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L. Bernstein 
Director, Facilities Development 
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Piscataway, New Jersey 08854 

Dear Larry: 

Center 

The Sperry Univac 1100/60 Series of computer systems will be announced 
at the National Computer Conference in New York on June 5, 1979. This 
system offers many features and benefits which will improve the 
economics of BISCUS/FACS and BISCUS/PREMIS and speed deployment. 

The 1100/60 is the newest member of the Sperry Univac 1100 Series 
product line. It will serve as the entry level model offering com­
petitive cost/performdnce with the IBM 11 E11 series. It utilizes many 
technological innovations in its architecture, while remaining 
compatible with other members in the 1100 Series. The general char­
acteristics of the 1100/60 are listed below/and in the attached 
Hardware overview. 1 

- This system spans the performance range fromb.elow the recently 
announced IBM 4341 up to the performance of the IBM 3032. 
Pricing of the system will be competitive with the new price/ 
performance curve of the IBM 4331 and 4341. 

- The 1100/60 system offers six distinct processor performance 
levels. These levels are listed below: · 

. Model Cl - unit processor . Model C2 unit processor with extended instruction set . Model Hl unit proc!ssor with cache . Model H2 unit processor with cache and extended 
instruction set . Model Hl - multiprocessor (2X} . Model H2 - multiprocessor (2X} 

In additjon, expansion to 3X and 4X Multiprocessor systems are 
planned but are not being announced at this time. This future 
announcement will allow system performance in the range of the 
IBM 3033. 
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- Up to 1048M words (4M bytes) of memory per processor is configurable 
in the system. Future increases in memory capacity are planned. 
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- The 1100/60 Systems' performance can be expanded without equipment 
exchange to an 1100/62 multiprocessor with over 4.5 times the 
processor performance of the Cl Model. 

- Through the use of LSI technology and improved packaging techniques, 
the entire system (CPU, IOU, cache, memory) can be contained in a 
single cabinet (3X5 feet). Corresponding reductions in power and 
environmental requirements are also provided. 

- The 1100/60 System, though using many innovative architectural tech­
niques, is compatible with the full 1100 Series product line. 
Application code developed for the 1100/80 System will also run 
on the 1100/60. 

- The 1100/60 System will be the first unbundled Sperry Univac 1100 
Series product. 

- The 1100/60 System is the first 1100 Series product to include 
instructions specifically provided for UNIX/1100. These instruc­
tions will improve performance for character reference and de­
reference operations. 

- The 1100/60 System will allow simultaneous use of BICS and UNIX/1100 
providing an extremely attractive development environment. 

Several new peripherals will also be announced at this time. Their 
highlights are given below: 

- The 8470 Disk and its associated controls will provide 635 M Byte 
disk drives competitive with the new IBM 3570 disk family. These 
drives in fact offer larger capacity with an earlier delivery 
date. 

- The new Uniservo 22/24 tape systems provide low cost tape handling 
for those applications not requiring 6250BPI. 

- An improved low cost 1200 ~PM printer is available. 

These systems provide smaller entry levels for the OTC's, with a more 
flexible growth and entity sizing for either 1100/60's or the larger 
1100/80 Product line. The improved economics will greatly reduce PREMIS 
cost and improve savings. BISCUS/FACS can be modularly implemented 
without requiring large initial capital investments in hardware. 

Deliveries of.this new Series will begin late this year. We would like 
to invite yourself and members of your staff to visit our Roseville 
Development Center for detailed presentations on this new product at 
your earliest convenience. 

UNIX is a trademark of Bell Telephone Laboratories 
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For your planning purposes, we expect that the Univac 1100/60 will have 
an improved price perfonnance of 40% over the Univac 1100/80 and we 
also expect that we will continue to be competitive on the Univac 
1100/80 as other announcements are made. We are preparing more definitive 
cost and performance information of the 1100/60 which we will be able 
to give to you next week. In addition a proposal will be prepared to 
enable Bell Telephone Laboratories to install one of the first systems 
for development activities. This proposal including finn pricing will be 
available in approximately 30 days. 

As we have shown, Sperry Univac is fully competitive with current 
competitive product offerings and will continue to be through 
technological and competitive leadership. 

Sperry Univac is fully committed to the successful implementation of 
BISCUS/FACS and BISCUS/PREMIS and we are available to provide 
assistance in this program. 

CC J. J. Yostpille 
J. M. Nervik 

~~ 
Bell Branch 



PLANNING PRICING COMPARISON 

Central Complex 

1110 2X2 

1100/82 

1100/60 

Memory 

1 Million Words (4 Mega bytes) 

1110 

1100/82 

1100/62 

Mass Storage 

Dual Control & 8 Drives 

1110 8440 

1100/80 8433 

8450 

1100/60 8470 

Cost Millions 

$5.4 

$3.1 

$ .4 

$1,992,000 

515,000 

100,000 

Cost 

382K 

485K 

440K 

364K 

Instruction Time 

600 NS 

335 NS 

1470 NS 

Storage 

160 M WDS 

272 M WDS 

432 M WDS 

1067 M WDS 

Relative Cost 

3.24 
/ 

1.04 

.58 

Cost/Storage 

2.39 

1.78 

1.02 

.34 



4. 0 llARD\\'J\RE OVERVJ E\~ 

The system complex is based on 1100/80 technology 
utilizing lOK ECL and TTL circujtry, microprocessors 
and multi-layer packaging techniques. The CPU, IOU, 
cache-buffer, support controller Jnd mni11 storage unit 
are contained in one cabinet inclu<ling power. This 
approach plus paralleling microprocessors provides 
improved cost/performance characteristics compared to 
the current 1100/80. }.lain memory within the basic lxl 
complex starts 'at 262K wore.ls, expandable to 1, 048K words 
within the single cabinet. 

A System Support Processor (SSP) interfaces to the basic 
system and interfaces directly with the main storage. 
Several 1100 functions are perfor~ed by the SSP including 
systems partitioning, system console, initial load, auto 
recovery and maintenance check of the system. 

• System Cabinetry - J\s opposed to most recent 1100 
Systems, fhc llU0/60 Proccssinp, Complex is housed 
in a single UPSIII cabinet. This reduces cost 
assoc:iate<l with providing scpnrate cabinets and power 
sources for each Central Complex component. Cost an<l 
performance are also enhanced by the reduction of system 
interconnects associated with this concept. 

• System Confi~uration - the 1100/60 Processing Complex 
·is composed of a Central Processing Unit (CPU), Input/ 
Output Unit (IOU), Systc111 Interface Unit (SIU), and 
Main Storage Unit (~!SU). The· minimum system j s n lxl 
with 262K \·:or<ls of storage and no SIU. It may be 
expanded by the ac.ldition of SK words of SIU, and up to 
1048K words of NSU. The maximum system at {nitinl 
announcement will be a 2x2 with 16K ~ords of SIU and 
2096K words of storage. Further expansion to a 4x4 with 
32K words of SIU and 8 million words of stornge will be 
announced approximntely 1 year later. At that time, 
the maximum storage configuration of the lx and Zx 
systems will also be increased to 8 million words. This 
will be accornplishe<l by utilizing one or two separate 
cabinets to house storage, each with up to 4 million 
words of storage. All 3x and 4x systems ~ill require 
these separate (external) storage cabinets. 

Central Proc0ssing Unit - The 1100/60 CPU design is based 
on £L:I---ai1Jm1cro-programming technology. Paralleled 
Arithmetic Logic Unit (ALU) chips arc usc<l to g8in design 
flexibility, reduced cost, re<luce<l size, and reliability. 
The 1100/60 inst1·uction set is. micro-programmc<l 
utilizing a separate random ncccss control store as the 
stora.gc mc<li a. Re 1inbi1 it y is en ha need through use of 
duplex checking, extensive parity generation nn<l checking, 
control store error correction and instructjon rctrv. 
Packaging tcchn1 que ~ a re the same o s those usc<l for the 110 0/ S 
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• Incut/Outtut lln_i_! - IOlJ de5i!!n 1s hn5ed on concepts 
ut1lizc<lor tfte 1100/80. The minimum IOU configuration 
contains 1 Block r.tux Channel Module and 1 Word Channel 
Module (4 worJ channels). Expansion cnpabilities exist 
·to increase this to 2 Block Mux Ch:inncl Modules and 3 
Word Channel Modules (12 Wo1·d Channels) ,or 3 Block Mux 
ChannQl Modules and 2 Word Channel Modules (8 word channels). 
The technology used is rZL. 

·Main Stora~e Unjt - The 1100/60 MSU uses a 16K MOS chip 
to achieve a max)r:ium of lM worJs in a storage module.~ The 
storage array card is the same ns that used in the 7037 
Storage Unjt (1100/80), with the exception being the 
specification of faster storar,e chips. The ~lSU utilizes a 
five port M~tA to intcrfnce with a mnxjmum of two CPU's or 
SIU's, two IOU's and 1 Support Controller. 

Sing:l e bit error corrcc t ion with doub 1 e bit ·error detect ion 
is the error detection/correction technique utilizccl. 

• System Interface Unit - The SIU is a l1igh speed SK buffer 
memory JcdicateJ to interfacing it5 assigned CPU with Main 
Storage. In 1100/60 Systems with S.IU, the cabling between 
processor and ~lain Store (non-SIU systems) is repl:iccd with 
an SIU and associative cabling, thus directing CPU storage 
references to the SIU. This allows for the configuring of 
an 1100/60 System \dth or without SIU without duplicating 
interfaces. 

• ~upport Contr_::llcr (SC) - The SC_ provides the system interface 
et,,·een the SSP an<l each mo<lul e. Up to two SSP' s can be 

interfaced per SC. 

• ~yltam Support Processor - The ·ssp is a product 1 ine UTS 700/ 
C 7 Processor configured with supportive diskette storage, 

Maintenance Interface Adopter, System Interf:ice Adapter and 
65K bytes of storage. A .UZOO provides the System Console 
function. The SSP ]nterfaccs directly with main storage 
through an MMA port and 'vi th the CPU, SIU, and IOU through 
the SC scan set interface. 

Several 1100 functions previously performed via separate 
hardware components have been replaced by th~ SSP application. 
They arc: 

• System Partitioning 
• System Console 
• Maintenance Panel 
• Processor Controls 
• Maintcnan~c Processor 

cotv:PANY CONFlC~I·lTl!.L 
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Other function~ supported by the SSP nrc: 

• Initial Load 
• Auto Recovery 
• Control Store Loading 
• Trace Support 
·Error Analysis 
·On-Linc/Off-Linc ~bintcnance 
• Performance Monitoring 

.~ 

•Field Instruction Set - The fielJ instructions arc 18 new 
COBOL oriented instructions designed to enhance the byte/ 
character manipulate capabilities of 1100/60 Systems. For 
multi-processor systems, one fieJJ instruction feature is 
required for ecich central processor if the enhanced instruction 
set is desired. The appropriate compilers will be modified 
to take advantage of the new instructions if they exist in an 
1100/60 System. 

• Perform:ince Mo1dtor - This feature provides a CPU with the 
capability to collect system profile hardware data and 
soft\,·are performance data. The hardware related data will 
provide utilization of individual hardware modules such as 
processor busy and individual I/O Channel activities, as 
well as interdependencies between them (e.g. CPU idle and 
a given I/O Module active). The software related data will 
provide system or user softv;arc state information. This 
feat u r c may b c use J in conj u n ct i on w i t h the Soft~,· are 
Instrumentation Package (SIP), nlthou6h SIP need not be 
used to collect the profile data. If the performance monitor 
feature is sclecte<l, one feature will be required in each 
1100/60 processing complex. • 

' • • S ? s t em Par t i t ion in g - Par t i t i o 11 i n g o f c e 11 t r a 1 c o in p 1 c x 
components CPU, IOU, SIU, t,ISU) is a standard feature of 
the system. It is accomplisheJ by the SSP Software enabling 
and disabling hardware interfaces in the system. 

Partitioning of subsystems is accomplished by adding optional 
partitioning features to the system. These '"ill also he 
controlled by the SSP software, anJ will cnablc/<lisablc SPI 
parts, or switch channels to byte subsystems by remotely 
controlling a Byte Channel Transfer Switch. 

Partitioning of 1100/60 Systems will be functionally equivalent 
to 1100/80 Systems with the combination of the TU, SAU and 

·Bers. 
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Introduced last month ~t the NCC, the new processor contains 
a "phantom branch" mechanism to avoid lost cycles in its overlapped structure 
and a good deal more. ·. ' . 

J 

THE 
MICROARCHITECTU E 
OF UNIVAC'S 
1100/60 
Several alternative LSI Implementation 
approaches are available as potential can­
didates for use in a processor. These in­
clude custom, semicustom, gate array, 
hybrid (multichip), and multimicroproc­
essor. With respect to the objective of im­
plementing a medium performance LSI 
version of an existing processor macroar­
chi tecture, each has drawbacks which in­
clude various combinations of high design 
costs, long design time, part type prolifer­
ation, low speed, inefficient use of chip 
area, high cost, and pin count limitation. 

A multimicroprocessor design 
technique has been implemented in the 
Sperry Univac 1100/60. A significant 
feature of this technique is that it allows 
the implementation of existing 
macroarchitectures without the software 
base., This software compatability •.s 
achieved with improvements in cost/per­
formance, and allows a large amount of 
duplicated logic to be economically incor­
porated into the system to achieve a high 
degree of fault detection. 

It was recognized from the begin­
ning that simply ganging sufficient 
microprocessors to form a full-word arith-

metic logic unit would fall short of the 
performance target. Many possibilities of 
achieving higher performance were inves­
~igated. The approach that appeared most 
promising was to provide multiple micro­
instruction execution units that would 
concurrently execute parts of a macroin­
struction. Thus, each macroinstruction 
would be decomposed into a set of atomic 
operations. Atomic operations that can be 
executed concurrently are identified and 
are executed in parallel on separate mi­
croinstruction execution units. To in­
crease performance still further, execu­
tion of microinstructions is overlapped 
and a unique branching scheme is used to 
avoid lost microcycles due to conditional 
branching in the microcode. 

To reduce costs, the inputs and 
outputs of the microinstruction execution 
units are bussed. This eliminates the need 
for logic to steer the information in and 
out of these execution units. Investiga­
tions indicated that the use of common 
input and output buses would not signifi­
cantly impact performance. In addition to 
saving gating logic, the input bussing al­
lows the use of a single shifter and the 
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Fig. 1. 10800 Microprocessor 

output bussing makes it economically via­
ble to duplicate the microinstruction exe­
cution units and compare results at a sin­
gle point. 

The fastest available microproces­
sor slice, the Motorola 10800, was select­
ed as the LSI building block for the 1100/ 
60. It is a 4-bit slice using lOK ECL tech­
nology. None of the companion chips 
designed specifically to be used with the 
10800 (e.g., control chip) were used. The 
surrounding logic is composed of conven­
tional MECL lOK components with heavy 
emphasis on using four- and eight-input 
multiplexor chips and various PROM'S and 
RAM'S. 

Fig. l is a simplified diagram of 
the l 0800 showing the paths that are ac­
tually used in the 1100 / 60. The basic in­
struction repertoire consists of add, sub-

,, 4 Word 
Channels 

1 Block 
MUX Cllannel 

System 
Support 
Processor 

tract, complement, shift one bit, AND, OR, 
exclusive OR, and NOT. More complex 
functions such as multiply and divide are 
achieved by microprogramming. The 
mask network shown in Fig. l allows a 
Boolean function to precede an arithmetic 
function during the same microcycle; this 
capability is used heavily to attain sp~ed. 
The constraint of shifting only one bit per 
cycle is a severe one and necessitates a 
high-speed shifter. Shifting is a pin-limit­
ed function; thus it is a general problem 
with all bit-sliced microprocessors. Two 

, notable differences between the I 0800 
microprocessor slice and a more conven­
tional ALU slice are the inclusion of the 
latch on the B bus and the internal accu­
mulator. The A bus does not have a latch, 
necessitating an external register com­
posed of ECL flip-flops. The D bus can be 

Fig. 2. White boxes show minimum configuration 

174 DATAMATION 

disabled by a function bit so that a wired 
OR can be used on the output bus. 

The timing specification of a chip 
as complex as this one (350 equivalent 
gates, LSI by any standard) is not simple. 
Some appreciation of the speed can be ob­
tained from the fact that an add instruc­
tion, A+ B to D, typically takes 40ns. Of 
more interest when emulating a 36-bit 
wide system is the fact that the propagate 
and generate signals (to carry a 
lookahead network) are available after 
only 24ns typical. 

1100 SERIES 
MACRO­
ARCHITECTURE 

The 1100 series 
architecture has been 
described elsewhere 
in some detail. The 

more limited purpose here is to describe 
enough of the 1100 Series architecture to 
be able to understand the multimicro­
processor implementation described be­
low. This series, introduced with the 1107 
system in 1962, is based on 36-bit instruc­
tion and operand words. 

The instruction word is divided in­
to seven fields. The /-field indicates the 
operation to be performed and specifies 
how the remaining fields are to be inter­
preted. The j-field either controls partial 
word transfers to and from storage, or it 
acts as an extension to thef-field in defin­
ing the operation to be performed. 

The a-field selects one or more lo­
cations in the General Register Set (GRS) 
to provide one of the operands for each 
instruction. The GRS is a 128-location, 
high-speed random access storage in the 
processor. There are three primary types 
of registers in the GRS: the X registers are 
used for storage operand address index­
ing, the A registers are used as general 
purpose arithmetic registers, and the B 
registers are used as a special purpose 
working registers. An 1100 Series macro­
instruction can spec,ify operands from ei­
ther one register and a main storage loca­
tion, or from two registers. Most 
instructions operate on 'run or partial sin­
gle-precision, 36-bit operands. However, 
some instructions use double precision, 
72-bit operands. 

The x-field in the instruction woPd 
specifies a GRS register to be used for stor­
age address indexing. The X register con­
tains'. two fields. One field is used as an 
address modifier, and the other field is 
used as an increment value to the modifier 
field. The contents of the modifier field of 
the X registe.r. is added to the contents of 
the u-field of the instruction to form a 
relative storage adpress. If the resultant 
address is less than 128, th~ source for 
both of the operands for the instruction is 
GRS. Otherwise it is added to a base regis­
ter to form an absolute operand storage 



address. ; 
The one-bit h~field indicates when 

the X register selected by the instruction 
is to be automatically incremented when 
the instruction is executed. When h= 1, 
the two fields are added and the result is 
used to replace the former value of the 
modifier field. • 

The i-field specifies indirect ad­
qressing. When this one-bit field is set, the 
i,fata word read from the location speci­
fied by the address is used to form recur­
sively another absolute operand storage 
address until the i-field of the new word is 
not set. 

As with aM 1100 Series systems de­
livered since 1968, the 1100/60 (see Fig. 
-2) is available in multiprocessor configu­
rations. Each system support processor 
incorporates a maintenance processor and 
a console. Each instruction processor exe­
cutes the 1100 Series instruction reper­
toire and, in addition, has new decimal 
and variable-length field manipulation in­
structions. These new instructions in­
crease the execution S'peed of COBOL, and 
improve the execution speed of a number 
of other software packages. An optional 
8K-word cache buffer can be supplied 
with each instruction processor. Each in­
put/ output unit supports up to 12-word 
channels and up to three block multiplex­
or channels, and has a direct interface 
main storage. 

Physical packaging is very com­
pact, with the instruction processor, I/O 
unit, cache buffer, and one million words 
of main storage fitting into a single cabi­
net 2.0 meters long by 0.75 meters wide. 
The instruction processor and cache hard­
ware are ECL, the I/O unit is TTL, and main 
storage is 16K-bit MOS. Standard 1100 
Series peripherals can be used with 1100/ 
60. The speed of a unit instruction proc­
essor with a cache is about 1.3 times that 
of an 1108. 

THE 1160's 
MICRO­
ARCHITECTURE 

With respect to the 
research design, the 
1100/60 uses the ex­
tended instruction 

repertoire of the Univac 1100/80 rather 
than the 1108 instruction repertoire. Al­
so, the four-base-register addressing of 
the 1100 /80 is used rather than the two­
base-register addressing of the 1108. 

Seven half-word microinstruction 
execution units are required to minimize 
the address calculation time of the 1108. 
Because the 1100/60 has twice as many 
active segments, even more microinstruc­
tion units would be required. To avoid in­
troducing a large number of microin­
struction units, most of which would be 
used only for addressing, and to allow 
macroinstruction overlap, it was decided 

To 
Shifter 

To Instruction 
Decode Table 

To 
Shifter 

To Operand 
Address 

Generator 

From Main Storage 

Fig. 3. Instruction and Operand Registers 

to use dedicated logic to perform address 
calculations. This change reduced the 
number of microinstruction execution 
units to two, and allowed overlapping at 
both the microinstruction and macroin­
struction levels. 

The 1100 / 60 microarchitecture 
consists of a microexecution section and a 
storage address generation section. The 
microexecution section consists of two 36-
bit microinstruction execution units. 
Each microinstruction execution unit 
contains a subprocessor constructed from 
nine 4-bit microprocessors and associated 
control circuitry. 

The storage address generator em­
ploys four sets of base address and limits 
checkers which operate in parallel to al­
low four base additions and limits viola­
tion checks to be done simultaneously. 
The storage address generator operates in 
I I 6ns cycles, the same as microinstruc­
tion execution. 

Operand address generation can 
take one or two microcycles. In the first 
microcycle, the u-field of the macroin­
struction is used as a relative operand ad­
dress and added to all four bases simulta­
neously. Within the same cycle, limits 
checking is performed and the proper ab­
solute operand address is selected. If the 
relative address is less than 128, a desig­
nator bit is set which will be interrogated 
later by microde to indicate that the oper­
and must be fetched from the GRS. 

While these operations are taking 
place, a text of the index (x) field in the 
microinstruction is made. If the x-field is 

. zero, the absolute address generated by 
the operation just described is used to 
fetch the operand. If the x-field is non-

zero, the x register is read up, the contents 
of the modifier field are added to u to 
form a new relative address, and a second 
absolute operand address generation 
takes place. Two cycles are required when 
x is nonzero. 

Instruction address generation is 
similar to operand address generation. 
The relative address of the previous in­
struction is kept in a holding register. A 
new instruction address is generated by 
adding one to the contents of this holding 
register to form a new relative instruction 
address, adding all four bases to the new 
relative address, and checking against the 
limits registers to select the absolute in­
struction address. The entire instruction 
address generation takes one microcycle. 

Instruction and operand address 
generation takes place alternately in the 
same base adder and limits checker hard­
ware. Requests are made until the oper­
and and instruction registers are full as 
described below. 

Besides the base adders and limits 
checkers, the storage address generator 
contains instructions and operand buff 
registers. Fig. 3 shows the operand and 
instruction registers. There is one storage 
interface port in the processor. As each 
request is made, the storage address gen­
era tor determines whether it is a request 
for an instruction or for an operand. 
When a word comes into the processor 
from storage, it is routed into an operand 
or instruction register by control signals 
from the storage address generator. 

Instruction Register I contains the 
macroinstruction (program instruction) 
currently being executed by the micro­
code in the processor. The next instruc-
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tion to be executed is contained in In­
struction Register 2. The x- and u-fields 
from this macroinstruction are used in the 
storage address generation procedure de­
scribed above. While the microcode is ex­
ecuting the macroin.struction in Register 
I, the storage address generator fetches 
the operand for the instruction contained 
in Register 2. The next macroinstruction 
beyond that one is contained in Register 
3. Thus it is possible for three macroin­
structions to be resident in the processor 
simultaneously. 

Operand Register I contains the 
operand for the instruction currently be­
ing executed in the microcode. Operand 
Register 2 normally contains the operand 
for the next instruction. Thus operands 
for two instructions can be resident at one 
time: Operand Register I, containing the 
operand for the instruction currently re­
siding in instruction Register I; and Oper­
and Register 2, containing the operand 
for the instruction currently in Instruc­
tion Register 2. 

MICRO­
EXECUTION 
SECTION 

When a jump or multiple 
operand instruction is per­
formed, the operand regis­
ters function somewhat 

differently. Fig. _4 is a diagram of the 
microexecution section. The two sub­
processors drive a single main databus 
which can feed main storage, the GRS, the' 
local storage for each subprocessor, or the 
shifter input selector. The A bus input to 
each subprocessor is driven by a dedicated 
256-location local storage. The B bus in­
puts are driven by a common 36-bit, high 
speed shifter. 

Each 1100 / 60 macroinstruction is 
executed by a series of microinstructions. 
While each new macroinstruction is in 
Register 2 undergoing storage address 
generation, the f. j, and a-fields are used 
to generate the address of the first micro­
instruction of the routine which will exe­
cute the macroinstruction. This is done 
through the use of a 256-location, 40-bit 
instruction Decode Table containing one 
location for each macroinstruction in the 
1100/60 instruction repertoire. 

The output of the instruction De­
code Table consists of three fields. The 
first field is an I I-bit class base, the sec­
ond field is an I I-bit instruction vector, 
and the third field contains control bits. 
To minimize the total number of microin­
structions required to execute all of the 
macroinstructions in the I I 00/ 60, the ex­
ecution of each macroinstruction is divid­
ed into two microroutines. The first 
microroutine starts at the class base ad­
dress. At any point during the execution 
of the macroinstruction, a second 
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To Main Storage 

Fig. 4. Microexecution Section 

microroutine may be started at the 
microaddress instruction vector. This al­
lows the use of fewer total microinstruc­
tions because most macroinstructions 
may use a common class base microrou­
tine and require only one or two unique 
microinstructions. The control bits 
(which can be unique to each macroin­
struction) can modify the operation of the 
microcode in such a way that a single 
microroutine can be used for more than 
one macroinstruction, allowing further 
reduction in the total number of microin­
structions. 

When the microcode completes 
the execution of the current macroin­
st'ruction, the next macroinstruction to be 
executed is transferred from Instruction 
Register 2 into Instruction Register I. 
Then, microroutine to execute the in­
struction is started at the class base ad­
dress from the Instruction Decode Table. 

Four I I 6ns microcycles are re­
quired for the completion of each micro­
instruction. To obtain an effective micro- · 
instruction time of I I 6ns, micro­
instructions are overlapped four deep. 
Fig. 5 shows the microinstruction overlap 
of our four typical microinstructions. 

During cycle I, the address for mi­
croinstruction is generated using fields 
contained in microinstruction n- I com­
bined with variables generated by the re­
sults of execution of microinstruction n-2. 
In cycle 2, microinstruction n is fetched 
from control store and used to control the 
setup of the data which will be presented 
to the subprocessors for use during the 

Instruction Register 2 

execution portion of the microinstruction. 
-During cycle 3, the execution for 

microinstruction n takes place. An arith­
metic or logic function is performed 
which combines the data loaded into the 
A and B bus latches for each subprocessor 
at the end of cycle 2 with the data placed 
in the accumulators as a result of the exe­
cution during cycle•2 for microinstruction 
n-1. The results of executions are loaded 
into the accumulator registers toward the 
end of cycle 3. At the beginning of cycle 4, 
the contents of the accumulator register 
in one of the subprocessors is chosen to 
drive the main data bus from where it may 
be loaded into the GRS or local store, sent 
to the main storage 'unit as data, or writ­
ten into one of several other internal regis­
ters. Also during cycle 4, variables which 
result from the execution of microinstruc­
tion may be used to select the address for 
microinstruction n+2 and the functions 
may be executed for microinstruction 
n+l. 

Decisions concerning microad­
dress•genera ti on, microfunction selection, 
and results storage are made under micro­
code control using the logic function gen­
erator which is a complex selector circuit 
controlled by. .the fields in the microin· 
structions. The fields specify the variables 
to be applied to the logic function genera­
tor and one of the I 6 logic functions to be 
performed. The variables can either be 
static variables representing processor 
state information, or dynamic variables, 
such as subprocessor zero detect or sign 
bit. 



PHANTOM The logic (unction gen­
BRANCH erator allows each sub­

processor to.select between 
two function codes during 

each cycle without altering the microin-
struction sequence. Since this mechanism 
gives an apparent branch capability on 
each cycle without altering the microin­
struction sequence, this conditional con­
trol capability is called "phantom 
branch." Besides creating an independent 
control capability, the phantom branch 
minimizes wasted cycles. 

There are several ways in which 
the phantom branch can be employed to 
decrease the tim~ required to execute 
macroinstruction. One improvement is re­
alized by making independent real branch 
and phantom branch decisions during ex­
ecution of any microinstruction. This ca­
pability makes it possible to shorten the 
path lengths required to execute a macro­
instruction. 

Another speed improvement due 
to phantom branching is that the execu­
tion functions are chosen at a later point 
during the execution of the microinstruc­
tion than the address is generated. This 
may be illustrated by observing Fig. 5. 

Operation 

. Generate microaddress 

Set up data 

Execute microinstruction 

Store results 

Fig. 5. Microinstruction Overlap 

The address for microinstruction n must 
be chosen as a result of the execution· for 
microinstruction n-2 at the end of cycle I, 
but the execution functions for microin­
struction n are chosen as a result of the 
execution microinstruction n-1 at the end 
of cycle 2. If a new function must be se­
lected based on results from microinstruc­
tion n-1, it can be done a cycle earlier us, 
ing the phantom branch than would be 
possible if the function were selected us­
ing a real branch. This allows shorter mi­
croinstruction sequences and makes pos­
sible extremely tight microinstruction 

loops for the performance of repetitive op­
erations, such as multiply and divide. 

Since each microinstruction con­
tains two possible microfunctions for each 
subprocessor, one microinstruction is of­
ten able to do the work of two. In any 
given cycle, only one of the execution 
functions may be selected, but in another 
use of the same microinstruction, the oth­
er execution function may be used. This 

· allows one microinstruction to often do 
the work of two and allows a reduction in 
the total number of microinstructions. 

As an example of the ways in 



which this microarchitecture may be 
used, the execution of an ADD macroin­
struction will be described. When an ADD 
instruction is performed, the macroin­
struction is brought into Instruction Reg­
ister 3 by the storage address generator. 
When the macroinstruction is loaded into 
Instruction Register 2, an operand ad­
dress generation is performed and an op­
erand is fetched from storage, if necessa­
ry. When the previous macroinstruction 
completes, execution of the ADD will be­
gin if there are no outstanding interrupt 
or clock update service requests. Execu­
tion begins at the class base address from 
the Instruction Decode Table, and at the 
same time the macroinstruction is trans­
ferred from Instruction Register 2 into 
Instruction Register I. The next macroin­
struction can then be loaded into Instruc­
tion Register 2 so that its operand address 
generation and fetching can be done. 

The ADD macroinstruction uses 
the load instruction class base. The first 
microinstruction performs a number of 
functions. If the operand from storage is 
available, it is brought in through the 
shifter from Operand Register I and 
shifted if necessary as defined by the j­
field. The operand is then masked with 
constants from the local storage (selected 
under j-field control) for each subproces­
sor and the results are placed in the accu­
mulators during the execution portion of 
the first microinstruction. At the end of 
the setup cycle for this microinstruction, 
the second microinstruction is selected. A 
check is made to see if the operand should 
come from a GRS location. If so, control is 
transferred to a GRS read microinstruc­
tion which reads the operand from GRS 
rather than from storage. If the operand 
does not come from GRS, a check is made 
to see if the storage operand is resident in 
the processor. If it is not, control is trans- ' 
ferred to a microinstruction which waits 
for the storage operand. When the oper­
and is available in the processor, control is 
transferred to the ADD instruction vector 
routine. In the first microinstruction of 
this new routine an operand is read from 
GRS and added to the first operand which 
was previously placed in the accumula­
tors. Then a second microinstruction 
stores the result of the add into the A reg­
ister in the GRS and the first microinstruc­
tion or interrupt routine is selected. 

An ADD macroinstruction will be 
performed by as few as three microin­
structions in 348ns if the storage operand 
is available in Operand Register I when 
the execution begins. The first microin­
struction brings the storage operand 
through the shifter and places it into the 
accumulators in the subprocessors. The 
second microinstruction adds the GDS op­
erand to the storage operand and places 
the result in the accumulators. The third 
microinstruction stores the results back 
into GRS. If the first operand comes from 
GRS, the execution time will be increased 
by one microinstruction. 

The multiprocessor approach is a 
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cost-effective way to incorporate off-the­
shelf LSI into a medium scale computer 
system while retaining software com­
patability. The phantom branch mecha­
nism has been introduced as a way to sub­
stantially increase the effectiveness of a 
microinstruction by providing decision 
points late in the microcycle to select 
functions performed in the next microin­
struction. 0 
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