
P.O BOX 500
BLUE BELL. PENNSYLVANIA 19422
TELEPHONE (2151 542·4011

L. Bernstein
Director, Facilities Development
Bell Telephone Laboratories
6 Corporate Place
Piscataway, New Jersey 08854

Dear Larry:

Center

The Sperry Univac 1100/60 Series of computer systems will be announced
at the National Computer Conference in New York on June 5, 1979. This
system offers many features and benefits which will improve the
economics of BISCUS/FACS and BISCUS/PREMIS and speed deployment.

The 1100/60 is the newest member of the Sperry Univac 1100 Series
product line. It will serve as the entry level model offering com­
petitive cost/performdnce with the IBM 11 E11 series. It utilizes many
technological innovations in its architecture, while remaining
compatible with other members in the 1100 Series. The general char­
acteristics of the 1100/60 are listed below/and in the attached
Hardware overview. 1

- This system spans the performance range fromb.elow the recently
announced IBM 4341 up to the performance of the IBM 3032.
Pricing of the system will be competitive with the new price/
performance curve of the IBM 4331 and 4341.

- The 1100/60 system offers six distinct processor performance
levels. These levels are listed below: ·

. Model Cl - unit processor . Model C2 unit processor with extended instruction set . Model Hl unit proc!ssor with cache . Model H2 unit processor with cache and extended
instruction set . Model Hl - multiprocessor (2X} . Model H2 - multiprocessor (2X}

In additjon, expansion to 3X and 4X Multiprocessor systems are
planned but are not being announced at this time. This future
announcement will allow system performance in the range of the
IBM 3033.

OA1E

o •. J. ['IQhErnv S-

I',, . .::. I :.· .· ·-·-·--- _______ /.I
I •

·'. ~h I

L. 1 ;

J. A. "~---''
LP~-~

- Up to 1048M words (4M bytes) of memory per processor is configurable
in the system. Future increases in memory capacity are planned.

IPEARY UNIVAC IS A DIVISION OF SPERRY RANI;> CORPORATION

*

- 2 -

- The 1100/60 Systems' performance can be expanded without equipment
exchange to an 1100/62 multiprocessor with over 4.5 times the
processor performance of the Cl Model.

- Through the use of LSI technology and improved packaging techniques,
the entire system (CPU, IOU, cache, memory) can be contained in a
single cabinet (3X5 feet). Corresponding reductions in power and
environmental requirements are also provided.

- The 1100/60 System, though using many innovative architectural tech­
niques, is compatible with the full 1100 Series product line.
Application code developed for the 1100/80 System will also run
on the 1100/60.

- The 1100/60 System will be the first unbundled Sperry Univac 1100
Series product.

- The 1100/60 System is the first 1100 Series product to include
instructions specifically provided for UNIX/1100. These instruc­
tions will improve performance for character reference and de­
reference operations.

- The 1100/60 System will allow simultaneous use of BICS and UNIX/1100
providing an extremely attractive development environment.

Several new peripherals will also be announced at this time. Their
highlights are given below:

- The 8470 Disk and its associated controls will provide 635 M Byte
disk drives competitive with the new IBM 3570 disk family. These
drives in fact offer larger capacity with an earlier delivery
date.

- The new Uniservo 22/24 tape systems provide low cost tape handling
for those applications not requiring 6250BPI.

- An improved low cost 1200 ~PM printer is available.

These systems provide smaller entry levels for the OTC's, with a more
flexible growth and entity sizing for either 1100/60's or the larger
1100/80 Product line. The improved economics will greatly reduce PREMIS
cost and improve savings. BISCUS/FACS can be modularly implemented
without requiring large initial capital investments in hardware.

Deliveries of.this new Series will begin late this year. We would like
to invite yourself and members of your staff to visit our Roseville
Development Center for detailed presentations on this new product at
your earliest convenience.

UNIX is a trademark of Bell Telephone Laboratories

- 3 -

For your planning purposes, we expect that the Univac 1100/60 will have
an improved price perfonnance of 40% over the Univac 1100/80 and we
also expect that we will continue to be competitive on the Univac
1100/80 as other announcements are made. We are preparing more definitive
cost and performance information of the 1100/60 which we will be able
to give to you next week. In addition a proposal will be prepared to
enable Bell Telephone Laboratories to install one of the first systems
for development activities. This proposal including finn pricing will be
available in approximately 30 days.

As we have shown, Sperry Univac is fully competitive with current
competitive product offerings and will continue to be through
technological and competitive leadership.

Sperry Univac is fully committed to the successful implementation of
BISCUS/FACS and BISCUS/PREMIS and we are available to provide
assistance in this program.

CC J. J. Yostpille
J. M. Nervik

~~
Bell Branch

PLANNING PRICING COMPARISON

Central Complex

1110 2X2

1100/82

1100/60

Memory

1 Million Words (4 Mega bytes)

1110

1100/82

1100/62

Mass Storage

Dual Control & 8 Drives

1110 8440

1100/80 8433

8450

1100/60 8470

Cost Millions

$5.4

$3.1

$.4

$1,992,000

515,000

100,000

Cost

382K

485K

440K

364K

Instruction Time

600 NS

335 NS

1470 NS

Storage

160 M WDS

272 M WDS

432 M WDS

1067 M WDS

Relative Cost

3.24
/

1.04

.58

Cost/Storage

2.39

1.78

1.02

.34

4. 0 llARD\\'J\RE OVERVJ E\~

The system complex is based on 1100/80 technology
utilizing lOK ECL and TTL circujtry, microprocessors
and multi-layer packaging techniques. The CPU, IOU,
cache-buffer, support controller Jnd mni11 storage unit
are contained in one cabinet inclu<ling power. This
approach plus paralleling microprocessors provides
improved cost/performance characteristics compared to
the current 1100/80. }.lain memory within the basic lxl
complex starts 'at 262K wore.ls, expandable to 1, 048K words
within the single cabinet.

A System Support Processor (SSP) interfaces to the basic
system and interfaces directly with the main storage.
Several 1100 functions are perfor~ed by the SSP including
systems partitioning, system console, initial load, auto
recovery and maintenance check of the system.

• System Cabinetry - J\s opposed to most recent 1100
Systems, fhc llU0/60 Proccssinp, Complex is housed
in a single UPSIII cabinet. This reduces cost
assoc:iate<l with providing scpnrate cabinets and power
sources for each Central Complex component. Cost an<l
performance are also enhanced by the reduction of system
interconnects associated with this concept.

• System Confi~uration - the 1100/60 Processing Complex
·is composed of a Central Processing Unit (CPU), Input/
Output Unit (IOU), Systc111 Interface Unit (SIU), and
Main Storage Unit (~!SU). The· minimum system j s n lxl
with 262K \·:or<ls of storage and no SIU. It may be
expanded by the ac.ldition of SK words of SIU, and up to
1048K words of NSU. The maximum system at {nitinl
announcement will be a 2x2 with 16K ~ords of SIU and
2096K words of storage. Further expansion to a 4x4 with
32K words of SIU and 8 million words of stornge will be
announced approximntely 1 year later. At that time,
the maximum storage configuration of the lx and Zx
systems will also be increased to 8 million words. This
will be accornplishe<l by utilizing one or two separate
cabinets to house storage, each with up to 4 million
words of storage. All 3x and 4x systems ~ill require
these separate (external) storage cabinets.

Central Proc0ssing Unit - The 1100/60 CPU design is based
on £L:I---ai1Jm1cro-programming technology. Paralleled
Arithmetic Logic Unit (ALU) chips arc usc<l to g8in design
flexibility, reduced cost, re<luce<l size, and reliability.
The 1100/60 inst1·uction set is. micro-programmc<l
utilizing a separate random ncccss control store as the
stora.gc mc<li a. Re 1inbi1 it y is en ha need through use of
duplex checking, extensive parity generation nn<l checking,
control store error correction and instructjon rctrv.
Packaging tcchn1 que ~ a re the same o s those usc<l for the 110 0/ S

.. 7 -

• Incut/Outtut lln_i_! - IOlJ de5i!!n 1s hn5ed on concepts
ut1lizc<lor tfte 1100/80. The minimum IOU configuration
contains 1 Block r.tux Channel Module and 1 Word Channel
Module (4 worJ channels). Expansion cnpabilities exist
·to increase this to 2 Block Mux Ch:inncl Modules and 3
Word Channel Modules (12 Wo1·d Channels) ,or 3 Block Mux
ChannQl Modules and 2 Word Channel Modules (8 word channels).
The technology used is rZL.

·Main Stora~e Unjt - The 1100/60 MSU uses a 16K MOS chip
to achieve a max)r:ium of lM worJs in a storage module.~ The
storage array card is the same ns that used in the 7037
Storage Unjt (1100/80), with the exception being the
specification of faster storar,e chips. The ~lSU utilizes a
five port M~tA to intcrfnce with a mnxjmum of two CPU's or
SIU's, two IOU's and 1 Support Controller.

Sing:l e bit error corrcc t ion with doub 1 e bit ·error detect ion
is the error detection/correction technique utilizccl.

• System Interface Unit - The SIU is a l1igh speed SK buffer
memory JcdicateJ to interfacing it5 assigned CPU with Main
Storage. In 1100/60 Systems with S.IU, the cabling between
processor and ~lain Store (non-SIU systems) is repl:iccd with
an SIU and associative cabling, thus directing CPU storage
references to the SIU. This allows for the configuring of
an 1100/60 System \dth or without SIU without duplicating
interfaces.

• ~upport Contr_::llcr (SC) - The SC_ provides the system interface
et,,·een the SSP an<l each mo<lul e. Up to two SSP' s can be

interfaced per SC.

• ~yltam Support Processor - The ·ssp is a product 1 ine UTS 700/
C 7 Processor configured with supportive diskette storage,

Maintenance Interface Adopter, System Interf:ice Adapter and
65K bytes of storage. A .UZOO provides the System Console
function. The SSP]nterfaccs directly with main storage
through an MMA port and 'vi th the CPU, SIU, and IOU through
the SC scan set interface.

Several 1100 functions previously performed via separate
hardware components have been replaced by th~ SSP application.
They arc:

• System Partitioning
• System Console
• Maintenance Panel
• Processor Controls
• Maintcnan~c Processor

cotv:PANY CONFlC~I·lTl!.L

.- 8 -

Other function~ supported by the SSP nrc:

• Initial Load
• Auto Recovery
• Control Store Loading
• Trace Support
·Error Analysis
·On-Linc/Off-Linc ~bintcnance
• Performance Monitoring

.~

•Field Instruction Set - The fielJ instructions arc 18 new
COBOL oriented instructions designed to enhance the byte/
character manipulate capabilities of 1100/60 Systems. For
multi-processor systems, one fieJJ instruction feature is
required for ecich central processor if the enhanced instruction
set is desired. The appropriate compilers will be modified
to take advantage of the new instructions if they exist in an
1100/60 System.

• Perform:ince Mo1dtor - This feature provides a CPU with the
capability to collect system profile hardware data and
soft\,·are performance data. The hardware related data will
provide utilization of individual hardware modules such as
processor busy and individual I/O Channel activities, as
well as interdependencies between them (e.g. CPU idle and
a given I/O Module active). The software related data will
provide system or user softv;arc state information. This
feat u r c may b c use J in conj u n ct i on w i t h the Soft~,· are
Instrumentation Package (SIP), nlthou6h SIP need not be
used to collect the profile data. If the performance monitor
feature is sclecte<l, one feature will be required in each
1100/60 processing complex. •

' • • S ? s t em Par t i t ion in g - Par t i t i o 11 i n g o f c e 11 t r a 1 c o in p 1 c x
components CPU, IOU, SIU, t,ISU) is a standard feature of
the system. It is accomplisheJ by the SSP Software enabling
and disabling hardware interfaces in the system.

Partitioning of subsystems is accomplished by adding optional
partitioning features to the system. These '"ill also he
controlled by the SSP software, anJ will cnablc/<lisablc SPI
parts, or switch channels to byte subsystems by remotely
controlling a Byte Channel Transfer Switch.

Partitioning of 1100/60 Systems will be functionally equivalent
to 1100/80 Systems with the combination of the TU, SAU and

·Bers.

COMPJ'a..NY CC"'•·:·;··-· .. ,
' A Y.. I."'• •· I • i ,, 1

9 -

CENTRAL COMPLEX

....
b

,,,, /

I
I /

\ i I

-.

'I-··-·-.. /
I

Introduced last month ~t the NCC, the new processor contains
a "phantom branch" mechanism to avoid lost cycles in its overlapped structure
and a good deal more. ·. ' .

J

THE
MICROARCHITECTU E
OF UNIVAC'S
1100/60
Several alternative LSI Implementation
approaches are available as potential can­
didates for use in a processor. These in­
clude custom, semicustom, gate array,
hybrid (multichip), and multimicroproc­
essor. With respect to the objective of im­
plementing a medium performance LSI
version of an existing processor macroar­
chi tecture, each has drawbacks which in­
clude various combinations of high design
costs, long design time, part type prolifer­
ation, low speed, inefficient use of chip
area, high cost, and pin count limitation.

A multimicroprocessor design
technique has been implemented in the
Sperry Univac 1100/60. A significant
feature of this technique is that it allows
the implementation of existing
macroarchitectures without the software
base., This software compatability •.s
achieved with improvements in cost/per­
formance, and allows a large amount of
duplicated logic to be economically incor­
porated into the system to achieve a high
degree of fault detection.

It was recognized from the begin­
ning that simply ganging sufficient
microprocessors to form a full-word arith-

metic logic unit would fall short of the
performance target. Many possibilities of
achieving higher performance were inves­
~igated. The approach that appeared most
promising was to provide multiple micro­
instruction execution units that would
concurrently execute parts of a macroin­
struction. Thus, each macroinstruction
would be decomposed into a set of atomic
operations. Atomic operations that can be
executed concurrently are identified and
are executed in parallel on separate mi­
croinstruction execution units. To in­
crease performance still further, execu­
tion of microinstructions is overlapped
and a unique branching scheme is used to
avoid lost microcycles due to conditional
branching in the microcode.

To reduce costs, the inputs and
outputs of the microinstruction execution
units are bussed. This eliminates the need
for logic to steer the information in and
out of these execution units. Investiga­
tions indicated that the use of common
input and output buses would not signifi­
cantly impact performance. In addition to
saving gating logic, the input bussing al­
lows the use of a single shifter and the

JULY 19791i'3

D Bus

_Clock

..--------1-LSB
Generate

Propagate
Overflow

Carry Out

..- -'}Function Bits
_carry In

B Bus

Fig. 1. 10800 Microprocessor

output bussing makes it economically via­
ble to duplicate the microinstruction exe­
cution units and compare results at a sin­
gle point.

The fastest available microproces­
sor slice, the Motorola 10800, was select­
ed as the LSI building block for the 1100/
60. It is a 4-bit slice using lOK ECL tech­
nology. None of the companion chips
designed specifically to be used with the
10800 (e.g., control chip) were used. The
surrounding logic is composed of conven­
tional MECL lOK components with heavy
emphasis on using four- and eight-input
multiplexor chips and various PROM'S and
RAM'S.

Fig. l is a simplified diagram of
the l 0800 showing the paths that are ac­
tually used in the 1100 / 60. The basic in­
struction repertoire consists of add, sub-

,, 4 Word
Channels

1 Block
MUX Cllannel

System
Support
Processor

tract, complement, shift one bit, AND, OR,
exclusive OR, and NOT. More complex
functions such as multiply and divide are
achieved by microprogramming. The
mask network shown in Fig. l allows a
Boolean function to precede an arithmetic
function during the same microcycle; this
capability is used heavily to attain sp~ed.
The constraint of shifting only one bit per
cycle is a severe one and necessitates a
high-speed shifter. Shifting is a pin-limit­
ed function; thus it is a general problem
with all bit-sliced microprocessors. Two

, notable differences between the I 0800
microprocessor slice and a more conven­
tional ALU slice are the inclusion of the
latch on the B bus and the internal accu­
mulator. The A bus does not have a latch,
necessitating an external register com­
posed of ECL flip-flops. The D bus can be

Fig. 2. White boxes show minimum configuration

174 DATAMATION

disabled by a function bit so that a wired
OR can be used on the output bus.

The timing specification of a chip
as complex as this one (350 equivalent
gates, LSI by any standard) is not simple.
Some appreciation of the speed can be ob­
tained from the fact that an add instruc­
tion, A+ B to D, typically takes 40ns. Of
more interest when emulating a 36-bit
wide system is the fact that the propagate
and generate signals (to carry a
lookahead network) are available after
only 24ns typical.

1100 SERIES
MACRO­
ARCHITECTURE

The 1100 series
architecture has been
described elsewhere
in some detail. The

more limited purpose here is to describe
enough of the 1100 Series architecture to
be able to understand the multimicro­
processor implementation described be­
low. This series, introduced with the 1107
system in 1962, is based on 36-bit instruc­
tion and operand words.

The instruction word is divided in­
to seven fields. The /-field indicates the
operation to be performed and specifies
how the remaining fields are to be inter­
preted. The j-field either controls partial
word transfers to and from storage, or it
acts as an extension to thef-field in defin­
ing the operation to be performed.

The a-field selects one or more lo­
cations in the General Register Set (GRS)
to provide one of the operands for each
instruction. The GRS is a 128-location,
high-speed random access storage in the
processor. There are three primary types
of registers in the GRS: the X registers are
used for storage operand address index­
ing, the A registers are used as general
purpose arithmetic registers, and the B
registers are used as a special purpose
working registers. An 1100 Series macro­
instruction can spec,ify operands from ei­
ther one register and a main storage loca­
tion, or from two registers. Most
instructions operate on 'run or partial sin­
gle-precision, 36-bit operands. However,
some instructions use double precision,
72-bit operands.

The x-field in the instruction woPd
specifies a GRS register to be used for stor­
age address indexing. The X register con­
tains'. two fields. One field is used as an
address modifier, and the other field is
used as an increment value to the modifier
field. The contents of the modifier field of
the X registe.r. is added to the contents of
the u-field of the instruction to form a
relative storage adpress. If the resultant
address is less than 128, th~ source for
both of the operands for the instruction is
GRS. Otherwise it is added to a base regis­
ter to form an absolute operand storage

address. ;
The one-bit h~field indicates when

the X register selected by the instruction
is to be automatically incremented when
the instruction is executed. When h= 1,
the two fields are added and the result is
used to replace the former value of the
modifier field. •

The i-field specifies indirect ad­
qressing. When this one-bit field is set, the
i,fata word read from the location speci­
fied by the address is used to form recur­
sively another absolute operand storage
address until the i-field of the new word is
not set.

As with aM 1100 Series systems de­
livered since 1968, the 1100/60 (see Fig.
-2) is available in multiprocessor configu­
rations. Each system support processor
incorporates a maintenance processor and
a console. Each instruction processor exe­
cutes the 1100 Series instruction reper­
toire and, in addition, has new decimal
and variable-length field manipulation in­
structions. These new instructions in­
crease the execution S'peed of COBOL, and
improve the execution speed of a number
of other software packages. An optional
8K-word cache buffer can be supplied
with each instruction processor. Each in­
put/ output unit supports up to 12-word
channels and up to three block multiplex­
or channels, and has a direct interface
main storage.

Physical packaging is very com­
pact, with the instruction processor, I/O
unit, cache buffer, and one million words
of main storage fitting into a single cabi­
net 2.0 meters long by 0.75 meters wide.
The instruction processor and cache hard­
ware are ECL, the I/O unit is TTL, and main
storage is 16K-bit MOS. Standard 1100
Series peripherals can be used with 1100/
60. The speed of a unit instruction proc­
essor with a cache is about 1.3 times that
of an 1108.

THE 1160's
MICRO­
ARCHITECTURE

With respect to the
research design, the
1100/60 uses the ex­
tended instruction

repertoire of the Univac 1100/80 rather
than the 1108 instruction repertoire. Al­
so, the four-base-register addressing of
the 1100 /80 is used rather than the two­
base-register addressing of the 1108.

Seven half-word microinstruction
execution units are required to minimize
the address calculation time of the 1108.
Because the 1100/60 has twice as many
active segments, even more microinstruc­
tion units would be required. To avoid in­
troducing a large number of microin­
struction units, most of which would be
used only for addressing, and to allow
macroinstruction overlap, it was decided

To
Shifter

To Instruction
Decode Table

To
Shifter

To Operand
Address

Generator

From Main Storage

Fig. 3. Instruction and Operand Registers

to use dedicated logic to perform address
calculations. This change reduced the
number of microinstruction execution
units to two, and allowed overlapping at
both the microinstruction and macroin­
struction levels.

The 1100 / 60 microarchitecture
consists of a microexecution section and a
storage address generation section. The
microexecution section consists of two 36-
bit microinstruction execution units.
Each microinstruction execution unit
contains a subprocessor constructed from
nine 4-bit microprocessors and associated
control circuitry.

The storage address generator em­
ploys four sets of base address and limits
checkers which operate in parallel to al­
low four base additions and limits viola­
tion checks to be done simultaneously.
The storage address generator operates in
I I 6ns cycles, the same as microinstruc­
tion execution.

Operand address generation can
take one or two microcycles. In the first
microcycle, the u-field of the macroin­
struction is used as a relative operand ad­
dress and added to all four bases simulta­
neously. Within the same cycle, limits
checking is performed and the proper ab­
solute operand address is selected. If the
relative address is less than 128, a desig­
nator bit is set which will be interrogated
later by microde to indicate that the oper­
and must be fetched from the GRS.

While these operations are taking
place, a text of the index (x) field in the
microinstruction is made. If the x-field is

. zero, the absolute address generated by
the operation just described is used to
fetch the operand. If the x-field is non-

zero, the x register is read up, the contents
of the modifier field are added to u to
form a new relative address, and a second
absolute operand address generation
takes place. Two cycles are required when
x is nonzero.

Instruction address generation is
similar to operand address generation.
The relative address of the previous in­
struction is kept in a holding register. A
new instruction address is generated by
adding one to the contents of this holding
register to form a new relative instruction
address, adding all four bases to the new
relative address, and checking against the
limits registers to select the absolute in­
struction address. The entire instruction
address generation takes one microcycle.

Instruction and operand address
generation takes place alternately in the
same base adder and limits checker hard­
ware. Requests are made until the oper­
and and instruction registers are full as
described below.

Besides the base adders and limits
checkers, the storage address generator
contains instructions and operand buff
registers. Fig. 3 shows the operand and
instruction registers. There is one storage
interface port in the processor. As each
request is made, the storage address gen­
era tor determines whether it is a request
for an instruction or for an operand.
When a word comes into the processor
from storage, it is routed into an operand
or instruction register by control signals
from the storage address generator.

Instruction Register I contains the
macroinstruction (program instruction)
currently being executed by the micro­
code in the processor. The next instruc-

JULY 1979175

tion to be executed is contained in In­
struction Register 2. The x- and u-fields
from this macroinstruction are used in the
storage address generation procedure de­
scribed above. While the microcode is ex­
ecuting the macroin.struction in Register
I, the storage address generator fetches
the operand for the instruction contained
in Register 2. The next macroinstruction
beyond that one is contained in Register
3. Thus it is possible for three macroin­
structions to be resident in the processor
simultaneously.

Operand Register I contains the
operand for the instruction currently be­
ing executed in the microcode. Operand
Register 2 normally contains the operand
for the next instruction. Thus operands
for two instructions can be resident at one
time: Operand Register I, containing the
operand for the instruction currently re­
siding in instruction Register I; and Oper­
and Register 2, containing the operand
for the instruction currently in Instruc­
tion Register 2.

MICRO­
EXECUTION
SECTION

When a jump or multiple
operand instruction is per­
formed, the operand regis­
ters function somewhat

differently. Fig. _4 is a diagram of the
microexecution section. The two sub­
processors drive a single main databus
which can feed main storage, the GRS, the'
local storage for each subprocessor, or the
shifter input selector. The A bus input to
each subprocessor is driven by a dedicated
256-location local storage. The B bus in­
puts are driven by a common 36-bit, high
speed shifter.

Each 1100 / 60 macroinstruction is
executed by a series of microinstructions.
While each new macroinstruction is in
Register 2 undergoing storage address
generation, the f. j, and a-fields are used
to generate the address of the first micro­
instruction of the routine which will exe­
cute the macroinstruction. This is done
through the use of a 256-location, 40-bit
instruction Decode Table containing one
location for each macroinstruction in the
1100/60 instruction repertoire.

The output of the instruction De­
code Table consists of three fields. The
first field is an I I-bit class base, the sec­
ond field is an I I-bit instruction vector,
and the third field contains control bits.
To minimize the total number of microin­
structions required to execute all of the
macroinstructions in the I I 00/ 60, the ex­
ecution of each macroinstruction is divid­
ed into two microroutines. The first
microroutine starts at the class base ad­
dress. At any point during the execution
of the macroinstruction, a second

176 DATAMATION

To Main Storage

Fig. 4. Microexecution Section

microroutine may be started at the
microaddress instruction vector. This al­
lows the use of fewer total microinstruc­
tions because most macroinstructions
may use a common class base microrou­
tine and require only one or two unique
microinstructions. The control bits
(which can be unique to each macroin­
struction) can modify the operation of the
microcode in such a way that a single
microroutine can be used for more than
one macroinstruction, allowing further
reduction in the total number of microin­
structions.

When the microcode completes
the execution of the current macroin­
st'ruction, the next macroinstruction to be
executed is transferred from Instruction
Register 2 into Instruction Register I.
Then, microroutine to execute the in­
struction is started at the class base ad­
dress from the Instruction Decode Table.

Four I I 6ns microcycles are re­
quired for the completion of each micro­
instruction. To obtain an effective micro- ·
instruction time of I I 6ns, micro­
instructions are overlapped four deep.
Fig. 5 shows the microinstruction overlap
of our four typical microinstructions.

During cycle I, the address for mi­
croinstruction is generated using fields
contained in microinstruction n- I com­
bined with variables generated by the re­
sults of execution of microinstruction n-2.
In cycle 2, microinstruction n is fetched
from control store and used to control the
setup of the data which will be presented
to the subprocessors for use during the

Instruction Register 2

execution portion of the microinstruction.
-During cycle 3, the execution for

microinstruction n takes place. An arith­
metic or logic function is performed
which combines the data loaded into the
A and B bus latches for each subprocessor
at the end of cycle 2 with the data placed
in the accumulators as a result of the exe­
cution during cycle•2 for microinstruction
n-1. The results of executions are loaded
into the accumulator registers toward the
end of cycle 3. At the beginning of cycle 4,
the contents of the accumulator register
in one of the subprocessors is chosen to
drive the main data bus from where it may
be loaded into the GRS or local store, sent
to the main storage 'unit as data, or writ­
ten into one of several other internal regis­
ters. Also during cycle 4, variables which
result from the execution of microinstruc­
tion may be used to select the address for
microinstruction n+2 and the functions
may be executed for microinstruction
n+l.

Decisions concerning microad­
dress•genera ti on, microfunction selection,
and results storage are made under micro­
code control using the logic function gen­
erator which is a complex selector circuit
controlled by. .the fields in the microin·
structions. The fields specify the variables
to be applied to the logic function genera­
tor and one of the I 6 logic functions to be
performed. The variables can either be
static variables representing processor
state information, or dynamic variables,
such as subprocessor zero detect or sign
bit.

PHANTOM The logic (unction gen­
BRANCH erator allows each sub­

processor to.select between
two function codes during

each cycle without altering the microin-
struction sequence. Since this mechanism
gives an apparent branch capability on
each cycle without altering the microin­
struction sequence, this conditional con­
trol capability is called "phantom
branch." Besides creating an independent
control capability, the phantom branch
minimizes wasted cycles.

There are several ways in which
the phantom branch can be employed to
decrease the tim~ required to execute
macroinstruction. One improvement is re­
alized by making independent real branch
and phantom branch decisions during ex­
ecution of any microinstruction. This ca­
pability makes it possible to shorten the
path lengths required to execute a macro­
instruction.

Another speed improvement due
to phantom branching is that the execu­
tion functions are chosen at a later point
during the execution of the microinstruc­
tion than the address is generated. This
may be illustrated by observing Fig. 5.

Operation

. Generate microaddress

Set up data

Execute microinstruction

Store results

Fig. 5. Microinstruction Overlap

The address for microinstruction n must
be chosen as a result of the execution· for
microinstruction n-2 at the end of cycle I,
but the execution functions for microin­
struction n are chosen as a result of the
execution microinstruction n-1 at the end
of cycle 2. If a new function must be se­
lected based on results from microinstruc­
tion n-1, it can be done a cycle earlier us,
ing the phantom branch than would be
possible if the function were selected us­
ing a real branch. This allows shorter mi­
croinstruction sequences and makes pos­
sible extremely tight microinstruction

loops for the performance of repetitive op­
erations, such as multiply and divide.

Since each microinstruction con­
tains two possible microfunctions for each
subprocessor, one microinstruction is of­
ten able to do the work of two. In any
given cycle, only one of the execution
functions may be selected, but in another
use of the same microinstruction, the oth­
er execution function may be used. This

· allows one microinstruction to often do
the work of two and allows a reduction in
the total number of microinstructions.

As an example of the ways in

which this microarchitecture may be
used, the execution of an ADD macroin­
struction will be described. When an ADD
instruction is performed, the macroin­
struction is brought into Instruction Reg­
ister 3 by the storage address generator.
When the macroinstruction is loaded into
Instruction Register 2, an operand ad­
dress generation is performed and an op­
erand is fetched from storage, if necessa­
ry. When the previous macroinstruction
completes, execution of the ADD will be­
gin if there are no outstanding interrupt
or clock update service requests. Execu­
tion begins at the class base address from
the Instruction Decode Table, and at the
same time the macroinstruction is trans­
ferred from Instruction Register 2 into
Instruction Register I. The next macroin­
struction can then be loaded into Instruc­
tion Register 2 so that its operand address
generation and fetching can be done.

The ADD macroinstruction uses
the load instruction class base. The first
microinstruction performs a number of
functions. If the operand from storage is
available, it is brought in through the
shifter from Operand Register I and
shifted if necessary as defined by the j­
field. The operand is then masked with
constants from the local storage (selected
under j-field control) for each subproces­
sor and the results are placed in the accu­
mulators during the execution portion of
the first microinstruction. At the end of
the setup cycle for this microinstruction,
the second microinstruction is selected. A
check is made to see if the operand should
come from a GRS location. If so, control is
transferred to a GRS read microinstruc­
tion which reads the operand from GRS
rather than from storage. If the operand
does not come from GRS, a check is made
to see if the storage operand is resident in
the processor. If it is not, control is trans- '
ferred to a microinstruction which waits
for the storage operand. When the oper­
and is available in the processor, control is
transferred to the ADD instruction vector
routine. In the first microinstruction of
this new routine an operand is read from
GRS and added to the first operand which
was previously placed in the accumula­
tors. Then a second microinstruction
stores the result of the add into the A reg­
ister in the GRS and the first microinstruc­
tion or interrupt routine is selected.

An ADD macroinstruction will be
performed by as few as three microin­
structions in 348ns if the storage operand
is available in Operand Register I when
the execution begins. The first microin­
struction brings the storage operand
through the shifter and places it into the
accumulators in the subprocessors. The
second microinstruction adds the GDS op­
erand to the storage operand and places
the result in the accumulators. The third
microinstruction stores the results back
into GRS. If the first operand comes from
GRS, the execution time will be increased
by one microinstruction.

The multiprocessor approach is a

178 DATAMATION

cost-effective way to incorporate off-the­
shelf LSI into a medium scale computer
system while retaining software com­
patability. The phantom branch mecha­
nism has been introduced as a way to sub­
stantially increase the effectiveness of a
microinstruction by providing decision
points late in the microcycle to select
functions performed in the next microin­
struction. 0

REFERENCES
I. Borgerson, B.R.; Tjaden, G.S.; and
Hanson, M.L., "Mainframe Implementation
With Off-The-Shelf LSI Modules," IEEE
Computer magazine, July 1978, pp. 42-48.
2. Borgerson, B.R.; Godfrey, M.D.; Hagerty,
P.E.; and Ryken, T.R., "The Architecture of

the Sperry Univac 1100 Series Systems,"
Proceedings of the Sixth International
Symposium on Computer Architecture,
Philadelphia, April 1979.
3. Borgerson, B.R.; Hanson, M.L.; and
Hartley, P.A., "The Evolution of the Sperry
Univac 1100 Series: A History, Analysis, and
Projection," Communications of the ACM,
January 1978, pp. 25-43.

Contributing to this article were the fq_llow­
ing employees of Sperry Univac: Lewis A.
Boone, senior logician with design respon­
sibility for the 1100/60 cpu; Dr. George A.
Champine, director. advanced systems, for
large scale commercial computer systems;
and Dr. Barry A. Bergerson. director, re­
search and technology, Sperry Univac re­
search.

