UNIVERSITY OF ILLINOIS
DIGITAL COMPUTER
AUXILIARY
LIBRARY ROUTINE E $11-311$

TITLE:

TYPE:
NUMBER OF WORDS:
DURATION:

TEMPORARY STORAGE:
ENTRY:
where a is the location of the auxiliary subroutine which computes the values of the function to be integrated. When control is returned to the right side of $p+1$, the computed integral will be in the accumulator register and location $y+14$.
DESCRIPTION: To evaluate the integral

$$
\int_{-\infty}^{\infty} e^{-x^{2}} f(x) d x
$$

this routine uses a form of Gaussian Quadrature appropriate to the interval $(-\infty, \infty)$ and the weighting function $e^{-x^{2}}$ :

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-x^{2}} f(x) d x \approx \frac{1}{2^{P}} \sum_{k=1}^{\mathbb{N}} A_{k} f\left(x_{k}\right) . \tag{1}
\end{equation*}
$$

The values $A_{k}$ and $x_{k}$ are chosen in a manner such as to give $\omega_{0}$ truncation error when $f(x)$ is a polynomial of degree $2 \mathbb{N}$ - 1 or less. In the case where the factor $\mathrm{e}^{-\mathrm{x}}$ does not occur explicitly in the integrand,

$$
\begin{align*}
& \int_{-\infty}^{\infty} g(x) d x=\int_{-\infty}^{\infty} e^{-x^{2}}\left[e^{x^{2}} g(r)\right] d x \approx \frac{1}{2^{Q}} \sum_{k=1}^{\mathbb{N}} A_{k} e^{\left(x_{k}\right)^{2}} \\
& g\left(x_{k}\right)=\frac{1}{2^{Q}} \sum_{k=1}^{\mathbb{N}} B_{k} g\left(x_{k}\right)_{r} \tag{2}
\end{align*}
$$

It is assumed that the function $e^{x^{2}} g(x)$ may be closely approximated by a polynomial function.

Because the actual values of the points $x_{k}$ and the weights $A_{k}$ and $B_{k}$ may exceed 1 , they have been scaled down by powers of two. $P$ and $Q$ are defined in equations (1) and (2), and $R$ is defined below in equation (3).

| $N$ | $R$ | $P\left(\right.$ for $\left.A_{k}\right)$ | Q(for $\left.B_{k}\right)$ |
| :---: | :---: | :---: | :---: |
| 1 | 0 | 1 | 1 |
| 2 | 0 | 0 | 1 |
| 3 | 1 | 1 | 1 |
| 4 | 1 | 0 | 1 |
| 5 | 2 | 0 | 1 |
| 6 | 2 | 0 | 1 |
| 7 | 2 | 0 | 1 |
| 8 | 2 | 0 | 1 |
| 9 | 2 | 0 | 1 |
| 10 | 2 | 0 | 1 |
| 11 | 2 | 0 | 1 |
| 12 | 2 | 0 | 0 |
| 13 | 3 | 0 | 0 |
| 14 | 3 | 0 | 0 |
| 15 | 3 | 0 | $"$ |
| 16 | 3 | 0 | 1 |
| 17 | 3 |  | 0 |

[Note: Because the weights for these values of $N$ become quite small, there may be appreciable roundoff errors for certain integrands].
The auxiliary subroutine which computes $f\left(x_{k}\right)$ must take the scaling of these values of $x_{k}$ into account. The function values computed by the auxiliary are assumed to lie in the range $-1 \leq f\left(x_{k}\right)<1$ 。

The closed auxiliary subroutine is entered from the main routine with $\mathrm{X}_{\mathrm{k}}^{*}$ in the accumulator and link in $\mathrm{Q} ;$ control is returned to the main routine with $f\left(x_{k}\right)$ in the accumulator.

USE:

SCALING:

ACCURACY:

To use this routine the programmer copies the integration routine first on his program tape, and immediately after it the parameters, points $x_{k}$, and weights $A_{k}$ or $B_{k}$ appropriate to his needs. These latter numbers appear on the tail of the library tape, labeled by the number $N$ of points at which the function is to be evaluated, and the type of weights ( $A_{k}$ or $B_{k}$ ) to be used.
The scaling of the values of $x_{k}$ is such that the auxiliary subroutine is presented with $\mathrm{x}_{\mathrm{k}}{ }^{*}$, where

$$
\begin{equation*}
x_{k}^{*}=2^{-R} x_{k}, 0 \leq R \leq 3, \tag{3}
\end{equation*}
$$

and the largest $\mathrm{x}_{\mathrm{k}}^{*}$ satisfied $1 / 2 \leq\left(\mathrm{x}_{\mathrm{k}}^{*}\right)_{\max }<1$ for all N 。 The computed integral is scaled down by $2^{P}$ (or $2^{Q}$ ). For the convenience of the programmer, the above scale factors are contained in the subroutine parameter at location $\mathrm{y}+16$, in the following form:

$$
\begin{aligned}
(y+16) & =O R(y+18) O P(y+18+N), & & \text { for } A \text { weights } \\
& =O R(y+18) Q Q(y+18+N) & & \text { for } B \text { weights. }
\end{aligned}
$$

The truncation error due to omission of powers of $x$ higher than 2 N is

$$
\frac{n!\sqrt{\pi}}{2^{n}(2 n)!} f(2 n)(z), \quad \text { where } z \text { is some point in }(-\infty, \infty) \text {. }
$$

There will also be round-off errors which may be significant; for a discussion of these see the write-up of library routine E 5-195。

- 4 -

REFERENCES:
National Bureau of Standards Journal of Research, Vol. 48, p. 111 (1952).
G. Szegö, Orthogonal Polynomials.
F. G. Tricomi, Vorlesungen "über Orthogonalreithen

nj



