UNIVAC®

1230

MILITARY
COMPUTER

PROGRAMING MANUAL

PROGRAMING MANUAL
FOR

1230 COMPUTER
(15 BIT MODE)

PX 3892

FEBRUARY 1966

UNIVAC

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

Copyright© 1965 by the Sperry Rand Corporation. Printed in the United States of America.
All rights reserved. This book, or parts thereof, may not be reproduced in any form without

permission of the Sperry Rand Corporation.

PREFACE

In accord with UNIVAC’s policy of maintaining compatibility in its computer designs,
thus minimizingitransition time and costs as users upgrade and expand their sys-
tems, the 1230 Computer has been designed to operate with CP-642B Software and
operational programs. Mechanically, this is accomplished through the setting of a

console switch to operate the computer in the 15-bit mode.

When operating the 1230 bin 15-bit mode additional instructions are available which
are not included with the standard CP-642B and, significantly, instruction execution
times are at least twice as fast.
Improvements in the 1230 include:

o Twice as fast execution times of instructions

o Continuous data mode data transfers

o Externally specified index

o Externally specified address

o 128 or 256 (as opposed to 64 in the CP-642B) word thin film control memory

o Overlapping memory banks

Any reference to "the computer" in this manual refers to the UNIVAC 1230 Com-

puter.

iii

For additional information concerning the 1230 system, refer to the following 1230

manuals:

Compiling System Manual PX 3890
Operating and Support Manual PX 3891

iv

CONTENTS

The modular nature of this manual makes a normal table of contents impractical.
Instead, the manual has color-coded index tabs to give an overview of the contents
and provide for easy access to any portion of the manual. Each index tab identifies
the section of the manual that follows it. Where appropriate, individual sections

list the contents of the section. Index tab colors have the following meaning:

Blue index tabs - main sections
White index tabs - first level of subsection
Silver index tabs - second level of subsection

COMPUTER CHARACTERISTICS

INTRODUCTION

The UNIVAC 1230 Computer is a compact, medium-scale, military, stored-program machine.
It is a powerful real-time device designed for rapid processing of continuous high-rate,
through-put data. The computer is especially suited for such real-time applications as missile
guidance, range safety, process monitoring, and tactical control and display. Relative to other
general-purpose systems, the computer emphasizes rapid communication between external de-
vices and a large internal random access storage. It is equipped with a 400-nanosecond control
memory operating in synchronism with the 2-microsecond main core memory. The main mem-
ory further enhances the operational speed of the computer by its ability to operate as two
parallel, overlapped banks, thereby producing an effective cycle time of 1 microsecond. This
advanced design feature results in a command execution time as low as 2 microseconds and an
input/output transfer capability of 500,000 30-bit words per second. The computer (complete
with 32K 30-bit words of random access core storage, 128 or 256 words of control memory,
16 input channels and 16 output channels under full buffer and/or real-time control, arithmetic
section, control circuitry, power supply, and operator’s or maintenance panel) is packaged in a
ruggedized cabinet occupying less than 60 cubic feet of space.

The computer has in its repertoire 77 instructions that specify basic input/output, arithme-
tic, or logical operation to be performed. Computer operation is fully automatic because the
sequence of operation is determined by a program of internally stored single-address instruc-
tions capable of self-modification. To attain high computing speed, the computer operates in a
parallel mode, i.e., all the digits of a word are operated upon simultaneously. It can process
large quantities of constantly changing complex data at high speeds on a real-time basis. The
basic word is 30 binary digits or bits. Optional operation with 15-bit half words may be used.
A word may be an instruction, number, or an arbitrarily coded quantity. The core memory
cycle time, or the time needed to read and restore 1 word, is 2 microseconds. The readout
time, or the time between a given function assuming control of memory and the delivery of the
data from memory, is approximately 0.9 microsecond.

The versatile input/output system of the computer permits it to operate on-line with associated
communications peripheral equipment, other computers, and standard peripheral input/output
equipment on a time-shared basis. Communications with associated peripheral equipment are
handled by block transfer of data or by real-time events requesting one or more words. Once
initiated, neither of these requires further main program attention unless immediate process-
ing is demanded.

The 1230 Computer is designed to operate as a central processor of a system supply-
ing up to 32K words of memory in its main frame or it can, by its addressing structure,
command an additional external overlapped bank memory unit that can contain up to five
16,384-word modules of core memory and four additional input/output channels. A multi-
processing capability is a further objective of the design since two 1230 Computers may be

1 of 49

connected to the external memory unit, each having access to the overlapped memory modules
and the four input/output channels on a time shared basis. (See Figure 1.)

Thus, each of the 1230 Computers has access to its own dual bank core memory and any one of

the five memory modules of the external memory at any time. Logical memory lockout and
priority is provided to prevent interference. '

COMPUTER FEATURES

TYPE

General-purpose, medium-scale, solid-state, parallel, binary
MEMORY

Main Memory—Main Frame

Magnetic core - random access

2 overlapped banks

0.9 microsecond read access time, coincident current

2.0 microsecond read-write cycle time (effectively 1 microsecond)
30-bit word length, parallel transfers

32,608 directly addressable, half or full word operands

Certain locations are assigned in the first 653 addresses for the Interrupt Entrance registers

]

Control Memory
Word oriented magnetic thin film

® 400-nanosecond cycle time

® 30-bit word length, parallel transfers

® 128 words, directly addressable, half or full word operands
® 256 words, optional

Directly addressable as cells 00100 to 00277 or 00477; used for storage of buffer control

words, 7 index registers, and the real-time clock; operates independently and concurrently
with main memory

2 of 49

6% 30 ¢

TR AN) 5

U T IR P Y AT WY TS0

ESI
ESA
ChOM

NOT AVAILABLE

ON ALL 4 CHANNELS [—mm g
ON CHANNEL 3 ONLY

I6K

o>

16K

4 INPUT
CHANNELS

16K

4 OUTPUT <@—

cCHANNELS <— | | :

G

OPTIONAL EXTERNAL MEMORY

ESI
ESA

com | CH

16 OUTPUT

CHANNELS

16 INPUT
CHANNELS

16K
ALL MEMORY MEMORY

ANNELS SELECT T 16K
MEMORY

v

I6K
MEMORY

16K
MEMORY

MEMORY
SELECT

[

CONTROL

3

2!

ARITHMETIC

ARITHMETIC

UNIVAC 1230 COMPUTER A

ALL
CHANNELS

16 OUTPUT
CHANNELS

16 INPUT
CHANNELS

UNIVAC 1230 COMPUTER B

Figure 1. Dual Computer Configuration

DR R e T T

LT

P 55 A TR A A VRS K TPV VNN A, M T AT 1

NDRO Memory
Word oriented transformer cores
o 300-nanosecond read time
e 30-bit word length, parallel transfers

e 2 32-word memories

Two nondestructive memories provided for initial load/error recovery purposes; selected by
switch at the console; addressable as cells 540-577

ARITHMETIC

Organization

30-bit parallel, one’s complement integer binary

Registers

Two 30-bit registers, addressable as A and Q, may be linked as one 60-bit register
Functions

e Arithmetic operations include add, subtract, multiply, divide, and square root
o Fifteen logical operations

Instruction Execution Timing (including indexing)

® Add, subtract, logical - 2 to 4 microseconds

e Multiply - 8 microseconds

e Divide - 14 microseconds

¢ Square root - 8 microseconds

¢ Compare, mask compare, and branch - 2 to 4 microseconds
® Register shifts - 2 to 4 microseconds (maximum)

CONTROL

e Single address instruction organization v

e Branching according to six algebraic conditions of A and Q available on most instruc-
tions

e Control memory operates in the shadow of main memory and normally does not add
to execution time

4 of 49

o Half-word addressing

o Address modification via seven thin-film-memory-contained index registers

o Sequential execution of instructions

o DProvides timing and addressing structure for internal and external core memory
references

INPUT/OUTPUT

Channels

Sixteen input and 16 output channels provide input/output transfers under full buffer control,
do not require program attention, and operate asynchronously at the rate required by external
devices. Words located in the Control Memory guide data transfers which require only two
microseconds of main memory time for each 30-bit word transferred in or out.

Intercomputer Transfers

Thirty-bit parallel data transfers allow direct communication with UNIVAC CP-642A, CP-642B,
1218, 1219, CP-66", and other compatible computers.

Transfer Rate

(Fast Interface) One channel - 166,667 30-bit words per second (maximum)
3 or more channels - 500,000 30-bit words per second (maximum)
(Slow Interface) One channel - 41,666 30-bit words per second (maximum)
Multichannel - 333,333 30-bit words per second (maximum)

Real—-Time Clock

Internal, 1024 cps, with a provision for external substitution
Interrupts

Eighty-one unique interrupts are provided as follows:

1 Fault Interrupt

16 External Interrupts (one per channel)

16 External Function Monitor Interrupts (one per channel)
16 Output Monitor Interrupts (one per channel)

16 Input Monitor Interrupts (one per channel)

16 Intercomputer Timeout Interrupts (one per channel)

5 of 49

Priority

Priority of interrupts is determined according to channel, with a subpriority evaluation in case
of ties according to function in the order listed above.

Input/Output Control

Ten basic program instructions are devoted to the control of input/output, providing positive
control and a high degree of sophistication in programing.

Continvous Data Mode (CDM)

This feature allows automatic reinitiation of previously established buffers under program con-
trol. The termination of the buffer is also program controlled.

Externally Specified Addressing (ESA)

This feature enables a data word to be stored or read from an address directly specified by
an external device.

Externally Specified Indexing (ESI)

ESI is used to transfer data words, indirectly specified by the external device; that is, the ex-
ternal device specifies the address of the buffer control words for this particular transfer.

6 of 49

ORGANIZATION

Internal storage of the computer main frame consists of two 16K-~word, ferrite-core main
memory banks operating simultaneously. A complete cycle for storage or retrieval of two 30-
bit words requires two microseconds. An additional storage area, designated as control mem-
ory, provides 128 addressable locations with a read/restore cycle time of 400 nanoseconds.

Single address instructions are employed, most of which have an execution time of four to six
microseconds when programed in a 3ingle bank; two to four microseconds when the dual
banks feature is utilized.

Arithmetic and logical operations are performed in the parallel binary mode. For most oper-
ations, the result appears in a 30-bit accumulator register. Arithmetic is one’s complement,
subtractive with a modulus (230.1). Computer operation is controlled by a stored program
capable of self-modification. Each program instruction contains a function code (6 bits), an
instruction operand designator (13 or 15 bits), and three or four execution modifiers (2,3, or 4
bits). Execution modifiers provide for branch point designation, operand interpretation, input/
output channel, minor function, address modification, or memory bank designation. The oper-
and designator may be a simple constant that may or may not be modified by the contents of an
index register, or it may be a partial execution address extended as dictated by the memory
bank designator with or without index modification. The operand specified by the execution ad-
dress may be interpreted as a 30-bit quantity or as a 15-bit half word with or without sign
extension. The next sequential program step may be skipped if the arithmetic, logical or key
position condition specified by the branch condition designator is met.

The 1230 Computer can be operated within its 32K internal memory as a CP-642B Computer in
which case the Special Registers are ignored or it can be operated with the full capabilities of
the 1230 thereby extending its memory addressing capacity to a maximum of 114K words.

Communications between the computer and its associated external equipment are normally
accomplished by a buffered transfer of data, with timing under control of the external device.
Operating asynchronously with the main computer program, such transfers of data have inde-
pendent access to storage. The number of data words transferred is under program control by
specifying the first and last memory address in the buffer.

The input/output section of the computer is capable of communicating with other UNIVAC Mili-
tary Computers and with other military and commercial peripheral equipment.

A communication path is established by a sequence of request and acknowledge signals between
external equipment and computer. The communication may be initiated by either the computer
or the external device. External request signals interrupt the main computer program and
cause the computer to establish a communications channel between the external equipment and

T of 49

the computer core memory. Once the communication line has been created, the computer re-
turns to the main program sequence, and transfer of input or output data proceeds without pro-
gram reference until completed.

Up to 16 input and 16 output channels are provided in the computer main frame; each channel
consists of 30 parallel data lines plus control lines.

. Any input/output channel is capable of communicating with either another compu-
ter, or by changing printed circuit jumper cards, with peripheral equipment. (Either
fast or slow interface may be used, depending upon the type of I/O amplifiers plugged
into the chassis.)

A group of four channels may be converted from fast to slow interface and vice versa by sim-
ply changing plug-in, printed circuit cards within the channel circuitry.

In addition to data words, output channels carry external function words to the external equip-
ment. These words specify the function that the external device is to perform. Control of the
external function transfer is accomplished in the buffer mode. This feature allows the compu-
ter to continue engaging an external device after completion of each function. An external
function word to a tape control unit, for example, may specify Rewind Tape Unit 2 . When
Tape Unit 2 has informed the computer that the operation has been initiated, the computer
can respond by transmitting another external function word, for example, Write on Tape
Unit 1 without program interruption.

Transfers of input and output data are controlled by priority and access control logic. The
computer is designed to give first priority to channels and secondary priority to function. By
circuit card placement, it is possible to assign a priority to any chassis of four channels, and
then to the channels in that chassis. In this new method it is possible to assign top selection to
any channel and varying degrees of lesser priority to the other channels.
The descending order of function priority is as follows:

. Advance Real-Time Clock

. External Interrupt

. External Function Request

. Output Request

° Input Request

8 of 49

. Intercomputer Monitor Interrupt
° External Function Monitor Interrupt
° Output Monitor Interrupt

° Input Monitor Interrupt

CONTROL SECTION

The Control Section (see Figure 2) consists of those registers and circuits necessary to pro-
cure, modify, and execute the instructions of the program.

The U register (30 bits) is the program control register. It holds the instruction word during
execution of an instruction. The function code and the various execution modifiers are trans-
lated from appropriate sections of the register. The lower order 13 or 15 bits of the U register
have additional properties, modulus 215-1 or 217-1.

The 17-bit R and B registers in the control section are nonaddressable communications
registers which work in conjunction with the Special Registers, the P register, the UL register,
and the Control and nondestructive readout (NDRO) memories. The B register supplies the in-
dexing value taken from the control memory index registers (B1 through B7 to the control
adder while the R register supplies the natural or assembled extended y address. During input
or output transfers, the R and B registers are used in address extension, comparison, and
incrementation.

The 17-bit B registers, Bl through B7, store the quantities used for UL modification. These
B registers, also called index registers, occupy the lower 17 bits of control memory addresses
(161-167) in the expanded memory mode and the lower 15 bits in the 32K memory mode.

The P register (17 bits) holds the memory address of a computer instruction word--that of the
current instruction at the beginning of the instruction sequence which is incremented to the ad-
dress of the next sequential instruction.

The S registers (14 bits) hold the storage addresses during main memory references. At the
beginning of a memory cycle period, the address is transferred to the S register involved for
the particular 16K module. The contents of the appropriate S register is then translated to
activate the storage selection system.

9 of 49

6% 30 01

EXTERNAL MEMORY UNIT

|
OPERAND | 1
BANK SEL | 34 P 1
) 2 < MM < s <—'—'
INSTRUCTION L——————= e _—__—_-—=-—-—_—-_ -
BANK SEL
/ a 04 16K MM
22 et s2
40000— 77777 ﬂ
— 24
SEL—> 2 Zl e ok MM L] <—t
0-37777
STORE SEL ve - 20 me ld so
! D2 |ARDER>U| ZoL>B
PRE SEL L] b | BOOT- s@ SEL
29+ | 15-00 [— STRAP
ZoU—R 1/0 j BbESH
@ B=o
SR1/0 SEL>8
U -—>2 SEL l
SR SEL —> Z SEL 04 [
C Z SEL R 8 OPERAND
P SEL
SRO SEL T
SRI R+B ESA
. Y-> K3 m
sR2 P->R
Lg ADDER-> P
SEL Y SEL—> P
/ SEL—»P P ADDER-> SEL
P->S
04 04 03
D w X
|—) K4 Ko
MUL
SEL
(oseL (wseL) &)
N ; K1
X-D NORMALIZE
62 02
Iy Q
[) 3

Figure 2. Simplified Block Diagram of 1230 Computer

The SO-register (eight bits) acts in the same manner as an S-register except that it holds the
address for control memory and NDRO memory during the memory cycle time.

The K registers function as shift control and counter registers for all arithmetic operations
that involve shifts. Other instructions employing the K registers are multiply, divide, and
square root.

ARITHMETIC SECTION

The arithmetic section performs numeric and logical calculations. Although greatly simplified,
Figure 6 is a block diagram of the 1230 Computer.

The A register (30 bits) may be considered for programing purposes, as a conventional
accumulator. Because of the logic employed, however, the A register is actually only the main
rank of the accumulator; the D register serves as a second rank.

The add operation is typical of the relationship between the A and D registers: the augend and
addend are initially contained in the A and D registers. Before the addition is performed, the
contents of the A register are transmitted to the X register. The values of X and D are com-
bined by the add network to form the sum of the two numbers in a parallel manner and placed
in the A register.

The Q register (30 bits) is used principally during multiply and divide operations. The contents
of both A and Q may be shifted left or right, either individually or as one double-length, 60-bit
word.

The X , D, and W registers are 30-bit, nonaddressable registers. These registers are used
primarily for the exchange of data within the arithmetic section and for communicating with
the remaining sections of the computer. The W register is not displayed on the control panel
of the computer; the A , Q , X , and D registers have indicators which allow the operator to
inspect the contents of these registers during debugging and maintenance operations. The A
and Q registers are addressable arithmetic registers.
STORAGE SECTION
The storage section consists of three basic memories:

e Main storage section constructed of modular arrays of ferrite cores

e Control memory constructed from magnetic thin-film elements

® Bootstrap memory, a nondestructive readout type, which utilizes the transformer
core type of storage

11 of 49

The main frame storage section has a capacity of 32,768 30-bit words. It is divided into two
16K modules that operate concurrently in time so that two memory references can be made
during each two-microsecond read/restore cycle. The main storage is coincident-current
driven destructive read-out core memory. The Z registers (30 bit) are buffer registers
through which all information to and from core locations must pass. Because of the optional
use of 15-bit half word operand, the Z registers are split into two 15-bit sections termed Z-
upper and Z-lower.

The control memory of 128 30-bit words (256 optional) is a word oriented magnetic thin-
film memory with a read/restore cycle time of 400 nanoseconds. The magnetic thin-film
memory is a fast reliable form of memory. Storage media consist of spots of a Permalloy*
ferromagnetic material, deposited upon a substrate such as a thin glass plate. The geometry
of these spots permits the magnetic state of a spot to be switched in billionths of a second
with only a small amount of power applied. Since these spots have only two stable states of

magnetization, they can readily store binary information.

Of these 128 locations, 104 are special purpose and provide storage for input buffer con-
trol words, output buffer control words, output command buffer control words, the real-
time clock, 7 index registers, and Continuous Data Mode Reload. The other 24 memory
locations are used for data storage. Instructions can be run from the control memory, input/
output transfers can take place to or from this memory, and any operand reference can be
accomplished.

The permanent storage is a nondestructive readout (NDRO) type of memory used in the com-
puter for an initial load routine and automatic program recovery (i.e., in bootstrap programs),
This storage area is capable of reading 64 words with a read cycle time of 300 nanoseconds
per word. Either one of the two 32-word bootstrap programs in the NDRO storage may be
selected by a switch. This bootstrap memory may be entered from any point in a program, and
the exit from this memory area requires no special instruction.

The Z0 (30 bits) register is the memory buffer register for the control and NDRO memories,
All information read from these memories must pass through this register. All information

stored in the control memory locations must pass through this register. No storage is possible
to NDRO locations.

Table I is a list of the memory address assignments,

*Registered trademark of Western Electric Company

12 of 49

TABLE 1. UNIVAC 1230 MEMORY ADDRESS ASSIGNMENT

Core Address Function
00000 Fault Entrance
Magnetic 00001 - 00017 Unassigned
Core 00020 - 00037 External Interrupt Entrance
00040 - 00057 Input Monitor Interrupt Entrance
L 00060 - 00077 Output Monitor Interrupt Entrance
(00100 - 00117 Input Buffer Control Registers
Magnetic 00120 - 00137 Output Buffer Control Registers
Thin 3 00140 - 00157 External Function Buffer Control Registers
Film 00160 Real-Time Clock
00161 - 00167 B1 through B7 Index Registers
00170 -~ 00177 Unassigned Film Locations
00200 - 00217 ESI Input Buffer Terminate Storage or CDM Reload
00220 - 00237 ESI Output Buffer Terminate Storage or CDM Reload
00240 - 00257 ESI EF Buffer Terminate Storage
00260 - 00277 Unassigned
. 00300 - 00477 Unassigned
Magnetic 00500 - 00517 External Function Monitor Interrupt Entrance
Core { 00520 - 00537 External Interrupt Code Storage
Transformer 00540 - 00577 NDRO Bootstrap Program I
Core { 00540 - 00577 NDRO Bootstrap Program II
Magnetic 00600 - 00617 Intercomputer Time-Out Interrupt Entrance
Core 00620 - 00653 Memory Unit 4 Channel Interrupt Addresses
00654 ——> Unassigned

CONSOLE CONTROL

The maintenance and control panel located on the upper front of the computer, includes indi-
cator lamps which display a detailed report of the internal status of the computer and controls
to permit manual initiation of various operations. It is not necessary during normal opera-

tions, however, to monitor the maintenance panel or console.

Each register is represented on the maintenance panel by a row of display lamps each of
which can be used to enter a "one" manually into the corresponding bit position, and a clear
button which can be used to enter "zeros" manually into all-bit positions of the register. Many
of the registers are involved only in the mechanics of executing instructions and are not di-

rectly accessible to the program.

13 of 49

INPUT/OUTPUT SECTION
GENERAL

All references to input or output in this discussion are made from the standpoint of the compu-
ter; that is, input is always input to the computer, and output is always output from the computer.

Communication with the 1230 Computer is carried on in a 30-bit, parallel mode over the input/
output channels. Each computer is equipped with 16 channels (numbered 0 through 15). These
channels are assembled on four chassis, each of which contains four identical input/output
channels.

The four C registers (C 1’ CZ’ C3, and C 45> 0ne for each chassis) hold information for peripheral
equipment during output or external function transfers. Each is 30 bits in length and acts as a
buffer register for four output channels.

Groups of four channels can be provided with a fast or slow interface. The slow interface pro-
vides communications transfers rates of up to a nominal 40K words per channel. The fast
interface will provide transfer rates of up to 166K words per channel and 500K words on three
or more channels.

In the CP-642A Computer, the transfer of input and output data words is asynchronous with the
computer program, but the program maintains synchronous controlover the issuance of Exter-
nal Functions. In the 1230 Computer, transmission of External Functions may be handled the
same as data transmission. To utilize this method, the peripheral equipment must set a line
indicating it is capable of accepting a command word from the buffer; therefore, the trans-
mission of the word need not be synchronous with the computer program. Provision has been
made, however, to achieve synchronization of program and input/output control to be compati-
ble with existing peripheral equipment. Transmission of External Functions to equipment not
containing logic for requesting functions (commands) is provided by the Force External Func-
tion instruction.

Externally Specified Index
This outstanding feature provides peripheral devices with a means of specifying core storage
areas in the computer memory for any input or output transfers they may request. The Exter-

nally Specified Index (ESI) mode of operation is useful as a multiplexing device for a number
of slow transfer peripheral units occupying one channel. The buffer control words governing

15 of 49

the transfers are located at the INDEX address. If input is desired, an Input Request is pre-
sented with the Index on the lower order eight bits of the input lines and the data on the remain-
ing bits. If output is desired, an Output Request is presented with the Index address. An active
channel is provided by the program for response to this feature.

Externally Specified Addressing

The ESA feature provides peripheral devices with a means of specifying an absolute core
memory location for storage or retrieval of data. An active channel mode of operation is re-
quired for computer response to this function. The address is presented on the lower 17 bits of
the input lines and the data transmission path on the remaining bits. If input is desired, the
external device presents an Input Request with the address and data. If output is desired, an
Output Request is presented with the address.

Continvous Data Mode

The Continuous Data Mode, requested when initiating a buffer on a channel, by executing
instruction code 7764 or 7765, is a feature which provides an automatic continuation of the
buffer process. Buffer control words are transferred to the control memory buffer control
addresses from the control memory CDM addresses for that channel. These may be re-
loaded during the buffer process. The Monitor Interrupt can be incorporated with the CDM.
Certain instruction codes terminate the CDM. The CDM is especially useful when a continuous,
high rate, stream of data must be transferred in or out of the computer,

CONTROL COMMUNICATION

The 1230 Computer is designed to use a d-c level input/output system. Signals are d-c levels
which may be changed upon interchange of control information. Signals may exist for micro-
seconds or for days, depending upon the nature of the particular task.

DEFINITION OF CONTROL SIGNALS

The control signals used for input and output operation are defined in Table II, and the lines
which carry them are giventhe same names. These control lines are carried in the same cables
as the data lines and have the same voltage levels.

16 of 49

TABLE II. CONTROL SIGNALS USED IN INPUT/OUTPUT

Channel Signal Name Origin Meaning
Input Interrupt Enable (IE) Computer "I have enabled my input
Channel section to honor an

Interrupt on your channel "

Input Data Peripheral "I have a data word on my
Request (IDR) Equipment output lines ready for you
to accept "
Input Computer "I have sampled your data
Acknowledge (IA) lines "
External Peripheral "I have an Interrupt code
Interrupt (INT) Equipment word on my output lines
ready for you to accept "
Output Output Data Peripheral "I am in a condition to
Channel Request (ODR) Equipment accept a word of data from
you. "
Output Computer "1 have put a data word for
Acknowledge (OA) you on the data lines; sam-

ple them now. "

External Function Peripheral "I am in a condition to
Request (EFR) Equipment accept an External Function
message on my data lines, "

External Function (EF) Computer "I have put an External
Function message for you
on the data lines; sample
them now. "

COMPUTER—TO—PERIPHERAL EQUIPMENT INTERFACE
Data aﬁd Control Signals

Each of the 16 input channels and 16 output channels communicates over an associated cable
(32 possible cables), containing 30 information lines plus four control lines. Table III compares
control line designations in the CP-642A/USQ-20 and the 1230 Computers. The functions of
three of the control lines on each cable are the same as in CP-642A/USQ-20 operation; how-
ever, an additional control signal has been added to implement an improved technique for the
handling of control words between computer and equipment.

17 of 49

TABLE III. CONTROL SIGNALS IN NORMAL PERIPHERAL
EQUIPMENT CHANNELS

Signal Equivalent Signal
Origin Functional Name (1230) in CP-642A/USQ-20
PE External Function Request (None)
C External Function External Function
PE Output Data Request Output Data Request
C Output Acknowledge Output Acknowledge
C ~ Interrupt Enable (None)
PE Interrupt Interrupt
PE Input Data Request Input Data Request
C Input Acknowledge Input Acknowledge

P E = Peripheral Equipment C = Computer

Sequence of Events

Examples will clarify the use of the control lines. Figure 3 shows the computer communicating
with a peripheral equipment over both input and output cables. Request and Interrupt signals
always originate at the peripheral equipment. Acknowledge and External Function signals
always originate at the computer.

- j@&— External Function Request
Output External Function >
Cable < j¢&———— Qutput Data Request
Computer Output Acknowledge . Per%pheral
1230 . Output Data (30 lines)=====—-=%) Equipment
- Interrupt Enable >
Input = Interrupt
Cable < e Input Data Request
Input Acknowledge >
\ Input Data (30 lines)

Figure 3. Computer-to-Peripheral Equipment Interface

18 of 49

The sequence of events for each of the four cases of communication between the computer and
peripheral equipment is given below. '

A normal output sequence for data transfer from computer to peripheral equipment (buffer
mode) is as follows:

a.

i.

Program control initiates output buffer for given channel

Peripheral equipment sets the Output Request line when it is in a condition to accept
data

Computer (at its convenience) detects OQutput Request and clears the information lines
if any data exist

Computer places data on the output information lines
Computer sets the Output Acknowledge line, indicating thatdata are ready for sampling
Peripheral equipment detects the Output Acknowledge

Peripheral equipment may drop Output Request any time after detecting Output
Acknowledge

Peripheral equipment samples the data on the output lines

Computer drops Output Acknowledge

Steps b. through i. of this sequence are repeated for every data word until the number of words
specified in the output buffer have been transferred.

The following sequence of events occurs when the computer is transmitting External Function
messages to external equipment (buffer mode):

a.

b.

Computer initiates External Function buffer for given channel

Peripheral equipment sets the External Function Request line indicating that it is in a
condition to accept External Function messages*

*Peripheral equipment not equipped with external function request logic should have the ability
to accept Forced External Functions when inthe Idle or Ready state by responding to sequence
stepsd.,e.,f.,and h

19 of 49

Steps b.

Computer (at its convenience) detects External Function Request and clears the data
lines if any data exist 4

Computer places External Function message on the data lines

Computer sets the External Function line indicating that an External Function message
is ready for sampling

Peripheral equipment detects the External Function

Peripheral equipment may drop the External Function Request any time after detecting
the External Function

Peripheral equipment samples the External Function message on the data lines
Computer drops the External Function line

through i. of this sequence are repeated for every External Function message until the

number of words specified in the External Function buffer have been transferred.

Normal
follows:

input sequence for data transfer to the computer from peripheral equipment is as

Program control initiates input buffer for given channel
Peripheral equipment places data word on information lines

Peripheral equipment sets the Input Request line to indicate that is has data ready for
transmission

Computer detects the Input Request at its convenience

Computer samples the information lines

Computer sets the Input Acknowledge line, indicating that it has sampled the data
Peripheral equipment senses the Input Acknowledge line

Peripheral equipment drops the Input Request line

Steps b. through h. of this sequence are repeated for every data word until the number of
words specified in the input buffer have been transferred.

20 of 49

Sequence for transmitting an interrupt from peripheral equipment to the computer is as
follows:

a. Computer sets the Interrupt Enable* whenitis ready to accept an External Interrupt**
b. Peripheral equipment detects the Interrupt Enable

¢. Peripheral equipment status requires Computer to be interrupted

d. Peripheral equipment places the Interrupt word on the data lines

e. Peripheral equipment sets the Interrupt line to indicate that the Interrupt word is on
the data lines

f. Computer detects the interrupt signal and, at its convenience, accepts the Interrupt
word and sets the Input Acknowledge line

g. Computer drops the Interrupt Enable

h. DPeripheral equipment detects. the Input Acknowledge and clears the Interrupt line and
the data lines

The Input Acknowledge of an interrupt will be initiated at the same time that the Interrupt En-
able is cleared. The simultaneous occurrence of these conditions should be used by peripheral
equipment to differentiate between the acknowledge of an Interrupt and an Input Request.

COMPUTER—-TO—-COMPUTER INTERFACE

Data and Control Signals

Since all input/output channels of the 1230 Computer can be converted to intercomputer commun-
ication channels, it is possible for a computer to communicate with 16 other computers. The
control signals and lines governing intercomputer communication are shown in Figure 4.
Figure 4 illustrates the interface between two computers. Computer A is transmitting to
Computer B. The selection of a given channel as an intercomputer channel affects only the

*¥Interrupt Enable is set either by a computer Master Clear or by execution of 60000 00000
or 60100 Y instructions (refer to Appendix)

**Peripheral equipment not equipped with interrupt enable logic may interrupt the program us-
ing sequence steps c., d., e., f., and h

21 of 49

logic concerned with the output and external function buffers. A peripheral channel, which is
sending data or external function messages to a given peripheral equipment, holds the data in
the output registers for a fixed minimum time period; after which any other Output or External
Function Request on any channel can cause the data to be changed. However, intercomputer
channel sending data or External Function messages to another computer must hold the in-
formation in the output registers until the receiving computer acknowledges receipt of those
data. This acknowledge signal is received on what is known as the Qutput Request line when not
on intercomputer mode. This line, in the intercomputer mode, is known as the Resume line.

4 EF Request ——-—If—lnterrupt Enable
Computer —F, xternal Function | Interrupt =———————— Computer
Output Ready Input Data Request =P Input
e RESUME _—L Input Acknowledge ==
= Qutput Data (30 Lines) — Input Data (30 Lines) ==
Computer A l Computer B

Figure 4. Computer-to-Computer Interface
The control signals in the input cable are the same for intercomputer communication as for
communication with peripheral equipment. In the output cable, Ready and Resume signals are
used to control the intercomputer transfer of data.

Sequence of Events

The sequence of events for each of the two cases of intercomputer communication appears
below.

Intercomputer command word transfer from Computer A to Computer B is as follows:

a. Computer B sets the Interrupt Enable when itis ready to accept a command word from
Computer A

b. Computer A recognizes the Interrupt Enable as an External Function Request and places
the External Function code on the information lines

c. Computer A sets the External Function to indicate that the External Function code is
on the information lines

d. Computer B recognizes the External Function as anInterrupt and accepts the command
word at its convenience

e. Computer B clears the Interrupt Enable line and sets the Input Acknowledge line

f. Computer A recognizes the Input Acknowledge as a Resume and clears the External
Function line

22 of 49

NOTE: In the event that Computer A sets the External Function line while the Inter-
rupt Enable line is cleared (this is possible when an External Function with Force
instruction is used), all communications on the associated group of output channels
in A will be suspended until Computer B acknowledges receipt of the External Inter-
rupt or until an intercomputer Time-Out Interrupt in A permits A to resolve the
problem.

Intercomputer data transfer from Computer A to Computer B is as follows:
a. Computer B initiates an input buffer and Computer A initiates an output buffer for the
required channel. The output buffer of Computer A must be less than or equal to the
input buffer of Computer B
b. Computer A places data on the information lines

c. Computer A sets the Ready line to indicate that the data are on the lines

d. Computer B recognizes the Ready signal as an Input Data Request signal and, at its
convenience, accepts the data word

e. Computer B sets the Input Acknowledge

f. Computer A recognizes the Input Acknowledge as a Resume signal and clears the
Ready line and the data lines

~ Steps b. through f. of this sequence are repeated for every data word until the number of words
specified in the output buffer have been transferred.

23 of 49

REPERTOIRE OF INSTRUCTIONS
INTRODUCTION

The UNIVAC 1230 Military Computer is specified as a self-modifying, single-address computer.
Although this means that one reference or address is provided for the execution of an instruc-
tion, this reference can be modified during a program sequence. References are modified by
using the index registers, which containany previously stored constants. In order to modify the
address, the contents of a selected index register are added to the extended or natural operand
designator, y. A programed address is coded using octal notation with each octal digit
denoting three binary digits. The instructions are read sequentially from memory storage
except after satisfied Jump or Skip instructions. Every instruction executed by the computer is
transmitted from memory to the Z register and then to the U register and the U2 register.
The components of the instruction are translated to direct the control section in executing the
operation specified. The U2 register is used for continued translation during execution of the
operation sequence when the memory bank overlap feature is utilized. This allows the U-
register to be cleared for reception of the next instruction with concurrent completion of the
previous operation.

BUFFER CONTROL WORD FORMAT

The computer operating in the expanded memory mode can select any 16K module of memory
for its Input and Output operation. There are three I/O Special Registers for each channel --
one each for Input, Output, and External Commands.

Each I/O control word in control memory contains the initial (or current) address (CA) and the
terminal address (TA) of a buffer located anywhere in 32K of memory. Each I/O Special
Register can contain the two bits necessary to expand the 32K control address to 131K, During
Input or Output in the 1230 expanded mode, the two bits of the applicable SR 1/0 extend the
15-bit terminal and current addresses to 17 bits for memory circuit translation as follows:

{e——— 30 bits
Control Memory Buffer Control Word 15-bit TA 15-bit CA
(to 32K Memory Mode)

Effective Buffer Control Word [SR 1/0 "SR1/0
(for expanded Memory Mode) 17-bit TA —|<——17-bit CA—>

24 of 49

The following symbols and definitions will be used in the discussion of Table 1V.

Ysr The 13-bit y prefaced by the core bank designator bits of the SR designated
by s=0, L or 2

Yp The 13-bit y prefaced by the core bank designator bits of P designated by
s=3

Y The operand used in an operation regardless of source

Y

The quantity formed by y + (Bb), yp t (Bb), Ysr * (Bb) or a constant contained
in an addressable register

P The Program Address register

SR Special Register, 4-bit core memory bank designator

() Contents of the address or register |

()i Initial contents of the address or register

()f Final contents of the address or register

()n Designates any single nth bit of the contents of a register

The colon in a logical expression indicates COMPARISON
L() () The bit-by-bit or logical product (logical AND) defined by the table:

or

()oe ()

Ll X]
ojojo

1

() v () Logical sum, or inclusive OR defined by the table:

0

[} (o]
=l

1]1]1
() ©() Half add, half subtract, or exclusive OR defined by the table:

0f1
0]0f1
11140

() or () The one’s complement of the contents of the address or register
OO0 Algebraic product of the contents of two locations

Q Transfer the quantity stated at the left of the symbol to the address or register
stated at the right of the symbol

25 of 49

TABLE IV. REPERTOIRE OF INSTRUCTIONS

Instruction Instruction
Execution Execution
Time Time
Code (Overlapped) Code (Overlapped)
(Octal) Instruction in & Sec (Octal) Instruction in w Sec

00 (Fault Interrupt) 50 Selective Set 2
01 Right Shift Q 2 51 Selective Complement 2
02 Right Shift A 2 52 Selective Clear 2
03 Right Shift AQ 2 53 Selective Substitute 2
04 Compare 2 54 Replace Selective Set 4
05 Left Shift Q 2 55 Replace Selective Complement 4
06 Left Shift A 2 56 Replace Selective Clear 4
07 Left Shift AQ 2 57 Replace Selective Substitute 4
10 Enter Q 2 60* Jump (Arithmetic) 4
11 Enter A 2 61%* Jump (Manual) 4
12* Enter Bj 4 62* Jump on C] Active Input Buffer 4
13 External Function on CJ 4 63* Jump on Cj Active Output Buffer 4
14 Store Q 2 64+ Return Jump (Arithmetic) 6
15 Store A 2 65* Return Jump (Manual) } 6
16 Store Bj 2 66 Terminate Cj Input Buffer 2
17 Store Cj or Test EFB 4 Enable, or Dlsable Interrupts

67 Termmate cj Output Buffer 2
20 Add A 2 or All Buffers
21 Subtract A 2
292%* Multiply 8 70* Rep e_at) 4
23* Divide or Square Root 14-8 71* B Skip on Bj 4
24 Replace A+Y 4 72* BdJumponBj 4
25 Replace A-Y 4 T3* Inpu't Buffer on Cj 4
26 Add Q 9 (without monitor mode)
a7 Subtract Q 9 T4* Output Buffer on Cj 4

(without monitor, mode)

30 Enter Y+Q 9 75% Input Buffer on C] 4
31 Enter Y-Q 9 (Wlth monitor mode)
39 Store A+Q 4 76* Output Buffer on C] 4
33 Store A-Q 4 (with monitor mode)
34 Replace Y+Q 4 7700 Fault Interrupt
35 Replace Y-Q 4 7707 Normalize 4
36 Replace Y+1 4 7760 Enter Special Register 2
317 Replace Y-1 4 7761 Enter Input SR I/0 2

7762 Enter Output SR I/0 2
40 Enter Logical Product 2 7763 Enter EF SR I/0 2
41 Add Logical Product 2 7764* Enable Input CDM 2
42 Subtract Logical Product 2 7765* Enable Output CDM 2
43 Compare Masked ' 2 7766* Disable Input CDM 2
44 Replace Logical Product 4 7767* Disable Output CDM 2
45 Replace A+Logical Product 4 7770 Store Special Register 2
46 Replace A-Logical Product 4 7771 Store Input SR I/0 2
47 Store Logical Product 2 7772 Store Output SR I/0 2

7773 Store EF SR I/0 2

7774* Disable 17-Bit Address Mode 2

7775* Enable 17-Bit Address Mode 2

7777 Fault Interrupt

For nonoverlapped, add two microseconds to the execution time

*Execution time is constant - overlapped or not

26 of 49

INSTRUCTION WORD FORMAT

Two types of instruction words make up the repertoire for the 1230 Computer. Type I contains
the operation code in the most significant six bits of the word. Type II instruction contain octal
77 in the most significant six bits and the operation code in the next six bits.

The formats for Type I and II instruction words in the repertoire of the 1230 Computer while
utilizing the expanded memory feature are as follows:

Type I
f]ljlk[b]|s v General instruction format
No. of bits 6 3 3 3 2 13
f /]\ klvls y I/0 instruction format
No. of bits 6 4 2 3 2 13
Type II *
IAY VA
Miflb|s|i|kly
No. of bits 6 6 3 2 4 1 8

In the repertoire of the 1230 Computer, the formats for Type I and II instruction words (while
utilizing the addressing structure limited to the internal 32K memory) are as follows:

Type I
fli|lklb y General instruction format
No. of bits 6 3 3 3 15
! — 30 |
N A
flilk|b y 1/0 instruction format
No. of bits 6 4 2 3 15
Type II v
Al N
el bls| | k|y
No. of bits 6 6 3 2 4 1 8

~

* y is a 13-bit quantity, k does not exist but is forced as an unconditional 3

27 of 49

The elements of the function word format are interpreted as follows:

f is a 6-bit Function Code Designator

j is a 3-bit Branch Condition Designator

/j\ is a 4-bit Input/Output Channel Designator or Special Register Designa-
or

kor k is a 1, 2, or 3-bit Operand Interpretation Designator

b is a 3-bit Index Register Designator

s is a 2-bit Address Extension Designator

y is a 15-, 13-, or 8-bit Operand or Address Designator

Function Code Designation

The f designator appears in bit positions 29 through 24 of the U-register or an instruction word
in Type I instructions and in bit positions 23 through 18 in Type II instructions. All values of
f other than 00 are defined in the instruction repertoire. Code 00 in either Type I or Type II
instructions is a program fault condition: if executed, it causes a fault interrupt and a jump
to address 00000, the fault entrance register, or address 00540 of memory, depending on the
Automatic Recovery switch setting.

Operand Designator

The y designator appears in bit positions 12through 0 of the U register or instruction of Type I
instructions requiring a memory reference for the operation when the computer is operated in
the expanded memory mode. The y designator appears in bit positions 7 through 0 or 12 through
0 in Type II instructions in either mode. Ysr OF Vp is the 13-bit y prefaced by the memory bank
designator bits of the SR or of (P)as designated by s. This extended operand designator is des-
cribed below:

f———— 17 bits ———]

Vp 16— 13 | 12— 0
_ /___ /
V4 N/
P16-13 y
Vs 16 ———13 | 12— 0
\ /\ /
N N
(Ro, 1 or 2) y

The operand or address of the operand, designated Y is obtained from these 17 bits plus the
contents of an index register if specified.

28 of 49

When the computer is operated within the 32K internal memory as a CP-642B Computer, the y
designator appears in bit positions 14 through 0. In this mode, the designator supplies the
required bit configuration for the addressing structure of the main memory. No references are
made to the Special Registers or the upper 2 bits of (P). Y is then defined as the 15-bit y plus
the contents of an index register if specified.

Address Extension Designator

The s designator (2 bits) appears in bit positions 13 and 14 and is interpreted in instruc-
tions requesting memory references. It does not exist in Type I instructions requiring no
memory reference for the operation since the y designator occupies 15-bit positions. The s
designator is used to specify which of the three Special Registers, or the upper 4 bits of P are
used to extend the operand address. The designator is interpreted as follows:

n n = w
! 1
W N =

0: Extend y by (SRO)
Extend y by (SR1)
Extend y by (SR2)
Extend y by (P16—13)

a) For read instructions, 01-12, 20-23, 26-31, 40-43, 50-53, 70 and 71 when k # 0,4, 7
b) For store instructions, 14-16, 32, 33 and 47 when k #0, 4

¢) For replace instructions 24, 25, 34-37, 44-46 and 54-57 when k =/ 0, 4, 7

d) For read instructions 60-63 and 72 for all k values

e) For I/0 instructions 73-76, when k £ 0

f) For I/O instructions 13 and 17

g) For Type II instructions when k #0

h) For return jump instructions 64 and 65 for all k values

NOTE: It is possible for the returnaddresstobe larger than 15 bits. Therefore, it is required
that (P) + 1 be stored at the whole word at memory address Y as designated by k= 3
and then jump to address y + 1. Therefore, all return or exits from a subroutine will
be indirect with a k value of 3 in the exit command.

For the restricted k values mentioned above, y is a 15-bit quantity and s does not exist. In
I/0 instructions 66 and 67, the low order 15 bits are not translated and may be used as extra
storage of data.

Index Designator

The b designator appears in bit positions 17, 16, and 15 of the U register or an instruction
word. It specifies which index register (B register), if any, will be used to modify the operand
designator, vy, Yp OF Yggr to form the operand or operand address, Y. The computer uses an

29 of 49

additive type adder to produce the quantity Y =y ®yp ®ygp + (Bb)L; hence, a quantity consisting
of all zeros cannot result unless both the form of y and (Bb)L are zeros. Use of a B register
for modification causes the higher order bits of that B register to become zeros. The contents
of the lower order 17 or 15 bits of the index register serve as the modifier.

The effect of the various values of the b designator is as follows:

1]

’ Do not modify y, Yp OF Ygr
Add (Bl) to vy, Yp O YR
Add (B2) toy, Yp OF YoR
Add (B3) to vy, Yp O Ygr
Add (B4) to y, Yp OF YoR
Add (B5) to y, Yp OF Ygp
Add (B6) to y, yp Or ygp
Add (B7) toy, Yp OF YgR

o

oo o oo o
It
3 O L wWwNn O

The modifying index register quantities occupy the lower order 17 bits of control memory
addresses 00161 through 00167 during operation inthe expanded memory mode. They occupy the
lower order 15 bits of those control memory addresses during operation as a CP-642B computer
(limited to 32K memory).

Branch Condition Designator

The j designator appears in bit positions 23, 22, and 21 of the U register or an instruction; it
is used in a majority of the instructions. The three primary uses of j are for jump and skip
determination, for B register specification, and for repeat status interpretation. Interpretations
of the j designator are listed either below or under the descriptions of the individual instruc-
tions requiring special interpretations.

For those instructions in which the j designator has no special interpretation, it specifies the
-condition under which the next sequential instruction in the program will be skipped. This
permits branching from a sequence without executing a Jump instruction, as would normally
occur if a skip condition were not satisfied.

A skip of the next sequential instruction is determined by the following rules in all Type I
instructions except 04, 12, 13, 16, 17, 23, 26, 27, 60-67, and 70-76:

Do not skip the next instruction

Skip the next instruction

Skip the next instruction if gQ; is positive

Skip the next instruction if (Q) is negative

Skip the next instruction if (A) is zero (positive zero)
Skip the next instruction if (A) is nonzero

Skip the next instruction if (A) is positive

Skip the next instruction if (A) is negative

ot 8 Gl s Cmd ¢ G ¢ o ¢ St 0 St ¢ G o
| A 1 O {1

30 of 49

When the branch condition involves the sign of the quantity in A or @, the evaluation examines
the sign bit of these quantities; hence, positive zero (all zeros) is considered a positive quantity,
and negative zero (all ones) is considered a negative quantity.

For input/output instructions, the /]Ndesignator appears in bit positions 23, 22, 21 and 20 of the
U-register or an input/output instruction and specifies the channel for the instruction. Bit 23
assumes a value of eight, bit 22 a value of four, bit 21 a value of two, and bit 20 a value of one;
thus, the /]\ designator provides accessibility to the 16 (decimal) input/output channels (number
0 - 15). Instructions 13, 17, 62, 63, 66, 67,73, 74, 75, and 76 use the /j\designator configuration.
In Type II instructions, /j\appears inbit positions 12, 11, 10, and 9 and designates an I/O channel
or a Special Register.

Operand Interpretation Designation

The k designator (3 bits) appears inbit positions 20, 19, and 18 of the U-register or an instruc-
tion. The llc\designator appears in bit positions 19 and 18 in Type I instructions or in bit position
Rof Type Ilinstructions. Instructions 13, 17, 62, 63, 66, 67 and 73 through 76 and Type II use the
k designator configuration since they perform input/output or Special Register activities and
require a /j\designator for channel or Special Register specification. The k designator controls
operand and instruction interpretation for the input/output instructions as noted in the descrip-
tion of the applicable instruction.

A
In Type II instructions, the k designator appears in bit position 8 and is used to interpret the
operand as follows:

Stors Class
k=0: Store in the least significant 8 bits of the Q-register

£ =1: Store in the lower 8 bits of the memory address leaving the remaining upper
bits undisturbed

Read Class
= 0: (Ur) 8 bits —> Register
A
k=1: Y, 8 bits —> Register

The k designator controls operand interpretation. Those instructions that read an operand but
do not replace it after the operation is performed are designated read instructions. Those
instructions that do not read an operandbut store it are designated store instructions. Instruc-
tions which both read and store operands are classified as replace instructions.

The various values of k affect the operand Y, except where noted otherwise under individual
instruction description, as follows:

Read instruction (01-12, 20-23, 26, 27 30, 31, 40-43, 50-53, 60-65, 70-72):

k=0: Yu=0's; YL=Y
k=1: Yu =0's; YL = (X) L; Operand is lower half of memory location
k=2 Yu = 0's; YL = (Y) u; Operand is upper half of memory location

31 of 49

k=3
k=4
k=5
k=6
k=1

Y = (Y)

Yu = same bits as Y14; YL=Y

Yu= same bits as Y14; YL = (Y)L; Operand is lower half of memory
location with sign extension

Yu= same bits as Y14; YL = (Y)u; Operand is upper half of memory

location with sign extension
Y = (A)

For instructions 22, 52, and 53, k = 7 is not used.
Store instructions (14-16, 32, 33, 47):

[T

nnn

AR RERRERRERRERSRF
i

< O wu A WD~ O

Store (A or Bj) in Q.*

Store (AL, QL, or Bj) in YL, leaving (Y)u undisturbed

Store (AL, QL, or Bj) in Yu, leaving (¥) L undisturbed

Store (A, Q, Cj, or Bj) in Y

Store (Q or Bj) in the A register **

Store complement of (AL, QL, or Bj) in Y L, leaving (Y)u undisturbed
Store the complement of (AL, QL, or Bj) in Yu, leaving (Y)L undisturbed
Store the complement of (A, Q, or Bj) in Y (storing the complement of Bj
is the same complement as for a 30-bit register)

Replace instructions (24, 25, 34-37, 44-46, 54-57):

k=0
k=1
k=2
k=3
k =4:
k=5
k = 6:
k=17

Not used.

Read portion - Yu = 0’s; YL = (Y)L

Store portion - Stores AL in YL leaving (Y)u undisturbed
Read portion - Yu = 0’s; YL = (Y)u

Store portion - Stores AL in YU leaving (Y)u undisturbed
Read portion - Y = (Y)

Store portion - Stores A in Y

Not used.

Read portion - Yu = same bits as (Y)14; YL = (Y)L

Store portion -.Stores AL in YL leaving (Y)u undisturbed
Read portion - Yu = same bits as Y29; YL= (Y)u

Store portion - Stores AL in YU leaving (Y)L undisturbed
Not used

Replace instructions require special interpretation when following a repeat instruction. (Refer
to subsequent paragraph entitled 70 REPEAT .)

* A 1400000000 instruction complements (Q)
** A 1504000000 instruction complements (A)

32 of 49

List of Instructions

This section lists the repertoire of instructions.

01 RIGHT SHIFT Q

This instruction shifts (Q) to the right Y bit positions*; the higher order bits are replaced with
the original sign bit, and the lower order bits are discarded as the word is shifted. Only the

lower order six bits of Y are recognized for this instruction. The higher order 24 bits are
ignored.

An 8-bit register example of right shift Q: Y= 2.

Contents of Q Contents of Q
@); (positive) = 01010011 @Q); (negative) = 10100011
First shift 00101001 First shift 11010001
Second shift 00010100 Second shift 11101000

02 RIGHT SHIFT A

This instruction shifts (A) to the right Y bit positions*. The higher order bits are replaced
with the original sign bit, and the lower order bits are discarded as the word is shifted. Only
the lower order six bits of Y are recognized for this instruction. The higher order 24 bits are
ignored. The over-all operation is similar to the example given for Right Shift Q.

03 RIGHT SHIFT AQ

This instruction shifts (A) and (Q) as one 60-bit register. The shift is to the right Y bit
positions*, with the lower bits of A shifting into the higher bit positions of Q. The higher order
bits of A are replaced with the original sign bit, and the lower order bits are discarded as the
word is shifted. Only the lower order six bits of Y are recognized for this instruction. The
higher order 24 bits are ignored.

An 8-bit register example of right shift AQ: Y = 2:

Contents of AQ Contents of AQ
(AQ).1 (positive) = 01010011 (AQ)i (negative) = 10001010
First shift 00101001 First shift 11000101
Second shift 00010100 Second shift 11100010

*The maximum shift count pebrmitted is decimal 59 places

33 of 49

‘04 COMPARE

This instruction compares the signed value of Y with the signed value of (A) and (Q) or the
value of either. It does not alter either (A) or (Q). The branch condition designator, j, is
interpreted in a special way for this instruction as listed below:

Do not skip the next instruction

Skip the next instruction

Skip the next instruction if Y is less than or equal to Q)

Skip the next instruction of if Y is greater than (@)

Skip (th)e next instruction if Y is less than or equal to (Q), and Y is greater
than (A

Skip the next instruction if Y is greater than (@), or if Y is less than or
equal to (A)

Skip the next instruction if Y is less than or equal to (A)

Skip the next instruction if Y is greater than (A)

(I L I I 1}

Cod =
1]
N0 g RWNHO

o Cond e
non

05 LEFT SHIFT Q
This instruction shifts (Q) circularly to the left, Y bit positions*. The lower order bits are re-
placed with the higher order bits as the word is shifted. Only the lower order six bits of Y are

recognized for this instruction. The higher order 24 bits are ignored.

An 8-bit register example of left circular shift in Q: (Y)= 2

Contents of Q Contents of Q
(Q)i (positive) = 00110001 (Q)i (negative) = 11001100
First shift 01100010 First shift 10011001
Second shift 11000100 Second shift 00110011

06 LEFT SHIFT A

This instruction shifts (A) circularly to the left Y bit positions*. The lower order bits are
replaced with the higher order bits asthe word is shifted. Only the lower order six bits of Y are
recognized for this instruction. The higher order 24 bits are ignored. The over-all operation is
similar to the example given for left shift Q.

07 LEFT SHIFT AQ
This instruction shifts (A) and @) as one 60-bit register. The shift is circular to the left Y bit
positions*, The lowerorder bits of A are replaced with the higher order bits of Q and the lower

order bits of Q are replaced with the higher order bits of A. Only the lower order six bits of Y
are recognized by this instruction. The higher order 24 bits are ignored.

*The maximum shift count permitted is decimal 59 places

34 of 49

An 8-bit register example of left shift AQ: Y = 2:

Contents of AQ Contents of AQ
(AQ)i (positive) = 01010011 (AQ)i (negative) = 10001011
First shift 10100110 First shift 00010111
Second shift 01001101 Second shift 00101110

10 ENTER Q
Clear the Q register; then transmit Y to Q.
11 ENTER A
Clear the A register; then transmit Y to A.

12 ENTER Bj

Clear the B register specified by j. Then transmit Y to this B register. The branch condition
designator, j, is used to specify the selected B register for this instruction and is not available
for its normal function.

13 EXTERNAL FUNCTION ON C?

Transfer the contents of storage address Y lower to the external function buffer control
register 140 +] upper and lower and initiate a 1-word external function buffer on channe1]
The address of the function word is maintained in the lower order 15 bits of the control register.
The ﬁ values modify the instruction as follows:

A
k.

0: Establish the l-word external function buffer with monitor and proceed to
the next instruction. The function transfer is executed when the external
equipment presents an External Function Request. A monitor interrupt follows
the completion of the transfer

~>

= 1. Establish the 1-word external function buffer with monitor and with force.
Hold the program until the function is transferred to the output channel. A
monitor interrupt follows the completion of the transfer

~>
]
o

Establish the 1-word external function buffer and proceed to the next instruc-
tion. The function transfer is executed when the external equipment presents
an External Function Request

A
k = 3: Establish the 1l-word external function buffer with force. Hold the program
until the function is transferred to the output channel

An external function buffer with force will transfer the function word from memory to the out-
put register whether the external device requests it or not. If external equipment cannot accept
external functions from consecutive program executions, restrictions must be made in the
programing of external functions to this equipment. '

35 of 49

14 STORE Q

Store (Q) at storage address Y as directed by the operand interpretation designator, k. If
k = 0, complement Q). If k = 4, store in A.

15 STORE A

Store (A) at storage address Y as directed by the operand interpretation designator, k. If
k = 4, complement (A). If k = 0, store in Q.

16 STORE Bj

Store a 30-bit quantity, whose lower order 15 bits correspond to the contents of the B register
specified by j and whose higher order 15 bits are zero, at storage address Y as directed by the
operand interpretation designator, k. The branch condition designator, j, is used to specify the
selected B register for this instruction and is not available for its normal function.

17 STORE Cg\OR TEST EFB

A
For k = 0 and 1, when the jump condition is satisfied, the program register, P, is cleared, and
a new next instruction address, Y or (Y)L respectively, is entered into P.

A A
k = 0 And the external function buffer on channel j is active, jump to address
Y; if not active, execute the next sequential instruction

A A
k = 1. And the external function buffer on channel j is active, jump to address
(_’SQL; if not active, execute the next sequential instruction

A
k = 2: Store the contents of input channel /j\at storage address Y and send an IN-
put Acknowledge on that channel. Hold the program until fhe word is trans-
ferred to memory
A ‘ A
k = 3: Store the contents of storage address 00520 + j at storage address Y
20 ADD A
Add Y to the previous contents of the A register.
21 SUBTRACT A
Subtract Y from the previous contents of the A register.

22 MULTIPLY

Multiply @) times Y, forming the double-length product in AQ. If the factors are considered as
integers, the product is an integer in AQ. k = 7 may not be used.

36 of 49

The branch condition designator, j, is interpreted prior to final sign correction, permitting
sensing of a product with (A)f= 0. When (A)f # + 0, a double-length product has been formed
with significant bit(s) in the A-register; however, if a skip does not occur for j = 4, an Add Q
instruction can be performed (add zero to Q) with j = 6 or 7 to determine if Q29 contains a
significant bit (one) of the product.

23 DIVIDE

If k # 17, divide (AQ) by Y, leaving the quotient in the Q-register and the remainder in the A
register. The remainder bears the same sign as the dividend. No console indication is given if
a divide overflow exists. By coding each divide instruction with j = 2 or 3, a program test
for the divide overflow is automatic. With a selection of j = 3, a skip of the next instruction
occurs if divide overflow exists. The skip should be made to a routine which provides proper
correction. With a selection of j = 2, a correct answer is indicated when the skip occurs, and
the instruction is followed by a jump instruction to the remedial routine.

If k = 7, take the square root of (@), leaving the root in Q and the residue in A, (A)f = Q)i -
(Q)fz. A selection of j = 2 in the square root instruction requests skip if a residue appears in
A, and j = 3 requests skip if no residue appears in A, j = 4, 5, 6 or 7 is not used whenk = 7.
24 REPLACE A + Y

Add Y to the previous contents of the A register. Store (A) at storage address Y.

25 REPLACE A -Y

Subtract Y from the previous contents of the A register. Then store (A) at storage address Y.
26 ADD Q

Interchange (A) and (Q). Then add Y to (A). Interchange (A) and (Q). The contents of the A
register are undisturbed by this instruction. The branch condition designator, j, has special
meaning in this instruction as listed in instruction 27.

27 SUBTRACT Q

Interchange (A) and (Q). Then subtract Y from (A). Interchange (A) and Q). The contents of

the A register are undisturbed by this instruction. The branch condition designator, j, has
special meaning in this instruction as follows:

37 of 49

In instructions 26 and 27, the branch condition designator, j, has the following meaning:

Do not skip the next instruction

Skip the next instruction

Skip the next instruction if (A) is positive
Skip the next instruction if éA; is negative
Skip the next instruction if (Q) is zero
Skip the next instruction if (@) is nonzero
Skip the next instruction if éQ; is positive
Skip the next instruction if (Q) is negative

I | | A (O 1R

e €t €t €t € s e €
JOTHRWNDHO

30 ENTER Y + Q

Clear the A-register. Then transmit (Q) to A. Then add Y to (A).

31 ENTER Y - Q

Clear the A-register. Transmit @) to Aandthen subtract Y from (A). Finally, complement (A).
32 STORE A + Q

Add @) to the previous contents of the A register. Then store the surﬁ in A and at storage
address Y as directed by the operand interpretation designator, k.

33 STORE A - Q

Subtract (Q) from the previous contents of the A- register. Then store the difference in A and at
storage address Y as directed by the operand interpretation designator, k.

34 REPLACE Y + Q

Clear the A-register. Transmit (Q) to A; then add Y to (A). Store the sum in A and at storage
address Y.

35 REPLACE Y - Q

Clear the A register. Transmit (Q) to A. Subtract Y from (A). Then complement the difference
and store in A and at storage address Y.

36 REPLACE Y + 1

Clear the A register. Set (A) = 1. Add Y to (A) and store the sum in A and at storage address
Y.

38 of 49

3TREPLACE Y -1

Clear the A register. Set (A)= 1. Subtract Y from (A). Complement the difference and store
in A and at storage address Y.

40 ENTER LOGICAL PRODUCT
Enter the bit-by-bit product of Y and (A) in the A register.

The j designator is interpreted in a special way for this instruction for the values j = 2 or 3.
If j = 2, skip if the parity of the (A)f is even. If j = 3, skip if the parity of (A)f is odd.

NOTE:

Even parity means an even number of ones in the A register.
Odd parity means an odd number of ones in the A register.

41 ADD LOGICAL PRODUCT

Add to (A) the bit-by-bit product of Y and @).

42 SUBTRACT LOGICAL PRODUCT

Sﬁbtract from (A) the bit-by-bit product of Y and @).

43 COMPARE MASKED

Subtract from (A) the bit-by‘-bit product of Y and (@), and perform the evaluation for a skip of
the next sequential instruction as directed by the branch condition designator, j. Then add to

(A) the bit-by-bit product of Y and @).

This instruction results in no net change inthe contents of any operational register. It provides
a comparison of a portion of Y with (A).

44 REPLACE LOGICAL PRODUCT

Enter in the A register the bit-by-bit product of Y and (@). Then store (A) at storage address
Y.

The j designator is interpreted in a special way for this instruction for the values j = 2 or 3.
If j = 2, skip if the parity of (A)f is even. If j = 3, skip if the parity of (A)f is odd.

39 of 49

45 REPLACE A + LOGICAL PRODUCT

Add to (A) the bit-by-bit product of Y and (Q). Then store the sum in A and at storage address
Y.

46 REPLACE A - LOGICAL PRODUCT

Subtract from (A) the bit-by-bit product of Y and (Q). Store the difference in A and at storage
address Y.

47 STORE LOGICAL PRODUCT

Store in address Y the bit-by-bit productof (A) and (Q) as directed by the operand interpretation
designator, k.

50 SELECTIVE SET

Set the individual bits of the A register corresponding to ones in Y, leaving the remaining
bits of the A register unaltered.

51 SELECTIVE COMPLEMENT

Complement the individual bits of the A register corresponding to ones in Y, leaving the
remaining bits of the A register unaltered.

52 SELECTIVE CLEAR

Clear the individual bits of the A register corresponding to ones -in Y, leaving the remaining
bits of the A register unaltered. In this instruction, k = 7 should not be used.

53 SELECTIVE SUBSTITUTE

Substitute individual bits of the A register with bits of Y corresponding to ones in Q, leaving
the remaining bits of the A register unaltered.

54 REPLACE SELECTIVE SET

Set the individual bits of the A register corresponding to ones in Y, leaving the remaining
bits of the A register unaltered. Store (A) at storage address Y.

40 of 49

55 REPLACE SELECTIVE COMPLEMENT

Complement the individual bits of A register correspondingto ones in Y, leaving the remain-
ing bits of A register unaltered. Store (A) at storage address Y.

56 REPLACE SELECTIVE CLEAR

Clear individual bits of the A register corresponding to ones in Y, leaving the remaining
bits of the A register unaltered. Store (A) at storage address Y.

57 REPLACE SELECTIVE SUBSTITUTE

Clear individual bits of the A-register corresponding to ones in Q, leaving the remaining
bits of the A register unaltered. Form the bit-by-bit product of Y and @), and set ones of
this product in corresponding bits of the A register, leaving the remaining bits unaltered.
Store (A) at storage address Y.

60 JUMP (ARITHMETIC)

This instruction clears the program address register, P, and enters a new program address
in P for certain conditions of either the A or Q register content. The branch condition desig-
nator, j, is interpreted in a special way for this instruction and thus determines the conditions
under which a jump in programoccurs. Ifthe jump condition is not satisfied, the next sequential
instruction in the current sequence is executed in a normal manner. If the jump condition is
satisfied, as listed below, Y becomes the address of the next instruction and the beginning of a
new program sequence.

No jump. Set interrupt enable and remove interrupt lockout, thus clearing
bootstrap and interrupt modes.’ Continue with current program sequence
Execute jump. Set interrupt enable and remove interrupt lockout, thus clearing
bootstrap and interrupt modes

Execute jump if éQ; is positive

Execute jump if (Q) is negative

Execute jump if gA) is zero (positive zero)

Execute jump if (A) is nonzero

Execute jump in (A) is positive

Execute jump if (A) is negative

j =

Ok - o

j

Comd ¢ Coad + G ¢ G & Cod 6 e
o onnoan

61 JUMP (MANUAL)

This instruction clears the program address register, P, and enters a new program address in
P for certain conditions of manual JUMP and STOP switch selections. The branch condition
designator, j, is interpreted in a special way for this instruction and determines the conditions
under which a jump in programoccurs. If the jump condition is not satisfied, the next sequential
instruction of the current sequence is executed in a normal manner. If the jump condition is
satisfied, as listed below, Y becomes the address of the next instruction and the beginning of a
new program sequence.

41 of 49

The program may be stopped by certain STOP selections upon execution of this instruction.
The branch condition designator, j, specifies which switch selections are effective.

Execute jump regardless of switch selection.

Execute jump if JUMP 1 is selected.

Execute jump if JUMP 2 is selected.

Execute jump if JUMP 3 is selected.

Execute jump. Stop computation.

Execute jump. Stop computation if STOP 5 is selected.
Execute jump. Stop computation if STOP 6 is selected.
Execute jump. Stop computation if STOP 7 is selected.

Gt e € St e ke €t ks
nunnn
JOoO kWM =O

62 JUMP ON C/j\ ACTIVE INPUT BUFFER

If the input buffer on channel /]\ is active, clear the program address register, P, and enter a
new program address, Y, in P. Y becomes the address of the next instruction. If the input
buffer is not active, the next sequential instruction in the current sequence is executed in the
normal manner.

63 JUMP ON C? ACTIVE OUTPUT BUFFER

If the output buffer on channellj\is active, clear the program address register, P, and enter a
new program address, Y, in P. Y becomes the address of the next instruction. If the output
buffer is not active, the next sequential instruction in the current sequence is executed in the
‘normal manner.

64 RETURN JUMP (ARITHMETIC)

Execute a return jump sequence for certain conditions of either the A or Q register. The
branch condition designator, j, is interpreted ina special way for this instruction and determines
the conditions under which the return jump sequence is executed. If the return jump condition
is not satisfied, the next sequential instruction in the current sequence is executed in a normal
manner., If the return jump condition is satisfied, as listed below, the following sequence is
performed.

Store (P)+ 1 in the lower half of memory address Y, as designated by k. Then jump to Y + 1.

qc:m:l}ool\:b—ﬂo

No action. Continue with the current program sequence
Execute return jump

Execute return jump if (@) is positive

Execute return jump if (Q) is negative

Execute return jump if (A) is zero (positive zero)
Execute return jump if (A) is nonzero

Execute return jump if A; is positive

Execute return jump if (A) is negative

ol + G # S & Cond 0 ol 4 Cod & Gl ¢ Cod 0
U [I O | R 1}

42 of 49

65 RETURN JUMP (MANUAL)

Execute a return jump sequence for certain conditions of manual switch selections. The branch
condition designator, j, is interpreted in a special way for this instruction and determines the
conditions under which the return jump sequence is executed. If the return jump condition is
not satisfied, the next sequential instruction in the current sequence is executed in a normal
manner. If the return jump condition is satisfied, as listed below, then the following sequence
is performed.

Store (P) + 1 in the lower half of memory address Y as designated by k. Then jump to Y + 1,

Execute return jump regardless of switch selections
Execute return jump if JUMP 1 is selected

Execute return jump if JUMP 2 is selected

Execute return jump if JUMP 3 is selected

Execute return jump. Then stop computation

Execute return jump. Stop computation if STOP 5 is selected
Execute return jump. Stop computation if STOP 6 is selected
Execute return jump. Stop computation if STOP 7 is selected

e e e s €t e e €t
OB wWNDFO

66 TERMINATE C}

Terminate Input Buffer/Enable Interrupts/Disable Interrupts as designated by & and b as

follows:
’1\; = Q: Terminate the input/buffer on channel j
Kk =1landb = O: Enable all interrupts
K =landb # O: Disable all interrupts
K =2andb = 0: Enable all external interrupts
K =2andb # 0: Disable all external interrupts
k =3andb = 0O: Enable external interrupt on channel j
k =3andb # 0: Disable external interrupt on channel j

Ignore y for this instruction.
67 TERMINATE C}

Terminate Output buffer or all buffers as designated by k as follows:

l§ = 0: Terminate the output buffer on channel 3
k=1 Terminate the external function buffer on channel]
k = 2: Terminate all output and external function buffers

For ﬁ =1or 2, if’j\speciﬁes anoutput register being used 'by an intercomputer group, a resume
signal is simulated on that group.

In all cases, no output buffer monitor interrupt occurs. Ignore the b and y designators for this
instruction.

43 of 49

70 REPEAT

Clear BT and transmit Y to B7. If Y is nonzero, transmit (j) to r (repeat designator regis-
ter), thereby initiating the repeat mode. If Y is zero, skip the next instruction. All interrupts

are locked out during operation in the repeat mode.

The repeat mode executes the instruction immediately following the Repeat instruction Y times
and decreases the count in B7by one each time. B7 contains the number of executions remaining
throughout the repeat mode.

If no skip condition is met for the repeated instruction, the repeat mode is terminated by
exhausting the i'epeat count, and the instruction following the repeated instruction is executed.
If the skip condition for the repeated instruction is met, the repeat mode terminates, and the
instruction following the repeated instructionis skipped. Following the repeat mode termination,
the count remains in B7.

In no way does the repeat mode alter a repeated instruction as stored in memory.

The three lower order bits of the r designator (from j of instruction 70) affect the operand
indexing as follows:

r= 0 Do not modify the operand address of the repeated instruction after each indi-
vidual execution

r= 1: Increase the operand address of the repeated instruction by one after each
execution of the repeated instruction

r= 2 Decrease the operand address of the repeated instruction by one after each
execution of the repeated instruction

r = 3: Repeat the initial B register modification of the repeated instruction before
each execution

r = 4: Do not modify the operand address of the repeated instruction after each indi-
vidual execution. If the repeated instructionis a Replace instruction, the operand
address is incremented by (B6) for the store portion of the Replace instruction

r = 5: Increase the operand address of the repeated instruction by one after each
execution of the repeated instruction. If the repeated instruction is a Replace
instruction, the operand address is incremented by (B6) for the store portion
of the Replace instruction

r= 6: Decrease the operand address of the repeated instruction by one after each
execution of the repeated instruction. If the repeated instruction is a Replace
instruction, the operand address is incremented by (B6) for the store portion
of the Replace instruction

r="T Repeat the initial B register modification of the repeated instruction before

each execution. If the repeated instruction is a Replace instruction, the operand
address is incremented by (B6) for the store portion of the Replace instruction

44 of 49

71 B SKIP ON Bj

If the contents of the B register specified by j are equal to Y, skip the next instruction in the
current sequence and proceed to the following instruction. Clear the B register specified by j.

If the contents of the Bj register are not equal to Y, proceed to the next instruction in the
sequence in a normal manner and increase the contents of the Bj register by one.

The branch condition designator, j, is used todesignate the selected B register in this instruc-
tion and is not available for its normal function.

72 B JUMP ON Bj

If the contents of the Bj register are nonzero, execute a jump in program to address Y. Reduce
the contents of the Bj register by one. ‘

If the contents of the Bj register are zero, proceed to the next instruction in a normal manner.
Do not alter the contents of the Bj register.

The branch condition designator, j, is used todesignate the selected B register in this instruc-
tion and is not available for its normal function. If the jump condition is satisfied, the lower
order bits of Y become the address of the next instruction and the beginning of a new program
sequence. The higher order bits of Y are not used in this instruction.

73 INPUT BUFFER ON Cj] (Without Monitor Mode)

Transfer Y as designated by’l\{ to the input buffer control register 100 + 'j\and initiate as input
buffer on channel ? The next current input address is maintained throughout the buffer process
in the lower order 15 bits of the control register?‘ This storage address is incremented by one
during each individual word transfer. Subsequent to this instruction, each individual transfer
will be executed at a rate determined by the external equipment. This mode continues until it is
superseded by a subsequent input buffer or termination instruction on the same channel or
until the higher order half and the lower order half of the control register are equal, whichever
occurs first.

f{ =0 Store Y in the lower order half of control register 100 + 'j\, leaving the higher
order half undisturbed

k=1 Store (Y)L in the lower order half of control register 100 + /j\, leaving the
higher order half undisturbed

k=2 Is not permitted

k=3 Store (Y) in the control register 100 + /]\

* Refer to page 1 of this section

45 of 49

74 OUTPUT BUFFER ON C] (Without Monitor Mode)

Transfer Y asdesignated byﬁto output buffer control register 120 +§\ (k # 2), or external com-
mand buffer control register 140 +/j\(k = 2), and initiate the output buffer or the external func-
tion buffer respectively on channel /J\ The next current address is maintained throughout the
buffer process in the lower order 15 bits of the control register.* This storage address is in-
cremented by one during each individual word transfer. Subsequent to this instruction, each
individual transfer is executed at a rate determined by the external equipment. This mode
continues until it is superseded by a subsequent output/external function buffer or termination
instruction on the same channel or until the higher order half and the lower order half of the

control register are equal, whichever occurs first.

& =0 Store Y in the lower order half of control register 120 + 7, leaving the higher
order half undisturbed

k=1 Store (Y)L in the lower order half of control register 120 + ﬁ', leaving the
higher order half undisturbed

/1«\: = 2: Store (Y) in external function buffer control register 140 + ’J\

R =3 Store (Y) in output control register 120 + /]\

75 INPUT BUFFER ON Cj (With Monitor Mode)

Transfer Y as designated by i\{ to input buffer control register 100 + ’j\and initiate an input
buffer on channel ? The next current input address is maintained throughout the buffer process
in the lower order 15 bits of the control register. This storage address is incremented by one
during each individual word transfer. Subsequent to this instruction, each individual transfer
will be executed at a rate determined by the external equipment. This mode continues until it
is superseded by a subsequent input buffer or termination instruction on the same channel or
until the higher order half and the lower order half of the control register are equal, whichever
occurs first. Upon completion of the buffer operation, a monitor interrupt occurs, and the next
program instruction executed comes from interrupt entrance address 00040 + /]\

/f: =0 Store Y in the lower order half of control register 100 + /j\, leaving the higher
order half undisturbed

/1\{ =1: Store (Y)L in the lower order half of control register 100 + /j\, leaving the
higher order half undisturbed

/12 = 2: Is not permitted

R =3 Store (Y) in control register 100 + /]\

76 OUTPUT BUFFER ON Cj (With Monitor Mode)

Transfer Y as designated by k to output buffer control register 120 + ']\ (k # 2) or external

buffer control register 140 + ’]\ (k = 2) and initiate the output buffer or the external function
buffer respectively on channel 3\ The next current address is maintained throughout the buffer

*Refer to page 1 of this section

46 of 49

process in the lower order 15 bits ofthe control regis’cerik This storage address is incremented
by one during each individual word transfer. Subsequent to this instruction, each individual
transfer is executed at a rate determined by the external equipment. This mode continues until
it is superseded by a sebsequent output external function buffer or Termination instruction on
the same channel or until the higher order half and the lower order half of the control register
are equal, whichever occurs first. Upon completion of the buffer operation, a monitor interrupt
occurs, and the next program instruction executed comes from interrupt entrance register 00060
+] ifk # 2 and from 00500 +] ifk = 2,

A
1A< =0: Store Y in the lower order half of control register 120 + i, leaving the higher
order half undisturbed

ﬁ =1 Store (Y)L in the lower order half of control register 120 + ;, leaving the
\ higher order half undisturbed \
k =2: Store (Y) in external function buffer control register 140 + j

"k =3: Store (Y) in output control register 120 + !

00, 7700, AND 7777 IMPROPER CODES

Function codes 00, 7700, and 7777 are improper codes, which, if translated, cause a program
and an automatic jump to a location controlled by the Automatic Recovery switch.

77 07 NORMALIZE

Function codes 00, 7700, and 7777 are improper codes, which, if translated, cause a program
fault and an automatic jump to a location controlled by the Automatic Recovery switch.

This instruction uses

6 6 3 2 13
7 f] b|ls y

as the format for the instruction. The k designator is not used but an assumed value k= 3 is
forced into the instruction translator when executed. Inall other 77 instructions y when used as
an address is limited to 8bits addressing 256 words of memory. However, with normal indexing
being performed, an effective address Y can be generated to select any location in memory.

77 60 ENTER SPECIAL REGISTER
A
Clear the SR specified by j. Then transmit Y3_0 to this SR.

77 61 ENTER INPUT SR I/O

Clear the Input Special register for the channel specified by 3 Then transmit Yl-O to this Input
SR and clear the Continuous Data Mode on this channel.

* Refer to page 1 of this section

47 of 49

77 62 ENTER OUTPUT SR I/O

Clear the Output Special register for the channel specified by jA. Then transmit Y1 0 to this
Output SR and clear the Continuous Data Mode on this channel.

77 63 ENTER EXTERNAL FUNCTION SR I/0O

A
Clear the External Function Special register for the channel specified by j. Then transmit
Yl_0 to this EF SR and clear the Continuous Data Mode on this channel.

77 64 ENABLE INPUT CDM

Enable the Continuous Data Mode for Input on the channel specified by /]\ Ignore b, s, k, and y.
77 65 ENABLE OUTPUT CDM

Enable the Continuous Data Mode for Output on the channel specified by /]\ Ignore b, s, k, and y.
77 66 DISABLE INPUT CDM

Clear the Continuous Data Mode for Input on the channel specified by/j\. Ignore b, s, k, and y.
77 67 DISABLE OUTPUT CDM

Clear the Continuous Data Mode for Output on the channel specified by/j\. Ignore b, s, k, and y.
77 70 STORE SPECIAL REGISTER

Store the contents of the Special Register specified by/j\ inY,

77 71 STORE INPUT SR I/O

Store the contents of the Input Special register for the channel Specified by/j\ inY.

77 72 STORE OUTPUT SR I/0O

Store the contents of the Output Special register for the channel specified by’j\ in Y.

77 73 STORE EF SR 1I/0

Store the contents of the External Function Special register for the channel specified by/j\ in Y,

48 of 49

77 74 DISABLE 17-BIT ADDRESS MODE

Disable the expanded memory mode and enable the computer to interpret a maximum of 15 bits
for addresses thereby limiting it to operation within its internal 32K memory. All SR registers
are ignored and y becomes a 15-bit value in Type I instructions.

77 75 ENABLE 17-BIT ADDRESS MODE
If the MODE switch is on Expanded Memory position enable the computer to assemble and inter-
pret addresses up to 17 bits in length, The Special Registers become functional and s is inter-

preted when applicable. This is a donothing instruction if the MODE switch is in 32K memory
position.

49 of 49

INTRODUCTION

The Assembly System (AS-1) translates mnemonic code into Unit Computer machine
instructions. This code, called the AS-1 Input (Source) Language, aids in defining information
processing problems. The object program (that which is produced by AS-1 from the Input

Language) runs on the Unit Computer and thus solves the problems (see Figure 1).

Input
Data
The
Definition Input | Assembly | Object
of a Language "1 System | Program
Problem (AS-1)
Output
Data
Figure 1. AS-1 Solution of a Problem
INPUT LANGUAGE ORGANIZATION
OPERATIONS

AS-1 Input Language consists of a large repertoire of operations which either state certain
facts about entities in the input language, or perform a well-defined logical action. A list of
these operations, which are the basic unit of the language, defines a problem. They have the

configuration which follows.

1of 8

=
y ;

S N

L
[label] ' - [statement] =) [notes])

The label is a name that uniquely identifies the operation; it consists of up to
ten alphanumeric characters, but never starts with 0, X, or a number and never
consists of only A, Q, B0 through B7, or C0 through Cﬂ. Only an operation which
is referred to in the statement of another operation requires a label . A tag
is a reference to the lgbel of one operation in the sialement of another; it has

the same notation restrictions as a label
The siatement defines the operation; it is always required

Descriptive notes may follow the statement; they are fortheuser's convenience

and in no way alter the meaning of the operation
The straight arrow is a major separator which delimits the slatement

The curved arrow designates the end of each operation and signals the start of

the next one. It must precede the first operation of a program

STATEMENTS

In general, the statement involves two sections:

w |4

=) [operator]) [list of operands] =

The operator specifies the general characteristics of the operation

The operands further define the operation. The number and the configuration

of the operahds depend upon the operator used

The point separator separates the operator from the opércmd section and

separates the operands from one another

A statement, further divided, appears as:

w V

0 V4 : vV

=) [operator] . [operand]) [operand] eoe [operand] =)

20f 8

The operands consist of basic terms a, b, ¢, d as follows:

operand-code (tag + constant +|8]nMm) .
< 10 > < 10 = 10

Y

A

- J “ J - J —

a b c d
e - isthe point separator. It delimits the operand
() - are parentheses which indicate an exact meaning
a - is an alphanumeric operand-code symbol, consisting of up to 10 characters,

which adds some basic information to the operator or to the terms following it.

The operand-code may be alone, with other terms, or completely absent

b - is an alphanumeric tag symbol, consisting of up to ten characters, which refers

to a label or a number

¢ - is an octal or decimal constant. If a positive constant is alone, the + is not re-
quired. A decimal number is a string of digits followed by D. The constant con-
sists of up to 5 characters when it appears with the tag. It consist of up to 10

characters without the tag

d - is a B register which modifies the rest of the expression. K B" is alone, the

+ is not required. The content of B™ is implied in either case

Many operands consist of only term a. The majority, however, may consist of combinations
of the specified terms. Of these, three classes are most prominent: 1) Read-class, 2) Store-
class, and 3) Replace-class. I operands do not satisfy the forms of Read-, Store-, or Re-
place-classes, a description and use of those operands appear with the discussions of each

operation,

READ-CLASS

Read-claiss operands can assume the following forms:

CONSTANTS: Read-class operands may consist of term ¢ only. This term may be of up to
ten digits, either negative or positive. If a decimal number, it is a string of digits followed

by a D . If the constant is positive, the + is not required.

3of 8

Examples:
7235
49678D
-1
-496782D
-0

Constants may be modified by preceding them withan X, The X means exlended; that is, the
bits of the upper half of a register are flushed with the value of the upper bit of the lower half.
X has meaning only if it precedes 5 digitsand the upper digit is 4, 5, 6, 7, or negative numbers.

Examples:
' X40000

X77774

TAGS: Read-class operands may consist of term b only. The tag may consist of up to ten
alphanumeric characters; it represents a 5-digit octal number. The number is usually the

address of a memory location which is specified by an operation label.

Examples:
RANGE

CATO56

Tags may be modified by an increment consisting of a 5-digit octal constant or a 4-digit
decimal and/or the content of a B register. If the tag refers to a labeled statement, the
constant and B register specify an increment whichlocates a statement relative to the labeled

statement.

Examples:
RANGE+2
CATO056-5+B2
FIDDLE+BS5

The sign bit of the value represented by a tag with its increment is extended if term a is X.
Examples:
XRANGE
XCATO056-5+B2

CONTENTS OF: Read-class operands mé.y specify the contents of memory locations. An
operand-code, term a, and parentheses must always be present. The memory location can

be specified by any combination of terms b, ¢, and d, that is, a tag, an absolute address, a

4 of 8

tag plus or minus a 5-digit increment, or any of the preceding modified by the content of.a
B register. The operand-code specifiesthe form of the numeric value in the following manner

when the operand-code (term g) is:
L - the numeric value is the lower 15 bits of the memory location

U - the numeric value is the upper 15 bits of the memory location, normalized to

the right of a 30-bit register
W - the numeric value is the whole 30 bits of the memory location

LX - the numeric value is the lower 15 bits of the memory location, with the sign
extended to make a 30-bit word

UX - the numeric value is the upper 15 bits of the memory location, normalized to the

right of a 30-bit register and the sign is extended

Examples:

L(COW+5+B6)
UX(CAT)
w(B5)

The last example means "the whole contents of the memory location whose address is in B5 ."

REGISTERS: Read-class operands may refer to the contents of registers, The registers are:

A,Bl ,B2,B3,B4,B5, B6 or B7.

A constant may modify the content of the B registers, but not of the A register. For exam-
ple: B1+3

B5-12D

If a sign extension is desired on the content of a B register,an X precedes the register name.

For example:

XB3
XB4-2

STORE-CLASS

Store-class operands can assume the following forms:

CONTENTS OF: Store-class operands may specify a memory location into which a numeric

value is stored. An operand-code, term a, and parentheses must always be present. The

50f 8

memory location can be specified by any combination of terms b, ¢, and d, that is, an abso-
lute address, a tag plus or minus a 5-digit increment, or any of the preceding modified by the
content of a B register. The operand-code designates the position and form of the numeric

value when it is stored. If the operand-code (term a) is:

L - the numeric value treated as a 15-bit integer is stored in the lower 15 bits of the

memory location. (The upper 15 bits remain unchanged)

U - the numeric value treated as a 15-bit integer is stored in the upper 15 bits of the

memory location. (The lower 15 bits remain unchanged)

W - the numeric value treated as a 30-bit integer is stored in the memory location
CPL - the numeric value is complemented and stored as L above
CPU - the numeric value is complemented and stored as U above
CPW - the numeric value is complemented and stored as W above
Examples:
L(COW+5+B6)
CPU(CAT)
W(B5)

REGISTERS: Store-class operands may specify a register into which a numeric value is

stored. These registers are:

A or Q.

REPLACE-CLASS

Replace-class operands can assume only the following form:

CONTENTS OF: A Replace-class operand specifies a numeric value which is in 2 memory
location, and after some function is performed, specifiesthe same memory location into which
the resulting numeric value is stored. The memory location can be specified by any combina-
tion of terms b, ¢, and d, that is, atag, an absolute address, a tag plus or minus a 5-digit in~
crement, or any of the preceding modified by the content of a B register. The operand-code
specifies the form of the numeric value in the following manner when the operand-code (term
a) is:

L - the numeric value is the lower 15 bits of the memory location; after the basic

function is performed, the resulting numeric value treated as a 15-bit integer is

6 of 8

LX

UXx

stored in the lower 15 bits of the same memory locationX (The upper 15 bits

remain unchanged)

the numeric value is the upper 15 bits of the memory location, normalized to the
right of a 30-bit register; after the basic function is performed, the resulting
numeric value treated as a 15-bit integer is stored in the upper 15 bits of the

same memory location) (The lower 15 bits remain unchanged)

the numeric value is the whole 30 bits of the memory location; after the basic
function is performed, the resulting numeric valueis stored in the same memory

. %
location

the numeric value is the lower 15 bits of the memory location, with the sign ex-
tended to make a 30-bit word; after the basic function is performed, the result-

: . . *
ing numeric value is treated as L above

the numeric value is the upper 15 bits of the memory location, normalized to the
right of a 30-bit register, and the sign is extended; after the basic function is

performed, the resulting value is treated as U above™®

Examples:

L(COW+5+B6)
UX(CAT)
W(B5)

*Exception: The storage reference of the replace may be altered by B6 when fol-

lowing a RePeaT operation. (See Mono-operations, RPT, page 29.)

Tof 8

CLASSES OF OPERATIONS

Operations divide into two major classes: 1) AS-1 programing operations 2) assembler-

control operations,

1. AS-1 programing operations express either 1) machine instructions in a mnemonic
form, 2) groups of machine instructions which performa simple function, or 3) input-
output control on the standard external equipment. These operations generally refer
to memory locations by their address (a label or a tag), to machine registers by

' name (A, Q, Bn), and to data by the 30-bit word concept. A thorough knowledge of

the Unit Computer is necessary to use these operations

2. Assembler-control operations specify information to the assembler executive routine.
This information states the process it is to perform, such as assembling, editing,

ete

Operations further divide into two categories: 1) Declarative, and 2) Action.

Declavative operations state certain facts about entities inthe input language of which
they are part. They 1) adapt the program to a specific memory configuration and input-
output capabilities of the computer, and 2) identify different segments of input to the

assembler. No machine instructions result directly from the declavative operations.

Action operations have operational or dynamic meaning and state rules of process-
ing which give rise to actual machine instructions. Each section pertaining to these op-

erations specifies to which category each operation belongs.

8 of 8

AS-1 ASSEMBLER GROUND RULES

The following Ground Rules are offered as aids to the programer:

Case:

1. It is recommended that upper—éase alphabetical and numeric characters be used
in coding. This will eliminate a large portion of case shifting when preparing
paper tapes

2. An upper-case symbol is required at the beginning of a tape

Coding Format:

3. The operator is always the first word of an L0 operation statement, if no label
is present.

4, The symbols + and - specify increments. Both +and - may be used with a num-
ber. B registers can be used only with a + sign

5. The j-designator operand, if used, appears as the last operand of a mono-
operation

6. In a mono-code operation, the tag, basictermb, must precede the constant, term

¢, and the B register, term d. The constant and B register terms can be inter-

changed (see Programing Language, Page 3)

" Comntrol Symbols:

1.
8.
9.

10.

11,

12,

A) must precede and follow the header. A) also separates all operations
A =» must always precede the statement
The operator and each of its operands are separated with a point separator, ®

Parenthesis symbols indicate, in the assembler-language operations, grouping of
interrelated operands by separating an operand code from the term(s) that it is
to modify, i.e., U(DOG6+267);L(DOG4+1);W(CAT4)

A = must precede the notes

A double period following a carriage return indicates the end of paper tape

1 of 4

Decimal Numbevs:

13. A decimal number is indicated by being followed by the letter p; i.e., 9286D.
Numerical characters 8 and 9 may then be used
14, Signed decimal numbers cannot exceed eight digits, since the sign and the D are
included in the ten character maximum. Allowable decimal formats are:
+43274685D
-3594 2738D
536870911D*
Identifiers:
15. Since L1 ID's are in octal notation, corrections to the L1 ID's must be in
octal
16. The HEADER operation of an L0 program is given an Ll ID of zero; the second
operation has an L, ID of 1; numbering is sequential thereafter
Labels:
17. Only essential operation items need be labeled, i.e., header items, the ENTRY
operation of a program, operation items referred to in the program, etc
18. Start each subroutine with a labeled ENTRY operation. The label should be the
subroutine name
19, When used, the ENTRY operation of any routine must have a label
20, Use only alphanumeric characters in labels

Mono-operations:

21,

22,

23.

Be sure to observe the distinctions between Read-class, Store-class, and Re-

place-class operands in coding mnemonic instructions

The VO operand in mono-operations is either 7, a register designation, or e, a

modifying expression; in a few mono-operations, Vis absent.

j-operands are required in all COM operations: COMeA; COMeQ; COMeAQ;
COM e MASK '

*Maximum decimal number permitted

2 of 4

24,

j-operands are not permitted if # in the V0 operand is Bl through B7 or C0O

through C17 in the operations: ENT; STR; BJP; BSK; CL;IN; OUT

Poly-operations:

25,

26.

Avoid, if possible, leaving information in registers A, Q, and B7 while stating
poly-operations
Do not use a j-operand in the operation preceding a poly-operation except for

JP and RJP operations’

Register B:

217.

The content of register Q cannot be transferred directly to a B register. It

can be transferred only indirectly by first storing it in A or memory

28. Do not decrement a B register through zero (see INCREMENT operation)

29. An XB" in a mono-code statement will give a sign extension of the content of
register B" on transfer to a 30-bit location or register

Miscellaneous

3Q. Headers are required on all input tapes

31. Code delete, stop code, color shift code, or leader may appear at any place on
paper tape since they are discarded by the assembler program

32. The ENT o Y-Q o [read-class operand] o AZERO operation provides acon-
venient method of making a non-masked comparison

33. Toclear an area of 1word, the mono-code CL operation is more efficient time-
wise than the poly-code CLEAR operation. A word number of 0 used with the
CLEAR operation merely produces a "do-nothing" on delay instruction in the
object program

34. 0 is translated as a zero in AS-1 code

35. A combined read-in of both normal-allocation and relative-allocation tapes re-

sults in the following:

1. I REL-ALLOC tape precedes the ALLOCATION tape,the assembler sup-
presses all assembler-generated tags contained onthe ALLOCATION tape. The

assembler reassigns these tags

3of 4

36.

2. If the ALLOCATION tape precedes the REL-ALLOC tape, the compiler

recognizes and accepts all assembler-generated tagsonthe ALLOCATION tape

Operations containing references to C-channels must use octal channel desig-

nations, i.e., C0-C7, C10-C17. c™ is treated as a complete channel name, not

a channel number

Example:

mp TERM e CI1 (nof C9D) .» INPUT mp

40of 4

MONO-OPERATIONS

Operation

Right SHIft . . o oot e e oo e e e
Left SHIft . o . v v v v v e e e e e e e

“ SUBtract o i e e e e e e e e e e e e
MULHPLY . . 0 v v e o e e e e e e e e e e e e e e e e e e e
DIVide @ @ i i i e e e e e e e e e e e e e e e e e
SQUATe ROOT . . & v i v v e
(001157 < J
ComPlement. v v v v v i v et et e e e e e e
SELective o o 0 i e e e e e e e e e e

REPIACE v v v e LTI
Replace SElectiveo
JumP . L L L e e e e e e e e e e e e e e e e

B SKID « v v et e e e e e e e e

INput . . . e e e e e e e e e e
OUTput oo e e e e e e e e e e e e

iof ii

MONO-OPERATIONS (Cont.)

Operation

Set Interrupt Lockout - EXternal

Remove Interrupt Lockout . . .

Remove Interrupt Lockout - EXternal

Remove Interrupt Lockoutand Jump ¢ o o4 ..

ii of ii

MONO-OPERATIONS

Operations which mnemonically express a machine instruction are mono-operations. Each
mono-operation in the source language (LO) is translated by AS-1to one machine instruction

in the object language (L 4), i.e., the translation is one-to-one.

Mono-operations have a definite format:

w VO V1 ' V2

= [operatdr] ° [allied operand] ° [y -operand] ° [j -operand] =)

W - gives a mono-code which defines a class of machine instructions, such as enter ,
store, etc
Vb - pgives added information which further defines a machine instruction, thus is

called the allied operand. The allied operand may specify a register, 7, or a

simple logical or arithmetic expression, ¢. It is absent in some operations

Some of the mono-codes are multipurpose. They form a class of operations. In such cases,
the allied operand combines with and modifies the operator to generate a distinct instruction
in the object language. An example is the selective operator, SEL. When combined with
the Vd operand, SET, it generates a computer function code f of 50. Similarly, SEL ¢ CP
generates an f of 51, SEL e CL generates an f of 52, and SEL @ SU generates 53. An-

other example of a multipurpose operator is ADD:

ADD o A
ADD ¢ Q
ADD ¢ LP

In each case the assembler generates a separate machine code instruction.

V1 - specifies either 1) a numeric value, 2) the address of a memory location, or
3) aregister (A, Q, or Bn). The y-operand is a Read-class operand, a Store-class
operand, or a Replace-class operand (see the Basic Information, Section II-A,

for a discussion of these). V. is absent in some operations

1
Note: Subsequent references to y include all of theabove interpretations unless

otherwise specified.

1 of 40

V2 - specifies a j-operand which is primarily used for jump or skip determination
or for repeat status interpretation. The action caused by these may be condi-
tional or unconditional as directed by the operand used. Seven j-operands are
applicable to the majority of mono-operations; these are called normal j-oper-
ands. Certain operations require the usage of unique j-operands, called
special j-operands. These are explained in the discussions of those operations.

The j -operand is absent on other operations

Normal j-operands are as follows:

Operand, j Performance

(blank) Will not skip the next operation.

SKIP v Skip the next operation unconditionally

Q POS Skip the next operation if Q is positive

Q NEG Skip the next operation if Q is negative

A ZERO Skip the next operation if A is zero

A NOT Skip the next operation if A is non-zero
A POS Skip the next operation if A is positive

A NEG Skip the next operation if A is negative

Special j -operands are required for use with the following operations: Jump, Return Jump,
Divide, Repeat, Add Q, Subtract @, and all non-mask Compares.

Mono-code operators, combining with allied operands in most cases, are capable of ge‘nerat-
ing all the irredundant instructions of the computer’s repertoire. Additional operations
such as: "do nothing" operation, NO-OP; and "complement a register", CP; produce single
instructions which achieve such actions which are not apparent in the names of computer

function codes.

2 of 40

ENTer Operation:

W V0

Vl V2
=) ENT o [1' ore] o [y] o []] =)
The ENT operation either 1) first clears the register, », and then transmits
the numerical value expressed by y to register », or 2) performs the function
expressed by ¢ and enters the result in A, The Y that appears in e refers to

the numerical value which y defines.

designates the register into which the numerical value is entered; » can be:

A, Q, or BO through B7

or
states one of several simple arithmetic or logical expressions, e, to be per-

formed, which are then entered into A. These are:

Expression, e Performance

1) LP (y) (Q* =»> A
2) Y+Q y+Q => A
3 Y-Q y-Q wmd> A

gives a Read-class operand that defines y
specifies a normal j-operand; it is optional when VO isA, Q Y+Qor Y-Q

or

specifies a j-operand when VO is LP. In this case the operation permits all
normal j-operands except QPOS and QNEG. Substituted for QPOS and QNEG

are two special j-operands:

EVEN - Even parity (even number of "ones" in A)
ODD - 0Odd parity (odd number of "ones" in A)

Note: If VO is BO through B7, V2 must be absent.

*LP (y) (Q) means the bit-by-bit product of (3) and (Q)

ENT
f: 10, 11, 12
3 of 40 13, 30, 31, 40

Examples:
mp ENT ® Y+Q o UX(SACK+B4) =)
mp ENT ¢ Q o X77776 o AZERO =p

mp ENT o LP e W(BAG9+3) ¢ EVEN =

ENT

£ 10, 11, 12)
4 of 40 13, 30, 31, 40

SToRe Operation:

W Vo v, v,
-psmo[r,ore].[y]. []]»

The STR operation stores one of the following: 1) the content of register 7, or

2) the result of an expression, e, in a storage location delegated by y.

Vo - designates the register, 7, whose content is stored in'a memory location. V0
can be: A, Q, BO through B7
or

Vo - states one of several simple arithmetic or logical expressions, ¢, to be per-

formed, which are then stored in a memory location. These are:

Expression, e Performance
1) p LPA)(Q* =m>y
(2) A+Q A+ Qmp y and A
3 A-a A-QmpyandA
V1 - gives a Store-class operand that defines a memory location y
Vg - specifies a normal j-operand. The j-operand is optional except where » is BO
through B7
Examples:

mp» STR o B7 e L(PEN-5) =>
mp STR o Cl4 o W(INK) m=p

mp STR ¢ A-Q ¢ W(PAPER) ¢ QNEG mp

* LP(A)(Q) means the bit-by-bit product of A and Q

STR
f: 14, 15, 16
5 of 40 32, 33, 47

SToRe (channel) Operation:
w V0 V1 V2
mp STR o [channel] . [y] ° [sub-function code] =

This operation provides the interrupt word at the specified location.

V. - Specifies the channel of the desired interrupt word. Channels C0 - C7, C10 - C17
are permitted. V0 may specify aname which is identified by a MEANS operation

or a CHAN-SET tape

V., - Specifies the location at which the interrupt word is to be stored. This operand

may specify only the whole contents of a memory location

V, - Specifies the sub-function code:

(absent)** - means the contents of the appropriate address reserved for interrupt
word storage will be transferred to Y as specified by Vl. This
instruction is necessary with new line equipment to reset the

Interrupt Request

FORCE -~ provides forcing the word on the line to be stored at Y as specified
by Vl.

Acknowledge signal (this is an abnormal mode used for testing

Program will hold until the word is read causing an Input

some equipments)

Examples:
mp STR e C3 ¢ W(CAT) =mp
mp STR ¢ SMPCHAN ¢ W(DOG) ¢ FORCE mp

**The Input Acknowledge is set automatically when the interrupt word is read into the special
address, which occurs in both old and new line equipment

STR (channel)
6 of 40 ‘ (f: 17)

NO-OP Operation:

w
= NO-OP =

The NO-OP operation is a "do nothing" operation. It generates a 12000 00000

in the object program, causing the computer to move on to the next operation.

NO-OP
7 of 40 ¢: 12)

CL ear Operation:

w V0

mp CL o ['rory] =

The CL operation clears the memory location specified by y or the register

specified by 7.
V., - designates the register to becleared; 7 can be:
A, Q, Bl through B7 ,

oY

16 - gives a Store-class operand that defines »

Examples:

= CL o Q =
mp CL ¢ L(GIMME) =

cL
8 of 40 (& 16, 10, 11, 12, 13)

Right SHift Operation:

w v V V

2

= RSH o [r] . [y] . []].)

The RSH operation shifts the content of the register, », to the righty bit posi-
tions. As the information is shifted, the original sign bit replaces the higher

order bits of register #; the lower order bits are shifted off the end. -

Only the lower-order 6-bits of y are recognized. The higher-order 24 bits are

ignored.
V0 - designates the register that the operation shifts; » can be:
A, Q, or AQ
AQ represents the 60-bit register consisting of A and Q
V1 - gives a Read-class operand that defines y
V2 - specifies a normal j-operand, it is optional

Examples:

mp RSH o AQ © 15D ¢ AZERO =p

mp RSH o A o [L(FLIP+6) =p

S : RSH
9 of 40 (t: 01, 02, 03)

Left SHift Operations:

The LSH operation shifts the content of the register, 7, to the left y bit posi-
tions, The shift is circular; the low-order bits of » are replaced by the upper-
order bits. Only the lower-order 6 bits of y are recognized. The higher-order

24 bits are ignored.
V0 - designates the register that the operation shifts; » can be:
A, Q,or AQ
AQ represents the 60-bit register consisting of A and Q
V1 - gives a Read-class operand that defines y
V, - specifies a normal j-operand; it is optional

Examples:
wp LSH e A e L(CAT) e QNEG =p

m LSH ¢ Q ¢ B4 =

10 of 40
LSH

(t: 05, 06, 07)

ADD Operation:

w VO 4 V.

1 2
m=p ADD o [rore] ° [y] o []]»
The ADD operation either 1) adds the numeric value expressed by y to the

contents of 7 and replaces the result in 7, or 2) performs the expression, e, and
then adds its result to A.

V0 - designates the register to which the numerical value is added
Register, v Performance
A A+y mp A
Q Q+y =& Q
or
V0 - states a logical function, e
Expression, e Performance
LP A + LP@)Q)* wd A
V1 - gives a Read-class operand that defines y
V2 - specifies a normal j-operand if 16 is Aor P . I Vo isQ, AZERO and

ANOT are not permitted; QZERO and QNOT are substituted instead. V2
is optional
Examples

mp ADD o LP ¢ W(BOOK) =

m» ADD ¢ Q © 12D ¢ QZERO =>

*LP(yQ) means the bit-by-bit product of y and Q

11 of 40 ADD

(£: 20, 26, 41)

SUB tract Operation:

W VO Vi ‘V2

mp SUB o [rore] . [y] ° []] =)

The SUB operation either 1) subtracts the numeric value expressed by y from
the contents of 7 and replaces the result in 7, or 2) performs the expression, e,

and then subtracts its result from A.

Vb - designates the register from which the numerical value is subtracted

Register, » Performance
A A-ymp A
Q Q-y = Q
or
V0 - states a logical function, e
Expression, e Performance
LP A - LPO)Q)* =» A
V1 - gives a Read-class operand that defines ¥
V2 - specifies a normal j-operand if V0 isAorLP. K Vbisa, AZERO and
ANOT are not permitted. QZERO and QNOT are substituted instead. v,
is optional
Examples:

mp SUB ¢ A ¢ 12D mp
=) SUB ¢ Q ¢ B6 =

*LP(y)}(Q) means the bit-by-bit product of y and Q

SUB
12 ot 40 (f: 21, 27, 42)

MUL tiply Operation:

w VO Vv V

1 2
mp MUL o [absent]) [y]) [J]-)
The MUL operation multiplies Q by the numerical value expressedbyy, leaving
the double length product in AQ. All numbers involved are treated as integers.
V., - always absent
V1 - gives a Read-class operand that defines y. A is not permitted

V, - specifies a normal j-operand

The actual multiplication is performed with positive numbers only; therefore,
if the original sign bits of ¥ and Q are not similar, an end correction is made

by complementing the product. The branch condition j-operand is interpreted

prior to the end correction, thus ANEG has noeffect and APOS always gives

an unconditional skip.

Examples:
mp MUL e L(PAPER-2) =mp
= MUL ¢ 4 =)

13 of 40 MUL
(f: 22)

DIV ide Operation:
w V0 V1 V2
= DIV o [absent] ° [y] . []] =

The DIV operation divides AQ by the numerical value expressed by y, leaving
the quotient inthe Qregister and the remainder in the A register. The remainder

bears the same sign as the quotient.

VO - always absent
V1 - gives a Read-class operand that defines y. A is not permitted
V2 - specifies a skip-the-next-operation condition
Operand, j Condition
(blank) Does not skip on divide
SKIP Unconditional skip
OF Skip if there is an overflow
NOOF Skip if there is no overflow
AZERO Skipif A=0
ANOT Skip if A #0
APOS Skip if A is positive
ANEG Skip if A is negative

Note: There is no indicator on the consoleto represent a divide fault. However,
by coding each operation with aj of OF, a program test for a divide fault is
automatic. With this selection for j, a skip of the next operation occurs if the
divide fault exists. The skip would be made to a JP operation which provides
remedial means of noting the error or of correcting it. Therefore, the opera-
tion which follows the DIV operation should have a j-operand of SKIP in
order to preclude the JP operation whenever the divide sequence culminates in
a correct answer. A divide fault can be detected also if the DIV operation is
executed with a j of NOOF. In this case, a correct answer is indicated when
a skip occurs. Since A isalways positive at the time j is sensed, ANEG becomes
meaningless.
Examples:

wp DIV ¢ W(PAD+B2) ¢ OF m»

=> DIV ¢ B6 mp

14 of 40 | (f'_";’3)

SQuare RooT Operation:
w V0 V1 V2
=) SQRT o [absent] ° [absent] ° []] =

The SQRT operation finds,/1Q| and places it in Q. The remainder goes to A,
always destroying the previous contents. The radix point of (Q) is assumed to

be at the low order end of the register.

VO - always absent
V1 - always absent
V2 - specifies a skip-the-next-instruction condition
Operand, j Condition
(blank) Does not skip
SKIP ~ Always skip
REM Skip if A #0
NOREM Skip if A =0
Examples:
=) SQRT =)

=) SQRT ¢ NOREM mp

SQRT
15 of 40 (£: 23)

COM pare Operation: N

Type A w v % v

Type B
w VO Vl V2
m COM o MASK o [y] . []] =»
Type A:
The COM operation compares the value expressed by y with 7. A skip of the
next operation takes place if the condition specifiedby j is satisfied. The content
of 7 is not changed.
VO - designates the register with which the numeric value is compared
Register, 7 Performance
A Ay
Q QY
AQ* A yand Q y
V1 - gives a Read-class operand that defines y
V2 - specifies a skip condition; it must be present. The special meanings of j are:
Operand, j Condition
YLESS Skip if the value expressed by ¥y < Q
Skip if the value expressed by y < A
Skip if the value expressed b >
YMORE P p yy Q
Skip if the value expressed by y > A
YIN Skip if @ 2 value expressed by y and the value
expressed byy > A, Q=2y>A
YOUT Skip if Q < value expressed by y or the value
expressed by y < A, Q< Y<A

* Use only with j-operands YIN or YOUT y is compared with A and Q as
individual 30 bit registers

coOM
16 of 40 (f: 04, 43)

Type B:

The COM e MASK operation compares A with the bit-by-bit product of the
values expressed by ¥ and Q. A skip of the next operation takes place if the

condition specified by j is satisfied. The contents of A and Q are not changed.

says MASK
gives a Read-class operand that defines y

specifies a normal j-operand; it must be present. The condition of A is tested
after LP()(Q)"is subtracted from A. The LP(y)(Q)"is then added to A

Examples:
m> COM ¢ AQ e W(TAB-2) ¢ YIN =>

m»> COM o MASK o L(TAB) o AZERO mp

*LP(y) (Q) means the bit-by-bit product of y and @

COM
17 of 40 ' (f: 04, 43)

ComP lement Operation:
w V0
> P o [7] »
The CP operation complements all bits of the register specified by ».
V0 - designates the register which is complemented; » can be:

Aor Q

Example:

mp CP ¢ Q mp (Gen: 14000 00000)

CcP
18 of 40 : 51, 14)

SEL ective Operation:

w

> Sl e [c] o

41 Va

[y ° []] =

The SEL operation performs logical manipulations specified by e onthe content

of A. A string of bits expressed by » controls these ménipulations.

V. - states one of several logical functions. These are:

0

Expression, e

Performance

SET Sets the individual bits of register A corre-
sponding to ores in the numeric value expressed
by ¥, leaving the remaining bits of A unaltered

cP Complements the individual bits of register A
corresponding to ones in the numeric value ex-
pressed by y, leaving the remaining bits of A
unaltered

CL Clears the individual bits of register A corre-
sponding to o&es in the numeric value expressed
by v, leaviﬁg the remaining bits of A unaltered

SU Replaces the bits of A with bits of the numeric
value expressed by y corresponding to onesin Q

Vl' - gives a Read-class operand that definesy. A is not »permitted
V2 - specifies a normal j-operand; it is optional
Examples:
=) SEL X77774 wp

mp SEL e SET e W(CLIP) e AZERO mp

SEL

19 of 40 (¢: 50, 51, 52, 53)

RePLace Operation:

w

= RPL o [e] .

|4

] - U]

Yy

=

The RPL operation performs the function expressed by ¢, and stores the result

in A and in a memory location established by y. The Y that appeairs in ¢ re-

fers to the numerical value which y defines.

states a simple arithmetic or logical expression to be performed. These are:

@
@)
@)
(4)
®)
(6)
)
(®)
(9)

gives a Replace-class operand which defines address y

Expression, e

A+Y
A-Y
Y +Q
Y-Q
Y+1
Y-1
LP
A+LP
A-LP

Performance

A+Y mp yandA

A-7 w»y.

y

y
¥y
y

+

+

Q =y
Q wp y
1 wpy
1 wpy

LP () (Q*mp y
A+LP (y) (Q wpy
A-LP () (Q wpy

and A
and A
and A
and A
and A
and A
and A
and A

specifies a normal j-operand; this is valid with all VO operands except LP

or

specifies the j-operand when

V0 is LP, In this case the operation permits all

normal j -operands except QPOS and. QNEG. Substituted for QPOS and QNEG

are two special j-operands as follows:

EVEN - Even parity (even number of "ones" in A)

ODD - Odd parity (odd number of "ones" in A)

Examples:

mp RPL ¢ A+LP o W(CRUNCH) ¢ QNEG mp

mp RPL ¢ Y-Q ¢ UX (HOPTO+B6) wp

m) RPL ¢ LP * W (DOP+B4) ¢ ODD mp

*LP (y) (Q) means the bit-by-bit product of (y) and (Q)

20 of 40

RPL
f: 24, 25, 34, 35)
36, 317, 44, 45, 46

Replace SElective Operation:

w VO v |4

1 2
> Rt o [c] o [y] o [j] =
The RSE operation performs logical manipulations specified by e on the con-
tent of A and then stores A in the memory location whose address is expressed

by ¥. A string of bits inthe same memory location controls these manipulations

before the store takes place.

V0 - states one of several logical functions. These are:
Expression, e Performance
SET Sets the individual bits of register A to one

corresponding to ones in the numeric value ex-
pressed by y, leaving the remaining bits of A
unaltered, then stores A at the storage address

expressed by y

cpP - Complements the individual bits of register A
corresponding to ones in the numeric value ex-
pressed by y, leaving the remaining bits of A
unaltered, then stores A at the storage address

expressed by ¥

cL Clears the individual bits of register A corre-
sponding to ones in the numeric value expressed
by ¥, leaving the remaining bits of A unaltered,
then stores A at the storage address expressed
by y

suU Replaces the bits of A with bits of the numeric
value expressed by y corresponding to ones in
Q, then stores A at the storage address ex-

pressed by ¥y

V. - gives a Replace-class operand that defines y

RSE
21 of 40 (: 54, 55, 56, 57)

V'2 - specifies a normal j-operand; it is optional

Examples:
mp RSE ® SU e W(COVER+B4) =p

mp RSE ¢ CL o LX(POW5) mp

RSE
22 of 40 | (f: 54, 55, 56, 57)

JumP Operation:

N 4 Y

= JP [absent] ° [y] . []] =

The JP operation clears the program address register P, and enters the ad-
dress designated by y in P for certain conditions specified by j . Thus y be-
comes the address of the next operation and the beginning of a new program
sequence. If a jump condition is not satisfied, the next sequential operation in

the current sequence is executed in the normal manner.
always absent
gives a Read-class operand which defines address y

specifies a jump condition

Operand j Condition

QPOS Jump if Q is positive

QNEG Jump if Q is negative

AZERO Jump if A is equal to zero
ANOT Jump if A is not equal to zero
APOS Jump if A is positive

ANEG Jump if A is negative

(blank) Unconditional jump

KEY1 Jump if Key 1 is set

KEY2 Jump if Key 2 is set

KEY3 Jump if Key 3 is set

sTOP Jump and then stop

STOPS Jump and then stop if Key 5 is set
STOP6 Jump and then stop if Key 6 is set
STOP7 Jump and then stop if Key 7 is set
c"ACTIVEIN

. See next page for condition description
Cc"ACTIVEOUT

* If j isCMACTIVEIN or CMACTIVEOUT, an operand code of X, LX,UX, and A

is not permitted

JP
23 of 40 (f: 60, 61, 62, 63)

CPACTIVEIN * Jump if the input buffer mode on channel n is
active (n =0, —, 17)

c"ACTIVEOUT * Jump if the output buffer on channel n is active
n=0, —, 17)

Examples:
mp JP © TRACE mp»

mp JP o L(TRIGtB2) ¢ KEYI mp

mp JP o ROAR e CISACTIVEIN =p

* May be a name whichisdefinedbya MEANS operationora CHAN-SET tape

JP
924 of 40 (f: 60, 61, 62, 63)

JumP Operation

w V0 V1 V2 V3

mp JP o [absent] ° [location] o [channel] ° [COMAC'I'IVE] o

This operation provides a means for determining whether an external function

command buffer is active.
V0 - Always absent

V1 - Specifies the location to which control istobe transferred if the specified external
function command buffer is active. This operand may contain only a tag or a

tag with a K designator of L

V2 - Specifies the channel on which the external command buffer is to be tested.

Channels CO0-C'7, C10-C17 are permitted. V2 may specify a name which is

identified by a MEANS operation or a CHAN-SET tape
V3 - Specifies that this test is for an active external function command buffer

Examples:

mp JP o PTH o CIO o COMACTIVE =p
= JPe PTH o TAPECHAN ¢ COMACTIVE =

JP
25 of 40 (£: 17)

Return JumP Operation:

W %

=p RIP o [absent] °

Vs

L
[»] - [i] =

The RJP operation performs the following steps if conditions specified by j are

satisfied: 1) it stores the content of the program address counter P, which is

the address of the RJP operation plus one, into the lower 15 bits of the memory

location which has the address specified by y, and 2) then it enters P with ¥ + 1.

Thus, ¥ + 1 becomes the address of the next operation and the beginning of a

new program sequence.

If the j condition is not satisfied, the next sequential operation in the current

sequence is executed in the normal manner.

always absent

gives a Read-class operand which defines address y

specifies a jump condition

Operand, j
QPOS
QNEG .
QZERO
ANOT
APOS
ANEG
(blank)
KEY1
KEY2

KEY3
STOP

STOPS
STOP6
STOP?7

Examples:

Condition
Return jump if Q is positive
Return jump if Q is negative
Return jump if A is equal to zero
Return jump if A is not equal to zero
Return jump if A is positive
Return jump if A is negative
Unconditional return jump
Return jurhp if Key 1 is set
Return jump if Key 2 is set
Return jump if Key 3 is set

Return jump and then stop

Return jump and then stop if Key 5 is set

Return jump and then stop if Key 6 is set

Return jump and then stop if Key 7 is set

mp> RIP o TRACE ¢ STOP mp

mp RJP o U(FLAT+B7) =

26 of 40

RJP
(f: 64, 65)

B JumP Operation:
w VO Vl
= BIP o [r] . [y] =

The BJP operation tests the content of the B register specified by ». If () is
zero, the normal sequence of operations continues. If (¥) is non zero, (7) de-

creases by one, and a new sequence of operations begins at the address ex-
pressed by y.

VO - designates a B register: B1 through B7
V1 - gives a Read-class operand that defines y

Note: A j-operand is not permitted.

Examples:

mp BJP o B5 o DESK m»

mp» BJP o Bl o U(EXIT+B2) =>

BJP
27 of 40 (f: 72)

B SKip Operation:
w V0 V1
mp BSK . [7’]) [y] =

The BSK operation tests the content of the B register specified by 7. If (r)is
equal to the numeric value expressed by ¥, the control sequence skips the next
operation and(7) is cleared. If ()is not equal to the numeric value expressed by

¥, the normal sequence of operations continues, and (7) increases by one.
V, - designates a B register: Bl through B7
V, - gives a Read-class operand that defines y

Note: A j-operand is not permitted

Examples:
mp BSK o B3 o 56 mp

mp BSK o B4 ¢ B2 mp

, | , BSK
28 of 40 (£: 1)

RePeaT Operation:

w

mp RPT o [absent] °

D] -] =

The RPT operation initiates a repeat mode of control which causes execution of

the next sequential operation the number of times expressed by y, or until the

j-operand condition of the next operation is satisfied, whichever occurs first.

B'7 keeps count of the number of times execution is to take place. (B'z decreases

by one after each execution.)

VO - always absent

V1 - gives a Read-class operand that defines y. K 3 is zero, the next instruction is
skipped

V2 - specifies the mode of address modification of the repeated operation

Operand, j Control

(blank) Unmodified repeat of next operation

ADV Advance the operand address of the repeated
operation by one after each individual execution

BACK Decrease the operand address of the repeated |
operation by one after each execution of the
repeated operation

ADDB Adds cumulatively the B register indicated in
the repeated operation to its operand during
each execution -

R Increase the operand address of the repeated
Replace—ciass operation by the content of B6
for the store portion of the replace only

ADVR Increase the operand address of the repeated

Replace-class operation by the content of B6for
the sfore portion of the replace only; then in-
crement the operand address of the repeated

operation by one after each execution

RPT

29 of 40 &: 70)

Operand
BACKR

ADDBR

Control

Increase the operand address of the repeated
Replace-class operation by the content of B6
for the sfore portion of the replace only; then
decrement the operand address of the repeated

operation by one after each execution

Adds cumulatively the B register indicated in
the repeated Replace-class operation to its
operand address during each execution; in ad-
dition to the above, increase the operand ad-
dress of the repeated operation by the content

of B6 only for slore portion of the replace

Note: Use j-operands R, ADVR, BACKR, and ADDBR only when a RPL

operation follows the RPT operation.

Examples:

mp> RPT ¢ 390 mwp

m> RPT e B7 o

BACK =

mp RPT o L(TRADE3) ¢ ADDBR m»

Note: Interrupts are locked out during the time the computer is in repeat mode.

RPT

30 of 40 . (f: 70)

INput Operation (With or Without Monitoring):

w v |4

0 " 2
= IN o [channel]) [y] ° [absent or MONITOR] =

The IN operation establishes the control to transfer data from external equip-
ment to the core memory via a specified channel. The address limits are de-
fined by a numeric value expressed by y, which are transferred to memory ad-
dress 00100+n, where n is the number of the channel. Subsequent to this opera-
tion, but not as part of it, the individual buffer operations are executed at a rate
determined by the external device. The starting address, initially established
by this operation, is advanced by one following each individual buffer operation.
The next current address is maintained throughout the buffer process in the
lower order 15-bit positions of memory location with storage address 00100+n.
This mode continues until it is superseded by a‘subsequent initiation of an input
buffer via the same channel, or until the higher order half and the lower order
half of storage address 00100+n contain equal quantities, whichever occurs first.

The first and last address of the memory area is specified in location 00100+n.
Vv - designates the Channel, CI, through which buffering takes place:
co, —, C17

v - gives an operand that defines ». X V1 isa number of five digits or less, or has
an operand code of L,y replaces the lower half of address 00100+n. If V1 isa
number of more than five digits, or has an operand code of W, y replaces the
whole word of address 00100+n, Operand codes of X, U, LX, UX, or A, are

not permitted

V2 - specifies whether the buffer operation is to be monitored or not. Monitoring is
specified by 1) being MONITOR . Otherwise V2 is absent

A buffer operation is monitored if the main program is interrupted and control
is transferred to 00040+n when the buffer operationis terminated by the control

addresses in address 00100+n becoming equal

Examples:
= IN ¢ C5 * 52367 mp

mp> IN ¢ Cl4 o W(LIMIT) © MONITOR =)

_ IN
31 of 40 : (f: 73, 15)

OUTput Operation (With or Without Monitoring):

w o _ " vy

= oure[chanel| o [y]e[absent or MONITOR | =p

The OUT operation establishes the control totransfer datato external equipment
from the core memory via a specified channel. The address limits are defined
by a numeric value expressed by y; these are transferred to memory address
00120+n, where # is the number of the channel, Subsequent to this operation,
but not as part of it, the individual buffer operations are executed at a rate de-
termined by the external device. The starting address, initially established by
this operation, is advanced by one foliowing each individual buffer operation.
The next current address is maintained throughout the buffer process in the
lower order 15-bit positions of memory location at storage address 00120+n.
This mode continues until it is superseded by a subsequent initiation of an input
buffer via the same channel, or until the higher order half and the lower order
half of storage address 00120+n contain equal quantities, whichever occurs first.

The first and last address of the memory area are specified in location 00120+n,

VO - designates the Channel, Cn, through which buffering takes place:
co, —, C17
V1 - gives an operand that defines y, If V1 isa number of five digits or less, or has

an operand code of L, ¥ replaces the lower half of address 00120+n. I V1 isa
number of more than five digits, or has an operand code of W, ¥ replaces the
whole word of address 00120+n. Operand codes of X, U, LX, UX, or A are

not permitted

V. - specifies whether the buffer operation is to be monitored or not. Monitoring is

specified by V2 being MONITOR. Otherwise Vzv is absent

A buffer operation is monitored if the main program is interrupted and control
is transferred to 00060+n when the buffer operation is terminated by the control

addresses in address 00120+n becoming equal.

Examples:
mp OUT ® C7 o 41456 wmp»
mp OUT e Ci12 o L(LOC) ® MONITOR mp

ourt
32 of 40 (f: 74,76)

EXternal-COMmand Operation:

w VO V1 V2

mp EX-COM o [channel] ° [external function code] ° [sub-function code] =

The EX-COMoperation initiates a one word external function buffer.

V., - Specifies the channel on which the external function code is transferred. Chan-
nels C0-C17, C10-C17 are permitted. V0
by a MEANS operation or a CHAN-SET tape

may specify a name which is identified

V, - Function code, this may be a ten digit number or less, or the whole contents
of a memory location (i.e., operand code of w). Other operand codes are not

permitted. B-Box modification is not allowed if V, is a constant

1
V2 - Specifies the sub-function code
(absent) - The external function command is sent without force or monitor
FORCE - used when the communication is with external equipment which

has not been designed to send an "external function request" to
the computer. MONITOR may not be used in conjunction with an

EX-COMwith a V2 operand of FORCE

MONITOR- Provides a transfer of control to location 00500+j when the buffer

of the external function word is completed
MONFORCE - Provides the combined capabilities of MONITORand FORCE

Examples:

EX-COM ¢ CO ¢ 4300000016 ¢ FORCE mp
EX-COM ¢ C17 ¢ W(EFUN) =

EX-COM © TTY e CHAN * W(EFT) « MONITOR =
EX-COM ¢ SPILL ¢ W(EFF) ¢ MONFORCE =»

AAR

_ EX-COM
33 of 40 (£ 13)

EXternal-COMmand-Multi Word Operation

A" VO V1 V2

= EX-COM-MW o [channel] ° [y] ° [sub-function code] u)

The EX-COM-MW operation sets up the appropriate external function buffer
control word (at 00140+j) and initiates output buffering of the specified external

function commands.

"V, - Specifies the channel on which the external function codes are sent. Channels
C0-C17, C10-C17 are permitted. V0
a MEANS operation or a CHAN-SET tape

may specify a name which is identified by

v, - Gives the buffer limits of the function codes to be transmitted. This may be
the contents of a whole memory location only (i.e., operand code of w). Other
operand codes are not permitted. B register modification is not allowed if

V1 is a constant

V, - Specifies whether the buffering of the external function command words is to
be monitored. When monitored, the completion of the buffer will cause transfer

of control to external function buffer monitor interrupt entrance address 00500+j

Examples:

=) EX-COM-MW ¢ C3 ¢ W(FCCW) * MONITOR =
= EX-COM-MW o TAPECHAN o W(SFCC) =p

EX-COM-MW
34 of 40 (£:. 74, 76)

TERMinate Buffer Operation:

v
w VO 1

mp TERM o [channel number or ALI.] ° [buffer mode] u)

The TERM function terminates input, output, external function command, or all

buffers as specified by the VO and V1 operands.

V., - Specifies the channel on which buffering is to be terminated. Channels C0-CT7,
C10-C17 are permitted. V0
operation or a CHAN-SET tape

may specify a name which is identified by a MEANS

ALL - causes all buffering including that of external function commands, input
data, and output data to be halted. No V

V0 operand is ALL.

1 operand is allowed when the

V, - Specifies the mode of buffering to be terminated.

(absent) - The V, operand must be omitted if the V

| 0 operand was ALL.

COM - Terminates the buffering of external function commands on specified

channel
INPUT - Terminates the buffering of input data on specified channel
OUTPUT - Terminates the buffering of output data on specified channel

Examples:

= TERMe C6 ¢ COM =
mp TERM ¢ ALL =»
mwp TERM ¢ C17 ¢ OUTPUT =p

Examples: (illegal)
=) TERM e ALL ¢ INPUT =

TERM
35 of 40 (f: 66, 67)

Set Interrupt Lockout Operation:
w V0

mp SiL e ALL =
The operator SIL locks out both internal and external interrupts on all channels.

V0 - The only V0 operand allowed is ALL

Examples:

= SIL O’AI.I. =)
Example (illegal):
= SiL e C6 =

SIL
36 of 40 (f: 66)

Set Interrupt Lockout - EXternal Operation

w V0

mp SIL-EX o [channel] =)

The operator SIL-EX *sets external interrupt lockout for the specified channel.

V., - Specifies the channel on which external interrupts are to be locked out. Chan-
nels C0-C7, C10-C17 are permitted. V0 may specify a name which is identified
by a MEANS operator or a CHAN-SET tape

ALL - locks out external interrupts on all channels

Examples:

= SIL-EX © CIO =»
=) SIL-EX o ALL =>
= SIL-EX o FLEXCHAN =

* The interrupts locked out by SIL-EX , can be released only by the RIL-EX operation

_ SIL-EX
- 37 of 40 (f: 66)

Remover Interrupt Lockout Operation

A V0

m RIL o [absent or .Au] =

The operator RIL removes interrupt lockouts on all internal channels, and all

external channels not previously locked out by SIL-EX operations.

Vo ~ The effect on the computer is the same whether V0 is ALL or absent
(absent) - If VO is absent an instruction of the type 600XX XXXXX will be gen-
erated
ALL - If V0 is ALL an instruction of the type 66X10 XXXXX will be gener-
ated
Examples:
= RIL =

mp RILe ALL =

RIL
38 of 40 (f: 60, 66)

Remove Interrupt Lockout - EXternal Operation

\'d V0

= RIL-EX* o [channel] ap
The operator RIL-EX * releases the interrupt lockout for external interrupts.

V., - Specifies the channel on which the external interrupt lockout is to be released.
Channels C0-C7, C10-C17 are permitted. V0
identified by a MEANS operator or a CHAN-SET tape

may specify a name which is

ALL - Removes the external interrupt lockout on all channels

Examples:

= RIL-EX © CIO =>
=> RIL-EX ¢ ALL =>
=> RIL-EX ° TTYCHAN

*This instruction must be used to remove interrupt lockouts on channels previously. locked
out by SIL-EX operations. RIL operations only release lockouts for external interrupts
not locked out by SIL-EX, and of course internal interrupts

RIL-EX
39 of 40 (f: 66)

Remove Interrupt Lockout and JumP Operation:

w Vo
> e * [y] =»
The RILJP operation removes the interrupt lockout, thus allowing a subsequent

interrupt, and jumps to address y unconditionally. The operation generates a

601nn nnnnn instruction,

VO - gives a Read-class operand which defines address y

RILJP
40 of 40 ‘ (£: 60)

POLY-OPERATIONS

Operation Page
ENTRY . & i i vttt it e e e e e e e e e e e e e e 2
4 & | 3
CLEAR . . v v v vt et e e e e e e e e e e e 5
PUT v et e e e e e e e e e e e e e e e e 6
MOVE . o ittt ettt ettt e e e 8
INCREMENT . « + v o eoeoeoe e et e e e e e e 10
TYPEC . & v ot e et e e e e et e e e e e e e e e e 12
TYPET . . o v v ot e e e e e e e e e e e e e e e e e 15
PUNCHC . . . v it i it e it e e et e e et e e LT 17
PUNCHT . & v v vt et e et e e e e et e e e e e e e e e e 20
TYPE-DECIimal. o i i i e e e e e e e e e e e e e e e 22
PUNCH-DECIMAL . . v v v v vt vttt et e e e et e e et 24
Upper TAG o i e e e e e e e e e s e e e e e e e e e e e e e e e 26

iof i

POLY-OPERATIONS

Quite frequently, groups of contiguous instructions' appear iteratively in a program. These
instructions are alike because they perform a specific job or function. It is possible in cases
such as this to generate the successive instructions with a single AS-1 operation. This is the
familiar one-fo-many relationship between instructions which shall be herein termed poly-
coding, with the parent instruction being called a poly-operation. A poly-operation is capable
of generating within the assembler systema unique sequence of computer instructions (in some

cases a single instruction) designed to perform the specific task required.

It is permissible during the coding of a routine to intermix mono- and poly-operations in any
order desired. However, the programer must not attempt to skip a poly-operation with the
}-operand of a mono-operation. The poly-operation usually results in the generation of more
than one instruction in the assembled object program; the computer skips the first of these
instead of the intended next mmemonic operation in the source program. The assembler-
generated computer instructions appear in the object program in the order specified by the
AS-1 coding.

Poly-operations are capable of producing assembler-generated, unique labels and tags for in-

ternal use during assembling.

The computer frequentiy employs registers A, Q, and B7 in object program instructions re-
sulting from poly-operations. In so doing, it destroys any previous information contained in
these registers. The programer should therefore exercise caution in the use of these regis-
ters in statements preceding poly-operations. In cases where their use is necessary and the
content of any of these registers is required later, the programer must save their content

by transfer to a temporary storage location for later reference.

1 of 26

ENTRY Operation:

L w Vo

[subroutine name] =) ENTRY o [stOp condition] o

The ENTRY operation establishes a standard means of starting all subroutines,
It produces either a normal entry with no jump conditions or a jump capability
with Key Stop options. Thisoperationisthe first one in each subroutine; because
of this it must have a label which gives the subroutine name. Although each
ENTRY operation generates only one instruction, the variations which the in-

struction can assume make it a poly-operation.

Vo - names the key which must be set on the computer console if the programer
wishes the computer to stop on exiting from the subroutine. If operand VO is
absent (no key stop specified), the assembler generatesa wordof 0's for the first

subroutine word in the object program, If VO is present, the assembler generates

a 61500 00000, where j isdetermined by the VO operand. The allowable entries

for Vo are:
STOP5 ; j =5
STOP6 ; j =6
STOP7 ; j =1
Example a:
L w Vo
TYPEC mp ENTRY e STOP6 mp
Generated: Mnemonic Equivalent
61 600 00000 | JP e 0 o STOPS
Example b:
L w
TYPET = ENTRY
Generated: Mnemonic Equivalent
[00000 00000 | None

2 of 26 ENTRY

EXIT Operation:

L w V0

[optional 1abel:| m> EXIT o [jump condition] =

The EXIT operation provides a means of exiting normally from a subroutine,
i.e., it generates a jump back to the ENTRY operation of the subroutine and
thence to the main routine, The EXIT operation is used at every place in the
subroutine where an exit from it is desired; hence, any number of exits is per~

mitted. The label is optional.

Although the assembler generates only one instruction per EXIT operation, the
generated instruction can assume a variety of formats. The format depends on

1) whether the V. operand of the foregoing ENTRY of the subroutine is present

0
or absent, and 2) the EXIT VO operand itself. Because of these variations this
operation is classed as a poly-operation. If the V0 operand of the preceding

ENTRY operation is absent, the assembler generates a 61510 nnnnn or a 60; 10
nnnnn. I the V0 operand of the preceding ENTRY operation is present, the
assembler generates either 61500 nnnnn or 60500 nnnnn. The address assigned
to the preceding ENTRY position is nnnnn. The compiler locks for this address,

then inserts it in the tag position, nnnnn, of the EXIT operation.

V0 - determines j in the instruction generated by the EXIT operations as follows:
If the EXIT V 0 is: The generated instruction is:
j k b y
Absent 61 0 (1 or 0)* 0 nnnnn
QPOS 60 2
QNEG 60 3
AZERO 60 4
ANOT 60 5
APOS 60 6
ANEG 60 7 y v v

*If VO of previous ENTRY is absent, 2=1
i VO of previous ENTRY is present, 2=0

3 of 26 EXIT

If the EXIT VO is: The generated instruction is:

J k b y
KEY1 61 1 (lor0)* 0 nnnnn
KEY2 61 2
KEY3 61 3
STOP 61 4
STOPS5 61 5
STOPG6 61 6
STOP7?7 61 7 v v]
*If V0 of previous ENTRY is absent, £=1
Examples: If VO of previous ENTRY is present, 2=0
a. Previous ENTRY V0 absent
L w Y
1) MAP2 =P EXIT o KEY3 =
Generated: Mnemonic Equivalent
|61310 nnnnnl JP e L(nnnnn) e KEY3
2) = EXIT =
Generated: Mnemonic Equivalent
61010 nnnnn . JP e L{nnnnn)
b. Previous ENTRY V0 present
|24 o
1) mp EXIT e ANOT m=mp
Generated: Mnemonic Equivalent
E0500 nnnnn I JP e nnnnn e ANOT
L w VO
2) MAP3 wp EXIT o QNEG wp
Generated: Mnemonic Equivalent
60300 nnnnnl P o nnnnne QNEG

4 of 26

CLEAR Operation:

w VO V1

=) CLEAR® I:number of words]o [starting address] =

The CLEAR operation clears (fills with 0's) a number of words of an area of
core memory.

V. - specifies the number of words to be cleared. This is a Read-class operand;
however, the operand code A is not permitted. If a value of 0 is used, the op-
eration is a "do nothing" instruction which causes a delay of the computer. If a

1 is specified, the end result is the same as that of a mono-code CL operation

V1 - gives the starting address of the area to be cleared., This may be a constant of
maximum five digits, a tag, a tag with an increment, or a tag with an increment
and a B-register designation

Example:

m)» CLEAR o 6 e CAT+B6-2 =

Generated: Mnemonic Equivalent
70100 00006 RPT ¢ 6 © ADV
16036 nnnnn* STR o BO o W(CAT+B6-2)

*nnnnn = constant specified by CAT -2

5 of 26
CLEAR

PUT Operation:

W VO V1

mp PUT o [the word] ° [destination address] =

The PUT operation places a single word or half word in a designated storage

address.

VO - expresses a Read-class operand; it maybe a tag, a constant, or the content of an

address. This represents the source information

V1 - specifies the address in memory at which the word or half word is to be stored.
This is a Store-class operand; it gives aconstant, a B register, a tag, a tag with
increment, or a tag with increment and B-register designation preceded by an

appropriate operand code. A and Q are not permitted.

Since register Q is used for the movement of the word, its original content is
destroyed by this operation. The programer must provide for preservation of

the initial contents if desired
Example a:

@) PUT e L(CAT+B6) e U(DOG+B3-2) m=p

Generated: Mnemonic Equivalent

10016 nnnnn* ENT ¢ Q o L(CAT+B6)
14023 nnnnn STR ¢« Q * U(DOG+B3-2)
Example b:

mp PUT o -0 o W(B6) =>

Generated: Mnemonic Equivalent
10040 7777 ENT ¢ Q o -0
14036 00000 STR e Q e W(B6)

*nnnnn is an allocated address corresponding to a tag

6 of 26
° PUT

Example c:

=) PUT e 77342106 o W(DOG) =

Generated:

10030 nnnnn* ENT ¢ Q e W(Alllllnnnn)*
14030 nnnnn |. STR e¢ Q e W(DOG)

*A |||l nnnnis an assembler-generated tag

7 of 26

MOVE Operation:

w VO 4 1 V2

mp» MOVE o [number of words] .[from address]) [to address] =

The MOVE operation moves masses of data from one area to another. The
computer moves the words of information sequentially through the Q register
and may use Br7 for indexing. It does not reinstate the original content to either
the B7or the Q register; the programer must save and restore such informa-

tion if he wishes to retain it.

V0 - specifies the number of words to be moved; the programer inserts the Read-
class operand to indicate the number of words to be transferred; however, the

operand codes X, LX, UX, or A are not permitted

V1 - indicates the initial address of the area from which data will be moved; it can be
an absolute address,a B register, a tag, or a tag with an increment and/or a

B-register designation

V2 - ' states the initial address of the area to which data will be transferred; it can be
an absolute address, a B register, a tag, or a tag with an increment and/or a

B-register designation.

The assembler generates instructions in numbers varying from 2 to 10,depending
upon 1) the number of words tobe moved, 2) whether the VO operand is mnemonic
or not, and 3) whether B" designations appear in V1 and/or Vz. If only one word
is moved, the minimum number of instructions generated is two; if V0 is mne-
monic, the minimum is five instructions. Since the use of B-register designa-
tions in operands V1 and V2 changes the number of instructions generated by the
assembler, twoexamples are given below, The first shows an operation with no

B" in either operand V1 or Vz; the second contains a B" in both operands

Example a:

mp MOVE ¢ 4 o CAT o DOG mp

Generated: Mnemonic Equivalent

12700 00003 ENT o B7 o 3

10037 nnnnn ENT ¢ Q e W(CAT+B7)

14037 nnnnn STR ¢ Q ¢ W(DOG+B7)
[0]72700 [a-z] @ BJP o B7 o Q-2

8 of 26 MOVE

Example b:

=> MOVE o B5 ¢ CAT+B4 ¢ DOG+B7-3 =

Generated: Mnemonic Equivalent

10004 nnnnn ENTe Q ¢ CAT+BA4

14010 [a -2] STR * Q © L(a-2)

10007 nnnnn ENT o Q » DOG+B7-3

14010 [a -1] STR ¢ Q o L(a-1)

12705 00000 ENT eB7 o B5

"' 72700 |a-2_ BJP ¢ B7 ¢ q-2

61000 | a +1 | JP o a+l

10037 | 000000] ENTe Q W(0+B7)

14037 [000000 | STRe Q © W(0+B7)
[a] 72700 'a-z] a BJPeB7 eq -2

9 of 26

INCREMENT Operation:
w Yo 4
wmp INCREMENT o [B register] ° [increment] L. 4

The INCREMENT operation provides a means to either increase the number
contained in a B register (Bn) by a fixed increment or decrease the number in

B" by a fixed decrement.

V0 - specifies the B register to be incremented
V1 - states the value of the increment by which the content of the B register is to be

altered. The increment is defined by a Read-class operand

Example a:

m) |NCREMENT ¢ B2 e -1 wmp

Generated: Mnemonic Equivalent
[a] 79 200 [Q +1] @ BJP®B2e g+l
[a +1:| Next Instruction a+1 Next Instruction

Example b:

mp [INCREMENT e B5 ¢ 32D wmp

Generated: Mnemonic Equivalent
12 505 00040 » ENT e B5 ® B5+32D
Example c:

mp INCREMENT e B3 e -12 mp

Generated : Mnemonic Equivalent

11 003 00000 ENT ¢ A e B3

20 040 77765 ADD e A ¢ X(77765)
ENTe B3 e A

10 of 26 INCREMENT

Example d:

mp INCREMENT o B4 o L(CAT+6+B2) =

Generated : Mnemonic Equivalent
11 004 00000 ENT o A ¢ B4

20 052 nnnnn* ADD © A o LX(CAT+6+B2)
12 470 00000 ENT © B4 o A

This poly-operation generates a variable number of object language instructions
depending on the nature of the V1 operand. A positive constant in V1 causes a
single instruction to be generated, a negative constant causes two instructions,

and a symbolic name results in three instructions.

A special case occurs when the V1 value is: -1. A B register can be decre-
mented by one to reach zero, but not through zero; i.e., a B register containing

zero, if decremented by one, remains zero.

The programer should note that the A register is used in some cases and is
not restored. If he wishes to preserve the previous content of register A for

later use, he must provide for its storage in another location.

*nnnnn: The value allocated to the tag CAT+6 by the assembler

11 of 26

TYPEC Operation:

w -VO-

) TYPEC ° [information to be typed] =

The TYPEC operation causes the content (in octal) of A, Q, any B register, or
any storage location to be typed by the on-line monitoring typewriter. In addition
to specifying that the numerical information in any of the above registers be
typed, the programer may issue special commands to the typewriter. These
commands, used as operands in the special format described below, may cause

the typewriter to do the following three things:

Operand Performance

o ICR| o Causes the typewriter to do a carriage return
° |SP| ° Causes the typewriter to skip a space

° |TAB‘ ® Causes the typewriter to move to the next

tabulation stop

By properly inserting these commands as operands betweenthe operands denot-
ing the information to be typed, the programer can control the format (spacing
and lines) of the information typed. The vertical bars are the épecial control
symbols for indicating that the operand is an order directing the typewriter.
Each of these three special operands #ust begin with and end with a vertical

bar, and musi each be separated by point separators from other operands.

specifies the operands in the operand position in the order in which they are to
be read and/or executed. These operandsare of four types: pl, p2, p3, and p4.
They may appear in any order, depending on the programer’s desires or needs.

Point separators must separate each operand.

p1 - gives the locator of a value to be typed; it consists of an operand code
of L, U, or W together withanormal Read operand in parentheses. The
parentheses may contain a tag, B-register designation, or increment, or

any combination of these

P2 - names a tag or label, without operand code, which the typewriter will
type
p3 - specifies a constant, of five digits or less, to be typed

12 of 26 TYPEC

Exception: The value, zero, will not be typed if expressed as an operand. Zeros

may be obtained by using the TYPET operation.

p4 - states a special typewriter command symbol. Valid symbols are
|CR| s |SP|, and |TAB|; these command symbols cause the typewriter
to perform a carriage return, to skip a space, and to move to a tabu-

lator stop respectively

Example:

L W ~ W

FIRST wp TYPEC o U(BETA+B3-6)0 2576 ¢|CR|o A © [SP| o Q o BETA mp
pl p3 pd pl p4 pl p2

LAST mp STR © Q o W (GAMMA) =>

The FIRST operation above causes the following equivalent instructions and
codes to be generated (except for the LAST operation):

FIRST =P RIP o TYPEC B
00023 o BETA - 6 ﬁ

00000

02576 B
77450 o 00000 ﬂ
00070 o 00000)!2
77040 o OOOOOE

00000 o 00000 A&
00000 © BETA)& '

1 2 20 20 2% 2 2

LAST mp STR o Q o W(GAMMA) m=>

The TYPEC subroutine checks the first two characters of each of the opera~
tions following the Return Jump to TYPEC subroutine. If these are 00, it re-
places them with 10 or 20; if they are 77, it interprets the characters following as

commands to the typewriter (type 4 operands).

The operation labeled LAST is not a part of the TYPEC performance. It

illustrates that the programer must follow the TYPEC operation with an

13 of 26

operation which will not cause the generation of a word of 0's in the object pro-
gram. In other words, the next instruction in the object program must have a

legitimate computer instruction code.

The assemblerobject program uses the TYPEC subroutine to produce the type-
out. In general this poly-operation generates a Return Jump to the TYPEC
subroutine, followed by an operation statement for each operand, directing the
computer either to type the information as specified or to perform the com-
mand given. The TYPEC subroutine stores the contents of the registers it

uses and restores them upon completion of the typeout.

14 of 26

TYPET Operation:
w -V
= TYPET ° [text and typewriter commands] =)

The TYPET operation generates a section of object language program which,
when run on the computer, causes the on-line typewriter to type the message
given by tﬁe 5V0- operand of the TYPET operation. No point separatqrs appear
between the parts of the V0 operand. The commands to the typewriter, viz.,
carriage return, space, and tab, intersperse withthe text according to the needs
and desires of the programer. These typewriter commands separate from the

text by means of a vertical bar, [R before and after each command:
o text |SP| text |CR| text |TAB| text mp

Exception: Where a space is desired between characters of the typed text, a
space code symbol, A, may substitute for the command, |SP|* The above ex-

ample would then be:
o text A text |CR| text |vAB| text o=>

The programer can use either symbol for a space. Where a tab follows a

carriage return, the format should be |CR||TAB| :
o text A text |CR||TAB| text o>

- V, - specifies the text to be typed, interspersed with the typewriter commands
needed to produce the text format desired by the programer. The typewriter

commands and their symbols are:

Carriage Return: |cr|
Tab: | TAB|
Space: | sP] or A

*Only four consecutive space codes permitted (AAAA)

15 of 26 TYPET

Example:

FIRST mp» TYPET e ABC | CR| DE| TAB| mp

mp TYPET o FGH|CR ||TAB] 1A) =wp

produces the object language program:

FIRST = RJP o TYPET
65000 TYPET

tA B C2
47302 31645

DE - STOP
22205 17700

RJP e TYPET
65000 TYPET

tF G H)
47261 30545

-1 A J STOP
51140 43277

During the running of the object program, the TYPET subroutine then uses the

above object language program to produce the typewriter printout.

Any number of space commands can precede or follow the| CR| and| TAB |
commands without affecting the text. Putting more than one space command
between parts of the text has the effect of spreading these parts of the text far-
ther apart on the typewritten page.

There is no provision for controlling the case of the characters in the output
message. Alphabetical information is typed in upper case, numerical informa-
tion in lower case. The TYPET subroutine, which unpacks the codes taken
from the object language program, recognizes the end of the message by de-
tecting the code, 7.

16 of 26

PUNCHC Operation:

w -VO_

=) PUNCHC o [parameters for information and/or typewriter commands] =

The PUNCHC operation causes the content (in octal) of A, Q, any B register,
or any storage location to be punched by the High-Speed Punch. In addition to
directing that the numeric information in any of the above registers be punched,
the programer may write three special command symbols. These three sym-
bols are typewriter commands which, when the punched paper tape is on a
typewriter, will direct the typewriter to perform certain carriage opera-

tions. These operations control the format of the typewriter typeout; they in-

clude:
Operand Performance
° ICRI ° Causes the typewriter to do a carriage return.
°[SP| o Causes the typewriter to skip a space.
L ITABI ° Causes the typewriter to move to the next

tabulation stop.

By properly inserting these commands as operands between the operands denot-
ing the information to be typed, the programer can control the format (spacing
and lines) of the information typed. The vertical bars are the special control
symbols for indicating that the operand is an order directing the typewriter.
Each of these three special operands mus¢begin with and end with a vertical bar,

and each must be separated by point separators from other operands.

specifies the operands in the operand position in the order in which they are to
be read and/or executed. These operandsare of four types: p1, p2, p3, and p4.
They may appear in any order, depending on the programer’s desires or needs.

Point separators must separate each operand.

pl - gives the locator address of a value tobe typed; it consists of a normal

Read-class operand

p2 - gives a tag or label allocation value which the typewriter will type.

This operand has no operand code

17 of 26 PUNCHC

p3 - specifies a constant, of five digits or less, to be typed.

Exception: The value, zero, will not be typed if expressed as an operand.

Zeros may be obtained by using the PUNCHT operation

p4 - states a special typewriter command symbol. Valid symbols are
|crR| , |SP|, and |TAB|; these command symbols cause the type -
writer to perform a carriage return, to skip a space, and to move to a

tabulator stop respectively

Example:
L W = VO-
FIRST mp PUNCHC* Q o |CR/* L(ALPHA+B3) o |[TAB/® 50 ¢ |sP| ¢ INST4 wp

p1 b4 p1 p4 p3 p4 b2
NEXT mp ENT ¢ A ¢ U (GAMMA) =

The FIRST operation above causes the following equivalent (in some cases, incomplete)

operations to be generated:

FIRST wmp RJP

PUNCHC
=» 00000 o 00000’ ’
mp 77450 00000,
= 00013 e ALPHA’
mp 77510 e 00000,
=) 00000 e 00050’

mp 77040 o 00000)

mp 00000 INST4 ’

The PUNCHC subroutine checks the first two characters of each of the operations following
the Return Jump to PUNCHC subroutine. If these are 00, it replaces them with 10; if they are

77, it interprets the characters following as commandsto the typewriter (type »4 operands).

The operation labeled NEXT is not a part of the PUNCHC performance. It illustrates that

the programer must follow the PUNCHC operation with an operation which will not cause

18 of 26

the generation of a word of 0’s in the object program. In other words, the next instruction in

the object program must have a legitimate computer instruction code.

The assembler object programuses the PUNCHC subroutine to produce the typeout. In general
this poly-operation generates a Return Jump to the PUNCHC subroutine, followed by an
operation statement for each operand, directing the computer either to type the information

as specified or to perform the command given,

19 of 26

PUNCHT Operation:

-V.- -

W Vo~

m)p PUNCHT o [tex‘t and/or typewriter commands] =

The PUNCHT operation causes the High-Speed Punchto punch the text(s) which

the programer has written in the -V .- operand position of the PUNCHT opera-

0
tion. It also punches the codes for SP, CR, and TAB, which control the type-

writer carriage movements during a listing of the punched tape. The pro-
grammer controls the format of the typewriter listing by interspersing the
carriage control symbols between his texts as he desires. No point sepa-
rators appear between the parts of the -VO- operand. Each carriage control

symbol must have a vertical bar, |, before and after it.

Exception: Where a space is desired between characters of the typed text, a

space code symbol, A, may substitute for the command, |SP|.
Example:
a. mp PUNCHT o text |SP| text |CR| text |TAB| text mwp
b. m» PUNCHT e text A text |CR| text |TAB| text wd
Where 2 carriage control symbols appear consecutively, each one must have
vertical bars before and after it.
Example:

=) PUNCHT o text |[CR| |TAB| text mp

specifies the text to be typed, interspersed with the typewriter commands

needed to produce the format desired by the programer.

I the text is too long to put into one L0 PUNCHT operation, successive opera-

tions can be written. Labels on these operations are optional

Example:
FIRST mp PUNCHT ¢ PAY A TAX |CR| ON [TAB| =w»

m». PUNCHT e OCT |SP| 15 |CR| wmp

The operations and codes generated in the running program by the above poly-operations
are:

FIRST wp RJP e PUNCHT
65000 PUNCHT

tP A YA
47153 02504

TAX 20
01302 74503

N - STOP
06517 70000

RJP e PUNCHT
65000 PUNCHT

OCT Al
03160 10457

15 2 STOP
52624 57700

When the running program is subsequently performed, the PUNCHT subroutine then causes

the High~-Speed Punch to punch out octal codes above.

Any number of space commands can appear consecutively anywhere in the text. The effect is

.to vary the spacing between parts of the texts on the hard copy.

There is no provision for controlling the case of the characters in the output message. Alpha-
betic information appears in upper case, numeric in lower case. The PUNCHT subroutine,
which translates sequentially the codes taken from the object language program,recognizes

the end of the message by detecting the code, T17.

21 of 26

TYPE-DECimal Operation:

w - V0 -
=p TYPE-DEC o [information to be typed] -

The TYPE-DEC operation causesthe content (indecimal)of A, Q, any B register,
or any storage location tobe typed by the on-line monitoring typewriter. In addi-
tion to specifying that the numerical information inany of the above registers be
typed, the programer may issue special commands to the typewriter. These

commands, used as operands in the special format described below, may cause
the typewriter to do the following three things:

Operand Performance

° | CR I L Causes the typewriter to do a carriage return
° | sp | ° Causes the typewriter to skip a space

° lTABl ° Causes the typewriter to move to the next tab-

ulation stop

By properly inserting these commands as operands between the operands de-
noting the information to be typed, the programer can control the format
(spacing and lines) of the information typed. The vertical bars are the special
control symbols for indicating that the operand is an order directing the type-
writer. Each of these three special operands must begin with and end with a

vertical bar, and must eachbe separated by point separators from other operands.

specifies the operands in the operand position in the order in which they are to
be read and/or executed. These operands are of four types: pl, p2, p3, and p4.
They may appear in any order, depending on the programer’s desires or needs.

Point separators must separate each operand.

pl - gives the locator of a value to be typed; it consists of an operand code to-
gether with a normal Read operand in parentheses. The parentheses may
contain a tag, B-register designation, or increment, or any combination

of these
p2 - names a tag or label, without operand code, which the typewriter will type

p3 -specifies a constant, of five digits or less, to be typed

22 of 26 TYPE-DEC

Exception: The value, zero, will not be typed if expressed as an operand.

Zeros may be obtained by using the TYPET operation.

p4 -states a special typewriter command symbol. Valid symbols areICRI,
|SP|, and |'I'AB|; these command symbols cause the typewriter to perform
a carriage return, to skip a space, and to move to a tabulator stop respec-
tively

Example:

L W Y -
FIRST =p TYPE-DEC ® U(BETA+B3-6}® 2576 0|CR|0 A ® ISP |‘ Q o BETA =
pl p3 p4 pl pd pl p2

23 of 26

PUNCH-DECimal Operation:

w - Vo -

mp PUNCH-DEC o [parameters for information and/or typewriter commands] =)

The PUNCH-DEC operation causes the content (in decimal) of A, Q, any B reg-
ister, or any storage location tobe punched by the High-Speed Punch. In addition
to directing that the numeric information in any of the above registers be punched,
the programer may write three special command symbols. These three symbols
are typewriter commands which, when the punched paper tape is on a type-
writer and typed out,will direct the typewriter to perform certain carriage
operations. These operations control the format of the typewr'iter typeout;

They include:

Operand

ol cr e Causes the typewriter to do a carriage return.
o| sp | ° Causes the typewriter to skip a space.

o TABl o Causes the typewriter to move to the next tab-

ulation stop.

By properly inserting these commands as operands between the operands de-
noting the information be typed, the programer can control the format (spacing
and lines) of the information typed. The vertical bars are the special control
symbols for indicating that the operand is an order directing the typewriter,
Each of these three special operands must begin with and end with a vertical

bar, and each must be separated by point separators from other operands.

specifies the operands in the operand position in the order in which they are to
to be read and/or executed. These operands are of four types: pl, p2, p3, and
p4. They may appear in any order, depending on the programer’s desires or

needs. Point separators must separate each operand

pl - gives the locator address of a value to be typed; it consists of a normal

Read-class operand

p2 - givesatag or label allocation value which the typewriter will type. This

operand has no operand code

£ 26
240 PUNCH-DEC

p3 - specifies a constant, of five digits or less, to be typed

Exception: The value, zero, will not be typed if expressed as in operand.

Zeros may be obtained by using the PUNCHT operation.

p4 - states a special typewriter command symbol. Valid symbols are |CR],

|SP| , andl'l’ABI ; these command symbols cause the typewriter to per-

form a carriage return, to skip a space, and to move to a tabulator stop

respectively
Example
L W - Yo
FIRST mp PUNCH-DEC ® Q © |[CR| ® L(ALPHA+B3) ® [TAB|® 50 ®|SP|@ INST 4 mp
p1 p4 p1 p4 p3 p4 p2

25 of 26

Upper- TAG Operation:

v " "1

= U-TAG o [upper tag name]) [lower tag name, constant, or zero] =

The U-TAG operation provides the programer with a means of expressing
the upper half of a storage address by means of a symbolic tag. This is the only
method by which this may be done. The programer has the option of specifj-
ing a tag in the lower half of the word also. This operation is useful for such
purposes as the preparation of jump tables and the specification of upper and

lower buffering limits.
V0 - gives the name of the upper tag. A constant is not permitted

V1 - gives the name of a lower tag if desired. If no tag is desired, this must be 0

(see example b, below)
Example a:

DOGI6 ®W> U-TAG e CAT4 e MOUSE7 =

Tags CAT4 and MOUSE7 represent the upper and lower 15 bits respectively of
the storage location represented by the label DOG16. Assume that the following

allocation values are given on an allocation tape:

MOUSE7 w=p 563

CAT4 = =p 53210

DOGI6 = 3000
The computer word produced as a result of the U-TAG poly-operation is:
03000 53210 00563,

Example b:

RATI3 mp U-TAGe DCONe 0 mp»

The tag DCON represents the upper 15 bits of the storage location represented

by the label RAT13. The V1 operand of 0 causes the lower half of the word pro-

duced to be filled with 00000.

26 of 26
U-TAG

DECLARATIVE OPERATIONS

Operation

EQUALS
MEANS

.................................

iof i

DECLARATIVE OPERATIONS

The programer frequently wishes to supply tothe assembler certain information for use in
the assembling process which does not generate an instruction. The information may be in-
volved in subsequent operations in constructing a machine-code instruction; or it may be
substituted for already existing data or information, thereby extending the scope and power of
the operation. This is especially true where, by changing one operand in ém operation, the

operation may perform a variety of similar tasks.

Declarative operations, therefore, are operations which do not result in the generation of
instructions in the object program; they rather 1) give information about relationships, such
as equality between data and/or symbolic names, 2) make assertions, and 3) define a pro-

cedure. Declarative operations state facts and provide information which the assembler either

utilizes, or stores and later incorporates into the object program instructions it generates.

In all cases, the programer must state the declarative operation at some place ahead of the
action operation which is to use it. These operations can intermingle with action operations
anywhere in the program, provided they comply withthe above priority restriction. It is often
worthwhile for the programer to place the deciarative statements on a separate PROGRAM

tape or punched cards, to be read into the assembler before the main program.

1of7

EQUALS Operation:

L w - YVO_

[unknoum tag] mp EQUALS ¢ [known value: lab/tag + i, ora constant]»

The EQUALS operation establishes an equivalence between one expression, L,
whose allocation value is #nknown and another expression, Vb, for which the
allocation value is known. This provides the programer with a versatile al-
location aid whereby he can transfer an allocation value from one label or tag to
another tag. Since this operator is cdncerned solely with allocation, an assem-

bler function, it generates no instructions in the internal program.

This operation permits addition, +; subtraction, -; multiplication, () (); or

division, /, with known values. A term in the arithmetic process may be a

‘constant or a tag (* increment is permitted); a factor is an expression made up

of terms connected by + or - signs; it corresponds to an address. Computations
progress sequentially upon factors, with the terms in each factor accumulated
separately before multiplication and/or division. Thus the computations are

essentially multiplications and/or divisions of addresses.

gives the name of the unknown tag to which a numeric value is to be assigned

gives: a) the constant which the programer wishes to assign, or b) the label
or tag whose value is known, with or without an increment, or c) a combination
of labels, tags, and/or constants in an arithmetic relationship. Each value may
consist of one or more of the following: 1) a number; 2) a label or tag; 3) a
numeric increment; 4) a numeric decrement; 5) atag with increment; or 6) a tag
with decrement. Two or more of these may be joined together by either succes-
sive multiplications or by successive divisions, but not a combination of the two
processes. The expression may also be an accumulation of two or more addi-
tions and/or subtractions of knowh values. In expressions combining addition or
subtraction with either multiplication or division, the addends or subtrahends are

treated as increments or decrements to the factor with which they are immedi-

ately associated. For example, in the expression:

20f 7 EQUALS

NuB-4/CHOP-5+COB

(NUB-4) serves as the dividend, and CHOP-5+COB are combined into a
single divisor value. Regardless of how - V0 - is expressed, a single absolute
allocation value for the entire expression must be known by the assembler. The
assembler stores this value forlater use when the unknown tag, L, is referenced.
B-register designations are not permitted in the - VO - operand position.
Example a:

CAT mp EQUALS ¢ DOG+2 - HORSE mp

(e.g., if DOG = 300 and HORSE = 100; CAT = 202.)
Example b:

SR3 =mp EQUALS ¢ SR4-33D+44+RATS wm»

Example c:

TMAX wmp EQUALS ¢ 45600 mp»

Example d:

PECE - mp EQUALS ® (DOVE+2) (MANY) mdp

Example e:

CRUMP =) EQUALS e RACER-4/BOOL/5 mp

In this example, the computer subtracts 4fromthe value represented by RACER,
divides this result by the value allocated to BOOL, then divides this result by
5; it then assigns this value to CRUMP. The EQUALS operation thus has the

power to perform arithmetic computations within the compiler.

Note: In cases of multiplication, if the product exceeds five characters, an

error printout occurs.

In cases of division, if the quotient is not an integer, an error printout

occurs.

3of T

MEANS Operation:
L w V0

mnemonically expressed

arbitrary name .
[:| m) MEANS ¢ I:iHPUt/OUtPUt information] =

to be replaced

The MEANS operation replaces an arbitrary name in the label, L, position with
input/output information expressed in mnemonicsi. It permits programs to be
written with complete flexibility concerning the assignment of channels to
external equipment, By holding the assignment of external equipment open until
needed, the programer can at that time determine which of the specific
channels are available for use. He then replaces the general assignment
with the one he desires by entering a MEANS statement in the L0 program
prior to the operation performing the input/output function. The computer
then takes what is in -VO- and replaces in the subsequent I/O operation the
value assigned to L in the MEANS operation. Thus the programer can assign

an external equipment to any Input/Qutput or Function channel. L, operations

0
which may contain replaceable general operands include: STR, JP, TERM, IN,

OUT, EX-COM, EX-COM-MW, SIL-EX, and RIL-EX.

This operation does not generate any internal assembler instruction; it makes
the indicated substitution, then drops out. The Input/Output operation(s) sub-
sequently involved in the transfer then function as usual, using the substituted

operand.

The MEANS operation is applicable dnly to the assignment of input/output
parameters. It cannot be used interchangeably with EQUALS ,nor can EQUALS
be used to perform the task assigned to MEANS

L - gives an arbitrary name to be replaced. This has normal label format; i.e.,

there are no special restrictions regarding the symbols entered in L

o states the specific input/output assignment to be substituted for L. Entries in
this operand position are presently restricted to information regarding Input/
Output specifications. They may consist, therefore, of any unique external

equipment assignment, e.g., €4 ACTIVEOUT; €5; or a function constant

4of 7 MEANS

Example MEANS operations:

a) LOB mp MEANS o C12
b) PITCH =mp» MEANS « CIS5ACTIVEOUT
c) CUT =P MEANS « CO

Examples of Input/Output operations with which the foregoing examples may be
used:

a) =P EX-FCT * LOB + 426

b) = JP * POST ¢ PITCH

c) mp OUT o CUT « W(SNAP) » MONITOR
d) =» TERM °* LOB ¢ INPUT

Note: MEANS operations appear either within an L0 program or as separate
input under a PROGRAM header. In both cases the MEANS operations
become a part of the assembler’s L1 table storage."

50f 7

RESERVE

Operation:

W %

=> RESERVE * [number of words| mp

The RESERVE operation sets aside a block of memory locations in the running
(object) program. It does so by adding the number expressed by the V0 operand
to the current allocation address and storing the next generated instruction at
the incremented address. Thus the reservation of space begins at the location
following that of the previously generated instruction and includes the VO num-
ber of continuous locations., The assembler does not clear these locations; it

merely by-passes them during allocation. Some of the special reasons for

reserving such an area include:

1. Setting aside a specific area for the storage of parameters

2. Leaving an area open for working storage

3. Reserving space, e.g., at the end of the program, for expansion purposes
4

. Subsequent insertion of other program instructions

specifies the number of words to be reserved. The programer may enter only

a constant in this operand location

Example:
CAT mp RESERVE ¢ 4 wmp
Result:
[a] - [previously generated instruction] =

CAT mp - -----

[a+5] =) [next generated instruction] [2

The use of a label to identify the first word of the reserved area permits the
referencing of the entire area or of any word location in it. The programer
may gain access to any word of information in the area by referencing the label,
or the label plus the increment required to designate the desired word. The
operation ENTe Ae W(CAT+3), for example, reads into register A thecontent

of the fourth word in the reserved area in the example above,

6 of 7 RESERVE

COMMENT Operation:

wp COMMENT o [message] 2

The COMMENT operation permits the programer to place a message(s) within

the input program to provide added information for edited records of the prob-

lem definition. This operation is declarative; it has no dynamic meaning to
the input language.

Example:

mp COMMENT e THIS A SUB-PROCEDURE A CONTAINS A

TYPE-X A LISTING A TECHNIQUES 2

Tof 7 COMMENT

DEBUGGING OPERATIONS

Debugging computer programs is a tedious and time-consuming process. AS- provides
debugging aids to expedite program debugging. These aids utilize computer action, whenever

possible, to assist the programer in this task.

The debugging aids prdvide a list of changes in the contents of computer words within a
designated area of core storage during execution of the program being debugged. In addition,
they make a non-zero dump of the designated areﬁ, or areas, at any point of the program
during its execution; they likewise may dump the contents of registers A, Q, and B1 through
B'. . '

Debugging operations establish an area of storage, called an image, which duplicates a
designated avea of core storage. Images are placed in core storage, providing it does not
hinder the program. Individual operations near the beginning of the L0 program must define

the areas to the assembler (see Figure 1 below).

Object

Program
Images:
(Core)

— ///// (@ Image)

/
(a Area) ™ __ —
\—f‘/—\/~

Figure 1. Area Image Formation

Testing an image indicates the changes made in an area since it was last tested. A test con-
sists of a word-by-word comparison between a program area and its image. Those words
found to have been changed are printed out, program wvs iniage. New words from the program
then replace the dld in the image, thué updating the image aftei' each printout. Image tests

are permitted at any pdint of the program. (see Figure 2.)

1of 10

Object

Program Printout
of Changes
W = - = =
a
(a Area) r —}
| :
| !
| |
|
| Print out |
: wa & Wi g Wa_’ Wi }
| |
| |
|
| Increment |
{ Addresses |
of W and W, |
| a 1 ‘ |
| |
| |
: |
| Lo (End of) :
Legend: : Area :
W_ = Word of Program | Yes '|
a Area |
| |
Wi = Word of Image | ; ; i
o ______ Debuginghction J

Figure 2. Test Image - Debugging Operation

Debugging action also dumps debugging areas or registers at designated points of the L0 pro-
gram, An area dump prints the entire area contents. A register dump prints the content of
registers A, Q, and all B's,

An additional set of instructions, called the Debugging Package, performs debugging action
while the object program is being executed. Debugging operations of the original L0 program
cause the formation of return jump instructions in the object program with the debugging

package as their destination. This package is in relative format and is loaded at an initial

2 of 10

address 76000 wunless specified differently by the programer. The programér places
special allocation in his L, allocation tape whenever this package is not to be at.address:

76000. The allocation is as follows:
L ' : : w
DEBUG = [loading address of Debugging Package] 4
Upon completion of debugging, the programer requests editing and object program outputs

without Debugging Aids. AS-1 automatically eliminates action by the Debugging operations of

the L0 program, and no object program instructions result from them.

Debugging operations divide into two types: 1) declarative and 2) action. The declarative
operations delimit the areas and images for later reference and manipulation. These always
precede the debugging action operations in the L0 program. Debugging action operations

either test images or dump areas and registers.

The following pages define individual debugging operations.

3of 10

DECLARATIVE DEBUGGING OPERATIONS

DEFine~ AREA Operation:

w

" 1 Yy

0 vV

=) DEF-AREA o [area name] . [initial area address]) [number of \;vords] =

The DEF-AREA operation defines an area of the LOV program for debugging

action. Debugging action opefations later manipulate data in terms of these

declarative area definitions.

names a debugging area. The name is symbolic and is used for identification

purposes *

specifies the initial debugging area address. This operand is an allocated tag

or an absolute address; the tag may be incremented

specifies the number of words in the debugging area. This operand is either a

symbolic tag or an absolute number; if symbolic, it must be allocated

*It is permissible for the programer to use an identical symbol to represent both V_ and V1

0

4 of 10 . DEF-AREA

CORE-IMAGE Operations:

*
w ¢ " v

=) CORE-IMAGE o [area name] ° [initial image address]O[key set condition] =)

The CORE-IMAGE operation establishes an image of a debugging area on the
core. This operation provides the initial image formation; thereafter it is up-
dated with changed words of corresponding debugging area positions by action
of the TEST-IMAGE operation.

V., ‘= - names the defined debugging area to be imaged .

V, - specifies the initial core address for the image. This is a tag (allocated) or an

absolute address; a tag may be incremented
V.* - specifies a key set cohdition. Key settingsand their .signiﬁcance are as follows:

Perform operation if V2 is KEY1 and console key 1 is set.

Perform operation if V2 is KEY2 and console key 2 is set.

Perform operation if v, is KEY3 and console key 3 is set.

*Operand use is optional

5010 CORE - IMAGE

ACTION DEBUGGING OPERATIONS

DUMP-REG isters Operation:

*
w Vo

=) DUMP-REG o [key set condition] =)

The DUMP-REG operation causes a printout of registers A, Q, and B1 through

B7 at points specified in the running program.
Vo* - specifies a key set condition. Key settingsand their significance are as follows:

Perform operation if VO is KEY1 and console key 1 is set.
Perform operation if V0 is KEY2 and console key 2 is set. -

Perform operation if ', is KEY3 and console key 3 is set.
. 0 '

Typical DUMP-REG printout:
A 02530 33330 Q 00000 22764

4

B! 00010 B2 07774 B® 00022 B* 00040 B 02040 B® 00000 B 00012

*QOperand use is optional

6 of 10 DUMP-REG

EXCHANGE Operation:

174
mp EXCHANGE mp

EXCHANGE, a minor header operation similar to ALLOCATION and CHAN -
SET operations, incorporates special reassignment properties, enabling a pro-
grammer to substitute one element designation for another everywhere it appears
in input. Operations immediately following an EXCHANGE header establish

desired substitutions for any existing elements of an L, program or other input

j 0
data. Each element to be substituted must exist between any two of the following

normal separator symbols of an operation:

O P O I U I I I R VA " 2 VAN

The EXCHANGE data must always be read into the computer prior to any data
which it will affect. Any normal assembling process canbe carried out in con-
junction with the EXCHANGE operation, since the substitutions are made prior

to placement of data inthe L table., All EXCHANGE substitutions are permanent

1
and are reflected inassembleroutputs. A label and identifying operands are

optional with the EXCHANGE header. Subsequent assignment operations re-

quire labels.

EXCHANGE assignment operations are listed immediately after the EXCHANGE

header and are in the following format:
L ‘ w
I:old designation] -y I:new designation] =)
L - gives the designation of the old element for which substitution is to be made

W - gives the nmew designation to be substituted for the old wherever it is found in

the input data

T of 10

The following is an example of a set of EXCHANGE operations incorporated intoan A-CONTROL

input tape together with the L input program:

0

COUNTONES mp A-CONTROL e SMITH e 20 JULY 63

=) EXCHANGE
60000 =) 61000
SUMO = SUMX
B2 =) B5
B1 ‘mp B2
35 = 12
L = W
NWORDS =p ZWORDS
STOPS5 =) STOP7
CTONESI =) CTONES4
RJP =) JP
QNEG = QPOS
, "mp ALLOCATION
C TONES = 60000
SUMO =) 63000
COUNTONES mp PROGRAM e SMITH e 20 JULY 63
CTONESO =) ENTRY
mp CL o B2
CTONES! wp ENT o Bl o 35
mp CL o A
mp ENT ¢ Q ¢ L(WORDO+B2)
CTONES2 mp LSH ® Q © 1 ¢ QNEG
mp ADD e A o1
mp BJP ¢ Bl o CTONES2
mp STR ¢ A o W(SUMO+B2)
mp BSK ¢ B2 ¢ NWORDS
=) RIJP ¢ CTONESI o STOPS
CTONES3 =) JP e CTONES3
=) EXIT

8 of 10

The effect of the EXCHANGE operations on the subsequent inputvdata in the above example

would be as follows:

COUNTONES

BASE
ENTRANCE
SUMX

COUNTONES
CTONESO

CTONES4

CTONES2

CTONES3

NOTE 1:

NOTE 2:

mp A-CONTROL ® SMITH e 20 JULY 63

=p ALLOCATION

wp 61000

=) CTONESO

=) 63000

=) PROGRAM ¢ SMITH e 20 JULY 63
mp ENTRY

m) CL o B5

=) ENT ¢ B2 o 12

m CLe A ‘
=) ENT e Q ¢ W(WORDO+B5)
= LSH ¢ Q ¢ 1 ¢ QPOS

& ADD e A o 1

=) BJP e B2 e CTONES2

mp STR ¢ A o W(SUMX+5)
=) BSK e B5 ¢ ZWORDS

=P JP e CTONES4 o STOP7
w) JP e CTONES3

= EXIT

The most effective use of EXCHANGE operations is in making special correc-

tions, or in conjunction with L1 corrections, where an output No. 26 is desired.

Because of the universal nature of the EXCHANGE operator, programers
should exercise a certain degree of caution when using it, remembering that a
requested substitution is made everywhere in the input data where the old de-

signation is encountered. Substitution cannot be selective.

9 of 10

DEBUGging- AIDS Operation:
L w
=) DEBUG-AIDS =p

DEBUG-AIDS, an independent operation, indicates to the assembler that the
programer wishes to make use of the debugging aids included in his program.
When the DEBUG-AIDS operator is present, the assembler will generate a series
of return jumps to the routines of the debugging package corresponding to those -

specified in the program (see Debugging Operations),

Used under A-CONTROL , no label or operands are required. '

10 of 10

INTRODUCTION

ASSEMBLER SUPPORT PROCESSES

An assembling system of the scope, versatility, and complexity of AS-1 must necessarily
carry with it various support, service, and control processes. These processes simplify the
operation of the AS-1 Assemblér by relieving the programer and thé computer operator of
many of thé repetitive functions concerned with the assembling system. bThe support process

integrates the control of the assembler functions.

This section describes the support processes for the AS-1 Assembling System, and presents
the rules for using them. It presents the rules for applying the AS-1 Progréming Language
to the solution of problems. In essence, this part tells the programer what the assembling

system does, what aids he has at his disposal to make it work, and how.to use these aids.

The support processes described in this manual include:

e AS-1 Program Input
o Allocation

e Program Corrections
e AS-1 Program Output

e Assembler - Control Operations

In addition, the Appendix contains various charts, rules, and other pertinent information.

AS-1 LANGUAGE LEVELS

The AS-1 Input (Source) Language loads into AS-1 via paper tape. This working language is
called LO‘ AS-1, by a series of translations, produces an object program on paper tape which
can be loaded into the Unit Computer and executed. This working language is called L 4 There
are three intermediate forms in which information is stored in tables during the AS-1 opera-
tion. These "language levels" are called Ll’ L2’ L3. A description of each of these languages
follows:

L0 - is the original input language consisting of AS-1 operations and used by the

programer in writing routines and preparing them for assembler input

1of 2

is a slightly modified L, in which the operation items are stored (in a special

0
6-bit code) within assembler tables. Certain input translations and error detec-
tion steps have been performed; operations remain in mnemonic form, however,
and their basic characteristics are similar to L0 . The conversion of L0 opera-

tions to L, operation items is a one-to-one relationship

1

consists of information tables anda list of operation items which are very similar
to machine instructions. The f j 2 b designators are in absolute octal code,
but the addresses are symbolic. The program is not yet committéd to any given

memory area

is the language of the object program, storedin table form within the assemblei'.
All addresses have been assigned a permanent (ab_solute) address. It-can also

be buffered directly into core memory as object program o

is the object program on paper tape which can be _loadévd into the Unit -Computer

and executed; it can also be buffered directly into core memory

20of 2

AS-1 INPUT

The Paper Tape High-Speed reader handles L0 paper tape input to AS-1 Assembler. These
tapes are punched with an identifying header operation on the front of the tape. A header
operation consists of a program name, a header-type, and identifying operator. Each of these

is limited to 10 alphanumeric characters and conform to the following format.

l:program identification] ‘. [header—type] . [programer’s] . ’: date]
label ‘operator name .

The format control symbols, called separators, used when coding in AS-1 are as follows:

NAME ’ SYMBOL SIGNIFICANCE
CARRIAGE RETURN Y4 Signifies end operation. Must precede
header operation, delimits the state-
ment :
TAB = Must always precede the statement

operator. Must precede notes: omit
if notes not given

POINT SEPARATOR . | Separates statement components
OPEN PARENTHESIS (Separates a K-designator symbol from
: : its interrelated operand
CLOSED PARENTHESIS) Signifies the end of operand preceded by

a K-designator symbol

SHIFT DOWN l No significance to L0 language except to
obtain the proper symbols, i.e., + sign

SHIFT UP t No significance to L language except to
obtain the proper symbols

SPACE A No significance in L language controls.
It merely leaves space in messages when
they are typed out. (Exception: see poly-
operations for typing, punching, and

_ printing)
PLUS + Specifies addition
MINUS - Specifies subtraction

lof 7

BAR | Delimits control keys when programing a
message for printout on the typewriter

DOUBLE PARENTHESES () 0O - Specifies multiplication
SLANT SIGN / Specifies division
DOUBLE LOWER CASE

PERIOD .. " Indicates the end of tape (stop reader)

Header operations are declarative. These operations direct the assembler as to the handling
of succeeding operations. Header types are: 1) Program, 2) Allocation, 3) Correct-Ll, 4)
Exchange, 5) Rel-Alloc, 6) Indr-Alloc, 7) Chan-Set, 8) Debug Aids and 9) A-control. These
headers are grouped as major and minor headers where Program,Correct-Ll, and A-control
belong to the major class. The usually extra size and usage frequency of the header-type

tapes categorize the major classes. The examples below illustrate three typical headers.

L w Vo N
‘f COUNTONES = PROGRAM o SMITH e 20 JULY 1963
‘: COUNTONES -> A-CONTROL e SMITH e 20 JULY 1963
f COUNTONES = CORRECTLI o SMITH o 20 JULY 1963

It is a good policy to maintain like labels and operands in headers when assembling a routine.
The assembler does not require this complete format. In fact, the header operator works
with only the header-type operand present. The extra operands supply the prograrher with
additional routine orgaﬁizational data. The Correct-Lloperation alters the program header to
agree with its label and operands during the correction run. For this reason, za.Correct.-L1

header should always contain the current date.

The A-control header merely categorizes control information tothe assembler under a single
header; its use is optional since the headers work independently. The A-control eliminates the
need for loading many small declarative paper tapes. The extent of assembler control as AS-1
input is optional. The programer may control all assembiy activity by paper tape entries or
he may instruct the computer operator to control much of the assembling at the console.

The program header declares to the assembler that the following operations go to the assem-

bler’s L, table storage. These operations may contain mono, poly, and declarative operations,

1
organized by the programer to accomplish some programing task. The declarative opera-
tions, such as means and equals must follow the first program header of the routine being
assembled. A routine may be comprised of many paper tapes, each with a program header.

The operations will appear in the L, table storage, sequentially as they load.

1
20f 7

The following skeleton program samples illustrate typical AS-1 read-in arrangement.

Sample 1. (Compile a Simple Routine)

[1abel] =) ALLOCATION o[programer’s name] . [date]
‘ =)
1. -
-
[label] =) PROGRAM [programer’s name]. [date]
[1abe1] -
=
=)
2. -
=
=
=
=
[label] & PROGRAM o [programer’s name] o [date]
[label] ap
=
=
3. =
=P
=)
=

Instructions to the assembler:
1) Read-in order of tapes
2) Debugging aids desired or not

3) Output types

3of 7

Sample 2. (Correct a Single Routine)

[label] ’» CORRECT-1 * [programer’s name] . [.éurrent date]

[label] = PROGRAM .« [programer’s name] . [date]
[label] =)
=
_ =)
2. =
=
=
=
=

Instructions to assembler operator:

1) Read-in order of tapes

2) Request output numbers

40of 7

Sample 3.(Assemble Single Routine under Programer Control)

[label] =) A-CONTROL o [programer’s name] . [date]
) =) ALLOCATION
Llabel] -y
:label]~ -
L. '1abe1] =
=P EXCHANGE
_label: =
[label] wp
© 7 = CHAN-SET
(label| wp |
)) =» DEBUG-AIDS
[label] => PROGRAM [programer’s name]o [date]
2. |[1apel] w» means
[label] m) MEANS
[label] = PROGRAM [programer’s name]o [date]
[label] =
. =)
=
3 =
-
-
=
=)

Instruction to assembler operator:
1) Read-in order of tapes

2) Request output numbers

50f 7

PAPER TAPE INPUT

Input requirements permit either upper- or lower-case characters for all inputs with the
exception of separators. However, upper case characters are recommended for all operation
inputs except those which specifically require lower case characters. Refer to Table I for

equivalent input format codes.

TABLE I. CODING SYMBOLS - PAPER TAPE INPUT

SOFTWARE SOFTWARE | FLEXOWRITER|FIELD DATA SYM-| FIELD DATA
NAME SYMBOL CODES BOL SUBSTITUTION CODES
Carriage Return d 45 04 03
Shift Up 4 47) I B)1
Shift Down (] 57 o 02
Tab = 51 Special = 76 |
Point Separator . 44 Apostrophe 1 72
Double Period - 57 42 42 75 75
Space A 04 | o 05
Comma) 57 46 47 56
Vertical Bar | 57 50 47 Exclamation ! 55
Plus + 57 54 47 42
Minus - 56 41

6of 7

A double lower case period in the L coding position indicates the end of tape read-in. There-

fore, each paper tape begins with a header and ends with a double-period end symbol,

The following examples illustrate the basic format for program operations and the common

usage of separators therein.

0 41 Yy N

CAT4 mp ENT ¢ Q e W(RAT3-2+B6) ¢ QNEG mP RATCHECK

2

L w vV

=) RPT o 36 BACKI

Notice that it is essential to use a straight arrow before each operator even when a label is
not given. The second straight arrow is used only when notes are given. The point symbol
separates the components of the statement. Parenthesis symbols indicate contents of a stor-
age location modified by an operand code. Also within the parenthesis symbols are data unit
subnames and subscripts or multiplication factors. Spacesare permitted throughout the opera-

tion. The curved arrow indicates the end of the operation, or of the notes if present.

Tof 7

ALLOCATION

Allocation is the process of assigning numeric values to certain symbolic representations.
(See Figure 1.) Such values usually pertain to addresses of storage locations within the
computer; however, they may also give rise to constants. The AS-1 allocation process re-

quires a specific L allocation for the base address of the L 4 object program and for certain

0
labels and tags; these are:

1. The initial address of the L 4 object program
2. Tags making reference to operations of other programs or to storage areas
3. Labels of first action operations following a program sequence break

4. Tags representing a numeric value other than an address. (Such values have a 5-

octal digit iimit)

L. | ALLOCATION
0 .
Allocation Table
Lo ~ Iy
Program

Figure 1. Allocation

1of 8

LABEL AND TAG ALLOCATION

The AS-1 Assembly System provides a variety of methods of making allocations to tags and
labels in programs written in relative format. These methods include the following header

types or classifications:
1. ALLOCATION ' (normal)

a. Direct
b. Substitutive

2. REL ative - ALLOCation

3. INDiRect - ALLOCation

Types 1, a and b, and 2 abovewill be presented in this discussion. Because of the differences
in performance and application, type 3, INDiRect - ALLOCation, will appear under another
heading of this section (see Indirect Allocation.)

The programer should note that the three allocation types listed above are the operators,
W, of header operations . As such they form, together with a label and two identifying oper-
ands, the header operations of the allocation tapes written in L_ format and resemble

0
L0 program headers. The programer may use them separately for independent tape pre-

paration.
Normal Allocation:

The ALLOCATION header introduces two methods of allocation: a) direct, and b) sub~

stitutive.
Example header:

[label] mp ALLOCATION .0 [programer’s name] . [date] ’

The operation items following the header identify a list of L, allocations, each of these al-

0
location items requires the use of two coding positions: 1) the lab/tag being allocated, placed
in the L coding position; and 2) the allocation value or equivalent lab/tag, placed in the W

coding position.

a. Direct allocation sets a lab/tag to a given numeric value (a constant)

20f 8

Direct allocation format:

L w
[label] ‘mpp ALLOCATION ¢ [programer’s name]o [date]

[lab/tag] = [numeric value]
[lab/tag] = [numeric value]

etc.
The programer may delete any tag or label previously allocated by specifying the lab/tag

and stating the word DELETE as the operator:

L w
[lab/tag] => DELETE wp

b. Substitutive allocation sets a new tag, L, equal to a known lab/tag, with or without
increments, or to the result of two or more lab/tags, W, with or without increments,
joined arithmetically., Addition, subtraction, Iﬁultiplication, or division of terms is
possible, a term being either a lab/tag with or without an increment, or a numeric
constant. Anynumber of these arithmetic processes may be combined in an operation,

the only restriction being that multiplication and division cannot be performed in the
sample operation item. The assembler performs all additions and subtractions first,

then does the multiplications or divisions, just as in the EQUALS operation (see
Declarative Operations)

Substitutive allocation formats:
L w

’ [label] =) ALLOCATION o [programer’s name] ° [date]
[lab/tagé] = [lab/tagb + i*] =
[leb/taga] = ;lab/tagb T oé() n] =
[lab/taga] = :1abv/tagb a i] b [lab /talgc hd i] =
[lab/taga] »(Llab/tagb ii]X [la.b/tagC ii]) =
[lab/taga] > :lab /tag, :i]/ [lab/tagc + i] -
[lab/taga] - [lab/tag]O ha i]/ [lab/tagc *] / [n] =

In cases of multiplication, if the product exceeds five characters, an error printout occurs.

In cases of division, if the quotient is not an integer, an error printout occurs.

*The increment is optional in all the examples shown

3 of 8

REL ative - ALLOC ation:

Relative allocation provides a convenient technique for allocation. A RELative- ALLOCation
tape is assembler produced and has a format which resembles that of direct allocation except
that the numeric value is relative to the base value (always 0 0 0 0 0) instead of a final value.
The base increment value, independent of the REL-ALLOC tape, is furnished by the operator,
who manually enters this value in the A register during a subsequent assembly run. The

assembler then adds thé relati\}e values to the increments to form final allocations.

A REL-ALLOC tape results as an assemhler output, output No. 34. The tape content consists

of a header and a series of allocations thereafter (to the base) in the format as shown below:

[label] =) REL-ALLOC
[label] ‘- [increment allocation value]
[label] »[increment allocation value]

etc,
Important applications of relative allocation follow:

1. Assembling Applications

a. RELative- ALLOCation tapes (output No. 34) may be used to allocate a program

or a group of programs relative to some base as stated earlier in this section

b. Relative load programs (output No. 24) produced by the assembler may be loaded
anywhere in memory relative to a specified base address. Subsequent assembly
runs requiring allocation information pertaining to the above program may
obtain such allocation information from the content of a REL-ALLOC tape pro-
duced during the same assembly run as the relative load tape. In such cases the
assembler operator assigns the same base to relative allocations as that used to

position the relative load progré.m
Example:

Program A, assembled in relative load format, producesa REL- ALLOC tape, and is assigned
to address 60000. Program B, which will refer to labels in program A, is then assembled.
To obtain the correct addresses of labels inprogram A for program B, the relative-allocation
tape from program A must be supplied to program B as input. When this tape is loaded for
program B, the A register is set to 60000; thus the programer may move program A to any
location without affecting its availability for program B as long as he keeps record of, and
loads its proper base address in the A register. ‘

40f 8

The assembler permitsusing a number of REL-ALLOC tapes inconjunction with

normal ALLOCATION tapes*,

Editing Applications

The ability to transfer routines to new locations and/or interconnect a number of
routines using relative allocation assists in obtaining current edited data. After
assignment of absolute allocation values by the relative-allocation process, alloca-
tion printouts provide the programer with edited allocation information on final
program positioning. Thus the programer acquires complete edited allocation data

in any order desired. (See outputs 30, 32, and 33)

*During a combined read-in of both normal allocation and relative -allocation tapes the
following will occur: :

1)

2)

If the REL-ALLOC tape precedes the ALLOCATION tape,the assembler suppresses
all assembler-generated tags containedon ALLOCATION tape(s) The assembler re-
assigns these tags

If the ALLOCATION tape precedes the REL-ALLOC tape,'the assembler recognizes
and accepts all assembler-generated tags of the ALLOCATION tape(s)

S5of 8

INDIRECT ALLOCATION

Indirect allocation is a means whereby a programer may 1) use a particular subroutine at
a single location for access by many different programs or for programs which are to be com-
bined, or 2) change the storage location of subroutines without making the corrective changes

in the running programs using these subroutines.

The programer maintains a list of the subroutines, by name, for which indirect allocation
can be made. With each subroutine name appears a reference address together with a desig-
nator value (1 or 2), telling whether the ENTRY address (beginning address) of the subroutine

can be found in the upper or lower half of the reference address.
A series of U-TAG entries establish a jumptable, towhich entries and/or changes in assign-
ment can be made. For example:
L w VO V1
DOGI12 m» U-TAG L] TFLX e MAGTAG m»

accompanied by an allocation tape containing the entries
L w
DOGI2 = 04367
TFLX mp 32050

MAGTAG wm» 36500

would establish the current address of TFLX = 32050 and MAGTAG = 36500 respectively
in the upper and lower half of location DOG12 = 043617,

The programer keeps a list (or table) of subroutines, in which entries may appear as follows:

Subroutine Name Location
TFLX 204367
MAGTAG 104367

6 of 8

The six-digit value giving the subroutine location consistsofa 1 or 2 followed by the
storage address in which the subroutine addressis stored™. The 1 or 2 in the leftmost position
provides the k-designator forthe assembler-generatedinstruction which return jumps to the

subroutine. To obtain the subroutine TFLX, in his program, the programer simply writes:

= RIP o TFLX =»

On his allocation tape, following an INDR-ALLOC header, the programer would write as

an operation the entry he finds in the subroutine table, as follows:

L w
TFLX mp 204367

The assembler would then combine the information from the RJP operation and the allocation

operation to generate the following instruction: L65030 04367

This instruction in the running program directs the computer to the upper half of address
04367 which is 32050, the address of the TFLX subroutine. It can readily be seen that the
value, 32050, could be changed at will without occasioning any change in the programs using

the TFLX subroutine.

Note: The indirect allocation technique also applies to the mono-operations: ENT o A
° [tag] and ENT ¢ Qo [tag] . The machine instruction generated for each receives both

k and y values via indirect allocation of the tag.

*Storage address specified in octal only

Tof8

INDiRect - ALLOCation Operation:

L W v y

0 1
[1abe1] =» INDR-ALLOC o [programer’s name] . [date] =)
The INDiRect - ALLOCation operation is a header operation appearing before

items which provide indirect allocation information about subroutines to be used in

a program. The items which follow this header have the following format:

L w

*

[S/R label] =) [6 digit number]

The subroutine labels and their accompanying six digit numbers appear in a list
which the programer prepares- for those subroutines which he wishes to obtain by
indirect allocation. The use of subroutines prepared by other programers is

permitted.

The six digit value listed with each subroutine provides a % -designator, either 1
or 2, followed by a five-character address™. The address is the plaice where the
subroutine locations (beginning addresses) are stored, either in the upper or in the
lower half. The programer prepares the INDR-ALLOC tape, listing all subrouy-
tines he wishes to obtain by this method. In his program he writesa RJP to his
desired subroutine. The assembler generatesthe appropriate Return Jump instruc-

tion to either the upper or lower half of the listed address.

Example indirect allocations:
TFLX =) INDR-ALLOC o VERSTEEG o 15SEPT63
REGI = 245000

REG2 = 145000
SIM1 =) 245001

TAP1 mp 145001

Note: Programers may also apply the indirect allocation technique to the mono-
operations: ENT e A O[tag] and ENT e Qe [tag],

*Storage address specified in octal only

8 of 8

PROGRAM CORRECTIONS

The AS-1 Assembler contains provisions for program corrections. Alterations are made
to program operations while in L1 table storage. Three types of corrections are permissible:

1) insertions, 2) deletions, and 3) replacements of program operations. (See Figure 1.)

The L, Corrector, a major assembler subroutine, makes the actual correction to programs

1
in L1 table storage. This correcting method makes use of paper tape L 0 input.
Corrections
Corrections > to
L1
Corrected Corrected
L Lo
LO ‘ -
Program

Figure 1. Corrections

1o0f3

PROGRAM CORRECTIONS - PAPER TAPE INPUT

AS-1 provides a method for program corrections whilein L 1 storage. This feature eliminates

the necessity of retyping the entire L 0 program input tape for alterations. The L Corrector,

1
an integral part of the AS-1Assembler, isthe routine which makes these corrections. It ac-

cepts three types of correction operations: 1) delete operations, 2)7eplace operations, and
3) insert operations. The appropriate L1 identifier precedes each correction operation to
position the resulting operation item in L1 storage. The L1 Corrector permits any arrange-

ment of corrections with regard to type and order.

An LO correction tape instructs the L1 Corrector in making program alterations. The tape

contains a header of the following format:

L w VO Vl

[program name]-) conREcT-uo[programer’s name] . [new date]

In making corrections, the programer specifies a new date as the V1 operand of the header
operation. AS-1 automatically superimposes this on the program header, thus updating it.
This provides the programer with a means of distinguishing the old tapes from the new.
Coding corrections consist of alternate L1 identifiers and corrections as indicated in the

diagram below:

Lll'D 1

{Corrected operation|
2

LIID 1

[Corrected operation | P

An insert correction requires an L. identifier, the L1 identifier of its preceding operation,

1
and additional octal insert digit(s). The point symbol separates these. This locates the insert

position in the L1 item storage (e.g. an operation between L

1 identifiers 104 and 105 might
be given an L1 identifier of 104 e 1). Up to three octal insert digits are permitted in preparing

insert corrections.

2 0of 3

Example: insert correction between L, identified operations 27 e 4 and 27 e 5:

27041)

CAT3 = ADD.Q.II

NOTE: An insertion will be replaced by a second insertion with the same ID, provided that

both are read in before a real correction is made.

A delete correction lists the Ll-identiﬁer of the operation to be deleted followed by a point
Separator and a zero; an operation consisting of a straight arrow, s, the word DELETE,

and a curved arrow,) , follows.

Example:‘ delele correction, for removing the operation identified as 103:

103¢ 0 }
= DEI.ETE’

A replace correction lists the Ll-identifier of the operation to be replaced (with e 0) and the
operation with which replacement is made. The new operation item is merely stored over

the old, thus performing the replacement.

Example: 7eplace correction, to replace the operation identified as 105:

105¢ 0
P
m)> ENTe B7e 36)

Upon reassembling, the correction tape is read in with the original L. program. Initial

0
assembly action accomplishes the positioning of operation items in L1 tables. Normal as-

sembly runs proceed thereafter. As optional output, the programer may request a cor-

rected L0 tape. This is Output No. 26 (see AS-1 OUTPUT.)

3of 3

AS1 OUTPUT

This section presents output from the AS-1 Assembler. Two external devices which produce

assembler output are: 1) the on-line typewriter and 2) the High-Speed paper tape punch.

The on-line typewriter types error printout of each detected error during assembly runs. It
also presents assembler status messages during assembly runs to inform the operator of the
existing assembler conditions. AS-1 places the assembler object programs on punched paper
tape. The off-line typewriter prepares hard-copy records from these tapes for editing pur-

poses.

A header appears on the front of each paper tape output. The assembler punches this flex-
coded data about one foot before the pertinent information. It punches declarative headers on
outputs designed for input to the assembler and edits information on output designed for input

to the computer as object programs (see example on page 6).

1of 11

ON-LINE TYPEWRITER OUTPUT

The on-line typewriter is used primarily to inform the computer operator of assembly run

conditions. The three categories of on-line typewriter output are:

1. Error Printouts
2. Assembler Status Messages
3. Program Identification (Output No. 1)

Error Printouts and Assembler Status Messages need not be requested; they are automatically
typed as they are encountered during the assembly run. Output No. 1, which gives program

identification, is typed automatically when assembled object program outputs are selected.

ERROR PRINTOUTS

The assembly process temporarily ceases whenever an error is detected. At this point the
on-line typewriter immediately types an error printout. Action hesitates for additional input

data or continues, depending on the type of error detected.

The error printout format provides for ample error identification and deScription. A print-
out usually indicates 1) that thereisan AS-1 error, 2) the kind of error, 3) the operation item
label (plus or minus an increment, if any), 4) the L1 identifier, and 5) the complete operation
item containing the error. The errors UNALLOCATED TAGS and FIRST LABEL UNAL-
LOCATED delay the assembly rununtil additional input has been given.

The following is a program with deliberale errors, and the resulting error printouts. This

illustrates some of the detectable errors; these errors are encircled.

SORTNUMB ALLOCATIONsKOURAJIAN« “JUL*?

SORTO 02500

7IP 06500

SORTNUMB PROGRAM+KOURAJIAN “yuL®

SORT ENT«B'e SET TBL INDEX

SORT * ENTEW(ZIP+C)

SORT ? (RP)+B'+ BACK
COM+QeW(ZIP™' +B')«¥MOST) FIND LARGER NO
JPe

@RTNUMBE@ ENT+A-W(ZIP+B’)
STR+QE)(ZIP+B") STR SMALLER NO
RSHeAQ- ¢ LARGER NO TO Q

2 of 11

JPe SORT?

SORT' STR e Q @ W(ZIPCB)

BJPe B' (e (SORT")
SORT JPo§' RTJe STOP

Resulting Error Printout -

LABEL EXCEEDS 10C
SORTNUMBER +0

W(ZIP+C1) - INC FORMAT
- ILL R DES
00002 ® ENT @ W(ZIP+C1)

RP - ILL OPRTR
00003 e RP e B1 e BACK

YMOST - ILL J DES
00004 ¢ COMe Qe W(Z-1+Bl) @ YMOST

H-ILL K DES
00007 e STR Q & H(ZIP+B7)

- ILL B DES
00012 ¢ STRe Q e W(ZIP-B1)

(SORT3) - NO K DES
00013 @ BJP @ Bl @ (SORTS3)

UNALLOCATED TAGS
00005 SNORT1 00000
00014 SIRTO 00000

3 of 11

REDUCE INDEX
END OF PROGRAM

ASSEMBLER STATUS MESSAGES

A number of console initiated steps starts assembler operation. The on-line typewriter re-
lays pertinent information to the operator, inthe form of Assembler Status Messages during
the assembly run. With this information he is constantly aware of assembler action and

assembly run status.

Examples:

SELECT OUTPUT

OUTPUT NOT POSSIBLE

SET KEY 1 IF DEBUG AIDS DESIRED NO -
SET KEY 1 IF DEBUG AIDS DESIRED YES
CHECK SUM ERROR*

GENERATOR ERRORS

FORMAT ERROR

PROGRAM IDENTIFICATION

NO. 1 HEADER, NO. OF INSTRUCTIONS, AND AREA FORMED BY ALLOCATION: The

on-line typewriter types output No. 1 at the end of each assembly run when requested; it is
also produced automatically whenever any assembled program L2 output is requested. This

output identifies 1) the assembled program, 2) the number of program operations, and 3) the

storage address range formed in the assembled program.

Example:
COUNTONES SMITH*10CT1963
NO. OF INSTRUCTIONS 13
OUTPUT 1

50000 THRU 50012

* For explanation of Check Sum, refer to the Glossary in the Appendix.

4 of 11

PAPER TAPE OUTPUT

Output on paper tape is punched by the on-line High-Speed Punch in standard bioctal or
keyboard printer code. The four categories of paper tape output and their output types are
as follows:

1. Edited Data on Paper Tape:

NO. 5 L1 ID AND L1 PROGRAM
NO. 6 L1ID AND LABELS

2. Assembled Object Program on Paper Tape:*

NO. 10 ASSEMBLED OBJECT PROGRAM IN BIOCTAL

NO. 12 ABSOLUTE ASSEMBLED OBJECT PROGRAM

NO. 22 ABSOLUTE ASSEMBLED OBJECT PROGRAM, L1 PROGRAM AND NOTES
NO. 24 RELATIVE ASSEMBLED OBJECT PROGRAM

3. Corrected L on Paper Tape:

0
NO. 26 CORRECTED LO
NO. 27 CORRECTED LO (SELECTIVE-BETWEEN L1 ID’S)

4. Allocation Data on Paper Tape:

NO. 30 LABELS AND ADDRESSES

NO. 31 SIGNIFICANT LABELS AND ADDRESSES

NO. 32 NUMERICALLY ORDERED ADDRESSES WITH LABELS

NO. 33 ALPHABETICALLY ORDERED LABELS AND ADDRESSES

NO. 34 RELATIVE ALLOCATION, LABELS AND ADDRESSES (base address should

be allocated to 00000)

Paper tape output of categories 2, 3, and 4 serves two purposes: 1) as computer input

(either to AS-1or as a running program); 2) as additional edited data to that of category 1.

EDITED DATA ON PAPER TAPE

A hard copy printout of certain data is frequently desired for editing purposes.The assem-

bler produces paper tape output which is thereafter listed to obtain the edited record.

*May be loaded via the AS-1 Utility Package

5-of 11

NO. 5 L1 IDENTIFIERS AND L1 PROGRAM: DPaper tape output‘ in this for'r_n'at‘ presents a
sequential list of L1 identifiers, their corresponding L1 operations, and labels. Th'is_‘ 6utput

does not include notes.

Example:

0. COUNTONES
1. .CTONESO
2, CTONES1
3.
4,
5. CTONES2
6.
7.

10,

11,

12,

13. CTONES3

PROGRAMeSMITHe100CT63
CLeB2 o :
ENTeBle35

CLeA :

ENTe QeW(WORDO + B2) -
LSHeQeleQPOS

ADDeAel .
BJPeB1eCTONES2
STReAeW(SUMO + B2)

BSKeB2¢ NWORDS
JPsCTONES1e STOP5
JPeCTONES3eSTOP

6 of 11

NO. 6 L1 IDENTIFIERS AND LABELS: Paper tape output in this format consists of all

program labels and their corresponding L1 identifiers. No other Ll identifiers are given.

Example:
COUNTONES SMITHe100CT63
L'D LABEL
0. COUNTONES
1. CTONESO
2. CTONES1
5. CTONES2
13, CTONES3

ASSEMBLED OBJECT PROGRAMS ON PAPER TAPE

AS-1 presents assembled object programs, with or without additional data, on punched paper
tape. The programer uses these output tapes for two purposes: 1) as program input to the
Unit Computer, and 2) asanintermediate medium to obtain a record for editing purposes. The
AS-1 Utility Package reloads tapes of this category when used as program input to the com-

puter. Listings of these tapes provide hard copies for editing purposes.

The large variety of output formats provides assembled object programs to best fit the pro-
gramer’s need. It gives an option of absolute addressing or relative addressing in bioctal
format. Absolute addressing assigns a specific storageaddress to each instruction. Relative
addressing allows the programer to specify a starting address at the time he loads the as-
sembled program. Bioctal format is an abbreviated means of paper tape storage where each
tape frame represents two octal characters, thus reducing the size of tapes considerably.
Regardless of the format selected, the tapes include the necessary control codes and check
sums for AS-1 Utility Package loading. In addition to the options heretofore mentioned, the
programer has the option of requesting additional data with the assembled program such
as the items in L, language and notes. The inclusion of these in no way interferes with the

1
loading of assembled programs into the computer.

NO. 10 ASSEMBLED PROGRAM IN BIOCTAL: Paper tape output in this format consists of
the assembled program in bioctal code. The programis preceded by a 76 code and followed

by check sums for AS-1 Utility Package loading.

Note: Punched paper tape in bioctal format cannot be listed or reproduced on a typewriter.

Tof 11

NO. 12 ABSOLUTE ASSEMBLED PROGRAM IN KEYBOARD" PRINTER CODE, Paper tape
output in this format consists of absolute-addressed machine code instructions in standard

code. An 88 code precedes and check sums follow the program for AS-1 Utility Package

loading.
COUNTONES SMITH*100CT63
NO. OF INSTRUCTIONS 13
OUTPUT 12

50000 THRU 50012
88

50000 12200 00000
50001 12100 00035
50002 11000 00000
50003 10032 50030
50004 05200 00001
50005 20000 00001
50006 72100 50004
50007 15032 50100

50010 71200 00011

50011 61500 50001
50012 61400 50012

06004 36164
00003 10217

8 of 11

NO. 22 ABSOLUTE ASSEMBLED OBJECT PROGRAM, L; PROGRAM, AND NOTES: Paper
tape output in this format consists of absolute-addressed machine code instructions, their

corresponding L1 operations (usually mnemonic), and notes. The tape begins with an 88

code and ends with check sums for AS-1 Utility Package loading.

Note: The check sums represent the assembled program only.

Example:

COUNTONES SMITH«100CT 63
NO. OF .INSTRUCTIONS 13

OUTPUT 22

50000 THRU 50012

50000 12200 00000 CTONESO CLeB2 SET WORD INDEX

50001 12100 00035 CTONES1 ENTeBle35 SET SHIFT INDEX

50002 11000 00000 CLeA SET SUMO TO ZERO

50003 10032 50030 ENTeQeW(WORDO +B2)

50004 05200 00001 CTONES2 LSHeQele QPOS TEST EACH BIT FOR 0 OR 1
50005 20000 00001 ADDe A o1 INCREASE SUM IF 1 FOUND

50006 72100 50004 BJP e Bl ¢ CTONES2

50007 15032 50100 STReAeW(SUMO+B2) SUM STORAGE

50010 71200 00011 BSKeB2¢NWORDS

50011 61500 50001 JPeCTONES1*STOP5 CONTINUE COMPUTING SUMS

50012 61400 50012 CTONES3 JPeCTONES3eSTOP END

00004 36164
100003 10217

90of 11

NO. 24 RELATIVE BIOCTAL ASSEMBLED OBJECT PROGRAM: Paper tape output in this
format consists of the assembled program in bioctal code. The program tape begins with a
75 code and ends with the check sum. The other codes are assembled program data and rel-

ative addressing core storage codes.

CORRECTED LO ON PAPER TAPE

NO. 26 CORRECTED LO: Output in this format is a complete dump of L, program opera-

1

tions, including notes, on paper tape. This output provides a corrected L tape when correc-

0
tions have been made to the original program with the L1 corrector. The programer may

also request this output without corrections having been made.

The assembler treats the corrected L0 tape asnormal program input. No initial code appears
on the tape since the AS-1 loading routine reloads the tape; however, a check sum appears at

the end for verification or reloading.

NO. 27 CORRECTED L0 (Selective - between L1 1D’s): Output in this format is a selective
dump of L1 program operations, including notes, on paper tape. The programer selects,

by means of L. identifiers, a portionor portions of L, program storage for paper tape output.

1 1
The programer specifies to the operator the initial and final L1 identifiers of the area(s)

to be dumped.

Output No. 27 is most frequently used to obtain a corrected L input tape of a particular por-

0

tion, or portions, of L, program storage when corrections are made to the original program

1
with the L1 corrector. The programer can request this partial output without corrections.

AS-1 accepts the corrected L_ tape as normal program input to the assembler. No initial

0
code is placed on the tape since reloading is done by the AS-1 loading routine.

10 of 11

ALLOCATION DATA ON PAPER TAPE

NO. 30 LABELS AND ADDRESSES: Paper tape output in this format consists of all pro-
gram labels and their corresponding addresses as they appear in the assembled program.

This tape is acceptable as an allocation input tape.

Example:
COUNTONES ALLOCATIONeSMITHe100CT 63
NWORDS 00011
WORDO 50030
SUMO 50100

CTONESO 50000
CTONES1 50001
CTONES2 50004
CTONES3 50012

No. 31 SIGNIFICANT LABELS AND ADDRESSES: ©Paper tape output in this format consists
of a selection of all significant labels and their corresponding addresses within an assembled
set of operations. [Sigm’ficant labels accompany operations (mnemonic or numeric) that infer
the beginning of a subroutine or a program segment.] - In addition, it includes all labels and

corresponding addresses of U-TAG or EQUALS operations.

Subroutines or program segments assembled for the Unit Computer will, in general, begin

with one of three instructions:

61 jOO 00000 (j may be any value)
60 100 00000
00 000 00000

‘The assembler searches for the above instructions and the operators U-TAG and EQUALS in

presenting this output. Only labeled operations are included in this category.

NO. 32 NUMERICALLY ORDERED ADDRESSES WITH LABELS: Paper tape output in this
format consists of all labels and their corresponding addresses in numerical order of the

addresses. This is acceptable as an allocation tape.

NO. 33 ALPHABETICALLY ORDERED LABELS AND ADDRESSES: Paper tape output in
this format consists of all labels and their corresponding addresses in alphabetical order of

the labels. This is acceptable as an allocation tape.

NO. 34 RELATIVE ALLOCATION, LABELS AND ADDRESSES: Paper tape output in this

format consists of labels and their corresponding addresses given relative to zero.

11 of 11

ASSEMBLER - CONTROL OPERATIONS
(A-CONTROL)

To assure himself a maximum of control over the assembling process via tape(s), a pro-
gramer may group several AS-1 input operations under one A-CONTROL header. A label
and identifying operands may be used with the A-CONTROL header, but the assembler does

not require them.
[label] [3 _A-CONTROI. . [programer’s name] . [date] =)

Subordinate to the A-CONTROL header are minor headers followed by their respective op-
erations. So-called independent operations also follow. The A-CONTROL header merely
categorizes selected input informationtothe assembler under a single header. Its use is
optional, however, since each minor header with its respective operations and each independ-
ent operation can be used independently. Operations following an A-CONTROL header specify
various types of input control data such as debugging aids, CHAN-SET, etc. Operations need

not all appear on the same tape. (See AS-1 INPUT.)

Minor Header Operations. Several types of input operations must follow a descriptive minor
header, such as: 1) ALLOCATION, 2) INDR-ALLOC (indirect allocation), 3) REL-ALLOC
(relative allocation), 4) CHAN-SET (channel setting), and 5) EXCHANGE. Allocation opera-
tions must be grouped following an ALLOCATION header, indirect-allocation operations must
be grouped following an INDR-ALLOC header, etc. When used with the A-CONTROL opera-
tion, minor header operations do not require a label or identifying operands. This does not
preclude their use, however, if the programer wishes to use them. Each of the minor
headers with its respective group of operations, may, of course, be used independently with-
out A-CONTROL, in which case normal header usage is followed. (See AS-1 INPUT.)

Independent Operation: This input operation does not require a descriptive header since
it is an independent operation by itself, and like minor header operations, may be used with

or without an A~-CONTROL header. The DEBUG-AIDS operator is an independent operation.

1of 10

Major Header

A-CONTROL

Minor |Headers

ALLOCATION INDR-ALLOC REL-ALLOC CHAN-SET EXCHANGE
OPERAITIONS
Operation | | Operation | | Operation | [Operation | | Operation
1 1 1 1 1
___| Operation || Operation | | Operation || Operation || Operation
I 2 I 2 | 2 | 2 | 2
I | l | I
I l l | |
L_|Operation L_|Operation L_|Operation Operation |_{Operation
n n n n n
INDEPENDENT
OPERATION
DEBUG-AIDS

Figure 1, Typical A-CONTROL Headers and Operations

2 of 10

L w V0 V.

MAJOR HEADER:* [label]=» a-contROL o [programer name | [date] =

MINOR HEADER: = ALLOCATION
. [allocation
Operation label [wp value u)
MINOR HEADER: = INDR-ALLOC =
. S/R 6-digit
Operation: [label]»[number =>
MINOR HEADER: mp REL-ALLOC =)
Operation: [label] »[m‘l,r;lﬁl I:C] =)
MINOR HEADER: =) CHAN-SET =)
. 1/0
Operation: [label]» [assignment] =)
MINOR HEADER = EXCHANGE up
Operation: [old »[new] =
) designation designation
INDEPENDENT =) DEBUG-AIDS wmp

OPERATION:

* Label and operands for the A-CONTROL header are optional.

Figure 2.. A-CONTROL Header and Operation Formats

3-0f 10

Assembler- CONTROL Operation:

L w VO V1
[label] mp> A-CONTROL . [programer’s name] . [date])

The A-CONTROL header operation indicatesthat assembler-control operations
are to follow. These may be minor headers with their related operations and/or
independent operations. The A-CONTROL header appears as the first opera-
tion on the first tape containing assembler-control operations. A label (the
program name) and two identifying operands (the programef’s name and the
date in that order) may be used with the A-CONTROL header, but they are
not required (see examples, AS-1 INPUT).

L - when used, gives the name of'the associated program

V0 - when used, gives the name of the programer

Yl - when used, gives the date (usually the date of preparation)
Examples:

a) SIMPLEX mp A-CONTROL ¢ SMITH ¢+ JAN1963 =

b) mp A-CONTROL mp

4 of 10

CHANnel-SET Operation:
L 14 , % v
[label] mp CHAN-SET) [programer’s name] . [date] =

The CHAN-SET operation, a minor héader, precédes operations which provide
input or output assignments. CHAN-SET and its succeeding operations permit
programs to be written with symbolic input/output channel symbols. By holding
the assignment of external equipment open until needed, the programer can,
at that time, determine which of the specific channels are available for use.
He then replaces the symbolic representations with the actual assignments,
using the Channel-Set feature. Thus the programer can assign an external
equipment to any permissible input, output, or function channel. The operations
which may contain replaceable operands include: JP, STR, IN, OUT, TERM,
EX-COM, EX-COM-MW, SIL-EX, and RIL-EX.

The CHAN-SET header and assignment operations are applicable only to input/
output assignments. It cannotbe used interchangeably with EQUALS. The header
and its succeeding operations provide the basic capabilities of the MEANS opera-

tion in a more convenient format,

Used under A-CONTROL, the CHAN-SET header does not require a label or
identifying operands. However, operations which follow this header must have
labels. The CHAN-SET header may be used independently of the A-CONTROL

header.

Channel-Set assignment operations appear as follows:

L w
[label] = [input/ output assignment]

L - gives the symbolic input/output name to be replaced

w - states the specific input/output assignment to be substituted for L. Entries in
the W position are presently restricted to information pertaining to input/output

specifications

5 of 10

Example CHAN-SET header and assignment operations:

a) SWAP mp CHAN-SET * BEVYOUNG ¢ 18JANG63
b) COB =» CI10
c) BUDDY = Cl

d) ACE mp Cl

Examples of Input/Output operations with which the foregoing examples may be
used:

a) = EX-COM ¢ COB ¢ 513

b) - = STR e« BUDDY o W(POCKET)

c) = TERM ¢ ACE °* OUTPUT

Note: The CHAN-SET header and its succeeding assignment operations are
never permitted within the L0 input pybgram. They are not correct-

able by use of the L1 corrector, because they never appear in the assem-

bler’s L1 table.

6 of 10

DUMP-AREA Operation:
- - *
w VO V1
=) DUMP-AREA ¢ [area name(s)] . [_key set condition_] =)

The DUMP-AREA operation causes a printout of all non-zero words of the
debugging area(s) requested. The printout also gives debugging area names and

their absolute limits.

-Vy- - ‘names the debugging area(s) to be dumped. (See Appendix, v Glossary, OPER-
AND POSITION) '
Vl* - specifies a key set condition. Key settingsand their significance are as follows:

Perform operation if Vl is KEY1 and console key 1 is set.
Perform operation if V1 is KEY2 and console key 2 is set.

Perform operation if V1 is KEY3 and console key 3 is set.

Typical DUMP-AREA printout:
ENT ADD 60056

WS36 61200 - 61210

61202 00006 00000
61203 00002 00000
61206 00007 00000
61207 00014 00000

*QOperand use is optional

7of 10 DUMP-AREA

TEST-IMAGE Operation:

-V - *
w A v,*

wp TEST-IMAGE o [area name(s)] ° [key set condition] =

The TEST-IMAGE operation tests the specified areas for changes since they
were last imaged. It makes a word-by-word comparison between the debugging
areas and their corresponding images. It then causes a printout for each non-
comparing position of the image word, the area word, the area word address,
and the increment of this address in reference to the initial area address. (See

Example Debugging Aids.) Thereafter, a new image is made.

names of area(s)tobetested. (See Appendix, Glossary, OPERAND POSITION)
specifies a key set condition. Key settingsand their significance are as foliows:

' Perform operation if V1 is KEY1 and console key 1 is set,

Perform operation if Vl is KEY2 and console key 2 is set,

Perform operation if V1 is KEY3 and console key 3 is set.

*QOperand use is optional

8 of 10 TEST-IMAGE

WS 3

LTS

Example Debugging Aids illustrating image testing:

Operations: DEF-AREA

CORE-IMAGE
TEST-IMAGE

DEF-AREA o TNP ¢ WS3 +10 « 100 ’

DEF-AREA e LTS o LTS e 55 l

CORE-IMAGE o TNP o 020001

2R 20 2

CORE-IMAGE ¢ LTS o 020001

\ 4

TEST-IMAGE o TNP o LTS e KEY3)

Each word of TNP and LTS is compared to its coz_‘reSponding word in

the image.

If the words are not equal, the image word and the present program word

are punched (printed) out.

(See sample printout on the following page.)

AS-1 LO
Program Object »
Operations Program Printout
" -
* -
:: WS 3 __—-177 _ _-—qCore Image
= - of (TNP)
I e e BT B
koK
| ’,_,—”’:,,,—’, Core Image
et s of (LTS)
LTS = -
(LTS) (LTS) T T T T DT T T
*okok B -
Hokk

Figure 3. Example Debugging Aids

9 of 10

Typical TEST-IMAGE Printout:

A 02530 33330 Q 00000 22764

B! 00010 B2 07774 B% 00022 B* 00040 B 02040 B® 00000 B’

00012

ENT ADD 50000
TNP 60012 ~ 60112

address
+0 60012
+45 60057
+46 60060
+63 60075

image

00045 00063
00000 00113
00000 00114
00000 00000

LTS 170133 - 70210

address

+12 70145
+23 70156
+42 70175

image

00000 70137
77321 00010
11121 00011

program

00047 00064
00000 00000
00000 00000
00000 00031

program
12100 00145
77431 00010
71121 00011

10 of 10

INTRODUCTION

The 1230 Computer may be connected to a variety of military or commercial peripheral

equipments.
These include:

e Teletype Printer Units

o Magnetic Tape Units

e High-Speed Printer Units

e Card Read/Punch Units

e Display and Display Interface Equipment
o Radar and Radar Adaption Interfaces

e Paper Tape Units

e Manual Entry Devices

lofl

UNIVAC 1232 INPUT/OUTPUT CONSOLE

BASIC INFORMATION

The UNIVAC 1232 Input/Output Console (Figure 1) has a paper tape punch and reader as
standard equipment, with a keyboard and printer as an option. Input and output devices com-
municate with the computer through a single input/output channel. See Figure 2,

ON-LINE OPERATION

In the on-line operation the Input/Output Console provides means for entering data into the
computer by punched tape or an alphanumerickeyboard. It provides means for recording
output data from the computer by either punching tape or printing on paper media or both
simultaneously.

OFF-LINE OPERATION

In the off-line operation the Input/Output Console provides means to:

e Print on paper media by Keyboard entry

® Perforate tape by Keyboard entry

e Perforate tape and print on paper media simultaneously by keyboard entry
e Print on paper media from a perforated tape

® Perforate tape from a perforated tape

e Perforate tape and print on paper media simultaneously from a perforated tape

INPUT-OUTPUT CONTROL

The input/output sequences are manually enabled from the control panel or automatically

enabled by the computer program.

1 of 13

Figure 1. UNIVAC 1232A Input/Output Console

2 of 13

INPUT CABLE

OUTPUT CABLE

A

YHLNAJNOD OL V.LVAd

DRIVERS

[

TAPE
READER

INPUT REGISTER

4

LdNYIHLNI

HDAIATMONIDV VILVA LNANI

LSHNOAY VLVA LNAdNI

<

AOTITMONMDV VILVA LAdLNO

«

LsAIN®AY VIvd LNdLNO

CONTROL
CIRCUITRY

HOAHTMONIIDV NOILLDNNA TVNYILXH

A J

-«

LSANDIY NOILLONNJ TVNUILXH

CONTROL

»
<
had

<

INPUT
DEVICES

OouTPUT

DEVICES

FUNCTION
REGISTER

YHLNAdIWOD NOYA VIVd

ATOR

OUTPUT REGISTER

AMPLIFIERS
AND GATES

— e e e e i e e e e e e e e e a ee — e — — — o ——] — o —

______.___‘ -—=1
TAPE
PRINTER| | PERFOR-

Block Diagram of Console

Figure 2.

3 of 13

COMPUTER CONTROL

The computer controls the Input/Output Console through the external-function word, as

specified in Figure 3, as follows:

Bits 0, 1, and 2 control the output devices. A "one" in bit 0 allows the status of
the printer (bit 1) and perforator (bit 2) to be controlled by the information in bits 1
and 2. A "zero" in bit 0 causes bits 1 and 2 to be ignored and the status of the out-
put devices to remain unchanged. With a "one" in bit 0; a "one" in bit 1 enables the
printer and a "zero" in bit 1 disables the printer, and a "one" in bit 2 enables the

perforator and a "zero" in bit 2 disables the perforator.

Bits 3, 4, 5, and 6 control the input devices. A "one" in bit 3 allows the status of
the keyboard (bit 4) and reader (bits 5 and 6) to be controlled by the information in
bits 4, 5, and 6.

A "zero" in bit 3 causes bits 4, 5, and 6 to be ignored and the status of the input
devices remain unchanged. With a "one" in bit 3; a "one" in bit 4 enables the key-
board and a "zero" in bit 4 disables the keyboard, a "one" in bit 5 enables the reader

and a "zero" in bit 5 disables the reader, and a "one" inbits 5and 6 starts the

reading operation and a "zero" in bits 5 or 6 stops the reading operation.

The status of the Input/Output Console is determined by the latest external-function word.

PANEL CONTROL

The computer external-function words are manually duplicated by the operation of the con-

trol panel switches specified in Table I.

TABLE I. MANUAL-AUTOMATIC CONTROLS

UNIT(S) EXTERNAL FUNCTION- CONTROL PANEL SWITCHES
CONTROLLED WORD BIT SET CLEAR
Output Devices 0 None None

Printer 1 Print Print Clear
Perforator 2 Punch Punch Clear
Input Devices 3 None None
Keyboard 4 Keyboard Keyboard Clear
Reader) Read Read Clear
Reader : 6 Start-Read | Start-Read Clear
7 not used

4 of 13

29

NOT USED

0 Disable output

1 Enable output

0 Disable printer

1 Enable printer

0 Disable punch
1 Enable punch

0 Disable input

1 Enable input

0 Disable keyboard
1 Enable keyboard

0 Disable reader

1 Enable reader

0 Stop reading operation if i5 = 0

1 Start reading operation if if =1

Figure 3. 1232 Input/Output Console, External Function Word

5 of 13

OPERATION OF UNITS

PERFORATED TAPE READER

The perforated tape reader is adjustable to read chad-type tape with 5, 6, 7, or 8 channels
and widths of 11/16 inch, 7/8 inch, or 1 inch. The reader reads tape at a rate of 300 frames
per second. The tape is transported through the reader by an electric motor drive with a

pinch roller and a brake. The following sequence is typical:
1. The reader is enabled and the motor attains operating speed
2. Tape is placed in the reader and the START READ indicator-switch is operated

3. If a sprocket hole of the tape is positioned over the sensor, no advancement of the
tape shall occur; if the tape is positioned so that the sensor is between sprocket

holes, the clutch shall be engaged and the tape will be advanced
4. The next sprocket hole that reaches the sensor actuates the brake and the tape stops

5. The signal caused by the data holes in each frame sets the corresponding input lines

through the action of the input register

6. The signal caused by the sprocket hole causes the control circuitry to set the

input-data-request line

7. The computer responds with an input-data-acknowledge signal, which indicates that
the input-data lines have been sampled. The control circuitry clears the input-data-

request line, clears the input-data lines, and engages the clutch to advance the tape
Steps 4 through 7 are repeated until operation of the reader is stopped.

TAPE PERFORATOR

The tape perforator perforates chad-type tape. The tape perforator is adjustable to perforate
5, 6, 7, or 8 channels on 11/16 inch, '7/8 inch or 1 inch tape. It perforates 10 frames per
inch at a tape speed of 11 inches per second. The tape is transported through the perforator

by an electric motor drive. The following sequence is typical:
1. The perforator is enabled
2. The control circuitry sets the output-data-request line

3. The computer, in synchronism with internal priorities, detects the output-data-

request signal

6 of 13

The computer places data on the output line
The computer sets the output-acknowledge line

The control circuitry detects the output-acknowledge signal, gates the data on the

output-data lines to the output register, and clears the output-data-request line

A magnetic head associated with the perforator drive mechanism generates a pulse
at the appropriate time to gate the output register content to the tape perforator.

This energizes the perforating mechanism while the tape is stopped.

The control circuitry generates a pulse that de-energizes the perforating mechanism,

clears the output register, and sets the output-data-request line

Steps 3 through 8 are repeated until perforator operation is stopped.

PRINTER

The printer prints data, one character at a time, on paper media. The printer prints a

character corresponding to the fieldata code as specified in Table II. The printer can print

10 characters per second. The printout has 10 characters per inch horizontally, 72 characters

per line, and 6 lines per inch vertically. The following sequence is typical:

1.

2.

The printer is enabled
The control circuitry sets the output-data-request line

The computer, in synchronism with internal priorities, detects the output-data-

request signal
The computer places data on the output data lines
The computer sets the output-acknowledge line

The control circuitry detects the output-acknowledge signal, gates the data on the

output-data lines to the output register, and clears the output-data-request line

The control circuitry causes the printer to perform the print or control function

indicated by the data bits in the register

Upon completion of the print function the control circuitry clears the output register

and sets the output-data-request line

Steps 3 through 8 are repeated until operation of the printer is stopped.

T of 13

FIELD DATA CODE

TABLE II,

Hm
= a
mo O = & M ¢ 10 © I O - N O B N © I O - N MM " I O B O ~ N N H In ©
80 © O © 0 © 6 6 & H HH H =H H H* 4 < & 68 N N N N N N P M MmO o N
S O = O H O HH O H O HH O ™ O M O H O ™ O H O o O H O o O = O = O
n .
m
mlz O O H ™ O O v ™ O O ™ = O O ™ Y O O Y Y O O Y Y O © ™ © O ™
A2
Wn.z O O O O H YW ™ w O O O O ™ ™ v Y O O O O ™ ™ ™ W O O O O ™ ™
a
m32 O ©O O O © © O O ™ ™ ™ Y ™ Y H = © O O O © O © O Y ™ ™ ™ v + v
7))
—
ANn42 © O ©O O 0O O O O O O O O © O 0 O H ™ ™ ™ ™ ™ ™ ™= o o o = = —~ ~
2
e, ©O O O ©O O O O O O O O O O OO0 O O O O © 0O o 0 © 0O 0o o o o o o
A Jd
aNe;
= q
81 s 1 < MO AMBEBOILRMAdSZO0OMNORnEHDP B X M
=
A
| Z
<0 [
m 8 S G < MU ARBMOUOIED =¥ AdS2Z20MM0KBonBHD>B XK M
gl [29] .
B & =
; .
=1 % 8
LW g2 8 @
= o, A ke;
Ok n 8 8 o o
mo rCCevg
m 2 nsam.wmnmABCDEFGH1JKLMNoPQRSTUVWXY
Q2 O = «
S5 a3 4o &

8 of 13

FIELD DATA CODE (Cont.)

TABLE II.

OCTAL

CODE

37
40

41

42

43

44

45

46

47

50
51

52

53
54
55

56

57
60
61

62

63

64
65

66

67
70

71

72

73

74
75

76

(i

20

SIGNALS ON DATA LINES

25

PRINTED
SYMBOL

EEN

KEYBOARD

SYMBOL

<@ °

SPEC

SYMBOL OR

FUNCTION

Stop
0

Special

Idle
*Master space indicates an absence of information

9 of 13

KEYBOARD

The keyboard, Figure 4, generates the data codes in Table II when corresponding labeled
keys are operated. Data entered into the keyboard is simultaneously printed by the printer

if the printer and the copy mode are enabled. The following sequence is typical:
1. The keyboard is enabled

2. When aikey is operated, the corresponding input-data lines are set throughthe action

of the input register
3. The control circuitry sets the input-data-request line
4, When the computer responds with an input-data-acknowledge signal, the control cir-

cuitry clears the input-data-request line and the data lines

Steps 2 through 4 are repeated each time a key is depressed until operation of the keyboard
is stopped.
KEYBOARD INTERRUPT
The computer may be interrupted from the keyboard by the following sequence:
1. Keyboard is enabled
2. Printer and copy mode are enabled if printout of the interrupt code is desired
3. The interrupt indicator switch on the control panel has been operated

4. A keyboard key is operated which sets the corresponding field-data code on the

input-data lines and generates an interrupt to the computer

5. When the computer responds with an input acknowledge the interrupt and the input-

data lines will be cleared
Steps 3 through 5 are repeated for each interrupt code to be sent.

SWITCHES AND INDICATORS
The switches and indicators of the Input/Output Console operate as follows:
Power Switch and Indicator

The power switch switches the input power on and off. The power indicator lights whenever

the power switch is in the on position.

10 of 13

00@@@@@@@@@®m
OOEOOEEOOOOO—

HOOOOOOOOO®@E

WD OEOOEE®OOO

Lock)
(Sh

Shlft)/

On-Line Off-Line Switch

In the on-line position the Input/Output Console operates as an input/output device for the
computer as specified herein. In the off-line position the Input/Output Console operates
independently of the computer and performs the off-line functions specified herein.
Tape-Feed Indicator Switch

The tape perforator generates blank tape with only the sprocket holes perforated whenever
the tape-feed indicator switch is operated.

Tape-Levels Switch

The tape-levels switch disables the perforated-tape-reader levels which are not selected.

Input-Data Indicator Switches

The eight input-data indicator switches displays the data stored in the input register and
enables data to be manually entered into the input register.

Output-Data Indicator Switches

The eight output-data indicator switches displays the data stored in the output register and
enables data to be manually entered into the output register.

Master Clear Switch

The master-clear switch stops operation of all units of the Input/Output Console and sets all
the logic to an initial state.

Interrupt Indicator Switch

The interrupt indicator-switch enables the generation of an interrupt to the computer as
specified in Keyboard Interrupt.

Read, Read-One Switch

In the Read position the perforated-tape reader will read continuously. In the Read-One
position the perforated tape reader will read one frame, advance to the next frame, and stop.

This switch is for off-line operation only.

Start-Read Indicator-Switch

The Start-Read Indicator-Switch starts the perforated-tape reading operation.

12 of 13

Copy Indicator Switch

The copy switch enables the Input/Output Console to reproduce the data being sent to the com-

puter by any one of the following methods:
e Print the data on paper media
e Perforate the data on tape

e Print the data on paper media and perforate the data on tape simultaneously

Copy-Clear Switch

The copy-clear switch disables the copy mode of operation.

EXTERNAL FUNCTION MANUAL CONTROLS

The print, punch, keyboard, and read indicator-switches; and the print-clear, punch-clear,
keyboard-clear, and read-clear switches enable and disable their respective units as specified
in the Input/Output Panel Control.

13 of 13

MAGNETIC TAPE SYSTEM (TYPE 1240A)

BASIC INFORMATION

’The type 1240A Magnetic Tape System provides a large capacity, medium-speed, auxiliary

storage area.

The system employs various format selections. They include recording and reading in four
moduli, two character types, odd and even parity, and low and high density. In order to pro-
vide compatibility with the high-speed printer, the Mod 5 format is used with a programmed
fixed block length of 128 lines or tape frames to each block of information. One block contains
24 computer words. Mod 6 format is used for compatibility with some non UNIVAC systems.
The density selection allows the 1240A tape unit to read or write at 200 frames per inch
for low density and at 556 frames per inch for high density. The reading and writing opera-
tion is performed at a tape speed of 112.5 inches per second, and the rewind operation is
done at a tape speed of 225 inches per second. The block length may vary between 24 com-
puter words and total computer memory. The recording of 1240 tape system is the non-

return to zero (change-on-one) technique.

The basic 1240A Magnetic Tape System cabinet (Figure 1) consists of three sections:
1) magnetic tape control, 2)onetape transportcontrol,and 3) four tape transports. Auxiliary
tape transport controls and tape transports may be added to the system (up to sixteen trans-

ports and four tape transport controls, Figure 2.

The Magnetic Tape Control enables the Magnetic Tape System to communicate with the
Computer by performing the. interface digital-to-digital conversion and performing the
logical operations of selecting tape function and tape transport. The tape transport con-
trol receives signals from Magnetic Tape Control and performs the logic necessary to con-
trol either two or four tape transports. Only one Magnetic Tape Control is necessary in a

system and one tape transport control is necessary for each cabinet of transports. Figure

1 of 25

MAGNETIC TAPE CONTROL

TAPE
TRANSPORT
CONTROL
4
A A A 4
TAPE TAPE TAPE TAPE
TRANSPORT TRANSPORT TRANSPORT TRANSPORT
1 2 3 4
Figure 1. Block Diagram of Magnetic Tape System

COMPUTER

= o
® = Q 5]
3| 3 ol 8] & B
2 Q =) 2, - =
= %5} &1 = S = N
& = 5 - P S
A 2 = < 2 < g
& & & » < O < 2
< &) < ah A < Q =
oL f 9 8 5 5| § &
s 5 g & 2 £ H &
& N & = g 55 g >
& Z & & o o o &
I Y B Y e Y IR - T T
A
MAGNETIC TAPE CONTROL
TAPE TAPE TAPE .~ TAPE
TRANSPORT | | TRANSPORT | | TRANSPORT | |TRANSPORT
CONTROL CONTROL CONTROL CONTROL
1 2 : 3 4
TT TT TT TT
1 5 9 13
TT TT TT TT
2 6 10 14
TT TT TT TT
3 7 11 15
TT TT TT |TT
4 8 12 16

1240A Magnetic Tape System

Figure 2. 1240A Interface

3 of 25

2 shows the 1240A interface of system with sixteen transports, four tape transport controls,
and one Magnetic Tape Control.
INPUT/OUTPUT SEQUENCE FOR 1240A MAGNETIC TAPE SYSTEM

The input/output sequence, for the 1240A tape system and Computer, begins with the tape

system in an idle state and the following events occur.

e The computer places an address word on the output data lines. (See Figure 3 for

configuration of address word)
o The computer sets the external function line active

o The Magnetic Tape Control takes the address word and selects the correct cabinet

and transport

e The computer places an instruction word on the output data lines. (See Figure

4 for configuration of instruction word)
® The computer sets the external function line active

e The Magnetic Tape Control samples the instruction word, becomes active and per-

forms the operation specified by the instruction word

e The Magnetic Tape Control receives a status word from the tape transport control,

and places it on the input data lines
e The Magnetic Tape Control sets the interrupt line active
e The computer accepts the interrupt according to priority

e The computer program handles the interrupt and determines the action to be taken

using the sfatus word

o The Magnetic Tape System becomes idle

ADDRESS WORD

The address word is received by the Magnetic Tape System via the external function command
from the computer. Bit 17 is set, and will be as specified in Figure 3. The Magnetic
Tape System operates with the selected cabinet and tape transport for all operations until

another address word is received from the computer.

4 of 25

30 181 17| 1615 06| 05 03 | 02 00

No Meaning Not Used Cabinet Transport

Address Address
Master Clear

Function Word

. 0 = Cabinet 4 0 = None
De tor =1
signator 1 = Cabinet 1 1=TT No.1
2 = Cabinet 2 2 =TT No. 2
3 = Cabinet 3 3=TT No. 3
4 = Cabinet 4 4 =TT No. 4
5 = Cabinet 1 5=TT No.1
6 = Cabinet 2 6 =TT No. 2
7 = Cabinet 3 T=TT No.3
Figure 3. Address Word
] [|
30 18|17 (16| 15 11110 09408 | o | 06 | 05 00
No Meaning Operation Code Lo Identification Code
See Table 1
Selective Read =
ID Code;
Master
Clear 001111

Write, Tape Mark,

Designator = 0 -IXRG = 001111

I
|
|
| Write, Tape Mark =
|
|
|
|

|_Den'sity; High = 1/Low = 0

|
I |
| |
| |
I |
|
Function Word | |
I
b
I
| |
|
I

MODULUS
MOD 3 =00 MOD 4 =01
MOD 5=10 MOD 6 =11

Figure 4. Instruction Word

5 of 25

TABLE I. OPERATION CODES

OPERATION CODE OPERATION
00000 READ
00001 READ; Selective
00010 READ; Ignore Error Halt
06011 Space File
00100 SEARCH Type I
00101 SEARCH Type II
00110 SEARCH-File Type I
00111 SEARCH-File Type II
01000 WRITE
01001 WRITE; XIRG :
01010 WRITE; Ignore Error Halt
01011 WRITE XIRG, Ignore Error Halt
01100 WRITE Tape Mark
01101 WRITE Tape, XIRG
1000x * Backspace
10010 - Backspace-Read
10011 , Backspace-File
10100 Backsearch Type I
10101 Backsearch Type II
10110 Backsearch File Type I
10111 Backsearch File Type II
110x0 * Rewind
110x1 * Rewind, Clear Write Enable
111x0 * Rewind-Read
111x1 * Rewind-Read, Clear Write Enable

* X may be either "Q" or "1"

6 of 25

INSTRUCTION WORD

The instruction word is received by the Magnetic Tape Control via the external function com-

mand and bit 17 is set to a zero. The instruction word will be as specified in Figure 4.

INTERRUPT AND STATUS WORD

A status interrupt is sent to the computer by the Magnetic Tape Control,'222 microseconds
following the completion of all functions except the MASTER CLEAR and TRANSPORT
ADDRESS WORD operation. Along with the interrupt the Magnetic Tape Control puts a status
word on the data lines. This status word is a signal from tape transport control as to the
success of an operation performed on a tape transport. The computer acknowledges the
interrupt signal and jumps to the interrupt entrance address for that channel. (Address 20 +C/j\).
The computer entrance address should contain a RJP (65000 xxxxx) instruction to computer
interrupt program. This program determines if the tape operation was successful. (Figure

5 gives status bits that will be set for any errors that may occur).

29 |28 27 2625|2423 |22 (21|20 |19 |18 |17 |16 |15
14 |13 12 11j10|(09| 08|07 |06 (05 |04 |03 |02 |01 |00

Load Point

Low Tape

End of Tape

No Write Enable

Tape Mark (End of File)

1 = Backward
0 = Forward

Last Direction

Longitudinal Parity Error

Lateral Parity Error

Incorrect Frame Count

Input Timing Error

Output Timing Error

Not Used

Improper Condition

Figure 5. Status Word Format

T of 25

MAGNETIC TAPE OPERATIONS

MASTER CLEAR (bit 16)

The Magnetic Tape Control performs a Master Clear whenever powei' is applied, when the

MASTER CLEAR switch is operated, and whenever the Master Clear command is received

via the external function command from the computer. The MASTER CLEAR performs the

following:

The MASTER CLEAR is accepted by the Magnetic Tape Control System at any time
The MASTER CLEAR shall not be followed by a status-word interrupt

The MASTER CLEAR will stop all tape motion (except a rewind of tape) and places
the system in the idle state

The Magnetic Tape Control accepts an external function command anytime after a
MASTER CLEAR

READ (bits 11-15)

The read function is supplemented by format, density, and identification code selections. Two

types of read operations are performed, normal and selective read. The read function per-

forms the following:

e The Magnetic Tapé Control, having received the read function, begins passing tape

forward over the read head at a speed of 112.5 inches per second

The tape transport control checks the parity of each frame, or seven bits, and passes

the information onto Magnetic Tape Control

The Magnetic Tape Control assembles the information into a 30 bit computer word
for transfer to the computer. The number of frames required to make up a com-

puter word will depend on the modulus in which it is written

If the selective read function was selected, the lower six bits of the computer word
are compared with the identification code. If a comparison is not correct, the assem-
bled word will be disregarded and the next computer word is assembled. Therefore,
only words in the record which have the lower six bits equal to the identification
code will be transferred to the computer. In a normal read all words are transferred

to the computer through the input data lines

This process will continue until the record has been completely read, assembled,

and transferred to the computer

8 of 25

A status word is sent to the computer by Magnetic Tape Control at the completion

of the read function, informing the computer of the success of operation

If an error (parity or input timing) is detected during transmission of data, the
Magnetic Tape Control will cease transferring data tothe computer for the remainder
of that record. At the end of the record a status word is sent to the computer in-

forming it of the nature of failure

WRITE (bits 11-15)

The write function is supplemented by format and density selections. The tape speed for a

write function is 112.5 inches per second. The following events will occur:

The Magnetic Tape Control takes a word from the computer on the output data lines

The Magnetic Tape Control disassembles the computer word according to modulus
selection, generates a parity bit, and transfersthe seven-bit frame to the tape trans-

port control for recording on tape

The read-head is activated, causing the tape transport to read back the information

recorded, for parity check purposes

If a parity error is detected, the write operation is halted and a status word telling
the computer of failure is sent over interrupt lines. The computer program must
then correct the procedure as necessary to perform the write function (write with

extended inter-record gap function is the suggested correction measure)

If no parity error is detected, the process of disassembling and recording data
continues until the computer no longer acknowledges the output data request from
the Magnetic Tape Control. This means that the complete buffer has been recorded

on tape

When Magnetic Tape Control detects the end of write, tape motion is stopped after
3/4 inches of tape has passed the write head. This 3/4 inch of tape is for Inter-
Record Gap (IRG). Extended Inter-Record Gap is 3-1/2 inches

A status word is sent to the computer and the tape system becomes idle

In the WRITE IGNORE HALT function, the Magnetic Tape Control does not stop the

write operation if lateral parity error is detected

9 of 25

REWIND (bits 11-15)

The rewind function causes the tape transport selected to rewind tape at a rate of 225 inches
per second. If rewind clear write enable function is selected, the tape will stop at load point
and a write function will not be accomplished on this unit. If the tape is located at load

point when a rewind function is given, no improper conditions will occur.

REWIND-READ (bits 11-15)

The rewind-read function causes the same effect as normal rewind, except when the tape
reaches load point. The first record will be read into the computer by normal read function.
The status word will be sent after the first record is transferred to the computer. The rewind-
read clear write enable disables the write enable making further writing on this unit impos-

sible. This function is supplemented by format and density selection.

SPACE FILE FORWARD/BACKWARD (bits 11-15)

When the Magnetic Tape Control is instructed to space file forward/backward, it causes the
addressed tape transport to move in the specified direction, beyond the next tape mark. The

Magnetic Tape Control notifies the computer via the status word with a tape mark indication.

WRITE TAPE MARK (bits 11-15)
This function causes-the Magnetic Tape Control to instruct the tape transport to write a Tape
Mark, a special record having 178 in the first frame, 3 frames of zeros, and one frame of

longitudinal parity.
BACK SPACE (bits 11-15)

The. back space operation causes the selected tape transport to move one record in the back-
ward direction. The tape is properly positioned in the Inter-Record Gap ready for a read or
write function. The parity is checked while the backspace operation is performed and a status
word is sent to the computer. The back space function is supplemented by format and density

selections.

SEARCH (bits 11-15)

The search function combines the normal read with the ability to conduct a search on the
first word of a record (in either the forward or backward direction) and transfer only the
"Find" record to the computer. The search comparison is performed on the first word of a
record with the identifier (search key) word. The search word is transmitted to the Magnet-

ic Tape Control by the computer in a one-word buffer following the instruction word. The

10 of 25

search forward/backward file function perfbrms the same function except the search is limited
to a file mark. There are two types of searches which the Magnetic Tape Control can per-
form in comparing the key word with the first word of the record. Type I is defined as a

per bit greater-than-or-equal compare. The following example demonstrates this definition:

search key: 001101
find: 011101

find: 001101

no find: 010101

no find: 001100

An identical compare (Type II) is defined as a search comparison with the search key and the

first word of the record exactly identical,

FORMAT PORTION OF INSTRUCTION WORD

The format portion of the instruction word consists of modulus, character, and parity. A
complete format selection must be included in all instruction words which require a record

or read operation. Thethree sections of the format are discussed in the following paragraphs:

MODULUS

The Magnetic Tape System is capable of recording and reading in four different moduli.

These moduli and the appropriate designator bits (bits 10-09) are:

o 00 = Modulus 3
o 01 = Modulus 4
e 10 = Modulus 5
e 11 = Modulus 6

These are discussed in the section titled "Tape System Moduli".

CHARACTER

There are two types of character recording; octal and bioctal. A "one" in bit 08 of the in-
struction word specifies octal. In this type, channels 3, 4, and 5 contain the same information
as channels 0, 1, and 2 respectively for each frame, except that when channels 0, 1, and 2
are all "zeros", channels 3, 4, and 5 contain all "ones". Odd lateral parity is always genera-
ted when recording in octal character (see Tabie II). A "zero" in bit 08 specifies bioctal

recording. The octal character allows for redundant recording for added reliability.

11 of 25

TABLE II. OCTAL RECORDING

CHARACTER | TAPE CHANNELS
Octal Binary 6 543 210
0 000 0 111 000
1 001 1 001 001
P 010 1010 010
3 011 1011 011
4 100 | 1 100 100
5 101 1101 101
6 110 1110 110
7 111 1111 111

PARITY
Two parity modes can be utilized, odd or even, bit 07 is used for parity mode selection. A

"one" in bit 07 specifies odd parity, and in bit 07, a "zero" specifies even parity.

Data ordinarily are recorded in two formats: binary and binary-coded-decimal. The parity
bit is chosen to make the total number of "ones" ("1’s") bits in a frame odd in the binary

format and even in the binary-coded-decimal format.

DENSITY

The Magnetic Tape System is capable of recordingdata on tape in two different programmable
densities. The two densities are low density, at 200 frames per inch, and high density, at

556 frames per inch.

Bit 06 of the instruction word is used for density selection. When bit 06 is a "one", high

density is selected; when it is a "zero", low density is selected.

TAPE SYSTEM MODULI

MODULUS 3: (Bits 10 and 09 = 00)

Mod 3 is obtained by reducing 18 bits of a computer word to three (bioctal character) frames
. of data. In reading Mod 3, a word is sent to the computer for every three (bioctal character)
tape frames. These frames are assembled in the lower 18 bits (17-00) of the data word. The

upper bits, if any, of the data word contain zeros.

12 of 25

Recording Mod 3, the 18 bits (17-00) of a computer word are recorded in three (bioctal
characters) '7-bit frames, consisting of a 6-bit character, plus parity. For octal recording
the number of tape frames is doubled. See Figure 6 for bioctal recording and Figure 7 for

octal recording of bit arrangements on tape.

MODULUS 4 (Bits 10 and 09 = 01)

Mod 4 is obtained by reducing 24 bits of a computer word to four (bioctal characters) frames
of data. In reading Mod 4, a word is sent to the computer for every four (bioctal character)
tape frames. These frames are assembled in the lower 24 bits (23-00) of the data word.

The upper bits, if any, of the data word contain zeros.

Recording Mod 4, the 24 bits (23-00) of a computer word are recorded in four (bioctal char-
acter) T-bit frames, consisting of a 6-bit character, plus parity. For octal recording the

number of tape frames is doubled.

MODULUS 5: (Bits 10 and 09 = 10)

Mod 5 is obtained by reducing 30 bits of a computer word to five (bioctal character) frames
of data. In reading Mod 5, a word is sent to the computer for every five (bioctal character)
tape frames. These frames are assembled in the lower 30 bits (29-00) of the data word. The

upper bits, if any, of the data word contain zeros.

Recording Mod 5, the 30 bits (29-00) of a computer word are recorded in five (bioctal char-
acter) 7-bit frames, consisting of a 6-bit character, plus parity. For octal recording the
number of tape frames is doubled.

MODULUS 6: (Bits 10 and 09 = 11)

Mod 6 is obtained by reducing 36 bits of a computer word to six (bioctal character) frames
of data. In reading Mod 6, a word is sent to the computer for every six (bioctal character)

tape frames. These frames are assembled in the 36 bits (35-00) of the data word.

Recording Mod 6, the 36 bits (35-00) of a computer word are recorded in six (bioctal char-
acter) T-bit frames, consisting of a 6-bit character, plus parity. For octal recording the

number of tape frames is doubled.

STATUS WORD

A Status interrupt is sent to the computer 222 microseconds following the completion of

13 of 25

FORWARD TAPE
DIRECTION

THIS EDGE
OF TAPE
NEXT TO
TRANSPORT

OXIDE
SIDE

OXIDE
SIDE

OXIDE
SIDE

OXIDE
SIDE

Figure 6. Bioctal Tape Format

02 01 00
08 07 06

14 13 12

MODULUS 3

02 01 00
08 07 06

14 13 12
20 19 18

MODULTUS 4

02 01 00
08 07 06
14 13 12
20 19 18
26 25 24

11 10 09
17 16 15
23 22 21

wHdddHd

MODULUS 5

P 05 04 03 02 01 00
P 11 10 09 08 07 06
P 17 16 15 14 13 12
P 23 22 21 20 19 18
P 29 28 27 26 25 24

?

P 35 34 33 32 31 30
I Y o W N g P V4

6 5 4 3 2 1 0

MODULUS 6

14 of 25

3RD FRAME
2ND FRAME
1ST FRAME

TAPE CHANNEL

4TH FRAME
3RD FRAME
2ND FRAME
1ST FRAME

TAPE CHANNEL

STH FRAME
4TH FRAME
3RD FRAME
2ND FRAME
1ST FRAME

TAPE CHANNEL

6TH FRAME
5STH FRAME
4TH FRAME
3RD FRAME
2ND FRAME
1ST FRAME

TAPE CHANNEL

FORWARD TAPE
DIRECTION

THIS EDGE
OF TAPE
NEXT TO
TRANSPORT

v

Hdodddd

OXIDE
SIDE

OXIDE
SIDE

OXIDE
SIDE

v

o)

OXIDE
SIDE

02 01 00 02 01 00
05 04 03 05 04 03
08 07 06 08 07 06
11 10 09 11 10 09
14 13 12 14 13 12

17 16 15 17 16 15

A~ AN
5 4 3 2 1 0

MODULUS 3

AAW\MNW
02 01 00 02 01 00

05 04 03 05 04 03
08 07 06 08 07 06
11 10 09 11 10 09
14 13 12 14 13 12
17 16 15 17 16 15
20 19 18 20 19 18
23 22 21 23 22 21

[=2]

g g g g

/\/\,\/VW
5 4 3 2 1 0

MODULUS 4
/4~vﬂ/¢~v/\~\/bva-~vq“y\\
02 01 00 02 01 00
05 04 03 05 04 03
08 07 06 08 07 06
11 10 09 11 10 09
14 13 12 14 13 12
17 16 15 17 16 15
20 19 18 20 19 18
23 22 21 23 22 21
26 25 24 26 25 24
29 28 27 29 28 27

[=2]

YydWddddiddiddHd

5 4 73 2 1 0
MODULUS 5

P 02 01 00 02 01 0O

05 04 03 05 04 03
08 07 06 08 07 06
11 10 09 11 10 09
14 13 12 14 13 12
17 16 15 17 16 15
20 19 18 20 19 18
23 22 21 23 22 21
26 25 24 26 25 24
29 28 27 29 28 27
32 31 30 32 31 30

35 34 33 35 34 33

5 4 3 2 1 0
MODULUS 6

AT EE T EEE

Figure 7. Octal Tape Format

15 of 25

6TH FRAME
5TH FRAME
4TH FRAME
3RD FRAME
2ND FRAME
1ST FRAME

TAPE CHANNEL

8TH FRAME
TTH FRAME
6TH FRAME
5TH FRAME
4TH FRAME
3RD FRAME
2ND FRAME
1ST FRAME

TAPE CHANNEL

10TH FRAME
9TH FRAME
8TH FRAME
TTH FRAME
6TH FRAME
STH FRAME
4TH FRAME
3RD FRAME
2ND FRAME
1ST FRAME

TAPE CHANNEL

12TH FRAME
11TH FRAME
10TH FRAME
9TH FRAME
8TH FRAME
TTH FRAME
6TH FRAME
5TH FRAME
4TH FRAME
3RD FRAME
2ND FRAME
1ST FRAME

TAPE CHANNEL

every function except MASTER CLEAR and TRANSPORT ADDRESS SELECTION. A status
word is placed on the data lines of the input cable. The bit structure of the status word
enables the computer to determine whether or not the previous function was successfully

completed.

The computer program must recognize that after issuing an external function instruction to
the Magnetic Tape System, no subsequent external function command (except addressing and
Master Clear) will be recognized until receipt of the acknowledge to the Status interrupt,

signifying the end of the first instruction.

Figure 5 shows bit assignments in the status word. These conditions are described below.

IMPROPER CONDITION (Bits 29 and 14)

A one in bits 29 and 14 may imply that operator intervention is necessary to overcome the

difficulty. An improper condition will occur whenever:
e Reference tape transport is not in automatic condition
e No tape transport is selected when one is required

e A forward command is sent to a tape transport whose tape is positioned at end of

tape

e A reverse command is sent to a tape transport whose tape is positioned at Load

Point (except a Rewind operation)

A Write instruction is issued to a tape transport that has NO Write Enable

When the computer has been notified of an improper condition, the computer program may
then refrain from issuing further external function commands to the tape system to allow
visual inspection of the trouble, or it may issue another external function command. An in-
coming external function command to the tape system causes the Improper Condition indicator
to extinguish.
A tape transport not in automatic condition implies one of the following situations:

e Tape transport was manually removed from automatic

e Tape transport not in ready condition for one of the following reasons:

e Power off

16 of 25

e Tape broken
e Lamp burnout

e Tape load was not accomplished when tape was mounted

OUTPUT TIMING ERROR (Bits 25 and 10)

A "one" in bits 25 and 10 indicates that the computer did not acknowledge the first Output
Data Request, or the computer acknowledged the Output Data Request too late (however, it did
acknowledge the Output Data Request for the data word to be written in its proper place). The

acknowledge time is related to format and density.

Also an output timing error can occur during Search operations if the Magnetic Tape System
does not receive the search key before the start of reading the record. This time require-

ment may be as short as two milliseconds.

INPUT TIMING ERROR (Bits 24 and 09)

A "one" in bits 24 and 09 indicates that Magnetic Tape Control information on the input cable
was not accepted by the computer before the subsequent word was to be placed on the input
cable. This condition indicates thatthe computer "lost" one or more words of the last record.
If an input timing error occurs, datatransmissionto the computer ceases for the remainder of

the record.

INCORRECT FRAME COUNT (Bits 23 and 08)

A "one" in bits 23 and 08 indicates either some frames were lost, or improper modulus
specified (i.e., there were not enough frames in the record to complete an integral number

of computer words). This situation may result from one or more of the following:
e One or more characters were not properly read or recorded
e Bad spots on the tape caused characters to be lost
o Reading a record with the wrong format (for example, reading Mod 4 with a tape

record in Mod 5)

A longitudinal parity error usually occurs in conjunction with an incorrect frame count if

frames were lost.

LATERAL PARITY ERROR (Bits 22 and 07)

A "one" in bits 22 and 07 informs the computer that the lateral parity of one or more frames

read did not agree with that specified in the format.

17 of 25

LAST TAPE MOTION (Bits 20 and 05)

A "one" in bits 20 and 05 indicates that the last tape motion was backward. A "zero" indicates

that the last tape motion was forward.

LONGITUDINAL PARITY ERROR (Bits 21 and 06)

When recording, longitudinal parity is generated by Magnetic Tape Control for each channel
and recorded after the last frame of the record. When reading (Read, Back Space, Post-Write
Check) the longitudinal parity of a record is checked by Magnetic Tape Control, and if in

error, noted in the status word (bits 21 and 06).

TAPE MARK (Bits 19 and 04)

A "one" in bits 19 and 04 indicates that the Magnetic Tape Control has sensed a Tape Mark
during a Read, Write, (before a Search Comparison is made during a Search File instruction)

or Back Space function.

NO WRITE ENABLE (Bits 18 and 03)

A "one" . in bits 18 and 03 informs the computer that the referenced tape transport has no
write enable when a Write operation is attempted or that the Write Enable Ring is not in-

serted in the tape reel.

END OF TAPE (Bits 17 and 02)

To prevent reading or writing off the end of the tape, an end of tape reflective marker is

placed a minimum of 14 feet from the physical end of the tape.

When the end of tape mark issensed,a 1/2 second "time-out" begins. When this time period
is completed, no further forward movement of the tape will be possible. However, the tape
may be moved in the reverse direction past the reflective marker and then moved forward.
When the marker is again sensed, the "time-out" is initiated again, and the forward tape

motion will halt after 1/2 second.

LOW TAPE (Bits 16 and 01)

A "one" in bits 16 and 01 informs the computer that the tape is positioned less than 100 feet
from end of tape.

LOAD POINT (Bits 15 and 00)

Since the first several feet of tape undergo excessive wear and are required to load the
transport, no recording is done on this portion of the tape. Recording begins at Load Point
and this point is recognized by the Magnetic Tape System by means of a reflective marker

placed at least ten feet from the physical beginning of tape. The write, load point, delay

18 of 25

allows information to be written on the tape approximately 3/4 inch beyond the load point

marker with the tape moving in the forward direction.

TAPE MARKERS

The load point and end of tape markers are pressure-sensitive, adhesive-coated strips of
aluminum 1 by 3/16 inch. The markers are detected by reflective photo-sensing means.
Both markers are placed on the base (uncoated) side of the tape with the 1-inch dimension
parallel to the tape. The load point marker is placed 1/32 inch from track " ©", or the front
edge of the tape. The end of tape marker is placed 1/32 inch from track "6" or inside edge of

the tape.

LOGICAL SELECTION OF TAPE TRANSPORTS

Selector Switches to change the logical address of each tape transport are provided. Any
physical tape transport may be switched to any logical address. If logical address selections
are duplicated, the lowest order physical tape transporthas priority; however, no two cabinets

may have the same logical address. This will be the responsibility of the operator.

1240A HIGH-SPEED PRINTER OFF-LINE COMPATIBILITY

The magnetic tape subsystem is capable of communicating directly with the high-speed printer
subsystem for OFF-LINE operation. The interface betweenthe magnetic tape unit and printer

is shown in Figure 8.

< 30 DATA | LINES
I
HIGH OUTPUT DATA REQUEST i INPUT ACKNOWLEDGE | /) cvpmre
SPEED OUTPUT ACKNOWLEDGE | INPUT DATA REQUEST TAPE
PRINTER }
SYSTEM

SYSTEM | EXTERNAL FUNCTION | INTERRUPT

|

Figure 8. Magnetic Tape - High-Speed Printer Interface

The printer output is connected to the magnetic tape system’s input (input and output as used

here are in reference to the computer).

19 of 25

The data to be printed OFF-LINE must be recorded in records on tape in the following format:
Record Length of 120 Fieldata characters.

The Magnetic Tape System will read each record of data from tape in the following format:
Modulus 5.

At the magnetic tape unit function register, the operator will manually select the character,

parity, and density.

Each record of 120 characters will form 24 30-bit data words which will be printed as one

line by the high-Speed printer.

A tape mark will be recognized by the high-speed printer as a top of form command. This

will position the paper to the top of the next page.

A record of less than 24 words (preferably one computer word, five characters) will cause
the high-speed printer to stop the printing operation. This record will not be printed, if the

characters are space codes. (05).

With the magnetic tape system switched to the Printer Mode, the desired tape transport
selected and the tape positioned at load point, the high-speed printer will initiate operationi

when it is placed in the ON-LINE position.

The normal sequence of events for transfer of data from the magnetic tape system to the
printer is as follows: (See Figure 9)
e The printer sets its Output Data Request (e)

® The Magnetic Tape System, in the idle state (a) recognizes this first Output Data

Request from the printer as an external function and starts the read operation

e The Magnetic Tape System places the information on the data lines and sets its

Input Data Request (c)

e The printer recognizes the Magnetic Tape System Input Data Request as an Output
Acknowledge (f)

o The printer samples the data lines and clears its Output Data Request

® The Magnetic Tape System recognizes the clearing of the Printer Output Data Request
as an Input Acknowledge (b)

20 of 25

Steps 3, 4, 5, and 6 are repeated for each word of the record.

The normal sequence for sending an external function command top of form from the magnetic
tape system to the printer is the same as reading a record except that when the magnetic
tape system detects the Tape Mark, it will set bit 4 in the status word, and when the interrupt

(d) is set, the printer will recognize this as an external function command top of form

(g) (Figure 9).

~ a.
20\ "y
[J J
wn
% _,rf
2/ _/ \ /
§<
O
E c /—\ {f
&}
§ Ld {f /_\
-

e/ _/ 7] N
o
2l /¢
&

Le. . []

Figure 9. Sequence of Events in Tape-Printer Operation

PROGRAMING CONSIDERATIONS
GENERAL

The Magnetic Tape System is manually placed in an operational condition. The operator
functions include mounting tapes on transports, turning power on, and initially positioning
tapes. With the Magnetic Tape System operational, programed reference may begin. Gen-
erally, all programing of the tape system must be done with force and must conform to a

standard sequence of reference. (Figure 10 illustrates this sequence.)

21 of 25

ISSUE ADDRESS WORD
STEP 1 BY THE EXTERNAL
FUNCTION COMMAND

FORM INSTRUCTION
WORD, INCLUDE OPERATION

STEP 2 CODE, FORMAT, AND
DENSITY AS APPLICABLE
INITIATE REQUIRED

STEP 3 | OUTPUT AND/OR INPUT

BUFFERS

ISSUE INSTRUCTION
WORD BY THE EXTERNAL
STEP 4 FUNCTION COMMAND.
INDICATE TAPE
SYSTEM BUSY

WHEN TAPE SYSTEM
INTERRUPT OCCURS,
"EXECUTE INTERRUPT
' SUBROUTINE, WHICH
STEP 5 TAKES THE STATUS
WORD OFF INPUT
CABLE. INDICATE
TAPE SYSTEM IS
NOT BUSY

Figure 10. Sequence of Programming References - Magnetic Tape System

22 of 25

Once the tape system receives and starts to execute the operations in an instruction word,
further external function commands, other than Master Clear, are ignored. The programer
must remember when an external function command maybe logically issued. After issuing an
external function command, other than Addvess Wovd and Master Clear, the computer may not
logically issue another function command until the computer acknowledges the receipt of an

interrupt from the tape system.

Step 1 of Figure 10 is required only on the initial reference of a tape transport or when a

reference to another transport is desired.

WRITE PROCEDURES

To write, the instruction word must include complete format selection (modulus, character,
and parity), and density. Use of the procedure outlined in Figure 10 will result in a record
of words being written on tape. Length of record is determined when the output buffer is

initiated.

After the Status interrupt is received, signifying end of a write operation, the program must

check the following four conditions to determine successful completion of the write operation:

o No improper condition in the status word
o No output timing error in the status word
o No lateral parity error in the status word

o OQutput buffer is terminated

If the status word indicates an output timingerror, the computer did not acknowledge the first
output data request, or the computer acknowledged the output data request too late (however,
it did acknowledge the request) for the data word to be written in its proper place. The

acknowledge time is related to format and density.

It is possible for an output timing error to occur that will not be shown in the status word.
Such a condition results if the computer did not acknowledge the output data request (other
than the first output data request from the tape system). The tape system recognizes this
situation as end of vecord and, consequently, indicates no error. However, if words are left

unwritten in the output buffer, this constitutes an output timing error condition.

If a lateral parity error is indicated in the status word, the write operation was terminated
when the post write check detected anincorrectframe. It is the responsibility of the program

to decide and provide the recovery procedures.

23 of 25 |

READ PROCEDURES

To read, the instruction word must include complete format selection, Identification Code
(if read selective) and density. Use of the procedure outlined in Figure 10 will result in
a record being read from tape. The length of the input buffer must be long enough to cover

the record to be read.

An input timing or parity error will terminate the data input to the computer unless the read
operation is with the ignore error halt option. The Status interrupt will still be sent by the

Magnetic Tape System at the end of that record.

SEARCH PROCEDURES

To search, the instruction word must include complete format selection and density. The
identifier word will be received by the Magnetic Tape System via a one-word output buffer.
Tape motion is started upon the receipt of the instruction word and an output timing error
will occur if the Magnetic Tape System does not receive the identifier within the time from
start of tape motion and when the compare is made. This time requirement may be as short
as two milliseconds. One record will then have been passed. The search is terminated by an

output timing error and a parity error.

When searching backwards, the 30-bit identifier word sentby the computer must be reversed,

characterwise; its configuration is dependent upon format. Examples are given below:

Original Computer Bioctal Octal

Word 3456745321 - 3456745321
MOD 5 2153745634 1235476543
MOD 4 0053745634 0035476543
MOD 3 0000745634 0000476543
MOD 6 5374563400 3547654300

RECORD LENGTH

There are no limits on record length within physical tape capacity. When reading tapes of
unknown record length, the input buffers must be made sufficiently large to insure reading the
entire record. Another method is to initiate an input buffer with monitor and make provision

for the initiation of additional buffers to read the complete record.

END OF FILE

The normal end-of-file Inter-Record Gap is approximately 3/4-inch long followed bya Tape

24 of 25

Mark (001 111) and its associate check character. The end of file is always recorded with

even parity.

EDITING OF TAPE

By suitable programing, an Inter-Record Gap of any length may be written to precede any
record. Records may be rewritten for type updating, and they may be lengthened, provided
suitable Inter-Record Gap was used on a previous recording. A record may be inserted for

a previously used extended Inter-Record Gap.

BAD TAPE

If when writing a record, a tape "bad spot" is encountered, where recording is marginal or
impossible, the tape may be back spaced to the beginning of the record and rewritten with an
extended Inter-Record Gap. The long Inter-Record Gap will probably by sufficient to move
the bad spot past the recording head. Successive extended Inter-Record Gap’s may be written

if the bad spot still appears.

25 of 25

UNIVAC HIGH-SPEED PRINTER (MODEL 1469)

BASIC INFORMATION

The high-speed printer subsystem (Figure 1) consists of an Anelex 4-1000 printer and
a UNIVAC printer control unit. The printer control unit provides the required timing and
control signals for the printer and providesa compatible interface for communication between
the computer and the subsystem. The subsystem is designed for on-line use with a computer or
for off-line use with the magnetic tape subsystem. Figure 2 is a block diagram of the

subsystem, when used on-line with a computer, showing the information flow between the
printer, printer control unit, and computer. Figure 3 is a block diagram of the sub-system,

when used off-line with the magnetic tape subsystem, showing the exchange of data and

information between the two subsystems.

PRINTER SPECIFICATIONS
The high-speed printer subsystem has the following characteristics:
e Two printing speeds

e Slow rate of 560 to 667 lines per minute

® TFast rate of 780 to 1000 lines per minute
® Paper slew rate of 25 inches per second
® Vertical line spacing of six per inch
e One hundred twenty characters per line (ten characters per inc‘h)

e Up to 63 printable characters, each represented by a 6-bit binary code. There are

64 possible codes, 05 being used for the space code.

® Vertical control of paper position by means of an 8-track punch tape control loop

in conjunction with the Control Panel buttons and the External Function. There are

1of 16

e

e

Figure 1. UNIVAC High-Speed Printer (Model 1469)

2 of 16

HIGH-

SPEED

PRINTER

PAPER OUT

PAPER BREAK

A

THROAT OPEN

\ 4

SYSTEM READY

A 4

VERTICAL CONTROL

STROBE

PRINT WHEEL POSITION

PAPER FEED

A

TRIGGER TO HAMMERS

UNIVAC
1469
HIGH-
SPEED
PRINTER

SYSTEM

PRINTER

CONTROL

UNIT

OUTPUT REQUEST

r.

<OUTPUT ACKNOWLEDGE

OUTPUT DATA

INPUT ACKNOWLEDGE

INPUT DATA

COMPUTER

Y

_EXTERNAL FUNCTION

INTERRUPT

Figure 2. Block Diagram of High-Speed Printer Subsystem,
Used On-Line With A Computer

30 DATA

LINES

INPUT ACKNOWLEDGE

UNIVAC

1240

OUTPUT DATA REQUEST

OUTPUT ACKNOWLEDGE

INPUT DATA REQUEST

Bd

_ EXTERNAL FUNCTION

INTERRUPT

Figure 3.

30of 16

MAGNETIC
TAPE

SYSTEM

Magnetic Tape - High-Speed Printer Interface

one computer controlled vertical positioning and two manual vertical positionings.
Another vertical positioning is used to stop the paper when an out-of-paper condition

is detected

The high-speed printer prints 120-character lines; therefore, 24 computer words must be
buffered to the Printer Control Unit. These words contain five characters of six bits each.
When the Output Request goes up at the high speed printer, the computer begins the output

buffer operation.

The computer words are transferred tothe printer one at a time and stored in the core memory
of the Printer Control Unit one character at a time. When the memory is full, the print

cycle begins. The order in which the characters are printed is shown in Figure 4.

WORD 1ST 2ND 3RD 22ND 23RD 24TH
WORD WORD | WORD WORD | WORD WORD
CHARACTER | _| ol o ol uof ol i-{ ool d F =S 2= \ SIS F TG HILS

Figure 4. Printing Order
Table I contains a list of the characters used on the printer and their associated codes.

PRINTER CONTROL UNIT

The Printer Control Unit controls the transfer of data from the computer to the printer. The

Printer Control Unit contains a 120-character core memory and has the following registers:
® B Register

A 30-bit register in which the data words from the computer are temporarily stored

until the five characters can be transferred through the Z register to memory

® 7 Register

A 6-bit transient register used as a memory buffer

® S Register

A 7T-bit counter used both to count the characters when loading and reading memory

and as the memory address register

4 of 16

TABLE I. HIGH-SPEED PRINTER CHARACTER CODES

PIEI(I)\I;‘EE R (E)gITJ?VL PRINTING CHARACTER P?g\lDT];:ER (E):SEQIL PRINTING CHARACTER
000000 | OO0 I absolute value 100000 40) parenthesis, close
000001 | 01 } arrow, vertical 100001 | 41 - minus
000010 02 8 subscript eight 100010 42 + plus
000011 03 [bracket, open 100011 43 < less than
000100 | 04] bracket, close 100100 44 = equal
000101 05 Space - not printed 100101 45 > greater than
000110 06 A 100110 46 < less than or equal
000111 | 07 B 100111 | 47 | { brace, open
001000 10 C 101000 50 * asterisk
001001 | 11 D 101001 51 (parenthesis, open
001010 12 E 101010 52 > greater ‘than or equal
001011 | 13 F 101011 53 : colon
001100 | 14 G 101100 | 54 | } brace, close
001101 | 15 H 101101 55 Vv "OR"

001110 16 I 101110 56 , comma
001111 | 17 J 101111 57 # not equal
010000 | 20 K 110000 60 0 zero
010001 | 21 L 110001 61 1

010010 | 22 M 110010 62 2

010011 | 23 N 110011 63 3

010100 | 24 0 110100 64 4

010101 | 25 P 110101 65 5

010110 | 26 Q 110110 66 6

010111 | 27 R 110111 67 7

011000 30 S 111000 70 8

011001 | 31 T 111001 (h! 9

011010 | 32 U 111010 72 AN "AND"
011011 | 33 v 111011 73 ; semicolon
011100 | 34 w 111100 74 / virgule
011101 | 35 X 111101 75 . period
011110 36 Y 111110 76 — arrow, horizontal
011111 37 Z 111111 1 x multiply

- 5of 16

e C Register

A 6-bit counter used to count character pulses coming from the print wheel. This

' register always contains the code of the next. character to come up for printing

e K Register

A 5-bit shift register used to gate the correct character from B to Z when loading

memory

The Printer Control Unit operation consists of the three following sequences:

TRANSFER SEQUENCE

During the transfer sequence, the Output Requestis set, data are received from the computer,
and the data are stored in the Printer Control Unit memory. When the acknowledge is received
from the computer, the 30-bit data word is stored in the B register, and the Output Request
is dropped. The contents of the B register are transferred, one character at a time, to the
Z register and then to memory. The first 6-bit character taken out of the B register is that
in bits 24 through 29. The firstcharacter of the first word‘ goes into address zero of memory,
the second character to address one, etc. After each character is transferred to memory, S
is advanced by one and K is decremented by one to prepare for transferring the next character
to memory. After the five characters of a word have been transferred to memory, the Output
Request is again set. This sequence of transferring characters to memory is continued until
either S has counted to 119 or the top of form command is received. When one of these con-

ditions occurs, the transfer sequence is terminated, and the print sequence begins.

PRINT SEQUENCE

When the transfer sequence has ended and a character pulse is received from the printer, a
search of memory begins to determine if a code is present that is identical with the one of
the next character appearing under the print hammers. The contents of address zero are
read out of memory and compared with C (which contains the code of the next character to
be printed). If the information compares, a "one" is set in bit zero of the Hammer register,
and 05 (space code) is written in memory at that address. Then address one is compared
with C, etc. Thefirstbitposition of the Hammer register corresponds to the leftmost printing
position on the paper, and whena "one" is set in the Hammer register, the character is printed
in that column. When the contents of a memory address do not compare with the character code
in C, a "zero" is set in the corresponding bit position of the Hammer register, and the char-

acter is written back in memory. When 120 bits have been set in the Hammer register and the

6 of 16

next character pulse occurs, the hammers are triggered and the loading sequence starts again
for the next character. This sequence is repeated until memory contains nothing but 05’s
(space codes). At this time the transfer sequence begins again, coincident with the paper

advance sequence.

PAPER ADVANCE SEQUENCE

As soon as the print sequence is complete, the paper advance sequence starts. ‘If an external
function has disabled the line feed, the paper is not advanced. If the external function has
enabled the line feed, the paper is advanced. If an external function top of form command is
received and the line feed is enabled, the paper is advanced to the top of the next form. The
print sequence cannot start again until 10 milliseconds after the paper advance sequence has

ended.
The following sighals are sent from the Printer Control Unit to the Printer:

e Data Lines

A positive transition of 6 volts-occurs on the data lines if the bit in the Hammer
register is set. These lines go up at each character pulse if "ones" are set in the
respective bits of the Hammer register

e Paper Feed

A signal to the printer which starts or stops paper movement. This signal is set
to -6 volts to advance the paper. The paper continues to move until this line returns
to zero volts. The duration of this signal is determined by the desired number of
lines of paper advance. This line is set to -6 volts at the end of the line if the line
feed is enabled, or the manual LOAD PAPER or TOP OF FORM buttons are de-
pressed

The following signals will be made available from the Printer to the Printer Control Unit:

e System Ready

A contact closure is available when the printer is ready for use (i.e., power is on,
ete.). When the contact opens, an interrupt is sent to the computer

e Paper Out

A contact closure is available when the printer is out of paper. When the contact

7 of 16

closes, the Printer Control Unit waits until the bottom of the form is detected and
then sends an interrupt to the computer
e Paper Break
A contact closure is available when the paper is not correctly positioned between the
feed tractors. When the contact closes, an interrupt is sent to the computer
e Throat Cover Open
A contact closure is available when the throat cover is not correctly positioned on
the printer.” When the contact closes, an interrupt is sent to the computer
® Print Wheel Position

The print wheel position is defined by two output signals, one providing a marker
pulse once per print wheel revolution (Index pulse) and the other providing a marker
pulse once per character position of the print wheel (Character pulse). The Index
pulse is set to -6 volts for 12 microseconds, sometime during the interval between
the character pulses associated with the codes 77 and 00. The Character pulse is
set to -6 volts for 12 microseconds when each character on the print wheel is in the
proper position for printing. There is one Character pulse per character position

on the print wheel, or 64 Character pulses per revolution of the print wheel

e DPaper Position

The paper position is defined by an output signal providing a marker pulse for each
line of paper movement (called a Strobe pulse). This signal is set to -6 volts for
12 microseconds each time the paper is advanced vertically by one line, and is always .

at zero volts when the paper is stopped

COMPUTER CONTROL

The external function word serves three functions: -
o To enable single line feed
® To disable single line féed

® To position paper to the top of the next form

Three bits of the external function word signify which of these operations is to be performed

8 of 16

(see Figure 5). When the printer is set to the Enable Line Feed condition, the paper auto-

matically is advanced by one iine after each iine of print.

29 5 4 3 2 1 0

Not Used

0 1 DISABLE LINE FEED
1 0 ENABLE LINE FEED

Not Used

1 MOVE PAPER TO TOP OF FORM

Figure 5. External Function Word

When the printer is set to the Disable Line Feed condition, the paper is not advanced. Master
Clear sets the printer to an Enable Line Feed condition. The Top of Form command positions
the paper so that the type line is at the top of the next form. If this command is sent when the
printer is in a Disable Line Feed condition, or is sent together with a Disable Line Feed

command (external function word equal to 21), the paper will not be moved.

The exact position of the top of the next form is determined by the punch tape control loop.
Three tape tracks are used on the control loop to control vertical positioning of the paper.
The first track will have a hole punched at a position relative to the top of the form. This is
used to stop paper when it is advanced by the top of form command. The second track has a
hole punched so that it will set the tape feed mechanism in a position for loading papér. This
is used in conjunction with the Load Paper button on the Control Panel (Figure 6). The
third track has a hole punched at a position relative to the bottom of the form. This hole is

used to advance paper to the top of the form and to stop the paper when the paper supply is out.

When the printer goes from on-line to off-line or off-line to on-line one of two interrupts is
sent to the computer from the printer: a malfunction interrupt or a start interrupt. The mal-
function interrupt is sent from the printer to the computer when any of the following mal-

functions exist:
e DPrinter is out of paper
® Paper is torn or incorrectly positioned in the feed tracks

e Throat Cover is not in position

9 of 16

e There is a loss of AC power input

e A main circuit breaker is open

e A fuse is blown
A status word of zero is sent to the computer. The "out of paper" malfunction interrupt does
not terminate the print operation until the bottom of the current form is detected. The start

interrupt is sent to the computer when the printer is Master Cleared and set to operate ON-

LINE. A status word of one (bit zero set) is sent to the computer.

ull B] -
TOP
LOAD LOAD OF TEST
RIBBON PAPER FORM PRINT
ol
a |
i PRINTER PAPER i
MASTER READY BREAK ON-LINE
CLEAR THROAT PAPER B
| OPEN oUT OFF-LINE | | |
M — -
SLOW FAST ON OFF
| 1 in

Figure 6. Control Panel

PROGRAMING IMPLICATIONS
GENERAL

Certain programing functions are of importance to the programer. These functions consist

of the following:
e Processing interrupts
e Character positioning
e Assembly of buffers
e Magnetic tape operation
e Sending External Function to the printer

The programer must know how these functions are performed and what they accomplish

before programing for the printer.

10 of 16

PROCESSING INTERRUPTS

The program should distinguish between the malfunction and the start interrupts. The recep-
tion of the start interrupt indicates to the program that the printer is available for an output.
The start interrupt is used to initiate the printer program operation; it should be utilized
whenever possible. If it is not possible to utilize the start interrupt, it can be ignored; how-
ever, the programer must be certain that the printer is operable before he sends an output.
This precaution is necessary because if the outputisan External Function command it will not
be performed and will be lost if the printer is not operable. The first output to the printer is
normally an External Function Top of Form command, and if this is lost, the forthcoming data

may be printed in the wrong position on the print form.

The malfunction interrupt indicates to the program thatthe printer is not operable. Normally,
the malfunction condition will destroy some data, and the program will have to repeat some
or all of the previous output operations. The exception to this is the malfunction interrupt
caused by the Paper Out condition. This condition will terminate printer operation when the
bottom of the last form is reached. Therefore, the program can continue its output when new
paper has been loaded, and the paper has been positioned to the top of form position, without
a resultant loss of data. When a malfunction interrupt is received, the programer may want
to provide a means of making an operator decision regarding whether the program can continue,
or some or ail of the data will have to be reprinted. Here again, the programer should
utilize the start interrupt, if possible, to restart the program. Before the printer is initially
put ON-LINE, the program should be ready to process either of the two types of interrupts

mentioned above, or a fault condition will result at the computer.

CHARACTER POSITIONING

Horizontal and vertical character positioning is accomplished in two ways: with an external
function command, and/or by programing. The external functioncommand is used for
vertical positioning. The Top of Form command positions the top of form position on the paper
under the print hammers. The top of form position is determined by the tape loop. The enable
and disable line feed commands enable the program to print on a line more than once. When
the printer is Master Cleared, the line feed is enabled. The paper is fed after the line is
printed. The amount of time between initiation of the output buffer and execution of the line
feed depends on the type of data being printed. Therefore, if a line is to be printed more than
once, the disable line feed command should be sent after the line of data that is to be printed

over. The enable line feed command must be sent after the last line of data that is printed

11 of 16

over the previous data. The program controls character position with space codes. Vertical
line positioning is controlled by sending lines of space codes. Horizontal character positioning

is controlled by f{illing in the character positions that are not to be printed with space codes.

ASSEMBLY OF BUFFERS

The printer will not print a line of data until 120 printer codes (24 computer words) have been
received, or less than 120 printer codes are followed by a top of form command. Therefore,
if only the first 60 character positions of a line of print are to contain data, the other 60
positions must be filled in with space codes unless the line is followed by a top of form com-

mand.

MAGNETIC TAPE OPERATION

Data sent to the printer from the computer can also be assembled on magnetic tape and sent
to the printer OFF-LINE in the same way, with one exception: the use of the enable and
disable line feed external function commands. It is not possible to use these commands on
magnetic tape since the top of form command is the only external function available in the
magnetic tape operation. Therefore, if a program is to be compatible with both computer
output and magnetic tape output to the printer, provision must be made in the program to
handle an enable or disable line feed condition.

SENDING EXTERNAL FUNCTION TO THE PRINTER

An extei‘nal function to the printer must be programed with force as follows:

EX-COMe CN e W(PRT) e FORCE

where CN is the printer channel number, and PRT = 00000 00002, the enable line

feed function word.

OPERATOR CONTROL

PRINTER OPERATIONS

The following controls are available on the printer:
® Vertical Position

Controls the vertical positioning of the paper with relation to the printed line. The

maximum adjustment is +0.25 inch

12 of 16

® Character Phasing
Adjusts the index and character pulse timing to compensate for print wheel speed.
The maximum adjustment is 15 degrees
e Paper Tension
Controls the paper tension by varying the distance between corresponding feed pins
on the upper and lower feed tractors. The maximum adjustment is 0.125 inch
® Penetration Control

Provides {fine adjustment of the spacing between the print hammers and the print
wheel in order to vary the density of print and accommodate different paper thick-

nesses

CONTROL PANEL OPERATIONS

Various operations are initiated from the Control Panel by the following indicators and

switches:
e POWER ON Indicator Switch

Initiates the power sequencing cycle and indicates completion of the cycle

o POWER OFF Indicator Switch

Turns AC power off. The switch lamp is illuminated when AC power is available
at the output of the main circuit breaker and a power sequencing cycle has not been

completed

® OFF-LINE/ON-LINE Indicator Switch

Controls the logical connection of printer to computer. When the printer is Master

Cleared and ON-LINE is selected, an interrupt is sent to the computer

e SLOW/FAST Switch

A rocker type switch that changes the print wheel speed from 1000 to 667 rpm

e LOAD PAPER Switch

Positions the paper feed assembly so that paper can be more conveniently loaded.

This operation is only available when the printer is set to‘ operate OFF-LINE

13 of 16

¢ LOAD RIBBON Switch
Respools the inked ribbon prior to its replacement. This operation is not available
while the printer is printing

e TEST PRINT Switch

Actuates a test cycle under local control that utilizes a pattern which prints all
characters in all column positions. When the Pattern Select switch on the control
chassis is in the normal position, the test cycle causes all 63 characters to appear
in all column positions. In any given line, one character will appear in all of the 120
character positions, and after 63 lines of print a line of each character has been
printed. When the Pattern Select switch is in the M position, all M’s are printed,
and when it is in the E position, all E’s are printed. The paper automatically ad-
vances one line after each line of print. The operator depresses the TEST PRINT
switch to terminate the test operation. This operation is only available when the

printer is set to operate OFF-LINE

e TOP OF FORM Switch

Advances the paper so that the top of the next form is positioned at the type line,

This operation is only available when the printer is set to operate OFF-LINE

e MASTER CLEAR Switch

Clears the circuit logic, sets Enable Line Feed, sets the interrupt, and places the
printer OFF-LINE '

e PAPER OUT Indicator

Indicates that the paper supply is exhausted. This situation is detected 22 inches

ahead of the type line when the throat cover is closed

¢ PAPER BREAK Indicator

Indicates absence of paper above the print station

e THROAT OPEN Indicator

Indicates that the printer throat cover is not in position. A switch is available for

overriding the "throat open" indication

14 of 16

o PRINTER READY Indicator

Indicates that the printer is ready for operation. The indicator goes out when any

of the following conditions exist:
e The printer is out of paper
o The paper is torn or incorrectly positioned in the feed tractors
o The throat cover is not in position
® There isno AC pbwer input
e A main circuit breaker is open

e A fﬁse is blown

CONTROL CHASSIS OPERATIONS:

The Pattern Select switch selects one of three patterns that can be used in the test print

operation:
e Normal Position - print all characters in the order they appear on the print wheel
e M Position - print all M’s

e E Position - print all E’s

OFF-LINE COMPATIBILITY

The magnetic tape subsystem is capable of communicating directly with the high-speed
pr'inter subsystem for OFF-LINE operation. The interface between the magnetic tape and

printer subsystem is shown in Figure 3.

The printer output is connected to the Magnetic Tape System’s input (input and output as used

here are in reference to the computer).

The data to be printed OFF-LINE mustbe recorded in records on tape in the following format:

record length of 120 Fieldata characters (24 words).

The Magnetic Tape System will read each record of data from tape in the following format:

Modulus 5.

Each record of 120 characters will form 24 30-bit data words which will be printed as one

line by the high-speed printer.

15 of 16

A tape mark will be recognized by the high-speed printer as a top of form command. This

will position the paper to the top of the next page.

A record of less than 24 words (preferably one computer word, five characters) will cause
the high-speed printer to stop the printing operation. This record will not be printed if the

record contains space codes.

With the Magnetic Tape System switched to the Printer Mode, the desired tape transport
selected, and the tape positioned at load point, the high-speed printer will initiate operation

when it is placed in the ON-LINE position.
The normal sequence of events for transfer of data from the Magnetic Tape System to the
printer is as follows:

1. The printer sets its Output Data Request

2. The Magnetic Tape System in the idle state,' recognizes this first Output Data Request

from the printer as an external function and starts the read operation

3. The Magnetic Tape System places the information on the data lines and sets its

Input Data Request

4. The printer recognizes the Magnetic Tape System’s Input Data Request as an Output
Acknowledge '

5. The printer samples the data lines and clears its Output Data Request
6. The Magnetic Tape System recognizes the clearing of the printer Output Data Request
as an Input Acknowledge

Steps 3, 4, 5, and 6 are repeated for each word of the record.

The normal sequence for sending an external function command top of form from the Magnetic
Tape System to the printer is the same as reading a record except that when the Magnetic
Tape System detectsthe Tape Mark, it will set bit 4 in the Status word, and when the interrupt

is set, the printer will recognize this as an external function command top of form.

16 of 16

GLOSSARY

ABSOLUTE FORMAT: A form of assembled program where all addressingis expressed in

actual computer addresses

ACCESS: Used as a verb in computer terminology, meaning to obtain or procure; to read or

sense the information in a register or storage device

ACTION OPERATIONS: The operations which act upon or with defined data to produce object

language (L 4) instructions

ALLIED OPERAND: In mono-coding, the specially designated operand V., which modifies

0,
and completes the definition of multi-purpose mono-operators; it names the register, v, or
the expression, e, which together with the operator identifies the specific machine function

code, (f)

ALLOCATION: The process of assigning numeric values, usually representing absolute com-
puter addresses, to symbolic (relative) labels and tags; the assignment may be done 1) manu-

ally by the programer, 2) by the computer via allocation tapes, and 3) independently and
internally by the assembler (assembler-generated tags)

BIOCTAL CODE: An abbreviated means of paper tape storage where each tape frame repre-
sents two octal characters, thus reducing the size of tape considerably. Addressing in bioctal

is absolute

BOOT STRAP:

1. The process of manually entering a routine into the computer to perform some task,
such as loading the AS-1 Utility Package

2. A routine which is manually entered into the computer to perform some task

3. A routine wired semipermanently into computer to load tapes

CHANNEL: A means of transmission of electronic data or information, physically consisting

of one or more lines; used with external equipment

1of 8

CHECK SUM: A safety check after a program has been debugged and is operational. It
ensures that a program has been loaded into memory. It generally consists of a cumulative
sum of the units (holes in paper tape) which the computer senses and compares with the
corresponding value obtained during the tape preparation. Separate counts on the upper and
lower halves of the words in memory are usually made. To indicate a memory or Photo-
electric Reader fault, "CHECK SUM ERROR" printed on the typewriter is all that is neces-

sary. -This procedure is currentiy employed in most program-load operations
COMBINED OPERAND: (See OPERAND POSITION)

ASSEMBLER-GENERATED TAGS: A system of unique, 10-character tags, generated and al-
located internally by the assembler and used by it tobuild programs with symbolic addressing
without the aid of a programer. The general typewriter format of these tags is A |]|H nnnn,
where n is any AS-1 code from 1 through Z and the four leftmost bars, | , occupy positions

which may become AS-1 characters from A through Z

Certain poly-operations produce intermittent instructions, or groups of instructions, within
the object program; the assembler uses these assembler-generated tags to make possible the

referencing of, and interaction between these instructions

ASSEMBLER INPUT LANGUAGE: A set of symbolic notations, called operations, which.
present meaningful program input to the assembling system. The input language isdivided

into two categories of operations. These are:

1. Programing ianguage

2. Assembler-control language

AS-1 UTILITY PACKAGE: A service program used primarily to load data into and dump
data from the computer. It may also be used to punch out an area of core storage, or inspect

a storage address and alter this if desired

.DEBUGGING AIDS: In the AS-1 system, a series of special routines designed to aid the
programmer in locating errors of various types in his program while it is being executed.
These routines are of two types: 1) initializing routines which delimit areas or blocks of
information for later reference and manipulation; and 2) data testing routines which perform
such functions as giving contents of selected registers at strategic locations in the program

or following the course of a program within defined limits

20f 8

DECLARATIVE OPERATION: An operation which does not result in- an object program in-
struction, but provides information for the assembler’suse in constructi‘ng the object program
by stating certain facts about entities within the assembler in the same language as that of the
input. These operations i) adapt the program to a specific memory configuration and input-
output capabilities of the computer, and 2) identify different segments of input tothe com-

puter

EXTERNAL FUNCTION: In general, an operation or procedure dealing with the giving of
orders to external equipment by means of the function channels; also the specific operator,

EX-COM or EX-COM-MW designed to perform these commands within the assembler

HEADER: The initial operation item on paper or magnetic input tape placed there for the

purpose of identification of the contents of the tape, e.g., Program, Allocation, Correct-L1

HEADER-TYPE OPERATOR: The declaration-type word in the operator position of the

header on a tape which identifies the type of routine or program on the tape

IMAGE: An exact copy or duplication of the contents of a program or portion thereof in

memory, reproduced in another portion of core memory

INPUT PARAMETERS: The requirements, in the form of items of information or units of
data, which must be entered into the computer for use in conjunction with a subroutine, and

which describe, define, or limit the subroutine

LABEL: The name preceding the operator which uniquely identifies an operation; it consists
of up to ten alphanumeric characters, but mustnever start with 0, X, or a number, nor may it
consist of only A, Q, BO through B7, or C0 through Cl7. The following operations require
labels: '

Any operation referred to by a tag in another operation
Each ENTRY operation (a subroutine entry)

Allocation operations

O N

The first action operation following a break in the program sequence
LAB/TAG: A symbolic name, either a label or a tag

LANGUAGE LEVELS (LO, L., L, L3, L The successive forms of symbolic expression

1’ 2 e
through which an assembler proceeds in its translation of a program from the reference

30f 8

language (the language in which the programer composes the program) to the object lan-
guage (the symbolic form in whichthe machine can accept the program). The AS-1 Assembler

system involves five language levels, termed L Ll, L,,L,,and L

0’ 2y 4
L0 - The language of the programer consisting of English words, expressions using
the English alphabet, and numeric and algebraic terms, in which a problem is
defined
L1 - Thefirst of the intermediate language levels. L0 is converted into a standardized

AS-1 code and the words of each statement have been identified and assigned to
specific locations in an item according to their role in the operation. A printout
of this level would appear virtually the same as L_ because the AS-1 code must

0
necessarily be reconverted to the L0 format

L2 - Thesecond intermediate AS-1 language level. The L, (or LO) format has been
translated into machine code with the exception of the address structure which

appears in symbolics (tags and labels)

L3 - The final machine code stored on tables within the assembler. Essentially it is
the same as L2, with the symbolic addressing converted to absolute machine
addresses

L 4 The object program after it has been produced as output in a form readable to

the computer as input, e.g., punched paper tape, or buffered into core memory

L1 CORRECTOR: A routine with which corrections can be made to an input program while
at language level L1 of the AS-1 Assembler. The correctionitemsare entered intothe com-
puter by a separate correction tape. Positioning of the corrections is accomplished by means
of L1 identifiers. Three kinds of operation corrections can be made: insertions, deletions

and replacements

' L, IDENTIFIER: The successive numbering of the operations by the assembler, beginning
with 0 as the header operation. This numerical value precedes each operation, and is used

by the Ll Corrector for the selection of a statement

MNEMONIC OPERATIONS: The English-type statements used by the programer in the

preparation of a program or routine; the L0 language of the AS-1 Assembler

4 of 8

MONO-OPERATIONS: The class of programmer-written mnemonic statements, each of
which produces one machine instruction when translated by the AS-1 Assembler. The operators
of these operations, together with their allied operands, correspond, with some exceptions,

to the 62 machine function codes. (See POLY-OPERATIONS)

MONO-CODE: The operator portion of a mono-operation; it identifies the type of function
the operation performs, e.g.,JP , ENT , STR

NORMAL j-OPERANDS: The group of j-designator operands, including SKIP, QPOS, QNEG,
AZERO , ANOT, APOS , and ANEG, used with the majority of mnemonic operations. (See
SPECIAL j-OPERANDS)

NOTES: The portion of an operation which is used for optional notations for the programmer’s
information only. Notes are nonfunctioning, that is, they do not affect the functions of the

operation

OBJECT PROGRAM: The ready-to-run program, on paper tape, consisting of assembled

machine code instructions produced as output by the assembler

OFF-LINE: Of or pertaining to external equipment not connected to the computer by direct

circuitry; operations or functions performed by such equipment

ON-LINE: Of or pertaining to equipment external to the computer but connected to it by

direct circuitry; operations or functions performed by such equipment

OPERAND: A single or multi-word expression which modifies or explicitly defines the
operator of a statement by stating items of information or defining parameters. (See OPER-
AND POSITION)

OPERAND-CODE: The first symbolic term, a, within an operand position, consisting of up
to ten characters and adding some basic information to the operator or to the terms following
it. It specifies a k-designator, aname, a location, or an area; it may appear alone, with other

items, or be completely absent

OPERAND POSITION: The term used to describe a class of operands (one or more) com-

bined to serve a like function and included under the symbol, - V-

OPERATIONS: The basic units of assembler input consisting of labels, statements and notes,

of which labels and notes are optional. The three categories are:

50f8

1) Assembler language operations
2) Assembler-control operations

3) Program corrections

OPERATION ITEM: A unit of program storage inthe AS-1 Assembler. An operation item
must include an operation statement (operator and operands) and may or may not include a
label and/or notes. It may also be defined as one complete AS-1 program operation in Ll’

L2, or I_.3 storage

OPERATION STATEMENT: (See STATEMENT)

OPERATOR: The initial word of a statement; it specifies the basic operational character-

istics of the statement

OUTPUT CONVERSION: The process of converting (translating) internal assembler-stored
data into some language which is compatible withexternal output equipment and is also mean-

ingful to the programer

POINT SEPARATOR: A separator symbol corresponding to a multiply sign, used in coding

to separate the words of a statement

POLY-CODE: The operator of a poly-operation. Operators of this type denote the production

of one or more instructions in the object program, or make declarations to the assembler

POLY-OPERATIONS: A category of mnemonic operations with which one or more machine
code instructions can be produced in an object program. Poly-operations are considered as
"one-to-many" operations as opposed to "one-to-one" for mono-codes. In other words, a
poly-operétion generally has the ability of producing a series of machine code instructions in

the output; or object program, while mono-instructions can produce only one

RELATIVE FORMAT:

1. An object program format, compatible with AS-1 Utility Package loading, in which
the initial address is relatively allocated to zero with all other addresses allocated
successively unless specifically allocated to an absolute address. Upon loading a
program of this format, the Utility Package isto be instructed to increment all rela-

tively allocated addresses by an amount which equals the initial address desired.

6 of 8

Thus, a relative format program may be loaded at any portion of core storage
(1000 or above)

2. A program written in modified machine code with symbolic addressing

ROUTINE: A generalized term which defines a stretch of coding that performs a particular
task. This may encompass either the routine or subroutines of a program; in some cases it

may constitute the whole program

SEPARATORS: A set of symbols used in coding to represent input control for operations;
e.g., a mp symbol always precedes an operation statement and follows the statement when

notes are included

SIGNIFICANT LABELS: Those labels which are accompanied by a mnemonic operation or
numeric instruction that infers the beginning of a subroutine or program, i.e., 61000 00000,
60100 00000, or 00000 00000. Inaddition it includes all labels of operations with the operators
U-TAG or EQUALS

SIMPLE STATEMENT: A complete statement which does not require the use of connectors

SOURCE PROGRAM: The program of mnemonic instructions written by the programer and

used as input to the assembler; also known as the L . program or Input Language

0

SPECIAL j-OPERANDS: Those mnemonic j-operands which pertain to operations which
require the use of unique j-designators. Most operations which employ the j-designator use
j-operands of a similar nature called normal j-operands. Operations which require special
j-opervands are so identified in the discussions on the individual mono-operations, (see also

MONO-OPERATIONS, SPECIAL j-OPERANDS)

STATEMENT: The portion of an operation which defines its function and is composed of an

operator and all operands

SUBROUTINE: A specific kind of routine in which the entrance and exit are at the same
point. A subroutine usually begins with the operation JP e 0 which also serves as its exit,
since it is called upon by a ReturnJump operation (see RJP operation, MONO-OPERATIONS).

Subroutines may be considered as an extension of or annex to the main program routine

SYMBOLIC ADDRESS: A symbol, usually alphanumeric, representing a computer address

T of 8

SYMBOLIC ADDRESSING: The process of using relative symbolic addresses in the form of
tags and labels, to represent computer addresses while codingor in assembler-generated

tags. These are later assigned to an absolute value by the allocation routine

TAG:

1. The symboiic expression used in relative programing in place of an absolute com-
puter address. With the exception of the poly-code U-TAG , these tags appear in the

y-operand position and usually refer to a label or other relative symbolic address

2. An alphanumeric or alphabetic symbol which refers to, or can be allocated to, some

absolute address

8 of 8

ABSOLUTE CODING
AND DIRECT CONSTANT ENTRIES

ABSOLUTE CODING

The AS-1 Assembling System permits coding with absolute machine instructions. The pro-

gramer enters fj k b and y designators following the m» symbol on the coding form.

Addressing of such instructions must be symbolic and conform to the requirements of AS-1
labels and tags. Label placement is in the conventional LABEL coding position. (The first
instruction must be labeled.) The y portion of the instruction is either a symbolic tag, a
tag * increment, or a constant; when ¥ is a constant of less than five digits, only the digits

used are given following a point separator (e.g., the constant 00007 is coded as o 7).

Absolute coding permits the inclusion ofzotes with instructions; these follow a second straight

arrow (@9) symbol placed on the coding form.

Allocation of the lab/tags in absolute coding conforms to the rules of AS-1 allocation (see
ALLOCATION).

DIRECT CONSTANT ENTRIES

The programer is permitted to make direct constant entries while coding. AS-1 permits
either octal or decimal constants, decimal digits being following by a D. The maximum deci-
mal number permitted is 536870911D.

Normalizing of direct constant entries is tothe right with non-used upper digit positions being
filled with zeros. By use of a point separator, normalizing is permitted in both the upper
and lower halves of a storage location. For example, a coded entry of mpp 43 e 1)

produces 00043 00011 in storage.

lof1l

INPUT/OUT CODING

Input/output instructions may appear randomly in the program. In order to clarify the usage
of input/output instructions, a description of communicating with the computer is given in

four examples which follow.

Examples 1 and 3 describe the use of a pseudo programing technique to accomplish input and
output. Examples 2 and 4 are written with absolute channel assignments. An important
advantage of the use of the symbolic method of programing input or output is that it is not
channel sensitive; that is, if the channel assignment is changed for any peripheral device,
only the MEANS cards for the device affected need be changed in order to reflect the new
channel assignment throughout the program. In contrast, a program written with absolute
channel assignments is channel sensitive; that is, whenever the channel assignment is changed
for any pevripheral device, each prbgrafn location which references the affected device must

be changed.

In Examples 1 and 3, the MEANS operator is used to define the channel sensitive labels. No

coding is generated for MEANS statements.

The normal method of programing input/output is to give the transfer instruction before
enabling the particular device; this is to ensure transfer readiness regardless of timing.
Disregarding interrupts from other peripheral devices, the transfer instruction could be
written before the enabling instruction. Some devices, however, do dictate a specific method

to be used to sequence the input/output instructions.

The transfer buffer limits are defined at the address given in the V1 operand of the transfer
instruction. At this address, the buffer limits may be defined 1) absolutely, or 2) by use of
a U-TAG operator if symbolic coding is used. The upper 15 bits define the terminal address

and the lower 15 bits the initial address.

The EX-COM operator is used to enable or disable the peripheral device. The function code
which tells the particular peripheral device what to do, is located at the address defined by

the vy operand.

Unless the transfer is accomplished with internal interrupt, MONITOR, a wait instruction
sometimes should be programed to prevent the executionof other instructions until the transfer

is complete. This allows the programer to control the transfer.

1of4

It should be noted that the label defined by the operand in the enabling or disabling, or the
transfer instruction may appear either before or after the instruction in which it is used.
Similarly, the transfer buffer may be located anywhere in memory and either a decimal or

octal number may be used with the U-TAG or RESERVE operators.

Example 1:
EXAMIN PROGRAM e CBROWN e MARCH66
TAPE MEANS e CO
TAPEIN MEANS e COACTIVEIN
01000 73030 01235 INe TAPE ¢ W(READ) wp INPUT TRANSFER
01001 13030 01234 EX-COM e TAPE e W(SWITCH) ¢ FORCE mp
: ENABLE READER
01002 62000 01002 WAIT JP e WAIT e TAPEIN s WAIT FOR
TRANSFER COMPLETION
01171 13030 01233 EX-COM e TAPE ¢ W(SWITCHOF) ¢ FORCE wdp
DISABLE READER
01233 00000 00010 SWITCHOF 0Oe 10 mp DISABLE READER CODE
01234 00000 00150 SWITCH 0 e 150 mp ENABLE READER CODE
01235 02024 02000 READ U-TAG e BUFLO+20D @ BUFLO mp INPUT
BUFFER LIMITS
02000 - BUFLO RESERVE e 21D s INPUT BUFFER
02024

2 of 4

Example 2:

01000 13030

01001 73030
01002 62000

01171 13030

01233 00000
01234 00000
01235 02024

Example 3:

10050 13370
10051 74370

10052 62000

13101 13370

01234

01235
01002

01233

00010
00150
02000

13210
12311

10052

13207

WAIT

SWITCHOF
SWITCH
READ

EXAMOUT
PERFORM
PUNCHOUT

INSTEP

EX-COM e CO @ W(SWITCH) e FORCE =

ENABLE READER

INe COe WREAD) mp INPUT TRANSFER

JP @ WAIT e COACTIVEIN s WAIT FOR
TRANSFER COMPLETION

EX-COM e C0O e W(SWITCHOF) ¢ FORCE wp
DISABLE READER

O0e 10 mp DISABLE READER CODE
0 ¢150 =» ENABLE READER CODE
02024 ¢ 02000 s INPUT BUFFER LIMITS

PROGRAM e JOELGOODGUYMARCHS66
MEANS e C7
MEANS e CTACTIVEOUT

EX-COM @ PERFORM ® W(SWTHP) @ FORCE =
ENABLE PUNCH

OUT ¢ PERFORMe W (BUFOUT) sp OUTPUT
TRANSFER

JP @ INSTEP ¢ PUNCHOUT mp WAIT FOR
TRANSFER COMPLETION

EX-COM e PERFORM ® W(SWITHO) ® FORCE =
DISABLE PUNCH

3of 4

Example 3 Continued

13207 00000 00001
13210 00000 00005
13211 15023 15000

15000

15023

Example 4:

10050 74370 13211
10051 13370 13210

10052 62000 10052

13101 13370 13207

13207 00000 00001
13210 00000 00005
13211 15023 15000

SWITHO
SWTHP
BUFOUT

PUNBUF

INSTEP

SWTHO
SWTHP
BUFOUT

Oe1l =P DISABLE PUNCH CODE
0Oe5 mp ENABLE PUNCH CODE

U-TAG ® PUNBUF+19D e PUNBUF wp
TRANSFER BUFFER LIMITS

RESERVE ¢ 20 D mp OUTPUT BUFFER

OUT e C7e W(BUFOUT) sp OUTPUT TRANSFER

EX-COMe C7® W(SWTHP) e FORCE wp
ENABLE PUNCH

JP e INSTEP e CTACTIVEOUT = WAIT FOR
TRANSFER COMPLETION

EX-COM e C7 e W(SWTHO) e FORCE =p

DISABLE READER

Oe 1 mp DISABLE PUNCH CODE
Oe5 mp ENABLE PUNCH CODE
15023 @ 15000 sp TRANSFER BUFFER LIMITS

4 of 4

POLY-OPERATIONS

SYMBOL LEGEND

SYMBOL - MEANING

a Read-Class Operand

B Store-Class Operand

= Replace-Class Operand

§ Tag, Number, or Tag * Number

z Same as E , except a B register
can also be specified
Operand-Code Only

o Operand-Code or Number

Number Only

1of 4

7307

Poly-Operations

OPERATOR OPERAND SECTION DESCRIPTION
Sep W Sep VO Sep V1 Sep V2 Sep Sep
a P>
=p | CLEAR e number e |base addr = Clears V) words starting
of words of area at address V1
= | ENTRY ® |key set C{mp Establishes the entry of a
or jcondition subroutine. Stop condition is
= effective on exit
=P | EXIT ® ljump ¢ =) Establishes an exit via the
or |condition preceding ENTRY if vV is
= satisfied
a .
=) | INCREMENT ® B register | e |increment =) The B register, specified by
VO is modified by V';
=p» IMOVE ® |number 9 o [basead- 2| e |basead- 2|wp Moves V(, words from address
of words dress of ' dress of V; to address Vy
area area
=) | PUT ® |numeric address B|=p Stores the word ¥, at address
value V1
wd | TYPEC* e [location = Types content of location or
or Flex function expressed by Vj,
function
=p |[TYPET ® |message = Types message that follows
the operator

*V may be a list of similar operands

0

FPlog

Additions

Debugging Operations

OPERATOR OPERAND SECTION DESCRIPTION
Sep w Sep Vv Sep vV Sep V. Sep 14 Sep
0 1 2 3
=) |CORE-IMAGE ® name of & o base addr. 3 or |key set g = Images the area V) in core at
area of image => condition address V; if V, is satisfied
=) |DUMP-AREA ® |area go 2 |key set Clmp Dumps all non-zero numbers
name(s) > condition in the areas listed, if Vy is
satisfied
=) |DUMP-REG o [key set &l mp Dumps A, Q, Bi---By if V)
condition : condition is satisfied
=
=» [TEST-IMAGE* ® |area go 2 [key set Clmp Compares the areas listed
name(s) condition with their image and dumps
=> any differences if Vj is
satisfied
=) (DEF-AREA ® |name I e base addr. €l o number 3 = States that the area named V
: of area of area of words starts at address V1 and con-

tains V2 words

*Vy may be a list of similar operands

General Declarative Operations

Vioy

OPERATOR OPERAND SECTION DESCRIPTION
Sep w Sep V0 Sep V1 : Sep V2 Sep V3 Sep
= | ALLOCATION ® |program- e |date = Header operation, specifies
mers name an allocation tape
=) CORRECT-L, ® |program- e [date (new) =) Header operation, specifies
, mers name . a correction tape
=» | EQUALS o |address &|m» Must have LABEL, assigns
: the LABEL a known value V0
=» MEANS | o | mnemonic §|m» Must have a LABEL, assigns
. code a machine oriented value to
the LABEL
PROGRAM ® |program- ® idate up Header operation, specifies

mers name program input

TJ071

CODE EQUIVALENCE CHART

vaus | SOPDNO levmxownrss| PUICHED CATDTOTAPHEDIT omos| ce1 | "ourour

Letters A-2 A-2Z A-2 A-2z A-2Z A-Z A-2Z
(except 0)

Numbers 0-9 0-9 0-9 0-9 0-9 0-9 0-9
Plus + + + & & + +
Minus - - - - - - -
Point o * * * *
Separator
Period
Comma s s , , s , ,
Left Paren (((% % ((
Right Paren)))))
e aaau IS I T BTN S T e
(S;:;ii)il:;) Arrow =) (Tab) ---- @ @ (Spaces) aaa (Spaces)
Curved Arrow 2 (%?;i‘?se (lée::;)se (SB;Z:::I;) (Next Line) | (Not Used) (Next Line)
Zeta | | $ $ $ g $

CONSTANT POOL

AS-1 establishes a constant pool for eachassembled program requiring constants of a special
nature. This pool is a list of constants which are specified in the Read-class operand posi-
tion and are more than five octal digits. Such constants are stored only once, even though

many operations refer tothe same constants. This pool is positioned at the end of the program.

Example:
Section of Input Problem

CRWD = ENT ® A e 5760435

=

=

BLK mp ADD ¢ Q e 24356105

=

=

=

mp PUT e 5760435 e W(CAT)

-

Corresponding Section in L2 (Mnemonic Form)
CRWD =P ENT ¢ A o Al|]]]1128+

=

1of 2

=

BLK wp ADD o Q o Al|]||] 1129
=D
=
mp ENT ¢ Q o A||]]|]1128

mp STR ¢ Q e W(CAT)

Al the End of the Program
A|ll]] 1128 0005760435

Allll] 1129 0024356105

2 of 2

FLEXOWRITER CODE CHART

The upper case, UC, or lower case, LC, character is typed according to the position of

the type bars.

TYPE LETTER TYPE LETTER PERFORM TYPE-

UcC LC OCTAL l'y¢ wnc | OCTAL L WRITER OPERATION| OCTAL
A a 30 : 1 52 Space 04
B b 23 2 2 74 Shift up 47
C c 16 ® 3 70 Shift down 57
D d 22 ¢ 4 64 Back space 61
E e 20 s 5 62 Car. return 45
F f 26 ° 6 66 Tabulator 51
G g 13 7 7 72 Color shift 02
H h 05 8 8 60 Code delete 7T
I i 14 ° 9 33 Stop 43%
J j 32 ° 0 37
K k 36
L 1 11
M m o7
N n 06 TYPE SYMBOL
(0} 0 03 ucC LC OCTAL
P p 15
Q a 35 - (Superscript -~ (Hyphen or 56
R r 12 Minus) Minus)

S s 24

T t 01 (Multiply) = (Equals) 44

U u 34

v v 17 / (Virgule) + (Plus) 54

w w 31

X % 7 ((Open Parens) |, (Comma) 46

Y y 25

A z 21) (Close Parens) (Period) 42
(Underline) | (Absolute) 50

NOTE: Codes not used are: 00, 10, 40, 41, 53, 55, 63, 65, 67, 71, 73, 75, 76.

*Codes 43 and 77 are considered illegal codes in operations with the computer

lof1

AS-1 CHARACTER CODE (6 Bits)

0 1 2 3 4 5 6 7
DATA CONTROL CHARACTERS
i A a B y 5 € t
0 1 2 3 4 5 6 7
8 9 A B C D E F
G H I J K L M N
NOT
usep| P Q R S T 16f \'
NOT | NOT
w X Y z () USED | USED
. . / NOT | NOT | NOT | NOT
- USED | USED | USED | USED
NOT | NOT | NOT | NOT NOT | NOT
USED | USED | USED | USED : ’ USED | USED
i = ignore code
A = space

The data control characters act as sentinels.

1ofl

TELETYPE CODE CHART

TELETYPE CODE (TEXT TO CODE CO‘NVERSION)

OCTAL
CODE

30
23
16
22
20
26
13
05
14
32
36
11
07
06
03
15
35
12
ell 24
: 01
34
17
31
27
25
21
Carriage Ret. 02
Line Feed 10
Space 04
LTRS 31
FIGS 33
Blank 00

LTRS FIGS

cw Lo A D

*

-V/-\-m::geo

S =0

= BN S I

NHXE<dH WO WOZENR“ " IQHEU QW >

* Appears printed on the tape, but not on the printed page

1of 2

TELETYPE CODE (CODE TO TEXT CONVERSION)

OCTAL
CODE

LTRS

FIGS

FUNCTION

00
01
02
03
04
05
06
07
10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37

“grKOo<kupgNR<QW-QEIE g22@m 2

rnoca

O o @go W

Qo o

TN oy

~ = J

Blank
Carriage Return

Space

Line Feed

FIGS

LTRS

*Appears printed on the tape, but not on the printed page

2 of 2

1004 EXCESS-THREE CODE (6 BITS)

0 1 2 3 4 5 6 7
A _

(Space)] (Minus) g 1 2 3 4
5 6 7 8 9 N ; [
& P A B C D
E F G H I # < =
t * & ! J K L M
N o) P Q R (@ A

b
% Comma) / S T U
\4 w X Y z | >)
Note:
CS-1 Characters High-Speed
Represented cs-1 Printer
Differently by Charac_te Character
the High-Speed r
Printer
Point Separator *
Vertical Bar | 4

lofl

FIELD DATA CODE CHART

0 1 2 3 4 5 6 7
Master | Upper | Lower Line | Car-
Space .| Case | Case Feed | riage [Space A B
Ret.
C D E F G H I J
K L M N (0] P Q R
S T U v w X Y Z
) - + < = > _ $
T | [®
Stop
0 1 2 3 4 5 6 i
n . D ?
8 o ! / spec idle

lofl

o DN =

33
67
134

286
536
073
147

294
589
179
359

719
438
877
755

128

256
512
024
048

096
192
384
768

536
072
144
288

576
152
304
608

216
432
864
728

456
912
824
648

296
592
184
368

736
472
944
888

O =Tk WNDHO =

-
- O

[
QO W N

e
© -3 M

DD DN DN
WM = O

DN DN DN DN
-1 O Ul W

W W NN
= O O o

W www
O W O DN

W Wwww
[NelN e RE B

POWERS OF TWO TABLE

2-71

1.0
0.5
0.25
0.125
0.062
0.031
0.015
0.007

0.003
0.001
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

25
625
812

906
953
976
488

244
122
061
030

015
007
003
001

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

25

125
562
281

140
070
035
517

258
629
814
907

953
476
238
119

059
029
014
007

003
001
000
000

000
000
000
000

000
000
000
000

25

625
312
156
578

789
394
697
348

674
8317
418
209

604
802
901
450

725
862
931
465

232
116
058
029

014
007
003
001

25
125

062
531
265
632

316
158
579
289

644
322
161
580

290
645
322
661

830
415
207
103

551
275
637
818

lofl

5
25
625
812

406
203
101
550

775
387
193
596

298
149
574
287

643
321
660
830

915
957
978
989

25

125
562
781

390
695
847
923

461
230
615
307

653
826
913
456

228
614
807
403

5
25

625
312
656
828

914
957
478
739

869
934
467
733

366
183
091
545

25
125

062
031
515
257

628
814
407
703

851
425
712
856

25
625
812

906
453
226
613

806
903
951
475

25

125
562
281

640
320
660
830

5
25

625

312 5
156 25
078 125

DECIMAL TO OCTAL CONVERSION TABLE

Decimal: 0 through 399
Octal: 0 through 617

UNITS
0 1 2 3 4 5 6 7 8 9

00 0 0 1 2 3 4 5 6 7 10 11
1 12 13 14 15 16 17 20 21 22 23

2 24 25 26 27 30 31 32 33 34 35

3 36 37 40 41 42 43 44 45 46 47

4 50 51 52 53 54 55 56 57 60 61

TENS ¢ 62 63 64 65 66 67 70 71 72 13
6 74 75 6 77 100 101 102 103 104 105

7 106 107 110 111 112 113 114 115 116 117

8 120 121 122 123 124 125 126 127 130 131

9 132 133 134 135 136 137 140 141 142 143

01 0 144 145 146 147 150 151 152 153 154 155
1 156 157 160 161 162 163 164 165 166 167

2 170 171 172 173 174 175 176 177 200 201

3 202 203 204 205 206 207 210 211 212 213

4 214 215 216 217 220 221 222 223 224 225

TENS 5 226 227 230 231 232 233 234 235 236 237
6 240 241 242 243 244 245 246 247 250 251

7 252 253 254 255 256 257 260 261 262 263

8 264 265 266 267 270 271 272 273 274 275

9 276 277 300 301 302 303 304 305 306 307

02 0 310 311 312 313 314 315 316 317 320 321
1 322 323 324 325 326 327 330 331 332 333

2 334 335 336 337 340 341 342 343 344 345

3 346 347 350 351 352 353 354 355 356 357

revs 4 360 361 362 363 364 365 366 367 370 371
5 372 373 374 375 376 377 400 401 402 403

6 404 405 406 407 410 411 412 413 414 415

7 416 - 417 420 421 422 423 424 425 426 427

8 | 430 431 432 433 434 435 436 437 440 441

9 442 443 444 445 446 447 450 451 452 453

03 0 454 455 456 457 460 461 462 463 464 465
1 466 467 - 470 471 472 473 474 475 476 477

2 500 501 502 503 504 505 506 507 510 511

3 512 513 514 515 516 517 520 521 522 523

4 524 525 526 527 530 531 532 533 534 535

TENS 5 536 537 540 . 541 542 543 544 545 546 547
6 550 551 552 553 554 555 556 557 560 561

7 562 563 564 565 566 567 570 571 572 573

8 574 575 576 577 600 601 602 603 604 605

9 606 607 610 611 612 613 614 615 616 617

1 of 11

DECIMAL-TO-OCTAL CONVERSION TABLE

Decimal: 400 through 799
Octal: 620 through 1437

UNITS
0 1 2 3 4 5 6 7 8 9

04 0 620 621 622 623 624 625 626 627 630 631
1 632 633 634 635 636 637 640 641 642 643

2 644 645 646 647 650 651 652 653 654 655

3 656 657 660 661 662 663 664 665 666 667

rens 4 670 671 672 673 674 675 676 677 1700 1701
5 702 703 704 705 706 707 710 711 712 713

6 714 715 716 717 720 721 722 723 124 725

7 726 727 730 731 732 733 734 735 736 737

8 740 741 742 743 744 - 745 746 74T 750 751

9 752 753 754 755 756 757 160 761 762 . 1763

05 0 "64 765 766 767 M0 T7L M2 T3 T4 5
1 776 777 1000 1001 1002 1003 1004 1005 1006 1007

2 1010 1011 1012 1013 1014 1015 1016 1017 1020 1021

3 1022 1023 1024 1025 1026 1027 1030 1031 1032 1033

4 1034 1035 1036 1037 1040 1041 1042 1043 1044 1045

TENS 5 1046 1047 1050 1051 1052 1053 1054 1055 1056 1057
6 1060 1061 1062 1063 1064 1065 1066 1067 1070 1071

7 | 1072 1073 1074 1075 1076 1077 1100 1101 1102 1103

8 | 1104 1105 1106 1107 1110 1111 1112 1113 1114 1115

9 1116 1117 1120 1121 1122 1123 1124 1125 1126 1127

06 0 | 1130 1131 1132 1133 1134 1135 1136 1137 1140 1141
1 1142 1143 1144 1145 1146 1147 1150 1151 1152 1153

2 1154 1155 1156 1157 1160 1161 1162 1163 1164 1165

3 1166 1167 1170 1171 1172 1173 1174 1175 1176 1177

TENS 4 | 1200 1201 1202 1203 1204 1205 1206 1207 1210 1211
5 1212 1213 1214 1215 1216 1217 1220 1221 1222 1223

6 1224 1225 1226 1227 1230 1231 - 1232 1233 1234 1235

7 | 1236 1237 1240 1241 1242 1243 1244 1245 1246 1247

8 1250 1251 1252 1253 1254 12556 1256 1257 1260 1261

9 1262 1263 1264 1265 1266 1267 1270 1271 1272 1273

07 0 1274 1275 1276 1277 1300 1301 1302 1303 1304 1305
1 1306 1307 1310 1311 1312 1313 1314 1315 1316 1317

2 1320 1321 1322 1323 1324 1325 1326 1327 1330 1331

3 1332 1333 1334 1335 1336 1337 1340 1341 1342 1343

TENS 4 | 1344 1345 1346 1347 1350 1351 1352 1353 1354 1355
5 | 1356 1357 1360 1361 1362 1363 1364 1365 1366 1367

6 1370 1371 1372 1373 1374 1375 1376 1377 1400 1401

7 1402 1403 1404 1405 1406 1407 1410 1411 1412 1413

8 1414 1415 1416 1417 1420 1421 1422 1423 1424 1495

9 1426 1427 1430 1431 1432 1433 1434 1435 1436 1437

2 of 11

DECIMAL-TO-OCTAL CONVERSION TABLE

Decimal: 800 through 1199
Octal: 1440 through 2257

UNITS
0 1 2 3 4 5 6 7 8 9
08 0 1440 1441 1442 1443 1444 1445 1446 1447 1450 1451
1 1452 1453 1454 1455 1456 1457 1460 1461 1462 1463
2 1464 1465 1466 1467 1470 1471 1472 1473 1474 1475
3 1476 1477 © 1500 1501 1502 1503 1504 1505 1506 1507
rens 1510 1511 1512 1513 1514 1515 1516 1517 1520 1521
5 1522 1523 1524 1525 1526 1527 1530 1531 1532 1533
6 1534 1535 1536 1537 1540 1541 1542 1543 1544 1545
7 1546 1547 1550 1551 1552 1553 1554 1555 1556 1557
8 1560 1561 1562 1563 1564 1565 1566 1567 1570 1571
9 1572 1573 1574 1575 1576 1577 1600 1601 1602 1603
09 0 1604 1605 1606 1607 1610 1611 1612 1613 1614 1615
1 1616 1617 1620 1621 1622 1623 1624 1625 1626 1627
2 1630 1631 1632 1633 1634 1635 1636 1637 1640 1641
3 1642 1643 1644 1645 1646 1647 1650 1651 1652 1653
rens 4 1654 1655 1656 1657 1660 1661 1662 1663 1664 1665
5 1666 1667 1670 1671 1672 1673 1674 1675 1676 1677
6 1700 1701 1702 1703 1704 1705 1706 1707 1710 1711
7 1712 1713 1714 1715 1716 1717 1720 1721 1722 1723
8 1724 1725 1726 1727 1730 1731 1732 1733 1734 1735
9 1736 1737 1740 1741 1742 1743 1744 1745 1746 1747
10 0 1750 1751 1752 1753 1754 1755 1756 1757 1760 1761
1 1762 1763 1764 1765 1766 1767 1770 1771 1772 1773
2 1774 1775 1776 1777 2000 2001 2002 2003 2004 2005
3 2006 2007 2010 2011 2012 2013 2014 2015 2016 2017
rens 4 2020 2021 2022 2023 2024 2025 2026 2027 2030 2031
5 2032 2033 2034 2035 2036 2037 2040 2041 2042 2043
6 2044 2045 2046 2047 2050 2051 2052 2053 2054 2055
7 2056 2057 2060 2061 2062 2063 2064 2065 2066 2067
8 2070 2071 2072 2073 2074 2075 2076 2077 2100 2101
9 2102 2103 2104 2105 2106 2107 2110 2111 2112 2113
11 0 2114 2115 2116 2117 2120 2121 2122 2123 2124 2125
1 2126 2127 2130 2131 2132 2133 2134 2135 2136 2137
2 2140 2141 2142 2143 2144 2145 2146 2147 2150 2151
3 2152 2153 2154 2155 2156 2157 2160 2161 2162 2163
4 2164 2165 2166 2167 2170 2171 2172 2173 2174 2175
TENS 5 2176 2177 2200 2201 2202 2203 2204 2205 2206 2207
6 2210 2211 2212 2213 2214 2215 2216 2217 2220 2221
7 2222 2223 2224 2225 2226 2227 2230 2231 2232 2233
8 2234 2235 2236 2237 2240 2241 2242 2243 2244 2245
9 2246 2247 2250 2251 2252 2253 2254 2255 2256 2257

3 of 11

DECIMAL-TO-OCTAL CONVERSION TABLE

Decimal: 1200 through 1599
Octal: 2260 through 3077

UNITS
0 1 2 3 4 5 6 7 8 9
12 0 2260 2261 2262 2263 2264 2265 2266 2267 2270 2271
1 2272 2273 2274 2275 2276 2277 2300 2301 2302 2303
2 2304 2305 2306 2307 2310 2311 2312 2313 2314 2315
3 2316 2317 2320 2321 2322 2323 2324 2325 2326 2327
4 2330 2331 2332 2333 2334 2335 2336 2337 2340 2341
TENS 5 2342 2343 2344 2345 2346 2347 2350 2351 2352 2353
6 2354 2355 2356 2357 2360 2361 2362 2363 2364 2365
7 2366 2367 2370 2371 2372 2373 2374 2375 2376 2377
8 2400 2401 2402 2403 2404 2405 2406 2407 2410 2411
9 2412 2413 2414 2415 2416 2417 2420 2421 2422 2493
13 0 2424 2425 2426 2427 2430 2431 2432 2433 2434 2435
1 2436 2437 2440 2441 2442 2443 2444 2445 2446 2447
2 2450 2451 2452 2453 2454 2455 2456 2457 2460 2461
3 2462 2463 2464 2465 2466 2467 2470 2471 2472 2473
TENS 4 2474 2475 2476 2477 2500 2501 2502 2503 2504 2505
5 2506 2507 2510 2511 2512 2513 2514 2515 2516 2517
6 2520 2521 2522 2523 2524 2525 2526 2527 2530 2531
7 2532 2533 2534 2535 2536 2537 2540 2541 2542 2543
8 2544 2545 2546 2547 2550 2551 2552 2553 2554 2555
9 2556 2557 2560 2561 2562 2563 2564 2565 2566 2567
14 0 2570 2571 2572 2573 2574 2575 2576 2577 2600 2601
1 2602 2603 2604 2605 2606 2607 2610 2611 2612 2613
2 2614 2615 2616 2617 2620 2621 2622 2623 2624 2625
3 2626 2627 2630 . 2631 2632 2633 2634 2635 2636 2637
TENS 4. 2640 2641 2642 2643 2644 2645 2646 2647 2650 2651
5 2652 2653 2654 2655 2656 2657 2660 2661 2662 2663
6 2664 2665 2666 2667 2670 2671 2672 2673 2674 2675
7 2676 2677 2700 2701 2702 2703 2704 2705 2706 2707
8 2710 2711 2712 2713 2714 2715 2716 2717 2720 2721
9 2722 2723 2724 2725 2726 2727 2730 2731 2732 2733
15 0 2734 2735 2736 2737 2740 2741 2742 2743 2744 2745
1 2746 2747 2750 2751 2752 2753 2754 2755 2756 2757
2 2760 2761 2762 2763 2764 2765 2766 2767 2770 2771
3 2772 2773 2774 2775 2776 2777 3000 3001 3002 3003
4 3004 3005 3006 3007 3010 3011 3012 3013 3014 3015
TENS 5 3016 3017 3020 3021 3022 3023 3024 3025 3026 3027
6 3030 3031 3032 3033 3034 3035 3036 3037 3040 3041
7 3042 3043 3044 3045 3046 3047 3050 3051 3052 3053
8 3054 3055 3056 3057 3060 3061 3062 3063 3064 3065
9 3066 3067 3070 3071 3072 3073 3074 3075 3076 3077

4 of 11

DECIMAL-TO-OCTAL CONVERSION TABLE

Decimal: 1600 through 1999
Octal: 3100 through 3717

UNITS
0 1 2 3 4 5 6 7 8 9
16 0 3100 3101 3102 3103 3104 3105 3106 3107 3110 3111
1 3112 3113 3114 3115 3116 3117 3120 3121 3122 3123
2 3124 3125 3126 3127 3130 3131 3132 3133 3134 3135
3 3136 3137 3140 3141 3142 3143 3144 3145 3146 3147
4 3150 3151 3152 3153 3154 3155 3156 3157 3160 3161
TENS 5 3162 3163 3164 3165 3166 3167 3170 3171 3172 3173
6 3174 3175 3176 3177 3200 3201 3202 3203 3204 3205
7 3206 3207 3210 3211 3212 3213 3214 3215 3216 3217
8 3220 3221 3222 3223 3224 3225 3226 3227 3230 3231
9 3232 3233 3234 3235 3236 3237 3240 3241 3242 3243
17 0 3244 3245 3246 3247 3250 3251 3252 3253 3254 3255
1 3256 3257 3260 3261 3262 3263 3264 3265 3266 3267
2 3270 3271 3272 3273 3274 3275 3276 3277 3300 3301
3 3302 3303 3304 3305 3306 3307 3310 3311 3312 3313
rons 4 3314 3315 3316 3317 3320 3321 3322 3323 3324 3325
5 3326 3327 3330 3331 3332 3333 3334 3335 3336 3337
6 3340 3341 3342 3343 3344 3345 3346 3347 3350 3351
7 3352 3353 3354 3355 3356 3357 3360 3361 3362 3363
8 3364 3365 3366 3367 3370 3371 3372 3373 3374 3375
9 3376 3377 3400 3401 3402 3403 3404 3405 3406 3407
18 0 3410 3411 3412 3413 3414 3415 3416 3417 3420 3421
1 3422 3423 3424 3425 3426 3427 3430 3431 3432 3433
2 3434 3435 3436 3437 3440 3441 3442 3443 3444 3445
3 3446 3447 3450 3451 3452 3453 3454 3455 3456 3457
4 3460 3461 3462 3463 3464 3465 3466 3467 3470 3471
TENS 5 3472 3473 3474 3475 3476 3477 3500 3501 3502 3503
6 3504 3505 3506 3507 3510 3511 3512 3513 3514 3515
7 3516 3517 3520 3521 3522 3523 3524 3525 3526 3527
8 3530 3531 3532 3533 3534 3535 3536 3537 3540 3541
9 3542 3543 3544 3545 3546 3547 3550 3551 3552 3553
19 0 3554 3555 3556 3557 3560 3561 3562 3563 3564 3565
1 3566 3567 3570 3571 3572 3573 3574 3575 3576 3577
2 3600 3601 3602 3603 3604 3605 3606 3607 3610 3611
3 3612 3613 3614 3615 3616 3617 3620 3621 3622 3623
rens 4 3624 3625 3626 3627 3630 3631 3632 3633 3634 3635
5 3636 3637 3640 3641 3642 3643 3644 3645 3646 3647
6 3650 3651 3652 3653 3654 3655 3656 3657 3660 3661
7 3662 3663 3664 3665 3666 3667 3670 3671 3672 3673
8 3674 3675 3676 3677 3700 3701 3702 3703 3704 3705
9 3706 3707 3710 3711 3712 3713 3714 3715 3716 3717

50f 11

DECIMAL-TO-OCTAL CONVERSION TABLE

Decimal: 2000 through 2399
Octal: 3720 through 4537

UNITS
0 1 2 3 4 5 6 7 8 9
20 0 3720 3721 3722 3723 3724 3725 3726 3727 3730 3731
1 3732 3733 3734 3735 3736 3737 3740 3741 3742 3743
2 3744 3745 3746 3747 3750 3751 3752 3753 3754 3755
3 3756 3757 3760 3761 3762 3763 3764 3765 3766 3767
4 3770 3771 3772 3773 3774 3775 3776 3777 4000 4001
TENS 5 4002 4003 4004 4005 4006 4007 4010 4011 4012 4013
6 4014 4015 4016 4017 4020 4021 4022 4023 4024 4025
7 4026 4027 4030 4031 4032 4033 4034 4035 4036 4037
8 4040 4041 4042 4043 4044 4045 4046 4047 4050 4051
9 4052 4053 4054 4055 4056 4057 4060 4061 4062 4063
21 0 4064 4065 4066 4067 4070 4071 4072 4073 4074 4075
1 4076 4077 4100 4101 4102 4103 4104 4105 4106 4107
2 4110 4111 4112 4113 4114 4115 4116 4117 4120 4121
3 4122 4123 4124 4125 4126 4127 4130 4131 4132 4133
TENS 4 4134 4135 4136 4137 4140 4141 4142 4143 4144 4145
5 | 4146 4147 4150 4151 4152 4153 4154 4155 4156 4157
6 4160 4161 4162 4163 4164 4165 4166 4167 4170 4171
7 4172 4173 4174 4175 4176 4177 4200 4201 4202 4203
8 4204 4205 4206 4207 4210 4211 4212 4213 4214 4215
9 4216 4217 4220 4221 4222 4223 4224 4225 4226 4227
22 0 4230 4231 4232 4233 4234 4235 4236 4237 4240 4241
1 4242 4243 4244 4245 4246 4247 4250 4251 4252 4253
2 4254 4255 4256 4257 4260 4261 4262 4263 4264 4265
3 4266 4267 4270 4271 4272 4273 4274 4275 4276 4277
TENS 4 4300 4301 4302 4303 4304 4305 4306 4307 4310 4311
5 4312 4313 4314 4315 4316 4317 4320 4321 4322 4323
6 4324 4325 4326 4327 4330 4331 4332 4333 4334 4335
7 4336 4337 4340 4341 4342 4343 4344 4345 4346 4347
8 4350 4351 4352 4353 4354 4355 4356 4357 4360 4361
9 4362 4363 4364 4365 4366 4367 4370 4371 4372 4373
23 0 4374 4375 4376 4377 4400 4401 4402 4403 4404 4405
1 4406 4407 4410 4411 4412 4413 4414 4415 4416 4417
2 4420 4421 4422 4423 4424 4425 4426 4427 4430 4431
3 4432 4433 4434 4435 4436 4437 4440 4441 4442 4443
4 4444 4445 4446 4447 4450 4451 4452 4453 4454 4455
TENS 5 4456 4457 4460 4461 4462 4463 4464 4465 4466 4467
6 4470 4471 4472 4473 4474 4475 4476 4477 4500 4501
7 4502 4503 4504 4505 4506 4507 4510 4511 4512 4513
8 4514 4515 4516 4517 4520 4521 4522 4523 4524 4525
9 4526 4527 4530 4531 4532 4533 4534 4535 4536 4537

6 of 11

24

TENS

25

TENS

26

TENS

27

TENS

OO WO O© =IO U i WO

O O0=-JO U WNHFHO

OO WD HO

DECIMAL-TO-OCTAL CONVERSION TABLE

Decimal: 2400 through 2799
Octal: 4540 through 5357

UNITS
0 1 2 3 4 5 6 7 8 9
4540 4541 4542 4543 4544 4545 4546 4547 4550 4551
4552 4553 4554 4555 4556 4557 4560 4561 4562 4563
4564 4565 4566 4567 4570 4571 4572 4573 4574 4575
4576 4577 4600 4601 4602 4603 4604 4605 4606 4607
4610 4611 4612 4613 4614 4615 4616 4617 4620 4621
4622 4623 4624 4625 4626 4627 4630 4631 4632 4633
4634 4635 4636 4637 4640 4641 4642 4643 4644 4645
4646 4647 4650 4651 4652 4653 4654 4655 4656 4657
4660 4661 4662 4663 4664 4665 4666 4667 4670 4671
4672 4673 4674 4675 4676 4677 4700 4701 4702 4703
4704 4705 4706 4707 4710 4711 4712 4713 4714 4715
4716 4717 4720 4721 4722 4723 4724 4725 4726 4727
4730 4731 4732 4733 4734 4735 4736 4737 4740 4741
4742 4743 4744 4745 4746 4747 4750 4751 4752 4753
4754 4755 4756 4757 4760 4761 4762 4763 4764 4765
4766 4767 4770 4771 4772 4773 4774 4775 4776 47717
5000 5001 5002 5003 5004 5005 5006 5007 5010 5011
5012 5013 5014 5015 5016 5017 5020 5021 5022 5023
5024 5025 5026 5027 5030 5031 5132 5033 5034° 5035
5036 5037 5040 5041 5042 5043 5044 5045 5046 5047
5050 5051 5052 5053 5054 5055 5056 5057 5060 5061
5062 5063 5064 5065 5066 5067 5070 5071 5072 5073
5074 5075 5076 5077 5100 5101 5102 5103 5104 5105
5106 5107 5110 5111 5112 5113 5114 5115 5116 5117
5120 5121 5122 5123 5124 5125 5126 5127 5130 5131
5132 5133 5134 5135 5136 5137 5140 5141 5142 5143
5144 5145 5146 5147 5150 5151 5152 5153 5154 5155
5156 5157 5160 5161 5162 5163 5164 5165 5166 5167
5170 5171 5172 5173 5174 5175 5176 5177 5200 5201
5202 5203 5204 5205 5206 5207 5210 5211 5212 5213
5214 5215 5216 5217 5220 5221 5222 5223 5224 5225
5226 5227 5230 5231 5232 5233 5234 5235 5236 5237
5240 5241 5242 5243 5244 5245 5246 5247 5250 5251
5252 5253 5254 5255 5256 5257 5260 5261 5262 5263
5264 5265 5266 5267 5270 5271 5272 5273 5274 5275
5276 5277 5300 5301 5302 5303 5304 5305 5306 5307
5310 5311 5312 5313 5314 5315 5316 5317 5320 5321
5322 5323 5324 5325 5326 5327 5330 5331 5332 5333
5334 5335 5336 5337 5340 5341 5342 5343 5344 5345
5346 5347 5350 5351 5352 5353 5354 5355 5356 5357

T of 11

DECIMAL-TO-OCTAL CONVERSION TABLE

Decimal: 2800 through 3199
Octal: 5360 through 6177

UNITS
0 1 2 3 4 5 6 7 8 9
28 0 5360 5361 5362 5363 5364 5365 5366 5367 5370 5371
1 5372 5373 5374 5375 5376 5377 5400 5401 5402 5403
2 5404 5405 5406 5407 5410 5411 5412 5413 5414 5415
3 5416 5417 5420 5421 5422 5423 5424 5425 5426 5427
4 5430 5431 5432 5433 5434 5435 5436 5437 5440 5441
TENS 5 5442 5443 5444 5445 5446 5447 5450 5451 5452 5453
6 5454 5455 5456 5457 5460 5461 5462 5463 5464 5465
7 5466 5467 5470 5471 5472 5473 5474 5475 5476 5477
8 5500 5501 5502 5503 5504 5505 5506 5507 5510 5511
9 5512 5513 5514 5515 5516 5517 5520 5521 5522 5523
29 0 5524 5525 5526 5527 5530 5531 5532 5533 5534 5535
1 5536 5537 5540 5541 5542 5543 5544 5545 5546 5547
2 5550 5551 5552 5553 5554 5555 5556 5557 5560 5561
3 5562 5563 5564 5565 5566 5567 5570 5571 5572 5573
4 5574 5575 5576 5577 5600 5601 5602 5603 5604 5605
TENS 5 5606 5607 5610 5611 5612 5613 5614 5615 5616 5617
6 5620 5621 5622 5623 5624 5625 5626 5627 5630 5631
7 5632 5633 5634 5635 5636 5637 5640 5641 5642 5643
8 5644 5645 5646 5647 5650 5651 5652 5653 5654 5655
9 5656 5657 5660 5661 5662 5663 5664 5665 5666 5667
30 0 5670 5671 5672 5673 5674 5675 5676 5677 5700 5701
1 5702 5703 5704 5705 5706 5707 5710 5711 5712 5713
2 5714 5715 5716 5717 5720 5721 5722 5723 5724 5725
3 5726 5727 5730 5731 5732 5733 5734 5735 5736 5737
TENS 4 5740 5741 5742 5743 5744 5745 5746 5747 5750 5751
5 5752 5753 5754 5755 5756 5757 5760 5761 5762 5763
6 5764 5765 5766 5767 5770 5771 5772 5773 5774 5775
7 5776 5777 6000 6001 6002 6003 6004 6005 6006 6007
8 6010 6011 6012 6013 6014 6015 6016 6017 6020 6021
9 6022 6023 6024 6025 6026 6027 6030 6031 6032 6033
31 0 6034 6035 6036 6037 6040 6041 6042 6043 6044 6045
1 6046 6047 6050 6051 6052 6053 6054 6055 6056 6057
2 6060 6061 6062 6063 6064 6065 6066 6067 6070 6071
3 6072 6073 6074 6075 6076 6077 6100 6101 6102 6103
TENS 4 6104 6105 6106 6107 6110 6111 6112 6113 6114 6115
5 6116 6117 6120 6121 6122 6123 6124 6125 6126 6127
6 6130 6131 6132 6133 6134 6135 6136 6137 6140 6141
7 6142 6143 6144 6145 6146 6147 6150 6151 6152 6153
8 6154 6155 6156 6157 6160 6161 6162 6163 6164 6165
9 6166 6167 6170 6171 6172 6173 6174 6175 6176 6177

8 of 11

DECIMAL-TO-OCTAL CONVERSION TABLE

Decimal: 3200 through 3599
Octal: 6200 through 7017

UNITS
0 1 9 3 4 5 6 7 8 9
32 0 6200 6201 6202 6203 6204 6205 6206 6207 6210 6211
1 6212 6213 .6214 6215 6216 6217 6220 6221 6222 6223
2 6224 6225 6226 6227 6230 6231 6232 6233 6234 6235
3 6236 6237 6240 6241 6242 6243 6244 6245 6246 6247
TENS 4 6250 6251 6252 6253 6254 6255 6256 6257 6260 6261
5 6262 6263 6264 6265 6266 6267 6270 6271 6272 6273
6 6274 6275 6276 6277 6300 6301 6302 6303 6304 6305
7 6306 6307 6310 6311 6312 6313 6314 6315 6316 6317
8 6320 6321 6322 6323 6324 6325 6326 6327 6330 6331
9 6332 6333 6334 6335 6336 6337 6340 6341 6342 6343
33 0 6344 6345 6346 6347 6350 6351 6352 6353 6354 6355
1 6356 6357 6360 6361 6362 6363 6364 6365 6366 6367
9 6370 6371 6372 6373 6374 6375 6376 6377 6400 6401
3 6402 6403 6404 6405 6406 6407 6410 6411 6412 6413
4 6414 6415 6416 6417 6420 6421 6422 6423 6424 6425
TENS 5 6426 6427 6430 6431 6432 6433 6434 6435 6436 6437
6 6440 6441 6442 6443 6444 6445 6446 6447 6450 6451
7 6452 6453 6454 6455 6456 6457 6460 6461 6462 6463
8 6464 6465 6466 6467 6470 6471 6472 6473 6474 6475
9 6476 6477 6500 6501 6502 6503 6504 6505 6506 6507
34 0 6510 6511 6512 6513 6514 6515 6516 6517 6520 6521
1 6522 6523 6524 6525 6526 6527 6530 6531 6532 6533
2 6534 6535 6536 6537 6540 6541 6542 6543 6544 6545
3 6546 6547 6550 6551 6552 6553 6554 6555 6556 6557
TENS 4 6560 6561 6562 6563 6564 6565 6566 6567 6570 6571
5 6572 6573 6574 6575 6576 6577 6600 6601 6602 6603
6 6604 6605 6606 6607 6610 6611 6612 6613 6614 6615
7 6616 6617 6620 6621 6622 6623 6624 6625 6626 6627
8 6630 6631 6632 6633 6634 6635 6636 6637 6640 6641
9 6642 6643 6644 6645 6646 6647 6650 6651 6652 6653
35 0 6654 6655 6656 6657 6660 6661 6662 6663 6664 6665
1 6666 6667 6670 6671 6672 6673 6674 6675 6676 6677
2 6700 6701 6702 6703 6704 6705 6706 6707 6710 6711
3 6712 6713 6714 6715 6716 6717 6720 6721 6722 6723
TENS 4 6724 6725 6726 6727 6730 6731 6732 6733 6734 6735
5 6736 6737 6740 6741 6742 6743 6744 6745 6746 6747
6 6750 6751 6752 6753 6754 6755 6756 6757 6760 6761
7 6762 6763 6764 6765 6766 6767 6770 6771 6772 6773
8 6774 6775 6776 6777 7000 7001 7002 17003 7004 7005
9 7006 7007 7010 7011 7012 7013 7014 7015 7016 7017

9 of 11

DECIMAL-TO-OCTAL CONVERSION TABLE

Decimal: 3600 through 3999
Octal: 7020 through 7637

UNITS
0 1 2 3 4 5 6 7 8 9
36 0 7020 7021 7022 7023 7024 7025 7026 7027 7030 7031
1 7032 7033 7034 7035 7036 7037 7040 7041 7042 7043
2 7044 7045 7046 7047 7050 7051 7052 7053 7054 7055
3 7056 7057 7060 7061 7062 7063 17064 7065 7066 7067
4 7070 7071 7072 7073 7074 7075 7076 7077 7100 7101
TENS 5 7102 7103 7104 7105 7106 7107 7110 7111 7112 7113
6 7114 7115 7116 7117 7120 7121 7122 7123 7124 7125
7 7126 7127 7130 7131 7132 7133 7134 7135 7136 7137
8 7140 7141 7142 7143 7144 7145 7146 7147 7150 7151
9 7152 7153 7154 7155 7156 7157 7160 7161 7162 7163
37 0 7164 7165 7166 7167 7170 7171 7172 7173 7174 7175
1 7176 7177 7200 7201 7202 7203 7204 7205 7206 7207
2 7210 7211 7212 7213 7214 7215 7216 7217 7220 7221
3 7222 7223 7224 7225 7226 7227 7230 7231 7232 7233
TENS 4 7234 7235 7236 7237 7240 7241 7242 7243 7244 7245
5 7246 7247 7250 7251 7252 7253 7254 7255 7256 7257
6 7260 7261 7262 77263 7264 7265 77266 7267 7270 7271
7 7272 1273 7274 1275 1276 7277 7300 7301 7302 7303
8 7304 7305 7306 7307 7310 7311 7312 7313 7314 7315
9 7316 7317 7320 7321 7322 7323 7324 7325 7326 7327
38 0 7330 7331 7332 7333 7334 7335 7336 7337 7340 7341
1 7342 7343 7344 7345 7346 7347 7350 7351 7352 7353
9 7354 7355 7356 7357 7360 7361 7362 7363 7364 7365
3 7366 17367 7370 7371 7372 7373 7374 7375 736 7377
4 7400 7401 7402 7403 7404 7405 7406 7407 7410 7411
TENS 5 7412 7413 7414 7415 7416 T417 7420 7421 7422 7423
6 7424 7425 7426 7427 7430 7431 7432 7433 7434 7435
7 1436 7437 7440 7441 7442 7443 7444 7445 7446 7447
8 7450 7451 7452 7453 7454 7455 7456 7457 7460 7461
9 7462 7463 7464 77465 7466 7467 7470 7471 7472 7473
39 0 7474 7475 7476 7477 7500 7501 7502 7503 7504 7505
1 7506 7507 7510 7511 7512 7513 7514 7515 7516 7517
9 7520 7521 7522 7523 7524 7525 7526 7527 7530 7531
3 7532 7533 7534 7535 7536 7537 7540 7541 7542 7543
4 7544 7545 7546 7547 7550 7551 7552 7553 7554 7555
TENS 5 7556 17557 7560 7561 77562 7563 7564 7565 7566 7567
6 7570 77571 7572 7573 7574 7575 7576 7577 7600 7601
7 7602 7603 7604 7605 7606 7607 7610 7611 7612 7613
8 7614 7615 7616 71T 7620 7621 7622 7623 7624 7625
9 7626 7627 7630 7631 7632 7633 7634 7635 7636 7637

10 of 11

DECIMAL-TO-OCTAL CONVERSION TABLE

Decimal: 4000 through 4096
Octal: 7640 through 10000

UNITS
0 1 2 3 4 5 6 7 8 9
40 7640 7641 7642 7643 7644 7645 7646 7647 7650 7651
7652 7653 7654 7655 7656 7657 7660 7661 7662 7663
7664 7665 7666 7667 7670 7671 7672 7673 7674 1675
7676 7677 7700 7701 7702 7703 7704 7705 7706 7707
TENS 7710 7711 7712 7713 7714 71715 7716 7717 7720 7721

7722 7723 7724 7725 7726 1727 7730 7731 7732 7733
7134 7735 7736 1737 1740 7741 7742 M43 1744 1745
7746 7747 7750 7751 7752 7753 7754 7755 7756 7757
7760 7761 7762 7763 7764 7765 7766 71767 7770 7771
772 773 774 TTT5 0 1776 1777 10000

O© 0D U WO

11 of 11

OCTAL TO TO DECIMAL FRACTION CONVERSION TABLE

Octal: 0.000400 through 0.000777

OCTAL 0 1 2 3 4 5 6 7
.00040 .000976 .000980 .000984 .000988 .000991 .000995 .000999 .001003
.00041 .001007 .001010 .001014 .001018 .001022 .001026 .001029 .001033
.00042 .001037 .001041 .001045 .001049 .001052 .001056 .001060 .001064
.00043 .001068 .001071 .001075 .001079 .001083 .001087 .001091 .001094 -
.00044 .001098 .001102 .001106 .001110 .001113 .001117 .001121 .001125
.00045 .001129 .001132 .001136 .001140 .001144 .001148 .001152 .001155
.00046 .001159 .001163 .001167 .001171 .001174 .001178 .001182 .001186
.00047 .001190 .001194 .001197 .001201 .001205 .001209 .001213 .001216
.00050 .001220 .001224 .001228 .001232 .001235 .001239 .001243 ~ .001247
.00051 .001251 .001255 .001258 .001262 .001266 .001270 .001274 .001277
.00052 .001281 .001285 .001289 .001293 .001296 .001300 .001304 .001308
.00053 .001312 .001316 .001319 .001323 .001327 .001331 .001335 .001338
.00054 .001342 .001346 .001350 .001354 .001358 .001361 .001365 .001369
.00055 .001373 .001377 .001380 .001384 .001388 .001392 .001396 .001399
.00056 .001403 .001407 .001411 .001415 .001419 .001422 .001426 .001430
.00057 | .001434 .001438 .001441 .001445 .001449 .001453 .001457 .001461
.00060 .001464 .001468 .001472 .001476 .001480 .001483 .001487 - .001491
.00061 .001495 .001499 .001502 .001506 .001510 .001514 .001518 .001522
.00062 .001525 .001529 .001533 .001537 .001541 .001544 .001548 .001552
.00063 .001556 .001560 .001564 .001567 .001571 = .001575 .001579 .001583
.00064 .001586 .001590 .001594 .001598 .001602 .001605 .001609 .001613
.00065 .001617 .001621 .001625 .001628 .001632 .001636 .001640 .001644
.00066 .001647 .001651 .001655 .001659 .001663 .001667 .001670 .001674
.00067 .001678 .001682 .001686 .001689 .001693 .001697 .001701 .001705
.00070 .001708 .001712 .001716 .001720 .001724 .001728 .001731 .001735
.00071 .001739 .001743 .001747 .001750 .001754 .001758 .001762 .001766
.00072 001770 .001773 .001777 .001781 .001785 .001789 .001792 .001796
.00073 .001800 .001804 .001808 .001811 .001815 .001819 .001823 .001827
.00074 .001831 .001834 .001838 .001842 .001846 .001850 .001853 .001857

.00075 .001861 .001865 .001869 .001873 .001876 .001880 .001884 .001888
.00076 .001892 .001895 .001899 .001903 .001907 .001911 001914 .001918
.00077 .001922 .001926 .001930 .001934 .001937 .001941 .001945 .001949

-1 of 4

OCTAL-TO-DECIMAL FRACTION CONVERSION TABLE

Octal: 0.000000 through 0.000377

OCTAL 0 1 2 3 4 5 6 7

.00000 | .000000 .000003 .000007 .000011 .000015 .000019 .000022 .000026
.00001 | .000030 .000034 .000038 .000041 .000045 .000049 .000053 .000057
.00002 | .000061 .000064 .000068 .000072 .000076 .000080 .000083 .000087
.00003 | .000091 .000095 .000099 .000102 .000106 .000110 .000114 .000118
.00004 | .000122 .000125 .000129 .000133 .000137 .000141 .000144 .000148
.00005 | .000152 .000156 .000160 .000164 .000167 .000171 .000175 .000179
.00006 | .000183 .000186 .000190 .000194 .000198 .000202 .000205 .000209
.00007 | .000213 .000217 .000221 .000225 .000228 .000232 .000236 .000240
.00010 | .000244 .000247 .000251 .000255 .000259 .000263 .000267 .000270
.00011 | .000274 .000278 .000282 .000286 .000289 .000293 .000297 .000301
.00012 | .000305 .000308 .000312 .000316 .000320 .000324 .000328 .000331
.00013 | .000335 .000339 .000343 .000347 .000350 .000354 .000358 .000362
.00014 | .000366 .000370 .000373 .000377 .000381 .000385 .000389 .000392
.00015 | .000396 .000400 .000404 .000408 .000411 .000415 .000419 .000423
.00016 | .000427 .000431 .000434 .000438 .000442 .000446 .000450 .000453
.00017 | .000457 .000461 .000465 .000469 .000473 .000476 .000480 .000484
.00020 | .000488 .000492 .000495 .000499 .000503 .000507 .000511 .000514
.00021 | .000518 .000522 .000526 .000530 .000534 .000537 .000541 .000545
.00022 | .000549 .000553 .000556 .000560 .000564 .000568 .000572 .000576
.00023 | .000579 .000583 .000587 .000591 .000595 .000598 .000602 .000606
.00024 | .000610 .000614 .000617 .000621 .000625 .000629 .000633 .000637
.00025 | .000640 .000644 .000648 .000652 .000656 .000659 .000663 .000667
.00026 | .000671 .000675 .000679 .000682 .000686 .000690 .000694 .000698
.00027 | .000701 .000705 .000709 .000713 .000717 .000720 .000724 .000728
.00030 | .000732 .000736 .000740 .000743 .000747 .000751 .000755 .000759
.00031 | .000762 .000766 .000770 .000774 .000778 .000782 .000785 .000789
.00032 | .000793 .000797 .000801 .000805 .000808 .000812 .000816 .000820
.00033 | .000823 .000827 .000831 .000835 .000839 .000843 .000846 .000850
.00034 | .000854 .000858 .000862 .000865 .000869 .000873 .000877 .000881
.00035 | .000885 .000888 .000892 .000896 .000900 .000904 .000907 .000911
.00036 | .000915 .000919 .000923 .000926 .000930 .000934 .000938 .000942
.00037 | .000946 .000949 .000953 .000957 .000961 .000965 .000968 .000972

2 0of 4

OCTAL-TO-DECIMAL FRACTION CONVERSION TABLE

Octal: 0.400 through 0.777

4

OCTAL 0 1 2 3 5 6 7
.40 .50000 .50195 .50391 .50586 .50781 .509717 51172 .51367
.41 .51563 .51'758 .51953 .52148 .52344 .52539 .52734 .52830
.42 53125 .53320 .53516 .53711 .53906 .54102 .54297 .54492
.43 .54688 .54883 .55078 .55273 .55469 .55664 .55859 .56055
.44 .56250 .56445 .56641 .56836 .57031 57227 57422 57617
.45 .57813 .58008 .58203 .58398 .58594 .58789 .58984 .59180
.46 .59375 .59570 .59766 .59961 .60156 .60352 .60547 .60742
47 .60938 .61133 .61328 .61523 .61719 .61914 .62109 .62305
.50 .62500 .62695 .62891 .63086 .63281 .63477 .63672 .63867
.51 .64063 .64258 .64453 .64648 .64844 .65039 .65234 .65430
.52 .65625 .65820 .66016 .66211 .66406 .66602 .66797 .66992
.53 .67188 .67383 .67578 67773 .67969 .68164 .68359 .68555
.54 .68750 .68945 .69141 .69336 .69531 .69727 .69922 .70117
.55 70313 .70518 .70703 .70898 71094 .71289 71484 .71680
.56 .71875 712070 72266 .72461 .712656 12852 .73047 713242
.57 .73438 73633 .73828 .74023 .74219 74414 .74609 .74805
.60 .715000 .75195 .75391 15586 15781 159717 16172 .16367
.61 .76563 716758 .716953 17148 17344 L7539 17734 .17930
.62 .18125 .78320 .78516 .78711 .78906 .79102 .719297 .79492
.63 .79688 .79883 .80078 .80273 . .80469 .80664 .80859 .81055
.64 .81250 .81445 .81641 .81836 .82031 .82227 .82422 .82617

-..65 .82813 .83008 .83203 .83398 .83594 .83789 .83984 .84180
.66 .84375 .84570 .84766 .84961 .85156 .85352 .85547 .85742
.67 .85938 .86133 .86328 .86523 .86719 .86914 .87109 .87305
.70 .87500 .87695 .87891 .88086 .88281 .8841717 .88672 .888617
.1 .89063 .89258 .89453 .89648 .89844 .90039 .90234 .90430
.72 .90625 .90820 .91016 91211 .91406 .91602 91797 .91992
13 .92188 .92383 .92578 92773 .92969 .93164 .93359 .93555
.74 .93750 .93945 .94141 .94336 .94531 94727 .94922 .95117
.15 .95313 .95508 .95703 .95898 .96094 .96289 .96484 .96680
.16 .96875 .97070 97266 .97461 .97656 .97852 .98047 .98242
17 .08438 .98633 .08828 .99023 .99219 .99414 .99609 .99805

3of4

OCTAL-TO-DECIMAL FRACTION CONVERSION TABLE

- Octal: 0.000 through 0.377

OCTAL 0 1 2 3 4 5 6 7
.00 .000000 .001953 .003906 .005859 .007812 .009765 .011718 .013671
.01 015625 017578 .019531 .021484 .023437 .025390 .027343 .029296
02 .031250 .033203 .035156 .037109 .039062 .041015 .042968 .044921
.03 .046875 048828 .050781 .052734 054687 056640 .058593 .060546
.04 .062500 .064453 .066406 .068359 .070312 .072265 .074218 .076171
.05 1.078125 .080078 .082031 .083984 .085937 .087890 .089843 .091796
.06 .093750 .095703 .097656 .099609 .101562 .103515 .105468 .107421
.07 109375 111328 .113281 .115234 117187 .119140 .121093 .123046
.10 125000 .126953 .128006 .130859 .132812 .134765 .136718 .138671
11 140625 .142578 144531 .146484 .148437 .150390 .152343 .154296
12 .156250 .158203 .160156 .162109 .164062 .166015 .167968 .169921
13 171875 173828 .175781 177734 .179687 .181640 .183593 .185546

14 187500 189453 .191406 .193359 195312 .197265 .199218 .201171
15| .203125 .205078 .207031 .208984 .210937 .212890 .214843 .216796
16 218750 .220703 .222656 .224609 .226562 .228515 .230468 .232421
117 234375 .236328 .238281 .240234 .242187 .244140 .246093 .248046
20 .250000 251953 .253906 .255859 .257812 .259765 .261718 .263671
21 265625 267578 .269531 .271484 .273437 .275300 277343 .279296
22 281250 .283203 .285156 .287109 .289062 .291015 .292068 .294921
23 .296875 .208828 .300781 .302734 .304687 .306640 .308593 .310546
24 312500 314453 316406 318359 .320312 .322265 .324218 326171
25 328125 .330078 .332031 .333984 .335037 .337890 .339843 .341796
26 343750 345703 .347656 .340600 351562 .343515 .355468 .357421
217 359375 361328 363281 .365234 367187 .369140 .371003 .373046
.30 375000 | .376953 .378906 .380850 .382812 384765 .386718 388671
.31 390625 392578 .394531 .396484 308437 .400300 402343 404206

.32 .406250 .408203 .410156 412100 414062 416015 .417968 .419921

.33 - .421875 423828~ 425781 427734 429687 .431640 .433593 .435546
.34 | 437500 430453 441406 443350 445312 447265 .449218 451171
.35 | 453125 455078 457031 .458984 .460937 462890 464843 466796
.36 468750 470703 .472656 .474609 .476562 .478515 .480468 .482421
.37 486328 494140 496093 .498046

484375

488281

490234

4‘iof,;1'

.492187

S

o v et

