(Advanced command.) Repositions the text cursor to be the

given distance from the global left margin. If this new position

is to the left of the current cursor position, a new line is started.

Marks those positions in a grouped environment where Scribe is

permitted to start a new page.

@Hpos(horizontal-distance)

(Advanced command.) Causes the text cursor to be repositioned

at the given distance from the global left margin, even if this

causes the current line to be overprinted. Should normally be

used only in Database files.

@Hsp(horizontal-distance)

(Advanced command~) Causes a blank space of the requested

width to be placed in the document file at that point. Intended

for use only within Database files.

@Include(name-of-a-file)

Includes the contents of another file in your manuscript file at

this point.

@Index(text-to-be-indexed)

Makes an entry in the Index, when the command appears in a

document that allows indexing; otherwise the @Index command

is ignored.

@lndexEntry(Key=<sort-key>,Entry=<text-of-entry>,{numbered <nwnber> })*

(Advanced command.) Makes an entry in the Index that will be

alphabetized under sort-key, but which will have entry text

text-of-entry. If the optional Numbered parameter is present,

then number will be used as the page reference number.

@lndexEntry is only available when this command has been in

cluded in your document: @LibraryFile(MultiLevellndex).

212 SCRIBE USER MANUAL

@lndexSecondary(Primary=<primary-index-term>,

Secondary=< secondary-index-term>)•

Produces a two-level index entry, with the secondary term in

dented under the primary term. The secondary term is num

bered, but the primary term is not. @IndexSecondary is only

available when this command has been included in your docu

ment: @LibraryFile(MultiLevellndex)

@Label(codeword)Defines codeword as a cross reference label representing the

current place in the document See @Ref and @PageRef.

@Library File(name-of-library-entry)

(Advanced command.) Causes the Database to be searched for a

library file, which is read in at the point of the command. (No

message is printed at the user's terminal at this point.) Use

@Include inside manuscript files; for the most part,

@LibraryFile is intended for use within Database files only.

@LocalString(codeword=' 'value'')]

Defines Codeword as a text string with the contents equal to the

delimited string ''value'' for the duration of the current environ

ment only. The definition disappears when the environment is

exited. See @Value.

@Make(document-type)

Specifies the document type definition to use. A list of docu

ment types appears in Section E. 7.

@Modify(Name, list-of-attributes-and-values)

(Advanced command.) Redefines or adds attributes to the envi

ronment or counter Name for the duration of the curren environ

ment

@NewColumnO Breaks the current column and starts at the top of a new one. In

single-column text, this command is equivalent to @Newpage.

@NewPage(n) Breaks the current line and starts at the top of a new page

(unless it is already at the top of a fresh page, in which case

nothing further happens), if n is zero or not specified. Leaves n

blank pages and starts at the top of a new page, if n is specified.

@NewPage is immediate. It does not fill the previous page.

See also @BlankPage.

SUMMARIES 213

@Note(text-of-endnote)

@Ovp(text)

Like @Foot, but produces an endnote if the

@Style(Notes Endnotes) command has been specified.

Outputs text to be overprinted and positions the formatting cur

sor at the beginning of the text.

@Pagefooting(Left=<text>, Center=< text>, Right=< text>, {lmmediate,}{~d.i:h

Line=<Text line>)

Specifies a footing to be put at the bottom of each page, begin-

ning with the next page. Immediate specifies that the footing

take effect on the current page. Odd or Even specifies the foot

ing for odd- and even-numbered pages in a doublesided docu

ment Line contains second (and subsequent) lines of a mul

tiline footing.

@Pageheading(Left=<text>, Center=<text>, Right=<text>, {Immediate,}

{~d_4:f}, Line=< text-line>)

Specifies a heading to be put at the top of each page, beginning

with the next page. Pageheading permits the optional

parameters Immediate, Odd/Even, and Line. See @Pagefooting.

@PageRef(Codeword)

Puts into the text the number of the page on which Codeword

was defined (by @Label(Codeword) or@Tag(Codeword).)

@Part(part-name, Root=<root-file-spec>)

Indicates that a manuscript file is part of a multiple part docu

ment This command must be the first command in a part file.

@Picture(Size=vertical-distance,GenericDevice=<filespec>)

Used inside Figure, FullPageFigure, and Equation to put a

digitized picture into the document for device type

GenericDevice.

@Place(portion-name)

(Advanced command.) Causes the text of the named portion

that has been assembled so far to be placed in the document at

this point.

@Ref(Codeword) Retrieves the value of the cross-reference marker codeword and

places it in the document at that point. To define a cross

reference code word, see @Label and @Tag. See also

@PageRef.

214 SCRIBE USER MANUAL

@SeeAlso(Primary=primary-index-term, Other=reference-term)*

Produces a two- or three-level index entry with the term listed as

"Other" being prefaced with the phrase "See also". (The

number of levels depends on whether of not an

@IndexSecondary command has been included for the same pri

mary term.) Neither terms receive a number. @SeeAlso is only

available when this command has been included in your docu

ment: @LibraryFile(MultiLevellndex).

@Set(Counter=value)

Sets the specified counter to the value or changes the counter by

the designated value if value is signed: @Set(Page=+5) adds 5

to the page counter, but @Set[Page= 7] sets it to 7.

@SpecialFont(n=<file-spec>)

Declares the n'th special font. Meaningful only for devices ca

pable of changing fonts.

@String(Codeword=' 'value'')

Defines Codeword as a text string with the contents equal to the

delimited string ''value''. See@Value.

@Style(parameter=value)

Sets the @Style parameter named parameter equal to value.

@Style parameter names are listed in Appendix E.10.

@TabClearO Clears all tab stops.

@TabDivide(n) Sets tabs to divide the text body into n columns.

@TabSet(tab-stop-positions)

Sets a tab at the horizontal positions indicated. Multiple tabs

may be specified in one @TabSet command, with

tab-stop-positions separated by commas. Distances are com

puted with respect to the prevailing left margin. Existing tabs

are not erased. When the stop value is signed (for example, +

linch), the new stop is set relative to the preceding stop in the

list, (or to the left margin in the case where the first value in the

list is signed).

@Tag(Codeword) Defines Codeword as a cross-reference label representing the

position and number of an equation, theorem, figure, or table.

For use with @Ref.

SUMMARIES 215

@Title(counter-name)

Inserts into the text the title currently associated with

counter-name, which should be a name like Chapter or Section.

@Vse(Component=<file-spee>)

@Value(name)

Tells Scribe to look in <file-spec> for the desired component.

Component names are AuxFile, Bibliography, Database, and

HyphenDic. The file-spec parameter for Database is actually a

directory specification and not a file specification. More than

one @Use specification is permitted for Bibliographies consist

ing of multiple files.

Inserts the value currently associated with the string name.

Names are defined with the @String command; some strings are

predefined by Scribe. These predefined strings appear in

Appendix E.6.

E.5 Punctuation-Character Commands

A "punctuation-character" command is one that consists of an @-sign followed by a
single punctuation character. Except for @+ and @-, these commands are complete in them
selves and take no arguments.

Char

@@

@'-'

@!

@$

@*

@+(text)

@-(text)

@.

@:

@/

@=

@>

Result

The command character followed by itself produces a single,
literal"@" character in the document.

The command character followed by a space requests a literal
space. That is, it treats the space as a character (part of a word)
rather than as a word separator.

Sets the return marker to the current horizontal position.

Sets the left margin for the current environment to the current
horizontal position.

Forces Scribe to start a new line without justifying the old one.

Prints the text as a superscript at the current cursor position.

Prints the text as a subscript at the current cursor position.

Generates a period that does not ever serve as the end of a sen
tence. For ending abbreviations. If @Style(Dotmode=Old),
then @. sets a tab stop in the current cursor position instead.

Forces a sentence break, even if the previous punctuation char
acter was not a period or exclamation point or question mark.

Moves the cursor to the return marker position. (See@!)

Marks the left end of text to be centered. Do not use in a filled
environment. See also @\.

Marks the left end of text to be flushed right. · Do not use in a
filled environment. See also @\.

216

@\

@I

@"
@&

@)

@;

@-

@#

@]

@_

SCRIBE USER MANUAL

Tab command. Moves the cursor to the next tab stop or marks
the end of text being centered or flushed right Do not use in a
filled environment

Specifies a position within a word where a line break is per
mitted.

Sets a tab at the current cursor position.

Repeats the characters between & and the next command from
the current position until the next tab setting.

Like @&, but the replicated patterns are synchronized in fixed
columns from one line to the next

No-operation. Scribe completely ignores@; in the input file.

Causes Scribe to ignore everything in the manuscript file be
tween it and the next printing character. Used for putting non
significant line breaks in environments where end-of-line nor
mally matters.

Leaves a quad space for a special character and creates an entry
in the Error file so you can return to the proper place and draw
in the character.

Positions the cursor at the prevailing left margin.

Conditional hyphen. Allows Scribe to break a word across a
line boundary at the indicated point. If the word is broken, a
hyphen will be inserted. If the word is not broken, no hyphen
will appear. This command functions only when Hyphenation is
turned on. If Hyphenation is off,@_ is ignored.

E.6 Predefined String Names

These strings are predefined for use with the @Value command (see Section 4.2, page 32).

Name
Date

Day

Device

DeviceName

FileDate

FullManuscript

GenericDevice

Result

Day, month, and year of the current date, for example, 15 July
1985. The format is controlled by @Style(Date).

Day of the month, for example, 15.

The output device for this run. Taken from the @Device com
mand in the .MSS file or the DeviceName parameter of the .DEV
file, the "Device" command-line option, or supplied by default
from the Site file.

The name of the output device for this run, for example,
PostScript Page Description Language. Taken from the
DeviceTitle parameter of the .DEV file.

The date and time when the manuscript file was created, for
example, 30 May 1985 at 14:24. The format is controlled by
@Style(FileDate).

The full file specification of the manuscript (root) file being pro
cessed.

Name of the device class to which the selected output device
belongs.

SUMMARIES 217

Manuscript The name of the manuscript (root) file being processed, for ex-
ample, USERl.MSS.

Month The name of the current month, for example, July.

Page The current page number in the document, for example, 217.

RootFileDate If multiple files are in use (via @Include), RootFileDate is the
date and time of last update of the root file, for example, 19 June
1985 at 12:02. The format is controlled by @Style(FileDate).

Scribe Version The version of Scribe currently processing the file, for example,
4(1405).

SectionNurnber The section number from the last sectioning command (null in
an unnumbered document).

SectionTitle The section title specified by the last sectioning command (null
in an unsectioned document).

Site The abbreviation for the site name. Taken from the site code
field in SCRIBE.SIT.

SiteNarne

Source File

Time

Tirnestarnp

Usernarne

Weekday

Year

The name of the site. Taken from the site name field in
SCRIBE.SIT.

The name and line number in the manuscript (included) file cur
rently being processed, for example, V ALUE.RFf, 0960011.

The time when the current Scribe run began, for example, 15:07.
The format is controlled by @Style(Time).

The date and time when the current Scribe run began, for exam
ple, 15 July 85 15:07. The format is controlled by
@Style(TimeStamp).

The name of the user running the program, according to data
provided by the operating system.

The name of the current day of the week, for example, Monday.

The current year, for example, 1985.

E. 7 @Style Parameters

The @Style command specifies parameter-value pairs that control the appearance of the
document. @Style parameters that affect the overall document definition are restricted to the
beginning of the file (that is, prior to any output text). Other @Style parameters can appear
anywhere in the manuscript and take effect when they are processed. The @Style command
has the following form:

@Style(parameter1 value1,parameter2 value2, ...)

Some @Style parameters expect numeric values, for example 1.3 inches. Others expect word
values, e.g. Yes or No. Others expect delimited string values, for example <8 March 1952>.
Do not use delimiters on word or numeric values; that is, don't put quotes around Yes.

Parameter Values

BackgroundColor A color name specifying the color of the background on which
this document is to be printed.

218 SCRIBE USER MANUAL

BibSelect Keyword {Cited or Complete} specifies if the document's bibli
ography is to contain all references from the .BIB file or just
those that were cited with @Cite. Default value: Cited.

BibSequence A parameter from the set {Alphabetic, Numeric} specifying the
sort sequence to be used for sorting the bibliography. If
Numeric, the bibliography will appear in the order in which en
tries were cited in the text. If Alphabetic, the sort will be by
Key field and year. Default value: Alphabetic.

BindingMargin Horizontal distance for binding doublesided documents. Its val
ue should be the amount of paper that is expected to be covered
by the staple or binding.

BottomMargin Vertical distance between last line of text and bottom of page.
(Beginning only)

Citation An integer from 1 to 5 that specifies the citation format to be
used.

1 = numeric citation, the first work
cited is numbered 1, etc.

2 = the key fie1d and the 1ast two digits
of the year, separated by a space.

3 = first CitationLength 1etters of the
key, fo11owed immediate1y by the 1ast
two digits of the year.

4 = your own key is used for citation.

5 = fu11 key fie1d and fu11 year,
separated by a comma.

CitationLength Used when @Style(Citations 3) (portion of author's last name
plus last two digits of year) is in effect. This parameter specifies
how many letters of the author's name are to be used. Default
value: 3.

Citations Synonym for Citation.

CitationSeparator A string to be used to separate multiple citations. Default value:
Comma.

CitationType A parameter from the set {Brackets, Parentheses, Plain,
Superscripts} specifying how citations are to appear in the text.
Default value: Brackets.

Color A color name specifying the color of the text in this document.

ColumnMargin Specifies the distance between columns of text.

Columns Specifies the number of columns that the text of the document is
to be printed in.

Date A template that specifies the style for printing dates. This
template must be some representation of the date Saturday,
March 8, 1952. Month names may be in English, Spanish,
French, or German; numbers may be ordinal, cardinal, roman, or
English. For example:

SUMMARIES

DeviceName

Device Title

DotMode

DoubleSided

Endnotes

@Style(Date=''8 March 1952'')
@Style(Date=''08/03/52'')
@Style(Date=''8 de marzo de 1952'').
@Style (Date=' 'Eighth of March, Fifty-two' ')

219

A string that overrides the value of the predefined string Device
without actually changing the device for which output is being
produced.

A string that overrides the value of the predefined string
DeviceName.

Controls the interpretation of the @. command. In old versions
of Scribe, @. was used to set a tab stop. It is now used to
indicate a period that does not end a sentence. Takes a value
from the set {New, Old}. Default value: New.

Boolean value. Yes allows the insertion of extra blank pages to
force major headings onto odd pages if this effect is specified in
the document type.

Boolean value. Yes means to place footnotes generated by
@Foot at the end of the document. (Beginning only)

ExceptionDictionaries
Specifies the dictionaries to be used to supplement the hyphen
ation algorithm. Synonym: ExceptionDictionary.

ExceptionDictionary
Specifies the dictionary to be used to supplement the hyphen
ation algorithm. Synonym: ExceptionDictionaries.

FileDate A date template that specifies the style for printing file dates.

FontFamily

FontScale

Footnotes

Hyphenation

See @Value(FileDate) and also Date, above.

On devices that can change fonts, the name of the FontFamily to
use for this document. (Beginning only)

The basic body type size in which this document will appear.
Meaningful only for devices that can change type sizes
automatically. (Beginning only)

Counter Template for controlling style of footnote numbering.
(Beginning only)

Specifies what method of hyphenation is to used for the docu
ment. Takes a value from the list {AutomaticExact,
AutomaticFolded, Dictionary Exact, Dictionary Folded, Off,
False, No, On, Yes, True, Old, OldExact, OldFolded, Warn}.

HyphenationDictionaries
Specifies the dictionaries to be used to supplement a dictionary
hyphenation method. One or more dictionary names may be
specified. Synonym: HyphenationDictionary.

HyphenationDictionary

HyphenBreak

Specifies the dictionary to be used to supplement a dictionary
hyphenation method. One or more dictionary names may be
specified. Synonym: HyphenationDictionaries.

A boolean that specifies whether a hyphen in the input text can
be treated as a line break if necessary. This parameter is inde
pendent of the value of Hyphenation.

220

Indent

Indentation

lndexCap

Justification

LeftMargin

Line Width

SCRIBE USER MANUAL

Horizontal distance indicating amount of indenting for each
paragraph, relative to its left margin. (Beginning only)

Same as Indent.

Boolean that specifies whether all indexing terms are to be
sorted as if they were capitalized.

Boolean value. Yes means permit those environments that nor
mally justify their right margins to do so. No means never jus-
tify a right margin. (Beginning only)

Horizontal distance of the global left margin from the physical
left margin of the page. (Beginning only)

Horizontal distance from the global left margin to the end of the
line. (Beginning only)

LongestHyphenatable
Specifies the length of the longest word you want Scribe to
hyphenate. Default value: 99.

MultipleBibliography

Notes

Outline

PageNurnber

PageNurnbers

A boolean specifying whether more than one bibliography file
needs to be processed.

Specifies where to place footnotes. Takes a value from the set
{Footnote, Endnote, Inline}. (Beginning only)

A boolean that determines whether or not an outline will be
produced for a sectioned document. Default value: True.

A counter template specifying the style of page numbering.

Synonym for PageNumber.

RawFontDirectory
Specifies which RawFontDirectory is to be used for this docu
ment. Only certain devices use this parameter. Check with your
DBA to see if you need to know more about it.

ReferenceForrnat Synonym for References.

References Name of entry in the bibliography data base specifying which
reference style and citation style to use. For example,

RightMargin

@Sty1e(References=CACM)

Horizontal distance between the end of the text line and the
global right margin. (Beginning only)

ScriptPush Boolean value. Determines whether (Yes) or not (No) to add
extra vertical spacing for subscripts and superscripts.

ShortestHyphenatable
Specifies the length of the shortest word you want Scribe to
hyphenate. Default value: 5.

SingleSided No value. Turns off DoubleSided.

Spaces

Spacing

Sets the value of the Spaces attribute for the document Takes a
value from the set {Kept, Compact, Ignore, Tab, Null, Ignored,
Normalize, Normalized, NoBreak}.

Vertical distance from base of one line of text to base of the
next. (Beginning only)

SUMMARIES

Spread

StringMax

Time

TimeStamp

Top Margin

WidestBlank

Widow Action

221

Vertical distance added to Spacing to specify the vertical spac
ing between paragraphs. (Beginning only)

Maximum number of characters that can appear in a delimited
string. Default value: about 2000 characters.

A template specifying the format in which @Value(fime) will
be printed. Similar to Date above; you must specify the time
4:30 p.m.:

@Style<Time=(1630hrs)>

Like Time, but it specifies the format in which
@Value(TimeStamp) is printed.

Vertical distance from top of paper to the baseline of the first
text line on the page. (Beginning only)

A horizontal distance giving the maximum amount of white
space that will be tolerated in a line before hyphenation will be
attempted.

Controls the processing of widow lines. Takes a value from the
set {Force, Warn, ForceWarn, Ignore}.

E.8 Bibliography Formats

Bibliography format definitions in the Database are used to control the style and sequenc
ing of the list of references and the citations. Select one with the References @Style
parameter:

@Style(References=STDalphabet~c)

As of the time of this manual (April 1984), the bibliography formats have not been made
entirely consistent with one another. They were all written at different sites by different
people, and not all of them implement all forms of all of the reference types. For definitive
documentation, look at the Database files with file type .REF. Some of the .REF files call
library files. For those files, look in the file FILENA.llB, where FILENA is the first six charac
ters of the parameter inside the @Library File command.

Name Description

lAPA Similiar to the AP A format except that it contains an Annote
field that is treated as a Comment.

lAPADraft Similiar to the lAPA format except that it is double-spaced.

AnnAP A Similiar to the lAP A format except that the Annote field is
treated as text.

AnnAPADraft Similiar to the lAPADraft format except that the Annote field is
treated as text.

AnnotedSTDAiphabetic
Same as StdAlphabetic, but includes annotations and has filled
lines.

222 SCRIBE USER MANUAL

AnnotedSTDidentifier
Similiar to the STDidentifier format except it includes annota
tions and has unfilled lines.

AnnotedSTDNumeric
Same as STDNumeric, but includes annotations (i.e. the con
tents of the Annote field) in the Bibliography and has filled
lines.

AnnSTDAlphabetic
Similiar to the STDAlphabetic format except it includes annota
tions and has unfilled lines.

AnnSTDNumeric Similiar to the STDNumeric format except it includes annota
tions and has unfilled lines.

APA

APADraft

CACM

(American Psychological Association). Spelled-out citations
(Knuth, 1978), outdented closed reference list, alphabetical or
dering of references.

Draft version of AP A format. Same as regular version, but
triple-spaces the Bibliography.

Numeric citations [5], closed format, alphabetical ordering of
references.

ClosedAlphabetic Similiar to the STDAlphabetic format.

ClosedNumeric Similiar to the STDNumeric format.

IEEE Superscripted numeric citations5, closed format, citation se
quence ordering of references.

IPL (Information Processing Letters). The format required by IPL.
This format is incomplete; it does not have all standard Scribe
types yet (April 1984) and is being included for convenience
only.

SIAM (Society for Industrial and Applied Mathematics). The format
required by SIAM journals. This format is incomplete; it does
not have all standard Scribe types yet (April 1984) and is being
included for convenience only.

STDAlphabetic Alphabetic citations [Knuth 78], open format, alphabetical or
dering of references.

STDidentifier Open format, reference identifier for citations rather that a
generated label.

STDNumeric Numeric citations [5], open format, alphabetical ordering of
references.

SUMMARIES 223

E.9 Bibliography Entry Types

The entry types available in the standard Bibliography formats differ with each format.
The optional and required fields for each Bibliography format are shown here. If two fields
are flagged with the same superscript, then one or the other of them can be used, but not both.
E.9.1 The lAPA and AnnAPA Bibliography Reference Formats

The required and optional fields listed below are valid for the lAPA, lAPADraft,
AnnAP A, and AnnAP ADraft Bibliography reference formats.

Type Required Fields Optional Fields

Article

Book

Booklet

Conference

Journal
Title
Year*

Publisher
Title
Date*

Title
Date*

Author
Organization*
Title
Year**

Author
Date*
Key
Month
Note
Number
Pages
Volume

Address
Author
Edition
Editor**
Editors**
How Published
Key
Note
Series
Volume
Year*

Address
Author
How Published
Key
Note
Publisher
Year*

Date**
Meeting
Month
Society*

224 SCRIBE USER MANUAL

InBook Author Address
Date* Booktitle
Publisher Chapter
Title Edition

Editor**
Editors**
How Published
Key
Note
Pages
Series
Volume
Year*

In Collection Author Address
Booktitle Editor*
Publisher Editors*
Title Key
Year Note

Series
Volume

InProceedings Author Address
Booktitle Editor**
Publisher* Editors**
Title Key
Year Note

Organization*

MastersThesis Author Date*
School Key
Title Month
Year* Note

Manual Title Author
Year* Address

Date*
Edition
Month
Note
Organization

Misc None Author
How Published
Key
Note
Title

PhDThesis Author Date*
School Key
Title Month
Year* Note

SUMMARIES

Proceedings

TechReport

Unpublished

Organization**
Title
Year*

Author
Organization*
Title
Year**

Author

E.9.2 The Annoted Bibliography Reference Formats

Address
Date*
Editor**
Editors**
Key
Note
Publisher

Address
Date**
Institution*
Key
Month
Note
Number
Type

Date*
Title
Key
Month
Note
Year*

225

The required and optional fields listed below are valid for the AnnotedSTDAlphabetic,
AnnotedSTDidentifier, AnnotedSTDNumeric, AnnSTDAlphabetic, and AnnSTDNumeric
Bibliography reference formats.

Type Required Fields Optional Fields

Article

Book

Booklet

Author
Journal
Title
Year

Author
Publisher
Title
Volume

Author
Title

Key
Month
Note
Number
Pages
Volume

Address
Date*
Note
Series
Year*

Address
How Published
Year
Key
Note

226 SCRIBE USER MANUAL

InBook Author Address
Booktitle Chapter
Publisher Date*
Title Editor**
Year* Editors**

Key
Note
Pages
Series
Volume

In Collection Author Address
Booktitle Chapter
Publisher Editor
Title Key
Year Note

Pages
Series
Volume

InProceedings Author Address
Booktitle Editor
Title Key
Year Month

Note
Organization*
Pages
Publisher*

MastersThesis Author Key
School Month
Title Note
Year

Manual Title Address
Year Author

Edition
Key
Note
Organization

Misc None Author
How Published
Key
Note
Title

PhD Thesis Author Key
School Month
Title Note
Year

Proceedings Organization* Address
Publisher Date**
Title Editor*
Year** Key

Note

SUMMARIES 227

TechReport Institution Address
Title Author
Year Key

Month
Note
Number
Type

Unpublished Author Key
Title Note

E.9.3 The AP A Bibliography Reference Formats

The required and optional fields listed below are valid for the AP A and APADraft
Bibliography reference formats.

Type Required Fields Optional Fields

Article Author Date*
Journal Key
Pages Month
Title Note
Year* Number

Volume

Book Author Address
Publisher How Published
Date* Key
Title Note

Series
Volume
Year*

Booklet Author Address
Publisher How Published
Title Key
Year Note

Conference Author Date*
Title Meeting
Year* Month

Note
Society

InBook Author Address
Booktitle Editor*
Publisher Editors*
Title Key
Year Note

Series
Volume

InProceedings Author Address
Organization Key
Title Month
Year Note

Pages

228

MastersThesis

Misc

PhD Thesis

Proceedings

TechReport

Unpublished

Author
School
Title
Year

None

Author
School
Title
Year

Organization
Title
Year*

Author
Institution
Title
Year*

Author
Title

E.9.4 The CACM Bibliography Reference Format

SCRIBE USER MANUAL

Key
Month
Note

Author
How Published
Key
Note
Title

Key
Month
Note

Address
Date*
Key
Note

Date*
Key
Month
Note
Number
Type

Key
Note

The required and optional fields listed below are valid for the CACM Bibliography refer
ence format.

Type

Article

Book

Booklet

Required Fields

Author
Journal
Title
Volume
Year

Publisher
Title
Editor*
Year

Author
Title
Year

Optional Fields

Key
Month
Note
Number
Pages

Address
Author*
How Published
Key
Note
Series
Volume

Address
How Published
Key
Month
Note

SUMMARIES 229

InBook Author Address
Booktitle Chapter
Publisher Editor
Title Key
Year Note

Pages
Series
Volume

In Collection Author Address
Booktitle Chapter
Publisher Editor*
Title Editors*
Year Key

Note
Pages
Series
Volume

InProceedings Author Address
Booktitle Key
Title Month
Year Note

Organization
Pages

MastersThesis Author Address
School Key
Title Month
Year Note

Manual Title Address
Year Author

Edition
Key
Note
Organization

Misc Author Key
How Published Note
Title

PhD Thesis Author Month
Key Note
School
Title
Year

Proceedings Title Address
Year Key

Month
Note
Organization

230

TechReport

Unpublished

Author
Institution
Title
Year

Author
Note
Title

SCRIBE USER MANUAL

Address
Key
Month
Note
Number
Type

Key

E.9.5 The Closed and STD Bibliography Reference Formats

The required and optional fields listed below are valid for the ClosedAlphabetic,
ClosedNumeric, STDAlphabetic, STDidentifier, and STDNumeric Bibliography reference
formats.

Type

Article

Book

Booklet

InBook

Required Fields

Author
Journal
Title
Year

Author*
Publisher
Title
Year

Title

Author
BookTitle
Publisher
Title
Year

Optional Fields

Key
Month
Note
Number
Pages
Volume

Address
Editor*
Editors*
Key
Note
Number
Series
Volume

Address
Author
How Published
Key
Note
Year

Address
Chapter
Key
Note
Number
Pages
Series
Volume

SUMMARIES 231

In Collection Author Address
Booktitle Chapter
Publisher Editor*
Title Editors*
Year Key

Note
Number
Pages
Series
Volume

InProceedings Author Address
Booktitle Editor**
Title Editors**
Year Key

Month
Note
Organization*
Pages
Publisher*

Masters Thesis Author Key
School Month
Title Note
Year

Manual Title Address
Year Author

Edition
Key
Note
Organization

Misc None Author
How Published
Key
Month
Note
Title
Year

PhD Thesis Author Key
School Month
Title Note
Year

Proceedings Organization* Address
Publisher Editor*
Title Editors*
Year Key

Note

232

TechReport

Unpublished

Author
Institution
Title
Year

Author
Title

E.9.6 The IEEE Bibliography Reference Format

SCRIBE USER MANUAL

Address
Key
Month
Note
Number
Type

Key
Month
Note
Year

The required and optional fields listed below are valid for the IEEE Bibliography reference
format.

Type

Article

Book

Booklet

InBook

Required Fields

Author
Journal
Title
Year

Author*
Publisher
Title
Year

Address
Author
Title
Year

Author
Publisher
Title
Year

Optional Fields

Key
Month
Note
Number
Pages
Volume

Address
Editor*
Editors*
Key
Note
Number
Series
Volume

How Published
Key
Note

Address
Chapter
Key
Note
Number
Pages
Series
Volume

SUMMARIES 233

InCollection Author Address
Booktitle Chapter
Publisher Editor*
Title Editors*
Year Key

Note
Number
Pages
Series
Volume

InProceedings Author Address
Booktitle Editor**
Title Editors**
Year Key

Month
Note
Organization*
Pages
Publisher*

MastersThesis Author Key
School Month
Title Note
Year

Manual Title Address
Year Author

Edition
Full Organization
Key
Note
Organization

Misc None Author
How Published
Key
Note
Title

PhDThesis Author Key
School Month
Title Note
Year

Proceedings Booktitle Address
Year Key

Month
Note
Organization
Publisher

Tech Report Author Key
Institution Month
Title Note
Year Number

Type

234

Unpublished Author
Title

E.9. 7 The IPL Bibliography Reference Format

SCRIBE USER MANUAL

Key
Note

The required and optional fields listed below are valid for the IPL Bibliography reference
format.

Type

Article

Book

Booklet

InBook

InProceedings

MastersThesis

Misc

Required Fields

Author*
Journal
Pages
Title
Volume
Year

Author*
Publisher
Title
Year

Author*
Publisher
Title
Year

Author*
Booktitle
Editor
Pages
Publisher
Title
Year

Author*
Booktitle
Title
Year

Author*
School
Title
Year

Author*
How Published
Title

Optional Fiekls

FullAuthor*
Key
Month
Note
Number

Address
FullAuthor*
How Published
Key
Note
Series
Volume

Address
FullAuthor*
How Published
Key
Month
Note

Address
FullAuthor*
Key
Note
Series
Volume

Address
FullAuthor*
Key
Month
Note
Organization
Pages

Address
FullAuthor*
Key
Month
Note

FullAuthor*
Key
Note

SUMMARIES 235

PhD Thesis Author* Address
School FullAuthor*
Title Key
Year Month

Note

Proceedings Organization Address
Title Key
Year Note

Pages

TechReport Author* Address
Institution FullAuthor*
Number Key
Title Month
Year Note

Type

Unpublished Author* FullAuthor*
Key
Note
Title

E.9.8 The SIAM Bibliography Reference Format

The required and optional fields listed below are valid for the SIAM Bibliography refer
ence format.

Type

Article

Book

Booklet

Required Fields

Author*
Journal
Pages
Title
Volume
Year

Address
Author*
Publisher
Title
Volume
Year

Author*
Publisher
Title
Year

Optional Fields

FullAuthor*
Key
Note

FullAuthor*
How Published
Key
Note
Series

Address
FullAuthor*
How Published
Key
Month
Note

236 SCRIBE USER MANUAL

In Collection Address FullAuthor*
Author* Key
Booktitle Note,
Editor Series
Pages Volume
Publisher
Title
Year

InProceedings Address FullAuthor*
Author* Key
Booktitle Month
Organization Note
Pages
Title
Year

Masters Thesis Address FullAuthor*
Author* Key
School Month
Title Note
Year

Misc Author* FullAuthor*
How Published Key
Title Note

PhD Thesis Address FullAuthor*
Author* Key
School Month
Title Note
Year

Proceedings Address Key
Booktitle Note
Organization
Year

TechReport Address FullAuthor*
Author* Key
Institution Month
Number Note
Title Type
Year

Unpublished Author* FullAuthor*
Key
Note
Title

SUMMARIES 237

E.10 Bibliography Field Parameters

These parameters are used in defining bibliography database entries. All take a delimited
string or an abbreviation code as an value.

Name

Address

Author

Annote

BookTitle

Chapter

Edition

Editor

Editors

FullAuthor

How Published

Institution

Journal

Key

Month

Note

Number

Organization

Pages

Publisher

School

Series
Title

Type

Description
The address of the publisher or printer or organization.

The name(s) of the author or authors, in the format that they
should be printed.

Any annotation text. Not actually printed in most bibliography
formats.

The title of a book or proceedings of which this reference is a
chapter or paper or article. Do not italicize or underline.

If a reference is being made to part of a book and not the entire
book, you can specify either chapter or pages.

Manuals often have an edition name or number that is not part
of the actual title of the manual.

The name of the editor. If more than one, use Editors.

The name of the editors. If only one, use Editor.

The full name of the author or authors, written out without com
mas, as "John Q. Citizen."

For unusual manuscripts, how it came into your possession
("personal note", etc.).

The organization or institution backing or publishing a technical
report or a proceedings.

The title of the journal. Do not italicize or underline.

The sort key. This field is used for alphabetization.

January, February, etc.

Any comment. Differs from Annote in that Note will always be
printed, but Annote will be printed only in those bibliography
types that specify annotation.

Issue number of a journal or series number in a book series or
serial number of a technical report.

The name of the organization holding a conference that
published a proceedings.

The page numbers within a journal, proceedings, or book that
contain the material actually cited.

The name of the publishing company.

For theses, the name of the school granting the degree.

When books are published in a series, the series has a name.

The title of the book, article, thesis, or other document that is
being cited. Do not italicize or underline; that detail will be
handled by the reference format you select.

Some technical reports are called by other names. If this is not a
"Technical report" then put its true name in this field.

238

Volume

Year

SCRIBE USER MANUAL

The volume number of a journal or a series book. Do not
italicize or boldface.

The year of publication; four digits: 1979.

AppendixF

Syntax Summary

By syntax we mean the rules for what characters are allowed in what positions. Can a
cross-reference name contain a hyphen? Can you put spaces after the commas in a
@PageHeading command? This Appendix covers the general rules that apply to all the com
mands and environments in Scribe.

Capitalizing
Capitalizing only matters in the numbering templates listed in Figure 15-2. For every other

Scribe term, command, environment, or attribute, it does not matter. For example, @BEGIN
is as good as @begin or @BeGiN. We usually use mixed case because we find it easier to
read. As you can see from the examples in the text, anything goes.

Delimiters
Scribe recognizes seven pairs of delimiters. Any of the pairs is valid anytime. The only

restriction is that you use the closing delimiter that matches the opening one.

{ } [] < > () " " ' ' ' '

F.1 Environments and Delimiters

Environments can appear in either a long form (with @Begin/@End) or a short form (with
just the name). For environments, @Begin and @End used with the environment name act
themselves as delimiters. For example, @Begin(Description) would be equivalent to
@Description[(or to @Description with any opening delimiter); @End(Description) would
be equivalent to] (or to whichever closing delimiter matches the opening delimiter).

F .2 Commands and Delimiters

For commands, you can never use @Begin and @End as delimiters; that is, you must
always use the short form with one of the delimiter pairs. For example

@PageHeading<1eft "@Va1ue(Page)",
right "@va1ue(Sitename)">

Another way of saying this is that commands have only a short form.

240 SCRIBE USER MANUAL

F.3 Spaces

Where can a space go in a Scribe command or environment? A command starts with an
@ character. The command or environment name must immediately follow the @ sign. (This
restriction is necessary because @ followed by a space is actually a command for a significant
blank.) You can put a space between a command or environment name and its opening
delimiter, but that practice is very poor stylistically. For example,

@Begin [Disp1ay]
@Heading [How I Spent My Summer Vacation]

F .4 Carriage Returns

Whether a carriage return is part of a command or part of the manuscript text depends on
where the @ sign for the command is. When the @ sign is the first character on a line, then
the end-of-line following it is part of the command, not part of the text. When the @ sign is
anywhere else on the line, then an end-of-line following it is part of the manuscript text.

F.S Code Names for the@Tag and @Label Commands

Code names that you define with @Tag and @Label can be as long or short as you want.
They can contain any number or letter and any of the following special characters.

pound sign
period
hyphen

& ampersand
% percent sign

The following special characters are not allowed in code names because they have special
meanings in Scribe:

I slash
comma
semicolon
underscore

= equal sign
any of the delimiter characters

F.6 String and Environment Names

Names for strings and environments (defined with @String and @Define) can be any
length you want. They too can contain any number or letter, but the set of special characters
not permitted in strings is more restricted than for labels. Only three special characters are
permitted:

pound sign
& ampersand
% percent sign

SYNTAX SUMMARY 241

F.7 Parameter Commands

Some commands, such as @Style and @Pageheading, contain a list of parameters and
values. Sometimes the values are delimited strings. It is good practice to always put delim
iters around parameter values, but as the general rule is that if the value contains a Scribe
delimiter, spaces, or a comma, it should be delimited.

@Sty1e(parameterl=va1uel,parameter2 "va1ue2",
parameter3 [va1ue3])

As you can see, you need some way of separating a parameter from its value. Three charac
ters are valid separators:

= equal sign
I slash

a space

Parameters and values come in pairs. You need to separate pairs from each other with
commas. Both the separators and the commas can have any number of spaces surrounding
them. That is, the following command means exactly the same as the one above.

@Sty1e (

)

Parameterl
Parameter2
,Parameter3=

=
va1uel,

"va1ue2"
[Va1ue3]

Delimited values cannot contain any instances of the closing delimiter, even if it is paired
with its opening delimiter. For example, the characters in "value2" above could not contain a
double-quote, and the characters in ''value3'' could not contain a closing square bracket J .

F .8 Numbers and Distances

Numbers representing distances can be carried to 4 significant figures. For example,
@Style(Spacing=0.884cm) actually attempts to set the final printing device to the requested
line spacing of 0.884 centimeters. Of course, if the printing device is not capable of the
resolution you request, Scribe will give you the positioning closest to the requested value.

Numbers whose meaning depends on the size of the current font (values for lines, charac
ters, spacing, and so on) are carried only to the nearest tenth of a line or tenth of a character,
meaning that @Style(Spacing=l.634) is treated as @Style(Spacing=l.6).

In specifying distance, you can use any of the following units. All units in the same row
are equivalent.

242

Table of Distance Units
in, inch, inches, "
cm, centimeters
mm, millimeters
pt, pts, point, points
pica, picas
em, ems, quad, quads
char, chars, character, characters, en, ens
line, lines

SCRIBE USER MANUAL

Appendix G

Mathematical Formulas

A table of special characters is included in this Appendix for the Dover Laser Printer
(Table G-1), the Quality Micro Systems Lasergrafix 1200 using Talaris fonts, the Santee S700
Terminal (Table G-3), and the Imagen Imprint-IO Laser Printer (Table G-4). The table for
special characters available on the Apple LaserWriter {POSTSCRIPT). is included in Chapter 11
(Table 11-2). If you desire mathematical output on other printers, contact your DBA.

Several examples of both the manuscript form and document result for formulas produced
using the Scribe mathematical facility, which is described in detail in Chapter 11, are shown in
this Appendix. The examples illustrate both the syntax of the facilities individual commands
and some of the possible combinations of them. All the examples except the footnote example
were produced using the MathDisplay environment. That one example was produced with the
Math environment.

The input (manuscript form) for many of the multi-line mathematical forms do not show
delimiters, even though they are documented as taking delimited strings as values in Section .
The rule for when the mathematical forms need delimiters is the same as the rule for when
parameter commands take delimiters. (See Section F.7 for a discussion of delimiters and
parameter commands.) If the value to the mathematical form contains a Scribe delimiter, a
space, or a comma, then delimiters are required. If none of those characters are included as
part of the value, then the delimiters may be removed. We do, however, suggest that you
always use delimiters to avoid problems.

Examples in the MathDisplay Environment

Manuscript Form:

@Int(From a, To b)f#(x)dx#=#@
@Limit(As "@De1ta x@
@RightArrow O")@Sum(From i=l,
Ton) f#(x@down[~]) @De1ta x

Document Result:

b n

J f(x)dx= lim Lf(xyu
a Ax-+Oi=l

244

@Sr(erf) (x)#=#@Over(Num 2,
Denom "@Sqrt(@q(p))")@
@Int(From O, To x)@
e@up[-t@up[2]] dt

@Limit(As n @RiqhtArrow @Infty)@
@q(f)@down[n] (x)#=#@-
@Brace(Bot "1, @Quad x #=#1.",
Top "0, @Quad 0 @LtE x#<#l,")

B(p,r) @Eqv @Sum(From i=l, To N)@
@Over(Num p@down[i]@up[2],
Denom 2m)#+#@Omeqa(R@down[l],@
#@LDots#,R@down[N])

(@De1ta S)@down[@r[qas]]#=#@
@Int() @Over(Num dQ,Denom T)#=#@
@Over(Num "@De1ta Q",Denom T)#=#@
R#@Loq@Over(Num V@down[2],
Denom V@down[l])

y@down[l] (x)#=#@Sum(From n=O,
To @Infty)@Over(Num "(-1)@
@up[n]x@up[n]",
Denom "n! (n#+#l)#!#")

@Sum(From "0 @LtE k @LtE n")@
@Choose(Chosen m, From k)#=#@
@Choose(Chosen m, From 0)#+#
@Choose(Chosen m,From 1)#+#@
@CDots#+#@Choose (Chosen m,
From n)#+#@Choose(Chosen m#+#l,
From n#+l)

@Sin t#=#@Sum(From n=O,
To @Infty) @Over(Num "(-1)@
@up[n]t@up[2n+1]",
Denom "(2n#+#1)!")

SCRIBE USER MANUAL

2 Jx 2 erf(x)=- e-1 dt
Yi 0

lim <l>n(x)= {O, O~x< 1,
n~oo 1, X= 1.

N p.2
H(p,r)= Li:n +Q(Rl, ... ,RN)

i=l

00 (-l)"x"
Y1(x)= ~n!(n+ 1) !

:L (!)=(~)+
O:S;k:S;n

• oo (-l)"t2n+l

smt= ~ (2n+ 1)!

MATHEMATICAL FORMULAS

@r(See footnote.)@Foot<The
difference between
@Math[@Int(From a, To x)@
e@up[-t@up[2]]dt]@-
and @Math[@Int(From b, To x)@
e@up[-t@up[2]]dt@-
is mere1y a constant which
can be added to @Math[C],
making the choice of the 1ower
limit of integration actually
immateria1.

@Sr(if)@O#<#@Abs(x#-#b)#<#@
@g(d) ,@@Sr(then)@@
@Abs[f#(x)#-#L]#<#@g(e).

@Sum(From k=l, To n)@g(g}@
@down[2k-1] @RightArrow@
@Over(Num n, Denom "2@g(p)")@
#@Int(From 0, To "2@g(p)")@
d@g (n) #@g (g) (@g (n))

@Sum(From i=l, To 3)@
@g(L)@down[ii]#=#m@
@Sum(From i=l, To 3)@
@0ver(Num "@Partia1 u@
@down[i] ",
Denom "@Partial x@
@down [i] ") #=#m@
@Nabla:@b(u)

f#=#{(x,y)@VBar#y#=#@
(x@up[2]#+#x#-#6)/(x@up[2]@
#+#4),#x@In@r(Re)}

245

See footnote. 1

if O<lx-bl<O, then lf(x)-Ll<e.

n 2n

L 'Y2k-I ~ ;1tJ dvy(v)
k=I O

f = {(x,y)ly= (x2 +x-6)1(x2 +4),xe Re}

1 The difference between r~ e -? dt and r~ e -? dt is merely a constant which can be added to c, making the
choice of the lower limit of int'egration actually immaterial.

246

@q (f) (x@down [n+l]) #-#@g (f) @
(x@down [n-3]) #=#@Int (From x@
@down[n-3], To x@down[n+l])@
@g (f)' (x) dx

F#(s)G(s)#=#@Int(From 0,
To @Infty) g(@g(h))d@g(h)@
@Int(From 0, To @Infty)@
e@up[-s(@g(x)+@g(h))]@
f#(@g(x))d@g(x)

J@down[l] (x)#=#@Over(Num x,
Denom 2)# @Sum(From n=O,
To @Infty) @Over(Num "(-l)@
@up[n]x@up[2n]",
Denom "(n#+#l) !n!2@up[2n]")

@Nabla@up[2]y@Ovp(')@
@down[n]#=#@Nabla(@Nabla y@
@Ovp(')@down[n])#=#@-
@Nabla (y@Ovp (')
@down[n]#-#@-
y@Ovp(')@down[n-1])

x@up[-1/2] @Sum(From m=O,
To @Infty) @Over(Num "(-l)@
@up[m]x@up[2m+l]",
Denom "(2m#+#l)!"), @Quad x#>#O

z@g(l)#=#@Over(Num "@g(ra)@
q@up[2]", Denom R@down[O]@up[2])@
e@up[R@down[O]/@g(r)] #@-
@SimEq # 3.8 * lO@up[-8]@
@Sr(erg)

SCRIBE USER MANUAL

V2y' = V(Vy') = V(y' -y' 1)
n n n n-

-112~ c-1rx2"'+1
x £.J 2)' , x>O

m=O (m+ 1 .

MATHEMATICAL FORMULAS

@Ln @Over(Num K@down[2],
Denom K@down[1])#=#2.303#@Loq@
@Over(Num K@down[2],
Denom K@down[l])#=#@
-#@Over(Num "@De1ta H@up[@i(O)]",
Denom RT) @VBar@-
@Ss (Super T@down[2],
Sub T@down [1])

@q(f)@down[n] (x) #=#@
x@up[2]#+#@0ver(Num x@up[4],
Denom 2!)#+#@0ver(Num x@up[6],
Denom 4!)#+#@CDots#+#@
@Over(Num x@up[2n], Denom n!)

P#(x)#=#b@down[O]x@up[n]#+#@
b@down[l]x@up[n-1)#+#@
@CDots#+#b@down[n-3]@
x@up[3]#+#b@down[n-2]@
x@up[2]#+#b@down[n-1]x@
#+#b@down[n]

@q(y)@down[y] (x,y)@A#=#@
@Over (Num "@Partia1",
Denom "@Partia1 y")@-
@Int (From 0, To x) M(t,y)@
dt#+#h' (y)

A#=#@Over (Num "(@q (e) /@q (s)) @
A@down [O] e@up [@q (e) t] ",
Denom "A@down[O]e@up[@q(e)t]#+#@
(@q(e) /@q(s)#-#A@down[O]) ")

@Over(Num "@LAnq1e m@down[kJ@
@RAnq1e", Denom M)#=#@-
@Over(Num "e@up[-@q(b)E@down[k]]",
Denom "@Sum(From k=O, To @Infty)@
e@up[-@q(b)E@down[k]]")

247

K2 K2 Af-1° T
ln-= 2.303 log-=--I /

K 1 K 1 RT 1

x4 x6 x2n
<I> (x)=x2+-+-+ ... +-

n 2! 4! n!

'If (x,y) =- M(t,y)dt+h'(y) a~x
y a o

(£/a)A0e1:t

A=-----
AoeEt +(£/a-Ao)

(mk) e-~Ek

M oo

I,e-13Ek
k=O

248

@g(Y) (x)#=#@Int(From -1, To 1)#@
@0ver(Num "@g(b)x@-
@up[@g(g) /@g(d)] ",
Denom "(x+l) (x+2) ")@
e@up[-2@g(d)x] dx

@Int(From 0, To "@r(T)")@
g[t,x(t),u(t)]dt#+#@g(e) @GtE
@Int(From O, To "@r(T)")@
g[t,x@Ast(t),u@Ast(t)]dt

@g(y)@down[@r(m,M)]@
(0,0)#=#@Inf<@g(f)@
@down[@r(m,M)] (p)@
{@VBar p @In@-
@r (A)@down[n]@up[l]}

(u @OTimes v) @OTimes w #=#@
((uv) (l#+#@g(d)@down[l]))@
@OTimes w

@q (Y) @down [0]' (@b (r) @down [l], @
#@LDots#, @b (r) @down [N]) @Eqv@
@Over(Num Z, Denom V@up[N/2])#@
@Prod(From i<j) [l#+#f#(ij)]

@g(y)@down[@Infty] (@b(r))#=#@
@Sum(From 1=0, To @Infty)@
@Sum(From m=-1, To +1)@
Y@down [1m] (@g (q) ,@g (£)) @-
@g (y} @down [1m] (kr)

SCRIBE USER MANUAL

J 1 R~Y/15
'I'(x) = P" e-2&dx

-1(x+l)(x+2)

T J0 g[t,x(t),u(t)]dt+E~

T Io g[t,x*(t),u*(t)]dt

(u®v)®w=((uv)(l +~\))®w

'I'o'<rl' ... ,rN)=~12nD+f(ij)J
I<]

00 +/

'l'oo(r)= LL Ylm(8,<j>)'ljllm(kr)
i=Om=-1

MATHEMATICAL FORMULAS 249

Table G-1: Special Characters for the Dover

Informal name Scribe name Example Availability

Aleph @Aleph N Normal
And See "Intersection (logical)"
Angle @Angle L Normal
Approximate equality @Approx ~ Normal
Asterisk @Ast * Normal
Back arrow See "Left arrow"
Bottom @Bot ...L Normal
Bullet (hollow) @Circ 0 Normal
Bullet (solid) @Bullet • Normal
C-set @CSet IC Normal
Circle (small) See "Bullet (hollow)" and "Degrees"
Degrees @Degr Blank
Delta @Delta 6 Normal
Divided-by @Div I Normal
Dot-in-circle @ODot Blank
Down arrow @DownArrow l Normal
Empty set @EmptySet 0 Normal
Equality @Eq = Normal
Equivalence @Eqv - Normal
Existential quantifier @Exists] Normal
For-all See "Universal quantifier"
Greater @G{ > Normal
Greater-or-equal @GtE ~ Normal
Greater-or-less @GtLt Blank
H-bar @HBar 1t Normal
In See "Membership"
Inequality @Neq :rf Normal
Infinity @lnfty 00 Normal
Integers @ZS et 7L Normal
Intersection (logical) @And /\ Normal
Intersection (set) @Inter n Normal
Intersection (square) @Sq Inter n Normal
Left angle bracket @LAngle < Normal
Left arrow @LeftArrow t- Normal
Less @Lt < Normal
Less-or-equal @LtE ~ Normal
Less-or-greater @LtGt Blank
Membership @In E Normal
Minus @Sub Normal
Minus-in-circle @Ominus e Normal
Minus-or-plus @Mp + Normal
Much-greater @Much Gt » Normal
Much-less @MuchLt « Normal
Nab la @Nab la v Normal

250 SCRIBE USER MANUAL

Natural numbers @NSet IN Normal
Negation (logical) @Not ..., Normal
Non-equivalence @NEqv ¢ Substitute
Non-membership @Notln f. Normal
Not See "Negation (logical)"
Not-in See "Non-membership"
Operator (generic) @Op Blank
Or See "Union (logical)"
Partial derivative @Partial 0 Normal
Planck's constant See "H-bar"
Plus @Add + Normal
Plus-in-circle @OPlus- E9 Normal
Plus-in-u @UPlus w Normal
Plus-or-minus @Pm ± Normal
Q.E.D. @Qed D Normal
Q-set @QSet 0 Normal
Right angle bracket @RAngle > Normal
Rational numbers @RSet IR Normal
Right arrow @RightArrow -+ Normal
Similarity @Similar Normal
Similar or equal @SimEq F:::l Normal
Slash See "Divided-by"
Slash-in-circle @ODiv 0 Normal
Square See "Q.E.D. •i

Star See "Asterisk"
Subset @Subset c Normal
Subset (proper) @PrSubset c Normal
Superset @Supset :J Normal
Superset (proper) @PrSupset :J Normal
Times @Mutt x Normal
Times-in-circle @OTimes ® Normal
Top @Top T Normal
Triangle See "Nab/a" and "Delta"
Union (logical) @Or v Normal
Union (set) @Union u Normal
Union (square) @Sq Union u Normal
Universal quantifier @For All v Normal
Up arrow @Up Arrow i Normal
Vertical bar @VBar I Normal
Vertical bar (double) @DVBar II Normal

MATHEMATICAL FORMULAS 251

Table G-2: Special Characters for the QMS using Tataris Fonts

Informal name

Aleph
And
Angle
Approximate equality
Asterisk
Back arrow
Bottom
Bullet (hollow)
Bullet (solid)
C-set
Circle (small)
Degrees
Delta
Divided-by
Dot-in-circle
Down arrow
Empty set
Equality
Equivalence
Existential quantifier
For-all
Greater
Greater-or-equal
Greater-or-less
H-bar
In
Inequality
Infinity
Integers
Intersection !logical)
Intersection set)
Intersection square)
Left angle bracket
Left arrow
Less
Less-or-equal
Less-or-greater
Membership
Minus
Min us-in-circle
Min us-or-pl us
Much-greater
Much-less
Nab la:
Natural numbers
Negation (logical)
Non-equivalence
Non-membership
Not

Scribe name

@Aleph
See "Intersection {logical)"
@Angle
@Approx
@Ast
See "Left arrow"
@Bot
@Circ
@Bullet
@CSet
See "Bullet (hollow)" and "Degrees"
@Degr
@Delta
@Div
@ODot
@DownArrow
@Empty Set
@Eq
@Eqv
@Exists
See "Universal quantifier"
@Gt
@GtE
@GtLt
@HBar
See "Membership"
@Neq
@Infty
@ZSet
@And
@Inter
@Sq Inter
@LAngle
@LeftArrow
@Lt
@LtE
@LtGt
@In
@Sub
@Ominus
@Mp
@Much Gt
@Much Lt
@Nabla
@NSet
@Not
@NEqv
@Not In
See "Negation (logical}"

Example

L

*

..l
0

• c

~

I
0
!
0
=

3

>
>

00

z
/\

n
n
(
+-

<
<

E

e
=f
~

«
v
N

Availability

Normal

Substitute
Normal
Normal

Normal
Normal
Normal
Fake

Normal
Normal
Normal
Normal
Normal
Normal
Normal
Normal
Normal

Normal
Normal
Blank
Blank

Substitute
Normal
Fake
Normal
Normal
Normal
Normal
Normal
Normal
Normal
Blank
Normal
Normal
Normal
Normal
Normal
Normal
Normal
Fake
Normal
Substitute
Substitute

252 SCRIBE USER MANUAL

Not-in See "Non-membership''
Operator (generic) @Op OP Fake
Or See "Union (logical}"
Partial derivative @Partial a Normal
Planck's constant See "H-bar"
Plus @Add + Normal
Plus-in-circle @OPlus EB Normal
Plus-in-u @UPlus I:':! Normal
Plus-or-minus @Pm :t Normal
Q.E.D. @Qed Blank
Q-set @QSet Q Fake
Right angle bracket @RAngle) Normal
Rational numbers @RS et R Fake
Right arrow @RightArrow Normal
Similarity @Similar Normal
Similar or equal @SimEq ".::! Normal
Slash See "Divided-by"
Slash-in-circle @ODiv 0 Normal
Square See "Q.E.D."
Star See "Asterisk"
Subset @Subset c Normal
Subset (proper) @PrSubset c Normal
Superset @Supset ::i Normal
Superset (proper) @PrSupset :::> Normal
Times @Mult x Normal
Times-in-circle @OTimes ® Normal
Top @Top T Normal
Triangle See "Nabla" and "Delta"
Union rogical) @Or v Normal
Union set) @Union u Normal
Union square) @Sq Union u Normal
Universal quantifier @For All \:/ Normal
Up arrow @UpArrow Normal
Vertical bar @VBar Normal
Vertical bar (double) @DVBar Normal

MATHEMATICAL FORMULAS

Informal name

Aleph
And
Angle
Approximate equallty
Asterisk
Back arrow
Bottom
Bullet C hollow>
Bullet < solld>
C-set
Circle <small>
Degrees
Delta
Divided-by
Dot-ln-clrcle
Down arrow
Empty set
Equality
Equivalence
Exlstentlal quantifier
For-all
Greater
Greater-or-equal
Greater-or-less
H-bar
In
Inequality
Infinity
Integers
Intersection < loglcaD
Intersection <set>
Intersection <square>
Left angle bracket
Left arrow
Less
Less-or-equal
Less-or-greater
Membership
Minus
Minus-In-circle
Minus-or-plus
Much-greater
Much-less
Nab la
Natural numbers
Negation <logical>
Non-equivalence
Non-membership
Not

Table G-3: Special Characters for the Santee

Scribe name Example

I Aleph
See "Intersection <loglcal)"
9Angle
&Approx
9Ast
See "Left arrow"
9Bot
9Clrc
&Bullet
ecset
See "Bullet <hollow)" and "Degrees"
eDegr
I Delta
9Dlv
90Dot
IDownArrow
8EmptySet
8Eq
9Eqv
9EMlsts
See "Universal quantifier"
9Gt
IGtE
8Gtlt
IHBar
See "Membership"
8Neq
81nfty
IZSet
9And
91nter
9Sqlnter
9LAngle
l!tleftArrow
9Lt
lltE
l!tltGt
l!tln
9Sub
90mlnus
8Mp
IMuchGt
8Muchlt
INabla
8NSet
8Not
INEqv
8Notln
See "Negation Clog/cal)"

L

l
0

c

/j.

I

-
•

>

m
z
}.

n

<

<
<
s
E

~

»
«
v
N

253

Avallablllty

Blank

Normal
Normal
Normal

Normal
Normal
Normal
Fake

Blank
Normal
Normal
Blank
Blank
Substitute
Normal
Normal
Blank

Normal
Normal
Normal
Normal

Normal
Normal
Fake
Substitute
Normal
Blank
Normal
Normal
Normal
Normal
Normal
Substitute
Normal
Blank
Normal
Normal
Normal
Normal
Fake
Blank
Substitute
Substitute

254

Not-In
Operator C generic>
Or
Partial derivative
Planck's constant
Plus
Plus-ln-clrcte
Plus-ln-u
Plus-or-minus
Q.E.D.
a-set
Right angle bracket
Rational numbers
Right arrow
Stmltarlty
Stmltar or equal
Slash
Slash-In-circle
Square
Star
Subset
Subset C proper>
Superset
Superset c proper>
Times
Times-In-circle
Top
Triangle
Union C logical>
Union <set>
Union <square>
Universal quantifier
Up arrow
Vertical bar
Vertical bar C double>

See ''Non-membership"
90p
See "Union (fog/ca/)"
9Partlal
See ''H-bar''
9Add
90Plus
8UPlus
9Pm
9Qed
9QSet
9RAngle
9RSet
9RlghtArrow
8Slmltar
9SlmEq
See ''Divided-by''
80Dlv
See "Q. E. D."
See ''Asterisk"
@Subset
8PrSubset
8Supset
8PrSupset
8Mult
80Tlmes
l!Hop
See "Nab/a" and "Delta"
80r
@Union
8SqUnlon
8ForAll
8UpArrow
8VBar
8DVBar

SCRIBE USER MANUAL

OP

a

+

ti
:i:

a
a
>
R

c
c
::::>

::::>

x

v
u

' I
I

Fake

Normal

Normal
Blank
Substitute
Normal
Normal
Fake
Normal
Fake
Normal
Substitute
Normal

Blank

Substitute
Normal
Substitute
Normal
Normal
Blank
Blank

Substitute
Normal
Blank
Blank
Normal
Normal
Normal

MATHEMATICAL FORMULAS 255

Table G-4: Special Characters for the Imprint-10

Informal name Scribe name Example Availability

Aleph QAleph N Normal

And See "Intersection (logical}"
Angle @Angle L Normal

Approximate equality @Approx ~ Normal

Asterisk @Ast • Normal

Back arrow See "Left arrow"
Bottom @Bot ..L Norm:i.l

Bullet (hollow) @Circ 0 Normal

Bullet (solid) @Bullet • Normal

C-set @CS et c Fake

Circle (small) See "Bullet {hollow}" and "Degrees"
Degrees @De gr Normal

Delta @Delta 6. Normal

Divided-by @Div I Normal

Dot-in-circle @ODot 0 Normal

Down arrow @DownArrow ! Normal

Empty set @Empty Set 0 Normal

Equality @Eq - Normal

Equivalence @Eqv - Normal

Existential quantifier @Exists 3 Normal

For-all See 'Vniversal quantifier"
Greater @Gt > Normal

Greater-or-equal @GtE ~ Normal

Greater-or-less @GtLt Blank

H-bar @HBar Blank

In See "Membership"
Inequality @Neq I: Normal

Infinity @lofty 00 Normal

Integers @ZSet z Fake

Intersection (logical) @And I\ Normal

Intersection (set) @Inter n Normal
Intersection (square) @Sq Inter n Normal
Left angle bracket @LAngle { Normal

Left arrow @LeftArrow - Normal

Less @Lt < Normal

Less-or-equal @LtE < Normal
Less-or-greater @Lt Gt Blank
Membership @In E Normal

Minus @Sub Normal

Minus-in-circle @Ominus e Normal

Min us-or-plus @Mp =f Normal
Much-greater @Much Gt > Normal
Much-less @MuchLt < Normal
Nabla @Nab la V' Normal
Natural numbers @NSet N Fake
Negation (logical) @Not ..., Normal

256 SCRIBE USER MANUAL

Non-equivalence @NEqv ¢ Substitute
Non-membership @No tin e Normal
Not See "Negation {logical)"
Not-in See "Non-membership"
Operator (generic) @Op OP Fake
Or See 'Vnion (logical)"
Partial derivative @Partial {) Normal
Planck's constant See "If-bar"
Plus @Add + Normal
Plus-in-circle @OPlus EB Normal
Plus-in-u @UPI us ~ Normal
Plus-or-minus @Pm ± Normal
Q.E.D. @Qed Blank

Q-set @QSet Q Fake
Right angle bracket @RAngle } Normal
Rational numbers @RS et R Fake

Right arrow @RightArrow - Normal

Similarity @Similar Normal

Similar or equal @SimEq .--.J Normal

Slash See "Divided-by"
Slash-in-circle @OD iv 0 Normal

Square See "Q.E.D."
Star See "Asterisk"
Subset @Subset ~ Normal

Subset (proper) @PrSubset c Normal

Superset @Supset ~ Normal

Superset (proper) @PrSupset :::> Normal

Times @Mult x Normal

Times-in-circle @OTimes 0 Normal

Top @Top T Normal

Triangle See "Nabla" and "Delta"
Union (logical) @Or v Normal

Union (set) @Union u Normal

Union (square) @Sq Union LI Normal

Universal quantifier @For All v Normal

Up arrow @UpArrow t Normal

Vertical bar @VBar I Normal

Vertical bar (double) @DVIhr II Normal

Index

- dictionary command 94

. dictionary command 94

!APA Bibliography reference format 125
!APA reference format 221
lAPADraft Bibliography reference format 125
IAPADraft reference format 221

9700 command-line option 204

@(space) command 102
@! command 88, 215
@#command 44, 216
@#numbering template 176
@$ command 215
@$ numbering template 177
@& command 88, 216
@' numbering template 176
@)command 89, 216
@*command 105, 215
@* numbering template 176
@+environment 13, 86, 215
@,numbering template 177
@-environment 13, 86, 215
@-sign, meaning 6
@.command 104, 215
@I command 88, 215
@l numbering template 176
@2 numbering template 176
@3 numbering template 176
@4 numbering template 176
@5 numbering template 176
@6 numbering template 176
@7 numbering template 176
@8 numbering template 176
@9 numbering template 176
@:command 104, 215
@:numbering template 176
@;command 105, 216
@;numbering template 176
@= command 84, 215
@> command 82, 84, 215
@@

Meaning in numbering template 177
@@ command 215
@@ dictionary command 94
@@@@

Meaning in numbering template 177
@\command 82, 84, 216
@] command 216
@A command 87, 216
@_command 99, 216
@A numbering template 176
@Abs form 116
@Add form 115
@Aleph form 114
@And form 114
@Angle form 114
@Appendix command 61
@Approx form 114
@Arctgform 116
@Ast form 114

@Atan form 116
@Barform 75, 209
@Begin command 14, 209

List of environments for use with 205
@Bibliography command 130, 209
@BigO form 116
@BlankPage command 77, 209
@Blankspace command 74, 209
@Bot form 114
@Brace form 119, 120
@Bulletform 114
@Caption command 76, 209
@CDots form 117
@Ceiling form 116
@Chapter command 61
@Choose form 119, 120
@Circ form 114
@Cite command 123, 128, 209
@CiteMark command 129, 210
@Comment command 42, 210
@Cos form 116
@Cot form 116
@Counter command 17 4
@Csc form 116
@CSet form 114
@Define command 163, 210
@DefineHyphenationDicitonary command 210
@DefineHyphenationDictionaries command 94, 210
@DefineHyphenationDictionary command 94
@Deg form 116
@Degrform 114
@Delta form 114
@Det form 116
@Detrm form 116
@Device command 9, 47, 141, 210
@Div form 114
@DownArrow form 114
@DVBarform 115
@EmptySet form 114
@End command 14, 210
@Eqform 114
@Equate command 160, 210
@Eqvform 114
@Exists form 114
@Expform 116
@F numbering template 176
@Floorform 116
@Foot command 31, 211
@ForAll form 115
@G font chart 190
@Gcd form 116
@Get form 118
@GoTocommand 211
@Gt form 114
@GtE form 114
@GtLt form 114
@HBarform 114
@Hinge command 107, 211
@Hpos command 211
@Hsp command 211
@I numbering template 176
@In form 114
@Include command 139, 162, 211

258

@Index command 35, 172, 211
@IndexEntryform 37,211
@IndexSecondary form 172, 211
@Infform 116
@Infty form 114
@Int form 119, 120
@Inter form 114
@Label command 67, 212
@LAngle form 114
@LDots form 117
@LeftArrow form 114
@Lgform 116
@LibraryFilecommand 109, 170,212
@Lim form 116
@Liminfform 116
@Limit form 119, 120
@Limsup form 116
@Lnform 116
@Loca!String command 212
@Log form 116
@Log2 form 116
@Ltform 114
@LtE form 114
@LtGt form 114
@Make command 47, 141, 212

Details of 48
List of document types for use in 204

@Marker command 96, 170
@Max form 116
@Min form 116
@Mod form 116
@Modify command 29, 162, 174, 212
@Mpform 114
@MuchGt form 114
@MuchLt form 114
@Mult form 115
@Nabla form 114
@Ndform 117
@Neq form 114
@NEqv form 114
@NewColumn command 90, 212
@Newpage command 77, 90, 106, 212
@Norm form 116
@Not form 114
@Note command 31, 212
@Notln form 114
@NSet form 114
@O numbering template 176
@ODivform 115
@ODot form 114
@Omega form 116
@Qminus form 114
@Qpform 115
@OPlus form 115
@Qrform 115
@OTimes form 115
@Qverform 119, 120
@Overline form 118
@OverlineCap form 118
@Ovp command 87, 213
@Pagefooting command 41, 213
@Pageheading command 41, 213
@PageRef command 68, 69, 213
@Paragraph command 61
@Part command 139, 142, 213
@Partial form 115
@Picture command 74, 213
@Place command 213
@Pmform 115
@PrefaceSection command 61

@Prod form 119, 120
@PrSubset form 115
@PrSupset form 115
@Qed form 115
@QSet form 115
@Quad form 112
@RAngle form 115
@Rdform 117
@Ref command 65, 213
@RightArrow form 115
@RSet form 115
@Section command 61
@SeeAlsoform 172, 173, 213
@Set command 66, 214
@SimEq form 115
@Similar form 115
@Sin form 116
@SmallFraction form 119, 120
@Space command 215
@Specia!Font command 177, 214
@Sqinter form 114
@Sqrt form 116
@SqUnion form 115
@Ss form 119, 120
@Stform 117
@String command 32, 136, 143, 214

INDEX

@Style command 29, 33, 39, 129, 130, 141, 159, 214,
217

List of parameters for 217
@Sub form 114
@Subsection command 61
@Subset form 115
@Sum form 119, 120
@Sup form 116
@Supset form 115
@TabCiear command 81, 214
@TabDivide command 81, 214
@TabSet command 81, 214
@Tag command 68, 76, 214
@Tan form 116
@Tgform 116
@Thform 117
@Theta form 116
@Title command 66, 214
@TitlePage command 66
@Top form 115
@Trace form 116
@Union form 115
@UnNumbered command 61, 130
@UpArrow form 115
@UPius form 115
@Use command 124, 139, 143, 215

Auxiliary file 143
Bibliography file 143
Database 139, 143
Database files 143
For Bibliographies 124

@Value command 32, 215
List of predefined names for 216

@VBar form 115
@Vee form 118
@W command 102
@ZSet form 114
@I command 102, 216
@-command 106, 216

_ dictionary command 94

A command-line option 203
Abbreviations

INDEX

As Bibliography field name values 136
In bibliography entries 123
Periods in 103, 104

Above environment attribute 164
ABS form 116
ABSTRACT environment 205
ADDform 115
Address Bibliography field name 134, 237
Aegis operating system 183

Command-line switch character 183
Running Scribe 183

AfterEntry environment attribute 164
AfterExit environment attribute 164
Agile command-line option 203
ALEPH form 114
Alphabetic space 44
Anchor environment attribute 164
Anchored environment attribute 164
ANDform 114
ANGLE form 114
AnnAPA Bibliography reference format 125
AnnAPA reference format 221
AnnAP ADraft Bibliography reference format 125
AnnAPADraft reference format 221
Annote Bibliography field name 134, 237
AnnotedSTDAlphabetic Bibliography reference format

125
AnnotedSTDAlphabetic reference format 221
AnnotedSTDidentifier Bibliography reference format 126
AnnotedSTDidentifier reference format 221
AnnotedSTDNumeric Bibliography reference format 126
AnnotedSTDNumeric reference format 222
AnnSTDAlphabetic Bibliography reference format 126
AnnSTDAlphabetic reference format 222
AnnSTDNumeric Bibliography reference format 126
AnnSTDNumeric reference format 222
APA Bibliography reference format 126, 128
AP A reference format 222
APADraft Bibliography reference format 126
APADraft reference format 222
APPENDIX command 61
Apples 36
APPROX form 114
ARCTG form 116
Article Bibliography classification 132
Article Bibliography field name 223, 225, 227, 228, 230,

232,234,235
Article document type 54, 204
Article, Form 1 document type 204
ASCII

American standard 189, 191
Stanford 191

ASTform 114
ATANform 116
Attribute-value pairs 160
Attributes 160

Above 164
AfterEntry 164
AfterExit 164
Anchor 164
Anchored 164
BackGroundColor 164
BeforeEntry 164
BeforeExit 164
Below 164
Blanklines 164
Boxed 90, 165
Break 165
Capitalized 165
Centered 165

Color 29, 165
ColumnMargin 90, 165
Columns 90, 165
Column Width 90, 165
Continue 165
Copy 165
Counter 165
CRBreak 165
CRSpace 166
ExceptionDictionaries 96, 166
ExceptionDictionary 96, 166
FaceCode 166
Fill 166
Fixed 166
Float 166
FloatPage 166
FlushLeft 166
FlushRight 166
Font 166
Free 166
Group 108, 166
Hyphenation 97, 98, 167
HyphenationDictionaries 95, 167
HyphenationDictionary 95, 167
HyphenBreak 99, 167
Increment 167
Indent 167
Indentation 167
Justification 167
LeadingSpaces 167
LeftMargin 167
LineWidth 90, 167
LongLines 168
Need 108, 168
NoFill 168
Numbered 168
NumberFrom 168
NumberLocation 168
OverStruck 168
Pagebreak 168
Pageheading 168
Pageheadings 168
Referenced 168
RightMargin 168
Script 169
Sink 169
Slant 169
Spaces 169
Spacing 169
Spread 169
TabExport 169
Underline 169
UnNumbered 169
Use 170
WidestBlank 100, 170
Within 170

Author Bibliography field name 134, 237
AutomaticExact hyphenation method 97
AutomaticFolded hyphenation method 97
AUX file type 69, 70, 142, 143, 162
Auxiliary files 69, 70, 142, 143, 162

Using another 143

B environment 13, 86, 205
BackgroundColor environment attribute 164
BackgroundColor Style parameter 29, 39, 217
BAR form 75, 209
BeforeEntry environment attribute 164
BeforeExit environment attribute 164
BEGIN command 14, 209

259

260

Beginning of File 48
Below environment attribute 164
BIB file type 143
Bibliographies 123
Bibliography

Making heading for 124
Bibliography classifications 132

Article 132
Book 133
Booklet 133
Conference 133
lnBook 133
InCollection 133
lnProceedings 133
Manual 133
MasterThesis 133
Misc 133
PhDThesis 133
Proceedings 133
TechReport 133
UnPublished 134

BIBLIOGRAPHY command 130, 209
Bibliography database file 130
Bibliography document type 128, 204
Bibliography field names 134

Address 134, 237
Annote 134, 237
Article 223, 225, 227, 228, 230, 232, 234, 235
Author 134, 237
Bibliography entry 134
Book 223, 225, 227, 228, 230, 232, 234, 235
Booklet 223, 225, 227, 228, 230, 232, 234, 235
BookTitle 134, 237
Chapter 134, 237
Conference 223, 227
Date 134
Edition 134, 237
Editor 134, 237
Editors 134, 237
FuIIAuthor 135, 237
FuIIOrgani:zation 135
HowPublished 135, 237
InBook 223, 225, 227, 228, 230, 232, 234
InCollection 224, 226, 229, 230, 232, 235
InProceedings 224, 226, 227, 229, 231, 233, 234, 236
Institution 135, 237
Journal 135, 237
Key 135,237
Manual 224,226,229,231,233
MastersThesis 224, 226, 227, 229, 231, 233, 234, 236
Meeting 135
Misc 224, 226, 228, 229, 231, 233, 234, 236
Month 135, 237
Note 135, 237
Number 135, 237
Organization 135, 237
Pages 135, 237
PhDThesis 224, 226, 228, 229, 231, 233, 234, 236
Proceedings 224, 226, 228, 229, 231, 233, 235, 236
Publisher 136, 237
School 136,237
Series 136, 237
TechReport 225,226,228,229,231,233,235,236
Title 136, 237
Type 136, 237
Unpublished 225, 227, 228, 230, 232, 233, 235, 236
Volume 136,237
Year 136, 238

Bibliography file 131
Selection 124

Bibliography files 143
Rules for contents 132
Selection 143
Using another 143

Bibliography reference format 125
Bibliography reference formats

lAPA 125
l AP ADraft 125
AnnAPA 125
AnnAPADraft 125
AnnotedSTDAlphabetic 125
AnnotedSTDldentifier 126
AnnotedSTDNumeric 126
AnnSTDAlphabetic 126
AnnSTDNumeric 126
APA 126
AP ADraft 126
CACM 126
ClosedAlphabetic 126
ClosedNumeric 126
Description of classifications and fields 132
IEEE 126
IPL 126
SIAM 126
STDAlphabetic 126
STDldentifier 126
STDNumeric 126
Tableof 125

BibSelect Style parameter 129, 217
BibSequence Style parameter 218
BIGO form 116
BindingMargin Style parameter 218
BLACK environment 29, 205
Blank lines 105
Blank pages 77
Blank spaces

Leaving 44
Blanklines environment attribute 164
BLANKPAGE command 77, 209
BLANKSPACE command 74, 209
BLUE environment 29, 205
Bold italics

Howtoget 13
Boldface 13

Howtoget 13
Book Bibliography classification 133

INDEX

Book Bibliography field name 223, 225, 227, 228, 230,
232, 234, 235

Booklet Bibliography classification 133
Booklet Bibliography field name 223, 225, 227, 228, 230,

232,234,235
BookTitle Bibliography field name 134, 237
BOTform 114
BottomMargin Style parameter 40, 218
Boxed environment attribute 90, 165
BRACE form 119, 120
Bracketing 11
Break environment attribute 165
Breaking long environments 107
Brochure document type 204
BULLET form 114

C environment 13, 86, 205
CACM Bibliography reference format 126
CACM reference format 222
Capitalization 160
Capitalized environment attribute 165
Capitalizing commands 239
CAPTION command 76, 209
Captions

INDEX

For figures and tables 73, 76
Placement of @Tag 76

Carriage return in commands 240
COOTS form 117
CEILING form 116
CENTER environment 16, 205
Centered environment attribute 165
Centering text 84
CG file type 9
Changing command names 160
Changing counters 174
Changing definitions 159
Changing formats 39
Changing page numbers 175
Chapter Bibliography field name 134, 237
CHAPTER command 61
Chapter titles 60
Character fonts 44
Characters 189
CHOOSE form 119, 120
CIRC form 114
Citation Style parameter 218
CitationLength Style parameter 218
Citations

Bibliographic 123
Multiple 129

Citations Style parameter 218
CitationSeparator Style parameter 218
CitationType Style parameter 218
CITE command 123, 128, 209
CITEMARK command 129, 210
Clearing tab settings 85
ClosedAlphabetic Bibliography reference format 126
ClosedAlphabetic reference format 222
ClosedNumeric Bibliography reference format 126
ClosedNumeric reference format 222
CMS Operating System

Command-line switch syntax 183
Running Scribe 183

Code name rules 240
Codewords

Bibliographic 131
Cross referencing 67
Listing of in OTL file 144

Color environment attribute 29, 165
Color output 28
Color Style parameter 29, 39, 40, 218
Color support

GIGI 28
Penguin Laser Printer 28
Robot Typewriters 28

Column formatting 81
ColumnMargin environment attribute 90, 165
ColumnMargin Style parameter 218
Columns environment attribute 90, 165
Columns Style parameter 218
Column Width environment attribute 90, 165
Command format 239
Command-line options 8, 203

9700 204
A 203
Agile 203
D 203
Dev: 203
Device: 203
Diablo 203
Doc: 203
Document: 203
Dover 203
Draft 203

Draft: 203
F 203
File 203
G 203
GG 203
GIGI 203
GSI 203
HV 101,203
HYD 101,203
HypVocab 101, 203
Imp 203
Imprint 203
Imprintl 0 203
Keep 204
L 204
LA36 204
LGPl 204
Listof 203
LPT 204
NoH 181
NoHV 181
NoHyd 181
NoHyp 181
NoHyphenate 181
NoHypVocab 181
PagedFile 204
Q 149,204
Quiet 149, 204
Switch character for Aegis 183
Switch character for Primos 183
Switch character for TENEX 182
Switch character for TOPS-10 181
Switch characterforTOPS-20 182
Switch character for UNIX 182
Switch character for VMS 182
Switch syntax for CMS 183
TOPS-IO 181
v 101, 145,204
Voe 204
Vocab 101, 204
Vocabulary 145, 204
w 145,204
WordCount 145, 204
Words 204
x 204
X9700 204

Commands 2, 31
! 88, 215
44, 216
$ 215
& 88,216
) 89, 216
* 105, 215

104,215
88,215
104, 215
105, 216
84,215

> 82, 84, 215
@@ 215
\ 82, 84, 216
l 216
" 87, 216
- 99, 216
Appendix 61
Begin 14, 209
Bibliography 130, 209
BlankPage 77, 209
Blankspace 74, 209
Caption 76, 209

261

262

Chapter 61
Cite 123, 128, 209
CiteMark 129, 210
Comment 42, 210
Counter 174
Define 163, 210
DefineHyphenationDictionaries 94, 210
DefineHyphenationDictionary 94, 210
Device 9, 47, 141, 210
End 14, 210
Equate 160, 210
Foot 31,211
GoTo 211
Hinge 107, 211
Hpos 211
Hsp 211
Include 139, 162, 211
Index 35, 172, 211
Label 67, 212
LibraryFile 109, 170, 212
LocalString 212
Make 47, 141, 212
Marker 96, 170
Modify 29, 162, 174, 212
NewColumn 90, 212
NewPage 77, 90, 106, 212
Note 31, 212
Ovp 87, 213
Pagefooting 41, 213
Pageheading 41, 213
PageRef 68,69,213
Paragraph 61
Part 139, 142, 213
Picture 74, 213
Place 213
PrefaceSection 61
Ref 65, 213
Section 61
Set 66, 214
Space 102, 112, 215
SpecialFont 177, 214
String 32, 136, 143, 214
Style 29, 33, 39, 129, 130, 141, 159, 214
Subsection 61
TabClear 81, 214
TabDivide 81, 214
Table of 209
TabSet 81, 214
Tag 68, 76, 214
Title 66,214
TitlePage 66
UnNumbered 61, 130
Use 124, 139, 143, 215
Value 32, 215
w 102
I 102, 216
- 106, 216

Commas as separators 241
COMMENT command 42, 210
Comments in manuscript 42, 140
Conference Bibliography classifications 133
Conference Bibliography field name 223, 227
Continue environment attribute 165
Control characters 44
Conventions 239
Copy environment attribute 165
COPYRIGHT environment 206
Copyright notice

How to produce 63
COPYRIGHTNOTICE environment 63, 206

COROLLARY environment 206
COS form 116
COTform 116
COUNTERcommand 174
Counter definitions 17 4
Counter environment attribute 165
Counter values

Changing 66
Printing 65, 175
Saving 66

Counters 65
General discussion of 65
Numbering templates for 175
Titles of 66

Counting words in document 145
CRBreak environment attribute 165
Cross references 28, 65, 67, 73, 142, 144

Codewords for 67
Errors in 69
To mathematical formulas 28

CRSpace 166
CSCform 116
CSETform 114
Cursor control 87
CY AN environment 29, 206

D command-line option 203
DARK environment 29, 206
Database l, 5, 39, 130

Bibliographic 124
Definitions 160
Design principles 179
Using different 143

Database Administrator 2
Database files 143
Date

Changing style of printing 33
Current 33
Standard date for Style templates 33

Date Bibliography field name 134
Date predefined string 216
Date Style parameter 218
Day of week 34
Day predefined string 216

INDEX

DEFINE command 163, 210
DEFINEHYPHENATIONDICTIONARIES command

94,210
DEFINEHYPHENATIONDICTIONARY command 94,

210
Defining environments 163
Defining synonyms 160
DEFINITION environment 24, 206
Definition Library files 170
Definition of a word 93
DEGform 116
DEGR form 114
Delimiter pairs 239
Delimiters 11, 14, 15

In comments 43
Nesting 12, 42

Delimiting tab fields 84
DELTAform 114
DESCRIPTION environment 16, 24, 206
Designing document formats 179
DETform 116
DETRM form 116
Dev: command-line option 203
Device classes

Diablo 185, 186
Line printer 185, 186

INDEX

DEVICE command 9, 47, 141, 210
Device predefined string 216
Device: command-line option 203
DeviceName predefined string 216
DeviceName Style parameter 219
DeviceTitle Style parameter 219
Diablo command-line option 203
Diablo device class 185, 186
Diablo typewheel 186
Dictionaries

Exception 96
Hyphenation 94

Dictionary Exact hyphenation method 97
Dictionary Folded hyphenation method 97
Discretionary hyphens 99
DISPLAY environment 16, 19, 107, 206
Distance units 241
DIVform 114
DOC file type 9
Doc: command-line option 203
Document file 1, 5
Document formats 62
Document types 1, 47, 204

Article 54, 204
Article, Form 1 204
Bibliography 128, 204
Brochure 204
Guide 204
Letter 47, 54, 204
LetterHead 204
Manual 47,54,204
Manual, Form 1 205
Mi!Std837 A 205
ReferenceCard 205
Report 54, 205
Report, Form 1 205
Slides 205
Slides, Form 1 205
Text 39, 48, 205
Text, Form 1 205
Thesis 54, 205

Document: command-line option 203
DotMode Style parameter 219
Doublesided documents 42
Doublesided printing 42, 168
DoubleSided Style parameter 219
Dover command-line option 203
DOWN environment 118
DOWNARROWform 114
Draft command-line option 203
Draft: command-line option 203
Drawing lines 75
DVBAR form 115

Edition Bibliography field name 134, '237
Editor Bibliography field name 134, 237
Editors Bibliography field name 134, '237
Em-space 44
EMPTYSET form 114
ENDcommand 14,210
End-of-line

Forcing 105
Ignoring 106
In commands 240

End-of-sentence
Defining 103

Endnotes 31
Endnotes Style parameter 219
ENUMERATE environment 16, 24, 65, 206
Environment attributes 160

Above 164
AfterEntry 164
AfterExit 164
Anchor 164
Anchored 164
BackgroundColor 164
BeforeEntry 164
BeforeExit 164
Below 164
Blanklines 164
Boxed 90, 165
Break 165
Capitalized 165
Centered 165
Color 29, 165
ColumnMargin 90, 165
Columns 90, 165
ColumnWidth 90, 165
Continue 165
Copy 165
Counter 165
CRBreak 165
CRSpace 166
ExceptionDictionaries 96, 166
ExceptionDictionary 96, 166
FaceCode 166
Fill 166
Fixed 166
Float 166
FloatPage 166
FlushLeft 166
FlushRight 166
Font 166
Free 166
Group 108, 166
Hyphenation 97, 98, 167
HyphenationDictionaries 95, 167
HyphenationDictionary 95, 167
HyphenBreak 99, 167
Increment 167
Indent 167
Indentation 167
Justification 167
LeadingSpaces 167
LeftMargin 167
LineWidth 90, 167
LongLines 168
Need 108, 168
NoFill 168
Numbered 168
NumberFrom 168
NumberLocation 168
OverStruck 168
Pagebreak 168
Pageheading 168
Pageheadings 168
Referenced 168
RightMargin 168
Script 169
Sink 169
Slant 169
Spaces 169
Spacing 169
Spread 169
TabExport 169
Underline 169
UnNumbered 169
Use 170
WidestBlank 100, 170
Within 170

263

264

Environment definitions 163
Environment names 240
Environments 11, 16, 205

+ 13, 86, 215
- 13, 86, 215
Abstract 205
B 13,86,205
Black 29, 205
Blue 29,205
c 13, 86, 205
Center 16, 205
Copyright 206
CopyrightNotice 63, 206
Corollary 206
Cyan 29,206
Dark 29, 206
Definition 24, 206
Definition of 14
Description 16, 24, 206
Display 16, 19, 107, 206
Down 118
Enumerate 16, 24, 65, 206
Equation 206
Example 16, 19, 107, 206
FO 177, 206
Fl 177, 206
F2 177,206
F3 177,206
F4 177,206
F5 177,206
F6 177,206
F7 177,206
F8 177,206
F9 177,206
Figure 206
FileExample 206
Float 206
FlushLeft 16, 206
FlushRight 16, 206
Format 16, 206
FullPageFigure 77, 207
FullPageTable 77, 207
G 13, 44, 86, 190, 207
Green 29, 207
Group 108, 207
Heading 59, 207
I 13, 86, 190, 207
InputExample 207
Itemize 16, 24, 207
Lemma 24, 207
Longform 60
Magenta 29, 207
MajorHeading 59, 207
Math 110, 207, 243
MathDisplay 110, 207, 243
Minus 207
Multiple 24, 207
0 207
OutputExample 207
p 13; 86, 207
Plus 207
ProgramExample 16, 19, 207
Proof 24, 207
Proposition 24, 207
Quotation 14, 16, 22, 208
R 13, 86, 208
Red 29, 208
ResearchCredit 63
Ser 112
Sr 115

SubHeading 59, 208
T 13, 86, 208
Table 208
Text 16, 22, 208
Theorem 24, 208
TitleBox 63, 208
TitlePage 62, 208
Transparent 208
u 13, 86, 87. 208
UN 13, 86, 208
Up 118
ux 13, 86, 208
Verbatim 16, 208
Verse 16, 23, 208
w 208
White 29, 208
Yellow 29, 208

EQform 114
EQUATE command 160, 210
EQUATION environment 206
Equations 24
EQVform 114
ERR file type 44, 94, 149
Error file 94
Error files 44, 149
Error log file 44, 149
Error messages 149
Errors 149

Fatal 149
Serious 149
Warning 149

Even argument in running headers 42
Even-numbered pages 168
Even/odd pages

Headings for 42
EXAMPLEenvironment 16, 19, 107,206
Examples

A chart with columns and lines 200, 201
A play 198, 199
Aligning patterns 89
Bibliographic entries 137
Mathematical output 243
Multiple columns 90
Part file 147
Personal letter 54
Plain text 6
Processing a file 148
Recipe 196, 197
Root file 140
Running Scribe 7
Tables 16
Textand equations 194, 195
Text document type 49

Exception dictionaries 96

INDEX

ExceptionDictionaries environment attribute 96, 166
ExceptionDictionaries Style parameter 96, 219
ExceptionDictionary environment attribute 96, 166
ExceptionDictionary Style parameter 96, 219
EXISTS form 114
EXPform 116
Expanding templates 175

F command-line option 203
FO environment 177, 206
Fl environment 177, 206
F2 environment 177, 206
F3 environment 177, 206
F4 environment 177, 206
F5 environment 177, 206
F6 environment 177, 206

INDEX

F7 environment 177, 206
F8 environment 177, 206
F9 environment 177, 206
FaceCode environment attribute 166
FaceCodes 13, 190
False hyphenation method 97
Fatal errors 149
FIGURE environment 206
Figure pages 77
Figure too high for page 78
Figures

Full page 77
Generating bodies of 7 4
Generating captions of 76
How to make 73
Page breaks prevented in 107
Placement of numbers 76

File command-line option 203
File types

AUX 69, 70, 142, 143, 162
BIB 143
CG 9
DOC 9
ERR 44, 94, 149
GG 9
GSI 9, 187
HYO 101
IMP 9
LEX 101
LG1200 9
LGP 9
LPT 9, 186
OMNI 9
OTL 70, 139, 144
PGP 9
POD 9, 186
PRESS 9
TXT 9
VFX 9
VIP 9
X27 9
X9700 9

Filedate
Valueof 35

FileDate predefined string 35, 216
FileDate Style parameter 219
FILEEXAMPLE environment 206
Fill environment attribute 166
Filled environments 22
Filling text 1 OS
Fixed environment attribute 166
FLOAT environment 206
Float environment attribute 166
Floated environments 73, 107
FloatPage environment attribute 166
FLOORform 116
Flush left 82
Flush right 82
FLUSHLEFT environment 16, 206
FlushLeft environment attribute 166
FLUSHRIGHT environment 16, 206
FlushRight environment attribute 166
Font change codes 13
Font environment attribute 166
Fontfamily 189
Fontfamily Style parameter 40, 219
Fonts 13, 44, 189

Private 177
FontScale Style parameter 219
FOOTcommand 31,211

Footnotes 31
Numbering of 31, 39

Footnotes Style parameter 39, 40, 219
FORALL form 115
Forcing a page break 106
Form 37
Format changes 39
FORMAT environment 16, 206
Format of Bibliographic references 125
Formatting Bibliography files 128
Forms 110

Abs 116
Add 115
Aleph 114
And 114
Angle 114
Approx 114
Arctg 116
Ast 114
Atan 116
Bar 75,209
BigO 116
Bot 114
Brace 119, 120
Bullet 114
CDots 117
Ceiling 116
Choose 119, 120
Circ 114
Cos 116
Cot 116
Csc 116
CSet 114
Deg 116
Degr 114
Delta 114
Det 116
Detrm 116
Div 114
DownArrow 114
DVBar 115
EmptySet 114
Eq 114
Eqv 114
Exists 114
Exp 116
Floor 116
ForAll 115
Gcd 116
Get 118
Gt 114
GtE 114
GtLt 114
HBar 114
In 114
IndexEntry 37, 211
IndexSecondary 172, 211
Inf 116
lofty 114
Int 119, 120
Inter 114
LAngle 114
LDots 117
LeftArrow 114
Lg 116
Lim 116
Liminf 116
Limit 119, 120
Limsup 116
Lo 116

265

266

Log 116
Log2 116
Lt 114
LtE 114
LtGt 114
Max 116
Min 116
Mod 116
Mp 114
MuchGt 114
MuchLt 114
Mult 115
Nabla 114
Nd 117
Neq 114
NEqv 114
Norm 116
Not 114
Notln 114
NSet 114
ODiv 115
ODot 114
Omega 116
Ominus 114
Op 115
OP!us 115
Or 115
OTimes 115
Over 119, 120
Overline 118
OverlineCap 118
Partial 115
Pm 115
Prod 119, 120
PrSubset 115
PrSupset 115
Qed 115
QSet 115
Quad 112
RAngle 115
Rd 117
RightArrow 115
RSet 115
SeeAlso 172, 173, 213
SimEq 115
Similar 115
Sin 116
SmallFraction 119, 120
Sqlnter 114
Sqrt 116
SqUnion 115
Ss 119, 120
St 117
Sub 114
Subset 115
Sum 110, 119, 120
Sup 116
Supset 115
Tan 116
Tg 116
Th 117
Theta 116
Top 115
Trace 116
Union 115
UpArrow 115
UP!us 115
VBar 115
Vee 118
ZSet 114

Forms of document types 48
Forward references 69, 126, 143
Free environment attribute 166
Full-page figures 77
Full-page tables 77
FullAuthor Bibliography field name 135, 237
Ful!Manuscript predefined string 35, 216
FullOrganization Bibliography field name 135
FULLPAGEFIGURE environment 77, 2ITT
FULLPAGETABLE environment 77, 207
Funding acknowledgement 63

G command-line option 203
G environment 13, 44, 86, 190, 2ITT
GCDform 116
GenericDevice predefined string 216
GETform 118
GG command-line option 203
GG file type 9
GIGI command-line option 203
Global changes to environments 162
GOTO command 211
Greek characters 190

Chart of 190
Greek letters 44

Howtoget 13
GREEN environment 29, 207
GROUP environment 108, 2ITT
Group environment attribute 108, 166
Grouped environments lITT
GSI command-line option 203
GSI file type 9, 187
GTform 114
GTEform 114
GTLTform 114
Guide document type 204

Hanging indents 40
HBAR form 114
HEADING environment 59, 207
Headings 19, 59

Not in Table of Contents 59
HINGE command lITT, 211
Hinge points 165
Horizontal position

Fixed 88

INDEX

HowPublished Bibliography field name 135, 237
HPOS command 211
HSP command 211
HV command-line option 101, 203
HYD command-line option 101, 203
HYD file type 101
Hyphenation 93

Case sensitive 9 5
Decision file 101
Verifying 101
Vocabulary file 101

Hyphenation algorithm %
Hyphenation decision file (.HYD) 101
Hyphenation decision file 101
Hyphenation dictionaries 94
Hyphenation environment attribute 97, 98, 167
Hyphenation methods 97

AutomaticExact 97
AutomaticFolded 97
DictionaryExact 97
DictionaryFolded 97
False 97
No 97
Off 97

INDEX

Old 97
OldExact 98
Olc!Folded 98
On 98
True 98
Warn 98
Yes 98

Hyphenation Style parameter 97, 98, 219
Hyphenation vocabulary file (.LEX) 101
HyphenationDictionaries environment attribute 95, 167
HyphenationDictionaries Style parameter 95, 219
HyphenationDictionary environment attribute 95, 167
HyphenationDictionary Style parameter 95, 219
HyphenBreak environment attribute 99, 167
HyphenBreak Style parameter 99, 219
HypVocab command-line option 101, 203

I environment 13, 86, 190, 207
IBM Operating System 183
IEEE Bibliography reference format 126
IEEE reference format 222
Immediate argument in running headers 41
Imp command-line option 203
IMP file type 9
Imprint command-line option 203
ImprintlO command-line option 203
IN form 114
InBook Bibliography classification 133
lnBook Bibliography field name 223, 225, 227, 228, 230,

232,234
INCLUDE command 139, 162, 211
Including graphics 74

GIGI Terminal 74
lmprint-10 Laser Printer 74
Lasergrafix 1200 Laser Printer 7 4
Santee Terminal 7 4
X9700 Printer 74

Including other files 139
InCollection Bibliography classification 133
lnCollection Bibliography field name 224, 226, 229, 230,

232,235
Increment environment attribute 167
Indent environment attribute 167
Indent Style parameter 39, 40, 219
Indentation environment attribute 167
Indentation Style parameter 220
INDEX command 35, 172, 211
lndexCap Style parameter 220
INDEXENTRYform 37,211
Indexing 35

Multiple-level 172
INDEXSECONDARYform 172,211
INF form 116
Information messages 147
INFTY form 114
InProceedings Bibliography classification 133
InProceedings Bibliography field name 224, 226, 227,

229,231,233,234,236
Input to Scribe 5
INPUTEXAMPLE environment 207
Inserts 14

Long form 14
Short form 15

Institution Bibliography field name 135, 237
INTform 119,120
INTER form 114
IPL Bibliography reference format 126
IPL reference format 222
Italics 11, 13, 190

Howtoget 13

ITEMIZE environment 16, 24, 207

Journal Bibliography field name 135, 237
Joy of Cooking 61
Justification environment attribute 167
Justification Style parameter 39, 40, 220
Justifying text 22

Keep command-line option 204
Key Bibliography field name 135, 237

L command-line option 204
LA36 command-line option 204
Label codewords 144
LABEL command 67, 212
Label names 240
Labels

Codeword for 68, 144
Errors in reference to 69
References to 67
Undefined 69

LANGLE form 114
Large documents 139
Large figures and tables 78
Large letters 59
Laser printers 185
LOOTS form 117
LeadingSpaces environment attribute 167
LEFTARROW form 114
LeftMargin environment attribute 167
LeftMargin Style parameter 40, 220
LEMMA environment 24, 207
Letter document type 47, 54, 204
LetterHead document type 204
LEX file type 101
Lexicon file 101
LG form 116
LG1200filetype 9
LGP file type 9
LGPl command-line option 204
Library files 170
LIBRARYFILE command 109, 170, 212
LIM form 116
LIMINF form 116
LIMITform 119, 120
LIMSUP form 116
Line breaks 105
Line layout 16, 82
Line printer 186
Line printer device class 185, 186
Line printer files 186
Line Width environment attribute 90, 167
Line Width Style parameter 39, 40, 220
List of Figures 77
List of Tables 77
LNform 116
Local changes to environments 161
LOCALSTRING command 212
Location references 67
LOG form 116
LOG2 form 116
Long form of environments 161, 239
LongestHyphenatable Style parameter 101, 220
LongLines environment attribute 168
LPT command-line option 204
LPT device 186
LPT file type 9, 186
LT form 114
L TE form 114
LTGT form 114

267

268

MAGENTA environment 29, 2ITT
MAJORHEADING environment 59, 207
MAKE command 47, 141, 212

Details of 48
Managing large documents 140, 144
Manual Bibliography classification 133
Manual Bibliography field name 224, 226, 229, 231, 233
Manual document type 47, 54, 204
Manual, Form 1 document type 205
Manuscript file 1, 5

Preparation of 6
Manuscript predefined string 35, 216
MARKER command 96, 170
MastersThesis Bibliography classification 133
MastersThesis Bibliography field name 224, 226, 227,

229,231,233,234,236
MATH environment llO, 207, 243
MA THDISPLA Y environment ll 0, 2ITT, 243
Mathematical characters 44
Mathematical formatting 24, 87
Mathematical Output 109

Ill
@-space 112
Absform 116
Add form 115
Aleph form 114
And form 114
Angle form 114
Approx form 114
Arctg form ll6
Ast form ll4
Atan form ll 6
BigO form 116
Bot form ll4
Brace form ll9, 120
Bullet form 114
CDots form ll 7
Ceiling form ll6
Choose form ll 9, 120
Circ form 114
Cos form ll6
Cotform ll6
Csc form 116
CSet form ll4
Degform 116
Degrform 114
Delta form ll 4
Det form ll6
Detrm form ll 6
Divform 114
Down environment 118
DownArrow form 114
DVBar form ll5
EmptySet form 114
Eqform ll4
Eqvform 114
Examples of 243
Exists form ll4
Expform 116
Floorform ll6
ForAll form 115
Forms llO
Gcd form 116
Getform ll8
Gt form ll4
GtEform 114
GtLt form 114
HBarform ll4
In form ll4
Infform ll6

Infty form ll 4
Int form ll9, 120
Inter form ll 4
LAngle form 114
LDots form ll 7
LeftArrow form 114
Lgform ll6
LibraryFile command 109
Limform ll6
Liminfform ll6
Limit form ll9, 120
Limsup form ll6
Ln form ll6
Logform ll6
Log2 form ll6
Lt form 114
LtE form 114
LtGt form 114
Math environment llO
MathDisplay environment 110
Max form 116
Min form 116
Mod form ll6
Mpform 114
MuchGt form 114
MuchLt form ll4
Mult form ll5
Nabla form 114
Ndform ll7
Neq form 114
NEqvform 114
Norm form 116
Notform 114
Notln form 114
NSet form 114
ODiv form ll5
ODot form 114
Omega form 116
Ominus form 114
Opform ll5
OPlus form 115
Orform 115
OTimes form 115
Overform ll9, 120
Overline form 118
OverlineCap form 118
Partial form 115
Pmform 115
Prod form 119, 120
PrSubset form 115
PrSupset form 115
Qed form 115
QSet form ll5
Quad form 112
RAngle form 115
Rdform 117
RightArrow form 115
RSet form 115
Ser environment 112
SimEq form ll5
Similar form 115
Sin form ll6
SmallFraction form 119, 120
Spaces l ll
Sqinter form ll4
Sqrt form 116
Sq Union form 115
Sr environment 115
Ss form 119, 120
St form 117

INDEX

INDEX

Subfonn 114
Subset form 115
Sum 110
Sum form 119, 120
Supform 116
Supset form 115
Tan form 116
Tgform 116
Thform 117
Theta form 116
Topform 115
Trace form 116
Union form ll5
Up environment 118
UpArrowform 115
UPlus form 115
VBarform ll5
Vecform 118
ZSet fonn 114

MAXfonn 116
Meeting Bibliography field name 135
Messages

During processing 147
Error 149
Informational 147

Messages during processing 147
Mi1Std837 A document type 205
MINform ll6
MINUS environment 207
Misc Bibliography classification 133
Misc Bibliography field name 224, 226, 228, 229, 231,

233,234,236
Fancy Indexing 38
MODform 116
MODIFY command 29, 162, 174, 212
Modifying environments 161
Modifying numbering 174
Modifying page numbers 175
Month 34
Month Bibliography field name 135, 237
Month predefined string 217
MPform 114
MUCHGT form 114
MUCHLTform 114
MUL T form 115
Multiple Bibliography reference sections 130
Multiple column output 90

Example of 90
MULTIPLE environment 24, 207
Multiple page figures 78
Multiple page tables 78
Multiple-level indexing 172
Multiple-part documents 139
MultipleBibliography Style parameter 130, 220

NABLA fonn ll4
NDform 117
Need environment attribute 108, 168
NEQfonn 114
NEQVfonn 114
Nested delimiters 12, 42
Nesting environments 12

Effect on tab settings 85
Newpage 77
NEWCOLUMN command 90, 212
NEWPAGE command 77, 90, 106, 212
No hyphenation method 97
No-op command 105
NoFill environment attribute 168
Non-command 105

NORM form ll6
NOTfonn 114
Note Bibliography field name 135, 237
NOTEcommand 31,212
Notes 31
Notes Style parameter 220
NOTIN form 114
NSETform 114
Number Bibliography field name 135, 237
Numbered environment attribute 168
NumberFrom environment attribute 168
Numbering 65

Automatic 65
Pages 41
Templates for 175

Numbering Template
176
$ 177
, 176
• 176
, 177
1 176
2 176
3 176
4 176
5 176
6 176
7 176
8 176
9 176

176
176

A 176
F 176
I 176
0 176

NumberLocation environment attribute 168
Numbers 241

0 environment 207
Object references 67, 68
Odd argument in running headers 42
Odd-numbered pages 168
Odd/even pages

Headings for 42
ODIV form 115
ODOT fonn 114
Off hyphenation method 97
Old hyphenation method 97
OldExact hyphenation method 98
OldFolded hyphenation method 98
OMEGA form 116
OMINUS form ll4
OMNI file type 9
On hyphenation method 98
OPform ll5
Operating systems

Aegis 183
CMS 183
Primos 183
TENEX 182
TOPS-10 181
TOPS-20 182
UNIX 182
VMS 182

OPLUS form 115
ORform 115
Organization Bibliography field name 135, 237
Orphans 107
OTIMES form ll5

269

270

OTL file type 70, 139, 144
Outdenting 40
Outline files 70, 139, 144
Outline Style parameter 220
Output devices 9
OUTPUTEXAMPLE environment 207
OVER form 119, 120
OVERLINE form 118
OVERLINECAP form 118
Overprinting 87
OverStruck environment attribute 168
OVP command 87, 213

P environment 13, 86, 207
Page 106

Changing the numbering of 175
Starting at top of new 77, 106

Page breaks 106
Forcing 106
Preventing 107

Page footings 41
Page headings 41, 59

In doublesided documents 42
Removing 42

Page numbers 41
References to 69

Page numbers within chapters 175
Page predefined string 217
Page value 35
Pagebreak environment attribute 168
PagedFile command-line option 204
PAGEFOOTING command 41, 213
PAGEHEADING command 41, 213
Pageheading environment attribute 168
Pageheadings environment attribute 168
PageNumber Style parameter 39, 40, 220
PageNumbers Style parameter 220
PAGEREF command 68, 69, 213
Pages Bibliography field name 135, 237
PARAGRAPH command 61
Paragraphs

Definition of 6
Parameter separators 241
Parameter/value pairs 241
Parent counter 174, 176
PART command 139, 142, 213
PARTIAL form 115
Parts of a large document 139
Pattern replication 88
Peaches 36
Periods

After abbreviations 103
Ending sentences 103, 104
Rules for space after 103

PGP file type 9
PhDThesis Bibliography classification 133
PhDThesis Bibliography field name 224, 226, 228, 229,

231, 233, 234, 236
Photocomposer device 185, 187
PICTURE command 74, 213
PLACE command 213
Place references 67
PLUS environment 207
PM form 115
POD file type 9, 186
Predefined strings 33, 216

Date 33, 216
Day 216
Device 216
DeviceName 216

FileDate 35, 216
Ful!Manuscript 35, 216
GenericDevice 216
Manuscript 33,35,216
Month 217
Page 35, 217
RootFileDate 35, 217
ScribeVersion 35, 217
SectionNumber 35, 217
SectionTitle 35, 217
Site 217
SiteName 217
SourceFile 35, 217
Time 34, 217
TimeStamp 34, 217
UserName 35, 217
WeekDay 34, 217
Year 217

PREFACESECTION command 61
PRESS file type 9
Primos operating system 183

Command-line switch character 183
Running Scribe 183

Printing a Bibliography file 128
Printing devices 1, 8, 47, 185, 189
Printronix line printer 186
Proceedings Bibliography classification 133

INDEX

Proceedings Bibliography field name 224, 226, 228, 229,
231,233,235,236

Processing phase 147
Processor options 203
PROD form 119, 120
PROGRAMEXAMPLE environment 16, 19, 207
PROOF environment 24, 207
PROPOSITION environment 24, 207
PRSUBSET form 115
PRSUPSETform 115
Publisher Bibliography field name 136, 237
Punctuation command characters 215
Punctuation commands in dictionaries

- 94
. 94
@@ 94

94
space 94

Q command-line option 149, 204
QED form 115
QSET form 115
QUAD form 112
Quad-space 44
Quiet command-line option 149, 204
QUOTATION environment 14, 16, 22, 208
Quotations 2, 14

R environment 13, 86, 208
RANGLE form 115
RawFontDirectory Style parameter 220
RDform 117
RED environment 29, 208
REF command 65, 213
Reference classifications 132
Reference formats

lAPA 221
lAPADraft 221
AnnAPA 221
AnnAP ADraft 221
AnnotedSTDAlphabetic 221
AnnotedSTDidentifier 221
AnnotedSTDNumeric 222

INDEX

AnnSTDAlphabetic 222
AnnSTDNumeric 222
APA 222
AP Adraft 222
CACM 222
ClosedAlphabetic 222
ClosedNumeric 222
IEEE 222
IPL 222
SIAM 222
STDAlphabetic 222
STDldentifier 222
STDNumeric 222

ReferenceCard document type 205
Referenced environment attribute 168
ReferenceFormat Style parameter 220
References

Bibliographic 123
Forward 69
Location 67
Object 67, 68
Place 67
Thing 67

References Style parameter 220
Removing page headings 42
Repeating patterns 88
Report document type 54, 205
Report, Form 1 document type 205
RESEARCH CREDIT environment 63
Return marker 88
RIGHT ARROW form 115
RightMargin environment attribute 168
RightMargin Style parameter 40, 220
Roman typeface

Howtoget 13
Root file 140, 141, 142

Example of 140
RootFileDate predefined string 35, 217
RootFileDate value 35
RSET form 115
Rules 239
Run-time messages 147
Running headers 41, 59, 106
Running Scribe 6

On Aegis 183
onCMS 183
On Primos 183
On TENEX 182
On TOPS-10 181
On TOPS-20 182
On UNIX 182
On VMS 182

Saving tab settings 86
School Bibliography field name 136, 237
Ser environment 112
Scribe Version predefined string 217
ScribeVersion value 35
Script environment attribute 169
ScriptPush Style parameter 220
SECTION command 61
Section titles 60
Sectioned documents 54
Sectioning a document 59
Sectioning commands 60
SectionNumber predefined string 217
SectionNumber value 35
SectionTitle predefined string 217
SectionTitle value 35
SEEALSO form 172, 173, 213

Sentence
Definition of 6, 103
Punctuation at end of 103

Separate compilation facility 142
Separators 241
Series Bibliography field name 136, 237
Serious errors 14 9
SET command 66, 214
Setting counters 17 4
Setting tab stops 81, 87
Setup phase 148
Short form of environments 239
ShortestHyphenatable Style parameter 101, 220
SIAM Bibliography reference format 126
SIAM reference format 222
Significant blanks 102
Significant spaces 44, 104
SlMEQ form 115
SIMILAR form 115
Simple Indexing 35
SINform 116
SingleSided Style parameter 40, 220
Sink environment attribute 169
Site predefined string 217
SiteName predefined string 217
Slant environment attribute 169
Slides document type 205
Slides, Form 1 document type 205
Small capitals

Howtoget 13
SMALLFRACTIONform 119, 120
SourceFile predefined string 35, 217
Space dictionary command 94
Space for special characters 44
Spaces 45
Spaces environment attribute 169
Spaces in commands 240
Spaces in mathematical output 111
Spaces Style parameter 220
Spacing environment attribute 169
Spacing Style parameter 39, 220
Special characters 43, 189
Special characters in names 240
SPECIALFONT command 177, 214
Spread environment attribute 169
Spread Style parameter 220
SQINTER form 114
SQRT form 116
SQUNION form 115
SR environment 115
SSform 119,120
STform 117
STDAlphabetic Bibliography reference format 126
STD Alphabetic reference format 222
STD Identifier Bibliography reference format 126
STD Identifier reference format 222
STDNumeric Bibliography reference format 126
STDNumeric reference format 222
STRING command 32, 136, 143, 214
String names 240
StringMax Style parameter 221
Strings

Defining 32, 66
Predefined 33, 216
Restriction on 143

271

STYLE command 29, 33, 39, 129, 130, 141, 159, 214
Placement of 39

Style parameters 217
BackgroudColor 29
BackgroundColor 39, 217

272

BibSelect 129, 217
BibSequence 218
BindingMargin 218
BottomMargin 40, 218
Citation 218
CitationLength 218
Citations 218
CitationSeparator 218
CitationType 218
Color 29, 39, 40, 218
ColumnMargin 218
Columns 218
Date 218
DeviceName 219
DeviceTitle 219
DotMode 219
DoubleSided 219
Endnotes 219
ExceptionDictionaries 96, 219
ExceptionDictionary 96, 219
FileDate 35, 219
FontFamily 40, 219
FontScale 219
Footnotes 39, 40, 219
Hyphenation 97, 98, 219
HyphenationDictionaries 95, 219
HyphenationDictionary 95, 219
HyphenBreak 99, 219
Indent 39,40,219
Indentation 220
lndexCap 220
Justification 39, 40, 220
LeftMargin 40, 220
LineWidth 39, 40, 220
LongestHyphenatable 101, 220
MultipleBibliography 130, 220
Notes 220
Outline 220
PageNumber 39, 40, 220
PageNumbers 220
RawFontDirectory 220
ReferenceFormat 220
References 220
RightMargin 40, 220
ScriptPush 220
ShortestHyphenatable 101, 220
SingleSided 40, 220
Spaces 220
Spacing 39, 220
Spread 220
StringMax 221
Time 34, 221
TimeStamp 34, 221
TopMargin 40, 221
WidestBlank 100, 221
WidowAction 107, 221

SUB form 114
Subcompilation 142
SUBHEADING environment 59, 208
Subheadings 59
Subscripts

Howtoget 13
SUBSECTION command 61
SUBSETform 115
Sum form 110, 119, 120
SUPform 116
Superscripts

How to get 13
SUP SET form 115
Synchronous replication 89

Synonyms for names 160
Syntax 239

T environment 13, 86, 208
TAB character 82
Tab command 81

Using 24
Tab filling 88
Tab settings 81, 83, 84

Accumulating 85
Lifetime of 85

Tabbing commands 82
TABCLEAR command 81, 214
TABDIVIDEcommand 81,214
TabExport environment attribute 169
Table bodies 16
TABLE environment 208
Table of Contents 60
Table pages 77
Table too high for page 78
Tables

Full page 77
Generating bodies of 74
Generating captions of 76
How to make 73
Page breaks prevented in 107
Placement of numbers 76

TABSET command 81, 214
Tabular formatting 81
Tag codewords 144
TAG command 68, 76, 214

Placement w.r.t. @Caption 76
Tag names 240
Tags

Codeword for 144
TANform 116
TechReport Bibliography classification 133

INDEX

TechReport Bibliography field name 225, 226, 228, 229,
231, 233, 235, 236

Template expansion 175
Templates

Codes for 175
Numbering 174, 175

TENEX operating system 182
Running Scribe 182

Text document type 39, 48, 205
TEXT environment 16, 22, 208
Text hyphens 99
Text, Form l document type 205
TGform 116
THform 117
THEOREM environment 24, 208
Thesis document type 54, 205
THETA form 116
Thing references 67
Time

Changing style of printing 34
Finding 34
Standard time for Style templates 34

Time predefined string 217
Time Style parameter 221
Timestamp predefined string 217
TimeStamp Style parameter 221
Title Bibliography field name 136, 237
TITLE command 66, 214
Title page 59

How to produce 62
TITLEBOX environment 63, 208
TITLEPAGE command 66
TITLEPAGE environment 62, 208

INDEX

Titles 59
Of counters 66

TOP form 115
TopMargin Style parameter 40, 221
TOPS-IO

Command-line options 181
Command-line switch character 181

TOPS-IO operating system 181
Running Scribe 181

TOPS-20 operating system 182
Running Scribe 182

TRACE form 116
TRANSPARENT environment 208
True hyphenation method 98
TXT file type 9
Type Bibliography field name 136, 237
Typefaces 13
Typewheel

Changing Diablo 186
Typewriter font

Howtoget 13

U environment 13, 86, 87, 208
UN environment 13, 86, 208
Undefined labels 69, 145
Underline environment attribute 169
Underlines

How to get 13
Underlining 87
Unfilled environments 16
UNION form 115
Units for distance 241
UNIX operating system 182

Command-line switch character 182
UNNUMBERED command 61, 130
UnNumbered environment attribute 169
UnPublished Bibliography classification 134
Unpublished Bibliography field name 225, 227, 228, 230,

232,233,235,236
UP environment 118
UPARROW form 115
UPLUSform 115
USE command 124, 139, 143, 215

Auxiliary file 143
Bibliography file 143
Database 139, 143
Database files 143
For Bibliographies 124

Use environment attribute 170
Usemame predefined string 217
UserName value 35
Using other files 139
UX environment 13, 86, 208

V command-line option IOl, 145, 204
VALUE command 32, 215
Value of attributes 160
Values of strings

Using 32
Van Leunen, Mary-Claire 129, 132
Variant forms 48
VBARform 115
VEC form 118
VERBATIM environment 16, 208
VERSE environment 16, 23, 208
Version of program

Valueof 35
VFX file type 9
VIP file type 9
VMS operating system 182

Command-line switch character 182
Running Scribe 182

Voe command-line option 204
Vocab command-line option IOl, 204
Vocabulary command-line option 145, 204
Volume Bibliography field name 136, 237

W command 102
W command-line option 145, 204
W environment 208
Warnings 149
Weekday 34
Weekday predefined string 217
WHITE environment 29, 208
Wide lines 16
WidestBlank environment attribute 100, 170
WidestBlank Style parameter 100, 221
Widow control 107
Widow Action Style parameter 107, 221
Widows I07
Wine 36
Within environment attribute 170
Word

Definition of 6
Word breaks 93
Word counting 145
WordCount command-line option 145, 204
Words command-line option 204

X command-line option 204
X27 file type 9
X9700 command-line option 204
X9700 file type 9

Year 34
Year Bibliography field name 136, 238
Year predefined string 217
YELLOW environment 29, 208
Yes hyphenation method 98

ZSETform 114

273

274 INDEX

111111

BUSINESS REPL V MAIL
FIRST CLASS PERMIT NO. 424 PITTSBURGH, PA

POSTAGE WILL BE PAID BY ADDRESSEE

UNILOGIC, Ltd.
Suite 240, Commerce Court
Four Station Square
Pittsburgh, PA 15219-1119

BUSINESS REPL V MAIL
FIRST CLASS PERMIT NO. 424 PITTSBURGH, PA

POSTAGE WILL BE PAID BY ADDRESSEE

UNILOGIC, Ltd.
Suite 240, Commerce Court
Four Station Square
Pittsburgh, PA 15219-1119

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

NO POSTAGE
NECESSARY IF
MAILED IN THE
UNITED STATES

INFORMATION REQUEST

Scribe fascinates me. Please send more information to:

Scribe program for the following computers:

Scribe printer support for the following printer types:

Letter-quality Printer
Photocomposer

Dot-matrix Printer
Other (specify):

Have salesperson call me. Phone:

READER COMMENT FORM

Laser Printer

DNILOGIC would appreciate any comment you may have on Scribe or
its documentation.

From (optional):

