UNIVERSITY OF ILLINOIS
DIGITAL COMPUTER LABORATORY
STATISTICAI LIBRARY
KSL 2.03-313
TITLE:

TYPE:
CAPACITY:

DESCRIPTION:

METHOD OF USE:
Means, standard deviations, third and fourth moments about the means

Entire program
$v \leq 145$ where v is the number of variables:lno practical limit on q, the sample size

For each of a set of v variables, this routine will calculate the mean, the standard deviation, and the third and fourth moments about the mean. Much can be learned about the sample distribution from these four statistics. The mean is a measure of central tendency. The standard deviation is a measure of the dispersion of the distribution. The third moment indicates the amount and direction of skewness. The fourth moment is a measure of the kurtosis of the distribution. The routine will read data either in the form of signed fractions or in the form of unsigned single digits (0, 1, ... 9). If means and standard deviations only are desired, computer time can be saved by suppressing the calculation of the third and fourth moments. In any event, this routine is preferred over K-17 (also K-8, KSL 2.01)for the $v(v+1) / 2$ cross-products are not calculated. For a large v, the saving in computer time may exceed 90%.

1. Read master program. Routine stops on 34084. A stop on FFOO3 indicates a sum check failure.
2. Read parameter tape. Routine stops on 2404 N .
3. Read data tape. Routine ends on 24084.

Another problem can be begun by reading a new parameter tape.
PARAMETER TAPE PREPARATION:
There are four parameters (r, d, q, and p) for each problem. The parameters are punched on tape with sexadecimal terminating symbols as follows:
$r \mathrm{~N}$ d. J q F p L.

To read data consisting of single unsigned digits, set $r=0$. To read data consisting of signed fractions, set $r=1$. Set d equal to the number of decimal places desired in the means and standard deviations. The third and fourth moments are always punched to 10 decimal places.
q is the sample size or number of rows of data.
To suppress the third and fourth moments, set $p=0$. To calculate and punch the moments, set $p=1$ 。
DATA TAPE PREPARATION:
The data tape is punched by rows and consists of q rows of v variables each. Each row of the data tape is terminated by an N symbol. If an F follows a row instead of an N, the computer will stop and another section of the data tape can be inserted in the reader. By raising the black switch, the reading of the data tape is resumed.
When $r=0$, an element of a row must be a single unsigned digit ($0,1, . . .9$). If these are considered as integers, then the scaling on each will be 10^{-1}.
When $r=l$, each row element must be punched as a signed fraction with any number from zero through 12 decimal digits. SCALING IN THE RESULTS:

If the scaling on variable j is $10^{-p} j$, then in the results the means and standard deviations will also be scaled by $10^{-p} j$. The third moment will be scaled by $10^{-3 p} j$ and the fourth moment will be scaled by $10^{-4} \mathrm{p}$.
THE FORM OF THE RESUITS:
The means and standard deviations are printed out in parallel columns terminated by an N .
If moments are also calculated, these will follow in a second set of parallel columns terminated by an \mathbb{N}.
A THREE-VARIABLE EXAMPLE:
Parameter tape
ON3J6F1L

Data Tape
232N 342N 151N 060N 470N 371N
Results
$\left.\bar{X}_{j} ' s{ }_{N}^{+217+134} \begin{array}{l}+533+149 \\ +100+082\end{array}\right\} \quad s_{j}{ }^{\prime} s$
$M_{j}^{3 \cdot s}\left[\begin{array}{l}-0007407407+0006025462 \\ -0009259259+0008074074 \\ +0000000000+0000666666\end{array}\right\} \quad M_{j}^{4 \cdot} \cdot$
DURATION:

Read master tape
Read data in
Calculation
Punch

$$
\sec \cdot\left(\begin{array}{l}
d=\text { decimals } \\
q=\text { samples } \\
V=\text { variables }
\end{array}\right)
$$

30
$.004(d+1) 7 \sim q$
.003 rq
$.035 \mathscr{\sim}(\alpha+1)$ means and standard deviations
$.4 \sqrt{3 r d}$ and 4 th mom
Let $X_{i j}$ be the $i^{\text {th }}$ observation ($i=1,2, \ldots q$) on the $j^{\text {th }}$ variable ($j=1,2, \ldots$ v). All summations below are over
i from l through q.
Mean (central tendency)
$\bar{X}_{j}=\frac{l}{q} \sum X_{i j}$
Standard deviation (dispersion)
$s_{j}=\left(M_{j}{ }^{2}\right)^{1 / 2}=\left[\frac{1}{q} \sum\left(X_{i j}-\bar{X}_{j}\right)^{2}\right] I / 2$
Third moment (skewness)
$M_{j}^{3}=\frac{1}{q} \sum\left(X_{i j}-\bar{X}_{j}\right)^{3}$
Fourth moment (kurtosis)
$M_{j}^{4}=\frac{1}{q} \sum\left(X_{i j}-\bar{X}_{j}\right)^{4}$

$$
-4=
$$

If the distribution is symmetric, $M_{j}^{3}=0$ 。 When M_{j}^{3} is negative, the distribution is skewed to the left; when positive, the distribtuion is skewed to the right. For purposes of comparison, use $A_{j}=M_{j}^{3} / s_{j}^{3}$.
For a flat distribution, $\mathrm{M}_{\mathrm{j}}{ }^{4}$ will tend to be large; for a steep distribution, $M_{j}{ }^{4}$ will tend to be small. For purposes of comparison, use $B_{j}=M_{j}^{4} / s_{j}^{4}$.

For a normal curve, A_{j} will be equal to zero and B_{j} will be equal to three, 1. The routine compares the number of variables in subsequent rows with the number in the first row. If these do not agree for any row, the computer will stop on FFOOO at location OSl. 2. If the variance, $s_{j}{ }^{2}$, is negative due to rounding errors and outside the tolerance limit (10^{-10}), the machine will stop on FFOS6 at location ON6. If a negative variance is within the tolerance limit, it is set to zero and the calculation is continued.

nj

LOCA	ATION		ORDER	NOTES	PAGE 5	KSL 2.03
Abs.	Rel.	Sym.				
242	36	$\begin{aligned} & (S 2) \\ & (S 3) \end{aligned}$	FF2F 41F			
			262 (S3) 50(S3)			
			$\begin{aligned} & 26(\mathrm{RI}) \\ & \mathrm{F} 5(\mathrm{~T}) \mathrm{L} 4(\mathrm{D} 2) \end{aligned}$	Store ${ }^{\text {j }}$		
246	40		40(T) 46(D6)			
			LO (D6) LOIOF			
248	42		362 (S) L5 (299)			
			00K			
249	10	(P)	I4 (145) 40 (T)	Print routine		
			$42(\mathrm{D6}) \mathrm{L5}(\mathrm{~T})$			
			423(P) It (145)			
			- 422 (PI) L5F			
			5012F 50(Pl)			
		(P1)	26(P16) 92963F			
			JOF L5F			
		(P2)	5012F 50(P2)			
			26(P16) 92131F			
			92515F F5 (T)			
259	10		L4 (D2) 40 (T)			
			46(D6) LO (D6)			
			LO10F 321 (P)			
			92770F 92535F			
			L55F 32 (P5)			
		(PR)	92147F L5 (299)			
			I4 (145) It (145)			
			L4 (145) 40 (T)			
			42 (D6) L5 (T)			
			425 (PR) It (145)			
269	20	(P3)	422 (P3) L5F			
			5010F 50(P3)			
			26 (P16) 92963F			
		(P4)	JOF L5F			
			5010F 50(P4)			
274	25		26(P16) 92131F			

