# UNIVERSIIY OF ILIINOIS DIGITAL COMPUTER STATISTICAI LIBRARY 

TITLE:
TYPE:
SYMBOLS:

RESTRICTIONS:
DURATION:

DESCRIPTION:

METHOD OF USE:

Triangular matrix to square (or rectangular) SADOI Only Entire program
d: decimal places per number on data tape
n : order of matrix
X: number of selected rows (or columns)
$s_{i}$ : selected row or column numbers
$0 \leq \mathrm{d} \leq 8 ; ~ I \leq n \leq 1 l l ; 0 \leq X ; ~ I \leq S_{i} \leq n$
A. Square matrix
$\left.\overline{n^{2}(.020 ~ d ~} \neq .037\right)$ seconds
B. Retangular matrix
$n^{2}(.0025 d+.0035)+n X(.0167 d+.0332)$ seconds
Symmetric matrices often are punched in triangular form. For example, the order of output for K 17 may be punched as follows:
$r_{11} r_{21} r_{22} r_{31} r_{32} r_{33} \ldots r_{n 1} r_{n 2} \ldots r_{n n}$
For some subsequent computer operation, however, a square matrix may be required. The purpose of this routine is merely to read a symmetric matrix in triangular form and to punch out the complete square matrix with $\mathbb{N}$ terminating symbols at the end of each row (or column) and a J at the end of the matrix.

An alternate use of this routine is bo punch out only selected rows (or columns) of the full square matrix)

1. Master tape KSL 5.55 STOPS
2. Parameter tape
3. Data tape

At stop 2409 N a new problem can be begun by raising the black switch to read a new parameter tape.

PARAMETER TAPE:

DATA TAPE:
A. Square matrix

Punch three unsigned integers separated by fifth-hole characters in the following order:
d space n space 0 space
B. Rectangular matrix (selected rows)

Punch unsigned integers separated by fifth-hole characters as follows:
d space $n$ space $X$ space $s_{1}$ space $s_{2}$ space...$s_{x}$ space The parameter X is interpreted by the machine to be the number of selected rows. When $X=0$, of course no rows are selected; a square matrix is punched. Otherwise, when $X>0$, then $X$ additional integers are read into the machine. These are the selected row numbers. Since the row numbers may be punched in any order, it is possible to rearrange the rows of a symmetric matrix in any order whatsoever.
The computer will detect three parameter tape errors:

1. If $\mathrm{d}>8$, the computer will print "D GREATER THAN 8" and stop on FF 123.
2. If any $s_{i}=0$, the computer will print "ROW NUMBER $=0^{\prime \prime}$ and stop on FF 123.
3. If any $s_{i}>n$, the computer will print "ROW NUMBER GREATER THAN ORDER ${ }^{18}$ and stop on FF 123.
By moving the white switch up and down at stop FF 123, a corrected parameter tape may be read and the problem continued.
The data tape consists of the $n(n \nmid I) / 2$ number off a symmetric matrix punched in the following order:
$r_{11} r_{21} r_{22} \ldots r_{n 1} r_{h 2} \ldots r_{n n}$
Each number is punched as a sign followed by d digits. (See Note 2)

NOTE 1:

NOTE 2:

A stop on FF 000 indicates a sum check failure in reading the master tape. Try rereading the master tape. This routine does not check for signs. Instead the numbers are read with the order, $814(\mathrm{~d} \nmid 1)$. Thus, the routine will work equally well for unsigned numbers provided the parameter $d$ is reduced by one. For example, to read a triangular matrix consisting of single unsigned digits, set $d=0$.

| DATE_June 13, 1961 |
| :--- |
| PROGRAMMED BY KN Dickmaw <br> APPROVED BY JW Dickmaw |

n.









