R80-4

B6700/7700 PASCAL

Gompiler Version 111-0-00I

1980 April

: Department of Information Science

The University of Tasmania

G.PO.Box 252C Hobart
_”'f'asmania 7001

o

c Copyright 1977, by A.H.J. Sale

All rights reserved.

No part of this document may be reproduced by any means, nor
transmitted, nor translated into a machine-readable form without the
written permission of the author.

Professor A.H.J. Sale

Department of Information Science
University of Tasmania

Box 252C, G.P.O.,

Hobart, Tasmania 7001

CONTENTS

CONTENTS

1. INTRODUCTION
COMPLIANCE STATEMENT
INTRODUCTION TO THE MANUAL

2. LEXICAL TOKENS
LEXICAL TOKENS
CHAR CONSTANT
COMMENT
DOUBLET SYMBOLS
INTEGER CONSTANT
ONE-CHARACTER SYMBOLS
REAL CONSTANT
RESERVED WORDS
STRING CONSTANT
NAMES

3. SUBCOMPONENTS
SUBCOMPONENTS
ASSIGNMENT COMPATIBILITY
EXPRESSION
LABELS
NAME LIST
OPERATORS (ARITHMETIC)
OPERATORS (BOOLEAN)
OPERATORS (SET AND RELATIONAL)
PARAMETER LIST
SCALAR RANGE
SCOPE
SET CONSTRUCTOR
SIGNED INTEGER
SUBRANGE
TYPE COMPATIBILITY
TYPE IDENTITY
VARIABLE

4, DECLARATIONS
ARRAY TYPE
ATTRIBUTES
BOOLEAN TYPE
CHAR TYPE
CONST DECLARATION
FIELD LIST
FILE TYPE
FORMAT DECLARATION
INTEGER TYPE
LABEL DECLARATION
PACKED :
POINTER TYPE
REAL TYPE
RECORD TYPE

Y

CONTENTS

SCALAR TYPE

SET TYPE
SUBRANGE TYPE
TEXT TYPE

TYPE DECLARATION

5. STATEMENTS
STATEMENTS
ASSIGNMENT
BODY
CASE STATEMENT
COMPOUND STATEMENT
EMPTY STATEMENT
FOR STATEMENT
GOTO STATEMENT
IF STATEMENT
PROCEDURE INVOCATION.
REPEAT STATEMENT
WHILE STATEMENT
WITH STATEMENT

6. PROGRAM UNIT
PROGRAM UNIT
EXTERNAL DECLARATIONS
FORWARD DECLARATIONS
FUNCTION
PROCEDURE
PROGRAM

7. PRE~-DEFINED PROCEDURES
ARITHMETIC FUNCTIONS
MARK AND RELEASE
MIN. AND MAX
MIXED-TYPE FUNCTIONS
NEW
OPERATING SYSTEM PROCEDURES
PACK AND UNPACK
PASCAL GENERIC FUNCTIONS
RANDOM
TIME PROCEDURES

8. INPUT AND OUTPUT
INPUT AND OUTPUT
CLOSE :

EOLN, EOF AND ENDOFFILE
GET AND PUT

PAGE

PRE-DEFINED FILES
READREC

READ

RESET AND REWRITE

SEEK

CONTENTS

SPACE
WRITEREC
WRITE

9. COMPILER OPTIONS
COMPILER OPTIONS
$
ASCII
AUTOBIND
BIND
BINDER
BINDINFO
BOUNDSCHECK
CHECK
CODE
ERRLIST
ERRORLIMIT
HEAP
HEXCODE
INCLNEW
INCLUDE
LINEINFO
LIST
LISTINCL
MERGE
NAMES
NEW
OMIT
PAGE
SEQ
SETSIZE
STANDARD
STATISTICS
STRIPBLANKS
TRUSTWORTHY
WARNINGS
USER-OPTIONS

10. COMPILER FILES
COMPILER FILES
FILE DEFINITIONS
FILE EQUATION

11. ERRORS
ERRORS
COMPILE-TIME ERRORS
INV-OPERATOR
PASCAL READ ERROKS
PASCAL WRITE ERRORS
RUN-TIME PASCAL ERRORS
RUN-TIME SYSTEM ERRORS
STACK HISTORY

L1}

12. SAMPLE PROGRAMS

13. GENERAL

CHARACTER SETS
"WRAP UP INFO
"COMPILER ‘NOTES

'CONTENTS

INTRODUCTION

1. INTRODUCTION

The B6700/B7700 Pascal language is a dialect of the programming
language Pascal, designed by Niklaus Wirth (see References) and first
implemented for CDC 6000 computer systems. The implementation for
the B6700 and B7700 computer #systems was undertaken by the Department
of Information Science at the University of Tasmania, and has a
number of extensions from standard Pascal to adapt it to the new
environment. Nevertheless, it is capable of handling programs
written in Pascal and compiled on other machines, though its
searching tests for 'undefined features' may cause the rejection of
programs that compile successfully elsewhere,

The Pascal language 1is primarily intended for teaching programming,
and in this aim it is unexcelled. An Algol-like language, it has a
few clean executable statement kinds built on the Algol model and
incorporating the improvements of knowledge of the 1970s. Its major
advantage is its good facilities for data-typing and
data-structuring, which are far superior to any other language on the
B6700 or B7700 systems.

Pascal has also been touted as the long-awaited replacement for
FORTRAN, as it has very similar capabilities and would permit
FORTRAN-like constructs to be embedded in a Pascal program by
binding. There are however two major problems with this suggestion
which must be solved if the prediction is to come true. The first
relates to the deviance of the Pascal i/o0 system from the
record-oriented system most programmers are used to; to minimize the
relearning process B6700/B7700 Pascal incorporates the
record-oriented i/o0 system with formats from B6700/B7700 Algol
(derived from FORTRAN itself with tidying). The second relates to
the lack of adjustable arrays in Pascal: this problem is not tackled
in this compiler as it requires some fundamental changes 1in the
language.

The other major function envisaged for Pascal is that of a suitable
vehicle for writing system software, for example compilers. With a
minor addition of a routine it could be so used at its present level,
and could certainly be used for all purposes short of generating code
without change. Pascal is relatively suceessful in this area (though
not perfect) mainly due to its good data structuring facilities.

The compiler was written with three major targets: that of providing
a standard-compatible Pascal compiler for these Burroughs machines:
that of providing an efficient implementation of Pascal; and that of
making the compiler as compatible as possible with the rest of
Burroughs' standard software. Very few additions or changes were
necessary for this last purpose.

INTRODUCTION 1=-1

INTRODUCTION (COMPLIANCE STATEMENT)

COMPLIANCE STATEMENT

This Statement is made in conformance with the requirements of
Section 5.1 of the draft IS0 Standard for Pascal 1979 (N462). The
compiler described in this manual purports to support Standard Pascal
as described in Section 6 of the Standard with the following
differences, extensions, observations, and implementation-dependent
features.

The following sections are declarations made in accordance with the
requirements of the Standard. All section numbers following refer to
the Standard, not to this manual.

1-2 INTRODUCTION

o)

INTRODUCTION (COMPLIANCE STATEMENT)

Implementation-defined features
(See 3 and 5.1.1(b))

The handling of these features may differ from processor to
processor. Use of the features is permitted to Standard-conforming
programs, but they must not rely on these specific interpretations
nor any others. : '

Value of maxint (6.4.2.2 and 6.7.2.2)
549755813887 = 2%%¥39 - 1

Real values (6.1.5)
See manual for details of precision, range, etc.

Char values (6.1.5 and 6.6.6.4)
The char values are represented according to the EBCDIC code or
the ASCII code, depending on the setting of the compiler option
ASCII.

Component type of a set (6.4.3.4, 6.7.1 and 6.7.2.5)
The number of elements in a set must be less than 65536.

Div operator (6.7.2.2)
The following axiom is obeyed:

abs(a div b) = abs(a) div abs(b)

INTRODUCTION | 1-3

INTRODUCTION (COMPLIANCE STATEMENT)

Implementation-dependent features
(See 3, 5.1 and 5.2)

These features are similar to implementation-defined but need not
have an interpretation at all (in other words, be prohibited) on a
particular processor. Standard-conforming programs should not use
them according to 5.2.

Directives (6.6.1 and 6.6.2)
Only the directives forward and external are permitted. (Note:
it is thought that forward should be standard, and only other
directives are implementation dependent.)
Put procedure (6.6.5.2)
The put procedure will fail in execution if applied to a file in
readstate. An error will be reported.
Standard procedures (6.6.5 and 6.6.6) :
Some standard procedures and functions are permitted as
procedural or functional parameters. See the manual for details.
Evaluation order of operands (6.7.2)
The operands of binary operators are always evaluated in
left-to-right order.
Boolean expressions (6.7.2.3)
All components of a boolean expression are always evaluated.
Binding of parameters (6.7.3 and 6.8.2.3)
Binding (the identification of the object involved) takes place
in striet left-to-right order. Scalar, real, pointer, and set
expressions corresponding to value parameters are copied
immediately after they are bound. Array and record parameter
copying corresponding to value parameters are deferred, and the
copying takes place after the call is initiated in left-to-right
order of the deferred values.
Assignment statements (6.8.2.2)
Binding of the variable on the left-hand-side of an assignment
always precedes evaluation of the right-hand-side expression.
Reset and rewrite (6.10)
Reset and rewrite are permitted on the standard files input and
output.

1-4 INTRODUCTION

INTRODUCTION (COMPLIANCE STATEMENT)

Error handling
(See 5.1.1(e))

Access to variant with wrong real or virtual tagfield (6. 4 3.3)
Not detected.

Subrange errors in assignment compatibility (6.4.6)
Detected during compilation if a constant, otherwise detected
during execution.

Dereferencing nil pointer (6.5.4)
Detected in execution by INVALID INDEX interrupt.

Dereferencing undefined pointer (6.5.4)

Detected in .execution if pointer has tagsix Qaiue by INVALID
OPERAND interrupt.

Using put while eof false (6.6.5.2)
Detected in execution.

Using get while eof true (6.6.5.2)
Detected in execution.

Aliasing with file and file-buffer (6.6.5.2)
Aliasing errors arising from binding of the file buffer are not
detected.

Dispose with nil parameter (6.6.5.3)
Dispose implemented but always returns a nil pointer.

Dispose with bound pointer (6.6.5.3)
Dispose implemented but always returns a nil pointer.

Assignment of dynamic variable created with tags (6.6.5.3)
Not detected except in unusual eircumstances.

Error in 1n(x) (6.6.6.2)
Detected in execution by Burroughs intrinsic procedure.

Error in sqrt(x) (6.6.6.2)
Detected in execution by Burroughs intrinsic procedure.

Trunc and round with non-integer result (6.6.6.3)
Detected in execution by INTEGER OVERFLOW interrupt.

Error in chr (6.6.6.4)
Detected in execution.

INTRODUCTION 1-5

INTRODUCTION (COMPLIANCE STATEMENT)

Error in succ and pred (6.6.6.4)
Detected in execution.

Undefined values (6.7.1)
The attempted use of any undefined value which has acquired the
tagsix value is detected by the INVALID OPERAND interrupt. See
later for an analysis of undefinition.

Set value outside limits (6.7.1)
Detected during compilation if a constant, otherwise detected
during execution.

Divide by zero (6.7.2.2)
Detected in execution by the DIVIDE BY ZERO interrupt.

Integer range trespass (6.7.2.2)
If the result of an integer operation exceeds the integer range,
the value automatically becomes real. However, at assignment
compatibility points, a check is applied which gives rise to the
INTEGER OVERFLOW interrupt if the value is non-integer.

Goto into structured statement (6.8.2.4)
Not detected.

Case expression without label (6.8.3.5)
Detected in execution.

Altering for-index (6.8.3.9)
Blatant attempts detected in compilation and treated as errors.
Possible attempts (use as actual variable parameter) cause
compile-time warnings. Sneaky attempts will be detected in
execution if the loop is optimized.

Syntax of real and integer on input file (6.9.2)
Detected in execution.

1-6 R INTRODUCTION

]

L]

W

INTRODUCTION (COMPLIANCE STATEMENT)

Undefinition

Many errors. are traceable to undefined values: this section
explains. the treatment of undefinition by this compiler.

Local variables (6.2) :
Scalar, real, pointer, and set variables are set to a special
undefined value (tagsix) at the beginning of the statement part.
Records and arrays acquire all-zero binary values. Files acquire
a value or not depending on their attributes (extension).

Change of variant (6.4.3.3)
No changes are made when variants are selected. The fields
retain their original binary values.

Function values (6.6.2)
The function value is initialized to a special undefined value
(tagsix) at the beginning of the statement part. If the value is
not overwritten by a function assignment, an interrupt occurs at
exit.

File buffer (6.6.5.2)
The file buffer is not altered from its current value under
these conditions of undefinition.

Dispose (6.6.5.3)
Dispose implemented but always returns a nil pointer.

For index (6.8.3.9)
Always acquires a special undefined value (tagsix) at exit.

INTRODUCTION . 1-7

INTRODUCTION (COMPLIANCE STATEMENT)

Extensions to Standard Pascal

(See 5.1)

These are more fully described in the manual. The compiler option
STANDARD enables a checking which flags use of these extensions in

general,

1. The provision of file attribute declarations.

2. The provision of type transfers from integer to scalar type
(inverse of ord).

3. The provision of a format declaration and record-oriented read
and write statements.

4. The provision of random-access (relative-indexed) reading and
writing.

5. The provision of extra pre-defined procedures and functions.

6. Allowing external files to be attached to inner procedures or
functions without attachment to the main program.

7. Allowing strings to use the double quote as an alternative to the
single quote for Algol compatibility.

8. The lexical alternatives @, (*, *) gre permitted for use on
devices which do not support °* *

9. Allowing a % to end-of-line comment form.

10. The permitting of an otherwise clause in case statements.

11. Allowing external procedures or functions to be declared within a
program.

1-8 INTRODUCTION

ax

INTRODUCTION (COMPLIANCE STATEMENT)

Deviations from Standard Pascal

These are more 'fully described in the manual, and ‘represent
places where the processor does not conform to the requlrements
of section 6 of the Standard.

1. Files may not be components of any structured type.
2. Program parameters are permitted, but have no effect.

INTRODUCTION 1-9

INTRODUCTION

INTRODUCTION TO THE MANUAL

Burroughs Algol programmers should find little difficulty in writing
Pascal programs which are almost isomorphic to the Algol ones they
presently write; experience will allow transition to Dbetter
structured code as the concepts of data-structures become more
understood. FORTRAN programmers will find more difficulty as the
control structures are also less familiar; PL/I programmers will be
amazed at the simplicity and power of the Pascal language compared to
PL/I.

The rest of this document discusses the components and structures of
the B6700/B7700 Pascal 1language, categorized into categories that
seem appropriate. These categories, by section, are:

Lexical tokens
(the words of Pascal)

Subcomponents
(bits and pieces otherwise unclassifiable)
Declarations
(the objects and concepts of Pascal and stating them)
~ Statements

(the executable commands of Pascal)
Program units

(constructing wholly executable programs)
Pre-defined procedures

(procedures available without declaration)
I/0

(the input/output system of B6700/B7700 Pascal)
Options

(how to manipulate the compiler options and their effects)
Compiler files .

(the definitions of the compiler's file attachments)
Errors

(the interpretation of error situations)
Sample programs

(to illustrate the language and the listings produced)
General

(which cannot be classified elsewhere)

This manual was produced using the RUNOFF text editing system and
printed on a Diablo 1620 terminal.

1-10 "~ INTRODUCTION

a

»

INTRODUCTION

References

Addyman, A: The BSI/ISO Working Draft of Standard Pascal by
the BSI DPS/13/4 Working Group, Pascal News, Number 14,
pp 9-54; see also Draft Proposal TSO/TC97/SC5 DP7185

Jensen, K and Wirth, N (1974): "PASCAL User Manual :and Report",
Notes in Computer Science Series, No.18, Springer-Verlag.

Wirth, N (1973): "Systematic Programming", Prentice-Hall.

Welsh, J. (1978): "Economic Range Checks in Pascal™,
Software - Practice and Experience, vol. 8, p 85-97.

INTRODUCTION | 1-11

'LEXICAL TOKENS

LEXICAL TOKENS
Syntax

lexical token

> reserved word g

X

————> name

——> integer constant

»real constant

———— char constant

——> string constant

————> comment

L———> doublet symbols

L———> one-character symbols

Semantics

The formation of the lexical tokens is explained in the succeeding
pages. Lexical tokens in B6T700/B7700 Pascal are formed from
characters in the EBCDIC character set. All lexical tokens must be
contained wholly on a single 1line of the source text and may not
contain any embedded space characters., Except within string and char
constants, and within comments, the space character serves to delimit
adjacent tokens but has no other meaning.

LEXICAL TOKENS 2-1

CHAR CONSTANT

CHAR CONSTANT

Syntax

char constant

Semantics v

A char constant defines a constant of the pre-defined Pascal type
char. In each case above, the enclosed character may be any legal
character except the quote symbol used to delimit the token.

The internal representation of the graphic used in a char constant is
normally an 8-bit EBCDIC value. However, if the ASCII compiler
option is set when a char constant is compiled, the value is
represented internally in the ASCII code. This will affect the
internal collating sequence and the result returned by the ORD and
CHR functions.” If a string delimiter is to appear as a char constant
then that character is written twice. Thus '''' contains the
character '.

2-2 LEXICAL TOKENS

> ' — character — ' }ll

®

L]

Q)

(1]

COMMENT

COMMENT
Syntax
comment
—— charactere—
»>{— >}
— .
.J:——-charactere——
;(*' —l %)
Semantics

A comment has no effect on the compilation or execution of a Pascal
program except for a role in delimiting other tokens. The two forms
of comment are equivalent to a space character. Comments may
therefore be used wherever a space may be used, except within string
constants or format lists.

The purpose of a comment is to introduce information for human
readers of the program; therefore any character may be used in the
body of the comment except for the symbol that terminates it.

If a closing marker is omitted by mistake, following text will not be
compiled and is treated as commentary until another comment is
reached. To detect this situation in a large number of cases, a
warning message is 1issued if a semicolon is encoéuntered in these
comment forms. The message may be suppressed by resetting the
WARNINGS compiler option.

LEXICAL TOKENS 2-3

DOUBLET SYMBOLS

DOUBLET SYMBOLS

Syntax
doublet symbol token-name

HE becomes~token

.o subrange-token

O not-equal-to

<= less-or-equal

>= greater-or-equal
Semantics

Tokens composed of two adjacent characters are used in Pascal to
augment the basic character set and to construct extra tokens. The
use of these tokens in the language will be described in later
sections. Note that the pair of characters must be immediately
adjacent to be recognized as a doublet symbol; if a space separates
them the characters are recognized as separate tokens.

2-1 - LEXICAL TOKENS

L7

<)

INTEGER CONSTANT

INTEGER CONSTANT

Syntax

integer constant

mantic

An integer constant is represented internally in a B6700/B7700 Pascal
program by a value of type integer. The external form is written as
a sequence of decimal digits (0123456789) and converted according to
the usual rules, A valid integer must have no more than 12 digits
(including any 1leading zeros), and must be less than 549755813887
since this is the largest representable integer in the B6700/B7700
computers. The predefined constant, MAXINT, represents the largest
representable integer in the B6700/B7700 computers.

LEXICAL TOKENS 2=5

ONE-CHARACTER SYMBOLS

ONF-CHARACTER SYMBOLS
Syntax
symbol token-name equivalent
+ plus
- minus
* times
/ divide
= equalto
< less-than
> greater-than
(left-parenthesis
) right-parenthesis
[left-bracket
] right-bracket
. point
, comma
: colon
3 semicolon
1 -at (see note) @ or °

LEXICAL TOKENS

o)

ONE-CHARACTER SYMBOLS

nti :
The use of these tokens will be explained in later sections. If the
B6700/B7700 Pascal compiler encounters. a character outside the
context of the other tokens which is not one of these characters (for
example the &-character), a lexical error is reported.

Note:
The T-character may not be awvailable on all devices on a
B6700/BT7700 system (as it is not a common graphic) and the use of
the @-character is provided as an alternative. On some devices
the T-character masquerades as the — -character, or prints as
a .

LEXICAL TOKENS 2-7

REAL CONSTANT

REAL CONSTANT

Syntax

real constant

———>integer constant ——l—>fraction —T—r exponent J 3|
fraction
> . > digit)
exponent
l:; |
>E . digit 3|

L _se j +

Semantics
A real constant is represented internally in a B6700/B7700 Pascal
program as a read-only value of type real. The value of the real

constant must lie in the representable range of the B6700/B7700
computers:

between 8.75811540203E-47 (8%#%_.51)
and 4.313591466TUE+68 (8#%76 ~ B¥##H3)

or may be exactly zero. The fraction part may have any number of
digits, up to the limit imposed by the 1line length, but only the
first 23 are used in the conversion. A fraction written with a large
number of fractional leading zeros may therefore be inaccurately
converted. The exponent part is a scale factor expressed as a power
of 10, and may have one or two digits.

Note: :
An integer constant is a valid real constant. If a real constant is

in fact an integer, it may lead to more efficient code if it is
written as such without a fraction or exponent.

2-8 o LEXICAL TOKENS

»

a)

RESERVED WORDS-

Syntax

SYMBOL

IF CASE DOWNTO

IN ELSE FORMAT

DO GOTO PACKED

OF FILE RECORD
OR THEN REPEAT

TO TYPE PROGRAM
AND WITH FORWARD
DIV ARRAY EXTERNAL
END BEGIN FUNCTION
FOR CONST OTHERWISE
MOD LABEL PROCEDURE
NEQ UNTIL

NIL WHILE

NOT

SET

VAR

LEXICAL TOKENS

RESERVED WORDS

2-9

RESERVED WORDS

Semantics

The wuse of reserved words is described in later sections. The
reserved words are absolutely reserved: they may not be wused as
names elsewhere in a B6700/B7700 program since they will always be
recognized as reserved words. The reserved words are recognized
according to the rules for names: they may appear in the source text
in upper-case letters, or lower-case letters, or a mixture of both.
BEGIN, Begin and begin are all recognized as the reserved word BEGIN.

The reserved word FORMAT has no counterpart in standard Pascal; the
word NEQ is provided as an Algol-compatible equivalent for <>
(not-equal-to). The word PROGRAM is treated as fully synonymous with
the word PROCEDURE.

Standards

In B6700/B7700 Pascal, FORWARD and EXTERNAL are a reserved words, and
may not be redefined by a programmer. This, however, is not standard
Pascal, although forward declarations are permitted.

NIL is included here as a reserved word as specified by the Pascal
Standard. However, in B6700/B7700 Pascal, NIL is not a reserved word,
but a predefined name (as are TRUE and FALSE). Programmers may
redefine these names if they wish, however, this is not recommended.

2-10 ' LEXICAL TOKENS

9

STRING CONSTANT

STRING CONSTANT

Syntax

string constant

' l > character > ! N

v

Semantics
A string constant defines an object which can be used in Pascal as a
read-only packed array of char. Any legal characters may appear in

the internal part of the string constant except the character used to
delimit the token.

The maximum length of a string constant is 70 characters, and is
possible only if the string constant occupies the whole of a source
line. The minimum length is 2 characters, as a 1-character string is
regarded as a char constant.

The internal representation of the graphics used in a string constant
is normally in 8-bit EBCDIC values. However, if the ASCII compiler
option is set when a string constant is compiled, the graphics are
represented internally in the ASCII code. This will affect the
internal collating sequence and the result returned by the ORD and
CHR functions. If ‘a string delimiter is to appear within a string
with that delimiter then the character is written twice. Thus the
string constant 'DON''T' contains the characters DON'T.

LEXICAL TOKENS 2-11

NAMES

NAMES

Syntax

name —— letter <«

—— digit <

——underline-character «—

— > letter

XY

Semantics

Names are used. to identify Pascal objects, apart from labels, In the
above syntax, a letter means any alphabetical character in either
uppercase (A to Z) or lower-case (a to z); a digit means a decimal
digit (0 to 9); and the underline-character means an underlined
space, Any length name is permitted up to the limit imposed by the
line 1length and all characters of names are significant in
distinguishing names. However, for the purposes of naming, a
lower-case letter and an upper-case 1letter are regarded as
equivalent. Thus the name FRED is the same as the name Fred. Names
are held internally in the compiler in upper-case form and any
compiler-produced name-tables, etc.,, use this canonical form for
printing. For compatibility with other Pascal compilers, programmers
should consistently use either upper-case or lower-case.

A programmer-defined name may not be the same as any reserved word.

2=-12 : LEXICAL TOKENS

)

"

a)

NAMES
Examples

J
THING
temperatureofkiln

PAINT_MIXTURE_FOR_PAINTING_THE_KITCHEN_WITH_ON_SUNDAY

disaster_point

WITH2PARAMETERS

PartNod536Z

CourseSIS102H
Note

Some other compilers for Pascal only treat the first 8 characters of
a name as ‘significant. This should be Dborne in mind if
compatibility with other compilers is important. The use of two
cases of letters, and of the underline .character, should also be

avoided in these circumstances. ‘See the use of ‘the -compiler option
'STANDARD'.

LEXICAL TOKENS 2-13

SUBCOMPONENTS

SUBCOMPONENTS

Explanation :
Some constructs appear in the B6TD0/B7700 Pascal language in several
contexts, Rather than define the constructs in the main part of the
manual, they are defined here as subcomponents of the language:
comprised of lexical tokens but not major components of the language
such as statements or declarations.
The subcomponents described are:

signed integer

expression

name list

parameter list

subrange

scalar range

set constructor

labels

variables

Also discussed are:
operators
type identity
type compatibility
assignment compatibility

scope

SUBCOMPONENTS ' 3-1

ASSIGNMENT COMPATIBILITY

ASST NT T
Semantics

Compatibility is not expressed in the B6700/B7700 Pascal language,
but is a notion used to test whether an assignment or type
association is semantically meaningful.

An expression E of type T2 is assignment-compatible with a type T1 if
any of the four statements which follow is true.

1,

2.

3.

h,

T1 and T2 are identical and neither is a file-type nor a
structured-type with a file component,

T1 is a real-type and T2 is integer.

T1 and T2 are compatible ordinal-types and the value of E is
in the closed interval specified by the type T1.

T1 and T2 are string types with the same number of
components.

SUBCOMPONENTS

<)

b

EXPRESSION

Syntax

expression

simple e _
expression he

relational simple
operator expression

simple expression

: term ¢ adding e——
I operator

X

term

factor e multiplying «——
| operator
—> factor R — - : >l

SUBCOMPONENTS ' | 3-3

EXPRESSION

factor

——> integer constant
I——> real constant
————> char constant

> > string constant —M——

———> scalar constant —

——— constant name

> NIL

———> set constructor

> variable v

Y.

—————> function call

——> type —> (—> expression —) —

> NOT » factor

> (> expression : >)

Semantics

An expression is a construct denoting a computation for deriving a
value from variables and constants by the application of operators.
Expressions consist of operands (objects having value such as
variables and constants), operators (rules for computation), and some
structuring tokens (parentheses). An error occurs if ‘any variable,

or function used as an operand in an expression has an undefined
value at the time of its use.

The operators are applied according to rules of precedence, according
to four classes of operators. The operator NOT has the highest
precedence, followed by the 'multiplying' operators, then the
'adding' operators and signs, and finally the relational operators.

3-4 SUBCOMPONENTS

*

EXPRESSION

PRECEDENCE ORDER OF OPERATORS

NOT

% / DIV MOD AND (multiplying operators)
+ - OR : (adding operators)

> = < >z &= O (relational operators)

The higher precedence operators are applied before any of lower
precedence. These notions are implicit in the syntax charts given.
Sequences of operators of the same precedence are executed from
left-to-right. In all expressions, including boolean expressions,
all terms and factors are evaluated. '

Expressions which are members of a set are of identical type. (1
denotes the empty set which belongs to every set type. The set [x..y]
denotes the set of all values of the base type in the closed interval
x to y. If x is greater than y then [x..y] denotes the empty set.

The type of an expression may be altered by specifying the type name
followed by the expression enclosed ir parentheses. The bounds of
the type are checked and an error results if the bounds are exceeded.
The types INTEGER and REAL may not be used in this manner.

A legal expression in B6700/B7700 Pascal must comply with the type
and compatibility rules as well as the syntax given. The operators
are defired only over certain types and return values of particular
types; these are detailed in the sheets on operators. The

requirements for further compatibility are given in the sheets under
that title. :

SUBCOMPONENTS ' 3-5

EXPRESSION

Examples
FACTORS: X
15
X +Y+2)
SIN(X + Y)
[RED,C,GREEN]
(1,5,10..19,23]
NOT P
TERMS: X*y
I *J+2
(X <= Y) AND (Y < Z)
SIMPLE EXPRESSION: X+Y
=X
P OR Q
HUE1 + HUE2
I *J4+1
EXPRESSIONS: X =1.5
P <=Q
P = Q AND R
(I<J)=(J<K)
CR IN [RED,GREEN]
Standards
Some other Pascal compilers implement boolean expressions by
selective evaluation (sequential conjunction or disjunction); this
may pose some problems for programs imported into-a B6700/B7700

environment but will not be 1likely to affect the portability of

exported programs except for rare cases. All programs affected are
non-standard.

3-6 ' SUBCOMPONENTS

i)

EXPRESSION

The precedence rules for boolean expressions give the effect that:
‘a> 0and b < 10

is illegal since it is parsed:

a> (0 and b) < 10
the correct expression is of course:

(a > 0) and (b < 10)
Since a few compilers do not conform to the standard Pascal
precedence rules, it is recommended that expressions involving
boolean operands be fully parenthesized, #eéspecially if relational
operators are used between booleans; for example:

azband ¢

Changing type by using the type-name in a function-<like usage is not

standard Pascal. Only the ORD, TRUNC and ROUND funetiéns (see
functions) are allowed in standard Pascal.

SUBCOMPONENTS 3-7

LABELS

Syntax

label

—> integer constant

X

Semantics '

Labels are used to mark places in the executable body of a program,
procedure or function, so that the goto statement can wutilize them.
Further references will be found under goto statement, label
declaration, and statement.

A valid B6700/B7700 Pascal label has a corresponding numeric value

from 0 to 9999 inclusive. The numeric value is not important, except
for establishing correspondence between usages of labels.

Examples

1

7876

3-8 ' SUBCOMPONENTS

NAME LIST

NAME LIST

Syntax

name list

> name

k3

Semantics

A name list consists of one or more names, separated by commas. It
occurs in several forms -of declaration.

Examples
REDCOLOUR

RED, BLUE, YELLOW ,GREEN, PURPLE
X,Y,Z

SUBCOMPONENTS

OPERATORS (ARITHMETIC)

ARITH P 0

Binary

operator operation type of operands | type of result
+ addition integer or real integer or real
- subtraction integer or real integer or real
b multiplication integer or real integer or real
/ division integer or real | real
DIV division with integer integer

truncation

MOD modulo integer integer

Unary

operator operation type of operands | type of result
+ identity integer or real integer or real
- ‘ sign-inversion integer or real integer or real

Semantics

If both the operands of the addition, subtraction or multiplication
operators are of the type

integer, then the
integer otherwise the result is of the type real.

the identity or sign-inversion operators is of the type
the result is of the type integer otherwise the result is of the type

real.

3-10

result is of the type
If the

operand of
integer then

SUBCOMPONENTS

aty

a

OPERATORS (ARITHMETIC)

The value of i div j is such that:

abs(i div j) = (abs(i)) div (abs(j))

Clearly, if j = 0 then an error occurs.

The value of i mod j is such that:

iz (j ® quotient) + remainder

where 0 <= abs(remainder) < abs(j)

and sign(i) = sign(remainder)

{See Standards below}

The predefined constant maxint is of type integer and has an
implementation defined value of 549755813887, This value satisfies
the following conditions:

1.

2.

3.

All integral values in the closed interval from -maxint to
+maxint are representable in the integer type.

Any unary operation performed on an integer value in the
above interval 1is correctly performed according to the
mathematical rules for integer arithmetic.

Any binary integer operation on two integer values in the
above interval is correctly performed according to the
mathematical rules for integer arithmetic. The result of an
intermediate calculation in an expression may temporarily
exceed the interval above (when it is converted to a real
value, with consequent 1loss of exactness). If the final
result, however, is outside the interval, the B6700/B7700
will interrupt and terminate the program's execution.

Any relational operation on two integer values in the above
interval is correctly performed according to the
mathematical rules for integers.

SUBCOMPONENTS 3-11

OPERATORS (ARITHMETIC)

Standards

The Pascal standard defines the value of i div j to be such that
i-j < (i div j)*j <= i

where i >= 0 and j > 0; an error occurs if j = O. Other Pascal
compilers may produce different results for i < 0 and/or j < 0.

Also the value of i mod j is defined to be the value of

i-(idiv j) * j
The result for negative operands is dependent on the method of
implementation of the div operator, and care should be taken if

compatability with other Pascal compilers is required. The
B6700/B7700 Pascal system satisfies this constraint,

3-12 SUBCOMPONENTS

a)

OPERATORS (BOOLEAN)

BOOL OPERATORS

operator | operation type of operands | type of result
OR logical 'or' boolean boolean
AND logical 'and' boolean boolean
NOT logical negation boolean boolean
Semantics

Boolean expressions are completely evaluated in B6700/B7700 Pascal.

The sheets on expressions give a fuller discussion of boolean
expressions.,

SUBCOMPONENTS 3-13

OPERATORS (SET AND RELATIONAL)

SET QPERATQORS
operator|operation type of operands | type of result
+ set union any set type T T
- set difference any set type T [T
* set intersection | any set type T T

RELATIONAL OPERATORS

operator type of operands type of result

= <O any set, simple, pointer or boolean
string type

<> lany simple or string type boolean

<=z >= any set, simple or string type boolean

IN left operand any ordinal type T boolean
right operand SET OF T

Semantics

Except when applied to sets, the operators <> , <=, stand for
not equal, less +than or equal, and greater than or -equal
respectively.

v
"

The operands of = , <> , < , >, >= and <= are either of compatible
type or one operand is real and the other integer.

If u and v are set operands, u <=z v denotes the inclusion of u in v
and u >= v denotes the inclusion of v in u.

Since type Boolean is an ordinal type with false <vtrue, then if p
and q are Boolean operands, p = q denotes their equivalence and p <=
q denotes the implicatinn of q by p.

When the relational operators + , <> , <, > , <=, >= are used to

compare strings, they denote lexicographic ordering according to the
ordering of the character set.

3-14 ~ SUBCOMPONENTS

OPERATORS (SET AND RELATIONAL)

The operator IN yields the value true if the value of the operand of
ordinal-type is a member of the set, otherwise it yields the value
false. In particular , if the value of the operand of ordinal-type is
outside the bounds of the set, the operator IN will yield the value
false. o

SUBCOMPONENTS 3-15

PARAMETER LIST

PARAMETER LIST

Syntax

parameter list

. &
y <

_T > name list ——> : —> type
|~>VAR

\]
~
Yy

Semantics

A parameterlist defines objects which are accessible within the body
of the procedure or function to which they are attached, and which
have some attributes which are imported from outside the procedure or

function when it is invoked. The form of the parameterlist serves
to:

* jdentify the names of the objects,
*® their types, and
® whether they are VAR or 'value' parameters.

If a parameter is not preceded by the reserved word VAR, it is
regarded as the default parameter type: a value parameter. The
object is then identical to a locally declared object of the same
type, except that it is initialized at the time of procedure or
function invocation to the value given by the corresponding actual
parameter, Any changes to the value of this object will therefore
not have any effect on objects declared outside the procedure. A
file may not be a 'value' parameter; neither may a procedure or
function passed in to another procedure.

If a parameter is preceded by the reserved word VAR, the object
accessible within the procedure or function is the actual outside
object referenced in the invocation of the procedure or function,
viewed through the window of the parameter list specification. The
parameter attachment is implemented by a mechanism which is
equivalent to a "reference parameter". Any Pascal object may be a
VAR parameter, including a file.

3-16 SUBCOMPONENTS

PARAMETER LIST

Examples
(X,Y: REAL)
(VAR I: INTEGER; BFLAG: BOOLEAN)

(VAR FILEX: FILE_OF_SECTOR;
INDEX: INTEGER;
VAR MASK,NEWSECTOR: SECTOR)

Efficiency
It 1is marginally more efficient to access a Paseal object which
occupies a single B6700/B7700 word by the value mechanism. Since
this also protects exterior objects from alteration inadvertently,
he default valu r eche m u used for all such
objects unless it is explicitly desired to alter the external object
passed through the parameter list. This advice applies to all scalar
types including integer, char and boolean, to type real, to all
pointer types, and to all set types restricted to fewer than 49
members,

Using the value parameter mechanism to pass objects of type record or
array will cause the compiler to request the allocation of extra
memory to hold a duplicate copy of the entire record or array, and to
initialize that array to be such a copy at procedure entry time.
This is expensive in space and may be expensive in time if few
accesses are made to the parameter within the procedure or function.

it is therefore recommended that such parameters normally be passed
by the VAR mechanism, except in two cases:

(1) When a local copy of the record or array is explicitly
needed, and no external modification is required. The
default value mechanism will provide this,

(2) When the efficiency of access to the object is critical,
and yet external changes are necessary. In this case, make
a call by reference (VAR), but insert declarations and code
to make a local copy and restore the copy to the external
world. In general this will only be faster if the number
of references to the object exceeds (4 x the number of
words in the object), supposing that single-word references
are made.

SUBCOMPONENTS - ‘ 3-17

PARAMETER LIST

Standards _ :

Both parameter mechanisms comply with the requirements of standard
Pascal. Programmers writing programs that may be used with other
Pascal compilers, or which are derived from installations with other
Pascal compilers, should be aware that the VAR parameter passing
mechanism is not always implemented by a 'reference' mechanism as in
B6700/B7700 Pascal, but sometimes by a mechanism called
'value/recopy'. In this mechanism, a local object is created in the
procedure or function just as for the value call, but at the
termination of the procedure the copy is recopied back into the
external objiect. The difference between this and the reference
mechanism cannot be detected if the external object is not referenced
(other than through the parameter) between the invocation of the
procedure/function and its termination, and provided no gotos across
procedure levels are executed.

Programmers writing code which is intended to be portable across
Pascal compilers should therefore avoid accessing global objects
which are also referenced through parameters, and avoid referencing
the same object in two VAR parameters.

Programmers who receive programs which may contain machine
dependencies due to the use of value/recopy as a parameter mechanism
can achieve the required effect by explicity writing in the copying
required. The code thereby generated is as efficient (to about 2
instructions) as if it had been implemented by the compiler. This is
the same advice as is given for case (2) under the efficiency
subheading. An example: :

PROCEDURE Z(VAR A: ARRAYTYPE);
VAR LOCALA: ARRAYTYPE;

e

BEGIN
LOCALA:=zA; {the value copy}

e

{the body of the procedure}

A:=LOCALA; {the re-copy}

END; {of 2}

3-18 SUBCOMPONENTS

SCALAR RANGE

SCALAR RANGE

scalar range

> (> name list >)

K2

Semantics

The scalar range construct is used to define the values of a
programmer defined scalar type. The values are externally
represented by the names listed between the parentheses, The
relational operators (less, equal, etc.) are defined between these

values assuming them mapped one-for-one with the natural numbers (0,
1y, 2, +++) in enumeration order,

The scalar range construct is used in declarations.

Examples
(RED,BLUE, YELLOW,GREEN, PURPLE)
(FALSE, TRUE)

(YES,NO,MAYBE)

SUBCOMPONENTS 3-19

SCOPE

SCOPE

Semantics

Scope is not expressed in B6700/B7700 Pascal, but is a notion used to
determine the range for which an identifier or label is defined. The
concept and meaning of scope is described in the following six
paragraphs.

1.

3-20

Each identifier or label within a Pascal program has a
defining occurrence. Associated with each defining occurrence
is a scope which is the range in the program text for which
that defining occurrence holds. Each identifier or label may
have one and only one association in each scope.

In the case of identifiers or 1labels whose defining
occurrence is within a block of a Pascal program, or
identifiers whose defining ocecurrence is in a
formal-parameter-list associated with a block, the scope
extends from the commencement of the formal-parameter-part
(if it exists) or the commencement of the block otherwise, to

the closing "end" of the block, subject to (3) and (4)
below.

When an identifier or label which has a defining occurrence
for range A has a further defining occurrence for some range
B enclosed by A, then range B and all ranges enclosed by B
are excluded from the scope of the defining occurrence for
range A.

An identifier which is a field identifier may be used as a
field identifier within a field-designator in any range in
which a variable of the corresponding record-type is
accessible.

The scope of identifiers which are field-identifiers, and
whose defining occurrence as variable-identifiers occurs as a
result of the execution of a with-statement, extends over the
internal statement of the with-statement.

The defining occurrence of an identifier or label precedes
all corresponding occurrences of that identifier or 1label in
the program text with one exception, namely that a
type-identifier T, which specifies the domain of a
pointer-type "T, is permitted to have its defining occurrence
anywhere in the type-definition-part in which °T occurs.

SUBCOMPONENTS

SCOPE

Note
The definition of a constant-identifier takes place at the end of its

constant definition; consequently a constant-identifier may not be
used in its own definition, '

Similarly, the definition of a type-identifier takes place at the end
of its type-definition, except for pointer-types (see 6 above);

consequently a type-identifier may not be used in its own definition
with this exception.

St rds
These semantics conform to those of the Pascal Standard.

SUBCOMPONENTS 3-21

SET CONSTUCTOR

SET CONSTRUCTOR

Syntax
set
> [-:r+] ‘ﬂ
>element —
L,
element

——— > expression) ﬂ
' Le..--; expression-———-——]

Semantics

The set constructor contains expressions and subranges of constants
and represents a set containing as members the values so expressed.
The types of the expressions and bounds of the subranges must be of
identical type. The empty set is represented by the construct [].
When the expressions are of type integer, the compiler option SETSIZE
determines the type of set produced by this construction. If SETSIZE
is 48 or less then a one word set is produced otherwise a set with
bounds 0 and (SETSIZE-1) is constructed.

If all the values in the set constructor are constants, and the value
of SETSIZE is less than 49, then the set functions as a set constant.
In all other cases, code is inserted in the program to construct the
set.

If a subrange construct is used and the lower bound is greater than
the upper bound the subrange functions as the empty set. A warning
is produced for this occurrence.

3-22 SUBCOMPONENTS

" .SET CONSTRUCTOR

Examples
[RED, GREEN]
[0..6, 9]
[YES, PERHAPS, MAYBE]

(]

SUBCOMPONENTS | , ' 3-23

SIGNED INTEGER

SIGNED INTEGER

Syntax

signed integer

- integer constant : 4%

—> + ———

-—_9_.__

Semantics

A signed integer value represents a Pascal value of the predefined
type integer. It is valid in several contexts, notably in defining
constant names in a CONST declaration, and in subranges. Any valid
integer constant may be signed: the representable range 1is
symmetrical about zero on the B6700/B7700 computers. Both +0 and -0
are regarded as arithmetically equal.

3-24 : SUBCOMPONENTS

o

SUBRANGE

SUBRANGE

Syntax

— signed integer r—ysigned integehé-———ﬂ—

————t1—> scalar constant —¥» .. +—> scalar constant-——ap—-————ﬂ

~—>char constant ——

——> char constant

Semantics .

The subrange defines a subset of a scalar type from the first value
given up to and including the second value given. The two bounds of
the subrange must be of identical type. A scalar constant is a name
declared as such 1in a scalar declaration occuring in a TYPE or VAR
declaration, or a name equated to such a name in a CONST declaration.

A subrange may occur in a declaration, or in a set-constructor.

Examples

-1 .. 99

RED .. GREEN

5..7

SUBCOMPONENTS 3-25

TYPE COMPATIBILITY

TYPE COMPATIBILITY

Semantics

Compatibility is not expressed in B6700/B7700 Pascal, but is a notion
which is used to determine whether an operator or parameter linkage
is semantically meaningful.

Two types are compatible if they are identical, or if one 1is a
subrange of the other, or if both are subranges of the same type, or
if they are string types with the same number of components (or in
the case of assignment, if the lefthand side has a larger number of
components, in which case the components not assigned a value are
blank filled. The assignment is left justified.), or if they are set
types of compatible base types.

Standards
Pascal compilers that conform to the standard, will only allow
compatibility between string types with the same number of

components. Programmers should be aware of this if portability is
required.

3-26 ~ SUBCOMPONENTS

"

TYPE IDENTITY

TYPE IDENTITY

Semantics

Types which are designated at two or more different places in the

program are identical if the same type identifier is used at these
places, or if different identifiers are used which have - been defined
to be equivalent to each other by type definitions of the form TYPE1
= TYPE2. oL

Standards

These semantics conform exactly with the Pascal Standard.

SUBCOMPONENTS 3-27

VARIABLE

VARIABLE
Syntax
variable
e
ly . ——— 3 field name
> [-———vr—éscalar expression —4—>]
name
Semantics

A variable is a rule for determining a reference to a - Pascal object.
It may be used in an expression to .determine a value, but it may be
used in other contexts where the identification of the variable is
the prime purpose, not its value. Examples are procedure invocation
parameter lists, assignment statements, and for statements.

The form with @ (or "~) is valid only if the preceding variable
part has evaluated to filetype (when the new form references the file
buffer), or if it has evaluated to a pointer type (when the new form
references an object of the pointer's bound type).

The form with . is valid only if the preceding variable part has
evaluated to a record type, and the field name is a field name of the
record type. It selects the nominated field of the record and gives
a corresponding type.

The form with square brackets is valid only if the preceding variable
part has evaluated to an array type. The type and number of the
scalar expressions within the brackets must correspond to declaration
of the array type. The effect is to select one component of the
array as determined by the values of the subscript expressions; the
type is of course that of the array components.

3-28 SUBCOMPONENTS

L]

"

w

Examples
X
PERSON.AGE

CLASS[MEMBER].PTR@.AGE

SUBCOMPONENTS

‘VARIABLE

3-29

Y

3]

DECLARATIONS

Explanation
Declarations serve to specify objects or concepts to be used in the
body of a program, procedure or function. The order of the various

parts of a declarationpart is required by standard Pascal, or by the
extensions.

Syntax

declarationpart

I-——>laﬂ:xeldeclar'ation-——:l\

l—-—-—:>constdeclar'ation———T

L——>typedeclaration-——:T

[
[——> f‘ormatdeclaration —T

~

'

s procedure

—> function

—>sprocedure or function heading —

L—>forward referenced declaration —J

Cross-reference
All components of declarations except procedures, functions, etec, are

DECLARATIONS ' 4-1

DECLARATIONS

described in this section. The exceptions are covered in the section
on program units (#6).

4-2 ' .~ DECLARATIONS

)

Y

ARRAY TYPE

ARRAY TYPE
m ics

An array type is a collection of objects of the component type, one
of which may be selected by nominating values for the array's index.

The component type of an array may be any type other than a file
type. The index types of an array may be any scalar or subrange type
except integer itself (as this is virtually infinite). There is no
limit to the number of index types.

An array is stored in B6700/B7700 Pascal by a single segment of
memory, described by a descriptor in the stack. Selecting a
component is carried out by computing the displacement of the
component from the start of the segment and then indexing the
descriptor. An attempt to access outside the bounds of the array
will result in the computer detecting an attempted violation and
terminating the program's execution. Accessing arrays with several
indices, or arrays of multi-word objects, is relatively slow compared
to simple scalar variable access. '

Storage is allocated for an array at the first time it is accessed
after entering the program unit in which it is entered, and
deallocated on 1leaving that program unit. Procedures or functions
which are frequently called may therefore incur less operating system
overhead if any arrays declared in them are moved to an outer program
unit that has a longer lifetime. On creation, an array will be
filled with all-zero words, This initialization will not hold for
other Pascal compilers.

Examples of array type declarations
TYPE
FLOORBUTTON = ARRAY[FLOOR] OF SWITCH;
BIRDDENSITY = ARRAY[GRIDINDEXTYPE,GRIDINDEXTYPE]
OF INTEGER;
CATALOGUE = ARRAY[USERCODETYPE] OF
ARRAY[AREATYPE] OF
ARRAY[0..30] OF WORD;
HASHTABLE = ARRAY[O..MAXSIZE] OF
’ RECORD
KEY:KEYTYPE;
VALUE :VALUETYPE;
VALUEKIND:VALUEKINDTYPE
END;

DECLARATIONS 4-3

ATTRIBUTES

ATTRIBUTES

Syntax

attributelist

<

» booleanattribute —— v

—snumericattribute —» = —sinteger —>

L. s>attribute ————> = —s mnemonic ——

—> titleattribute —— = —>title —

Semantics

The attribute 1list serves to define some attributes of files
declared in a Pascal program, and will determine the nature of the
file's attachment to a real file in the Burroughs operating system.
The attribute names are always the same as those used elsewhere in
the Burroughs operating system and in Burroughs Algol, if the
attribute has been incorporated into Pascal. For full details of the
use and operation of file attributes, the reader is refered to
Burroughs documentation and especially the 'I/0 Subsystem Mapual'.

In general, an attribute name is followed by a mnemonic which defines
its value, or an integer value, as in the example:

KIND=PACK, FLEXIBLE=TRUE, MAXRECSIZE=30

However, for compatibility with other Burroughs usages, it is
possible to substitute a numeric value for the word PACK above 1if
you know the appropriate encoding. It is also possible to omit the
'=TRUE' for attributes which have boolean values. Neither of these
practices are recommended.

In the case of attributes whose values are file-titles (title and
security guard), the right-handed side part may be written in the
normal way for file-titles, but all possible syntax assumptions are
allowed., Thus quotes may be used to delimit the file-title or not,
and a stop may terminate it or not. The recommended standard
treatment is the same as WFL - with no quotes and no stop:

4y DECLARATIONS

ATTRIBUTES

TITLE=COURSE1/MARKS/DATA

(The options allow Algol, FORTRAN and COBOL programmers to use their
familiar file attribute syntax without causing an error). If a
reserved word is used in a file title, the title should be enclosed
in quotes in the attribute 1list. Attribute lists are scanned by a
modified lexical scanner, and the mnemonics that appear in it bear no
relation to any declared Pascal object. It is permissible to declare
a Pascal object to have the name kind, or private, for example, and
no confusion will result. However, if the parenthesis that opens an
attribute list is inadvertently not matched by a closing parenthesis,
some curious messages may be evoked.

The following table details the attribute subset at present built
into B6700/B7700 Pascal. All attributes may be over-ridden by file
equation statements in the Work-Flow program (job control program).
It 1is not possible, at present, to alter file-attributes during
execution, as can be done in Burroughs Algol.

ATTRIBUTES ALLOWED VALUES

AREAS numeric

AREASIZE numeric

BLOCKSIZE numeric

BUFFERS numeric

DENSITY LOW,MEDIUM,HIGH, SUPER

EXCLUSIVE TRUE,FALSE

EXTMODE SINGLE, HEX,BCL,EBCDIC,ASCII,
BINARY

FAMILYNAME file-title

FILEKIND numeric

FILETYPE numeric

FLEXIBLE TRUE,FALSE

INTMODE SINGLE,HEX,BCL,EBCDIC,ASCII

KIND READER, PRINTER, REMOTE,DISK,PACK,
TAPE7,TAPE9Q, PETAPE, TAPE

MAXRECSIZE numeric

MINRECSIZE numeric

MYUSE IN,OUT, I0,CLOSED

PACKNAME file-title

PROTECTION TEMPORARY, SAVE, PROTECTED

SAVEFACTOR numeric

SECURITYGUARD file-title

SECURITYTYPE PRIVATE,CLASSA,CLASSB,PUBLIC,GUARDED

SECURITYUSE IN,OQUT, I0,SECURED

TITLE file-title

UNITS WORDS, CHARACTERS

DECLARATIONS

ATTRIBUTES

Examples

The

following examples show file-attribute 1lists embedded

realistic declarations:

4-6

TYPE
REMOTETERMINAL=
FILE(KIND=REMOTE,UNITS=CHARACTERS,MAXRECSIZE=132,
MYUSE=I0,FILETYPE=3,EXTMODE=ASCII)
OF PACKED ARRAY[O0..131] OF CHAR;

VAR
INPUT2:
FILE(KIND=PACK,TITLE=SECONDARY/STAR/DATA,
FILETYPE=7) OF STARRECORD;

CODEF:
FILE(KIND=DISK,MAXRECSIZE=30,UNITS=WORDS,
BLOCKSIZE=300,FLEXIBLE=TRUE ,MYUSE=0UT,
SECURITYTYPE=PRIVATE) OF ARRAY[0..29] OF WORDSET;

in

DECLARATIONS

L)

&

W

BOOLEAN TYPE

B TYP
Semantics

In many ways, type boolean behaves as if it were declared:

TYPE
BOOLEAN = (FALSE,TRUE);

particularly in 1i/o. However, several operators '~ are provided
uniquely for the boolean type (AND, OR, NOT) so that its logical
calculus can be used to control the flow of the program in
execution.

Each boolean variable 1is stored in a full B6700/B7700 Pascal word.
Only the rightmost bit is significant however, and is 0 to represent

FALSE and 1 to represent TRUE. The remaining bits (1-47) are always
0.

DECLARATIONS b7

CHAR TYPE

CHAR TYPE

Semantics
The char type is a scalar type
The ordering - of the character
depends upon the setting of the
is either:
% a scalar type of 256
EBCDIC character set,
*® a scalar type of 128
ASCII character set.
The ordering between characters
to the appendix for details.

4-8

which represents character objects.
objects and the range of the scalar
compiler option ASCII. The char type

values, being the characters of the
or
values, being the characters of the

depends upon the set chosen. Refer

DECLARATIONS

CONST DECLARATION

CONST DECLARATION

Syntax

—— CONST —¥_sname —-» = ——>constant 5

o

Semantics

The CONST declaration 1is used to declare certain names as constant
names . Their employment in the program is exactly as if the
corresponding constant appeared in place of the name.

The allowable constants are integer, char, real and string. The
names of course have the appropriate types and properties, The
predefined constant MAXINT represents the largest integer,
549755813887, available in the B6700/B7700 computers,

Example
CONST
PI = 3.1415926;
SPACE = ' ';
FIFTY = 50;

DECLARATIONS 4-9

FIELD LIST

FIELD LIST

Syntax

field 1list

- nam:j]¢:-—»type

CASE-—laname-—-b:-—lbtype name--)OF—t:]

«L;J —

.o

’<-—-—T

constant 4% : —>(—>field list ->)

Semantics

A field list serves to define the field names and properties of the
components of a record. In the simplest form of field list, the body

of the definition consists of a sequence of field names and their
types (no CASE part).

In the event of a CASE part following an initial part (if any), the
field which corresponds to the selection determines which set of
interpretations are to be placed on the remnant of the record.
Attempts to access fields of a record in fact share storage in the

B6700 implementation, and a declared record is allocated sufficient
space for the largest variant.

Field names in a field 1list are regarded as declared at a lexical
level greater than that of the program unit they are enclosed in, so
that in the event of a name clash with an already existing object or
type (even in the same program unit) the field name is allowed in its

appropriate context. The use of & WITH statement in execution is of
interest in this connection.

4-10 DECLARATIONS

LY

FILE TYPE

FILE TYPE

Semantics 4

An object of file type 1is a sequence of objects of the file's
comporenttype, whose length is not necessarily fixed as in an array,
and which 1is conceptually too 1large to be all accessible at high
speed. Associated with every file object is a file buffer: an object
of the file's componenttype which either holds a copy of the last
compornent read (if the file is in read status), or is used to contain
compornents to be written to the file (if it is in write status). The
file buffer is referenced by giving the filename followed by "@" or
"M thus:

INPUT@® or INPUT"

In B6700/B7700 Pascal, the componenttype of a file may only be a
record type, an array type, or a simple type (char, integer, etc.).
If a file is accessed through the Pascal stream-oriented READ and
WRITE procedures it is set into 'read-status' or 'write-status', and
stream-oriented operations of the wrong kind will not be permitted.
Thus to carry out input and output on a single remote terminal using
the stream oriented procedures, two Pascal files must be declared,
with MYUSE=IN and MYUSE=OUT, both attached to the same physical
device.

A check is made to ensure that the declared MAXRECSIZE is at least
capable of holding the componenttype of the file, and an error
message is generated if not. If the Work Flow alters the MAXRECSIZE
so as to cause such an error, the effects of accessing the file are
undefined when using I/0 to files of a structured type.

A file declared in B6700/B7700 Pascal has other attributes besides
its componenttype, and these relate to the actual mode of storage or
entry of the file and its physical retrieval. See the section on
Attributes.

It is also possible to carry out random-access read or write actions
orn a file in B6700/B7700 Pascal. The section on I/O describes the
necessary constructs for this purpose (READ, WRITE, SEEK).

Standards _

Attributes are not a part of standard Pascal. The file parameter
part which is allowed in CDC Pascal as part of the program heading is
similarly permitted in B6700/B7700 Pascal but is not parsed and has

no effect on the compilation other than the issuing of a warning
note. .

In standard Pascal it is possible to declare a file whose
comporenttype is a scalar, a set, a pointer, a record, or an array.
In B6700/B7700 Pascal only records, arrays, or simple types are
permitted.

DECLARATIONS 4=11

FILE TYPE

Implementation
Since aspects of files are dependent upon the attachment of the file
to the Burroughs operating system, the following implementation

details are given to simplify the disentangling of unexpected
effects.

Internal representation:

Each file variable is represented by three items in the local

stack activation area. These items are:

* a descriptor pointing to a File Information Block (FIB)
which is the area used by the operating system to describe
the file and its status.

a descriptor pointing to a segment which is used as the
file-buffer.

¥ a descriptor pointing to a small segment which contains
information which is specific to Pascal stream i/o (and
particularly character i/o).

The FIB is completely determined by the operating system and

its descriptor must reside in the stack. Consequently files

cannot be subcomponents of other data structuring methods.

Parameter passing:
A file cannot be passed by value (default mechanism), but may be
passed to a program unit as a VAR parameter. Three copy-descriptors

are passed 1in the program units calling sequence, corresponding to
the items above.

External representation:

This is complex, and in accordance with the B6700 operating system
rules.

The records contain an integral number of U8-bit words if
(UNITS=WORDS), .~ and an 1integral number of 8-bit bytes if
(UNITS=CHARACTERS). On printing or display devices, the characters
corresponding to particular byte values are device-dependent. In
B6700/B7700 Pascal, programmers have access to all the types of files

that exist on the system, including READER, PRINTER, REMOTE, PACK and
TAPE files.

4-12 . DECLARATIONS

A

“)

FILE TYPE

Management : :

The FIB and associated descriptors are set wup on entry to the
program unit in which they are declared. The association of a Pascal
file variable with an actual Burroughs file is only attempted when
the first access attempt on the file is made. At block-exit (when
the program wunit returns to its caller) any stream i/o is flushed
from the buffer and the file is closed if it is not already in this
state. On re-entry to this program unit the file attachment is set
up anew, and in some cases a completely new Burroughs file may be
involved. Thus printer and temporary files are completely local to
the program unit in which they are declared.

The stream i/o procedures are implemented by calls on specially
written intrinsic procedures; the formatted i/o0 procedures are
implemented by calls on the ALGOL-FORTRAN intrinsic procedures. The
two types-of 1i/0 should not be mixed on one file, but can be,
provided that formatted i/o is only attempted when a whole input - or
output record has been processed by the stream procedures. The
stream i/o buffer is flushed before exit from the program unit, and
before selected i/o procedures such as RESET, REWRITE, REWIND, CLOSE,
and SEEK. It is not flushed if an error causes program termination
and in these circumstances an incomplete line will be 1lost on an
output file.

The following description details significant events in the lifetime
of a Pascal file.

(i) at the first access attempt

if the reference is to a file that may have a title, or an
external existence, the directory is searched for one with
the same TITLE (or STATION if REMOTE), and the attachment
made if the file title is found;
otherwise if the attribute PROTECTION=PROTECTED then a new
permanent file is created (this is rarely used);
otherwise a new temporary file is created.

(ii) at the execution of a CLOSE statement

if LOCK or CRUNCH is specified, and the file is temporary, it
is entered in the directory and made permanent;
otherwise if PURGE 1is specified; the file is destroyed
whether or not it is permanent; ,
otherwise the file is closed, but not necessarily lost.

(iii) at block exit

if the file 1is now permanent, it is simply detached from the
program;
otherwise if it is KIND=PRINTER, it is detached as a
printer-backup file, and lives on in the system until it is
completely printed;
otherwise it is destroyed.

DECLARATIONS ' 4-13

FORMAT DECLARATION

FORMAT DECLARATION

ntax

format declaration

——> FORMAT -—i»name —> (——>formatlist —s) ——; -—]-—>|

Semantics

A format declaration serves to associate a name with a format
layout, and to define that layout. The syntax of a formatlist is
identical to that of the Burroughs B6700/B7700 Algol language, and is
described in detail in the manual for that language. The major
exception is the use of #* in the repeat count part of a format
element, which should not be used in formats which will be associated
with read statements. Because of the use of tag-six words to detect
uninitialized variables in Pascal, the ¥*-facility used with a read
statement will act as though zero was substituted for the asterisk.

Standards
Format declarations are not part of standard Pascal.

Warning .
The use of the ¥*-facility can cause mysterious errors if the lexical
rules are not complied with. Consider the example:

FORMAT
MANYNUMBERS(#I5);

This will be parsed as though it contained a Pascal-comment with no
closing #), probably swallowing chunks of source text:

FORMAT MANYNUMBERS (¥* 15);
- - - - > on to the next ¥)

A space should appear between the parenthesis and the asterisk to
avoid this problem.

-1y DECLARATIONS

s}

&)

oy

A

FORMAT DECLARATION

Examples of format declarations

FORMAT e

HEADING ("CROSS-REFERENCE LISTING - XREF PROGRAM"
/":::::=:::=::::::::::::::::::::::::::::");

TABLELINE (X5,20I5);

COMPLEXES (" (",F18.8,"," F18.8,")");

DECLARATIONS . 4-15

INTEGER TYPE

TEGER
Semantic

The integer type in B6T00/B7700 Pascal is implemented as the
one-word integer data-type of the B6700/B7700 computers. All values
of integers from -549755813887 to +549755813887 can be represented,
and provided no intermediate result of an integer expression exceeds
these bounds the arithmetic conforms exactly to the usual arithmetic
axioms. If an attempt is made to store an out-of-bounds result into
an integer, or use it in an integer context (as a parameter for
instance, or an index to an array), the B6700/B7700 will interrupt
and terminate the program's execution. Though the machine has both a
+0 and a -0, the Pascal programmer should not be able to detect the
difference except by printing a value in radix notation: they are
arithmetically identical.

An integer variable occupies a full B6T00/B7700 word. The maximum
integer size corresponds to a 39-bit field: 549755813887= (2%%39-1),
The sign is separately represented.

The integer type is one of the numeric types: the operators + - %
div mod are defined on it. The usual rules apply for + - # . div and
mod are defined to return quotients or remainders such that:

abs (a div b)=(abs(a)) div (abs(b))
a=(b*quotient) + remainder
where 0 <= abs(remainder) < abs(b)
and sign(a) = sign(remainder)

4-16 DECLARATIONS

)

LABEL DECLARATION

LABEL DECLARATION

Syntax

label declaration

— S LABEL _slabel —>

R

Semantics
The integer constants in the list which are labels must lie in the
range (0..9999), and are used to declare to the compiler that these

'labels' will be wused to mark places in the executable text of the
program,

The necessity to declare 1labels arises infrequently, as a
consequence of the use of a GOTO statement. Refer to LABELS in
SUBCOMPONENTS, and GOTO in STATEMENTS for other information.

Example

LABEL
1, 2, 56, 999;

DECLARATIONS 417

PACKED

PACKED

Explanation

The use of the word PACKED in a type declaration tells the compiler
to compact the type structure even if this means adding a code-space
or run-time penalty when the structure is accessed.

If PACKED is not specified then each element of a structured type
occupies a word of storage.

When PACKED is specified, the elements of a structured type occupy as

few bits as necessary to represent the simple type with the following

restrictions:

1) a structured type occupies an integral number of computer words
and always starts on a word boundary '

2) no elementary item crosses a word boundary.

In addition, the following restrictions apply to individual types:

set type: The structured type SET is always regarded as PACKED,
whether PACKED- was specified or not and each element occupies one
bit of a computer word.

scalar type: A declared scalar type occupies as many bits as are
needed to represent the type

eg.
TYPE :
COLOUR = (RED,BLUE,GREEN); occupies 2 bits

subrange type: An element of type subrange is stored as the offset
from its base value and occupies as many bits as are necessary to
represent the range of values. The base value is added or subtracted
each time the element is accessed.

eg.
TYPE
SUBR = 100 .. 110;

represents 11 values and occupies 4 bits of storage. The items are

stored as 0 .. 10 and 100 is added or subtracted each time the
element is accessed.

array types: An array type consists of elements occupying 1,4,6,8 or
48 bits of storage. Elements which require fewer bits to represent
them use the smallest number from this 1list to represent them
adequately. These element sizes were chosen because an array

4-18 DECLARATIONS

2)

“w,

PACKED

descriptor on a Burroughs B6700 uses element sizes of 4,6,8 or 48
bits.

eg.
TYPE
COLOUR = (RED,BLUE,GREEN);
ARR = PACKED ARRAY [1..10] of COLOUR;

Each element of the array requires 2 bits of storage to represent it
but it will occupy U4 bits because of the B6700 array handling
mechanism,

record types: If a record is packed then each component occupies as
many bits as the component needs. Word alignment only occurs when a
component is a SET, RECORD or ARRAY. No component may be split across
a word boundary.

Packing starts at the left hand end of a word.

eg.,
TYPE
COLOUR = (RED,BLUE,GREEN);
REC = PACKED RECORD
c1,C2,C3 : COLOUR;
SUBR : 100 .. 110

[2N 2

end;

The physical representation of this record will be

47 46 45 44 43 42 U1 38 37 0
C1 c2 C3 SUBR
Standards

The Pascal Standard does not specify a way to implement PACKED and so
the storage mechanism may vary amongst implementations.

In B6T00 Pascal packing applies to the level at which PACKED is
specified only.

for example:

A : PACKED RECORD
B : ARRAY [1..10] OF SUBR;

END;

In this case the record is packed, but the array within the record is

DECLARATIONS 4-19

PACKED

unpacked.

For multi-dimensioned arrays, packing applies to each dimension. ie.
PACKED ARRAY [0..5,0..7,0..9] OF THING
is equivalent to.

PACKED ARRAY [0..5] OF
PACKED ARRAY [0..7] OF
PACKED ARRAY [0..9] OF
THING

4-20 ; ' ~ DECLARATIONS

POINTER TYPE

POINTER TYPE

Semantics

An object of pointer type is a reference to an object of the basetype
of the pointer type, or has the value nil (which refers to no objects
at all). Pointers are therefore bound to objects of " a particular
type, and since pointer values may only be created by the use of the
NEW procedure, They may only refer to objects created in the Pascal
run-time heap by that procedure.

Pointer values may be assigned, or may be used in a variable
reference to identify a particular object (see VARIABLE in
SUBCOMPONENTS)., The constant value nil is compatible with all
pointer types.

The declaration of a pointer type may precede the declaration of its
basetype, or .the completion of declaration of its basetype. This
permits the declaration of types which contain mutually-referent
pointers, and of types that are self referent. The full declaration
of such a type is postponed until the close of the TYPE part when any
unsatisfied declarations are reported as errors.

Standards

If a forward-declared pointer type is declared in a procedure outside
which there is a type with the same name as the forward declaration,
then the standard Pascal definition requires binding the pointer to
the inner type. Thus the following is legal in B6700/B7700 Pascal,
and in Standard Pascal. Some other compilers may be non-standard.

PROGRAM P;
TYPE THING = BOOLEAN;
PROCEDURE Q;
TYPE LOOSETHING = @THING;
THING = REAL;
VAR THINGPTR : LOOSETHING;
BEGIN
NEW(THINGPTR);
THINGPTR@:=1.,0;
END;

LR 2K K R 2N N

DECLARATIONS 4-21

POINTER TYPE

Implementation

The Pascal run-time heap is implemented as a segmented array (segment
size = 256 words) based in the outermost stack activation area with
a current-top-of-heap value in that same area. The size of the
segment is determined at compile-time by the HEAP compiler option.
Values of pointer type are represented by B6700/B7700 integer values,
the nil value being an out-of-range integer (thus causing invalid
index faults when accidentaly used for access). However, pointer
objects may only aquire values as a result of the NEW procedure, or
by association with some other type in a discriminated union (and
therefore by error). Such occurrences may cause interrupts such as
INTEGER OVERFLOW, or may result in undetected erroneous access.

4-22 DECLARATIONS

)

")

REAL TYPE

REAL TYPE

Semantics
The real type in B6700/B7700 Pascal is implemented as the one-word
real data type of the Burroughs B6700/B7700 computers. This allows
the approximate representation of values whose magnitude is either
zero (exactly represented) or lies between

8.758115L40203 # (10%%¥_47) (or 8%%#_-51) and

4,31359146674 * (10%%468) (or 8¥*4+76 - 8¥%463),
The precision of the representation is approximately 11 digits.
Accurate representation details are given below if they are needed.

A real variable occupies a full B6700/B7700 word.

The real type is one of the numeric types: the operators + - ¥ / are
defined for it. For the purposes of expressions, a variable of type
integer is regarded as being compatible with a variable of type
real. The values of type integer are all EXACTLY ' representable in
type real, and they form a subset of the real values. This may not be
true of other computers and other Pascal compilers.

Representation data
Real values are represented in a 48-bit word by

* a one-bit sign (bit 46),

¥ a 13 octal-digit mantissa (bits 0-38),

* a one-bit exponent sign (bit 45), and

¥ 3 six-bit exponent magnitude giving a power of 8

(bits 39-u44)

The mantissa is regarded as an integer, and the value represented
exactly by a real word is:

signed-mantissa * (8%#* signed-exponent)

To preserve as much accuracy as possible, the mantissa is
octal-normalized if necessary. The high octal digit 1is therefore in
the range 1 to 7 if the number is normalized. Integer values are
often not normalized, and are represented as real numbers with zero
exponent, Zero is represented by the all zero word.

Arithmetic 1is carried out in a double-length calculator, and the
result is rounded to a single-length result. Since the arithmetic is
basically octal (not binary) the relative precision of the
representation varies between 8%¥_12 to 8%%-13, depending on the
mantissa. This is normally sufficient for most numerical
computations. See JUB6700 (Journal for the Users of the Burroughs
6700), No 5, April 1975 for an article entitled "Round-off errors in
the elementary arithmetic operations of the B6700" by P. Voss giving
details of the arithmetic properties.

DECLARATIONS : 4-23

RECORD TYPE

RECORD TYPE

Semantics

A record type is a collection of objects of different (or the same)
types, one of which is selected by giving the appropriate fieldname.
The types of the objects are determined by the fieldlist in the
declaration, It is possible to have variant forms of a record type.

The component types of a record type may be any type other than a
file type. There is no limit to the number of different types, and
effectively no limit to the number of objects other than general
system constraints.

A record is stored in B6700/B7700 Pascal by a single segment of
memory, described by a descriptor in the stack. Selecting a field is
carried out by indexing up the segment by the known fixed
displacement., Accessing a field of a record is necessarily slower
than accessing a directly declared object of the same type,
especially if it is of scalar, real, set, or pointer type.

Storage is allocated for a record at the first time it is accessed
after entering the program unit in which it is declared, and
deallocated on leaving that unit. Procedures and functions which are
frequently called may therefore incur less operating system overhead
if any records declared in them (as actual declarations or default
value parameters) are moved to an outer program unit that has a
longer lifetime, On creation, a record will be filled with all-zero
words, This initialization will not hold for other Pascal compilers.
A declared record has sufficient space for the longest of its
declared variants.

Examples of record type declarations

TYPE
COMPLEX = RECORD REAL,IMAG : REAL END;
PERSON = RECORD

BIRTHDATE : DATE;
CASE PERSONSEX:SEX OF
MALE : (WORKER : BOOLEAN);
FEMALE : (ARTISTIC : BOOLEAN; _
FIRSTCHILD : PTRTOPERSON)
END;

424 DECLARATIONS

ay

al

SCALAR TYPE

SCALAR TYPE

Semantics

A scalar type declared by a programmer is regarded as an infinite
collection of values which are represented in the external world (in
the program text or in the i/o stream) by upper-cases constant
names, Mixed upper and lower case forms are permitted and are treated
as identical. The internal representation of the scalar values is the
integer B6700 words: 0, 1, 2, 3,...etc. The ORD function applied to
any scalar value will yield the appropriate numeric value.

The SUCC and PRED functions, defined on scalar types, are implemented
by in-line code. The attempt to take the PRED of the first scalar
constant, or SUCC of the 1last, is always detected and causes the
program to be terminated.

Boolean type 1is treated similarly to scalar types, but with
additional operators; the char type is a scalar type with a special
syntax for constants of the type, as is the string type. Integer
type 1is a scalar type with a very large number of values and
additional operators, and real type is hardly a scalar type except in
name,

Examples of scalar type declarations
TYPE
FLOOR = (BASEMENT,GROUND,MEZZANINE,FIRSTFLOOR,
SECONDFLOOR) ;

REMARK = (ATROCIOUS,BAD,POOR,SATISFACTORY,GOOD,EXCELLENT);
SWITCH = (ON,OFF);
REPLY = (YES,NO,MAYBE);

Standards

If, within the scope of a scalar declaration, another scalar is
declared using the same constant names, then the two types are
considered distinct, and the innermost redefines the outer definition
for purposes of parsing. If an apparent redefinition occurs at the
same lexical level then this is an error.

DECLARATIONS 4-25

SCALAR TYPE

Thus in :
TYPE SEX = (MALE,FEMALE);
VAR X : (MALE,FEMALE);
PROCEDURE Q;
VAR Y : (MALE,FEMALE);
BEGIN
IF Y = MALE THEN....

the declaration of X is in error (twice, once for each matching
identifier), while the declaration of Y is legal, but of different
type from that denoted by SEX. Within the scope of Y the identifier
MALE is a constant of Y's type, as shown in the IF statement. Some

compilers may not comply with the requirements of the Standard in
this regard.

4-26 DECLARATIONS

L)

an

h|

SET TYPE

SET TYPE

Semantics
The component type of a set type may only be a scalar or subrange,
and the set cannot have more than 65536 possible members.

The bounds of a set are not restricted to positive integers.
Negative integers may be used if necessary. However, the bounds
imposed on set constructors limit the use of negative bounds. If
more than 48 members of a set are required the compiler option
SETSIZE must be set accordingly. A set of char is permitted by the
implementation.

A set with bounds lying between 0 and 47 inclusive is implemented as
a single B6700/B7700 word. A set with bounds lying outside these
bounds is implemented as an array. Membership of sets is indicated by
the corresponding bit of the set being 1.

The set operations on short sets (ie. those with bounds between 0O and

47 inclusive) are implemented by word-wise logical operations. On
long sets a call to the intrinsies is required.

DECLARATIONS 427

SUBRANGE TYPE

SUBRANGE TYPE

Semantics

A subrange type is represented in the same way as a variable which
has a basetype (the type 1in which the subrange is defined). A
subrange type is compatible with its basetype (or indeed, other
subranges of the basetype) for most purposes. An error is produced
if an attempt is made to assign a value which is outside the defined
subrange (but which may be inside the basetype range). See the
BOUNDSCHECK compiler option,

A subrange of integer has a property not possessed by its basetype:
the number of values in it is regarded as infinite, whereas the
number of values in integer type is regarded as sensibly infinite
(though in practice this is a large finite value). This means that a
subrange of integer can be an indextype of an array, or a
componenttype of a set, but integer type cannot.

Examples of subrange type declarations

TYPE .
DIRECTION = -1..+1;
BOARDSQUARE = 0..7;
ALPHABET = "A',.'2';
LADIESWEAR = MEZZANINE..FIRSTFLOOR;
PASSREMARK = SATISFACTORY..EXCELLENT;

4-28 DECLARATIONS

a

oy

TEXT TYPE

TEXT TYPE

Semantics

A variable of type text is represented in the same way as a file of

char.

Implementationv

The default file attributes are
_(KIND:DISK.FILETYPE=7,INTMODE:EBCDIC)

If different attributes are required, they should be overwritten in
the Work Flow Language or the file (attributes) of char form of
declaration should be used. :

When the file is initially opened, a check is made to see if the
internal buffer is large enough to accommodate a record from the
file. If it is not, the buffer is resized to make it 1large enough.
The default buffer size is 132 characters for all files except the
predefined file INPUT where the buffer size is 80 characters.

DECLARATIONS 4-29

TYPE DECLARATION

TYPE DECLARATION

Syntax

type declaration

——> TYPE -—-‘L-) name —3» = —> type > 3
type
> simple type
> @ > type name |
' €
—>ARRAY — [—¥3 simple type 11—] — OF — type —
>SET —> OF—>simple type |
—?PACKED —
—FILE—> attribute 1ist-J(> OF . -> type
—>RECORD —> fieldlist > END >
simple type
» scalar type %
—> subrange
—> type name
attribute list
' €
—_ OJL€>attribute-———> = —> attribute —l») o

name name

Semantics ¢
A type declaration serves to associate a name (that given in the

4-30 ' o - DECLARATIONS

£y

o

TYPE DECLARATION

type declaration) with some properties. The properties of variables
declared to be of a given type are used by the compiler to generate
the appropriate code.

There are several types which are regarded as predefined in
B6700/B7700 Pascal. The names of these types are boolean, char,

integer, and real and they are separately discussed.

There are basically six possible kinds of types which can be declared
in a type declaration:

* scalars and subranges of scalars,

¥ pointers,

* arrays,

* sets,

* files, and

¥ records.
A scalar type is either one of the predefined types boolean, char or
integer, or is defined by a list .of constant names of the type, or is

defined to be a subrange of one of the scalar types. Each of the
other types is explained separately.

Example
TYPE
GENDER = (FEMALE,NEUTER,MALE);
GRIDINDEX = 0..99;
XARRAY = ARRAY[GRIDINDEX] OF REAL;
PLOT = ARRAY[0..59, 0..131] OF CHAR;
ALLOWABLEGENDERS = SET OF GENDER;
MOVIEFILM = FILE OF PLOT;
RECORDCOMPLEX =
RECORD
X,Y : REAL
END;

DECLARATIONS o 4-31

»\

)

STATEMENTS

5. STATEMENTS

STATEMENTS

Explanation

In this section are described those components of the B6700/B7700
Pascal language that make up the body of a program, procedure, or
function. These components are executable actions, or rules which

determine the interpretation of executable actions, and are called
statements.

Syntax

statement

—
I r.simple statement —— 5,
->]label :—1

x

|5 structured statement —s

simple statement

—> assignment

> procedure invocation ——5

——>go0 to statement —m >

L——>empty statement —mM 4

STATEMENTS

STATEMENTS

structured statement

—> if statement
——> case statement
——> while statement

> repeat statement

Y

—— for statement

——> with statement

-——3> compound statement

Semantics

A statement defines an action or interpretation as described in this
section, Optionally, a statement may be preceded by a 1label or
labels. Such labels consist of integer constants less than 10000 in
denoted value and declared in a label declaration. Their purpose is

to mark a statement for the purpose of executing a goto statement to
that point.

Examples

=)
[

:=R-3

73 H Z:=r

5-2 STATEMENTS

)

%t

ASSIGNMENT

ASSIGNMENT

Syntax

assignment

——> variable ——> iz ——> expression

A

Semantics :

The expression is evaluated, and its value replaces the current value
of the variable identified by the left-hand side of the assignment.
The types of the variable and the expression must be assignment
compatible. A file cannot be assigned, nor be assigned to.

If the expression 1is a string whose 1length is shorter than that
required by the variable, trailing blanks will be added to the
string. : ' ,

If the variable is a subrange, an error is produced if the value of
the expression lies outside the subrange limits. See the BOUNDSCHECK
compiler option.

Standards

The expansion of short strings is non-standard and a warning will be
given if STANDARD is set. This expansion does not take place in any
other circumstances.

Examples

X:=3.1415926
Je=d+1
FLOOR:=SUCC(FLOOR)

RECORD1:=RECORD2

STATEMENTS 5-3

BODY

Syntax

body

A

———— 5 BEGIN —Y——» statement > END

X

Semantics

The statements enclosed within the body of a program, procedure, or
function are executed in sequence, or as determined by goto
statements, until execution arrives at the closing END. At this
point, execution is complete, and control returns to the calling
program in the case of a procedure or function, or to the B6700/B7700
operating system in . the case of a program. The empty statement in
Pascal permits a semicolon to immediately precede an END, as used in
some program styles, ‘

Examples

BEGIN -
X:=2,0;
Yiz=-Y

END

BEGIN
PROCESSDATA;
REPORTERERRORS;
WRITEFILE;

END

5-4 STATEMENTS

&)

*y

CASE STATEMENT

ASE STATEME
Syntax

case statement

——> CASE — scalar > OF >
expression

A

-e

—) ey

> scalar 1 5 : 5 statement |

constant
\ OTHERWISE — L enp —|
statement
e
Semantics
The case-statement is used for selecting one of a number of possible
computation paths which are mutually exclusive, The scalar

expression is evaluated and the statement corresponding to the scalar
constant whose value is the same as the expression value is executed.
If the expression does not have a value corresponding to any scalar
constant in the case-statement, then the action depends upon the
appearance or not of OTHERWISE,

* If OTHERWISE is present, all such values cause the
corresponding statements to the OTHERWISE to be executed.

* If OTHERWISE is not present, all such values are regarded
as errors and cause the program to be terminated during

STATEMENTS 5-5

CASE STATEMENT
execution.

The expression must be of scalar type (including integer, but not
real) and must be compatible with all the case constants.

Examples

CASE PAINT OF
RED: EXOTICPROCEDURE;
GREEN: RESTFULPROCEDURE;
BLUE: COOLPROCEDURE;
END

CASE CH OF o
O T, r2r 13 g g g v 18t 1gt: THING:=DIGIT;
OTHERWISE THING:=NOTDIGIT; '

END

Standards

The OTHERWISE part is a new conventionalized extension of standard
Pascal; it may not be found in other Pascal compilers. If other
compilers provide the facility the syntax and semantics should be
the same, It is intended to provide a facility whereby programs can
be written that are robust against any possible computation, and

should not be misused simply to save writing a long 1list of case
constants,

Some Pascal compilers may object to a semicolon between the last
statement of the case construct and its closing END, as permitted by
the standard.

In some Pascal compilers, the implementation technique may 1limit the
case-statements that can be successfully compiled either by an
explicit compiler 1limit, or by running out of space. Such an
eventuality is very unlikely on B6700/B7700 Pascal, but writers of

portable programs should be aware of the problems they may encounter
on other systems.

5-6 STATEMENTS

@)

a,

CASE STATEMENT

Effici
The case statement is implemented in B6700/B7700 Pascal by a
sequence of code that evaluates the expression, selects an action
based on its value, and jumps to attempt that action. The compiler
chooses between two techniques for selection, based on its estimate
of the storage required :

(a)

(b)

The preferred technique checks that the expression value
lies in the range of the least and greatest case-labels, and
executes an indexed-jump into a jump-table. This is almost
always faster than the other technique, but may demand a
large amount of storage for the table. An arbitrary 1limit of
500 words is imposed. The selection time is independent of
the selection width; the space required grows linearly with
the case-label range. ‘

The alternative is a balanced tree of comparisons to
classify the expression value into a subrange. If the
case-labels are used as sub-ranges, or if the selection is of
sparse values, this may use less space. If the number of

- subranges (including default subranges) is m, then the

selection time is proportional to log (m) and the space
required is linearly proportional to m.

STATEMENTS 5-T7

COMPOUND STATEMENT

COMPOUND STATEMENT

Syntax

compound statement

* &
y

——————> BEGIN —Y5 statement —1 s END

N

Semantics

A compound statement has no action other than to group a sequence of
statements and make them syntactically a single statement. The
statements referred to in the for-, if-, case-, while-, repeat-, and
with-statements are usually compound-statements, :

Examples

BEGIN X:=X+1; Y:=Y-1 END

BEGIN

ANALYSEDATA;

PROCESSANALYSIS;

REPORTRESULTS;

IF ERRORHAPPENED THEN ERRORREPORT
END

5-8 : STATEMENTS

8)

EMPTY STATEMENT

EMPTY STATEMENT

empty statement

)

Semantics

The empty statement denotes no action and has zero execution time.
Its uses in Pascal include

(a) permitting redundant semicolons in a statement sequence,
for example the last semicolon in :

BEGIN
PROCESSDATA;
REPORTERRORS;
WRITEFILE;
END

(b) permitting labels to precede END or UNTIL, for example:

BEGIN
PROCESSDATA;

99:

END

STATEMENTS - 5-9

FOR STATEMENT

FOR STATEMENT

Syntax

for statement

————3>FOR —> variable > iz > expression —l—:> TO
D

OWNTO

expression ——s DO > statement

M

Semanties .

The for-statement sets up a loop which is executed firstly with the
variable specified having the value of the first expression, then
with the successor or predecessor of this expression (according to
whether TO or DOWNTO was used in its construction), and so on
repeatedly until the loop is executed with the variable having the
value of the last expression. This is the construct commonly known
as the 'count loop'.

The variable and the expressions must all be of scalar types
(including integer, but not real type), and must be compatible., If
the limit expressions evaluate so as to be in the wrong order for
counting, the controlled statement is not executed at all.

Examples

FOR J:=0 TO 99 DO VEC[J]:=0

FOR COUNT :=MAXENTRY DOWNTO (MARKER + 1) DO BEGIN
IF (ARRAYOFENTRY[COUNT] = FORWARDENTRY) - THEN BEGIN
PROCESS(COUNT); FORWARDFLAG :=TRUE;
END; {of if}
END - {of for}

5-10 STATEMENTS

s\

=)

- FOR STATEMENT

Standards

The implementation of the for-statement in B6700/B7700 Pascal forces
some definite interpretations on aspects of the Pascal language which
may not be handled identically by all compilers for Pascal. These
are explained below, but should not be important to the average
Pascal programmer.

The expressions in the for-statement are evaluated once only before
the loop is ever entered, in the order they appear in the
for-statement. The value of the second expression is saved in the
local stack for re-use every time the loop test is made.

The assignment to the variable is first made after the computation of
both expressions, and before the first test is made as to whether the
loop should be entered.

If the variable is a subrange, the values of the two expressions are
checked against the subrange bounds before the loop is entered. An
error occurs if either bound is exceeded. See the BOUNDSCHECK
compiler option. '

The value of the controlled variable after the loop is exhausted, is
set to be 'uninitialized operand' (tag-six). The value should not be
used before redefinition of its value, in accordance with the
definition of standard Pascal.

The for-statement is compiled as if it were written as follows, where
temp1 and temp2 are conceptually two compiler-generated 1locations in
the local stack activation record.

FOR v := el TO e2 DO s;

templ := el;
temp2 := e2;
v := templ;
check the bounds of v if necessary
while (v <= temp2) do begin
S5
v := succ(v);
end;

undefinevalueof(v);

STATEMENTS 5-11

FOR STATEMENT
For the DOWNTO case, replace <= by >=, and succ by pred.

If the following conditions are fulfilled:

¥ the first expression (e1) is simply a constant,

% the second expression (e2) is simply a constant, or is an
expression of scalar type having a type 1limit 1less than
65535, -and

¥ the loop is a TO loop,

then the code generated is optimized to use the STBR instruction of
the B6700/B7700 computers, and is also checked by the hardware for
alterations of the controlled variable from within the loop. Such
changes alter the tag of the STEP-INDEX word and the program will be
terminated when it next reaches the loop test point since such
changes are not permitted in standard Pascal.

Naked attemps to alter the value of the controlled variable from
within a for-loop are detected by the compiler and flagged as errors.
Examples are assignments to the variable, or a READ into it, in a
statement within the loop. Using the controlled variable as an
actual parameter matching a formal VAR parameter is flagged as a
WARNING. Surreptitious alteration of this variable, which is
prohibited in standard Pascal, may therefore only be achieved by
ignoring the warning, using a side-effect in a procedure, or by a
complex GOTO structure.

Standard Pascal requires that the control variable be local to the
block in which the statement appears. This requirement is relaxed in
B6700/B7700 Pascal and the control variable may be global to the
block in which it appears. A warning is produced if the STANDARD
compiler option has been set.

5-12 _ STATEMENTS

o

™

wy

=\

GOTO STATEMENT

GOTO STATEMENT

Syntax

goto statement

» GOTO ——————» label

R

Semantics

The effect of a goto statement 1is to force the next statement to be
executed to be the one with the label corresponding to the 1label in
the goto statement.

If the goto statement leads out of a construct to a higher level, and
does not enter any construct that the goto is not itself in, the
action is well-defined. If the goto statement leads into a with
statement ,or into a for statement,in which the goto statement is not
also enclosed, the action of the program may be quite unpredictable
as the necessary initialization of these constructs has not Dbeen
carried out. In other cases the behaviour may be deduced from the
description of the constructs entered. Such usages are not defined
in standard Pascal.

The goto statement 1is intended for relatively rare usage when
efficiency demands it.

Examples
GOTO 99

GOTO 1065

STATEMENTS 5-13

IF STATEMENT

IF STATEMENT

Syntax

if statement

~————3»JF —> boolean ~——>THEN — statement

expression

ELSE —— statement

Yy

Semantics

The boolean expression is evaluated, and if it has the value TRUE,
the first statement is executed., If it has the value FALSE, then the

second statement is executed if it is present.

If either statement is itself an if-statement

ELSE-part, then the ELSE-part is deemed to belong to
preceding IF-THEN part.

IF B THEN IF B2 THEN S1 ELSE S2;

is equivalent to:

IF B THEN BEGIN
IF B2 THEN S1 ELSE S2;

END;

The if-statement is used -for selecting one of

containing an
the immediately

two alternate

computation paths (the IF-THEN-ELSE form), or conditionally executing

some code (the IF-THEN sorm).

5-14

STATEMENTS

D)

ol

@y,

PROCEDURE INVOCATION

PROCEDURE INVOCATION
Syntax

procedure invocation

5. procedure
name.

X

P —

(JT variable —]r*) E—
expression
Semantics

A procedure invocation identifies a procedure by name, and initiates
its execution. The parameter list must correspond in length and
type (one-for-one) with the declared parameter list of the procedure
in its declaration. In addition, for each VAR parameter in the
declared parameter list, the corresponding actual parameter must be a
variable &(th an expression).

A procedure invocation may only occur in the body of a program unit
in which the name and attributes of the procedure are known (see
declarations).

When the procedure terminates execution, it is resumed at the point
immediately following the procedure invocation.

Some procedures are regarded as pre-defined, and are available to all
B6700/BT7700 Pascal programs unless their names are re-defined by a

programmer's own declarations. These are described in a later
section,

Other relevant sections to this statement will be found in the
section on program units, and particularly on parameter lists.

STATEMENTS : 5-15

PROCEDURE INVOCATION

Examples

ANALYSE (INPUTCARD,PTR,TYPE,K+2)
PrianRowOfStars

CONJUGATE(X, Y, (SQR(X)+SQR(Y)))

5-16

STATEMENTS

o',

ot

39

REPEAT STATEMENTS

REPEAT STATEMENT

Syntax

repeat statement

<

.
y

— > REPEAT ¥ 5 statement —Ls UNTIL —sboolean
expression

v

Semantics

The statement is executed, then the boolean expression is evaluated.
If it returns FALSE then the process is repeated, and the statement
is re-executed. This continues until the boolean expression

evaluates to TRUE (if ever). The statement will always be executed
at least once.

Note that the REPEAT-UNTIL statement functions like a BEGIN-END pair
of brackets. It is regarded as good B6700/B7700 Pascal language
practice to ignore this possibility and place BEGIN-END around the
body of a REPEAT statement.

Examples

REPEAT X:=SQR(X) UNTIL (X>SIZE)

REPEAT BEGIN
WRITELN(J, THTERM);
Ji=d+1;

NEXTTERM(J, THTERM) ;

END UNTIL (J=99)

STATEMENTS 5-17

WHILE STATEMENT

WHILE STATEMENT
Syntax

while statement

— > WHILE —> boolean —> DO ——>statement 3|
expression

Semantics

The boolean expression is evaluated, and if it returns TRUE, the

statement 1is executed. After this is complete, the boolean

expression is again evaluated and the process repeated, until the
boolean expression becomes FALSE (if ever). The statement will

never be executed if the boolean expression returns FALSE on its
first evaluation.

Examples

WHILE Z < Y DO BEGIN
Z:=Z+1;
Y:=Y DIV 2;
END- -

WHILE (PTR <> NIL) DO PTR:=PTRE@.PTRFIELD

5-18 STATEMENTS

@)

&)

n

WITH STATEMENT

WITH STATEMENT

with statement

T ¥ €———

— > WITH J!—> variable > DO > statement

Y

Semantics
The variable must evaluate to a record. Within the statement, the
definition of names is extended to include the field-names of the

record, and these may be used without specifying their record
prefix. :

If several variables occur in the WITH expression part, the effect is
the same as if they were written:

WITH V1 DO WITH V2 DO....S;

Efficiency

If the record variable involves substantial selection, the use of
the WITH statement allows this to be carried out once on entry to
the WITH statement. Subsequent accessing of the field may then be
more efficient than re-evaluation. Use of WITH will never result in
inefficient code in B6700/B7700 Pascal,

STATEMENTS 5-19

WITH STATEMENT

Examples

WITH PTR@ DO BEGIN

IF (PTRFIELD <> NIL) AND (VALFIELD <> VAL)
THEN PTR:=PTRFIELD;
END

WITH DISPLAY[J];NAMEFIELD@ DO BEGIN

LR 2R 2R 2 4

L3R 20 2N 2% 4

END

5-20

STATEMENTS

@)

)

PROGRAM UNIT

6. PROGRAM UNIT

PROGRAM UNIT

Explanation

This section describes the construction of executable program units.
There are three types of units:

* a Pascal program,
*¥ a procedure, and
¥ a function.

The resemblances between these three are very close, and the

differences are essentially confined to their headings and usage, not
to their internal structure.

The section also contains a description of

1) forward declaration of procedures and functions: a facility
provided in the Pascal language for separating the declaration of the
procedure heading from the declaration of its internal description.
2) external declaration of procedures and functions: a facility
provided in B6700/B7700 Pascal to allow a Pascal program to use
subprograms written in another language.

PROGRAM UNIT 6-1

EXTERNAL DECLARATIONS

EXTERNAL DECLARATIONS

Syntax

external procedure declaration

—— heading part ——> ; —> EXTERNAL

A4
'3

Semantics

Procedures and functions may be declared to be EXTERNAL, ie. they
are not included in the current program compilation but are 'bound
in' to the program before execution. These procedures or functions
are written in another language and quite often they are part of a
scientific subroutine library. N

This facility is provided in B6700/B7700 Pascal so that users may
access such subroutine libraries. Only subroutines written in another
language may be declared external - there is no facility for
separately compiling a Pascal subprogram.

The compiler option, BINDINFO, must be SET to use external
declarations.

Example

PROCEDURE EXTERN(R:REAL);
EXTERNAL:

6-2 o PROGRAM UNIT

L\

w’

FORWARD DECLARATIONS

FORWARD DECLARATIONS

Syntax

forward referenced declaration

————3heading part >3 - FORWARD—— ; -3

procedure or function heading

——1—>PROCEDURE > name ->

s FUNCTION —

declarationpart —> body > : %ﬂ

Semantics

It is sometimes necessary to be able to call a procedure or function
before it can be declared. Typically this arises in program units
that are mutually recursive, or at least which call each other. In
such cases the procedure or function declaration may be broken into
two parts. The first appears before the first use of the procedure
and defines its parameterlist, name and type. This includes what has
been called the heading part above: all that part of a procedure or
function declaration up to the first semicolon. The second part
appears later, and here the heading is now abbreviated to simply the
reserved word PROCEDURE (or FUNCTION) and the name of the unit,
followed by the rest of the procedure.

PROGRAM UNIT o 6-3

FORWARD DECLARATIONS

Example

PROCEDURE ANALYSE(C:COUNTER):
FORWARD

{and here would be included some procedures that
call ANALYSE} ' '

PROCEDURE ANALYSE;
TYPE s e s e

{and here is the body of ANALYSE which makes some calls
on the procedures above it}

END;

6-4 . PROGRAM UNIT

FUNCTION

FUNCTION

Syntax

function

——>FUNCTION ———> name

|~—>par‘zameterli.s;t—-:Il._f

declarationpart ——— body —> ;

i .

Semantics }

The name is the name of the function and is used both to refer to it,
and to refer to the value returned by the function. The type of a
function may be a scalar type, integer, real, pointer or subrange
type. The parameterlist, if present, specifies the types and method
of parameter passing of variables imported into the function from the
caller. The function is invoked by a function call: an appearance of
the function name in an expression context with an actual parameter
part. ‘

A B6T00/B7700 Pascal function may be recursively used: the appearance
of the function name in an expression context within the function
itself forces such recursive use. The appearance of the function
name in a left-hand side assignment context implies a setting of the
returned value.

The execution of a function which returns without giving a value to
the function is not defined in Standard Pascal. In B6700/B7700 Pascal
such an event causes the program to be terminated with the INVALID
OPERAND interrupt.

PROGRAM UNIT 6-5

FUNCTION

Examples

FUNC
BEGI

END;

FUNC

BEGI

END;

6-6

TION COSH(X : REAL) : REAL;
N

COSH := (EXP(X) + EXP(-X))/2;

TION CHOPPED(J,LOWER,UPPER : INTEGER) : INTEGER;
VAR RESULT : INTEGER;
N
IF(J < LOWER) THEN RESULT:=LOWER
ELSE IF (J > UPPER) THEN RESULT:=UPPER
- ELSE RESULT:=J;
CHOPPED: =RESULT;

PROGRAM UNIT

°)

L}

PROCEDURE

PROCEDURE

Syntax

———> PROCEDURE ——— name —; __]r——7 5
L9 parameterlist

declarationpart — body > 3

N

Semantics

The name is the name of the procedure and is used to refer to it.
The parameterlist, if present, specifies the types and method of
parameter passing of variables imported into the procedure from the
caller. A procedure returns no one value, but specifies a
computation which is to be carried out when the procedure is invoked
by a procedure call.

B6700/B7700 Pascal procedures may be recursively used; the only limit
is the available stack and memory space.

Examples

PROCEDURE PrintARowOfStars;
VAR j: integer;

BEGIN
FOR j:=1 TO 132 DO write(output,'¥*');
writeln(output);

END;

PROCEDURE EXCHANGE (VAR A,B : REAL);
. VAR TEMPORARY : REAL:
BEGIN
TEMPORARY:=A; A:=B; B:=TEMPORARY;
END;

PROGRAM UNIT 6-7

PROGRAM

PROGRAM

Syntax
program

—> PROCEDURE ——

—L— PROGRAM ——¥—3 name

v

v

body — .

declarationpart

X

Semantics

A program is very similar to a parameterless procedure. It may
however begin with the reserved word PROGRAM as in standard Pascal,
and it 1is terminated by a point after the END closing the program
body. This must be on the last record of the file.

The program name is not used for any purpose in B6700/B7700 Pascal.

A program is the compilable unit for the B6700/B7700 Pascal compiler.

Example

PROGRAM PASCALCROSSREFERENCER:

CONST;

TYPE:
BEGIN

{and the whole of a program body}
END.

Standards

The use of 'file parameters' as in Pascal for the CDC Cyber series
computers causes a warning 'note' to be printed; this part is not
parsed by the B6700/B7700 compiler as attachment to external files
are handled otherwise.

6-8 PROGRAM UNIT

o)

PRE-DEFINED PROCEDURES

T. PRE-DEFINED PROCEDURES

In B6700/B7700 Pascal there exist a number of procedures and
functions which are available to the Pascal programmer as though they
had been declared in a procedure surrounding the Pascal program.
They may all have their name redefined by the Pascal programmer in
accordance with the usual scope rules. Pre-defined procedures are
placed in Pascal for one or more of the following reasons:

¥ the procedure/function is part of standard Pascal,

* the procedure/function offers an important facility which
cannot otherwise be achieved in Pascal,

¥ the procedure/function offers very efficient implementation
since special B6700 facilities can be used,

* the function is a common arithmetic function, built into
the B6700/B7700 system as an intrinsic,)

* the procedure/function exists in Pascal for the CDC Cyber
series and seems worthwhile for compatibility reasons.

In the rest of this section, procedures, or functions which are not
included in standard Pascal are marked with the symbol "*" at their
first occurrence or definition.

The procedures which are additionally compatible with Pascal for the
CDC Cyber series are halt,card, and random.

The pre-defined procedures used for i/o and file control are
documented in a separate section.

Some of the pre-defined procedures may be used as actual procedure or
function parameters to a procedure/function invocation. Those which
can be passed as parameters are all of the arithmetic functions plus
the function RANDOM. None of the others may be passed as parameters
because they involve in-line code.

PRE-DEFINED PROCEDURES T-1

ARITHMETIC FUNCTIONS

ETIC FUNCT

All the following arithmetic functions return a real result,
implemented by calls on the B6700/B7700 operating system

for that function.

FUNCTION DECLARATION

DESCRIPTION

sin(r:real):real
cos(r:real):real
tan(r:real) :real

%¥cotan(r:real):real

standard trigonometric
functions

arctan(r:real) :real

#aprcsin(r:real):real
*¥arccos(r:real):real

#apctan2(r1,r2:real):real

inverse trigonometric
functions

(where arctan2(r1,r2)=
arctan(r1/r2) but division by
zero is avoided)

#sinh(r:real):real
#cosh(r:real):real
#tanh(r:real):real
#atanh(r:real):real

standard and inverse
hyperbolic functions:

exp(r:real):real
In(r:real):real
%¥log(r:real):real

e to the power r
natural log of r
log of r to base 10

sqrt(r:real):real

square root of r

*erf(r:real):real
*eprfe(r:real):real
%#gamma(r:real) :real
*Ingamma(r:real):real

error function

complementary error function
gamma function

natural log of gamma function

T-2

PRE-DEFINED PROCEDURES

and are
intrinsic
The algorithm used is therefore described in
standard Burroughs literature.

Q

4

)

MARK AND RELEASE

MARK AND RELEASE

¥*MARK and *RELEASE are a pair of non-standard procedures which
permit the Pascal programmer to manage the allocation of space in the
heap by operating it as a user-controlled stack. The procedures are
implemented by special code, but are effectively declared as:

procedure mark (yar p:pointer);
procedure release (p:pointer);

The pointer may be any pointer type (its reference-type is not
relevant)., A call to MARK sets p to hold a copy of the current
top-of-allocated-heap pointer which is otherwise inaccessible to the
Pascal programmer, . A call on RELEASE with this same value as
parameter will cause the current-top-of-heap pointer to be reset to
the preserved value, thereby allowing the space higher in the heap
address space to be re-allocated.

If any pointers retain values pointing above the new top-of-heap as a
result of older NEW calls, they are not thereby invalidated, and if
they are used the results will involve accidental remappings., The
preserved value of the top-of-heap pointer should not be processed in
any way, nor assigned to other variables.

PRE-DEFINED PROCEDURES ' 7-3

MIN AND MAX

ND MA
Syntax
—_— (—¥»> expression 14—) - s
—> MAX
Semantics

The expressions in the parameter list must all be compatible (of the
same type or subranges thereof) and must be an ordered type (scalar
or real). The #*MIN function returns the value in the list which is
least in the ordering (or numerically smallest) and *MAX returns the
value in the 1list which is largest in the ordering (or numerically
greatest).

MAX and MIN are implemented by in-line code which evaluates each
expression and compares it with a putative result held in the stack.

The parameter list of MAX and MIN may have any number of parameters,
there is no limit.

Example

DSPEC :=MIN(12,MAX(DSPEC,0));

LENGTH:=MAX (WIDTH,SIZE,LEFTINLINE);

T-4 | PRE-DEFINED PROCEDURES

©

&

9

MIXED-TYPE FUNCTIONS

MIXED-TYPE FUNCTIONS

All the functions listed here are (in some sense) transfer functions
between types. Some are generic: they will accept as argument any
variable of the appropriate type kind.

trunc(r:real):integer returns the integer value i
which satisfies i <= r < (i+1)

round(r:real):integer returns the integer value i
which satisfies abs(r-i) <= 0.5

odd(i:integer) :boolean equivalent to ((i mod 2) = 1)

chr(i:integer) :char returns the value as a char type
: whose ordinal number in the
enumeration is i.

ord(s:scalar):integer returns the ordinal number of the
scalar s in the enumeration.

May be used with any scalar type,
including char

*card(s:set):integer returns the number of elements
‘ in the set s.

PRE-DEFINED PROCEDURES T-5

NEW

lz
53]
=

Syntax

Y

—> NEW —> (———> pointer variable ,[>)

expressione— , <

Semantics

A call to the NEW procedure allocates sufficient space in the
run-time heap to accommodate an object of the reference-type of the
pointer variable, and sets the pointer variable up to point at that
newly allocated space. In the simple form of the call, sufficient
space is allocated for the object (array,real,scalar, or set types),
or sufficient space for the largest variant (record type). The form
with expressions is applicable only to record-types with variants,
and the expressions must be of the same type as the successive
variant-case selection fields in that record-type. In this case the
NEW procedure will allocate only sufficient space to hold the
particular variant selected. It follows therefore that such
allocated space must never have its variant-case selection fields
altered during its lifetime. There is however no compile-time or
run-time check on this error.,

The size of the Pascal run-time heap is controlled by the compiler
option HEAP, and the deallocation of allocated space can be achieved

in a limited way by use of the MARK and RELEASE pre-defined
procedures.

Examples

NEW(NODEPOINTER) ;

NEW(PERSONPOINTER,MALE);

T-6 _ PRE-DEFINED PROCEDURES

L)

»

o

OPERATING SYSTEM PROCEDURES

PE TE DURE

The following procedures communicate directly with the operating
system to inform it of a desired action, or enquire of the
environment.

*halt causes the program to cease
execution. The job-description
sheet carries the annotation
"P-DSED" (program discontinued)
and a call-history of the point
of invocation of halt.

¥startjob(var f:file) | the file, which must be closed, and
which is presumed to contain WFL
(job control) statements in EBCDIC,
is put in the operating system's
queues for initiation as an
independent job.

PRE-DEFINED PROCEDURES =17

PACK AND UNPACK

PACK AND UNPACK

These two procedures are provided so that data may
between packed and unpacked arrays.

Explanation
If a is an array variable of type
array [m..n] of T
and z is a variable of type
packed array [u..v] of T
where (n-m) >= (v-u) then
1) pack(a,i,z) is equivalent to:
for j:i=u to v do z[j] := alj-u+il
2) unpack(z,a,i) is equivalent to:
for j:=u to v do alj-u+il := z[j]

In both cases, j denotes an auxiliary variable
elsewhere in the program.

be transferred

not

occurring

7-8 PRE-DEFINED PROCEDURES

o

o

PASCAL GENERIC FUNCTIONS

PASCAL GENERIC FUNCTIONS

The Pascal generic functions are all standard Pascal, and are all
defined over a range of Pascal types.

abs(n:numeric) :numeric returns the magnitude
(absolute value) of the
parameter value. The result
is of the same type as the
parameter, which must be
integer or real, or a
subrange thereof.

sqr(n:numeric) :numeric returns the square (n*n) of the
parameter value. The result

is of the same type as the
parameter, which must be
integer or real, or a

subrange thereof.

pred(s:scalar) :scalar return the predecessor or
succ(s:scalar) :scalar successor value of the parameter
value respectively. The result
is of the same type as the
parameter, which may be any
scalar type including char and
integer. 1If the application

of pred or succ causes the range
of the scalar (as declared) to be
exceeded, the program is
terminated with the message
"SCALAR RANGE OFLO" printed on
the job description sheet.

PRE-DEFINED PROCEDURES 7-9

RANDOM

RANDOM

*RANDOM returns a real value which is a pseudo-random number
uniformly distributed over (0,1). It acts as though declared:

function random(iar rireal):real;
though it is implemented by a call on an operating system intrinsic.

The var parameter is used to supply the seed for each successive
pseudo-random number, and it is changed by the function during each
call. The parameter 1is necessary as random may be generating
pseudo-random numbers for several users simultaneously. It 1is
therefore necessary for the user to declare a real variable he will
otherwise never use in the outermost program unit, and to initialize
it to some arbitrary value. (Using one of the time functions will
give a really random start, but is unrepeatable.) This variable is
then given to random in every call to it. If the program is re-run
with a different initialization, a different subsequence of the
pseudo-random cycle will be generated. For example:

PROGRAM MONTECARLO;
VAR
RANDOMSEED : REAL;

BEGIN

{initialize the seed}

RANDOMSEED := 197T;

FOR J:= DO BEGIN

X:=RANDOM(RANDOMSEED) ;

END;

END.

7-10 PRE-DEFINED PROCEDURES

o

TIME PROCEDURES

TIME PROCEDURES

There are four procedures which deal with time. The first three are
similar and are parameterless functions returning the amount of the
appropriate time in seconds that has passed since the start of the
task (here the execution of a Pascal program) . Since these are
derived from a clock which increments every 2.4 microseconds, the
graininess of the real result is 2.4E-6. These functions are
intended for monitoring program performance, and they are:

¥elapsedtime:real . returns actual elapsed time
since midnight

%¥processtime:real returns time spent by
processor since start of task

¥jotime:real returns time spent by i/o
processor since start of task

The other time procedure serves a very different purpose: it allows a
program to enquire of the epoch (date and time) primarily for
purposes of documentation, but also for validation purposes. It is a
procedure declared as:

%procedure timestamp(var a:array[0:5] of integer)

The array is returned with al0] holding the year number (for example
1977), al1] holding a month number (1..12), al[2] holding a
day-of-month number (1..31), and al[3], a[4], al5] holding the hour,
minute and second respectively in the ranges (0..23), (0..59),
(0..59). Standard Pascal programs can format this into a convenient
timestamp output, and to compute the day-of-the-week from it.

PRE-DEFINED PROCEDURES 7-11

INPUT AND OUTPUT

8. INPUT AND OUTPUT

INPUT AND OUTPUT

Input and output in B6700/B7700 Pascal is achieved by means of calls
on pre-defined procedures. The syntax of some of these procedures is
peculiar, and therefore all the pre-defined i/o procedures have been
collected into this section.

B6700/B7700 Pascal supports the concept of textfiles as defined by
standard Pascal. Textfiles are considered as file of char.

Other forms of i/o supported are:

¥ i/o on files with structured components eg. file of array ...
GET and PUT perform binary i/o on these files and the
procedures READ and WRITE access the components of the files
in a stream oriented manner.

¥ record-oriented formatted i/o (a FORTRAN-like system) ,
through the procedures READREC and WRITEREC and FORMATS.

¥ binary i/o on files of a predefined type (eg. file of
integer,...) through the procedures GET and PUT.

While all forms may co-exist in a Pascal program, it is recommended
that only one form is used on a particular file. Mixing
stream-oriented i/o with other types is particularly likely to give
synchronization problems as the stream text is held in buffers
internal to the program until empty (full).

In record-oriented i/o, the transactions are always expressed in
integral numbers of file-components. In stream-oriented i/o the file
is regarded as a continuous stream of characters, with a line-marker
separating each file-component (reckoned as a line).

Standards
Record-oriented formatted i/o, and all calls which involve a
random-access to a file, are not standard Pascal.

INPUT AND OUTPUT 8-1

CLOSE

CLOSE

tax

close

—> CLOSE —> (—>filename —L » —1> NORMAL —ﬁrL)

Yy

> REWIND —

—> PURGE ——

> LOCK ——

—> CRUNCH —

—>TAPEMARK —

—> REEL ——

Semantics
The CLOSE call causes the nominated file to be closed.

If the NORMAL option is specified, the action depends on the file
KIND. A PUNCH file has a card with an ending 1label written; a
PRINTER file is skipped by SKIP 1 (and possibly an ending 1label
written); a TAPE file has a tapemark written and the file is rewound;
a temporary DISK file has its space returned to the system. (This
corresponds to the default interpretation of the Burroughs Algol
CLOSE procedure.)

If the REWIND option is specified, the file is rewound if it 1is a
TAPE file or the record pointer is reset to the beginning of a DISK
file. (This corresponds to the Burroughs Algol REWIND procedure.)

If the PURGE option is specified, the file is closed and purged from
the system directories. If the file is a permanent disk file, its
space is returned to the system.

The LOCK and. CRUNCH options specify that the file is to be closed,

and in the case of a DISK file, entered as a permanent file in the
disk directories. Additionally in the case of CRUNCH, unused space

8-2 _ INPUT AND OUTPUT

4

CLOSE

in the last AREA of the file is trimmed from it, thereby making it
impossible to extend it in situ later.

If the REEL option is specified, the file must be a multi-reel tape
file. The current reel is closed and the next reference of the file
implicitly opens the next reel,

The TAPEMARK option is used in conjunction with multi-file tapes.
The file is closed but the tape remains positioned past the tapemark
so that the next file can be read or written. (This corresponds to
the Burroughs Algol CLOSE(file,*) use.)

Standards

The CLOSE procedure is not standard Pascal.

Examples

CLOSE(DISKFILE);
CLOSE(INPUT2,REWIND);
CLOSE(STATISTICS,CRUNCH);

Note

The words NORMAL, REWIND, etec. are not reserved words in the system,

and have no meaning in any other context except as defined by a
programmer. In the context of a CLOSE call, only these words are
permitted in the second parameter place.

INPUT AND OUTPUT 8-3

EOLN EOF AND ENDOFFILE

EOLN, EOF AND ENDOFFILE

Syntax
> EOLN T #
> EOF : —_l l?(-————) filename >)
—> ENDOFFILE
Semantics

These are all boolean functions. EOLN returns TRUE if the file has
been opened for reading or the 1last READ on this file was just past
the end of the line. (The character returned if it was a character
read will be a space under this condition.) Otherwise EOLN is FALSE.
The effects of testing EOLN on a written file, or other than with
stream-oriented i/o, are undefined. The next READ on the tested file
(if EOLN was TRUE) will cause a new line to be read. EOF is valid
for all file-status, and returns TRUE if
(i) the file has been positioned past the end-of-file
or (ii) the file is a stream-oriented file in write-status.

ENDOFFILE is similar to EOF, but returns TRUE only under condition
(1), regardless of whether the file is being read or written. If the
filename and parentheses are omitted, the standard file INPUT is
assumed.

Standards
EOLN and EOF are standard Pascal; ENDOFFILE is provided to remedy the
deficiencies of the Pascal EOF function when writing files that may
reach end-of-medium, or end-of-allocated-areas, or be denied terminal
access.,
Examples

WHILE NOT EOLN(INPUT) DO READ(INPUT,CH);

STATUS:=EOF (INPUTD) ;

8-u4 - INPUT AND OUTPUT

(8

GET AND PUT

GET AND PUT

Syntax
GET
:]——>(——>filename) ~4
PUT
integer
—>[—> expression—]
integer
—>,—> expression
Semantics

For textfiles or files of a predefined type, execution of a GET call
will advance the pointer to the next component, or set eof. A PUT
call shall cause the file buffer variable to be appended to the file.
In these cases the random-access options are not permitted.

For other files, after execution of a GET call, the file-buffer of
the nominated file is filled from the file. The normal effect is to
transfer the next file-component of the file to the file-buffer; if
however the form with square brackets is used the integer expression
is evaluated and the file-component referenced by the expression is
read.

After execution of a PUT call, the file-buffer of the nominated file
is written to the file. The normal effect is to write immediately
following the preceding transfer into the file; if however the form
with square brackets is used the integer expression is evaluated and
the file-component referenced by the expression is written.

If a file has never been read, or has been reset, or rewound, the
contents of the file-buffer are undefined. In B6700/B7700 Pascal,

the execution of a PUT call does not alter the contents of the
file-buffer.

The alternative forms are equivalent, and allow random-access to
components of the file. The components are numbered from O upwards

in steps of 1. (GET(FILEX[0]) will read the first component of the
file FILEX.)

INPUT AND OUTPUT 8-5

GET AND PUT

Examples

GET (INPUT);
GET(DISKFILE[K+11);
PUT(REMOTEFILE);

PUT(DISKFILE,5);

Standards

Random-access is not standard

Pascal.

INPUT AND OUTPUT

@)

L4

L]

)

PAGE

PAGE

Syntax

page

———> PAGE > (Y filename) l 5|

Semantics

Execution of the PAGE call causes a "SKIP 1" command to be given to
the file. If it is a (KIND=PRINTER) file, this causes a skip to the
top-of-form, and the next line written will be printed at the top of
the page or form. If the filename and parentheses are omitted the
standard file OUTPUT is assumed.

Example

PAGE (OUTPUT)

INPUT AND OUTPUT 8-7

PRE-DEFINED FILES

PRE-DEFINED FILES

Semantics

Two files are always included in compiled B6700/B7700 Pascal
programs. Their names are INPUT and OUTPUT, and references to them
are presumed when a filename is omitted in a READ or WRITE statement
respectively (or the READLN, WRITELN, READREC, WRITEREC forms).

The scope of . the names is as if they had been declared in a block
surrounding the program. In other words, if INPUT or OUTPUT are used
as names for any purpose within a Pascal program, that definition
over-rides the pre-defined meaning for these names. (But the default
action for READ and WRITE will still reference the same files which
are otherwise inaccessible.)

The default declarations for these pre-defined files are:
VAR
INPUT : TEXT;
OUTPUT : TEXT;
The default attributes for these predefined files are:
INPUT: (KIND=READER, INTMODE=EBCDIC, MYUSE=IN)
OUTPUT: (KIND:PRINTER, INTMODE=EBCDIC, MYUSE=OUT)

The file attributes may, of course be over-ridden by a Work-Flow
statement.

Implementation

These two files and their associated buffer and state segments are
always included in the stack activation record of the outermost (D2)
level of a Pascal program. This causes any 1locally declared
variables to be allocated higher in the stack than would otherwise be
the case but has no other significant effect.

8-8 INPUT AND OUTPUT

L]

READREC

read or write (record-oriented)

READREC

READREC - .
—?l: }(-—-L filepart —, lf‘ormatpart -, —1 ist—e)—_j

WRITEREC

filepart
—>filename >}
> NO
—> [T—> STOP —¥]
—pexpression —
formatpart
————r> formatname %

>/

list

—> statement

INPUT AND OUTPUT

READREC

Semantics

The filepart specifies where the record or records are to be written
or read, and contains the filename (internal Pascal form), and
optionally some specifiers in square brackets. The expression, if
present, is interpreted as specifying a random access read or write
starting at the record specified by the integer value of the
expression. The NO and STOP qualifiers have the same effects as in
Burroughs Algol: READ(FILEX[NOJ],...) causes the read-buffer to be
left marked not-empty at the end of the read process so that
subsequent READ(FILEX,...) can re-interpret the record.
WRITEREC(FILEX[STOP],...) suppresses the newline at the end of an
output record after a write to a remote terminal. This is useful for
input prompt messages. The filepart (including the separating comma)
may be entirely omitted, when the pre-defined file INPUT (for a
READREC) or OUTPUT(for a WRITEREC) are assumed.

The formatpart either specifies the name of a format declared earlier
in the text which is to be used in the interpretation of the record,
or is a slash, meaning that the Burroughs Algol free-form i/o rules
are to be applied.

Important: The Algol 1i/o0 rules should not be confused with the
Pascal stream-oriented i/o system. Algol free-form i/o is still
record-oriented: each read begins a new record and each write starts
a new line. The format part may not be omitted in a record-oriented
i/o statement. 1In Pascal free-form i/o each data item is separated
by a space and not a comma as in Algol.

The listpart specifies the items to participate in the formatting,
and since the specification of these may require computation, has the
form of a statement. The only differences are that within a read- or
write-1list the following are forbidden:

% labels
¥ goto statements

and the following are newly permitted:
% variables

¥ expressions

The appearance of a naked variable in a read-list, or of a naked
variable or a naked expression in a write-list, is interpreted as a
request for that variable or that value to participate in the
formatting process. All other statement constructs operate the same
as they do outside the list cuntext. The most useful constructs are
FOR, WHILE and WITH. This 1list-structure minimizes the number of
rules to be learnt or re-learnt in the B6700/7700 Pascal language

8-10 INPUT AND OUTPUT

)

READREC

while conferring considerable expressive power. However programmers
should resist the temptation to include substantial computational
tasks in a read- or write-list, as this will obscure the structure of
the program.

It is worthwhile explicitly pointing out some consequences of this
simple and attractive 1list structure as it will not be familiar.
Firstly, BEGIN/END brackets are available for 1lumping variables
together, and will often enclose the whole 1list. Secondly, an
indentation structure can be used to show the relationships in the
list in the source text. Thirdly, the separators of statements in
the list are semicolons, not commas. Since it is possible to have
procedure and function calls in a list, it is forbidden to attempt to
carry out further i/o on the same file in sSuch activations of
procedures or functions external to the 1list. An attempt to do so
will cause the program to be terminated in execution.

Standards
Record-oriented i/o is not part of standard Pascal.

Implementation

The execution of an i/o statement can be explained as follows. The
first action is to call the formatting procedure (a B6700 "intrinsic"
procedure) passing to it the file-name, a file-buffer, and the format
description. The formatting procedure attempts to interpret the
format as far as it can without variable values, then calls the list
as a procedure. The 1ist executes until it finds a variable or
expression, when it calls a procedure nested in the formatting
intrinsic either passing or receiving a value, but also passing some
typing information. This nested procedure continues the formatting
actions as far as possible, and then returns. These two steps are
repeated as often as there remains code to be executed in the list.
When the list is completed, it returns to the formatting procedure,
which tidies up, empties the buffer and releases the file, and
returns to the caller. '

Since the intrinsic wused is the standard Burroughs Algol/FORTRAN
formatting intrinsic procedure, any error treatment is that
determined by Burroughs. The error numbers are explained in the
relevant Burroughs documentation.

INPUT AND OUTPUT 8-11

READREC

Examples
READREC(XFILE,LAYOUT1,d);
READREC(LAYOUT2, BEGIN J; K; X END);

READREC(DFILE[K], FORMATOFDRECORD,
FOR J:=1 TO 10 DO V[J1]);

WRITEREC(DFILE[K+KINCREMENT], FORMATOFDRECORD,
BEGIN
Z+SQR(R)/5;
FOR J:=1 TO 8 DO BEGIN
VIJ+11;
END;
END);

WRITEREC(OUTPUT, FORMATTREE,
BEGIN
PTR:=HEADOFTREE ;
WHILE (PTR <> NIL) DO BEGIN
WITH PTR @€ DO BEGIN
NODEVALUE;
PTR:=NODELEFTLINK;
END;
END;
END);

WRITEREC(OUTPUT,/,
BEGIN KMAX/2; FOR K:=1 TO KMAX/2 DO BVEC[J] END);

WRITEREC(REMOTEF ILE[STOP], PROMPTFORMAT);
READREC(REMOTEFILE, RESPONSEFORMAT, K);

8-12

INPUT AND

OUTPUT

oy

)

READ

READ

Syntax

read

" ——n

READ-—:]
(filename = ,¥%variable ——») —3
{ READLN _E

(NOTE: a stream-oriented READ has no format.)

Semantics A

A READ or READLN call causes the nominated variables (which must be
of pre-defined types Dboolean, integer, char or real, or
programmer-defined scalar type) to have their values replaced by a
value read and interpreted from the file regarded as a stream of
characters.

If the filename is omitted, the pre-defined file INPUT is assumed.

If no variables are listed, no change is made to the file except for
the READLN action.

If READ is used, the file character pointer is left pointing in the
stream where the procedure leaves off processing the last value. If
READLN is wused, the file character pointer is moved on from that
point to the end of an input line. Except for the action of READLN,
and the rules for validity of tokens, the file-component boundaries
(lines) have no meaning.

The action of READ is quite different for the case where the variable
is of type char, as opposed to any other type. A READ of a character
simply returns the next character in the input stream, regardless of
what it is. If the pointer moves past the end-of-line, a ' !
character (space) is given as the char value and the function eoln
becomes true. The next READ of a character will give the first
character of the next line.

All other types of variables correspond to lexical tokens represented

INPUT AND OUTPUT 8-13

READ

in the input stream. These tokens are subject to exactly the same
rules as in the B6700/B7700 Pascal language itself, with the
additional feature that real values can be extracted from objects
that conform to integer-constant syntax and to real-constant syntax.
For files with a structured component, the input stream is scanned
for a character which might be part of a token (the alphabets A-Z,
a-z; the digits 0-9; the underline; or the number-characters +-.),
all other characters being ignored by this scan. For textfiles only
spaces are ignored. If necessary, new 1lines are read until a
putative token is found. The character and those following it are
then scanned in accordance with the expected token rules until an
incompatibility signals the end of the token. The value, if valid,
is returned into the variable.

If the token is invalid for this type, a run-time error is caused and
the program is terminated. In most circumstances this is a sign that
the input stream and - the program have irrevocably lost synchronism.
In a few cases, this fatality should be suppressed and this can be
done (see Pascal READ ERRORS).

It is recommended that tokens on the input stream be separated by the
space character.

The radix-based notation for real numbers allows an exact bit pattern
to be specified. The syntax is given below. The first integer (to
base 10) is the radix to be used, and must be 2,4,8, or 16. The
second string is of digits to the radix specified (using A-F for
digits 10-15). This is only available for files of a structured
component .

radix-based notation

—> 2 /)
R
e ‘ digit-to-F {ﬂ
—> 8§ —
r
16—

. Stream-oriented i/o 1is available on textfiles and on files with a
structured component, eg. file of packed array [0..79] of char;
Stream-oriented i/o on files of a structured component was the
standard form of i/o before release 3.0.001 of the B6700/B7700 Pascal
compiler but with the introduction of textfiles it is no longer

standard. Users should note that the two forms of i/o do not produce
identical results.

8-14 INPUT AND OUTPUT

)

t)

READ

Standards
The radix-based notation has no counterpart in standard Pascal.

Scalars defined by the programmer, and boolean values, may not be
read in standard Pascal. -

The allowable input token forms may vary slightly between different
Pascal compilers due to implementation differences. '

Examples

VAR
RA,RB : REAL;
J : INTEGER;
B : BOOLEAN;
S - ¢ (YES,NO,MAYBE);
BEGIN
READ(INPUT,RA,RB);
READ(INPUT,J);
READ(INPUT,B,S);
END.

The input file:
12.5 -=U5,7654E-8

10 TRUE
MAYBE

INPUT AND OUTPUT 8-15

RESET AND REWRITE

RESET AND REWRITE

Syntax

RESET
._{: —]-—y(--————;filename ") |
REWRITE L ‘l
,—» file-title

Semantics

The RESET and REWRITE calls are both identical in effect to:
CLOSE(filename,REWIND);

and then the file is opened.

On a RESET the buffer is filled with the first file component.

The file-title must be a string constant or a string variable and
must be terminated by a "." to satisfy the B6700/BT7700 syntax. The
title is changed after the file has been closed and before the new
file is opened.

Standards '
Use of the file-title in a RESET or REWRITE is not standard Pascal.

8-16 ‘ INPUT AND OUTPUT

SEEK

SEEK
Syntax
seek
~——> SEEK —» (—filename > [>integer ——>] o) ———;I
expression
L., » integer
expression
Semantics
The seek procedure allows programs doing random-access actions on a
file to achieve overlap of processing and i/o. The integer

expression is evaluated and the file-component referenced by the
expression value is read into an internal buffer attached to the
file-information block. When subsequently a READ or GET is received
for this record, it is made immediately available.

The two forms of the seek call are equivalent, and are provided as
syntactic sugar in case the call is written analogously to the GET
and PUT procedures, or in accordance with standard Pascal rules.
Overlap of i/o and processing is automatic for sequentially accessed
files.,

Standards
The seek procedure is not standard Pascal.

Example

SEEK(DISKFILE[K+1]);

INPUT AND OUTPUT 8-17

SPACE

v

SPACE
Syntax
space

. integer
—— SPACE —>(—>filename , = expression) |

integer
[= expression =]

Semantics

AN

The integer expression is evaluated and the appropriate number of
file-components are ignored in a sequential READ process. The value
must be greater than zero. If the SPACE call is used for writing to
a (KIND=PRINTER) file, blank lines are written to the file.

8-18 INPUT AND OUTPUT

WRITEREC

WRITEREC

Record-oriented write statements are completely treated in the
section which deals with record-oriented read statements.

INPUT AND OUTPUT o 8-19

WRITE

WRITE

Syntax

WRITE -TIL >
—————4 - |B(—p filename —, _
WRITELN —1?

, integer integer
expression: expression ¢ — expression) —

oo

Semantics

A WRITE or WRITELN call causes the nominated expressions (which must
be of pre-defined types boolean, integer, char or real, or
programmer-defined scalar types) to be written out to the nominated
file by a character representation. The integer expressions allow
some user-control of the layout.

If the filename is omitted, the pre-defined file OUTPUT is assumed.
The filename must be explicitly stated if the first expression
involves a file buffer.

If no expressions are listed, no writing takes place except for any
WRITELN action.

If WRITE is used, the character pointer is 1left pointing into the
character stream where the writing ceased. If WRITELN is used, then
- the character pointer is forced to flush out the remnant of the
currently written line to the file just before the WRITELN returns.
The character pointer is left at the beginning of a new line. If a
token to be written will not fit on what is left of a line, the
line-flushing is automatic and it will be printed on the next 1line
automatically. No error occurs as a result of this action.

The action of WRITE is slightly different for the case where the
expression is of char type, as opposed to other types. In this case,
all char values are directly inserted into the text stream, except a
CR character, which causes the line to be flushed out to the file.

8-20 . INPUT AND OUTPUT

WRITE

All other values are represented by an external token. These tokens
conform to the internal rules for B6700/B7700 Pascal tokens of the
same type, except for literal strings which are printed without
quotes. The printing may be controlled by the presence or absence of
the two integer expressions, denoted here by "width" and "dspec".
These are valid only for some conversions given by the table:

type width allowed dspec allowed
BOOLEAN ' yes no
SCALAR yes no
INTEGER yes yes/no
REAL yes yes
string yes no
radix-based yes yes
(compulsory)

For all conversions, width is the desired width of the field into
which the value should be converted. It should be sufficient to hold
the external representation. A width of 0 is equivalent to omitting
the width.

For INTEGER and REAL, the dspec value specifies a number of decimal
digits. For integer the dspec value is not allowed on textfiles but
on files with a structured component and it represents a guaranteed
number of digits (thereby allowing non-zero-suppressed integers).
For real, it is the number of digits desired after the decimal point.
If dspec is present, a real number is converted in a form without an
exponent (for -example 8.141593). If it is absent or =zero, an
exponent is printed and (width-8) is taken as the dspec value
provided this does not exceed 11 digits.

For radix conversions, dspec must be 0,2,4,8, or 16, and specifies
the desired radix conversion base. A value of 0O corresponds to no
value, and the default of 16 is used. A radix conversion ocecurs only
if the first colon is doubled. 1In this case, any one-word object may
be printed, including one-word sets and pointers. '

Booleans and scalars are externally represented by the appropriate

constant names in upper-case., Integers are represented
conventionally; a - sign is printed for negative numbers but no sign

INPUT AND OUTPUT 8-21

WRITE

is needed for positive numbers. Real numbers always have a place
reserved for a sign and at 1least one digit each side of the decimal
point. Two exponent digits are printed.

For textfiles, if no width specification is given, the defaults are 1
for type char, 15 for real, 5 for boolean and an integer is printed
in the minimum space required.

For files of a structured type if no width is specified, default
specifications come into effect. A char is printed in a width of 1
character place (except for CR), and a string in exactly the space it
needs., Other types are preceded by one space, and are printed in the
minimum space needed for the value (e.g. TRUE requires 4 spaces, =12
requires 3 spaces). Real values are printed in a width of 15,
without an exponent if possible, otherwise with one.

Errors that occur during conversion are discussed under Pascal WRITE
ERRORS.

Examples

WRITELN(OUTPUT, 'THIS VALUE = ', -15);
WRITE(OUTPUT,1.5:15:3); WRITELN(OUTPUT,1.5:15);
WRITELN(MAYBE);

output file:
THIS VALUE = -15

1.500 1.50000000E+00
MAYBE

8-22 . INPUT AND OUTPUT

#)

COMPILER OPTIONS

9. COMPILER OPTIONS

COMPILER OPTIONS

Explanation

Compiler options are specified on special compiler optibn records,

and allow the user of the B6700/B7700 Pascal compiler to control some
of the functions of the compilation, such as requesting a 1listing of
the source text, or the inclusion of text, or the merging of two
input files.

Syntax

compiler option record

I

' £

'y &
—> $ SET > option-name 4~ﬂ
RESET — |

POP —

NOTE: this syntax does not handle the HEAP, ERRORLIMIT, PAGE,
SETSIZE, BIND, BINDER and INCLUDE options. These are separately

described: the above syntax is for the boolean options (with an
extension for the SEQ option).

COMPILER OPTIONS 9-1

COMPILER OPTIONS

Semantics

A compiler option record is recognised by the compiler since it has a
$ in the first character position of the record, or space followed by
$ in the first two characters of the input record. These two forms
are identical in effect except as noted in the sheet on the NEW
option,

The options which have a boolean value are referred to as being SET
or RESET. Each boolean option has associated with it a stack of
values (limited to a maximum of 48); if the option is reset by
default the top-of-stack (and all the stack) are RESET, and if it is
set by default, the top-of-stack alone is SET. Only the top-of-stack
value affects the progress of compilation.

The appearance of an option-name after SET forces the stack to be
pushed down by one (the old top-of-stack value becomes the second
value) and the new top-of-stack value is SET. RESET functions
identically except that the new top-of-stack value is RESET. Thus
the following option record will cause LIST and LINEINFO to be SET
and CODE to be RESET:

$ SET LIST, LINEINFO, RESET CODE

The appearance of an option-name after POP forces the top-of-stack
value to be discarded, and the stack is 'popped': all elements move
up one, the second value becomes the top-of-stack (and was probably
an old state saved by a previous use of SET or RESET).

If the first item on an option record is not SET, RESET, or POP, then
all the options listed subsequently are SET, and all those not listed
are RESET. This is not particularly useful, but conforms to
Burroughs Algol.

For an extension of syntax for SET, see the sheet on USER-OPTIONS;
this also illustrates a use for the POP facility in conjunction with
the OMIT option.

The options may appear in upper or lower case but are translated to
upper case by the compiler before printing and analysis. This
prevents confusion with wuser options and is consistent with the
compiler's handling of identifiers.

9-2 : COMPILER OPTIONS

List of options

COMPILER OPTIONS

Boolean-valued

numeric-valued

other

$

ASCII
AUTOBIND
BINDINFO
BOUNDSCHECK
CHECK

CODE
ERRLIST
HEXCODE
INCLNEW
LINEINFO
LIST
LISTINCL
MERGE

NAMES

NEW

OMIT

SEQ
STANDARD
STATISTICS
STRIPBLANKS
TRUSTWORTHY
WARNINGS

user options

ERRORLIMIT
HEAP
SETSIZE

BIND
BINDER
INCLUDE
PAGE

COMPILER OPTIONS

$ (Default: reset)

If this option is reset, option-records are not listed on the LINE
file. If it is set, then option records are listed. Since the
effects are immediate, an option record containing SET $§ will be
listed, but one containing RESET $ will not.

The option has no effect if LIST is reset.

9-4 o COMPILER OPTIONS

.

ASCII

ASCII (Default: reset)

If reset (the default) the Pascal program is compiled to hold all
values and types involving type char as though they were held in the
EBCDIC character set (as they in fact are). :

If ASCII 1is set, then despite the B6700/B7700 standard EBCDIC
character set, some variations are made to the compiled program so
that it appears to carry out processing in an ASCII environment. 1In
fact, the external files may remain in EBCDIC; translations are made
so that internal Pascal values are held in the ASCII code. If ASCII
is not set over the whole program, users should be aware that it
affects the compilation of char or string constants, any declaraction
involving char, and stream-oriented read/write procedure calls.

NOTE: The formatted read and write procedures use the standard
Burroughs B6700/B7700 formatting intrinsics which do not have
provision for ASCII. These should not therefore be uSed if ASCII is
set, or if they are, no char or string should be written with them.

The specific changes make all char and string constants use the ASCII
representation internally (thereby affecting the values returned by
ORD and the effects of CHR), and define type char as a scalar type
which can be put into one-to-one correspondence with 0..127. A bit
is set in calls to the read/write intrinsies to force external world
translation as necessary.

The ASCII option is provided specifically to increase the usefulness
of the B6700/B7700 Pascal compiler in that it can process a wider
range of non-portable programs that assume the ASCII collating
sequence, and so that the supposed portability of Pascal programs can
be tested by switching them from one character set to another.

COMPILER OPTIONS ' 9-5

AUTOBIND

AUTOBIND (default: reset)

The AUTOBIND compiler option combines the processes of compiling and
program binding into one job. During compilation the compiler
produces a set of instructions to be passed to the binder. In many
cases, these binder instructions are self sufficient for binding
purposes and the user need not be concerned with binder control
cards. In those cases where binder instructions are required, the
user can insert binder control cards.

The AUTOBIND compiler option can be set or reset at any point
throughout compilation but it is recommended that the option be set
or reset only once at the beginning of the compilation.

When the option is set, the compiler option BINDINFO is also set.

9-6 ‘ COMPILER OPTIONS

&

L]

Qi

BIND (no default status)

. This $ card is passed directly to the binder when autobinding.

COMPILER OPTIONS

BIND

BINDER

BINDER (no default status)

This option allows the passing of compiler options when autobinding.
The compiler. 'strlps off' the word BINDER and passes the rest of the
card intact as an option card to the binder.

9-8 S | COMPILER OPTIONS

Yy

L)

BINDINFO

BINDINFO (Default: reset)

The BINDINFO option instructs the compiler to include binder
information in the code file. The option is reset by default but may
be set at any point in the compilation. However, it is recommended
that it be set or reset once only - at the beginning of the
compilation.

It is necessary to use the option when procedures or functions are to
be declared EXTERNAL in the program. The binder then needs the binder
information in the code file to link in the externally compiled
subprograms. '

When the option is set, the size of the code file produced is almost
twice as big as when the option is reset. For this reason, the option
is reset by default.

The option is set when the compiler option AUTOBIND is set.

COMPILER OPTIONS 9-9

BOUNDSCHECK

BOUNDSCHECK (default: set)

If set, the Pascal program is compiled with bounds checking code
inserted to check for certain run-time bounds error conditions. If
reset, the bounds checking code is omitted. It is recommended that
this option remain set unless a user is certain no bounds errors will
occur and he wants the last ounce of speed from the program. .

The bounds conditions checked are:
(a) reading a subrange value
(b) assigning an expression to a subrange variable
(c) passing a subrange type as a value parameter
(d) indexing a multi-dimensioned array. (Hardware effectively
checks a single dimensioned array)
(e) the parameter to the function CHR
(f) assignments to short sets

The scheme used is that published by J. Welsh in "Economic Range
Checks in Pascal", Software - Practice and Experience, vol. 8,
pp85-97, 1978. It ensures that checking code is inserted only if
there is doubt whether a value will lie in the required range.

9-10 COMPILER OPTIONS

8

a

oy,

CHECK

CHECK (Default: reset)

If this option is set, the TAPE and NEWTAPE files*afe. checked for
sequencing errors in character positions 73-80 of the record. If any

such errors are detected, they are noted by an appropriate message on
the LINE file.

COMPILER OPTIONS 9-11

CODE

CODE (Default : reset)

If this option is set, the compiler produces a 1listing of the
generated code on the file LINE. This listing is intermixed with the
source code listing if the option LIST is also set.

The code listing is in symboliec form: labels and instructions are
represented by mnemonic names, and these generally conform to those
used in the B6700 or B7700 REFERENCE MANUAL. Instructions that
occupy more than one syllable, and are primary mode operators, are
printed with the details of the additional data between parentheses.
In some cases the value is repeated to the right in hexadecimal
format in case this interpretation is more natural. Examples:

VALC (04,00027)
BSET (31) #1F

Multiple-syllable edit operators are printed in a spécial format, one
line per syllable, as there are so many possible formats.

The compiler sometimes has to emit padding syllables, and it uses the
NVLD instruction for this purpose (#FF). Such padding is not listed
by the CODE option as it is not intended to be executed. The purpose
of the option is to illustrate the generated code so that precise
points of failure can be pinpointed, so that compiler flaws can be
quickly diagnosed, so that esoteric behavioural points can be
explained in terms of the machine's instruction set, and to show
programmers what code corresponds to their constructs.

The NAMES option is also of use with the CODE option.

9-12 ' COMPILER OPTIONS

ERRLIST

ERRLIST (Special default)

It will seldom be necessary for user-programmers to set or reset the
ERRLIST option explicitly.

If a compilation . is initiated by CANDE in response to a COMPILE or
RUN command, ERRLIST is SET and LIST is RESET. This suppresses the
usual line-printer listing, and diverts error messages in a slightly
different form to the terminal requesting the compilation. If
ERRLIST and LIST are both set, errors are reported twice, once on the
line-printer file LINE, and once on the remote file (ERRORFILE).

For compilations which are not initiated by CANDE, ERRLIST is reset,
and nothing is written to the ERRORFILE.

COMPILER OPTIONS 9-13

ERRORLIMIT

ERRORLIMIT (Special numeric default)

ERRORLIMIT is not a boolean option; it cannot be set or reset. It
is associated with a numeric value which is the maximum number of
compiler errors permitted. If the compiler finds more errors than
the specified limit, the compilation is aborted.

Since compilations initiated from remote terminals may swamp the user
with error messages, this option is set at the low value of 6 for
compilations initiated by CANDE COMPILE or RUN commands. For queue
compilations, the limit is 150.

The user may select an ERRORLIMIT by following the option name by a

numeric value as in the syntax below. A value of 0 implies no
errorlimit: as many errors as occur will be reported.

errorlimit option

— ERRORLIMIT-—I:i:i::Té integer constant %

9-14 , COMPILER OPTIONS

HEAP

HEAP (Special numeric default)

The HEAP option is not a boolean option; it cannot be set or reset.
It is associated with a numeriec value which is the maximum number of
words in the run-time heap available to the program. If this limit is
exceeded during execution the program is terminated with an INVALID
INDEX interrupt.

The default limit is set at 1000 (i.e. 1000 words are set aside in
the heap for use by the program).

The user may set the HEAP size by following the option name by a
numeric value as in the syntax below.

———————> HEAP _l:_:j integer constant)[

Example
$HEAP=10000

COMPILER OPTIONS 9-15

HEXCODE

HEXCODE (Default: reset)

The HEXCODE option is not intended for user-programmers. It is
provided for systems programmers who may have to track down an
elusive bug in the compiler-generated code. It turns on 1listings on
the file LINE which display every generated code word in hexadecimal,
and a number<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>