= !""Q\r’ UNI\./AC

Hetl

Pﬁ“%
April 10,1979

The Sperry Univac 1100/60 Series of computer systems will be announced

P.0. BOX 500
BLUE BELL, PENNSYLVANIA 19422
TELEPHONE (215) 542-4011

L. Bernstein

Director, Facilities Development Center
Bell Telephone Laboratories

6 Corporate Place

Piscataway, New Jersey 08854

Dear Larry:

at the National Computer Conference in New York on June 5, 1979. This
system offers many features and benefits which will improve the e
economics of BISCUS/FACS and BISCUS/PREMIS and speed deployment. 5j/@/
D.). DO ‘Rl T

The 1100/60 is the newest member of the Sperry Univac 1100 Series

product line. It will serve as the entry level model offering com-

petitive cost/performance with the IBM "E" series. It utilizes many
technological innovations in its architecture, while remaining
compatible with other members in the 1100 Series. The general char-
acteristics of the 1100/60 are listed be]ow and in the attached

Hardware overview.

- This éystem spans the performance range from below the recently

announced IBM 4341 up to the performance of the IBM 3032. LT

Pricing of the system will be competitive with the new price/

performance curve of the IBM 4331 and 4341.

- The 1100/60 system offers six distinct processor performance

levels. These levels are listed below:
* Model C1 - unit processor
* Model C2 - unit processor with extended instruction set
* Model H1 - unit piccessor with cache

Model H2 - unit processor with cache and extended
instruction set
* Model H1 - multiprocessor (2X)
* ° Model H2 - multiprocessor (2X)

In addition, expansion to 3X and 4X Multiprocessor systems are
planned but are not being announced at this time. This future
announcement will allow system performance in the range of the
IBM 3033.

- Up to 1048M words (4M bytes) of memory per processor is configurable
in the system. Future increases in memory capacity are planned.

SPERRY UNIVAC IS A DIVISION OF SPERRY RAND CORPORATION

- The 1100/60 Systems' performance can be expanded without equipment
exchange to an 1100/62 multiprocessor with over 4.5 times the
processor performance of the C1 Model.

- Through the use of LSI technology and improved packaging techniques,

. the entire system (CPU, IOU, cache, memory) can be contained in a
single cabinet (3X5 feet). Corresponding reductions in power and
environmental requirements are also provided.

- The 1100/60 System, though using many innovative architectural tech-
niques, is compatible with the full 1100 Series product line.
Application code developed for the 1100/80 System will also run
on the 1100/60.

- The 1100/60 System will be the first unbundled Sperry Univac 1100
Series product.

- The 1100/60 System is the first 1100 Series product to include
instructions specifically provided for UNIX/1100. These instruc-
tions will improve performance for character reference and de-
reference operations.

- The 1100/60 System will allow simultaneous use of BICS and UNIX/1100
providing an extremely attractive development environment.

Several new per1pherals will also be announced at thws t1me Their
highlights are given below:

- The 8470 Disk and its associated controls will provide 635 M Byte
disk drives competitive with the new IBM 3570 disk family. These
drives in fact offer larger capacity with an earlier delivery
date.

- The new Uniservo 22/24 tape systems provide low cost tape handling
for those applications not requiring 6250BPI.

- An improved low cost 1200 LPM printer is available.

These systems provide smaller entry levels for the OTC's, with a more
flexible growth and entity sizing for either 1100/60's or the larger
1100/80 Product line. The improved economics will greatly reduce PREMIS
cost and improve savings. BISCUS/FACS can be modularly implemented
without requiring large initial capital investments in hardware.

Deliveries of this new Series will begin late this year. We would like
to invite yourself and members of your stari io visit our Roseville
Development Center for detailed presentations on this new product at
your earliest convenience.

UNIX is a trademark of Bel]l Telephone Laboratories

-3 -

For your planning purposes, we expect that the Univac 1100/60 will have

an improved price performance of 40% over the Univac 1100/80 and we

also expect that we will continue to be competitive on the Univac

1100/80 as other announcements are made. We are preparing more definitive
cost and performance information of the 1100/60 which we will be able

to give to you next week. In addition a proposal will be prepared to
enable Bell Telephone Laboratories to install one of the first systems

for development activities. This proposal including firm pricing will be
available in approximately 30 days.

As we have shown, Sperry Univac is fully competitive with current
competitive product offerings and will continue to be through
technological and competitive leadership.

Sperry Univac is fully committed to the successful implementation of
BISCUS/FACS and BISCUS/PREMIS and we are available to provide

assistance in this program.
ra;;%;ﬁana;ftr¥:)/

Bell Branch

CC J. J. Yostpille
J. M. Nervik

PLANNING PRICING COMPARISON

Central Complex

Cost Millions Instruction Time Relative Cost

1110 2Xx2 $5.4 600 NS 3.24
1100/82 $3.1 : 335 NS 1.04
1100/60 : $.4 | 1470 NS .58
Memory
1 Million Words (4 Mega bpytes)
1110 $1,992,000
1100/82 515,000
1100/62 100,000
Mass Storage
Dual Control & 8 Drives
Cost . Storage Cost/Storage

1110 8440 382K 160 M WDS 2.39
1100/80 8433 485K 272 M WDS 1.78

8450 440K 432 M WDS 1.02

1100/60 8470 364K 1067 M WDS .34

4.0

HARDWARIL: OVERVILEW

The system complex is basced on 1100/80 technology
utilizing 10K ECL and TTL circuitry, microprocessors

and multi-layer packaging techniques. The CPU, 10U,
cache-buffer, support controller and main storage unit
are contained in onc cabinet including power. This
approach plus parallcling microproccssors provides
improved cost/performance characteristics compared to
the currcent 1100/80. Main memory within the basic 1x1
complex starts ‘at 262K words, expandable to 1,048K words
within the single cabinct.

A System Support Processor (SSP) intcrfaces to the basic
system and interfaces dircctly with the main storagec.
Several 1100 functions are performed by the SSP including

- systems partitioning, system console, initial load, auto

recovery and maintenance check of the system.

* Systcem Cabinetry - As opposed to most recent 1100
Systems, the 1100/60 Processing Complex is housed
in a single UPSIIT cabinet. This reduces cost
associated with providing scparate cabinects and power
sources for each Cecntral Complex compcnent. Cost and
performance are also enhanccd by the reduction of system
interconnccts associated with this concept.

* System Confipuration - the 1100/G60 Processing Complex

--1s composcd of a Central Processing Unit (CPU), Input/

. Output Unit (IOU), System Interface Unit (SIU), and
Main Storage Unit (MSU). Thce minimum system is a 1x1
with 262K words of storage and no SIU. It may be
expanded by the addition of 8K words of SI1U, and up to
1048K words of MSU. The maximum system at 1n1t1al
announcement will be a 2x2 with 16K words of SIU and ‘
2096K words of storage. Further cxpansion to a 4x4 with
32K words of SIU and 8 million words of storage will be
announced approximately 1 ycar later. At that time,
the maximum storage configuration of the 1x and 2x
systems will also be incrcased to 8 million words. This
will be accomplished by utilizing onec or two scparate
cabincts to house storage, cach with up to 4 million
words of storage. All 3x and 4x systems will require
these separatc (external) storagc cabincts.

* Central Processing Unit - The 1100/60 CPU design is based

on ECL and micro-programming tcchnology. Parallcled
Arithmetic Logic Unit (ALU) chips are uscd to gain design
flexibility, rcduced cost, rcduced size, and reliability.

The 1100/60 1instruction sect is.micro-programmed

utilizing a scparatc random access control store as the
storage media. Recliability is enhanced through use of

duplex checking, coxtensive parity genceration and checking,
control store crror corrcction and instruction retry.
Packaging techniques arc the same as thosc uscd for the 1100/8

COMPANY CCIIFIDINIIAL

-7 -

* Input/Output Unit - IOU design is based on concepts
utilized {or the 1100/80. The minimum I0U configuration
contains 1 Block Mux Channcl Modulec and 1 Word Channel

" Module (4 word channcls). Expansion capabilities exist
to increasc this to 2 Block Mux Channel Modules and 3
Word Channcl Modulcs (12 Word Channcls),or 3 Block Mux
Channel Modules and 2 Word Channcl Modules (8 word channels).

The technology uscd is TZL.

* Main Storage Unit - The 1100/60 MSU usecs a 16K MOS chip
to achieve u maximum of 1M words in a storage module.” The
storage array card is the same as that used in the 7037
Storage Unit (1100/80), with the exception being the
specification of faster storage chips. The MSU utilizes a
five port MMA to interface with a maximum of two CPU's or
SIU's, two IOU's and 1 Support Controller.

Single bit error correction with doublc bit error detection
is the error detection/correction technique utilized.

* System Intcrface Unit - The SIU is a high spced 8K buffer
memory dedicated to interfacing its assigned CPU with Main
Storage. In 1100/60 Systcms with SIU, the cabling bectwcen
processor and Main Storc (non-SIU systems) is replaced with
an SIU and associative cablinyg, thus directing CPU storage
refercnces to the SIU. This allows for the configuring of
an 1100/60 System withor without SIU without duplicating
interfaces.

ween the SSP and each module. Up to two SSP's can be
interfacecd per SC.

* Support Controller (SC) - The SC,ﬁrov{dcs the system interface
et

* System Support Processor - The SSP is a product line UTS 700/

* BC/7 Processor configured with supportive diskectte storage,
Maintenance Interface Adapter, System Interface Adapter and
65K bytes of storage. A U200 provides the System Censole
function. The SSP interfaces directly with main storage
through an MMA port and with the CPU, SIU, and IOU through
the SC scan set interface.

Several 1100 functions previously performed via scparate
hardwarc components have been replaced by the SSP application.
They arc:

System Partitioning

Systcm Console

Maintenance Pancl

Processor Controls

Maintcnance Processor

COWPANY COMNIIZIENTILL

Other functions supported by the SSP arc:

* Initial Load

* Auto Recovery

* Control Storc Loading

* Tracc Support

* Error Analysis
*On-Linc/0ff-Linec Maintcnance
* Performance Monitoring

. jpes

* Ficld Instruction Sct - The ficld instructions arc 18 new
COBOL oriented instructions designed to enhance the byte/
character manipulate capabilitics of 1100/60 Systcms. For
multi-processor systems, one field instruction featurc is
required for each central processor if the enhancecd instruction
set is desired. The appropriatce compilers will be modified
to take advantagc of the new instructions if they exist in an
1100/60 Systen.

* Performance Monitor - This featurc provides a CPU with the
capability to collect system profile hardware data and
software performance data. The hardware rclated data will
provide utilization of individual hardware inodules such as
processor busy and individual I/0 Channcl activities, as
well as interdependencics between them (e.g. CPU idle and
a given I/0 Module active). The softwarc related data will
provide system or uscr softwarc statc information. This
feature may be used in conjunction with the Software
Instrumentation Packagc (SIP), although SIP nced not be
used to collect the profilc data. If thc performance monitor
feature is selected, onc fcaturc will be required in each
1100/60 processing complex. ‘

* System Partitioning - Partitioning of central complex.
components (CPU, 10U, SIU, MSU) is a standard {fcature of
the system. It is accomplished by the SSP Software enabling
and disabling hardwarc interfaces in the system.

Partitioning of subsystems is accomplished by adding optional
partitioning features to the system. These will also be
controlled by the SSP softwarc, and will cnable/disable SPI
parts, or switch channels to byte subsystems by remotely
controlling a Byte Channel Transfcr Switch.

Partitioning of 1100/60 Systems will be functionally equivalent
to 1100/80 Systems with the combination of the TU, SAU and
"BCTS.

COMPANY CONIIL Teeaiag,

-9 -

- 0T -

SPERRY==UNIVAC

- e e

CENTRAL COMPLEX

. M4Aq"pl—’n’m
’ CV// g, . /‘7..’3:':? =~
.[hfd‘l f‘_’/ 3 ; 'z({,f N 4):-‘

- "&.—.-‘u--—<
z 1 m\-:T

“OMPANY CCNFIDENTIAL

Introduced last month a"}'t the NCC, the new processor contains

a “phantom branch” mechanism to avoid lost cycles in its overlapped structure . . .

and a good deal more.

MICROARCHITECTU

OF UNIVAC'S

1100/60

Several alternative LSI implementation
approaches are available as potential can-
didates for use in a processor. These in-
clude custom, semicustom, gate array,
hybrid (multichip), and multimicroproc-
essor. With respect to the objective of im-
plementing a medium performance LSI
version of an existing processor macroar-
chitecture, each has drawbacks which in-
clude various combinations of high design
costs, long design time, part type prolifer-
ation, low speed, inefficient use of chip
area, high cost, and pin count limitation.

A multimicroprocessor design
technique has been implemented in the
Sperry Univac 1100/60. A significant
feature of this technique is that it allows
the implementation of existing
macroarchitectures without the software
base.. This software compatability is
achieved with improvements in cost/per-
formance, and allows a large amount of
duplicated logic to be economically incor-
porated into the system to achieve a high
degree of fault detection.

It was recognized from the begin-
ning that simply ganging sufficient

microprocessors to form a full-word arith-

metic logic unit would fall short of the
performance target. Many possibilities of
achieving higher performance were inves-
tigated. The approach that appeared most
promising was to provide multiple micro-
instruction execution units that would
concurrently execute parts of a macroin-
struction. Thus, each macroinstruction
would be decomposed into a set of atomic
operations. Atomic operations that can be

executed concurrently are identified and

are executed in parallel on separate mi-
croinstruction execution units. To in-
crease performance still further, execu-
tion of microinstructions is overlapped
and a unique branching scheme is used to
avoid lost microcycles due to conditional
branching in the microcode.

To reduce costs, the inputs and
outputs of the microinstruction execution
units are bussed. This eliminates the need
for logic to steer the information in and
out of these execution units. Investiga-
tions indicated that the use of common

input and output buses would not signifi- -

cantly impact performance. In addition to
saving gating logic, the input bussing al-

- lows the use of a single shifter and the

JULY 1979 173

—Clock

Zero Detect

—LSB

MSB <«
Generate
Propagate

:}Function Bits
—Carry In

— Clock

A Bus

[
B Bus

Fig. 1. 10800 Microprocessor

output bussing makes it economically via-
ble to duplicate the microinstruction exe-
cution units and compare results at a sin-
gle point.

The fastest available microproces-
sor slice, the Motorola 10800, was select-
ed as the LsI building block for the 1100/
60. It is a 4-bit slice using 10K ECL tech-
nology. None of the companion chips
designed specifically to be used with the
10800 (e.g., control chip) were used. The
surrounding logic is composed of conven-
tional MECL 10K components with heavy
emphasis on using four- and eight-input
multiplexor chips and various PROM’s and
RAM'S. '

Fig. 1 is a simplified diagram of
the 10800 showing the paths that are ac-
tually used in the 1100/60. The basic in-
struction repertoire consists of add, sub-

tract, complement, shift one bit, AND, OR,
exclusive OR, and NOT. More complex
functions such as multiply and divide are
achieved by microprogramming. The
mask network shown in Fig. 1 allows a
Boolean function to precede an arithmetic
function during the same microcycle; this
capability is used heavily to attain speed.
The constraint of shifting only one bit per
cycle is a severe one and necessitates a
high-speed shifter. Shifting is a pin-limit-
ed function; thus it is a general problem
with all bit-sliced microprocessors. Two

- notable differences between the 10800

microprocessor slice and a more conven-
tional ALU slice are the inclusion of the
latch on the B bus and the internal accu-
mulator. The A bus does not have a latch,
necessitating an external register com-
posed of ECL flip-flops. The D bus can be

4 Word Input/Output
Il Channels ni

Instruction
Processor

Block

1]

System | I
Support | Storage (262K)
Processor IL—

4 Word ;.

" Channels& I

T
3 MUX Channel.

Fig. 2. White boxes show minimum configuration

174 DATAMATION

disabled by a function bit so that a wired
OR can be used on the output bus.

The timing specification of a chip
as complex as this one (350 equivalent
gates, LSI by any standard) is not simple.
Some appreciation of the speed can be ob-
tained from the fact that an add instruc-
tion, A+B to D, typically takes 40ns. Of
more interest when emulating a 36-bit
wide system is the fact that the propagate
and generate signals (to carry a
lookahead network) are available after
only 24ns typical.

1100 SERIES The 1100 series
MACRO- architecture has been

described elsewhere
ARCHITECTURE in some detail. The
more limited purpose here is to describe
enough of the 1100 Series architecture to
be able to understand the multimicro-
processor implementation described be-
low. This series, introduced with the 1107
systemin 1962, is based on 36-bit instruc-
tion and operand words.

The instruction word is divided in-
to seven fields. The f-field indicates the
operation to be performed and specifies
how the remaining fields are to be inter-
preted. The j-field either controls partial
word transfers to and from storage, or it
acts as an extension to the f-field in defin-
ing the operation to be performed.

The a-field selects one or more lo-
cations in the General Register Set (GRS)
to provide one of the operands for each
instruction. The GRS is a 128-location,
high-speed random access storage in the
processor. There are three primary types
of registers in the GRS: the X registers are
used for storage operand address index-
ing, the A registers are used as general
purpose arithmetic registers, and the B
registers are used as a special purpose
working registers. An 1100 Series macro-
instruction can specify operands from ei-
ther one register and a main storage loca-
tion, or from two registers. Most
instructions operate on full or partial sin-
gle-precision, 36-bit operands. However,
some instructions use double precision,
72-bit operands.

The x-field in the instruction word
specifies a GRS register to be used for stor-
age address indexing. The X register con-
tains.two fields. One field is used as an
address modifier, and the other field is
used as an increment value to the modifier
field. The contents of the modifier field of
the X register. is added to the contents of
the u-field of the instruction to form a
relative storage address. If the resultant
address is less than 128, the source for
both of the operands for the instruction is
GRS. Otherwise it is added to a base regis-
ter to form an absolute operand storage

address.

The one-bit A-field indicates when
the X register selected by the instruction
is to be automatically incremented when
the instruction is executed. When h=1,
the two fields are added and the result is
used to replace the former value of the
modifier field. "

The i-field specifies indirect ad-
dressing. When this one-bit field is set, the
data word read from the location speci-
‘fied by the address is used to form recur-
sively another absolute operand storage
address until the i-field of the new word is
not set. .

As with al 1100 Series systems de-
livered since 1968, the 1100/60 (see Fig.
"2) is available in multiprocessor configu-
rations. Each system support processor
incorporates a maintenance processor and
a console. Each instruction processor exe-
cutes the 1100 Series instruction reper-
toire and, in addition, has new decimal
and variable-length field manipulation in-
structions. These new instructions in-
crease the execution speed of COBOL, and
improve the execution speed of a number
of other software packages. An optional
8K-word cache buffer can be supplied
with each instruction processor. Each in-
put/output unit supports up to 12-word
channels and up to three block multiplex-
or channels, and has a direct interface
main storage.

Physical packaging is very com-
pact, with the instruction processor, 1/0
unit, cache buffer, and one million words
of main storage fitting into a single cabi-
net 2.0 meters long by 0.75 meters wide.
The instruction processor and cache hard-
ware are ECL, the I/0 unit is TTL, and main
storage is 16K-bit MOS. Standard 1100
Series peripherals can be used with 1100/
60. The speed of a unit instruction proc-
essor with a cache is about 1.3 times that
of an 1108.

THE 1160’s With respect to the
MICRO- research design, the
ARCHITECTURE !!00/60 uses the ex-

tended instruction
repertoire of the Univac 1100/80 rather
than the 1108 instruction repertoire. Al-
so, the four-base-register addressing of
the 1100/80 is used rather than the two-
base-register addressing of the 1108.
Seven half-word microinstruction
execution units are required to minimize
the address calculation time of the 1108.
Bécause the 1100/60 has twice as many
active segments, even more microinstruc-
tion units would be required. To avoid in-
troducing a large number of microin-
struction units, most of which would be
used only for addressing, and to allow
macroinstruction overlap, it was decided

To Operand
To To Instruction To Address
Shifter Decode Table Shifter Generator

f, j, a Fields

+Instruction Register 1

x, u Fields

Jump Path

#nstruction Register 2

s4nstruction Register 3 .

1
From Main Storage

Fig. 3. Instrbction and Operand Registers

to use dedicated logic to perform address
calculations. This change reduced the
number of microinstruction execution
units to two, and allowed overlapping at
both the microinstruction and macroin-
struction levels.

The 1100/60 microarchitecture
consists of a microexecution section and a
storage address generation section. The
microexecution section consists of two 36-
bit microinstruction execution units.
Each microinstruction execution unit
contains a subprocessor constructed from
nine 4-bit microprocessors and associated
control circuitry.

The storage address generator em-
ploys four sets of base address and limits
checkers which operate in parallel to al-
low four base additions and limits viola-
tion checks to be done simultaneously.
The storage address generator operates in
116ns cycles, the same as microinstruc-
tion execution.

Operand address generation can
take one or two microcycles. In the first
microcycle, the u-field of the macroin-
struction is used as a relative operand ad-
dress and added to all four bases simulta-
neously. Within the same cycle, limits
checking is performed and the proper ab-
solute operand address is selected. If the
relative address is less than 128, a desig-
nator bit is set which will be interrogated
later by microde to indicate that the oper-
and must be fetched from the GRS.

While these operations are taking
place, a text of the index (x) field in the
microinstruction is made. If the x-field is

. zero, the absolute address generated by

the operation just described is used to
fetch the operand. If the x-field is non-

zero, the x register is read up, the contents
of the modifier field are added to u to
form a new relative address, and a second
absolute operand address generation
takes place. Two cycles are required when
X is nonzero.

Instruction address generation is
similar to operand address generation.
The relative address of the previous in-
struction is kept in a holding register. A
new instruction address is generated by
adding one to the contents of this holding
register to form a new relative instruction
address, adding all four bases to the new
relative address, and checking against the
limits registers to select the absolute in-
struction address. The entire instruction
address generation takes one microcycle.

Instruction and operand address
generation takes place alternately in the
same base adder and limits checker hard-
ware. Requests are made until the oper-
and and instruction registers are full as
described below.

Besides the base adders and limits
checkers, the storage address generator
contains instructions and operand buff
registers. Fig. 3 shows the operand and
instruction registers. There is one storage
interface port in the processor. As each
request is made, the storage address gen-
erator determines whether it is a request
for an instruction or for an operand.
When a word comes into the processor
from storage, it is routed into an operand
or instruction register by control signals
from the storage address generator.

Instruction Register 1 contains the
macroinstruction (program instruction)
currently being executed by the micro-
code in the processor. The next instruc-

JULY 1979 175

tion to be executed is contained in In-
struction Register 2. The x- and u-fields
from this macroinstruction are used in the
storage address generation procedure de-
scribed above. While the microcode is ex-
ecuting the macroinstruction in Register
1, the storage address generator fetches
the operand for the instruction contained
in Register 2. The next macroinstruction
beyond that one is contained in Register
3. Thus it is possible for three macroin-
structions to be resident in the processor
simultaneously.

Operand Register 1 contains the
operand for the instruction currently be-
ing executed in the microcode. Operand
Register 2 normally contains the operand
for the next instruction. Thus operands
for two instructions can be resident at one
time: Operand Register 1, containing the
operand for the instruction currently re-
siding in instruction Register 1; and Oper-
and Register 2, containing the operand
for the instruction currently in Instruc-
tion Register 2.

MICRO- When a jump or multiple
EXECUTION operand instruction is per-
SECTION formed, the operand regis-

ters function somewhat
differently. Fig. 4 is a diagram of the
microexecution section. The two sub-
processors drive a single main databus
which can feed main storage, the GRS, the’
local storage for each subprocessor, or the
shifter input selector. The A bus input to
each subprocessor is driven by a dedicated
256-location local storage. The B bus in-
puts are driven by a common 36-bit, high
speed shifter.

Each 1100/60 macroinstruction is
executed by a series of microinstructions.
While each new macroinstruction is in
Register 2 undergoing storage address
generation, the f, j, and a-fields are used
to generate the address of the first micro-
instruction of the routine which will exe-
cute the macroinstruction. This is done
through the use of a 256-location, 40-bit
instruction Decode Table containing one
location for each macroinstruction in the
1100/60 instruction repertoire.

The output of the instruction De-
code Table consists of three fields. The
first field is an 11-bit class base, the sec-
ond field is an 11-bit instruction vector,
and the third field contains control bits.
To minimize the total number of microin-
structions required to execute all of the
macroinstructions in the 1100/60, the ex-
ecution of each macroinstruction is divid-
ed into two microroutines. The first
microroutine starts at the class base ad-
dress. At any point during the execution
of the macroinstruction, a second

176 DATAMATION

To Main Storage
Microinstruction Execution Unit 1 t Microinstruction Execution Unit 2 -

Subprocessor 1

Main Data Base

uplur

D Bus

Subprocessor 2

General Register Set

Operand Register 1

.

Shifter Input Selection

Instruction Register 1

B Bus 4

% Control Storage#

Microaddress‘ Generator

Instruction Decode: Table

Instruction Register 2

Fig. 4. Microexecution Section

microroutine may be started at the
microaddress instruction vector. This al-
lows the use of fewer total microinstruc-
tions because most macroinstructions
may use a common class base microrou-
tine and require only one or two unique
microinstructions. The control bits
(which can be unique to each macroin-

, struction) can modify the operation of the

microcode in such a way that a single
microroutine can be used for more than
one macroinstruction, allowing further
reduction in the total number of microin-
structions.

When the microcode completes
the execution of the current macroin-
struction, the next macroinstruction to be
executed is transferred from Instruction
Register 2 into Instruction Register 1.
Then, microroutine to execute the in-
struction is started at the class base ad-
dress from the Instruction Decode Table.

Four 116ns microcycles are re-
quired for the completion of each micro-
instruction. To obtain an effective micro-
instruction time of 116ns, micro-
instructions are overlapped four deep.
Fig. 5 shows the microinstruction overlap
of our four typical microinstructions.

During cycle 1, the address for mi-
croinstruction is generated using fields
contained in microinstruction n-1 com-
bined with variables generated by the re-
sults of execution of microinstruction n-2.
In cycle 2, microinstruction n is fetched
from control store and used to control the
setup of the data which will be presented
to the subprocessors for use during the

execution portion of the microinstruction.

‘During cycle 3, the execution for
microinstruction n takes place. An arith-
metic or logic function is performed
which combines the data loaded into the
A and B bus latches for each subprocessor
at the end of cycle 2 with the data placed
in the accumulators as a result of the exe-
cution during cycle’2 for microinstruction
n-1. The results of executions are loaded
into the accumulator registers toward the
end of cycle 3. At the beginning of cycle 4,
the contents of the accumulator register
in one of the subprocessors is chosen to
drive the main databus from where it may
be loaded into the GRS or local store, sent
to the main storage unit as data, or writ-
ten into one of several other internal regis-
ters. Also during cycle 4, variables which
result from the execution of microinstruc-
tion may be used to select the address for
microinstruction n+2 and the functions
may be executed for microinstruction
n+1.

Decisions concerning microad-
dress'generation, microfunction selection,
and results storage are made under micro-
code control using the logic function gen-
erator which is a complex selector circuit
controlled by the fields in the microin-
structions. The fields specify the variables
to be applied to the logic function genera-
tor and one of the 16 logic functions to be
performed. The variables can either be
static variables representing processor
state information, or dynamic variables,
such as subprocessor zero detect or sign
bit.

The logic function gen-
erator allows each sub-
processor to.select between
two function codes during
each cycle without altering the microin-
struction sequence. Since this mechanism
gives an apparent branch capability on
each cycle without altering the microin-
struction sequence, this conditional con-
trol capability is called “phantom
branch.” Besides creating an independent
control capability, the phantom branch
minimizes wasted cycles.

There are several ways in which
the phantom branch can be employed to
decrease the time required to execute
macroinstruction. One improvement is re-
alized by making independent real branch
and phantom branch decisions during ex-
ecution of any microinstruction. This ca-
pability makes it possible to shorten the
path lengths required to execute a macro-
instruction. _

Another speed improvement due
to phantom branching is that the execu-
tion functions are chosen at a later point
during the execution of the microinstruc-
tion than the address is generated. This
may be illustrated by observing Fig. 5.

PHANTOM
BRANCH

Operation

. Generate microaddress

Set up data

Execute microinstruction

Store results

Cycle | Cycle | Cycle | Cycle

Fig. 5. Microinstruction Overlap

The address for microinstruction n must
be chosen as a result of the execution-for
microinstruction n-2 at the end of cycle 1,
but the execution functions for microin-
struction n are chosen as a result of the
execution microinstruction n-1 at the end
of cycle 2. If a new function must be se-
lected based on results from microinstruc-
tion n-1, it can be done a cycle earlier us,
ing the phantom branch than would be
possible if the function were selected us-
ing a real branch. This allows shorter mi-
croinstruction sequences and makes pos-
sible extremely tight microinstruction

loops for the performance of repetitive op-
erations, such as multiply and divide.
Since each microinstruction con-
tains two possible microfunctions for each
subprocessor, one microinstruction is of-
ten able to do the work of two. In any
given cycle, only one of the execution
functions may be selected, but in another
use of the same microinstruction, the oth-
er execution function may be used. This

-allows one microinstruction to often do

the work of two and allows a reduction in
the total number of microinstructions.
As an example of the ways in

which this microarchitecture may be
used, the execution of an ADD macroin-
struction will be described. When an ADD
instruction is performed, the macroin-
struction is brought into Instruction Reg-
ister 3 by the storage address generator.
When the macroinstruction is loaded into
Instruction Register 2, an operand ad-
dress generation is performed and an op-
crand is fetched from storage, if necessa-
ry. When the previous macroinstruction
completes, execution of the ADD will be-
gin if there are no outstanding interrupt
or clock update service requests. Execu-
tion begins at the class base address from
the Instruction Decode Table, and at the
same time the macroinstruction is trans-
ferred from Instruction Register 2 into
Instruction Register 1. The next macroin-
struction can then be loaded into Instruc-
tion Register 2 so that its operand address
generation and fetching can be done.

The ADD macroinstruction uses
the load instruction class base. The first
microinstruction performs a number of
functions. If the operand from storage is
available, it is brought in through the
shifter from Operand Register 1 and
shifted if necessary as defined by the j-
field. The operand is then masked with
constants from the local storage (selected
under j-field control) for each subproces-
sor and the results are placed in the accu-
mulators during the execution portion of
the first microinstruction. At the end of
the setup cycle for this microinstruction,
the second microinstruction is selected. A
check is made to see if the operand should
come from a GRS location. If so, control is
transferred to a GRS read microinstruc-
tion which reads the operand from GRS
rather than from storage. If the operand
does not come from GRS, a check is made
to see if the storage operand is resident in
the processor. If it is not, control is trans-
ferred to a microinstruction which waits
for the storage operand. When the oper-
and is available in the processor, control is
transferred to the ADD instruction vector
routine. In the first microinstruction of
this new routine an operand is read from
GRS and added to the first operand which
was previously placed in the accumula-
tors. Then a second microinstruction
stores the result of the add into the A reg-
ister in the GRS and the first microinstruc-
tion or interrupt routine is selected.

An ADD macroinstruction will be
performed by as few as three microin-
structions in 348ns if the storage operand
is available in Operand Register 1 when
the execution begins. The first microin-
struction brings the storage operand
through the shifter and places it into the
accumulators in the subprocessors. The
second microinstruction adds the GDS op-
erand to the storage operand and places
the result in the accumulators. The third
microinstruction stores the results back
into GRS. If the first operand comes from
GRS, the execution time will be increased
by one microinstruction.

The multiprocessor approach is a

178 DATAMATION

-

cost-effective way to incorporate off-the-
shelf LsI into a medium scale computer
system while retaining software com-
patability. The phantom branch mecha-
nism has been introduced as a way to sub-
stantially increase the effectiveness of a
microinstruction by providing decision
points late in the microcycle to select
functions performed in the next microin-
struction. *

REFERENCES

1. Borgerson, B.R.; Tjaden, G.S.; and
Hanson, M.L., “Mainframe Implementation
With Off-The-Shelf LSI Modules,” IEEE
Computer magazine, July 1978, pp. 42-48.

2. Borgerson, B.R.; Godfrey, M.D.; Hagerty,
P.E.; and Ryken, T.R., “The Architecture of

the Sperry Univac 1100 Series Systems,”
Proceedings of the Sixth International
Symposium on Computer Architecture,
Philadelphia, April 1979.

3. Borgerson, B.R.; Hanson, M.L.; and
Hartley, P.A., “The Evolution of the Sperry
Univac 1100 Series: A History, Analysis, and
Projection,” Communications of the ACM,
January 1978, pp. 25-43.

Contributing to this article were the follow-
ing employees of Sperry Univac: Lewis A.
Boone, senior logician with design respon-
sibility for the 1100/60 cpu; Dr. George A.
Champine, director, advanced systems, for
large scale commercial computer systems;
and Dr. Barry A. Borgerson, director, re-
search and technology, Sperry Univac re-
search.

