		COD	SYM			SCRIPTIO		in a furth and an Article State States	T	APPROVED	DA
•		P			TION RELEA			80271		here	1.7
	767				ED PER E				ť	2007	₩/"/
_	98A 0767									RO	3/22
on sma	8	3	C	\$91C0445 WAS 910	UT 4400587 ANI ON SHEET 4. R COB52 PARA	EVISED N	NOTE SHE	ET 18.91CO	677 445	SOH / m.s.	10/ /17 /
					- - -						
					У.	•	. *				
								at 1			
									,		
					• •						
					· •						
					and the second						
					· · · · ·						
							·				
					1						
						· .	·				
DR	P.L	และ	,	11/15/71	6					andige methode water in the program water and the solution of	98
СН		AL		12/2/11				nachines // drive / irvine /			
DSC	GN -				ŢĮTLE					and a state of the second state	
EN	GRE	ffy	the	1/22/11		IGI NEER 0-62	I'NG: DE	SCRIPTION	1		
API		fre	the	0 11/22/71	T UI	VIVERSAI	ASYNC	HRONOUS	SERIA	L CONTRO	LLER
API	s part			Y CONTAIN		ASC)	2 2				
PRO	DPRIET	ARY	NFOF		CODE	SIZE	DWG NC).		e ante Marcallin avec e ser standigt	R.E.
	T BE DI	SCLO	SED	R USED	IDENTINO.			98A 0767			10
OR	PRODU SUBJE	CT, W	ITHO	UT WRIT-	21101				- <u>-</u>		1
TEN	PERM	15510	JN FR	OM VOM	SCALE	L		• .	SH	ET 🧳	75

٠

•

....

· .

INDEX

		PAGE
SECT	ON I - DESCRIPTION	
1.1 1.2 1.3		5 5 12
SECTI	ON II - INTERFACE AND CONNECTIONS	
2.1 2.2 2.3 2.4 2.5	RS232 Option Current Mode Option Relay Option DTL/TTL Device Address and PIM Drivers	14 14 15 15 19
S <u>ECTI</u>	ON III - PROGRAMMING UASC	
3.1 3.2 3.3	Instruction Set Explanation of Instruction Set Word/Character Format	20 21 22
SECTI	ON IV - APPLICATION DATA	
4.1 4.2 4.3 4.4 4.5 4.6 4.7	General Data Cable Length Versus Rate of Operation Version Selection Assembly of Cable Examples: Usage of RS232 Usage of Current Mode Model Usage of Relay Version	23 24 24 26 29 32 35
SECTI	ON V - TESTING	
5.0 5.1 5.2	General Test Routine Test Connector	38 38 38

varian data machines (varian subsidiary evarian subsidiary evarian subsidiary evarian subsidiary evarian subsidiary SH 2 OF 53 REV

INDEX

PAGE

SECTION VI - THEORY OF OPERATION

6.0	General	40
6.1		40
6.2	Transmitter/Receiver Operation	42
6.3	Timing	46

				a for the state of
	CODE	l í		
WAA a varian data machines	IDENT NO.		98A0767	
	21101	la de la companya de		
	21101	l S	5H 2A OF 53	REV

.

INDEX

PAGE

ILLUSTRATIONS

ł

Figure 1.1	Functional Block Diagram	7
Figure 1.2	Baud Rate Selection Chart	6
Figure 1.3	Format Selection Chart	9
Figure 1.4	Asynchronous Format Examples	10
Figure 2.1	PIN Assignment Chart (Input/Output)	16
Figure 2.2	Device Address and PIM Connections	18
Figure 4.1	General Specification Chart	23
Figure 4.2	Cable Length Versus Baud Rate	24
Figure 6.1	Transmit Sequence Flow Chart	47
Figure 6.2	Receive Sequence Flow Chart	48
Figure 6.3	Transmitter – Block Diagram	49
Figure 6.4	Receiver – Block Diagram	50
Figure 6.5	Transmitter – Timing Diagram	51
Figure 6.6	Receiver - Timing Diagram	52
Figure 6.7	Oscillator/Counter - Timing Diagram	53

varian data machines	CODE IDENT NO.	98,	A070	67	C
U	21101	SH	3	OF 53	REV

.....

ENGINEERING DATA FORM

OPTION	Universal Asynchronous, Serial Controller
MODEL	620-82 (Formerly E2184)
NO. OF LOGIC CARDS REQ'D	1
NO. OF CARD SLOTS REQ'D	1
LOCATION OF SLOTS (NUMBERING)	Any I/O slot
CONNECTORS REQ'D. (EXCLUDING I/O) ,	2- 44 pin burndy (supplied)
KEYING	NA
ST'D. DEVICE ADDRESS	02 thru 07 (01 if for TTY) (Can be 00 thru 77)
WIRELIST NUMBER	PC board
MANUAL PUBLICATIONS NUMBER +	98A0767
PERIPHERAL EQUIPT. REQ'D	NA
MFG'R	NA
MODEL	NA
GEN'L. SPECS	NA
RS232 version requires 100ma o	t +12V and -12V dc
Reference Documents:	
Top Assembly	01A1259
Controller	-1410-0507 44D0677
Test Specification	96iA0768
Test Prog. SPS	89A0228
Logic Diagrams	-91-C0352 91C0445
, Test Routine	32A0107-010
*	

varian data machines a varian subsidiary 2722 michelson drive irvine/california/92664	CODE IDENT. NO		98A0767	REV C
	PREPARED BY	APPR	SHT 4 OF	58

SECTION 1 DESCRIPTION

1.1 Introduction

The UASC (Universal Asynchronous Serial Controller) is a versatile character buffered serial controller which can operate in both half or full duplex modes. Four interfaces are available to the user: RS232, Current loop, relay and DTL/TTL. The DTL/TTL interface is always on the controller where as the RS232 or Current Mode or Relay interfaces are selected at time of purchase. The controller is not a data set controller but intended for use on direct connect interfaces.

The controller is capable of operating with one start bit and one or two stop bits, 5,6,7, or 8 bits of data, parity or no parity bit, and odd or even parity. Several operating frequencies from 9600 baud down to 45 baud are possible. All options and operating modes will be set up for the user by VDM, if all requirements are supplied at time of purchase. If the user does not specify the set up for the UASC, the RS232 version will be set up for 1200 baud with no parity, 8 bits of data and one stop bit. Also, the Current Mode version will be set up for 1200 baud with no parity, 8 bits of data and one stop bit. In addition, the relay version will be set up for 110 baud with no parity, 8 bits of data and receive rates will always be equal. The user can easily modify the controller to his data transmission format by placing jumpers on the board as described in section 1.2.2.

1.2 Functional Description

Reference Block Diagram (Figure 1.1).

1.2.1 Timing

Transmit and Receive clocking to the LSI transmitter/receiver circuit is derived from a 4.608 meg Hz crystal oscillator. A clock rate is derived by setting up the appropriate count in the 12 bit counter. The clock is set up to provide a clock rate 16 times the transmit/receive rate. See Figure 1.2.

varian deta machines	CODE IDENT NO. 21101	98А0767 С SH 5 OF 53/ жеу
96A0039-000B		

1:

Baud Rate	Div. By	E1.	E2.	E3	E4	E5	E6	E7	E8	E9	E 10	E 11	E12 ·
9600	15		x	x	x								
4800	30	x		x	х	x							
2400	60	x	X		х	X	X					[
2000	72	×	х	x				x					
1800	80	x	х	x	х			x					
1200	120	X	х	x		x	X	X					
6 00	240	X	Х	x	x		X	X	X				
300	480	X	х	x	x	x		x	X	X			
150	96 0	×	X	x	x	x	X		x	X	×		ł
110	1309			x	x	x				X		x	
75	1920	X .	X	x	x	x	x	x		x	x	x	
45	3200	x	x	x	x	x	x	x				x	x

FIGURE 1.2 + BAUD RATE SELECTION CHART

Note that jumper values are selected at one less than the desired divisor value. Other baud rates can be derived by the following formulas

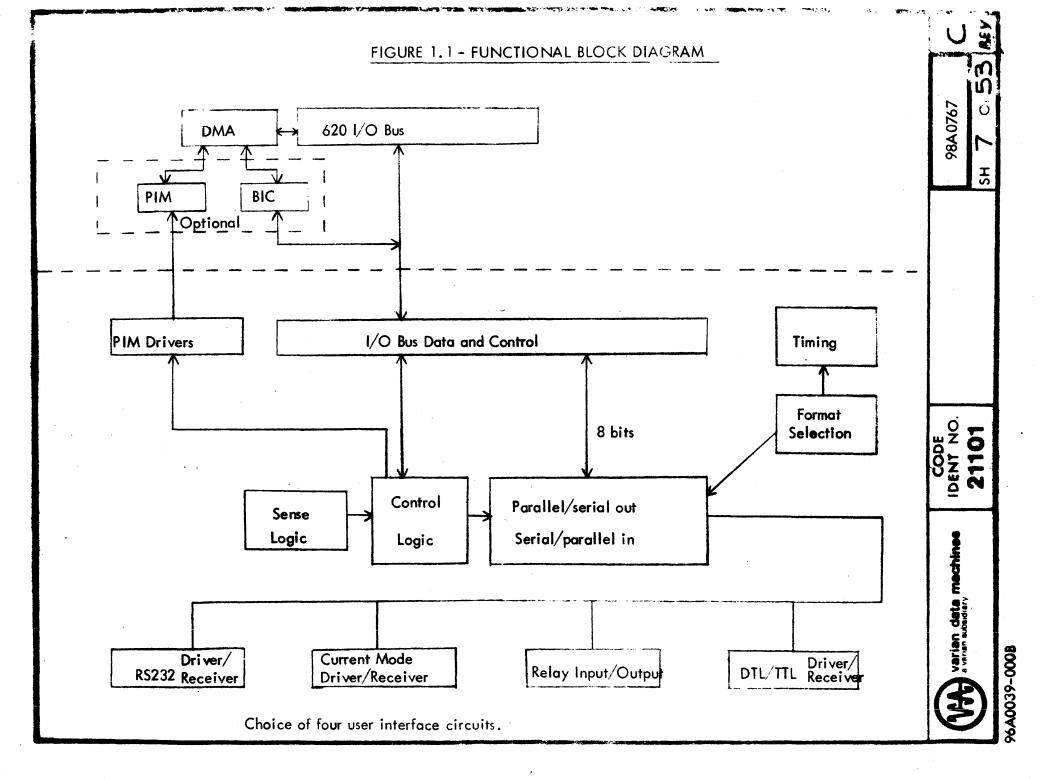
$$D = \underbrace{\frac{CR}{2} \div 16}_{\bullet} \div BR - 1$$

or

(144,00) <u>+</u> BR-1

D = Divisor

CR = Clock or Oscillator Rate


BR = Baud Rate desired

Note: Remainder should not exceed 1% of BR.

Jumpers E1 through E12 are placed on the controller (above the large chip) per the above chart.

varian data machines	CODE IDENT NO.	98A0767	7 C
	21101	SH 6 0	F 53- RIV

3

1.2.2 Format Selection

Format selection is accomplished prior to initial operation or hookup to the serial device to be controlled. Choice of combinations of five jumpers will provide the following variations: One or two stop bits, 5-6-7 or 8 data bits, odd parity, even parity or no parity. (See Figure 1.3 and 1.4.)

1.2.3 620/1/O Bus

The I/O interface is an 8 bit interface to the 620 16 bit I/O. The most significant 8 bits are not used in the 16 bit data word. DMA data transfer in or out of the 620 is possible in conjunction with the BIC option. It should be noted that although this controller has full duplex capability, the BIC can only be connected to the transmit functions or to the receive function (not both at the same time).

1.2.4 Transmit Section

Data is transferred from the 620 1/O to the 8 bit parallel buffer register in the LSI circuit. The 8 bits are then transferred into the serial shift register and shifted out serially with the least significant bit (bit 0) shifted out first. A zero or "space" bit is inserted at the beginning of each serial word. This "Start Bit" preceeds the 5,6,7, or 8 data bits and the parity bit (if selected) and the "Stop Bit"(s). The stop bit(s) is a "1" or "mark" bit.

1.2.5 Receive

Data is received into the serial shift register with Start Bit first followed by 5,6,7, or 8 data bits (least significant bit first), a parity bit (if selected), and 1 or 2 Stop Bits. When the complete character is shifted into the serial register, it is transferred into the parallel buffer register. Immediately after loading the parallel register, the Input Ready Sense line is made "true". Inputting the character will set Input Readv "false". Both Transmit and Receive functions are character buffered and operate independently. The format of the data being received must be the same as that selected for proper operation.

1.2.6 Control Logic

The Control Logic provides direction control for data transfer to and from the I/O bus, BIC connect control, Initialize control, and control of an external line (option enable/ disable).

varian deta machines	CODE IDENT NO.		98	A0767	C
	21101	 SH	ß	OF 55	REV

FIGURE 1.3

FORMAT SELECTION CHART

Jumpers Added

96A0039-

Result

E13	Parity Bit Enabled
E14	One Stop Bit
E15 and 16	Five Data Bits per character
E15	Six Data Bits per character
E 16	Seven Data Bits per character
E 17	Odd Parity Bit

Jumpers Omitted	Result
E 13	Parity Bit Disabled
E 14	Two Stop Bits
E 15 and 16	Eight DataBits per character
E 17	Even Parity Bit

Typical ASCII devices use one start bit, 7 data bits and one parity or 8 data bits, with one or two stop bits.

varian deta machines	CODE IDENT NO.	98A 0767	С
	21101	SH 9 OF 53	REV

FIGURE 1.4

ASYNCHRONOUS FORMAT EXAMPLES

			معاور بزوال المبذر استعادتهم والمراد ومراط المعاز بروي	·····	-		
		MSB			> L	SB	
1.	Stop Parity Bit Bit	Bit Bit 8 7	Bit Bit 6 5	Bit Bit 4 3	Bit B 2	it Start 1 Bit	
	b) Parity	Bits S ele cted Bit Selected op Bit Selecte	əd		This is a g CPU to Cl	ood format for PU.	
	·····	MSB			> L	SB	
2.	Stop Stop Bit Bit	Bit Bit 8 7	Bit Bit 6 5	Bit Bit 4 3	Bit B 2 1	it Start Bit	
	b) Parity	Bits Selected Bit not Selecte op Bits Selecte			Typical fo ASR 33 ar	r VDM teletype d 35.	e
		MSB			→ LSB		
3.	Stop Parity Bit Bit	Bit Bit 7 6	Bit Bit 5 4	Bit Bit 3 2	Bit S	tart it	
	b) Parity	Bits Selected Bit Selected op Bit Selecte	d				
		MSB-		→ LSB			
4.	1/2 Stop Bit	Stop Bit Bit 5	Bit Bit 4 3	Bit Bit 2 1	Start Bit		
	b) Parity	a Bits Selected Not Selected top Bits Selec	ł		Typical Bo	audot code.	:
	17						
							ļ
variar a varian	n data machines subsidiary	CODE IDENT NO. 21101				98A0767	С
			.4.			H 10 OF 5	BREV

1.2.7 Sense Logic

The Sense Logic provides status information to the operating program. Status of Input and Output data registers, three error indications, and an external input line can be monitored.

1.2.8 PIM Drivers

Three PIM Drivers are made available. One line indicates Input Ready. A second line indicates Output Ready. A third indicates either an Input Overflow Error or a Frame Error (Break). An Overflow Error indicates a second character was transferred to the parallel buffer register before the first character was Input. A Frame Error indicates that the first stop bit received was not a "1" bit. The program can detect that a "Break" character was received by verifying that the character received with the Frame Error indication was also an "All Zero" character. Typically, a "Line Break" is more than one consecutive character time. The UASC can receive but cannot transmit a "Line Break".

1.2.9 RS232 Driver/Receivers

The RS232 version fulfills the electrical characteristic requirements of EIA-RS232 B and C. Transmit data, receive data, a control line out and a status line in are implemented with RS232 drivers and receivers.

1.2.10 Current Mode Driver/Receiver

Transmit Data and Receive Data lines only are implemented with this interface. This current loop is capable of operation from 20MA to 60MA at voltages not to exceed 120V across the Transmit Driver. The current loop provides isolation greater than 10 meg ohms at 500Vdc. Detailed specifications are in section 2.2

1.2.11 Relay Input/Output

The relay input/output section is mechanized mainly for use as a Teletype Interface. A 2.2K -2 Watt resistor in the Transmit or output circuit and a 2.7K - 2 Watt resistor in the Receive or input circuit are provided as dropping resistors to facilitate connection to the teletype provided line battery source on models 33 and 35. The line battery is a Teletype Option.

The resistors can be bypassed to provide a 20Ma - 12Vdc input/output circuit. Etched pads are made available for this purpose.

varian data machines	CODE IDENT NO.		98	BA076	67	C
	21101	· · ·	SH		OF 53	REV

The relays are a "Reed" type relay which will function correctly from 0 to 300 baud (150 operations per second max).

1.2.12 DTL/TTL Driver/Receiver

The Transmit/Receive Data Lines, as well as the option driver line and option status line, are made available to the user for direct connect to DTL/TTL interfaces. These lines should not exceed 20 feet in cable length. The three previously described interfaces are routed through the DTL/TTL Receivers via the input connectors (J1 and J2).

1.3 Logic Mnemonics List

55) A/	
BRYX	BIC Data Ready
BTIA	Byte Transfer In
BTOA	Byte Transfer Out
CLK 16	Clock, 16 times data rate
CDCX	BIC Controlled Device Connect
CODX	Function Decode - CODO thru COD7
DAXX	Device Address
DRYX	Data Ready , I/O
DTIX	Data Transfer In
DTOX	Data Transfer Out
E/B Int	Framing Error or Overrun Error
EBXX	620 1/O Data Lines - EB00 thru EB15
EPE	Even Parity Select
FE	Framing Error on line break
FNCODX	Function Code EXC 0 thru EXC7
FRYX	Function Ready I/O
FUNCA	Function order any EXC command
INIT	Initialize
OE	Overrun Error
OPIN	Option Status Line
OPON	Optional Control Line Command Storage
Øsc	4.608 Mhz Oscillator Output
ØSC 1	2.304 Mhz Clock Rate
PE	Parity Error
PI	Parity Enable Line
RCRDY	Receive Data Buffer Ready
RCRINT	
RD	Receive Data Ready Interrupt
RD 1	Receive Data DTL/TTL Input
	Receive Data Current Loop Input

varian data machinesCODE
IDENT NO.
2110198A0767SH 12 OF 53 REV

96A0039-0008

Logic Mnemonics List

- RD2 Receive Data RS232 Input
- RD3 Receive Data Relay Input
- RSFF+ Clock Counter Reset Flip Flop
- RRX Received Data 8 bits parallel 9 thru 7
- SBS Stop Bit Select
- SD Send Data (Transmit)
- SERX Sense Response
- TXRDY Transmit Data Buffer Ready
- TXRINT Transmit Ready Interrupt
- WLS1 Data Bits per Word Select
- WLS2 Data Bits per Word Select

CODE		
IDENT	NO	
211	01	

	98A0767		7	C
I	SH	13	OF 53	REY

SECTION II INTERFACE AND CONNECTIONS

2.1 **RS232** Option

Conforms to EIA RS232 B and C as applicable.

2.1.2 Logic 0 = +4 to $+24 \vee$

Logic 1 = 0V to -24V

2.2 Current Mode Option

2.2.1 Driver Specification (Note 1)

Collector Emitter Voltage	VCEO	150Vdc Max
Collector Current - Continuous		500 MAdc Max
Total Dissipation @25 ⁰ C	Pd	1 Watt Max

2.2.2 Receiver Specification (Note 1)

Input Forward Voltage Drop V_F Input Forward Continuous Current I_F 60MA Max

2.2.3 Isolation

Common Mode Protection500V dcCommon Mode Resistance10 Meg Ohms

2.2.4 Logic 0 = No loop current

Logic 1 = Loop current (20 ma min)

NOTE 1: Current limiting resistors (2.0K - 2W) are mounted in the input and output circuits. Values of these resistors may require change or shorted out. Current ratings above must not be exceeded.

varian data machines	CODE IDENT NO.	98A0 76 7	C
	21101	SH 14 OF 58	REV

2.3 Relay Option

2.3.1 Input (Note 2)

Relay Input Coil Rating

12.5Vdc max.

Relay Input Coil Resistance 1250 ohms

2.3.2 Output (Note 2)

Reed Relay Contact Closure - Form A

2.3.3 Isolation

Common mode resistance 10Meg Ohm @400Vdc

2.3.4 Logic 0 = No current Logic 1 = Current (10 ma min)

Note 2: Current limiting resistors of 2.7K in the input side and 2.0K in the output side may be changed or shorted out. Caution must be used not to exceed 100 Ma through input relay coil.

ACCURATE AND ADDRESS OF

1

1

1

2.4 DTL/TTL (not available when used with RS232)

2.4.1 Input

Both inputs present a 10Ma load at +5Vdc to the user.

2.4.2 Output

Both drivers are capable of sinking 50Ma at +5Vdc.

2.4.3 Logic $0 = \ge +2.4 \lor dc$

Logic 1 = 0 + .5 Vdc

varian data machines IDENT	CODE IDENT NO.	98A0767	С
	21101	SH 15 OF 53	REV

FIGU	FIGURE 2.1			
PIN ASSIGN	PIN ASSIGNMENT CHART			
RS	232			
FUNCTION	PIN LOCATION			
Serial Data Transmit	J2-36			
Return	J2-35			
Serial Data Receive	J2-42			
Return	J2-41			
Data In (Jumper)	J2-44 to J2-28			
Optional Use Control Line	J2-34			
Return	J2-33			
Optional Use Status Line	J2-40			
Return	J2-39			
* CURRENT MC	DEVERSION			
FUNCTION	PIN LOCATION			
Serial Data Transmit +	J2-4			
Serial Data Transmit –	J2-10			
Serial Data Receive +	J2-24			
Serial Data Receive –	J2 - 18			

* CAUTION: Excessive reverse current may damage the current mode interface.

J2-26 to J2-28

Data In (Jumper)

98A0767 SH 16 OF 5

FIGURE 2.1 (Cont'd)

1

RELAY VERS	SION
FUNCTION	PIN LOCATION
Serial Data Transmit +	J 1≕26
Serial Data Transmit -	J 1–20
Serial Data Receive +	J 1-36
Serial Data Receive –	J 1–38
Data In (Jumper)	J1-40 to J1-2
Data In (Jumper)	J]•

* DTL/TTL CO	ONNECTION
FUNCTION	PIN LOCATION
Serial Data Transmit	J2-2
Return	J2 - 1
Serial Data Receive	J2-28
Return	J2-27
Optional Use Control Line	J2-22
Return	J 2- 21
Optional Use Status Line	J2-38
Return	

* Note: The above Driver/Receiver cannot be used when the RS232 Driver/Receivers are in place.

		Var a vari
--	--	----------------------

ian deta machines	CODE
	IDENT NO.
uan subsidiary	21101

98A0767 C

いたい 一番がたい

Ļ

14 × N3

FIGURE 2.2

	DEVICE ADDRESS SELECTION				· · · · · · · · · · · · ·		
TEN	TENS DIGIT						
D.A.	:	UMPERS		D.A	JUM	PERS	-
ox	76 to 83	77 to 85	78 to 87	X.0	66 to 65	69 to 68	72 to 71
1X	7 6 .to 82	77 to 85	78 to 87	X.1	66 t o 64	69 to 68	72 to 71
2X	76 to 83	77 to 84	78 to 87	X2	66 to 65	69 to 67	72 to 71
3X	76 to 82	77 to 84	78 to 87	X.3	66 to 64	69 to 67	72 to 71
4X	76 to 83	77 to 85	78 to 86	X.4	66 to 65	69 to 68	72 to 70
5X	76 to 82	77 to 85	78 to 86	X 5	66 to 64	69 to 68	72 to 7 0
6X	76 to 83	77 to 84	78 to 86	X6-	66 to 65	69 to 67	72 to 70
7X	76 to 82	77 to 84	7 8 to 86	X7	66 to 64	69 to 67	72 to 70

All pins on this page are on the I/O Back Panel.

INTERRU	RUPT (PIM LINES) Suggeste		
FUNCTION	PIN	Order of Priority	
Transmit Data Reg. Ready	89	#2	
Return	90		
Rec ei ve Data Reg. Ready	91	ן #	
Return	94		
Error or Break Interrupt	93	#3	
Return	94		

varian data machines	CODE IDENT NO.	98A0767	
	21101	SH 18 CF 53	K See

.

2.5 Device Address and PIM Drivers

The DA for the UASC is wired on I/O back panel. The entire address, both octal digits, must be properly wired for the selected address. DA02 is the first standard address. Add 6 jumpers for the address selected per Figure 2.2.

The PIM drivers are implemented as pulse drivers and can be tied together as an "or" function or can be used on a one for one basis. The program must sense all three functions per interrupt if all are tied together to one PIM input. Reference Figure 2.2 for pin connections.

CODE IDENT NO. 21101

•./

	98A 0767		C
S۲	119	<i>े</i> 53	×L.

SECTION III PROGRAMMING - UASC

3.1 Instruction Set

Execute Instructions

EXC 0	1000XX	Connect BIC (output)
EXC 1	1001XX	Connect BIC (output)
EXC 2	1002XX	Connect BIC (input)
EXC 3	1003XX	Not used
EXC 4	1004XX	Initialize Controller
EXC 5	10 55 XX	Connect BIC (input)
EXC 6	1006XX	Enable (option)
EXC 7	1007XX	Disable (option)

Sense Instructions

SEN O	1010XX	Frame Error or Break
SEN 1	1011XX	Output Ready
SEN 2	1012XX	Input Ready
SEN 3	1013XX	Not used
SEN 4	1014XX	Input Parity Error
SEN 5	101 <i>5</i> XX	Not used
SEN 6	1016XX	Sense (option)
SEN 7	1017XX	Input overflow error

Data Transfer Instructions

OAR	103 1XX
OBR	1032XX
OME	103 01 X
INA	102 IXX
INB	1022XX
IME	102 0X X
CIA	102.5XX
CIB	1026XX

XFER "A" reg to controller
XFER "B" reg to controller
XFER Memory to controller
XFER Data to "A" reg
XFER Data to "B" reg
XFER Data to Memory
XFER Data to cleared "A" reg
XFER Data to cleared "B" reg.

Standard Device Address is as follows:					
lst Unit	=	02			
2nd Unit	=	03			
3rd Unit	=	04			
4th Unit	Ħ	05			
5th Unit	=	06	DA01 may be used if UASC is used on the first teletype		
6th Unit	=	07	in a system.		

CODE varian data machines a varian subsidiary IDENT NO. <u>98A076</u>7 21101 SH 2001 5 7 RE

3.2 Explanation of Instruction Set

3.2.1 EXC Instructions

EXC 0 and EXC 1 are both (either one) used to connect the BIC to output control of the UASC.

EXC 2 and EXC 5 are both (either one) used to connect the BIC to control input of the UASC. The multiple BIC connect instructions are implemented for compatibility of the UASC, Teletype Controller, Paper Tape Controller, etc., instruction sets. The EXC 6 and EXC 7 Instructions are used to turn on optional control line on and off. EXC 4 is used to reset all functions on the UASC.

3.2.2 Sense Instructions

SEN 0, Frame Error or Break, is used to detect that a character received did not have "mark" or "l"stop bits. The program can check the received character to verify that the data was all "zeros". If the data was all zeros and a Frame Error was sensed, a "Line Break" was received. If the data was not all zeros, the error was probably a "hit' on the line or noise.

SEN 1 and SEN 2 indicate the status of the Transmit and Receive buffer registers. SEN 4 indicates, when true, that a parity error has been detected on a character received.

SEN 6 indicates the status of an optional status line. SEN 7 indicates that another character was received before the prior character was removed from the input register.

3.2.2 Data Transfer Instructions

These instructions are self explanatory. See 3.1.

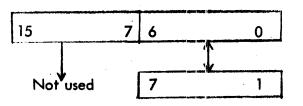
3.2.3 Interrupts

The interrupt functions are implemented on an individual system basis. SEN 1 and SEN 2 are implemented with individual drivers. SEN 0 and SEN 7 are "ORed" together on the same driver. All may be "ORed" together if desired.

CODE IDENT NO. 21101 「おおっておろい」があった。 あったい キー・モード・ビード いっていた あるまたがある うまうしまい しかいえん

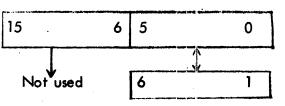
3.3 Word/Character Format (UASC to CPU)

Only data is transferred. Parity, if selected, is not transferred as part of data to cr from the CPU.

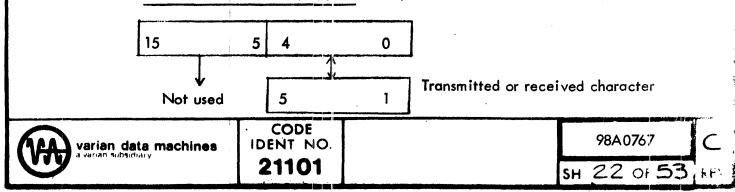

-5

3.3.1 16 Bit Word - 8 Bit Character

Transmitted or received character


3.3.2 16 Bit Word - 7 Bit Character

Transmitted or received character.

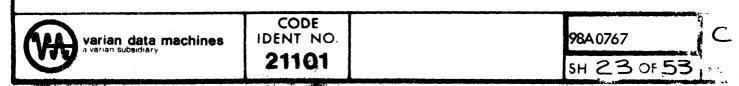

3.3.3

16 Bit Word - 6 Bit Character

Transmitted or received character.

3.3.4 16 Bit Word - 5 Bit Character

SECTION IV APPLICATION DATA


4.1 General Data

As previously mentioned in Section 1, the controller is available in several versions. The general purpose nature of the controller logic and the three available interface types makes it adaptable for use in many applications where a serial bit/non-modem type interface is required. It is suggested that the user read and study this entire section prior to attempting operation.

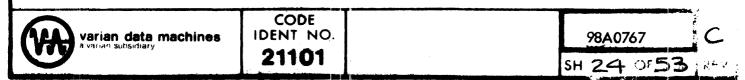
The chart below gives the general characteristics of each model along with the cable length/rate restrictions.

	Y	FIGURE 4.1			and and a subscription of the second
Model	Serial Rate, BPS (bits per second)	Character Size	Stop Bit	Cable. and Distance	Miscellaneous
R5232	45 to 9600 bps depending upon cable length (See Fig. 4.2)	5,6,7, or 8 level (bits). Parity bit (if any) is added to the data bits.	One or Two	Standard length=20ft., optionally up to 100ft.	
Current Mod e	Same as RS232	Same as RS232	Same as RS232	Standard length=20ft. optionally up to more than one mile	User must provide "line battery" for loop current.
Relay	45 to 330 bps. Typically would be 75 or 110 bps. Relays will not operate reliably at higher than 300 b ps.	Same as RS232	Same as RS232	Same as current mode	Same as current mode.

FIGURE 4.1

4.2 Cable Length Versus Rate of Operation

As noted in Figure IV, the RS232 model cable length is restricted to 100'. The RS232 interface is not isolated and operates in a voltage mode as set forth in RS232 B and C. Therefore, the maximum cable distance must be observed. RS232 is typically restricted to 50 feet of cable distance, but usually operates well up to 100 feet. The other models operate on a current loop (isolated interface) basis and cables can be much longer. Table below gives some general guidelines. Cables should be twisted pair using 24 gauge (or larger) wire. Note that maximum operating rate of the relay version is 330 bps so Figure 4.2 applies primarily to the Current Mode version.


Rate in BPS
10,000 bps maximum
4,800 bps maximum
1,800 bps maximum
900 bps maximum
300 bps maximum

4.3 Version Selection

The three versions of the controller will cover a wide field of applications. The version of controller to be used depends primarily on the peripheral device interface. For example, a full-duplex terminal with an RS 232 I.F. (capable of operating with a 103 or 202 modem), but located within 100' of the computer, can usually be driven via the RS 232 version controller by adding a few jumpers at the peripherals (modem) connector. Typically, the modeun control leads are jumpered "on" simulating the presence of the modem. "On" can be maintained by tying +12Vdc thru the IK source to the control lead pins.

In the case where a user needs an isolated interface, he would use the current mode or relay version of the controller.

The data below will assist users in configuring workable systems. Several application cabling examples are shown for each version of the controller following the general discussion of cabling, full/half duplex, 20/60 ma and line battery implementation.

4.3.1 Full-Half Duplex Discussion

All models can operate in a true (simultaneous send and receive) full duplex manner or in a send only, receive only, send or receive - half - duplex manner.

If the controller is cabled up in a full duplex (4 wire) manner, it will not see a reflected (echoed) input of what it is sending. If, however, the controller is cabled up in a half-duplex manner (only one pair of wires used), the outputted data on the send circuit will be reflected (echoed) back into the controller's receive section as input. The CPU software must ignore this "echoed" input during output of a message in this case. See cabling examples and discussion of signal routing.

4.3.2 20/60 MA Current Made Operation

The Current Mode interface is limited at 20 to 60 MA operation. Two 2K-2 Watt dropping resistors are provided for use with a fixed voltage current source such as a model 33 or 35 teletype. Etched pages are provided for jumpering out the 2K resistors if a variable voltage current source (line battery) is available. The current loop interface provides DC isolation up to 500Vdc. If the user supplies the line battery, this isolation will be maintained. If loop current is derived from the 12V source on the controller board, isolation at the controller end is lost.

4.3.3 Relay Current Loop Operation

The relay current loop is limited to 20 to 60 MA operation as well as the discrete current loop. 2K-2 Watt dropping resistors are provided for use with fixed voltage current sources (line battery), such as a model 33 or 35 teletype. Normal relay isolation is obtained with this interface when line battery is supplied by user.

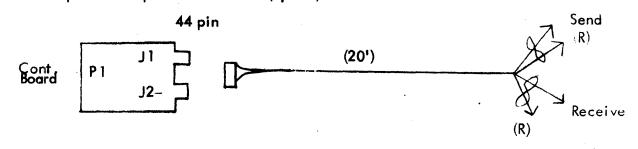
4.3.4 One and a Half Stop Bits

Although the user has the ability to select only one or two stop bits, he can operate with a 1-1/2 stop bit format. This is done by simply selecting two stop bits. For a Transmit function, the end result is that the maximum transfer rate is lowered by 1/2 bit time per character. For Received data, the controller ignores the second stop bit completely. Thus, the 1/2 bit time can be handled nicely and without noticable speed reduction.

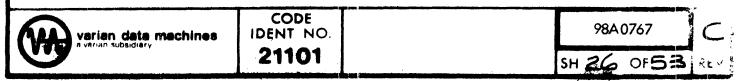
varian data machines

CODE IDENT NO. 21101 98A0767 SH 25 OF 5

4.3.5 Line Battery Requirements

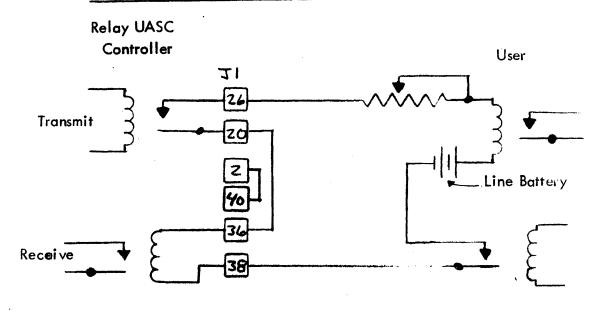

VDM may provide a controller only or a peripheral device along with the controller. If both the controller and VDM peripheral device is provided, VDM will supply "line battery". If VDM provides the controller only, the user (or peripheral supplier) will normally supply "line battery".

4.3.5.1 What is "Line Battery"?


This is normally a power source (supply) capable of providing enough current for "loop" operation. In the case of a 20ma, full duplex loop application, a power supply capable of supplying 20ma to both loops is required. Voltage for proper operation of the VDM current loop (or relays) can be from 12V to 100V at 60ma maximum. Besides the power supply itself, a means of adjusting (and/or regulating) the amount of current is required. A trimpot or fixed resistor network (per loop supplied) is adequate. One "battery" supply can supply many current loops; Typically, a one amp, 24Vdc supply could handle 20 (20ma-full duplex) controller-peripheral device hookups. VDM suggests usage of a barrier strip approach for a multiple relay type loop installation. See next pages. Use of an isolated "separate" power supply is the preferable method of implementing line battery.


4.4 Assembly of Cable (to peripheral device)

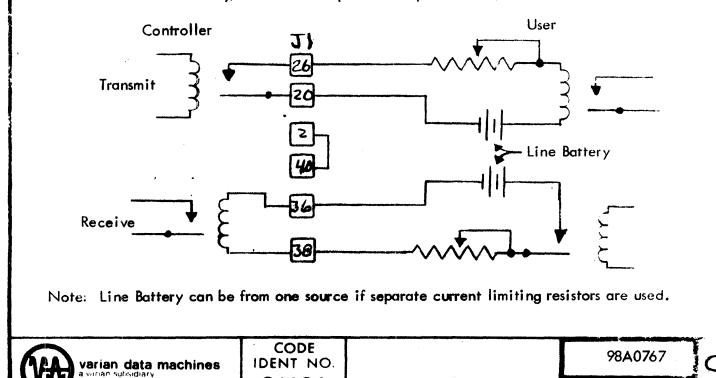
VDM provides a 20' open-ended cable kit with each controller. This cable kit includes a 44 pin Burndy type edge-on connector and hood, extra pins, and two twisted pairs in a jacket. The user makes up his cable to fit the application. See the examples for each type of controller. The cable routes from the top or bottom edge connector labled J1-J2 on the controller, to the peripheral device. (Reference: figure 2.1) The two pairs provided in the 20'cable kit are needed for "send" signals and "receive" signals. The twisted pairs are connected to the 44 pin connector as shown on the following pages. Wires required for operation with the (option) control and status lines are not included.



Users must determine the proper pin numbers at the peripheral device if the peripheral is not supplied by VDM.

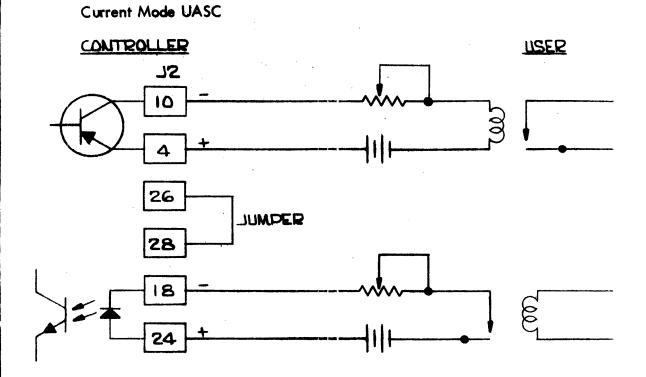
P. T. LUNCHARD

12.2.3


3

SH 27 OF 53 REV

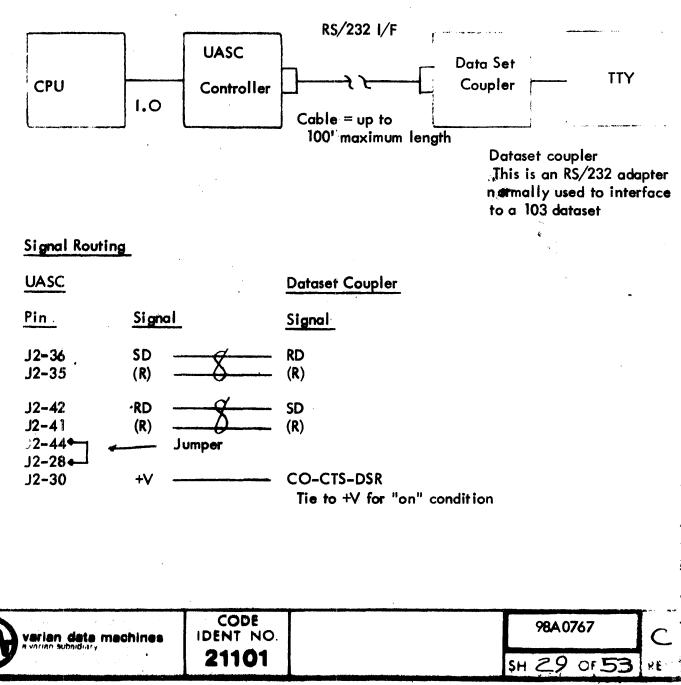
4.4.1.2


Line Battery/Device Hookup - Full Duplex

21101

٠٠.

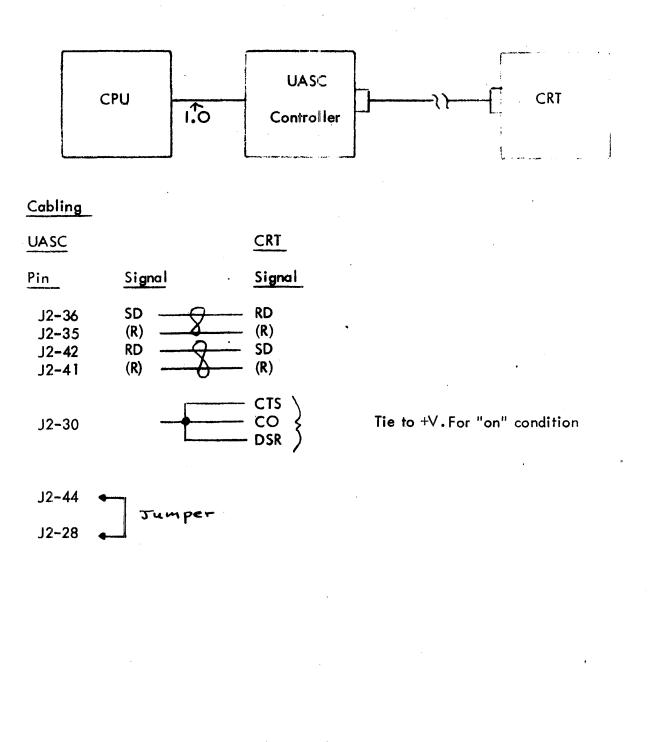
4.4.1.3 Line Battery/Device Hookup - Full Duplex


Note: As in 4.4.1.2, line battery can be one source if separate current limiting resistors are used.

varian data machines	CODE IDENT NO.	98A0767	C
	21101	SH 28 0F53	

4.5 Examples: Usage of RS232

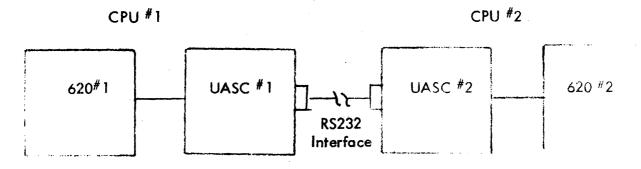
4.5.1 Example #1 - Data Set Coupler


ASR-33 Teletype equipped with a dataset coupler. Hardwire controller to 110bps, 2 stop bits, no parity, 8 bits. Hook-up cable as shown.

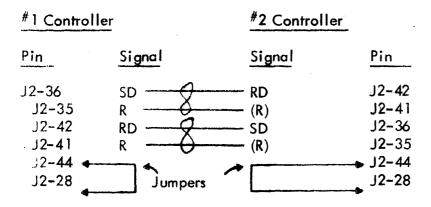
96A0039-0008

4.5.2 Example #2 - CRT Hookup

CRT with RS232 I/F (202 Modem). Hardwirecontroller to rate desired: Probably, 1200, 2400, or 4800 bps, 8 bits, 1 stop bit, parity.


varian data machinesCODE
IDENT NO.
2110198A0767SH 300F.5

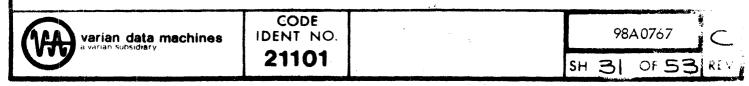
RE


96A0039-000B

4.5.3 Example #3 - 620 CPU to 620 CPU

Hardwire the controller to 2400, 4800, or 9600 bpi. Set character size to 8 bits plus odd or even parity, one stop bit. Hook up the cable as shown.

Cabling

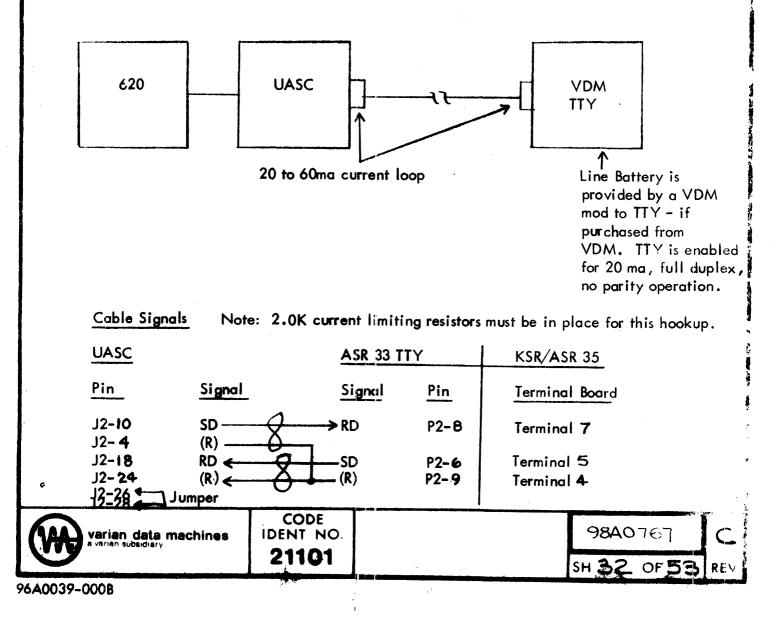


There are no control leads to "tie on" in this case.

J2-34	OPC	OPS	J2-40
J2-33	R	R	J2-39
J2 -40	OPS	OPC	J2-34
J2-39	R	R	J2-33

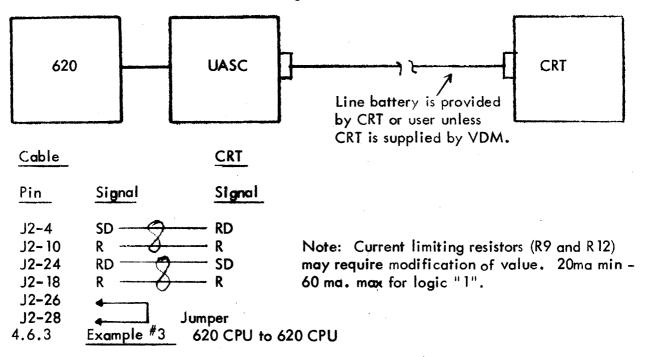
Optional control capability

This hookup provides an additional control and status line.

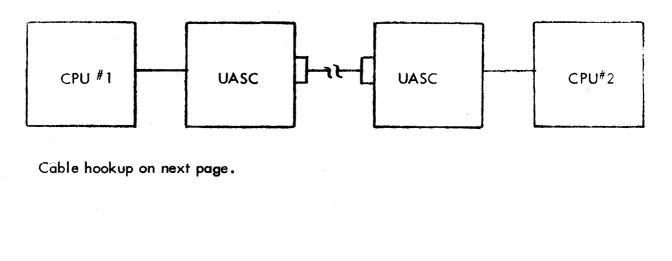

4.6 Usage of Current Mode Model

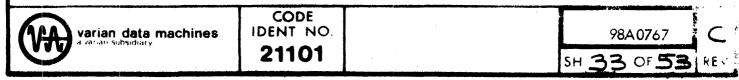
Unit has a solid state discrete current loop interface. It can typically be used to handle devices employing a current interface such as teletypes and/or terminals equipped with a 20/60ma current loop. Either half or full duplex operation is possible. This model has a major advantage over the RS232 interface in that the maximum cable length may be much longer. (See Figure 4.1). It has a major advantage over the relay interface in that the rate can be much higher than with electro-mechanical relays. See controller characteristics table and line battery discussion.

4.6.1 Example #1 - Interface to TTY


VDM modified KSR-ASR 33, 35 teletypes. Prepare the controller for 110 bps, 8 bits, no parity, 2 stop bits. Cable as shown.

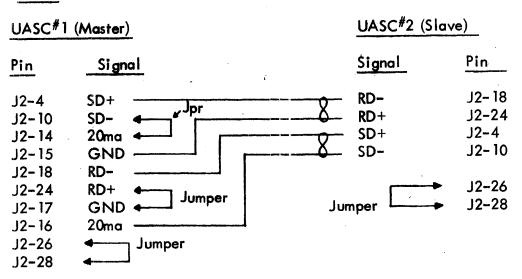
Cable may be upito 10,000 feet long.

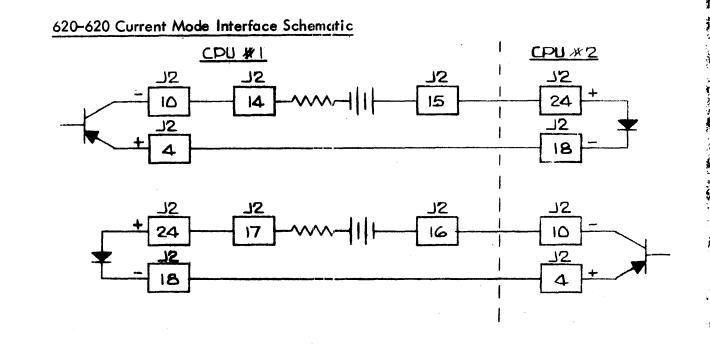


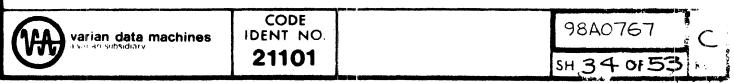

4.6.2 Example #2 - CRT Hookup

CRT equipped with "current loop". Hardwire the controller to: bps = 1200, 2400, or 4800 bps, 8 data bits, 7 data plus parity, one stop bit. Hook-up cable as shown. See rate/distance table for maximum length of cable.

Hardwire controller to: bps = 1200, 2400, 4800, or 9600 bps. Set to 8 bits plus odd or even parity, 1 stop bit. Hook up cable as shown. See rate/distance table for max. length of cable.




ذ


4.6.3 (Cont'd)

Cable

Note: Current limiting resistors R9 and R12 on both ends are shorted out for this application.

96A0039-000B

4.7 Usage of Relay Version

This model is equipped with a set of electromechanical (reed) relays and is designed for usage with teletype-telegraph (current loop) type equipment. It can handle 5 or 8 level applications such as (5 level) models 28, 32 (8 level) models 33 and 35 teletypes and 83B type polling (5 level) equipment. The relay interface can be hooked up to handle full or half-duplex "loops" as required. In the case of half-duplex operation, the CPU must ignore the "received" input while it is sending. The "received" input (while sending) is an "echo" only.

4.7.1 Full Duplex - Cable Routing - Schematic

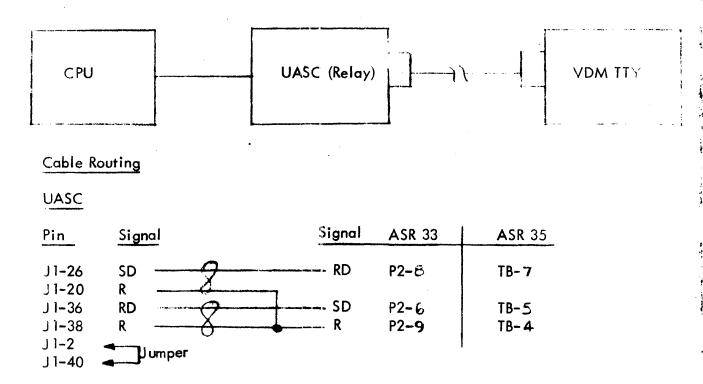
CODE

IDENT NO. 21101

98A0767

SH 35 OF 53

See 4.4.1.2



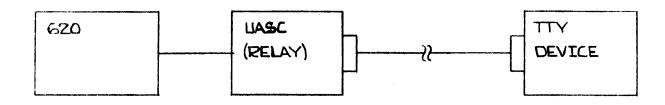
4.7.3 Examples - Usage of Relay UASC

Example #1 - ASR/KSR 33 and ASR/KSR 35

VDM provided 33/35 Teletype = same hook-up as 4.6.1.

Cable Routing

Note: The 2.0K and 2.7K resistors (RI3and RI4)must be in place when the UASC is interfaced to the TTYs as noted above.


			مېرىمىيى يېرىمىن بىرىمىن بىر مىچى يېرىمىن بىرىمىن بىرىمىن بىرىمىن بىرىمىن بىرىمىن بىرىمىن بىرىمىن بىرىمىن بىرى
varian data machines	CODE IDENT NO.	7	98A0767
a and solutions deary	21101		SH 36 OF 53 REV
96A0039-000B			

4.7.4 Example #2 - 5 Level TTY

620 CPU to user provided model 28 or 32 teletype or 83B unit.

Hardwire the controller to:

75 bps, 5 bit data, no parity, 2 stop bits, probably 60ma. Route cable and line battery as shown. See cable distance chart.

Signal Cable

See general cabling and previous page. Route cable for full or half duplex operation as required.

Half duplex - one pair cable used (ref: 4.4.1.1) Full duplex - two pair cable used (ref: 4.4.1.2)

ι,

IDENT NO. 21101

CODE

4	
98A 0767	C
SH 37 OF 53	۰ <i>L</i>

í

SECTION V

5.0 General

The three interfaces, RS232, Current Mode, and Relay can be tested in a back-to-back configuration. Included in the UASC package is a test connector kit which can easily be assembled for the version purchased. The relay version can be tested when used with a TTY with standard VDM TTY test routines. VDM tests controllers prior to delivery using Test Specification 98A0768 as a guide.

5.1 Test Routine

The test routine requires that the UASC is installed in a 620 CPU slot with a property wired test connector. Procedure for using this test routine is described in SPS 89A0228. This SPS also includes a description of the Test Routine.

5.2 Test Connector

The test connector is supplied in kit form. The test connector is assembled and used as further described.

5.2.1 Assembly of Test Connector

5.2.1.1 Model A - RS232C Test Connector

Install jumpers between the following pins:

36 to 42 44 to 28 34 to 40

Install test connector on J2.

5.2.1.2 Model B - Current Mode Test Connector

Install jumpers between the following pins:

 10 to 14
 R9 and R12 must be temporarily jumpered (shorted)

 4 to 18
 24 to 23

 26 to 28
 22 to 38

 Install test connector on J2.
 CODE

 varian data machines
 IDENT NO.

 21101
 SH 38 OF 53 REV

96A0039-000B

5.2.1.3 Model C - Relay I/O Test

The relay version of the UASC can most easily be tested with a VDM modified ASR33 teletype. The cable is wired per 4.7.3. Standard teletype test routines will verify operation.

.

CODE IDENT NO. 21101

98A0767 C

96A0039-0008

SECTION VI THEORY OF OPERATION

6.0 General

Sections 1 thru 5 should be reviewed prior to using this Theory of Operation section. This section is written in a sequence that begins with the logic on page 1 and follows through to page 6 of 91C0445.

6.1 Control Logic

6.1.1 Page 1

Contains power distribution, D.C. line filtering, and E-Bus connections. DAXX+, the Device Address, is made up of a 7 input "AND" function which is selectable at P1 on the back panel. Reference 2.5 and Fig. 2.2.

6.1.2 Page 2

Contains the balance of the E-Bus connections which are further defined in the 620 interface manuals. CODO+ thru COD7+ are decoded at octal to 8 line decoder IC2. CODO+ thru COD7- are used for both Sense and Command Instructions (Reference 3.1). EXC Commands are made up of FRYX (Function Ready), EB11+, DAXX (Device Address), and the appropriate COD(X) functions. WBBC is a nand gate latch which is set (EXC 0 or EXC 1) when transferring data out under BIC control. The latch is reset (EXC 2 or EXC 5) when transferring data in under BIC control. INIT (Initialize) is implemented on a "one shot" to assure that the LSI chip has a 2 usec reset pulse. INIT is pulsed by either a "SYSTEM RESET" from the control panel or an initialize command, EXC 4. OPON flip flop is set by EXC 6 and reset by EXC 7. OPON is storage for a control line that can be used for various different peripheral devices, an optional control.

6.1.3 Page 3

Generally contains data control, interrupt drivers, and BIC control logic. The following terms are BIC oriented and are further defined in the BIC manual TAKK (Trap Acknowledge), DCEX (Device Connect Enable), CDCX (Controlled Device Connected), TROX (Trap Out), BCDX (BIC Disconnect), and TRQX (Trap Request). DTOX (Data Transfer Out) and DTIX (Data Transfer In) are used to steer data onto the E-Bus during data transfer commands such as an OAR or CIA instruction (Ref. 3.1).

The three interrupt drivers, TXRINT, RCRINT, and E/BINT are implemented as pulse drivers. Pulses are generated at the leading edge of the associated sense response term. For example, TXRDY- (Transmit Ready) initiates TXRINT.

(PIM Driver Pulse) at the leading edge of TXRDY+. The interrupt drivers are pulsed to permit hardwire "OR'ing" of all three drivers to one PIM input.

6.1.4 Page 4

Contains the Sense response logic, the E-Bus drivers, and amplified outputs from the LSI chip. The Sense logic consists of the decoded control function bits (EB06, EB07, and EB08) which are decoded to CODO thru COD7 on page 2 of 91C0445. CODO is gated with FEB+ to obtain the first term in the Sense structure. CODO thru COD7 is used to implement SEN 0 thru SEN 7 respectively (Ref. 3.1).

6.1.5 Page 5

Consists of the LSI Transmitter/Receiver chip and the four types of interface to the user. The LSI chip is covered in Section 6.2. Only one of the three optional interfaces will be found on a given board. The interface circuit specifications are found in Section II.

The RS232 interface is driven via IC21 for both TXDAT2 (Transmit Data) and OPCON2(Option Control). RECDAT2 (Receive Data) and OPTION (Option Status Line) are received via IC 28. Both IC 21 and IC 28 are RS232 B & C compatible.

The Current Mode interface does not utilize the Option Control and Option Status lines. TXDAT1 (Transmit Data) is DC isolated via transformer coupling from signal ground. OSCI running at a 2.3 MHZ rate transfers the output data (SD+) to the secondary of TI via IC7. The pulsed data seen on the primary of TI is effectively rectified by CRI. The voltage divider R7 and R8 properly bias the output driver Q1 which reconstructs the SD+ signal. Input data is also DC isolated from signal ground via an LED/Transistor, IC14.

Transmit Data is sent via K1 by means of a contract closure. Receive Data is received via K2. Normal D.C. isolation from signal ground is obtained with the relay interface.

The DTL/TTL interface is present on all three of the previously described interfaces. In fact, the other three interfaces utilize the DTL/TTL interface. The Receive Data is routed to RD at J1 or J2 and thru IC12. As an example the RS232 Receive Data line RD2 at J2-44 must be routed back thru the DTL/TTL receiver RD at J2-28. The optional control and Status lines OPCONI and OPTION at J2-22 and J2-38 respectively are also always present on the three versions of the UASC. The DTL/TTL Transmit Data driver (TD at J2-2) is also always present on the three versions.

CODE IDENT NO. 21101

98A0767 41 53

6.1.6 Page 6

Is covered in Section 6.3.

6.2 Transmitter/Receiver Operation

6.2.1 Transmitter Operation

(Ref. Fig. 6.1, 6.3, and 6.5)

Power is applied, external reset is enabled and a clock pulse is applied having a frequency of 16 times the desired baud rate. The above conditions will set TXRDY+, TRE+, and SD+ to logic "1" (Line is marking).

Once data strobe BTOA- is pulsed the TXRDY+ signal will change from a logic "1" to a logic "0" indicating that the data bits holding register is filled with a previous character and is unable to receive new data bits, and transmitter shift register is transmitting previously loaded data. When transmitter shift register is empty, data bits in the holding register are immediately loaded into the transmitter shift register for transmission. The shifting of information from the holding register to the transmitter shift register will be followed by SD+ and TRE+ going to a logic "0", and TXRDY+ will also go to a logic "1" indicating that the shifting operation is completed and that the data bits holding register is ready to accept new data. It should be remembered that one full character time is now available for loading of the next character without loss in transmission speed due to double buffering.

Data transmission is initiated with transmission of a start bit, data bits, parity bit (if desired) and stop bit(s). When the last stop bit has been on line for one bit time, TRE+ will go to a logic "1" indicating that new character is ready for transmission. This new character will be transmitted only if TXRDY+ is a logic "0" as was previously discussed.

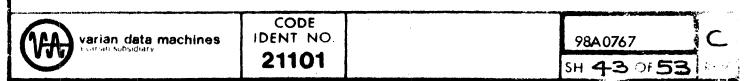
It should be noted that the TRE + line is not used. It can be used for timing reference when trouble shooting, however.

- 6.2.2 Receiver Operation
- (Ref. Figs. 6.2, 6.4, and 6.6)

Power is applied, external reset is enabled, and clock pulse is applied having a frequency of 16 times the desired baud rate. The previous conditions will set data available RCRDY+ to a logic "0".

Data reception starts when serial input signal changed. from Marking (logic "?") to spacing (logic "0") which initiated a start bit. The start bit is valid if after transition from logic "1" to logic "0", the RD line continues to be at logic "0", when center

	CODE IDENT NO.		
varian data machines	21101	98A0767 SH 42 OF53	


sampled, 8 clock pulses later. If, however, line is at a logic "1" when center sampling occurs the start bit verification process will be reset. If the Serial Input line transitions from a logic "1" to a logic "0" (marking to spacing) when the 16x clock is in a logic "1" state, the bit time, for center sampling will begin when the clock line transitions from a logic "1" to a logic "0" state. After verification of a genuine start bit, data bit reception, parity bit reception and stop bit(s), reception proceeds in a orderly manner.

While receiving parity and stop bit(s) the receiver will compare transmitted parity and stop bit(s) with control bits (parity and number of stop bits) previously set and indicate an error by changing the parity error flip flop and/or the framing error flip flop to a logic "1". It should be noted that if the No Parity Mode is selected the PE (parity error) will be unconditionally set to a logic "0".


Once a full character is received, internal logic looks at the data available (DR) signal to determine if data has been read out. If the DR+ signal is at a logic "1" the receiver will assume data has not been read out and the over run flip flop of the status word holding register will be set to a logic "1". If the DR signal is at a logic "0" the receiver will assume that data has been read out. After DR goes to a logic "1", the receiver shift register is now ready to accept the next character and has one full character time to remove the received character.

		·	•
Pin No.	Name	Symbol	Function
1	V _{cc} Power Supply	V _{cc}	+5V Supply
2	∨ _{gg} Power Supply	∨ _{gg}	-12V Supply
3	Ground	GRD	Ground
4	Received Data Enable	RDE	A logic "0" on the receiver enable line places the received data onto the output lines. (Grounded)
5 12	Received Data Bits	RR7-RRO	These are the 8 data output lines. Received characters are right justified, the LSB always apprears on RRO.
13	Receive Parity Error	PE	This line goes to a logic "1" if the received character parity does not agree with the selected parity.

6.2.3 Description of Pin Functions

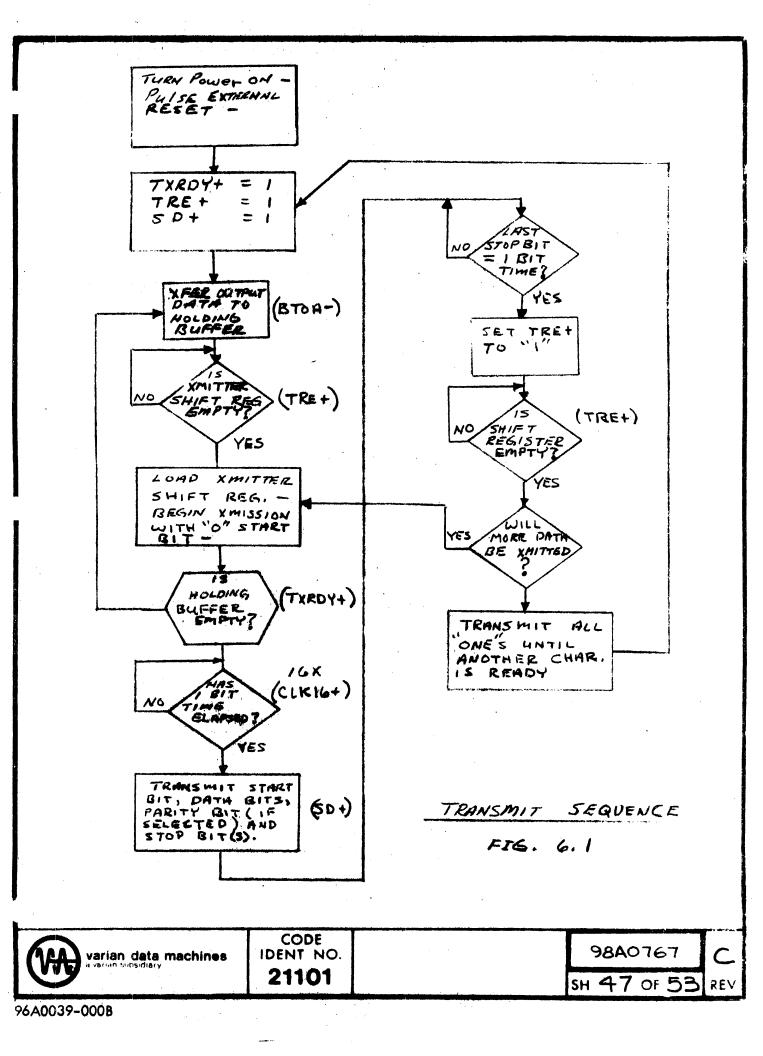
<u>Pin No</u> .	Name	Symbol	Function
14	Froming Error	FE	This line goes to a logic "1" if the received character has no valid stop bit.
15	Over-Run Error	OE	This line goes to a logic "1" if the previously received character is not read (DR line not reset) before the present character is trans- ferred to the receiver holding register.
16	Status Enable	SE	A logic "O" on this line places the status bits onto the output lines. (Grounded)
17	Receiver Clock	CLK 16	This line will contain a clock whose frequency is 16 times (16X) the desired receiver baud rate.
18	Reset Data	BTIA-	A logic "0" will reset the DR line. Data remains available until replaced with new data.
19	Receive Data Ready	DR	This line goes to a logic "1" when an entire character has been received and transferred to the receiver holding register.
20	Serial Input	RD	This line accepts the serial bit inputstream. A Marking (logic "1") to spacing (logic "0") transition is required for initiation of data reception.
21	External Reset	INIT	Resets all registers except RR7 - RR0 registers . Sets SD, TRE, and THRE to a logic "1".
22	Transmitter Buffer Empty	THRE	The transmitter buffer empty flag goes to a logic "1" when the data bits holding register may be loaded with another character.
23	Data Strobe	BTOA-	A strobe on this line will enter the data bits into the data bits holding register.
24	End of Character	TRE	This line goes to a logic "1" each time a full character is transmitted. It remains at this level until the start of transmission of the next character. (Not used).

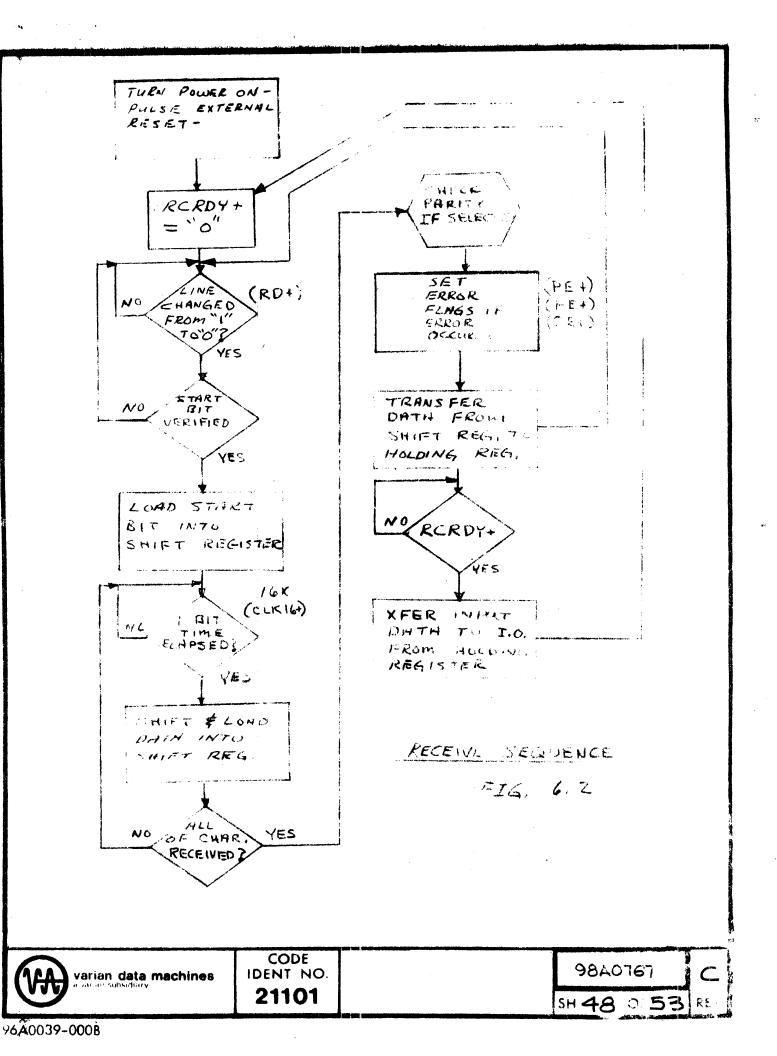
<u>Pin No</u> .	Name	Symbol	Function
25	Serial Output	SD	This line will serially, by bit, provide the entire transmitted character. It will remain a a logic "1" when no data is being transmitte
26-33	Data Bits Out	EB00-07	There are up to 8 data bits used.
34	Control Level	CRL	A logic "1" on this lead will enter the contro bits (PI, SBS, WLS1, WLS2, EPE) into the control bits holding register. This line is hard wired to a logic "1" level.
35	No Parity	PI	A logic "1" on this lead will eliminate the parity bit from the transmitted and received character (no PE indication). The stop bit(s) will immediately follow the last data bit. If not used, this lead must be tied to a logic "0
36	Number of Stop Bits	SBS	This lead will select the number of stop bits, or 2, to be appended immediately after the parity bit. A logic "0" will insert 1 stop an a logic "1" will insert 2 stop bits.
3 7-38	Number of Bits/ Character	WLS2 WLS1	These two leads will be internally decoded toselect either 5,6,7, or 8 data bits/characterWLS1WLS2Bits/Character005106017118
39	Odd/Even Parity	EPE	The logic level on this pin selects the type of parity which will be appended immediately after the data bits. It also determines the parity that will be checked by the receiver. A logic "0" will insert odd parity and a logic "1" will insert even parity.
40	Transmitter Clock Line	CLK 16	This is a clock whose frequency is 16 times (16X) the desired transmitter baud rate.
	· · · · · · · · · · · · · · · · · · ·		
varian d	lata machines	CODE IDENT NO. 21101	98A0767

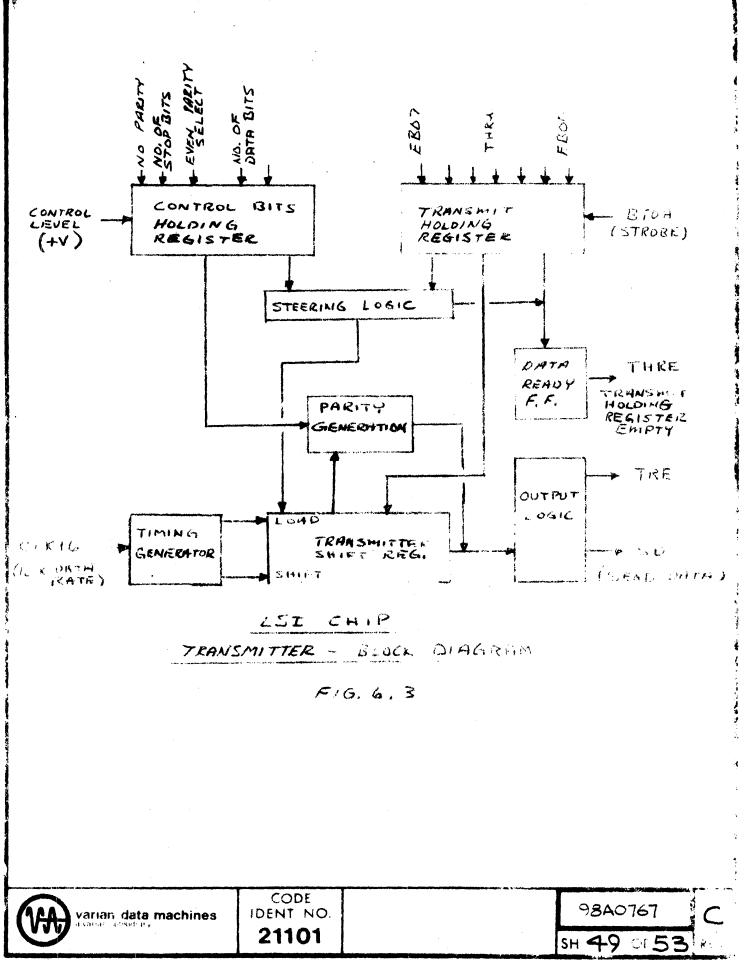
5

6.3.1 Timing

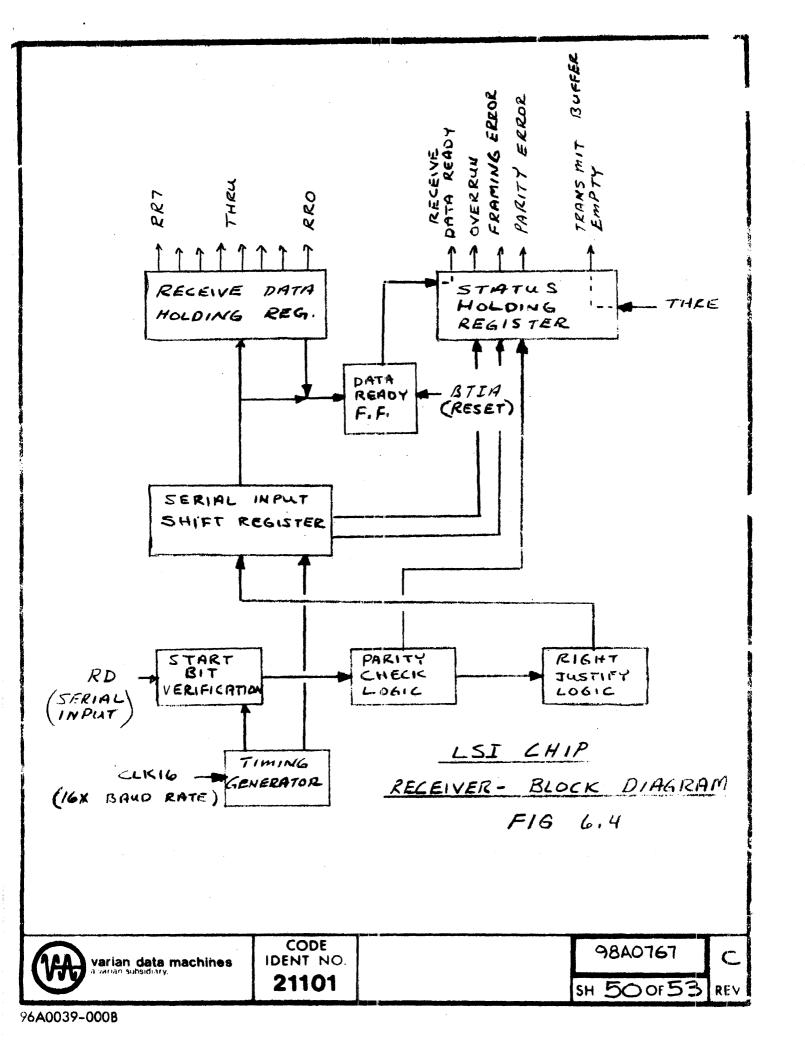
Page 6 contains the crystal oscillator and the presetable counter for dividing the clock frequency to 16 times the data or baud rate. OSCI (IC33) divides the oscillator output (4.608MHZ) by two. OSC+ and OSC1+ are gated together to create a 2.304 MHZ input to the 12 bit presetable ripple counter (IC13, IC20, and IC27). The down going edge of the carry line at pin 12 of IC27 causes the reset flip flop RSFF to set. The alternate clock pulse (OSC- and OSC) is gated into the preset line (pin 1 of IC12, IC20, and IC27) to preset the counter. The preset pulse rate is governed by the jumper combination as shown in Table II, Sheet 6 of 91C0445. The leading edge of the next count pulse resets the reset or preset flip flop, RSFF. (Ref. Fig. 6.7).

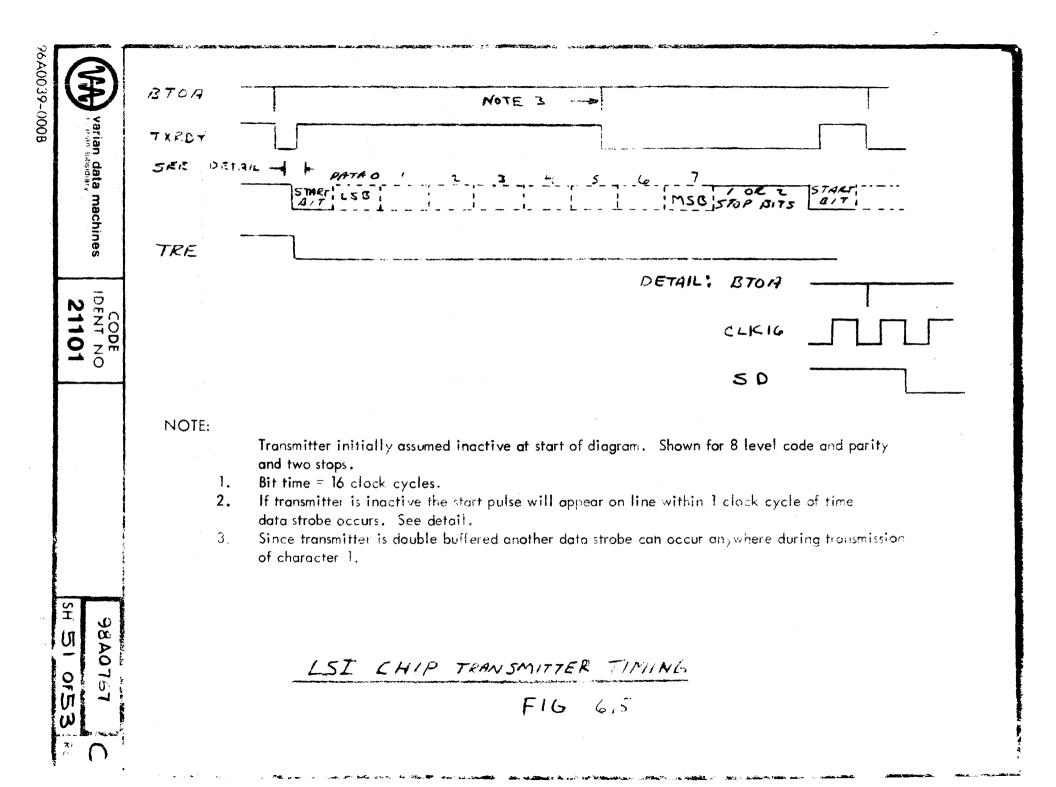

CODE

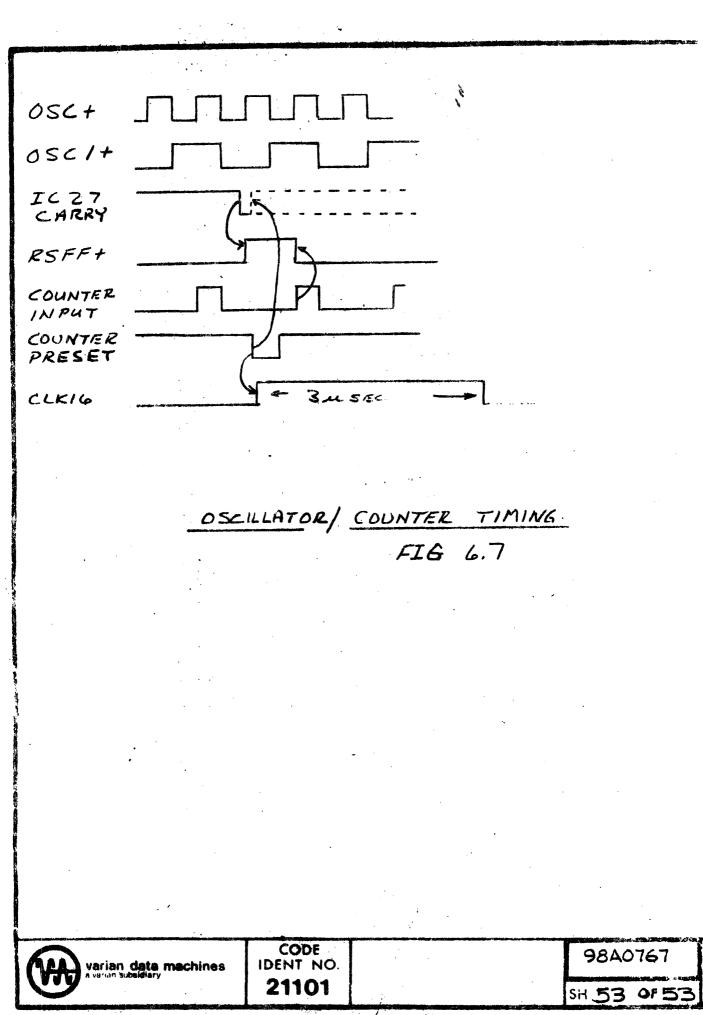

21101


SH 46

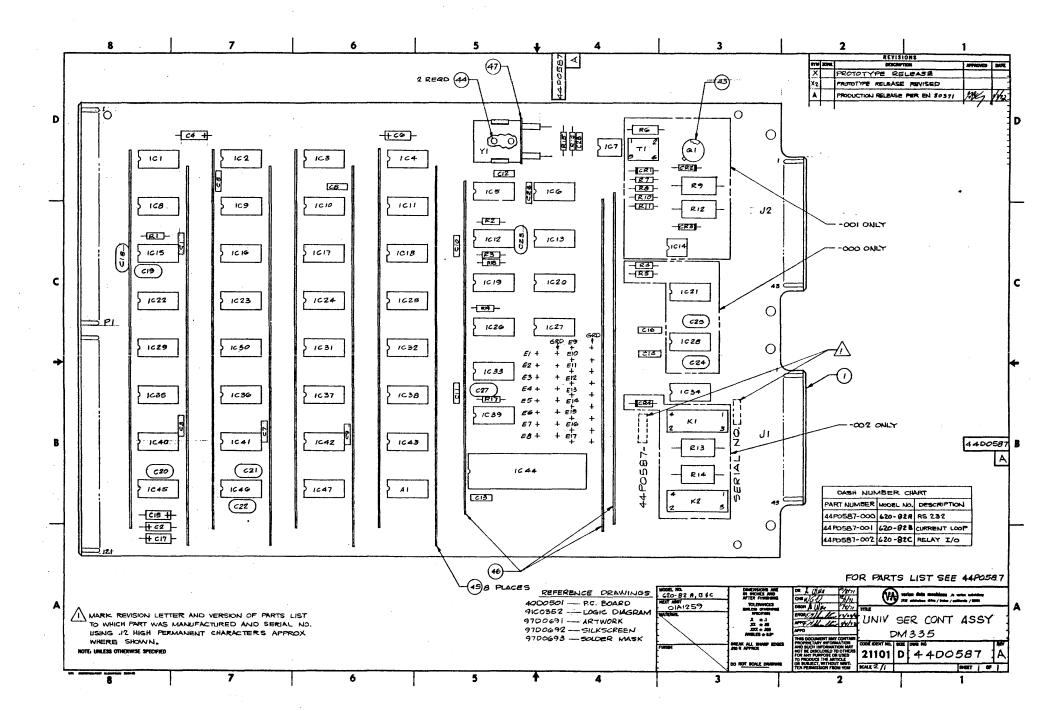
ା 53

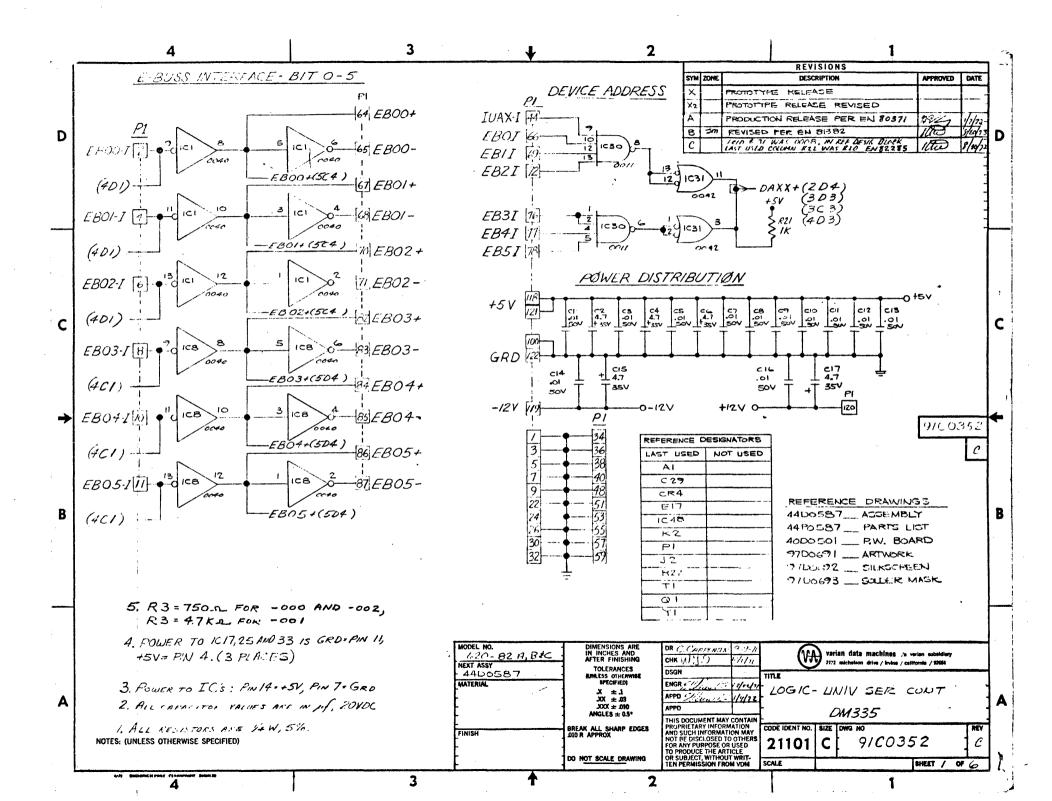

96A0039-000B

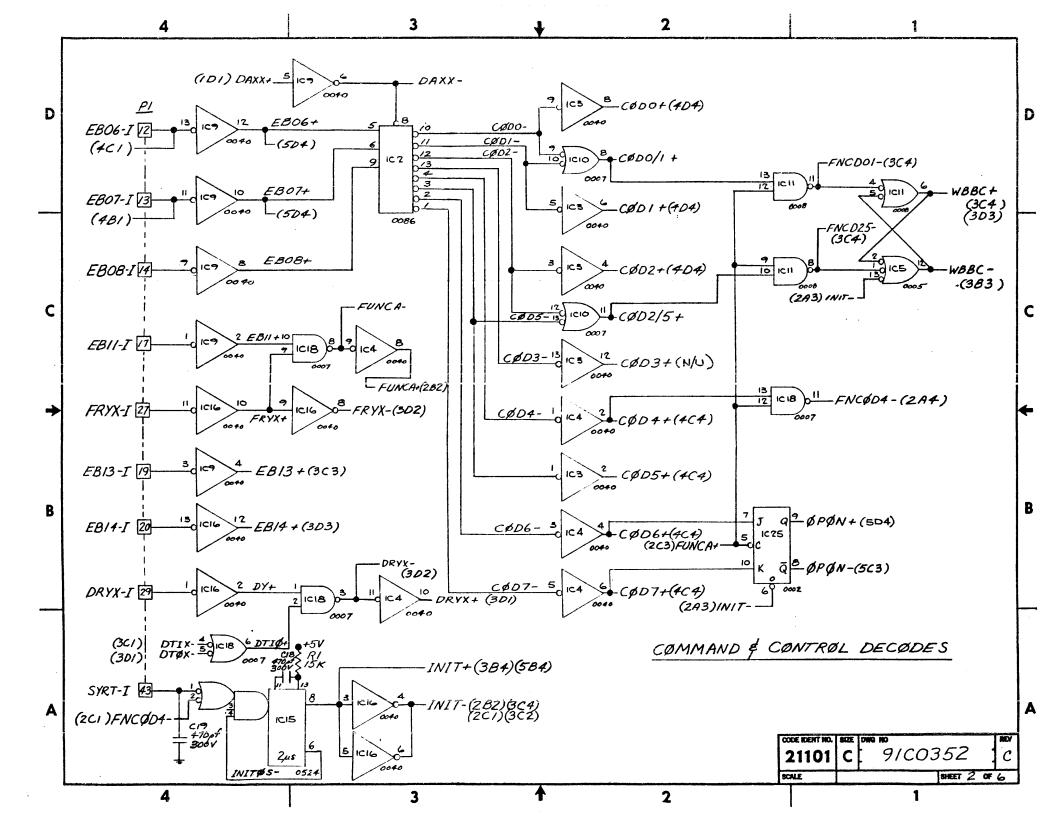


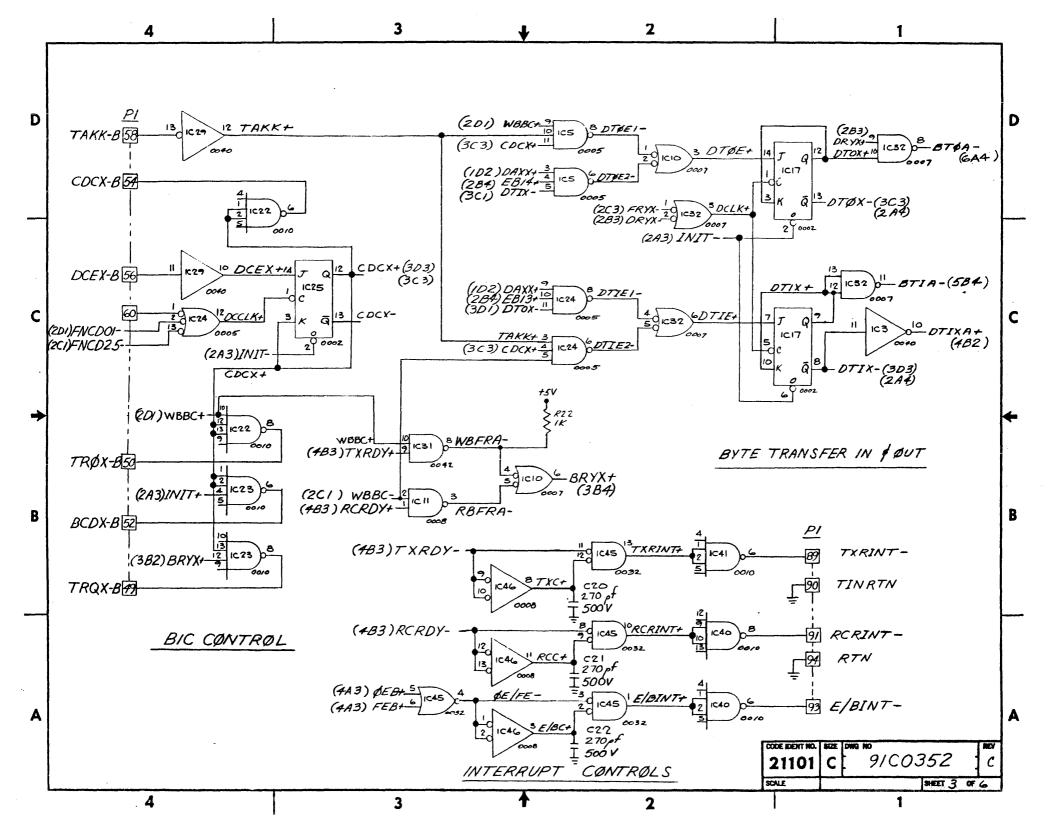

96A0039-000B

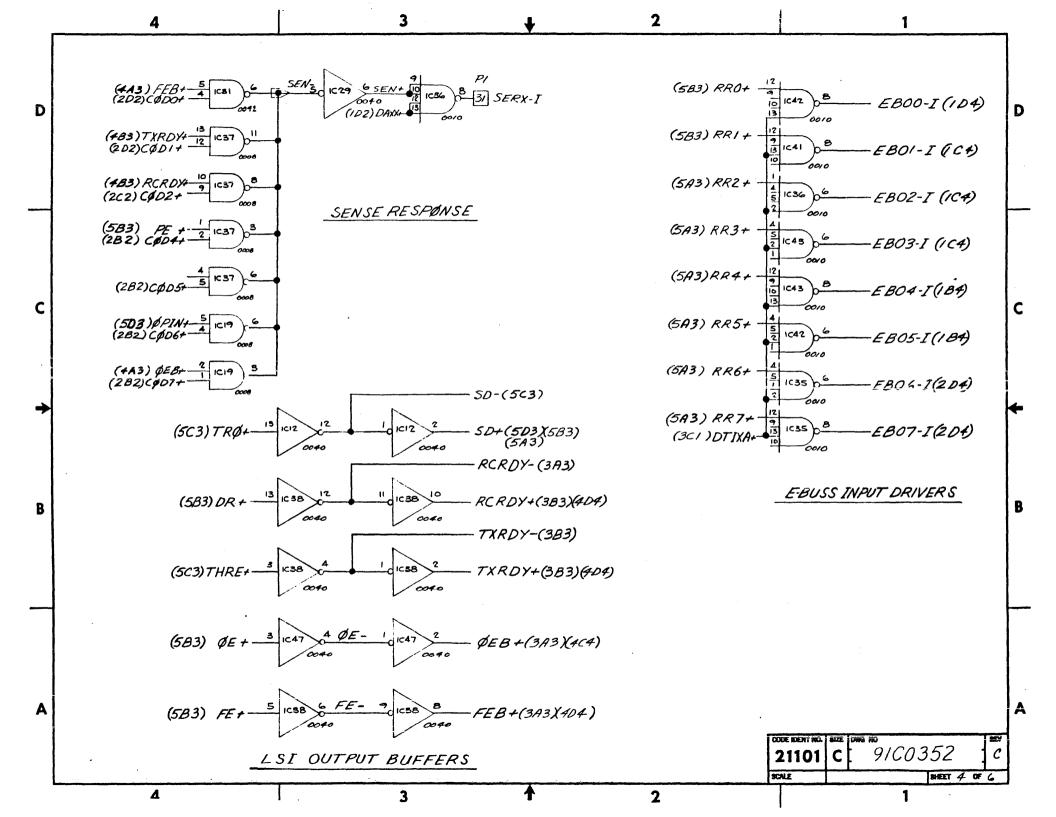
ţ


	DATA "S"	BITO 1 2 3 4 5 6 7 START LSB IMSB IPARITY STOP BITS START ET
Varian	CLKIG	<u>a da ka ana ka ka</u>
arian data machines	INTERNAL BIT STRODE	
machi	PARITY ERROR	NOTEI
nes	FRAMING ERROR	NOTE 1
NDE	DATA Ready	NOTE 2 -
CODE IDENT NC 21101	OYER RUN	NOTEI
	(See n 3. All in 4. Above	available is set only when the received data, PE, FE, or has been transferred to the holding registers. eceiver block diagram). formation is good in holding register until data available tries to set for next character. shown for 8 level code parity and two stop for no parity, stop bits follow data.
	pin 1	l level code the data in the holding register is RIGHT JUSTIFIED; that is, LSB always appears in RRO 2).
S H Q		
98A0767 SH 52 JF 5		




96A0039-000B


Ċ


REV

