

PROGRAMING MANUAL
FOR

1230 COMPUTER
(15 BIT MODE)

PX 3892

FEBRUARY 1966

UN.IVAC
OIVISION OF SPERRY RANO CORPORATION

Copyright © 1965 by the Sperry Rand Corporation. Printed in the United States of America.

All rights reserved. This book, or parts thereof, may not be reproduced in any form without

permission of the Sperry Rand Corporation.

PDtIEJr AClE

In accord with UNIVAC's policy of maintaining compatibility in its computer designs,

thus minimizing transition time and costs as users upgrade and expand their sys­

tems, the 1230 Computer has been designed to operate with CP-642B Software and

operational programs. Mechanically, this is accomplished through the setting of a

console switch to operate the computer in the 15-bit mode.

When operating the 1230 in 15-bit mode additional instructions are available which

are not included with the standard CP-642B and, significantly, instruction execution

times are at least twice as fast.

Improvements in the 1230 include:

o Twice as fast execution times of instructions

o Continuous data mode data transfers

o Externally specified index

o Externally specified address

o 128 or 256 (as opposed to 64 in the CP-642B) word thin film control memory

o Overlapping memory banks

Any reference to "the computer" in this manual refers to the UNIVAC 1230 Com­

puter.

iii

For additional information concerning the 1230 system, refer to the following 1230

manuals:

Compiling System Manual

Operating and Support Manual

PX 3890

PX 3891

iv

CONTENTS

The modular nature of this manual makes a normal table of contents impractical.

Instead, the manual has color-coded index tabs to give an overview of the contents

and provide for easy access to any portion of the manual. Each index tab identifies

the section of the manual that follows it. Where appropriate, individual sections

list the contents of the section. Index tab colors have the following meaning:

Blue index tabs

White index tabs

Silver index tabs

main sections

first level of subsection

second level of subsection

v

COMPUTER CHARACTERISTICS

INTRODUCTION

The UNIVAC 1230 Computer is a compact, medium-scale, military, stored-program machine.

It is a powerful real-time device designed for rapid processing of continuous high-rate,

through-put data. The computer is especially suited for such real-time applications as missile
guidance, range safety, process monitoring, and tactical control and display. Relative to other
general-purpose systems, the computer emphasizes rapid communication between external de­
vices and a large internal random access storage. It is equipped with a 400-nanosecond control

memory operating in synchronism with the 2-microsecond main core memory. The main mem­
ory further enhances the operational speed of the computer by its ability to operate as two
parallel, overlapped banks, thereby producing an effective cycle time of 1 microsecond. This
advanced design feature results in a command execution time as low as 2 microseconds and an
input/output transfer capability of 500,000 30-bit words per second. The computer (complete
with 32K 30-bit words of random access core storage, 128 or 256 words of control memory,
16 input channels and 16 output channels under full buffer and/or real-time control, arithmetic
section, control circuitry, power supply, and operator's or maintenance panel) is packaged in a
ruggedized cabinet occupying less than 60 cubic feet of space.

The computer has in its repertOire 77 instructions that specify basic input/output, arithme­
tic, or logical operation to be performed. Computer operation is fully automatic because the
sequence of operation is determined by a program of internally stored single-address instruc­
tions capable of self-modification. To attain high computing speed, the computer operates in a
parallel mode, i.e., all the digits of a word are operated upon simultaneously. It can process
large quantities of constantly changing complex data at high speeds on a real-time basis. The
basic word is 30 binary digits or bits. Optional operation with 15-bit half words may be used.
A word may be an instruction, number, or an arbitrarily coded quantity. The core memory
cycle time, or the time needed to read and restore 1 word, is 2 microseconds. The readout
time, or the time between a given function assuming control of memory and the delivery of the

data from.memory, is approximately 0.9 microsecond.

The ve"rsatile input/output system of the computer permits it to operate on-line with associated
communications peripheral equipment, other computers, and standard peripheral input/output
equipment on a time -shared basis. Communications with associated peripheral equipment are
handled by block transfer of data or by real-time events requesting one or more words. Once
initiated, neither of these requires further main program attention unless immediate process­
ing is demanded.

The 1230 Computer is designed to operate as a central processor of a system supply­
ing up to 32K words of memory in its main frame or it can, by its addreSSing structure,
command an additional external overlapped bank memory unit that can contain up to five
16,384-word modules of core memory and four additional input/output channels. A multi­

processing capability is a further objective of the design since two 1230 Computers may be

1 of 49

connected to the external memory unit, each having access to the overlapped memory modules
and the four input/output channels on a time shared basis. (See Figure 1.)

Thus, each of the 1230 Computers has access to its own dual bank core memory and anyone of
the five memory modules of the external memory at any time. Logical memory lockout and
priority is provided to prevent interference.

COMPUTER FEATURES

TYPE

General-purpose, medium-scale, solid-state, parallel, binary

MEMORY

Main Memory-Main Frame

Magnetic core - random access

• 2 overlapped banks
• 0.9 microsecond read access time, coincident current
• 2.0 microsecond read-write cycle time (effectively 1 microsecond)
• 30-bit word length, parallel transfers
• 32,608 directly addressable, half or full word operands

Certain loc,ations are assigned in the first 653 addresses for the Interrupt Entrance registers

Control Memory

Word oriented magnetic thin film

•
•
•
•

400-nanosecond cycle time
30-bit word length, parallel transfers
128 words, directly addressable, half or full word operands
256 words, optional

Directly addressable as cells 00100 to 00277 or 00477; used for storage of buffer control
words, 7 index registers, and the real-time clock; operates independently and concurrently
with main memory

2 of 49

.......

OPTIONAL EXTERNAL MEMORY
ES1 NOT AVAILABLE
ESA ON ALL 4 CHANNELS ~ <t
COM ON CHANNEL 3 ONLY

4
4 INPUT

CHANNELS 4-

4-
4 OUTPUT
CHANNELS ~

I I
I I

~-- ---b-I-
r----~

ESI} ALL ESI}
ESA CHANNELS ESA ALL

C..:l I COM COM CHANNELS

0
1-1)

~ .. 14-.

~
co

CONTROL 16 OUTPUT

CHANNELS CHANNELS

16 INPUT 16 INPUT
CHANNELS CHANNELS

UNIVAC 1230 COMPUTER A UNIVAC 1230 COMPUTER B

a....

Figure 1. Dual Computer Configuration

NORO Memory

Word oriented transformer cores

• 300-nanosecond read time
• 30-bit word length, parallel transfers

• 2 32-word memories

Two nondestructive memories provided for initial 10 ad/ error recovery purposes; selected by
switch at the console; addressable as cells 540-577

ARITHMETIC

Organization

30-bit parallel, one's complement integer binary

Registers

Two 30-bit registers, addressable as A and Q, may be linked as one 60-bit register

Functions

• Arithmetic operations include add, subtract, multiply, divide, and square root

• Fifteen logical operations

Instruction Execution Timing (including indexing)

• Add, subtract, logical - 2 to 4 microseconds
• Multiply - 8 microseconds
• Divide - 14 microseconds
• Square root - 8 microseconds
• Compare, mask compare, and branch - 2 to 4 microseconds
• Register shifts - 2 to 4 microseconds (maximum)

CONTROL

• Single address instruction organization
• Branching according to six algebraic conditions of A and Q available on most instruc­

tions
• Control memory operates in the shadow of main memory and normally does not add

to execution time

4 of 49

o Half-word addressing
o' Address modification via seven thin-film-memory-contained index registers

• Sequential execution of instructions
o Provides timing and addressing structure for internal and external core memory

references

IN PUT /OUTPUT

Channels

Sixteen input and 16 output channels provide input/output transfers under full buffer control,
do not require program attention, and operate asynchronously at the rate required by external

devices. Words located in the Control Memory guide data transfers which require only two
microseconds of main memory time for each 30-bit word transferred in or out.

Intercomputer Transfers

Thirty-bit parallel data transfers allow direct communication with UNIVAC CP-642A, CP-642B,
1218, 1219, CP-667, and other compatible computers.

Transfer Rate

(Fast Interface) One channel - 166,667 30-bit words per second (maximum)

3 or more channels - 500,000 30-bit words per second (maximum)
(Slow Interface) One channel - 41,666 30-bit words per second (maximum)

Multichannel - 333,333 30-bit words per second (maximum)

Real-Time Clock

Internal, 1024 cps, with a provision for external substitution

Interrupts

Eighty-one unique interrupts are provided as follows:

• 1 Fault Interrupt
• 16 External Interrupts (one per channel)
• 16 External Function Monitor Interrupts (one per channel)
• 16 Output Monitor Interrupts (one per channel)
• 16 Input Monitor Interrupts (one per channel)
• 16 Intercomputer Timeout Interrupts (one per channel)

5 of 49

Priority

Priority of interrupts is determined according to channel, with a subpriority evaluation in case
of ties according to function in the order listed above.

Input/Output Control

Ten basic program instructions are devoted to the control of input/output, providing positive
control and a high degree of sophistication in programing.

Continuous Data Mode (COM)

This feature allows automatic reinitiation of previously established buffers under program con­
trol. The termination of the buffer is also program controlled.

Externally Specified Addressing (ESA)

This feature enables a data word to be stored or read from an address directly specified by
an external device.

Externally Specified Indexing (ESI)

ESI is used to transfer data words, indirectly specified by the external device; that is, the ex­
ternal device specifies the address of the buffer control words for this particular transfer.

6 of 49

ORGANIZATION

Internal storage of the computer main frame consists of two.~-word, ferrite-core main
memory banks operating simultaneously. A complete cycle for storage or retrieval of two 30-
bit words requires two microseconds. An additional storage area, designated as control mem­
ory, provides 128 addressable locations with a read/restore cycle time of 400 nanoseconds.

Single address instructions are employed, most of which have an execution time of four to six

microseconds when programed in a 3ingle bank; two to four microseconds when the dual
banks feature is utilized.

Arithmetic and logical operations are performed in the parallel binary mode. For most oper­
ations, the result appears in a 30-bit accumulator register. Arithmetic is one's complement,
subtra~tive with a modulus (230_1). Computer operation is controlled by a stored program
capable of self-modification. Each program instruction contains a function code (6 bits), an
instruction operand designator (13 or 15 bits), and three or four execution modifiers (2,3, or 4
bits). Execution modifiers provide for branch point designation, operand interpretation, input/
output channel, minor function, address modification, or memory bank designation. The oper­
and designator may be a simple constant that mayor may not be modified by the contents of an
index register, or it may be a partial execution address extended as dictated by the memory
bank designator with or without index modification. The operand specified by the execution ad­
dress may be interpreted as a 30-bit quantity or as a 15-bit half word with or without sign
extension. The next sequential program step may be skipped if the arithmetic, logical or key
position condition specified by the branch condition designator is met.

The 1230 Computer can be operated within its 32K internal memory as a CP-642B Computer in
which case the Special Registers are ignored or it can be operated with the full capabilities of
the 1230 thereby extending its memory addreSSing capacity to a maximum of 114K words.

Communications between the computer and its associated external equipment are normally
accomplished by a buffered transfer of data, with timing under control of the external device.
Operating asynchronously with the main computer program, such transfers of data have inde­
pendent access to storage. The number of data words transferred is under program control by
specifying the first and last memory address in the buffer.

The input/output section of the computer is capable of communicating with other UNIVAC Mili­
tary Computers and with other military and commercial peripheral equipment.

A communication path is established by a sequence of request and acknowledge Signals between
external equipment and computer. The communication may be initiated by either the computer
or the external device. External request signals interrupt the main computer program and
cause the computer to establish a communications channel between the external equipment and

7 of 49

the computer core memory. Once the communication line has been created, the computer re­
turns to the main program sequence, and transfer of input or output data proceeds without pro­
gram reference until completed.

Up to 16 input and 16 output channels are provided in the computer main frame; each channel
consists of 30 parallel data lines plus control lines.

• Any input/output channel is capable of communicating with either another compu­
ter, or by changing printed circuit jumper cards, with peripheral equipment. (Either
fast or slow interface may be used, depending upon the type of I/O amplifiers plugged

into the chassis.)

A group of four channels may be converted from fast to slow interface and vice versa by sim­

ply changing plug-in, printed circuit cards within the channel circuitry.

In addition to data words, output channels carry external function words to the external equip­

ment. These words specify the function that the external device is to perform. Control of the
external function transfer is accomplished in the buffer mode. This feature allows the compu­
ter to continue engaging an external device after completion of each function. An external

function word to a tape control unit, for example, may specify Rewind Tape Unit 2 . When
Tape Unit 2 has informed the computer that the operation has been initiated, the computer
can respond by transmitting another external function word, for example, Write on Tape
Unit 1 without program interruption.

Transfers of input and output data are controlled by priority and access control logic. The
computer is designed to give first priority to channels and secondary priority to function. By
circuit card placement, it is possible to assign a priority to any chassis of four channels, and
then to the channels in that chassis. In this new method it is possible to assign top selection to

any channel and varying degrees of lesser priority to the other channels.

The descending order of function priority is as follows:

• Advance Real-Time Clock

• External Interrupt

• External Function Request

• Output Request

• Input Request

8 of 49

• Intercomputer Monitor Interrupt

• External Function Monitor Interrupt

• Output Monitor Interrupt

• Input Monitor Interrupt

CONTROL SECTION

The Control Section (see Figure 2) consists of those registers and circuits necessary to pro­
cure, modify, and execute the instructions of the program.

The U register (30 bits) is the program control register. It holds the instruction word during
execution of an instruction. The function code and the various execution modifiers are trans­
lated from appropriate sections of the register. The lower order 13 or 15 bits of the U register
have additional properties, modulus 215 _1 or 217_1.

The 17 -bit Rand B registers in the control section are nonaddressable communications

registers which work in conjunction with the Special Registers, the P register, the U L register,
and the Control and nondestructive readout (NDRO) memories. The B register supplies the in­
dexing value taken from the control memory index registers (B l through B7 to the control
adder while the R register supplies the natural or assembled extended y address. During input
or output transfers, the Rand B registers are used in address extension, comparison, and
incre mentation.

The 17 -bit B registers, Bl through B7, store the quantities used for U L modification. These
B registers, also called index registers, occupy the lower 17 bits of control memory addresses
(161-167) in the expanded memory mode and the lower 15 bits in the 32K memory mode.

The P register (17 bits) holds the memory address of a computer instruction word--that of the
current instruction at the beginning of the instruction sequence which is incremented to the ad­
dress of the next sequential instruction.

The S registers (14 bits) hold the storage addresses during main memory references. At the
beginning of a memory cycle period, the address is transferred to the S register involved for

the particular 16K module. The contents of the appropriate S register is then translated to
activate the storage selection system.

9 of 49

I----L
o
o
I-+)

~
CO

CH
14-17

CH
10-13

CH
4-7

CH
0-3

~---------------------,
I EXTERNAL MEMORY UNIT I

)E I
I

ADDER-+ SEL

p~ 5

Figure 2. Simplified Block Diagram of 1230 Computer

The SO-register (eight bits) acts in the same manner as an S-register except that it holds the

address for control memory and NDRO memory during the memory cycle time.

The K registers function as shift control and counter registers for all arithmetic operations
that involve shifts. Other instructions employing the K registers are multiply, divide, and

square root.

ARITHMETIC SECTION

The arithmetic section performs numeric and logical calculations. Although greatly simplified,

Figure 6 is a block diagram of the 1230 Computer.

The A register (30 bits) may be considered for programing purposes, as a conventional
accumulator. Because of the logic employed, however, the A register is actually only the main
rank of the accumulator; the D register serves as a second rank.

The add operation is typical of the relationship between the A and D registers: the augend and
addend are initially contained in the A and D registers. Before the addition is performed, the

contents of the A register are transmitted to the X register. The values of X and D are com­
bined by the add network to form the sum of the two numbers in a parallel manner and placed

in the A register.

The Q register (30 bits) is used prinCipally during multiply and divide operations. The contents
of both A and Q may be shifted left or right, either individually or as one double-length, 60-bit

word.

The X , D , and W registers are 30-bit, nonaddressable registers. These registers are used
primarily for the exchange of data within the arithmetic section and for communicating with
the remaining sections of the computer. The W register is not displayed on the control panel
of the computer; the A , Q , X , and D registers have indicators which allow the operator to
inspect the contents of these registers during debugging and maintenance operations. The A

and Q registers are addressable arithmetic registers.

STORAGE SECTION

The storage section consists of three basic memories:

• Main storage section constructed of modular arrays of ferrite cores

• Control memory constructed from magnetic thin-film elements

• Bootstrap memory, a nondestructive readout type, which utilizes the transformer

core type of storage

11 of 49

The main frame storage section has a capacity of 32,768 30-bit words. It is divided into two

16K modules that operate concurrently in time so that two memory references can be made
during each two-microsecond read/restore cycle. The main storage is coincident-current
driven destructive read-out core memory. The Z registers (30 bit) are buffer registers
through which all information to and from core locations must pass. Because of the optional
use of 15-bit half word operand, the Z registers are split into two 15-bit sections termed Z­

upper and Z-lower.

The control memory of 128 30-bit words (256 optional) is a word oriented magnetic thin­

film memory with a read/restore cycle time of 400 nanoseconds. The magnetic thin-film

memory is a fast reliable form of memory. Storage media consist of spots of a Permalloy*

ferromagnetic material, deposited upon a substrate such as a thin glass plate. The geometry

of these spots permits the magnetic state of a spot to be switched in billionths of a second

with only a small amount of power applied. Since these spots have only two stable states of

magnetization, they can readily store binary information.

Of these 128 locations, 104 are special purpose and provide storage for input buffer con­
trol words, output buffer control words, output command buffer control words, the real­
time clock, 7 index registers, and Continuous Data Mode Reload. The other 24 memory
locations are used for data storage. Instructions can be run from the control memory, input/
output transfers can take place to or from this memory, and any operand reference can be
accomplished.

The permanent storage is a nondestructive readout (NDRO) type of memory used in the com­
puter for an initial load routine and automatic program recovery (Le., in bootstrap programs).
This storage area is capable of reading 64 words with a read cycle time of 300 nanoseconds
per word. Either one of the two 32-word bootstrap programs in the NDRO storage may be
selected by a switch. This bootstrap memory may be entered from any point in a program, and
the exit from this memory area requires no special instruction.

The ZO (30 bits) register is the memory buffer register for the control and NDRO memories.

All information read from these memories must pass through this register. All information
stored in the control memory locations must pass through this register. No storage is possible
to NDRO locations.

Table I is a list of the memory address assignments.

*Registered trademark of Western Electric Company

12 of 49

TABLE 1. UNIVAC 1230 MEMORY ADDRESS ASSIGNMENT

Core

Magnetic

Core

Magnetic

Thin

Film

Magnetic

Core

Transformer
Core

Magnetic

Core

Address

00000

00001 - 00017

00020 - 00037

00040 - 00057
00060- 00077

00100 - 00117

00120 - 00137

00140 - 00157

00160

00161 - 00167

00170 - 00177

00200 - 00217
00220 - 00237

00240 - 00257
00260 - 0'0277

00300 - 00477

{
00500 - 00517

00520 - 00537

{
00540 - 00577
00540 - 00577

(

00600 - 00617

00620 - 00653

00654 ~

CONSOLE CONTROL

Function

Fault Entrance

Unassigned

External Interrupt Entrance

Input Monitor Interrupt Entrance

Output Monitor Interrupt Entrance

Input Buffer Control Registers

Output Buffer Control Registers

External Function Buffer Control Registers

Real-Time Clock

B1 through B7 Index Registers
Unassigned Film Locations

ESI Input Buffer Terminate Storage or CDM Reload

ESI Output Buffer Terminate Storage or CDM Reload

ESI EF Buffer Terminate Storage

Unassigned
Unassigned

External Function Monitor Interrupt Entrance

External Interrupt Code Storage

NDRO Bootstrap Program I
NDRO Bootstrap Program II

Intercomputer Time-Out Interrupt Entrance

Memory Unit 4 Channel Interrupt Addresses

Unassigned

The maintenance and control panel located on the upper front of the computer, includes indi­

cator lamps which display a detailed report of the internal status of the computer and controls

to permit manual initiation of various operations. It is not necessary during normal opera­

tions, however, to monitor the maintenance panel or console.

Each register is represented on the maintenance panel by a row of display lamps each of

which can be used to enter a II one II manually into the corresponding bit position, and a clear

button which can be used to enter "zeros" manually into all-bit positions of the register. Many

of the registers are involved only in the mechanics of executing instructions and are not di­

rectly accessible to the program.

13 of 49

INPUT/OUTPUT SECTION

GENERAL

All references to input or output in this discussion are made from the standpoint of the compu­

ter; that is, input is always input to the computer, and output is always output from the computer.

Communication with the 1230 Computer is carried on in a 30-bit, parallel mode over the input/
output channels. Each computer is equipped with 16 channels (numbered 0 through 15). These
channels are assembled on four chassis, each of which contains four identical input/output
channels.

The four C registers (C l' C2, C3, and C4; one for each chassis) hold information for peripheral
equipment during output or external function transfers. Each is 30 bits in length and acts as a
buffer register for four output channels.

Groups of four channels can be provided with a fast or slow interface. The slow interface pro­
vides communications transfers rates of up to a nominal 40K words per channel. The fast
interface will provide transfer rates of up to 166K words per channel and 500K words on three
or more channels.

In the CP-642A Computer, the transfer of input and output data words is asynchronous with the
computer program, but the program maintains synchronous control over the issuance of Exter­
nal Functions. In the 1230 Computer, transmission of External Functions may be handled the
same as data transmission. To utilize this method, the peripheral equipment must set a line
indicating it is capable of accepting a command word from the buffer; therefore, the trans­
mission of the word need not be synchronous with the computer program. Provision has been
made, however, to achieve synchronization of program and input/output control to be compati­
ble with existing peripheral equipment. Transmission of External Functions to equipment not
containing logic for requesting functions (commands) is provided by the Force External Func­
tion instruction.

Externally Specified Index

This outstanding feature provides peripheral devices with a means of specifying core storage
areas in the computer memory for any input or output transfers they may request. The Exter­
nally Specified Index (ESI) mode of operation is useful as a multiplexing device for a number

of slow transfer peripheral units occupying one channel. The buffer control words governing

15 of 49

the transfers are located at the INDEX address. If input is desired, an Input Request is pre­

sented with the Index on the lower order eight bits of the input lines and the data on the remain­

ing bits. If output is desired, an Output Request is presented with the Index address. An active

channel is provided by the program for response to this feature.

Externally Specified Addressing

The ESA feature provides peripheral devices with a means of specifying an absolute core

memory location for storage or retrieval of data. An active channel mode of operation is re­

quired for computer response to this function. The address is presented on the lower 17 bits of

the input lines and the data transmission path on the remaining bits. If input is desired, the

external device presents an Input Request with the address and data. If output is desired, an

Output Request is presented with the address.

Continuous Data Mode

The Continuous Data Mode, requested when initiating a buffer on a channel, by executing

instruction code 7764 or 7765, is a feature which provides an automatic continuation of the

buffer process. Buffer control words are transferred to the control memory buffer control

addresses from the control memory CDM addresses for that channel. These may be re­

loaded during the buffer process. The Monitor Interrupt can be incorporated with the CDM.

Certain instruction codes terminate the CDM. The CDM is especially useful when a continuous,

high rate, stream of data must be transferred in or out of the computer.

CONTROL COMMUNICATION

The 1230 Computer is designed to use a d-c level input/output system. Signals are d-c levels

which may be changed upon interchange of control information. Signals may exist for micro­

seconds or for days, depending upon the nature of the particular task.

DEFINITION OF CONTROL SIGNALS

The control Signals used for input and output operation are defined in Table II, and the lines

which carry them are given the same names. These control lines are carried in the same cables

as the data lines and have the same voltage levels.

16 of 49

TABLE II. CONTROL SIGNALS USED IN INPUT/OUTPUT

Channel Signal Name Origin Meaning

Input Interrupt Enable (IE) Computer "I have enabled my input
Channel section to honor an

Interrupt on your channel "

Input Data Peripheral "I have a data word on my
Request (IDR) Equipment output lines ready for you

to accept "

Input Computer "I have sampled your data
Acknowledge (IA) lines "

External Peripheral "I have an Interrupt code
Interrupt (INT) Equipment word on my output lines

ready for you to accept "

Output Output Data Peripheral "I am in a condition to
Channel Request (ODR) Equipment accept a word of data from

you. "

Output Computer "1 have put a data word for
Acknowledge (OA) you on the data lines; sam-

ple them now. "

External Function Peripheral "I am in a condition to
Request (E FR) Equipment accept an External Function

message on my data lines. "

External Function (E F) Computer "I have put an External
Function message for you
on the data lines; sample
them now. "

COMPUTER-TO-PERIPHERAL EQUIPMENT INTERFACE

Data and Control Signals

Each of the 16 input channels and 16 output channels communicates over an associated cable
(32 possible cables), containing 30 information lines plus four control lines. Table III compares
control line designations in the CP-642A/USQ-20 and the 1230 Computers. The functions of
three of the control lines on each cable are the same as in CP-642A/USQ-20 operation; how­
ever, an additional control signal has been added to implement an improved technique for the
handling of control words between computer and equipment.

17 of 49

Signal
Origin

PE

C
PE

C
C

PE

PE

C

TABLE III. CONTROL SIGNALS IN NORMAL PERIPHERAL
EQUIPMENT CHANNELS

Equivalent Signal
Functional Name (1230) in CP-642A/USQ-20

External Function Request (None)

External Function External Function

Output Data Request Output Data Request
Output Acknowledge Output Acknowledge
Interrupt Enable (None)
Interrupt Interrupt

Input Data Request Input Data Request

Input Acknowledge Input Acknowledge

P E = Peripheral Equipment C = Computer

Sequence of Events

Examples will clarify the use of the control lines. Figure 3 shows the computer communicating
with a peripheral equipment over both input and output cables. Request and Interrupt signals
always originate at the peripheral equipment. Acknowledge and External Function signals
always originate at the computer.

f Output
Cable

Computer
1230 "

".

Input
Cable

-<

l

4

..

-..

..

External equest Function R

rnal Func
Data Requ
Acknowled

t Data (3

Exte
Output
Output

Outpu

Inte

Input

Input

tion
est
ge

o lines)

Ie rrupt Enab

Interrupt
Data Requ est

Acknowled ge
Input Data (30 lines)

..
~

..

•

•

Figure 3. Computer-to-Peripheral Equipment Interface

18 of 49

Peripheral
Equipment

The sequence of events for each of the four cases of communication between the computer and
peripheral equipment is given below.

A normal output sequence for data transfer from computer to peripheral equipment (buffer
mode) is as follows:

a. Program control initiates output buffer for given channel

b. Peripheral equipment sets the Output Request line when it is in a condition to accept
data

c. Computer (at its convenience) detects Output Request and clears the information lines
if any data exist

d. Computer places data on the output information lines

e. Computer sets the Output Acknowledge line, indicating that data are ready for sampling

f. Peripheral equipment detects the Output Acknowledge

g. Peripheral equipment may drop Output Request any time after detecting Output
Acknowledge

h. Peripheral equipment samples the data on the output lines

i. Computer drops Output Acknowledge

steps b. through i. of this sequence are repeated for every data word until the number of words
specified in the output buffer have been transferred.

The following sequence of events occurs when the computer is transmitting External Function
messages to external equipment (buffer mode):

a. Computer initiates External Function buffer for given channel

b. Peripheral equipment sets the External Function Request line indicating that it is in a
condition to accept External Function messages *

*Peripheral equipment not equipped with external function request logic should have the ability
to accept Forced External Functions when in the Idle or Ready state by responding to sequence
steps d., e., f., and h

19 of 49

c. Computer (at its convenience) detects External Function Request and clears the data
lines if any data exist

d. Computer places External Function message on the data lines

e. Computer sets the External Function line indicating that an External Function message
is ready for sampling

f. Peripheral equipment detects the External Function

g. Peripheral equipment may drop the External Function Request any time after detecting
the External Function

h. Peripheral equipment samples the External Function message on the data lines

i. Computer drops the External Function line

steps b. through i. of this sequence are repeated for every External Function message until the
number of words specified in the External Function buffer have been transferred.

Normal input sequence for data transfer to the computer from peripheral equipment is as
follows:

a. Program control initiates input buffer for given channel

b. Peripheral equipment places data word on information lines

c. Peripheral equipment sets the Input Request line to indicate that is has data ready for
transmission

d. Computer detects the Input Request at its convenience

e. Computer samples the information lines

f. Computer sets the Input Acknowledge line, indicating that it has sampled the data

g. Peripheral equipment senses the Input Acknowledge line

h. Peripheral equipment drops the Input Request line

Steps b. through h. of this sequence are repeated for every data word until the number of
words specified in the input buffer have been transferred.

20 of 49

Sequence for transmitting an interrupt from peripheral equipment to the computer is as
follows:

a. Computer sets the Interrupt Enable* when it is ready to accept an External Interrupt**

b. Peripheral equipment detects the Interrupt Enable

c. Peripheral equipment status requires Computer to be interrupted

d. Peripheral equipment places the Interrupt word on the data lines

e. Peripheral equipment sets the Interrupt line to indicate that the Interrupt word is on
the data lines

f. Computer detects the interrupt signal and, at its convenience, accepts the Interrupt
word and sets the Input Acknowledge line

g. Computer drops the Interrupt Enable

h. Peripheral equipment detects, the Input Acknowledge and clears the Interrupt line and
the data lines

The Input Acknowledge of an interrupt will be initiated at the same time that the Interrupt En­
able is cleared. The simultaneous occurrence of these conditions should be used by peripheral
equipment to differentiate between the acknowledge of an Interrupt and an Input Request.

COMPUTER-TO-COMPUTER INTERFACE

Data and Control Signals

Since all input/output channels of the 1230 Computer can be converted to intercomputer commun­
ication channels, it is possible for a computer to communicate with 16 other computers. The
control signals and lines governing intercomputer communication are shown in Figure 4.
Figure 4 illustrates the interface between two computers. Computer A is transmitting to
Computer B. The selection of a given channel as an intercomputer channel affects only the

*Interrupt Enable is set either by a computer Master Clear or by execution of 60000' 00000
or 60100' Y instructions (refer to Appendix)

**Peripheral equipment not equipped with interrupt enable logic may interrupt the program us­
ing sequence steps c., d., e., f., and h

21 of 49

logic concerned with the output and external function buffers. A peripheral channel, which is
sending data or external function messages to a given peripheral equipment, holds the data in
the output registers for a fixed minimum time period; after which any other Output or External
Function Request on any channel can cause the data to be changed. However, intercomputer
channel sending data or External Function messages to another computer must hold the in­
formation in the output registers until the receiving computer acknowledges receipt of those
data. This acknowledge signal is received on what is known as the Output Request line when not
on intercomputer mode. This line, in the intercomputer mode, is known as the Resume line.

r-----J,I --EF Request---"'--Interrupt Enab Ie
-External Function Interrupt

Computer
Output ... too-----Ready Input Data Requ

p

Computer
est .

p > Input
..... t-----Resume ____ oJ.... Input Acknowle dge

"-Output Data (30 Lines) Input Data (30 Lines) ...
Computer A Computer B

Figure 4. Computer-to-Computer Interface

The control signals in the input cable are the same for intercomputer communication as for
communication with peripheral equipment. In the output cable, Ready and Resume signals are
used to control the intercomputer transfer of data.

Sequence of Events

The sequence of events for each of the two cases of intercomputer communication appears

below.

Intercomputer command word transfer from Computer A to Computer B is as follows:

a. Computer B sets the Interrupt Enable when it is ready to accept a command word from
Computer A

b. Computer A recognizes the Interrupt Enable as an External Function Request and places
the External Function code on the information lines

c. Computer A sets the External Function to indicate that the External Function code is
on the information lines

d. Computer B recognizes the External Function as an Interrupt and accepts the command
word at its convenience

e. Computer B clears the Interrupt Enable line and sets the Input Acknowledge line

f. Computer A recognizes the Input Acknowledge as a Resume and clears the External
Function line

22 of 49

NOTE: In the event that Computer A sets the External Function line while the Inter­
rupt Enable line is cleared (this is possible when an External Function with Force
instruction is used), all communications on the associated group of output channels
in A will be suspended until Computer B acknowledges receipt of the External Inter­
rupt or until an intercomputer Time-Out Interrupt in A permits A to resolve the
problem.

Intercomputer data transfer from Computer A to Computer B is as follows:

a. Computer B initiates an input buffer and Computer A initiates an output buffer for the
required channel. The output buffer of Computer A must be less than or equal to the
input buffer of Computer B

b. Computer A places data on the information lines

c. Computer A sets the Ready line to indicate that the data are on the lines

d. Computer B recognizes the Ready signal as an Input Data Request signal and, at its
convenience, accepts the data word

e. Computer B sets the Input Acknowledge

f. Computer A recognizes the Input Acknowledge as a Resume Signal and clears the
Ready line and the data lines

Steps b. through f. of this sequence are repeated for every data word until the number of words
specified in the output buffer have been transferred.

23 of 49

REPERTOIRE OF INSTRUCTIONS

INTRODUCTION

The UNIVAC 1230 Military Computer is specified as a self-modifying, single-address computer.
Although this means that one reference or address is provided for the execution of an instruc­
tion, this reference can be modified during a program sequence. References are modified by
using the index registers, which contain any previously stored constants. In order to modify the
address, the contents of a selected index register are added to the extended or natural operand
designator, y. A programed address is coded using octal notation with each octal digit
denoting three binary digits. The instructions are read sequentially from memory storage
except after satisfied Jump or Skip instructions. Every instruction executed by the computer is
transmitted from memory to the Z register and then to the U register and the U2 register.
The components of the instruction are translated to direct the control section in executing the
operation specified. The U2 register is used for continued translation during execution of the
operation sequence when the memory bank overlap feature is utilized. This allows the U­

register to be cleared for reception of the next instruction with concurrent completion of the
previous operation.

BUFFER CONTROL WORD FORMAT

The computer operating in the expanded memory mode can select any 16K module of memory
for its Input and Output operation. There are three I/O Special Registers for each channel -­
one each for Input, Output, and External Commands.

Each I/O control word in control memory contains the initial (or current) address (CA) and the
terminal address (TA) of a buffer located anywhere in 32K of memory. Each I/O Special
Register can contain the two bits necessary to expand the 32K control address to 131K. During
Input or Output in the 1230 expanded mode, the two bits of the applicable SR I/O extend the
15-bit terminal and current addresses to 17 bits for memory circuit translation as follows:

Control Memory Buffer Control Word
(to 32K Memory Mode)

~--- 30 bits ---~
15-bit TA 15-bit CA

Effective Buffer Control Word ~ sRI/O--'-____ +__

(for expanded Memory Mode) 17-bit

24 of 49

The 'following symbols and definitions will be used in the discussion of Table IV.

YSR The 13-bit y prefaced by the core bank designator bits of the SR designated
by s= 0, 1 or 2

YP The 13-bit y prefaced by the core bank designator bits of P designated by
s=3

Y The operand used in an operation regardless of source

Y The quantity formed by y + (~), yp + (Bb), YSR + (Bb) or a constant contained
in an addressable register

P The Program Address register

SR Special Register, 4-bit core memory bank designator

() Contents of the address or register

()i Initial contents of the address or register

()f Final contents of the address or register

()n Designates any single nth bit of the contents of a register

The colon in a logical expression indicates COMPARISON

L() ()

or

() 0 ()

() v ()

() m()

(). or 0

00 ..

The bit-by-bit or logical product (logical AND) defined by the table:

11

000

101

Logical sum, or inclusive OR defined by the table:

1
1

o 0 1
111

Half add, half subtract, or exclusive OR defined by the table:

i
l

001

110

The one's complement of the contents of the address or register

Algebraic product of the contents of two locations

Transfer the quantity stated at the left of the symbol to the address or register
stated at the right of the symbol

25 of 49

TABLE IV. REPERTOIRE OF INSTRUCTIONS

Instruction Instruction
Execution Execution

Time Time
Code (Overlapped) Code (Overlapped)

(Octal) Instruction in ~ Sec (Octal) Instruction in ~ Sec

00 (Fault Interrupt) 50 Selective Set 2
01 Right Shift Q 2 51 Selective Complement 2
02 Right Shift A 2 52 Selective Clear 2
03 Right Shift AQ 2 53 Selective Substitute 2
04 Compare 2 54 Replace Selective Set 4
05 Left Shift Q 2 55 Replace Selective Complement 4
06 Left Shift A 2 56 Replace Selective Clear 4
07 Left Shift AQ 2 57 Replace Selective Substitute 4

10 Enter Q 2 60* Jump (Arithmetic) 4
11 Enter A 2 61* Jump (Manual) 4
12* Enter Bj 1\ 4 62* Jump on C~ Active Input Buffer 4
13 External Function on Cj 4 63* Jump on CJ Active Output Buffer 4
14 Store Q 2 64* Return. Jump (ArithmetiC)} 6
15 Store A 2 65* Return Jump (Manual) 6
16 Store Bi 2 66 Terminate c1 Input Buffer 2
17 Store CJ or Test E FB 4 Enable, or Disable Interrupts

67 Terminate cj Output Buffer 2
20 Add A 2 or All Buffers
21 Subtract A 2
22* Multiply 8 70* Repeat 4
23* Divide or Square Root 14- 8 71* B Skip on Bj 4
24 Replace A+Y 4 72* B Jump on Bj

A
4

25 Replace A-Y 4 73* Input Buffer on Cj 4
26 Add Q 2 (without monitorcrode)
27 Subtract Q 2 74* Output Buffer on j 4

(without monitor mode)
75*

1\

30 Enter Y+Q 2 Input Buffer on Cj 4
31 Enter Y-Q 2 (with monitor mode)

76*
....

32 Store A+Q 4 Output Buffer on Cj 4

33 Store A-Q 4 (with monitor mode)

34 Replace Y+Q 4 7700 Fault Interrupt
35 Replace Y-Q 4 7707 Normalize 4
36 Replace Y+1 4 7760 Enter Special Register 2
37 Replace Y-1 4 7761 Enter Input SR I/O 2

7762 Enter Output SR I/O 2
40 Enter Logical Product 2 7763 Enter E F SR I/O 2
41 Add Logical Product 2 7764* Enable Input CDM 2
42 Subtract Logical Product 2 7765* Enable Output CDM 2
43 Compare Masked 2 7766* Disable Input CDM 2
44 Replace Logical Product 4 7767* Disable Output CDM 2
45 Replace A+Logical Product 4 7770 Store Special Register 2
46 Replace A- Logical Product 4 7771 Store Input SR I/O 2
47 Store Logical Product 2 7772 Store Output SR I/O 2

7773 Store EF SR I/O 2
7774* Disable 17-Bit Address Mode 2
7775* Enable 17-Bit Address Mode 2
7777 Fault Interrupt

For nonoverlapped, add two microseconds to the execution time
*Execution time is constant - overlapped or not

26 of 49

INSTRUCTION WORD FORMAT

Two types of instruction words make up the repertoire for the 1230 Computer. Type I contains
the operation code in the most significant six bits of the word. Type II instruction contain octal
77 in the most significant six bits and the operation code in the next six bits.

The formats for Type I and II instruction words in the repertoire of the 1230 Computer while
utilizing the expanded memory feature are as follows:

Type I

General instruction format

No. of bits 63332 13

Ifljlklbls I y 110 instruction format

No. of bits 6 4 2 3 2 13

Type II

1771 fib I ski ~I:
No. of bits 6 6 324 1 8

In the repertoire of the 1230 Computer, the formats for Type I and II instruction words (while
utilizing the addressing structure limited to the internal 32K memory) are as follows:

Type I

I f I ilk I b I y General instruction format

No. of bits 6 3 3 3 15

I- 30 ·1
I f 1~1~lbl y I 110 instruction format

No. of bits 6 4 2 3 15

Type II

No. of bits 6632418

* Y is a 13-bit quantity. k does not exist but is forced as an unconditional 3

27 of 49

The elements of the function word format are interpreted as follows:

f

j
1:\
J

k or k
b

s
y

is a 6-bit Function Code Designator

is a 3-bit Branch Condition Designator

is a 4-bit Input/Output Channel Designator or Special Register Designa­
tor

is a 1, 2, or 3-bit Operand Interpretation Designator

is a 3 -bit Index Register Designator

is a 2-bit Address Extension Designator

is a 15-, 13-, or 8-bit Operand or Address Designator

Function Code Designation

The f designator appears in bit positions 29 through 24 of the U -register or an instruction word

in Type I instructions and in bit positions 23 through 18 in Type II instructions. All values of

f other than 00 are defined in the instruction repertOire. Code 00 in either Type I or Type II
instructions is a program fault condition: if executed, it causes a fault interrupt and a jump

to address 00000, the fault entrance register, or address 00540 of memory, depending on the
Automatic Recovery switch setting.

Operand Designator

The y designator appears in bit positions 12 through 0 of the U register or instruction of Type I

instructions requiring a memory reference for the operation when the computer is operated in

the expanded memory mode. The y designator appears in bit positions 7 through 0 or 12 through

o in Type II instructions in either mode. YSR or yp is the 13-bit y prefaced by the memory bank
designator bits of the SR or of (P) as designated by s. This extended operand designator is des­

cribed below:

I- 17 bits

YP I 16 13 0

P16-13 Y

16---13112---0

\ /_u n_~
V --......r--

{SRO, 1 or 2) y

The operand or address of the operand, designated Y is obtained from these 17 bits plus the

contents of an index register if specified.

28 of 49

When the computer is operated within the 32K internal memory as a CP-642B Computer, the y

designator appears in bit positions 14 through O. In this mode, the designator supplies the

required bit configuration for the addressing structure of the main memory. No references are

made to the Special Registers or the upper 2 bits of (P). Y is then defined as the 15-bit y plus

the contents of an index register if specified.

Address Extension Designator

The s designator (2 bits) appears in bit positions 13 and 14 and is interpreted in instruc­

tions requesting memory references. It does not exist in Type I instructions requiring no

memory reference for the operation since the y designator occupies 15-bit positions. The s

designator is used to specify which of the three Special Registers, or the upper 4 bits of Pare

used to extend the operand address. The designator is interpreted as follows:

s = 0:

s = 1:

s = 2:

s == 3:

Extend y by (SRO)

Extend y by (SR1)

Extend y by (SR2)

Extend y by (P16- 13)

a) For read instructions, 01-12, 20-23, 26-31, 40-43, 50-53, 70 and 71 when k f 0,4, 7

b) For store instructions, 14-16, 32, 33 and 47 when k f. 0, 4

c) For replace instructions 24, 25, 34-37, 44-46 and 54-57 when k =I 0, 4, 7

d) For read instructions 60-63 and 72 for all k values
1\

e) For I/O instructions 73-76, when k f 0

f) For I/O instructions 13 and 17
" g) For Type II instructions when k f 0

h) For return jump instructions 64 and 65 for all k values

NOTE: It is possible for the return address to be larger than 15 bits. Therefore, it is required
that (P) + 1 be stored at the whole word at memory address Y as designated by k = 3

and then jump to address y + 1. Therefore, all return or exits from a subroutine will

be indirect with a k value of 3 in the exit command.

For the restricted k values mentioned above, y is a 15-bit quantity and s does not exist. In

I/O instructions 66 and 67, the low order 15 bits are not translated and may be used as extra

storage of data.

Index Designator

The b designator appears in bit positions 17, 16, and 15 of the U register or an instruction

word. It specifies which index register (B register), if any, will be used to modify the operand

designator, y, YP or YSR to form the operand or operand address, Y. The computer uses an

29 of 49

additive type adder to produce the quantity Y = Y (J) YP e YSR + (Bb)L; hence, a quantity consisting

of all zeros cannot result unless both the form of y and (Bb)L are zeros. Use of a B register

for modification causes the higher order bits of that B register to become zeros. The contents

of the lower order 17 or 15 bits of the index register serve as the modifier.

The effect of the various values of the b designator is as follows:

b = 0:

b = 1:

b = 2:
b = 3:
b = 4:

b = 5:
b = 6:

b = 7:

Do not modify y, YP or YSR

Add (Bl) to y, YP or YSR

Add (B2) to y, YP or YSR

Add (B3) to y, YP or YSR

Add (B4) to y, YP or YSR

Add (B5) to y, Yp or YSR

Add (B6) to y, Yp or YSR

Add (B7) to y, Yp or YSR

The modifying index register quantities occupy the lower order 17 bits of control memory

addresses 00161 through 00167 during operation in the expanded memory mode. They occupy the

lower order 15 bits of those control memory addresses during operation as a CP-642B computer

(limited to 32K memory).

Branch Condition Designator

The j designator appears in bit positions 23, 22, and 21 of the U register or an instruction; it

is used in a majority of the instructions. The three primary uses of j are for jump and skip

determination, for B register specification, and for repeat status interpretation. Interpretations

of the j designator are listed either below or under the descriptions of the individual instruc­

tions requiring special interpretations.

For those instructions in which the j designator has no special interpretation, it specifies the

condition under which the next sequential instruction in the program will be skipped. This

permits branching from a sequence without executing a Jump instruction, as would normally

occur if a skip condition were not satisfied.

A skip of the next sequential instruction is determined by the following rules in all Type I

instructions except 04, 12, 13, 16, 17, 23, 26, 27, 60-67, and 70-76:

j = 0:
j = 1:
j = 2:
j = 3:
j = 4:
j = 5:
j = 6:
j = 7:

Do not skip the next instruction
Skip the next instruction
Skip the next instruction if (Q) is positive
Skip the next instruction if (Q) is negative
Skip the next instruction if (A) is zero (positive zero)
Skip the next instruction if (A) is nonzero
Skip the next instruction if (A) is positive
Skip the next instruction if (A) is negative

30 of 49

When the branch condition involves the sign of the quantity in A or Q, the evaluation examines

the sign bit of these quantities; hence, positive zero (all zeros) is considered a positive quantity,

and negative zero (all ones) is considered a negative quantity.

For input/output instructions, the l'designator appears in bit pOSitions 23, 22, 21 and 20 of the

U-register or an input/output instruction and specifies the channel for the instruction. Bit 23

assumes a value of eight, bit 22 a value of four, bit 21 a value of two, and bit 20 a value of one;

thus, the l' designator provides accessibility to the 16 (decimal) input/output channels (number

0- 15). Instructions 13, 17,62,63,66,67,73,74,75, and 76 use the'fdesignator configuration.
/\

In Type II instructions, j appears in bit pOSitions 12, 11, 10, and 9 and designates an I/O channel
or a Special Register.

Operand Interpretation Designation

The k designator (3 bits) appears in bit positions 20, 19, and 18 of the U -register or an instruc-
1\

tion. The k designator appears in bit positions 19 and 18 in Type I instructions or in bit pOSition

8 of Type II instructions. Instructions 13, 17, 62, 63, 66, 67 and 73 through 76 and Type II use the
1\
k designator configuration since they perform input/output or Special Register activities and
require a 1'designator for channel or Special Register specification. The ~ deSignator controls

operand and instruction interpretation for the input/output instructions as noted in the descrip­
tion of the applicable instruction.

/\
In Type II instructions, the k designator appears in bit position 8 and is used to interpret the
operand as follows:

Store Class
1\

k = 0:
1\

k = 1:

Read Class
k = 0:
1\

k = 1:

Store in the least significant 8 bits of the Q-register
Store in the lower 8 bits of the memory address leavil1g the remaining upper

bits undisturbed

(UL) 8 bits ~ Register

Y L 8 bits ~ Register

The k designator controls operand interpretation. Those instructions that read an operand but
do not replace it after the operation is performed are deSignated read instructions. Those
instructions that do not read an operand but store it are deSignated store instructions. Instruc­
tions which both read and store operands are classified as replace instructions.

The various values of k affect the operand Y, except where noted otherwise under individual

instruction description, as follows:

Read instruction (01-12, 20-23, 26, 27 30, 31, 40-43, 50-53, 60-65, 70-72):

k = 0:

k = 1:

k = 2:

Yu = O' s; YL = Y

Yu = OIS; YL = (Y) L; Operand is lower half of memory location
Yu = OiS; YL = (Y) u; Operand is upper half of memory location

31 of 49

k = 3:

k = 4:

k = 5:

k = 6:

k = 7:

Y = (Y)

Yu = same bits as Y14; YL = Y

Yu = same bits as Y14; YL = (Y)L; Operand is lower half of memory

location with sign extension

Yu = same bits as Y14; YL = (Y) u; Operand is upper half of memory

location with sign extension

Y = (A)

For instructions 22, 52, and 53, k = 7 is not used.

store instructions (14-16, 32, 33, 47):

k = 0:

k = 1:

k = 2:

k = 3:

k = 4:

k = 5:

k = 6:

k = 7:

store (A or Bj) in Q. *
store (AL, QL, or Bj) in !L, leaving ~) u undisturbed

store (AL, QL, or Bj) in Yu, leaving (Y) L undisturbed

store (A, Q, Cj, or Bj) in Y

store (Q or Bj) in the A register **
Store complement of (AL, QL, or Bj) in Y L, leaving (Y) u undisturbed

Store the complement of (AL, QL, or Bj) in Yu, leaving (Y) L undisturbed

Store the complement of (A, Q, or Bj) in Y (storing the complement of Bj

is the same complement as for a 30-bit register)

Replace instructions (24,25,34-37,44-46, 54-57):

k = 0:

k = 1:

k = 2:

k =- 3:

k = 4:

k = 5:

k = 6:

k = 7:

Not used.

Read portion - Yu = 0' s; YL = (Y) L

Store portion - Stores AL in YL leaving (Y)u undisturbed

Read portion ~ Yu = 0' s; YL = (Y)u

Store portion - Stores AL in YU leaving (Y)u undisturbed

Read portion - Y = (Y)

Store portion - Stores A in Y

Not used.

Read portion - Yu = same bits as ~)14; YL = ~)L
Store portion - .Stores AL in YL leaving (Y)u undisturbed

Read portion - Yu = same bits as Y29; YL = (Y)u

Store portion - Stores AL in YU leaving (Y)L undisturbed

Not used

Replace instructions require special interpretation when following a repeat instruction. (Refer

to subsequent paragraph entitled 70 REPEAT .)

* A 1400000000 instruction complements (Q)

** A 1504000000 instruction complements (A)

32 of 49

List of Instructions

This section lists the repertoire of instructions.

01 RIGHT SHIFT Q

This instruction shifts (Q) to the right Y bit positions*; the higher order bits are replaced with

the original sign bit, and the lower order bits are discarded as the word is shifted. Only the

lower order six bits of Yare recognized for this instruction. The higher order 24 bits are

ignored.

An 8-bit register example of right shift Q: Y = 2.

Contents of Q

(Q)i (positive) =
First shift

Second shift

02 RIGHT SHIFT A

01010011

00101001

00010100

Contents of Q

(Q)i (negative) =
First shift

Second shift

10100011

11010001

11101000

This instruction shifts (A) to the right Y bit positions *. The higher order bits are replaced

with the original sign bit, and the lower order bits are discarded as the word is shifted. Only

the lower order six bits of Yare recognized for this instruction. The higher order 24 bits are

ignored. The over-all operation is similar to the example given for Right Shift Q.

03 RIGHT SHIFT AQ

This instruction shifts (A) and (Q) as one 60-bit register. The shift is to the right Y bit

positions *, with the lower bits of A shifting into the higher bit pOSitions of Q. The higher order

bits of A are replaced with the original sign bit, and the lower order bits are discarded as the

word is shifted. Only the lower order six bits of Yare recognized for this instruction. The

higher order 24 bits are ignored.

An 8-bit register example of right shift AQ: Y = 2:

Contents of AQ

(AQ)i (positive) = 01010011
First shift 00101001

Second shift 00010100

Contents of AQ

(AQ)i (negative) = 10001010

First shift 11000101

Second shift 11100010

*The maximum shift count permitted is decimal 59 places

33 of 49

04 COMPARE

This instruction compares the signed value of Y with the signed value of (A) and (Q) or the

value of either. It does not alter either (A) or (Q). The branch condition designator, j, is

interpreted in a special way for this instruction as listed below:

j = 0:
j = 1:
j = 2:
j = 3:
j = 4:

j = 5:

j = 6:
j = 7:

Do not skip the next instruction
Skip the next instruction
Skip the next instruction if Y is less than or equal to (Q)
Skip the next instruction of if Y is greater than (Q)
Skip the next instruction if Y is less than or equal to (Q), and Y is greater
than (A)
Skip the next instruction if Y is greater than (Q), or if Y is less than or
equal to (A)
Skip the next instruction if Y is less than or equal to (A)
Skip the next instruction if Y is greater than (A)

05 LEFT SHIFT Q

This instruction shifts (Q) circularly to the left, Y bit positions*. The lower order bits are re­

placed with the higher order bits as the word is shifted. Only the lower order six bits of Yare

recognized for this instruction. The higher order 24 bits are ignored.

An 8-bit register example of left circular shift in Q: (Y) = 2

Contents of Q

(Q)i (positive) = 00110001

First shift 01100010

Second shift 11000100

06 LEFT SHIFT A

Contents of Q

(Q)i (negative) 11001100

First shift 10011001

Second shift 00110011

This instruction shifts (A) circularly to the left Y bit positions*. The lower order bits are

replaced with the higher order bits as the word is shifted. Only the lower order six bits of Yare

recognized for this instruction. The higher order 24 bits are ignored. The over-all operation is

similar to the example given for left shift Q.

07 LEFT SHIFT AQ

This instruction shifts (A) and (Q) as one 60-bit register. The shift is circular to the left Y bit

positions *. The lower order bits of A are replaced with the higher order bits of Q and the lower

order bits of Q are replaced with the higher order bits of A. Only the lower order six bits of Y

are recogni.zed by this instruction. The higher order 24 bits are ignored.

*The maximum shift count permitted is decimal 59 places

34 of 49

An 8-bit register example of left shift AQ: Y = 2:

Contents of AQ Contents of AQ

(AQ). (positive) 01010011
1

(AQ). (negative) 10001011
1

First shift 10100110

01001101

First shift 00010111

Second shift Second shift 00101110

10 ENTER Q

Clear the Q register; then transmit Y to Q.

11 ENTER A

Clear the A register; then transmit y to A.

12 ENTER B j

Clear the B register specified by j. Then transmit y to this B register. The branch condition
designator, j, is used to specify the selected B register for this instruction and is not available

for its normal function.

13 EXTERNAL FUNCTION ON C0
J

Transfer the contents of storage address Y lower to the external function buffer control

register 140 + ~ upper and lower and initiate -a 1-word external function buffer on channel ~.
The address of the function word is maintained in the lower order 15 bits of the control register.

/\
The k values modify the instruction as follows:

/\
k = 0:

/\
k 1:

/\
k 2:

/\
k 3:

Establish the 1-word external function buffer with monitor and proceed to
the next instruction. The function transfer is executed when the external
equipment presents an External Function Request. A monitor interrupt follows
the completion of the transfer

Establish the 1-word external function buffer with monitor and with force.
Hold the program until the function is transferred to the output channel. A
monitor interrupt follows the completion of the transfer

Establish the 1-word external function buffer and proceed to the next instruc­
tion. The function transfer is executed when the external equipment presents
an External Function Request

Establish the 1-word external function buffer with force. Hold the program
until the function is transferred to the output channel

An external function buffer with force will transfer the function word from memory to the out­

put register whether the external device requests it or not. If external eqUipment cannot accept

external functions from consecutive program executions, restrictions must be made in the

programing of external functions to this eqUipment.

35 of 49

14 STORE Q

Store (Q) at storage address Y as directed by the operand interpretation designator, k. If

k = 0, complement (Q). If k = 4, store in A.

15 STORE A

Store (A) at storage address Y as directed by the operand interpretation designator, k. If

k = 4, complement (A). If k = 0, store in Q.

16 STORE Bj

Store a 30-bit quantity, whose lower order 15 bits correspond to the contents of the B register

specified by j and whose higher order 15 bits are zero, at storage address! as directed by the

operand interpretation designator, k. The branch condition designator, j, is used to specify the

selected B register for this instruction and is not available for its normal function.

17 STORE Cj'OR TEST EFB

/\
For k = 0 and 1, when the jump condition is satisfied, the program register, P, is cleared, and

a new next instruction address, Y or (Y)L respectively, is entered into P.

/\
k 0:

/\
k 1:

/\
k 2:

/\
3: k

20 ADD A

/\
And the external function buffer on channel j is active, jump to address
Y; if not active, execute the next sequential instruction

/\
And the external function buffer on channel j is active, jump to address
(Y)L; if not active, execute the next sequential instruction

Store the contents of input channel t at storage address Y and send an IN­
put Acknowledge on that channel. Hold the program until ffie word is trans­
ferred to memory

/\
Store the contents of storage address 00520 + j at storage address Y

Add Y to the previous contents of the A register.

21 SUBTRACT A

Subtract Y from the previous contents of the A register.

22 MULTIPLY

Multiply (Q) times Y, forming the double-length product in AQ. If the factors are considered as

integers, the product is an integer in AQ. k = 7 may not be used.

36 of 49

The branch condition designator, j, is interpreted prior to final sign correction, permitting

sensing of a product with (A)f = O. When (A)f f + 0, a double-length product has been formed

with significant bit(s) in the A-register; however, if a skip does not occur for j ~ 4, an Add Q

instruction can be performed (add zero to Q) with j = 6 or 7 to determine if Q29 contains a

significant bit (one) of the product.

23 DIVIDE

If k f 7, divide (AQ) by Y, leaving the quotient in the Q-register and the remainder in the A

register. The remainder bears the same sign as the dividend. No console indication is given if

a divide overflow exists. By coding each divide instruction with j = 2 or 3, a program test

for the divide overflow is automatic. With a selection of j = 3, a skip of the next instruction

occurs if divide overflow exists. The skip should be made to a routine which provides proper

correction. With a selection of j = 2, a correct answer is indicated when the skip occurs, and

the instruction is followed by a jump instruction to the remedial routine.

If k = 7, take the square root of (Q), leaving the root in Q and the residue in A. (A)f = (Q)i­

(Q)f2. A selection of j = 2 in the square root instruction requests skip if a residue appears in

A, and j = 3 requests skip if no residue appears in A. j = 4, 5, 6 or 7 is not used when k = 7.

24 REPLACE A + Y

Add Y to the previous contents of the A register. Store (A) at storage address y.

25 REPLACE A - Y

Subtract Y from the previous contents of the A register. Then store (A) at storage address Y.

26 ADD Q

Interchange (A) and (Q). Then add Y to (A). Interchange (A) and (Q). The contents of the A

register are undisturbed by this instruction. The branch condition designator, j, has special

meaning in this instruction as listed in instruction 27.

27 SUBTRACT Q

Interchange (A) and (Q). Then subtract Y from (A). Interchange (A) and (Q). The contents of

the A register are undisturbed by this instruction. The branch condition designator, j, has

special meaning in this instruction as follows:

37 of 49

In instructions 26 and 27, the branch condition designator, j, has the following meaning:

0:
1:
2:

Do not skip the next instruction
Skip the next instruction
Skip the next instruction if (A) is positive
Skip the next instruction if (A) is negative
Skip the next instruction if (Q) is zero
Skip the next instruction if (Q) is nonzero
Skip the next instruction if (Q) is positive
Skip the next instruction if (Q) is negative

= 3:
= 4:

5:
6:
7:

30 ENTER Y + Q

Clear the A-register. Then transmit (Q) to A. Then add Y to (A).

31 ENTER Y - Q

Clear the A-register. Transmit (Q) to A and then subtract Y from (A). Finally, complement (A).

32 STORE A + Q

Add (Q) to the previous contents of the A register. Then store the sum in A and at storage

address Y as directed by the operand interpretation designator, k.

33 STORE A - Q

Subtract (Q) from the previous contents of the A register. Then store the difference in A and at

storage address Y as directed by the operand interpretation designator, k.

34 REPLACE Y + Q

Clear the A-register. Transmit (Q) to A; then add Y to (A). Store the sum in A and at storage
address Y.

35 REPLACE Y - Q

Clear the A register. Transmit (Q) to A. Subtract Y from (A). Then complement the difference

and store in A and at storage address Y.

36 REPLACE Y + 1

Clear the A register. Set (A)

Y.
1. Add Y to (A) and store the sum in A and at storage address

38 of 49

37 REPLACE Y - 1

Clear the A register. Set (A) = 1. Subtract Y from (A). Complement the difference and store

in A and at storage address Y.

40 ENTER LOGICAL PRODUCT

Enter the bit-by-bit product of Y and (A) in the A register.

The j designator is interpreted in a special way for this instruction for the values j = 2 or 3.

If j = 2, skip if the parity of the (A)f is even. If j = 3, skip if the parity of (A)f is odd.

NOTE:

Even parity means an even number of ones in the A register.
Odd parity means an odd number of ones in the A register.

41 ADD LOGICAL PRODUCT

Add to (A) the bit-by-bit product of Y and (Q).

42 SUBTRACT LOGICAL PRODUCT

Subtract from (A) the bit-by-bit product of Y and (Q).

43 COMPARE MASKED

Subtract from (A) the bit-by-bit product of Y and (Q), and perform the evaluation for a skip of

the next sequential instruction as directed by the branch condition designator, j. Then add to
(A) the bit-by-bit product of Y and (Q).

This instruction results in no net change in the contents of any operational register. It provides

a comparison of a portion of Y with (A).

44 REPLACE LOGICAL PRODUCT

Enter in the A register the bit-by-bit product of Y and (Q). Then store (A) at storage address

Y.

The j designator is interpreted in a special way for this instruction for the values j = 2 or 3.

If j = 2, skip if the parity of (A)f is even. If j = 3, skip if the parity of (A)f is odd.

39 of 49

45 REPLACE A + LOGICAL PRODUCT

Add to (A) the bit-by-bit product of Y and (Q). Then store the sum in A and at storage address

Y.

46 REPLACE A - LOGICAL PRODUCT

Subtract from (A) the bit-by-bit product of Y and (Q). Store the difference in A and at storage

address Y.

47 STORE LOGICAL PRODUCT

Store in address Y the bit-by-bit product of (A) and (Q) as directed by the operand interpretation

designator, k.

50 SELECTIVE SET

Set the individual bits of the A register corresponding to ones in Y, leavingthe remaining

bits of the A register unaltered.

51 SELECTIVE COMPLEMENT

Complement the individual bits of the A register corresponding to ones in Y, leaving the

remaining bits of the A register unaltered.

52 SELECTIVE CLEAR

Clear the individual bits of the A register corresponding to ones' in Y, leaving the remaining

bits of the A register unaltered,. In this instruction, k = 7 should not be used.

53 SE LE CTIVE SUBSTITUTE

Substitute individual bits of the A register with bits of Y corresponding to ones in Q, leaving

the remaining bits of the A register unaltered.

54 REPLACE SELECTIVE SET

Set the individual bits of the A register corresponding to ones in Y, leaving the remaining

bits of the A register unaltered. Store (A) at storage address Y.

40 of 49

55 REPLACE SELECTIVE COMPLEMENT

Complement the individual bits of A register corresponding to ones in Y, leaving the remain­

ing bits of A register unaltered. Store (A) at storage address Y.

56 REPLACE SELECTIVE CLEAR

Clear individual bits of the A register corresponding to ones in Y, leaving the remaining

bits of the A register unaltered. Store (A) at storage address Y.

57 REPLACE SELECTIVE SUBSTITUTE

Clear individual bits of the A-register corresponding to ones in Q, leaving the remaining

bits of the A register unaltered. Form the bit-by-bit product of Y and (Q), and set ones of

this product in corresponding bits of the A register, leaving the remaining bits unaltered.

Store (A) at storage address Y.

60 JUMP (ARITHMETIC)

This instruction clears the program address register, P, and enters a new program address

in P for certain conditions of either the A or Q register content. The branch condition desig­

nator, j, is interpreted in a special way for this instruction and thus determines the conditions

under which a jump in program occurs. If the jump condition is not satisfied, the next sequential

instruction in the current sequence is executed in a normal manner. If the jump condition is

satisfied, as listed below, Y becomes the address of the next instruction and the beginning of a

new program sequence.

0:

1:

2:
3:

= 4:
= 5:
= 6:
= 7:

No jump. Set interrupt enable and remove interrupt lockout, thus clearing
bootstrap and interrupt modes.' Continue with current program sequence
Execute jump. Set interrupt enable and remove interrupt lockout, thus clearing
bootstrap and interrupt modes
Execute jump if (Q) is positive
Execute jump if (Q) is negative
Execute jump if (A) is zero (positive zero)
Execute jump if (A) is nonzero
Execute jump in (A) is positive
Execute jump if (A) is negative

61 JUMP (MANUAL)

This instruction clears the program address register, P, and enters a new program address in

P for certain conditions of manual JUMP and STOP switch selections. The branch condition

designator, j, is interpreted in a special way for this instruction and determines the conditions

under which a jump in program occurs. If the jump condition is not satisfied, the next sequential

instruction of the current sequence is executed in a normal manner. If the jump condition is

satisfied, as listed below, Y becomes the address of the next instruction and the beginning of a

new program sequence.

41 of 49

The program may be stopped by certain STOP selections upon execution of this instruction.

The branch condition designator, j, specifies which switch selections are effective.

= 0: Execute jump regardless of switch selection.
= 1: Execute jump if JUMP 1 is selected.
= 2: Execute jump if JUMP 2 is selected.
= 3: Execute jump if JUMP 3 is selected.
= 4: Execute jump. stop computation.
= 5: Execute jump. Stop computation if STOP 5 is selected.
= 6: Execute jump. Stop computation if STOP 6 is selected.
= 7: Execute jump. Stop computation if STOP 7 is selected.

1\
62 JUMP ON Cj ACTIVE INPUT BUFFER

If the input buffer on channel 1 is active, clear the program address register, P, and enter a

new program address, Y, in P. Y becomes the address of the next instruction. If the input

buffer is not active, the next sequential instruction in the current sequence is executed in the
normal manner.

A
63 JUMP ON Cj ACTIVE OUTPUT BUFFER

If the output buffer on channel 1 is active, clear the program address register, P, and enter a

new program address, Y, in P. Y becomes the address of the next instruction. If the output

buffer is not active, the next sequential instruction in the current sequence is executed in the

normal manner.

64 RETURN JUMP (ARITHMETIC)

Execute a return jump sequence for certain conditions of either the A or Q register. The

branch condition designator, j, is interpreted in a special way for this instruction and determines

the conditions under which the return jump sequence is executed. If the return jump condition

is not satisfied, the next sequential instruction in the current sequence is executed in a normal

manner. If the return jump condition is satisfied, as listed below, the following sequence is
performed.

Store (P) + 1 in the lower half of memory address Y, as designated by k. Then jump to Y + 1.

= 0:
= 1:
= 2:
= 3:
= 4:
= 5:
= 6:
= 7:

No action. Continue with the current program sequence
Exe cute return jump
Execute return jump if (Q) is positive
Execute return jump if (Q) is negative
Execute return jump if (A) is zero (positive zero)
Execute return jump if (A) is nonzero
Execute return jump if (A) is positive
Execute return jump if (A) is negative

42 of 49

65 RETURN JUMP {MANUAL}

Execute a return jump sequence for certain conditions of manual switch selections. The branch
condition designator, j, is interpreted in a special way for this instruction and determines the

conditions under which the return jump sequence is executed. If the return jump condition is

not satisfied, the next sequential instruction in the current sequence is executed in a normal

manner. If the return jump condition is satisfied, as listed below, then the following sequence

is performed.

Store {P} + 1 in the lower half of memory address Y as designated by k. Then jump to Y + 1.

= 0: Execute return jump regardless of switch selections
= 1: Execute return jump if JUMP 1 is selected
= 2: Execute return jump if JUMP 2 is selected
= 3: Execute return jump if JUMP 3 is selected
= 4: Execute return jump. Then stop computation
= 5: Execute return jump. stop computation if STOP 5 is selected
= 6: Execute return jump. Stop computation if STOP 6 is selected
= 7: Execute return jump. Stop computation if STOP 7 is selected

66 TERMINATE cj

Terminate Input Buffer/Enable Interrupts/Disable Interrupts as designated by k and b as

follows:

" k = 0: Terminate the input/huffer on channel j
~ = 1 and b = 0: Enable all interrupts
k = 1 and b I- 0: Disable all interrupts
I{ = 2 and b = 0: Enable all external interrupts
k = 2 and b I: 0: Disable all external interrupts
I{ = 3 and b :l 0: Enable external interrupt on channel j
k = 3 and b r 0: Disable external interrupt on channel j

Ignore y for this instruction.

67 TERMINATE cj

Terminate Output buffer or all buffers as designated by k as follows:

k 0:
~ 1:
k 2:

Terminate the output buffer on channel j I':.

Terminate the external function buffer on channel j
Terminate all output and external function buffers

For k = 1 or 2, ifj specifies an output register being used by an intercomputer group, a resume

signal is simulated on that group.

In all cases, no output buffer monitor interrupt occurs. Ignore the band y designators for this

instruction.

43 of 49

70 REPEAT

Clear B7 and transmit y to B7. If Y is nonzero, transmit (j) to r (repeat designator regis­

ter), thereby initiating the repeat mode. IfY is zero, skip the next instruction. All interrupts

are locked out during operation in the repeat mode.

The repeat mode executes the instruction immediately following the Repeat instruction Y times
and decreases the count in B7 by one each time. B7 contains the number of executions remaining

throughout the repeat mode.

If no skip condition is met for the repeated instruction, the repeat mode is terminated by

exhausting the repeat count, and the instruction following the repeated instruction is executed.

If the skip condition for the repeated instruction is met, the repeat mode terminates, and the

instruction following the repeated instruction is skipped. Following the repeat mode termination,
the count remains in B7.

In no way does the repeat mode alter a repeated instruction as stored in memory.

The three lower order bits of the r designator (from j of instruction 70) affect the operand

indexing as follows:

r = 0:

r = 1:

r = 2:

r = 3:

r = 4:

r = 5:

r = 6:

r = 7:

Do not modify the operand address of the repeated instruction after each indi­
vidual execution

Increase the operand address of the repeated instruction by one after each
execution of the repeated instruction

Decrease the operand address of the repeated instruction by one after each
execution of the repeated instruction

Repeat the initial B register modification of the repeated instruction before
each execution

Do not modify the operand address of the repeated instruction after each indi­
vidual execution. If the repeated instruction is a Replace instruction, the operand
address is incremented by (B6) for the store portion of the Replace instruction

Increase the operand address of the repeated instruction by one after each
execution of the repeated instruction. If the repeated instruction is a Replace
instruction, the operand address is incremented by (B6) for the store portion
of the Replace instruction

Decrease the operand address of the repeated instruction by one after each
execution of the repeated instruction. If the repeated instruction is a Replace
instruction, the operand address is incremented by (B6) for the store portion
of the Replace instruction

Repeat the initial B register modification of the repeated instruction before
each execution. If the repeated instruction is a Replace instruction, the operand
address is incremented by (B6) for the store portion of the Replace instruction

44 of 49

71 B SKIP ON Bj

If the contents of the B register specified by j are equal to Y, skip the next instruction in the

current sequence and proceed to the following instruction. Clear the B register specified by j.

If the contents of the Bj register are not equal to Y, proceed to the next instruction in the
sequence in a normal manner and increase the contents of the Bj register by one.

The branch condition designator, j, is used to designate the selected B .register in this instruc­
tion and is not available for its normal function.

72 B JUMP ON Bj

If the contents of the Bj register are nonzero, execute a jump in program to address Y. Reduce
the contents of the Bj register by one.

If the contents of the Bj register are zero, proceed to the next instruction in a normal manner.
Do not alter the contents of the Bj register.

The branch condition designator, j, is used to designate the selected B register in this instruc­
tion and is not available for its normal function. If the jump condition is satisfied, the lower

order bits of Y become the address of the next instruction and the beginning of a new program

sequence. The higher order bits of Yare not used in this instruction.

1\
73 INPUT BUFFER ON Cj (Without Monitor Mode)

Transfer Y as designated bY'k to the input buffer control register 100 + J and initiate as input
buffer on channel 1. The next current input address is maintained throughout the buffer process

* in the lower order 15 bits of the control register. This storage address is incremented by one
during each individual word transfer. Subsequent to this instruction, each individual transfer
will be executed at a rate determined by the external equipment. This mode continues until it is
superseded by a subsequent input buffer or termination instruction on the same channel or
until the higher order half and the lower order half of the control register are equal, whichever
occurs first.

~ = 0:

" k = 1:

~ = 2:
A
k 3:

Store Y in the lower order half of control register 100 + t leaving the higher
order half undisturbed
Store (Y)L in the lower order half of control register 100 + t leaving the
higher order half undisturbed
Is not permitted

Store (Y) in the control register 100 + t
* Refer to page 1 of this section

45 of 49

7/! OUTPUT BUFFER ON cj (Without Monitor Mode)

Transfer Y as designated by k to output buffer control register 120 + j (k j:; 2), or external com-
1\

mand buffer control register 140 + j (k = 2), and initiate the output buffer or the external func-
~

tion buffer respectively on channel J. The next current address is maintained throughout the

buffer process in the lower order 15 bits of the control register. * This storage address is in­

cremented by one during each individual word transfer. Subsequent to this instruction, each

individual transfer is executed at a rate determined by the external equipment. This mode

continues until it is superseded by a subsequent output/external function buffer or termination

instruction on the same channel or until the higher order half and the lower order half of the

control register are equal, whichever occurs first.

~ =

1\
k

1\
k

~

0:

1:

2:
3:

Store Y in the lower order half of control register 120 + 1, leaving the higher

order half undisturbed

Store (Y)L in the lower order half of control register 120 + J, leaving the

higher order half undisturbed

Store (Y) in external function buffer control register 140 + 1
Store (Y) in output control register 120 + j

75 INPUT BUFFER ON cj (With Monitor Mode)

Transfer Y as designated by k to input buffer control register 100 + 1 and initiate an input

buffer on channel j. The next current input address is maintained throughout the buffer process
* in the lower order 15 bits of the control register. This storage address is incremented by one

during each individual word transfer. Subsequent to this instruction, each individual transfer

will be executed at a rate determined by the external equipment. This mode continues until it

is superseded by a subsequent input buffer or termination instruction on the same channel or

until the higher order half and the lower order half of the control register are equal, whichever

occurs first. Upon completion of the buffer operation, a monitor interrupt occurs, and the next

program instruction executed comes from interrupt entrance address 00040 + 1.

~ =

~ =

~ --
~ =

0:

1:

2:
3:

Store Y in the lower order half of control register 100 + t leaving the higher

order half undisturbed

Store (Y)L in the lower order half of control register 100 + t leaving the
higher order half undisturbed

Is not permitted

Store (Y) in control register 100 + l'
1\

76 OUTPUT BUFFER ON Cj (With Monitor Mode)

~ 1\
Transfer Y as designated by k to output buffer control register 120 + j (k -} 2) or external

buffer control register 140 + f (k = 2) and initiate the output buffer or the external function

buffer respectively on channel j. The next current address is maintained throughout the buffer

* Refer to page 1 of this section

46 of 49

process in the lower order 15 bits of the control register: This storage address is incremented

by one during each individual word transfer. Subsequent to this instruction, each individual

transfer is executed at a rate determined by the external equipment. This mode continues until
it is superseded by a sebsequent output external function buffer or Termination instruction on

the same channel or until the higher order half and the lower order half of the control register

are equal, whichever occurs first. Upon completion of the buffer operation, a monitor interrupt

occurs, and the next program instruction executed comes from interrupt entrance register 00060

+ f if k -f 2 and from 00500 + ~ if k = 2.

" " k = 0: Store Y in the lower order half of control register 120 + j , leaving the higher

"
order half undisturbed

" k = 1: Store (Y)L in the lower order half of control register 120 + j, leaving the

higher order half undisturbed
" k = 2: " Store (Y) in external function buffer control register 140 + j
A

k = 3: Store (Y) in output control register 120 + j

00, 7700, AND 7777 IMPROPER CODES

Function codes 00, 7700, and 7777 are improper codes, which, if translated, cause a program
and an automatic jump to a location controlled by the Automatic Recovery switch.

77 07 NORMALIZE

Function codes 00, 7700, and 7777 are improper codes, which, if translated, cause a program
fault and an automatic jump to a location controlled by the Automatic Recovery switch.

This instruction uses

6 6 3 2 13'

77 y

as the format for the instruction. The k designator is not used but an assumed value k = 3 is

forced into the instruction trans lator when executed. In all other 77 instructions y when used as

an address is limited to 8 bits addressing 256 words of memory. However, with normal indexing
being performed, an effective address Y can be generated to select any location in memory.

77 60 ENTER SPECIAL REGISTER

A

Clear the SR specified by j. Then transmit Y3- 0 to this SR.

77 61 ENTER INPUT SR I/O

A

Clear the Input Special register for the channel specified by j. Then transmit Y 1-0 to this Input
SR and clear the Continuous Data Mode on this channel.

* Refer to page 1 of this section

47 of 49

77 62 ENTER OUTPUT SR I/O

It.

Clear the Output Special register for the channel specified by j. Then transmit y 1-0 to this
Output SR and clear the Continuous Data Mode on this channel.

77 63 ENTER EXTERNAL FUNCTION SR I/O

It.

Clear the External Function Special register for the channel specified by j. Then transmit
y 1-0 to this EF SR and clear the Continuous Data Mode on this channel.

77 64 ENABLE INPUT CDM

" Enable the Continuous Data Mode for Input on the channel specified by j. Ignore b" s, k, and y.

77 65 ENABLE OUTPUT CDM

" Enable the Continuous Data Mode for Output on the channel specified by j. Ignore b, s, k, and y.

77 66 DISABLE INPUT CDM

/\
Clear the Continuous Data Mode for Input on the channel specified by j. Ignore b, s, k, and y.

77 67 DISABLE OUTPUT CDM

Clear the Continuous Data Mode for Output on the channel specified by t. Ignore b, s, k, and y.

77 70 STORE SPECIAL REGISTER

A
Store the contents of the Special Register specified by j in Y.

77 71 STORE INPUT SR I/O

1\
Store the contents of the Input Special register for the channel specified by j in Y.

77 72 STORE OUTPUT SR I/O

Store the contents of the Output Special register for the channel specified by 1 in Y.

77 73 STORE EF SR I/O

Store the contents of the External Function Special register for the channel specified by 1 in Y.

48 of 49

77 74 DISABLE 17-BIT ADDRESS MODE

Disable the expanded memory mode and enable the computer to interpret a maximum of 15 bits

for addresses thereby limiting it to operation within its internal 32K memory. All SR registers

are ignored and y becomes a 15-bit value in Type I instructions.

77 75 ENABLE 17 -BIT ADDRESS MODE

If the MODE switch is on Expanded Memory position enable the computer to assemble and inter­

pret addresses up to 17 bits in length. The Special Registers become functional and s is inter­

preted when applicable. This is a do nothing instruction if the MODE switch is in 32K memory

position.

49 of 49

INTRODUCTION

The Assembly System (AS-1) translates mnemonic code into Unit Computer machine

instructions. This code, called the AS-1 Input (Source) Language, aids in defining information

processing problems. The object program (that which is produced by AS-1 from the Input

Language) runs on the Unit Computer and thus solves the problems (see Figure 1).

The
Definition

of a
Problem

OPERATIONS

(Jnput

~anguag e
Assembly
System
(AS-1)

Figure 1. AS-1 Solution of a Problem

Input
Data

Object
Program

Output
Data

INPlTT LANGUAGE ORGANIZATION

AS-1 Input Language consists of a large repertoire of operations which either state certain

facts about entities in the input language, or perform a well-defined logical action. A list of

these operations, which are the basic unit of the language, defines a problem. They have the

configuration which follows.

1 of 8

L s N

[label] .. [statement] [notes] ~

L The label is a name that uniquely identifies the operation; it consists of up to

ten alphanumeric characters, but never starts with 0, X, or a number and never

consists of only A, Q, BO through B 7, or CO through C 17. Only an operation which

is referred to in the statement of another operation requires a label. A tag

is a reference to the label of one operation in the statement of another; it has

the same notation restrictions as a label

S The statement defines the operation; it is always required

N Descriptive notes may follow the statement; they are for the user's convenience

and in no way alter the meaning of the operation

.. The straight arrow is a major separator which delimits the statement

~ The curved arrow designates the end of each operation and signals the start of

the next one. It must precede the first operation of a program

STATEMENTS

In general, the statement involves two sections:

w v

... [operator] • [list of operands] ..

W The operator specifies the general characteristics of the operation

V The operands further define the operation. The number and the configuration

of the operands depend upon the operator used

• The point separator separates the . operator from the operand section and

separates the operands from one another

A statement, further divided, appears as:

W Vo V 1 V n .. [operator] • [operand] • [operand] ••• [operand] ..
2 of 8

The operands consist of basic terms a, b, c, d as follows:

• operand-code (tag .+ constant
10 10 - 10

L ___ V,..--....."J '"---_v---J l.---_v,..----'.1

a b c

• is the point separator. It delimits the operand

+ B n

~
d

) •

() - are parentheses which indicate an exact meaning

a is an alphanumeric operand-code symbol, consisting of up to 10 characters,

which adds some basic information to the ope,rator or to the terms following it.

The operand-code may be alone, with other terms, or completely absent

b is an alphanumeric tag symbol, consisting of up to ten characters, which refers

to a label or a number

c is an octal or decimal constant. If a positive constant is alone, the + is not re­

quired. A decimal number is a string of digits followed by D. The constant con­

sists of up to 5 characters when it appears with the tag. It consist of up to 10

characters without the tag

d is a B register which modifies the rest of the expression. If a n is alone, the

+ is not required. The content of an is implied in either case

Many operands consist of only term a. The majority, however, may consist of combinations

of the specified terms. Of these, three classes are most prominent: 1) Read-class, 2) Store­

class, and 3) Replace-class. If operands do not satisfy the forms of Read-, Store-, or Re­

place-classes, a description and use of those operands appear with the discussions of each

operation.

READ·CLASS

Read-class operands can assume the following forms:

CONSTANTS: Read-class operands may consist of term c only. This term may be of up to

ten digits, either negative or positive. If a decimal number, it is a string of digits followed

by aD. If the constant is positive, the + is not required.

3 of 8

Examples:
7235

49678D

-1

-496782D

-0

Constants may be modified by preceding them with an X. The X means extended; that is, the

bits of the upper half of a register are flushed with the value of the upper bit of the lower half.

X has meaning only if it precedes 5 digits and the upper digit is 4, 5, 6, 7, or negative numbers.

Examples:
X40000

X77774

TAGS: Read-class operands may consist of term b only. The tag may consist of up to ten

alphanumeric characters; it represents a 5-digit octal number. The number is usually the

address of a memory location which is specified by an operation label.

Examples:

RANGE

CAT056

Tags may be modified by an increment consisting of a 5 -digit octal constant or a 4-digit

decimal and/or the content of a B register. If the tag refers to a labeled statement, the

constant and B register specify an increment which locates a statement relative to the labeled

statement.

Examples:

RANGE+2

CAT 0 56-5+B 2

FIDDLE+B5

The sign bit of the value represented by a tag with its increment is extended if term a is X.

Examples:

XRANGE

XCAT'O 56-5+B2

CONTENTS OF: Read-class operands may specify the contents of memory locations. An

operand-code, term a, and parentheses must always be present. The memory location can

be specified by any combination of terms b, c, and d, that is, a tag, an absolute address, a

4 of 8

tag plus or minus a 5-digit increment, or any of the precedi~g modified by the content of ·a

B register. The operand-code specifies the form of the numeric value in the following manner

when the operand-code (term a) is:

L - the numeric value is the lower 15 bits of the memory location

u - the numeric value is the upper 15 bits of the memory location, normalized to

the right of a 30-bit register

w - the numeric value is the whole 30 bits of the memory location.

LX - the numeric value is the lower 15 bits of the memory location, with the sign

extended to make a 30-bit word

UX - the numeric value is the upper 15 bits of the memory location, normalized to the

right of a 30-bit register and the sign is extended

Examples:

L(COW+S+B6)

UX(CAT)

W(BS)

The last example means "the whole contents of the memory location whose address is in BS ."

REGISTERS: Read-class operands may refer to the contents of registers. The registers are:

A ,B1 , B2 , B3 , B4 ,BS , B6 or B7 •.

A constant may modify the content of the B registers, but not of the A register. For exam­

ple:
B1+3

BS-12D

If a sign extension is desired on the content of a B register ,an X precedes the register name.

For example:

XB3

XB4-2

STORE-CLASS

Store-class operands can assume the following forms:

CONTENTS OF: Store-class operands may specify a memory location into which a numeric

value is stored. An operand-code, term a, and parentheses must always be present. The

5 of 8

memory location can be specified by any combination of terms b, c, and d, that is, an abso­

lute address, a tag plus or minus a 5-digit increment, or any of the preceding modified by the

content of a B register. The operand-code designates the position and form of the numeric

value when it is stored. If the operand-code (term a) is:

L - the numeric value treated as a l5-bit integer is stored in the lower 15 bits of the

memory location. (The upper 15 bits remain unchanged)

U - the numeric value treated as a l5-bit integer is stored in the upper 15 bits of the

memory location. (The lower 15 bits remain unchanged)

W - the numeric value treated as a 30-bit integer is stored in the memory location

CPL - the numeric value is complemented and stored as Labove

CPU - the numeric value is complemented and stored as U above

CPW - the numeric value is complemented and stored as W above

Examples:
L(COW+S+B6)

CPU(CAT)
W(BS)

REGISTERS: Store-class operands may specify a register into which a numeric value is

stored. These registers are:

A or Q.

REPLACE·CLASS

Replace-class operands can assume only the following form:

CONTENTS OF: A Replace-class operand specifies a numeric value which is in a memory

location, and after some function is performed, specifies the same memory location into which

the resulting numeric value is stored. The memory location can be specified by any combina­

tion of terms b, c, and d, that is, a tag, an absolute address, a tag plus or minus a 5-digit in­

crement, or any of the preceding modified by the content of a B register. The operand-code

specifies the form of the numeric value in the following manner when the operand-code (term

a) is:

L - the numeric value' is the lower 15 bits of the memory location; after the basic

function is performed, the resulting numeric value treated as a l5-bit integer is

6 of 8

stored in the lower 15 bits of the same memory location~ (The upper 15 bits

remain unchanged)

u - the numeric value is the upper 15 bits of the memory location, normalized to the

right of a 3D-bit register; after the basic function is performed, the resulting

numeric value treated as a 15-bit integer is stored in the upper 15 bits of the

same memory location; (The lower 15 bits remain unchanged)

W - the numeric value is the whole 3D bits of the memory location; after the basic

function is performed, the resulting numeric value is stored in the same memory

location *

LX - the numeric value is the lower 15 bits of the memory location, with the sign ex­

tended to make a 3D-bit word; after the basic function is performed, the result­

ing numeric value is treated as Labove *

UX - the numeric value is the upper 15 bits of the memory location, normalized to the

right of a 3D-bit register, and the sign is extended; after the basic function is

performed, the resulting value is treated as U above *

Examples:
L(COW+S+B6)

UX(CAT)

W(BS)

*Exception: The storage reference of the replace may be altered by B6 when fol­

lowing a RePeaT operation. (See Mono-operations, RPT, page 29.)

7 of 8

CLASSES OF OPERATIONS

Operations divide into two major classes: 1) AS-1 programing operations 2) assembler­

control operations.

1. AS-1 programing operations express either 1) machine instructions in a mnemonic

form, 2) groups of machine instructions which perform a simple function, or 3) input­

output control on the standard external equipment. These <?perations generally refer

to memory locations by their address (a label or a tag), to machine registers by

name (A, Q, B
n

), and to data by the 30-bit word concept. A thorough knowledge of

the Unit Computer is necessary to use these operations

2. Assembler-control operations specify information to the assembler executive routine.

This information states the process it is to perform, such as assembling, editing,

etc

Operations further divide into two categories: 1) Declarative, and 2) Action.

Declarative operations state certain facts about entities in the input language of which

they are part. They 1) adapt the program to a specific memory configuration and input­

output capabilities of the computer, and 2) identify different segments of input to the

assembler. No machine instructions result directly from the declarative operations.

Action operations have operational or dynamiC meaning and state rules of process­

ing which give rise to actual machine instructions. Each section pertaining to these op­

erations specifies to which category each operation belongs.

8 of 8

AS-I ASSEMBLER GROUND RULES

The following Ground Rules are offered as aids to the programer:

Case:

1. It is recommended that upper-case alphabetical and numeric characters be used

in coding. This will eliminate a large portion of case shifting when preparing

paper tapes

2. An upper-case symbol is required at the beginning of a tape

Coding Format:

3. The operator is always the first word of an LO operation statement, if no label

is present.

4. The symbols + and - specify increments. Both + and - may be used with a num­

ber. B registers can be used only with a + sign

5. The j-designator operand, if used, appears as the last operand of a mono­

operation

6. In a mono-code operation, the tag, basic term b, must precede the constant, term

c, and the B register, term d. The constant and B register terms canbe inter­

changed (see Programing Language, Page 3)

Control Symbols:

7. A ~ must precede and follow the header. A ~ also separates all operations

8. A. must always precede the statement

9. The operator and each of its operands are separated with a point separator, •

10. Parenthesis symbols indicate, in the assembler-language operations, grouping of

interrelated operands by separating an operand code from the term{s) that it is

to modify, i.e., U(DOG6+267)iL(DOG4+1)iW(CAT4)

11. A. must precede the notes

12. A double period following a carriage return indicates the end of paper tape

1 of 4

Decimal Numbers:

13. A decimal number is indicated by being followed by the letter D; i.e., 9286D.

Numerical characters 8 and 9 may then be used

14. Signed decimal numbers cannot exceed eight digits, since the sign and the Dare

included in the ten character maximum. Allowable decimal formats are:

+43274685D

-35942738D

536870911 D *

Identifiers:

15. Since L1 ID's are in octal notation, corrections to the L1 ID's must be in

octal

16. The HEADER operation of an La program is given an L1 ID of zero; the second

operation has an L1 ID of !; numbering is sequential thereafter

Labels:

17. Only essential operation items need be labeled, i.e., header items, the ENTRY

operation of a program, operation items referred to in the program, etc

18. Start each subroutine with a labeled ENTRY operation. The label should be the

subroutine name

19. When used, the ENTRY operation of any routine must have a label

20. Use only alphanumeric characters in labels

Mono-operations:

21. Be sure to observe the distinctions between Read-class, Store-class, and Re­

place-class operands in coding mnemonic instructions

22. The V a operand in mono-operations. is either r, a register designation, or e, a

modifying expression; in a few mono-operations, V a is absent

23. j -operands are required in all COM operations: COM _ A ; COMeQ; COMeAQ;

COM-MASK

*Maximum decimal number permitted

2 of 4

24. j -operands are not permitted if r in the V 0 operand is BI through B7 or CO

through C17 in the operations: ENT; STR; BJP; BSK; CL; IN; OUT

Poly-operations:

25. Avoid, if possible, leaving information in registers A, Q, and B7 while stating

poly -operations

26. Do not use a j -operand in the operation preceding a poly-operation except for

J P and RJ P ope rations'

Register B:

27. The content of register Q cannot be transferred directly to a B register. It

can be transferred only indirectly by first storing it in A or memory

28. Do not decrement a B register through zero (see INCREMENT operation)

29. An XB
n

in a mono-code statement will give a sign extension of the content of

register B
n

on transfer to a 3~-bit location or register

Miscellaneous

30. Headers are required on all input tapes

31. Code delete, stop code, color shift code, or leader may appear at any place on

paper tape since they are discarded by the assembler program

32. The ENT 0 Y-Q 0 [read-class operand] 0 AZERO operation provides acon­

venient method of making a non-masked comparison

33. To clear an area of .!. word, the mono-code CL operation is more efficient time­

wise than the poly-code CLEAR operation. A word number of 0 used with the

CLEAR operation merely produces a "do-nothing" on delay instruction in the

object program

34. 0 is translated as a zero in AS-l code

35. A combined read-in of both normal-allocation and relative-allocation tapes re­

sults in the following:

1. If REL-ALLOC tape precedes the ALLOCATION tape, the assembler sup­

pre'sses all assembler-generated tags contained on the ALLOCATION tape. The

assembler reassigns these tags

3 of 4

2. If the ALLOCATION tape precedes the REL-ALLOC tape, the compiler

recognizes and accepts all assembler-generated tags on the ALLOCATION tape

36. Operations containing references to C -channels must use octal channel desig­

nations, Le., CO-C7, CIO-C17. C
n is treated as a complete channel name, not

a channel number

Example:

.. TERM. Cll (not C9D)_ INPUT ..

4 of 4

Operation

ENTer ...

SToRe ..

SToRe (channel) ..

NO-OP.

CLear.

Right SHift

Left SHift

ADD

SUBtract

MULtiply

DIVide

SQuare RooT

COMpare ...

ComPlement.

SELective.

Replace SElective . .

JumP

Return JumP

B JumP.

B SKip

RePeaT

INput ..

OUTput

External COMmand .

MONO-OPERATIONS

Page

3

5

6

7

. 8

...... 9

10

11

12

13

14

15

16

18

19
. . -: -.~ ... : .. -.~-:-.:-:--. :-.----.-.-...... · .. ·20 _.

21

23

26

27

EXternal COMmand-Multi Word

28

29

31

32

33

34

35

36

TERMinate

Set Interrupt Lockout.

i of ii

MONO-OPERATIONS (Cont.)

Operation

Set Interrupt Lockout - EXternal. .

Remove Interrupt Lockout

Remove Interrupt Lockout - EXternal

Remove Interrupt Lockout and Jump ..

ii of ii

Page

37

38

39

40

MONO-OPERATIONS

Operations which mnemonically express a machine instruction are mono-operations, Each

mono-operation in the source language (LO) is translated by AS-1 to one machine instruction

in the object language (L4), i.e., the translation is one-to-one.

Mono-operations have a definite format:

w

.. [operator] • [allied operand] G [Y -operand] • [j -operand] ..

W gives a mono-code which defines a class of machine instructions, such as enter,

store, etc

Vo gives added information which further defines a machine instruction, thus is

called the allied operand, The allied operand may specify a register, r, or a

simple logical or arithmetic expression, e. It is absent in some operations

Some of the mono-codes are multipurpose. They form a class of operations. In such cases,

the allied operand combines with and modifies the operator to generate a distinct instruction

in the object language. An example is the selective operator, SEL. When combined with

the Vo operand, SET, it generates a computer function code f of 50. Similarly, SEL • CP

generates an f of 51, SEL • CL generates an f of 52, and SEL • SU generates 53. An­

other example of a multipurpose operator is ADD:

ADD • A

ADa • Q

ADD • LP

In each case the assembler generates a separate machine code instruction.

specifies either 1) a numeric value, 2) the address of a memory location, or

3) a register (A, Q, or Bn). The y-operand is a Read-class operand, a Store-class

operand, or a Replace-class operand (see the Basic Information, Section II-A.

for a discussion of these), VI is absent in some operations

Note: Subsequent references to y include all of the above interpretations unless

otherwise specified.

1 of 40

specifies a j -operand which is primarily used for jump or skip determination

or for repeat status interpretation. The action caused by these may be condi­

tional or unconditional as directed by the operand used. Seven j -operands are

applicable to the majority of mono-operations; these are called normal j-oper-

ands. Certain operations require the usage of unique j-operands, called

special j -operands. These are explained in the discussions of those operations.

The j -operand is absent on other operations

Normal j -operands are as follows:

Operand,j

(blank)

SKIP

Q POS

Q NEG

A ZERO

A NOT

A POS

A NEG

Performance

Will not skip the next operation.

Skip the next operation unconditionally

Skip the next operation if Q is positive

Skip the next operation if Q is negative

Skip the next operation if A is zero

Skip the next operation if A is non-zero

Skip the next operation if A is positive

Skip the next operation if A is negative

Special j -operands are required for use with the following operations: Jump, Return Jump,

Divide, Repeat, Add Q, Subtract Q, and all non-mask Compares.

Mono-code operators, combining with allied operands in most cases, are capable of generat­

ing all the irredundant instructions of the computer's repertOire. Additional operations

such as: "do nothing" operation, NO-OP; and "complement a register", CP; produce Single

instructions which achieve such actions which are not apparent in the names of computer

function codes.

2 of 40

ENTer Operation:

W Va VI

.. ENT • [r or eJ • [y]
The ENT operation either 1) first clears the register, r, and then transmits

the numerical value expressed by y to register r, or 2) performs the function

expressed by e and enters the result in A. The Y that appears in e refers to

the numerical value which y defines.

Va designates the register into which the numerical value is entered; r can be:

A, Q, or BO through B7

or

Va states one of several simple arithmetic or logical expressions, e , to be per­

formed, which are then entered into A. These are:

Expression, e

(1) LP

(2) Y+Q

(3) Y - Q

Performance

LP (y) (Q)* .. A

y + Q ~ A

y - Q .. A

V 1 gives a Read-class operand that defines y

V 2 specifies a normal j -operand; it is optional when Va is A, Q, Y +Q or Y - Q

or

V2 specifies a j -operand when Va is LP. In this case the operation permits all

normal j -operands except QPOS and QNEG. Substituted for QPOS and QNEG

are two special j -operands:

EVEN - Even parity (even number of "ones" in A)

ODD - Odd parity (odd number of "ones" in A)

Note: If Va is BO through B7, V 2 must be absent.

*LP (y) (Q) means the bit-by-bit product of (y) and (Q)

30f 40

ENT

(
f: 10, 11, 12)

13, 30, 31, 40

Examples:

.. ENT • Y+Q • UX(SACK+B4)

.. ENT • Q • X77776 • AZERO

.. ENT • LP • W(BAG9+3) • EVEN

4 of 40

..

ENT

(
f: 10, 11, 12)

13, 30, 31, 40'

SToRe Operation:

'v o

w Vo

STR • [r, or e] • •

The STR operation stores one of the following: 1) the content of register r, or

2) the result of an expression, e, in a storage location delegated by y.

designates the register, r, whose content is stored in a memory location. V 0

can be: A, Q, 80 through B7

or

Vo states one of several simple arithmetic or logical expressions, e, to be per­

formed, which are then stored in a memory location. These are:

Expression, e

(1) LP

(2) A+Q

(3) A - Q

Performance

LP(A)(Q)* • y

A + Q" yandA

A - Q.y and A

VI gives a Store-class operand that defines a memory location y

V 2 specifies a normal j -operand. The j -operand is optional except where r is 80 '

through 87

Examples:

• STR • 87 • L(PEN-5) ..

... STR • (14 • W(INK)

• STR • A-Q • W(PAPER) • QNEG ...

* LP(A){Q) means the bit-by-bit product of A and Q

5 of 40

STR
f: 14, 15, 16
32, 33, 47

SToRe (channel) Operation:

W Vo V1 V2

.. STR • [Channel] • [Y] • [sub-funCtion COde] ..

This operation provides the interrupt word at the specified location.

v 0 - Specifies the chat:lnel of the desired interrupt word. Channels CO - C 7, C10 - C17

are permitted. V 0 may specify a name which is identified by aMEANS operation

or a CHAN-SET tape

Specifies the location at which the interrupt word is to be stored. This operand

may specify only the whole contents of a memory location

V 2 - Specifies the sub-function code:

(absent) ** - means the contents of the appropriate address reserved for interrupt

word storage will be transferred to Y as specified by V 1. This

instruction is necessary with new line equipment to reset the

Interrupt Request

FORCE

Examples:

provides forcing the word on the line to be stored at Y as specified

by V 1. Program will hold until the word is read causing an Input

Acknowledge signal (this is an abnormal mode used for testing

some equipments)

.. STR. C3 • W(CAT) ..

.. STR. SMPCHAN • W(DOG) • FORCE ..

**The Input Acknowledge is set automatically when the interrupt word is read into the special
address, which occurs in both old and new line equipment

6 of 40
STR (channel)

(f: 17)

NO-OP Operation:

w

.. NO-OP ..

The NO-OP operation is a "do nothing" operation. It generates a 12000 00000

in the object program, causing the computer to move on to the next operation.

7 of 40
NO-OP

(f: 12)

CL ear Operation:

w Vo

.. CL • [r or y] ..

The CL operation clears the memory location specified by y or the register

specified by r.

Vo - designates the register to be cleared; r can be:

A , Q ,81 through 87 ,

or

Va - gives a Store-class operand that defines y

Examples:

.. CL • Q ..

.. CL • L(GIMME) ..

CL
8 of 40 (f: 16, 10, 11, 12, 13)

Right SH ift Operation:

w

.. RSH • • •

The RSH operation shifts the content of the register, r, to the right y bit posi­

tions. As the information is shifted, the original sign bit replaces the higher

order bits of register r; the lower order bits are shifted off the end.

Only the lower-order 6-bits of yare recognized. The higher-order 24 bits are

igno.red.

v 0 - designates the register that the operation shifts; r can be:

A, Q , or AQ

AQ represents the 60-bit register consisting of A and Q

V 1 - gives a Read-class operand that defines y

V
2

- specifies a normal j-operand; it is optional

Examples:

.. RSH • .AQ • 15D • AZERO ..

.. RSH • A • L(FLlP+6) ..

RSH

9 of 40 (f: 01, 02, 03)

Left SH ift Operations:

w

.. LSH • • •

The LSH operation shifts the content of the register, r, to the left y bit posi­

tions. The shift is circular; the low-order bits of r are replaced by the upper­

order bits. Only the lower-order 6 bits of yare recognized. The higher-order

24 bits are ignored.

v 0 - designates the register that the operation shifts; r can be:

A, Q, or AQ

AQ represents the 60-bit register consisting of A and Q

VI - gives a Read-class operand that defines y

V 2 - specifies a normal j -operand; it is optional

Examples:

.. LSH • A • L(CAT) • QNEG ..

.. LSH • Q • 84 ..

10 of 40
LSH

(f: 05, 06, 07)

ADD Operation:

w

... ADD • [r or e] •

The ADD operation either 1) adds the numeric value expressed by y to the

contents of r and replaces the result in r, or 2) performs the expression, e, and

then adds its result to A.

Vo - designates the register to which the numerical value is added

Register, r Performance

A A +y .. A

Q Q +y • Q

or

v 0 - states a logical function, e

Expression, e Performance

LP A + LP(y)(Q)* .. A

VI - gives a Read-class operand that defines y

~ - specifies a normal j-operand if ~ is A or LP • If Vo is Q, AZERO and

ANOl are not permitted; QZERO and QNOl are substituted instead. V
2

is optional

Examples

.. ADD • LP • W(BOOK) ..

.. ADD • Q • 12D • QZERO ..

*LP(Y)(Q) means the bit-by-bit product of y and Q

11 of 40
ADD

(f: 20, 26, 41)

SUB tract Operation:

w

.. SUB • [r or e] • [Y] •

The SUB operation either 1) subtracts the numeric value expressed by y from

the contents of r and replaces the result in r, or 2) performs the expression, e,

and then subtracts its result from A.

va - designates the register from which the numerical value is subtracted

or

Register, r

A

Q

v 0 - states a logical function, e

Expression, e

LP

Performance

A - y .. A

Q - y .. Q

Performance

A - LP(Y)(Q)* .. A

V 1 - gives a Read-class operand that defines y

V
2

- specifies a normal j-operand if Vo is A or LP. If Vo is Q, AZERO and

ANOT are not permitted. QZERO and QNOT are substituted instead. V
2

is optional

Examples:

.. SUB • A • 12D ..

.. SUB • Q • B6 ..

*LP(y)(Q) means the bit-by-bit product of y and Q

SUB
12 01 40 (f: 21, 27, 42)

MUL tiply Operation:

w

.. MUL • [absent] • [Y] •

The MUL operation multiplies Q by the numerical value expressed by Y, leaving

the double length product in AQ. All number s involved are treated as integers.

v 0 - always absent

V
1

- gives a Read-class operand that defines y. A is not permitted

V 2 - specifies a normal j-operand

The actual multiplication is performed with positive numbers only; therefore,

if the original sign bits of y and Q are not similar, an end correction is made

by complementing the product. The branch condition j -operand is interpreted

prior to the end correction, thus ANEG has no effect and APOS always gives

an unconditional skip.

Examples:

.. MUL • L(PAPER-2) ..

.. MUL • 4"

13 of 40 MUL

(f: 22)

DIY ide Operation:

w

.. DIY • [absent] • [y] •
The DIY operation divides AQ by the numerical value expressed by y, leaving

the quotient in the Q register and the remainder in the A register. The remainder

bears the same sign as the quotient.

v 0 - always absent

VI - gives a Read-class operand that defines y. A is not permitted

V 2 - specifies a skip-the-next-operation condition

Operand,j Condition

(blank) Does not skip on divide

SKIP Unconditional skip

OF Skip if there is an overflow

NOOF Skip if there is no overflow

AZERO Skip if A = 0

ANOY Skip if A -f: 0

APOS Skip if A is positive

ANEG Skip if A is negative

Note: There is no indicator on the console to represent a divide fault. However,

by coding each operation with a j of OF, a program test for a divide fault is

automatic. With this selection for j, a skip of the next operation occurs if the

divide fault exists. The skip would be made to a JP operation which provides

remedial means of noting the error or of correcting it. Therefore, the opera­

tion which follows the DIY operation should have a j -operand of SKIP in

order to preclude the JP operation whenever the divide sequence culminates in

a correct answer. A divide fault can be detected also if the DIY operation is

executed with a j of NOOF. In this case, a correct answer is indicated when

a skip occurs. Since A is always positive at the time j is sensed, ANEG becomes

meaningless.

Examples:
.. DIY. W(PAD+B2) • OF ..

.. DIY. B6 ..

14 of 40 DIY
(f: 23)

SQuare RooT Operation:

w Vo V1 V2

.. SQRT • [absent] • [absent] • [j] ..

The SQRT operation finds.j\QT and places it in Q. The remainder goes to A,

always destroying the previous contents. The radix point of (Q) is assumed to

be at the low order end of the register.

v 0 - always absent

V 1 - always absent

V 2 - specifies a skip-the -next-instruction condition

Operand, j Condition

(blank) Does not skip

SKIP Always skip

REM Skip if A 1= 0

NOREM Skip if A = 0

Examples: .. SQRT SQRT • NOREM ..

15 of 40
SQRT
(f: 23)

COM pare Operation:

Type A

Type B

W Vo VI V2 .. COM • [r] • [y] • [j] ..
W Vo VI V2 .. COM • MASK • [y] • [j] ..

Type A:

The COM operation compares the value expressed by y with r. A skip of the

next operation takes place if the condition specified by j is satisfied. The content

of r is not changed.

Vo - designates the register with which the numeric value is compared

Register, r

A

Q

AQ*

Performance

A:y

Q: y

A: y and Q:y

VI - gives a Read-class operand that defines y

V
2

- specifies a skip condition; it must be present. The special meanings of j are:

Operand,j

YLESS

YMORE

YIN

your

Condition

{

Skip if the value expressed by y S Q

Skip if the value expressed by y S A

{
Skip if the value expressed by y > Q

Skip if the value expressed by y > A

{

Skip if Q ~ value expressed by y and the value

expressed by y > A. Q ~. y > A

{

Skip if Q < value expressed by y or the value

expressed by y S A. Q < y S A

* Use only with j -operands YIN or YOUT y is compared with A and Q as
individual 30 bit registers

16 of 40
COM

(f: 04, 43)

Type B:

The COM. MASK operation compares A with the bit-by-bit product of the

values expressed by y and Q. A sldp of the next operation takes place if the

condition specified by j is satisfied. The contents of A and Q are not changed.

Vo - says MASK

VI - gives a Read-class operand that defines y

V 2 - spec~ies a normal j -operand; it must be present. The condition of A is tested

after L P(y)(Q)*is subtracted from A. The L P(y)(Q)*is then added to A

Examples:

.. COM • AQ • W(TAB-2) • YIN ..

.. COM • MASK • L(TAB) 0 AZERO ..

*LP(Y) (Q) means the bit-by-bit product of y and Q

17 of 40

COM
(f: 04, 43)

Com P lement Operation:

w

.. CP • [rJ ..
The CP operation complements all bits of the register specified by r.

Vo . - designates the register which is complemented; r can be:

A,or Q

Example:

.. CP • Q .. (Gen: 14000 00000)

18 of 40
CP

(f: 51, 14)

SEL ective Operation:

w

.. SEL • [e] • •

The SEL operation performs logical manipulations specified by e on the content

of A. A string of bits expressed by y controls these manipulations.

Vo - states one of several logical functions. These are:

Expression, e

SET

CP

CL

SU

Performance

Sets the individual bits of register A corre­

sponding to ones in the numeric value expressed

by y, leaving the remaining bits of A unaltered

Complements the individual bits of register A.

corresponding to ones in the numeric value ex­

pressed by y, leaving the remaining bits of A

unaltered

Clears the individual bits of register A corre­

sponding to ones in the numeric value expressed
-~

by y , leaving the remaining bits of A unaltered

Replaces the bits of A with bits of the numeric

value expressed by y corresponding to ones in Q

VI - gives a Read-class operand that definesy. A is not permitted

V
2

- specifies a normal j -operand; it is optional

Examples:

.. SEL • CP • X77774 ..

.. SEL • SET • W(CLlP) • AZERO ..

SEL
19 of 40 (f: 50, 51, 52, 53)

RePLace Operation:

The RPL operation performs the function expressed bye, and stores the result

in A and in a memory location established by y. The Y that appears in e re­

fers to the numerical value which y defines.

Vo states a simple arithmetic or logical expression to be performed. These are:

Expression, e Performance

(1) A+Y A + Y .. yandA

(2) A-Y A - Y .. y.andA

(3) Y+Q Y + Q "y and A

(4) Y-Q Y - Q "y and A

(5) Y+l Y + 1 "y and A

(6) Y-l Y - 1 "y and A

(7) LP LP (y) (Q)*" y and A

(8) A+LP A+ LP (y) (Q) .. y and A

(9) A-LP A - LP (y) (Q) .. y and A

VI gives a Replace-class operand which defines address y

~ specifies a normal j -operand; this is valid with all V 0 operands except LP

or

V
2

specifies the j -operand when Vo is LP. In this case the operation permits all

n'ormal j -operands except QPOS and. QNEG. Substituted for QPOS and QNEG

are two special j -operands as follows:

EVEN - Even parity (even number of "ones" in A)

ODD - Odd parity (odd number of "ones" in A)

Examples:

.. RPL • A+LP • W(CRUNCH) • QNEG ..

.. RPL • Y - Q • UX (HOPTO+B6) ..

.. RPL • LP • W (DOP+B4) • ODD ..

*LP (y) (Q) means the bit-by-bit product of (y) and (Q)

20 of 40

RPL

(
f: 24, 25, 34, 35)

36, 37, 44, 45, 46

Replace SElective Operation:

w

.. RSE • [eJ o

The RSE operation performs logical manipulations specified by e on the con­

tent of A and then stores A in the memory location whose address is expressed

by y. A string of bits in the same memory location controls these manipulations

before the store takes place.

states one of several logical functions. These are:

ExpreSSion, e

SET

CP

CL

SU

Performance

Sets the individual bits of register A to one

corresponding to ones in the numeric value ex­

pressed by y, leaving the remaining bits of A

unaltered, then stores A at the storage address

expressed by y

Complements the individual bits of register A

corresponding to ones in the numeric value ex­

pressed by y, leaving the remaining bits of A

unaltered, then stores A at the storage address

expressed by y

Clears the individual bits of register A corre­

sponding to ones in the numeric value expressed

by y, leaving the remaining bits of A unaltered,

then stores A at the storage address expressed

by y

Replaces the bits of A with bits of the numeric

value expressed by y corresponding to ones in

Q, then stores A at the storage address ex­

pressed by y

VI - gives a Replace-class operand that defines y

RSE

21· of 40 (f: 54, 55, 56, 57)

V2 specifies a normal j-operand; it is optional

Examples:

• RSE • SU • W(COVER+B4) ..

• RSE • CL • LX(POW5) ..

RSE

22 of 40 (f: 54, 55, 56, 57)

JumP Operation:

w

~ JP • [absent] •

The JP operation clears the program address register P, and enters the ad­

dress designated by y in P for certain conditions specified by j. Thus y be­

comes the address of the next operation and the beginning of a new program

sequence. H a jump condition is not satisfied, the next sequential operation in

the current sequence is executed in the normal manner.

Vo always absent

V1 * gives a Read-class operand which defines address y

V
2

specifies a jump condition

Operand j

QP05

QNEG

AZERO

ANOT

AP05

ANEG

(blank)

KEYl

KEY2

KEY3

STOP

5TOP5

5TOP6

5TOP7

e"ACTIVEIN

e"ACTIVEOUT

Condition

Jump if Q is positive

Jump if Q is negative

Jump if A is equal to zero

Jump if A is not equal to zero

Jump if A is positive

Jump if A is negative

Unconditional jump

Jump if Key 1 is set

Jump if Key 2 is set

Jump if Key 3 is set

Jump and then stop

Jump and then stop if Key 5 is set

Jump and then stop if Key 6 is set

Jump and then stop if Key 7 is set

{see next page for condition description

* H j is e"ACTIVEIN or e"ACTIVEOUT, an operand code of X, LX, UX, and A

is not permitted

JP

23 of 40 (f: 60, 61, 62, 63)

C"ACTIVEIN *

C"ACTIVEOUT *

Examples:

.. JP • TRACE ..

Jump if the input buffer mode on channel n is

active (n = 0, -,17)

Jump if the output buffer on channel n is active

(n = 0, --, 17)

.. JP • L(TRIG+B2). KEYl ..

.. JP • ROAR • C14ACTIVEIN ..

* May be a name which is defined by a MEANS operation or a CHAN-SET tape

JP
24 of 40 (f: 60, 61, 62, 63)

JumP Operation

W Vo V1 V2 V3

.. JP • [absent] • [location] • [Channel] • [COMACTIVE] ..

This operation provides a means for determining whether an external function

command buffer is active.

v 0 - Always absent

V 1 - Specifies the location to which control is to be transferred if the specified external

function command buffer is active. This operand may contain only a tag or a

tag with a K designator of L

V 2 - Specifies the channel on which the external command buffer is to be tested.

Channels CO-C7, C10-C17 are permitted. V 2 may specify a name which is

identified by a MEANS operation or a CHAN-SET tape

V 3 - Specifies that this test is for an active external function command buffer

Examples:

.. JP. PTH • CIO • COMACTIVE ..

.. JP. PTH • TAPECHAN • COMACTIVE ..

JP
25 of 40 (f: 17)

Return JumP Operation:

W Yo Tf

RJP • [absent] • [Y]

The RJP operation performs the following steps if conditions specified by j are

satisfied: 1} it stores the content of the program address counter P, which is

the address of the RJP operation plus one, into the lower 15 bits of the memory

location which has the address specified by y, and 2} then it enters P with Y + 1.

Thus, Y + 1 becomes the address of the next operation and the beginning of a

new program sequence.

If the j condition is not satisfied, the next sequential operation in the current

sequence is executed in the normal manner.

Vo always absent

VI gives a Read-class operand which defines address y

V
2

specifies a jump condition

Operand,j

QPOS

QNEG

QZERO

ANOT

APOS

ANEG

(blank)

KEY1

KEY2

KEY3

STOP

STOPS

STOP6

STOP7

Examples:

Condition

Return jump if Q is positive

Return jump if Q is negative

Return jump if A is equal to zero

Return jump if A is not equal to zero

Return jump if A is positive

Return jump if A is negative

Unconditional return jump

Return jump if Key 1 is set

Return jump if Key 2 is set

Return jump if Key 3 is set

Return jump and then stop

Return jump and then stop if Key 5 is set

Return jump and then stop if Key 6 is set

Return jump and then stop if Key 7 is set

• RJP • TRACE • STOP •

• RJP • U(FLAT+B7) •

RJP
26 of 40 (f: 64, 65)

B J,umP Operation:

w

• BJP •

v
o

•

V
1

The BJP operation tests the content of the B register specified by r. If (r) is

zero, the normal sequence of operations continues. If (r) is non zero, (r) de­

creases by one, and a new sequence of operations begins at the address ex­

pressed by y.

v 0 - designates a B register: B1 through B7

V 1 - gives a Read-class operand that defines y

Note: A j-operand is not permitted.

Examples:

.. BJP • B5 • DESK ..

.. BJP • B 1 • U(EXIT+B2) ..

27 of 40
BJP

(f: 72)

a SK ip Operation:

w

.. aSK • •
The aSK operation tests the content of the B register specified by r. H (r) is

equal to the numeric value expressed by y, the control sequence skips the next

operation and (r) is cleared. H (r)is not equal to the numeric value expressed by

y, the normal sequence of operations continues, and (r) increases by one.

Vo - designates a B register: a1 through B7

V 1 - gives a Read-class operand that defines y

Note: A j-operand is not permitted

Examples:

.. aSK • a3 • 56 ..

.. aSK • B4 • B2 ..

28 of 40
aSK

(f: 71)

Re PeaT Operation:

W Vo VI

RPT • [absent] • [y]

The RPT operation initiates a repeat mode of control which causes execution of

the next sequential operation the number of times expressed by y , or until the

j -operand condition of the next operation is satisfied, whichever occurs first.

B 7 keeps count of the number of times execution is to take place. (B 7 decreases

by one after each execution.)

v 0 always absent

VI gives a Read-class operand that defines y. If y is zero, the next instruction is

skipped

V 2 specifies the mode of address modification of the repeated operation

Operand, j

(blank)

ADV

BACK

AD DB

R

ADVR

Control

Unmodified repeat of next operation

Advance the operand address of the repeated

operation by one after each individual execution

Decrease the operand address of the repeated

operation by one after each execution of the

repeated operation

Adds cumulatively the B register indicated in

the repeated operation to its operand during

each execution

Increase the operand address of the repeated

Replace-class operation by the content of B6

for the s tore portion of the replace only

Increase the operand address of the repeated

Replace-class operation by the content of B
6

for

the store portion of the replace only; then in­

crement the operand address of the repeated

operation by one after each execution

29 of 40
RPT

(f: 70)

Operand

BACKR

ADDBR

Control

Increase the operand address of the repeated

Replace-class operation by the content of B6

for the store portion of the replace only; then

decrement the operand address of the repeated

operation by one after each execution

Adds cumulatively the B register indicated in

the repeated Replace-class operation to its

operand address during each execution; in ad­

dition to the above, increase the operand ad­

dress of the repeated operation by the content

of B
6 only for s tore portion of the replace

Note: Use j -operands R, ADVR, BACKR, and ADDBR only when a RPL

operation follows the RPT operation.

Examples:

.. RPT • 39D RPT

RPT

• B7 • BACK

• L(TRADE3) • ADDBR

Note: Interrupts are locked out during the time the computer is in repeat mode.

30 of 40

RPT
(f: 70)

INput Operation (With or Without Monitoring):

W Vo V
2

IN • [Channel] [absent or MONITOR]"

The IN operation establishes the control to transfer data from external equip­

ment to the core memory via a specified channel. The address limits are de­

fined by a numeric value expressed by y, which are transferred to memory ad­

dress OOIOO+n, where n is the number of the channel. Subsequent to this opera­

tion, but not as part of it, the individual buffer operations are executed at a rate

determined by the external device. The starting address, initially established

by this operation, is advanced by one following each individual buffer operation.

The next current address is maintained throughout the buffer process in the

lower order I5-bit pOSitions of memory location with storage address OOIOO+n.

This mode continues until it is superseded by a'subsequent initiation of an input

buffer via the Same channel, or until the higher order half and the lower order

half of storage address OOIOO+n contain equal quantities, whichever occurs first.

The first and last address of the memory area is specified in location OOIOO+n.

Vo deSignates the Channel, cn, through which buffering takes place:

CO, -, C17

VI gives an operand that defines y. H VI is a number of five digits or less, or has

an operand code of L, y replaces the lower half of address OOIOO+n. If VI is a

number of more than five digits, or has an operand code of W, y replaces the

whole word of address OOIOO+n. Operand codes of X, U, LX, UX, or A, are

not permitted

V
2

specifies whether the buffer operation is to be monitored or not. Monitoring is

specified by V
2

being MONITOR. Otherwise V
2

is absent

A buffer operation is monitored if the main program is interrupted and control

is transferred to 00040+n when the buffer operation is terminated by the control

addresses in address OOIOO+n becoming equal

Examples:

.. IN • C5 • 52367 ..

.. IN • C14 • W(LlMIT) • MONITOR ..

IN

31 of 40 (f: 73, 75)

OUTput Operation (With or Without Monitoring):

W Vo l! V
2

OUT • [channel] • [Y] • [absent or MONITOR]"

The OUT operation establishes the control to transfer data to external equipment

from the core memory via a specified channel. The address limits are defined

by a numeric value expressed by y; these are transferred to memory address

00l20+n, where n is the number of the channel. Subsequent to this operation,

but not as part of it, the individual buffer operations are executed at a rate de~

termined by the external device. The starting address, initially established by

this operation, is advanced by one following each individual buffer operation.

The next current address is maintained throughout the buffer process in the

lower order l5-bit positions of memory location at storage address 00l20+n.

This mode continues until it is superseded by a subsequent initiation of an input

buffer via the same channel, or until the higher order half and the lower order

half of storage address 00l20+n contain equal quantities, whichever occurs first.

The first and last address of the memory area are specified in location 00l20+n.

V 0 deSignates the Channel, C
n

, through which buffering takes place:

CO, -, C17

Vl gives an operand that defines Y..I' If Vl is a number of five digits or less, or has

an operand code of L, y replaces the low~r half of address 00l20+n. If Vl is a

number of more than five digits, or has an operand code of W, y replaces the

whole word of address 00l20+n. Operand codes of X, U, LX, UX, or A are

not permitted

V 2 specifies whether the buffer operation is to be monitored or not. Monitoring is

specified by V
2

being MONITOR. Otherwise V
2

is absent

A buffer operation is monitored if the main program is interrupted and control

is transferred to 00060+n when the buffer operation is terminated by the control

addresses in address 00l20+n becoming equal.

Examples:

.. OUT. C7 • 41456 ..

.. OUT. C12 • L(LOC) • MONITOR ..

OUT
32 of 40 (f: 74, 76)

EXternal-COMmand Operation:

w

... EX-COM • [channel] • [external function code] • ~ub-function COde] ..

The EX-COMoperation initiates a one word external function buffer.

v 0 - Specifies the channel on which the external function code is transferred. Chan­

nels CO-C7, C10-C17 are permitted. V 0 may specify a name which is identified

by a MEANS operation or a CHAN-SET tape

V - Function code, this may be a ten digit number or less, or the whole contents _ 1
oi a memory location (Le., operand code of w),. Other operand codes are not

permitted. B-Box modification is not allowed if V 1 is a constant

V 2 - Specifies the sub-function code

(absent) The external function command is sent without force or monitor

FORCE - used when the communication is with external eqUipment which

has not been designed to send an "external function request" to

the computer. MONITOR may not be used in conjunction with an

EX-COMwith a V 2 operand of FORCE

MONITOR- Provides a transfer of control to location 00500+j when the buffer

of the external function word is completed

MONFORCE - Provides the combined capabilities of MONITOR and FORCE

Examples:

.. EX-COM. CO • 4300000016 • FORCE ..

.. EX-COM. C17 • W{EFUN) ..

.. EX-COM. TTY • CHAN • W{EFT) • MONITOR ..

.. EX-COM. SPILL • W{EFF) • MONFORCE ..

33 of 40
EX-COM
(f: 13)

EXternal-COMmand-Multi Word Operation

W

.. EX-COM-MW • [Channel] • [Y] • ~ub-funCtion COde] ..

The EX-COM-MW operation sets up the appropriate external function buffer

control word (at 00140+j) and initiates output buffering of the specified external

function commands .

. V 0 - SpeCifies the channel on which the external function codes are sent. Channels

CO-C7, CIO-C17 are permitted. V 0 may specify a name which is identified by

a MEANS operation or a CHAN-SET tape

V 1 - Gives the buffer limits of the function codes to be transmitted. This may be

the contents of a whole memory location only (Le., operand code of w). Other

operand codes are not permitted. B register modification is not allowed if

V 1 is a constant

Specifies whether the buffering of the external function command words is to

be monitored. When monitored, the completion of the buffer will cause transfer

of control to external function buffer monitor interrupt entrance address 00500+j

Examples:

.. EX-COM-MW. C3 • W(FCCW) • MONITOR ..

.. EX-COM-MW. TAPECHAN • W(sFCC) ..

34 of 40
EX-COM-MW
(f:. 74, 76)

TERMinate Buffer Operation:

w V
I

... TERM • [channel number or ALL] • [bUffer mOde] ..

The TERM function terminates input, output, external function command, or all

buffers as specified by the V 0 and V I operands.

V 0 - Specifies the channel on which buffering is to be terminated. Channels CO-C7,

CIO-CI7 are permitted. V 0 may specify a name which is identified by a MEANS

operation or a CHAN-SET tape

ALL - causes all buffering including that of external function commands, input

data, and output data to be halted. No V I operand is allowed when the

V 0 operand is ALL.

V I - Specifies the mode of buffering to be terminated.

(absent) - The VI operand must be omitted if the V 0 operand was ALL.

COM - Terminates the buffering of external function commands on specified

channel

INPUT - Terminates the buffering of input data on specified channel

OUTPUT - Terminates the buffering of output data on specified channel

Examples:

.. TERM. C6 • COM ..

.. TERM. ALL ..

.. TERM. C17 • OUTPUT ...

Examples: (illegal)

.. TERM. ALL. INPUT ..

35 of 40
TERM
(f: 66, 67)

5et Interrupt Lockout Operation:

w Vo

.. SIL. ALL ..

The operator 51L locks out both internal and external interrupts on all channels.

v -o The only V 0 operand allowed is ALL

Examples:

.. 51L. ALL ..

Example (illegal):

.. 51L. C6 ..

36 of 40
51L
(f: 66)

Set Interrupt Lockout - EXternal Operation

w

.. SIL-EX • [channel] ..

The operator SIL-EX*sets external interrupt lockout for the specified channel.

v 0 - Specifies the channel on which external interrupts are to be locked out. Chan­

nels CO-C7, C10-C17 are permitted. V 0 may specify a name which is identified

by a MEANS operator or a CHAN-SET tape

ALL - locks out external interrupts on all channels

Examples:

• SIL-EX. CIO ..

.. SIL-EX. ALL ..

.. SIL-EX. FLEX CHAN ..

* The interrupts locked out by SIL-EX, can be released only by the RIL-EX operation

. 37 of 40
SIL-EX
(f: 66)

Remover I'nterrupt Lockout Operation

w

.. RIL • [absent or ALL) ..

The operator RIL removes interrupt lockouts on all internal channels, and all

external channels not previously locked out by SIL-EX operations.

v 0 - The effect on the computer is the same whether V 0 is ALL or absent

(absent) - If V 0 is absent an instruction of the type 600XX XXXXX will be gen­

erated

ALL - If V 0 is ALL an instruct~on of the type 66XIO XXXXX will be gener-

ated

Examples:

.. RIL ..

.. RIL. ALL ..

RIL
38 of 40 (f: 60, 66)

Remove Interrupt Lockout - EXternal Operation

w

.. RIL-EX *. [channel] •

The operator RIL-EX * releases the interrupt lockout for external interrupts.

v 0 - Specifies the channel on which the external interrupt lockout is to be released.

Channels CO-C7, C10-C17 are permitted. V 0 may specify a name which is

identified by a MEANS operator or a CHAN-SET tape

ALL - Removes the external interrupt lockout on all channels

Examples:

.. RIL-EX. CIO ..

.. RIL-EX. ALL ..

~ IlL-EX 0 TTYCHAN

*This instruction must be used to remove interrupt lockouts on channels previously locked
out by SIL-EX operations. RIL operations only release lockouts for external interrupts
not locked out by SIL-EX, and of course internal interrupts

39 of 40
RIL-EX
(f: ·66)

Remove Interrupt Lockout and JumP Operation:

w

.. RILJP •

The RILJP operation removes the interrupt lockout, thus 'allowing a subsequent

interrupt, and jumps to address y unconditionally. The operation generates a

601nn nnnnn instruction.

Vo gives 'a Read-class operand which defines address y

40 of 40
RILJP

(f: 60)

Operation

ENTRY ...

EXIT.

CLEAR

PUT .

MOVE
-------~

INCREMENT.

TYPEC . ..

TYPET

POLY-OPERATIONS

PUNCHC

PUNCHT

TYPE -DECimal.

PUNCH-DECimal

Upper TAG

i of i

2

3

5

6

8

10

12

15
-- -- -------~---:-----.----~----~--------17----

20

22

24

26

POLY-OPERATIONS

Quite frequently, groups of contiguous instructions appear iteratively in a program. These

instructions are alike because they perform a specific job or function. It is possible in cases

such as this to generate the successive instructions with a single AS-I operation. This is the

familiar one-to-many relationship between instructions which shall be herein termed poly­

coding, with the parent instruction being called a poly-operation. A poly-operation is capable

of generating within the assembler system a unique sequence of computer instructions (in some

cases a single instruction) designed to perform the specific task required.

It is permissible during the coding of a routine to intermix mono- and poly-operations in any

order desired. However, the programer must not attempt to skip a poly-operation with the
-
j-operand of a mono-operation. The poly-operation usually results in the generation of more

than one instruction in the assembled object program; the computer skips the first of these

instead of the intended next mnemonic operation in the source program. The assembler­

generated computer instructions ~ppear in the object program in the order specified by the

AS-I coding.

Poly-operations are capable of producing assembler-generated, unique labels and tags for in­

ternal use during assembling.

The computer frequently employs registers A, Q, and B
7 in object program instructions re­

sulting from poly-operations. In so dOing, it destroys any previous information contained in

these registers. The programer should therefore exercise caution in the use of these regis­

ters in statements preceding poly-operations. In cases where their use is necessary and the

content of any of these registers is required later, the programer must save their content

by transfer to a temporary storage location for later reference.

1 of 26

ENTRY Operation:

L w

[subroutine name] ... ENTRY • [stop condition] ..

The ENTRY operation establishes a standard means of starting all subroutines.

It produces either a normal entry with no jump conditions or a jump capability

with Key Stop options. This operation is the first one in each subroutine; because

of this it must have a label which gives the subroutine name. Although each

ENTRY operation generates only one instruction, the variations which the in­

struction can assume make it a poly-operation.

v a - names the key which must be set on the computer console if the programer

wishes the computer to stop on exiting from the subroutine. If operand Va is

absent (no key stop specified), the assembler generates a word of a's for the first

subroutine word in the object program. If Va is present, the assembler generates

a 61 j 00 00000, where j is determined by the Vo operand. The allowable entries

for V
ll

are:

STOPS j = 5

5TOP6 j = 6

5TOP7 j = 7

Example a:

L W Vo
TYPEC ... ENTRY • 5TOP6'"

Generated: Mnemonic Equivalent

161 600 00000 I JP • 0 • 5TOP6

Example b:

L W
TYPET ... ENTRY

Generated: Mnemonic Equivalent

100000 00000 I None

2 of 26 ENTRY

EXIT Operation:

Vo -

L w

[optional label].. EXIT o [jump condition] ..

The EXIT operation provides a means of exiting normally from a subroutine,

i.e., it generates a jump back to the ENTRY operation of the subroutine and

thence to the main routine. The EXIT operation is used at every place in the

subroutine where an exit from it is desired; hence, any number of exits is per­

mitted. The label is optional.

Although the assembler generates only one instruction per EXIT operation, the

generated instruction can assume a variety of formats. The format depends on

1) whether the Vo operand of the foregoing ENTRY of the subroutine is present

or absent, and 2) the EXIT V 0 operand itself. Because of these variations this

operation is classed as a poly-operation. If the Vo operand of the preceding

ENTRY operation is absent, the assembler generates a 61 j !O nnnnn or a 60 j !O

nnnnn. If the V 0 operand of the preceding ENTRY operation is present, the

assembler generates either 61 j QO nnnnn or 60 j QO nnnnn. The address assigned

to the preceding ENTRY position is nnnnn. The compiler looks for this address,

then inserts it in the tag position, nnnnn, of the EXIT operation.

determines j in the

If the EXIT V 0 is:

Absent

QPOS

QNEG

AZERO

ANOT

APOS

ANEG

instruction generated by the EXIT operations as follows:

The generated instruction is:

j k b Y
61 0 (1 or 0)* 0 nnnnn

60 2

60 3

60 4

60 5

60 6

60 7

*If V 0 of previous ENTRY is absent, k = 1

If Vo of previous ENTRY is present, k = 0

3 of 26 EXIT

H the EXIT Vo is:

KEYl

KEY2

KEY3

STOP

STOPS

STOP6

STOP7

Examples:

a. Previous ENTRY

L

1) MAP2 ..
Generated:

\61310 nnnnn I

The generated instruction is:

j k b y

61 1 (1 or 0)* 0 nnnnn

61 2

61 3

61 4

61 5

61 6

61 7
*H Vo of previous ENTRY is absent, k = 1

H Vo of previous ENTRY is present, k = 0

Vo absent

W Vo

EXIT • KEY3 ..
Mnemonic Equivalent

JP • L(nnnnn) • KEY3

.. EXIT ..

Generated: Mnemonic Equivalent

\61010 nnnnn I JP • L(nnnnn)

b. Previous ENTRY Vo present

w Vo

1) .. EXIT • ANOT ..
Generated: Mnemonic Equivalent

160500 nnnnn JP • nnnnn • ANOT

L W Vo

2) MAP3 .. EXIT • QNEG ..
Generated: Mnemonic Equivalent

160300 nnnnn I JP • nnnnn. QNEG

4 of 26

CLEAR Operation:

W Vo VI

• CLEAR • [number of words] • [starting address J ..
The CLEAR operation clears (fills with O's) a number of words of an area of

core memory.

specifies the number of words to be cleared. This is a Read-class operand;

however, the operand code A is not permitted. If a value of 0 is used, the op­

eration is a lido nothing" instruction which causes a delay of the computer. If a

1 is specified, the end result is the same as that of a mono-code C L operation

VI - gives the starting address of the area to be cleared. This may be a constant of

maximum five digits, a tag, a tag with an increment, or a tag with an increment

and a B-register designation

Example:

.. CLEAR • 6. CAT+B6-2 ..

Generated:

70100 00006

16036 nnnnn*

Mnemonic Equivalent

RPT • 6 • ADV

STR 0 BO • W(CAT+16-2)

*nnnnn = constant specified by CAT -2

5 of 26
CLEAR

PUT Operation:

w

.. PUT • [the word] • [destination address] ..

The PUT operation places a single word or half word in a designated storage

address.

Vo - expresses a Read-class operand; it maybe a tag, a constant, or the content of an

address. This represents the source information

V 1 - specifies the address in memory at which the word or half word is to be stored.

This is a Store-class operand; it gives a constant, a B register, a tag, a tag with

increment, or a tag with increment and B-register designation preceded by an

appropriate operand code. A and Q are not permitted.

Since register Q is used for the movement of the word, its original content is

destroyed by this operation. The programer must provide for preservation of

the initial contents if desired

Example a:

.. PUT • L(CAT+86) • U(DOG+83-2) ..

Generated:

10016 nnnnn*

14023 nnnnn

Example b:

Mnemonic Equivalent

ENT • Q • L(CAT+86)

STR • Q • U(DOG+83-2)

.. PUT • -0 • W(86) ..

Generated:

10040 77777

14036 00000

Mnemonic Equivalent

ENT. Q • -0

STR. Q • W(86)

*nnnnn is an allocated address corresponding to a tag

6 of 26
PUT

Example c:

.. PUT • 77342106 • W(DOG) ..

Generated:

10030 nnnnn*

14030 nnnnn

ENT • Q • W(Alllllnnnn)*

STR • Q • W(DOG)

*A "III nnnn is an assembler-generated tag

7 of 26

MOVE Operation:

w

.. MOVE • [number of words]. [from address] • [to address] ..

The MOVE operation moves masses of data from one area to another. The

computer moves the words of information sequentially through the Q register

and may use B
7

for indexing. It does not reinstate the original content to either

the B 7 or the Q register; the programer must save and restore such informa­

tion if he wishes to retain it.

specifies the number of words to be moved; the programer inserts the Read­

class operand to indicate the number of words to be transferred; however, the

operand codes X, LX, UX, or A are not permitted

indicates the initial address of the area from which data will be moved; it can be

an absolute address, a B register, a tag, or a tag with an increment and/or a

B-register designation

states the initial address of the area to which data will be transferred; it can be

an absolute address, a B register, a tag, or a tag with an increment and/or a

B-register designation.

The assembler generates instructions in numbers varying from 2 to lO,depending

upon 1) the number of words to be moved, 2) whether the V 0 operand is mnemonic

or not, and 3) whether Bn designations appear in V
1

and/or V 2. H only one word

is moved, the minimum number of instructions generated is two; if Vo is mne­

monic, the minimum is five instructions. Since the use of B-register designa­

tions in operands V
1

and V 2 changes the number of instructions generated by the

assembler, two examples are given below. The first shows an operation with no

Bn in either operand V
1

or V
2

; the second contains a B
n

in both operands

Example a:

.. MOVE. 4 • CAT • DOG ..

Generated:

12700 00003

10037 nnnnn

14037 nnnnn

[a] 72700 [a -2]

Mnemonic ,Equivalent

ENT • B7. 3

ENT • Q • W(CAT+B7)

STR • Q • W(DOG+B7)

a BJP • B7 • a-2

8 of. 26 MOVE

Example b:

.. MOVE 0 B5. CAT+B4. DOG+B7-3 ..

Generated: Mnemonic Equivalent

10004 nnnnn ENT. Q • CAT+B4

14010 [a -2 J STR 0 Q • L(a-2)

10007 nnnnn ENT 0 Q 0 DOG+B7-3

14010 [a-I J STR 0 Q • L(a-l)

12705 00000 ENT oB7 • B5

72700 [a -2J BJP 0 B7 • a-2

61000 [a +1 J JP • a+l

10037 [000000] ENTo Q • W(O+B7)

14037 [000000] STR. Q • W(O+B7)

[a] 72700 [a -2 J a BJP. B7 oa -2

9 of 26

INCREMENT Operation:

w

... INCREMENT. [B register] • [increment] ..

The INCREMENT operation provides a means to either increase the number

contained in a B register (Bn) by a fixed increment or decrease the number in

Bn by a fixed decrement.

Vo - specifies the B register to be incremented

V1 - states the value of the increment by which the content of the B register is to be

altered. The increment is defined by a Read-class operand

Example a:

... INCREMENT • B2. -1 ...

Generated: Mnemonic Equivalent

[a] 72 200 [a + 1] a BJP • B2 • a + 1

[a + 1] Next Instruction a + 1 Next Instruction

Example b:

... INCREMENT. BS. 32D ...

Generated: Mnemonic Equivalent

112 505 00040 1 ENT • BS • BS+32D

Example c:

.. INCREMENT. B3. -12 ...

Generated:

11 003 00000

20 040 77765

Mnemonic Equivalent

ENT. A • B3

ADD. A • X(7776S)

ENT. B3. A

10 of 26 INCREMENT

Example d:

.. INCREMENT 0 B4 0 L(CAT+6+B2) a>

Generated:

11 004 00000

20 052 nnnnn*

12 470 00000

Mnemonic Equivalent

ENT 0 A - 84

ADD 0 A 0 LX(CAT+6+B2)

ENT 0 B4 0 A

This poly-operation generates a variable number of object language instructions

depending on the nature of the VI operand. A positive constant in VI causes a

single instruction to be generated, a negative constant causes two instructions,

and a symbolic name results in three instructions.

A special case occurs when the VI value is: -1. A B register can be decre­

mented by one to reach zero, but not through zero; i.e., a B register containing

zero, if decremented by one, remains zero.

The programer should note that the A register is used in some cases and is

not restored. If he wishes to preserve the previous content of register A for

later use, he must provide for its storage'in another location.

*nnnnn: The value allocated to the tag CAT+6 by the assembler

11 of 26

TYPEC Operation:

w - Vo-

TYPEC • [information to be typed] ..

The TYPEC operation causes the content (in octal) of A, Q, any B register, or

any storage location to be typed by the on-line monitoring typewriter. In addition

to specifying that the numerical information in any of the above registers be

typed, the programer may issue special commands to the typewriter. These

commands, used as operands in the special format described below, may cause

the typewriter to do the following three things:

Operand

• ICRI •
• Ispi •
• ITABI •

Performance

Causes the typewriter to do a carriage return

Causes the typewriter to skip a space

Causes the typewriter to move to the next

tabulation stop

By properly inserting these commands as operands between the operands denot­

ing the information to be typed, the programer can control the format (spacing

and lines) of the information typed. The vertical bars are the special control

symbols for indicating that the operand is an order directing the typewriter.

Each of these three special operands must begin with and end with a vertical

bar, and must each be separated by point separators from other operands.

- Va - specifies the operands in the operand position in the order in which they are to

be read and/or executed. These operands are of four types: PI, P2, P3, and P4.

They may appear in any order, depending on the programer's desires or needs.

Point separators must separate each operand.

PI gives the locator of a value to be typed; it consists of an operand code

of L, U, or W together with a normal Read operand in parentheses. The

parentheses may contain a tag, B-register designation, or increment, or

any combination of these

P2 names a tag or label, without operand code, which the typewriter will

type

P 3 specifies a constant, of five digits or less, to be typed

12 of 26 TYPEC

L

Exception: The value, zero, will not be typed if expressed as an operand. Zeros

may be obtained by using the TYPET operation.

P 4 - states a special typewriter command symbol. Valid symbols are

ICRI, Ispl, and ITABI; these command symbols cause the typewriter

to perform a carriage return, to skip a space, and to move to a tabu­

lator stop respectively

Example:

w - v,­o

FIRST .. TYPEC • U(BETA+B3-6) At 2576 0ICRI 0 A 0 Ispi • Q 0 BETA ..

pI p3 p4 pI p4 pI p2

LAST .. STR 0 Q • W (GAMMA) ~

The FIRST operation above causes the following equivalent instructions and

codes to be generated (except for the LAST operation):

FIRST • RJP 0 TYPEC J)
00023 0 BETA - 6 1).
00000 0 02576 13-
77450 0 00000 1J
00070 0 00000 J)
77040 0 00000 j}.

00000 0 00000 12
00000 0 BETA 11

LAST .. STR 0 Q • W(GAMMA) m>

The TYPEC subroutine checks the first two characters of each of the opera­

tions following the Return Jump to TYPEC subroutine. H these are 00, it re­

places them with 10 or 20; if they are 77, it interprets the characters following as

commands to the typewriter (type p 4 operands).

The operation labeled LAST is not a part of the TYPEC performance. It.

illustrates that the programer must follow the TYPEC operation with an

13 of 26

operation which will not cause the generation of a word of D's in the object pro­

gram. In other words, the next instruction in the obj ect program must have a

legitimate computer instruction code.

The assembler obj ect program uses the TYPEC subroutine to produce the type­

out. In general this poly-operation generates a Return Jump to the TYPEC

subroutine, followed by an operation statement for each operand, directing the

computer either to type the information as specified or to perform the com­

mand given. The TYPEC subroutine stores the contents of the registers it

uses and restores them upon completion of the typeout.

14 of 26

TYPET Operation:

w

.. TYPET •

-v -o
[text and typewriter commands] ..

The TYPET operation generates a section of object language program which,

when run on the computer, causes· the on-line typewriter to type the message

given by the ~vO- operand of the TYPE,T operation. No point separators appear

between the parts of the Vo operand. The commands to the typewriter, viz.,

carriage return, space, and tab, intersperse with the text according to the needs

and desires of the programer. These typewriter commands separate from the

text by means ot a vertical bar, I , before and after each command:

• text 1 SP 1 text I CR I text I'TAB I text •

Exception: Where a space is desired between characters of the typed text, a

space code symbol, /l., may substitute for the command, 1 SP 1.* The above ex­

ample would then be:

• text II text I CR I text I TAB 1 text cJ>

The programer can use either symbol for a space. Where a tab follows a

carriage return, the format should be I CR II TABI

• text II text ICR IITABI text •

specifies the text to be typed, interspersed with the typewriter commands

needed to produce the text format desired by the programer. The typewriter

commands and their symbols are:

Carriage Return: ICRI
Tab: I TABI

Space: I SP I or II

*Only four consecutive space codes permitted (/:)./:)./:).~)

15 of 26 TYPET

Example:

FIRST .. TYPET • ABC I CR I DE I TAB I ..

.. TYPET • FGH I CR II TAB I I ~ J ..

produces the object language program:

FIRST .. RJP. TYPET

65000 TYPET

f ABC J

47302 31645

DE STOP

22205 17700

RJP. TYPET

65000 TYPET

1 F G H)

47261 30545

-+ I /). J STOP

51140 43277

During the running of the obj ect program, the TYPET subroutine then uses the

above object language program to produce the typewriter printout.

Any number of space commands can precede or follow the I CR I and I TAB I

commands without affecting the text. Putting more than one space command

between parts of the text has the effect of spreading these parts of the text far­

ther apart on the typewritten page.

There is no provision for controlling the case of the characters in the output

message. Alphabetical information is typed in upper case, numerical informa­

tion in lower case. The TYPET subroutine, which unpacks the codes taken

from the object language program, recognizes the end of the message by de­

tecting the code, 77.

16 of 26

PUNCHC Operation:

w - VO-

.. PUNCHC. [parameters for information and/or typewriter commandS] ..

The PUNCHC operation causes the content (in octal) of A, Q, any B register,

or any storage location to be punched by the High-Speed Punch. In addition to

directing that the numeric information in any of the above registers be punched,

the programer may write three special command symbols. These three sym­

bols are typewriter commands which, when the punched paper tape is on a

typewriter, will direct the typewriter to perform certain carria~e opera­

tions. These operations control the format of the typewriter typeout; they in­

clude:

Operand

• ICRI •
• Ispi •

• ITABI •

Performance

Causes the typewriter to do a carriage return.

Causes the typewriter to skip a space.

Causes the typewriter to move to the next

tabulation stop.

By properly inserting these commands as operands between the operands denot­

ing the information to be typed, the programer can control the format (spacing

and lines) of the information typed. The vertical bars are the special control

symbols for indicating that the operand is an order directing the typewriter.

Each of these three special operands must begin with and end with a vertical bar,

and each must be separated by point separators from other operands.

- Vo - - specifies the operands in the operand pOSition in the order in which they are to

be read and/or executed. These operands are of four types: P1, p2, P3, and P4.

They may appear in any order, depending on the programer's desires or needs.

Point separators must separate each operand.

P1 gives the locator address of a value to be typed; it consists of a normal

Read-class operand

p2 gives a tag or label allocation value which the typewriter will type.

This operand has no operand code

17 of 26 PUNCHC

Example:

P 3 specifies a constant, of five digits or less, to be typed.

Exception: The value, zero, will not be typed if expressed as an operand.

Zeros may be obtained by using the PUNCHT operation

P 4 - states a special typewriter command symbol. Valid symbols are

ICRI , Ispl, and ITABI; these command symbols cause the type­

writer to perform a carriage return, to skip a space, and to move to a

tabulator stop respectively

L W - Vo-
FIRST .. PUNCHC. Q

pI

• ICRI. L(ALPHA+B3) • ITABI· 50 • Ispi •

p4 pI p4 p3 p4

NEXT .. ENT • A • U (GAMMA) ..

INST 4

p2

The FIRST operation above causes the following equivalent (in some cases, incomplete)

operations to be generated:

FIRST .. RJP • PUNCHC J
.. 00000 • 00000 J
.. 77450 • 00000 J
.. 00013 • ALPHAJ

.. 77510 • 00000 J

.. 00000 • 00050 J

.. 77040 • 00000 J

.. 00000 • INST4 J
The PUNCHC subroutine checks the first two characters of each of the operations following

the Return Jump to PUNCHC subroutine. H these are 00, it replaces them with 10; if they are

77, it interprets the characters following as commands to the typewriter (type P4 operands).

The operation labeled NEXT is not a part of the PUNCHC performance. It illustrates that

the programer must follow the PUNCHC operation with an operation which will not cause

18 of 26

the generation of a word of D's in the object program. In other words, the next instruction in

the object program must have a legitimate computer instruction code.

The assembler object program uses the PUNCHC subroutine to produce the typeout. In general

this poly-operation generates a Return Jump to the PUNCHC subroutine, followed by an

operation statement for each operand, directing the computer either to type the information

as specified or to perform the command given.

19 of 26

PUNCHT Operation:

- Vo- -

w
• PUNCHT • [text and/or typewriter commands] •

The PUNCHT operation causes the High-Speed Punch to punch the text(s) which

the programer has written in the -V 0 - operand pOSition of the PUNCHT opera­

tion. It also punches the codes for SP, CR, and TAB, which control the type­

writer carriage movements during a listing of the punched tape. The pro­

grammer controls the format of the typewriter listing by interspersing the

carriage control symbols between his texts as he desires. No point sepa­

rators appear between the parts of the - Vo - operand. Each carriage control

symbol must have a vertical bar, I , before and after it.

Exception: Where a space is desired between characters of the typed text, a

space code symbol, Il, may substitute for the command, 1 spi.

Example: a.. PUNCHT • text Ispi text ICRI text ITABI text •

b.. PUNCHT • text Il text ICRI text ITABI text ..

Where 2 carriage control symbols appear consecutively, each one must have

vertical bars before and after it.

Example:

• PUNCHT • text ICRI ITABI text •

specifies the text to be typed, interspersed with the typewriter commands

needed to produce the format desired by the programer.

If the text is too long to put into one LO PU NCHT operation, successive opera­

tions can be written. Labels on these operations are optional

Example:

FIRST • PUNCHT • PAY Il TAX ICRI ON ITABI •

• ' PUNCHT • OCT Ispl 15 ICRI •

20 of 26 PUNCHT

The operations and codes generated in the running program by the above poly-operations

are:

FIRST .. RJP • PUNCHT

65000 PUNCHT

t P A y ~

47153 02504

T A X ~ 0

01302 74503

N- STOP

06517 70000

RJP • PUNCHT

65000 PUNCHT

OCT ~ ,
03160 10457

1 5 ~ STOP

52624 57700

When the running program is subsequently performed, the PUNCHT subroutine then causes

the High-Speed Punch to punch out octal codes above.

Any number of space commands can appear consecutively anywhere in the text. The effect is

. to vary the spacing between parts of the texts on the hard copy.

There is no provision for controlling the case of the characters in the output message. Alpha­

betic information appears in upper case, numeric in lower case. The PUNCHT subroutine,

which translates sequentially the codes taken from the object language program,recognizes

the end of the message by detecting the code, 77.

21 of 26

TYPE-DEC imal Operation:

w - Vo-
.. TYPE-DEC • [information to be typed] ...

The TYPE-DEC operation causes the content (in decimal) of A, Q, any B register,

or any storage location to be typed by the on-line monitoring typewriter. In addi­

tion to specifying that the numerical information in any of the above registers be

typed, the programer may issue special commands to the typewriter. These

commands, used as operands in the special format described below, may cause

the typewriter to do the following three things:

Operand

• I CR I •
• I SP I •
• ITAB I •

Performance

Causes the typewriter to do a carriage return

Causes the typewriter to skip a space

Causes the typewriter to move to the next tab­

ulation stop

By properly inserting these commands as operands between the operands de­

noting the information to be typed, the programer can control the format

(spacing and lines) of the information typed. The vertical bars are the special

control symbols for indicating that the operand is an order directing the type­

writer. Each of these three special operands must begin with and end with a

vertical bar, and must each be separated by point separators from other operands.

- Vo - specifies the operands in the operand position in the order in which they are to

be read and/or executed. These operands are of four types: pI, p2, p3, and p4.

They may appear in any order, depending on the programer's desires or needs.

Point separators must separate each operand.

pI - gives the locator of a value to be typed; it consists of an operand code to­

gether with a normal Read operand in parentheses. The parentheses may

contain a tag, B-register designation, or increment, or any combination

of these

p2 - names a tag or label, without operand code, which the typewriter will type

p3 - specifies a constant, of five digits or less, to be typed

22 of. 26 TYPE-DEC \

L

Exception: The value, zero, will not be typed if expressed as an operand.

Zeros may be obtained by using the TYPET operation.

p4 - states a special typewriter command symbol. Valid symbols are I CR I,
Isp I, and ITABI; these command symbols cause the typewriter to perform

a carriage return, to skip a space, and to move to a tabulator stop respec­

tively

Example:

W -~ -
FIRST .. TYPE-DEC - U(BETA+B3-6) - 2576 -ICRI- A -I SP ,- Q - BETA ..

pl p3 p4 pl p4 pl p2

23 of 26

PUNCH-DECimal Operation:

w - Vo -
.. PUNCH-DEC • ~arameters for information and/or typewriter command~ ..

The PUNCH-DEC operation causes the content (in decimal) of A, Q, any B reg­

ister, or any storage location to be punched by the High-Speed Punch. In addition

to directing that the numeric information in any of the above registers be punched,

the programer may write three special command symbols. These three symbols

are typewriter commands which, when the punched paper tape is on a type­

writer and typed out, will direct the typewriter to perform certain carriage,

operations. These operations control the format of the typewriter typeout;

They include:

Operand

-I CR I-
-I SP I-
-ITABI-

Causes the typewriter to do a carriage return.

Causes the typewriter to skip a space.

Causes the typewriter to move to the next tab­

ulation stop.

By properly inserting these commands as operands between the operands de­

noting the information be typed, the programer can control the format (spacing

and lines) of the information typed. The vertical bars are the special control

symbols for indicating that the operand is an order directing the typewriter.

Each of these three special operands must begin with and end with a vertical

bar, and each must be separated by point separators from other operands.

- V 0 - specifies the operands in the operand position in the order in which they are to

to be read and/or executed. These operands are of four types: pl, p2, p3, and

p4. They may appear in any order, depending on the programer's desires or

needs. POint separators must separate each operand

pl - gives the locator address of a value to be typed; it consists of a normal

Read-class operand

p2 - gives a tag or label allocation value which the typewriter will type. This

op~rand has no operand code

24 of 26
PUNCH-DEC

L

p3 - specifies a constant, of five digits or less, to be typed

Exception: The value, zero, will not be typed if expressed as in operand.

Zeros may be obtained by using the PUNCHT operation.

p4 - states a special typewriter command symbol. Valid symbols are I CR I,
15p l, and I TABI ; these command symbols cause the typewriter to per­

form a carriage return, to skip a space, and to move to a tabulator stop

respectively

Example

W - Vo-

FIRST .. PUNCH-DEC - Q - I CR I - L(ALPHA+B3) - ITAB ,- 50 -I 5P I- INST 4

pl p4 pl p4 p3 p4 p2

25 of 26

Upper- TAG Operation:

w

.. U-TAG • [upper tag name] • [lower tag name, constant, or zero] ..

The U -TAG operation provides the programer with a means of expressing

the upper half of a storage address by means of a symbolic tag. This is the only

method by which this may be done. The programer has the option of specify­

ing a tag in the lower half of the word also. This operation is useful for such

purposes as the preparation of jump tables and the specification of upper and

lower buffering limits.

gives the name of the upper tag. A constant is not permitted

gives the name of a lower tag if desired. If no tag is desired, this must be 0

(see example b, below)

Example a:

DOG16 .. U-TAG. eAT4 • MOUSE7 ..

Tags eAT4 and MOUSE7 represent the upper and lower 15 bits respectively of

the storage location represented by the label DOG16. Assume that the following

allocation values are given on an allocation tape:

MOUSE7 .. 563

eAT4 .. 53210

DOG16 .. 3000

The computer word produced as a result of the U-TAG poly-operation is:

03000 53210 00563.

Example b:

RAn3 .. U-TAG. DeON. 0 ..

The tag DeON represents the upper 15 bits of the storage location represented

by the label RAT13. The V
l

operand of 0 causes the lower half of the word pro­

duced to be filled with 00000.

26 of 26
U-TAG

Operation

EQUALS

MEANS ...

RESERVE.

COMMENT

DECLARATIVE OPERATIONS

i of i

2

4

6

7

DECLARATIVE OPERATIONS

The programer frequently wishes to supply to the assembler certain information for use in

the assembling process which does not generate an instruction. The information may be in­

volved in subsequent operations in constructing a machine-code instruction; or it may be

substituted for already existing data or information, thereby extending the scope and power of

the operation. This is especially true where, by changing one operand in an operation, the

operation may perform a variety of similar tasks.

Declarative operations, therefore, are operations which do not result in the generation of

instructions in the object program; they rather 1) give information about relationships, such

as equality between data and/or symbolic names, 2) make assertions, and 3) define a pro­

cedure. Declarative operations state facts and provide information which the assembler either

utilizes, or stores and later incorporates into the object program instructions it generates.

In all cases, the programer must state the declarative operation at some place ahead of the

action operation which is to use it. These operations can intermingle with action operations

anywhere in the program, provided they comply with the above priority restriction. It is often

worthwhile for the programer to place the declarative statements on a separate PROGRAM

tape or punched cards, to be read into the assembler before the main program.

1 of 7

EQUALS Operation:

L

L w

[u~noum tag] .. EQUALS. [known value: lab/tag ± i, or a constant].

The EQUALS operation establishes an equivalence between one expression, L,

whose allocation value is unknown and another expression, Vo' for which the

allocation value is known. This provides the programer with a versatile al­

location aid whereby he can transfer an allocation value from one label or tag to

another tag. Since this operator is concerned solely with allocation, an assem­

bler function, it generates no instructions in the internal program.

This operation permits addition, +; subtraction, -; multiplication, () (); or

division, /, with known values. A term in the arithmetic process may be a

constant or a tag (± increment is permitted); a factor is an expression made up

of terms connected by + or - Signs; it corresponds to an address. Computations

progress sequentially upon factors, with the terms in each factor accumulated

separately before multiplication and/or division. Thus the computations are

essentially multiplications and/or divisions of addresses.

gives the name of the unknown tag to which a numeric value is to be assigned

gives: a) the constant which the programer wishes to assign, or b) the label

or tag whose value is known, with or without an increment, or c) a combination

of labels, tags, and/or constants in an arithmetic relationship. Each value may

consist of one or more of the following: 1) a number; 2) a label or tag; 3) a

numeric increment; 4) a numeric decrement; 5) a tag with increment; or 6) a tag

with decrement. Two or more of these may be jOined together by either succes­

sive multiplications or by successive divisions, but not a combination of the two

processes. The expression may also be an accumulation- of two or more addi­

tions and/or subtractions of known values. In expressions combining addition or

subtraction with either multiplication or division, the addends or subtrahends are

treated as increments or decrements to the factor with which they are immedi-

ately associated. For example, in the expression:

2 of 7 EQUALS

NUB-4/CHOP.5+COB

(NUB-4) serves as the dividend, and CHOP·5+COB are combined into a

single divisor value. Regardless of how - Vo - is expressed, a single absolute

allocation value for the entire expression must be known by the assembler. The

assembler stores this value for later use when the unknown tag, L, is referenced.

B-register designations are not permitted in the - Vo - operand position.

Example a:

CAT .. EQUALS • DOG+2 -HORSE ..

(e.g., if DOG = 300 and HORSE = 100; CAT = 202.)

Example b:

SR3 ... EQUALS • SR4·33D+44+RATS ..

Example c:

TMAX .. EQUALS • 45600 ..

Example d:

PECE ... EQUALS. (DOVE+2) (MANY) ..

Example e:

CRUMP .. EQUALS • RACER-4/BOOL/5 ..

In this example, the computer subtracts 4from the value represented by RACER,

divides this result by the value allocated to BOOL, then divides this result by

5; it then assigns this value to CRUMP. The EQUALS operation thus has the

power to perform arithmetic computations within the compiler.

Note: In cases of multiplication, if the product exceeds five characters, an

error printout occurs.

In cases of division, if the quotient is not an integer, an error printout

occurs.

3 of 7

MEANS Operation:

L

[
arbitrary name]
to be replaced

w

MEANS • [~nemOniCall~ expreS~ed]
Input/output Information

The MEANS operation replaces an arbitrary name in the label, L, position with

input/output information expressed in mnemonics. It permits programs to be

written with complete flexibility concerning the assignment of channels to

external equipment. By holding the assignment of external equipment open until

needed, the programer can at that time determine which of the specific

channels are available for use. He then replaces the general assignment

with the one he desires by entering a MEANS statement in the LO program

prior to the operation performing the input/output function. The computer

then takes what is in - v
O

- and replaces in the subsequent I/O operation the

value assigned to L in the MEANS operation. Thus the programer can assign

an external equipment to any Input/Output or Function channel. LO operations

which may contain replaceable general operands include: STR, JP, TERM, IN,

OUT, EX-COM, EX-COM-MW, SIL-EX, and RIL-EX.

This operation does not generate any internal assembler instruction; it makes

the indicated substitution, then drops out. The Input/Output operation(s) sub­

sequently involved in the transfer then function as usual, using the substituted

operand.

The MEANS operation is applicable only to the assignment of input / output

parameters. It cannot be used interchangeably with EQUALS, nor can EQUALS

be used to perform the task aSSigned to MEANS

L gives an arbitrary name to be replaced. This has normal label format; i.e:,

there are no special restrictions regarding the symbols entered in L

16 states the specific input/output assignment to be substituted for L. Entries in

this operand pOSition are presently restricted to information regarding Input/

Output speCifications. They may consist, therefore, of any unique external

equipment assignment, e.g., C4 ACTIVEOUTj CS; or a function constant

4 of 7 MEANS

Example MEANS operations:

a) LOB .. MEANS • C12

b) PITCH .. MEANS • C15ACTIVEOUT

c) CUT .. MEANS • CO

Examples of Input/Output operations with which the foregoing examples may be

used:

a) .. EX-FCT • LOB • 426

b) .. Jp. POST • PITCH

c) .. OUT • CUT • W(SNAP) • MONITOR

d) .. TERM • LOB • INPUT

Note: MEANS operations appear either within an LO program or as separate

input under a PROGRAM header. In both cases the MEANS operations

become a part of the assembler's Ll table storage."

5 of 7

RESERVE Operation:

w
.. RESERVE •

Vo
[number of words] ..

The RESERVE operation sets aside a block of memory locations in the running

(obj ect) program. It does so by adding the number expressed by the Vo operand

to the current allocation address and storing the next generated instruction at

the incremented address. Thus the reservation of space begins at the location

following that of the previously generated instruction and includes the Vo num­

ber of continuous locations. The assembler does not clear these locations; it

merely by-passes them during allocation. Some of the special reasons for

reserving such an area include:

1. Setting aside a specific area for the storage of parameters

2. Leaving an area open for working storage

3. Reserving space, e.g., at the end of the program, for expansion purposes

4. Subsequent insertion of other program instructions

Vo specifies the number of words to be reserved. The programer may enter only

a constant in this operand location

Example:

CAT .. RESERVE • 4 ..

Result:

[a] ... [preViously generated instruction] ...

CAT ... - - - - - -

[a+5J .. [next generated instrUCtion] ..

The use of a label to identify the first word of the reserved area permits the

referencing of the entire area or of any word location in it. The programer

may gain access to any word of information in the area by referencing the label,

or the label plus the increment required to deSignate the desired word. The

operation ENT. A. W(CAT+3), for example, reads into register A the content

of the fourth word in the reserved area in the example above.

6 of 7 RESERVE

COMMENT Operation:

.. COMMENT. [message] #.

The COMMENT operation permits the programer to place a message(s) within

the input program to provide added information for edited records of the prob­

lem definition. This operation is declarative; it has no dynamic meaning to

the input language.

Example:

.. COMMENT. THIS ~ SUB·PROCEDURE ~ CONTAINS ~

TYPE·X ~ LISTING ~ TECHNIQUES #.

7 of 7 COMMENT

DEBUGGING OPERATIONS

Debugging computer programs is a tedious and time-consuming process. AS-l provides

debugging aids to expedite program debugging. These aids utilize computer action, whenever

possible, to assist the programer in this task.

The debugging aids provide a list of changes in the contents of. computer words within a

designated area of core storage during execution of the program being debugged. In addition,

they make a non-zero dump of the designated area, or areas, at any point of the program

during its execution; they likewise may dump the contents of registers A, Q, and Bl through

B 7.

Debugging operations establish an area of storage, called an image, which duplicates a

designated area of core storage. Images are placed in core storage, providing it does not

hinder the program. Individual operations near the beginning of the LO program must define

the areas to the assembler (see Figure 1 below).

Object
Program

---- --~---

(a Area) __ ------------- -------

Images:

(Core)

(a Image)

Figure 1. Area Image Formation

Testing an image indicates the changes made in an area since it was last tested. A test con­

sists of a word-by-word comparison betwe"en a program area and its image. Those words

found to have been changed are printed out, program vs image. New words from the program

then replace the old in the image, thus updating the image after each printout. Image tests

are permitted at any point of the program. (see Figure 2.)

1 of 10

Object
Program

w - - -a -
- - - - -

~

~

Printout
Images of Changes

W.---- w. W
1 1 a

(a Image) • •

• • •
(a Area) ~

,----------------------------1

Legend:

W = Word of Program
a Area

W. = Word of Image
1

No

Increment
Addresses
of Wand W. a 1

No Print out
W &W.

a 1

W --..w. a 1

I
I
I
I

Debugging Action L __________________________ ~

Figure 2. Test Image - Debugging Operation

Debugging action also dumps debugging areas or registers at designated points of the LO pro­

gram. An area dump prints the entire area contents. A register dump prints the content of

registers A, Q, and all B's.

An additional set of instructions, called the Debugging Package, performs debugging action

while the object program is being executed. Debugging operations of the original LO program

cause the formation of return jump instructions in the obj ect program with the debugging

package as their destination. This package is in relative format and is loaded at an initial

2 of 10

address 76000 unless specified differently by the programer. The programer places

special allocation in his LO allocation tape whenever this package is not to be at ,address'

76000. The allocation is as follows:

L w

DEBUG .. [loading address of Debug~ing paCkage] ..

Upon completion of debugging, the programer requests editing and object program outputs

without Debugging Aids. AS-1 automatically eliminates action by the Debugging operations of

the LO program, and no object program instructions result fro~ them.

Debugging operations divide into two types: 1) declarative and 2) action. The declarative

operations delimit the ar~as and images for later reference and manipulation. These always

precede the debugging action operations in the LO program. Debugging action operations

either test images or dump areas and registers.

The following pages define individual debugging operations.

3 of 10

DECLARATIVE DEBUGGING OPERATIONS

DEFine- AREA Operation:

w

.. DEF-AREA • [area name] • [initial area address] • [number of words] ..

The DEF-AREA operation defines an area of the LO program for debugging

action. Debugging action operations later manipulate data in terms of these

declarative area definitions.

v 0 - names a debugging area. The name is symbolic and is used for identification

purposes *

VI - specifies the initial debugging area address. This operand is an allocated tag

or an absolute address; the tag may be incremented

V 2 - specifies the number of words in the debugging area. This operand is either a

symbolic tag or an absolute number; if symbolic, it must be allocated

* It is permissible for the programer to use an identical symbol to represent both V 0 and V 1

4 of 10 DEF-AREA

CORE-IMAGE Operations:

w v* 2

.. CORE-IMAGE • [area name] • [initial image address] • [key set condition] ..

The CORE-IMAGE. operation establishes an image of a debugging area on the

core. This operation provides the initial image formation; thereafter it is up­

dated with changed words of corresponding debugging area positions by action

of the TEST -IMAGE operation.

v 0 names. the defined debugging area to be imaged

V 1 - specifies the initial core address for the image. This is a tag (allocated) or an

absolute address; a tag may be incremented

V 2 * - specifies a key set condition. Key settings and their significance are as follows:

Perform operation if V2 is KEYl and console key 1 is set.

Perform operation if V 2 is KEY 2 and console key 2 is set.

Perform operation if V 2 is KEY3 and console key 3 is set.

*Operand use is optional

5 of 10 CORE -IMAGE

ACTION DEBUGGING OPERATIONS

DUMP·REG isters Operation:

w v.* o
.. DUMP·REG • [key set Condition] ..

The DUMP·REG operation causes a printout of registers A, Q, and B1 through

B 7 at points specified in the running program.

Vo * - specifies a key set condition. Key settings and their significance are as follows:

Perform operation if V 0 is KEY 1· and console key 1 is set.

Perform operation if V 0 is KEY 2 and console key 2 is set.

Perform operation if V 0 is KEY3 and console key 3 is set.

Typical DUMP·REG printout:

A 02530 33330 Q 00000 22764

Bl 00010 B2 07774 B3 00022 B4 00040 B5 02040' B6 00000 B 7 00012

*Operand use is optional

6 of 10 DUMP·REG

EXCHANGE Operation:

w
.. EXCHANGE ..

EXCHANGE, a minor header operation similar to ALLOCATION and CHAN­

SET operations, incorporates special reassignnlent properties, enabling a pro­

grammer to substitute one element designation for another everywhere it appears

in input. Operations immediately following an EXCHANGE header establish

desired substitutions f~r any existing elements of an LO program or other input

data. Each element to be substituted must exist between any two of the following

normal separator symbols of an operation:

+

The EXCHANGE data must always be read into the computer prior to any data

which it will affect. Any normal assembling process can be carried out in con­

junction with the EXCHANGE operation, since the substitutions are made prior

to placement of data in the L1 table. All EXCHANGE substitutions are permanent

and are reflected in assembler outputs. A label and identifying operands are

optional with the EXCHANGE header. Subsequent assignment operations re­

quire labels.

EXCHANGE assignment operations are listed immediately after the EXCHANGE

header and are in the following format:

L w

[old designation] ... [new designation] ..

L gives the designation of the old element for which substitution is to be made '

W gives the new designation to be substituted for the old wherever it is found in

the input data

7 of 10

The following is an example of a set of EXCHANGE operations incorporated into an A-CONTROL

input tape together with the LO input program:

COUNTONES

60000

SUMO

B2

B1

3S

L

NWORDS

STOPS

CTONES1

RJP

QNEG

C TONES

SUMO

COUNTONES

CTONESO

CTONES1

CTONES2

CTONES3

.. A-CONTROL • SMITH • .. EXCHANGE .. 61000 .. SUMX .. BS .. B2 .. 12 .. W .. ZWORDS .. 5TOP7 .. CTONES4 .. JP .. QPOS

'.. ALLOCATION
.. 60000

.. 63000

.. PROGRAM • SMITH .• .. ENTRY .. CL • B2 .. ENT • B1 • 3S .. CL • A

20 JULY 63

20 JULY 63

.. ENT • Q • L(WORDO+B2) .. LSH • Q • 1 • QNEG .. ADD • A • 1

.. BJP • B1 • CTONES2 .. STR • A • W(SUMO+B2) .. BSK • B2 • NWORDS .. RJP • CTONES1 • STOPS .. JP • CTONES3

.. EXIT

8 of 10

The effect of the EXCHANGE operations on the subsequent input data in the above example

would be as follows:

COUNTONES

BASE

ENTRANCE

SUMX

COUNTONES

CTONESO

CTONES4

CTONES2

CTONES3

NOTE 1:

NOTE 2:

.. A-CONTROL. SMITH • 20 JULY 63

.. ALLOCATION

.. 61000

.. CTONESO

.. 63000

.. PROGRAM • SMITH • 20 JULY 63

.. ENTRY

.. CL • B5

.. ENT. B2 • 12

.. CL • A

.. ENT. Q • W(WORDO+B5)

.. LSH • Q. 1 • QPOS

• ADD. A • 1

... BJP • B2 • CTONES2

.. STR • A • W(SUMX+S)

.. BSK • BS • ZWORDS

.. JP • CTONES4 • STOP7

.. JP • CTONES3

.. EXIT

The most effective use of EXCHANGE operations is in making special correc­

tions, or in conjunction with L1 corrections, where an output No. 26 is desired.

Because of the universal nature of the EXCHANGE operator, programers

should exercise a certain degree of caution when using it, remembering that a

requested substitution is made everywhere in the input data where the old de­

signation is encountered. Substitution cannot be selective.

9 of 10

DEBUGging- AIDS Operation:

L w

.. DEBUG-AIDS ..

DEBUG-AIDS, an independent operation, indicates to the assembler that the

programer wishes to make use of the debugging aids included in his program.

When the DEBUG-AIDS operator is present, the assembler will generate a series

of return jumps to the routines of the debugging package corresponding to those

specified in the program (see Debugging Operations).

Used under A-CONTROL, no label or operands are required.

10 of 10

INTRODUCTION

ASSEMBLER SUPPORT PROCESSES

An assembling system of the scope, versatility, and complexity of AS-l must necessarily

carry with it various support, service, and control processes. These processes simplify the

operation of the AS-l Assembler by relieving the programer and the computer operator of

many of the repetitive functions concerned with the assembling system. The support process

integrates the control of the assembler functions.

This section describes the support processes for the AS-l Assembling System, and presents

the rules for using them. It presents the rules for applying the AS-l Programing Language

to the solution of problems. In essence, this part tells the programer what the assembling

system does, what aids he has at his disposal to make it work, and how. to use these aids.

The support processes described in this manual include:

• AS-l Program Input

• Allocation

• Program Corrections

• AS-l Program Output

• Assembler - Control Operations

In addition, the Appendix contains various charts, rules, and other pertinent information.

AS-l LANGUAGE LEVELS

The AS-l Input (Source) Language loads into AS-l via paper tape. This working language is

called LO' AS-l, by a series of translations, produces an object program on paper tape which

can be loaded into the Unit Computer and executed. This working language is called L 4' There

are three intermediate forms in which information is stored in tables during the AS-l opera­

tion. These "language levels" are called Ll , L
2

, L
3

. A description of each of these languages

follows:

LO is the original input language consisting of AS-l operations and used by the

programer in writing routines and preparing them for assembler input

1 of 2

is a slightly modified La in which the operation items are stored (in a special

6-bit code) within assembler tables. Certain input translations and error detec­

tion steps have been performed; operations remain in mnemonic form, however,

and their basic characteristics are similar to La. The conversion of La opera­

tions to Ll operation items is a one-to-one relationship

L2 - consists of information tables and a list of operation items which are very similar

to machine instructions. The f jk b designators are in absolute octal code,

but the addresses are symbolic. The program is not yet committed to any given

memory area

L3 - is the language of the object program, storedin table form within the assembler.

All addresses have been assigned a permanent (absolute) address. It can also

be buffered directly into core memory as object program

is the object program on paper tape which can be loaded into the Unit Computer

and executed; it can also be buffered directly into core memory

2 of 2·

AS-l INPUT

The Paper Tape High-Speed reader handles LO paper tape input to AS-1 Assembler. These

tapes are punched with an identifying header operation on the front of the tape. A header

operation consists of a program name, a header-type, and identifying operator. Each of these

is limited to 10 alphanumeric characters and conform to the following format.

[
program identifiCatiOn.] •

label [
header-type]
. operator •

The format control symbols, called separators, used when coding in AS-1 are as follows:

NAME

CARRIAGE RETURN

TAB

POINT SEPARATOR

OPEN PARENTHESIS

CLOSED PARENTHESIS

SHIFT DOWN

SHIFT UP

SPACE

PLUS

MINUS

SYMBOL

..
•

t

+

1 of 7

SIGNIFICANCE

Signifies end operation. Must precede
header operation, deliniits the state ...
ment

Must always precede the statement
operator. Must precede notes: omit
if notes not given

Separates statement components

Separates a K-designator symbol from
its interrelated operand

Signifies the end of operand preceded by
a K-designator symbol

No significance to LO language except to
obtain the proper symbols, i.e., + sign

No significance to LO language except to
obtain the proper symbols

No significance in La language controls.
It merely leaves space in messages when
they are typed out. (Exception: see poly­
operations for typing, punching, and
printing)

Specifies addition

Specifies subtraction

BAR

DOUBLE PARENTHESES

SLANT SIGN

DOUBLE LOWER CASE
PERIOD

() ()

/

Delimits control keys when programing a
message for printout on the typewriter

Specifies multiplication

Specifies division

Indicates the end of tape (stop reader)

Header operations are declarative. These operations direct the assembler as to the handling

of succeeding operations. Header types are: 1) Program, 2) Allocation, 3) Correct-L1, 4)

Exchange, 5) Rel-Alloc, 6) Indr-Alloc, 7) Chan-Set, 8) Debug Aids and 9) A-control. These

headers are grouped as major and minor headers where Program, Correct-Ll' and A-control

belong to the major class. The usually extra size and usage frequency of the header-type

tapes categorize the major classes. The examples below illustrate three typical headers.

L W Vo Vi
J6
t COUNTONES .. PROGRAM • SMITH • 20 JULY 1963

II t COUNTONES .. A-CONTROL • SMITH • 20 JULY 19;63

JI. .. t COUNTONES CORRECT L 1 • SMITH • 20 JULY 1963

It is a good policy to maintain like labels and operands in headers when assembling a routine.

The assembler does not require this complete format. In fact, the header operator works

with only the header-type operand present. The extra operands supply the programer with

additional routine organizational data. The Correct- Ll operation alters the program header to

agree with its label and operands during the correction run. For this reason, a Correct.-L1
header should always contain the current date.

The A-control header merely categorizes control information to the assembler under a single

header; its use is optional since the headers work independently. The A-control eliminates the

need for loading many small declarative paper tapes. The extent of assembler control as AS-l

input is optional. The programer may control all assembly activity by paper tape entries or

he may instruct the computer operator to control much of the assembling at the console .

The program header declares to the assembler that the following operations go to the assem­

bler's Ll table storage. These operations may contain mono, poly, and declarative operations,

organized by the programer to accomplish some programing task. The declarative opera­

tions, such as means and equals must follow the first program header of the routine being

assembled. A routine may be comprised of many paper tapes, each with a program header.

The operations will appear in the Ll table storage, sequentially as they load.

2 of 7

The following skeleton program samples illustrate typical AS-1 read-in arrangement.

Sample 1. (Compile a Simple Routine)

1.

2. -

3.

[label] .. ALLOCATION .. [programer's name] • [date]
[label] .. PROGRAM • [programer's name J • [date]

[label]
•

[label] .. PROGRAM o [programer's name] • [date]

[label]
Instructions to the assembler:

1) Read-in order of tapes

2) Debugging aids desired or not

3) Output types

3 of 7

Sample 2. (Correct a Single Routine)

CORRECT-L1 • [programer's name] • [current date]

1.

[label] ..
[label] .. PROGRAM • [programer's name] • [date]

2.
Instructions to assembler operator:

1) Read-in order of tapes

2) Request output numbers

4 of 7

Sample 3. (Assemble Single Routine under Programer Control)

[label] .. A ... CONTROL • [programer's name] • [date] .. ALLOCATION

[label] ..
T labell ..

1. [label] EXCHANGE

[labell ..
[label] Of AN-SET

[label] DEBUG-AIDS

·[label] • PROGRAM • [programer's name]. [date]
2. I label] .. MEANS

[label] .. MEANS

[label] .. PROGRAM • [programer's name] • [date]

[label]
3.

Instruction to assembler operator:

1) Read-in order of tapes

2) Request output numbers

5 of 7

PAPER TAPE INPUT

Input requirements permit either upper- or lower-case characters for all inputs with the

exception of separators. However, upper case characters are recommended for all operation

inputs except those which specifically require lower case characters. Refer to Table I for

equivalent input format codes.

TABLE 1. CODING SYMBOLS - PAPER TAPE INPUT

SOFTWARE SOFTWARE FLEXOWRITER FIELD DATA SYM- FIELD DATA
NAME SYMBOL CODES BOL SUBSTITUTIO~ CODES

Carriage Return .,J 45 04 03

Shift Up t 47 01

Shift Down f 57 02

Tab .. 51 Special c:l 76

Point Separator • 44 A~ostrophe , 72

Double Period .. 57 42 42 75 75

Space ~ 04 05

Comma , 57 46 47 56

Vertical Bar I 57 50 47 Exclamation ! 55

Plus + 57 54 47 42

Minus - 56 41

6 of 7

A double lower case period in the L coding position indicates the end of tape read-in. There­

fore, each paper tape begins with a header and ends with a double-period end symbo1.

The following examples illustrate the basic format for program operations and the common

usage of separators therein.

L w N

CAT4 .. ENT • Q • W(RAT3-2+B6). QNEG .. RATCHECK~

.. RPT. 36 • BACK~

Notice that it is essential to use a straight arrow before each operator even when a label is

not given. The second straight arrow is used only when notes are given. The point symbol

separates the components of the statement. Parenthesis symbols indicate contents of a stor­

age location modified by an operand code. Also within the parenthesis symbols are data unit

subnames and subscripts or multiplication factors. Spaces are permitted throughout the opera-

tion. The curved arrow indicates the end of the operation, or of the notes if present.

7 of 7

ALLOCATION

Allocation is the process of assigning numeric values to ~ertain symbolic representations.

(See Figure 1.) Such values usually pertain to addresses of storage locations within the

computer; however, they may also give rise to constants. The AS-1 allocation process re­

quires a specific La allocation for the base address of the L 4 object program and for certain

labels and tags; these are:

1. The initial address of the L4 object program

2. Tags making reference to operations of other programs or to storage areas

3. Labels of first action operations following a program sequence break

4. Tags representing a numeric value other than an address. (Such values have a 5-

octal digit limit)

LO
ALLOCATION

Allocation Table

......

La L1 ----.. L2 V L3 L4
Program

.... - - -

Figure 1. Allocation

1 of 8

LABEL AND TAG ALLOCATION

The AS-1 Assembly System provides a variety of methods of making allocations to tags and

labels in programs written in relative format. These methods include the following .header

types or classifications:

1. ALLOCATION (normal)

a. Direct

b. Substitutive

2. REL ative - ALLOCation

3. IND iRect - ALLOC ation

Types 1, a and b, and 2 abovewill be presented in this discussion. Because of the differences

in performance and application, type 3, INDiRect - ALLOC ation, will appear under another

heading of this section (see Indirect Allocation.)

The programer should note that the three allocation types listed above are the operators,

W, of header operations. As such they form, together with a label and two identifying oper-

ands, the header operations of the allocation tapes written in La format and resemble

La program headers. The programer may use them separately for independent tape pre­

paration.

Normal Allocation:

The ALLOCATION header introduces two methods of allocation: a) direct, and b) sub­

stitutive.

Example header:

AP[label]" ALLOCATION. [programer's name] • [date] J
The operation items following the header identify a list of La allocations, each of these al­

location items requires the use of two coding positions: 1) the lab/tag being allocat~d, placed

in the L coding position; and 2) the allocation value or equivalent lab/tag, placed in the W

coding position.

a. Direct allocation sets a lab/tag to a given numeric value (a constant)

2 of 8

Direct allocation format:

L W

[label] ... ALLOCATION. [programer's name] • [date]

[lab/tag] .. [numeric Value]

[lab/tag] .. [numeric value]
etc.

The programer may delete any tag or label previously allocated by specifying the lab/tag

and stating the word DELETE as the operator:

L

[lab/tag]
W

DELETE

b. Substitutive allocation sets a. new tag, L, equal to a known lab/tag, with or without

increments, or to the result of two or more lab/tags, W, with or without increments,

joined arithmetically. Addition, subtraction, multiplication, or division of terms is

possible, a term being either a lab/tag with or without an increment, or a numeric

constant. Any number of these arithmetic processes may be combined in an operation,

the only restriction being that multiplication and division cannot be performed in the

sample operation item. The assembler performs all additions and subtractions first,

then does the multiplications or divisions, just as in the EQUALS operation (see

Declarative Operations)

Substitutive allocation formats:

L W

[label] .. ALLOCATION • [programer's name] • [date]

[lab/tagaJ .. [lab/tagb + i*] .. -

[lab/tagaJ

[lab/tagaJ

[lab/tagaJ

[lab/tagaJ

[lab/tag
a J

... [lab/tagb + . { / }] .. - 1 + n
0- 0

.. [lab/tagb :t. iJ :!: ~ab /tagc :t. i J ..

,,([lab/tag
b ~ i JX [lab/tag

c ~ i J) ..

.. , [lab/tagb 2: i J/ [lab/tagc :!:. iJ ..

.. [lab /tagb 2= i J/ [lab/tagc ~ iJ / [n]

In cases of multiplication, if the product exceeds five characters, an error printout occurs.

In cases of division, if the quotient is not an integer, an error printout occurs.

*The increment is optional in all the examples shown

3 of 8

REL ative - ALLOC ation:

Relative allocation provides a convenient technique for allocation. A RELative - ALLOCation

tape is assembler produced and has a format which resembles that of direct allocation except

that the numeric value is relative to the base value (always 0 0 0 0 0) instead of a final value.

The base increment value, independent of the REL-4LLOC tape, is furnished by the operator,

who manually enters this value in the A register during a subsequent assembly run. The

assembler then adds the relative values to the increments to form final allocations.

A REL-ALLOC tape results as an assembler output, output No. 34. The tape content consists

of a header and a series of allocations thereafter (to the base) in the format as shown below:

[label] .. REL-ALLOC

[label] .. [increment allocation value]

[label] .. ~ncrement allocation value]

etc.

Important applications of relative allocation follow:

1. Assembling Applications

a. RELative - ALLOCation tapes (output No. 34) may be used to allocate a program

or a group of programs relative to some base as stated earlier in this section

b. Relative load programs (output No. 24) produced by the assembler may be loaded

anywhere in memory relative to a specified base address. Subsequent assembly

runs requiring allocation information pertaining to the above program may

obtain such allocation information from the content of a REL-ALLOC tape pro­

duced during the same assembly run as the relative load tape. In such cases the

assembler operator assigns the same base to relative allocations as that used to

position the relative load program

Example:

Program A, assembled in relative load format, produces a REL- ALLOC tape, and is assigned

to address 60000. Program B, which will refer to labels in program A, is then assembled.

To obtain the correct addresses of labels in program A for program B, the relative-allocation

tape from program A must be supplied to program B as input. When this tape is loaded for

program B, the A register is set to 60000; thus the programer may move program A to any

location without affecting its availability for program B as long as he keeps record of, and

loads its proper base address in the A register.

4·of 8

The assembler permits using a number of REL -ALLOC tapes in conjunction with

normal ALLOCATION tapes*.

2. Editing Applications

The ability to transfer routines to new locations and/or interconnect a number of

routines using relative allocation assists in obtaining current edited data. After

assignment of absolute allocation values by the relative-allocation process, alloca-

tion printouts provide the programer with edited allocation information on final

program positioning. Thus the programer acquires complete edited allocation data

in any order desired. (See outputs 30, 32, and 33)

* During a combined read-in of both normal allocation and relative -allocation tapes the
following will occur:

1) If the REL-ALLOC tape precedes the ALLOCATION tape, the assembler suppresses
all assembler-generated tags contained on ALLOCATION tape(s). The assembler re­
assigns these tags

2) If the ALLOCATION tape precedes the REL - ALLOC tape, the assembler recognizes
and accepts all assembler-generated tags of the ALLOCATION tape(s)

5 of 8

INDIRECT ALLOCATION

Indirect allocation is a means whereby a programer may 1) use a particular subroutine at

a single location for access by many different programs or for programs which are to be com­

bined, or 2) change the storage location of subroutines without making the corrective changes

in the running programs using these subroutines.

The programer maintains a list of the subroutines, by name, for which indirect allocation

can be made. With each subroutine name appears a reference address together with a desig­

nator value (1 or 2), tellingwhetherthe ENTRY address (beginning address) of the subroutine

can be found in the upper or lower half of the reference address.

A series of U-TAG p.ntries establish a jump table, to which entries and/or changes in assign­

ment can be made. For example:

L w

DOG12 .. U-TAG • TFLX • MAGTAG ..

accompanied by an allocation tape containing the entries

L w

DOG12 .. 04367

TFLX .. 32050

MAGTAG .. 36500

would establish the current address of TFLX = 32050 and MAGTAG = 36500 respectively

in the upper and lower half of location DOG12 = 04367.

The programer keeps a list (or table) of subroutines, in which entries may appear as follows:

Subroutine Name Location

TFLX 204367

MAGTAG 104367

6 of 8

The six-digit value giving the subroutine location consists of a 1 or 2 followed by the

storage address in which the subroutine address is stored*. The 1 or 2 in the leftmost position

provides the k-designator for the assembler-generated instruction which return jumps to the

subroutine. To obtain the subroutine TFLX, in his program, the programer simply writes:

.. RJP • TFLX •

On his allocation tape, following an INDR-ALLOC header, the programer would write as

an operation the entry he finds in the subroutine table, as follows:

L w

TFLX .. 204367

The assembler would then combine the information from the RJP operation and the allocation

operation to generate the following instruction: I 650g0 04367\

This instruction in the running program directs the computer to the upper half of address

04367 which is 32050, the address of the TFLX subroutine. It can readily be seen that the

value, 32050, could be changed at will without occaSioning any change in the programs using

the TFLX subroutine.

Note: The indirect allocation technique also applies to the mono-operations: ENT 0 A

• [tag] and ENT • Q. [tag] . The machine instruction generated for each receives both

k and y values via indirect allocation of the tag.

*Storage address specified in octal only

7 of 8

INDi R ect - ALLOCation Operation:

L w

[label] .. INDR-ALLOC •

Vo

[programer's name] •
VI

[date]

The INDiRect - ALLOCation operation is a header operation appearing before

items which provide indirect allocation information about subroutines to be used in

a program. The items which follow this header have the following format:

L

[SIR label] ..

w
*

[6 digit number]

The subroutine labels and their accompanying six digit numbers appear In a list

which the programer prepares for those subroutines which he wishes to obtain by

indirect allocation. The use of subroutines prepared by other programers is

permitted.

The six digit value listed with each subroutine provides ak -designator, either 1

or 2, followed by a five-character address *. The address is the place where the

subroutine locations (beginning addresses) are stored, either in the upper or in the

lower half. The programer prepares the INDR-ALLOC tape, listing all subrou­

tines he wishes to obtain by this method. In his program he writes a RJP to his

desired subroutine. The assembler generates the appropriate Return Jump instruc­

tion to either the upper or lower half of the listed address.

Example indirect allocations:

TFLX .. INDR-ALLOC • VERSTEEG • 15SEPT63

REGI .. 245000

REG2 .. 145000

SIMl .. 245001

TAP1 .. 145001

Note: Programers may also apply the indirect allocation technique to the mono-

operations: ENT. A .[t~g] and ENT • Q • [tag] .

*Storage address specified in octal only

8 of 8

PROGRAM CORRECTIONS

The AS-1 Assembler contains provisions for program corrections. Alterationsare made

to program operations while in L1 table storage. Three types of. corrections are permissible:

1) insertions, 2) deletions, and 3) replacements of program operations. (See Figure 1.)

The L1 Corrector, a major assembler subroutine, makes the actual correction to programs

in L1 table storage. This correcting method makes use of paper tape La input ..

Cor rections I-----ll-------l~

La
Program

Corrections
to

L1

Figure 1. Corrections

1 of 3

Corrected
t----+--.t

La

PROGRAM . CORRECTIONS . PAPER TAPE INPUT

AS-1 pravides a methad far pragram carrectians while in L 1 starage. This feature eliminates

the necessity af retyping the entire LO pragram input tape far alteratians. The L1 Carrectar,

an integral part af the AS-1Assembler, is the rautine which makes these carrectians. It ac-

cepts three types af carrectian aperatians: 1) delete aperatians, 2) replace aperatians, and

3) insert aperatians. The apprapriate L1 identifier precedes each carrectian aperation to

position the resulting aperatianitem in L1 starage. The L1 Correctar permits any arrange­

ment of carrectians with regard to. type and order.

An LO carrectian tape instructs the L1 Carrectar in making pragram alteratians. The tape

contains a header af the fallowing farmat:

L w

[pragram name J. CORRECT-L1.[pragramer's name] • [new date]

In making carrectians, the pragramer specifies a new date as the V 1 aperand af the header

aperatian. AS-1 autamatically superimpases this an the pragram header, thus updating it.

This pravides the pragramer with a means af distinguishing the aId tapes fram the new.

Coding carrectians consist af alternate L1 identifiers and carrectians as indicated in the

diagram belaw:

ICarrected aperatian 1..1

ILIID I~
ICarrected aperatian I~

An insert carrectian requires an L1 identifier, the L1 identifier af its preceding aperatian,

and additianal actal insert digit(s). The paint symbal separates these. This lacates the insert

pasitian in the L1 item starage (e.g. an aperatian between L1 identifiers 104 and 105 might

be given an L1 identifier af 104 • 1). Up to. three actal insert digits are permitted in preparing

insert carrectians.

2 af 3

Example: insert correction between L 1 identified operations 27 • 4 and 27 • 5:

27 • 41

CAl3 .. ADD. Q • 1 ~

NOTE: An insertion will be replaced by a second insertion with the same ID, provided that

both are read in before a real correction is made.

A delete correction lists the L
1

-identifier of the operation to be deleted followed by a point

separator and a zero; an operation consisting of a straight arrow, ... , the word DELnE,

and a curved arrow, ~ , follows.

Example: delete correction, for removing the operation identified as 103:

103. 0

DELElE~

A replace correction lists the L1-identifier of the operation to be replaced (with. 0) and the

operation with which replacement is made. The new operation item is merely stored over

the old, thus performing the replacement.

Example: replace correction, to replace the operation identified as 105:

105. 0 ~ .. ENl. 87. 36 ~

Upon reassembling, the correction tape is read in with the original LO program. Initial

assembly action accomplishes the positioning of operation items in Ll tables. Normal as­

sembly runs proceed thereafter. As optional output, the programer may request a cor­

rected LO tape. This is Output No. 26 (see AS-I OUTPUT.)

3 of 3

AS-I OUTPUT

This section presents output from the AS-1 Assembler. Two external devices which produce

assembler output are: 1) the on-line typewriter and 2) the High-Speed paper tape punch.

The on-line typewriter types error printout of each detected error during assembly runs. It

also presents assembler status messages during assembly runs to inform the operator of the

existing assembler conditions. AS -1 places the assembler object programs on punched paper

tape. The off-line typewriter prepares hard-copy records from these tapes for editing pur­

poses.

A header appears on the front of each paper tape output. The assembler punches this flex­

coded data about one foot before the pertinent information. It punches declarative headers on

outputs designed for input to the assembler and edits information on output designed for input

to the computer as object programs (see example on page 6).

1 of 11

ON-LINE TYPEWRITER OUTPUT

The on-line typewriter is used primarily to inform the computer operator of assembly run

conditions. The three categories of on-line typewriter output are:

1. Error Printouts

2. Assembler Status Messages

3. Program Identification (Output No.1)

Error Printouts and Assembler Status Messages need not be requested; they are automatically

typed as they are encountered during the assembly run. Output No.1, which gives program

identification, is typed automatically when assembled object program outputs are selected.

ERROR PRINTOUTS

The assembly process temporarily ceases whenever an error is detected. At this point the

on-line typewriter immediately types an error printout. Action hesitates for additional input

data or continues, depending on the type of error detected.

The error printout format provides for ample error identification and description. A print­

out usually indicates 1) that there is an AS-1 error, 2) the kind of error, 3) the operation item

label (plus or minus an increment, if any), 4) the L1 identifier, and 5) the complete operation

item containing the error. The errors UNALLOCATED TAGS and FIRST LABEL UNAL­

LOCATED delay the assembly run until additional input has been given.

The following is a program with deliberate errors, and the resulting error printouts. This

illustrates some of the detectable errors; these errors are encircled.

SORT NUMB
SORT °
ZIP

SORTNUMB
SORT 0

SORT!
SORT z

(§ORTNUMBER 6)

ALLOC.A TION-KOURAJIAN _ I4-JUL "3
OZ500

06500

PROGRAM.KOURAJIAN. 14JUL'3
ENT_B 1• 7T

ENT~ZIP+~
@-BI-BACK
COM-Q.W(ZIP- I +B I).(¥MOST]
JP-([NORT:!)
ENT-A-W(ZIP+ B7)
STReQ.®(ZIP+ B7)
RSHeAQ·36

2 of 11

SET TBL INDEX

FIND LARGER NO

STR SMALLER NO
LARGER NO TO Q

SORT'

SORT

Resulting Error Printout -

LABEL EXCEEDS 10C
SORTNUMBER +0

W(ZIP+Cl) - INC FORMAT
- ILL R DES
00002. ENT.W(ZIP+Cl)

RP - ILL OPRTR
00003. RP. Bl • BACK

YMOST - ILL J DES
00004 • COM. Q • W(Z -l+Bl) • YMOST

H - ILL K DES
00007 • STR. Q • H(ZIP+B7)

- ILL B DES
00012 • STR. Q • W(ZIP-Bl)

(SORT3) - NO K DES
00013 • BJ:r:> • Bl • (SORT3)

UNALLOCATED TAGS
00005 SNORTl 00000
00014 SlRTO 00000

3 of 11

REDUCE INDEX
END OF PROGRAM

ASSEMBLER STATUS MESSAGES

A number of console initiated steps starts assembler operation. The on:-line typewriter re­

lays pertinent information to the operator, in the form of Assembler status Messages during

the assembly run. With this information he is constantly aware of assembler action and

assembly run status.

Examples:

SELECT OUTPUT

OUTPUT NOT POSSIBLE

SET KEY 1 IF DEBUG AIDS DESIRED NO

SET KEY 1 IF DEBUG AIDS DESIRED YES

CHECK SUM ERROR*

GENERATOR ERRORS

FORMA TERROR

PROGRAM IDENTIFICATION

NO.1 HEADER, NO. OF INSTRUCTIONS, AND AREA FORMED BY ALLOCATION: The

on-line typewriter types output No. 1 at the end of each assembly run when requested; it is

also produced automatically whenever any assembled program L2 output is requested. This

output identifies 1) the assembled program, 2) the number of program operations, and 3) the

storage address range formed in the assembled program.

Example:

COUNTONES
NO. OF INSTRUCTIONS
OUTPUT 1
50000 THRU 50012

SMITH-10CT1963
13

* For explanation of Check Sum, refer to the Glossary in the Appendix.

4 of 11

PAPER TAPE OUTPUT

Output on paper tape is punched by the on-line High-Speed Punch in standard bioctal or

keyboard printer code. The four categories of paper tape output and their output types are

as follows:

1.

NO.5
NO.6

2.

NO. 10
NO. 12
NO. 22
NO. 24

3.

NO. 26
NO. 27

4.

NO. 30
NO. 31
NO. 32
NO. 33
NO. 34

Edited Data on Paper Tape:

L1 ID AND L1 PROGRAM
L1 ID AND LABELS

Assembled Object Program on Paper Tape: *

ASSEMBLED OBJECT PROGRAM IN BIOCTAL
ABSOLUTE ASSEMBLED OBJECT PROGRAM
ABSOLUTE ASSEMBLED OBJECT PROGRAM, L1 PROGRAM AND NOTES
RELATIVE ASSEMBLED OBJECT PROGRAM

Corrected LO on Paper Tape:

CORRECTED L
CORRECTED Lg (SELECTIVE -BETWEEN L1 ID'S)

Allocation Data on Paper Tape:

LABELS AND ADDRESSES
SIGNIFICANT LABELS AND ADDRESSES
NUMERICALLY ORDERED ADDRESSES WITH LABELS
ALPHABETICALLY ORDERED LABELS AND ADDRESSES
RELATIVE ALLOCATION, LABELS AND ADDRESSES (base address should
be allocated to 00000)

Paper tape output of categories 2, 3, and 4 serves two purposes: 1) as computer input

(either to AS-1or as a running program); 2) as additional edited data to that of category 1.

EDITED DATA ON PAPER TAPE

A hard copy printout of certain data is frequently desired for editing purposes. The assem­

bler produces paper tape output which is thereafter listed to obtain the edited record.

*May be loaded via the AS-1 Utility Package

50f 11

NO.5 L 1 IDENTIFIERS AND L 1 PROGRAM: Paper tape output in this format presents a

sequential list of L1 identifiers, their corresponding L1 operations, and labels. This output

does not include notes.

Example:

O.
I.
2.
3.
4.
5.
6.
7.

10.

11.
12.
13.

COUNTONES
CTONESO
CTONES1

CTONES2

CTONES3

PROGRAM-SMITH-100CT63
CL-B2
ENT-Bl-35
CL-A
ENT-Q-W(WORDO+B2) .
LSH-Q-1-QPOS
ADD-A-1
BJP-B1-CTONES2
STR-A- W(SUMO + B2)

BSK-B2-NWORDS
JP-CTONES1- STOP5
JP-CTONES3-STOP

6 of 11

NO.6 L1 IDENTIFIERS AND LABELS: Paper tape output in this format consists of all

program labels and their corresponding L1 identifiers. No other L1 identifiers are given.

Example:

COUNTONES
LIID

O.
1.
2.
5.

13'.

SMITH·100CT63
LABEL

COUNTONES
CTONESO
CTONES1
CTONES2
CTONES3

ASSEMBLED OBJECT PROGRAMS ON PAPER TAPE

AS-1 presents assembled object programs, with or without additional data, on punched paper

tape. The programer uses these output tapes for two purposes: 1) as program input to the

Unit Computer, and 2) as an intermediate medium to obtain a record for editing purposes. The

AS-1 Utility Package reloads tapes of this category when used as program input to the com­

puter. Listings of these tapes provide hard copies for editing purposes.

The large variety of output formats provides assembled obj ect programs to best fit the pro­

gramer's need. It gives an option of absolute addressing or relative addressing in bioctal

format. Absolute addressing assigns a specific storage address to each instruction. Relative

addressing allows the programer to specify a starting address at the time he loads the as­

sembled program. Bioctal format is an abbreviated means of paper tape storage where each

tape frame represents two octal characters, thus reducing the size of tapes considerably.

Regardless of the format selected, the tapes include the necessary control codes and check

sums for AS-l Utility Package loading. In addition to the options heretofore mentioned, the

programer has the option of requesting additional data with the assembled program such

as the items in Ll language and notes. The inclusion of these in no way interferes with the

loading of assembled programs into the computer.

NO. 10 ASSEMBLED PROGRAM IN BIOCTAL: Paper tape output in this format consists of

the assembled program in bioctal code. The program is preceded by a 76 code and followed

by check sums for AS-l Utility Package loading.

Note: Punched paper tape in bioctal format cannot be listed or reproduced on a typewriter.

7 of 11

NO. 12 ABSOLUTE ASSEMBLED PROGRAM IN KEYBOARD PR:INTER CODE. Papertape

output in this format consists of absolute -addressed machine code instructions in standard

code. An 88 code precedes and check sums follow the program for AS-1 utility Package

loading.

COUNTONES SMITH-100CT63
NO. OF INSTRUCTIONS 13
OUTPUT 12
50000 THRU 50012

88

50000 12200 00000
50001 12100 00035
50002 11000 00000
50003 10032 50030
50004 05200 00001
50005 20000 00001
50006 72100 50004
50007 15032 50100

50010 71200 00011
50011 61500 50001
50012 61400 500i2

00004 36164
00003 10217

8 of 11

NO. 22 ABSOLUTE ASSEMBLED OBJECT PROGRAM, L1 PROGRAM, AND NOTES: Paper

tape output in this format consists of absolute-addressed machine code instructions, their

corresponding L1 operations (usually mnemonic), and notes. The tape begins with an 88

code and ends with check sums for AS-1 Utility Package loading.

Note: The check sums represent the assembled program only.

Example:

COUNTONES SMITHo100CT63
NO. OF, INSTRUCTIONS 13
OUTPUT 22
50000 THRU 50012

50000 12200 00000 CTONESO CLoB2 SET WORD INDEX
50001 12100 00035 CTONES1 ENT.B1·35 SET SHIFT INDEX
50002 11000 00000 CLoA SET SUMO TO ZERO
50003 10032 50030 ENToQoW(WOR.ro +B2)
50004 05200 00001 CTONES2 LSHoQo1o QPOS TEST EACH BIT FOR 0 OR 1
50005 20000 00001 ADD. A 01 INCREASE SUM IF 1 FOUND
50006 72100 50004 BJP • B1 • CTONES2
50007 15032 50100 STRoA.W(SUMO+B2) SUM STORAGE

50010 71200 00011 BSKoB2oNWORDS
50011 61ROO 50001 JP.CTONES1· STOP5 CONTINUE COMPUTING SUMS
50012 61400 50012 CTONES3 JPoCTONES3·STOP END

00004 36164

·00003 10217

9 of 11

NO. 24 RELATIVE BIOCTAL ASSEMBLED OBJECT PROGRAM: Paper tape output in this

format consists of the assembled program in bioctal code. The program tape begins with a

75 code and ends with the check sum. The other codes are assembled program data and rel­

ative addressing core storage codes.

CORRECTED LO ON PAPER TAPE

NO. 26 CORRECTED LO: Output in this format is a complete dump of L1 program opera­

tions, including notes, on paper tape. This output provides a corrected LO tape when correc­

tions have been made to the original program with the L1 corrector. The programer may

also request this output without corrections having been made.

The assembler treats the corrected LO tape as normal program input. No initial code appears

on the tape since the AS-1loading routine reloads the tape; however, a check sum appears at

the end for verification or reloading.

NO. 27 CORRECTED LO (Selective - between L1 ID'S): Output in this format is a selective

dump of L1 program operations, including notes, on paper tape. The programer selects,

by means of L1 identifiers, a portion or portions of L1 program storage for paper tape output.

The programer specifies to the operator the initial and final L1 identifiers of the area(s)

to be dumped.

Output No. 27 is most frequently used to obtain a corrected LO input tape of a particular por­

tion, or portions, of L1 program storage when corrections are made to the original program

with the L1 corrector. The programer can request this partial output without corrections.

AS-1 accepts the corrected LO tape as normal program input to the assembler. No initial

code is placed on the tape since reloading is done by the AS-1 loading routine.

10 of 11

ALLOCATION DATA ON PAPER TAPE

NO. 30 LABELS AND ADDRESSES: Paper tape output in this format consists of all pro­

gram labels and their corresponding addresses as they appear in the assembled program.

This tape is acceptable as an allocation input tape.

Example:
COUNTONES ALLOCATIONeSMITHe100CT63

NWORDS
WORDO
SUMO
CTONESO
CTONES1
CTONES2
CTONES3

00011
50030
50100
50000
50001
50004
50012

No. 31 SIGNIFICANT LABELS AND ADDRESSES: Paper tape output in this format consists

of a selection of all significant labels and their corresponding addresses within an assembled

set of operations. [Significant labels accompany operations (mnemonic or numeric) that infer

the beginning of a subroutine or a program segment.] In addition, it includes all labels and

corresponding addresses of U-TAG or EQUALS operations.

Subroutines or program segments assembled for the Unit Computer will, in general, begin

with one of three instructions:

61 rOO 00000

60 100 00000

00 000 00000

(j may be any value)

The assembler searches for the above instructions and the operators U -TAG and EQUALS in

presenting this output. Only labeled operations are included in this category.

NO. 32 NUMERICALLY ORDERED ADDRESSES WITH LABELS: Paper tape output in this

format consists of all labels and their corresponding addresses in numerical order of the

addresses. This is acceptable as an allocation tape.

NO. 33 ALPHABETICALLY ORDERED LABELS AJ"D ADDRESSES: Paper tape output in

this format consists of all labels and their corresponding addresses in alphabetical order of

the labels. This is acceptable as an allocation tape.

NO. 34 RELATIVE ALLOCATION, LABELS AND ADDRESSES: Paper tape output in this

format consists of labels and their corresponding addresses given relative to zero.

11 of 11

ASSEMBLER-CONTROL OPERATIONS
(A.CONTROL)

To assure himself a maximum of control over the assembling process via tape(s), a pro­

gramer may group several AS-l input operations under one A-CONTROL header. A label

and identifying operands may be used with the A-CONTROL. header, but the assembler does

not require them.

[label] .. A-CONTROL • [programer's name] • [date] ..

Subordinate to the A-CONTROL header are minor headers followed by their respective Op­

erations. So-called independent operations also follow. The A-CONTROL header merely

categorizes selected input information to the asse mble r under a single header. Its use is

optional, however, since each minor header with its respective operations and each independ­

ent operation can be used independently. Operations following an A-CONTROL header specify

various types of input control data such as debugging aids, CHAN-SET, etc. Operations need

not all appear on the same tape. (See AS-l INPUT.)

Minor Header Operations. Several types of input operations must follow a descriptive minor

header, such as: 1) ALLOCATION, 2) INOR-ALLOC (indirect allocation), 3) REL-ALLOC

(relative allocation), 4) CHAN-SET (channel setting), and 5) EXCHANGE. Allocation opera­

tions must be grouped following an ALLOCATION header, indirect-allocation operations must

be grouped following an INOR-ALLOC header, etc. When used with the A-CONTROL opera­

tion, minor header operations do not require a label or identifying operands. This does not

preclude their use, however, if the programer wishes to use them. Each of the minor

headers with its respective group of operations, may, of course, be used independently with­

out A-CONTROL, in which case normal header usage is followed. (See AS-1 INPUT.)

Independent operation: This iriput operation does not require a descriptive header since

it is an independent operation by itself, and like minor header operations, may be used with

or without an A.CONTROL header. The DEBUG-AIDS operator is an independent operation.

1 of 10

Major Header

A-CONTROL

Minor Headers

ALLOCATION I INDR-ALLOC I REL-ALLOC J I CHAN-SET I I EXCHANGE I

r- Operation
1

- Operation

I 2

I
I
L Operation

n

I
I
I

_ Operation
1

- Operation
2

L Operation
n

I
I
I

OPERATIONS

_ Operation
1

- Operation
2

f- Operation
1

"-
Operation

I 2

I
I

L Operation L Operation
n

INDEPENDENT

OPERATION

DEBUG-AIDS

n

r- Operation
1

"-
Operation

I 2

I
I
L Operation

n

Figure 1. Typical A-CONTROL Headers and Operations

2 of 10

L w

MAJOR HEADER:* [label] .. A-CONTROL • [
MINOR HEADER: .. ALLOCATION

Operation [label J.[allOCatiOn]
value ..

MINOR HEADER: .. INDR-ALLOC ..
Operation: [S/R] [6-digit]

label .. number ..
MINOR HEADER: ... REL-ALLOC ..

Operation: [label] .[nUmeriC]
value ..

MINOR HEADER: .. CHAN-SET ..
Operation: [I b 1 J .. [I/O] a e assignment ..

MINOR HEADER .. EXCHANGE ..
Operation: [Old]..JJ new J ..

designation """'L designation

INDEPENDENT
OPERATION:

.. DEBUG-AIDS ..

programer name]. [date] ..

* Label and operands for the A-CONTROL header are optional.

Figure 2., A-CONTROL Header and Operation Formats

3· of 10

~ssembler- CONTROL Operation:

L

Vo

V
.1

L W Vo VJ.

[label] • A-CONTROL • [programer's name] • [date] ..

The A-CONTROL header operation indicates that assembler-control operations

are to follow. These may be minor headers with their related operations and/or

independent operations. The A-CONTROL header appears as the first opera­

tion on the first tape containing assembler-control operations. A label (the

program name) and two identifying operands (the programer's name and the

date in that order) may be used with the A-CONTROL header, but they are

not required (see examples, AS-1 INPUT).

when used, gives the name of the associated program

when used, gives the name of the programer

when used, gives the date (usually the date of preparation)

Examples:

a) SIMPLEX .. A-CONTROL • SMITH • JAN 1963 ..

b) .. A-CONTROL ..

4 of 10

CHANnel- SET Operation:

L w Va Vl

[label]" CHAN-SET • [programer's name] • [date] ..

The CHAN-SET operation, a minor header, precedes operations which provide

input or output assignments. CHAN-SET and its succeeding operations permit

programs to be written with symbolic input/output channel symbols. By holding

the assignment of external equipment open until needed, the programer can,

at that time, determine which of the specific channels are available for use.

He then replaces the symbolic representations with the actual assignments,

using the Channel-Set feature. Thus the programer can assign an external

equipment to any permissible input, output, or function channel. The operations

which may contain replaceable operands include: JP, STR, IN, OUT, TERM,

EX-COM, EX-COM-MW, SIL-EX, and RIL-EX.

The. CHAN-SET header and assignment operations are applicable only to input/

output assignments. It cannot be used interchangeably with EQUALS. The header

and its succeeding operations provide the basic capabilities of the MEANS opera­

tion in a more convenient format.

Used under A-CONTROL, the CHAN-SET header does not require a label or

identifying operands. However, operations which follow this header must have

labels. The CHAN-SET header may be used independently of the A-CONTROL

header.

Channel-Set assignment operations appear as follows:

L

[label]

w
[input/output aSsignment]

L gi ves the symbolic input/output name to be replaced

W states the specific input/output assignment to be substituted for L. Entries in

the W position are presently restricted to information pertaining to input/output

specifications

5 of 10

Example CHAN-SET header and assignment operations:

a) SWAP .. CHAN-SET· BEVYOUNG • 18JAN63

b) COB .. C10

c) BUDDY .. C1

d) ACE .. Cll

Examples of Input/Output operations with which the foregoing examples may be

used:

a) .. EX-COM. COB • 513

b)'" STR • BUDDY • W(POCKET)

c) • TERM. ACE • OUTPUT

Note: The CHAN - SET header and its succeeding assignment operations are

never permitted within the LO input program. They are not correct­

able by use of the L1 corrector, because they never appear in the assem­

bler's L1 table.

6 of 10

DUMP-AREA Operation:

w -V-­o v * 1

.. DUMP-AREA. [area nalne(s)] • [key set condition] ..

The DUMP-AREA operation causes a printout of all non-zero words of the

debugging area(s) requested. The printout also gives debugging area names and

their absolute limits.

- Vo- -names the debugging area(s) to be dumped. (See Appendix, Glossary, OPER­

AND POSITION)

VI * - specifies a key set condition. Key settings and their significance are as follows:

Perform operation if V 1 is KEYl and console key 1 is set.

Perform operation if V 1 is KEY2 and console key 2 is set.

Perform operation if V 1 is KEY3 and console key 3 is set.

Typical OUMP-AREA printout:

ENT ADD 60056

VVS36 61200 - 61210

61202 00006 00000
61203 00002 00000
61206 00007 00000
61207 00014 00000

*Operand use is optional

7 of 10 DUMP-AREA

TEST-IMAGE Operation:

w -v -o v* 1·

.. TEST-IMAGE • [area name(s)] • [key set condition] ..

The TEST-IMAGE . operation tests the specified areas for changes since they

were last imaged. It makes a word-by-word comparison between the debugging

areas and their corresponding images. It then causes a printout for each non­

comparing position of the image word, the area word, the area word address,

and the increment of this address in reference to the initial area address. (See

Example Debugging Aids,,) Thereafter, a new imageis made.

-V 0 - - names of area(s) to be tested. (See Appendix, Glossary, OPERAND POSITION)

11 * - specifies a key set condition. Key settings and their Significance are as follows:

, Perform operation if VIis KEY 1 and console key 1 is set.

Perform operation if V 1 is KEY2 and console key 2 is set.

Perform operation if V 1 is KEY3 and console key 3 is set.

*Operand use is optional

8 of 10 TEST-IMAGE

WS3

LTS

Example Debugging Aids illustrating image testing:

Operations: DEF-AREA

* ..
* ..

**
*** ..

CORE-IMAGE

TEST-IMAGE

DEF-AREA • TNP. WS3 +10 • 100 ~

DEF-AREA • LTS • LTS • 55 ~

CORE-IMAGE • TNP • 02000 ~

CORE-IMAGE • LTS • 02000 ~

TEST -IMAGE • TNP • LTS • KI:Y3
~

Each word of TNP and LTS is compared to its corresponding word in

the image.

If the words are not equal, the image word and the present program word

are punched (printed) out. (See sample printout on the following page.)

AS-l LO
Program
Operations

*--
*--
**--
**--

(TNP)

(LTS)

WS3

-8 ~

.LTS

Object
Program

(TNP)

-----.-----

Printout

-----__ - Core Image
J---~

of (TNP)

---- - .,........--------- --------

--------- -- --- -- -- ---------~ ..----- -------------
Core Image
of (LTS) --- --

(LTS) ----- ----- --=--=-.:-:::-----------...::---------

Figure 3. Example Debugging Aids

9 of 10

Typical TEST -IMAGE Printout:

A 02530 33330 Q 00000 22764

B1 00010 B2 07774 B3 00022 B4 00040 B5 02040 B6 00000 B 7 00012

ENT ADD 50000

TNP 60012 - 60112

address image program
+0 60012 00045 00063 00047 00064

+45 60057 00000 00113 00000 00000
+46 60060 00000 00114 00000 00000
+63 60075 00000 00000 00000 00031

LTS 70133 - 70210

address image program
+12 70145 00000 70137 12100 00145
+23 70156 77321 00010 77431 00010
+42 70175 11121 00011 71121 00011

10 of 10

INTRODUCfION

The 1230 Computer may be connected to a variety of military or commercial peripheral

equipments.

These include:

• Teletype Printer Units

• Magnetic Tape Units

• High-Speed Printer Units

• Card Read/Punch Units

• Display and Display Interface Equipment

CIt Radar and Radar Adaption Interfaces

• Paper Tape Units

• Manual Entry Devices

1 of 1

UNIVAC 1232 INPUT/OUTPUT CONSOLE

BASIC INFORMATION

The UNIVAC 1232 Input/Output Console (Figure 1) has a paper tape punch and reader as

standard equipment, with a keyboard and printer as an option. Input and output devices com­

municate with the computer through a single input/output channel. See Figure 2.

ON-LINE OPERATION

In the on-line operation the Input/Output Console provides means for entering data into the

computer by punched tape or an alphanumeric keyboard. It provides means for recording

output data from the computer by either punching tape or printing on paper media or both

simultaneously.

OFF-LINE OPERATION

In the off-line operation the Input/Output Console provides means to:

• Print on paper media by Keyboard entry

• Perforate tape by Keyboard entry

• Perforate tape and print on paper media simultaneously by keyboard entry

• Print on paper media from a perforated tape

• Perforate tape from a perforated tape

• Perforate tape and print on paper media simultaneously from a perforated tape

INPUT·OUTPUT CONTROL

The input/ output sequences are manually enabled from the control panel or automatically

enabled by the computer program.

1 of 13

Figure 1. UNIVAC 1232A Input/Output Console

2 of 13

r-

OUTPUT CABLE

"
j

E-4
en
r:z:::l

~ P
r:z:::l (§
E-4 r:z:::l
P ~
~
~ Z

0 0 1-1
() E-4

~
()
Z

0 P
~ ~
~

~
~ ~
E-4 ~ <
Q r:z:::l

E-4
~
r:z:::l

CONTROL
--- - ----------

AMPLIFIERS
AND GATES

FUNCTION
REGISTER

r:z:::l
d
Q
r:z:::l
~
~
0

~
()
~

Z
0
1-1

E-4
()

z
P
~

~

~
~
r:z:::l
E-4
~
r:z:::l

--

~ ~

r:z:::l
r:z:::l d d E-4 Q Q en r:z:::l E-4
r:z:::l r:z:::l ~

en

~ P r:z:::l
(§ 0

p
r:z:::l

~
(§

~ ~ r:z:::l

() ~

ES ~
()

~ ~
~ ~ E-4
Q E-4 ~ ·ES ~ Q
E-4 Q E-4 ~ P Q
~ E-4 P
E-4 P ~ E-4
p ~ ~ P
0 E-4 ~

P Z
0

1-1

- - - - -,

CONTROL
CIRCUITRY

INPUT CABLE

"
~

~
r:z:::l
E-4
p

E-4
~

~
p ~
~ 0
~ ()

r:z:::l
E-4 0

~
E-4

~
E-4
<
Q

- ---------- -----1
r

DRIVERS

•

OUTPUT REGISTER ...-__________ --; INPUT REGISTER

•
L - - - - - - - - -r - - - - - - - - - - - - - - -; - - - ;- - - - - - - - - ~

OUTPUT
DEVICES -----------1 I, r

I TAPE:
I PRINTER PERFOR- I
I ATOR I
I ~ I L ____ I- ________ _

INPUT
DEVICES
---------- ---,
I I
I
I KEY- TAPE I
I BOARD READER I

I ~ .~:
L---i-----------

-
1 I

Figure 2. Block Diagram of Console

3 of 13

COMPUTER CONTROL

The computer controls the Input/Output Console through the external-function word, as

specified in Figure 3, as follows:

Bits 0, 1, and 2 control the output devices. A "one" in bit 0 allows the status of

the printer (bit 1) and perforator (bit 2) to be controlled by the information in bits 1

and 2. A "zero" in bit 0 causes bits 1 and 2 to be ignored and the status of the out­

put devices to remain unchanged. With a "one" in bit 0; a "one" in bit 1 enables the

printer and a "zero" in bit 1 disables the printer, and a "one" in bit 2 enables the

perforator and a "zero" in bit 2 disables the perforator.

Bits 3, 4, 5, and 6 control the input devices. A "one" in bit 3 allows the status of

the keyboard (bit 4) and reader (bits 5 and 6) to be controlled by the information in

bits 4, 5, and 6.

A "zero" in bit 3 causes bits 4, 5,· and 6 to be igno:r;ed and the status of the input

devices remain unchanged. With a "one" in bit 3; a "one" in bit 4 enables the key­

board and a "zero" in bit 4 disables the keyboard, a "one" in bit 5 enables the reader

and a "zero" in bit 5 disables the reader, and a "one" inbits 5and6 starts the

reading operation and a "zero" in bits 5 or 6 stops the reading operation.

The status of the Input/Output Console is determined by the latest external-function word.

PANEL CONTROL

The computer external-function words are manually duplicated by the operation of the con­

trol panel switches specified in Table I.

TABLE I. MANUAL-AUTOMATIC CONTROLS

UNIT(S) EXTERNAL FUNCTION- CONTROL PANEL SWITCHES
CONTROLLED WORD BIT SET CLEAR

Output Devices 0 None None
Printer 1 Print Print Clear
Perforator 2 Punch Punch Clear

Input Devices 3 None None
Keyboard 4 Keyboard Keyboard Clear
Reader 5 Read Read Clear
Reader 6 Start-Read Start-Read Clear

7 not used

4 of 13

29 7 6 5 4 3 2 1 o I
NOT USED

0 Disable output

1 Enable output

0 Disable printer

1 Enable printer

0 Disable punch

1 Enable punch

0 Disable input

1 Enable input

0 Disable keyboard

1 Enable keyboard

0 Disable reader

1 Enable reader

0 Stop reading operation if i5 = 0

1 Start reading operation if i5 = 1

Figure 3. 1232 Input/Output Console, External Function Word

5 of 13

OPERATION OF UNITS

PERFORATED TAPE READER

The perforated tape reader is adjustable to read chad-type tape with 5, 6, 7, or 8 channels

and widths of 11/16 inch, 7/8 inch, or 1 inch. The reader reads tape at a rate of 300 frames

per second. The tape is transported through the reader by an electric motor drive with a

pinch roller and a brake. The following sequence is typical:

1. The reader is enabled and the motor attains operating speed

2. Tape is placed in the reader and the START READ indicator-switch is operated

3. If a sprocket hole of the tape is pOSitioned over the sensor, no advancement of the

tape shall occur; if the tape is pOSitioned so that the sensor is between sprocket

holes, the clutch shall be engaged and the tape will be advanced

4. The next sprocket hole that reaches the sensor actuates the brake and the tape stops

5. The signal caused by the data holes in each frame sets the corresponding input lines

through the action of the input register

6. The signal caused by the sprocket hole cause,s the control circuitry to set the

input-data-request line

7. The computer responds with an input-data-acknowledge signal, which indicates that

the input-data lines have been sampled. The control circuitry clears the input-data­

request line, clears the input-data lines, and engages the clutch to advance the tape

Steps 4 through 7 are repeated until operation of the reader is stopped.

TAPE PERFORATOR

The tape perforator perforates chad-type tape. The tape perforator is adjustable to perforate

5, 6, 7, or 8 channels on 11/16 inch, 7/8 inch or 1 inch tape. It perforates 10 frames per

inch at a tape speed of 11 inches per second. The tape is transported through the perforator

by an electric motor drive. The following sequence is typical:

1. The perforator is enabled

2. The control circuitry sets the output-data-request line

3. The computer, in synchronism with internal priorities, detects the output-data­

request signal

6 of 13

4. The computer places data on the output line

5. The computer sets the output-acknowledge line

6. The control circuitry detects the output-acknowledge signal, gates the data on the

output-data lines to the output register, and clears the output-data-request line

7. A magnetic head associated with the perforator drive mechanism generates a pulse

at the appropriate time to gate the output register content to the tape perforator.

This energizes the perforating mechanism while the tape is stopped.

8. The control circuitry generates a pulse that de-energizes the perforating mechanism,

clears the output register, and sets the output-data-request line

Steps 3 through 8 are repeated until perforator operation is stopped.

PRINTER

The printer prints data, one character at a time, on paper media. The printer prints a

character corresponding to the fieldata code as specified in Table II. The printer can print

10 characters per second. The printout has 10 characters per inch horizontally, 72 characters

per line, and 6 lines per inch vertically. The following sequence is typical:

1. The printer is enabled

2. The control circuitry sets the output-data-request line

3. The computer, in synchronism with internal priorities, detects the output-data-

request signal

4. The computer places data on the output data lines

5. The computer sets the output-acknowledge line

6. The control circuitry detects the output-acknowledge Signal, gates the data on the

output-data lines to the output register, and clears the output-data-request line

7. The control circuitry causes the printer to perform the print or control function

indicated by the data bits in the register

8. Upon completion of the print function the control circuitry clears the output register

and sets the output-data-request line

Steps 3 through 8 are repeated until operation of the printer is stopped.

7 of 13

TABLE II. FIELD DATA CODE

SYMBOL OR PRINTED
SIGNALS ON DATA LINES

KEYBOARD
2

5 24 2
3 22 21 20

OCTAL
FUNCTION SYMBOL SYMBOL CODE

Master Space* .p- O 0 0 0 0 0 00

Upper Case UC t'V 0 0 0 0 0 1 01

Lower Case LC ago 0 0 0 0 1 0 02

Line Feed LF 0 0 0 0 1 1 03

Carriage Return RETURN 0 0 0 1 0 0 04

Space 0 0 0 1 0 1 05

A A A 0 0 0 1 1 0 06

B B B 0 0 0 1 1 1 07

C C C 0 0 1 0 0 0 10

D D D 0 0 1 0 0 1 11

E E E 0 0 1 0 1 0 12

F F F 0 0 1 0 1 1 13

G G G 0 0 1 1 0 0 14

H H H 0 0 1 1 0 1 15

I I I 0 0 1 1 1 0 16

J J J 0 0 1 1 1 1 17

K K K 0 1 0 0 0 0 20

L L L 0 1 0 0 0 1 21

M M M 0 1 0 0 1 0 22

N N N 0 1 0 0 1 1 23

0 0 0 0 1 0 1 0 0 24

P P P 0 1 0 1 0 1 25

Q Q Q 0 1 0 1 1 0 26

R R R 0 1 0 1 1 1 27

S S S 0 1 1 0 0 0 30

T T T 0 1 1 0 0 1 31

U U U 0 1 1 0 1 0 32

V V V 0 1 1 0 1 1 33

W W W 0 1 1 1 0 0 34

X X X 0 1 1 1 0 1 35

Y Y y 0 1 1 1 1 0 36

8 of 13

TABLE II. FIELD DATA CODE (Cont.)

SYMBOL OR KEYBOARD PRINTED SIGNALS ON DATA LINES OCTAL
FUNCTION SYMBOL SYMBOL 2

5 24 2
3 22 21 2

0 CODE

Z Z Z 0 1 1 1 1 1 37

))) 1 0 0 0 0 0 40

- - - 1 0 0 0 0 1 41

+ + + 1 0 0 0 1 0 42

< < < 1 0 0 0 1 1 43

= = = 1 0 0 1 0 0 44

> > > 1 0 0 1 0 1 45

1 0 0 1 1 0 46 - - -
$ $ $ 1 0 0 1 1 1 47

* * * 1 0 1 0 0 0 50

(((1 0 1 0 0 1 51
II " " 1 0 1 0 1 0 52

: : 1 0 1 0 1 1 53

? ? ? 1 0 1 1 0 0 54

! I I 1 0 1 1 0 1 55

, , , 1 0 1 1 1 0 56

Stop ~ @ 1 0 1 1 1 1 57

0 0 ¢ 1 1 0 0 0 0 60

1 1 1 1 1 0 0 0 1 61

2 2 2 1 1 0 0 1 0 62

3 3 3 1 1 0 0 1 1 63

4 4 4 1 1 0 1 0 0 64

5 5 5 1 1 0 1 0 1 65

6 6 6 1 1 0 1 1 0 66

7 7 7 1 1 0 1 1 1 67

8 8 8 1 1 1 0 0 0 70

9 9 9 1 1 1 0 O· 1 71
, , ,

1 1 1 0 1" 0 72

; ; ; 1 1 1 0 1 1 73

/ / / 1 1 1 1 0 0 74

1 1 1 1 0 1 75

Special SPEC 0 1 1 1 1 1 0 76

Idle t t 1 1 1 1 1 1 77

*Master space indicates an absence of information

9 of 13

KEYBOARD

The keyboard, Figure 4, generates the data codes in Table II when corresponding labeled

keys are operated. Data entered into the keyboard is simultaneously printed by the printer

if the printer and the copy mode are enabled. The following sequence is typical:

1. The keyboard is enabled

2. When a key is operated, the corresponding input-data lines are set through the action

of the input register

3. The control circuitry sets the input-data-request line

4. When the computer responds with an input-data-acknowledge signal, the control cir­

cuitry clears the input-data-request line and the data lines

steps 2 through 4 are repeated each time a key is depressed until operation of the keyboard

is stopped.

KEYBOARD lliTERRUPT

The computer may be interrupted from the keyboard by the following sequence:

1. Keyboard is enabled

2. Printer and copy mode are enabled if printout of the interrupt code is desired

3. The interrupt indicator switch on the control panel has been operated

4. A keyboard key is operated which sets the corresponding field-data code on the

input-data lines and generates an interrupt to the computer

5. When the computer responds with an input acknowledge the interrupt and the input­

data lines will be cleared

Steps 3 through 5 are repeated for each interrupt code to be sent.

SWITCHES AND INDICATORS

The switches and indicators of the Input/Output Console operate as follows:

Power Switch and Indicator

The power switch switches the input power on and off. The power indicator lights whenever

the power switch is in the on position.

10 of 13

~
~

o
~
c,...:)

CDCDCDCDCD@CDCDCDCD®@8
CDGG00GG0880G @g RE-

~:~~\ 80G080Gc!)GOO TURN

~GGG)8GGGOOCDB
(Space)

NOTE: Functions shown in parentheses are blank.

Figure 4. Keyboard Layout

On-Line Off-Line Switch

In the on-line position the Input/Output Console operates as an input/output device for the

computer as specified herein. In the off-line position the Input/Output Console_ operates

independently of the computer and performs the off-line functions specified herein.

Tape -Feed Indicator Switch

The tape perforator generates blank tape with only the sprocket holes perforated whenever

the tape -feed indicator switch is operated.

Tape -Levels Switch

The tape-levels switch disables the perforated-tape-reader levels which are not selected.

Input-Data Indicator Switches

The eight input-data indicator switches displays the data stored in the input register and

enables data to be manually entered into the input register.

Output-Data Indicator Switches

The eight output-data indicator switches displays the data stored in the output register and

enables data to be manually entered into the output register.

Master Clear Switch

The master-clear switch stops operation of all units of the Input/Output Console and sets all

the logic to an initial state.

Interrupt Indicator Switch

The interrupt indicator-switch enables the generation of an interrupt to the computer as

specified in Keyboard Interrupt.

Read, Read-One Switch

In the Read position the perforated-tape reader will read continuously. In the Read-One

position the perforated tape reader will read one frame, advance to the next frame, and stop.

This switch is for off-line operation only.

Start-Read Indicator-Switch

The Start-Read Indicator-Switch starts the perforated-tape reading operation.

12 of 13

Copy Indicator Switch

The copy switch enables the Input/Output Console to reproduce the data being· sent to the com­

puter by anyone of the following methods:

• Print the data on paper media

• Perforate the data on tape

• Print the data on paper media and perforate the data on tape simultaneously

Copy-Clear Switch

The copy-clear switch disables the copy mode of operation.

EXTERNAL FUNCTION MANUAL CONTROLS

The print, punch, keyboard, and read indicator-switches; and the print-clear, punch-clear,

keyboard-Clear, and read-clear switches enable and disable their respective units as specified

in the Input/Output Panel Control.

13 of 13

MAGNETIC TAPE SYSTEM (TYPE 1240A)

BASIC INFORMATION

The type 1240A Magnetic Tape System provides a large capacity, medium-speed, auxiliary

storage area.

The system employs various format selections. They include recording and reading in four

moduli, two character types, odd and even parity, and low and high density. In order to pro­

vide compatibility with the high-speed printer, the Mod 5 format is used with a programmed

fixed block length of 128 lines or tape frames to each block of information. One block contains

24 computer words. Mod 6 format is used for compatibility with some non UNIVAC systems.

The density selection allows the 1240A tape unit to read or write at 200 frames per inch

for low denSity and at 556 frames per inch for high density. The reading and writing opera­

tion is performed at a tape speed of 112.5 inches per second, and the rewind operation is

done at a tape speed of 225 inches per second. The block length may vary between 24 com­

puter words and total computer memory. The recording of 1240 tape system is the non­

return to zero (change-on-one) technique.

The basic 1240A Magnetic Tape System cabinet (Figure 1) consists of three sections:

1) magnetic tape control, 2) one tape transport control, and 3) four tape transports. Auxiliary

tape transport controls and tape transports may be added to the system (up to sixteen trans.;.

ports and four tape transport controls, Figure 2.

The Magnetic Tape Control enables the Magnetic Tape System to communicate with the

Computer by performing the· interface digital-to-digital conversion and performing the

logical operations of selecting tape function and tape transport. The tape transport con­

trol receives signals from Magnetic Tape Control and performs the logiC necessary to con­

trol either two or four tape transports. Only one Magnetic Tape Control is necessary in a

system and one tape transport control is necessary for each cabinet of transports. Figure

1 of 25

TAPE
TRANSPORT
CONTROL

TAPE
TRANSPORT

1

MAGNETIC TAPE CONTROL

TAPE
TRANSPORT

2

TAPE
TRANSPORT

3

Figure 1. Block Diagram of Magnetic Tape System

2 of 25

,

TAPE
TRANSPORT

4

r-

Pil
0

U) Q
Pil Pil
~:l

~:l
0

~ ~ E-4
~ U
Q ~

E-4 E-4
~ ~
~ ~
Z Z
~ ~

- - - -

TAPE
TRANSPORT

CONTROL
1

TT
--L

r---

TT
2

L....--

TT
--L

r----

TT
4 -

COMPUTER

Pil E-4
E-4 0 U)

Pil Z U) U) Q

8 Pil Pil Pil 0

8 z:l
~

~ ~
Pil E-4

....:l ~ U
Pil 0 Z
~ ~ ~ ~ ~

< E-4 E-4 ~

E-4 E-4 ~ U ~
....:l

~ ~ Q ~ Cl
~

Q ~ E-4 E-4 E-4 Z ~
E-4 ~ ~ ~ ~ ~

~ Pil ~ ~ ~ Pil
~ E-4 E-4 E-4 E-4 E-4

~ Z ~ ~ ~ ~
~ 0 0 0 Pil

f- - - - -. f- - - - - - -- - _. - - -, ,

MAGNETIC TAPE CONTROL

TAPE
TRANSPORT

CONTROL
2

TT
--L

.---
TT

6
~

TT
~

,...---

TT
8 -

TAPE
TRANSPORT

CONTROL
3

TT
~

--
TT
10

L...--

TT
-.ll.

,.....-
TT
12

,

TAPE
TRANSPORT

CONTROL
4

TT
13 ----

.---
TT
14 ----

r--.....

TT
J.L
--
TT
16

-

-,

______J

Figure 2. 1240A Interface

3 of 25

2 shows the 1240A interface of system with sixteen transports, four tape transport controls,

and one Magnetic Tape Control.

INPUT/OUTPUT SEQUENCE FOR 1240A MAGNETIC TAPE SYSTEM

The input/output sequence, for the 1240A tape system and Computer, begins with the tape

system in an idle state and the following events occur.

• The computer places an address word on the output data lines. (See Figure 3 for

configuration of address word)

• The computer sets the external function line active

• The Magnetic Tape Control takes the address word and selects the correct cabinet

and transport

• The computer places an instruction word on the output data lines. (See Figure

4 for configuration of instruction word)

• The computer sets the external function line active

• The Magnetic Tape Control samples the instruction word, becomes active and per­

forms the operation specified by the instruction word

• The Magnetic Tape Control receives a status word from the tape transport control,

and places it on the input data lines

• The Magnetic Tape Control sets the interrupt line active

• The computer accepts the interrupt according to priority

• The computer program handles the interrupt and determines the action to be taken

using the status word

• The Magnetic Tape System becomes idle

ADDRESS WORD

The address word is received by the Magnetic Tape System via the external function command

from the computer. Bit 17 is set, and will be as specified in Figure 3. The Magnetic

Tape System operates with the selected cabinet and tape transport for all operations until

another address word is received from the computer.

4 of 25

30 18 17 16 15 06 05 03 02 00

No Meaning Not Used Cabinet Transport

Master Clear I Address Address

Function Word o = Cabinet 4 Designator = 1 o = None
1 = Cabinet 1 1 = TT No.1
2 = Cabinet 2 2 = TT No.2
3 = Cabinet 3 3 = TT No.3
4 = Cabinet 4 4 = TT No.4
5 = Cabinet 1 5 = TT No.1
6 = Cabinet 2 6 = TT No.2
7 = Cabinet 3 7 = TT No.3

Figure 3. Address Word

I 1 1
30 18 17 16 15 11 10 09 I 08 I 07 I 06 05 00

No Meaning Operation Code I I Identification Code
See Table I I I

I I Selective Read =
I I ID Code;

Master I I Write, Tape Mark =
Clear 001111 I I

Function Word I I Write, Tape Mark,
Designator = 0 I I -IXRG = 001111

I I Density; High = l/Low = 0
I L _________

I Parity; Odd = l/Even = 0 L __________

Character; Octal = l/Bioctal = 0
------- ------

MODULUS
MOD 3 = 00 MOD 4 = 01
MOD 5 = 10 MOD 6 = 11

Figure 4. Instruction Word

5 of 25

TABLE 1. OPERA TION CODES

OPERA TION CODE

00000

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

1000x *
10010

10011

10100

10101

10110

10111

110xO *
110x1 *
111xO *
111x1 *

* x maybe either "0" or "1"

OPERATION

READ

READ; Selective

READ; Ignore Error Halt

Space File

SEARCH Type I

SEARCH Type II

SEARCH-File Type I

SEARCH-File Type II

WRITE

WRITE; XIRG

WRITE; Ignore Error Halt

WRITE XIRG, Ignore Error Halt

WRITE Tape Mark

WRITE Tape, XIRG

Backspace

Backspace -Read

Backspace -File

Backsearch Type I

Backsearch Type II

Backsearch File Type I

Backsearch File Type II

Rewind

Rewind, Clear Write Enable

Rewind-Read

Rewind-Read, Clear Write Enable

6 of 25

INSTRUCTION WORD

The instruction word is received by the Magnetic Tape Control via the external function com­

mand and bit 17 is set to a zero. The instruction word will be as specified in Figure 4.

INTERRUPT AND STATUS WORD

A status interrupt is sent to the computer by the Magnetic Tape Control, 222 microseconds

following the completion of all functions except the MASTER CLEAR and TRANSPORT

ADDRESS WORD operation. Along with the interrupt the Magnetic Tape Control puts a status

word on the data lines. This status word is a signal from tape transport control as to the

success of an operation performed on a tape transport. The computer acknowledges the
~

interrupt signal and jumps to the interrupt entrance address for that channel. (Address 20 +Cl).

The ,computer entrance address should contain a RJP (65000 xxxxx) instruction to computer

interrupt program. This program determines if the tape operation was successful. (Figure

5 gives status bits that will be set for any errors that may occur).

29 28 27 26 25

14 13 12 11 10

24

09

23 22 21 20 19 18 17 16 15

08 07 06 05 04 03 02 01 00

Load Point I
Low Tape I

End of Tape

No Write Enable

Tape Mark (End of File) I
. . 1 = Backward J

Last DlrectIon 0 F d = orwar

Longitudinal Parity Error ~

Lateral Parity Error I
Incorrect Frame Count I

Input Timing Error I
Output Timing Error I

Not Used I
Improper Condition I

Figure 5. Status Word Format

7 of 25

MAGNETIC TAPE OPERATIONS

MASTER CLEAR (bit 16)

The Magnetic Tape Control performs a Master Clear whenever power is applied, when the

MASTER CLEAR switch is operated, and whenever the Master Clear command is received

via the external function command from the computer. The MASTER CLEAR performs the

following:

• The MASTER CLEAR is accepted by the Magnetic Tape Control System at any time

• The MASTER CLEAR shall not be followed by a status-word interrupt

• The MASTER CLEAR will stop all tape motion (except a rewind of tape) and places

the system in the idle state

• The Magnetic Tape Control accepts an external function command anytime after a

MASTER CLEAR

READ (bits 11-15)

The read function is supplemented by format, denSity, and identification code selections. Two

types of read operations are performed, normal and selective read. The read function per­

forms the following:

• The Magnetic Tape Control, having received the read function, begins passing tape

forward over the read head at a speed of 112.5 inches per second

• The tape transport control checks the parity of each frame, or seven bits, and passes

the information onto MagnetiC Tape Control

• The Magnetic Tape Control assembles the information into a 30 bit computer word

for transfer to the computer. The number of frames required to make up a com­

puter word will depend on the modulus in which it is written

• If the selective read function was selected, the lower six bits of the computer word

are compared with the identification code. If a comparison is not correct, the assem­

bled word will be disregarded and the next computer word is assembled. Therefore,

only words in the record which have the lower six bits equal to the identification

code will be transferred to the computer. In a normal read all words are transferred

to the computer through the input data lines

• This process will continue until the record has been completely read, assembled,

and transferred to the computer

8 of 25

• A status word is sent to the computer by Magnetic Tape Control at the completion

of the read function, informing the computer of the success of operation

• If an error (parity or input timing) is detected during transmission of data, the

Magnetic Tape Control will cease transferring data to the computer for the remainder

of that record. At the end of the record a status word is sent to the computer in­

forming it of the nature of failure

WRITE (bits 11-15)

The write function is supplemented by format and density selections. The tape speed for a

write function is 112.5 inches per second. The following events will occur:

• The Magnetic Tape Control takes a word from the computer on the output data lines

• The Magnetic Tape Control disassembles the computer word according to modulus

selection, generates a parity bit, and transfers the seven-bit frame to the tape trans­

port control for recording on tape

• The read-head is activated, causing the tape transport to read back the information

recorded, for parity check purposes

• If a parity error is detected, the write operation is halted and a status word telling

the computer of failure is sent over interrupt lines. The computer program must

then correct the procedure as necessary to perform the write function (write with

extended inter-record gap function is the suggested correction measure)

• If no parity error is detected, the process of disassembling and recording data

continues until the computer no longer acknowledges the output data request from

the Magnetic Tape Control. This means that the complete buffer has been recorded

on tape

• When Magnetic Tape Control detects the end of write, tape motion is stopped after

3/4 inches of tape has passed the write head. This 3/4 inch of tape is for Inter­

Record Gap (IRG). Extended Inter-Record Gap is 3-1/2 inches

• A status word is sent to the computer and the tape system becomes idle

• In the WRITE IGNORE HALT function, the Magnetic Tape Control does not stop the

write operation if lateral parity error is detected

9 of 25

REWIND (bits 11-15)

The rewind function causes the tape transport selected to rewind tape at a rate of 225 inches

per second. If rewind clear write enable function is selected, the tape will stop at load point

and a write function will not be accomplished on this unit. If the tape is located at load

point when a rewind function is given, no improper conditions will occur.

REWIND-READ (bits 11-15)

The rewind-read function causes the same effect as normal rewind, except when the tape

reaches load point. The first record will be read into the computer by normal read function.

The status word will be sent after the first record is transferred to the computer. The rewind­

read clear write enable disables the write enable making further writing on this unit impos­

sible. This function is supplemented by format and density selection.

SPACE FILE FORWARD/BACKWARD (bits 11-15)

When the Magnetic Tape Control is instructed to space file forward/backward, it causes the

addressed tape transport to move in the specified direction, beyond the next tape mark. The

Magnetic Tape Control notifies the computer via the status word with a tape mark indication.

WRITE TAPE MARK (bits 11-15)

This function causes the Magnetic Tape Control to instruct the tape transport to write a Tape

Mark, a special record having 178 in the first frame, 3 frames of zeros, and one frame of

longitudinal parity.

BACK SPACE (bits 11-15)

The back space operation causes the selected tape transport to move one record in the back­

ward direction. The tape is properly positioned in the Inter-Record Gap ready for a read or

write function. The parity is checked while the backspace operation is performed and a status

word is sent to the computer. The back space function is supplemented by format and density

selections.

SEARCH (bits 11-15)

The search function combines the normal read with the ability to conduct a search on the

first word of a record (in either the forward or backward direction) and transfer only the

"Find" record to the computer. The search comparison is performed on the first word of a

record with the identifier (search key) word. The search word is transmitted to the Magnet­

ic Tape Control by the computer in a one -word buffer following the instruction word. The

10 of 25

search forward/backward file function performs the same function except the search is limited

to a file mark. There are two types of searches which the Magnetic Tape Control can per­

form in comparing the key word with the first word of the record. Type I is defined as a

per bit greater-than-or-equal compare. The following example demonstrates this definition:

search key:

find:

find:

no find:

no find:

001101

011101

001101

010101

001100

An identical compare (Type II) is defined as a search comparison with the search key and the

first word of the record exactly identical.

FORMAT PORTION OF INSTRUCTION WORD

The format portion of the instruction word consists of modulus, character, and parity. A

complete format selection must be included in all instruction words which require a record

or read operation. The three sections of the format are discussed in the following paragraphs:

MODULUS

The Magnetic Tape System is capable of recording and reading in four different moduli.

These moduli and the appropriate designator bits (bits 10-09) are:

• 00 = Modulus 3

o 01 = Modulus 4

• 10 = Modulus 5

• 11 = Modulus 6

These are discussed in the section titled 11 Tape System Modulill.

CHARACTER

There are two types of character recording; octal and bioctal. A 11 one" ,in bit 08 of the in­

struction word specifies octal. In this type, channels 3, 4, and 5 contain the same information

as channels 0, 1, and 2 respectively for each frame, except that when channels 0, 1, and 2

are all 11 zeros ll , channels 3, 4, and 5 contain all "ones". Odd lateral parity is always genera­

ted when recording in octal character (see Table II). A "zero" in bit 08 specifies bioctal

recording. The octal character allows for redundant recording for added reliability.

11 of 25

TABLE II. OCTAL RECORDING

CHARACTER TAPE CHANNELS

Octal Binary 6 543 210

0 000 o 111 000

1 001 1 001 001

2 010 1 010 010

3 011 1 011 011

4 100 1 100 100

5 101 1 101 101

6 110 1 110 110

7 111 1111 111

PARITY

Two parity modes can be utilized, odd or even, bit 07 is used for parity mode selection. A

"one" in bit 07 specifies odd parity, and in bit 07, a "zero" specifies even parity.

Data ordinarily are recorded in two formats: binary and binary-coded-decima1. The parity

bit is chosen to make the total number of "ones" ("l's") bits in a frame odd in the binary

format and even in the binary-coded-decimal format.

DENSITY

The Magnetic Tape System is capable of recording data on tape in two different programmable

densities. The two densities are low density, at 200 frames per inch, and high density, at

556 frames per inch.

Bit 06 of the instruction word is used for density selection. When bit 06 is a "one", high

density is selected; when it is a "zero", low density is selected.

TAPE SYSTEM MODULI

MODULUS 3: (Bits 10 and 09 = 00)

Mod 3 is obtained by reducing 18 bits of a computer word to three (bioctal character) frames

of data. In reading Mod 3, a word is sent to the computer for every three (bioctal character)

tape frames. These frames are assembled in the lower 18 bits (17-00) of the data word. The

upper bits, if any, of the data word contain zeros.

12 of 25

Recording Mod 3, the 18 bits (17-00) of a computer word are recorded in three (bioctal

characters) 7-bit frames, consisting of a 6-bit character, plus parity. For octal recording

the number of tape frames is doubled. See Figure 6 for bioctal recording and Figure 7 for

octal recording of bit arrangements on tape.

MODULUS 4 (Bits 10 and 09 = 01)

Mod 4 is obtained by reducing 24 bits of a computer word to four (bioctal characters) frames

of data. In reading Mod 4, a word is sent to the computer for every four (bioctal character)

tape frames. These frames are assembled in the lower 24 bits (23-00) of the data word.

The upper bits, if any, of the data word contain zeros.

Recording Mod 4, the 24 bits (23 -00) of a computer word are recorded in four (bioctal char­

acter) 7 -bit frames, consisting of a 6 -bit character, plus parity. For octal recording the

number of tape frames is doubled.

MODULUS 5: (Bits 10 and 09 = 10)

Mod 5 is obtained by reducing 30 bits of a computer word to five (bioctal character) frames

of data. In reading Mod 5, a word is sent to the computer for every five (bioctal character)

tape frames. These frames are assembled in the lower 30 bits (29-00) of the data word. The

upper bits, if any, of the data word contain zeros.

Recording Mod 5, the 30 bits (29-00) of a computer word are recorded in five (bioctal char­

acter) 7-bit frames, consisting of a 6-bit character, plus parity. For octal recording the

number of tape frames is doubled.

MODULUS 6: (Bits 10 and 09 = 11)

Mod 6 is obtained by reducing 36 bits of a computer word to six (bioctal character) frames

of data. In reading Mod 6, a word is sent to the computer for every six (bioctal character)

tape frames. These frames are assembled in the 36 bits (35-00) of the data word.

Recording Mod 6, the 36 bits (35-00) of a computer word are recorded in six (bioctal char­

acter) 7 -bit frames, consisting of a 6-bit character, plus parity. For octal recording the

number of tape frames is doubled.

STATUS WORD

A Status interrupt is sent to the computer 222 microseconds following the completion of

13 of 25

FORWARD TAPE
DIRECTION

I

THIS EDGE }
OF TAPE
NEXT TO
TRANSPORT

OXIDE
SIDE

OXIDE
SIDE

OXIDE
SIDE

OXIDE
SIDE

•

~

6543210

MODULUS 3

6 5 4 3 210

MODULUS 4

P 05 04 03 02 01 00
P 11 10 09 08 07 06
P 17 16 15 14 13 12
P 23 22 21 20 19 18
P 29 28 27 26 25 24

6 5 4 3 2 1 0

MODULUS 5

P 05 04 03 02 01 00
P 11 10 09 08 07 06
P 17 16 15 14 13 12
P 23 22 21 20 19 18
P 29 28 27 26 25 24
P 35 34 33 32 31 30

6 5 4 3 2 1 0

MODULUS 6

Figure 6. Bioctal Tape Format

14of25

3RD FRAME
2ND FRAME
1ST FRAME

TAPE CHANNEL

4TH FRAME
3RD FRAME
2ND FRAME
1ST FRAME

TAPE CHANNEL

5TH FRAME
4TH FRAME
3RD FRAME
2ND FRAME
1ST FRAME

TAPE CHANNEL

6TH FRAME
5TH FRAME
4TH FRAME
3RD FRAME
2ND FRAME
1ST FRAME

TAPE CHANNEL

FORWARD TAPE P 02 01 00 02 01 00 6TH FRAME
DIRECTION P 05 04 03 05 04 03 5TH FRAME

I
OXIDE P 08 07 06 08 07 06 4TH FRAME
SIDE P 11 10 09 11 10 09 3RD FRAME

~ P 14 13 12 14 13 12 2ND FRAME
P 17 16 15 17 16 15 1ST FRAME

6 5 4 3 2 1 0 TAPE CHANNEL

MODULUS 3

P 02 01 00 02 01 00 8TH FRAME
P 05 04 03 05 04 03 7TH FRAME
P 08 07 06 08 07 06 6TH FRAME

OXIDE P 11 10 09 11 10 09 5TH FRAME
SIDE P 14 13 12 14 13 12 4TH FRAME

~ P 17 16 15 17 16 15 3RD FRAME

]
P 20 19 18 20 19 18 2ND FRAME

THIS EDGE P 23 22 21 23 22 21 1ST FRAME
OF TAPE
NEXT TO 6 5 4 3 2 1 0 TAPE CHANNEL
TRANSPORT

MODULUS 4

P 02 01 00 02 01 00 10TH FRAME
P 05 04 03 05 04 03 9TH FRAME
P 08 07 06 08 07 06 8TH FRAME
P 11 10 09 11 10 09 7TH FRAME
P 14 13 12 14 13 12 6TH FRAME
P 17 16 15 17 16 15 5TH FRAME

OXIDE P 20 19 18 20 19 18 4TH FRAME
SIDE P 23 22 21 23 22 21 3RD FRAME

~ P 26 25 24 26 25 24 2ND FRAME
P 29 28 27 29 28 27 1ST FRAME

4 3 2 1 0 TAPE CHANNEL

MODULUS 5

P 02 01 00 02 01 00 12TH FRAME
P 05 04 03 05 04 03 11TH FRAME
P 08 07 06 08 07 06 10TH FRAME
P 11 10 09 11 10 09 9TH FRAME
P 14 13 12 14 13 12 8TH FRAME
P 17 16 15 17 16 15 7TH FRAME
P 20 19 18 20 19 18 6TH FRAME

OXIDE P 23 22 21 23 22 21 5TH FRAME
SIDE P 26 25 24 26 25 24 4TH FRAME • P 29 28 27 29 28 27 3RD FRAME

P 32 31 30 32 31 30 2ND FRAME
P 35 34 33 35 34 33 1ST FRAME

6 5 4 3 2 1 0 TAPE CHANNEL
MODULUS 6

Figure 7. Octal Tape Format

15 of 25

every function except MASTER CLEAR and TRANSPORT ADDRESS SELECTION. A status

word is placed on the data lines of the input cable. The bit structure of the status word

enables the computer to determine whether or not the previous function was successfully

completed.

The computer program must recognize that after issuing an external function instruction to

the Magnetic Tape System, no subsequent external function command (except addressing and

Master Clear) will be recognized until receipt of the acknowledge to the Status interrupt,

signifying the end of the first instruction.

Figure 5 shows bit assignments in the status word. These conditions are described below.

IMPROPER CONDITION (Bits 29 and 14)

A one in bits 29 and 14 may imply that operator intervention is necessary to overcome the

difficulty. An improper condition will occur whenever:

• Reference tape transport is not in automatic condition

• No tape transport is selected when one is required

• A forward command is sent to a tape transport whose tape is positioned at end of

tape

• A reverse command is sent to a tape transport whose tape is pOSitioned at Load

Point (except a Rewind operation)

• A Write instruction is issued to a tape transport that has NO Write Enable

When the computer has been notified of an improper condition, the computer program may

then refrain from issuing further external function commands to the tape system to allow

visual inspection of the trouble, or it may issue another external function command. An in­

coming external function command to the tape system causes the Improper Condition indicator

to extinguish.

A tape transport not in automatic condition implies one of the following situations:

• Tape transport was manually removed from automatic

• Tape transport not in ready condition for one of the following reasons:

• Power off

16 of 25

• Tapebroken

• Lamp burnout

• Tape load was not accomplished when tape was mounted

OUTPUT TIMING ERROR (Bits 25 and 10)

A "one" in bits 25 and 10 indicates that the computer did not acknowledge the first Output

Data Request, or the computer acknowledged the Output Data Request too late (however, it did

acknowledge the Output Data Request for the data word to be written in its proper place). The

acknowledge time is related to format and density.

Also an output timing error can occur during Search operations if the Magnetic Tape System

does not receive the search key before the start of reading the record. This time require­

ment may be as short as two milliseconds.

INPUT TIMING ERROR (Bits 24 and 09)

A "one" in bits 24 and 09 indicates that Magnetic Tape Control information on the input cable

was not accepted by the computer before the subsequent word was to be placed on the input

cable. This condition indicates that the computer" lost" one or more words of the last record.

If an input timing error occurs, data transmission to the computer ceases for the remainder of

the record.

INCORRECT FRAME COUNT (Bits 23 and 08)

A II one II in bits 23 and 08 indicates either some frames were lost, or improper modulus

specified (Le., there were not enough frames in the record to complete an integral number

of computer words). This situation may result from one or more of the following:

• One or more characters were not properly read or recorded

• Bad spots on the tape caused characters to be lost

o Reading a record with the wrong format (for example, reading Mod 4 with a tape

record in Mod 5)

A longitudinal parity error usually occurs in conjunction with an incorrect frame count if

frames were lost.

LATERAL PARITY ERROR (Bits 22 and 07)

A II one II in bits 22 and 07 informs the computer that the lateral parity of one or more frames

read did not agree with that specified in the format.

17 of 25

LAST TAPE MOTION (Bits 20 and 05)

A "one" in bits 20 and 05 indicates that the last tape motion was backward. A" zero" indicates

that the last tape motion was forward.

LONGITUDINAL PARITY ERROR (Bits 21 and 06)

When recording, longitudinal parity is generated by Magnetic Tape Control for each channel

and recorded after the last frame of the record. When reading (Read, Back Space, Post-Write

Check) the longitudinal parity of a record is checked by Magnetic Tape Control, and if in

error, noted in the status word (bits 21 and 06).

TAPE MARK (Bits 19 and 04)

A "one" in bits 19 and 04 indicates that the Magnetic Tape Control has sensed a Tape Mark

during a Read, Write, (before a Search Comparison is made during a Search File instruction)

or Back Space function.

NO WRITE ENABLE (Bits 18 and 03)

A "one". in bits 18 and 03 informs the computer that the referenced tape transport has no

write enable when a Write operation is attempted or that the Write Enable Ring is not in­

serted in the tape reel.

END OF TAPE (Bits 1 7 and 02)

To prevent reading or writing off the end of the tape, an end of tape reflective marker is

placed a minimum of 14 feet from the physical end of the tape.

When the end of tape mark is sensed, a 1/2 second "time-out" begins. When this time period

is completed, no further forward movement of the tape will be possible. However, the tape

may be moved in the reverse direction past the reflective marker and then moved forward.

When the marker is again sensed, the "time-out" is initiated again, and the forward tape

motion will halt after 1/2 second.

LOW TAPE (Bits 16 and 01)

A "one" in bits 16 and 01 informs the computer that the tape is positioned less than 100 feet

from end of tape.

LOAD POINT (Bits 15 and 00)

Since the first several feet of tape undergo excessive wear and are required to load the

transport, no recording is done on this portion of the tape. Recording begins at Load Point

and this point is recognized by the Magnetic Tape System by means of a reflective marker

placed at least ten feet from the physical beginning of tape. The write, load point, delay

18 of 25

allows information to be written on the tape approximately 3/4 inch beyond the load point

marker with the tape moving in the forward direction.

TAPE MARKERS

The load point and end of tape markers are pressure -sensitive, adhesive -coated strips of

aluminum 1 by 3/16 inch. The markers are detected by reflective photo-sensing means.

Both markers are placed on the base (uncoated) side of the tape with the 1-inch dimension

parallel to the tape. The load point marker is placed 1/32 inch from track" ¢", or the front

edge of the tape. The end of tape marker is placed 1/32 inch from track" 6" or inside edge of

the tape.

LOGICAL SELECTION OF TAPE TRANSPORTS

Selector Switches to change the logical address of each tape transport are provided. Any

physical tape transport may be switched to any logical address. If logical address selections

are duplicated, the lowest order physical tape transport has priority; however, no two cabinets

may have the same logical address. This will be the responsibility of the operator.

1240A HIGH-SPEED PRINTER OFF-LINE COMPATIBILITY

The magnetic tape subsystem is capable of communicating directly with the high-speed printer

subsystem for OFF -LINE operation. The interface between the magnetic tape unit and printer

is shown in Figure 8.

30 DATA I LINES

HIGH OUTPUT DATA REQUEST
I

INPUT ACKNOWLEDGE
I

--.. MAGNETIC·
SPEED

OUTPUT ACKNOWLEDGE I INPUT DATA REQUEST TAPE
PRINTER I

EXTERNAL FUNCTION J INTERRUPT SYSTEM
SYSTEM

I

Figure 8. Magnetic Tape - High-Speed Printer Interface

The printer output is connected to the magnetic tape system's input (input and output as used

here are in reference to the computer).

19 of 25

The data to be printed OFF-LINE must be recorded in records on tape in the following format:

Record Length of 120 Fieldata characters.

The Magnetic Tape System will read each record of data from tape in the following format:

Modulus 5.

At the magnetic tape unit function register, the operator will manually select the character,

parity, and density.

Each record of 120 characters will form 24 30-bit data words which will be printed as one

line by the high-speed printer.

A tape mark will be recognized by the high-speed printer as a top of form command. This

will position the paper to the top of the next page.

A record of less than 24 words (preferably one computer word, five characters) will cause

the high-speed printer to stop the printing operation. This record will not be printed, if the

characters are space codes (05).

With the magnetic tape system switched to the Printer Mode, the desired tape transport

selected and the tape positioned at load point, the high-speed printer will initiate operation

when it is placed in the ON-LINE pOSition.

The normal sequence of events for transfer of data from the magnetic tape system to the

printer is as follows: (See Figure 9)

• The printer sets its Output Data Request (e)

• The Magnetic Tape System, in the idle state (a) recognizes this first Output Data

Request from the printer as an external function and starts the read operation

• The Magnetic Tape System places the information on the data lines and sets its

Input Data Request (c)

• The printer recognizes the Magnetic Tape System Input Data Request as an Output

Acknowledge (f)

• The printer samples the data lines and clears its Output Data Request

• The Magnetic Tape System recognizes the clearing of the Printer Output Data Request

as an Input Acknowledge (b)

20 of 25

Steps 3, 4, 5, and 6 are repeated for each word of the record.

The normal sequence for sending an external function command top of form from the magnetic

tape system to the printer is the same as reading a record except that when the magnetic

tape system detects the Tape Mark, it will set bit 4 in the status word, and when the interrupt

(d) is set, the printer will recognize this as an external function command top of form

(g) (Figure 9).

~ a.~
~
~

~ ____________________ ~r r~ __________________________ __
))

en
>c
en
~ b. ~
~
~
C,)
~
~ c.
Z

___________________ !"\~ ___ ~r ~(-----------------------------
J .J

0

~ d. ____________________________ ~r ~r--------------------~
J)

e. ____ -I \~--

f. ------------------- r
J

g . ____________________________ ~r ~r--------------------~~
.J .J

Figure 9. Sequence of Events in Tape -Printer Operation

PROGRAMING CONSIDERATIONS

GENERAL

The Magnetic Tape System is manually placed in an operational condition. The operator

functions include mounting tapes on transports, turning power on, and initially positioning

tapes. With the Magnetic Tape System operational, programed reference may begin. Gen­

erally, all programing of the tape system must be done with force and must conform to a

standard sequence of reference. (Figure 10 iliustrates this sequence.)

21 of 25

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

\/
ISSUE ADDRESS WORD
BY THE EXTERNAL
FUNCTION COMMAND

FORM INSTRUCTION
WORD, INCLUDE OPERATION
CODE,FORMAT,AND
DENSITY AS APPLICABLE

INITIA TE REQUIRED
OUTPUT AND/OR INPUT
BUFFERS

ISSUE INSTRUCTION
WORD BY THE EXTERNAL
FUNCTION COMMAND.
INDICA TE TAPE
SYSTEM BUSY

WHEN TAPE SYSTEM
INTERRUPT OCCURS,
EXECUTE INTERRUPT
SUBROUTINE, WHICH
TAKES THE STATUS
WORD OFF INPUT
CABLE. INDICATE
TAPE SYSTEM IS
NOT BUSY

v
Figure 10. Sequence of Programming References - Magnetic Tape System

22 of 25

Once the tape system receives and starts to execute the operations in an instruction word,

further external function commands, other than Master Clear, are ignored. The programer

must remember when an external function command maybe logically issued. After issuing an

external function command, other than Address Word and Master Clear, the computer may not

logically issue another function command until the computer acknowledges the receipt of an

interrupt from the tape system.

Step 1. of Figure 10 is required only on the initial reference of a tape transport or when a

reference to another transport is desired.

WRITE PROCEDURES

To write, the instruction word must include complete format selection (modulus, character,

and parity), and density. Use of the procedure outlined in Figure 10 will result in a record

of words being written on tape. Length of record is determined when the output buffer is

initiated.

After the Status interrupt is received, signifying end of a write operation, the program must

check the following four conditions to determine successful completion of the write operation:

• No improper condition in the status word

• No output timing error in the status word

o No lateral parity error in the status word

o Output buffer is terminated

If the status word indicates an output timing error, the computer did not acknowledge the first

output data request, or the computer acknowledged the output data request too late (however,

it did acknowledge the request) for the data word to be written in its proper place. The

acknowledge time is related to format and density.

It is possible for an output timing error to occur that will not be shown in the status word.

Such a condition results if the computer did not acknowledge the output data request (other

than the first output data request from the tape system). The tape system recognizes this

situation as end of record and, consequently, indicates no error. However, if words are left

unwritten in the output buffer, this constitutes an output timing error condition.

If a lateral parity error is indicated in the status word, the write operation was terminated

when the post write check detected an incorrect frame. It is the responsibility of the program

to decide and provide the recovery procedures.

23 of 25

READ PROCEDURES

To read, the instruction word must include complete format selection, Identification Code

(if read selective) and density. Use of the procedure outlined in Figure 10 will result in

a record being read from tape. The length of the input buffer must be long enough to cover

the record to be read.

An input timing or parity error will terminate the data input to the computer unless the read

operation is with the ignore error halt option. The Status interrupt will still be sent by the

Magnetic Tape System at the end of that record.

SEARCH PROCEDURES

To search, the instruction word must include complete format selection and density. The

identifier word will be received by the Magnetic Tape System via a one-word output buffer.

Tape motion is started upon the receipt of the instruction word and an output timing error

will occur if the Magnetic Tape System does not receive the identifier within the time from

start of tape motion and when the compare is made. This time requirement may be as short

as two milliseconds. One record will then have been passed. The search is terminated by an

output timing error and a parity error.

When searching backwards, the 30-bit identifier word sentby the computer must be reversed,

characterwise; its configuration is dependent upon format. Examples are given below:

Original Computer Bioctal Octal

Word 3456745321 3456745321
MOD 5 2153745634 1235476543
MOD 4 0053745634 0035476543
MOD 3 0000745634 0000476543
MOD 6 5374563400 3547654300

RECORD LENGTH

There are no limits on record length within physical tape capacity. When reading tapes of

unknown record length, the input buffers must be made sufficiently large to insure reading the

entire record. Another method is to initiate an input buffer with monitor and make provision

for the initiation of additional buffers to read the complete record.

END OF FILE

The normal end-of-file Inter-Record Gap is approximately 3/4-inch long followed by a Tape

24 of 25

Mark (001 111) and its associate check character. The end of file is always recorded with

even ,parity.

EDITING OF TAPE

By suitable programing, an Inter-Record Gap of any length may be written to precede any

record. Records may be rewritten for type updating, and they may be lengthened, provided

suitable Inter-Record Gap was used on a previous recording. A record may be inserted for

a previously used extended Inter-Record Gap.

BAD TAPE

If when writing a record, a tape "bad spot" is encountered, where recording is marginal or

impossible, the tape may be back spaced to the beginning of the record and rewritten with an

extended Inter-Record Gap. The long Inter-Record Gap will probably by sufficient to move

the bad spot past the recording head. Successive extended Inter-Record Gap's may be written

if the bad spot still appears.

25 of 25

UNIVAC HIGH-SPEED PRINTER (MODEL 1469)

BASIC INFORMATION

The high-speed printer subsystem (Figure 1) consists of an Anelex 4-1000 printer and

a UNIVAC printer control unit. The printer control unit provides the required timing and

control signals for the printer and provides a compatible interface for communication between

the computer and the subsystem. The subsystem is designed for on-line use with a computer or

for off-line use with the magnetic tape subsystem. Figure 2 is a block diagram of the

subsystem, when used on-line with a computer, showing the information flow between the

printer, printer control unit, and computer. Figure 3 is a block diagram of the sub -system,

when used off-line with the magnetic tape subsystem, showing the exchange of data and

information between the two subsystems.

PRINTER SPECIFICATIONS

The high-speed printer subsystem has the following characteristics:

• Two printing speeds

• Slow rate of 560 to 667 lines per minute

• Fast rate of 780 to 1000 lines per minute

• Paper slew rate of 25 inches per second

• Vertical line spacing of six per inch

• One hundred twenty characters per line (ten characters per inch)

• Up to 63 printable characters, each represented by a 6-bit binary code. There are

64 possible codes, 05 being used for the space code.

• Vertical control of paper position by means of an 8-track punch tape control loop

in conjunction with the Control Panel buttons and the External Function. There are

1 of 16

Figure 1. UNIVAC High-Speed Printer (Model 1469)

2 of 16

HIGH-

SPEED

PRINTER

UNIVAC

1469

HIGH-

SPEED

PRINTER

SYSTEM

PAPER OUT OUTPUT REQUEST
~ ..

PAPER BREAK OUTPUT ACKNOWLEDGE

THROAT OPEN .. OUTPUT DATA

SYSTEM READY ..

VERTICAL CONTROL .. PRINTER .. INPUT ACKNOWLEDGE

STROBE
CONTROL

INPUT DATA -
UNIT

PRINT WHEEL POSITION EXTERNAL FUNCTION .. -
INTERRUPT

... PAPER FEED

TRIGGER TO HAMMERS

Figure 2. Block Diagram of High-Speed Printer Subsystem,
Used On-Line With A Computer

I

30 DATA I LINES
I

I
OUTPUT DATA REQUEST I INPUT ACKNOWLEDGE

I
OUTPUT ACKNOWLEDGE I INPUT DATA REQUEST ...

I

I
.. EXTERNAL FUNCTION I INTERRUPT

I
I

Figure 3. Magnetic Tape - High-Speed Printer Interface

3 of 16

p

p

-

COMPUTER

UNIVAC

1240

MAGNETIC

TAPE

SYSTEM

one computer controlled vertical positioning and two manual vertical positionings.

Another vertical positioning is used to stop the paper when an out-of-paper condition

is detected

The high-speed printer prints 120-character lines; therefore, 24 computer words must be

buffered to the Printer Control Unit. These words contain five characters of six bits each.

When the Output Request goes up at the high speed printer, the computer begins the output

buffer operation.

The computer words are transferred to the printer one at a time and stored in the core memory

of the Printer Control Unit one character at a time. When the memory is full, the print

cycle begins. The order in which the characters are printed is shown in Figure 4.

WORD

CHARACTER
POSITION

?""'4

1ST
WORD

C"iI C': ~ It:I

2ND
WORD

co t- eo ;0: ~

{
3RD

WORD'

?""'4 C"iI M ~

~t ?""'4 ?""'4 ?""'4

22ND
WORD

Figure 4. Printing Order

23HD
WORD

24TH
WORD

Table I contains a list of the characters used on the printer and their associated codes.

PRINTER CONTROL UNIT

The Printer Control Unit controls the transfer of data from the computer to the printer. The

Printer Control Unit contains a 120-character core memory and has the following registers:

• B Register

A 30-bit register in which the data words from the computer are temporarily stored

until the five characters can be transferred through the Z register to memory

• Z Register

A 6 -bit transient register used as a memory buffer

• S Register

A 7 -bit counter used both to count the characters when loading and reading memory

and as the memory address register

4 of 16

TABLE 1. HIGH-SPEED PRINTER CHARACTER CODES

PRINTER OCTAL
PRINTING CHARACTER

PRINTER OCTAL
CODE EQUIV. CODE EQUIV. PRINTING CHARACTER

000000 00 I absolute value 100000 40) parenthesis, close

000001 01 t arrow, vertical 100001 41 - minus

000010 02 8 subscript eight 100010 42 + plus

000011 03 [bracket, open 100011 43 < less than

000100 04] bracket, close 100100 44 = equal

000101 05 Space - not printed 100101 45 > greater than

000110 06 A 100110 46 < less than or equal

000111 07 B 100111 47 { brace, open

001000 10 C 101000 50 * asterisk

001001 11 D 101001 51 (parenthesis, open

001010 12 E 101010 52 > greater than or equal

001011 13 F 101011 53 : colon

001100 14 G 101100 54 } brace, close

001101 15 H 101101 55 V "OR"

001110 16 I 101110 56 , comma

001111 17 J 101111 57 # not equal

010000 20 K 110000 60 0 zero

010001 21 L 110001 61 1

010010 22 M 110010 62 2

010011 23 N 110011 63 3

010100 24 0 110100 64 4

010101 25 P 110101 65 5

010110 26 Q 110110 66 6

010111 27 R 110111 67 7

011000 30 S 111000 70 8

011001 31 T 111001 71 9

011010 32 U 111010 72 1\ "AND"

011011 33 V 111011 73 ; semicolon

011100 34 W 111100 74 / virgule

011101 35 X 111101 75 period

011110 36 y 111110 76 --- arrow, horizontal

011111 37 Z 111111 77 x multiply

5 of 16

• C Register

A 6 -bit counter used to count character pulses coming from the print wheel. This

register always contains the code of the next character to come up for printing

• K Register

A 5-bit shift register used to gate the correct character from B to Z when loading

memory

The Printer Control Unit operation consists of the three following sequences:

TRANSFER SEQUENCE

During the transfer sequence, the Output Request is set, data are received from the computer,

and the data are stored in the Printer Control Unit memory. When the acknowledge is received

from the computer, the 30-bit data word is stored in the B register, and the Output Request

is dropped. The contents of the B register are transferred, one character at a time, to the

Z register and then to memory. The first 6-bit character taken out of the B register is that

in bits 24 through 29. The first character of the first word goes into address zero of memory,

the second character to address one, etc. After each character is transferred to memory, S

is advanced by one and K is decremented by one to prepare for transferring the next character

to memory. After the five characters of a word have been transferred to memory, the Output

Request is again set. This sequence of transferring characters to memory is continued until

either S has counted to 119 or the top of form command is received. When one of these con­

ditions occurs, the transfer sequence is terminated, and the print sequence begins.

PRINT SEQUENCE

When the transfer sequence has ended and a character pulse is received from the printer, a

search of memory begins to determine if a code is present that is identical with the one of

the next character appearing under the print hammers. The contents of address zero are

read out of memory and compared with C (which contains the code of the next character to

be printed). If the information compares, a "one" is set in bit zero of the Hammer register,

and 05 (space code) is written in memory at that address. Then address one is compared

with C, etc. The first bit position of the Hammer register corresponds to the leftmost printing

position on the paper, and when a "one" is set in the Hammer register, the character is printed

in that column. When the contents of a memory address do not compare with the character code

in C, a "zero" is set in the corresponding bit position of the Hammer register, and the char­

acter is written back in memory. When 120 bits have been set in the Hammer register and the

6 of 16

next character pulse occurs, the hammers are triggered and the loading sequence starts again

for the next character. This sequence is repeated until memory contains nothing but 05' s

(space codes). At this time the transfer sequence begins again, coincident with the paper

advance sequence.

PAPER ADVANCE SEQUENCE

As soon as the print sequence is complete, the paper advance sequence starts. If an external

function has disabled the line feed, the paper is not advanced. If the external function has

enabled the line feed, the paper is advanced. If an external function top of form command is

received and the line feed is enabled, the paper is advanced to the top of the next form. The

print sequence cannot start again until 10 milliseconds after the paper advance sequence has

ended.

The following signals are sent from the Printer Control Unit to the Printer:

• Data Lines

A positive transition of 6 volts· occurs on the data lines if the bit in the Hammer

register is set. These lines go up at each character pulse if II ones ll are set in the

respective bits of the Hammer register

• Paper Feed

A signal to the printer which starts or stops paper movement. This signal is set

to -6 volts to advance the paper. The paper continues to move until this line returns

to zero volts. The duration of this signal is determined by the desired number of

lines of paper advance. This line is set to -6 volts at the end of the line if the line

feed is enabled, or the manual LOAD PAPER or TOP OF FORM buttons are de­

pressed

The following signals will be made available from the Printer to the Printer Control Unit:

• System Ready

A contact closure is available when the printer is ready for use (i.e., power is on,

etc.). When the contact opens, an interrupt is sent to the computer

• Paper Out

A contact closure is available when the printer is out of paper. When the contact

7 of 16

closes, the Printer Control Unit waits until· the bottom of the form is detected and

then sends an interrupt to the computer

• Paper Break

A contact closure is available when the paper is not correctly positioned between the

feed tractors. When the contact closes, an interrupt is sent to the computer·

• Throat Cover Open

A contact closure is available when the throat cover is not correctly positioned on

the printer.· When the contact closes, an interrupt is sent to the computer

• Print Wheel Position

The print wheel position is defined by two output signals, one providing a marker

pulse once per print wheel revolution (Index pulse) and the other providing a marker

pulse once per character position of the print wheel (Character pulse). The Index

pulse is set to -6 volts for 12 microseconds, sometime during the interval between

the character pulses associated with the codes 77 and 00. The Character pulse is

set to -6 volts for 12 microseconds when each character on the print wheel is in the

proper position for printing. There is one Character pulse per character position

on the print wheel, or 64 Character pulses per revolution of the print wheel

• Paper Position

The paper position is defined by an output signal providing a marker pulse for each

line of paper movement (called a Strobe pulse). This signal is set to -6 volts for

12 microseconds each time the paper is advanced vertically by one line, and is always

at zero volts when the paper is stopped

COMPUTER CONTROL

The external function word serves three functions:

• To enable single line feed

• To disable single line feed

• To position paper to the top of the next form

Three bits of the external function word signify which of these operations is to be performed

8 of 16

(see Figure 5). When the printer is set to the Enable Line Feed condition, the paper auto­

matically is advanced by one line after each line of print.

29 5 4 3 2 1 0

Not Used

o 1 DISABLE LINE FEED
1 0 ENABLE LINE FEED

Not Used I
1 MOVE PAPER TO TOP OF FORM I

Figure 5. External Function Word

When the printer is set to the Disable Line Feed condition, the paper is not advanced. Master

Clear sets the printer to an Enable Line Feed condition. The Top of Form command positions

the paper so that the type line is at the top of the next form. If this command is sent when the

printer is in a Disable Line Feed condition, or is sent together with a Disable Line Feed

command (external function word equal to 21), the paper will not be moved.

The exact position of the top of the next form is determined by the punch tape control loop.

Three tape tracks are used on the control loop to control vertical positioning of the paper.

The first track will have a hole punched at a position relative to the top of the form. This is

used to stop paper when it is advanced by the top of form command. The second track has a

hole punched so that it will set the tape feed mechanism in a position for loading paper. This

is used in conjunction with the Load Paper button on the Control Panel (Figure 6). The

third track has a hole punched at a pOSition relative to the bottom of the form. This hole is

used to advance paper to the top of the form and to stop the paper when the paper supply is out.

When the printer goes from on-line to off-line or off-line to on-line one of two interrupts is

sent to the computer from the printer: a malfunction interrupt or a start interrupt. The mal­

function interrupt is sent from the printer to the computer when any of the following mal­

functions exist:

• Printer is out of paper

• Paper is torn or incorrectly positioned in the feed tracks

• Throat Cover is not in position

9 of 16

• There is a loss of AC power input

• A main circuit breaker is open

• A fuse is blown

A status word of zero is sent to the computer. The" out of paper" malfunction interrupt does

not terminate the print operation until the bottom of the current form is detected. The start

interrupt is sent to the computer when the printer is Master Cleared and set to operate ON­

LINE. A status word of one (bit zero set) is sent to the computer.

~~ - - ~ ~-

LOAD
TOP

LOAD OF TEST
RIBBON PAPER FORM PRINT

......... - 1-,-

~~ ~ - ~ --PRINTER PAPER
ON-LINE MASTER READY BREAK

CLEAR THROAT PAPER OFF-LINE
OPEN OUT - --

SLOW~FAST rnl----oN----f~..---_OFF-----rn
Figure 6. Control Panel

PROGRAMING IMPLICATIONS

GENERAL

Certain programing functions are of importance to the programer. These functions consist

of the following:

• Processing interrupts

• Character pOSitioning

• Assembly of buffers

• Magnetic tape operation

• Sending External Function to the printer

The programer must know how these functions are performed and what they accomplish

before programing for the printer.

10 of 16

PROCESSING INTERRUPTS

The program should distinguish between the malfunction and the start interrupts. The recep­

tion of the start interrupt indicates to the program that the printer is available for an output.

The start interrupt is used to initiate the printer program operation; it should be utilized

whenever possible. If it is not possible to utilize the start interrupt, it can be ignored; how­

ever,' the programer must be certain that the printer is operable before he sends an output.

This precaution is necessary because if the output is an External Function command it will not

be performed and will be lost if the printer is not operable. The first output to the printer is

normally an External Function Top of Form command, and if this is lost, the forthcoming data

may be printed in the wrong position on the print form.

The malfunction interrupt indicates to the program that the printer is not operable. Normally,

the malfunction condition will destroy some data, and the program will have to repeat some

or all of the previous output operations. The exception'to this is the malfunction interrupt

caused by the Paper Out condition. This condition will terminate printer operation when the

bottom of the last form is reached. Therefore, the program can continue its output when new

paper has been loaded, and the paper has been pOSitioned to the top of form position, without

a resultant loss of data. When a malfunction interrupt is received, the programer may want

to provide a means of making an ope rator decision regarding whether the program can continue,

or some or all of the data will have to be reprinted. Here again, the programer should

utilize the start interrupt, if poss ible, to restart the program. Before the printer is initially

put ON -LINE, the program should be ready to process either of the two types of interrupts

mentioned above, or a fault condition will result at the computer.

CHARACTER POSITIONING

Horizontal and vertical character positioning is accomplished in two ways: with an external

function command, and/or by programing. The external function command is used for

vertical positioning. The Top of Form command positions the top of form position on the paper

under the print hammers. The top of form position is determined by the tape loop. The enable

and disable line feed commands enable the program to print on a line more than once. When

the printer is Master Cleared, the line feed is enabled. The paper is fed after the line is

printed. The amount of time between initiation of the output buffer and execution of the line

feed depends on the type of data being printed. Therefore, if a line is to be printed more than

once, the disable line feed command should be sent after the line of data that is to be printed

over. The enable line feed command must be sent after the last line of data that is printed

11 of 16

over the previous data. The program controls character position with space codes. Vertical

line positioning is controlled by sending lines of space codes. Horizontal character positioning

is controlled by filling in the character positions that are not to be printed with space codes.

ASSEMBLY OF BUFFERS

The printer will not print a line of data until 120 printer codes (24 computer words) have been

received, or less than 120 printer codes are followed by a top of form command. Therefore,

if only the first 60 character positions of a line of print are to contain data, the other 60

positions must be filled in with space codes unless the line is followed by a top of form com­

mand.

MAGNETIC TAPE OPERATION

Data sent to the printer from the computer can also be assembled on magnetic tape and sent

to the printer OFF-LINE in the same way, with one exception: the use of the enable and

disable line feed external function commands. It is not possible to use these commands on

magnetic tape since the top of form command is the only external function available in the

magnetic tape operation. Therefore, if a program is to be compatible with both computer

output and magnetic tape output to the printer, provision must be made in the program to

handle an enable or disable line feed condition.

SENDING EXTERNAL FUNCTION TO THE PRINTER

An external function to the printer must be programed with force as follows:

EX-COM- CN - W(PRT) - FORCE

where CN is the printer channel number, and PRT = 00000 00002, the enable line

feed function word.

OPERATOR CONTROL

PRINTER OPERATIONS

The following controls are available on the printer:

- Vertical Position

Controls the vertical positioning of the paper with relation to the printed line. The

maximum adjustment is ±O. 2 5 inch

12 of 16

• Character Phasing

Adjusts the index and character pulse timing to compensate for print wheel speed.

The maximum adjustment is 15 degrees

• Paper Tension

Controls the paper tension by varying the distance between corresponding feed pins

on the upper and lower feed tractors. The maximum adjustment is 0.125 inch

• Penetration Control

Provides fine adjustment of the spacing between the print hammers and the print

wheel in order to vary the density of print and accommodate different paper thick­

nesses

CONTROL PANEL OPERATIONS

Various operations are initiated from the Control Panel by the following indicators and

switches:

• POWER ON Indicator Switch

Initiates the power sequencing cycle and indicates completion of the cycle

• POWER OFF Indicator Switch

Turns AC power off. The switch lamp is illuminated when AC power is available

at the output of the main circuit breaker and a power sequencing cycle has not been

completed

• OFF -LINE/ON -LINE Indicator Switch

Controls the logical connection of printer to computer. When the printer is Master

Cleared and ON -LINE is selected, an interrupt is sent to the computer

• SLOW/FAST Switch

A rocker type switch that changes the print wheel speed from 1000 to 667 rpm

• LOAD PAPER Switch

Positions the paper feed assembly so that paper can be more conveniently loaded.

This operation is only available when the printer is set to operate OFF-LINE

13 of 16

• LOAD RIBBON Switch

Respools the inked ribbon prior to its replacement. This operation is not available

while the printer is printing

• TEST PRINT Switch

Actuates a test cycle under local control that utilizes a pattern which prints all

characters in all column positions. When the Pattern Select switch on the control

chassis is in the normal position, the test cycle causes all 63 characters to appear

in all column positions. In any given line, one character will appear in all of the 120

character positions, and after 63 lines of print a line of each character has been

printed. When the Pattern Select switch is in the M pOSition, all M's are printed,

and when it is in the E position, all E's are printed. The paper automatically ad­

vances one line after each line of print. The operator depresses the TEST PRINT

switch to terminate the test operation. This operation is only available when the

printer is set to operate OFF -LINE

• TOP OF FORM Switch

Advances the paper so that the top of the next form is positioned at the type line.

This operation is only available when the printer is set to operate OFF -LINE

• MASTER CLEAR Switch

Clears the circuit logic, sets Enable Line Feed, sets the interrupt, and places the

printer OFF -LINE

• PAPER OUT Indicator

Indicates that the paper supply is exhausted. This situation is detected 22 inches

ahead of the type line when the throat cover is closed

• PAPER BREAK Indicator

Indicates absence of paper above the print station

• THROAT OPEN Indicator

Indicates that the printer throat cover is not in position. A switch is available for

overriding the "throat open" indication

14 of 16

• PRINTER READY Indicator

Indicates that the printer is ready for operation. The indicator goes out when any

of the following conditions exist:

• The printer is out of paper

• The paper is torn or incorrectly positioned in the feed tractors

• The throat cover is not in position

• There is no AC power input

• A main circuit breaker is open

• A fuse is blown

CONTROL CHASSIS OPERATIONS:

The Pattern Select switch selects one of three patterns that can be used in the test print

operation:

• Normal Position - print all characters in the order they appear on the print wheel

• M Position - print all M's

• 'E Position - print all E's

OFF-LINE COMPATIBILITY

The magnetic tape subsystem is capable of communicating directly with the high-speed

printer subsystem for OFF-LINE operation. The interface between the magnetic tape and

printer subsystem is shown in Figure 3.

The printer output is connected to the Magnetic Tape System's input (input and output as used

here are in reference to the computer).

The data to be printed OFF -LINE must be recorded in records on tape in the following format:

record length of 120 Fieldata characters (24 words).

The Magnetic Tape System will read each record of data from tape in the following format:

Modulus 5.

Each record of 120 characters will form 24 3D-bit data words which will be printed as one

line by the high-speed printer.

15 of 16

A tape mark will be recognized by the high-speed printer as a top of form command. This

will position the paper to the top of the next page.

A record of less than 24 words (preferably one computer word, five characters) will cause

the high-speed printer to stop the printing operation. This record will not be printed if the

record contains space codes.

With the Magnetic Tape System switched to the ~rinter Mode, the desired tape transport

selected, and the tape positioned at load point, the high-speed printer will initiate operation

when it is placed in the ON -LINE position.

The normal sequence of events for transfer of data from the Magnetic Tape System to the

printer is as follows:

1. The printer sets its Output Data Request

2. The Magnetic Tape System in the idle state, recognizes this first Output Data Request

from the printer as an external function and starts the read operation

3. The Magnetic Tape System places the information on the data lines and sets its

Input Data Request

4. The printer recognizes the Magnetic Tape System's Input Data Request as an Output

Acknowledge

5. The printer samples the data lines and clears its Output Data Request

6. The Magnetic Tape System recognizes the clearing of the printer Output Data Request

as an Input Acknowledge

Steps 3, 4, 5, and 6 are repeated for each word of the record.

The normal sequence for sending an external function command top of form from the Magnetic

Tape System to the printer is the same as reading a record except that when the Magnetic

Tape System detects the Tape Mark, it will set bit 4 in the Status word, and when the interrupt

is set, the printer will recognize this as an external function command top of form.

16 of 16

GLOSSARY

ABSOL UTE FORMAT: A form of assembled program where all addressing is expressed in

actual computer addresses

ACCESS: Used as a verb in computer terminology, meaning to obtain or procure; to read or

sense the information in a register or storage device

ACTION OPERATIONS: The operations which act upon or with defined data to produce object

language (L 4) instructions

ALLIED OPERAND: In mono -coding, the specially designated operand V 0' which modifies

and completes the definition of multi-purpose mono-operators; it names the register, r, or

the expression, e, which together with the operator identifies the specific machine function

code, If)

ALLOCATION: The process of assigning numeric values, usually representing absolute com­

puter addresses, to symbolic (relative) labels and tags; the assignment may be done 1) manu­

ally by the programer, 2) by the computer via allocation tapes, and 3) independently and

internally by the assembler (assembler-generated tags)

BIOCTAL CODE: An abbreviated means of paper tape storage where each tape frame repre­

sents two octal characters, thus reducing the size of tape considerably. Addressing in bioctal

is absolute

BOOT STRAP:

1. The process of manually entering a routine into the computer to perform some task,

such as loading the AS-1 Utility Package

2. A routine which is manually entered into the computer to perform some task

3. A routine wired semipermanently into computer to load tapes

CHANNEL: A means of transmission of electronic data or information, physically consisting

of one or more lines; used with external equipment

1 of 8

CHECK SUM: A safety check after a program has been debugged and is operational. It

ensures that a program has been loaded into memory. It generally consists of a cumulative

sum of the units (holes in paper tape) which the computer senses and compares with the

corresponding value obtained during the tape preparation. Separate counts on the upper and

lower halves of the words in memory are usually made. To indicate a memory or Photo­

electric Reader fault, "CHECK SUM ERROR" printed on the typewriter is all that is neces­

sary .. .This procedure is currently employed in most program-load operations

COMBINED OPERAND: (See OPERAND POSITION)

ASSEMBLER-GENERATED TAGS: A system of unique, lO-character tags, generated and al­

located internally by the assembler and used by it to build programs with symbolic addressing

without the aid of a programer. The general typewriter format of these tags is A IIIII nnnn,

where n is any AS-l code from 1 through Z and the four leftmost bars, I , occupy positions

which may become AS-l characters from A through Z

Certain poly-operations produce intermittent instructions, or groups of instructions, within

the object program; the assembler uses these assembler-generated tags to make possible the

referencing of, and interaction between these instructions

ASSEMBLER INPUT LANGUAGE: A set of symbolic notations, called operations, which

present meaningful program input to the assembling system. The input language is divided

into two categories of operations. These are:

1. Programing language

2. Assembler-control language

AS-l UTILITY PACKAGE: A service program used primarily to load data into and dump

data from the computer. It may also be used to punch out an area of core storage, or inspect

a storage address and alter this if desired

DEB UGGING AIDS: In the AS-l system, a series of special routines designed to aid the

programmer in locating errors of various types in his program while it is being executed.

These routines are of two types: 1) initializing routines which delimit areas or blocks of

information for later reference and manipulation; and 2) data testing routines which perform

such functions as giving contents of selected registers at strategiC locations in the program

or following the course of a program within defined limits

2 of 8

DECLARATIVE OPERATION: An operation which does not result in an object program in­

struction, but provides information for the assembler's use in constructing the object program

by stating certain facts about entities within the assembler in the same language as that of the

input. These operations 1) adapt the program to a specific memory configuration and input­

output capabilities of the computer, and 2) identify different segments of input to the com­

puter

EXTERNAL FUNCTION: In general, an operation or procedure dealing with the giving of

orders to external equipment by means of the function channels; also the specific operator,

EX-COM or EX-COM-MW designed to perform these commands within the assembler

HEADER: The initial operation item on paper or magnetic input tape placed there for the

purpose of identification of the contents of the tape, e.g., Program, Allocation, Correct-L1

HEADER-TYPE OPERATOR: The declaration-type word in the operator position of the

header on a tape which identifies the type of routine or program on the tape

IMAG E: An exact copy or duplication of the contents of a program or portion thereof in

memory, reproduced in another portion of core memory

INPUT PARAMETERS: The requirements, in the form of items of information or units of

data, which must be entered into the computer for use in conjunction with a subroutine, and

which describe, define, or limit the subroutine

LABEL: The name preceding the operator which uniquely identifies an operation; it consists

of up to ten alphanumeric characters, but must never start with 0, X, or a number, nor may it

consist of only A, Q, BO through B 7, or CO through C 17. The following operations require

labels:

1. Any operation referred to by a tag in another operation

2. Each ENTRY operation (a subroutine entry)

3. Allocation operations

4. The first action operation following a break in the program sequence

LAB/TAG: A symbolic name, either a label or a tag

LANGUAGE LEVELS (L
O

' .L
1

, L
2

, L
3

, L
4

): The successive forms of symbolic expression

through which an assembler proceeds in its translation of a program from tbe reference

3 of 8

language (the language in which the programer composes the program) to the object lan­

guage (the symbolic form in which the machine can accept the program). The AS-l Assembler

system involves five language levels, termed La' L1, L2, L3, and L4

The language of the programer consisting of English words, expressions using

the English alphabet, and numeric and algebraic terms, in which a problem is

defined

The first of the intermediate language levels. La is converted into a standardized

AS-l code and the words of each statement have been identified and assigned to

specific locations in an item according to their role in the operation. A printout

of this level would appear virtually the same as La because the AS-l code must

necessarily be reconverted to the La format

L2 - The second intermediate AS-l language level. The Ll (or La) format has been

translated into machine code with the exception of the address structure which

appears in symbolics (tags and labels)

L3 - The final machine code stored on tables within the assembler. Essentially it is

the same as L2, with the symbolic addressing converted to absolute machine

addresses

The object program after it has been produced as output in a form readable to

the computer as input, e.g., punched paper tape, or buffered into core memory

Ll CORRECTOR: A routine with which corrections can be made to an input program while

at language level Ll of the AS-l Assembler. The correction items are entered into the com­

puter by a separate correction tape. Positioning of the corrections is accomplished by means

of Ll identifiers. Three kinds of operation corrections can be made: insertions, deletions

and replacements

L 1 IDENTIFIER: The successive numbering of the operations by the assembler, beginning

with a as the header operation. This numerical value precedes each operation, and is used

by the Ll Corrector for the selection of a statement

MNEMONIC OPERATIONS: The English-type statements used by the programer in the

preparation of a program or routine; the La language of the AS-l Assembler

4 of 8

MONO-OPERATIONS: The class of programmer-written mnemonic statements, each of

which produces one machine instruction when translated by the AS-l Assembler. The operators

of these operations, together with their allied operands, correspond, with some exceptions,

to the 62 machine function codes. (See POLY-OPERATIONS)

MONO-CODE: The operator portion of a mono-operation; it identifies the type of function

the operation performs, e.g., JP , ENT , STR

NORMAL j-OP ERANDS: The group of j -deSignator operands, including SKIP, QPOS, QNEG,

AZERO, ANOT, APOS ,and ANEG, used with the majority of mnemonic operations. (See

SPECiAL j-OPERANDS)

NOTES: The portion of an operation which is used for optional notations for the programmer's

information only. Notes are nonfunctioning, that is, they do not affect the functions of the

operation

OBJECT PROGRAM: The ready-to-run program, on paper tape, consisting of assembled

machine code instructions produced as output by the assembler

OFF-LINE: Of or pertaining to external eqUipment not connected to the computer by direct

circuitry; . operations or functions performed by such equipment

ON-LINE: Of or pertaining to eqUipment external to the computer but connected to it by

direct circuitry; operations or functions performed by such eqUipment

OPERAND: A single or multi-word expression which modifies or explicitly defines the

operator of a statement by stating items of information or defining parameters. (See OPER­

AND POSITION)

OPERAND-CODE: Th7 first symbolic term, a, within an operand position, consisting of up

to ten characters and adding some basic information to the operator or to the terms following

it. It specifies a k-designator, aname, a location, or an area; it may appear alone, with other

items, or be completely absent

OPERAND POSITION: The term used to describe a class of operands (one or more) com­

bined to serve a like function and included under the symbol, - Vn-

OPERATIONS: The basic units of assembler input consisting of labels, statements and notes,

of which labels and notes are optional. The three categories are:

5 of 8

1) Assembler language operations

2) Assembler-control operations

3) Program corrections

OPERATION ITEM: A unit of program storage in the AS -1 Assembler. An operation item

must include an operation statement (operator and operands) and mayor may not include a

label and/or notes. It may also be defined as one complete AS-1 program operation in L 1,

L 2, or L3 storage

OPERATION STATEMENT: (See STATEMENT)

OPERATOR: The initial word of a statement; it specifies the basic operational character­

istics of the statement

OUTPUT CONVERSION: The process of converting (translating) internal assembler- stored

data into some language which is compatible with external output equipment and is also mean­

ingful to the programer

POINT SEPARATOR: A separator symbol corresponding to a multiply sign, used in coding

to separate the words of a statement

POLY-CODE: The operator of a poly-operation. Operators of this type denote the production

of one or more instructions in the object program, or make declarations to the assembler

POLY-OPERATIONS: A category of mnemonic operations with which one or more machine

code instructions can be produced in an object program. Poly -operations are considered as

"one-to-many" operations as opposed to "one-to-one" for mono-codes. In other words, a

poly-operation generally has the ability of producing a series of machine code instructions in

the output, or object program, while mono-instructions can produce only one

RELATIVE FORMAT:

1. An object program format, compatible with AS-1 Utility Package loading, in which

the initial address is relatively allocated to zero with all other addresses allocated

successively unless specifically allocated to an absolute address. Upon loading a

program of this format, the Utility Package is to be instructed to increment all rela­

tively allocated addresses by an amount which equals the initial address desired.

6 of 8

Thus, a relative format program may be loaded at any portion of core storage

(1000 or above)

2. A program written in modified machine code with symbolic addressing

ROUTINE: A generalized term which defines a stretch of coding that performs a particular

task. This may encompass either the routine or subroutines of a program; in some cases it

may constitute the whole program

SEPARATORS: A set of symbols used in coding to represent input control for operations;

e.g., a .. symbol always precedes an operation statement and follows the statement when

notes are included

SIGNIFICANT LABELS: Those labels which are accompanied by a mnemonic operation or

numeric instruction that infers the beginning of a subroutine or program, Le., 61000 00000,

60100 00000, or 00000 00000. In addition it includes all labels of operations with the operators

U-TAG or EQUALS

SIMPLE STATEMENT: A complete statement which does not require the use of connectors

SOURCE PROGRAM: The program of mnemonic instructions written by the programer and

used as input to the assembler; also known as the LO program or Input Language

SPECIAL j-OPERANDS: Those mnemonic j-operands which pertain to operations which

require the use of unique j-designators. Most operations which employ the j-designator use

j -operands of a similar nature called normal j-operands. Operations which require special

j-operands are so identified in the discussions on the individual mono-operations, (see also

MONO-OPERATIONS, SPECIAL j-OPERANDS)

STATEMENT: The portion of an operation which defines its function and is composed of an

operator and all operands

SUBROUTINE: A specific kind of routine in which the entrance and exit are at the same

point. A subroutine usually begins with the operation JP • 0 which also serves as its exit,

since it is called upon by a Return Jump operation (see RJP operation, MONO-OPERATIONS).

Subroutines may be considered as an extension of or annex to the main program routine

SYMBOLIC ADDRESS: A symbol, usually alphanumeric, representing a computer address

7 of 8

SYMBOLIC ADDRESSING: The process of using relative symbolic addresses in the form of

tags and labels, to represent computer addresses while coding or in assembler-generated

tags. These are later assigned to an absolute value by the allocation routine

TAG:

1. The symbolic expression used in relative programing in place of an absolute com­

puter address. With the exception of the poly-code U-TAG , these tags appear in the

y-operand position and usually refer to a label or other relative symbolic address

2. An alphanumeric or alphabetic symbol which refers to, or can be allocated to, some

absolute address

8 of 8

ABSOLUTE CODING

AND DIRECT CONSTANT ENTRIES

ABSOLUTE CODING

The AS-l Assembling System permits coding with absolute machine instructions. The pro­

gramer enters f j k band y designators following the" symbol on the coding form.

Addressing of such instructions must be symbolic and conform to the requirements of AS-1

labels and tags. Label placement is in the conventional LABEL coding position. (The first

instruction must be labeled.) The y portion of the instruction is either a symbolic tag, a

tag ± increment, or a constant; when y is a constant of less than five digits, only the digits

used are given following a point separator (e.g., the constant 00007 is coded as - 7).

Absolute coding permits the inclusion of notes with instructions; these follow a second straight

arrow (..) symbol placed on the coding form.

Allocation of the lab/tags in absolute coding conforms to the rules of AS-l allocation (see

ALLOCATION) .

DIRECT CONSTANT ENTRIES

The programer is permitted to make direct constant entries while coding. AS-l permits

either octal or decimal constants, decimal digits being following by a D. The maximum deci­

mal number permitted is 536870911D.

Normalizing of direct constant entries is to the right with non-used upper digit positions being

filled with zeros. By use of a point separator, normaliZing is permitted in both the upper

and lower halves of a storage location. For example, a coded entry of" 43 -n ~
produces 00043 00011 in storage.

1 of 1

INPUT/OUT CODING

Input/ output instructions may appear randomly in the program. In order to clarify the usage

of input/output instructions, a description of communicating with the computer is given in

four examples which follow.

Examples 1 and 3 describe the use of a pseudo programing technique to accomplish input and

output. Examples 2 and 4 are written with absolute channel assignments. An important

advantage of the use of the symbolic method of programing input or output is that it is not

channel sensitive; that is, if the channel assignment is changed for any peripheral device,

only the MEANS cards for the device affected need be changed in order to reflect the new

channel assignment throughout the program. In contrast, a program written with absolute

channel assignments is channel sensitive; that is, whenever the channel assignment is changed

for any peripheral device, each program location which references the affected device must

be changed.

In Examples 1 and 3, the MEANS operator is used to define the channel sensitive labels. No

coding is generated for MEANS statements.

The normal method of programing input/output is to give the transfer instruction before

enabling the particular device; this is to ensure transfer readiness regardless of timing.

Disregarding interrupts from other peripheral devices, the transfer instruction could be

written before the enabling instruction. Some devices, however, do dictate a specific method

to be used to sequence the input/output instructions.

The transfer buffer limits are defined at the address given in the V 1 operand of the transfer

instruction. At this address, the buffer limits may be defined 1) absolutely, or 2) by use of

a U-TAG operator if symbolic coding is used. The upper 15 bits define the terminal address

and the lower 15 bits the initial address.

The EX-COM operator is used to enable or disable the peripheral device. The function code

which tells the particular peripheral device what to do, is located at the address defined by

the V 1 operand.

Unless the transfer is accomplished with internal interrupt, MONITOR, a wait instruction

sometimes should be programed to prevent the execution of other instructions until the transfer

is complete. This allows the programer to control the transfer.

1 of 4

It should be noted that the label defined by the operand in the enabling or disabling, or the

transfer instruction may appear either before or after the instruction in which it is used.

Similarly, the transfer buffer may be located anywhere in memory and either a decimal or

octal number may be used with the U -TAG or RESERVE operators.

Example 1:

01000 73030 01235

01001 13030 01234

01002 62000 01002

01171 13030 01233

01233 00000 00010

01234 00000 00150

01235 02024 02000

02000

02024

EXAMIN

TAPE

TAPEIN

WAIT

PROGRAM. CBROWN • MARCH66

MEANS. CO

MEANS. COACTIVEIN

IN. TAPE. W(READ) .. INPUT TRANSFER

EX-COM. TAPE. W(SWITCH) • FORCE ..
ENABLE READER

JP. WAIT. TAPEIN" WAIT FOR
TRANSFER COMPLETION

EX-COM • TAPE • W(SWITCHOF). FORCE ..
DISABLE READER

SWITCHOF 0 • 10 .. DISABLE READER CODE

SWITCH o. 150 .. ENABLE READER CODE

READ U -TAG. BUFLO+20D. BUFLO .. INPUT
BUFFER LIMITS

BUFLO RESERVE. 21D .. INPUT BUFFER

2 of 4

Example 2:

01000 13030 01234

01001 73030 01235

01002 62000 01002

01171 13030 01233

01233 00000 00010

01234 00000 00150

01235 02024 02000

Example 3:

10050 13370 13210

10051 74370 12311

10052 62000 10052

13101 13370 13207

WAIT

SWITCHOF

SWITCH

READ

EXAMOUT

PERFORM

PUNCHOUT

INSTEP

EX -COM. CO • W(SWITCH) • FORCE ..
ENABLE READER

IN • CO • W(READ) .. INPUT TRANSFER

JP. WAIT. COACTIVEIN" WAIT FOR
TRANSFER COMPLETION

EX -COM. CO • W(SWITCHOF) • FORCE ..
DISABLE READER

o • 10 .. DISABLE READER CODE

o .150 • ENABLE READER CODE

02024 - 02000 .. INPUT BUFFER LIMITS

PROGRAM. JOELGOODGUYMARCH66

MEANS- C7

MEANS. C7ACTIVEOUT

EX -COM. PERFORM. W(SWTHP) • FORCE ..
ENABLE PUNCH

OUT - PERFORM - W (BUFOUT) .. OUTPUT
TRANSFER

Jp. INSTEP. PUNCHOUT .. WAIT FOR
TRANSFER COMPLETION

EX-COM. PERFORM - W(SWITHO) - FORCE ..
DISABLE PUNCH

3 of 4

Example 3 Continued

13207 00000 00001

13210 00000 00005

13211 15023 15000

15000

15023

Example 4:

10050 74370 13211

10051 13370 13210

10052 62000 10052

13101 13370 13207

13207 00000 00001

13210 00000 00005

13211 15023 15000

SWITHO

SWTHP

BUFOUT

PUNBUF

INSTEP

SWTHO

SWTHP

BUFOUT

o • 1 .. DISABLE PUNCH CODE

0.5 .. ENABLE PUNCH CODE

U -TAG. PUNBUF+19D. PUNBUF ..
TRANSFER BUFFER LIMITS

RESERVE. 20 D .. OUTPUT BUFFER

OUT. C7 • W(BUFOUT) .. OUTPUT TRANSFER

EX -COM. C7 • W(SWTHP) • FORCE ..
ENABLE PUNCH

JP. INSTEP. C7ACTIVEOUT .. WAIT FOR
TRANSFER COMPLETION

EX-COM. C7 • W(SWTHO) • FORCE ..
DISABLE READER

o • 1 .. DISABLE PUNCH CODE

o • 5 .. ENABLE PUNCH CODE

15023.15000 .. TRANSFER BUFFER LIMITS

4 of 4

POLY-OPERATIONS

SYMBOL LEGEND

SYMBOL MEANING

a Read-Class Operand

f3 Store-Class Operand

.....
Replace-Class Operand --

~ Tag, Number, or Tag ± Number

L Same as ~, except a B register
can also be specified

t Operand-Code Only

(T Operand-Code or Number

8 Number Only

1 of 4

r.--:>
o
t-t)

~

OPERATOR
Sep W Sep Vo

• CLEAR • number
of words

• ENTRY • key set
or condition

•
• EXIT • jump

or condition

•
• INCREMENT • B register .. MOVE • number

of words .. PUT • numeric
value .. TYPEC* • location
or Flex
function

• TYPET • message

-- ---

* Vo may be a list of similar operands

Poly-Operations

OPERAND SECTION DESCRIPTION
Sep VI Sep V2

Sep V3 Sep

a L
• base addr • Clears Vo words starting

of area at address ~

~. Establishes the entry of a
subroutine. Stop condition is
effective on exit

t. Establishes an exit via the
preceding ENTRY if Vo is
satisfied

• increment a .. The B register, specified by
Vo is modified by V I

a • base ad- ~ • base ad- ~ .. Moves Vo words from address
dress of dress of VI to address V2
area area

a {3 .. Stores the word V 0 at address address
VI a. Types content of location or
function expressed by V 0 .. Types message that follows
the operator

c,.,

o
1-1>

~

til
~
o

+-I
"0
"0
<

OPERATOR
Sep W Sep Vo Sep .. CORE-IMAGE • name of ~ •

area
-.. DUMP-AREA • area ~ .

name(s) or ~ .. DUMP-REG • key set
or .. condition .. TEST-IMAGE* • area ~ •

name(s) or DEF-AREA • name ~ •
of area

* Vo may be a list of similar operands

Debugging Operations

OPERAND SECTION DESCRIPTION
VI Sep V

2
Sep V3 Sep

base addr. ~ • key set ~. Images the area Vo in core at or of image .. condition address V I if V 2 is satisfied

key set ~ .. Dumps all non-zero numbers
condition in the areas listed, if V I is

satisfied J
Dumps A, Q, BI--- B7 if V 0
condition is satisfied

!

key set ~ .. Compares the areas listed
condition with their image and dumps

any differences if VI is
satisfied

base addr. ~ • number ~ .. States that the area named V 0
of area of words starts at address V I and con-

tains V 2 words

~

o
t-+,

~

Sep

•
•
..

OPERATOR
W Sep

ALLOCATION •

CORRECT-LI •

EQUALS •

MEANS •

PROGRAM •

General Declarative Operations

OPERAND SECTION DESCRIPTION

Vo Sep VI Sep V2
Sep V3 Sep

program- • date • Header operation, specifies
mers name an allocation tape

program- • date (new) • Header operation, specifies
mers name a correction tape

addre'ss e .. Must have LABEL, assigns
the LABEL a known value V 0

mnemonic ~ • Must have a LABEL, assigns
code a machine oriented value to

the LABEL

program- • date • Header operation, specifies
mers name program input

,

......
o
......

NAME

Letters

Numbers

Plus

Minus

Point
Separator

Period

Comma

Left Paren

Right Paren

Straight Arrow
(first)

Straight Arrow
(second)

Curved Arrow

Zeta

CODING
SYMBOL

A - Z

0-9

+

-

•

.
,

(

)
~

I

CODE EQUIVALENCE CHART

PUNCHED ~ARD TO TAPE EDIT CARDS CS-l
EDIT CS-l

FLEXOWRITER OUTPUT
CARD CONVERSION H S PR CODE H S - PR

A - Z A - Z A - Z A - Z
A - Z A - Z (except 0)

0-9 0-9 0-9 0-9 0-9 0-9

+ + & & + +

- - - - - -

* * * * . .

.
, , , , , ,

((% % ((

)) : :))

(Tab)
(Column (Word (Spaces)

(Word (Spaces)
Position) Position) Position)

(Tab) - - - - ({j)((j)((V (Spaces) a a a (Spaces)

(Carriage (Release (Block (Next Line) (Not Used) (Next Line)
Return) Card) Space)

I $ $ $ ~ $

CONSTANT POOL

AS-1 establishes a constant pool for each assembled program requiring constants ofa special

nature. This pool is a list of constants which are specified in the Read-class operand posi­

tion and are more than five octal digits. Such constants are stored only once, even though

many operations refer to the same constants. This pool is positioned at the end of the program.

Example:

Section of Input Problem

CRWD .. ENT • A • 5760435
BLK .. ADD· Q • 24356105

.. PUT • 5760435 • W(CAT) ..
Corresponding Section in L2 (Mnemonic Form)

CRWD .. ENT • A • Alllllllza* ..

1 of 2

..
BLK "ADD. Q • AIIII111Z9 ..

.. ----------------

.. ENT • Q • Allllll1Z8

.. STR • Q • W(CAT)

At the End of the Program

A IIIII 11Z8 0005760435

A IIIII 11Z9 0024356105

2 of 2

FLEXOWRITER CODE CHART

The upper case, UC, or lower case, LC, character is typed according to the position of
the type bars.

TYPE LETTER
OCTAL TYPE LETTER

OCTAL
PERFORM TYPE-

UC LC UC LC WRITER OPERATION OCTAL

A a 30 I 1 52 Space 04
B b 23 2 2 74 Shift up 47
C c 16 3 3 70 Shift down 57
D d 22 4 4 64 Back space 61
E e 20 5 5 62 Car. return 45
F f 26 6 6 66 Tabulator 51
G g 13 7 7 72 Color shift 02
H h 05 8 8 60 Code delete 77*
I i 14 9 9 33 Stop 43*
J j 32 0 0 37
K k 36
L 1 11
M m 07
N n 06 TYPE SYMBOL OCTAL
0 0 03 UC LC
P P 15
Q q 35 - (Superscript - (Hyphen or 56

R r 12 Minus) Minus)

S s 24
T t 01 (Multiply) = (Equals) 44

U u 34
V v 17 / (Virgule) + (PIus) 54
w w 31
X x 27 ((Open Parens) , (Comma) 46
Y Y 25
Z z 21) (Close Parens) (Period) 42

(Underline) I (Absolute) 50 -

NOTE: Codes not used are: 00, 10, 40, 41, 53, 55, 63, 65, 67, 71, 73, 75, 76.
*Codes 43 and 77 are considered illegal codes in operations with the computer

1 of 1

AS-l CHARACTER CODE (6Bits)

0 1 J 2 I 3 I 4 I 5 I 6 7

DATA CONTROL CHARACTERS

0 i l:::,. a f3 y 8 E ~

1 0 1 2 3 4 5 6 7

2 8 9 A B C D E F

3 G H I J K L M N

4
NOT

P Q R S T U V
USED

5 W X Y Z () NOT NOT
USED USED

6 * /
NOT NOT NOT NOT - + USED USED USED USED

7
NOT NOT NOT NOT NOT NOT

USED USED USED USED . ,
USED USED

i = ignore code

l:::,. = space

The data control characters act as sentinels.

1 of 1

TELETYPE CODE CHART

TELETYPE CODE (TEXT TO CODE CONVERSION)

LTRS FIGS
OCTAL
CODE

A - 30
B ? 23
C 16
D $ 22
E 3 20
F ! 26
G & 13
H 11:* 05
I 8 14
J

, 32
K (36
L) 11
M 07
N , 06
0 9 03
p 0 15
Q 1 35
R 4 12
S Bell 24
T 5 01
U 7 34
V ; 17
W 2 31
X / 27
y 6 25
Z " 21

Carriage Ret. 02
Line Feed 10
Space 04
LTRS 37
FIGS 33
Blank 00

* Appears printed on the tape, but not on the printed page

1 of 2

TELETYPE CODE (CODE TO TEXT CO'VERSIO')

OCTAL
CODE LTRS FIGS FUNCTION

00 Blank
01 T 5
02 Carriage Return
03 0 9
04 Space
05 H "It *
06 N ,
07 M
10 Line Feed
11 L)
12 R 4
13 G &
14 I 8
15 P 0
16 C :
17 V ;
20 E 3
21 Z "
22 D $
23 B ?
24 S Bell
25 y 6
26 F • · 27 X /
30 A -
31 W 2
32 J •
33 FIGS
34 U 7
35 Q 1
36 K (
37 LTRS

*Appears printed on the tape, but not on the printed page

2 of 2

1004 EXCESS-THREE CODE (6 BITS)

0 1 2 3 4 5 6 7

0
6-] - 0 1 2 3 4 (Space) (Minus)

1 5 6 7 8 9

'"
, [

2 & : ? A B C D

3 E F G H I # < =

4 t * $! J K L M

5 N 0 P Q R (((j) 6-

6 f; % ,
+ / S T U

~Comma

7 V W X y Z 0 >)

Note:

CS-l Characters High-Speed
Represented

CS-l
Printer

Differently by
Character Character

the High-Speed
Printer

Point Separator .
*

Ve rtical Bar I $

1 of 1

FIELD DATA CODE CHART

0 1 2 3 4 5 6 7

Master Upper Lower Line Car-
0 Space, Case Case Feed riage Space A B

Ret.

1 C D E F G H I J

2 K L M N O. p Q R

3 S T U V W X Y Z

4) - + < = > $ -

5 * (" : ? I ® ,
Stop

6 0 1 2 3 4 5 6 7

" 0 t 7 8 9 ; / spec idle

1 of 1

POWERS OF TWO TABLE

2n n 2-n

1 0 1.0
2 1 0.5
4 2 0.25
8 3 0.125

16 4 0.062 5
32 5 0.031 25
64 6 0.015 625

128 7 0.007 812 5

256 8 0.003 906 25
512 9 0.001 953 125

1 024 10 0.000 976 562 5
2 048 11 0.000 488 281 25

4 096 12 0.000 244 140 625
8 192 13 0.000 122 070 312 5

16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125

65 536 16 0.000 015 258 789 062 5
131 072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5

1 048 576 20 0.000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 101 562 5
8 388 608 23 0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0.000 000 014 901 161 193 847 656 25

134 217 728 27 0.000 000 007 450 580 596 923 828 125

286 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25

68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125

1 of 1

•

DECIMAL TO OCTAL CONVERSION TABLE

Decimal: o through 399
Octal: o through 617

UNITS

0 1 2 3 4 5 6 7 8 9

00 0 0 1 2 3 4 5 6 7 10 11
1 12 13 14 15 16 17 20 21 22 23
2 24 25 26 27 30 31 32 33 34 35
3 36 37 40 41 42 43 44 45 46 47

TENS
4 50 51 52 53 54 55 56 57 60 61
5 62 63 64 65 66 67 70 71 72 73
6 74 75 76 77 100 101 102 103 104 105
7 106 107 110 111 112 113 114 115 116 117
8 120 121 122 123 124 125 126 127 130 131
9 132 133 134 135 136 137 140 141 142 143

01 0 144 145 146 147 150 151 152 153 154 155
1 156 157 160 161 162 163 164 165 166 167
2 170 171 172 173 174 175 176 177 200 201
3 202 203 204 205 206 207 210 211 212 213
4 214 215 216' 217 220 221 222 223 224 225

TENS 5 226 227 230 231 232 233 234 235 236 237
6 240 241 242 243 244 245 246 247 250 251
7 252 253 254 255 256 257 260 261 262 263
8 264 265 266 267 270 271 272 273 274 275
9 276 277 300 301 302 303 304 305 306 307

02 0 310 311 312 313 314 315 316 317 320 321
1 322 323 324 325 326 327 330 331 332 333
2 334 335 336 337 340 341 342 343 344 345
3 346 347 350 351 352 353 354 355 356 357

TENS
4 360 361 362 363 364 365 366 367 370 371
5 372 373 374 375 376 377 400 401 402 403
6 404 405 406 407 410 411 412 413 414 415
7 416 417 420 421 422 423 424 425 426 427
8 430 431 432 433 434 435 436 437 440 441
9 442 443 444 445 446 447 450 451 452 453

03 0 454 455 456 457 460 461 462 463 464 465
1 466 467 470 471 472 473 474 475 476 477
2 500 501 502 503 504 505 506 507 510 511
3 512 513 514 515 516 517 520 521 522 523
4 524 525 526 527 530 531 532 533 534 535

TENS 5 536 537 540 ' 541 542 543 544 545 546 547
6 550 551 552 553 554 555 556 557 560 561
7 562 563 564 565 566 567 570 571 572 573
8 574 575 576 577 600 601 602 603 604 605
9 606 607 610 611 612 613 614 615 616 617

1 of 11

DECIMAL-TO-OCTAL CONVERSION TABLE

Decimal: 400 through 799
Octal: 620 through 1437

UNITS

0 1 2 3 4 5 6 7 8 9

04 0 620 621 622 623 624 625 626 627 630 631
1 632 633 634 635 636 637 640 641 642 643
2 644 645 646 647 650 651 652 653 654 655
3 656 657 660 661 662 663 664 665 666 667

TENS
4 670 671 672 673 674 675 676 677 700 701
5 702 703 704 705 706 707 710 711 712 713
6 714 715 716 717 720 721 722 723 724 725
7 726 727 730 731 732 733 734 735 736 737
8 740 741 742 743 744 ' 745 746 747 750 751
9 752 753 754 755 756 757 760 761 762 763

05 0 '764 765 766 767 770 771 772 773 774 775
1 776 777 1000 1001 1002 1003 1004 1005 1006 1007
2 1010 1011 1012 1013 1014 1015 1016 1017 1020 1021
3 1022 1023 1024 1025 1026 1027 1030 1031 1032 1033
4 1034 1035 1036 1037 1040 1041 1042 1043 1044 1045

TENS 5 1046 1047 1050 1051 1052 1053 1054 1055 1056 1057
6 1060 1061 1062 1063 1064 1065 1066 1067 1070 1071
7 1072 1073 1074 1075 1076 1077 1100 1101 1102 1103
8 1104 1105 1106 1107 1110 1111 1112 1113 1114 1115
9 1116 1117 1120 1121 1122 1123 1124 1125 1126 1127

06 0 1130 1131 1132 1133 1134 1135 1136 1137 1140 1141
1 1142 1143 1144 1145 1146 1147 1150 1151 1152 1153
2 1154 1155 1156 1157 1160 1161 1162 1163 1164 1165
3 1166 1167 1170 1171 1172 1173 1174 1175 1176 1177

TENS 4 1200 1201 1202 1203 1204 1205 1206 1207 1210 1211
5 1212 1213 1214 1215 1216 1217 1220 1221 1222 1223
6 1224 1225 1226 1227 1230 1231 1232 1233 1234 1235
7 1236 1237 1240 1241 1242 1243 1244 1245 1246 1247
8 1250 1251 1252 1253 1254 1255 1256 1257 1260 1261
9 1262 1263 1264 1265 1266 1267 1270 1271 1272 1273

07 0 1274 1275 1276 1277 1300 1301 1302 1303 1304 1305
1 1306 1307 1310 1311 1312 1313 1314 1315 1316 1317
2 1320 1321 1322 1323 1324 1325 1326 1327 1330 1331
3 1332 1333 1334 1335 1336 1337 1340 1341 1342 1343

TENS
4 1344 1345 1346 1347 1350 1351 1352 1353 1354 1355
5 1356 1357 1360 1361 1362 1363 1364 1365 1366 1367
6 1370 1371 1372 1373 1374 1375 1376 1377 1400 1401
7 1402 1403 1404 1405 1406 1407 1410 1411 1412 1413
8 1414 1415 1416 1417 1420 1421 1422 1423 1424 1425
9 1426 1427 1430 1431 1432 1433 1434 1435 1436 1437

2 of 11

DECIMAL-TO-OCTAL CONVERSION TABLE

Decimal: 800 through 1199
Octal: 1440 through 2257

UNITS

0 1 2 3 4 5 6 7 8 9

08 0 1440 1441 1442 1443 1444 1445 1446 1447 1450 1451
1 1452 1453 1454 1455 1456 1457 1460 1461 1462 1463
2 1464 1465 1466 1467 1470 1471 1472 1473 1474 1475
3 1476 1477 1500 1501 1502 1503 1504" 1505 1506 1507

TENS
4 1510 1511 1512 1513 1514 1515 1516 1517 1520" 1521
5 1522 1523 1524 1525 1526 1527 1530 1531 1532 1533
6 1534 1535 1536 1537 1540 1541 1542 1543 1544 1545
7 1546 1547 1550 1551 1552 1553 1554 1555 1556 1557
8 1560 1561 1562 1563 1564 1565 1566 1567 1570 1571
9 1572 1573 1574 1575 " 1576 1577 1600 1601 1602 1603

09 0 1604 1605 1606 1607 1610 1611 1612 1613 1614 1615
1 1616 1617 1620 1621 1622 1623 1624 1625 1626 1627
2 1630 .1631 1632 1633 1634 1635 1636 1637 1640 1641
3 1642 1643 1644 1645 1646 1647 1650 1651 1652 1653

TENS 4 1654 1655 1656 1657 1660 1661 1662 1663 1664 1665
5 1666 1667 1670 1671 1672 1673 1674 1675 1676 1677
6 1700 1701 1702 1703 1704 1705 1706 1707 1710 1711
7 1712 1713 1714 1715 1716 1717 1720 1721 1722 1723
8 1724 1725 1726 1727 1730 1731 1732 1733 1734 1735
9 1736 1737 1740 1741 1742 1743 1744 1745 1746 1747

10 0 1750 1751 1752 1753 1754 1755 1756 1757 1760 1761
1 1762 1763 1764 1765 1766 1767 1770 1771 1772 1773
2 1774 1775 1776 1777 2000 2001 2002 2003 2004 2005
3 2006 2007 2010 2011 2012 2013 2014 2015 2016 2017

TENS 4 2020 2021 2022 2023 2024 2025 2026 2027 2030 2031
5 2032 2033 2034 2035 2036 2037 2040 2041 2042 2043
6 2044 2045 2046 2047 2050 2051 2052 2053 2054 2055
7 2056 2057 2060 2061 2062 2063" 2064 2065 2066 2067
8 2070 2071 2072 2073 2074 2075 2076 2077 2100 2101
9 2102 2103 2104 2105 2106 2107 2110 2111 2112 2113

11 0 2114 2115 2116 2117 2120 2121 2122 2123 2124 2125
1 2126 2127 2130 2131 2132 2133 2134 2135 2136 2137
2 2140 2141 2142 2143 2144 2145 2146 2147 2150 2151
3 2152 2153 2154 2155 2156 2157 2160 2161 2162 2163
4 2164 2165 2166 2167 2170 2171 2172 2173 2174 2175

TENS 5 2176 2177 2200 2201 2202 2203 2204 2205 2206 2207
6 2210 2211 2212 2213 2214 2215 2216 2217 2220 2221
7 2222 2223 2224 2225 2226 2227 2230 2231 2232 2233
8 2234 2235 2236 2237 2240 2241 2242 2243 2244 2245
9 2246 2247 2250 2251 2252 2253 2254 2255 2256 2257

3 of 11

DECIMAL-TO-OCTAL CONVERSION TABLE

Decimal: 1200 through 1599
Octal: 2260 through 3077

UNITS

0 1 2 3 4 5 6 7 8 9

12 0 2260 2261 2262 2263 2264 2265 2266 2267 2270 2271
1 2272 2273 2274 2275 2276 2277 2300 2301 2302 2303
2 2304 2305 2306 2307 2310 2311 2312 2313 2314 2315
3 2316 2317 2320 2321 2322 2323 2324 2325 2326 2327
4 2330 2331 2332 2333 2334 2335 2336 2337 2340 2341 TENS 5 2342 2343 2344 2345 2346 2347 2350 2351 2352 2353
6 2354 2355 2356 2357 2360 2361 2362 2363 2364 2365
7 2366 2367 2370 2371 2372 2373 2374 2375 2376 2377
8 2400 2401 2402 2403 2404 2405 2406 2407 2410 2411
9 2412 2413 2414 2415 2416 2417 2420 2421 2422 2423

13 0 2424 2425 2426 2427 2430 2431 2432 2433 2434 2435
1 2436 2437 2440 2441 2442 2443 2444 2445 2446 2447
2 2450 2451 2452 2453 2454 2455 2456 2457 2460 2461
3 2462 2463 2464 2465 2466 2467 2470 2471 2472 2473

TENS 4 2474 2475 2476 2477 2500 2501 2502 2503 2504 2505
5 2506 2507 2510 2511 2512 2513 2514 2515 2516 2517
6 2520 2521 2522 2523 2524 2525 2526 2527 2530 2531
7 2532 2533 2534 2535 2536 2537 2540 2541 2542 2543
8 2544 2545 2546 2547 2550 2551 2552 2553 2554 2555

. 9 2556 2557 2560 2561 2562 2563 2564 2565 2566 2567

14 0 2570 2571 2572 2573 2574 2575 2576 2577 2600 2601
1 2602 2603 2604 2605 2606 2607 2610 2611 2612 2613
2 2614 2615 2616 2617 2620 2621 2622 2623 2624 2625
3 2626 2627 2630 2631 2632 2633 2634 2635 2636 2637

TENS
4 2640 2641 2642 2643 2644 2645 2646 2647 2650 2651
5 2652 2653 2654 2655 2656 2657 2660 2661 2662 2663
6 2664 2665 2666 2667 2670 2671 2672 2673 2674 2675
7 2676 2677 2700 2701 2702 2703 2704 2705 2706 2707
8 2710 2711 2712 2713 2714 2715 2716 2717 2720 2721
9 2722 2723 2724 2725 2726 2727 2730 2731 2732 2733

15 0 2734 2735 2736 2737 2740 2741 2742 2743 2744 2745
1 2746 2747 2750 2751 2752 2753 2754 2755 2756 2757
2 2760 2761 2762 2763 2764 2765 2766 2767 2770 2771
3 2772 2773 2774 2775 2776 2777 3000 3001 3002 3003
4 3004 3005 3006 3007 3010 3011 3012 3013 3014 3015

TENS 5 3016 3017 3020 3021 3022 3023 3024 3025 3026 3027
6 3030 3031 3032 3033 3034 3035 3036 3037 3040 3041
7 3042 3043 3044 3045 3046 3047 3050 3051 3052 3053
8 3054 3055 3056 3057 3060 3061 3062 3063 3064 3065
9 3066 3067 3070 3071 3072 3073 3074 3075 3076 3077

4 of 11

DECIMAL-TO-OCTAL CONVERSION TABLE

Decimal: 1600 through 1999
Octal: 3100 through 3717

UNITS

0 1 2 3 4 5 6 7 8 9

16 0 3100 3101 3102 3103 3104 3105 3106 3107 3110 3111
1 3112 3113 3114 3115 3116 3117 3120 3121 3122 3123
2 3124 3125 3126 3127 3130 3131 3132 3133 3134 3135
3 3136 3137 3140 3141 3142 3143 3144 3145 3146 3147

TENS
4 3150 3151 3152 3153 3154 3155 3156 3157 3160 3161
5 3162 3163 3164 3165 3166 3167 3170 3171 3172 3173
6 3174 3175 3176 3177 3200 3201 3202 3203 3204 3205
7 3206 3207 3210 3211 3212 3213 3214 3215 3216 3217
8 3220 3221 3222 3223 3224 3225 3226 3227 3230 3231
9 3232 3233 3234 3235 3236 3237 3240 3241 3242 3243

17 0 3244 3245 3246 3247 3250 3251 3252 3253 3254 3255
1 3256 3257 3260 3261 3262 3263 3264 3265 3266 3267
2 3270 3271 3272 3273 3274 3275 3276 3277 3300 3301
3 3302 3303 3304 3305 3306 3307 3310 3311 3312 3313

TENS
4 3314 3315 3316 3317 3320 3321 3322 3323 3324 3325
5 3326 3327 3330 3331 3332 3333 3334 3335 3336 3337
6 3340 3341 3342 3343 3344 3345 3346 3347 3350 3351
7 3352 3353 3354 3355 3356 3357 3360 3361 3362 3363
8 3364 3365 3366 3367 3370 3371 3372 3373 3374 3375
9 3376 3377 3400 3401 3402 3403 3404 3405 3406 3407

18 0 3410 3411 3412 3413 3414 3415 3416 3417 3420 3421
1 3422 3423 3424 3425 3426 3427 3430 3431 3432 3433
2 3434 3435 3436 3437 3440 3441 3442 3443 3444 3445
3 3446 3447 3450 3451 3452 3453 3454 3455 3456 3457

TENS
4 3460 3461 3462 3463 3464 3465 3466 3467 3470 3471
5 3472 3473 3474 3475 3476 3477 3500 3501 3502 3503
6 3504 3505 3506 3507 3510 3511 3512 3513 3514 3515
7 3516 3517 3520 3521 3522 3523 3524 3525 3526 3527
8 3530 3531 3532 3533 3534 3535 3536 3537 3540 3541
9 3542 3543 3544 3545 3546 3547 3550 3551 3552 3553

19 0 3554 3555 3556 3557 3560 3561 3562 3563 3564 3565
1 3566 3567 3570 3571 3572 3573 3574 3575 3576 3577
2 3600 3601 3602 3603 3604 3605 3606 3607 3610 3611
3 3612 3613 3614 3615 3616 3617 3620 3621 3622 3623

TENS 4 3624 3625 3626 3627 3630 3631 3632 3633 3634 3635
5 3636 3637 3640 3641 3642 3643 3644 3645 3646 3647
6 3650 3651 3652 3653 3654 3655 3656 3657 3660 3661
7 3662 3663 3664 3665 3666 3667 3670 3671 3672 3673
8 3674 3675 3676 3677 3700 3701 3702 3703 3704 3705
9 3706 3707 3710 3711 3712 3713 3714 3715 3716 3717

5 of 11

DECIMAL-TO-OCTAL CONVERSION TABLE

Decimal: 2000 through 2399
Octal: 3720 through 4537

UNITS

0 1 2 3 4 5 6 7 8 9

20 0 3720 3721 3722 3723 3724 3725 3726 3727 3730 3731
1 3732 3733 3734 3735 3736 3737 3740 3741 3742 3743
2 3744 3745 3746 3747 3750 3751 3752 3753 3754 3755
3 3756 3757 3760 3761 3762 3763 3764 3765 3766 3767
4 3770 3771 3772 3773 3774 3775 3776 3777 4000 4001

TENS 5 4002 4003 4004 4005 4006 4007 4010 4011 4012 4013
6 4014 4015 4016 4017 4020 4021 4022 4023 4024 4025
7 4026 4027 4030 4031 4032 4033 4034 4035 4036 4037
8 4040 4041 4042 4043 4044 4045 4046 4047 4050 4051
9 4052 4053 4054 4055 4056 4057 4060 4061 4062 4063

21 0 4064 4065 4066 4067 4070 4071 4072 4073 4074 4075
1 4076 4077 4100 4101 4102 4103 4104 4105 4106 4107
2 4110 4111 4112 4113 4114 4115 4116 4117 4120 4121
3 4122 4123 4124 4125 4126 4127 4130 4131 4132 4133

TENS
4 4134 4135 4136 4137 4140 4141 4142 4143 4144 4145
5 4146 4147 4150 4151 4152 4153 4154 4155 4156 4157
6 4160 4161 4162 4163 4164 4165 4166 4167 4170 4171
7 4172 4173 4174 4175 4176 4177 4200 4201 4202 4203
8 4204 4205 4206 4207 4210 4211 4212 4213 4214 4215
9 4216 4217 4220 4221 4222 4223 4224 4225 4226 4227

22 0 4230 4231 4232 4233 4234 4235 4236 4237 4240 4241
1 4242 4243 4244 4245 4246 4247 4250 4251 4252 4253
2 4254 4255 4256 4257 4260 4261 4262 4263 4264 4265
3 4266 4267 4270 4271 4272 4273 4274 4275 4276 4277

TENS
4 4300 4301 4302 4303 4304 4305 4306 4307 4310 4311
5 4312 4313 4314 4315 4316 4317 4320 4321 4322 4323
6 4324 4325 4326 4327 4330 4331 4332 4333 4334 4335
7 4336 4337 4340 4341 4342 4343 4344 4345 4346 4347
8 4350 4351 4352 4353 4354 4355 4356 4357 4360 4361
9 4362 4363 4364 4365 4366 4367 4370 4371 4372 4373

23 0 4374 4375 4376 4377 4400 4401 4402 4403 4404 4405
1 4406 4407 4410 4411 4412 4413 4414 4415 4416 4417
2 4420 4421 4422 4423 4424 4425 4426 4427 4430 4431
3 4432 4433 4434 4435 4436 4437 4440 4441 4442 4443
4 4444 4445 4446 4447 4450 4451 4452 4453 4454 4455

TENS 5 4456 4457 4460 4461 4462 4463 4464 4465 4466 4467
6 4470 4471 4472 4473 4474 4475 4476 4477 4500 4501
7 4502 4503 4504 4505 4506 4507 4510 4511 4512 4513
8 4514 4515 4516 4517 4520 4521 4522 4523 4524 4525
9 4526 4527 4530 4531 4532 4533 4534 4535 4536 4537

6 of 11

DECIMAL-TO-OCTAL CONVERSION TABLE

Decimal: 2400 through 2799
Octal: 4540 through 5357

UNITS

0 1 2 3 4 5 6 7 8 9

24 0 4540 4541 4542 4543 4544 4545 4546 4547 4550 4551
1 4552 4553 4554 4555 4556 4557 4560 4561 4562 4563
2 4564 4565 4566 4567 4570 4571 4572 4573 4574 4575
3 4576 4577 4600 4601 4602 4603 4604 4605 4606 4607

TENS
4 4610 4611 4612 4613 4614 4615 4616 4617 4620 4621
5 4622 4623 4624 4625 4626 4627 4630 4631 4632 4633
6 4634 4635 4636 4637 4640 4641 4642 4643 4644 4645
7 4646 4647 4650 4651 4652 4653 4654 4655 4656 4657
8 4660 4661 4662 4663 4664 4665 4666 4667 4670 4671
9 4672 4673 4674 4675 4676 4677 4700 4701 4702 4703

25 0 4704 4705 4706 4707 4710 4711 4712 4713 4714 4715
1 4716 4717 4720 4721 4722 4723 4724 4725 4726 4727
2 4730 4731 4732 4733 4734 4735 4736 4737 4740 4741
3 4742 4743 4744 4745 4746 4747 4750 4751 4752 4753
4 4754 4755 4756 4757 4760 4761 4762 4763 4764 4765

TENS 5 4766 4767 4770 4771 4772 4773 4774 4775 4776 4777
6 5000 5001 5002 5003 5004 5005 5006 5007 5010 5011
7 5012 5013 5014 5015 5016 5017 5020 5021 5022 5023
8 5024 5025 5026 5027 5030 5031 5132 5033 5034· 5035
9 5036 5037 5040 5041 5042 5043 5044 5045 5046 5047

26 0 5050 5051 5052 5053 5054 5055 5056 5057 5060 5061
1 5062 5063 5064 5065 5066 5067 5070 5071 5072 5073
2 5074 5075 5076 5077 5100 5101 5102 5103 5104 5105
3 5106 5107 5110 5111 5112 5113 5114 5115 5116 5117
4 5120 5121 5122 5123 5124 5125 5126 5127 5130 5131

TENS 5 5132 5133 5134 5135 5136 5137 5140 5141 5142 5143
6 5144 5145 5146 5147 5150 5151 5152 5153 5154 5155
7 5156 5157 5160 5161 5162 5163 5164 5165 5166 5167
8 5170 5171 5172 5173 5174 5175 5176 5177 5200 5201
9 5202 5203 5204 5205 5206 5207 5210 5211 5212 5213

27 0 5214 5215 5216 5217 5220 5221 5222 5223 5224 5225
1 5226 5227 5230 5231 5232 5233 5234 5235 5236 5237
2 5240 5241 5242 5243 5244 5245 5246 5247 5250 5251
3 5252 5253 5254 5255 5256 5257 5260 5261 5262 5263
4 5264 5265 5266 5267 5270 5271 5272 5273 5274 5275

TENS 5 5276 5277 5300 5301 5302 5303 5304 5305 5306 5307
6 5310 5311 5312 5313 5314 5315 5316 5317 5320 5321
7 5322 5323 5324 5325 5326 5327 5330 5331 5332 5333
8 5334 5335 5336 5337 5340 5341 5342 5343 5344 5345
9 5346 5347 5350 5351 5352 5353 5354 5355 5356 5357

7 of 11

DECIMAL-TO-OCTAL CONVERSION TABLE

Decimal: 2800 through 3199
Octal: 5360 through 6177

UNITS

0 1 2 3 4 5 6 7 8 9

28 0 5360 5361 5362 5363 5364 5365 5366 5367 5370 5371
1 5372 5373 5374 5375 5376 5377 5400 5401 5402 5403
2 5404 5405 5406 5407 5410 5411 5412 5413 5414 5415
3 5416 5417 5420 5421 5422 5423 5424 5425 5426 5427

TENS
4 5430 5431 5432 5433 5434 5435 5436 5437 5440 5441
5 5442 5443 5444 5445 5446 5447 5450 5451 5452 5453
6 5454 5455 5456 5457· 5460 5461 5462 5463 5464 5465
7 5466 5467 5470 5471 5472 5473 5474 5475 5476 5477
8 5500 5501 5502 5503 5504 5505 5506 5507 5510 5511
9 5512 5513 5514 5515 5516 5517 5520 5521 5522 5523

29 0 5524 5525 5526 5527 5530 5531 5532 5533 5534 5535
1 5536 5537 5540 5541 5542 5543 5544 5545 5546 5547
2 5550 5551 5552 5553 5554 5555 5556 5557 5560 5561
3 5562 5563 5564 5565 5566 5567 5570 5571 5572 5573
4 5574 5575 5576 5577 5600 5601 5602 5603 5604 5605

TENS 5 5606 5607 5610 5611 5612 5613 5614 5615 5616 5617
6 5620 5621 5622 5623 5624 5625 5626 5627 5630 5631
7 5632 5633 5634 5635 5636 5637 5640 5641 5642 5643
8 5644 5645 5646 5647 5650 5651 5652 5653 5654 5655
9 5656 5657 5660 5661 5662 5663 5664 5665 5666 5667

30 0 5670 5671 5672 5673 5674 5675 5676 5677 5700 5701
1 5702 5703 5704 5705 5706 5707 5710 5711 5712 5713
2 5714 5715 5716 5717 5720 5721 5722 5723 5724 5725
3 5726 5727 5730 5731 5732 5733 5734 5735 5736 5737

TENS
4 5740 5741 5742 5743 5744 5745 5746 5747 5750 5751
5 5752 5753 5754 5755 5756 5757 5760 5761 5762 5763
6 5764 5765 5766 5767 5770 5771 5772 5773 5774 5775
7 5776 5777 6000 6001 6002 6003 6004 6005 6006 6007
8 6010 6011 6012 6013 6014 6015 6016 6017 6020 6021
9 6022 6023 6024 6025 6026 6027 6030 6031 6032 6033

31 0 6034 6035 6036 6037 6040 6041 6042 6043 6044 6045
1 6046 6047 6050 6051 6052 6053 6054 6055 6056 6057
2 6060 6061 6062 6063 6064 6065 6066 6067 6070 6071
3 6072 6073 6074 6075 6076 6077 6100 6101 6102 6103

TENS 4 6104 6105 6106 6107 6110 6111 6112 6113 6114 6115
5 6116 6117 6120 6121 6122 6123 6124 6125 6126 6127
6 6130 6131 6132 6133 6134 6135 6136 6137 6140 6141
7 6142 6143 6144 6145 6146 6147 6150 6151 6152 6153
8 6154 6155 6156 6157 6160 6161 6162 6163 6164 6165
9 6166 6167 6170 6171 6172 6173 6174 6175 6176 6177

8 of 11

DECIMAL-TO-OCTAL CONVERSION TABLE

Decimal: 3200 through 3599
Octal: 6200 through 7017

UNITS

0 1 2 3 4 5 6 7 8 9

32 0 6200 6201 6202 6203 6204 6205 6206 6207 6210 6211
1 6212 6213 .6214 6215 6216 6217 6220 6221 6222 6223
2 6224 6225 6226 6227 6230 6231 6232 6233 6234 6235
3 6236 6237 6240 6241 6242 6243 6244 6245 6246 6247

TENS 4 6250 6251 6252 6253 6254 6255 6256 6257 6260 6261
5 6262 6263 6264 6265 6266 6267 6270 6271 6272 6273
6 6274 6275 6276 6277 6300 6301 6302 6303 6304 6305
7 6306 6307 6310 6311 6312 6313 6314 6315 6316 6317
8 6320 6321 6322 6323 6324 6325 6326 6327 6330 6331
9 6332 6333 6334 6335 6336 6337 6340 6341 6342 6343

33 0 6344 6345 6346 6347 6350 6351 6352 6353 6354 6355
1 6356 6357 6360 6361 6362 6363 6364 6365 6366 6367
2 6370 6371 6372 6373 6374 6375 6376 6377 6400 6401
3 6402 6403 6404 6405 6406 6407 6410 6411 6412 6413
4 6414 6415 6416 6417 6420 6421 6422 6423 6424 6425

TENS 5 6426 6427 6430 6431 6432 6433 6434 6435 6436 6437
6 6440 6441 6442 6443 6444 6445 6446 6447 6450 6451
7 6452 6453 6454 6455 6456 6457 6460 6461 6462 6463
8 6464 6465 6466 6467 6470 6471 6472 6473 6474 6475
9 6476 6477 6500 6501 6502 6503 6504 6505 6506 6507

34 0 6510 6511 6512 6513 6514 6515 6516 6517 6520 6521
1 6522 6523 6524 6525 6526 6527 6530 6531 6532 6533
2 6534 6535 6536 6537 6540 6541 6542 6543 6544 6545
3 6546 6547 6550 6551 6552 6553 6554 6555 6556 6557

TENS
4 6560 6561 6562 6563 6564 6565 6566 6567 6570 6571
5 6572 6573 6574 6575 6576 6577 6600 6601 6602 6603
6 6604 6605 6606 6607 6610 6611 6612 6613 6614 6615
7 6616 6617 6620 6621 6622 6623 6624 6625 6626 6627
8 6630 6631 6632 6633 6634 6635 6636 6637 6640 6641
9 6642 6643 6644 6645 6646 6647 6650 6651 6652 6653

35 0 6654 6655 6656 6657 6660 6661 6662 6663 6664 6665
1 6666 6667 6670 6671 6672 6673 6674 6675 6676 6677
2 6700 6701 6702 6703 6704 6705 6706 6707 6710 6711
3 6712 6713 6714 6715 6716 6717 6720 6721 6722 6723

TENS 4 6724 6725 6726 6727 6730 6731 6732 6733 6734 6735
5 6736 6737 6740 6741 6742 6743 6744 6745 6746 6747
6 6750 6751 6752 6753 6754 6755 6756 6757 6760 6761
7 6762 6763 6764 6765 6766 6767 6770 6771 6772 6773
8 6774 6775 6776 6777 7000 7001 7002 7003 7004 7005
9 7006 7007 7010 7011 7012 7013 7014 7015 7016 7017

9 of 11

DECIMAL-TO-OCTAL CONVERSION TABLE

Decimal: 3600 through 3999
Octal: 7020 through 7637

UNITS

0 1 2 3 4 5 6 7 8 9

36 0 7020 7021 7022 7023 7024 7025 7026 7027 7030 7031
1 7032 7033 7034 7035 7036 7037 7040 7041 7042 7043
2 7044 7045 7046 7047 7050 7051 7052 7053 7054 7055
3 7056 7057 7060 7061 7062 7063 7064 7065 7066 7067
4 7070 7071 7072 7073 7074 7075 7076 7077 7100 7101

TENS 5 7102 7103 7104 7105 7106 7107 7110 7111 7112 7113
6 7114 7115 7116 7117 7120 7121 7122 7123 7124 7125
7 7126 7127 7130 7131 7132 7133 7134 7135 7136 7137
8 7140 7141· 7142 7143 7144 7145 7146 7147 7150 7151
9 7152 7153 7154 7155 7156 7157 7160 7161 7162 7163

37 0 7164 7165 7166 7167 7170 7171 7172 7173 7174 7175
1 7176 7177 7200 7201 7202 7203 7204 7205 7206 7207
2 7210 7211 7212 7213 7214 7215 7216 7217 7220 7221
3 7222 7223 7224 7225 7226 7227 7230 7231 7232 7233

TENS
4 7234 7235 7236 7237 7240 7241 7242 7243 7244 7245
5 7246 7247 7250 7251 7252 7253 7254 7255 7256 7257
6 7260 7261 7262 7263 7264 7265 7266 7267 7270 7271
7 7272 7273 7274 7275 7276 7277 7300 7301 7302 7303
8 7304 7305 7306 7307 7310 7311 7312 7313 7314 7315
9 7316 7317 7320 7321 7322 7323 7324 7325 7326 7327

38 0 7330 7331 7332 7333 7334 7335 7336 7337 7340 7341
1 7342 7343 7344 7345 7346 7347 7350 7351 7352 7353
2 7354 7355 7356 7357 7360 7361 7362 7363 7364 7365
3 7366 7367 7370 7371 7372 7373 7374 7375 7376 7377
4 7400 7401 7402 7403 7404 7405 7406 7407 7410 7411

TENS 5 7412 7413 7414 7415 7416 7417 7420 7421 7422 7423
6 7424 7425 7426 7427 7430 7431 7432 7433 7434 7435
7 7436 7437 7440 7441 7442 7443 7444 7445 7446 7447
8 7450 7451 7452 7453 7454 7455 7456 7457 7460 7461
9 7462 7463 7464 7465 7466 7467 7470 7471 7472 7473

39 0 7474 7475 7476 7477 7500 7501 7502 7503 7504 7505
1 7506 7507 7510 7511 7512 7513 7514 7515 7516 7517
2 7520 7521 7522 7523 7524 7525 7526 7527 7530 7531
3 7532 7533 7534 7535 7536 7537 7540 7541 7542 7543

TENS
4 7544 7545 7546 7547 7550 7551 7552 7553 7554 7555

·5 7556 7557 7560 7561 7562 7563 7564 7565 7566 7567
6 7570 7571 7572 7573 7574 7575 7576 7577 7600 7601
7 7602 7603 7604 7605 7606 7607 7610 7611 7612 7613
8 7614 7615 7616 7617 7620 7621 7622 7623 7624 7625
9 7626 7627 7630 7631 7632 7633 7634 7635 7636 7637

10 of 11

DECIMAL-TO-OCTAL CONVERSION TABLE

Decimal: 4000 through 4096
Octal: 7640 through 10000

UNITS

0 1 2 3 4 5 6 7 8 9

40 0 7640 7641 7642 7643 7644 7645 7646 7647 7650 7651
1 7652 7653 7654 7655 7656 7657 7660 7661 7662 7663
2 7664 7665 7666 7667 7670 7671 7672 7673 7674 7675
3 7676 7677 7700 7701 7702 7703 7704 7705 7706 7707

TENS
4 7710 7711 7712 7713 7714 7715 7716 7717 7720 7721
5 7722 7723 7724 7725 7726 7727 7730 7731 7732 7733
6 7734 7735 7736 7737 7740 7741 7742 7743 7744 7745
7 7746 7747 7750 7751 7752 7753 7754 7755 7756 7757
8 7760 7761 7762 7763 7764 7765 7766 7767 7770 7771
9 7772 7773 7774 7775 7776 7777 10000

11 of 11

OCTAL TO TO DECIMAL FRACTION CONVERSION TABLE

Octal: 0.000400 through 0.000777

OCTAL 0 1 2 3 4 5 6 7

.00040 .000976 .000980 .000984 .000988 .000991 .000995 .000999 .001003

.00041 .001007 .001010 .001014 .001018 .001022 .001026 .001029 .001033

.00042 .001037 .001041 .001045 .001049 .001052 .001056 .001060 .001064

.00043 .001068 .001071 .001075 .001079 .001083 .001087 .001091 .001094

.00044 .001098 .001102 .001106 .001110 .001113 .001117 .001121 .001125

.00045 .001129 .001132 .001136 .001140 .001144 .001148 .001152 .001155

.00046 .001159 .001163 .001167 .001171 .001174 .001178 .001182 .001186

.00047 .001190 .001194 .001197 .001201 .001205 .001209 .001213 .001216

.00050 .001220 .001224 .001228 .001232 .001235 .001239 .001243 .001247

.00051 .001251 .001255 .001258 .001262 .001266 .001270 .001274 .001277

.00052 .001281 .001285 .001289 .001293 .001296 .001300 .001304 .001308

.00053 .001312 .001316 .001319 .001323 .001327 .001331 .001335 .001338

.00054 .001342 .001346 .001350 .001354 .001358 .001361 .001365 .001369

.00055 .001373 .001377 .001380 .001384 .001388 .001392 .001396 .001399

.00056 .001403 .001407 .001411 .001415 .001419 .001422 .001426 .001430

.00057 .001434 .001438 .001441 .001445 .001449 .001453 .001457 .001461

.00060 .001464 .001468 .001472 .001476 .001480 .001483 .001487 .001491

.00061 .001495 .001499 .001502 .001506 .001510 .001514 .001518 .001522

.00062 .001525 .001529 .001533 .001537 .001541 .001544 .001548 .001552

.00063 .001556 .001560 .001564 .001567 .001571 .001575 .001579 .001583

.00064 .001586 .001590 .001594 .001598 .001602 .001605 .001609 .001613

.00065 .001617 .001621 .001625 .001628 .001632 .001636 .001640 .001644

.00066 .001647 .001651 .001655 .001659 .001663 .001667 .001670 .001674

.00067 .001678 .001682 .001686 .001689 .001693 .001697 .001701 .001705

.00070 .001708 .001712 .001716 .001720 .001724 .001728 .001731 .001735

.00071 .001739 .001743 .001747 .001750 .001754 .001758 .001762 .001766

.00072 .001770 .001773 .001777 .. 001781 .001785 .001789 .001792 .001796

.00073 .001800 .001804 .001808 .001811 .001815 .001819 .001823 .001827

.00074 .001831 .001834 .001838 .001842 .001846 .001850 .001853 .001857

.00075 .001861 .001865 .001869 .001873 .001876 .001880 .001884 .001888

.00076 .001892 .001895 .001899 .001903 .001907 .001911 .001914 .001918

.00077 .001922 .001926 .001930 .001934 .001937 .001941 .001945 .001949

1 of 4

OCTAL

.00000

.00001

.00002

.00003

.00004

.00005

.00006

.00007

.00010

.00011

.00012

.00013

.00014

.00015

.00016

.00017

.00020

.00021

.00022

.00023

.00024

.00025

.00026

.00027

.00030

.00031

.00032

.00033

.00034

.00035

.00036

.00037

OCTAL-TO-DECIMAL FRACTION CONVERSION TABLE

o
.000000

.000030

.000061

.000091

.000122

.000152

.000183

.000213

.000244

.000274

.000305

.000335

.000366

.000396

.000427

.000457

.000488

.000518

.000549

.000579

.000610

.000640

.000671

.000701

Octal: 0.000000 through 0.000377

1

.000003

.000034

.000064

.000095

.000125

.000156

.000186

.000217

.000247

.000278

.000308

.000339

.000370

.000400

.000431

.000461

.000492

.000522

.000553

.000583

.000614

.000644

.000675

.000705

2

.000007

.000038

.000068

.000099

.000129

.000160

.000190

.000221

.000251

.000282

.000312

.000343

.000373

.000404

.000434

.000465

.000495

.000526

.000556

.000587

.000617

.000648

.000679

.000709

3

.000011

.000041

.000072

.000102

.000133

.000164

.000194

.000225

;000255

.000286

.000316

.000347

.000377

.000408

.000438

.000469

.000499

.000530

.000560

.000591

.000621

.000652

.000682

.000713

4

.000015

.000045

.000076

.000106

.000137

.000167

.000198

.000228

.000259

.000289

.000320

.000350

.000381

.000411

.000442

.000473

.000503

.000534

.000564

.000595

.000625

.000656

.000686

.000717

5

.000019

.000049

.000080

.000110

.000141

.000171

.000202

.000232

.000263

.000293

.000324

.000354

.000385

.000415

.000446

.000476

.000507

.000537

.000568

.000598

.000629

.000659

.000690

.000720

.000732 .000736 .000740 .000743 .000747 .000751

.000762 .000766 .000770 .000774 .000778' .000782

.000793 .000797

.000823 .000827

.000854 .000858

.000885 .000888

.000915 .000919

.000946 .000949

.000801

.000831

.000862

.000892

.000923

.000953

.000805

.000835

.000865

.000896

.000926

.000957

2 of 4

.000808

.000839

.000869

.000900

.000930

.000961

.000812

.000843

.000873

.000904

.000934

.000965

6

.000022

.000053

.000083

.000114

.000144

.000175

.000205

.000236

.000267

.000297

.000328

.000358

.000389

.000419

.000450

.000480

.000511

.000541

.000572

.000602

.000633

.000663

.000694

.000724

7

.000026

.000057

.000087

.000118

.000148

.000179

.000209

.000240

.000270

.000301

.000331

.000362

.000392

.000423

.000453

.000484

.000514

.000545

.000576

.000606

.000637

.000667

.000698

.000728

.000755 .000759

.000785 .000789

.000816

.000846

.000877

.000907

.000938

.000968

.000820

.000850

.000881

.000911

.000942

.000972

OCTAL-TO-DECIMAL FRACTION CONVERSION TABLE

Octal: 0.400 through 0.777

OCTAL 0 1 2 3 4 5 6 7

.40 .50000 .50195 .50391 .50586 .50781 .50977 .51172 .51367

.41 .51563 .51758 .51953 .52148 .52344 .52539 .52734 .52830

.42 .53125 .53320 .53516 .53711 .53906 .54102 .54297 .54492

.43 .54688 .54883 .55078 .55273 .55469 .55664 .55859 .56055

.44 .56250 .56445 .56641 .56836 .57031 .57227 .57422 .57617

.45 .57813 .58008 .58203 .58398 .58594 .58789 .58984 .59180

.46 .59375 .59570 .59766 .59961 .60156 .60352 .60547 .60742

.47 .60938 .61133 .61328 .61523 .61719 .61914 .62109 .62305

.50 .62500 .62695 .62891 .63086 .63281 .63477 .63672 .63867

.51 .64063 .64258 .64453 .64648' .64844 .65039 .65234 .65430

.52 .65625 .65820 .66016 .66211 .66406 .66602 .66797 .66992

.53 .67188 .67383 .67578 .67773 .67969 .68164 .68359 .68555

.54 .68750 .68945 .69141 .69336 .69531 .69727 .69922 .70117

.55 .70313 .70518 .70703 .70898 .71094 .71289 .71484 .71680

.56 .71875 .72070 .72266 .72461 .72656 .72852 .73047 .73242

.57 .73438 .73633 .73828 .74023 .74219 .74414 .74609 .74805

.60 .75000 .75195 .75391 .75586 .75781 .75977 .76172 .76367

.61 .76563 .76758 .76953 .77148 .77344 .77539 .77734 .77930

.62 .78125 .78320 .78516 .78711 .78906 .79102 .79297 .79492

:63 .79688 .79883 .80078 .80273 .. 80469 .80664 .80859 .81055

.64 .81250 .81445 .81641 .81836 .82031 .82227 .82422 .82617

.65 .82813 .83008 .83203 .83398 .83594 .83789 .83984 .84180

.66 .84375 .84570 .84766 .84961 .85156 .85352 .85547 .85742

.67 .85938 .86133 .86328 .86523 .86719 .86914 .87109 .87305

.70 .87500 .87695 .87891 .88086 .88281 .88477 .88672 .88867

.71 .89063 .89258 .89453 .89648 .89844 .90039 .90234 .90430

.72 .90625 .90820 .91016 .91211 .91406 .91602 .91797 .91992

.73 .92188 .92383 .92578 .92773 .92969 .93164 .93359 .93555

.74 .93750 .93945 .94141 .94336 .94531 .94727 .94922 .95117

.75 .95313 .95508 .95703 .95898 .96094 .96289 .96484 .96680

.76 .96875 .97070 .97266 .97461 .97656 .97852 .98047 .98242

.77 .98438 .98633 .98828 .99023 .99219 .99414 .99609 .99805

3 of 4

,t ...

OCTAL-TO-DECIMAL FRACTION CONVERSION TABLE

Octal: 0.000 through 0.377 {,' " t',(

OCTAL 0 1 2 3 4 5 6 7

.00 .000000 .001953 .003906 .005859 .007812 .009765 .011718 .013671

.01 .015625 .017578 .019531 .021484 .023437 .025390 .027343 .029296

.02 .031250 .033203 .035156 .037109 .039062 .041015 .042968 .044921

.03 .046875 .048828 .050781 .052734 .054687 .056640 .058593 .060546

.04 .062500 .064453 .066406 .068359 .070312 .072265 .074218 .076171

.05 .078125 .080078 .082031 .083984 .085937 .087890 .089843 .091796

.06 .093750 .095703 .097656 .099609 .101562 .103515 .105468 .107421

.07 .109375 .111328 .113281 .115234 .117187 .119140 .121093 .123046

.10 .125000 .126953 .128906 .130859 .132812 .134765 .136718 .138671

.11 .140625 .142578 .144531 .146484 .148437 .150390 .152343 .154296

.12 .156250 .158203 .160156 .162109 .164062 .166015 .167968 .169921

.13 .171875 .173828 .175781 .177734 .179687 .181640 .183593 .185546

.14 .187500 .189453 .191406 .193359 .195312 .197265 .199218 .201171

.15 .203125 .205078 .207031 .208984 .210937 .212890 .214843 .216796

.16 .218750 .220703 .222656 .224609 .226562 .228515 .230468 .232421

.17 .234375 .236328 .238281 .240234 .242187 .244140 .246093 .248046

.20 .250000 .251953 .253906 .255859 .257812 .259765 .261718 .263671

.21 .265625· .267578 .269531 . 271484 .273437 . .275390 .277343 .279296

.22 .281250 .283203 .285156 .287109 .289062 .291015 .292968 .294921

.23 .296875 .298828 .300781 .302734 .304687 .306640 .308593 .310546

~24 .312500 .314453 .316406 .318359 .320312 .322265 .324218 .326171

.25 .328125 .330078 .332031 .333984 .335937 .337890 .339843 .341796

.26 .343750 .345703 .347656 .349609 .351562 .343515 .355468 .357421

.27 .359375 .361328 .363281 .365234 .367187 .369140 .371093 .373046

.30 .375000 (.376953 .378906 .380859 .382812 .384765 .386718 .388671

.31 .390625 .392578 .394531 .396484 .398437 .400390 .402343 .404296

.32 . .406250 .408203 .410156 .412109 .414062 .416015 .417968 .419921

.33 / .421875 .423828 .425781 ~427734 .429687 .431640 .433593 .435546

.34 .437500 .439453 .441406 .443359 .445312 .447265 .449218 .451171

.35 .453125 .455078 .457031 .458984 .460937 .462890 .464843 .466796

.36 .468750 .470703 .472656 .474609 .476562 .478515 .480468 .482421

.37 .484375 .486328 .488281 . .490234 .492187 .494140 .496093 .498046
..... ' "\

~of 4

