
TUTORIAL I

LOGIC DESIGN ON
YOUR SUN

WORKSTATION®

January 15, 1989

Valid Logic Systems, Incorporated
2820 Orchard Parkway

San Jose, California 95134
(408) 432-9400 Telex 371 9004

FAX (408) 432-9430

Copyright © 1989 Valid Logic Systems, Incorporated

This document contains confidential proprietary information which is not to be
disclosed to unauthorized persons without the prior written consent of an officer of
Valid Logic Systems, Incorporated.

GED, ValidGED, Packager, ValidPackager, Plottime, ValidSIM, ValidTIME, ValidFLAT
and Transcribe are trademarks of Valid Logic Systems, Inc.

UNIX is a trademark of AT&T Bell Laboratories.

Sun Workstation is a trademark of Sun Microsystems, Inc.

ii 1 /15/89

PREFACE

This tutorial describes schematic entry with Valid's Graphics Editor (ValidGED)
and the preparation of the design for a physical design system with the
ValidCOMPILER and ValidPACKAGER analysis tools.

The tutorial applies to a Logic Design System on a Sun Workstation. If you pur­
chased an Entry Design System (schematic capture only), lessons 8 through 11 do
not apply to your system configuration. If you purchased a Validation Design
System -(simulation and timing verification), you should first go through all of the
lessons in this tutorial and then complete the lessons in tutorial II.

This tutorial supports the following software releases:

• Valid GED Release 9. 0

• ValidCOMPILER Release 1.4 (or later)

• ValidPACKAGER Release 2.0 (or later)

If you use this tutorial with an earlier release of any of the above application
programs, the exact operation of these programs is different from their descrip­
tions in the tutorial. This tutorial is most effective when used with the above
releases.

1/15/89 iii

Contents

Table of Contents

Introduction 1
Valid's CAE Software 3

ValidGED: The Graphics Editor 4
The Compiler 4
The Packager 4
Interface Programs 5
Additional Analysis Tools 5

The Timing Verifier 5
The Logic Simulator 6

Tutorial Overview 6
Tutorial Library Installation 6
Signal Syntax 7
Command Syntax 7
Typographic Conventions 8
The Lesson Plan 9

Lesson 1: Getting Started 1-1
Logging On 1-3
Using the Sun Window System 1-4
The GED Screen 1-5

The Cursor 1-6
The Command Menu 1-6
The Message Window 1-7
The Status Line 1-8

Specifying Libraries 1-9
Exiting GED 1-9
Exiting the Sun Window System 1-10

1 /15/89 v

Contents

Lesson 2: Drawing
The Add Command
The Delete Command
The Move Command

Tips on Drawing
The Undo Command
The ¥!ire Command

Tips on Wiring
The Refresh Command
The Select Command
Wiring Concepts
Finishing a Schematic

The Signal Name Command
The Write Command

Path Properties
Status Messages

Tips on Saving a Drawing
The Hardcopy Command

Lesson 3: Finding And Retrieving Drawings ..
The Directory Command
The Edit Command
Drawing Names

Drawing Name Extensions
Entering a Drawing Name on the Command Line

Lesson 4: Looking
Centering .. .
Moving a Drawing on the Screen
Enlarging an Area to Fill the Screen
Reducing a Drawing

Tips on Using Zoom

vi

2-1
2-4
2-7
2-7
2-8
2-9
2-10
2-14
2-18
2-19
2-25
2-28
2-28
2-32
2-32
2-33
2-33
2-34

3-1
3-3
3-4
3-5
3-6
3-6

4-1
4-3
4-4
4-5
4-7
4-9

1/15/89

1/15/89

Contents

Lesson 5: Timesavers . 5-1

Short Forms of GED Commands . 5-3

Using Softkeys . 5-3

On-Line Help . 5-6

Lesson 6: Designing An Advanced Circuit

Logging On

Starting a Drawing

Adding Parts to the Drawing

The Version Command

Tips on Versioning

The Rotate Command

Wiring the Drawing

The Route Command

Tips on Using the Route Command

The Dot Command

Tips on Using the Dot Command

The Split Command

Tips on Using the Split Command

Choosing Signal Names

The Reattach Command

Adding an Abbreviation to the Drawing

The Property Command

Adding a Title to the Drawing

Checking a Drawing for Errors

The Error Command

6-1

6-3

6-4

6-6

6-9

6-11

6-12

6-15

6-23

6-25

6-26

6-27

6-28

6-30

6-30

6-31

6-35

6-36

6-40

6-42

6-43

vii

Contents

Lesson 7: Unix And Vi

Using UNIX Windows

Creating a Second UNIX Window ~ .. .

Moving the Second UNIX Window
Resizing the Second. UNIX Window
Switching Between Windows
Closing a Window
Exiting a Second Window

Using UNIX: ls, more
The More Command

The File Command

Getting a Printed Copy of a File
Command Files
Using the Vi Editor

Editing Your Startup.ged File
Basic Vi Commands

Lesson 8: Compiler

What Does the Compiler Do?
Preparing for Compilation
Compiler Directives File

Required Compiler Directives

Other Compiler Directives
Editing the Compiler Directives File

viii

7-1
7-3
7-3
7-3
7-5
7-6
7-7
7-7
7-8
7-9
7-10
7-10
7-11

7-11

7-13
7-15

8-1
8-3
8-4
8-4
8-6
8-7
8-8

1 /15/89

Lesson 9: Packager

Using the Packager

The Root_ Drawing Directive

The Library Directive

Packager Listing File

Packager Error Messages

Flagging Primary Inputs and Outputs

Tips on Adding Properties

Compiler Output: What the Compiler Produces

Compiler Errors
Compiler Listing File: cmplst.dat

Correcting Compiler Errors

Common Compiler Errors & What to Do
Data Flow Through the Packager

State Files

First Run of the Packager

Subsequent Packager Run

Feedback Files

Output Files for Use by Another Program

Output Files for Use by the User
Output Files for Use in Later Packager Runs

Input Files for Later Runs

Physical Part Tables
Packager Checklist

1/15/89

Contents

9-1
9-3
9-3
9-4
9-7
9-13
9-15
9-19
9-21
9-23
9-23
9-27
9-28
9-28
9-29
9-29
9-31
9-33
9-35
9-36
9-37
9-38
9-38
9-39

ix

Contents

Lesson 10: Back Annotation 10-1
The Backannotate Command 10-3

When to Back Annotate 10-3
Using the Backannotate Command 10-4

Moving Pin Assignments in GED . 10-6
Assigning Physical Locations and Sections in GED 10-7

The Location Property . 10-7
Tips on the Location Property . 10-8

The Section Command . 10-9
Tips on the Section Command . 10-10

The Pinswap Command 10-11

Lesson 11: The Gscald Interface Program 11-1
Using GSCALD 11-3

Tips on Using GSCALD 11-4
Output Files . 11-4
Accessing a Physical Design System 11-6

Lesson 12: Scald Directories 12-1
What is a SCALD Directory? . 12-4

Where you see SCALD Directories 12-5
The SCALD Directory in Your Startup.ged File 12-6

The Use Command . 12-7
Multiple Use Statements 12-7
The Search Stack 12-8

The Library Command 12-9
The Directory Command . 12-1 O

The Search Stack Listing: directory <*> 12-12
Borrowing a Drawing from Another User 12-13
The Masterlibrary Command 12-14
The Remove Command 12-16

x 1 /15/89

1 /15/89

Contents

Lesson 13: Understanding Unix 13-1
SCALD Directories and UNIX . 13-3

The UNIX Tree . 13-4
GED Drawings Stored in UNIX . 13-6

Moving Around in the UNIX File System 13-7
The Pwd Command . 13-7
The Cd Command . 13-8
Full UNIX Path Names . 13-8
Moving Faster . 13-13

Lesson 14: Understanding Libraries 14-1
The Library Directory: /usr/valid/lib 14-2
The Master Library File: master.lib 14-5
A Sample Library: Tutorial . 14-5

Reference Drawings . 14-6
A Sample Library Part: DFF . 14-7

Logic Drawings . 14-8
Body Drawings . 14-8
Part Drawings . 14-8

Lesson 15: Starting A New Project 15-1
Setting Up a Directory for a New Project 15-3

Tips on the Copy Command . 15-5

Appendix A: Common Ged Commands A-1

Appendix B: More Vi And Unix Commands . . B-1
Vi Commands . B-2
UNIX Commands . B-4

Appendix C: Default Files In Login Directory. C-1

xi

INTRODUCTION

Introduction

2

Welcome to Tutorial I for your Sun Workstation.
This tutorial introduces you to your new workstation
and software design tools. The tutorial's approach
is hands-on and achievement-focused. Since your
first priority is to get your work done, you start out
right away with schematic entry. By the end of
Lesson 2, you are already wiring a circuit. Using a
subtractor circuit as a model, you proceed step-by­
step through schematic entry. Along the way, you
learn how to check for errors and you read special
tips on how to get the most out of your system. The
next three lessons explain several important con­
cepts that give you the knowledge and power to best
implement your Valid design tools to achieve the so­
lutions you want.

Your system includes a group of software tools that
you use to design systems interactively. This tuto­
rial introduces you to the following programs:

ValidGED (Graphics Editor)
ValidCOMPILER
ValidPACKAGER
Interface Program (GSCALD)

and teaches you enough about UNIX to effectively
use these programs.

1 /15/89

Valid's CAE
Software

TIMING
VERIFIER

1 /15/89

Introduction

Your software design tools enable you to create,
modify, and manage logic designs. The interrela­
tionship of the entire family of Valid's software de­
sign tools for the Sun workstation is shown in
Figure 1.

GED ~FEEDBACK--------~

LOGIC
SIMULATOR

COMPILER

PACKAGER

Figure 1. Software Design Tools

INTERFACE
PROGRAM
(GSCALD)

PHYSICAL
DESIGN
SYSTEM

3

Introduction

ValidGED: The
Graphics Editor

The Compiler

The Packager

4

You use the Graphics Editor (GED) to quickly enter
and modify your design. Using a convenient menu
of commands, you call up bodies (the graphical rep­
resentations of library parts) from a full spectrum of
Valid-supplied, user-created, or possibly third­
party libraries. Then you wire these bodies together
rapidly by drawing lines with the mouse. All or part
of a design may be moved or copied very quickly.

ValidCOMPILER prepares your design for the
Packager (ValidPACKAGER), the Timing Verifier
(ValidTIME), or the Logic Simulator (ValidSIM).
The design you create in GED is run through the
Compiler to check for errors and to convert the de­
sign into a form that can be interpreted by one of
the Valid analysis programs. ValidCOMPILER is
called automatically whenever you run the Packager,
the Timing Verifier, or the Logic Simulator.

ValidPACKAGER reads the Compiler output, tests
your design for loading and fan-out violations, and
assigns physical part designators to the logical parts
in your design. The Packager output files supply all
of the basic information needed by a physical design
system.

1 /15/89

lnterf ace Programs

Additional Analysis
Tools

Introduction

Interface programs read the Packager output and
produce files in the specific format required by a
particular physical design system. You use the same
procedure to run all interface programs. The
Standard Interface Program, available with your
Logic Design Tools (GED-Compiler-Packager), in­
cludes GSCALD, a general-purpose interface pro­
gram. The GSCALD interface produces net lists
and parts lists. By using GSCALD, you learn how to
use the other interface programs.

The basic group of design tools just listed forms the
core of the Valid schematic capture and design veri­
fication system. GED, ValidCOMPil..ER, Valid­
PACKAGER, and the GSCALD interface are all cov­
ered in detail in this tutorial.

Two additional design verification tools, ValidTIME
and ValidSIM, are optionally available. These tools
and hierarchical design techniques are described in
Tutorial II.

The Timing Verifier ValidTIME uses timing models from the libraries to
analyze partial or complete designs for timing viola­
tions and to produce a detailed report of signal be­
havior. An additional program, Plottime, produces
detailed waveform diagrams of the timing behavior
of each signal. ValidTIME can be used throughout
the design cycle to eliminate hard-to-find timing
errors.

1 /15/89 5

Introduction

The Logic Simulator ValidSIM uses simulation models from the libraries
to perform detailed logic simulation of a design at
the component level. This powerful interactive pro­
gram gives you complete control over the simulation
and allows you to display signal behavior as
waveforms or instantaneous values.

Tutorial
Overview

This tutorial is made up of 15 lessons that divide
naturally into three sections. The first section, Les­
sons 1 through 6, teaches you the basic GED com­
mands by stepping you through an entire design en­
try cycle.

Tutorial Library
Installation

6

The second section, Lessons 7 through 11, teaches
you how to use the Compiler, the Packager, and the
GSCALD interface and how to perform back anno­
tation of your drawings. You also learn a few UNIX
commands and the basic commands of the screen
editor, vi. There is just enough UNIX and vi for you
to get your job done.

The third section of the tutorial, Lessons 12 through
15, explains the basic architecture of UNIX and
your system, where drawings and libraries are
stored, and how to manipulate your drawings and
files to best use the power and capabilities of your
system. The tutorial concludes with a brief proce­
dure to get you started on a project of your own.

A tutorial library is provided with your system. This
is a library of components for use with the tutorial.
Make sure that you have installed the library before
you use this tutorial.

1 /15/89

Signal Syntax

Command
Syntax

1 /15/89

Introduction

Signal names use a compact syntax to convey design
information. All signal names in this tutorial use
Signal Syntax 1. If your site uses a different signal
syntax, you will have to make minor modifications
to the signal names used in Lessons 6 through 11.
For more information on signal syntax, consult the
SCALD Language Reference Manual.

GED commands can be entered in either uppercase
or lowercase. The tutorial makes no attempt to de­
scribe all the possible syntax options of commands.
For additional information on specific commands,
see the appropriate reference manual.

7

Introduction

Documentation
Conventions

8

• Commands that you enter are displayed in
typewriter font. Italics are used for
the parts of a command or a character string
that are variable, as in:

Your working directory defaults to
susan.wrk where susan is your login
name.

• System responses are displayed in
typewriter font.

• When embedded within the text, GED com­
mands appear in lower case bold and UNIX
commands appear in lower case italics.

• A function name enclosed in a double box
([l) means press the key named in the
box.

• Steps you are to perform are numbered with

large, bold numerals (1, 2, etc) .

• Special helps and tips for your information
are marked by a small, bold checkmark (v).

• The term click is used exclusively for the left
mouse button. Click means place the cursor
on an item, press the left mouse button, then
release the button.

The symbol \J illustrates the click action.

1 /15/89

Introduction

The Lesson Plan To let you quickly find a particular topic or lesson,
here is a summary of the contents of each lesson in
the tutorial.

Lessons 1 - 6: GED The first six lessons of the tutorial introduce the
Graphics Editor (GED) and explain how to use it to
create and modify drawings. A summary of GED
commands is provided in Appendix A.

Lesson 1: GED - When you have finished with this lesson, you will
Getting Started know how to:

• Log on and off the system
• Access the Graphics Editor (GED)
• Recognize the GED screen and menu
• Use the mouse to select commands
• Type in commands at the command prompt
• Tell GED what libraries of components you

want to use
• Check the name of the drawing you are

editing
• Exit from GED

Lesson 2: Drawing When you have finished with this lesson, you will
know how to:

• Place library parts (bodies) on the screen
• Wire bodies together
• Move bodies and wires
• Correct wiring errors
• Refresh the screen
• Name signals
ca Modify your drawing
• Save a drawing
• Get a hardcopy of a drawing

1 /15/89 9

Introduction

Lesson 3: Finding and
Retrieving Drawings

When you have finished with this lesson, you will
know how to:

• Get a list of your drawings by name
• Edit an existing drawing
• Edit a new drawing
• Understand drawing name conventions

Lesson 4: Looking When you have finished with this lesson, you will
know how to use the zoom command to:

• Center a drawing on the screen
• Enlarge a portion of a drawing to fill the

screen
• Zoom in to enlarge a view of a drawing
• Zoom out to reduce a view of a drawing

Lesson 5: Time Savers When you have finished with this lesson, you will
know how to:

• Use the short form of GED commands
• Use softkeys to enter GED commands
• Get help on GED commands

Lesson 6: Subtracter When you have finished with this lesson, you will
know how to:

• Draw a more complex circuit
• Select versions of a library part
• Rotate library parts
• Wire parts together automatically
• Separate overlapping objects
• Check wire connections
• Check signal name assignments
• Attach properties
• Check for logical errors

10 1 /15/89

Lessons 7 - 11:
Completing the
Design Cycle

Lesson 7: UNIX and Vi

Introduction

The next five lessons of the tutorial teach you how
to use the Compiler, the Packager, an interface pro­
gram (GSCALD), and the back annotation feature.
This section also introduces enough UNIX and vi for
you to use your design tools effectively. A summary
of UNIX and vi commands is provided in
Appendix B. A brief description of each default
command file and your other default files is pro­
vided in Appendix C.

When you have finished with this lesson, you will
know how to:

• List files and directories to the screen
• Edit text files with the screen editor vi
• Edit your startup.ged file

Lesson 8: The When you have finished with this lesson, you will
Compiler know how to:

• Edit the Compiler directives file
• Specify drawing names and locations
• Specify libraries used in the design

1 /15/89 11

Introduction

12

Lesson 9: The
Packager

When you have finished with this lesson, you will
know how to:

• Edit the Packager directives file
• Run the Packager
• Consult the Packager listing file (pstlst.dat)

for error information
• Correct typical Packager errors
• Consult the Compiler listing file (cmplst.dat)

for error information
• Correct typical Compiler errors
• Attach physical properties to nets

You will also understand the flow of data through
the Packager and the use of State files and Feedback
files.

Lesson 1 O: Back When you have finished with this lesson, you will
Annotation know how to:

Lesson 11: The
GSCALD Interface

Program

• Back annotate your schematic with physical
reference assignments made by the Packager

• Manually assign physical reference designa­
tors CU-numbers)

• Manually assign physical sections

When you have finished with this lesson, you will
know how to:

• Create an interface command file
• Use the Packager output to run GSCALD
• Run other interface programs

1 /15/89

Lessons 12-15:
Using Your Design
Workstation
Effectively

Lesson 12: SCALD
Directories

Lesson 13:
Understanding UNIX

1 /15/89

Introduction

The last section of the tutorial explains SCALD Di­
rectories, the UNIX file system, and the structure of
Valid-created libraries so that you can more effec­
tively use your design tools.

When you have finished with this lesson, you will
know how to:

• Recognize SCALD Directories
• Use multiple SCALD Directories
• Get a list of your current directories
• Get a list of the parts in one of your libraries
• Change the search order of your directory

stack
• Borrow a drawing from another user

When you have finished with this lesson, you will
know how to:

• Identify your current UNIX directory
• Move around in the UNIX file system
• Use full UNIX pathnames
• Print UNIX files to the screen

You will also understand where your GED drawings
are stored in the UNIX file system.

13

Introduction

Lesson 14:
Understanding Libraries

Lesson 15: Starting a
New Project

14

When you have finished with this lesson, you will:

• Know where libraries are stored
• Understand the structure of Valid-created

libraries
• Be able to locate and use the master.lib file
• Recognize the purpose of each drawing and

file in a Valid library
• Understand how alternate models for compi­

lation are stored for each library part
• Be able to use libraries effectively

When you have finished with this lesson, you will
know how to:

• Make a new directory in which to store a new
design project

• Copy the necessary files into this new
directory

• Edit your startup.ged and compiler.cmd files
for a new project

1/15/89

LESSON 1

Getting Started

1-2

In this lesson, you learn how to:

• Log on and off the workstation

• Access and exit· GED

• Use the GED menu and the mouse

Before you can begin using GED, you need:

• A Sun workstation with UNIX and SCALD
application software installed and running.

• The tutorial library installed on the system.

• A SCALD user account created by the sys­
tem manager.

1 /15/89

Logging On

1 /15/89

Getting Started

The following procedure assumes that the worksta­
tion is running and that a full screen with the login:
prompt is displayed. To log on:

1 Enter your user name at the prompt and
press ((Return J).

2 Enter your password at the password:

prompt and press ([Return J).

If your account does not have a password,
you are not asked for a password. If this is
your first time logging in and you don't know
your password, see your system manager.

When you have successfully logged in, the UNIX
system prompt appears. The percent symbol (%) is
the default prompt; you may have a different
prompt.

1-3

Getting Started

Using the Sun
Window System

1-4

GED runs in a window created with the Sun Window
System. To create a GED window:

1 Type

sun tools

and press ([Return J). A set of icons appears
on the screen.

2 Select the /bin/csh icon by using the mouse to

position the cursor over the icon and clicking

the left mouse button.

The Shelltool - /bin/csh window appears.

3 Move the cursor inside the window and type:

ged (l Return l)

A new window is created and the Graphics
Editor screen shown in Figure 1-1 is
displayed.

1 /15/89

Getting Started

The GED Screen When you enter GED, the GED window is automati­
cally created.

~D. LOGIC. 1. 1 =rn 0.1 s CATIE:.~ , ·.·.·.·.·.·.·.•.•.•.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.:·~······ ·.·.·.· ·.·.•.·.·.·.·.·.· ·.·.·.·.•.~
(Status Line J

(Command

[Message Window J
~ :.: ... :.:.:.~.·.: ... ,
Valid Logic Systems, Inc. Graphics Editor
9.0 sun3-63 beaucoups Thu Nov 17 17:05:42 PST 1966
New drawing started ..

Figure 1-1. Typical GED Screen

The GED window includes:

• The cursor

• The command menu

• The message window

• The status line

Menu] ~

II HELP I)

, llSHOW ~11

II YERSIOM 11
Ii &ROUP 1)

II SPLIT I)

II COl'I' 1)

II DELEIE 11
llMO'VE u
llWIRE 1)

II 200N .. 11

1•
Ii SI6NAME 1)

II CHANGE I)

II PROPERTY 11
II ROUTE I)

~ llDIRECTOR°'+I)

II UNDO 1)

II REDO I)

II Oth•r• .. 11

II EDIT I)

1/15/89 1-5

Getting Started

The Cursor The cursor moves around the screen as you move
the mouse. You can choose a command from the
menu by pointing to it with the cursor and clicking
one of the buttons on the mouse. Later in the tuto­
rial, you learn how to use the cursor and mouse to
draw lines, position library parts, and change the
size or view of your drawing.

The Command Menu The command menu is the boxed list on the right
side of the screen. It contains many of the GED
commands. To select one of these commands, move
the mouse so that the cursor is positioned within the
desired box and click any button on the mouse.
That box is then highlighted to remind you which
command you are using.

1-6

Take a minute to look at the commands listed in the
menu. Most of them are self-explanatory, and you
learn later how each one of them works. One com­
mand on the menu is not self-explanatory and is
very important - this is the semicolon (;). The semi­
colon indicates the end of a command. It tells GED
that you are finished using one command and are
ready to use another. You don't need to use the
semicolon after every command, just at certain
times. It's very useful when you choose the wrong
command and want to go back and choose another.

When you use the keyboard to enter a GED com­
mand that is not on the menu, the command ap­
pears highlighted ,in the bottom box of the menu.
This way you always know which command you are

1 /15/89

The Message
Window

If you make a mistake during
command entry (before press­
ing [(ReturciJ)), you can correct
it by using the backspace key
and retyping the command
correctly.

1 /15/89

Getting Started

currently using, and you can execute it again without
retyping it.

The message window is at the bottom of your
screen. This is where you type in commands to
GED and any text you want to appear on your
drawing.

There are more GED commands than appear on the
menu. To use a command that is not on the menu,
you type in the command at the keyboard and then
press ([Return l).

GED output that requires more than one message
window page pauses after each page and inquires:

More? [ync]

The possible responses are:

y or (C Return l)

nor q

c

Yes. Present more information.

No. Do not print any more
output.

Continue. Print the entire mes­
sage output without pausing for
page prompts.

1-7

Getting Started

The Status Line The status line contains three items:

The name of the drawing you
are currently editing

The grid setting Your current
SCALD directory

The grid is off by def a ult
because you usually don't
need to see it.

For more information on
grids, see the ValidGED
User's Manual.

1-8

When you access GED, UNNAMED. LOG I c. 1 . 1 is
listed as the name of the drawing. You learn later
how to change the name of a drawing, and how to
save and retrieve drawings. For now, just remember
that this is where you can check the name of the
drawing you are currently editing.

The grid setting has a default value of 0.1 5. This
means that there is a grid point every 0.1 inches,
and that every fifth grid point is visible when you
turn the grid on.

We strongly recommend that you do not change the
grid setting. In GED, components and wires can
only be added and connected at grid points. The
Valid component libraries depend on the default
grid setting to function properly.

The current SCALD directory is where your present
drawing can be found, and where it is stored (unless
you specify otherwise). When you enter GED, your
working directory defaults to:

usrlcatie. wrk

1 /15/89

Specifying
Libraries

Exiting GED

The quit command is
the same as the exit
command.

1 /15/89

Getting Started

The word catie is replaced by your actual login
name. Your default working directory is determined
by the system manager when your account is cre­
ated. You learn later (in Lesson 12) how to specify
other directories and more about directory
structures.

Before you begin to draw, you must tell GED which
libraries of components you require. Type:

1 i brary tutorial [Returnl)

This command lets you use the library designed for
use with this tutorial.

To exit GED and return to the system prompt, type:

exit [Return l)

This command does not save your current drawing.
If you issue this command when your drawing has
been modified but not written, you get a warning
message. To save the drawing, use the write com­
mand, then the exit command. To exit without sav­
ing the modifications, issue the exit command twice.

1-9

Getting Started

Exiting the Sun
Window System

A menu box is "selected"
when it is highlighted in re­
verse video.

1-10

When you exit GED, you are automatically returned
to the window from where you entered GED. To
exit the suntools window:

1 Move the cursor outside the GED window

and press and hold the right mouse button.
The following menu is displayed:

ShellJ'ool
CommandTool
MailTool
TextEditor
DefaultsEditor
Icon Editor
DbxTool
Pref Meter
Gra__o_hicsTool
Console
Lock Screen
Redisplay All
Exit Suntools

2 While still holding the right mouse button,
slide the cursor down to the Exit Suntools
menu box. When the box is selected, release
the right mouse button. When you release
the button, the message appears:

Press the left mouse button to confirm
Exit. To cancel, press the right mouse
button now.

3 Press the left mouse button. The UNIX
prompt appears in the full screen. You can
now log off the system by typing exit and
pressing ([Return J).

1 /15/89

.ESSON 2

Drawing

add

delete

select

undo

zoom; (Refresh)

2-2

This lesson introduces the most basic GED com­
mands by showing you how to draw a simple circuit
and how to correct your mistakes as you go.

New Commands

connect copy

hard copy move

show signame

wire write

1 /15/89

A---~----\\

B---r--t----tc.

SP

4P

------, 2Ff'm

If you exited GED in
Lesson 1, type ged
to redisplay the GED
screen.

1 /15/89

Drawing

·The circuit used for this lesson is a full adder
circuit, as shown in Figure 2-1.

2P

lP
3P

...__ __ -1 2AND

Figure 2-1. Full-Adder Circuit

To begin creating the full-adder circuit, you first
need to add some library parts from an installed li­
brary onto the screen. Library parts are also called
bodies. To bring a library part, or body, onto the
screen, you use the add command.

2-3

Drawing

The Add
Command

Ltff'H:D. LOGIC. 1. 1

~ aad exor

2-4

GRID 0. l 5

To add an EXOR part to the drawing, type:

add exor ([ReturnJ)

Move the mouse and see how the EXOR body fol­
lows the cursor around the screen.

To release the EXOR and place it on the screen,
click the left button on the mouse.

CATIC.loR< (I HELP 1)
[I SHOW ;;J)
II VERSION 1)
(I GROUP 1)
(I SPLil I)
(I CDP'I' 1)
[I DELETE I)
[INOVE 1)
(I WIRE I)
II ZOOM .. 1)
[Ii 1)
II SIOHAME 1)
II CHANGE I)
[I PROPERrY 1)
II ROUTE I)
[lnIREClDR'l'~I)

[I UNDO I)
(I REDO I)
(I Others .. 1)
11~1J1

1 /15/89

~D. LOGIC. 1. l GRID 0. l 5

.$.. aaif exor

1 /15/89

Drawing

Move the mouse away and click the left button
again; another EXOR is now following the cursor.
To place this EXOR on the screen, click the left
button again.

CATIE:. L<A< II HELP ii
[I SHOW .. 11
(I VERSION I)
[I GROUP 11
[I SPLIT I)
II COPY 11
(I DELETE 1)
[IMOVE I)
(!WIRE 1)
[1200M ~1)

Iii I)
(I SIGNAME I)
[I CHANGE I)
(1 PROPERTY I)
(1 ROUTE 1)
(lo I REC T ORY;j)

II UNDO 1)
[I REDO I)
[I Oth11rs ;J)
l11M 1

2-5

Drawing

.'al1d 1,rarn1rs Fnitnr (f,f[)) 9 f1

2-6

lJff't"ED. LOGIC. 1. 1

~add exor
::·, 2and

j"

GRID G!l.1 5

To stop adding EXORs and add another part, type
the name of another part. This time type:

2and ([Return])

Now place the 2AND on the screen .

CATIE. loA< (I HELP I)
(I SHOW .. 1)

II VERSION 11
(I &ROUP 1)
(I SPLll 11
(I COPY 11
(I DELETE I)
[!MOVE 1)
(IWIRE I)
(I ZDDH .. ,,
(Ii 1)
II SIGNAME ii
II CHANGE I)
II PROPERTY 1)
[I ROUTE I)
[IDIRECTDAY,.1)

(I UNDO I)
(I REDO 1)
(I Other& •I)
Ir.Mi ll

1 /15/89

The Delete
Command

The Move
Command

1 /15/89

Drawing

To delete a body you don't want, just choose the
delete command from the GED menu, move the
cursor to the center of the body, and click the left
button on the mouse. You can delete bodies, wires,
or any other object on the screen.

To move a body after you have added it to the
drawing:

1 Choose the move command from the GED

menu.

2 Move the cursor to the cen_ter of the body you
want to move, click the left button, and move

the mouse. You see the selected body move

with the cursor.

3 Move the body to a new location and click the

left button to release the body.

Now use the delete and move commands to make
your screen look like Figure 2-2.

2-7

Drawing

l..tff'K:D. LOGIC. 1. 1 GRID B.1 5

Tips on Drawing

2-8

CATIE:.i..RI<

Figure 2-2. Half-Adder

Y' Adding

II HELP
,,

[I SHOW .. 1)

II VERSION 1)
II GROUP I)
(I SPLIT 1)
(lcoPY I)
(I DELETE I)
(IMDYE I)
[IWIRE I)
II ZDON .. ,,

II SlllMAME 1)

II CHANGE ,,

II PROPERTY ,,

II ROUTE 1)

(loIRCClDRY;u

[I UNDO I)

(I REDO I)
II Others •I)
(IADD It

If when you try to add a part you get the mes­
sage "Could not find device of
name : 2AND," the problem may be:

• You mistyped the name of the part.

• The library to which that part belongs has
not yet been made accessible to GED.

• The library has not been installed on your
system.

1 /15/89

The Undo
Command

If you back up too far,
there is also a redo
command. See the
ValidGED Command
Reference Manual for
more details.

1 /15/89

Drawing

To use this tutorial, you need the library named
"tutorial." If you did not do so already, type:

1 i brary tutorial ([Returnl)

This command makes the tutorial library avail­
able for use by GED. If you still cannot add an
EXOR, make sure that the tutorial library is in­
stalled on your system.

¥' Deleting and Moving

To delete or move a body, move the cursor to
the center of the body and click the left button
on the mouse. With the move and delete com­
mands, the left button selects the origin of the
body nearest the cursor (the origin of a body is
usually at its center). If you are too far from
the desired origin, the command may affect an
object other than the one you want.

The undo command is very simple. When you
make a mistake, it undoes the last command you
gave. If you select undo again, it undoes the next
previous command. You can back up one step or
many with the undo command. You cannot back up
beyond:

• The last write command

• The last edit command

• The beginning of the editing session

Now you can learn how to wire the bodies together.

2-9

Drawing

The Wire
Command

2-10

The wire command uses the different buttons on the
mouse. Up to now, you have used only the left but­
ton on the mouse. With the wire command, you use
the right and left buttons. Here are the rules:

• The end of the wire is at the center of the
crosshair.

• Use the right-hand button once to start or
end a wire on a pin of a body.

• Use the left button once to start or end a wire
on another wire or on the open screen.

• Use the left button to put an additional 90
degree bend in a wire (one click).

1 /15/89

Drawing

Follow these steps to wire the bodies of Figure 2-2
together:

1 Select the wire command from the menu.

2 Move the mouse so that the cursor is on the
upper input pin of the EXOR.

al1d Graphics Editor (GED) 9 0 ~ID0.15 .. ~~!!TI~E.!i..Rt<!ll,!!!!!!~
[I HELP ll ~D. LOGIC. 1. 1

II SHOW
;J,

II VERSION I,
(I GROUP I,
II SPLIT

,,
(I COPY

II; ,,
II SIOllAHE I,
[I CHANGE ii
[I PROPERTY ,,

[I ROUTE It
!101RECIDRY;;Jl

~.~M~--------------------------ot[lllNDO I)
G DELETE (I REDO 1)
'f ~IRE

1 /15/89

II Others ot!l

[IADD ,,

3 Click the right-hand button on the mouse.

4 Move the mouse to the left and draw the
wire.

2-11

Drawing

5 To end the wire, click the left button twice.

l..tff't£0. LOGIC. 1. 1 GRID 0.1 5 CATIC. i.Rt< If HELP
,,

II SHOW .. 1)
II YERSIOll I)
II GROUP I)

~
ll SPLIT I)
(!COPY I)
II DELETE I)
(!HOVE I)

·,,J1d 1,r,.rh1r" Fn1tor ~1,F'•J q 0

l.NA"CI), LOGIC. 1. 1 GRID 0.1 5

l1=m-e

6 Move the mouse to the lower pin of the
EXOR.

7 Repeat steps 3 through 5.

CATIC.WRt< II HELP 11
(I SHOW ;J)
(I YERSIOll 1)
II GROUP 1)
(I SPLIT 1)

~
[I COPY 11
!I DELETE I~
(IKOYE I)
1 1~.n 1-ll

2-12 1 /15/89

a11r;I Graphics· Editor (GED) 9.0 ' ·

UNN~CD. LOGIC. 1. 1 CRID 0.1 5

1 /15/89

Drawing

8 Move the mouse to the upper input pin of the

2AND and click the right-hand button.

9 Move the mouse to the left about an inch and

up toward the EXOR. The wire now has a
bend in it.

10 Continue the wire upward until it intersects
the wire from the upper input pin of the
EXOR.

11 To attach the wire at the intersection, click

the left button once.

CATIC.WRK II HELP I)

[I SHOW :ti)
[I VERSION I)
[I GROUP 1)
II SPLIT I~
II C:OPY I)
[I DELETE I)
[!HOVE 1)
11:11;! ~
II ZOOM .. 1)
(11 I)
II SIGHAME I)

12 Repeat steps 8 - 11 to wire the lower input of

the 2AND to the lower input of the EXOR.

2-13

Drawing

Ltff'r'ED. LOGIC. 1. 1 GRID El.1 5

Tips on Wiring

2-14

Now you should have a half-adder on your screen,
as shown in Figure 2-3.

CATIE:.WRK II HELP I)

II SHDW ;i1
(I VERSION 11
II GRDUP 11
II SPLll ll
lltOPY 1)
[I DELETE I)
(IMDYE 1)

ll:ilil II
(lzooH .. 11

Iii ,,
II SIGMAME 11
[I CHANGE 11
[I PROPERTY ll
II ROUTE 11
liDIREClDRY!!il

(I UNDO I)
(I REDO 1)
II Others ;Jl
llADD ll

Figure 2-3. Half-Adder

Wiring problems are very common. When you first
use the wire command, your drawing may not look
as neat as you would like. Here are some tips:

"" Ending a wire

When you want to end a wire in free space, be
sure to click the left button twice before you
move the mouse again. If you click only once

1 /15/89

LS00

1 /15/89

Drawing

and move the mouse, you get a bend in the wire
and it continues to follow the mouse.

""" Aligning wires and pins

When you attach wires, sometimes it is difficult
to align the last wire with the attachment point.
If you "fix" the second-to-last bend of a wire,
rather than the last bend, you retain the flexibil­
ity of movement you need to align the last wire
and the attachment point.

For example, connect two parts, wiring from the
left part to the right part. If you start the wire at
Point A and click the left button at Point C (the
last bend you want to place in the ·wire), you
must estimate the placement of Point C so that
the wire aligns with the pin at Point D. If
Point C is not even with Point D, you may end
up with an unwanted jog in the wire (shown as a
thick line in the figure below).

Point A Point 8

Point C

2-15

Drawing

2-16

To avoid the alignment problem, click the left
button at Point B (the second-to-last bend in
the wire) instead of Point C. Then use the mid­
dle button to change the direction of the bend in
the wire. Now Point B is fixed on the screen
a.nd the wire flexibility extends from Point C.
You can simply extend the wire from Point C to
Point D and press the right button to connect the
two points.

Point A Point B

Point C

1111' Realigning parts and wires

Use the move command to change the shape of
wires and the alignment of bodies. When you
move a body that has wires attached to it, the

1 /15/89

l.JN'!At-ED. LOGIC. 1. 1

1 /15/89

!Jll

GRID 0. 1 5

Drawing

wires move too. To move a wire and leave the
attached bodies in place:

1 Select the move command from the

menu.

2 Point to the wire, click the left button on
the mouse, and then move the mouse.

3 When the wire is the shape you want,
click the left button to release it from the
mouse.

""' Wiring pins together

A common wiring problem is illustrated in the
following figure.

(I HELP 1)
(ls11ow ~ll
II VERSION ll
II GROUP ll
(I SPLIT I)
II COPY

,,
--~ E:XO~ II DELETE 1)

(IHOVE I)
li:1rn n
II ZOOM ~1)

(I; ,,
(I SlllllAHE I)
llfCHANGE JI

I
Here, the vertical wire from the 2AND passes so
close to the body that it attaches to both input pins

2-17

Drawing

The Refresh
Command

2-18

instead of just one. To find out where the vertical
wire is attached, type:

show connect (CReturnJ]

GED then indicates (with an asterisk) where it rec­
ognizes pin connections.

To correct the error, delete the vertical wire seg­
ments and rewire. Type

zoom ; (CReturnJ)

to refresh the screen. Then, use show connect
again to make sure that there are pin connections
only where you want them.

"" Removing extra wire segments

Use the delete command to remove unwanted
wire segments.

The command you used in the previous paragraph is
called the "refresh" command. This command
redraws the screen without changing your drawing.

To use this command, type:

zoom ; (CAeturnJ)

The refresh command is used any time you want to
redraw the screen.

1 /15/89

The Select
Command

..
~·

~D:..J.i.GI~.1 ,
~

~JU

GRID 0.1 5

Drawing

The fastest way to make your half adder into a full
adder is to use the select command to define the
half adder as a group, and then to use the copy
command on the entire group. Follow these steps:

1 Type:

select ([Return])

2 Click the left button at any corner of the half

adder. A stretchable rectangle is attached to
the cursor.

CATIE.WR!< [I HELP I)
II SHOW .. 1) -t--------------. (I VERSION I)

I J)E:XOR
I
I
I
I
I
I
I '2RND

I
I

1 /15/89

I II GROUP I) I
I [I SPlll I)
I

(I COPY I) I
I II DELETE I~ I

(IKDVE I) I
I (I WIRE I)
I

_J II ZOOM ~1)

3 Move the cursor to position the rectangle

around the circuit and click the left button to
complete the selection. You have now de­

fined the half adder as a group. The rectan­

gle disappears from the screen, the group is

2-19

Drawing

You can define up to
2 6 different groups
on a single page of. a
drawing.

If you click the left button,

you select only the ~·~
object (body, note,
or wire) that is clos-
est to the cursor.

highlighted, and the following message ap­

pears:

Using group A
Group contains:

2 bodies
8 wires

4 Next, select the copy command from the

menu.

5 Move the cursor within the defined group and

click the center button to select the entire
group.

6 Now move the cursor to the right and you see
a copy of the entire group following the cur­
sor. To place the group on the screen, click
the left button.

l.HR'ED. LOGIC. 1. 1 GRID 0.1 5 CATIE.i.RC (I HELP I)

2-20

Don't worry about plac­
ing the group exactly
where you want it. You
can easily move it later.

(ISHOW

(I VERSION

II GROUP

(I SPLIT

l•~·l!ii
II DELETE

llHDVE

ilWIRE

•I)
I)
I~
I)

!I
I)
I)
I)

1 /15/89

UlNl'M':D. LOGIC. 1. 1 GRID 0. 1 5

'------i 2AND

~Aill)

}\~
.. · ...

:t~:

This is pin-to-pin ~
wiring. You start the 0 0 I
wire with one press of
the right-hand but-
ton, and end the wire
with one press of the
right-hand button.

1 /15/89

Drawing

To complete the full adder shown in Figure 2-1 at
the beginning of this lesson, you just need to add six
more wires and a body. Follow these steps:

1 Add a 20R to the screen at the bottom right.

Cl'ITJE.i.JRI< (i HELP ll
Ii SHOW .. 1l
Ii VERSION ll
II GROUP ll
11 SPLIJ I)

Ii COPY 1)
Ii DELETE I)
LJNOVE 1)
llWIRE I)

Ii ZOOM .. 1)
Iii I)

Ii SI6NAME ll
Ii CHANDE I)

Ii PROPERTY 1)
II ROUJE I)
(IDIRECTDR"+I)

(I UNDO I)

(I REDO 1)
II Others .. It
!tM·-C

2 Wire the output from each 2AND to an input
of the 20R:

1) Select the wire command.

2) Move the cursor to the lower input pin
of the 20R.

2-21

Drawing

~o•J
3) Press the right-hand button once.

4) Move the cursor left and down, and
watch the wire follow.

~OOJ
5) Click the left button once to bend the

wire again.

6) Move the cursor to the left and upward,
until it is level with the output pin of the
second 2AND.

rooJ 7) Click the left button once to bend the
wire again.

~o~ 8) Press the right-hand button once to end
the wire.

~.LOGIC.1.1 GRID 0.1 5 CATIE.i.R< llHELP I)
II SHOW ~1)

(I VERSION 1)
II GROUP 1)
(I SPLIT 1)
II COPY 1)
(I DELEJE I)
llMOVE 1)
(IWJRE I)
I ZOOK ;i

2-22 1 /15/89

~D. LOGIC. 1. 1 GRID 0.1 5

Drawing

3 Now wire the upper input of the 20R to the

output pin of the other 2AND.

CFITIE:. WRt< II HHP 11
(I SHOW ~11
II YERSIDN I)
[I GROUP 1)
II SPLIT ll
(1 COP'I' 11
(I DELETE ll
(IMDYE 11
(!WIRE 'l
12011M .. 1

4 Continue the output wire of the 20R to the

right. Use the right-hand button to start the

wire and two clicks of the left button to end
the wire.

alld Graphics Editor (GEO) 9.0 , · .

\..N'RiED. LOGIC. 1. 1 GRID 0.1 5 CFITIE. WRt< II HELP I)
II SHOW ~11
II VERSION 11
(I GROUP I)
(1 SPLIT 1)
!lcopv 11
II DELUE 11
llMDYE 11

1/15/89 2-23

Drawing

2-24

5 Next wire the right-hand EXOR:

1) Continue the output pin of the EXOR to
the right. Use the right-hand button to
start the wire and two clicks of the left
button to end the wire.

2) Now wire the upper input pin to the out­
put pin of the other EXOR (pin-to-pin
wiring). Use the right-hand button to
start and end the wire.

3) Continue the lower input pin out to the
left. Use the right-hand button to start
the wire. Click the left button once to
put a second bend in the wire. Click the
left button twice to end the wire.

II HELP ll
(I SHOW ~1,
(I VERSION I,
(I GROUP I,
II SPLIT ll
(I COPY I)
II DELETE I,
(!MOVE 1)
!lwIRE I,
(I ZOOH ;n

6 Finally, use the move command if you want
to realign the bodies.

Now the wiring of your full adder is complete.

1 /15/89

Wiring Concepts

1 /15/89

Drawing

Now that you've done some basic wiring, you prob­
ably want to know more about the mouse buttons
and why you use different ones at different times.

Remember:

v The right-hand button is used to wire pin-to-pin

V' The left button is used to start and stop wires on
the open screen and at other wires

This is because the right-hand button causes the
wire to attach to the nearest vertex of a pin or wire,
and the left button causes the wire to attach to the
nearest grid point.

A wiring vertex, by definition, is found at each of
these locations:

• A pin on a body

• The end of a wire

• A bend in a wire

If you want to start a wire on the open screen and
you press the right-hand button by mistake, you'll
notice that a long wire appears. By pressing the
right-hand button, you have selected the nearest
vertex, even if that vertex is halfway across the
screen.

It is also important to get in the habit of using the
right-hand button to wire pin-to-pin. If you move
the cursor right to the pin and press the left button,

2-25

Drawing

Original I wire

1st L click

2nd
click

2-26

r~~

the wire will probably start where you want it to.
But since the left button selects the nearest grid
point, if you are not exactly on the pin, the wire may
start from a grid point that is not a vertex. To make
sure you wire correctly, get in the habit of pressing
the right-hand button when you want to start or end
a wire on a pin. By using the right hand button, you
select the nearest vertex, and you are sure your wire
starts on the pin you want it to.

The middle button is used during the wire command
to change the shape of the wire. Draw a right angle
wire on the screen and, before you set the end of the
wire down, press the middle button several times.
The wire cycles through three different shapes (two
angled and one diagonal). After you use the middle
button to change the shape of the wire, the selected
shape remains in use until you select another shape.

Figure 2-4 is a wiring reference chart that shows the
most common wire shapes and the buttons used to
draw them.

The following conventions are used in the chart:

• Button click points are shown as a filled dot.

• Press all buttons once unless indicated
otherwise (2).

• All wiring shown is left-to-right.

1 /15/89

Drawing

• • I •

•

LEFT/LEFT (2) LEFT/LEFT/LEFT (2)

I
•

LEFT/CENTER/LEFT (2) LEFT/CENTER (2)/LEFT (2)

=0~·------------·
=D~· -1

•
RIGHT/LEFT (2) RIGHT/LEFT/LEFT (2)

RIGHT/RIGHT RIGHT /LEFT /RIGHT

Figure 2-4. Wiring Reference Chart

1 /15/89 2-27

Drawing

Finishing a
Schematic

The Signal Name
Command

2-28

To make your full adder circuit into a finished sche­
matic, you must:

• Put signal names on the input and output
signals

• Save the drawing

• Print a hardcopy

This completes your first basic drawing.

To name the signals on a schematic, you use the
command signame. With this command, you not
only add a signal name onto the drawing so you can
refer to it, but you also associate this name with a
particular signal (wire). After the name is associ­
ated with the correct signal, the name that appears
on the drawing (the text string) remains associated
with the correct signal even if you move the signal
name. Because of this association, the signame
command involves two steps:

1 Type in the name of a signal.

2 Point to the wire where you want the name
attached.

If you have many signals to name, it is awkward to
type in a name and then point to a signal, and then
type in another name and point to another signal.
So the signame command lets you type in all the
names and then point to each signal in turn. To

1 /15/89

1/15/89

Drawing

name the signals on the adder circuit, foIIow these
steps:

1 Select signame from the GED menu.

2 Type:

A ([Return))

The 'A' is attached to the cursor.

3 Type the following signal names. Be sure to

press ([Return J) after each name:

B

C IN
SUM
C OUT

2-29

Drawing

Lttt"t'ED. LOGIC. 1. 1 GRID 0.1 S

2-30

4 Now move the mouse so that the cursor
points to the wire for signal A and click the
left button once. You'll see the name A ap­
pear near the wire.

CATIE.loR< [I HELP I)
[I SHOW .. 1,
II VERSION 1)
(I GROUP I)

CXOR
II SPlll

,,
ii COPY ,,
II DELETE ,,
(IMOVE ,,
(!WIRE ,,
[I 200K .. ,,
[I; ,,
!1<m:1M1w!I
(1 CHANGE ,,
[I PROPERTY 1)
(1 ROUTE ,,
[IDIREClORY,.ll

(I UNDO I)
[I REDO I)
[I Others .. ,,
(I DISPLAY IJ

5 Next move the cursor to signal B and click
the left button.

6 Move to C IN and click.

7 Move to s UM and click.

1 /15/89

ahrl Graphics Edltor (GED) 9

~D. LOGIC. 1. 1

A--~-"""
B _ _,_..,._ _ _,,

GRID 0. 1 S

C IN....._-t--+------~

1115/89

Drawing

8 Move to C OUT and click.

9 Select ; (semicolon) from the menu to end

the signame command.

CATIE:.WRI<

SUM

c OUT

[IHELP I)

(JSHOW .. ,,
[l VERSION 1)
Ii GROUP 1)
(i SPLIT 1)
Ii COPY

,,
(i DELETE I)
(!MOVE I)

0 ii
Ii SillNAME I)
II CHANGE /)

(I PROPERTY I)
[I ROUTE It
[iDIRECTDRY,.11

[I UNDO I)
(i REDO !)
Ii Others .. 1)

[I DISPLAY I)

All of the primary inputs and outputs of the adder
circuit now have signal names. The drawing is now
complete.

2-31

Drawing

The Write Command

Path Properties

2-32

Now that your drawing is complete, you should save
it. To do so, use the write command. Type:

write adderckt ([ReturnJ)

This command tells GED to save the current draw­
ing in the current working directory under the name
"adderckt."

After you give this command, two types of informa­
tion appear· on the screen: path properties (or
P-numbers) and status messages.

When you write a drawing, GED assigns each li­
brary part on the drawing a reference number. This
number is always an integer followed by the letter
"P." These P-numbers designate the locations of
each of your logical parts. They are logical location
designators. The P-numbers are used by the Com­
piler, the Packager, and the other verification pro­
grams. The P-number is also called a path property,
because it uniquely identifies the path to a particular
library part on your drawing.

The first time you save a design, GED assigns
P-numbers to all of the library parts. These P-num­
bers become part of your drawing. The next time
you save the design, GED keeps any previous
P-number assignments and assigns new P-numbers
only to newly-added library parts.

1115/89

Status Messages

Drawing

When you give a write command in GED, status
messages in the message window tell you that GED
is writing your drawing. They look like this:

~ Checking drawing ...
::::-::-::: . . . done checking .
QWriting the drawing: <CATIE.WRK>ADDERCKT.LOGIC.1.1
?Writing ASCII file ...
?Writing dependency file .. .
?Writing connectivity file .. .
?Writing binary file ...
~- ... written
.....

Errors are discussed
in Lesson 6.

Tips on Saving a
Drawing

See Lesson 3 for
more on saving and
retrieving drawings.

1 /15/89

The last line of this message tells you that your
drawing has been saved.

The write command automatically checks the draw­
ing for certain types of errors. If any errors are
reported in the status messages, disregard them for
now.

Y" If you type:

write (C Return J)

without typing a drawing name, GED saves
the drawing on the screen under the drawing
name currently showing in the left field of the
status line.

If you have not given your drawing a name,
unnamed. logic is the default drawing
name used. If you try to write an unnamed
drawing, GED reminds you that the drawing
is unnamed and asks you to reenter the com-

2-33

Drawing

The Hardcopy
Command

2-34

mand with a drawing name or to confirm that
you really want a drawing named
unnamed. logic.

Now that your drawing has been completed and
saved, you probably would like to get a hard copy of
your finished schematic. To do so, use the
hardcopy command. Type:

hardcopy ([Return])

If your workstation is connected to a plotter, a copy
of your drawing is printed on the plotter.

Since hardcopy prints the drawing currently dis­
played on the screen, always save your drawing with
the write command before you use the hardcopy
command. By writing your drawing immediately be­
fore making a hardcopy, the drawing printed will
accurately reflect your saved drawing.

If you're ready to take a break, and you have used
the write command to save your most recent draw­
ing, type

exit (C Return J)

to exit GED and return to the system prompt.

If you have made changes to your drawing since
your last write command and you try to exit, you
see a warning message. Either use the write com-

1 /15/89

1/15/89

Drawing

mand or, if you do not want to save the most recent
changes, type

exit [Return l)

again to exit GED. You may also use the quit com­
mand to exit from GED. In GED, exit and quit are
identical commands.

Now you're ready to go on to Lesson 3, Finding and
Retrieving Drawings.

Note In the remaining lessons, the tutorial does not al­
ways explicitly instruct you to press [Return l) after
typing a command. You still need to press[Return J)
after GED and UNIX commands, but the tutorial as­
sumes that you no longer need to be reminded of
this.

2-35

LESSON 3

Finding and Retrieving Drawings

directory

3-2

The write command was introduced at the end of
the last lesson. In this lesson you learn how to find
and retrieve drawings.

New Commands

edit

Drawing names are also discussed.

In the previous lesson, when you used the command

write adderckt

GED saved the drawing you were working on under
the name adderckt in your current working direc­
tory. If you used the write command with no name
(no argument), GED asked you if you really wanted
to save your drawing under the name "unnamed."

1 /15/89

The Directory
Command

...

Finding and Retrieving Drawings

To see what drawings you have saved, use the
directory command. While running GED, type:

directory

The message window looks something like this:

}:·::: di rectory
:} CA TIE . WRK

J~ ~i~~c~~~~ ~e~~: ~~~~~catie/ged/catie.wrk
''''=·> Contains:
'\~ ADDERCKT

...

You learn more about
the directory com­
mand in Lesson 1 2.

1 /15/89

The first three lines tell you that your current direc­
tory is catie. wrk (ca tie is assumed to be your login
name). The remaining lines list your drawings by
name.

3-3

Finding and Retrieving Drawings

The Edit
Command

You learn how to avoid
typing library commands
when you learn about
the startup.ged file in
Lesson 7.

The current drawing
name is the name that
shows in the left-hand
field of the status line.

3-4

When you enter GED and you want to call a drawing
up on the screen, you use the edit command. But
first, type

library tutorial

so that your drawing will be usable and complete.

After you know the names of your drawings, you
can call one back on the screen. To edit the drawing
named adderckt, type:

edit adderckt

Now that your drawing has a name and is no longer
called "unnamed," you can issue a write command
without giving an argument. Just type

write

and GED saves your current drawing under the cur­
rent drawing name.

To finish with adderck t and start another drawing
called "test," first save the adderckt drawing
(with the write command) if you have not done so.
Then type:

edit test

You'll see the name on the status line change to

TEST.LOGIC.1.1

and the screen blanks, except for the GED menu,

I the status line, and the message "New drawing
started."

1 /15/89

Drawing Names

Drawing extensions

are explained in the

next section.

1 /15/89

Finding and Retrieving Drawings

When you used the edit command before, you asked
to edit the drawing TEST and GED displayed the
drawing TEST. LOGI c. 1. 1.

A drawing name is made up of four fields.

Extension

Name \
Version number TEST.LOGIC.1.1

~............___ ____ '/ E._age_ number .

To clear the directory information from the screen
and return to the drawing you were editing, select
any command from the GED command menu.

• The first field is for the name that you assign
to the drawing.

• The second field contains one of several ex­
tensions that indicate the kind of drawing.

• The third field shows the version number of
the drawing. This field is used primarily in
library development. Tt provides a way of
storing different versions of library parts. It
is not suitable for storing different drafts or
revisions of logic drawings.

• The last field indicates the page number
within a drawing. This field allows you to
draw a schematic that is several pages long.
If you are editing TEST. LOGIC. 1. 1 and

3-5

Finding and Retrieving Drawings

The three dots (...) hold the
place of the first three fields,
one for each field.

Drawing Name
Extensions

The extension .BODY
is also used in hier­
archical design.

Entering a Drawing
Name on the
Command Line

3-6

you want to continue to a second page, you
only need to type:

edit ... 2

This tells GED to edit page two of the current
drawing.

The extensions are used by the design tools to distin­
guish regular schematics from documentation draw­
ings and component models (in our libraries), and
for hierarchical design. This tutorial covers only
drawings with the default extension .LOGIC, which
is the kind of drawing used for building logic
designs.

Another extension is .BODY. Each body that you
bring up on the screen with the add command is
stored in the system as a drawing with the extension
.BODY, for example, EXOR.BODY or LSOS.BODY.

To save steps, you can enter the name of the draw­
ing you want to edit when you enter GED with the
ged command. If you are in a Suntools window and
want to edit the full adder drawing, type:

ged adderckt

You can also use a new drawing name if you want to
start a new drawing without using the edit com­
mand. If your drawing name contains spaces and/or
special characters (e.g., !, >, &, etc.), you must put
quotes around the name. For example:

I - ged "mem unit" -

1 /15/89

LESSON 4

Looking

When you edit an existing
drawing, it is automatically
fit to the full screen.

4-2

The zoom command lets you:

• Redraw the screen

• Fit the complete drawing on the screen

• Center the screen around a specified point

• Move a drawing around on the screen

• Enlarge a drawing

• Reduce a drawing

You have already learned how to use the simplest
form of the zoom command:

zoom ;

When you pressed ([Return J), this command re­
freshed the screen and redrew your drawing in its
current size and position.

Another useful form of the zoom command is:

zoom fit

This command fits the entire drawing to the full
screen.

1 /15/89

Centering

To center a drawing:

-• •H.(• ?Ill

ADDE:RCl<T. LOGIC. 1. 1 GRID 0.1 5

I;>-. .__

+
:2~D

i--

-· ._.Ill(• l~m!lll

ADOCRCKT. LOGIC. 1. l GRID 0. 1 5

....

1 /15/89

Looking

The zoom command also lets you pick a point on
the screen as the new center of the drawing. This
lets you view portions of your drawing that are cur­
rently off-screen. When centering a drawing, the
size or scale of the drawing is not changed.

1 Type:

zoom

2 Move the cursor to the point on your drawing

that you want centered on the screen.

CATIE:.loPI< II HELP I)
(I SHOW ~1)

II VERSION I)
(I GROUP 1)
(I SPLIT 1)
(I COPY 1)
[I DELETE IJ -

3 Click the right mouse button.

The screen is redrawn with the point on the drawing
at the center of the screen.

CATIE:. WRt< II HELP I)
II SHOW ;J)

]E:xo
(I VERSION I)
[I GROUP 1)
II SPLIT I~

=Q_ llcoPv I)
Ill DELETE JI

4-3

Looking

Moving a
Drawing on the
Screen

The zoom command has several options that allow
you to move a drawing around on the screen. These
options are shown in Table 4-1.

Table 4-1. Screen Placement Commands

COMMAND

zoom in

zoom out

zoom up

zoom down

zoom right

zoom left

4-4

DESCRIPTION

Enlarge the size of the drawing on the screen

Reduce the size of the drawing on the screen

Reposition the center of the screen up above the :
drawing (move the drawing down on the screen)

Reposition the center of the screen down below the
drawing (move the drawing down on the screen)

Reposition the center of the screen to the right of the
drawing (move the drawing left on the screen)

Reposition the center of the screen to the left of the
drawing (move the drawing right on the screen)

1 /15/89

Enlarging an
Area to Fill the
Screen

To enlarge a portion of
a drawing:

ADOERCKT. LOG IC. 1. 1

1 /15/89

Looking

The zoom command lets you zoom in on a portion
of your drawing to see more detail. This form of the .
command is very useful when you have a large de­
sign, particularly when you need to wire and check
connections.

1 Type:

zoom

2 Move the cursor to one corner of the area you

want to enlarge and click the left button.

CATIE.14<1< II HELP I)
l!sHOW :ti)
II YERSIOll 11
II GROUP I)
II SPLIT I)
II COPV I)
[I DELETE 1)

4-5

Looking

•aJij 1,rap·rcs Editor l• .. E.l•) 9.0

ADDERO<T. LOGIC.1. 1 GRID 0.1 !!!

~--------------,,. I', ,.,"I
-~--'-. ~ ,,..... !
-...-il-T-: --H EXO ',,, !

I,,.,,.' I
~--------------~

'dlid 1_,rapn1cs Editor l'··El•) 9.0

ADDERO<T. LOGIC. 1. 1 GRID 0.1 5

4-6

3 Move the cursor diagonally to the opposite
corner of the area you want to enlarge. A
stretchable rectangle defines the area to be
enlarged.

CATIE.~ [I HELP 11

[I SHOW ~1)

[I VERSION ,,
[I GROUP ,,
(I SPLIT

,,
(I COP'I' I)
[I DELETE I}

4 Click the left button again. When the button
is pressed, the area within the rectangle is en­
larged to fill the screen.

CATIE. i.R< (I HELP I)
(I SHOW ~11
[I VERSION 11
(I llllOUP 1)
II SPLIT 11
II COP'I' 1)
[I DELETE II

1 /15/89

Reducing a
Drawing

To reduce a drawing:

ADDE:RCl<T. LOGIC. l. l

1 /15/89

Looking

The zoom command also lets you reduce the size of
a drawing (zoom out). When reducing a drawing,
you define a rectangle that determines both the size
and position of the drawing on the screen.

1 Type:

zoom

2 Use the cursor and left mouse button to de­

fine the first corner of the rectangle.

3 Move the cursor to the opposite corner and

click the middle button. Arrows from the

screen edges point to a stretchable rectangle.

[I HELP 11

(1 SHOW :ti,
II VERSIOll

,,
[I GROUP ,,
(I SPLIT ,,
(I COPY ,,
(I DELETE II

4-7

Looking

'ill Fl t.r~pl11r,; Fr!itnr lloFfJ) g 0

RDIERO<T.LOGIC. l. l GRID 0.1 5

4-8

4 Move the mouse to size the stretchable

rectangle.

5 When the rectangle is the desired size, click

the left button. When the left button is
pressed, the area of the drawing displayed on
the screen is reduced to fit into the rectangle.

CATIE:.t..Rt< (I HELP I,
II SHOW .. 1,
[I VERSIOll 11
(1 GROUP' I)
(I SPLIT I,

II COPY ll
II DELETE I,

(!MOVE ll
(I WIRE 11

lli'l·I! II!
(Ii 11
II SIGN4HE 11
(I CKANOE 11
II PROPERTY ,,
II ROUTE 11
(IDillECTORV..I,

II UNDO ll
(I REDO I,
(I Others ;i1
(1 DISPLAY 11

1 /15/89

Tips on Using Zoom

The window command is
similar to the zoom com­
mand. Refer to the
ValidGED Command
Reference Manual for
more information.

1 /15/89

Looking

Y' When sizing a drawing, GED uses the longest
side of the stretchable rectangle as its refer­
ence and does not distort the drawing shape.

V' If you enlarge or reduce a drawing too much
or if you incorrectly position a drawing, use
the zoom fit command to start over with the
full drawing displayed on the screen.

V' When reducing a drawing, you may see rec­
tangular boxes at various places on the draw­
ing. These boxes represent text that is too
small to display on the screen. When you
enlarge the drawing, the boxes are replaced
with their actual text.

,,,., The zoom previous command switches from
the current zoom scale/position to the previ­
ous zoom scale/position.

4-9

LESSON 5

Timesavers

5-2

Your workstation has several features that help you
work more efficiently. Two features let you enter
GED commands rapidly:

• Command abbreviations

• Predefined softkeys

Two more features are available but are not dis­
cussed in this tutorial:

• The message window popup menu, which pro­
vides shortcuts to some GED operations,
such as edit and get.

• The loadmenu command, which lets you cus­
tomize your on-screen GED menu with com­
mands of your choice.

Refer to the manual, Using ValidGED on Your Sun
Workstation for details about the message window
popup menu and the loadmenu command.

A help command gives you help on each GED com­
mand. This lesson covers the following topics:

• Short Forms of Commands

• Using Softkeys

• On-line Help

1 /15/89

Short Forms of
GED Commands

Appendix A lists the abbre­
viations for each command
introduced in this tutorial.

Using Softkeys

To learn how to reassign
any of the predefined keys,
see the assign command in
the ValidGED Command
Reference Manual.

1 /15/89

Timesavers

Now that you're familiar with GED commands, you
can save some time by using abbreviations for each
command. You can type in just the first two or
three letters of the command instead of the whole
word. As long as what you type does not designate
more than one command, GED accepts the short
form of the command. The add command can be
entered as ad, the delete command can be entered
as del, and so on.

The other way to work more efficiently is by using
function keys that are preset with frequently-used
commands. The nine keys across the top of the key­
board (Fl through F9) and the top twelve keys on
the numeric keypad (Rl through R12) are pre­
defined keys.

Figure 5-1 shows the default function key assign­
ments. Some of these commands, such as
directory, are already familiar to you. Others you
learn about in later lessons. The window command
is similar to the zoom command.

5-3

Timesavers

Fl - help

display the
on-line help
screen

F2 - window fit

redisplay the
drawing to
fit the
screen

Rl - hardcopy

plot the cur­
rent drawing

F3 - display both

display the
name and
value of se­
lected prop-
erties

FS - window;

refresh the
screen

F7 - directory

list the draw­
ings in the cur­
rent directory

~ F9 - display 0.8

~~~ ~=~~~~~elected 

F4 - show attach F6 - show prop FS - display 1.25 

display at­
tachments 
between 
properties 
and objects 

display the 
name and 
value of all 
properties 

R2 - undo 

undo previ­
ous opera­
tions 

enlarge selected 
text 25% 

R3 - redo 

redo previous 
undo operations 

R4 - auto path -------~ ~---~- R6 - error 
add path 
properties to 
the drawing 

R7 - return ---­

display the pre­
viously-edited 
drawing 

examine 
the drawing 
for errors 

RS - edit 

enter the 
edit 
command 

Figure 5-1. Default Function Key Assignments 

5-4 

display the er­
rors located by 
check 

R9 - bubble 

bubble the se­
lected pin 

1 /15/89 



SHIFT-R4: zoom fit 

redisplay the drawing 
to fit the screen 

SHIFT-R7: zoom left 

reposition the center 
of the screen to the 
left of the drawing 
(move the drawing 
right on the screen) 

reduce the size of the 
drawing on the screen 

Timesavers 

On the right-hand keypad, keys R4 through R12 per­
form different functions when pressed with the Shift 
key. These shifted function keys are shown in 
Figure 5-2. 

SHIFT-RS: zoom up 

reposition the center of the 
screen up above the drawing 
(move the drawing down on 
the screen) 

SHIFT-RU: zoom down 

reposition the center of 
the screen down below 
the drawing (move the 
drawing up on the screen) 

SHIFT-R6: zoom previous 

switch from the current 
zoom scale/position to the 
previous zoom scale/posi­
tion 

SHIFT-R9: zoom right 

reposition the center 
of the screen to the 
right of the drawing 
(move the drawing left 
on the screen) 

SHIFT-R12: zoom in 

enlarge the size of 
the drawing on the 
screen 

SHIFT-RS: zoom ; 

refresh the screen 

Figure 5-2. Shifted Function Key Assignments 

1 /15/89 5-5 



Timesavers 

On-Line Help 

5-6 

To help you use GED more efficiently, on-line help 
for each GED command is available. To get help on 
a GED command, select help from the menu, type 
help from the keyboard, or press the Fl key and 
then either select the command you want help on 
from the menu or type its name at the keyboard. 

For a complete list of GED commands for which 
help is available, select help twice from the menu or 
type help help. To exit from the help command, 
type or select any GED command except window or 
zoom. 

1 /15/89 



LESSON 6 



Subtracter 

add drawing 

autodot 

check 

dot 

6-2 

Jn this lesson you draw a more advanced circuit, 
the subtractor circuit, to learn how to: 

• Select different part versions 

• Rotate parts in the drawing 

• Mark wire intersections individually or 
automatically 

• Separate dots from wires or wires from pins, 
or split one wire into two 

• Show signal name and wire attachments 

• Reattach incorrectly connected signal names 
and wires 

• Add an abbreviation to the drawing 

• Attach properties to bodies, signal names, 
and wires 

• Check a drawing for errors 

• Display error messages for any errors found 
on the drawing 

New Commands 

error 

property 

reattach 

rotate 

route 

show attach 

split 

version 

1 /15/89 



Logging On 

Starts the graphics editor 
program and edits the 
drawing named subtracter. 

Lets you access the 
tutorial library. 

1 /15/89 

Subtractor 

If you are not currently logged on, follow these steps 
to start your drawing named subtractor: 

1 Type: 

suntools 

2 Select a /bin/csh icon. 

3 Move the cursor into the Shelltool - /bin/csh 

window that opens. 

4 Type: 

ged subtracter 

5 Type: 

library tutorial 

6-3 



Subtracter 

Starting a 
Drawing 

Saves your full­
adder drawing. 

If you forget how to use a 
command introduced earlier, 
go back to the appropriate 
lesson for detailed instructions 
or use the help facility. 

6-4 

If your full-adder circuit (or any other drawing) is 
currently on your screen, follow these steps to start 
editing a new drawing named subtractor: 

1 Type 

write adderckt 

2 Type: 

edit subtractor 

The screen clears and the drawing name 

SUBTRACTOR.LOGIC.1.1 

appears in the status line. 

You are now ready to draw the subtractor circuit 
shown in Figure 6-1. 

1 /15/89 



BP 

IFF" 
;.r..;..;:n---1D7 
;.r..;..T-T---1D5 
....+r:rt---1D5 
;.;-:-~--1D4 
n+~--iD:i 
;o-+.:r.+----1 D ;;z 
;;;.+~--101 
=...;..;::.-..--1D0 

CLOCK 

3P 
2P 

Subtracter 

lP 

0 

ORAWING 

TITLE=SUBTRACTOR 
ABBREV=sbt 
LAST-MODIFiaJ=Thu Fgb 9 

Figure 6-1. Subtractor Circuit 

1 /15/89 6-5 



Subtracter 

Adding Parts to 
the Drawing 

Use the add command to add the four main bodies 
in their approximate locations. 

1 Type: 

add df f 

A DFF library part appears at the cross-hair 
cursor. 

2 Click the left button to place the library part 
on the screen. 

SJBTRACTOR. LOGIC. 1. 1 GRID 0. 1 5 CATIE:. l<R< (I HELP 11 

6-6 

~add dff 

.fj~ 
t! 

Jt { Version 1 of the J t:J -.....,,__~ ------,_J?FF_part. __ 

II SHOW -11 
[I VERSION 11 
[I GROUP I) 
[I SPLIT 11 
(I COPY IJ 
[I DELETE 11 
[I MOYE 11 
[I WIRE IJ 
[I ZOOM •IJ 
[Ii IJ 
[I SIGHAME IJ 
[I CHANGE IJ 
II PROPERTY 11 
[I ROUTE IJ 
[!DIRECTOR~, 

[I UNDO 11 
(I REDO 11 
[I Others ;J) 

IUl· 

1 /15/89 



9.JBTRACTOR. LOGIC. 1. l GIID 0. 1 5 

B . 

[ Placing the second 
DFF part. 

~add dff 

>~ 
t! 

1 /15/89 

Subtracter 

3 Click the left button again to bring another 

DFF onto the screen, then place it down. 

CATIE. LoR< 
[I HELP 1) 
II SHOW .. 1) 
(I VERSION 1) 
[I GROUP I) 
(I SPLIT I) 
[I COPY 1) 
II DELETE 1) 

~ 
Ii MOVE I) 

[IWIRE I) 

(!ZOOM !!ti) 1 
[I; 1) 

~ 

[I SIGHAHE 11 . 
[I CHAHDE I) 

(I PROPERTY I) 

(1 ROUTE 1) 
(IDIRECTOR"+I) 

II UNDO 11 
(I REDO 1) 
[I Dthe.-s ~) 

IU!· I! 

6-7 



Subtract or 

3..JBTRACTOR. LOGIC. 1. 1 

6-8 

9.6 

GRID 0. 1 5 

pt 
LJ 

4 While still in the add command, type: 

addr 

5 Place one ADDR on the screen, and then 

another. 

CATIE.1-R< 

pt 
LJ 

~ I 

I 

(I HELP 1) 
[I SHOW .. 11 
[I VC:RSlON 11 
[I GROUP 1) 

(I SPLIT I) 
[I COPY I) 
II DELETE 11 
(I NOYE 11 
[!WIRE 11 
[I ZOOM ~) 

(Ii I) 

[I SIGNAHE 11 
[I CHANOE 1) 
(I PROPERTY 11 
[I ROUTE I) 
[IDIRECTDRV..IJ 

II UNDO 1) 

(I REDD 1) 

[I Others ;J) 

!f.i.H n 

1 /15/89 



The Version 
Command 

!lll• 

9.JBTflACTOR. LOGIC. 1. l 

~~ddr 
~ERSION 

1 /15/89 

G<ID 0. 1 5 

Subtracter 

Note that the bodies you placed do not look like 
those in the subtractor circuit in Figure 6-1. This is 
because there are multiple versions of each of these 
library parts. 

To see the other versions of a part and to select the 
one you want to use, follow these steps: 

1 Select the version command from the menu. 

2 Move the cursor to the DFF part and click the 

left button. 

Version 2 of the part appears on the screen. 

CATIE.WR!< 

Ii 
[I CROUP I) 
II SPLIT I) 
II COPY 11 

"'-·• II DELETE 11 ~OR 

v, •• [I MOVE I) 
·•c llWIRE I) 

(I ZOOM ~1 
[Ii I) 
II SIGNAME 1) 
[I CHANGE 1) 
II PROPERTY 1) 
[I ROUTE I) 
(IDIRECTGRY..J) 

II UNDO I) 
(I REDO II 
jl Others ~1 
[IADD 1) 

6-9 



Subtracter 

'alld 1,raph1cs Editor ~1_,E(1J 9.0 

91.JBTRl=ICTOFI. LOGIC. 1. 1 GRID 0.1 5 

6-10 

3 To see if there are more versions of this part, 

click the left button again. 

Version 1 reappears on the screen. This 
means that there are only two versions of this 
part. 

4 Click once more to go back to version 2. 

5 Move the cursor to the ADDR part. 

6 Click the left button several times to cycle 

through the available versions (there are only 
two versions of this part) and select 
version 2. 

CATIE.loA< 
JI HELP ll 
JI SHOW ~11 
!1•1t11rn:wH 

Version 2 of the 
(I GROUP 1) 

ADDR part. [I SPLIT I) 
JI COPY il 
Ji DELETE 11 
JI HOYE 11 

5 
(IWIRE 11 
JI ZOOM .. 1) 
(I; It . 

7 Use the version command on the other DFF 
and the other ADDR. 

1 /15/89 



Tips on Versioning 

I assssa EXAMPLE l 

1 /15/89 

Subtracter 

v If you know that you want version 2 of a part, 
you can add it directly by specifying the ver­
sion number of the part when you enter the 
add command. 

add addr .. 2 

Remember from Lesson 3 that the third field 
of the drawing name is for the version num­
ber. This further illustrates that the version 
field of the drawing name is used for versions 
of library parts, not versions of your own 
schematics. 

6-11 



Subtracter 

The Rotate 
Command 

t:;l..mTRACTOR. LOGIC. l. l 

~dd 

6-12 

~IO"· 1 5 

Now add the inverters to your drawing. Type: 

add inv 

CATIE:.lol'l!< 

/' The inverter"""" 
body before 
it's rotated. 

'\. .,) 

II HELP It 
II SHOW ·ll 
11 VERSION il 
(1 GROUP I) 
II SPLIT ll 
Ii COPY il 
II DELETE ll 
llMOVE il 
Ii WIRE I) 
(I ZOOM .. ,, 
Iii il 
II SIGIW1E il 
Ii CHANllE I) 
II PROPERIY 1) 

(I ROUTE I) 
llDIRECTORV..1) 

II UNDO ll 
II REDO il 
II Others ·ll ,,.,,], n 

The inverter that appears on the screen isn't turned 
the right way. To rotate the part, click the middle 
button three times before you place the inverter on 
the screen with the left button. 

1 /15/89 



Original 
inverter 

First 
rotation 

Second 
rotation 

Third 
rotation 

~ 

¢ 
~ 

It's faster to copy the 
inverter than to add 
three inverters and 

then rotate each one. ~ 

1 /15/89 

Subtractor 

If you placed the inverter on the screen without ro­
tating it first, you can use the rotate command. 
Type 

rotate 

and then move the cursor to the inverter and click 
the left button until the part is turned the way you 
want it. 

Now copy the rotated inverter three times: 

1 Select the copy command. 

2 Move the cursor to the inverter and click the 

left button. A second inverter appears on the 
screen. 

3 Type: 

3 ([Return J) 

(This is the number of copies you want.) 

6-13 



Subtracter 

9.JBTRACTOR. LOGIC, 1. 1 GRID 0. 1 5 

6-14 

The inverter 
body after it's 
rotated and 
copied. 

4 Move the cursor to the location where you 
want the first copy to be positioned, and click 
the left button. Three copies appear in 
succession. 

CATIE:. i.R< II HELP ii 
II SHOW .. 11 
[I VERSION 11 
(I GROUP 11 
II SPLIT 11 
11811~ I~ 
[I DELETE 11 
[INDVE 11 
[!WIRE ,, 
[I ZOOM ;J, 
[Ii 11 
Ii SIGNANE 11 
[I CHANGE 11 
[I PROPERlY I) 
[I ROUTE I) 
[IDIRECTOR~\1 

II UNDO 11 
[I REDO 11 
\I Others ot!I 
[I ROTATE I) 

1 /15/89 



Wiring the 
Drawing 

allcl Graphics Editor (GED) 

SUBTRACT~. LOGIC. l. 1 

Df'T 

1 /15/89 

GRID 0. l 5 

Subtracter 

Now that you have added, versioned, and positioned 
the parts for your subtractor circuit, use the wire 
command to interconnect the parts. 

1 Wire from the left-hand DFF outputs to each 

of the four INV s starting with the QO output. 

CATIE:.WRI< 

Remember that for 

O O I pin-to-pin 
wiring you use 
the right-hand 
button. 

Ii HHP I) 

Ii SHOW ~11 
(I VERSION 1) 
[I GROUP 1) 
Ii SPLIT 1) 
Ii COPY I) 

Ii DELEIE 1) 
(I MOVE I) 

l1~u·1 I! 
Ii i'OOM .. 1) 

Iii 11 
(I SIGNAHE I) 

II CHANGE I) 

(I PROPERTY I) 

Ii ROUIE I) 

llDIKECIOR~I) 

II UNDO I) 

(1 REDO I) 
Ii Others ;;a 
(I DISPLAY I) 

If necessary, use the move command on each 
inverter to align them. Notice how the wires 
move with the inverters. 

6-15 



Subtracter 

•al1d Gr;ph1cs Editor (•~EDJ 9 [l 

91..JBTRl'ICTOR. LOGIC. 1.1 GRID 0.1 5 

6-16 

2 Wire from each of the four INV s to the 
ADDR, starting with the closest one. 

Remember that you use 
O O I the middle button 

to change the 
direction of the 
bend in the wire. 

Ii HELP 
,, 

Ii SHOW ~ll 
(I VERSION I) 
Ii GROUP 11 

II SPLIT I) 
Ii COPY I) 
II DELEIE I) 
(!MOVE 1) 

l1i1·1 !! 
l) 200M .. 1) 

Iii ll 
Ii SIGNAHE 1) 
II CHANGE I) 
(I PROPERT'I' I) 
(1 ROUTE I) 
l)DIRECTOR~ll 

jl UNDO 1) 

(@_D_O _ . _ :JJ 
[ITt_he~I 

1 /15/89 



Subtractor 

3 Wire the two clock signals. 

CATIE:.~ (I HELP I) 
II SHOW :ti) 
Ii VERSION I) 
Ii GROUP I) 
Ii SPLIT I) 
Ii COPY 1) 
Ii OELElE 1) 
IJMOVE 1) 

l1:m 
Ii ZOOM ~1 
(Ii I) 
Ii SI6NAHE I) 
Ii CHANGE 11 
(I PROPERTY I) 
Ii ROUlE 1) 
(loIKECJOR~lt 

[I UNDO I) 
[I REDO IJ 
II Others :tll 
II DISPLAY It 

1 /15/89 6-17 



Subtracter 

!l.JBTRACTOf'l, LOGIC, 1. 1 GRID 0, 1 5 

6-18 

Next you learn a quick way to wire the ADDR 01:1t­
puts to the DFF inputs. 

1 If necessary, move the right-hand DFF so 

that you can wire in a straight line from the 

ADDR outputs to the DO to D3 inputs of the 
DFF. 

2 Wire pin-to-pin (right-hand button) from the 

Y3 output on the ADDR to the D3 input on 

the DFF. 

CATIE:.loA< ii HELP ii 
(1 SHOW .. 1) 

[I VERSION ,, 
Ii GROUP il 
Ii SPLIT 

,, 
Ii COPY I, 

Ii DELETE I, 

II MOVE 
,, 

ll~P ~ 
Ii ZOOM !ti, 
Iii 

,, 
[I SIGNANE ll 
Ii CHANGE 

,, 
II PROPERTY I, 

Ii ROUTE 
,, 

(IDIRECTOR~I) 

Ii UNDO 
,, 

II REDO ii 
II Others !ti, 
Ii DISPLAY ,, 

1 /15/89 



Subtracter 

3 Select copy from the menu. 

~ 
4 Move the cursor to the wire you just created 

and click the left button. 

5 Type: 

3 ([Return)) 

~ 6 Move the cursor down to align the wire with 
Y2 and click the left button again. 

al id Graphics Editor (GEO) 9.0 - . 

9.JBTRACTOR. LOGIC. l. l Gl<ID 0. 1 5 

1 /15/89 

CATIC.WPK 

Since you moved the 
first copy downward, 
the three wires are 
placed in their pro­
per places below. 

(I HELP 1) 
(I SHOW -.1) 
[I VERSION I) 
II GROUP I) 
II SPLIT 11 
1m~ II 
II DELETE 1) 
Ii NOYE 1) 
liWIRE 1) 
[1 zoow .. 1) 

Ii; I) 
II SI6HANE 11 
[I CHANGE 1) 

II PROPERTY 11 
II ROUTE I) 
llDIRECTOR~I) 

II UNDO I) 
(I REDO I) 
(1 Others !ti) 
(I DISPLAY I) 

6-19 



Subtracter 

SJBTI<RCTOR. LOOIC. l. 1 GRID 0.1 5 

6-20 

Next, wire the right-hand DFF to the nearest 
ADDR. 

1 Move the cursor to the wire aligned with YO 
and click the left button to copy it. 

2 Move the cursor up to the inputs of the first 
DFF, align the wire with D7, and click the 

left button to place the first copy. 

CATIE.~ [/HELP I~ 

II SHIN .. ,, 
Ii VERSION I, 
ii llROUP 11 
Ii SPLIT 11 
1ui1; 
[I DELETE 1) 
Ii MOVE IJ 
Ii 'ltIRE 11 
II ZOOM ~1 

Iii I) 
·ii Sl6NANE ,, 
Ii CHANGE iJ 
[I PROPERTY 1) 
Ii ROUTE ,, 
liDIRECTORY.,.I, 

!I UHDO IJ 
ii REDO I) 
(I Others ~IJ 
(I DISPLAY IJ 

1 /15/89 



Subtracter 

3 Now click the left button again on the D7 

wire to copy it. 

4 To place the same wire on the other seven 

inputs of the first DFF, type: 

7 ([ Return J) 

5 Align the wire with D6 and click the left 

button. 

s Edi~or (GED) 9.0 , 

SUBTRACT~. LOGIC. 1. 1 GRID 0.1 5 CATIE:. 14<1< [I HELP 1) 
(I SHOW ;J) 
II VERSION 11 
(I GROUP I) 
II SPLIT 11 
)Hll~ n 
II DELETE 1) 
(IHDVE 1) 
(IWIRE 1) 
(I ZOOM .. 1) 

Iii 1) 
II SIONAHE 1) 
!I CHANGE 1) 
II PROPERTY 1) 
II ROUTE 1) 
llDIRECTOR~) 

II UNDO I) 
(I REDO 1) 
(I Others ;J) 
(I DISPLAY I) 

1 /15/89 6-21 



Subtracter 

For more information 
on the copy command, 
see the ValidGED 
Command Reference 
Manual. 

9UB~TM. LOGIC. 1. 1 

l"""1i7"" 
o, 0,1-
o. 0.1-
D1 011-o. o.1-
D1 01 
01 01 
01 01 

GRID 0.1 5 

'·T~ -Pa: 
~ 

<'> 
~ 

?'.> \ t7 

Using the copy command to copy multiple wires 
saves time and produces input wires that are all the 
same length and that are evenly spaced. 

Use the same combination of the wire and copy 
commands to wire the second DFF to the second 
ADDR and to wire the outputs of the ADDR. 

CATIE:.~ II HELP 
,, 

Ii SHOW ~ll 
Ii VERSION I, 
II GROUP ii 
Ii SPLIT 

,, 
JH!14 n 
Ii DELETE ll 
\!MOVE 

,, 
[!WIRE I) 
II ZOOM ~,, 

L__ 
Iii ll 

\I 
Ii SIONAHE ll 

~~ Ii CHhNGE ii err ~. l'ICCR 
-jD• 01t- ~o [I PROPERTY 

,, 
-jD• o,t- Yo v -!Cs Ost- Y1 
-IC• o,t- y, 

Ii ROUTE ll I C1 0 o I Y1 
I g~ g: i: C1 I 

IJDIRECTUHY.tll I Co 01 

~a: 
'-""'I 

Cr 
Ii UHDO ll 
[I REDO 1) 
II Others ~1, 

l:UPY 3 II DISPLAY 1) . 

6-22 1 /15/89 



The Route 
Command 

SUBTI<ACTOR. LOGIC. 1. 1 

1 /15/89 

GRID 0. 1 5 

Subtracter 

Now you need to wire the outputs of the left-hand 
DFF to the inputs of the other DFF. A simple way 
to do this is with the route command. The route 
command wires components together by drawing a 
line between two points. 

Follow these steps to wire the DFF parts: 

1 Type: 

route 

2 Move the cursor to the Q4 wire of the left­

hand DFF and click the right button to select 
the first point. A flexible line is attached to 
the end of the Q4 wire. 

3 Now move the cursor to the D4 wire. 

CATIE. WR!< II HELP I) 

llSHOW ~ 

II VERSION I) 
II &ROUP 1) 
(I SPLIT 1) 
!I copy I) 
II DELETE I) 
liHOYE I) 
liWIRE I) 
is~11·1: !~ 
Iii I) 

I) 

6-23 



Subtracter 

9.JBTRACTOR. LOGIC. 1. 1 GRID 0.1 5 

6-24 

4 Click the right button to attach the flexible 
line to the second point. route connects the 
two points with a wire. 

CATIE:.i.R< (!HELP 1) 

(I SHOW •I) 
II VERSIOIC I) 
[l GRDUP 1) 
(1 SPLIT I) 
(I COPY I) 
(I DELETE 1) 
llMOVE I) 
llwIRE 1) 
[l 200" •I) 
(Ii I) 
II SIDNAME 1) 
(I CHANGE I} 
[I PRDPERTY I) 
l1·1i11u ~ 
(IDIRECIDRYotJ) 

(I UNDO 1) 
[I REDO 1) 
II Others •I) 
(I DISPLAY 1) 

1 /15/89 



Subtracter 

5 Use the same technique to wire the rest of 
the DFF outputs and to wire the right-hand 
DFF to the ADDR. 

alld Graph1c:s Editor (GED) 9.0 -

SUBT~T~. LOGIC.1.1 GRID 0.1 5 

Tips on Using the Route 
Command 

1 /15/89 

Ii H£LP 
,, 

Ii SHOW !ti~ 
Ii VERSION 

,, 
(I GROUP 

,, 
Ii SPLIT 

,, 
II COPY 

,, 
Ii DELETE 

,, 
(I MOVE ,, 
(!WIRE 

,, 
Ii ZOOM !ti, 
[I; ii 
Ii SIGNAHE ll 

s II CHANGE I) 
....___,,...

5
, [I PROPERTY 1) 

Jii\tiiii I 
l!DIRECTDn •• 11 

I! UNDO I) 

(I REDO I) 

Ii Others .. I) 

"DISPLAY II 

II" Use the blue button to select the nearest pin 
or wire vertex for a route point. Use any 
other button to select the nearest grid point. 

II" If it cannot draw a horizontal or vertical line, 
route draws a diagonal line. 

II" route will not run a wire through any existing 
objects. 

6-25 



Subtracter 

The Dot Command 

See Lesson 7 for in­
structions on entering 
commands into your 
startup.ged file. 

~~~ dots.J11Teif 

6-26

I

To clearly mark the connection of the two clock sig­
nals, you can use the dot command. There are two
styles of dots: open and filled.

open dots:

filled dots:

000

•••
Open dots are the default. If you want filled dots,
enter this GED command:

set dots_ filled

If you want to use filled dots on a regular basis, you
can enter the set dots_ filled command into your
startup.ged file.

Now mark the clock signal connection. The dot
command is very simple to use:

1 Select dot from the GED menu.

2 Move the cursor to the intersection of the two

wires and click the left button. A dot
appears.

I RCCJ1 ~~· ~·r---J ? v,[

~
O, Q, Vo Ii PROPERTY

,,
I

g: g: ~: v,
I D1 Do ~· C:r Ii ROUTE ll I Do 01 i..- . 1

I ~c:c
liDIRECTOR~l

(I UNDO 1)
Ii REDO I,
JI D'thers ~ll
111J11 I!

1 /15/89

Tips on Using the Dot
Command

1 /15/89

Subtracter

~ In a complex circuit, it is time-consuming to
place every dot by hand. Instead, you can
use show connect to check that no extra
connections have been created by mistake.
This command places an asterisk temporarily
on the drawing to highlight each connection
point. Check that the connection points are
all correct. Use the refresh command
(zoom ;) to remove the asterisks from the
screen. Then type auto dot and all of the
wire junctions are automatically dotted.

~ The system convention is that a T-junction is
automatically a connection, whether or not it
is dotted. A four-way intersection (+) is not
a connection unless it is dotted.

6-27

Subtracter

The Split Command

~DER.LOGIC.1.1 GRID 0.1 5

6-28

Another useful command, particularly for modifying
a drawing, is the split command. This command
lets you:

• Separate a dot from a wire

• Separate a wire from a pin

• Split one wire into two

The figure below shows the pins of a body wired
together by mistake.

You could use the following procedure to split the
wires from the pins and then reconnect the wires.

1 Select split from the menu.

2 Move the cursor to the upper input pin of the

ZAND where the pin and wire join. The fig­

ure below shows an X where you should
place the cursor.

CATIE:.lol<I<

II COPY I)
Ii DELETE 1)
Ii MOVE I)
Ii WIRE 1)
[I ZOOM .. 1)
Ii; 11

1 /15/89

Subtracter

~o•J 3 Click the right button. Move the cursor away

and watch what moves.

4 There are two wire segments connected here.

~ You want the lower one. If you get the upper

one, just move the cursor back to the junc-

tion, and click the right button again.

too) 5 When you have picked up the correct seg-

ment, move it out perpendicular to the body,

and click the left button to set down the split

wire.

hies Ed1tor,(.GEO) 9.0

ADDE:R. LOGIC. 1. 1 GRID 0.1 5 CATIE:.lolRK /I HELP It
II SHOW ~1,

II VERSION 11
II GROUP I,
Jlj~!l-1!
[I COPY I)
II DELETE I)
llMOVE 11
llWIRE 11
(I ZOOM ~11
[I; I)
[I SIGNANE

,,

1 /15/89 6-29

Subtracter

Tips on Using the Split
Command

Choosing Signal
Names

Signal name syntax is
explained in detail in
the SCALD Language
Reference Manual.

Review Lesson 2 if you
forget how to use the
signame command.

6-30

"' The split command is very handy. When sev­
eral objects are all connected together and
you place the cursor on top of them, each
click of the right button selects a different ob­
ject to move away from the others. This lets
you cycle through the various options until
you reach the one you want. So don't worry
about pointing to the "correct" object. Just
point to all of them and click. Click once or
several times to select the object to move.

Signal names not only identify each important signal
in a circuit, they also are entered in the database for
the drawing. They are therefore a powerful tool for
entering data about signals that can be used by veri­
fication programs.

For now you need only know one detail of this syn­
tax, the pointed brackets (<>). These are used to
designate bits of a bus. The signal names

A<3>
A<2>
A<1>
A<O>

are understood by the system to be bits 3-0 on the
bus named A.

Use the signame command to attach names to each
of the signals on the drawing. Use the signal names
shown in Figure 6-1.

1 /15/89

The Reattach
Command

OCK

~ SHU'll AT ACtf'lt:N TS

1115/89

Note:

p

p

Subtracter

Don't forget to add the signals 0 and 1, as shown in
Figure 6-1, to your drawing. These are two special
signals that represent logic 0 and logic 1.

After you have given the signal names, it is impor­
tant to check that each name has been properly as­
signed to the correct signal. To do so, type:

show attach

CATIE:. WRt<

Lines appear on the
screen leading from each
signal name to the wire to
which it is currently at­
tached, and each path
property to the body it
designates.

1---<~~m
----.,,~~~M

[!HELP 11

'lfiil'i !~

(I YER5ION 1)
(I GROUP I)
(I SPLIT IJ
(I CDP't' 1)
(I DELETE I)

(I HOVE I)

(IWIRE I)
(I ZOOM ~1)

[Ii I)

[I SIGNhHE 1)
(I CHANGE 1)
(I PROPERT't' 1)
[I ROUTE 1)
!ioIRECTOHY.,.I)

(I UNDD I)
(I REDO I)

(I Others *I)
(I REATTACH I)

6-31

Subtracter

51.JBT~OR. LOGIC. 1. 1

i5HIJW Al IA\.m~rt I;:.

6-32

GRID 0.1 5

t:<3>
'= <2>
'=<I>
I- <_0 >
t: <_3>
t: <_2>
t<I>
t <J21>

To see the attachments more clearly, you can use
the zoom command to zoom in on a section of your
design.

CATIE. i.A<
Ii HELP I~
lljlJli: I

J:P II VERSION 11
Ii GROUP 1)

D F Ii SPLIT 1)
07 07 (i COPY I)
05 05 II DELETE I)
D5 05

Ii MOYE I) 04 04
03 03 liwtRE I)

D2 02 Ii ZOOM ;J)
01 0 1 Ii; 1)
00 00 t-l?P Ii SIGNAME I)

Ii CHANllE 1)
{>CE .---

Ii PRUPERTY 1)

D ;~ pP Ii ROUTE I)
"'-

llDIRECJORV..i) H

Ii UHDO 1)

~
pP

Ii REDO 1)
II Other11 .. 1)

II REATTACH 1)

If your attachments are correct, use the refresh com­
mand (zoom ;) to refresh the screen.

1 /15/89

51.JBTRACTOR. LOGIC. l. 1

m:liOW AlTACH'llEN1S-

1/15/89

GRID 0.1 5

Subtracter

When signals are close together (as are the inputs
and outputs on the subtracter circuit), it takes a little
practice to properly attach each signal name. The
GED command reattach lets you fix incorrectly as­
signed signal names very easily. Follow these steps:

1 Type

show attach

to show the signal name assignments. Note
that the signal name B<O> is incorrectly
attached.

CATIE:.~K II HELP il
11~11 1 16 -11!

Ii VERSION I~
II GROUP I~

D F
~ < 3 > L---------J~~~~I :;:;l::'-<-_2;;;;...;..>-~ D 7 Q 7

II SPLIT ll
Ii COPY ll

;1-=-<...;;;J~> -~ D 6 Q 5 l------------1~~~~1
==1-=-<;...,;}2:;;;....;....> _--i D 5 Q 5 l----------1~~~~1

II DELETE ll

:::t::i-.<.;...._~;;;:;f....;_>_~ D 4 Q 4 r-------------1~~~~1
;;:;t:"""'<-,~"'"')->---1 D 3 Q 3 r----------.~~~=I

llMOVE ll
llwm I)

;;:;t-"""'<.-.,;_I;;r;...;..>-~ D 2 Q 21---------~
;;::t::~~~~---1 D 1 Q 1 i---------.

112011M ;Jl
Iii ll

D0 00~p

~CE
0 pP

II SIGNAME il
Ii CHANGE ll
II PROPERTY 11
Ii ROUTE ll
llDIRECTORY:til

h l!UNDO ii
pP llREDO il

II Others ,.jl
II REAJTACH ll

6-33

Subtracter

SUBTRACTa<. LOGIC. 1. 1

-

6-34

2 Type:

reattach

~o~
3 Move the cursor to the signal name that you

want to reattach, and click the left button.

4 Move the cursor, and you will see a wire fol-

lowing the cursor (shown as a dotted line
below).

~00) 5 Move to the wire that corresponds to the sig-

nal name and click again; an asterisk appears
on the screen marking the new attachment.

GRID 0.1 5 CATIC.1-lRl< II HELP I)
II SHOW ~1)

_E_P II VERSION 11
II GROUP 1)

8<3>
0 F II SPLIT 1)

07 07 II COPY I)
l:j <-2_>
t:::: <_I> 05 05 (I DELElE I)

1-- <JZJ > 05 05
llMD¥E 1)

E<~> 04 04
ilWIRE 1)

f=<(,E) 03 03

~I>
02 02 II ZOOM .. 1,

01 0 1 (Ii I)
~
--- :::::=::v-)t:'. 00 00 r--t?P [I SIGNANE I)

II CHANGE
,,

C>D II PROPERTY 11

\ ~z pP I ROUTE JI -
I Use the window refresh command (zoom ;) to re­

move the temporary lines.

1 /15/89

Adding an
Abbreviation to
the Drawing

The drawing body is
stored in the
Standard library.

CLOCK

1 /15/89

Subtractor

In order to uniquely identify each signal and library
part on every drawing, the system must be able to
identify each drawing by an abbreviation. If you do
not specify an abbreviation for your drawing name,
the system makes one for you. But since you later
need to know the abbreviation, it is much better to
specify it yourself and have it noted on the drawing.

To specify an abbreviation and have it be recognized
as pertaining to the entire drawing, you need to add
a special body called a drawing body. Enter this
command:

add drawing

The word "drawing" appears under the cursor. This
is the drawing body. Place it down in a corner of
the drawing just as you place down any other body
(this one just looks a little different).

SUH<3> (I CHANGE It
SUH<2> ~~~~I

.____,.s~~m (I PRDP£RTY ll

LAST-HODIF"ICD=UNKNOWN

Ii RUUJE It

(IDIRECTDRV..1)

j\ UNDO \)

[I REDO 1)

Iii Others .. ll
11.11J1

Notice the words "Last Modified" on the drawing
body. Each time you write the drawing, GED con­
sults the internal clock and time stamps your draw­
ing here. If you include a drawing body on your

6-35

Subtracter

The Property
Command

To attach a property to
an entire drawing, you
must first add a drawing
body and then attach
the property to the
drawing body.

6-36

drawing, you will always have a record of when the
drawing was last modified.

Now you need to attach an abbreviation to this draw­
ing. To do so you use the property command.

A property is a name and value that conveys infor­
mation about your design to the analysis tools. The
information represented by the properties in a draw­
ing is interpreted by the Compiler and then passed
on to the other programs.

The property command is used to attach properties
to:

• Bodies

• Signal names

• Wires

Thel'.'e are lots of different properties. When you
specify a property, you first give the name of the
property (in this case, ABBREV), and then the value
you want to assign to that property (in this case,
SBT). The following procedure shows you how to
add the abbrev property to the drawing body.

1 /15/89

SP

CLOCK

1 /15/89

Subtracter

1 Select property from the menu.

2 Move the cursor to the word "Drawing" on

the drawing body and click the left button.

This identifies the object to which you want to

attach a property.

[IH£LP
,,

(I SHOW ~1)

Ii VERSION 1)
[I GROUP 11
II SPLIT I)
Ii COPY I)
Ii DELEIE 11
[!HOVE 1)
[IWIRE I)

[I ZOOM ;J)
[Ii 1)

LP
Ii SIGNAHE 11
[I CHANGE I)

SUM<3> lm11m11!! UM<2>
SUM< 1>

UM<D> [I ROUIE I)

liDIRECTOR~I)

[I UNDO 1)
[I REDO I)

LAST _HODIF"ICD=UNKNOWN Ii Others ;J)
IJADO 1)

6-37

Subtracter

Be sure to leave a
space after "abbrev."
The property com-

mand distinguishes ~ O ~
property names from
property values by
this space.

9UB~OFl.LOGIC.1.1 GRID 0.1 5

BP

p

CLOCK

; ab rev & t.

6-38

3 Type

abbrev sbt [A~umD

4 Place the abbreviation down on the drawing

above the words "Last Modified" by clicking

the left button.

II HELP ll
Ii SHOW ~1)

II VERSION 1)
Ii GROUP 1)
Ii SPLIT 1)
II COPY I)
(i DELETE 11
Ii MOYE I)

llWIRE I)
II ZOOM ~11
Ii; 1)
Ii SIGHAME 11
II CHANGE I)
IU'1 1 l~l ·11 Ill
Ii ROUTE 11
llDIKECTOK~I)

II UNDO 1)
(I REDD 1)

LAST-HODirIED=UNKNOWN
([[thers ot!)
(IADD 11

1 /15/89

It is a good idea to
have the abbrevia­
tion listed on your
drawing so you know
that SBT is the ab­
breviation for the
drawing name.

CL.OCK

: display both

1 /15/89

p

p

Subtracter

5 Enter the command:

display both

then move the cursor to the abbreviation on
the drawing and click the left button.

The display both command tells GED to dis­
play both a property name and the property
value instead of just the property value.

CATIE:. i.Rt< ii HELP
,,

II SHOW ~1)
II VERSION I)
II GROUP 1)
ii SPLIT I)
II COPY I)
II DELETE 1)
(I HOYE 11
(1 WIRE I)
1120114 ,,,
Iii 1)

::IP
II SIGMAME 1)
II CHANGE 11

SUH<3> (I PROPERTY I) UM<2>
SUM< 1>

UM<H> II ROUJE ii
lloIRECTOR~\I

II UNDO I)
(I REDO ii

L.FIST -HODIF"IE:D=UNKNOWN II Others ,\)

li,liBQf.iWlf

6-39

Subtracter

Adding a Title to the
Drawing

Be sure to leave a
space after "title."

CL.OCI<

: t 1 t e &>ubtractor

6-40

It's a good idea, although not required, to also add
the ·property TITLE to the drawing body. This lets
you record the name, or title, of the drawing on the
drawing itself. When you are working with a draw­
ing in GED, the title shows in the status line. But
this title does not appear on a printed copy of the
drawing unless you add the TITLE property to the
drawing. When you add a TITLE property to a
drawing, the title must exactly match the GED draw­
ing name. Follow these steps:

1 Select property from the menu.

2 Move the cursor to the word "Drawing" on
the drawing body and click the left button.

3 Type:

title subtracter (CReturnl)

4 Place the title down on the drawing above the

abbreviation.

Ii CHANGE 11

~-s-~~m 1l!!11~u:;~11u;~:n~•~n~ i-------;;,UH< 1 > ir.: ,,
UH<e> Ii ROUTE 11

[IDIRECTORV..1)

Ii UHDO I)

[I REDO I)

jl Others .. IJ
ABBRE:V=sbt

L.AST -HODIF"IE:O;UNl<NOWN

ii DISPLt.Y II

1 /15/89

BP

p

p

CLOCK

: disp ay both

Subtracter

5 Enter the command:

display both

then move the cursor to the title on the draw­
ing and click the left button. Now the draw­
ing displays both the property name and the
property value.

ABBl<E:V=sllt

L~ST-MODIF"IE:D=UNKNOWN

UM<3>
UM<2>
UM<l>
UM<0>

Ii HCLP 11

ii SHOW ~11
II VERSION 11
II GROUP 1)
[I SPLIT I)
II l:DPY I)
II DELEIE I)
[I MOVE I)
[IWIRE I)
[I ZOOM ~11
Iii 1)
II SI6HAME 1)
II l:HllHGE 1)
(I PROPERTY I)
[I RDUlE I)
[IDIHEl:TDHV..1)

[I UNDO I)
[I REDO 1)
II Others ~1)

1ui!lmii1

6 Save your drawing with the write command.

1 /15/89 6-41

Subtracter

Checking a Drawing
for Errors

6-42

Now that your drawing is complete, GED can check
it for certain types of errors. If a wire is connected
at only one end and has not been given a signal
name, this is usually an error. If more than two
wires intersect at one connection point, it is usually
an error (as when you accidentally wire several pins
of a library part together). It is important that you
check for these kinds of errors before you leave
GED and go on to use the Compiler and other pro­
grams. The other programs assume that your draw­
ing is correct and complete.

If you use the Compiler, for example, on a drawing
where many pins are wired together, it assumes that
you did so intentionally. When the Compiler proc­
esses your drawing, it cannot detect the error condi­
tion in your wiring. Needless to say, it is better to
check the drawing before you go on.

The check command is included automatically in
the write command, but you have the option of us­
ing the check command by itself. To check a draw­
ing for possible wiring errors, type:

check

GED checks quickly for errors. When it is finished,
it displays short messages on the screen, usually one
for each error. The last line reads "Done checking."

1 /15/89

The Error Command

Congratulations!

See Appendix A for a

handy list of common

GED commands.

1 /15/89

Subtracter

To get more precise information on each of the er­
rors that were found, type:

error

GED draws an asterisk at the location of the first
error and displays a message describing the error.
Select error again to see the next error.

When your drawing is error-free, be sure to save it
with the write command.

You have now learned over 30 of the most important
GED commands and have sufficient proficiency to
enter your own schematics.

Now you are ready to learn more about UNIX, the
Compiler, and the Packager.

6-43

LESSON 7

UNIX and VI

file

more

7-2

Jn Lesson 6, you successfully entered the subtractor
schematic into your workstation using GED. You
now have a picture of your schematic "on-line,"
but, more importantly, you have stored information
about your circuit in a database that can be accessed
by other programs.

This lesson introduces the creation and manipulation
of windows on your workstation and these UNIX
commands:

New Commands

lpr Is

vi

1 /15/89

Using UNIX
Windows

Windows are described
in detail in the Sun
manual Windows and
Window Based Tools:
Beginner's Guide.

Creating a Second
UNIX Window

Moving the Second
UNIX Window

1 /15/89

UNIX and VI

The Packager and other SCALD design tools are
programs that you access from the UNIX prompt,
just as you accessed GED. One way to access these
programs is to exit from GED and use the original
UNIX window for the other programs. A better way
is to create a second window on the screen.

When you create multiple windows, you can run pro­
grams in each window independently. It is like be­
ing able to log in through several terminals. The
following procedures describe the basic window
operations.

Follow these steps to create a second UNIX window:

1 Move the cursor to the right and outside of

the GED window.

2 Press and hold the right mouse button to dis­

play the Suntools menu.

3 While still holding the button, move the cur­

sor down over ShellTool and then release the

button. A second Shelltools - /bin/csh win­

dow is drawn over the GED window.

When the second window is created, it fits within the
GED window. To move back and forth between the
GED and the UNIX window, the new window should
be moved so that some portion of its top border ex­
tends beyond the GED window.

7-3

UNIX and VI

7-4

To move the second window:

1 Position the cursor in the border across the
top of the newly created window and press

and hold the right mouse button to display

the frame menu.

Close

Move ¢-­

Resize ¢-­

Expose

Hide

Redisplay

Quit

2 While still holding the right mouse button,
move the cursor down to "Move" and then

release the button. When the button is re­

leased, the following message is displayed:

Press the left or middle mouse button near the
side or corner you wish to drag and hold the
button down while dragging the bounding box to
the location you want; then release the button.
To cancel, press the right mouse button now.

3 Move the cursor to the upper left corner of
the window and press and hold the left (or

middle) button.

1 /15/89

Resizing the Second
UNIX Window

1 /15/89

UNIX and VI

4 While still holding the button, use the mouse

to move the window to the lower right corner

of the screen and then release the button.

For most SCALD applications, the size of the sec­
ond window can be reduced to show more of the
GED window.

To resize the second window:

1 Position the cursor in the border across the

top of the window and press and hold the

right mouse button to display the frame menu.

2 While still holding the right mouse button,

move the cursor down to "Resize" and re­

lease the button. When the button is re­

leased, the following message is displayed:

Press the left or middle button near the side or
corner you wish to adjust and hold the button
down while adjusting the bounding box to the
shape you want; then release the button. To
cancel, press the right mouse button now.

3 Move the cursor to the upper left corner of

the window and press and hold the left (or
middle) button.

4 While still holding the button, use the mouse

to shrink the size of the window and then re­
lease the button.

7-5

UNIX and VI

Switching Between
Windows

7-6

After the new UNIX window has been positioned
and resized, move the cursor within the window
area. The UNIX cursor changes from an outline to
a filled box to indicate that the second window is
active, or ready to accept a UNIX command.

To return to the GED window, simply move the cur­
sor out of the UNIX window and into the GED
window.

The frame menu can be used to place one window on
top of the other so that the full window can be dis­
played. To position one window over another
window:

1 Move the cursor to the top border of one of

the windows and press and hold the right

mouse button to display the frame menu.

2 If the window you have selected is to be

placed on top of the other window, move the

cursor to Expose and release the button. If

the window you have selected is to be placed

behind the other window, move the cursor to
Hide and release the button.

When you Hide the GED window, the initial UNIX
window is exposed over the GED window. Use the
frame menu to again hide this window.

1115/89

Closing a Window

Exiting a Second
Window

1 /15/89

UNIX and VI

The frame menu also allows you to close a window.
When you close a window, the window disappears
from the screen and an icon for the window is dis­
played across the top of the screen.

To close a window:

1 Move the cursor to the top border of the win­

dow to be closed and press and hold the right

mouse button to display the frame menu.

2 While still holding the right button, move the

cursor down to Close and then release the

button. When the button is released, the win­
dow disappears and a /bin/csh icon appears

at the top of the screen.

3 To reopen a closed window, simply move the

cursor over the icon and press the left button.

To exit a second window, it is only necessary to type
exit at the window's UNIX prompt. Do not use the
Suntools menu to exit the second window as this op­
eration terminates the GED session with an open
drawing.

7-7

UNIX and VI

Using UNIX:
Is, more

shelltool - /bin/csh

adderckt
case.dat
compiler. cmd
delay.dat

You already know one UNIX command. This is:

ged

Notice that the command ged is in all lower case
letters, but inside GED, a lot of things appear on the
screen in uppercase. This points out a difference
between UNIX and GED that is important: UNIX is
case-sensitive; GED is not. UNIX commands are
always entered in lowercase, and system directory
and file names are almost always in lowercase. In
GED, commands and drawing names can be entered
in either uppercase or lowercase.

There are two simple UNIX commands that let you
look at your directories and files on the screen. The
first one is Is. This is the list command. It lets you
list the names of all the subdirectories and files in
your current directory on the screen. Since the Sun
workstation is set up so that all of the files you need
are in your login directory, let's list them. At the
UNIX prompt, type:

ls

Your screen will look like Figure 7-1.

master. local
packager.cmd
simulate .cmd
startup.gad

subtracter
susan.wrk
td.cmd
verifier. cmd

Figure 7-1. Contents of the Login Directory for User Susan

7-8 1 /15/89

The More Command

shellt o ol - /bin/csh

UNIX and VI

Each of these files and directories is briefly de­
scribed in Appendix C. Remember, the /s command
just lists the names of your files and directories, not
their contents. To look at the contents of a file on
the screen you need to know the exact name of the
file you want to see. Use the /s command to find
out the name of the file, and then use the more com­
mand to see the file.

Let's look at the file named startup.ged. From the
UNIX prompt, type:

more startup.ged

The startup.ged file appears on the screen, and at the
bottom you see the UNIX prompt ready for your
next command. The startup.ged file is shown in
Figure 7-2.

masterlibrary master.local
use susan.wrk

%

Figure 7-2. Looking at Startup.ged with the more Command

To see one line of
the file at a time,
press I! Return II .

q means quit.

1 /15/89

If the file is too long to fit on one screen, the more
command shows you one screenful of the file. To
see the next screenful, press the space bar. To get
out of a very long file without stepping all the way to
the end of it, type:

q

7-9

UNIX and VI

The File Command

Getting a Printed
Copy of a File

7-10

Now you know how to get a list of your file and
directory names and how to look at files on the
screen. Try looking at some of the other files, just
for practice, using Is and more.

If you don't know whether something is a file or a
directory, you can use the file command like this:

file adderckt

or

file startup.ged

The response to the first command is:

adderckt: directory

The response to the second command is:

startup.ged: ascii text

Try the file command on any of the files and direc­
tories listed in Figure 7-1.

When you work with the Compiler and the Packager
later in this tutorial, you may want to get a printed
copy of an output file or any other file. For some
jobs, seeing things on the screen just isn't enough.
Remember that the hardcopy command in GED is
only for drawings. You can use it to get a copy of
any drawing in GED, but you cannot use it to get a
copy of a UNIX file. To print a UNIX file, you use
the UNIX command /pr. The /pr command sends a
copy of the file you specify to the printer. To get a
printed copy of the compiler.cmd file, type this from
the UNIX prompt:

lpr compiler.cmd

1 /15/89

Command Files

Using the Vi
Editor
Additional vi commands
are listed in Appendix B.

filename is the name
of a file to edit.

1 /15/89

UNIX and YI

Remember, /pr is a UNIX command you use to get
printed copies of text files. hardcopy is a GED
command you use to get printed copies of drawings.

To help you access the Compiler and the Packager,
we provide you with a command file for each of
these programs. The command file for the Com­
piler is named compiler.cmd. This is the file you just
listed to the screen with the more command. The
Packager command file is named packager.cmd.
Both of these files contain a list of directives (or
commands) that you use to instruct the program.

The command files in your login directory have de­
fault entries. Thus, to use these programs you will
have to tailor the defaults to your own needs. This
involves minor editing of the appropriate file. You
may have to add a line or change part of a line al­
ready in the file.

To do minor editing, you use an editor program
called vi. Vi is a full screen editor with lots of capa­
bilities. Here we will teach you just enough of the
very basic commands to do your job.

The first thing you'll want to know about vi is how to
call up the program, and how to get out of the pro­
gram once you are in it. To edit a file you type:

vi filename

If filename is an existing file, vi brings that file up on
the screen and waits for your commands. If filename
is not an existing file, vi assumes you want to create
a new file, and the screen looks like Figure 7-3.

7-11

UNIX and VI

sh e II t o o I - /bin/cs h

"projectl" [New File]

wq stands for
write and quit.

7-12

Figure 7-3. Creating a New File with Vi

When you are in vi and want to stop and exit, type

:wq

This command saves the current version of the file
you are editing and returns you to the UNIX prompt.

To get out of vi without saving your current file,
type:

:q!

This command exits you from the vi program with­
out saving the current version of your file.

1 /15/89

Editing Your
Startup.ged File

shelltool - /bin/csh

UNIX and VI

The best way to learn how to use vi is by doing some
editing. So we'll show you, step by step, how to edit
your startup.ged file. Adding a few lines to your
startup.ged file makes it easier for you to use GED.
Follow these steps:

1 Type:

vi startup.ged

The screen looks like Figure 7-4.

masterlibrary master.local
use susan.wrk

"startup.ged" 2 lines, 41 characters

1 /15/89

Figure 7-4. Default Startup.ged :1-"ile

2 Move the cursor down one line by pressing
(c Return J).

3 Press o to tell vi that you want to add a new
line to the file.

4 Type library tutorial.

7-13

UNIX and VI

she II too I - /bin/cs h

5 Press ([Return J).

6 Type set dots_fi l led.

7 Press ([Return J).

8 Press ~ to tell vi that you have finished

inserting text.

9 Type :wq.

You have now added two lines to your startup.ged
file and have saved the new version of your file.
The new file should look like Figure 7-5. If you're
not sure that it does, use the more command to look
at the file. The next time you enter GED, the tuto­
rial library is used and dots added with the dot com­
mand are filled.

masterlibrary master.local
use susan.wrk
library tutorial
set dots_filled

"startup.ged" 2 lines, 41 characters

Figure 7-5. New Startup.ged File

7-14 1 /15/89

UNIX and VI

Basic Vi Commands The following commands describe a number of the
basic vi commands. Additional vi commands are
described in Appendix B. For more information on
vi and the other UNIX text editors, see the Sun
documentation included with your workstation.

Action

Adding

Deleting

Moving

Table 7-1. Simple Vi Commands

Command Explanation

a add command: add text after the cursor.

i insert command: add text before the cursor.

Back Space erase a character(s) you just typed while still in insert or add

mode. This is how you fix typos as they occur.

x

stop adding or inserting text: you are still in the editor

and can now move to another part of the file.

delete character: delete the character the cursor points to.

dw delete word: delete from cursor to end of the word.

dd delete line: delete the entire current line.

([Return J)

- (minus)

next line: move cursor to the beginning of the next line of the

file. If you are on the last line, you hear a beep.

previous line: move cursor to the beginning of the previous

line of the file. If you are on the first line, you hear a beep.

Space Bar forward: move the cursor one space forward.

Back Space backward: move the cursor one space backward.

1/15/89 7-15

LESSON 8

Compiler

Resizing UNIX windows is
explained in Lesson 7.

8-2

Now that you have completed your subtractor de­
sign and have checked for possible wiring errors, the
next step is to compile and package your design. In
this lesson you learn about the Compiler and how to
prepare for compiling. Since the Packager calls the
Compiler automatically, you actually compile your
drawing along with the packaging in the next lesson.
Before you start this lesson, be sure you have saved
your current drawing (with the write command).

If you have not already done so, make a second win­
dow smaller than your GED window. The window
should be tall enough for about 10 lines of text and
about three quarters the width of the screen.

1 /15/89

What Does the
Compiler Do?

A timing model is a
description of a part's
timing behavior.

1/15/89

Compiler

The Compiler prepares your design for another pro­
gram and while doing so, checks for errors you may
have made. For example, it checks for syntax errors
in signal names and elsewhere, and it checks that
the bit width of signals and pins is consistent.

The Compiler performs two jobs as it prepares your
design for another program. It expands the informa­
tion in your design (including any abbreviations) so
that all of the signal names and library parts are
fully defined, and it selects just those files that are
needed by the particular program for which you
want to prepare.

The Packager automatically calls the Compiler.
When you package your circuit, the Compiler pro­
duces files that the Packager uses to prepare a de­
sign for a physical design system. These files con­
tain the connectivity information for the parts in
your design.

The Timing Verifier also automatically calls the
Compiler. When you use the Timing Verifier, the
Compiler produces the files needed to check the tim­
ing behavior of the circuit. These files contain a
timing model for each part used in the design.

The Logic Simulator also calls the Compiler auto­
matically. When you simulate your circuit, you pro­
duce files (with the Compiler) that the Logic Simula­
tor uses to check the simulation behavior of the cir­
cuit. These files contain simulation models of the
parts used in the design.

8-3

Compiler

The entire scope of the
Compiler is explained in
the ValidCOMPILER
Reference Manual.

Preparing for
Compilation

Compiler
Directives File

8-4

This tutorial covers only compilation for the Pack­
ager. You can use the Compiler separately to spe­
cifically prepare a design for the Packager, the Tim­
ing Verifier, or the Logic Simulator. In this case,
you specify the compilation purpose as logic (for the
Packager), sim (for the Simulator), or time (for the
Timing Verifier). You could even develop your own
programs and use the Compiler to prepare your de­
sign for use with these products. The Compiler is
generic and flexible.

There are a number of different instructions that you
might want to give the Compiler before having it
called by the Packager. For this purpose, there is a
file of compiler directives that you use to define the
detailed instructions for the Compiler. A default,
ready-made Compiler directives file is provided, but
you can make minor adjustments to this file to suit
your own needs. The directives file is named
compiler.cmd and is created for you in your working
directory when your account is established.

To look at the Compiler directives file, from the
lJ1'IT)(prompt, type:

more compiler.cmd

Figure 8-1 shows the default directives file for user
susan. If the entire listing does not appear on the
screen, press the space bar to see the rest of the list.
Check that your file matches the one displayed in
Figure 8-1.

1115/89

Compiler

she II too I - /bin/cs h -

root_drawing 'name';
compile logic;
directory 'susan.wrk';
library standard,time,sim { ,lsttl };
warnings on;
oversights on;
output list, expand, synonym;
print_width 80;

end.

1 /15/89

Figure 8-1. Default Compiler Directives File (compiler.cmd)

Each line in this file is a directive (an instruction)
for the Compiler. There are many possible Com­
piler directives; each is discussed in detail in the
ValidCOMPILER Reference Manual. This tutorial
provides a brief description of the ones in this file.
First, a few general comments.

Notice that each line of this file ends with a semico­
lon and that the last line of the file reads end. When
you edit this file, be sure that the semicolons and
the final line are not removed. Without these, the
Compiler is not able to read this file and follow the
instructions in it.

Notice also the curly braces in the fourth line of the
file. They are used to surround a message or com­
ment that is for your information, but that you don't
want the Compiler (or any of the other programs) to

8-5

Compiler

Required Compiler
Directives

For more information
on master .lib and
UNIX path names, see
Lessons 13 and 14.

8-6

act upon. In this case, lsttl is the name of a library,
and could be inserted on this line; it reminds you
that this is where additional libraries are entered.

Two of the directives shown are necessary for the
Compiler to run and produce meaningful results.
The others are optional. Most of these have default
values that have been set for your convenience. The
two necessary directives are:

DIRECTORY
LIBRARY

The DIRECTORY directive tells the Compiler what
directories to search for the drawing it is going to
compile. This directive is mandatory unless all
drawings of interest are in libraries. If there is no
DIRECTORY or LIBRARY directive given, or if the
directory you enter is misspelled, you get a fatal
error.

The LIBRARY directive is where you list all of the
libraries you used to make your design. Any library
that is listed in the master library file on your system
(master.lib) can be entered on this line. Do not re­
move the libraries Standard, Time, or Sim. They
are needed for correct compilation of your designs.
To use a library that is not in the master.lib file, en­
ter its name (using the full UNIX pathname) on the
directory line.

1 /15/89

Other Compiler
Directives

1 /15/89

Compiler

The remaining six directives in the default file are
directives that you don't need to change. As you get
more proficient with the Compiler, you may want to
change them later. They are included in the file so
that they can be changed simply by editing the line.

The ROOT _DRAWING directive tells the Compiler
the name of the drawing you want to compile. Un­
less you are running the Compiler separately, you
can ignore this line. Even when you run the Com­
piler as a separate program, you can also enter the
drawing name directly in the command line, so this
directive is not required. Any drawing name that
you put in the Compiler directives file with the
ROOT_ DRAWING directive is overridden when you
enter a name on the Compiler command line, or
when the Packager, Timing Verifier, or Logic Simu­
lator is used to call the Compiler.

The COMPILE directive tells the Compiler the type
of compilation. Unless you are running the Com­
piler separately, you can ignore this line. Even
when you run the Compiler as a separate program,
you can also enter the compilation type in the com­
mand line, so this directive is not required. The
default compilation type is logic. Any compilation
type that you enter in the directives file with the
COMPILE directive is overridden when you enter a
type on the command line, or when the Packager,
Timing Verifier, or Logic Simulator is used to call
the Compiler.

8-7

Compiler

The output files are
described in detail in
Lesson 9.

Editing the Compiler
Directives File

8-8

The WARNINGS and OVERSIGHTS directives tell the
Compiler that you want to know not only about the
"errors" it finds, but also about the "warnings" and
"oversights" it finds. Warnings and oversights are
like errors, but less severe.

The OUTPUT directive tells the Compiler what files
you want it to produce. Unless you are running the
Compiler separately, you can ignore this line.

The PRINT_ WIDTH directive specifies how wide to
print the output files. The optimum width is 80 if
you are sending output to a printer/plotter with the
/pr command.

There are many other Compiler directives for spe­
cific purposes. Each is described in the
ValidCOMPILER Reference Manual.

Before you use the Compiler on the subtractor de­
sign, you need to make a few changes to the Com­
piler directives file:

• Add the library "tutorial" to the LIBRARY
directive.

• Add these two lines to your Compiler direc­
tives file (the reasons are provided later):

bubble_ check off;

suppress 196;

1 /15/89

1 /15/89

Compiler

Follow these steps to make these changes:

1 From the UNIX prompt, enter the command:

vi compiler.cmd

2 Press ([Return J) three times to move the cursor

to the library directive (the fourth line of the

file).

3 Press the space bar to move the cursor to the

space after "sim."

4 Press the i key (lower case 'i') to insert text

at the cursor.

5 Type:

,tutorial

Tutorial is the name of the library you used
to make the subtractor circuit.

· 6 Press ~ to stop inserting text.

7 Press ([Return J) until the cursor is positioned

at the beginning of the next to the last line

(print_width 80;).

8 Press the o key (lower case 'o') to open a new

line below the print_ width line. This com­

mand automatically places you in the text­

insert mode.

8-9

Compiler

9 Type these two lines:

bubble_check off;

suppress 196;

Don't forget the underscore in
"bubble check" and the semicolons at the
end of each line.

10 Press ~ to stop entering text.

11 Type : wq to save your changes and to exit
from the editor.

Your compiler.cmd file now looks like Figure 8-2.

root_drawing 'name';
compile logic;
directory 'susan.wrk';
library standard,time,sim,tutorial { ,lsttl };
warnings on;
oversights on;
output list, expand, synonym;
print_width 80;
bubble_check off;
suppress 196;
end.

Figure 8-2. Edited Compiler Directives File

8-10 1 /15/89

The use of bubble checking
is beyond the scope of this
tutorial. See Tutorial II,
Using Your Validation Tools
on a Sun Workstation and
the ValidCOMPILER Refer­
ence Manual.

You cannot suppress
error messages.

1 /15/89

Compiler

The BUBBLE CHECK OFF directive tells the Com­
piler you are not using the bubble check feature.
This feature checks that the assertion of a signal
matches the bubble state of the pin, and pro~uces an
error message when they do not match. The pur­
pose of this check is to allow the designer to verify
that the signal is as intended. Bubble checking is an
important feature that is very useful in the debug­
ging of large designs.

You use the SUPPRESS directive, followed by the
number of the oversight or warning to be sup­
pressed, to tell the Compiler not to report this par­
ticular warning.

Warning 196 tells you that the specified body (that
is, the specified library component) has not been
given the SIZE property, so the Compiler assumes
that you want that part to have a size of 1. Size of 1
means that the inputs and outputs of the part are
one bit wide. The Compiler assumes a size of 1
(SIZE = 1) unless you specify otherwise (for exam­
ple, SIZE = 4). Parts having a size of 1 by default
are almost always what you want, and so usually
you would not be interested in receiving this
message.

Your drawing is now ready to be compiled. When
you package your drawing in Lesson 9, the Packager
automatically calls the Compiler. You learn about
Compiler output files and error messages in
Lesson 9.

8-11

LESSON 9

Packager

9-2

The Packager:

• Assigns the logical components in your draw­
ing to physical packages

• Tests your design for loading violations and
possible wiring errors

• Prepares your design for use by a physical
design system

When you run the Packager, it automatically calls
the Compiler, reads the Compiler output files, and
expands this information into a set of output files
that contain physical reference designators (U­
numbers), section assignments, and pin numbers for
the parts used in the design. Certain of these files
are then used as the input to a physical interface
program that reformats the Packager output for a
specific physical design system.

The Packager assigns the logical parts in your design
to sections of physical parts (according to a set of
rules), and then describes the design in terms of
these physical part assignments and node-to-net
(pin-to-wire) connections. Some of these physical
part assignments are likely to be changed later in the
design cycle, either by you (the designer) or by the
physical design system.

Keeping track of all of these section assignments
along the way, and seeing that the GED drawing
(the schematic) accurately reflects the assignments
made by both the Packager and the physical design
system, can be a demanding task. The Packager is
set up to do all of this tedious work for you.

1 /15/89

Using the
Packager

shelltool - /bln/csh

Packager

Like the Compiler, the Packager has a command
file, called packager.cmd. where you can enter direc­
tives to the Packager. Your account has a default
packager directives file. To look at this file, type:

more packager.cmd

Your file should match the one shown m
Figure 9-1.

root drawing 'name';
library tutorial{,lsttl};
warnings on;
oversights on;
end.

Figure 9-1. The Packager Directives File

The Root_Drawing
Directive

1 /15/89

Before you use the Packager, you need to make
some changes to this directives file.

The ROOT DRAWING directive tells the Compiler
the name of the drawing you want to compile. You
can also enter the drawing name directly on the
Packager command line, so this directive is not re­
quired. Any drawing name that you put in the
Packager directives file with the ROOT _DRAWING

directive is overridden when you enter a name on
the command line. Without this directive, or if you
don't enter a name on the command line, the
Packager does not call the Compiler.

9-3

Packager

The Library Directive

For more information
about this directive, see
the ValidPACKAGER
Reference Manual.

For more information
on master .lib, see
Lessons 13 and 14.

9-4

The LIBRARY directive is where you list the libraries
you used to make your design. Your subtractor
drawing uses components from the tutorial library.
Therefore, "tutorial" must be included in the
LIBRARY directive. Remember that the curly braces
surround a message or comment that is for your in­
formation, but that you don't want the Packager to
act upon. In this case, the lsttl library name reminds
you that this is where additional libraries are
entered.

Any library that is listed in the master library file on
your system (master.lib) can be entered in this direc­
tive. The LIBRARY directive tells the Packager to
read the individual physical library files (chipsyrt)
within a library directory. The Packager uses these
files to obtain all of the physical information for
each part in your design. If your design uses more
than one library, you must enter the name of each
library you use (except for the Standard, Time, Sim,
or Phantom libraries, because the Packager doesn't
use them).

1 /15/89

1 /15/89

Packager

Follow these steps to change the drawing name in
the ROOT DRAWING directive.

1 To edit the packager.cmd file, from the UNIX
prompt enter the command:

vi packager.cmd

2 When the file appears on the screen, use the

space bar to position the cursor over the first
letter of the word name in the
ROOT DRAWING directive.

3 Type

cw

to change the word name. A dollar sign ap­
pears at the end of the word you are
changing.

4 Type the name of your drawing:

subtract or

5 Press ~ to stop entering text.

6 Type

:wq

to save the new version of the file and to exit
from the editor.

9-5

Packager

she II too I - /bin/cs h

Now you are ready to run the Packager. At the
UNIX prompt, enter the command:

package

A series of messages scrolls by in the message win­
dow to inform you of the progress of the Compiler
program. A report from the Packager follows the
Compiler messages. When the Compiler finishes,
you see timing information and the Compiler tells
you that the compilation is complete .

Start time = 09:46:31.05
Ending time = 09:46:54.93
Elapsed time = 00:00:23.88
CPU time = 00:00:13.33

Compilation completed.

Compilation errors
are discussed on
page 9-23.

9-6

If any compilation errors are reported, the Packager
run is stopped and you must go back into GED and
correct the errors in the drawing. If you followed
this tutorial carefully, there are no Compiler errors.
Congratulations!

1 /15/89

shelltool - /bin/csh

No errors detected

Packager

The remaining messages report on the progress of
the Packager. When the Packager finishes, you see
a report of the errors found by the Packager. The
last seven lines of the screen listing are shown
below.

9 oversights detected
4 warnings detected

Start time = 09:46:14.43
Ending time = 09:47:20.43
Elapsed time = 00:01:06.00
CPU time = 00:00:24.04

Packager Listing
File

1 /15/89

Next, you want to see the listing file to take a closer
look at what the Packager did and what errors, warn­
ings, and oversights it found. To do so, type

more pstlst.dat

to list the file to the screen or type

lpr pstlst.dat

to get a hardcopy of the listing file.

All of the Packager output files have names that be­
gin with the letters pst, which stand for post
processing. You are now post processing your design
for use with another system.

9-7

Packager

A

B

c

D

E

9-8

A Packager Listing File is shown in Figure 9-2.
The listing file is full of useful information. The
paragraph letters below correspond to the callout
numbers on Figure 9-2.

The first part of the listing file is the header. It tells
you what version of the Packager you are using and
the date and time you used it.

The next part of the listing file is the directives list.
It tells every directive that was in effect for this run
of the Packager. Many of these directives have de­
fault settings. You don't need to know what each
one of them does.

The next part of the listing file contains the drawing
name and the date/time that the drawing was
compiled.

The next several items on the listing file are process
statements. As the Packager does its work, it re­
ports at each stage. If errors are found during a
particular operation, they are reported and appear in
the listing file between the pro_cess statements. This
way you know what the Packager was doing when it
found the error.

After the process statements, the listing file ends
with a recap of the number of errors, oversights, and
warnings that it found, and the elapsed time and
CPU time.

1 /15/89

A

B

c
D

1 /15/89

Packager

Valid Logic Systems, Inc. ValidPACKAGER 1.0 Sun-B7 1Aug1988

Packager run on 1-January-1989 at 17:22:03.00

* Starting to read directives *

-----Directives-----

ANNOTATE BODY,
PIN;

DOCUMENT ERRORS ON;
FREE GROUPING OFF;
HARD-GROUPING ON;
HARD-LOC SEC ON;
INCLUDE IO LIST OFF;
LIBRARY-'TUTORIAL',

'LSTTL';
NET NAME LENGTH 24;
OUTPUT EXPANDEDNETLIST,

EXPANDEDPARTLIST,
LOGICALCHANGES,
PHYSICAL CHANGES,
BINDINGCHANGES,
BACK.ANNOTATION,
CHIPSFILE;

OVERSIGHTS ON;
PART NAME LENGTH 16;
PART-TYPE-LENGTH 255;
PRINT PIN-LIST OFF;
REPORT SPARES,

PARTSUMMARY;
ROOT DRAWING 'SUBTRACTOR';
SUPPRESS <none>;
UNNAMED CHANGES ON;
UNNAMED-NETS OFF;
USE PIN-GROUP ON;
USE-STATE FILES ON;
WARNINGS ON;

* Starting to read directives *

-----Design information----­

ROOT DRAWING='SUBTRACTOR';
TIME~' COMPILATION ON l-Jan-1989 AT 17:22:03.00';

**
* Starting to read library description *
**

Figure 9-2. Packager Listing File

9-9

Packager

9-10

* Starting to read state file *

**
* Starting assignment of SIZE replicated parts *
**

* Starting TIMES replication *

* Starting to thread nets *

* Starting to assign physical parts *

Using part bindings state file

* Starting to evaluate nets *

#1 OVERSIGHT(131): No output on net

Error in both states
Log net name: CLOCK

#1 WARNING(132): No input on net
Error in both states
Log net name: SUM<3>

#2 WARNING(132): No input on net
Error in both states
Log net name: SUM<2>

#3 WARNING(l32): No input on net
Error in both states
Log net name: SUM<l>

#4 WARNING(132): No input on net
Error in both states
Log net name: SUM<O>

#2 OVERSIGHT(131): No output on net
Error in both states
Log net name: B<3>

#3 OVERSIGHT(131): No output on net
Error in both states
Log net name: B<2>

Figure 9-2. Packager Listing File (continued)

1 /15/89

#4 OVERSIGHT(131): No output on net
Error in both states
Log net name: B<l>

#5 OVERSIGHT(131): No output on net
Error in both states
Log net name: B<O>

#6 OVERSIGHT(131): No output on net
Error in both states
Log net name: A<3>

#7 OVERSIGHT(131): No output on net
Error in both states
Log net name: A<2>

#8 OVERSIGHT(131): No output on net
Error in both states
Log net name: A<l>

#9 OVERSIGHT(131): No output on net
Error in both states
Log net name: A<O>

* Starting to check nodes *

**
* Starting to assign physical part names *
**

* Starting to assign physical net names *

Using signal bindings state file

* Starting to assign physical group names *

* Starting to perform pin swaps *

Using pin swap state file

* Starting state files generation *

* Starting output list generation *

Figure 9-2. Packager Listing File (continued)

Packager

1 /15/89 9-11

Packager

Descriptions of the errors encountered during packaging

OVERSIGHT #131: No output on net

An input pin is not connected and hence gets no drive current.
Make sure that the net printed by the Packager is wired as
intended. Note that this message does not indicate an error
if the pin is a primary input. In this case, you may want to
attach the NO IO CHECK property to the pin to suppress
input/output checks. This property has the form:

NO IO CHECK = logic state
where-logic_state may be 0, 1, or BOTH

If I/0 checks are not desired for either logic state, use the
value BOTH. To quiet this error message altogether, use the
directive SUPPRESS 131.

WARNING #132: No input on net

An output pin has no subsequent blocks to drive. Make sure
that ·the net printed by the Packager is wired as intended.
Note that this message does not indicate an error if the pin
is a primary output. In this case, you may want to attach the
NO IO CHECK property to the pin to suppress input/output
checks. This property has the form:

NO IO CHECK = logic state
where-logic_state may be 0, 1, or BOTH

If I/0 checks are not desired for either logic state, use the
value BOTH. To quiet this error message altogether, use the
directive SUPPRESS 132.

E Packager run on 1-Jan-1989 at 17:22:03.00

Design name:

9-12

SUB TRACTOR

Design compilation:
COMPILATION ON 1-Jan-1989 AT 17:22:03.00

Library creation:
COMPILATION ON THU JUN 6 11:07:06 1985

No errors detected
9 oversights detected
4 warnings detected

Start time
Ending time
Elapsed time
CPU time

17:22:03.00
17:22:33.00
00:00:30.00
00:01:47.45

Figure 9-2. Packager Listing File (continued)

1 /15/89

Packager Error
Messages

1 /15/89

Packager

Next, look at the errors the Packager found. They
are listed in Figure 9-3. Four occurrences of Warn­
ing 132 and nine occurrences of Oversight 131 are
listed. These two error messages tell you which nets
on your drawing are connected to only one library
part. Warning 132 tells you that your four outputs,
SUM<3>, SUM<2>, SUM<l>, and SUM<O>, do not
act as inputs for any library components. This mes­
sage is correct, because these signals are your pri­
mary outputs.

Oversight 131 tells you that your nine inputs
(CLOCK, A<3>, A<2>, A<l>, A<O>, B<3>, B<2>,
B<l>, and B<O>) do not receive output from any li­
brary component. This message is also correct be­
cause these signals are your primary inputs.

Oversight 131 and Warning 132 are most useful for
detecting wiring errors in a complex design, specifi­
cally dangling nets. To avoid receiving unwanted
messages, you should indicate on your design each
instance where a net (a wire) is intentionally con­
nected to only one pin (one node). These are your
primary inputs and outputs.

9-13

Packager

9-14

#1 OVERSIGHT(131): No output on net
Error in both states
Log net name: CLOCK

#1 WARNING(132): No input on net
Error in both states
Log net name: SUM<3>

#2 WARNING(132): No input on net
Error in both states
Log net name: SUM<2>

#3 WARNING(132): No input on net
Error in both states
Log net name: SUM<l>

#4 WARNING(132): No input on net
Error in both states
Log net name: SUM<O>

#2 OVERSIGHT (131) : No output on net
Error in both states
Log net name: B<3>

#3 OVERSIGHT(l31): No output on net
Error in both states
Log net name: B<2>

#4 OVERSIGHT(l31): No output on net
Error in both states
Log net name: B<l>

#5 OVERSIGHT(l31): No output on net
Error in both states
Log net name: B<O>

#6 OVERSIGHT(131): No output on net
Error in both states
Log net name: A<3>

#7 OVERSIGHT(l31): No output on net
Error in both states
Log net name: A<2>

#8 OVERSIGHT(131): No output on net
Error in both states
Log net name: A<l>

#9 OVERSIGHT(131): No output on net
Error in both states
Log net name: A<O>

Figure 9-3. Packager Error Messages

1 /15/89

Flagging Primary
Inputs and Outputs

.. ~ I . ~

Packager

To flag nets intentionally connected to only one pin,
go into GED and attach the NO _IO_ CHECK prop­
erty with the value BOTH to each net (wire) that is
a primary input or output. This property tells the
Packager not to perform input/output checking on
this net. The value BOTH tells the Packager not to
do this checking in both the High and Low states.

Follow this procedure to add the NO _IO_ CHECK
property to primary input and output nets:

1 Enter GED and edit subtractor.

2 Use the zoom command to zoom in on the
top left corner of your drawing.

3 Select property from the GED menu.

4 Point to the wire labeled A<3> and click the

left button. An asterisk appears on the wire.

SUBTRACTOR. LOGIC. 1. 1 GRID 0.1 S CF'ITIE:.&.R< (1 HELP I)

BP
II SHOW ~~
(1 VERSION I~ vt DFF (I GROUP il

~> ~~07 07 fl SPLU ll
OL-1~ 12 6 Q 6 -

1 /15/89 9-15

Packager

SUBTl<ACTOR. LOGIC. 1, .1 GRID 0.1 S

5 Type in this line exactly:

no_io_check both

The word "both" appears at the cursor on the
screen. This is the property value.
(NO_IO_CHECK is the property name.)

6 Move the word both to the left of signal
A<3>, and click the left button to place it
down on the screen.

CATIE:. I-A< II HELP I)

BP
II SHOW .. ,,
II VERSION I)

DFF II GROUP I) \th A<~>
~2>- 07 07 [I SPLIT IJ

05 05 cs:z_::i_::s::
i.--

9-16

-'""' - JlJ

7 Now copy the property. This is a little differ­
ent from copying bodies:

1) Select copy from the GED menu.

2) Point to the word both with the cur­
sor, and click.

8 Move the new word "both" to just below the
original word "both," and click to place it
down. A line appears attached to the cursor.

1 /15/89

.. •ll.(• ·•~WI

Packager

9 Point to the wire labeled A<2> to indicate

where you want this property attached, and

click the left button. The line attached to the

cursor disappears.

SUBmACTOR. LOGIC. 1. 1 GRID 0.1 S CATIC.14<1< [I HELP I)

both
bott

....-

1 /15/89

BP
[I SHOW ~1)
II VERSIOll I)

BbsV OFF [I GROUP 1)
D 7 0 7 [I Sl'LIT I)
0 6 as A<.1> D..s. Q_i;:_

, .

1 0 Repeat steps 7 through 9 to copy the new

property to signals A<l>, A<O>, B<3>, B<2>,

B<l>, and B<O>.

Now that you have attached a new property to each
of these input signals, you should check that they
are all correctly attached. Follow these steps:

1 Type show attach and watch lines appear

from each word "both" to the signal next to

it. The reason you place the word "both" off

to the side is so that you can see these attach­

ment lines. If you place the word "both" on

the net, you can't see the lines drawn by the

show command, and it would be difficult to

verify correct attachment.

2 Use zoom ; to refresh the screen.

9-17

Packager

3 After verifying the correct attachment of the

property, you can erase the word "both"

from the screen. Type di sp 1 ay i, and

click over each word "both" in turn. They

disappear one by one. This is the

display invisible command. It suppresses

the display of a property that you do not want

to appear on your schematic.

4 Now add the property NO_IO_CHECK BOTH

to the input signal CLOCK and to the four

output signals SUM<3>, SUM<2>, SUM<l>,

and SUM<O>. Use the above procedure to

check the attachments and to erase the prop­

erty value (both) from the screen.

5 Write your drawing to save it when you have

finished.

Congratulations! You have now successfully flagged your primary in­
puts and outputs. Now, move to a UNIX window
and type package to run the Packager again. This
time your Packager run should be free of errors,
oversights, or warnings.

9-18 1/15/89

Tips on Adding
Properties

1 /15/89

Packager

V' Point to the object to which you want to at­
tach a property (for example, the wire la­
beled A<3>) immediately after selecting the
property command. If you try to type in the
property name and value before you point,
GED does not understand. You get an error
message.

"' Don't point to a wire close to a body. If you
do, GED might think you're pointing to a pin.
A pin and a wire are two separate objects to
GED although they are not visually distinct
on the screen.

"' When adding a property to a net (a wire),
always point to the wire itself rather than· the
signal name (the text string).

"' Be careful to type the property name and
value correctly. GED distinguishes a prop­
erty name and a property value from the
SPACE you enter; that's why you use under­
scores to enter NO _IO_ CHECK. If you type
in NO IO as a property, GED thinks you
mean a property named NO with a value of
IO. No such property exists.

"' The word "both" appears on the screen be­
cause, by default, GED displays only prop­
erty values and not property names. To force
GED to do otherwise on an individual basis,
use the command display both, display in­
visible, or display name.

9-19

Packager

For more information on lo­
cating invisible properties,
see the find command in
the ValidGED Command
Reference Manual.

9-20

After you use the display invisible command
on a property, that property acts differently
than other properties; an invisible property
cannot be moved or deleted. Use display
visible and point to the property to make it
visible again.

""" When you copy the property, be sure to point
to the new signal name to indicate where you
are attaching it. If you inadvertently point to
the wire, you get this error message:

Can only attach properties
to SIGNAME properties

Just try the copy command again and point
to the signal name this time.

1 /15/89

Compiler Output:
What the
Compiler
Produces

cmplst.dat

See the ValidCOMPILER
Reference Manual for
more information on
comperr.

1/15/89

Packager

The Compiler produces two files and a directory
when called by the Packager. The directory is called
xshadowx and is used by the Compiler for organizing
and storing intermediate results. The two files are
cmplst.dat and cmplog.dat. These two files and the
directory are listed in your directory along with your
other default files. The cmp stands for Compiler
and the extension .dat means that these are data
files that you can read. Here is a description of
each file:

Compiler listing file (/st stands for list). The Com­
piler creates this file only if it finds an error in a
drawing.

This file is for your benefit and gives you a record
of the errors and other conditions found by the
Compiler. The file provides detailed information
about each error, warning, and oversight found by
the Compiler. It is important that you look at the
listing file and correct errors, so that a subsequent
Packager run can finish successfully. Warnings or
oversights do not prevent the Packager from
finishing.

The Compiler automatically creates the listing file if
it finds errors in a drawing. If only warnings or
oversights are found, the Compiler does not create
the listing file. To create a listing file when only
warnings or oversights are found, use the compiler
error utility by typing comp err.

9-21

Packager

cmplog.dat

9-22

Compiler log file. If there are no errors found in a
Compiler run, and therefore no cmplst.dat file is
generated, the cmplog.dat file contains any warnings
and oversights found by the Compiler. The
cmplog.dat file also contains additional information
on the Compiler run that is useful to Valid person­
nel in solving unusual customer problems. Certain
error messages ask you to save this file and contact
your Valid representative. You don't otherwise need
this file.

Another important thing to know about the Compiler
output files is that each time you run the Compiler,
it sends output to the SAME FILES. This saves disk
space and means that you do not constantly have to
delete files. But you have to plan your work strategy
to take advantage of this feature. If you have output
from a previous compilation, the next time you run
the Compiler, that output disappears because it is
overwritten by the new output.

1 /15/89

Compiler Errors

Compiler Listing
File: cmplst.dat

1 /15/89

Packager

Since one of the most important functions of the
Compiler is to provide information about errors
found in your design, it is important for you to learn
how to read the error documentation in the Compiler
listing file (cmplst.dat). But first, you have to make
an error! To learn about Compiler errors, go back
into GED, edit your subtractor drawing, and change
the signal name SUM<3> to SUM<3. This change
produces a syntax error because the right bracket is
missing. Follow these steps:

1 Enter GED by typing :

ged subtractor

2 delete the signal name SUM<3>.

3 Re-enter the signal name SUM<3, using the
signame command.

4 write the drawing to save it.

Now move to a UNIX window and run the Packager
again. Look at the listing file (cmplst.dat).

To see the file on the screen and review what the
Compiler did and the errors it reports, type:

more cmplst.dat

Or, if you want to make a hardcopy of the listing
file, you can enter the command:

lpr cmplst.dat

9-23

Packager

9-24

The first thing to know about errors is that when you
see a message like

WARNING 193

or

ERROR 202

it does not mean that the Compiler found 193 differ­
ent warnings or 202 different errors. What it does
mean is that warning condition 193 or error condi­
tion 202 was found. There are about 250 conditions
on which the Compiler reports. Some are errors,
some are warnings, and others are oversights. This
is why the SUPPRESS directive takes just a number.
The number alone is sufficient to identify the warn­
ing or oversight.

When the Compiler processes the pages of a design,
warnings, oversights, or error messages for each in­
dividual page are stored in that page's error list file.
Then the pages are automatically linked together by
the linker utility and another error list file is created.
The Comperr utility gathers these messages together
into a single listing file (cmplst.dat) that you can
look over.

Now look at the listing file (cmplst.dat) from this
Packager run, shown in Figure 9-4.

1 /15/89

A

B

1 /15/89

Valid Logic Systems, Inc. ValidCOMPERR 1.3 Sun-B6
(C) Copyright 1982, 1987 Valid Logic Systems, Inc

---- <COMPERR> Retrieving ValidLINKER error messages

Valid Logic Systems, Inc. ValidLINKER 1.3 Sun-BS
(C) Copyright 1984, 1987 Valid Logic Systems, Inc

#1 ERROR (243): Compiler errors in a drawing
Drawing: "SUBTRACTOR" .LOGIC.1
No parameters
Page 1 contains 2 compiler errors

1 Linker Error
No Linker Oversights
No Linker Warnings

---- <COMPERR> Retrieving ValidPAGECOMP error messages
(for pages with WARNINGS or worse)

* Compiling SUBTRACTOR.LOGIC.1.1 *
* No parameters *

Compilation on Mon Aug 1 09:18:28 1988

'SUM'<3

#1 ERROR(30): Unexpected symbol in bit subscript
Drawing: "SUBTRACTOR". LOGIC .1
Page=l
Name of body=ADDR (path prop=5P)

'SUM'<3

#2 ERROR(ll): Expected >
Drawing: "SUBTRACTOR" .LOGIC. l
Page=l
Name of body=ADDR (path prop=SP)

2 errors detected
No oversights detected
No warnings detected

---- <COMPERR> End ValidCOMPERR

Figure 9-4. Compiler Listing File

Packager

9-25

Packager

A

B

The signal name is listed
on the first line, and the ~

character on the second
line marks the location of
the error. For other kinds
of errors, these lines do
not appear.

9-26

The first part of the listing file is the header. It tells
you what version of comperr you are using. It also
lists linker information. Since you never have to
deal directly with the linker, you don't have to be
concerned with these messages at this time.

The second part contains descriptions of the errors
found by the Compiler. For each error condition,
there is a brief message (four or five lines). For
example, look at the message:

SUM <3

#2 ERROR (11): Expected>

Drawing name=SUBTRACTOR.LOGIC.1.1

Page=l Name of body=ADDR (path prop=5P)

The first two lines of the message report where the
problem was detected. The error reported is a syn­
tax error.

The next line tells you the error count (#2), meaning
that this is the second error the Compiler found.
Then the error identifier number (11), and the error
description (Expected >) are listed.

The next line tells you on what drawing the error
was found.

The final two lines tell you on what page of the
drawing the error was found, and the body and path
property to which that signal was attached. The
path property of the ADDR may be a different num­
ber on your drawing.

1 /15/89

Correcting Compiler
Errors

For additional information
on text editor commands,
press ([Control Il-o while
still in the text editor.

1 /15/89

Packager

All of the error messages follow this general format.
Knowing what to look for makes understanding the
error messages from other programs easier.

When you find errors in the Compiler listing file, it
is important that you go back into GED, correct the
errors, and then run the Packager again. You can
choose not to correct warning and oversight condi­
tions, but error conditions must be corrected before
the Packager can use the Compiler output.

To correct the syntax error in your drawing, follow
these steps:

1 Enter GED and edit the subtractor drawing.

2 Select change from the command menu and

point to the signal name "SUM <3." The sig­

nal name appears at the top of the screen.

3 Press (£ Contro!J)-E to move to the end of the

signal name, and insert the missing bracket.

4 Press (£ Return J) to exit the text editor.

5 Attach a NO_ IO_ CHECK property to the

SUM<3> signal you just created. (The prop­

erty was deleted when you deleted the signal

name.) This will prevent a Packager warning

when you run the packager again.

6 Save your corrected drawing with the write

command.

Now move to a UNIX window and run the Packager
again.

9-27

Packager

Common Compiler
Errors & What to Do

Error 191 : Drawing not
found in the Directories.

Error 206: Cannot open
specified directory file.

Error 200: Pin name and
signal widths do not match.

Data Flow
Through the
Packager

9-28

The syntax error previously described is a common
type of error reported by the Compiler. Here are
some other common errors and how to fix them:

This error usually means that you misspelled the
root drawing name, either in the directives file or on
the command line. This error generates error 217
(fatal error report) and stops the Compiler run.

This error usually means that you misspelled the
name of your SCALD directory (susan.wrk) in the
directives file. This error also generates error 217
(fatal error report) and stops the Compiler run.

This error usually means that you either forgot to
attach the SIZE property to a body that is attached
to a bus or that you made a typing error in one of
the signal names that makes up a bus, causing a
syntax error. GED thinks the bus is not the same
width as the body. Check the area in question on
your GED drawing.

At the beginning of this lesson, you learned that the
Packager not only tests your design for connectivity
errors and prepares it for a physical design system,
but that it also keeps track of your section and pin
assignments. These additional duties mean that the
Packager produces quite a few more output files
than the Compiler does. If you list your default files
now (/s command), you see a whole group of files
have been added that all have the prefix pst. These
are the output files from the Packager.

1 /15/89

State Files

First Run of the
Packager

1 /15/89

Packager

The Packager makes some output files to pass on to
other programs and some files for you, the user, to
consult. The Packager also makes another type of
output file, for its own use, called a state file.

To keep track of physical assignments for you, the
Packager makes a set of state files for its own use.
These files contain notes about what the Packager
did to your design the last time it was packaged.
The Packager then uses these files as additional in­
put the next time you run the program so it can re­
peat its previous assignments of parts and nets as
much as possible. Since state files are created and
maintained entirely by the Packager for its own use,
you must never edit, change, or delete a state file.

Figure 9-5 shows what happens the first time you
run the Packager on a design. The Packager takes
as its input the linked page expansion data from the
compilation and the directives file (packager.cmd)
and produces several groups of output files. Notice
that the state files, the output files that are passed
on to other programs, and the user files are all
clearly marked on the figure.

9-29

Packager

GED

.-- --,
Qompiler.cm~i----. .. : ValidCOMPILER :

Ph}'sical Part
Tables

Libraries

9-30

L- _J

ValidPACKAGER

pstsigb.dat
pstprtb.dat
pststat. dat
pstpswp.dat

PHYSICAL
DESIGN
SYSTEM

Figure 9-5. First Run of the Packager

BACK
ANNOTATION

FILE

pstchip. dat

USER FILES

pstlst.dat
pstlog.dat
pstlchg. dat
pstbchg.dat
pstpchg.dat
pstxref .dat
pstrprt.dat

NET/PART FILES

pstxnet. dat
pstxprt. dat
pstchip.dat

PHYSICAL
INTERFACE
PROGRAM

1 /15/89

You learn how to
back annotate in
Lesson 10.

Subsequent
Packager Run

1 /15/89

Packager

The Packager produces more user files than the
Compiler. In addition to the listing file (pstlst.dat)
that you have already looked at to get information
on your errors, there is a log file produced
(pstlog.dat). Like the Compiler log file, this file con­
tains information that can be useful to Valid person­
nel in solving certain problems. The other user files
are just to provide you with some additional infor­
mation. They are described in more detail later.

Another important file shown in Figure 9-5 is the
back annotation file (pstback.dat). This file is used
by GED to update (or back annotate) your schematic
design.

Now look at Figure 9-6. This figure shows what
happens the next time you run the Packager. Your
input is the same, but now the Packager reads the
state files generated from the previous run. These
files tell the Packager what it did the last time it
packaged the design and allow the Packager to keep
as many of its original assignments as possible.

9-31

Packager

,..
BACK

""' GED -- ANNOTATION - FILE

.---E--, r-+
\..

pstback. dat
...J

~ompiler.cm€) •: ValidCOMPILER : r USER FILES "' ... __ [_J _ J pstlst.dat
pstlog.dat

Qackager.cmd) .. pstlchg.dat - ~ pstbchg.dat .. pstpchg.dat - pstxref. dat
(Physical Parf'- .. \. pstrprt. dat) -Tables ...I ValidPACKAGER

'"NET/PART FILES""' c Libraries ' ..
.,J - _.. . pstxnet. dat -- pstxprt. dat -

I I ""
pstchip. dat

""" r ST ATE FILES ""

pstsigb.dat , '
pstprtb. dat PHYSICAL
pststat. dat INTERFACE

r "'
pstpswp.dat PROGRAM

FEEDBACK ~ ~
FILES

pstprtx.dat
,,

pstsecx. dat PHYSICAL PHYSICAL
pstnetx. dat -- INTERFACE ... DESIGN -- -

\.. pstfnet.dat ..J PROGRAM SYSTEM

Figure 9-6. Subsequent Packager Run

9-32 1 /15/89

Feedback Files

1 /15/89

Packager

Feedback files are produced by the physical design
system to tell the Packager what physical assignment
changes were made in the design. As you learned in
the beginning of this lesson, when you package your
design in preparation for sending it to a physical de­
sign system, the Packager assigns section assign­
ments and pin numbers on a best-guess basis. You
then send the Packager output to a physical interface
program, and the output from the interface program
is sent to the physical design system.

One of the jobs of a physical design system is to
optimize a design by shortening all the wire lengths
as much as possible. Often this optimization is
achieved by changing the section and pin assign­
ments made by the Packager. As part of its output,
the physical design system produces feedback files
that the Packager uses to change its physical assign­
ments to match those produced by the physical de­
sign system. Looking again at Figure 9-6, the feed­
back files from the phy~ical design system must be
run through the interface program before they can
be used as input to the Packager. The feedback files
save the designer from the tedious and error-prone
task of making these changes manually.

Table 9-1 lists all of the Packager files by category
and gives their file names. A description of each of
the output and input files follows the table.

9-33

Packager

Table 9-1. Packager Files

Type Name System Name

First Run Input Packager Directives File [Compiler packager .cmd
Files Expansion Data]

Chips File lsttl. prt, ... etc.

Output Files: Expanded Net List pstxnet.dat
For use by Expanded Parts List pstxprt. dat
another Back Annotation File pstback.dat

program New CHIPS File pstchip.dat
Pin List (for Flattener) pstpin.dat

For use by Listing File pstlst.dat
user Log File pstlog.dat

Reports pstrprt.dat
Logical Changes Summary pstlchg.dat
Physical Changes Summary pstpchg.dat
Binding Changes Summary pstbchg.dat
Cross Reference pstxref .dat

For use by Logical Signal Name to Physical Net pstsigb.dat
Packager in Name Bindings

later runs Logical to Physical Part pstprtb.dat

(state files) State File pststat.dat
Pin Swap File pstpswp.dat

Later Runs (same as "First Run Input Files" and
Input Files "state files" above plus "Feedback

Files" below)

Feedback Files Physical Net Name Transformations pstnetx.dat
Physical Section Transformations pstsecx.dat
Feedback Net List pstfnet.dat
Physical Part Designator Transformations pstprtx.dat

Other Input Physical Part Tables <named by user>

9-34 1/15/89

Output Files for Use
by Another Program

1/15/89

Packager

• Expanded Net List (pstxnet.dat)

This file lists each net on your design (alpha­
betically by signal name) and the nodes con­
nected to it (by U-number). This file is used
by any interface to go to a physical design
system.

• Expanded Parts List (pstxprt.dat)

This file lists each physical part in the design
in order (by U-number) and tells what logical
part (by P-number) is assigned to each sec­
tion. This file is used by any interface to go
to a physical design system.

• Back Annotation File (pstback.dat)

This file lists the information in the expanded
net list and the expanded parts list ordered
by body name and P-number so that GED
can write in U-numbers and pin numbers for
each body on the drawing.

• New CHIPS File (pstchip.dat)

This is the physical information extracted
from the library chips files and physical part
tables for each different library part used in
your design. This output file is any interface
to go to a physical design system. It is also
passed on to subsequent programs for them
to use.

9-35

Packager

See the ValidPACKAGER
Reference Manual for
details.

Output Files for Use
by the User

9-36

• Pin List File (pstpin.dat)

This file (not shown) is necessary to run the
optional Schematic Flattener (ValidFLAT/
Transcribe TM). The pin list file is an extrac­
tion of the chips file and contains library in­
formation for the Schematic Flattener. This
file is not generated by default. To generate
it, use the PRINT_ PIN_ LIST directive in the
packager.cmd file.

• Listing File (pstlst.dat)

This file provides process information and er­
ror messages for the user

• Log File (pstlog.dat)

This file provides process information and
other data for use by Valid personnel.

• Reports File (pstrprt.dat)

This file lists the remaining spare sections (if
any) and how many packages of each physi­
cal part your packaged design requires.

• Logical Changes Summary (pstlchg.dat)

This file lists the logical parts that were
added to the design or deleted from the de­
sign since the last run of the Packager.

• Physical Changes Summary (pstpchg.dat)

This file lists all physical parts that were
added to the design or deleted from the de­
sign during the last run of the Packager.

1 /15/89

A binding is a map­
ping of a logical part
to its allocated physi­
cal section.

See the ValidPACKAGER
Reference Manual for more
information on the cross
reference file.

Output Files for Use
in Later Packager
Runs (State Files)

1 /15/89

Packager

• Binding Changes Summary (pstbchg.dat)

This file lists all bindings that were added to
the design or deleted from the design during
the last run of the Packager.

• Cross Reference (pstxref.dat)

This file lists, for cross reference purposes,
signal names and the net names to which they
correspond, and logical part names (library
part names and P-numbers) and the physical
assignment (U-number, section, and pin
numbers) to which they correspond. This file
is not generated by default.

• Logical Signal name to Physical Net Name
Binding (pstsigb.dat)

This file contains the information in the ex­
panded net list, in a somewhat different
format.

• Logical to Physical Part Designator
Binding (pstprtb.dat)

This file contains the information in the ex­
panded parts list, in a somewhat different
format.

• State File (pststat. dat)

This brief file time stamps the current Pack­
ager run and identifies the Compiler run used
for input.

9-37

Packager

Input Files for Later
Runs

Physical Part Tables

• Pin Swap File (pstpswp.dat)

This file lists the pins swapped during the
current Packager run. If no pins have been
swapped, the file includes only a header and
"end."

• First Run Input Files (see above)

• State Files (see above)

• Feedback Files

Physical Net Name Transformations
(pstnetx. dat)

Physical Part Designator Transformations
(pstprtx. dat)

Physical Section Transformations
(pstsecx.dat)

Feedback Net List (pstfnet.dat)

The four feedback files are created by the
physical design system and include all
changes made to the design by the physical
design system in a format that can be read by
the Packager. They allow the Packager to re­
package the design to conform exactly to the
physical design. Feedback files may also be
generated manually by the designer to make
changes to the packaged design without re­
turning to GED.

Physical Part Tables are files used to modify library
information. See the ValidPACKAGER Reference
Manual for details.

1 /15/89

Packager
Checklist

1 /15/89

Packager

Now that you know how the Packager works, just
follow these steps next time you use the Packager.
If you don't remember how to do some thing, or
need a more extensive explanation, just look back
through this lesson for the appropriate section.

1 Edit the Packager directives file:

vi packager.cmd

2 Check that the ROOT DRAWING and

LIBRARY directives are correct. You need

one LIBRARY directive for each library used

in your design.

3 Save the corrected Packager directives file.

4 Run the Packager:

package

Wait for completion - look for the UNIX
prompt to appear.

5 If Compiler errors are reported look at the

.Compiler listing file to see errors reported:

more cmplst.dat

6 Go into GED and correct errors in the

drawing.

7 Run the Packager again (make sure there are

no Compilation errors and that the Packager

run finishes).

9-39

Packager

9-40

8 Look at the Packager listing file to see errors

reported:

more pstlst.dat

9 Go into GED and correct errors in the

drawing.

10 Run the Packager again.

11 Look at the listing file to verify that errors

have been corrected:

more pstlst.dat

That's all. Now you are ready to back annotate your
drawing or to run any of the physical interface pro­
grams. Congratulations!

1 /15/89

LESSON 10

Back Annotation

backannotate

10-2

After you run the Packager, your next task is to
annotate your schematic (your GED drawing) with
the physical reference designators (U-numbers) and
to make adjustments to those physical assignments
when necessary. This lesson shows you how to do
these jobs.

New Commands

section

1 /15/89

The
Backannotate
Command

When to Back
Annotate

GED {)

PACKAGEQ

BACKANNOTATE

Back Annotation

One of the files output by the Packager is the back
annotation file, called pstback.dat. This file contains
the physical part assignments that the Packager
made in a format that GED understands. You use
this file and the GED command backannotate to
automatically add the physical assignments made by
the Packager to your drawing.

Back annotation saves you a lot of time and tedious
work and ensures that your drawing accurately re­
flects the physical part assignments.

There are two different times in the design cycle
when it is important to back annotate your GED
drawing. The first of these is after the first error­
free run of the Packager, and the second is after the
design has been sent to a physical design system
(producing feedback files) and the design has been
repackaged to reflect the changes in physical assign­
ments. The typical order of design steps from the
Packager through a physical design system, includ­
ing back annotation, is shown below.

{)
(physical interface program) 'O

(physical design. system) {)

1 /15/89

PACKAGE Q

BACKANNOTATE

10-3

Back Annotation

Using the
Backannotate
Command

10-4

The first time you back annotate your design is after
your first error-free run of the Packager. After you
have corrected any errors found by the Packager and
have run the Packager on the corrected design, you
want to record the physical assignments (U-num­
bers and pin numbers) on your GED drawing for
reference. Remember, however, that these physical
assignments may be modified by your physical de­
sign system. That is why you have to back annotate
again later.

After this first back annotation, you send the Pack­
ager output to a physical interface program to for­
mat it for a physical design system, and then to a
physical design system. The physical design system
creates feedback files that are used as input files to
the Packager. You can also create your own feed­
back files to force the Packager to make certain as­
signments. You then run the Packager again, and it
reassigns parts on the basis of the instructions· in the
feedback files. Now you want to update your GED
drawing again so that it corresponds exactly with the
physical design you have produced. This is the sec­
ond time that you back annotate your design.

The backannotate command is very easy to use:

1 At the UNIX prompt, type:

ged subtractor

2 After your drawing appears on the screen,
give the command:

backannotate pstback.dat

1 /15/89

.. !.ill•

SUBmACTOR. LOGIC. 1. 1

..LB.

l'Z_

_L:1

-1..3.

..B..

"7_

"1

3

LI

~
:(:J.
·<
~

1 /15/89

!WI

Back Annotation

You'll see GED automatically annotate the drawing.
When it finishes, it automatically saves the updated
version (writes it). You don't need to do anything
except watch!

Figure 10-1 shows a portion of your updated draw­
ing showing physical part designators (U-numbers)
and pin numbers.

G'lID 0. 1 5 CATIE:. I-A< [I HELP 1)
(I SHOW :ti)

U4 [I VERSION I)
lP [I GROUP I)

Ul
[I SPLIT I) 3P =~

J r

l-"1 A~ Co [I COPY 1)
OFF

m~~ ADDR
[I DELETE I)

07 07 lt_g_
[I HOVE I)

05 05 iLfi_ Y3 L0._ [I WIRE I) 05 05 ILs.. Y2 LS_

04 04 b....2.. Y1 [I ZOOM ~1)
03 0 39. ..L1. B3 Y0 ~ !1 !l
02 0 25. _LS_ B2
01 0 111

~~
(I SIONAME 1)

00 0 0t2. [I CHANGE I)

[>CE
0 (I PROPERTY 1)

(l ROUTE I)
~O DRAWING

[IDIRECTORY:tl) 0
[I UNDO I)

TITLE=SUBTRACTOR (I REDO 1)
[I Others •I)
[I ROTATE I)

Figure 10-1. Back Annotation of Schematic

10-5

Back Annotation

Moving Pin
Assignments in
GED

Signal names and pin
numbers are consid­
ered objects.

10"""6

When you back annotate a drawing, the system
sometimes places pin numbers directly over signal
names. If this happens, you can use the split com­
mand to move the pin assignments.

When you used the split command in Lesson 6, you
clicked the left button to select a wire. To separate
objects, you use the right-hand button to select the
object you want. Follow these steps:

1 Use the zoom command to enlarge the area

with overlapping signal names and pin

numbers.

2 Select split from the menu.

3 Move the cursor to a group of overlapping

objects and click the right-hand button.

If you are closer to the pin itself (to the right
of the objects), the cursor selects the pin
number. If you are to the left of the objects,
the cursor selects the signal name.

If the cursor selects the wrong object, you can
click the right-hand button to cycle through
the overlapping objects. Each click selects an
object to move away from the others; if a
click selects the wrong object, just click again
until you select the object you want.

4 When the signal name is selected, move it to

the left of the pin number and click the left

button to place it in the new location.

1 /15/89

Assigning
Physical
Locations and
Sections in GED

The Location
Property

1/15/89

Back Annotation

5 Move to the next group of overlapping ob­

jects, and repeat Steps 3 and 4 until all signal

names and pin numbers have been separated.

6 write your drawing to save it.

After your drawing has been updated and the
U-numbers are in place, you may want to make
some physical reference assignments yourself rather
than accepting the ones made by the Packager.
There are three GED commands that you use to do
this:

• The property command to attach a
LOCATION property.

• The section command to assign sections.

• The pinswap command to swap the pin num­
bers belonging to the same pin group on a
body.

When you know that you want a particular logical
part on your design to be assigned to a particular
physical location, you can make the assignment in
GED. Go into GED, edit your drawing, and follow
these steps:

1 Use the zoom command to enlarge the ap­

propriate part of your drawing so that the

U-numbers are clearly visible.

2 Select the property command from the

menu.

10-7

Back Annotation

Tips on the Location
Property

1o~a

3 Point to the origin of the body to which you
want to assign a different physical reference
designator (U-number).

4 Type:

location

followed by a space and the new U-number
(for example, "U25.")

5 Place the new U-number down on the draw­
ing. Notice that the old U-number disap­
pears. You don't have to delete it.

6 write the drawing and package it.

,,; You can attach a LOCATION property to a
body either before or after you package the
design. Although the LOCATION property is
introduced here, you may want to attach this
property as you first enter the design in GED.

I/ When you attach a LOCATION property, the
property value is not restricted to U-num­
bers. The property value may be any alpha­
numeric string. For example, you can call a
resistor "RS" or a capacitor "C3."

1 /15/89

The Section
Command

1 /15/89

Back Annotation

You use the section command to select which sec­
tion of a physical part is assigned to a particular
logical part. To change the section assignment of
one of the inverters in the subtractor drawing, edit
that drawing and follow these steps:

1 Use the zoom command to enlarge the ap­

propriate part of your drawing so that the pin

numbers are clearly visible.

2 Type:

section

to select the section command.

3 Point to one of the pins that you want to as­

sign to a different section, and click the left

button.

Each click selects a different section of the
physical part. Watch the pin numbers on the
entire body change accordingly.

4 When the pin numbers correspond to the de­

sired section, you are done. You can select

another body to section, or select another

GED command.

5 write your drawing and package it.

10-9

Back Annotation

Tips on the Section

Command

See the ValidGED
User's Manual for
details on manual
section assignment.

10-10

v You can use the section command on a body
either before or after you package the design.
Although the section command is introduced
here, you may want to use this command as
you first enter the design in GED.

~ An alternate way to use the section com­
mand is to type in the desired pin number
and then point to a pin. This can save time
cycling through the various sections when you
know exactly which one you want.

~ When changing section assignments after
back annotation, you do not need to reassign
all sections of a given part. Just assign the
sections you want to force and leave the oth­
ers. Your back annotated schematic may
temporarily carry duplicate section numbers.
This is not a problem. When you save your
drawing and send it to the Packager, the
Packager reassigns the remaining sections for
you.

v When you use the LOCATION property and
the section command, remember that the
Packager and the physical design system do
not override these assignments. To change a
manual assignment, you can either replace
the LOCATION property or use the section
command again. To delete a manual assign­
ment, you must delete the LOCATION and
SEC properties.

1 /15/89

The Pinswap
Command

1 /15/89

Back Annotation

The pinswap command swaps the pin numbers on a
body that are defined to be in the same pin group.
You use this command only after using the section
command. Pin swapping can occur only between
pins that have been defined in the library as swap­
pable. For example, it may be legal to swap the two
input pins of a NAND gate, but not the input and
output pins of the gate. To swap pins, go into GED,
edit your drawing, and follow these steps:

1 Type:

pinswap

2 Point to the two pins to be swapped,

or

Type in a new pin number and then point to
the desired pin. The selected pin is swapped
with the pin having the pin number you
specified.

The properties attached by the pinswap command
cannot be changed, only deleted and moved. Once
pins on a part have been swapped, the part cannot
be resectioned using the section command.

Now you are ready to use a physical interface pro­
gram. Back annotation and the interface programs
are completely independent of each other. You can
back annotate your design first and then use an in­
terface program, or vice versa.

10-11

LESSON 11

GSCALD Interlace

The GSCALD interface is one of several interface
programs available on workstations that include the
Packager. If your workstation only supports sche­
matic capture (that is, if it includes only GED), the
Standard Interfaces are not included and you can
skip this lesson.

There are two basic types of interface programs:

• Logical interface programs

• Physical interface programs

All the interface programs work the same way. The
only difference is that the logical interface programs
accept the Compiler output files as input, and the
physical interface programs accept the Packager out­
put files as input. Each interface program accepts
input files (either from the Packager or from the
Compiler), and formats this information in the man­
ner required by the destination system. For exam­
ple, GALLEGRO formats the Packager output for
the Allegro printed circuit design system, and
GTEGAS formats the Compiler output for use by
the TEGAS V simulator.

1 /15/89

Using GSCALD

Remember, pstchip.dat
is the short form of the
library chips files that
the Packager produces.

1 /15/89

GS CALO lnterf ace

GSCALD is a general purpose interface program
that formats concise net and parts lists from the
Packager output files. GSCALD does not directly
target a particular physical design system. GSCALD
is introduced here as an example of a physical inter­
face program. The other interface programs work
the same way and are just as easy to run.

You run the GSCALD interface program from
UNIX. As do all of the interface programs,
GSCALD requires a directives file in which you
specify a library file directive. Follow these steps:

1 From the UNIX prompt, type:

vi scald.cmd

You do not have a default directives file for
GSCALD, so your screen reads "New File."

2 Press the i (lower case 'i ') to insert text at the
cursor, and enter these lines:

library_file 'pstchip.dat';
end.

3 Press the ~ key to stop entering text.

4 To save the directives file and exit, type:

:wq

5 Type:

gscald

11-3

GSCALD lnterf ace

Tips on Using
GSCALD

Output Files

11-4

~ If you have trouble running GSCALD, check
that the GSCALD program is installed on
your system. The full UNIX pathname of the
program is:

/usr/valid/tools/bin/gscald

See Lesson 13, Understanding UNIX, for in­
structions on how to locate a file on your
system.

GSCALD produces the following output files:

Concise Net List File
Body Ordered Net List File
Concise Part List File
Stuff List File
Power and Ground List File
Listing File
Cross Reference File

Here is a brief description of each file produced:

• Concise Net List (dialcnet.dat)

The Concise Net List is a list of the nets in
the design that have at least two nodes. Nets
connecting one pin are excluded.

• Body Ordered Net List (dialbonl.dat)

The Body Ordered Net List contains the same
information as the Concise Net List, but is
ordered by physical part designator (U­
number) rather than by net.

1 /15/89

1 /15/89

GSCALD lnterf ace

• Concise Part List (dialcprt.dat)

The Concise Part List lists all physical parts
(by name) and quantities used in the design.

• Stuff List (dialstf .dat)

The Stuff List is a list of physical parts and
the corresponding physical part designator
(U-number) for each. It is a useful list of the
parts required to stuff the board.

• Power and Ground List (dialpgnd.dat)

The Power and Ground List is a list of the
pins connected to power supplies and ground
connections on each physical part (by
U-number).

• Listing File (scald.1st)

The Listing File provides process information
on the program and lists error messages
when any occur. It is similar to the listing
file of the Compiler or the Packager.

• Cross Reference File (scald.xrf)

The Cross Reference File lists the local part,
global part, and global cross references.

11-5

GSCALD Interface

Accessing a
Physical Design
System

11-6

To send your design to a physical design system
such as Allegro, package your design, run the
GALLEGRO interface program just as you ran the
GSCALD program, and then submit the
GALLEGRO output netlist and device files directly
to the Allegro physical design system. If the physi­
cal design system is networked to your workstation,
you can transfer the netlist and device files from the
interface over the network (if the physical design
system is a networked resource) or use magnetic
tape. Consult your system administrator for the ap­
propriate procedure.

1 /15/89

LESSON 12

111,.l!I

SCALD Directories

directory <*>

remove

12-2

This lesson teaches you about SCALD directories,
and the next lesson teaches you about the UNIX op­
erating system. You need to read this material to be
able to effectively use the SCALD design tools on
your workstation. In this lesson, you learn about
SCALD directories and how to use drawings stored
in different directories. You also learn how to use
the directory command in GED to list your avail­
able library parts, and how to borrow a drawing
from another directory.

New Commands

masterlibrary

use

1 /15/89

1 /15/89

SCALD Directories

Now that you've taken a drawing through a complete
design cycle from schematic entry through compila­
tion, packaging, and back annotation, you have a
good understanding of the design cycle and how the
SCALD design tools work together. The data that
you enter when you draw a schematic in GED is
retrieved and manipulated by a number of different
programs such as the Compiler and the Packager.
You can also define your own tools to be used in
conjunction with your design workstation, perhaps a
different kind of simulator or an interface to a par­
ticular physical design system.

The reason your information can be retrieved and
manipulated so easily is because storage issues
(where to store the different data, in what form to
store the data, how to retrieve the data) have been
carefully reviewed. Since Valid recognized that the
users of SCALD systems are design engineers who
think in terms of drawings and schematics, the
SCALD system is designed around drawings. The
SCALD system does most of the routine file ma­
nipulation for you so that you won't have to deal
directly with UNIX.

Since the role of the SCALD directory is intrinsic to
the operation of the SCALD system, it's important
for you to know about SCALD directories. If you
understand SCALD directories, then you only need
to know a little bit about UNIX. If you don't under­
stand the function of a SCALD directory, even a
good deal of UNIX knowledge is just going to be
confusing.

12-3

SCALD Directories

What is a
SCALD
Directory?

susan.wrk is a SCALD
directory name used
in some of the tutorial
examples.

12-4

A SCALD directory is a filing system that GED uses
to store your drawings in UNIX and retrieve them
from UNIX without you having to worry about how
UNIX works and where your drawings are stored.

As you've noticed from your work with the full-ad­
der circuit and the subtracter, all you had to do was
go into GED and issue the edit subtracter com­
mand, draw the schematic, and save it with the
write command. Your drawing gets saved some­
where, and GED knows where to find it each time
you request it.

GED uses a small index file to find your drawings.
For each drawing you create, GED writes the name
you gave the drawing and its corresponding UNIX
name into this file. (The UNIX name is the UNIX
directory where the drawing is stored.) So, when
you give the command edit subtracter to GED,
GED looks in its index file for a drawing with that
name, goes and gets it for you, and it appears on the
screen.

The index file that GED makes for itself and uses to
store and find your drawings is called a
SCALD directory. The name of your SCALD direc­
tory for this tutorial project has been your login
name with the extension . wrk.

1 /15/89

Where you see
SCALD Directories

SCALD Directories

You probably remember that the right-hand field of
the status line (when you are in GED) tells you the
name of your current working directory. Now you
know that another name for this is your "SCALD
directory." Whenever you see a file named
susan. wrk, you know that it is a SCALD directory
and that it contains a list of a user's drawings.

You probably also remember that when you used
the directory command (in Lesson 3), you saw this
on the screen:

shelltool - /bin/csh · ·

SUSAN.WRK
REAL FILE NAME: /usr/susan/susan.wrk
DIRECTORY TYPE: LOGIC

Contains:
ADDERCKT

1 /15/89

SUB TRACTOR

The screen says SUSAN. WRK at the top because the
directory command goes to your SCALD directory
and tells you four things:

• The name of your SCALD directory
(susan.wrk).

• The UNIX pathname to your SCALD direc­
tory (so you could find it in UNIX if you
had to).

12-5

SCALD Directories

Other directory types
are reserved for library
development purposes
and documentation.

The SCALD
Directory in Your
Startup.ged File

• The directory type: this tells you what sort of
things are stored here. If these are user-cre­
ated schematics, the type will always be
"LOGIC."

• The names of each of your drawings, in al­
phabetical order.

Your SCALD directory also appears in your
startup.ged file. In fact, the entry in this file is what
makes the whole SCALD directory system work.
Let's look at your startup.ged file again. From the
lJNI)(prompt, type:

more startup.ged

This is what you see:

-shellt-o·o1~/bin/csh-·

masterlibrary master.local
use susan.wrk
library tutorial
set dots_filled
menu 10 zoom

12-6

Remember, you added the the line
"use susan.wrk" in Lesson 7. Now you can un­
derstand that it tells GED to use a SCALD directory
named "susan.wrk." As a reminder, a startup.ged
file with a use statement is created for you when
your user account is made. Just be sure you don't
delete or change this line.

1 /15/89

The Use
Command

Multiple Use
Statements

1/15/89

SCALD Directories

The use statement in your startup.ged file gives the
name of your SCALD directory. It looks like this:

use susan. wrk

This statement tells GED to look in the SCALD di­
rectory named susan.wrk to find the drawings you
are going to edit. When you save a drawing with the
write command, this statement tells GED to record
the location of the edited drawing in the same
SCALD directory (susan. wrk.)

You can put more than one use statement in your
startup.ged file, and you can also give the command:

use projl.wrk

while you are working in GED. In fact, the use
command in your startup.ged file is the same com­
mand. All the startup.ged file does is issue the
specified commands as soon as you enter GED.

When you put two use statements in your
startup.ged file, like this:

use susan.wrk
use projl.wrk

GED executes the first command and then the sec­
ond command. If you watch the top of the screen
very carefully when you first go into GED, you'll see
it say "susan.wrk" briefly, and then "projl.wrk."
This is because GED first reads the contents of
susan. wrk and then the contents of proj 1. wrk. The
order of the use statements is very important. The
SCALD directory in the last use statement in your

12-7

SCALD Directories

The Search Stack

12-8

startup.ged file is your current working directory in
GED.

When you place multiple use statements in your
startup.ged file, what you are really doing is making
a search stack. You are telling GED to look for your
drawings in certain files, but you are also telling
GED where to look first for the drawing you request
and where to look next. The SCALD directory you
list last is put on the top of the stack. This is where
GED first looks for your drawings and where GED
puts each new drawing unless told otherwise.

When you give a use command in GED like this:

use projl.wrk

You see the top of your screen change to read
"projl.wrk," and now the SCALD directory named
proj 1. wrk is on the top of the stack.

If there is not yet an existing SCALD directory
named projl.wrk, GED creates it when you write a
drawing into it.

1/15/89

The Library
Command

For more information on
libraries, see Lesson 14.

1 /15/89

SCALD Directories

You used the library command in Lesson 1 when
you entered the command:

library tutorial

while you were using GED. Later you learned how
to enter a library command into your startup.ged
file. The library command is just like the use com­
mand, except that it is used for libraries.

When you give the library command, you make a
library available for use and you enter that library
into the search stack. Libraries are like SCALD di­
rectories because they are directories that contain
drawings. But libraries are different from SCALD
directories because although you use the drawings of
the parts in them, you don't change the part draw­
ings. Since the parts in each library usually have
unique names (e.g., LSOO, 74SOO, 7400, 74ALSOO),
the order of libraries in the search stack is not im­
portant. When you add a part, the first library in the
stack is searched and, if the part is not found, the
next library is searched.

12-9

SCALD Directories

The Directory
Command

12-10

In Lesson 3, we introduced the directory command
and showed you how to get a listing of the drawings
in your current directory (or more specifically, your
current SCALD directory). This is the SCALD di­
rectory on the top of your search stack. Now we'll
show you some more things that the directory com­
mand does for you.

The basic directory command you used in Lesson 3
lists your current SCALD directory and the drawings
in it. The directory command can also be used to
see all of the SCALD directories you are currently
using, like this:

directory <*>

The angle brackets < > surround a SCALD directory
name, and the asterisk is a wildcard. The command
means that you want to see a list of the names of all
of your SCALD directories.

1 /15/89

SCALD Directories

The list of all of your directories looks something
like this:

shelltool - /bin/csh ·

SUSAN.WRK
REAL FILE NAME: /usr/susan/susan.wrk
DIRECTORY TYPE: LOGIC

STANDARD
REAL FILE NAME: /usr/valid/lib/standard/standard.lib

DIRECTORY TYPE: LOGIC
READ ONLY

HELP
REAL FILE NAME: /usr/valid/tools/editor/doc/help.wrk

DIRECTORY TYPE: LOGIC
READ ONLY

TUTORIAL
REAL FILE NAME: /usr/valid/lib/tutorial/tutorial.lib

DIRECTORY TYPE: LOGIC
READ ONLY

Figure 12-1. A List of Your SCALD Directories

1 /15/89

You can see that your libraries are listed along with
your current SCALD directory. This is a convenient
place to see what libraries you have available cur­
rently in this GED session.

You can also use the directory command to get a
list of all of the parts in one of the libraries you are
using, like this:

directory <tutorial>*

12-11

SCALD Directories

The directory name here is "tutorial" and the aster­
isk is a wildcard. This command means that you
want to see a list of all of the drawings in the tuto­
rial library.

This is what you see on the screen:

sh e II t o o I - /bin/cs h · ·

TUTORIAL
REAL FILE NAME: /usr/valid/lib/tutorial/tutorial. lib
DIRECTORY TYPE: LOGIC
READ ONLY

Contains:
2AND 20R
EXAMPLE OF EACH TUTORIAL PART
TUTORIAL LIBRARY

ADDR
EXOR

DFF
INV

Figure 12-2. Drawings in the Tutorial Library

To learn more about li­
braries, see Lesson 14.

The Search Stack
Listing: directory <*>

12-12

Each name in the list is a drawing in the Tutorial
library. Notice the names of each library part in this
list.

When you listed your active directories with the
directory<*> command, you may have noticed that
the listing did not appear in alphabetical order.
That's because this command not only tells you what
directories you are currently using, but also the or­
der in which they appear in the search stack. Look
at Figure 12-1 again; the libraries are on the bottom
of the list.

1 /15/89

Borrowing a
Drawing from
Another User

1 /15/89

SCALD Directories

GED always writes a new drawing to the current
SCALD directory (the directory on the status line)
and always writes an existing drawing back into the
SCALD directory where the drawing was found un­
less specifically told to write the drawing into a dif­
ferent directory. The ability to write a drawing to
another directory allows you to borrow a drawing
from another user or from another of your own di­
rectories by reading (with the edit command) a
drawing from its directory and then writing a copy of
the drawing into your directory.

The following procedure describes how to borrow a
drawing. The procedure assumes that you are bor­
rowing drawing "circuit 1" in local user Steve's
SCALD directory "proj 1."

To borrow this drawing:

1 Specify the SCALD directory that contains
the drawing to be borrowed with the use
command:

use /usr/steve/projl/projl.wrk

2 Read the drawing from the specified SCALD

directory with the edit command:

edit circuit 1

3 Write the drawing to your directory:

write <susan.wrk>

The brackets around the directory name are
required. Optionally, you can specify a dif-

12-13

SCALD Directories

The
Masterlibrary
Command

12-14

ferent name for the drawing with the write
command. For example, the command

write <susan.wrk>ckt a

renames the original drawing (circuit 1)
"ckt a."

This procedure writes a copy of circuit 1 into the
SCALD directory susan.wrk while leaving the origi­
nal drawing in /usr/steve/projl/projl.wrk untouched.
After borrowing the drawing, again specify your di­
rectory (type use susan. wrk) so that you edit
the copy of the drawing in your SCALD directory.

The first line in your startup.ged file contains a
masterlibrary command. This command references
a file that contains short forms or abbreviations of
SCALD directories that you regularly use.

Once you make an entry in this file, you can use just
the short form or abbreviation of the directory name
rather than the complete pathname. Short forms
and abbreviations can be used with any command
that requires a SCALD directory or library name.
Entries in this file can include both the SCALD di­
rectories of other users as well as your own SCALD
directories.

A default file, named master.local, is already set up
in your login directory. To look at this file, type:

more master.local

1 /15/89

SCALD Directories

I This is what you see:

shelltool - /bin/csh

FILE TYPE = MASTER_LIBRARY;
"susan. wrk 11 'susan. wrk';
{

11 proj 1. wrk" ~'proj l/proj 1. wrk';}
END.

For complete details on the
masterlibrary command, see
the ValidGED Command
Reference Manual.

1 /15/89

In the file, susan is replaced with your login name.
The third line of the file shows the entry format.
This line is actually a comment since it is enclosed
in curly braces. The line shows a hypothetical entry
for the SCALD directory "projl. wrk" located in
UNIX directory "proj l" under your login directory.

Using the example from the previous section on bor­
rowing a drawing, adding the line

"prl 11 '/usr I steve/proj 1/proj1. wrk';

to your master. local file would allow you to enter
simply "use prl" in the example rather than the
full pathname (/usr/steve/proj 1/proj 1. wrk).

The masterlibrary command is powerful and can
save you considerable typing.

12-15

SCALD Directories

The Remove
Command

To delete a GED drawing, you use the remove com­
mand. To delete a drawing named TEST.LOGIC.1.1
you type:

remove test

GED then displays the names of all of the drawings
that have TEST in the first field of their name, like
this:

sh e II t o o I - /bin/cs h ·

<SUSAN.WRK>TEST.LOGIC.1.1
<SUSAN.WRK>TEST.LOGIC_BN.1.1
<SUSAN.WRK>TEST.LOGIC_CN.1.1
<SUSAN.WRK>TEST.LOGIC_DP.1.1

12-16

If you wish to remove all of the listed drawings and
files, you type ';' (semicolon). Instructions are given
on the screen.

To remove a drawing TEST.BODY.1.1 while retain­
ing a drawing TEST.LOGIC.1.1, you type:

remove test.body

GED then removes only the specified drawing.

1/15/89

LESSON 13

111111l{illll'
Lo.----

Understanding UNIX

Cd

13-2

In this lesson you learn about the structure of the
UNIX file system and how to move from one direc­
tory to another in the UNIX system. This lesson
introduces these new UNIX commands:

New Commands

pwd

1 /15/89

SCALD
Directories
and UNIX

Understanding UNIX

In Lesson 12 you learned that the SCALD Directory
acts as the go-between for GED and UNIX. You
now need to understand the other half of the picture:
the UNIX half. When you used UNIX in Lesson 7
(the /s command) to look at your default files in
your user account, you saw one of the files listed
there was named susan. wrk. This is your SCALD
directory. It is a UNIX file (in fact everything on
your workstation is stored as a UNIX file). Let's
look at it just for your information. From the UNIX
prompt, type:

more susan.wrk

The file appears as shown in Figure 13-1.

shelltool - /bin/csh o .

FILE_TYPE = LOGIC_DIR;
11 ADDERCKT" "'adderck t"' ;
11 SUB TRACTOR 11 "'subtractor"' ;
END.

Figure 13-1. The Contents of a SCALD Directory from UNIX

Don't ever edit this file or delete it. If you do, GED
won't work properly.

1 /15/89 13-3

Understanding UNIX

The UNIX Tree

Directories are shown as
boxes on the diagram;
files are shown as circles.

13-4

The UNIX operating system stores everything in a
branching file structure of directories and subdire­
ctories that resembles an upside-down tree.
Figure 13-2 shows you a portion of the UNIX file
structure. You move around in the file system by
following the branches (the lines on the diagram).
This usually involves moving up, then over, then
down a different branch.

You can go and look at any text file in the system
(with the more command), but you can only change
(using v1) a file that you "own." (These are usually
the files in your user account.)

The very top directory of the file structure is what
we call "root" (remember this is an upside-down
tree). As you might have guessed, if you log on to
the system as "root," you have access to everything
and permission to change everything. Root is some­
times called the superuser, and you need to give a
certain password to log on.

1 /15/89

ca tie

proj1

alu

1 /15/89

I (root)

usr

susan st eve

susan.wrk subtracter

\J

proj1.wrk

\J
(SCALD

directory)

I
0
(drawing

files)

.---------------..., ID I ! UNIX directory ! lo I I I

: UNIX file I
I I '---------------...1

Understanding UNIX

valid

lib tools

master.lib tutorial standard

\J I B

tutorial. prt dff 2and

\J

Figure 13-2. UNIX File Structure

13-5

Understanding UNIX

GED Drawings
Stored in UNIX

13-6

Now that you know that everything on your worksta­
tion is stored somewhere in UNIX, you are probably
curious to know where your GED drawings are
stored. Look at Figure 13-2 again and find the box
named subtracter. The key to Figure 13-2 tells us
that the boxes represent UNIX directories and the
circles represent UNIX files. Your drawing named
SUBTRACTOR (like any other GED drawing) is
stored in a UNIX directory. Under this directory is
a whole group of UNIX files that store different in­
formation about your drawing. One file stores the
information to make your drawing appear on the
screen, another stores the information that is passed
on to the Compiler, and so on. Don't try using the
more command to list these files to the screen; some
of them aren't even text files. And don't ever try to
alter one of these files. To edit a drawing,
ALWAYS USE GED.

1 /15/89

Moving Around
in the UNIX File
System

The Pwd Command

1 /15/89

Understanding UNIX

So far, you have looked only at the files in your
home directory and have not needed to move around
the UNIX tree to find other files. But now you're
ready to learn how to go and look at files outside of
your home directory. To look at a file elsewhere in
the UNIX file system, you use the cd (change direc­
tory) command. You use the cd command to move
to the directory that contains the file you want to
see, and then you look at the file using the more
command. To use the cd command, you need to
know where the directory is that you want to move
to, and you need to know where you currently are
located. This is because movement with the cd
command is often relative movement, movement in
relation to your current position. So, let's find out
where you currently are in the system.

At the UNIX prompt, type:

pwd

This command stands for "print working directory,"
and can be entered at any time from the UNIX
prompt. It prints the full pathname of the directory
to which you are currently connected. The answer
to your query is

/usr I susan

where susan is the name of your user account. This
is your login, or home, directory, the directory to
which you are connected each time you log in. The
message "usrlsusan" means that your current direc­
tory is named "susan" and that it is under a direc-

13-7

Understanding UNIX

The Cd Command

cd dirname

cd ..

cd

Full UNIX Path
Names

13-8

tory named "usr." If you look at the UNIX tree in
Figure 13-3, you can see that the directories
"catie," "susan," and "steve are all at the same
level and that they are under a directory named
"usr." "Usr" is a directory we call the user area,
because this is where each user's login directory (or
home directory) is located and where all the users'
files and subdirectories are stored.

The cd command connects you to another directory.
It can be used with the following three options:

This connects you to a directory called dirname that
is directly under your current directory.

This connects you to the directory immediately
above your current directory. (Be sure to type a
space between cd and ..)

This command (without an argument) connects you
to your home directory from wherever you are. It is
very useful when you have been travelling around in
the UNIX tree and want to go "home."

When you used the pwd command above, the reply
was:

/usr lsusan

This is the full UNIX pathname of the directory
susan. A full UNIX pathname tells you, in a short
(and rather cryptic) notation, how to get to a particu­
lar directory or file from root (the top of the UNIX
tree). Full UNIX pathnames are used extensively in

1 /15/89

1 /15/89

ca tie

Understanding UNIX

the UNIX operating system because they uniquely
identify any directory or file in the system. From
every branch of the UNIX tree there is one unique
path back to the top (root).

One of the beauties of the UNIX system is that with­
out restricting the names that a user is allowed to
use, each directory and file can always be uniquely
identified. If I make another directory named
"susan" from my home directory, these two directo­
ries can each be uniquely identified. As you see in
Figure 13-3, the pathname of the first is /usr/susan
and the pathname of the second is /usr/susan/susan.

I (root)

I

usr

susan st eve

proj1

Figure 13-3. Naming Subdirectories

13-9

Understanding UNIX

Moving Around in

UNIX: Exercise

13-10

The only restriction is that two directories or files
AT THE SANIE LEVEL cannot have the same
name. If you try to make a new directory of the
same name as an existing directory at that level, you
get an error message.

The one thing that is a little hard to remember about
a full UNIX pathname is that it always starts with a
I (slash). The way this is usually explained is that
the slash stands for root. But only the leading slash
in a pathname stands for root, not the others.

Another way to remember how to write a full UNIX
pathname correctly is to pretend that you are at the
top of the tree (root) and then to give directions to
the file or directory, like this:

First I connect to "usr," then I connect to "susan."

Now replace each occurrence of the phrase "I con­
nect to" with a slash (/). You get:

/usr/susan

So think about the slash as indicating movement
(like a path does). If you are at root and you want
to go somewhere else, the first thing you have to do
is move somewhere. So the slash comes first.

Now that you have all the tools you need to move
anywhere in the UNIX tree, let's practice going
places. Here are three short excursions; each starts
from your home directory. Ref er to Figure 13-4 for
the location of each destination.

1 /15/89

1 /15/89

Understanding UNIX

1 To /usr/valid/lib/tutorial/tutorial.prt and home

again.

Solution:

cd ..
cd valid
cd lib
cd tutorial
more tutorial.prt
q (to leave the file without going to the end)

cd

2 To /usr/valid/lib/master.lib and home again.

Solution:

cd ..
cd valid
Cd lib
more master.lib
q (if necessary)

cd

3 To root and home again.

Solution:

cd ..
cd ..
cd

Remember, to find out where you are at any time,
just use pwd. When you are at "root" and you use
pwd, you'll see just a slash (/).

13-11

Understanding UNIX

ca tie

proj1

©--'(root)

usr

susan st eve

susan.wrk subtracter

\J

proj1.wrk

\J
(SCALD

directory)

I
0
(drawing

files)

..---------------..... ID I : UNIX directory I
I I :o I I UNIX file I
I I •---- -----------...I

valid

lib tools

master.lib tutorial standard

\J I D

dff 2and

Figure 13-4. Moving Around in the Directory Structure

13-12 1 /15/89

Moving Faster

1 /15/89

Understanding UNIX

Now that you understand how the cd command
works, we'll show you the fast way to move to a
directory. There are two different techniques: one
for directories that are under your current position,
and one for directories that are elsewhere in the
UNIX tree. But be careful, the difference between
the two techniques is subtle and very important.

Suppose you are in /usr/susan and you want to go to
your directory /usr/susan/proj2/alu. This is a direc­
tory under your current position. You can go there
directly in one step by using the command:

cd proj2/alu

This is just like the "cd dirname" command we
showed you earlier. You only give the last half of
the pathname to the destination directory because
you are already half way there. Remember the
movement is relative to your current position.

If you want to move quickly to a directory that is
NOT under your current directory and you know the
full pathname of your destination, you can go there
directly by giving the full UNIX pathname like this:

cd /usr/jane/design/cpu

When the cd command is followed by a pathname
that begins with a I (slash), it interprets that path­
name as a full pathname. The initial slash tells the
cd command that this defines an absolute location.
If the cd command is followed by a pathname that
does not begin with a I (slash), it interprets that
pathname as being relative to your current position.

13-13

Understanding UNIX

13-14

Now you know quite a lot about SCALD Directories
and the UNIX file system. You are now ready to
learn about the libraries of components that Valid
supplies and maintains for your use with the SCALD
system.

1 /15/89

LESSON 14

Understanding Libraries

The Library
Directory:
/usr/valid/lib

configure
ged
lsttl
master.lib

14-2

This lesson explains how libraries are organized
and describes the generic files and directories that
are common to all Valid-supplied libraries.

The directory "usr" is the user area where user files
are stored. This directory contains a directory
named "valid" where all of the Valid applications
programs are located. Within this directory is a di­
rectory named "lib" where all of the Valid-created
libraries installed on your system are stored. If you
go to /usr/valid/lib and list the contents of that direc­
tory (Is command), you'll see the name of each li­
brary installed on your system and a few other files
and directories. It will look something like this:

standard
tutorial
util
utilities

1 /15/89

1 /15/89

Understanding Libraries

This is a good place to check quickly whether a par­
ticular library is installed on your system. Each li­
brary is stored in a directory bearing its name. The
full pathname of the time library is:

/usr/valid/lib/time

and the full pathname of the tutorial library is:

/usr/valid/lib/tutorial

Figure 14-1 shows the tutorial library and its place
within /usr/valid/lib. Look at this chart for reference
while you're reading the rest of this lesson.

14-3

Understanding Libraries

I I
/usr/valid/lib

lsttl time tutorial
I I

standard
I I

sim master.lib

\J

ttoL?ry ..__in_v....., 2and ___ '"•2•o·r~---.... d-ff-~ ~

0 xmplfchttrlprt exor addr tu~orial.~t tu(orial.~b
I I '--""' '--""'

logic.1.1
logic_cn.1.1
logic.1.2
logic_cn.1.2
~~

phys dat chips.prt

\J'J

,.----------------, lo : l UNIX directory l :0 : I I

: UNIX file l
I I ·---- ---- ---- ___ _,

14-4

part.1.1
part_cn.1.1

body.1.1 body.5.1
body.2.1 body.6.1
body.3.1 body. 7.1
body.4.1 body.8.1

Figure 14-1. Tutorial Library

(SCALD directory)

sim.1.1
sim.2.1
sim.3.2
sim cn.1.1
sim-cn.2.1
sim:cn.3.1

time.1.1
time.2.1
time.3.2
time cn.1.1
time - en. 2. 1
time:cn.3.1

1 /15/89

The Master
Library File:
master.lib

A Sample
Library: Tutorial

shellt o 01 - /bin/csh

2and
2or
addr
df f

1 /15/89

Understanding Libraries

One important file in /usr/valid/lib that you need to
know about is master.lib. When you use the library
command in GED (and in your startup.ged file),
GED looks in the master.lib file for the full UNIX
pathname to the library you specified. This library
can reside anywhere on the system as long as it's
listed correctly in master.lib. So if you run into prob­
lems using the library command, look at master.lib
and see if the library you want is listed there. If it
isn't, you need to add it.

All of the Valid-maintained libraries on your Sun
workstation have a similar structure. Knowing a lit­
tle bit about how these libraries are set up will make
you a better and more knowledgeable library user.
We'll use the tutorial library as an example because
it is very small (it only has a few parts in it).

Let's look at the contents of the tutorial library. To
do so, you need to connect to the directory
/usr/valid/lib/tutorial and list its contents like this:

1 cd /usr/valid/lib/tutorial

2 ls

Here is a listing of the contents of the directory
/usr /valid/lib/tutorial:

exor tutorial.lib
inv tutorial.prt
log xmplfchttrlprt
ttoriallibrary

14-5

Understanding Libraries

These two drawings are
used for documentation
and reference purposes
and are described in
the next section.

log

tutorial.lib

tutorial.prt

Reference Drawings

14-6

Of the items listed, 2and, 2or, addr, dff, exor,
and inv are the library parts. These are the parts
you added in GED with the add command. Each of
these library parts is a drawing and so, like any
other drawings, each is stored in a directory. Two
other items are also drawings:

xmplfchttrlprt

ttoriallibrary

The remaining items in the tutorial library are files.
Here is a brief description of each one:

Each library has a log file, maintained by Valid per­
sonnel, of all updates made to the library since its
initial release.

This is the SCALD Directory for the library named
tutorial. Just as the extension . wrk is reserved for
user SCALD Directories, the extension .lib is re­
served for library SCALD Directories.

This file contains physical information about each
part in the library. It is used by the Packager and by
the physical interface· programs.

The tutorial library includes two reference drawings.
Their GED drawing names are EXAMPLE OF EACH

TUTORIAL PART and TUTORIAL LIBRARY. These
two drawings are stored in the UNIX directories
"xmplfchttrlprt" and "ttoriallibrary."

Each library includes two such reference drawings.
You can see that the names of the UNIX directories

1 /15/89

A Sample
Library Part: OFF

1 /15/89

Understanding Libraries

are not exactly the same as the drawing names.
This is the work of your SCALD Directory. The
UNIX system does not accept spaces and special
characters in names. Also, for convenience, each
drawing name is shortened to just 14 characters.

The "EXAMPLE OF EACH ... " drawing includes every
version of every part in the library. The "EXAMPLE

OF EACH ... " drawing for each library is included in
the Library Reference Manual for documentation.

The "TUTORIAL LIBRARY" drawing includes the first
version of every part in the tutorial library. It is
used for library development.

In summary, the tutorial library is made up of one
directory for each part in the library, two additional
directories that each contain a reference drawing,
and three files. Each Valid-created library follows
this pattern. Under each of these directories is a
group of files that together define the library part.
Refer back to Figure 14-1 to see the directories,
subdirectories, and files of the tutorial library.

You learned above that each library part has a UNIX
directory allocated to it because each is a GED
drawing. Actually, each library part is defined by
several related drawings. For the library part named
DFF, these drawings are named:

dff.body
dff .part

The part of the name after the dot is the drawing
type. Drawing types were first introduced in Les­
son 3. You need to know about three types for now.

14-7

Understanding Libraries

Logic Drawings

Body Drawings

Part Drawings

14-8

First of all, remember that the SUBTRACTOR draw­
ing and the ADDERCKT drawing that you created
using GED both have the drawing type "LOGIC."
All user-made drawings are given this drawing type
by default. You will always want your drawings to
have the type LOGIC unless you are doing hierarchi­
cal design. This is an advanced topic that is covered
in Tutorial II. For now, just think of all user draw­
ings as having the type LOGIC.

When you add a library part to your drawing, the
symbolic representation that appears on the screen
is the BODY drawing for that part. When you add
the library part DFF, the drawing DFF.BODY ap­
pears on the screen. This drawing defines the
shape, pins, and general properties of the library
part. When you save your drawing (with the write
command), this information about each library part
is saved with the other information on your drawing.

The PART drawing includes global part information
that defines a given part for the Packager. When the
Compiler compiles for LOGIC, it includes, for each
body on your drawing, this information from the
PART drawing. This information is then passed on
to the Packager.

There is only one more lesson to this tutorial,
Starting a New Project. It teaches you two useful
procedures for starting a new project, because now
you are ready to put all this information to work on
a design project of your own.

1 /15/89

LESSON 15

Starting a New Project

cp

15-2

This is the last brief lesson of this tutorial. To get
you started on your work, you learn how to set up a
new directory for a new project. This lets you use
your SCALD tools to their best advantage.

This lesson covers these new UNIX commands:

New Commands

mkdir

1 /15/89

Setting Up a
Directory for a
New Project

1 /15/89

Starting a New Project

To most effectively use your SCALD tools, you will
want to keep each design in a separate UNIX direc­
tory. Within this directory you will want to make a
single SCALD Directory. If you do so, then your
SCALD Directory will contain just the drawings for
a single project and there will be no possibility of
confusion.

To set up a directory to start on a new project, fol­
low these steps:

1 Move into your home directory (if you are not

already there):

cd

2 Make a new directory named "projl" under
your home directory:

mkdir projl

3 Copy your default files into this new direc­
tory. In UNIX, the best way to do this . is to

stay in your home directory (where these files

are located) and to use the cp (copy) com­

mand. The command

cp *cmd startup.ged projl

copies all of your command files (all files
ending with the letters cmd) and the
startup.ged file into the directory "projl" us­
ing the same file names.

15-3

Starting a New Project

15-4

4 Go into the new directory:

cd projl

5 Edit the startup.ged file:

vi startup.ged

6 Change the "use" line to read:

use projl.wrk

7 If you are taking advantage of the master.local
file, edit the "masterlibrary" line to include
the UNIX pathname to the master.local file in
your home directory:

masterlibrary .. /master.local

8 Add library commands for all the libraries

you need for this project.

9 Save your new startup.ged file:

:wq

10 Use the editor (vi) to change the name of

your SCALD directory in the compiler.cmd
and td.cmd files to read:

directory 'projl.wrk';

1 /15/89

Tips on the Copy
Command

For more information
on wildcard characters,
see the UNIX docu­
mentation included
with your workstation.

1 /15/89

Starting a New Project

v Where do you want to be when you run the
UNIX cp (copy) command?

A good rule is: To copy files into a destina­
tion directory that is under the source direc­
tory, use the cp command from the source
directory.

To copy files into a destination directory that
is elsewhere, use the cp command from the
destination directory.

"" Wildcard characters.

The "' (asterisk) in Step 3 is a wildcard char­
acter. In UNIX commands, an asterisk
stands for any string. The string *cmd
therefore matches all strings that end in cmd.
UNIX looks through your current directory
for all files that end with cmd, and performs
the command (in this case, cp) on them. Us­
ing an asterisk is a powerful and quick way to
make UNIX do a lot of work for you. But if
you do not think carefully before using the
asterisk, you can get into a lot of trouble.

15-5

Starting a New Project

15-6

"" Copy command syntax.

The UNIX cp command accepts either two
file names, like this:

cp file1 file2

or a file name followed by a directory name,
like this:

cp file1 dirname

or even a list of files followed by a directory
name, like this:

cp file1 file2 filex dirname

The copy command can distinguish your ex­
isting file names from your directory names.
Spaces delimit the names. Full or partial
UNIX pathnames may be used for any of the
file or directory names.

Now you are ready to start a new project. When you
log in, connect to your "projl" directory (cd proj1)
and then just type

ged

to go into GED and start drawing.

This concludes Tutorial I. You are now well on your
way to becoming a proficient SCALD user. Keep
this tutorial nearby and refer to it as needed for spe­
cific procedures.

1 /15/89

APPENDIX A

GED Commands

A-2

auto got

backannotate

check

change

copy

The Graphics Editor (GED) commands are case in­
sensitive so that you can enter them in either upper
or lower case. To enter the Graphics Editor, at the
UNIX prompt type:

ged

To exit from GED, type:

quit

or

exit

The following commands are used for drawing and
for checking your drawing. The portion of the com­
mand name that is underlined is the smallest com­
mand abbreviation that can be entered; the applica­
ble lesson numbers appear in parentheses following
the command description.

Add a body (library part) to the drawing (2,6)

Add dots to all wire junctions recognized by GED
(6)

Add the U-numbers and pin numbers assigned by
the Packager to a drawing (10)

Check for wiring errors in a drawing (6)

Invoke an editor to change text strings (9)

Add a copy of an object or group of objects to the
drawing (2,6)

1 /15/89

GED Commands

delete Delete an object or group of objects from the draw­
ing (2)

display Q.oth Display both the property name and property value
(6)

display invisible Suppress both the property name and property value
from being displayed on the drawing (9)

display ~isible Return a property value to visible after the
display invisible command; displays only the prop­
erty value (9)

dot Add a dot to the drawing (6)

error Display location and type of each error found by the
check command (6)

masterlibrary Allows you to specify your own library-like abbre­
viations for SCALD directories (12)

move Move an object or group of objects by sliding them
across the screen (2)

ginswap Swap pin numbers on bodies that are defined to be
in the same pin group (10)

m:operty Specify a property name and property value and at­
taches this pair to a body, wire, or pin (6,9)

reattach Change the object to which a given signal name or
property is attached (6)

rotate Rotate a body 90 degrees at each click (6)

section Assign a logical part to a particular section of a
physical part (10)

1/15/89 A-3

GED Commands

select

set dots filled

show §.ttach

show ~onnect

signame

ml.it

undo

version

wire

write

zoom

A-4

Provide a stretchable rectangle to specify the
boundaries of a group (2)

Make all subsequently-added dots appear as filled
dots (6, 7)

Display objects to which signal names and proper­
ties are attached (6, 9)

Highlight all connection points on wires with a tem­
porary asterisk (2,6)

Attach a user-defined signal name to the specified
wire (2)

Separate joined objects and divides wires into two
segments (6, 10)

Undo the last command issued; repeated use returns
step by step to state of drawing at last read or write
(2)

Select an alternate version of a body; repeated clicks
cycle through all available versions (6)

Add wires to the drawing; grid points or pins may be
specified as end points (2)

Save a drawing by writing it to disk (2)

Alter the view of the drawing; many options are
available (2,4,5)

1 /15/89

1 /15/89

directory

edit

hardcopy

lilJrary

remove

use

GED Commands

The following commands are used to edit drawings,
borrow drawings, and keep track of your drawings.
The portion of the command name that is
underlined is the smallest command abbreviation
that can be entered; the applicable lesson numbers
appear in parentheses following the command de­
scription.

List your current SCALD directory, your search
stack, or the drawings within them (3, 12)

Access a drawing and brings it to the screen (3)

Send a drawing to the plotter (2)

Add a library to the bottom of your search stack
(1,12)

Remove a drawing from your SCALD directory (12)

Add a SCALD directory to the top of your search
stack {12)

A-5

APPENDIX B

VI and UNIX

Vi Commands

To edit a file:

To move around in a file:

Forward one line
Backward one line
Forward one word
Backward one word
End of current word

Forward one char

Backward one char
Beginning of file
End of file
Line number x

To delete:

vi filename

(C Return J)
- (minus sign)
w
b
e
((Space Bacl)

(rBackspace)
lG
G
xG (e.g., go to line 5 = 50)

Delete a line dd
Delete a word dw
Delete a character x
Delete to end of line D

To insert text:

Before cursor
After cursor
Below current line
Above current line

To stop inserting:

To change a word:

B-2

i
a
0

0

~EscapeJ)

cwnew textffEscapel)

1 /15/89

VI and UNIX

To replace a single rnew character
character:

To replace several Rnew characters ((Esc~peJ)
characters:

To exit:

With write :wq
With write zz
Without write :q!

To save without exiting: :w

Current line number: : .-
To search for a string: !string
(forward search, automatic

looparound)

To search for a string: ?string
(backward search,

automatic looparound)

Next occurrence of string: n

1 /15/89 B-3

VI and UNIX

UNIX Commands

Looking at files:

Is dirname

Is -s dirname

Is -I dirname

more filename

Changing directories:

pwd
cd
cd dirname
cd ..

Moving files:

cp file newfile
mv file newfile

mkdir dirname

Removing files:

rm file
rmdir dirname

.B-4

List the files and subdirectories in your current
directory

Same as Is, but also gives you the size of each
file

Same as Is, but gives you extensive information,
including permissions and date of last modifica­
tion

List a file to the screen a screenful at a time
(press the ffspace saa) for another screenful;
press q to quit; press ([Return J) for next line)

Print name of current directory
Connect to home directory
Connect to dirname under current directory
Connect to next highest directory

Copy file to newfile
Move or renames file to newfile (if newfile is an
existing file, it is overwritten)
Make a new directory named dirname

Remove file from system
Remove dirname (only works on empty directo­
ries, remove files first)

1 /15/89

Other commands:

file file
lpr file
passwd user
who

1 /15/89

VI and UNIX

Report whether file is a directory or a file
Print UNIX text file
Change or installs a password for user
List names of users currently logged on

8-5

APPENDIX C

Default Files

case.dat

compiler.cmd

C-2

The following files and directories are in your login
directory:

adderckt
*case.dat
compiler.cmd

*delay.dat
master.local
packager.cmd

*simulate.cmd

startup.gad
subtracter
susan.wrk

*td.cmd
*verifier.cmd
xshadowx

Each GED drawing (adderckt and subtractor) is a
UNIX directory that contains files. You should not
make any changes to the files in these directories
directly from UNIX. If you do, GED will not be
able to function properly.

xshadowx is also a UNIX directory. This directory
is created the first time you run the Compiler (i.e.,
when it is called by the Packager) and contains other
directories that contain intermediate compilation re­
sult files. The information is these files is either
used or updated during subsequent compilations.

The other names listed are all files. The file names
noted with an asterisk (*) support the Timing Veri­
fier and Logic Simulator analysis tools. The func­
tion of each of the above files is listed below.

This file is used to enter data to the Timing Verifier
when you want to test the timing for specific cases.

This file is the command file for the Compiler.

1 /15/89

delay.dat

master.local

packager.cmd

simulate.cmd

startup.gad

susan.wrk

td.cmd

verifier.cmd

1 /15/89

Def a ult Files

This file is used to feed back delay data to the Tim­
ing Verifier from a physical design system.

This is the default file specified by the
masterlibrary command. The file contains short
forms or abbreviations for SCALD directories that
you regularly use.

This file is the command file for the Packager.

This file is the command file for the Simulator.

This file is used to tell GED which directories and
libraries you want automatically connected every
time you use GED. You also enter any other GED
commands you want set as defaults (for example,
set dots_filled).

This file is your SCALD Directory. It is a small
index file that GED creates for its own use. Each
time you save a drawing, GED writes the name that
you give the drawing and the corresponding UNIX
name into this file. (The UNIX name is the direc­
tory where the drawing is stored.) This way, GED
can retrieve the drawing for you whenever you want
it. Do not edit this file manually. If you do, GED
will not work properly. GED will not be able to find
your drawings!

This file is the command file for the Plottime pro­
gram that plots timing diagrams generated by the
Timing Verifier or Simulator.

This is the command file for the Timing Verifier.

C-3

Symbols
(semicolon) character, 1-6

% (ampersand) system prompt, 1-3

* (asterisk) wildcard, 12-12

A
ABBREV property, 6-38

abbreviations
adding, 6-35
drawing, 6-35, 6-39
GED commands, 5-3
SCALD directory names, 12-14

accessing
design tools, 7-3
GED, 2-3, 7-8
physical design systems, 11-6
Sun windows, 1-4

add command, 2-4, 6-6

adder circuit, 2-3

adderckt, 2-32

1 /15/89

Index

adding
drawing abbreviations, 6-35
library parts, 2-3
parts to drawings, 6-6
properties, 9-19
titles to drawings, 6-40

Index

aligning parts and wires, 2-16

ampersand (%) system prompt, 1-3

assign command, 5-3

assigning
physical locations and sections, 10-7
sections, 10-9

manually, 10-10
signal names, 2-28

asterisk (*) wildcard, 12-12

attaching
properties, 6-31, 6-36
signal names, 6-31

attachments
showing, 6-31
verifying, 9-17

auto dot command, 6-2 7

automatic wiring, 6-23

1-1

Index

B
back annotate command, 10-3 to

10-5

back annotation file, 9-31, 9-35, 10-3

bending wires, 2-10

binding changes summary file, 9-37

bodies
attaching properties, 6-36
drawing, 6-35

body
drawing types, 14-7
drawings, 14-8
ordered net list file, 11-4
origins, 2-9

.BODY drawing name extensions, 3-6

borrowing drawings, 12-13

BUBBLE_ CHECK OFF directive, 8-11

bus signals, 6-30

c
case-sensitivity, 7-8

cd command, 13-7, 13-8, 13-13

centering drawings, 4-3

changing
directories, 13-7, 13-8, 13-13
drawing

dates, 6-35
names, 9-4

1-2

changing (continued)
pin numbers, 10-11
section assignments, 10-10
wire shapes, 2-16, 2-26

check command, 6-42
checking

for errors, 6-42 to 6-43
libraries, 14-3

checklist, Packager, 9-39
CHIPS file, 9-35
chips_ prt file, 9-4
circuits

adder, 2-3
adderckt, 2-32
half-adder, 2-14
subtractor, 6-5

closing UNIX windows, 7-7
cmplog.dat file, 9-21 to 9-22
cmplst.dat file, 9-21, 9-23 to 9-27
command

options, zoom command, 4-4, 5-5
syntax, 7

UNIX VS. GED, 7-8
command files, 7-11

Packager, 9-3
commands

see also GED commands, UNIX com-
mands

ending, 1-6
GED, summary of, A-2 to A-5
menu, highlighted, 1-6
text editing, 7-15
UNIX, summary of, B-4 to B-5
vi, summary of, B-2 to B-3

1 /15/89

comments in directives files, 8-5 to
8-6

common Compiler errors, 9-28

comperr command, 9-21

COMPILE directive, 8-7

Compiler
directives, 8-4

BUBBLE_CHECK OFF, 8-11
COMPILE, 8-7
default, 8-5
file, 8-4, 8-10

editing, 8-8
OUTPUT, 8-8
OVERSIGHTS, 8-8
PRINT_ WIDTH, 8-8
required, 8-6
ROOT_DRAWING, 8-7
SUPPRESS, 8-11, 9-24
WARNINGS, 8-8

error messages, 9-24
errors, 9-6, 9-23 to 9-2~

checking, 8-3
comperr utility, 9-21
correcting, 9-27

listing files, 9-21, 9-23 to 9-27
messages, 9-6
operations, 8-3
output files, 8-8 .

crnplog.dat, 9-21 to 9-22
crnplst.dat, 9-21, 9-23 to 9-27

cornpiler.crnd file, 7-11, 8-4, 8-10

compiling drawings, 8-3

component libraries, specifying, 1-9

1 /15/89

concise
net list file, 11-4
parts list file, 11-5

connections
showing, 2-18, 6-27
wire, 6-26

copy command (GED), 2-19

copying
parts, 6-13
UNIX files, see cp command
wires, 6-18 to 6-23

correcting
Compiler errors, 9-2 7
wiring errors, 2-18

cp command, 15-3
syntax, 15-6
tips, 15-5

Index

creating multiple UNIX windows, 7-3

cross reference file, 9-37, 11-5

cursor, see GED cursor

D
default

Compiler directives, 8-5
directories, C-2 to C-3
files, C-2 to C-3
function key assignments, 5-4
working directory, 1-9

defining
groups, 2-19 to 2-20
SCALD directories, 12-4

delete command, 2-7

1-3

Index

deleting drawings, 12-16

design
steps, order of, 10-3
system, physical, 9-33, 10-4

accessing, 11-6
tools, 2, 3

accessing, 7-3

dialbonl.dat file, 11-4

dialcnet.dat file, 11-4

dialcprt.dat file, 11-5

dialpgnd.dat file, 11-5

dialstf.dat file, 11-5

directives
BUBBLE_CHECK OFF, 8-11
COMPILE, 8-7
Compiler, 8-4

required, 8-6
DIRECTORY, 8-6
file

comments in, 8-5 to 8-6
Compiler, 8-4, 8-10
editing, 8-8
format, 8-5

GSCALD, 11-3
LIBRARY, 8-6
OUTPUT, 8-8
OVERSIGHTS, 8-8
Packager, 9-8

file, 9-3
LIBRARY, 9-4
ROOT_DRAWING, 9-3

1-4

directives (continued)
PRINT_PIN_LIST, 9-36
PRINT_WIDTH, 8-8
ROOT_DRAWING, 8-7
SUPPRESS, 8-11, 9-24
WARNINGS, 8-8

directories
abbreviating names, 12-14
changing, 13-7, 13-8, 13-13
default, C-2 to C-3
home, 13-7 to 13-8
lib, 14-2
library, 14-2
listing, 7-8
login, 7-8, 13-7 to 13-8, C-2 to C-3
printing names, 13-7
root, 13-4
SCALD, 12-4, 13-3

starting new projects, 15-3 to 15-4
usr, 13-8
working, 1-8
xshadowx, 9-21, C-2

directory command, 3-3, 12-5, 12-10
to 12-11

DIRECTORY directive, 8-6

directory structure, UNIX, 13-4, 13-5

discarding drawing changes, 2-35

display command
both, 6-39, 6-41, 9-19
invisible, 9-18, 9-19
name, 9-19

displaying properties, 6-39, 6-41

documentation conventions, 8

1 /15/89

dot command, 6-26
tips, 6-27

dotting wires, 6-26

drawing
body, 6-35
errors, 6-42 to 6-43
modification date, 6-35
names, 1-8, 3-5 to 3-6
page numbers, 3-5
tips, 2-8
types, 14-7
version numbers, 3-5

drawings
abbreviations, 6-35, 6-39
adding titles, 6-40
BODY, 14-8
borrowing, 12-13
centering, 4-3
changing names, 9-4
compiling, 8-3
deleting, 12-16
discarding changes, 2-35
editing, 3-4
enlarging, 4-5
finding, 3-2
library, 14-6
listing, 3-3
LOGIC, 14-8
moving on the screen, 4-4
PART, 14-8
reducing, 4-7
reference, 14-6
resizing to fit the screen, 4-2
retrieving, 3-2, 3-4

1 /15/89

drawings (continued)
saving, 1-9, 2-32, 3-4
starting, 6-4
storing, 13-6
unnamed, 2-33
wiring, 6-15

E
edit command, 2-9, 3-4

editing
Compiler directives file, 8-8
drawings, 3-4
files_, 7-11
packager.cmd file, 9-4
startup.ged file, 7-13
text, 7-11

ending
commands, 1-6
wires, 2-10

enlarging drawings, 4-5

entering drawing names, 3-6

error command, 6-43

error messages, 9-24

errors
Compiler, 9-6, 9-23 to 9-28

checking, 8-3
comperr utility, 9-21
correcting, 9-2 7

drawing, 6-42 to 6-43
GED, checking, 2-33
Packager, 9-8, 9-13, 9-14

exit command, 1-9, 2-34

Index

1-5

Index

exit command, 1-9, 2-34

exiting
GED, 1-9
UNIX windows, 7-7
vi, 7-12
window system, 1-10

expanded
net list file, 9-35
parts list file, 9-35

extensions, drawing name, 3-6

F
feedback files, 9-33, 9-38, 10-4

fields, drawing name, 3-5

file command, 7-10

file structure, UNIX, 13-4, 13-5
moving around, 13-7, 13-10 to 13-12

files
back annotation, 9-31, 9-35, 10-3
binding changes summary, 9-37
body ordered net list, 11-4
CHIPS, 9-35
chips_ prt, 9-4
cmplog.dat, 9-21 to 9-22
cmplst.dat, 9-21, 9-23 to 9-27
command, 7-11
Compiler

directives, 8-4
default, 8-5

editing, 8-8
listing, 9-21, 9-23 to 9-27
output, 8-8, 9-21

1-6

files (continued)
compiler.cmd, 7-11, 8-4, 8-10
concise

net list, 11-4
parts list, 11-5

cross reference, 9-37, 11-5
default, C-2 to C-3
dialbonl.dat, 11-4
dialcnet.dat, 11-4
dialcprt.dat, 11-5
dialpgnd.dat, 11-5
dialstf.dat, 11-5
directives

comments in, 8-5 to 8-6
Compiler, 8-10
format, 8-5
Packager, 9-3

editing, 7-11
expanded

net list, 9-35
parts list, 9-35

feedback, 9-33, 9-38, 10-4
library, 14-6
listing, 7-8, 9-36, 11-5
log, 9-36
logical changes summary, 9-36
master library, 14-5
master.lib, 8-6, 9-4, 14-5
master.local, 12-14
output, GSCALD, 11-4 to 11-5
Packager, 9-34

listing, 9-7 to 9-12
log, 9-31
output, 9-2, 9-7, 9-28, 9-35
pstlst.dat, 9-7

1 /15/89

files (continued)
packager.cmd, 7-11, 9-3

editing, 9-4
part designator binding, 9-3 7
physical

changes summary, 9-36
library, 9-4

pin
list, 9-36
swap, 9-38

power and ground list, 11-5
printing, 7-10
.prt, 14-6
pstback.dat, 9-31, 9-35, 10-3
pstbchg.dat, 9-37
pstchip.dat, 9-35, 11-3
pstlchg.dat, 9-36
pstlog.dat, 9-31, 9-36
pstlst.dat, 9-7, 9-36
pstpchg.dat, 9-36
pstpin.dat, 9-36
pstprtb.dat, 9-37
pstpswp.dat, 9-38
pstrprt.dat, 9-36
pstsigb.dat, 9-3 7
pststat.dat, 9-37
pstxnet.dat, 9-35
pstxprt.dat, 9-35
pstxref.dat, 9-37
reports, 9-36
scald.cmd, 11-3
scald.1st, 11-5
scald.xrf, 11-5
signal name to net name binding,

9-37

1 /15/89

Index

files (continued)
startup.ged, 7-9, 12-6

editing, 7-13
multiple use statements, 12-7

state, 9-29, 9-37
stuff list, 11-5

find command, 9-20

finding drawings, 3-2

fitting drawings to the screen, 4-2

flagging inputs and outputs, 9-15

formatting directives files, 8-5

function keys, 5-3
default assignments, 5-4
shifted assignments, 5-5

G
GED

accessing, 2-3, 7-8
assigning physical locations and sec­

tions, 10-7
case-sensitivity, 7-8
command

abbreviations, 5-3
menu, 1-6
syntax, 7, 7-8

cursor, 1-6
error checking, 2-33
exiting, 1-9
grid setting, 1-8
moving pin assignments, 10-6 to

10-7
refreshing the screen, 2-18
screen, 1-5

1-7

Index

GED (continued)
status

line, 1-8
messages, 2-33

storing drawings, 13-6

ged command, 7-8

GED commands
add, 2-4, 6-6
assign, 5-3
auto dot, 6-27
back annotate, 10-3 to 10-5
check, 6-42
copy, 2-19
delete, 2-7
directory, 3-3, 12-5, 12-10 to 12-11
display

both, 6-39, 6-41, 9-19
invisible, 9-18, 9-19
name, 9-19

dot, 6-26
tips, 6-27

edit, 2-9, 3-4
error, 6-43
exit, 1-9, 2-34
find, 9-20
hardcopy, 2-34, 7-10
help, 5-6
library, 2-9, 12-9, 14-5
masterlibrary, 12-14
move, 2-7
pin swap, 10-7, 10-11
property, 6-36, 10-7
quit, 1-9, 2-35
reattach, 6-31
redo, 2-9

1-8

GED commands (continued)
remove, 12-16
rotate, 6-12
route, 6-23

tips, 6-25
section, 10-7, 10-9

tips, 10-10
select, 2-19
set dots_filled, 6-26, 7-14
show

attach, 6-31
connections, 2-18, 6-2 7

signame, 2-28
split, 6-28, 6-30, 10-6
summary, A-2 to A-5
undo, 2-9
use, 12-7
version, 6-9
window, see zoom command
wire, 2-10, 6-15
write, 1-9, 2-9, 2-32
zoom, 2-18, 4-2

options, 5-5
tips, 4-9

grid
points, 2-25
settings, 1-8

groups, 2-19
GSCALD

body ordered net list file, 11-4
concise

net list file, 11-4
parts list file, 11-5

cross reference file, 11-5
dialbonl.dat file, 11-4
dialcnet.dat file, 11-4

1 /15/89

GSCALD (continued)
dialcprt.dat file, 11-5
dialpgnd.dat file, 11-5
dialstfdat file, 11-5 ·
directives file, 11-3
listing file, 11-5
output files, 11-4 to 11-5
power and ground list, 11-5
scald.cmd file, 11-3
scald.1st file, 11-5
scald.xrf file, 11-5
stuff list file, 11-5
tips on using, 11-4

gscald command, 11-3

H
half-adder circuit, 2-14

hardcopy command, 2-34, 7-10

help command, 5-6

highlighted menu commands, 1-6

home directory, see login directory

inputs, flagging, 9-15

interface programs, 5, 11-2
see also GSCALD

K
keyboard function keys, 5-3

1/15/89

Index

L
lesson plan, 9
lib directory, 14-2
libraries

checking, 14-3
listing, 12-11
.prt file, 14-6
specifying, 1-9
standard, 6-35
tutorial, 6, 1-9, 3-4, 14-3 to 14-6

accessing, 2-9
library

contents, 14-5
directory, 14-2
drawings, 14-6
files, 14-6

physical, 9-4
part versions, 6-9
parts, adding, 2-3
reference drawings, 14-6
SCALD directories, 14-6
search stack, 12-9, 12-12

library command, 2-9, 12-9, 14-5
LIBRARY directive, 8-6, 9-4
listing

current directory, 13-7
drawings, 3-3
file, 9-36, 11-5
files, 7-8

Compiler, 9-21, 9-23 to 9-27
Packager, 9-7 to 9-12

libraries, 12-11
SCALD directories, 12-5, 12-10
UNIX directories, 7-8
working directory, 7-8

1-9

Index

LOCATION property' 10-7
tips, 10-8

log file, 9-36
Packager, 9-31

logging on, 1-3, 6-3

.LOGIC drawing name extension, 3-6

logic
drawings, 14-8
signals, (0/1), 6-31

logical changes summary file, 9-36

login directory, 7-8, 13-7 to 13-8, C-2
to C-3

/pr command, 7-10

/s command, 7-8

M
manual section assignments, 10-10

master.lib file, 8-6, 9-4, 14-5

master.local file, 12-14

masterlibrary command, 12-14

menu, GED, 1-6

messages
Compiler, 9-6
error, 9-24
Packager, 9-7
status, 2-33

modifying drawing dates, 6-35

more command, 7-9

mouse buttons in wiring, 2-10, 2-25

1-10

move command, 2-7
moving

around in UNIX, 13-7, 13-10 to
13-12

drawings on the screen, 4-4
pin assignments, 10-6 to 10-7
UNIX windows, 7-3
wires, 2-16

multiple
use statements, 12-7
windows, 7-3

N
names

directory, printing, 13-7
drawing, 1-8

changing, 9-4
extensions, 3-6
fields, 3-5

signal, see signal names
naming

drawings, 3-5 to 3-6
subdirectories, 13-9

net list file
body ordered, 11-4
concise, 11-4
expanded, 9-35

NO_IO_CHECK property, 9-15

0
objects, separating, 10-6
operations

Compiler, 8-3
Packager, 9-2, 9-30, 9-32

1 /15/89

options, zoom command, 4-4, 5-5

order of design steps, 10-3

origins, body, 2-9

OUTPUT directive, 8-8

output files
Compiler, 8-8, 9-21
GSCALD, 11-4 to 11-5
Packager, 9-2, 9-7, 9-28, 9-35

outputs, flagging, 9-15

oversights, suppressing, 8-11

OVERSIGHTS directive, 8-8

p

P-numbers, see path properties

package command, 9-6

Packager
checklist, 9-39
command files, 9-3
directives, 9-8

LIBRARY, 9-4
PRINT_PIN_LIST, 9-36
ROOT_DRAWING, 9-3

directives file, 9-3
errors, 9-8, 9-13, 9-14
feedback files, 9-33
files, 9-34

pstback.dat, 9-31
pstchip.dat, 11-3
pstlog.dat, 9-31

listing file, 9-7 to 9-12

1 /15/89

Packager (continued)
log file, 9-31
messages, 9-7

Index

operations, 9-2, 9-30, 9-32
output files, 9-2, 9-7, 9-28, 9-35
packager.cmd file, 9-3
pstlst.dat file, 9-7
starting, 9-6
state files, 9-29

packager.cmd file, 7-11, 9-3
editing, 9-4

page numbers, drawing, 3-5

part
designator binding file, 9.:37
drawings, 14-8

parts
adding, 2-3
copying, 6-13
rotating, 6-13
versioning, 6-9

parts list file
concise, 11-5
expanded, 9-35

passwords, 1-3

path names, UNIX, 13-8 to 13-10

path properties, 2-32
attaching, 6-31

physical
changes summary file, 9-36
design system, 9-33, 10-4

accessing, 11-6
interface program, see GSCALD
library files, 9-4
locations, assigning, 10-7

1-11

Index

pin
assignments, moving, 10-6 to 10-7
list file, 9-36
numbers, changing, 10-11
swap file, 9-38

pin-to-pin wiring, 2-21, 2-25

pins wired together, 2-1 7

pinswap command, 10-7, 10-11

placing
groups, 2-20
wires, 2-10

post processing, 9-7

power and ground list file, 11-5

primary inputs and outputs, flagging,
9-15

PRINT_PIN_LIST directive, 9-36

PRINT_ WIDTH directive, 8-8

printing
directory names, 13-7
files, 7-10

processing, post, 9-7

prompt, see system prompt

properties
ABBREV, 6-38
adding, 9-19
attaching, 6-31, 6-36
displaying, 6-39, 6-41
LOCATION, 10-7

tips, 10-8
NO_IO_CHECK, 9-15

1-12

properties (continued)
path, 2-32
SIZE, 8-11
suppressing displays, 9-18
TITLE, 6-40
verifying attachments, 9-17

property command, 6-36, 10-7

.prt file, 14-6

pstback.dat file, 9-31, 9-35, 10-3

pstbchg.dat file, 9-37

pstchip.dat file, 9-35, 11-3

pstlchg.dat file, 9-36

pstlog.dat file, 9-31, 9-36

pstlst.dat file, 9-7, 9-36

pstpchg.dat file, 9-36

pstpin.dat file, 9-36

pstprtb.dat file, 9-3 7

pstpswp.dat file, 9-38

pstrprt.dat file, 9-36

pstsigb.dat file, 9-3 7

pststat.dat file, 9-37

pstxnet.dat file, 9-35

pstxprt.dat file, 9-35

pstxrefdat file, 9-37

pwd command, 13-7

Q

quit command, 1-9, 2-35

quoting drawing names, 3-6

1 /15/89

R
realigning parts and wires, 2-16

reattach command, 6-31

reattaching signal names, 6-33

redo command, 2-9

redrawing the screen, 2-18

reducing drawings, 4-7

reference drawings, 14-6

refreshing the screen, 2-18, 4-2

remove command, 12-16

removing wire segments, 2-18

reports file, 9-36

required Compiler directives, 8-6

requirements, tutorial, 1-2

resizing UNIX windows, 7-5

retrieving drawings, 3-2, 3-4

root directory, 13-4

ROOT_DRAWING directive, 8-7, 9-3

rotate command, 6-12

rotating parts, 6-13

route command, 6-23
tips, 6-25

running the Packager, 9-6

s
saving drawings, 1-9, 2-32, 3-4

tips, 2-33

1 /15/89

SCALD directory, 13-3
abbreviating names, 12-14
definition, 12~4
in libraries, 14-6
in startup.ged file, 12-6
listing, 12-5, 12-10
multiple use statements, 12-7
search stack, 12-8

Index

starting new projects, 15-3 to 15-4
use statement, 12-7

scald.cmd file, 11-3

scald.1st file, 11-5

scald.xrf file, 11-5

search stack
library, 12-9, 12-12
SCALD directory, 12-8

section assignments, manual, 10-10

section command, 10-7, 10-9
tips, 10-10

select command, 2-19

selecting
groups, 2-20
signal names, 6-30

semicolon (;) character, 1-6

separating
objects, 6-30, 10-6
pins and wires, 6-28

set dots_filled command, 6-26, 7-14

setting the grid, 1-8

setting up SCALD directories, 15-3 to
15-4

shaping wires, 2-16, 2-26

1-13

Index

shifted function key assignments, 5-5

short forms of GED commands, 5-3

show command
attach, 6-31
connections, 2-18, 6-27

showing attachments, 6-31

signal name to net name binding file,
9-37

signal names
adding properties to, 6-36
assigning, 2-28
attaching, 6-31
reattaching, 6-33
selecting, 6-30
syntax, 7, 6-30

signals
bus, 6-30
logic 0/1, 6-31

signame command, 2-28

SIZE property' 8-11

softkeys, 5-3

software
design tools, 2, 3
interrelationship, 3

spaces in drawing names, 3-6

special characters in drawing names,
3-6

1-14

specifying
libraries, 1-9
part versions, 6-9
SCALD directories, 12-7

split command, 6-28, 10-6
tips, 6-30

splitting wires, 6-28

standard library, 6-35

starting
drawings, 6-4
new projects, 15-3 to 15-4
wires, 2-10

startup.ged file, 7-9, 12-6
editing, 7-13
multiple use statements, 12-7

state file (pststat.dat), 9-3 7

state files, 9-29

status
line, 1-8
messages, 2-33

storing drawings, 13-6

stuff list file, 11-5

subdirectories, naming, 13-9

subtractor circuit, 6-5

Sun window system
accessing, 1-4
exiting, 1-10

superuser, 13-4

SUPPRESS directive, 8-11, 9-24

suppressing
oversights and warnings, 8-11
property displays, 9-18

1/15/89

switching between UNIX windows, 7-6

syntax
cp command, 15-6
GED commands, 7
signal name, 7, 6-30

system
physical design, 9-33, 10-4
prompt (%), 1-3

T

text editing, 7-11, 7-15

time-stamping drawings, 6-35

tips on
adding properties, 9-19
cp command, 15-5
dot command, 6-27
drawing, 2-8
GSCALD, 11-4
LOCATION property' 10-8
route command, 6-25
saving drawings, 2-33
section command, 10-10
split command, 6-30
version command, 6-11
wiring, 2-14
zoom command, 4-9

TITLE property' 6-40

titles, drawing, 6-40

tree structure, UNIX, 13-4

1 /15/89

Index

tutorial
library, 6, 1-9, 3-4, 14-3 to 14-6

accessing, 2-9
requirements, 1-2

types, drawing, 14-7

u
undo command, 2-9

UNIX
case-sensitivity, 7-8
command syntax, 7-8
commands, B-4 to B-5

cd, 13-7, 13-8, 13-13
comperr, 9-21
cp, 15-3

syntax, 15-6
tips, 15-5

file, 7-10
ged, 7-8
gscald, 11-3
/pr, 7-10
Is, 7-8
more, 7-9
package, 9-6
pwd, 13-7
vi, 7-11 to 7-15

directories, listing, 7-8
directory structure, 13-4, 13-5
file structure, 13-4, 13-5

moving around, 13-7, 13-10 to
13-12

path names, 13-8 to 13-10
root directory, 13-4

1-15

Index

UNIX (continued)
superuser, 13-4
system prompt, 1-3
tree structure, 13-4
vi editor, 7-11 to 7-15
windows

closing, 7-7
exiting, 7-7
moving, 7-3
resizing, 7-5
switching between, 7-6

unnamed drawings, 2-33

use command, 12-7

use statements, multiple, 12-7

using GSCALD, 11-4

usr directory, 13-8

v
ValidCOMPILER, see Compiler

ValidGED, see GED

ValidPACKAGER, see Packager

verifying property attachments, 9-17

version command, 6-9
tips, 6-11

version numbers, drawing, 3-5

versions, library part, 6-9

vertex, wiring, 2-25

vi editor, 7-11 to 7-15
command summary, B-2 to B-3
exiting, 7-12

1-16

w
warnings, suppressing, 8-11

WARNINGS directive, 8-8

wildcards, 15-5
asterisk ("'), 12-12

window command, see zoom com­
mand

windows
GED, 1-5
multiple, 7-3
Sun workstation

accessing, 1-4
exiting, 1-10

UNIX
closing, 7-7
exiting, 7-7
moving, 7-3
resizing, 7-5
switching between, 7-6

wire command, 2-10, 6-15

. wiring
aligning parts and wires, 2-16
attaching properties, 6-36
automatically, 6-23
bending wires, 2-10
changing wire shapes, 2-16, 2-26
connections, 6-26
copying wires, 6-18 to 6-23
correcting errors, 2-18
drawings, 6-15
ending wires, 2-10
moving wires, 2-16
pin-to-pin, 2-21, 2-25
pins wired together, 2-1 7

1 /15/89

wiring (continued)
placing wires, 2-10
realigning parts and wires, 2-16
reference chart, 2-2 7
removing wire segments, 2-18
separating

objects, 6-30
pins and wires, 6-28

showing connections, 6-2 7
splitting wires, 6-28
starting wires, 2-10
tips, 2-14
using mouse buttons, 2-10, 2-25
vertex, 2-25

1/15/89

working directory, 1-8
printing name, 13-7

write command, 1-9, 2-9, 2-32

x
xshadowx directory, 9-21, C-2

z
zoom command, 2-18, 4-2

options, 4-4, 5-5
tips, 4-9

Index

1-17

