
WANG

Operating System
Services Manual

Operating
System Services

3rd Edition - August, 1981
Copyright © Wang Laboratories, Inc., 1977
800-110708-03

WANG
WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE, LOWELL, MA 01851 •TEL: 617/459-5000, TWX 710-343-6769, TELEX 94-7421

Disclaimer of Warranties
and Limitation of Liabilities

The staff of Wang Laboratories, Inc., has taken due care in preparing
this manual; however, nothing contained herein modifies or alters in any
way the standard terms and conditions of the Wang purchase, lease, or
license agreement by which this software package was acquired, nor
increases in any way Wang's liability to the customer. In no event shall
Wang Laboratories, Inc., or its subsidiaries be liable for incidental or con
sequential damages in connection with or arising from the use of the soft
ware package, the accompanying manual, or any related materials.

NOTICE:

All Wang Program Products are licensed to customers in accordance
with the terms and conditions of the Wang Laboratories, Inc. Standard
Program Products License; no ownership of Wang Software is trans
ferred and any use beyond the terms of the aforesaid License, without the
written authorization of Wang Laboratories, Inc., is prohibited.

This Third Edition of the VS Operating System Services Manual
(800-110705-03) documents Release 5.1 and succeeding releases until
replaced or revised. It replaces and obsoletes the Second Edition
(800-11070S-02) and its Release 4 Addendum (800-11070S-02.01).
Changes are noted in the "Summary of Changes" and indicated in the text by
single change bars in the margins.

WANG
WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE, LOWELL, MA 01851 •TEL: 617/459-5000, TWX 710-343-6769, TELEX 94-7421

TYPE

NEW MACROS
(AND SVCs)

EXPANDED
MACROS
(and SVCs)

TECHNICAL
REVISIONS

SU1JU11ary of Changes
for the 3rd Edition of the

VS Operating System Services
(800-11070S-03)

DESCRIPTION

FREEHEAP (SVC 57) (Deallocate
Memory Block)

GETHEAP (SVC 56) (Allocate
Memory Block)

LINKPARM Macro (Supply
Program Parameters)

CHECK (TCIO & multiple event)
CREATE PORT (Return 12)
DISMOUNT (NODISPLAY option)
DISMOUNT (SVC 41) (NODISPLAY

option)
EXTRACT (System, job, device,

etc., data)
EXTRACT (SVC 28) (System, job,

device, etc., data)
MOUNT (NSA, NODISPLAY, NOMES-

SAGE)
MOUN!' (SVC 30) (Return Codes)
OPEN (WP PLOG option)
READFDR (PLOG & PAREA options)
READFDR (SVC 24) (WP files)
RENAME (Renames libraries)
RENAME (SVC 26) (Libraries)
SET (JOB queue, class, CPU time)
UFBGEN (NODISPLAY, tape, PLOG)
XIO (UCPRINT, DEVSTATUS)
XIO (SVC 3) (Input parameters)

CXT (Macro example)
Control Block Of £sets
XIO (SVC 3) (Tape and non

standard diskette)
FREEBUF (SVC 6) (Interaction

with GET/FREEHEAP SVCs)
UNLINK (SVC 15) (Enhanced

processing)
CHECK (SVC 17) (IOSW in Regs

0 and 1)
CHECK (SVC 17) (TC event)
READVTOC (SVC 19) (Numher of

unused blocks)

iii

PAGES

4-36/4-37,
6-79/6-80
4-39/4-41,
6-77/6-78
4-55/4-59

4-12/4-15
4-17
4-22
6-73

4-24, 4-26/4-31

6-55/6-56

4-61, 4-63

6-58/6-59
4-66
4-79
6-46
4-87
6-48
4-97, 4-100/4-101
4-123, 4~131/4-133
4-136, 4-139
6-11

4-18
5-1/5-40
6-13/6-14

6-19

6-22

6-25/6-28

6-26/6-28
6-29

TYPE DESCRIPTION PAGES

TECHNICAL MOUNT (SVC 30) (Parameter 6-57
REVISIONS extensions)

MOUNT (SVC 30) (Non-standard 6-59
addressitig)

PUTPARM (SVC 33) (Extensive 6-23/6-67
revision)

SET (SVC 35) (JOB parameters) 6-68
DATANAME SUBBLOCK (FORTRAN B-18

fields)

EDITORIAL CHECK (MESSAGE option) 4-14
REVISIONS EXTRACT (Operand descriptions 4-26/4-28

EXTRACT (SVC 28) (Parameter 6-52
clarification)

File Status Codes moved to 7-48
Appendix C C-12/C-19

Miscellaneous Changes 4-25, 5-1, 6-21
6-53, B-15,
B-17/B-20

iv

CHAPTER 1

CHAPTER 2

2.1

TABLE OF CONTENl'S

PAGE

IN'I'R.ODUCTION • 1-1

STANDARDS • 2-1

PrograD11Ding • 2-1
User Programs ••••••••••••••••••••••••••••••• 2-1

Constraints on Code and Data ••••••••••••• 2-1
'nle Reentrant Program Segment •••••••••••• 2-2
'nle Modifiable Segment ••••••••••••••••••• 2-2
Creation of 'Static' Areas ••••••••••••••• 2-3
Address Constants •••••••••••••••••••••••• 2-5
Using the Assembler for 2200VS Object

Code • 2-9
Transfer of Control •••••••••••••••••••••• 2-9

CALL • 2-15
LINK • 2-16

Supervisor Interface •••••••••••••••••••• 2-17
Standard Argument Lists for CALL

or LINK • .. • 2-17
Use of Program-Level Parameters ••••••••• 2-18
Run-Time Device and File Assignment ••••• 2-18
Default File Specifications ••••••••••••• 2-19
Run-Time Specification of Options ••••••• 2-19
Run-Time Command Interaction •••••••••••• 2-20
Standard Parameter-Reference-Names •••••• 2-20

Supervisor Call Routines ••••••••••••••••••• 2-21
System Dialogue and Workstation Use •••••••• 2-22
Error Handling ••••••••••••••••••••••••••••• 2-23

2.2 Documentation ••••••••••••••••••••••••••••••••• 2-25
Naming Conventions ••••••••••••••••••••••••• 2-25

Extemal Names in Code •••••••••••••••••• 2-25

CHAPTER 3

Names in System Data Structures ••••••••• 2-27
Macroinstruction Descriptions •••••••••••••• 2-28
Data Layouts and Descriptions •••••••••••••• 2-28
Supervisor Call (SVC) Routine

Descriptions •••••••••••••••••••••••••••• 2-29

SYSTEM DESCRIPTION 3-1

3.1 Virtual Memory ••••••••••••••••••••••••••••••••• 3-1
Relation of Virtual Memory to Physical

Memory • 3-1
Address Translation, Pages and Page

Faul ts • . • • . • • • • • . . • • • • • . • • • 3-2
User Program Efficiency and Paging •••••••••• 3-3

v

TABLE OF CONTENTS (cont'd)

3.2 Supervisory Functions •••••••••••••••••••••••••• 3-3
Task Scheduling and Timing •••••••••••••••••• 3-3
WAIT and SEND Primitives •••••••••••••••••••• 3-4
Intertask Message Primitives •••••••••••••••• 3-4
Supervisor Call Interruptions ••••••••••••••• 3-5
I/0 Initiation • 3-5
I /0 Interruptions • 3-5
Clock Interruptions • 3-6
Program Interruptions (Other Than Page

Faul ts) • . . • • . • . . . • . . . • . . 3-6
Program Normal Termination •••••••••••••••••• 3-6
Program Abnormal Termination •••••••••••••••• 3-6
Program Initiation •••••••••••••••••••••••••• 3-7
Microcode Loading ••••••••••••••••••••••••••• 3-7
Logof f • . . . • • • . • • • . . • • • . . • • • • • • • • • • • • . • • • • • • • 3-8

3.3 Data Management Functions •••••••••••••••••••••• 3-8
Top Level Data Management Function

Support . 3-9
Data Management Support SVC's ••••••••••••••• 3-9

XIO • 3-9
ALEX • 3-9
CHECK • 3-9

3.4 Disk Storage Description •••••••••••••••••••••• 3-10

CHAPTER 4

4.1

Volume Label • 3-10
Extent Organization •••••••••••••••••••••••• 3-10
Volume Table of Contents ••••••••••••••••••• 3-11

SYSTEM MACROINSTRUCTIONS ••••••••••••••••••••••• 4-1

Macroinstructions Available •••••••••••••••••••• 4-1
Allocate Extent (ALEX) •••••••••••••••••••••• 4-3
Generate Alternate Index Descriptor Block

(AXDGEN) • 4-4
Generate a Buffer Pool Control Table

(BCTGEN) •••••••••••••••••••••••••••••••••
Call a Subroutine (CALL) ••••••••••••••••••••
Cancel (CANCEL) •••••••••••••••••••••••••••••
Cancel Exit (CEXIT) •••••••••••••••••••••••••
Check For Event Occurrence (CHECK)
Close File (CLOSE) •••••••••••••••••••••••••
Create Intertask Message Port (CREATE)
Return CEXIT 'RETURN' Information (CXT)
Delete Record From Indexed File (DELETE) •••
Destroy Intertask Message Port (DESTROY) •••
Dismount Disk or Tape Volume (DISMOUNT) ••••
Extract Data From System Control Blocks

(EX'l'R.ACT) •
Generate Selected Parameter Group Control

List Fields (FMTLIST) ••••••••••••••••••·
Free Buff er Space (FREEBUF) ••••••••••••••••
Deallocate Heap Storage (FREEHEAP) •••••••••

vi

4-6
4-7
4-8
4-9

4-12
4-16
4-17
4-18
4-19
4-21
4-22

4-24

4-33
4-35
4-36

TABLE OF CONTENTS (cont'd)

Get Buffer Space (GETBUF) .•••.••••••••••••• 4-38
Allocate Heap Storage (GETHEAP) ••••••.••••• 4-39
Get Parameters (GETPARM) ••••••••••••••••••• 4-42
Halt I/0 Operation (HALTIO)•..•..•.••.• 4-45
Generate Parameter Group Control List

(KEYL I ST) • • • • • • • • • . • 4-4 7
L.ink To Another Program or Subprogram

(LINK) • 4-52
Supply Program Parameters (LINKPARM) .•.•..• 4-55
Log Off Interactive Terminal (LOGOFF) • • • • • • 4-60
Mount Disk or Tape Volume (MOUNT) •••••••••• 4-61
Generate Display Message (MSGLIST)•.•• 4-65
Open a File (OPEN) •..••.•••••••.••••••••••• 4-66
Modify Program Exception Exit Status

(PCEXIT) • • . . • . • • . • • . • . • . . . • • • • . . • . 4-68
Protect a Disk File (PROTECT) •••••••••••••• 4-70
Supply Program Parameters (PUTPARM) •••••••• 4-73
Read a Record (READ) ••••••••••••••••••••••• 4-75
Read File Descriptor Record(s) (READFDR) ••• 4-79
Read Volume Table of Contents (READVTOC) ••• 4-82
Register Equation (REGS) ••••.•..•••••.••••• 4-86
Rename a Disk File (RENAME) •••••••••••••••• 4-87
Remove Timer Interval (RESETIME) ••••••••••• 4-90
Return to Invoker (RETURN) ••••••••••••••••. 4-91
Rewrite a Record (REWRITE) ••••••••••••••••• 4-92
Scratch a File (SCRATCH) ••••••••••••••••••• 4-94
Set Task-Related Defaults (SET) •••.•••••••• 4-97
Set Interval Timer (SETIME) ••••••••••••••• 4-102
Start File Processing in Specified Mode or

at Specified Record Location (START) •• 4-103
Submit Job or Print Request .•••••••••••••• 4-111
Set Telecommunications Stream Options

(TCOPTION) •.•••••...•••.•••••••••••••• 4-119
Get Date and Time (TIME) •••.•••••••••••••• 4-122
Generate a User File Block (UFBGEN) ••••••• 4-123
Write a Record (WRITE) ••••••••••.••••••.•• 4-134
Execute Physical I/O (XIO) •.••••.••••.•.•• 4-136
Transmit Intertask Message (XMIT) ••••••••• 4-141

CHAPTER 5 CONTROL BLOCKS • • • • • • • • • • • . • • • • • . • . • • • • • • • • • • • • • • 5-1

5 .1 Introduction . 5-1
AXDl (Alternate Index Descriptor Block) ••••• 5-2
BCE (Buffer Control Entries) •••••••••••••••• S-5
BCTBL (Buffer Control Table) •••••••••.•••••• 5-6
EXTRD (Result Area of 'Extract' SVC) •••••••• 5-7
FDRl (File Descriptor Record) •••••••••••••• S-17
FDR2 (Additional Extents for a File) ••••••• S-20
!ORE (I/O Request Element) •.••••••••••••••• S-21
OFB (Open File Block) ••.•••.•••••.••••••••• 5-23

vii

TABLE OF CONTENl'S (cont'd)

TPLAB (Magnetic Tape File Header, Trailer,
and End-of-Volume Labels) • • • • • • • • • • • • • • • 5-25

TPLB2 (Magnetic Tape Secondary Header,
Trailer and End-of-Volume Labels) ••••••• 5-26

UFB (User File Block) •••••••••••••••••••••• 5-27
VOLl (Standard Volume Label for Disk or

Magnetic Tape) • 5-40

CHAPTER 6 SUPERVISOR CALLS ••••••••••••••••••••••••••••••• 6-1

6.1 Introduction ••••••••••••••••••••••••••••••••••• 6-1
Open File (OPEN) • 6-3
Close File (CLOSE) • 6-8
Get Date and Time (TIME) ••••••••••••••••••• 6-10
Execute Physical 1/0 (XIO) • • • • • • • • • • • • • • • • • 6-11
Link to Another Program (LINK) ••••••••••••• 6-15
Get Buffer Space (GETBUF) •••••••••••••••••• 6-18
Free Buffer Space (FREEBUF) •••••••••••••••• 6-19
Halt I/0 Operation (HALTIO) •••••••••••••••• 6-20
Allocate Additional Extent (ALEX) •••••••••• 6-21
Return from Program Entered by Link

(tJNLINK) • 6-22
Cancel Program (CANCEL) • 6-23
Check for Event Occurrence (CHECK) ••••••••• 6-25
Read Volume Table of Contents Block

(READV'l'OC) • 6-29
Request Parameters (GETPARM) •• ~ • • • • • • • • • • • • 6-33
Read File Descriptor Record (RBADFDR) •••••• 6-46
Rename Disk File (RENAME) •••••••••••••••••• 6-48
Scratch Disk File (SCRATCH) •••••••••••••••• 6-50
Extract Data from System Control Blocks

(BX'l'R,ACT) • 6-5 2
Mount Disk or Tape Volume (MOUNT) •••••••••• 6-57
Modify Program Exception Exit Status

(PCEXIT) • • • . • . • . • 6-60
Set or Reset Timing Interval

(SETIME/RESBTIME) ••••••••••••••••••••••• 6-62
Supply Program Parameters (PUTPARM) •••••••• 6-63
Set Task-Related Defaults (SET) •••••••••••• 6-68
Transmit Intertask Message (XMIT) •••••••••• 6-69
Create Intertask Message (CREATE) •••••••••• 6-70
Destroy Intertask Message Buffer

(DESTR.OY) • 6-71
Set Cancel Exit Options (CEXIT) • • • • • • • • • • • • 6-72
Dismount Disk or Tape Volume (DISMOUNT) •••• 6-73
Protect File or Library (PROTECT) •••••••••• 6-74
Log Off Interactive Terminal (LOGOFF) •••••• 6-76
Submit Job or Print Request (SUBMIT) ••••••• 6-77
Allocate Heap Storage (GETHEAP) •••••••••••• 6-79
Deallocate Heap Storage (FREEHEAP) ••••••••• 6-81

viii

TABLE OF CONTENTS (cont'd)

CHAPTER 7 DATA MANAGEMENT SYSTEM SERVICES •••••••••••••••• 7-1

7 .1 Introduction • 7-1
7. 2 VS Disk Files • 7-2

Record Access Method (RAM) - Disk Files ••••• 7-3
File Organization Definitions •••••••••••• 7-6
Consecutive Disk File Fixed-Length

Records (Blocked) •••••••••••••••••••• 7-6
Indexed Disk File Fixed-Length Records

(Blocked) • 7-6
Consecutive Disk File Variable-Length

Records (Blocked) •••••••••••••••••••• 7-7
Compression Option •••.••••••••••••••••••• 7-8
Indexed Files with Variable-Length

Records •••••••••••••••••••••••••••••• 7-8
Function-Requests and Function-Request

Modifiers {RAM) • 7-8
Read File Status with UFBEODAD

Retuni . 7-9
Write •••••••••••••••••••••••••••••••••••• 7-9
Rewrite • • . • • . • • • • • • • • • 7-1 O
Delete . • • . . 7-10
Start ••••••••••••••••••••••••••••••••••• 7-10
Start Function UFBEODAD Returns ••••••••• 7-11
Notes for Record Access Method (RAM) •••• 7-11

Block Access Method (BAM) - Disk Files ••••• 7-12
Function-Requests and Function-Request

Modifiers (BAM) ••••••••••••••••••••• 7-13
Read Modifiers •••••••••••••••••••••••••• 7-13
Read File Status Using UFBEODAD Return •• 7-13
Notes for Block Access Method (BAM) ••••• 7-14

Physical Access Method (PAM) Disk Files •••• 7-15
Function-Requests and Function-Request

Modifiers (PAM) ••••••••••••••••••••• 7-16
Notes for Physical Access Method (PAM) •• 7-17

Notes on 2200VS Disk Files • • • • • • • • • • • • • • • • • 7-17
Notes on File Organization •••••••••••••• 7-20

7.3 2200VS Indexed File Support ••••••••••••••••••• 7-21
Indexed File Creation •••••••••••••••••••••• 7-21
Accessing an Existing Indexed File ••••••••• 7-22
Buffer Options for Indexed Files ••••••••••• 7-23
Indexed File Structure ••••••••••••••••••••• 7-24
Functional Overview of Alternate Indexed

File Support •••••••••••••••••••••••••••• 7-25
Introduction •••••••••••••••••••••••••••• 7-25
New Fields for DMS Functions

(UFB and AXDl) • 7-2 5
DMS Functions • . • • • • • 7-26

READ ·Function • 7-26
WRITE Function • 7-27
REWRITE Function • • • • • • . • • • • • • • • • • • • • • • • • 7-27
DELETE Function••••••••••••••••••••••••• 7-27

ix

TABLE OF CONTENI'S (cont'd)

START Function•••••••••••••••••••••••••• 7-27
OPEN Function - Existing File •••••.••••• 7-28
OtrrPUT Mode File Attribute

Specification ••••••••••••••••••••••• 7-28
Alternate File Error Log (Otn"PUT Mode) ••••• 7-28
Using the Error Log to Correct Errors •••••• 7-29
Overview of Indexed and Alternate Indexed

File Structures • • . • • • • . • • • • • • • • • • • • • • • • • 7-29
Indexed Files ••••••••••••••••••••••••••• 7-29
Alternate Indexed Files ••••••••••••••••• 7-30

Internal Representation of Low-Level of
Primary-Tree (Data Records Within Data
Blocks) • • • . . • • • • . 7-30

Initial Implementation Notes ••••••••••••••• 7-31
Internal DMS Record Formats for Alternate

Indexed Files ••••••••••••••••••••••••••• 7-31
SVC OPEN - Existing Alternate Indexed

File•••••••••••••••••••••••••••••••••••• 7-32
7 .4 SHARED Mode • 7-33

Log Files •••••••••••••••••••••••••••••••••• 7-36
Log File Special Features •••••••••••••••••• 7-37
Read-Only Access in SHARED Mode •••••••••••• 7-37
Advanced Sharing (Multiple Resources) •••••• 7-37
General Notes •••••••••••••••••••••••••••••• 7-41
Detailed Functional Overview - SHARED Mode •• 7-42
Summary of START Functions ••••••••••••••••• 7-44
UFB Field Updates •••••••••••••••••••••••••• 7-44

7.5 DMS Function-Requests ••••••••••••••••••••••••• 7-46
DMS Function-Request Entry ••••••••••••••••• 7-46
DMS Function-Request Return •••••••••••••••• 7-48

7.6 Printer Support ••••••••••••••••••••••••••••••• 7-49
Write Function-Request (OUTPUT) • • • • • • • • • • • • 7-50

7.7 Workstation Support ••••••••••••••••••••••••••• 7-51
Read Function-Request (I/0) •••••••••••••••• 7-52
Rewrite Function-Request (I/O) ••••••••••••• 7-53
Start Function-Request (I/O) • • • • • • • • • • • • • • • 7-54

7.8 Magnetic Tape Support ••••••••••••••••••••••••• 7-54
Mount/Dismount a Tape •••••••••••••••••••••• 7-55
Initialize a Tape Volume ••••••••••••••••••• 7-56
Open a Tape File ••••••••••••••••••••••••••• 7-56
READ Function - Request •••••••••••••••••••• 7-61
WRITE Function - Request ••••••••••••••••••• 7-62
START Function - Request ••••••••••••••••••• 7-62
Close Tape File •••••••••••••••••••••••••••• 7-63
Multiple-Volume Tape File •••••••••••••••••• 7-63

To Read a Multiple-Volume Tape File
(INPUT mode) • 7-63

To Create a Multiple-Volume Tape File
(OU'I'PUT mode) • 7-64

7-Track Tape Support ••••••••••••••••••••••• 7-64

x

TABLE OF CONI'ENTS (cont'd)

7.9 Physical Access Method Functions •••••••••••••• 7-65
UFB Field Definitions for Physical

APPENDICES

Access Method • • • • • • . • 7-65
Read Block Function-Request

(INPUT or I/0) • 7-66
Rewrite Block Function-Request (I/0) ••••••• 7-66
Start Function-Request (INPur, I/O, or

OlJ'l'Ptrr) • 7 -6 7
Write Block Function-Request (OUTPUT) •••••• 7-68

Appendix A - Data Area Macroinstruction Format ••••••• A-1
Appendix B - User Programs in The Wang 2200VS •••••••• B-1

The Program • B-1
The Program Skeleton ••.••••••••••••••••••••• B-1
The Run Block • B-3
'Static' Block •••••••••••••••••••••••••••••• B-5
The Symbolic Block • B-9
The Symbolic Sections •••••••••••••••••••••• B-10
Statement Number Subblock •••••••••••••••••• B-13
Dataname Subblock •••••••••••••••••••••••••• B-15
The Linkage Block •••••••••••••••••••••••••• B-21
Code and 'Static' Section Blocks in the

Linkage Area • B-22
Relocation Reference Block ••••••••••••••••• B-24
Translator Processing •••••••••••••••••••••• B-26
Linker Processing •••••••••••••••••••••••••• B-27
Run Processing ••••••••••••••••••••••••••••• B-28

Appendix C - Data Management System Messages ••••••••• C-1
SVC OPEN Cancel Messages•••••••••••••••••••• C-2
SVC OPEN Respecify Messages ••••••••••••••••• C-4
DMS Function-Request Cancel Messages •••••••• C-8
SVC CLOSE Cancel Messages •••••••••••••••••• C-10
File Status Codes for DMS and ADMS ••••••••• C-11

DOCUMENT HISTORY

'Ille First Edition ••••••••••••••••••••••••••••••••••• DH-1
lbe Second Edition •••••••••••••••••••••••••••••••••• DH-3
Addendum to the Second Edition •••••••••••••••••••••• DH-4

INDEX • Index-1

xi

CHAPTER 1: INTRODUCTION

The Wang VS Virtual Memory Operating System is intended as a
low-overhead multiprogramming system for a medium-sized business
machine configuration. As such, the design emphasis is on small
size and simplicity of operation. This is apparent in many of
the system's components: a simple scheduler, conventional I/0
system, limited segmentation and memory protection capability,
etc. On the other hand, facilities such as ANSI COBOL (1974) ,
indexed file support, hierarchical file directory structures, and
a large address space supported by an efficient paging mechanism
make the system competitive with many larger computers.

The programmer should understand what the various system
components are, how they interface with his program, what the
(virtual) memory is used for and how it is partitioned for
various purposes, and what certain operating system data
structures (control blocks) contain. The purpose of this
document is to provide this information.

Figures 1-1, 1-2, and 1-3 which follow are overall views of
virtual memory and of the operating system's control block
structure, and are provided for reference while reading the text
of the document.

1-1

Segment 0 (SYSTEM SEGMENT - PROTECTED FROM USER MODIFICATION
- ADDRESSABLE FROM ALL TASKS)

0 I Fixed low storage
I (Old and new PCWs, IOCAs, IOSW, system work
I area)
I- -
I Directly addressable system area (to byte
I 4096), code and control blocks

Additional resident system code and control
blocks (variable)

End resident --> -
area System Free storage pool, allocatable by

GETMEM (ends on full page boundary)
End sometimes --> -
resident area

Less than
256K

256K

System transient (paged)
code and data

--> -
Unused and unaddressable pages

-->

Figure 1-1. Virtual Memory Map - Segment 0 (System Segment)

1-2

Segment 1

1024K+O

1024K+4

1024K+8

024K+8n+8

(USER REENTRANT PROGRAM SEGMENT - PROTECTED FROM
USER MODIFICATION - ADDRESSABLE FROM ONE OR MORE
TASKS)

I Length of program text area (8*n)
I- - - - - - - - - - - - - - - - - - -
I Entry point address
I- -
I Program text area (n doublewords)
I- -
I Length of 'static' initial values block
I (4 bytes)
I- -

Run-time length of total 'static' areas (4
bytes)

Reserved (0) (4 bytes)

Reserved (0) (4 bytes)

Static initial values block (variable)

Symbolic block (variable)

Linkage block (variable)
No more than -->
1024K+512K

Figure 1-2. Virtual Memory Map-Segment 1 (User Program Segment)

1-3

Segment 2 (USER MODIFIABLE SEGMENT
- ADDRESSABLE FROM ONE TASK)

NOT PROTECTED

2048K I File buffer area (initially no space
I reserved - stack limit increased by full
I pages to acquire space)

2048K+2aK
(stack limit)

--> I- - - - - - - - - - - - - - -
I Unused stack space (contents unreliable to a
I user program)

Stack top
pointer varies

--> I- - - - - - - - - - - - - - - -

Register R14 -->
contains this
address on
program entry

No more than -->
2048K+512K

I Stack (grows downward - toward 2048K - may
I not pass stack limit)
I- - - - - - - - - - - - - - - -
I Static areas (some of which may be
I initialized),_ as addressed by user's program
I through RCONs and register 14
I- -
I Preceding (LINKed-from) program invocations'
I stack and static areas
I- -
I A few words which should not be modified by
I a user's program (task-related system
I information)

Figure 1-3. Virtual Memory Map-Segment 2(User Modifiable Segment)

1-4

CHAPTER 2: STANDARDS

2.1 PROGRAMMING

This section describes conventions which must be followed in
writing code for the system in order to insure its successful
execution and maintainability.

2.1.1 User Programs

These include system utilities which do not require special
privileges, and data management routines which execute in an
environment similar to that of normal user programs. Programmers
writing entirely in a higher-level language (e.g •• COBOL) need
not learn all the details of these conventions, but should be
aware of the standards for use of the workstation.

2.1.1.1 Constraints on Code and Data

For the following discussion, these definitions will be used:

Program - An entity either invoked by the command processor or by
a LINK. This may be composed of several modules.

Object Program - The representation of a program on the disk
after being processed by a compiler or linker.

Module - An individual assembled or compiled portion of a
program. A program consists of one or more modules.

'Static' Area - This is the special area that has the property of
appearing to be statically assigned space to a program using it.
This space is allocated on a program basis and released on the
same basis. The system will pre-initialize this area for the
program with initial values specified in the object program.

2-1

2.1.1.1.1 The Reentrant Program Segment

User programs in segment one will be reentrant (may not modify
themselves). All programs activated by the RUN command on the
LINK SVC routine will be entered at the address specified in
virtual location 1024K+4 (segment one, page zero, displacement
four). Programs of up to 512K (K=1024) bytes (the full segment
one) can be supported. The reentrancy requirement suggests the
necessity of a separate modifiable area for variable data items,
and the necessity of dynamically initializing variables in this
modifiable area. This modifiable area is discussed in the
following paragraphs. The only other constraints on a user
program are that it must follow the standard conventions for
making requests of the supervisor, transferring control between
and within programs, and accepting and passing parameters. These
conventions are described elsewhere in this document.

2.1.1.1.2 The Modifiable Segment

Al though more than one user of the system may be sharing the code
of the same program, each has a separate modifiable area. This
area is organized as a single linear pushdown list (stack) which
is entirely within segment 2 of the user program' s virtual
address space and which extends to address 2048K+n (n < 512K).
The stack base (bottom-of-stack) is 2048K+n+l. The stack limit
(lowest allowed stack location, addressed by control register 2)
is 2048K plus a varying amount (between 0 and 128K) reserved for
I/0 buffers and other unprotected, 'heap'-allocated data areas.
The stack grows downward. (See the VS Principles of Operation,
Stack Oriented Instructions.) Proceeding downward, we have, on
entry to a program:

(1) An unspecified number of bytes of system information,
which should not be modified by the user program.

(2) An unspecified amount of information used by 'UNLINK'
during final return from the program.

(3) 'Static' data areas as defined in the object format of
the program to be initiated (see below) •

(4) A save area containing register contents and a return
point for final return from the program by means of the
'RETURN' macroinstruction or 'RTC 15'.

NOTE:

The 'stack base' is defined to be the next
byte above (1).

2-2

Thus there may be many bytes of information on the stack when the
user program is entered. Before the program uses any of the
modifiable area other than the part containing this information,
it must use one of the PUSH-type instructions to decrement
general register 15 and thereby acquire additional space (this
space being "pushed onto the stack"). Modifiable data items
which are not to be treated in a stack-oriented manner should
normally have space reserved for them at compilation time {by
defining them in a 'static' area) or immediately on program
initiation (either by pushing their initial values onto the stack
or by reserving space with the PUSHN instruction) , so that the
rest of the stack may be used for stack-oriented data.

2.1.1.1.3 Creation of 'Static' Areas

The system supports a method for obtaining initialized or
uninitialized 'static' memory on the stack. This support is
invoked every time a new program is invoked by the RUN command or
by a LINK, and not at any other time. Basically the support will
assign an area of memory on the stack as the 'static' area. The
size of the assigned area is determined by the size requested in
the object module. Locations in this area that are to have
initial values will then have them copied from the initial value
section of the program's object module. Note that this
allocation and initialization of memory will take place only when
the program is started by the command processor or when the
program is invoked by LINK. This means that program CALLs within
the object program will not cause memory to be allocated or
initialized.

When a program is initiated, either by the RUN command or LINK,
register 14 will point to the lowest address of that object
module's 'static' areas. Each program is expected to refer to
particular 'static' areas through the following convention:

A special type of address constant (RCON) may be written in a
program, naming a 'static' area, which is resolved to the
displacement of that 'static' area from the address passed to the
program in register 14. Thus the program can add the value in
such an address constant to the contents of register 14 and then
use the result to address a 'static' area.

When a LINK is performed, the issuer's 'static' areas are not
changed. When the issuing program is returned,its initialized
'static' area contents are still available. The LINKed-to
program, if it has a request in the object module for a 'static'
area, will receive a fresh area on the stack. This area will
remain for the LINKed-to program until it returns to the program
which issued the LINK. Addresses of locations in the LINK
issuer's 'static' areas will not be passed to programs invoked by
LINK except as the program itself passes such an address. If
LINK issuer wants, it can pass addresses in any of its 'static'
areas, but a LINKed-to program cannot either pass back
information in its 'static' areas or expect that values placed in
its 'static' areas will be maintained between its invocations by
LINK.

2-3

This system requires support on each of three levels:

(1) Compile or assemble time

(2) Linker (linkage editor) time (if binding is required)

(3) Program start-up time (either LINK or the RUN command
initiating the program).

The support required at each step is:

Compile Time

The compiler or assembler has the responsibility to supply
in the object program all information necessary to support
this feature. To do this, the compiler will have to
segment the program information and the data that is to be
in a 'static' area. If the program is to be runable
without having to bind (linkage edit), all references to
addresses in 'static' areas will have to be specified as
displacements into the block of 'static' areas for this
object program.

When data is to be used from the 'static' area, the program
will load a register with the value in the address constant
which contains the displacement of the desired data, and
will add the contents of register 14 to this value.

Binding Time

The linker (linkage editor) will collect the 'static' data
sections from all the subprograms. If two or more
subprograms have static sections with the same name, the
initial values from the first of these sections will be
used and the length of the resulting section will be the
length of the longest of these sections.

Program Start-up Time

lbe same mechanism will be used with programs started by
the command language and programs invoked by LINK. The
mechanism will perform the services only at the time of the
program invocation and not at any subsequent internal CALLs
or program RETIJRNs.

At program start-up time, the system will:

a. Push onto the stack an area equal to the total size of
'static' sections as defined in the object program.

2-4

b. Copy values from the object program to the correct
locations in each new 'static' section. This is not a
simple move loop. The data is stored in the object
program in a compressed format. It has values only for
the areas that need initial values. Each initial value
in the object program has with it a displacement into
the whole block of 'static' sections.

c. Set register 14 to address the first byte of this area.

d. Perform additional program invocation processing.

2.1.1.1.4 Address Constants

There are three types of address constants permitted in a
program: A, V and R type.

The A type is used for addresses of items within the same
compilation or assembly. These may be the labels of instructions
or constants, or may be addresses relative to either of these.
Type A constants may be only in a program and refer to the
program itself. Some examples are:

L
B

DC
DC

A(L)
A(L+2)

ADDRESS OF ITSELF
ADDRESS RELATIVE TO 'L'

The V type of address constant can be used to ref er to locations
known only by their external names. These names are normally in
code areas or 'static' areas provided by another assembly or
compilation.

Both these types (A and V) can be used in the code area (segment
1) to point to other code areas, but cannot be in the code area'
(segment 1) pointing to a 'static' area. (This restriction is
caused by the constraint that no location in segment 1 can be set
to a value differing from that on the program file from which it
will be paged. lbe starting address of a 'static' area is
unknown until the program starts running. For the address to be
relocated in the program, it would involve modifying locations in
the code area.) The system will, however, support address
constants in the 'static' area that reference locations in either
a code area or in other 'static' areas.

2-5

Example:

A CODE

B
c

DC
DC
ENTRY

D CODE

E

F

DC

STATIC
DC
DC
DC

G · STATIC

F'l23'
A(B)
B

A(B)

A(B)
A(F)
A(G2)

Gl DS F
G2 DS 3F

ENI'RY G2

Name of code area (external name)

Refer to location in same code area
Makes B an external name

Refer to location in another code area

Name of 'static' area (external name)
Refer to location in a code area
Refer to location in this 'static' area
Refer to location in another 'static' area

Name of 'static' area (external name)

Makes G2 an external name

END End of this assembly

H CODE

I STATIC
DC
DC
DC

END

V(F)
V(G2)
V(B)

Refer to a 'static' area in another assembly
Refer to a location in such a 'static' area
Ref er to a location in a code area of
another assembly

End of this assembly

2-6

'llle R type address constant is used by the program to locate
'static' areas. Because the program does not know the starting
address of a 'static' area either when the program is compiled or
linked, a method is needed to calculate the absolute address of a
'static' area (or of a location within a 'static' area) using a
relative address in the program. When the program is initiated,
register 14 will have the absolute address of the start of the
block of static areas. Each R type address constant will contain
the displacement into the whole block of 'static' areas (created
by program initiation or LINK) of the named 'static' area or
location within a 'static' area. The program will add the
displacement in the R type address constant to the value in
register 14. This will give the address of the item.

PROGR CODE

*

RDATA

DATA
DATA ITEM

LR
AL

USING

DC

STATIC
DC
END

INSTRUCTIONS TO ADDRESS A I STATIC I AREA
R2,R14 STATIC BASE
R2 ,RDATA PLUS STATIC AREA DISPLACEMENT

DATA,R2

R(DATA)

F'S'

2-7

GIVES ACTUAL ADDRESS OF
'STATIC' AREA

DISPLACEMENT OF
SECTION I DATA I

'STATIC'

A more thorough example of assembler language source coding
utilizing a 'static' area follows:

PROG

*

*
*
*
*

*
STl

*
DATl

*
PROG
ADDWORD
CONT

RCON

*
*

REGS
CODE
BALR
USING

L
L

LR
AL
USING
ST
SR
RTC

STATIC

DS
DS

CODE
DC
DC

DC

END

R3,0
*,R3

Rl,ADDWORD
R2 ,O(Rl)

R2,R14
R2,RCON
ST1,R2
R3,DAT1
RO,RO
15

8F
F

A(CONT)
F'l23'

R(STl)

,EQUATE REGISTERS
START A'CODE SECTION
GET ADDRESSABILITY

GET ADDRESS OF CONSTANT
GET CONSTANT

FOLLOWING CODE USED TO
ADDRESS A 'STATIC' AREA

STATIC AREAS BASE
ADDRESS AREA I STl I

STORE CONSTANT IN 'STATIC' AREA
SET RETURN CODE TO ZERO
RETURN TO CALLER

ESTABLISH 'STATIC' AREA NAMED
'STl'

RESUME THE CODE SECTION
ADDRESS OF DATA CONSTANT

DISPLACEMENT OF STATIC AREA
'STl' WITHIN BLOCK OF ALLOCATED
STATIC AREAS

2-8

2.1.1.1.5 Using The Assembler for 2200VS Object Code

While the 2200VS Assembler language is closely modeled after the
IBM 360/370 Assembler language, there are some important
differences, the most obvious of which is the addition of several
instructions and the dropping of others. 'There are a few items
that have changed in the conventions beyond the instructions.

To assemble a program, the following conventions are to be
observed:

1. The first statement in a program should be a CODE
statement. This will cause the text following it to be
part of the reentrant program section named by the CODE
statement. The CODE statement can be used the same as
the IBM 360 assembler CSECT statement. The CSECT
statement is not used on this system.

2. If a static area is desired, the STATIC statement
should be used. The assembler allows any number of
these statements and will allow initial values to be
specified.

Rules for pseudo-instructions unique to the 2200VS are:

1. label CODE Not used; should be blank

The label is required and must be a maximum of eight
characters. It will be used as the external name of
this reentrant program section. Note: ENI'RY symbols
in CODE or STATIC sections also are limited to eight
characters.

2. label STATIC Not used; should be blank

The label is required and must be a maximum of eight
characters. It will be used as the external name of
this 'static' section.

2.1.1.2 Transfer of Control

The modifiable area is also used in the course of transferring
control between routines and programs in three ways:

(1) The BAL, BALR, BALCI, BALS or JSCI instructions may be
used within a program to save a return point in a
register or on the stack and enter a subroutine. The
BC, BCR, BCS or RTC instructions are used to return.

2-9

(2) The SVC instruction is used to request services from
the supervisor, and save the general registers on the
stack before initiating the service routine. When the
supervisory service has been performed, return to the
user's program is effected by executing an SVCX
instruction (in the supervisor). The user's program is
concerned with nothing more than placing the address of
required arguments (or occasionally the arguments
themselves) on the top of the stack and issuing the SVC
instruction. Routines entered by SVC instruction
normally remove their input arguments and leave outputs
on the top of the stack. Programmers interested in the
details of the resulting stack manipulations may
consult Figures 2-2 and 2-3. Figure 2-1 shows the
associated register conventions which a user program
must respect.

(3) The JSCI instruction is used to initiate a transfer of
control between subprograms which have been bound
together into a single program by the linker program.
(Transfer of control between subprograms not bound
together may be effected by LINK, as in (4) below.)
The macroinstruction which generates the JSCI
instruction is referred to as •CALL' • Figure 2-4 shows
the sequence of instructions (available as a
macroinstruction) which is used to effect this transfer
of control, and the resulting items pushed onto the
stack.

(4) The LINK SVC is used to initiate a transfer of control
between programs not bound together by the linker
program. The LINKed-to program should return to the
issuer by means of the same RETIJRN sequence (also in
Figure 2-4) used in conjunction with CALL. lhe user
should note that LINK will result in stack
modifications which do not occur with CALL. See
section 2.1.1.1.3, 'Creation of Static Areas', for a
discussion of this.

2-10

Registers

SP=15
R14=14
R13=13}

}
}
}
}

RO=O }

Note 1.

Stack top pointer RESERVED (see Note 1)
General (used to address 'static' areas)

General use
(Rl is argument list pointer for use with CALL or
LINK, by convention)

Register 15 (SP) must always address the lowest
location on the stack which contains usable data or
into which data may be placed by any non-PUSH-type
instructions. This constraint is imposed on all
programs.

Figure 2-1.

2-11

END ADDRESSABLE __.
SEGMENT 2

SET BY
'LINK'
ONLY

SAVE AREA
FOR 'LINK'

SAVE FOR
'LINK', 'CALL'

OR SVC {
----------- -

ONTROL REGISTER 1
(BACK CHAIN HEAD)

SAVE AREA J
FOR 'CALL' l

ADDRESS 2,097,152 ~

-

Figure 2.2.

PRECEDING
STACK
IN USE

SVC SAVE AREA
FOR 'LINK' SVC

'STATIC' AREA
FOR PROGRAM

Address of 'UNLINK' SVC

BACK CHAIN
REGISTERS 0-14

SAVE AREA

WORK AREA
PUSHED ONTO

STACK BY
PROGRAM

Address for Return

BA_c_k CHAIN

REGISTERS 0-14
SAVE AREA

WORK AREA
PUSHED ONTO

STACK BY
CALLED

SUBPROGRAM

1/0

BUFFER

AREA

(EXPANDS

UPWARD)

2-12

f.-

I

....... SP ON PROGRAM ENTRY

A~

.__ SP ON SUBROUTINE ENTRY

~ STACK TOP POINTER (SP)

,.__ STACK LIMIT POINTER
(CONTROL REGISTER 2)

ON PAGE BOUNDARY

Stack linkage item after SVC entry:

68 PCW (status)
64 PCW (retuni) with SVC number
60 Back chain to next outer-more SVC save area or CALL/LINK

save area
56 Reg 14 save
52 Reg 13 save
48 Reg 12 save
0-47 Regs 0-11 save

Entry to SVC: SVC (SVCIJ)

Exit from SVC: SVCX (Register)

Figure 2-3.

2-13

Stack linkage item after CALL:

64 Address of return point
60 Back chain to previous CALL/LINK save area

0-59 Regs 0-14 save

CALL: JSCI 15,=A(Entry-point)

RETURN: LA O,return-code
RTC 15 (if unconditional)

Note that the value of register 0 saved by JSCI is not restored
to the register by RTC.

Figure 2-4.

2-14

Linkage by: JSCI condition, indirect-word-address

Exit by: LA O,Return-code

*

Registers

RO

Rl

R14

SP

Other

(Control
register 1)

RTC Condition

I I
I BEFORE
I

I ON ENTRY
I

I I
I Irrelevant
I

IAs BEFORE
I

Argument list As BEFORE
pointer

'Static' base As BEFORE
pointer**

I
BEFORE EXITIAFI'ER RETURN

I
I

Irrelevant IReturn-code
I

Irrelevant As BEFORE*

Irrelevant As BEFORE*

Stack top Updated stack top Irrelevant As BEFORE*
I

Irrelevant As BEFORE

Previous save New save area
area pointer! pointer (same

I SP)
I

!Irrelevant As BEFORE*
I
I
IAs ON ENTRY As BEFORE

asl
I
I

Unless current save area is modified before return.

Not enforced by the system. Register 14 may be used for
other purposes by the user program if appropriate.

Figure 2-5.

2-15

Linkage by: SVC LINK

Exit by: LA O,Return-code
RTC Condition

I I I I
Registers I BEFORE I ON ENI'RY BEFORE EXIT AFTER RETURN!

RO

Rl

R14

SP

Other

(Control

I I
I I
I Irrelevant IAs BEFORE* Irrelevant Return-code
I I
Argument list IAs BEFORE Irrelevant As BEFORE
pointer I

I
'Static' base I New 'static' base Irrelevant As BEFORE
pointer***** pointer

Stack top (LINK Updated stack Irrelevant As
BEFORE**** parameters) top***

Irrelevant As BEFORE Irrelevant As BEFORE

New save area As ON ENTRY As BEFORE
, register 1)
I

Previous save
area pointer pointer (same as

SP)
I

* Program entry point address in register RO if LOADONLY
option specified.

*k-k New 'static' areas, UNLINK information, register save
area, retui:n address on stack.

But LINK parameters popped from stack (see SVC LINK
description).

Not enforced by the system.

Figure 2-5. (continued)

2-16

I
I
I
I
I
I
I
I
I

2.1.1.3 Supervisor Interface

As mentioned briefly above, the SVC instruction is used as the
normal interface between user programs and supervisory routines.
In addition to the effect of the supervisory service request
saving status information on the stack, as in Figure 2.3 above,
there are four points which the writer of SVC routines and of
system programs in user program mode should be aware of:

(1) The top word of the
list when the SVC
particular SVC are
long that passing
is infeasible.

stack should address an argument
is executed if the arguments for the
sufficiently many or sufficiently

them directly on the top of the stack

(2) Register 15 (SP) is generally the only
must contain useful information
instruction is executed.

register
when the

which
SVC

(3) Corresponding to most val id SVC numbers are
macroinstructions which may be used in assembly
language programming to generate the SVC and pass its
arguments. These macroinstructions are described in
Chapter 4 of this document.

(4) All registers except register 15 (SP) are restored on
return from an SVC routine. When an argument list is
provided, results may be returned in one of the
arguments. In order to do this, the argwnent list must
be in a user's modifiable data area or in the system
area (segments 2 or 0) • Otherwise results are returned
on the top of the stack, replacing all input arguments.

2.1.1.4 Standard Argument Lists for CALL or LINK

Communication between modular sections of programming is normally
effected through an argument list in standard format. Such a
list is constructed to pass parameters to a subprogram invoked by
the standard CALL sequence or LINK supervisor call.

'Ibe format is as follows:

I
I Address of Arg (1) 1 • Address of Arg (Last)
I
0 4

2-17

Arg(l) through Arg(Last) are four-byte address values pointing to
the locations of the actual arguments. The high-order bit of the
last four-byte area should be set to one to indicate the end of
the list. Exceptionally, the arguments themselves may be placed
in the list in place of their addresses. Register Rl is loaded
to address this list before control is passed to the receiving
routine. Before initially invoking a program, the program
initiator (command processor) will set register Rl to binary
zeroes to indicate that no parameter list is being passed to the
program.

Note that a user program may return result values in an argument
list only if it can be guaranteed that the argument list is in
the user's modifiable area.

2.1.1.5 Use of Program Level Parameters

System conventions for communication between the user's program
inter£ ace (i.e. , the command language) and the invoked programs
are not compatible with the use of standard argument lists. To
be runnable from the command language, programs must access all
run-time parameters using the GETPARM SVC. The GETPARM facility
is used to access run-time parameters in groups of
keyword-identified values which are interpreted as:

(1) Run-time device or file assignments,

(2) Batch oriented run-time option lists, or

(3) Interaction oriented program command data.

Programs which require a more flexible level of interaction than
that provided by GETPARM should access the user workstation using
the standard data management facilities.

Parameters requested using GETPARM are usually accessed through
direct interaction at the user workstation. Alteniatively, these
parameters can be prespecified within procedures using the
parameter specification statement. In addition, the PUTPARM
macroinstruction is available to allow a program to supply
parameters which are then available through GETPARM to the next
subprogram LINKed to by this program.

2.1.1.s.1 Run-Time Device and File Assigrunent

Parameter groups solicited by the OPEN routine are used to assign
actual devices or files to the internal filenames used within
programs for data transfer. All action related to device/file
allocation, file lookup, and control block generation is
performed by OPEN. OPEN uses a number of parameters which must
be specified by the union of information supplied in the User
File Block (the only explicit OPEN parameter) and the information
obtained using GETPARM. The User File Block is compiled into the
user's program.

2-18

Some of these parameters are suppliable only in the User File
Block (UFB). The other parameters are solicited using the
GETPARM facility with all solicited parameters defaultable to
values which can be supplied in the UFB. GETPARM enables the
user (or the command language) to modify the default values
specified; thus the GETPARM supplied values override UFB
information.

2.1.1.5.2 Default File Specifications

Default information for the specification of actual files at
run-time can be placed in the UFB anytime before a file is
OPENed. This facility should be used to minimize the amount of
information which must be acquired from the user. Information
which can be defaulted includes File Location Information and
File Size.

The disk space requirements of all output files (including
'print' files) should be specified in the UFB if possible. In
general, the size of an output file is related in some manner to
the size of an input file. Input file size is available in the
UFB for any OPEN input file located on a disk device. Thus, when
input files can be OPENed first, this size information may be
used to calculate default space requirements to be placed in the
output file UFB.

All information necessary to specify work files should be
presupplied in the UFB or elsewhere. Space requirements may be
developed in the manner described for output files. File
location information, consisting of a filename and a volume
designation, should be developed as follows. The volume location
of the work files can be left blank in the UFB, to be supplied in
the ETCB by means of a command language ' SET' command. The
library name for work files is ignored in the UFB before OPEN.
It is set to a special user work library (associated with the
logged-on user) by OPEN processing. Til.e default actual filename
should be formed by using characters 'fl' or 'IUJ' as a prefix to a
maximum four-character name which is unique to the program. OPEN
will place after the supplied name a four-character suffix
sufficient to guarantee temporary uniqueness. Work files whose
names begin with 'II' are scratched when closed. Those whose
names begin with '##' are retained until run termination.

2.1.1.5.3 Run-Time Specification of Options

Batch oriented lists of run-time options should be solicited
directly by the programs using the GETPARM facility. By
convention, the parameter-reference-name OPTIONS should be used
to identify this type of parameter group. Also by convention,
users of this facility are asked to specify reasonable defaults
for all keywords specified.

2-19

2.1.1.5.4 Run-Time Conunand Interaction

Programs which are inherently interactive may be able to use
GETPARM to solicit user directives and associated parameters.
Each format presented to the user must be labeled with a
parameter-reference-name. The programs using this facility can
be invoked and directed from procedures.

2.1.1.5.5 Standard Parameter-Reference-Names

Tile parameter-reference-names (PRNAMBs) used to identify file
specifications and other parameter groups solicited through
GETPARM should be chosen to assist the user in easy
identification of parameter function. Within groups of related
programs, naming conventions should be established to enhance
recognition and predictability.

Standard PRNAMEs will be assigned for system utility programs and
compilers. The PRNAMEs which have been assigned to date are the
following:

INPUT

INPUTl -INPUT (n)

OUTPUT

LIBRARY

WORK

WORKl -WORK (n)

OPTIONS

DISPLAY

PRINT

- The basic input file (if only one).

- Multiple input files
equivalent purposes.

- The basic output file.

used

- A library used for input purposes.

for

- An I/0 file used for temporary storage
(if only one).

- I/O files used for temporary storage.

- The batch oriented option list used to
define run-time parameters.

- The user's workstation.

- An output file containing data to be
printed.

2-20

2.1.2 Supervisor Call Routines

Routines are entered by SVC instructions to accomplish functions
which require:

Modification of the system area of memory, which is
normally protected from the user, or

Execution of privileged instructions, or

Intimate knowledge of
organization,

the operating system's

and which are not accomplished by non-supervisor-call coding in
dedicated system tasks such as the paging task. Among these
functions are:

Initiation of physical I/O requests.

Opening and closing files, including allocation and
construction of Open File Blocks.

Synchronizing tasks through semaphores.

Performing service functions for
supervisor call routines (such as
area memory space for control blocks).

use by other
allocating system

The system programmer should note that the special 'paging task'
cannot in the current implementation issue SVC instructions.

Supervisor call routines accept parameters on the top of the
stack. 'The lowest parameter address is at displacement 72
(decimal) from the stack top pointer on entry. They are entered
by means of the SVC instruction, which establishes a new save
area on the task's system stack as shown in Figure 2. 3. These
routines may extend the stack in the user's modifiable area by
PUSHing items onto it. They need not POP all these items off
again before returning. Supervisor call routines should exit by
issuing an SVCX instruction, which restores all registers and the
Program Control Word from the user's stack and sets the stack top
pointer (register 15) to the address value in the register
specified in the Rl field of the SVCX instruction.

2-21

2.1.3 System Dialogue and Workstation Use

The workstation of the Wang 2200VS System must share the duties
of:

(1)

(2)

the primary data-entry and display device used in a
program

a system console device for presentation of and
response to system messages, which may be:

(a) solicited (e.g., responses to commands)

(b) unsolicited (e.g., volume mounting requests, device
error information, etc.)

Special conventions and protocol are necessary to meet the
requirements of these multiple uses:

(1) Supervisor call routines and unprivileged system code
(such as data management routines) must use the CANCEL
or GETPARM supervisor calls to send messages to the
workstation.

(2) Messages must be in the format specified in the
descriptions of CANCEL and GETPARM in Chapter 6 of this
document.

(3) Messages relating to background program runs (programs
running without an associated workstation) will be sent
to the system console device.

(4) When GETPARM processing is entered, the workstation
screen, its resident buffer contents, its status
(keyboard locked or unlocked, 'attentions' received,
etc.) and its tab settings are saved. Before resuming
user program processing, this screen and status are
restored. This saving and restoring also occurs when
the 'Help Processor' is entered as a result of the user
striking the HELP key on his workstation.

2-22

2.1.4 Error Handling

There are several classes of errors which the operating system
may encounter, and which require differing responses:

Program exceptions in user programs

Program exceptions and other uncorrectable errors in
system routines

Invalid parameters passed to system routines

1/0 errors

(1) Program exceptions in users' programs are of concern to the
operating system's program check interrupt handler, which
passes control to the HELP processor or to a
program-specified exception handler.

(2) Program exceptions and other uncorrectable errors in system
routines may result in message display by the CANCEL SVC
(disallowing continuation of the program's processing) if
their cause can be traced to the user's program (as may be
the case with certain exceptions in supervisor cal 1
routines) . Otherwise they must be considered probable
system failures, and result in an orderly system halt.

(3) If a system routine receives invalid parameters, it should
be able to detect this during initial validation of the
parameters and before using them for further processing.
It then responds as in (2) above.

(4) I/O errors may be of three kinds:

Soft errors, signifying that an I/0
successfully completed after retry by the
Processor (IOP).

operation
separate

was
I/0

Hard errors, signifying
(including memory parity
operation).

failure of an I/O operation
errors detected on an I/0

Logical file processing errors which do not reflect any
errors occurring during an actual I/0 operation.

2-23

Soft error indications are passed to the CHECK supervisor
call routine (in the I/O Status Word) to be logged in a system
error logging file, and otherwise ignored. Hard errors are
passed in the same way. The task responsible for the I/0 either
issues a CHECK to wait for completion of the associated I/O
request or will make reference to the file again (by another Data
Management Function request, a CLOSE, or an implied CLOSE on
program termination) • At that time, error indications are
examined and the user's I/0 error routine entered for hard errors
if such a routine has been provided. In the absence of such a
routine, the user's program may be abnormally terminated at the
discretion of the Data Management routines, through issuance of a
CANCEL supervisor call. Memory parity errors detected by 1/0
processors are logged just like other I/0 errors.

The user's 1/0 error processing routine and his end-of-data and
invalid-key-condition routine are specified in the User File
Block (see Chapter 5) • These routines are entered after
interpretation of the I/0 Status Word (IOSW) by the Data
Management System routines. The 1/0 error routine is entered on
logical file processing errors (such as invalid function
requests) as well as on actual hard I/O errors.

These routines are entered from the unprivileged data management
routines as if the data management function had returned
normally, but with the return address modified to be one of these
addresses from the UFB. All register contents are restored
except register zero, which is set to contain the normal return
address from the function (next instruction after the JSCI
instruction by which the function was initiated). Register 1
continues to address the User File Block, which may be used to
determine the nature of the unusual occurrence, as indicated in
fields UFBFSl and UFBFS2 of this block (file status bytes). The
I/O error processing routine is entered for all unusual
conditions, including end-of-data and invalid-key conditions, in
the absence of a separate routine. The end-of-data and
invalid-key routine address, when supplied, overrides the I/O
error routine in the case of end-of-data and invalid-key
conditions.

These routines are entered with the same addressability and
protection status as for any other part of the user's program.

2-24

2.2 DOCUMENTATION

2.2.1 Naming Conventions

No name in the system may be over sixteen characters long. Thus
no control block label may be over fifteen characters long (to
allow for suffixing - see Appendix A) • No external name
(appearing in the Linkage Section of an object module) may be
over eight characters long.

Uniform conventions for names of external entities (which may be
referred to in other parts of the system) are useful in order to
prevent conflicts of names as well as to make documentation more
intelligible. The standards to be maintained by programmers of
operating system routines are described in the following
paragraphs.

2.2.1.1 External Names in Code

Names which appear as entry names in object text must be unique
across the system. To insure this, a unique prefix for external
names is assigned to each separately assembled or compiled
portion of operating system text.

1. Tile first character of a name identifies WANG-supplied
programs:

W - WANG supplied

2. Tile second character of a name identifies the major
area of system code to which it belongs:

S - Central supervisor
V - Supervisor call routines
N - Initialization
M - Command and HELP processing
D - Data management
P - System service tasks
T - Operating system utilities
U - Stand-alone utilities
L - Linkage editors
A - Assembler
C - COBOL
R - RPG
B - BASIC
E - Text editors
I - Other independent components
F - FORTRAN
X - Data base
W - Word Processing
G - File management utilities

2-25

3. The third (and,
identities the
code falls:

for SVC routines, fourth) character
specific functional area into which the

(S) 1 Task scheduler
2 Clock interrupt handler
3 I/0 interrupt handler
4 Program check interrupt handler
5 SIO routine
6 Pager
7 Page, SVC, or I/0 tracing

8-end Additional service subroutines

(V) 00-end SVC routines by SVC number

(N) 1 System initialize (IPL)
2 Task reinitialize routines

(M) 0-end Comand and HELP processing

(D) O-end Data management vectored
subroutines

(P) 1 Operator's console program
2 File sharing handler

(U) 1 Disk volume analyze and label
2 Display and alter disk
3 Copy tape to disk
4 Copy file, library, or volume

routines

5 Copy tape to disk (tape bootstrap)
6-end Assigned as needed

(T) 1 On-line disk volume initialize
2 Display file
3 Disk copy
4 Tape copy
5 Print listing file
6 List Volume Table of Contents
7 Sort
8 Print debugging dump from diskette
9 Copy unloaded IBM OS/370 PDS
A Patch file
B System procedure interpreter
C COPY2200
D FLOPYDUP
E BACKUP
F VERIFY
G TAPEINIT
H SECURITY

I-end Assigned as needed

2-26

and

(L) 1-end Linkage editors (binders)

(A) 1-end Assemblers

(C) 1-end COBOL compiler and COBOL symbolic debugging

(R)

(E)

(I)

(G)

1 RPG compiler

1 COBOL and Assembler Language source text
editor

2-end Assigned as needed

1-end Other independent components

0 Common file management subroutines
1 CONTROL
2 DATENTRY
3 REPORT
4 INQUIRY
5 CONDENSE
6 KEYENTRY

(Programming in categories U, T, L, A, C, R, E and
I would not normally contain entry names. These
categories are included for completeness and to
provide a noncompulsory standard for coding.)

4. Four or five characters uniquely identify the name.
Some examples might be:

WSlSCHD
WS3STIM
WV04LINK
WD8WRIT

2.2.1.2 Names in System Data Structures

These are external symbols in the sense that more than one data
structure description (control block definition) may be included
in an assembly or compilation, and therefore, names must be
unique across all these descriptions.

Each system data structure has a three-character to
five-character name, as defined in Chapter 5 of this document.
These names and any names formed by using these characters as a
prefix are considered reserved names in assemblies of system
code. Each label of a field within a system data structure
definition must begin with these characters.

2-27

2.2.2 Macroinstruction Descriptions

Descriptions of all supervisor service macroinstructions, in
alphabetic order by name, are collected in Chapter 4 of this
document. Each description includes:

1. A functional title for the macroinstruction.

2. A syntax specification on
description, with optional
brackets.

the first line of
operands displayed

the
in

3. A specification of the restrictions placed on the use
of the macroinstruction, such as •for use by disk
management support only• or •register Rl must contain
the active Task Control Block• s address when this
macroinstruction is executed', or 'for use by disabled
routines only' •

4. A general functional description. This should
what the macroinstruction accomplishes,
describing its internal workings in detail.

describe
without

5. Descriptions of each operand and its effect on the
function of the macroinstruction.

6. At least one example of code generated by this
macroinstruction.

Examples of the format required may be found in Chapter 4.

2.2.3 Data Layouts and Descriptions

'!he format for describing system data structures is presented by
example in Chapter 5 of this docwnent. Note that the type of
data in each named field of a data structure or control block is
specified by the corresponding assembly language type designation
and length (e.g., BLl, AL3, etc.), and that a brief description
of the function of each field is included.

2-28

2.2.4 Supervisor Call (SVC) Routine Descriptions

Descriptions of all supervisor call routines are provide'd, in SVC
number order, in Chapter 6 of this document. Each description
includes:

1. SVC number and name.

2. A description of all direct and indirect inputs to the
routine.

3. A description of all outputs (including 'side-effects').

4. A functional description of the processing performed by
the routine.

2-29

CHAPTER 3: SYSTEM DESCRIPTION

3.1 VIRTUAL MEMORY

The user is not aware of the specific functions involved in
providing him with a virtual main storage larger than the
physical main storage of the hardware. However, an understanding
of the mechanism involved will aid in understanding the
protection mechanism and will be useful to the programmer who
feels he must understand the Operating System's internals. Also,
a general awareness of how paging is carried out may help any
programmer write more efficient code for the machine.

3.1.1 Relation of Virtual Memory to Physical Memory

The physical main memory of the Wang 2200VS is limited to a
maximum of 512K (K=l024) bytes. A computer instruction can,
however, develop an address which refers to any of 16,777,216
(16,384K) memory locations. Thus a programmer could write a
program which would execute in Wang 2200VS' physical memory only
if a much larger memory were available. Being able to execute
such a program means considerable savings in coding time, since
the programmer then need not segment a large program into
overlays. A similar situation arises with respect to the areas
containing user-modifiable data. If the programmer must design
for a system in which these areas are severely limited, he must
make explicit use of secondary storage (disk, tape, etc.) to
temporarily save intermediate results. This may result in more
coding time, a more complex program, and considerable
inefficiency.

The foregoing problems can be alleviated if the Operating System
manages main memory in such a way that the user appears to have
one or more large addressable areas of memory available. Under
such a scheme, the Operating System overlays portions of the
user's program and data with other portions as necessary,
according to some rules which are sufficiently close to optimal
to allow the program to proceed at nearly the speed at which it
would execute if all of the program and all the work area for
data were in main memory constantly. The memory which the user's

3-1

program addresses is then referred to as a 'virtual memory' and
the actual main memory as the 'physical memory'. In the Wang
2200VS, one user's virtual memory includes a reentrant program
segment of up to 512K bytes, a modifiable segment of up to 512K
bytes, and a system code and data segment of up to 256K bytes.
'nle virtual memory exists in complete form only on a secondary
storage device (disk).

3.1.2 Address Translation, Pages and Page Faults

It is the relationship or 'mapping' between a large virtual
memory and a smaller physical memory which the paging management
routines of the Operating System provide. This is done as
follows:

'nle physical memory is partitioned into 'page frames' of 2048
(2K) bytes each. (A 128K system would have 64 page frames.)
Certain of these page frames are dedicated to contain Operating
System routines and data which must be resident at all times.
'nle other page frames may contain parts of any other programs or
data. As far as an executing program is concerned, it may
address any one of sixteen large contiguous areas of storage (up
to 512 pages each) referred to as 'segments'. '!be particular
segment addressed is selected by the four high-order bits of a
24-bi t address. The user program code is in segment one , the
user modifiable data area in segment two, and supervisory
routines and data in segment zero. References to segments three
through fifteen are invalid, and are treated as program errors.
Actually, the hardware uses these four bits to select a •page
table' , each item of which in essence addresses a page frame in
the physical main memory. The nine bi ts of the original
('untranslated') address following the segment selection bits are
used to select one of up to 256 page table items within a page
table, and thereby to select a physical page. The last eleven
bits of the original address are then used to address a byte
location within this page. The resulting addressed location is
referred to as the 'translated' address. Note that al though up
to 256 page table items may be addressed within a page table,
there is a maximum of 64 page frames available in the physical
memory of the 128K system hypothesized above. Some page table
items are therefore marked with a special indication that the
referenced page is missing from physical memory. The hardware,
finding this indication set during an address 'translation',
effects a particular type of program check interruption known as
a 'page fault', and supplies to the program interrupt service
routine the segment and page numbers of the missing page. A task
initiated by this interrupt service routine, the 'paging task',
attempts to locate a page frame the contents of which may be
replaced with the required page from a disk file. When a page
frame containing a replaceable page has been selected, the paging
task reserves this page by indicating that it is in use for
page-in or page-out, and initiates the page-in, or page-out
followed by page-in, operations. The task which needs the page
is forced to wait on a queue of tasks attached to the page frame

3-2

being used for the paging operation, and will be reactivated
after the page-in operation completes and the paging task has
updated the page table to allow normal addressability of the page.

3.1.3 User Program Efficiency and Paging

Designing a program for a virtual memory environment requires a
new outlook toward program and data organization. Although the
user is freed from the onerous task of managing a small physical
storage by overlay or other manual segmentation techniques , he
cannot ignore the issue of program organization. A major aim of
the programmer should be to increase the locality of reference of
his program's code. That is, he should avoid referencing many
pages of code or data within a short span of program execution.
In this way he will reduce the likelihood of many page faults
occurring. One might also say, as a general rule, that it pays
to spend processor time to save space; the notion of a tradeoff
between the amount of storage area required and the speed at
which a program executes is not, however, as accurate in a
virtual memory system as in most previous systems.

3.2 SUPERVISORY FUNCTIONS

The following paragraphs describe briefly the most important
functions of the central supervisor. System programmers
requiring more detailed information should consult program logic
documents.

3.2.1 Task Scheduling and Timing

The operating system supports one or more tasks corresponding to
users' programs in progress, in addition to a paging task.
Determination of which task is to have control of the processor
at any time is made by the scheduler routine, which gains control:

(1) when a task WAITs on a semaphore (associated
event which is expected to occur but has
occurred).

with an
not yet

(2) when a task becomes ready as a result of a SEND on a
semaphore. ('Ibis is associated with the occurrence of
an event.)

(3) when an interrupt has occurred,
processing of the interrupt has
exit from the I/0 interrupt service
interrupt service routine).

and preliminary
completed (e.g., on
routine or clock

(4) when 'System Must Complete' state is exited, and a
workstation HELP key had been received while in 'System
Must Complete' state.

3-3

The scheduler determines the highest-priority ready task, sets a
timer expiration value to insure that this task cannot monopolize
use of the processor at the expense of other tasks (most
obviously by looping) , and loads the control registers, page
tables, general registers, floating-point registers, and the
program control word (PCW) associated with the task to be given
control. This task is allowed to run until one of (1) through
(4) above occurs.

3.2.2 WAIT and SEND Primitives

When a task is not available for scheduling, it is said to be
'blocked'. Blocking and unblocking of tasks is accomplished by
the WAIT and SEND primitives which execute DSEM or ISEM
instructions, respectively. The functions are as follows:

(1) WAIT - 'This function is always performed by a special
operating system WAIT routine. An addressed
semaphore's count field is decremented. If the result
is zero or greater, control returns to the invoking
program. If the result is less than zero, the
currently active (invoking) task is blocked and control
is passed to the scheduler. User programs must use the
CHECK SVC routine to gain access to this facility.

(2) Multiple WAIT - This function is similar in effect to
WAIT, but allows a task to await the occurrence of
one-out-of-several specified events, each represented
by a semaphore.

(3) SEND This function is performed by a special
operating system SEND routine as requested by an SVC
call or special branch-type entry for interrupt
routines. The SEND routine increments an addressed
semaphore's count field (by executing an ISEM
instruction). If the result is less than or equal to
zero, a task has been unblocked by this instruction,
and the routine passes control to the scheduler. If
the result is greater than zero (no task unblocked) ,
control is simply returned to the invoker. (Interrupt
routines either pass control to the scheduler or to the
interrupted task at some time after a SEND branch type
entry.)

Users' programs do not have the ability to modify semaphores
except by invoking the CHECK routine through supervisor call.
After checking the request for validity, CHECK enters the WAIT
routine. All semaphores are in protected memory locations.

3.2.3 Intertask Message Primitives

The XMIT primitive allows a task to queue a message of up to 251
bytes for transmission to another task. The WAIT primitive
(through the CHECK MESSAGE macroinstruction) allows a task to
wait for receipt of such a message.

3-4

3.2.4 Supervisor Call Interruptions

Section 2.1.2 above describes the functions
routines. The reader may wish to refer to this
Figure 2-3.

3.2.5 I/0 Initiation

performed by SVC
section and to

Issuance of the actual SIO instruction to initiate either paging
or normal I/0 is localized in the system's Start I/0 routine. No
other system components issue SIO instructions. The Start I/O
routine is passed a Request Element which describes the I/O
operation to be performed and points to a semaphore on which the
1/0 interrupt service routine will perform a SEND when the
operation is complete. '!be Start I/0 routine is called by the
XIO supervisor call routine and the paging task. The Start I/0
routine itself queues the Request Element to the proper device's
physical request queue, and then attempts to address the first
element on this queue and perform its requested I/0 operation.
If the device is busy, this step is bypassed (I/0 will be started
later, when the current I/0 completes).

3.2.6 I/0 Interruptions

The I/0 interrupt service routine gains control on an I/0
interruption. As well as 'unfixing' the I/O area (removing the
page or pages it occupies from 'temporarily resident in memory'
status) on I/0 completions other than page faults, and saving all
necessary status of the interrupted task, it locates the I/O
Request Element associated with the operation which has
completed, performs a SEND operation on the semaphore addressed
by this element, and dequeues the element. It then calls the
system's Start I/0 routine to initiate I/0 for any requests which
may be pending. Exit is then made to the interrupted task, or to
the scheduler to restore the status of another task and dispatch
it. Interruptions indicating 'I/0 processor now ready' cause the
I/O interrupt service routine to attempt to initiate operations
on all affected devices (those on the same I/0 processor) which
have request elements queued for servicing. 'Attention'
interruptions are also processed by the I/0 interrupt service
routine, which performs special device-dependent processing of
'attention' interruptions from workstations.

3-5

3.2.7 Clock Interruptions

The system's clock interrupt handler receives control when a
clock interruption occurs. If a task is active and the
interruption indicates the end of its time slice, it is marked
'timeslice expired', placed last on the low priority scheduling
queue, and the scheduler is entered to schedule another task, or
the same task again if no other is ready. If the interruption
signals the expiration of a program-specified timing interval,
the clock interrupt handler performs a SEND operation on the
semaphore in the appropriate interval timing element (TQBL) , and
then exits through the scheduler to schedule a task which may
have been unblocked by this SEND operation. If the interruption
signals a midnight crossing, the system date is updated and the
time-of-day reset.

3.2.8 Program Interruptions (Other Than Page Faul ts)

The program interrupt handler entered on a program interruption
will force entry to a program exception exit routine if one has
been specified for this type of exception, and otherwise to the
system's HELP processor. This will allow the user to request use
of a debugging routine, or to simply terminate the program.

3.2.9 Program Normal Termination

Normal termination processing is entered on RETURN from a program
originally entered from the command processor, or on execution of
an UNLINK supervisor call by such a program. The memory occupied
by the program is made available for other use. Open files are
closed and any logging information is written.

3.2.10 Program Abnormal Termination

Abnormal termination (processing "cancellation") may occur in
response to one of the following:

(1) The user requested abnormal termination in response to
Help Processor prompting, the user having obtained the
services of the Help Processor by striking the
workstation's HELP Key.

(2) The program issued a CANCEL supervisor call or entered
the Debug Processor by virtue of a program check
(without having issued a PCEXIT supervisor call) and
the user requested abnormal termination in response to
Debug Processor prompting.

(3) 'Th.e program issued a CANCEL supervisor cal 1 or program
checked (without having issued a PCEXIT supervisor
call) and the program itself had previously issued a
CEXIT supervisor call with the NODEBUG or DUMP option.

3-6

The abnormal termination processor ·(Cancel Command Processor)
will attempt to close files open to the program being
terminated. Assuming that the program has not issued a CEXIT
supervisor call specifying an address of a user "cancel exit
routine," the program is removed from execution and control is
passed to the command processor to allow another program to be
initiated.

Programmed interception and analysis of abnormal termination
conditions is available to the user program via the CEXIT
supervisor call. The "cancel exit" parameter of the supervisor
call specifies the address of a routine in the user's program
that is to receive control in the event of an abnormal
termination condition.

Upon entry to a user program's "cancel exit routine," the program
name, PCW, general registers, and cancellation codes and message
are provided on the system stack for subsequent analysis. The
floating point registers reflect their value at the time of the
abnormal temination condition. The program may take any desired
corrective action and subsequently elect to either continue
processing normally or terminate. (See "CEXIT Supervisor Call"
for additional details.)

3.2.11 Program Initiation

'nle initiation of user programs is a function of the system's
Command Processor and Procedure Interpreter, which issue LINK
SVCs to initiate programs.

3.2.12 Microcode Loading

When an IOSW is received that has bits PP (peripheral processor
code missing) or DP (device code missing) set, the I/0 interrupt
routine marks the UCB 'not busy' (UCBSTATBUSY reset) and 'no
code' (UCBSTATNOCODE set), increments the I/0 completion
semaphore, and leaves the IORE on the I/O queue with the pages
used for the I/0 operation fixed. IOREREQFIVRQ is set to
simulate an IVRQ interrupt. SI Os are blocked by UCBSTATNOCODE.

The task waiting on the I/0 is restarted, and enters CHECK
completion code. CHECK finds IOREREQFIVRQ set and enters
'intervention-required' processing. It then finds PP or DP set
in the IOSW, and calls SVC LOADCODE to load the appropriate
microcode. If LOADCODE is successful, it will have marked the
UCB 'code loaded' (UCBSTATNOCODE reset), and restarted the I/0
operation. CHECK then waits for I/O completion.

3-7

If LOADCODE failed, CHECK calls HALTIO to remove the I/0
operation from the I/0 queue and unfix the data area. CHECK then
reports the IOSW as an error completion; if the device is a
Workstation, it marks the device 'tumed off' (UCBSTATNOTOP set)
to block I/0 operations until the Workstation is turned on. When
the Workstation is turned on , the unsolicited interrupt will
mark the device ' turned on' (UCBSTATNOTOP reset) and ' loaded'
(UCBSTATNOCODE reset) to unblock I/0 operations. The next I/0
operation to the device will find the microcode not loaded and
reload it.

Receiving an I/0 completion interrupt with DP and PP both set may
indicate that the device configuration table is missing. This is
handled like an interrupt with 'DP' or 'PP' set.

3.2.13 Logof f

Logoff is defined as the termination of a user's current session
with the computer. It may be invoked in either of the following
manners:

(1) The user may request Logoff voluntarily by keying the
appropriate initiator function key. In. this particular
case, the Logoff Processor permits the user to "escape"
from Logoff by pressing the HELP key.

(2) The program may issue a LOGOFF supervisor call in
response either to an interactive user request or any
other specified conditions detected by programming.
Such a logof f is essentially handled as a program
cancellation, without entry to the Debug Processor,
unlinking all link levels, bypassing the Initiator,
logging off the current user, and displaying the Logon
Processor screen on the workstation. A message is
displayed indicating that the previous program was
logged off by "program request." Note: LOGOFF
supervisor calls may be intercepted by a program's
active "cancel exit routine," distinguished by message
0001 issued by SVC43.

The Logo£ f Processor, in both the above cases, prompts the user
for a response for each volume mounted by that user for exclusive
use. The user is provided with a choice of changing the mount
status from "exclusive" to "shared" or, where appropriate,
dismounting the volume.

3.3 DATA MANAGEMENT FUNCTIONS

A general introduction to the implementation of Wang 2200VS data
management follows. The system primitive functions provided to
aid in processing I/0 requests are explained briefly in Section
3.3.2. For more detailed information, consult the appropriate
program logic documents.

3.3.1 Top Level Data Management Function Support

Entry to system code for processing data management requests.is
by indirect branch to routine addresses in a file's User File
Block. Most data management code is executed in unprivileged
mode as an extension of a user's program.

3.3.2 Data Management Support SVC's

Primitive I/0 services are provided through supervisor call
routines which are to be used by the data management system in
the process of servicing READ, REWRITE , WRITE , DELETE , START and
other requests. The XIO and CHECK services may also be used in
nonstandard I/0 programming.

3.3.2.1 XIO

The XIO service provides intermediate-level I/0 initiation
support. When called by SVC from data management programs, it
converts block numbers in a disk file to disk addresses,
validates that disk addresses lie within proper extents,
translates virtual data addresses (in I/0 Command Words) to
physical addresses, makes the required pages of virtual memory
temporarily resident ('short-teI10 fixed'), and calls the
supervisor's Start I/0 routine to initiate the I/O operation.

3.3.2.2 ALEX

The ALEX service is requested by data management routines when a
primary or secondary extent on disk is exhausted and it is
necessary to either allocate another extent or, failing that, to
terminate processing.

3.3.2.3 CHECK

'nle CHECK service is used by data management routines to suspend
the operation of the issuing task until an I/O operation is
signalled complete (by a SEND function in the I/O interrupt
service routine) • The user-level data management routines must
use CHECK, since they are not allowed direct use of the WAIT
primitive function. Basically, the difference between these
functions is that CHECK will insure that a valid Open File Block
address has been passed to it, while WAIT cannot validate the
semaphore address which it receives. CHECK will also handle I/0
error logging and detection of 'intervention required' conditions
at the device. (See the CHECK supervisor cal 1 and
macroinstruction descriptions for additional functions of CHECK,
including its role in interval timing support and inter-task
message passing.)

3-9

3.4 DISK STORAGE DESCRIPTION

Disk volumes on the Wang 2200VS system are divided into logical
256-byte sectors, numbered from zero. Actual disk sectorization
is into 256-to-2048-byte sectors, depending on the device type.
Although each actual sector may be addressed by I/0 command, the
operating system XIO routine and paging routines always address
2048-byte areas referred to here as 'blocks' of disk storage,
which begin on logical sector addresses which are multiples of
eight. Files on such a volume are recorded in one or more
contiguous areas ('extents') • Each extent spans one or more
consecutively-numbered blocks. The presence of a file is
indicated in a volume table of contents which is organized to
allow a hierarchical naming scheme with one level of
qualification. 'Th.is structure is located through the volwne
label. All these items are discussed in the following paragraphs.

3.4.1 Volume Label

The volume label occupies sector 1 (the second sector) of any
disk volume. It contains the name of the volume (volume serial
number), the location (extent descriptions) of the volume's table
of contents, and other descriptive information defining the size
and physical organization of the volwne.

3.4.2 Extent Organization

Each block on a volume, with the exception of the first block
(sectors 0 to 7) and the blocks containing the volume table of
contents, is part of an 'extent' (defined contiguous area) of
either free space or file space. Extents of free space are
recorded in available space records of the volume table of
contents. Extents of file space are recorded in File Descriptor
Records (FDRs) in the volume table of contents, where each FDR is
associated with a particular file. The initial FDRs for files
are referred to as Type 1 FDRs. FDRs describing additional areas
occupied by a file are referred to as Type 2 FDRs.

When a file is initially allocated space, an attempt is made to
acquire a single extent of sufficient size on the specified
volume. If such an extent is not available, up to 3 extents may
be allocated.

When a file is enlarged so that it exceeds the capacity of
extents previously allocated for it, the system allocates an
additional extent. This may require that an additional FDR be
allocated to contain the additional extent information (a Type 2
FDR). A file may encompass a maximum of 13 extents (described in
one FDRl record and one FDR2 record).

3-10

3.4.3 Volume Table of Contents

The volume table of contents on a disk volume has blocks
(8-sector areas) of four types. There are available space blocks
which record where free blocks are on the volume, high-level
index blocks which contain file name qualifiers and low-level
index block numbers, low-level index blocks which contain file
names and file descriptor block numbers and , file descriptor
blocks containing File Descriptor Records which contain attribute
specifications for particular files, including the location of
the file on the volume and the extents allocated for it.

The first block of the volume table of contents is an available
space block. Any search for available space on the volume (for a
newly-allocated file or an additional extent) begins by searching
this block, followed by its chained blocks, for a sufficiently
large area of space.

The second block of the volume table of contents is an index
block. It is the first block of the 'top-level' index.
Additional top-level index blocks may be chained from this
block. This top-level index contains pointers to lower-level
index blocks, which in tum contain pointers to File Descriptor
Records. The name of a lower-level index, as recorded in each of
its index records, is used as a file name qualifier to define a
complete file name or 'path name'. For example 'DIRECTB.FILEA'
could be the name of a file whose File Descriptor Record is
located by a pointer in an index item containing 'FILEA', where
this item is in a lower-level index record whose name is
'DIRECTB'. It is useful to refer to the file as member 'FILEA'
in library 'DIRECTB'. The first high-level index block also
contains three linked-list head pointers, which are used to
maintain chains of

(1) available blocks,
(2) blocks containing available low-level index records, and
(3) blocks containing available File Descriptor Record

areas.

The third block of the volume table of contents is reserved for
use as the first lower-level index block. Each such block may
contain all or part of up to four 'libraries' as described above.

The fourth block of the volume table of contents is a block
containing File Descriptor Records.

The fifth and additional blocks of the volume table of contents
are used as required for available space blocks, index blocks, or
file descriptor blocks.

3-11

CHAPTER 4: SYSTEM MACROINSTRUCTIONS

4.1 MACROINSTRUCTIONS AVAILABLE

This chapter documents the Wang-defined macroinstructions
available for general prograouning use. A second set of
macroinstructions, designed for operating system development and
support and not intended for general use, are documented in a
separate manual.

The available macroinstructions are swmnarized in the following
list, arranged by functional category. The remainder of this
chapter consists of individual discussions of all general-purpose
macros, arranged alphabetically by keyword.

A. User program linkage

CALL, RETURN, LINK

Bl. User-level I/0

OPEN, CLOSE , READ, REWRITE ,
RENAME , SCRATCH, . UFBGEN,
DISMOUNT, READFDR, TCOPTION

82. Data management routine use

WRITE,
BCTGBN,

DELETE,
AXDGEN,

XIO, GETBUF, FREEBUF, CHECK, ALEX, HALTIO

C. Synchronization and resource control

START,
MOUNT,

WAIT, SEND, SEIZE/RELEASE (Not available for general
programming use)

D. Resident block management

GETMEM, FREEMEM (Not available for general programming
use)

4-1

E. Timing

TIME, SETIME, RESETIME, CHECK

F. Program termination and debugging

CANCEL, (RETURN)

G. Workstation display, message log

GETPARM, KEYLI ST, MSGLI ST, FMTLIST, PUTP ARM

H. Program structuring and control

REGS, EXTRACT, PCEXIT, SET
LOW (Not available for general programming use)

I. Intertask communication

XMIT, CHECK, CREATE, DESTROY

4-2

Allocate Extent

Syntax

[label] ALEX OFB=(register)

Restrictions

For use by Data Management System routines only.

Function

Attempts to allocate an additional extent for the disk file
whose Open File Block (OFB) is addressed. A file has to be
opened for exclusive use before ALEX is issued. The OFB
address is stacked before issuing the Supervisor Call. On
completion of the function, the OFB address is removed from
the stack and a return code word is stacked, as follows:

0 - Additional extent allocated
4 - Invalid OFB address or OFB not open for this task;

no allocation
8 - File in INPUT mode; no allocation

12 - Wrong device class; no allocation
16 - Extent limit would be exceeded; no allocation
20 - All buffers in use, GETMEM failure; no allocation
24 - Volume full; no allocation
28 - No space in VTOC for FDR2; no allocation
32 - Disk I/0 error; VTOC unreliable

Operand Description

OFB= The address of an Open File Block for an open disk
file. It must be presented as a register
specification in parentheses, where the register is
assumed to contain the OFB address.

Example

LABl
+LABl
+

ALEX
PUSH
SVC

OFB=(Rl)
O,Rl
14 (ALEX)

4-3

Generate Alternate Index Descriptor Block

Syntax

[label] AXDGEN [MASKSIZE=pl] [,ENTRIES=p2]
[,(ORD=p3, KEYPOS=p4,

KEYSIZE=p5 [,NODUPS]
[, COMPRESS])] ••••

Function

Generates an alternate index descriptor block (AXDl) to be
addressed by UFB field UFBALTPTR (ALTAREA operand of UFBGEN
macroinstruction).

Operand Descriptions

MASKSIZE = Must be 2 or omitted.

ENTRIES = To use the AXDl for OUTPtIT mode processing,
must equal the number of positional operands
Sin parentheses) which follow. Always must be
zero, omitted, equal to the number of
positional operands, or 0 to 16 if there are no
positional operands.

Positional suboperands:

ORD = Index (1 to 16) defining this
structure (access path).
supplied positional operands.

alternate index
Required in all

KEYPOS = Key position in record. Required.

KEYSIZE = Key length. Required.

NODUPS

COMPRESS

Duplicates not allowed if specified for OUIPUT
mode. Ignored in other modes.

Key compression if specified for OUTPUT mode.
Ignored in first version of alternate indexing
support.

4-4

Example:

LABl
+LABl

AXDGEN ENTRIES=l
DC F'O'
DC XL14'0'
DC HLl '2'
DC XL41'0'

AXDGBN

BL
MASK, UFB, ALTINX, FLAGS
MSIZE
SPAREl, BCB, PMASK, SPARE

*AXD ENTRY FOR ALTERNATE ACCESS PATH
DC ALl (0) XORD
DC BLl('lOOOOOOO') FLAGS
DC H'O' LEVELS
DC AL2 (0) KEYPOS
DC ALl(O) KEYSIZE
DC XL21' 0' HXBLK, NRECS, PTRD, BSPARE

4-5

Generate a Buff er Pool Control Table

Syntax

[label] BCTGEN NBUF=expression

Function

Generates a skeleton buffer pool control table for use in
buffer pooling (UFBGEN macroinstruction, operands POOL and
BCT).

Operand Description

NBUF= An absolute expression must be supplied, which must
evaluate to an integer not greater than 60. This
is the number of buffers to be included in the
buffer pool.

Example

LABl BCTGEN NBUF=8
+LABl DS OF
+ DC ALl (8)
+ DC XL19'00'
+ DC (8) XL28 I 00 I

4-6

Call a Subroutine

Syntax

[]
[label] CALL EPLOC=Entry-address-word I ,PARM={(register)} I

I { label } I
I I
I PARMLOC=parm-address-wordl
[]

[,COND=number]

Restrictions

A stack, with stack top addressed by general register 15,
must be available to the CALLer.

Function

Loads the address of a parameter list (if specified) into
register Rl and branches (conditionally) to the specified
label or to the address contained in 'entry-address-word•
by a JSCI instruction (leaving the return address on the
stack) • The JSCI instruction saves the contents of control
register 1. The JSCI instruction also stores general
registers 0 to 14 on the stack and places the address of
the register 0 save area in control register 1 (as well as
in the stack pointer, general register 15) • The lowest
address in any current 'static' area is (by convention)
passed in register R14.

Operand Descriptions

EPLOC=

PARM=

PARMLOC=

COND=

Example

LABl
+LABl
+

The address of a word containing the CALLed
routine's entry point address. This must be
specified in a form allowable in the D2(X2,B2)
fields of the RX-type assembler instruction
format.

The address to be passed in register Rl.

'!be address of a word containing the address to
be passed in Rl (with format as for EPLOC).

Specifies the condition codes under which the
routine is to be CALLed. If omitted, 'COND=lS'
is assumed.

CALL
LA
JSCI

PARM=PADDR,EPLOC=ENTRYWRD,COND=8
Rl,PADDR
8,ENTRYWRD

4-7

Cancel

Syntax

[label] CANCEL MSG={(register)}
{ address }

Restrictions

Must not be issued while in System Must Complete state.

Function

To enter the Help Processor for cancellation of the issuing
program. The message provided is displayed, along with a
standard CANCEL message. 'nle user may then use the Help
Processor's debugging facilities to examine the program
before issuing a CANCEL coounand to remove it from the
system. If the CANCEL supervisor call was issued from
within a user's program, the user may attempt to continue
processing by modifying the location to receive control and
invoking the "CONTINUE" command. A program terminated by a
CANCEL supervisor call from within privileged code cannot
be continued.

Operand Description

MSG= The address of a message to be displayed, contained
in the specified register, or at the specified
address. A register specification must be
parenthesized as shown. The message must be in the
format generated by the MSGLIST macroinstruction.

Example

LABl
+LABl
+

LAB2

+LAB2
+
+
+

LA
CANCEL
PUSH
SVC

MSGLIST

DC
DC
DC
DC

R5,LAB2
MSG=(R5)
O,RS
16 (CANCEL)

'COOl','SUPVSR' ,'MEMORY
EXHAUSTED'
CL4'C001'
CL6' SUPVSR I
AL2(21)
C'MEMORY POOL EXHAUSTED'

4-8

POOL

Cancel Exit

Syntax

(1) [label]

(2) [label]

Function

CANCEL

SET

CEXIT CANCEL

CEXIT SET [,([NODEBUG][,NOHELP])]
[[DUMP]]

[,ADDRESS={(register)}]
[{ expression}]

[,MESSAGE={(register)}]
[{ expression}]

Negates the effect
CEXIT supervisor
level. Abnormal

of any previously issued
call in the current link

termination (cancel)
be intercepted at the conditions will not

current link level.

To specify user-program abnormal condition
handling for the current and any subsequent
link levels. The options specified may be
negated via the CANCEL option or reset via
another SET option at the current link level,
or may be temporarily overridden at subsequent
link levels via the SET option issued therein.

Operand Descriptions

NODEBUG

DUMP

NO HELP

The Debug Processor is bypassed for abnormal
termination conditions. Control is passed
directly to the Cancel Command Processor
without direct user notification.

Similar to the NODEBUG option, this option also
provides a full program dump prior to entry
into the Cancel Command Processor.

Causes HELP key to be disabled at current link
level for the puxposes of entry into the HELP
Processor. If NOHELP is specified, pressing
the HELP key in user mode has the following
effects: 1) If the workstation does not have
operator privileges, the alarm is sounded; 2)
If the workstation is a dual mode operator
console, operator mode is entered. This option
remains in effect until a CEXIT without the
NOHELP option is issued or until the program
unlinks back to either the Command Processor's
Initiator or a link level for which NOHELP was
not specified. Unless specifically disabled

4-9

CEXIT

ADDRESS=

therein, the NOHELP option is propagated to
higher link levels. The NOHELP option should
only be utilized in situations in which user
access to CANCEL and other system functions
must be limited, such as in the case of
critical sections of application programs
updating multiple file chains and pointers.
Such programs should be highly debugged prior
to use of this facility.

Specifies the address of a user-program
provided cancellation intercept routine. This
routine gains control from the Cancel CODDand
Processor in the following manner:

If the abnormal termination condition occurred within the same
link level, the Cancel Command Processor returns control to the
program at the address of the cancellation intercept routine.
(This routine may also gain control if the current or any
subsequent link level issues a LOGOFF SVC and this CEXIT option
is still active.) The registers are those at the time of either
the program check or entrance to the supervisor call resulting in
the abnormal termination condition. Thus, addressability should
not be assumed. If the abnormal condition occurred while Data
Management for either disk or tape was in control, an attempt is
made to complete that operation. All non-I/0 wait conditions are
removed. The Cancel Command Processor does not, in this case,
attempt to close any files.

If the abnormal temination condition occurred within a
subsequent link level, i.e. , a "Linked-to" program, for which no
cancellation interception routine was specified, the Cancel
Coounand Processor successively attempts to complete I/0
operations and close files and then UNLINK each link level until
a link level with a cancellation interception routine (if any) is
found, at which point control is passed to that routine. In this
case, the registers are those at entry to the LINK supervisor
call. As in previous cases, all non-I/0 wait conditions are
removed.

In both cases, entry to the cancellation intercept routine
cancels the CEXIT options for the link level. They may, if
desired, be reset via a subsequent CEXIT supervisor call. On the
stack, the cancellation intercept routine finds the following
data (which may be accessed symbolically via the DSECT produced
by the CXT macroinstruction):

CANCELLATION PCW
PROGRAM NAME
(Reserved)
GENERAL REGISTERS 0-15
CANCEL MSGLIST

4-10

8 Bytes
8 Bytes

48 Bytes
64 Bytes
Variable Length

MESSAGE =

Example

LABl
+LAB2
+
+
+
+
+
+

Provides text to be used by both the Help Processor
and the Debug Processor in place of the "CANCEL
PROCESSING" menu descriptions. Specification is of
a segment 2 location containing a one byte binary
length field followed by up to 27 bytes of text.
Specification of this option is independent of any
user cancellation intercept routine specification.

CEXIT
PU SHA
MVI
MVI
PU SHA
PU SHA
MVI
SVC

SET,NODEBUG,ADDRESS=FIXPROBS,MESSAGE=CANCELME
o,o
0(15),B'OOOOOOOO'
1(15),B'OOOOOOOO'
O,CANCELME
O,FIXPROBS
0(15),B'lOlOOOOO'OPTIONS BYTE
39 (CEXIT)

4-11

Check For Event Occurrence

Syntax

(1) [label] CHECK {OFB}
{VCB}

= {address } [,ERREXIT=
{ (register) } [

{address }]
{ (register) }]

[,IOSWREG=RO]

(2) [label] CHECK INTERVAL

(3) [label] CHECK MESSAGE= {address }
{ (register) }

,PORT= {address }
{ (register) }
{

1 string' }

(4) [label] CHECK WSKEY = {address }
{ (register) }

(5) [label] CHECK INTERRUPT= {address } ,IOSWADDR= {addres~ }
{ (register) } { (register) }

(6) [label] CHECK TCIO, OFB= {address }
{(register)}

[,IOSWADDR= {address }]
[{register }]

(7) [label] CHECK MULTIPLE,PLIST= {address }
{ (register) }

,COUNT= {self-defining term}
{(register) }

Restrictions

CHECK OFB or VCB should be issued only after issuing an XIO call.

Function

(1) CHECK OFB or VCB waits for completion of an I/O operation.
If 'intervention required' is indicated on completion, CHECK
issues an appropriate workstation message (if possible) to
inform the user, and proceeds when the 'intervention
required' condition has been cleared. (CHECK may reissue
the message if the condition has not actually been
corrected.) CHECK waits for completion again after the
condition has been cleared. If the operation has not
completed, CHECK suspends processing of the issuing program
until completion. If the ERREXIT operand is provided, CHECK
returns to the specified address in the event of a permanent
error completion (IOSW bit EC set, bits NC or IRQ not set).

4-12

Otherwise CHECK returns to the next sequential instruction
address. CHECK logs 1/0 errors by means of a nonresident
subroutine.

(2) CHECK INTERVAL waits for expiration of a timing interval as
set by the SETIME macroinstruction.

(3) CHECK MESSAGE waits for a message to be sent to the issuing
task.

(4) CHECK WSKEY waits for a Program Function Key to be struck on
the specified workstation, which must be reserved for use by
the issuing task. An un-CHECKed XIO request must !!.Q! be
outstanding to this workstation when this CHECK is issued.

(5) CHECK INTERRUPT waits for an unsolicited interrupt from a
workstation, a printer, or a teleconununications device.

(6) CHECK TCIO waits for the occurrence of a TC I/O event. This
event may be a completion of an I/0 operation which was
previously initiated by a call of the XIO SVC by the RECEIVE
or TRANSMIT macro. This event may also be an unsolicited
interrupt from a Data Link Processor (DLP) if no previous
I/0 conunand was issued.

(7) CHECK MULTIPLE waits for any one of several specified events
to occur. These can be any of (1) through (6) above. For
details of parameter list construction, refer to the CHECK
SVC description (SVC 17).

NOTE: A FORM=LIST operand may be used with functions 1-6 above
to build a multiple CHECK list on the stack. For example,

CHECK INTERVAL, FORM=LIST
CHECK WSKEY=(Rl), FORM=LIST
LR R9,SP
CHECK MULTIPLE, PLIST=(R9) ,COUNT=2

will build a multiple CHECK list which waits on a PF key or a
timer, in that order. After the call to CHECK MULTIPLE, tne top
stack word will contain the offset into the parameter list of the
event that occurred. The parameter list remains on the stack.

Operand Descriptions

OFB= For the OFB option, the address of the Open File
Block (OFB) for a file previously OPENed. Must be
presented as an address expression, or as a
register specification in parentheses where the
register contains the address of the OFB.

4-13

For the TCIO option, OFB= points to the address of
the Open File Block (OFB) for the I/0 channel
device used in the I/O operation initiated by the
corresponding RECEIVE or TRANSMIT call. The
address supplied in the OFB= operand is an address
pointing to a four-byte field containing the
address of the OFB in the low-order three bytes.

VCB= The address of a Volume Control Block (VCB). May
be used only if the caller is in System Mutual
Exclusion (SME) or the volume is mounted for
initialization. Must be presented as an address
expression, or as a register specification in
parentheses where the register contains the
address of the VCB. Note that the displacement
constant of +l is added to the VCB address by the
macroinstruction code in order to distinguish the
CHECK VCB option from the CHECK OFB option.

ERREXIT= Optional address of an instruction to receive
control in the event of an I/O error. Must be
presented as an address expression, or as a
register specification in parentheses where the
register contains the error exit address.

IOSWREG= If IOSWREG=RO is specified, the completion IOSW
will be returned in general registers 0 and 1.

MESSAGE= An address in segment 2, into which a received
message will be placed. The receipt area in
segment 2 must contain the total length of the
area, in binary, in its first two bytes. The
length must not be greater than 2016 bytes. The
message is placed in the specified area. If the
area length is less than the message length plus
two, the message will be truncated on the right.
The area length bytes are updated to reflect the
length of the message, plus two. (This is the
full length of the message, even if the message
was truncated.)

PORT= The four-character name of one of this task's
active message receipt ports, as established by
CREATE. May be specified as an expression
addressing a 4-byte field containing the port
name, as a register in parentheses pointing to the
4-byte field containing the port name, or as a
character string in single quotes which is the
port name.

4-14

WSKEY= A workstation device number. Specified in the
low-order byte of the 4-byte field pointed to by
an address expression, or in the low-order byte of
a register in parentheses.

IN1~RRUPT= The device number of a workstation, printer, or
telecommunications device. May be specified in
the low-order byte of the 4-byte field pointed to
by an address expression, or in the low-order byte
of a register in parentheses.

IOSWADDR= An address in segment 2, into which the IOSW will
be placed. May be specified as an address
expression, or as a register in parentheses
containing the address of the IOSW receipt area.
This operand is required for the CHECK INTERRUPT
option and for the CHECK TCIO option if the CHECK
is for a TC unsolicited interrupt.

PLIST=

COUNI'=

Example

LABl
+LABl
+
+

The IOSWADDR operand is not required for the TCIO
option if CHECKing for completion of an TC I/O
event.

Address of a parameter list for CHECK MULTIPLE.
May be specified as an address expression, or as a
register in parentheses containing the address of
the parameter list.

-Number of events (PLIST entries) for CHECK
MULTIPLE. May be specified as a self-defining
term which is the number of events, or as a
register in parentheses containing the number of
events (in binary) in the low-order byte.

CHECK
PU SHA
PUSH
SVC

OFB=(R2) ,ERREXIT=ERROR
O,ERROR
O,R2
17 (CHECK)

4-15

Close File

Syntax

[label] CLOSE [REEL ,] UFB={ (register) }
[NOREWIND,] {expression}
[UNLOAD ,]

Restrictions

None.

Function

Closes a file (removes it from processable status). Places
the User File Block (UFB) in a state in which an OPEN can
be addressed to it to return the file to processable
status. This includes placing sufficient file location
infonnation in the UFB so that a succeeding OPEN will refer
to the same file, volume, and device. If UFB bit UFBFlWORK
is set and the file is in a library named llxxxWORK (where
xxx is the USERID), the file will be SCRATCHed as well as
CLOSEd. (See the SCRATCH supervisor call for function.)

Operand Descriptions

UFB=

REEL

NOREWIND

UNLOAD

Example

+
+

LABl

lbe address of a User File Block for an open
file. It must be presented as a register
specification in parentheses, where the
register is assumed to contain the UFB address,
or as a UFB address expression not in
parentheses. If omitted, only the SVC
instruction is generated.

If specified for a file on an appropriate
device (e.g., magnetic tape), the file will not
be closed, but rather will be positioned so
that the first record on the next volume (if
any) will be provided on the next READ, or
written on the next WRITE.

If specified for a magnetic tape file,
rewinding is suppressed when the file is closed.

If specified for a magnetic tape file, the tape
will be rewound, set to "of fline," and
effectively DISMOUN'I'ed when the file is closed.

CLOSE
PUSH
SVC

UFB=(R3)
O,R3
1 (CLOSE)

4-16

Create Intertask Message Port

Syntax

[label] CREATE PORT= {(register)} ,BUFSIZE= {(register)}
{expression} {expression}
{'string' }

[,PRIVILEGED]

Function

Activates an intertask message receipt port with the
specified port name, and with the issuing task as the valid
receiver. Optionally screens out messages not transmitted
by code in privileged state or dedicated system tasks.

Return codes are placed in the word on the stack top as
follows:

0 - Successful.
4 - Another task has activated the specified port name.
8 - Same task has already activated the specified port

name.
12 - GETMEM failure.

Operand Descriptions

PORT=

BUFSIZE=

lbe four-character name of a message receipt
port (chosen by the issuing program; any
characters are allowed). May be specified as a
register in parentheses pointing to the port
name, as a literal in single quotes which is
the port name, or as an expression addressing a
4-byte field containing the port name.

'Ille space in bytes to be
buffering messages. May not
2016.

allocated for
be greater than

PRIVILEGED Causes only messages transmitted by tasks in
privileged code or by dedicated system tasks to
be received by the message receipt port being
created.

Example

LABl CREATE
+LABl PUSHC
+ PUSH
+ MVI
+ SVC

PORT=PORTNAME,BUFSIZE=(RO)
0(4,0),PORTNAME
O,RO
Q (15) ,x I QQ I

37 (CREATE)

4-17

Return CEXIT 'RE11JRN' Information

Syntax

CXT [NODSECT] [,REG=expression] [,SUFFIX=character]

Function

The CXT macroinstruction allows the user to symbolically
reference the information returned to a program's cancellation
interception routine.

Operand Descriptions

NODSECT

REG=

SUFFIX=

Example

Specification of NODSECT results in the CXT
fields to be assembled as part of the current
CSECT, DSECT, or STATIC section. If not
specified, a DSECT with the name CXT (+ SUFFIX)
is generated.

Provides for the optional specification of a
register for which a USING statement for the
CXT fields is generated.

If provided, all labels are generated by the
concatenation of 'CXT' , the user-provided
SUFFIX (one ASCII character in length) , and the
field name.

+CXT
CXT
DSECT

+*
+*
+*
+CXTBEGIN
+CXTPCW
+CXTPROGRAM
+*

TIIE CEXIT RETURN INFORMATION BLOCK IS RETURNED TO
A PROGRAM'S CEXIT ROUTINE FOR PROGRAMMED ANALYSIS
OF AN ABNORMAL TERMINATION CONDITION.

+*
+*
+CXTFLAGS
+*
+CXTSPARE
+CXTREGS
+*
+CxntSGLIST
+CXTMSGID
+CXTMSGISSUER
+CXTMSGLENGTII
+CX'l'MSG
+

DS OF (FULLWORD ALIGNMENT)
DS CL8 CANCELLED PROGRAM'S PCW
DS CL8 NAME OF CANCELLED PROGRAM

DS

DS
DS

XLl

CL47
CL64

DS OX
DS CL4
DS CL6
DS H
EQU *
CSE CT

4-18

(X'OO' IF UNABLE TO OBTAIN
BUFFER DURING CANCEL
PROCESSING!)

VALUE IN PFBCXTOPTS AT TIME
OF PROGRAM CANCELLATION

(RESERVED)
REGISTER'S OF PROGRAM

AT TIME OF PROGRAM CANCEL
CANCEL MSGLIST
MESSAGE IDENTIFIER
MESSAGE ISSUER
MESSAGE LENGTH
MESSAGE BEGINS HERE

Delete Record from Indexed File

Syntax

[label] DELETE UFB={ (register)} [,COND={ integer }]
{expression} [{absolute expression}]

Restrictions

The file specified must be open for IO or SHARED mode
processing. In IO mode, the last function on this file
must have been a successful READ with the HOLD option. In
SHARED mode, the record to be rewritten must be held as a
result of a READ with the HOLD option.

Function

To delete the last record read from an indexed file on
disk. Normally, control is returned to the instruction
location following the DELETE macroinstruction. If the
record to be deleted is not held, if the file is not an
indexed file, or if the DELETE function is not allowed for
the current 'open mode' , control is returned to the I/O
error return address as specified in the UFB, with the
normal return address in register 0. If the I /0 error
return address in the UFB contains all binary zeroes when
an error occurs, the program is abnormally terminated.

File status bytes in the UFB are set as follows for DELETE:

Success
I/0 error
Invalid function or
function sequence

Operand Descriptions

UFBFSl=O, UFBFS2=0
UFBFS1=3, UFBFS2=0
UFBFS1=9, UFBFS2=5

UFB= The address of a User File Block. It may be
presented . as a register specification, where the
register is assumed to contain the UFB address, or
as an expression not in parentheses, in which case
the word addressed is assumed to begin the UFB.

COND= If specified, the number or absolute expression
becomes the first operand of the JSCI instruction
by which the DELETE function is entered. Thus the
DELETE is made conditional. COND=15 is the
default. Register 1 is loaded with the UFB address
in any case.

4-19

DELETE

Exam2les

LABl DELETE UFB=(R2)
+LABl LR 1,R2
+ JSCI 15 ,12 (1)

LAB2 DELETE UFB=DSKUFB,COND=7
+LAB2 LA 1,DSKUFB
+ JSCI 7 ,12 (1)

4-20

Destroy Intertask Message Port

Syntax

[label] DESTROY PORT= {(register) }
{ expression}
{ 'literal' }

Function

Deactivates the intertask message receipt port with the
specified port name, which must have been activated by the
same task by means of the CREATE macroinstruction.

Return codes are placed in the word on the stack top as
follows:

0 - Successful.
4 - One or more messages were not received, and are

lost; otherwise successful.
8 - No such message buffer was allocated by this task.

Operand Description

PORT= The four-character name of a message receipt port.

Example

May be specified as a register in parentheses
pointing to the port name, as a literal in single
quotes which is the port name, or as an expression
addressing a 4-byte field containing the port name.

LABl DESTROY PORT=(Rl)
+LABl PUSHC 0(4,0) ,O(Rl)
+ SVC 38 (DESTROY)

4-21

Dismount Disk or Tape Volume

Syntax

[label] DISMOUNT VOLUME= {address }
{(register)}
{'string' }

, TYPE = {DISK}
{TAPE}

Restrictions

None.

Function

,NOD I SPLAY= {YES}
{NO }

To request the dismounting of a disk or tape volume. If the
volume referenced is a tape volume, then it is also rewound and
unloaded.

DISMOUNT issues a return code to the user program in the stack
top word which indicates the success/failure/status of the
operation (see DISMOUNT SVC description for possible values).

Operand Descriptions

VOLUME= The name of the volume which is to be dismounted.

TYPE=

It may be specified as as a register in parentheses
pointing to the volume name, as a character string
in single quotes which is the volume name, or as an
expression addressing a 6-byte field containing the
volume name. This operand is required.

Indicates whether the volume is a disk or a
volume. Valid values are DISK and TAPE.
operand is optional and defaults to DISK.

tape
This

NODISPLAY= If YES is supplied, indicates that no messages
are to be displayed on the user's workstation; the
operator console messages must be used to coordinate
physical dismounting. The default is NO.

4-22

Examples

LAB
+ LAB
+
+
+
+
+
+

LAB
+ LAB
+
+
+

LAB
+ LAB
+
+
+
+

DISMOUNI' VOLUME='VOL444' ,TYPE = DISK
PUSHN 0,8 GET TWO WORDS ON THE STACK
MVC 2(6,15),*+10 SET VOLUME NAME
B *+10 BRANCH AROUND CONSTANT
DC CL6'VOL444' VOLUME NAME
MVI 0(15) ,X'OO' SET FLAG FOR DISK VOLUME

MVI 1 (15) ,X'OO' SET BYTE 1 to ZEROES (RESERVED)
SVC 41 (DISMOUNT) ISSUE SVC

DISMOUNI' VOLUME=(R4)
PUSHN 0,8
MVC 2(6,15) ,O(R4)
MVI 0(15) ,X'OO'
MVI 1(15) ,X'OO'
SVC 41 (DISMOUNT)

GET TWO WORDS ON THE STACK
SET VOLUME NAME
SET FLAG FOR DISK VOLUME
SET BYTE 1 TO ZEROES (RESERVED)
ISSUE SVC

DISMOUNT VOLUME=TAPEVOL,TYPE=TAPE
PUSHN 0,8 GET TWO WORD ON THE STACK
MVC 2(6,15) ,TAPEVOL SET VOLUME NAME
MVI 0(15) ,X'80' SET FLAG FOR TAPE VOLUME
MVI 1(15) ,X'OO' SET BYTE 1 TO ZEROES (RESERVED)
SVC 41 (DISMOUNT) ISSUE SVC

4-23

Extract Data From System Control Blocks

Syntax

[label] EXTRACT FORM= {LIST }
{BRIEF}
{FULL }
{PCPCW}

AREA=al, NRES=a2, DYVAL=a3, SYSVOL=a4,
SYSLIB=a5, SYSWORK=a6, VERSION=a7, OCNT=a8,
WS=a9, STACK=alO, EXFLGS=all, RDFLGS=a12,
WTFLGS=a13, SEG2BUF=al4, USERID=a15, USERNAME=a16,
EX'l'PRIOR=al 7, PCPCW=al8, TASKll=al 9, TASKTYPE=a20,
CURVOL=a21, CURLIB=a22, WORKLIB=a23, SPOOLIB=a24,
SEG2SIZE=a25, STATIC=a26, PRINTER=a27, RUNVOL=a28,
RUNLIB=a29, INVOL=a30 , INLIB=a31 , OtrrVOL=a32 ,
OUTLIB=a33, PRNTMODE=a34, FILECLAS=a35, LINBS=a36,
PROGVOL=a37 , PROGLIB=a38, WORKVOL=a39 , SPOOLVOL=a40 ,
PRTCLASS=a41, FORM#=a42, WSIO=a43, TAPEIO=a44,
DISKIO=a45, PRINTIO=a46, OTIO=a47, PICOUNT=a48,
POCOUNT=a49, SICOUNT=a50, SOCOUNT=a51, ETIME=a52,
PTIME=a53, DEVICE=(a54,a55), VOLUME=(a56,a57),
OTASK=(a58,a59), TAPEVOL=(a60,a61), DEVCNT=a62,
ATOETRT=a63, ETOATRT=a64, DEVLIST= (a65 ,a66 ,a67) ,
VERSION=a68, SYSPAGE=69, CPU=a69, HZ=a70,
UEXFLGS=a71, URDFLGS=a72, UWTFLGS=a73, CLUSTER=a74,
JOBQUEUE=a7 5, JOBCLASS=a 7 6, JOBLIMIT=a 77 , JOBNAME=a 7 8,
DLPNAME=(a79,a80), DLPDEV#=(a81,a82),
CDISKET=a83, VOLVCB=(a84,a85)

Restrictions

None.

Function

Retrieves data from system control blocks that may be
useful to user programs.

The following outputs for FORM= BRIEF, FORM = FULL, or
FORM = PCPCW are placed in the area addressed by the AREA=
operand, by ascending addresses:

FORM=BRIEF:

(1) Total physical area in bytes not currently
resident (4 bytes)

(2) Number of files which a task may have open
simultaneously (2 bytes)

4-24

EXTRACT

(3) Workstation number ~ssociated with requesting
task, or -1 if none (2 bytes)

(4) Remaining stack space in bytes after re tum from
EXTRACT (4 bytes)

FORM = FULL:

(1) Total physical area in bytes not currently
resident (4 bytes)

(2) Number of files which a task may have open
simultaneously (2 bytes)

(3) Workstation number associated with requesting
task, or -1 if none (2 bytes)

(4) Remaining stack space in bytes after re tum from
EXTRACT (4 bytes)

(5) One day in clock units (4 bytes)
(6) System default library's volume name (6 bytes)
(7) System default library name (8 bytes)
(8) Task's default printer number, or -1 if none (2

bytes)
(9) User program library volwne (6 bytes)
(10) User program library name (8 bytes)
(11) Current file-access bit map for 'execute' access

(from Program File Block (PFB)) (4 bytes)
(12) Default non-output volume for 'OPEN' (6 bytes)
(13) Default non-output library name (8 bytes)
(14) Current file-access bit map for 'read' access

(from Program File Block (PFB)) (4 bytes)
(15) Default output volume for 'OPEN' (6 bytes)
(16) Default output library name (8 bytes)
(17) Current file-access bit map for 'update' access

(from Program File Block (PFB)) (4 bytes)
(18) Number of segment 2 buffer pages currently

available (2 bytes)
(19) Print output mode (Spooled (S) , Keep (K), Hold

(H), or On-line (0)) (1 byte)
(20) Default output file-protection class, or blank (1

byte)
(21) User logon identification (3 bytes)
(22) Task current paging priority (from Task Control

Block) (1 byte)
(23) Suggested lines-per-page for print files (1 byte)
(24) Operating System version number (Packed number

'VVRRPP' where VV is the version, RR is the
revision, and PP is the patch level) (3 bytes)

FORM = PCPCW

(1) Program Control Word (PCW) at time of most recent
program exception for which a user exit was
specified (8 bytes)

4-25

EXTRACT

Operand Descriptions

FORM=

AREA=

BRIEF is used to request four items as described
above. Thus the output area must be at least 12 bytes
long. FULL is used to request all 20 items listed
above, and thus the output area must be at least 98
bytes long. PCPCW is used to request the value of the
Program Control Word (PCW) current when a program
exception occurred for which an exit routine was
provided, and is intended for use in such a routine.
(Its use at other times results in undefined and
irrelevant output.) The output area must be at least
8 bytes long. LIST is used when a list of needed
items is supplied.

Specifies the address of the output area, either as an
expression addressing that area, or as a register
expression in parentheses, where the register contains
the address of the area. Not valid with FORM=LI ST.

The following operands are used with FORM = LI ST. only. - The
operand specifies the address of an area to receive the
corresponding data item.

SYSTEM-WIDE INFORMATION:

NRES=

DYVAL=
SYSVOL=
SYS LIB=
SYSWORK=

VERSION=

SYSPAGE=
DEVCNT=

ATOETRT=

ETOATRT=

CDISKET=

CPU=
HZ=

Total physical area in bytes not currently
resident (4 bytes)
One day in clock units (4 bytes)
System default library's volume name (6 bytes)
System default library name (8 bytes)
System work library (paging files, system task
queues, etc.) which BACKUP skips (8 bytes)
Operating System version number (Packed VVRRPP,
where VV is the version, RR is the revision, and
PP is the patch level) (3 bytes)
System paging library name (8 bytes)
Device number (=255) of highest-numbered I/0
device on the system (4 bytes)
ASCII-to-EBCDIC translate table (256 bytes).
See TR instruction in Principles of Operation
Manual for use.
EBCIDIC-to-ASCII
See TR instruction
Manual for use.

translate table
in Principles

(256
of

bytes).
Operation

Device number of system's central diskette
bytes)

(2

Current CPU ID (2 bytes)
A/C line frequency (2 bytes)

4-26

EXTRACT

TASK-RELATED INFORMATION:

OCNT=

WS=

STACK=

EXFLGS=

RDFLGS=

WTFLGS=

UEXFLGS=

URDFLGS=

UWTFLGS=

SEG2BUF=

USER ID=
USERNAME=
EXTPRIOR=

PCP CW=

TASK/I=
TASKTYPE=

CURVOL=
CURLIB=

WORKLIB=

SPOOLIB=

JOBNAME=
SEG2SIZE=
STATIC=

Number of files which current task may have open
simultaneously, excluding files already open (2
bytes)
Workstation number associated with requesting
task, or -1 if none (2 bytes)
Remaining stack space in bytes after return from
EXTRACT { 4 bytes)
Current file-access bit map for 'execute' access
(from Program File Block (PFB)) (4 bytes)
Current file-access bit map for 'read' access
{from Program File Block (PFB)) (4 bytes)
Current file-access bit map for 'update' access
{from Program File Block (PFB)) (4 bytes)
User's base file-access bit map for 'execute'
access {from user's Extended Task Control Block
(ETCB)) (4 bytes)
User's base file-access bit map for ' read'
access (from user's Extended Task Control' Block
(ETCB)) (4 bytes)
User's base file-access
'update'access (from user's
Control Block (ETCB)) (4 bytes)

bit map
Extended

for
Task

Number of segment 2 buffer pages currently
available (2 bytes)
User logon identification (3 bytes)
User name (from system user list) (24 bytes)
Task's current paging priority (from Task
Control Block) (1 byte)
Program Check Old PCW for last program check (8
bytes)
Unique task identifier (4 bytes)
Task type (' F' for fore ground , 'FS' for
dedicated foreground system task, 'B' for
background task, and 'BS' for dedicated
background system task) (2 bytes)
Volume where current program resides (6 bytes)
Library in which current program resides (8
bytes)
Work library name constructed from user ID or BG
task number (8 bytes)
Spool library name constructed from user ID or
BG task number (8 bytes)
Name of background job (8 bytes)
Length of segment 2, in bytes (4 bytes)
Pointer to beginning of static areas for current
program (May be useful in re-establishing
addressability in a CEXIT routine) (4 bytes)

4-27

EXTRACT

USER DEFAULTS (May be set by using the SET SVC or the SET Command
Processor function):

PRINTER=

RUNVOL=

RUNLIB=

INVOL=
INLIB=
OUTVOL=
OUTLIB=
PRNI'MODE=
FILECLAS=

LINES=
PROGVOL=

PROGLIB=
WORKVOL=
SPOOLVOL=
PRTCLASS=

FORM/I=

JOBQUEUE=
JOBCLASS=
JOBLIMIT=

RUN STATISTICS:

WSIO=
DISKIO=
TAPE IO=
PRINT IO=
OTIO=

PI COUNT=
POCOUNT=
SI COUNT=
SOCOUNT=
ET I ME=

PT I ME=

Task's default printer number, or -1· if none (2
bytes)
User program library volwne {used by Command
Processor RUN function) (6 bytes)
User program 1 ibrary name (used by Command
Processor RUN function) (8 bytes)
Default non-output volume for OPEN (6 bytes)
Default non-output library (8 bytes)
Default output volume for OPEN (6 bytes)
Default output library (8 bytes)
Default print output mode (1 byte)
Default output file-access protection class, or
blank (1 byte)
Suggested lines-per-page for print files (1 byte)
User program volume name used by LINK SVC (6
bytes)
User program library used by LINK SVC (8 bytes)
Default work volume (6 bytes)
Default spool volume (6 bytes)
Default print class for print files (A-Z) (1
byte)
Default form number for print files (0-254) (1
byte)
Default job status (Run (R) or Hold (H)) (1 byte)
Default job class (A-Z) (1 byte)
Default job CPU time limit (4 bytes)

Count of workstation I/Os this run {4 bytes)
Count of disk I/Os this run {4 bytes)
Count of tape I/Os this run (4 bytes)
Count of printer I/Os this run {4 bytes)
Count of I/Os for other devices not included
under WSIO, DISKIO, PRINTIO, or TAPEIO (4 bytes)
Program pagein count (4 bytes)
Program pageout count (4 bytes)
System pagein count (4 bytes)
System pageout count (4 bytes)
Elapsed time of run since command processor
initiation, in hundredths of seconds (4 bytes)
Processor time of run since command processor
initiation, in hundredths of seconds (4 bytes)

4-28

EXTRACT

The following operands
addresses are supplied.
input, and the second
corresponding data.

are used with FORM=LIST only. Two
lhe first address specifies further

address specifies as area to receive the

DEVICE=

VOLUME=

OTASK=

Input:
Output:
(1)
(2)
(3)

(4)

(5)

(6)

(7)

Input:
Output:
(1)

(2)

(3)

(4)

(5)

(6)
(7)
(8)
(9)

(10)
(11)

(12)

(13)

Device address (1 byte)

Device class (1 byte)
Device type (1 byte)
Usage - 'EX' (exclusive, '·SH' (shared)' or
'DT' (detached) (2 bytes)
Task identifier of device owner, or -1 if
none (4 bytes)
Volume name number of removable volume (disk
or tape only) .. Blank if nothing mounted. (6
bytes)
Volume name of fixed volume (disk only).
Blank if nothing mounted. (6 bytes)
4 bytes of binary zeroes (reserved)

Volume Name (6 bytes)

Device address, or -1 if volume not mounted
(1 byte)
Volume type: 'F' for fixed, 'R • for
removable, or blank if not mounted (1 byte)
Label type: 'SL' (standard label), 'NL' (no
label), or blank if not mounted (2 bytes)
Usage 'SH' (shared), 'RR' (restricted
removal), 'PR' (protected), 'EX'
(exclusive) , or blank
Task identifier of volume mounter, or · -1 if
none (4 bytes)
Blocks per cylinder (2 bytes)
Maximum transfer in bytes (2 bytes)
Cylinders per volume (2 bytes)
Cylinders per physical volume, including bad
or unused blocks (2 bytes)
Number of files open on this volume (2 bytes)
Sector type (diskette only): soft sector
(S), hard sector (H)
Addressing in effect (diskette only):
Non-standard (N), Standard (S)
Unused (2 bytes)

Input: Task identifier (4 bytes)
Output:
(1) Workstation device number of task specified,

or -1 if none (1 byte)

4-29

EXTRACT

TAPEVOL=

DLPNAME=

(2) Current user ID for task specified, or blank if
none (3 bytes)

(3) Current user name for task specified, or blank
if none (24 bytes)

(4) Type ('F', 'FS', 'B', 'BS') of task specifed
(see TASKTYPE) (2 bytes)

(5) 18 bytes of binary zeroes (reserved)

Input: Volume name (6 bytes)
Output:
(1) Device address, or -1 if volume not mounted (1

byte)
(2) 1 byte of binary zeroes (reserved)
(3) Density, BPI in binary: 55 6, 800, or 1600 (2

bytes)
(4) Label type: 'AL' (ANSI) , 'NL' (no label) , ' IL'

(IBM label), or blank if volume not mounted (2
bytes)

(5) Usage: 'SH' (shared), 'EX' (exclusive}, or
' blank if not mounted (2 bytes)

(6) Task identifier of tape mounter, or -1 if none
(4 byts)

(7) Current file sequence number (2 bytes)
(8) 6 bytes of binary zeroes (reserved)

Input: Name of Data Link Processor (as specified in
the SYSGEN procedure)

NOTE:
The output area will be all zeroes if the specified
DLP name is invalid.

Output:
(1) Bit map of devices on DLP (4 bytes)
(2) First device on DLP (2 bytes)
(3) Type of DLP (1 = 22V06-1, 2 = 22V06-2, 3 =

22V06-3) (1 byte)
(4) Number of lines (RS-232) controllable by the DLP

(1 byte)
(5) Microcode file status (X'OO' if stopped, X'SO'

if loaded) (1 byte)
(6) Reserved for future use (3 bytes)
(7) Microcode file name (8 bytes, zero if not loaded)
(8) Microcode library name (8 bytes, zero if not

laoded)
(9) Microcode volume name (6 bytes, zero if not

loaded)
(10) Reservation status of DLP (X' 80' if

reserved, X'OO' if not reserved)
(11) Task number of the task which reserved the

DLP (3 bytes)

4-30

EXTRACT

DLPDEV# Input: Device address (2 bytes)

NOTE:
For the DLPDEV# operand, the output area will contain
zeroes if the specified device address is invalid.

Output:
(1) Device status flag (X • 80' if open, X' 40' if

reserved, zero otherwise)
(2) Task number of the task which reserved the DLP , or

zero if device is unreserved (3 bytes)
(3) Name of the DLP on which the device is SYSGBNed (4

bytes)

CLUSTER= Input: Device number (2 bytes)

NOTE:
This operand is used for obtaining the device number of
the archiver diskette on the same cluster as the device
number which is specified as input. (If more than one
archiver diskette is on the cluster, then the device
number that is returned belongs to the archiver whose
device number is next in sequence.)

Output:
(1) Device number of the archiver diskette, or zero if

none (2 bytes)
(2) Unused (14 bytes)

VOLVCB= Input: Volume name (6 bytes)

Output: Volume Control Block (VCB) address (4 bytes)

The DEVLIST operand has three suboperands. The first address
specifies further input, the second address specifies an area to
receive the corresponding data, and the third suboperand is the
length of the output area (specified as an expresssion or
register in parentheses). Note that the maximum number of device
addresses in the device list will be two less than the output
length specified.

DEVLIST= Input: Device class, as in EXTRDDEVCLASS (1 byte)
Output:
(1) Total number of devices for specified device class

(1 byte)
(2) Number of device addresses supplied (1 byte)
(3) Device address list (1 byte for each device address)

4-31

EXTRACT

Examples

LABl EXTRACT FORM=BRIEF,AREA=(R3)
+ LABl PUSH O,R3 AREA
+ MVI O(SP) ,O FORM= BRIEF
+ SVC 28 (EXTRACT)

LAB2 EXTRACT INLIB=Al,INVOL=(Rl)
+ LAB2 PUSH O,Rl AREA FOR INVOL
+ PU SHA 0,11 IDENTIFIER
+ PU SHA O,Al AREA FOR INLIB
+ PU SHA 0,12 IDENTIFIER
+ PU SHA 0,2 COUNT OF ITBMS
+ MVI 0(15) ,3 FORM=LIST
+ SVC 28 (EXTRACT)

LAB3 EXTRACT OUI'LIB=Al,VOLUME=(A2,(Rl))
+ LAB3 PU SHA O,Al AREA FOR OUTLIB
+ PUS HA 0,15 IDENTIFIER
+ PU SHA 0,1 COUNT OF ITEMS
+ MVI 0 (15) ,3 FORM=LIST
+ SVC 28 (EXTRACT)
+ PU SHA O,A2 VOLSER ADDRESS
+ PUSH O,Rl AREA FOR OUTPUT
+ PUSH 0 (15) ,24 CURRENT Ot.rl'PUT LENGTH
+ PU SHA 0,51 IDENTIFIER
+ PUS HA 0,1 COUNT OF ITEMS
+ MVI 0 (15) ,4 FORM=LIST WITH ADDITIONAL INPUT
+ SVC 2 8 (EXTRACT)

LAB4 EXTRACT DEVLIST=(A2,(Rl) ,12)
+ LAB4 PU SHA O,A2 DEVICE CLASS ADDRESS
+ PUSH O,Rl AREA FOR OUTPUT
+ MVI 0 (15) ,12 SPECIFIED OUTPUT LENGTRH
+ PUS HA 0,59 IDENTIFIER
+ PU SHA 0,1 COUNT OF ITEMS
+ MVI 0' (15) ,4 FORM=LIST WITH ADDITIONAL INPUT
+ SVC 2 8 (EXTRACT)

4-32

Generate Selected Parameter Group Control List Fields

Syntax

[label] FMTLIST [LABELPFX='prefix' ,]

{'Keyword',({'displayed-value'}
{ { absolute-length }

[,CHAR]
[,INT]
[,NUM]
[,AN]
[,HEX]
[,UCHAR]
[,ANL]

[,line-advance][,space-advance]),

}
}
}
}
}
}
}
}
}
}
}
}
}

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{TEXT, } }
{textname,} ('displayed-text' }

[,line-advance][,space-advance] }
[' I CENTER I] [' • RIGHI'.]) }

['Keyword2', (•••) , •••]

[,PREVIEW = {YES}]
{NO}

Function

Generates Field Format Control Blocks for use in a
Parameter Group Control List as addressed by SVC GETPARM
and SVC PUTPARM. The function is identical to that of the
KEYLIST macroinstruction, except that the first eight bytes
of the Parameter Group Control List are not generated.
Thus, a PRNAME may not be specified.

Operand Descriptions

As for the KEYLIST macroinstruction, except that PRNAME may
not be specified.

4-33

FMTLIST

Example

LABl

+LABl
+
+
+
+TEXTl
+
+
+XXXLIST
+
+

FMTLIST LABELPFX='XXX',
TEXTl,('HEADING'),
TEXT' (I SUBHEADING I) '
'LIST', ('NO' ,AN)

EQU *
DC HLl 1 0 1 PF KEY
DC HLl I 3 I FIELD COUNT
DC HLl'l,0,-1.6'
DC C'HEADING'
DC
DC
DC
DC
DC

HL1 1 1,0,-l,9 1

C'SUBHEADING'
HLl'l,O,O,l'
CL8'LIST'
C'NO'

4-34

x
x
x

Free Buffer Space

Syntax

[label] FREEBUF BUFLOC={ (register) } [,LENGTH= (register)_]
{ expression}

Restrictions

For use by certain supervisor call routines and Data
Management System routines only.

Function

To deallocate a buffer area allocated by GETBUF. The
buffer area at the address (in segment 2, as provided by a
preceding GETBUF) specified by the BUFLOC operand and for
the length specified by the LENGTH operand is made
available for reallocation by GETBUF. 'llle contents of this
area should be considered unreliable after the FREEBUF has
been issued.

A return code is left on the stack:

0 - Buffer deallocated
4 - Invalid buffer address
8 - Invalid buffer length

Operand Descriptions

BUFLOC=

LENGTH=

Example

LABl
+LABl
+
+

The address of a buffer allocated by GETBUF.
This must be presented as a register
specification in parentheses, where the
register is assumed to contain the buffer
address, or as a buffer address expression not
in parentheses.

A register specification in parentheses where
the register contains the buffer length. The
length must be a multiple of 2048, and must be
the same as that requested by GETBUF. LENGTH
of 2048 is assumed if no LENGTH= operand is
supplied.

FREEBUF BUFLOC=(Rl)
PU SHA 0,2048
PUSH O,Rl
SVC 6 (FREEBUF)

4-35

Deallocate Heap Storage

Syntax

[label] FREEHBAP SIZE= (register)

,LINKLEV=

,BUFLOC=

,POOLNAMB=

Restrictions

address

{ (register) }
{address }

{address }
{'string' }

[,ROOTLEV] [,SEARCH] [,DELETE]

A stack with the stack top addressed by .the general
register 15 must be available.

Function

Deallocates heap storage previously allocated by the
GETHEAP SVC.

Operand Descriptions

SIZE= The size of the block to be allocated. Specified
as a register in parentheses where the register
contains the size of the block in the low-order
three bytes. When the deletion of an entire
subpool is specified (i.e. , the DELETE parameter
is specified), the SIZE parameter is ignored.

BUFLOC= Start address of the buffer/block to be deleted.
Specified as a register in parentheses containing
the start address of the buffer /block in the
low-order three bytes, or as an address expression
pointing to a 4-byte field which contains the
start address of the buffer/block in the low-order
three bytes. When the deletion of an entire
subpool is specified (i.e., the DELETE parameter
is specified) , the BUFLOC parameter is ignored.
BUFLOC must be specified if DELETE is not
specified.

4-36

FREEHEAP

LINKLEV= Link level at which to start searching for the
specified subpool. A value of '0' indicates the
current link level, a value of 'I' is the parent,
and so on. Specified as an address expression
pointing to a one-byte field containing the link
level in binary. Default is 0 (i.e. , current link
level).

POOi.NAME= Name of the subpool to be searched/ deleted.

ROOT LEV

SEARCH

DELETE

Example

Specified as a 1- to 8-byte character string in
quotes which is the name of the subpool, or as an
address expression pointing to an 8-byte character
string not in quotes. Blank names are not
permitted. Trailing blanks are insignificant.
There is a system-defined default poolname for
each link level.

If specified, sets the LINKLBV parameter to 255
(X'FF'), which indicates the lowermost link
level. Any other value specified with LINKLEV= is
ignored if ROOTLEV is specified.

If specified, a backward search for the subpool is
to be initiated starting from the LINK LEV
specified. Default is no backward search.

If specified, asks for the deletion of an entire
subpool. 'The SEARCH parameter is ignored if
DELETE is specified. The BUFLOC parameter and
SIZE parameter are ignored if DELETE is specified.

LABl FREEHEAP SIZE=(3),POOLNAME=NAMELOC,BUFLOC=START,ROOTLEV
+LABl PUSHN 0,16 RESERVE STA.CK SPA.CE FOR PARAMETERS
+ XC (16 ,15) ,O (15) INITIALIZE PARAMETER SPACE
+ MVC 8(8,15) ,NAMELOC MOVE POOLNAMB TO STACK
+ STCM 2,B'Olll',1(15) MOVE SIZE PARAMETER TO STACK
+ MVC 5 (3 ,15) ,START MOVE START ADDRESS TO STACK
+ OI 4 (15) ,X' FF 1 SET LOWERMOST LINK LEVEL
+ SVC 57 (FREEHEAP)

4-37

Get Buffer Space

Syntax

[label] GETBUF [LENGTH=(register)]

Restrictions

For use by certain supervisor call routines and Data
Management System routines only.

Function

To allocate a data management buffer area on a 2048-byte
(page) boundary. Buffer space is allocated from the
low-address end of segment 2. Control register 2 (the
stack limit word) may be modified by this function and by
FREBBUF. Two words are stacked as output of this function:

If a buffer is allocated, the
stack contains binary zero,
contains the buffer address.

top word of the
and the next word

If a buffer cannot be allocated, the top word of
the stack contains four in binary, and the next
word's contents are undefined.

If the requested length is not a multiple of 2K,
the top word of the stack contains eight in
binary, and the next word's contents are
undefined.

Operand Description

LENGTH= A register specification in parentheses where the
register contains the buffer length. Only
lengths which are multiples of 2048 are valid.
If the operand is omitted, LENGTH of 2048 is
assumed.

Example

LABl
+LABl
+
+

GETBUF
PUSHN
PU SHA
SVC

0,4
0,2048
5 (GETBUF)

4-38

Allocate Heap Storage

Syntax

[label] GETHEAP SIZE= (register)

,LINKLEV= address

,POOLNAME= {address }
{'string'}

[,ROOTLEV] [,ALIGN] [,SEARCH] [,CREATE]

Restrictions

A stack with the stack top addressed by general register 15
must be available.

Function

lbis macro provides a user-level memory management feature
known as heap storage allocation. Heap storage is storage
independent of the system stack that can be allocated
dynamically. The GETHEAP facility is a generalization of
the GETBUF macro and SVC (for allocating page-aligned
buffers) with the following additional features:

1. Any size block can be allocated. It is not necessary
for the size to be a multiple of 2K. Any size is
automatically rounded up to the nearest 8-byte multiple.

2. Blocks may be put into different 'subpools'.
Advantages of subpooling are that clustering of areas
allocated from the same subpool will tend to occur, and
that blocks in a given subpool may be allocated in
separate calls of the GETHEAP macro and then
deallocated together by one FREEHEAP call.

3. All subpools associated with a specified link level are
released automatically on UNLINK for that level.

Because blocks are automatically released at program
termination, present GETBUF users are encouraged to convert
to GETHEAP.

4-39

GETHEAP

Operand Descriptions

SIZE=

LINKLEV=

POOLNAME=

ROOTLEV

ALIGN

SEARCH

CREATE

The size of the block to be allocated. Specified
as a register in parentheses where the register
contains the size of the block in the low-order
three bytes.

Link level at which to start searching for the
specified subpool. A value of '0' indicates the
current link level, a value of 1 1 1 is the parent,
and so on. Specified as an address expression
pointing to a one-byte field containing the link
level in binary. Default is 0 (i.e. , current link
level).

Name of the subpool to be searched/created.
Specified as a one- to eight-byte character string
in quotes, or as an address of an eight-byte field
containing an eight-byte character string not in
quotes. Blank names are not permitted. Trailing
blanks are insignificant. There is a
system-defined default poolname for each link
level.

If specified, sets the LINKLEV parameter to 255
(X'FF'), which indicates the · lowermost link
level. Any other value specified with LINKLEV= is
ignored if ROOTLEV is specified.

When specified, requests 2K-alignment for all
blocks which are a multiple of 2K in size. This
parameter is ignored for blocks which are not a
multiple of 2K. The default is no alignment.

If specified, a backward search for the subpool is
initiated starting from the LINKLEV specified.
The default is to no backward search.

If specified, asks for the creation of a new
subpool with the name given by the POOLNAME=
parameter and at the link level given by LINKLEV.
lbe SEARCH parameter is ignored if CREATE is
specified.

4-40

Example

LABl GE'lllEAP
+LABl PUSHN
+ xc
+ MVC
+ 8
+ DC
+ STCM
+ MVC
+*
+ OI
+ SVC

GETHBAP

SIZE=(2),POOLNAME='POOL',LINKLEV=LEVL,CREATE
0,16 RESERVE STACK SPACE FOR PARAMETERS
0(16,15),0(15) INITIALIZE PARAMETER SPACE
8(8,15),*+10 MOVE POOLNAME TO STACK
*+12
CL8 1POOL'
2 ,B' 0111' , 1 (15)
4(1,15) ,LEVL

0(15) ,X'40'
56 (GETHEAP)

4-41

MOVE SIZE PARAMETER TO STACK
MOVE LINK LEVEL PARAMETER TO
STACK
SET THE CREATE FLAG

Get Parameters

Syntax

[label] GETPARM [! ,]FORM={REQUEST}

Function

[ID,] {SELECT }
[R ,] {ACK }
[RD,] {SYSHDR }

{OPR }

,KEYLIST={(registerl)}
{expressionl}

,MSG={(register2)}
{expression2}

,DEVICE={(register3)} [,PFKEYS={(register4)}]
{expression3} [{expression4}]

[{(ENTER, expression4)}]

To solicit formatted information from a procedure body or
from the user's workstation. Fields for which values are
requested are identified by a two-level name (PRNAME and
Keyword) specified in the Parameter Group Control List
addressed by the KEYLIST operand. The procedure body in
ef feet, if any, is the preferred source of values for a
type 'I' (initial) request. In the absence of a matching
name in a procedure, the user is solicited at the
workstation. A type 'ID' (initial defaulted) request
solid ts from the procedure body only. A type 'R'
(respecification) request solicits from the workstation
only. A type 'RD' request normally solicits no information
from the workstation or from a procedure body, but updates
the procedure's temporarily stored information for use by
reference from a later procedure step.

The MSGLIST macroinstruction may be used to generate a
message for display. The KEYLIST macroinstruction may be
used to generate the Parameter Group Control List addressed
by the 'KEYLIST=' operand of GETPARM.

The total number of lines utilized by KEYLIST and MSGLIST
displays may not exceed 18. None of these lines may be
longer than 79 characters, excluding end-of-line characters.

The user should consult the GETPARM Supervisor Call
description and the KEYLIST macroinstruction description in
this document for details concerning the function of this
macroinstruction.

4-42

GETPARM

Operand Descriptions

I
ID
R
RD

FORM=

MSG=

KEYLIST=

DEVICE=

Indicates the type of request.
specified, 'I' is the default value.

If not

Valid options are shown
specification; these are:

in the syntax

REQUEST - Request for information (default

SELECT
ACK
SYSHDR

OPR

option);
- Request for selection;

Request for acknowledgment;
Request for infomation with
PRNAME displayed;
Request for operator action.

For details,
description.

consult the GBTPARM

no

SVC

The address of a message in the format
specified in the GETPARM Supervisor Call
description. This is the fom of message
generated by the MSGLIST macroinstruction. It
may be presented as a register specification in
parentheses, where the register contains the
message address, or as an expression not in
parentheses, where the expression addresses the
message. A message is always required, but the
message text may be of length zero.

The address of a keyword specification and
display formatting list (fomat control list) ,
in the format specified in the GETPARM
Supervisor Call description. This is the
format produced by the KEYLIST
macroinstruction. Th.is operand may be
presented in the same ways as ,the 'MSG='
operand. A format control list is always
required, but may if desired have no Field
Format Control Blocks (Keyword or text
specifications).

Device nwnber in binary in the low byte of the
specified register or at the byte in memory
specified by the expression. Required if
FORM=OPR is specified; displayed when FORM=OPR
only.

4-43

GETPARM

PFKEYS=

Example

LABl
+LABl
+
+
+

LAB2

LAB3

If supplied as a single suboperand not in
parentheses or if supplied in parentheses with
the word ENTER (as shown in the syntax above) ,
the designated expression is to be used in a
4-byte A-type address constant indicating which
program function keys are to be accepted. The
high-order bit corresponds to program function
key 1, the low-order bit to program function
key 32. Bits on indicate keys to be accepted.
This expression may be preceded by 'ENTER,' in
which case the ENTER key is also accepted.
Otherwise, if the 'PFKBYS=' operand is
supplied, the ENTER key is not accepted.

May also be specified by designating a register
in parentqeses where the register contains the
program function key map.

If the 'PFKEYS=' operand is not supplied, the
following keys are accepted:

FORM=REQUEST
FORM= SELECT
FORM= ACK
FORM=SYSHDR
FORM=OPR

ENTER only
All PF keys and ENTER
ENTER only
ENTER only
ENTER and PF key 16 only

GETPARM
PUSH

KEYLIST=(R2),MSG=LAB2
O,R2

LA
PUSH
SVC

MSGLIST

O,LAB2
o,o
20 (GETPARM)

'1234','TXTEDT' ,'OPTIONS AS FOLLOWS:'

KEYLIST PRNAME='OPT',
'LIST', ('NO' ,AN,1,0),
'DISPLAY'' ('YES I ,AN ,1,0) ,
'LINECNT',('SO',INT,1,0)

4-44

x
x
x

Halt I/0 Operation

Syntax

1. [Label] HALTIO PRINTER = { (register) }

= { integer }

= { expression}

2. [Label] HA.LTIO OFB = { {register) }

= { expression}

Restrictions

Intended for use by system routines and those user programs which
must control I/0 operations thru "XIO" (Execute Physical I /0) • NOT
to be used by programs using normal DMS for I/O.

HALTIO must not be issued unless an unCHECl<ed XIO is currently
outstanding. The user program must always wait for the HALTIO to
complete by issuing a subsequent CHECK I/0 macroinstruction.

Functions

1. To terminate multi-line (especially block-oriented) print I/O
requests to a printer.

2. To terminate an outstanding 1/0 request to/from a file which is
not necessarily a printer output file (especially
telecommunications files).

3. To terminate an outstanding volume-oriented I/0 request to/from
a disk.

HALTIO issues a Return Code in the stack top word for the "PRINTER"
form of the macroinstruction. This Retum Code corresponds to the
condition code set by the HIO machine instruction (see "VS
Principles of Operation").

HALTIO does not issue a Return Code for the "OFB" or "VCB" forms of
the macroinstruction. The stack is cleared by the SVC.

Operand Descriptions

PRINTER - The device number of the printer whose current I /0 is
to be terminated. This number must be in the range 0 -
255 and may be specified as a register in parentheses
containing the device number in binary in its low-order
position as an integer which is the device number in
decimal, or as an expression addressing a one-byte
field containing the device number in binary.

4-45

HALT IO

OFB The address of the Open File Block for the outstanding
I/0. This form is used for file-oriented (regular) I/0
and may reference any file/device pairing. This
operand may be specified as a register in parentheses
or as a four-byte data item defined in the user program.

NOTE: The two operands are, of course, mutually exclusive.

Examples

LAB
+LAB

+

+

LAB
+LAB
+

LAB
+LAB

+

+

LAB
+LAB
+
+

HALTIO PRINTER=(R3)
PUSHA 0,0

STACK
STC R3 ,3 (,15)
ORDER BYTE
SVC 12 (HALTIO)

HALTIO PRINTER=3
PUSHA 0,3
SVC 12 (HALTIO)

HALTIO PRINTER=PBLKID
PUSHA O,O

STACK
MVC 3(1,15),PBLKID

SVC 12 (HALTIO)

HALTIO OFB=(R4)
PUSH O,R4
MVI 0(15),X'SO'
SVC 12 (HALTIO)

4-46

GET ONE WORD OF ZEROS ON THE

PUT PRINTER NUMBER IN LOW-

ISSUE SVC

PUSH PRINTER NUMBER ONTO STACK
ISSUE SVC

GET ONE WORD OF ZEROS FROM THE

PUT PRINTER NUMBER IN
LOW-ORDER BYTE

ISSUE SVC

PUSH OFB ADDRESS ONTO STACK
FLAG AS OFB/VCB TYPE PARMLIST
ISSUE SVC

Generate Parameter Group Control List

Syntax

[label] KEYLIST PRNAME='name', [LABELPFX='prefix' ,]

{'Keywordl',({'displayed-value'}, }
{ { absolute-length } }
{ }

{ (,CHAR] }
{ [,INT] }
{ [,NUM] }
{ [,AN] }
{ [,HEX] }
{ [,UCHAR] }
{ [,ANL] }
{ }

{ [,line-advance] [,space-advance]), }
{ }
{ }
{ }
{ {TEXT, } }
{ {textname} ('displayed-text' }
{ [,line-advance][,space-advance] }
{ [,'CENTER'] [,'RIGHT']) }

['Keyword2' , (•••) , •••]

[,PREVIEW = {YES}]
{NO}

Restrictions

Intended for use in conjunction with the GETPARM macroinstruction.
See that macroinstruction and the GETPARM Supervisor Call
description.

Function

Generates a data structure suitable for use as a parameter group
control list with SVC GETPARM (object of 'KEYLIST=' operand of the
GETPARM macroinstruction).

4-47

KEYL I ST

Operand Descriptions

PRNAME=

LABELPFX=

'Keyword'

'displayed-value'

absolute-length

CHAR

INT

NUM

parameter
characters

may be
(first

A name identifying the
group. May be up to eight
in length; characters
alphabetic and/or numeric
character must be alphabetic).

A character string in quotes which
will be prefixed to each 'Keyword'
name and the resulting string used to
label each corresponding keyword
block. The label is placed on the
line-advance byte. Thus the flag byte
is at the location specified by this
label +2, and the receiving field
('displayed-value') is at this
location +12. 'Ibis operand is
optional.

A name of up to eight alphabetic
and/or numeric characters enclosed in
single quotes, identifying a specific
parameter within the group.
Specification of 'Keyword' is mutually
exclusive with specification of TBXT
or text name.

A character string in single quotes
containing the default value for this
specific parameter. Single quotes to
appear in the string must be
represented by two consecutive single
quotes. The receiving field length is
then the length of this string.
Specification of 'displayed-value' is
mutually exclusive with specification
of absolute-length.

An absolute expression must be
provided defining the length of the
receiving field for this parameter.
Specification of absolute-length is
mutually exclusive with specification
of 'displayed-value.'

Any character accepted in receiving
field.

Only unsigned integers accepted.

Numbers (with optional decimal point
and/or leading sign) accepted.

4-48

AN

HEX

UC HAR

ANL

1 ine-advance

TEXT
Textname

KEYLIST

Letters (including national characters
#, @, and $) and numerals accepted.
GETPARM will convert letters to upper
case.

Only numerals and letters A-F
accepted. Letters A-F converted to
upper case.

(Leading and trailing blanks
accepted in any format
alphanumeric [AN] , wherein
trailing blanks are accepted.)

are
except

only

Any characters accepted. Lowercase
letters converted to uppercase.

Letters (including national characters
fl, @, and &) and numerals accepted.
GETPARM wi11· convert letters to
uppercase. The first character must
not be a number.

A positive number, zero, or omitted
(in which case 1 is assumed) • If
nonzero, the keyword or text is
displayed starting in column 2 (plus
the value in the space-advance
suboperand) of the line which is the
specified number of lines in advance
of the current line. If zero, line
advancing does not occur, and one
space (plus the number of spaces
specified by the space-advance
suboperand) appears on the workstation
screen between the previous displayed
values and this keyword or text.

Indicates that embedded text, rather
than a keyword and receiving field, is
supplied in the next operand. If a
nonquoted textname is provided, it may
be used to symbolically address the
beginning of the actual text field in
the Parameter Group Control List,
i.e. , the label "textname" is
generated for the specified text field.

4-49

KEYLIST

space-advance

'displayed-text'

If specified as either an expression
with a value no less than zero or
greater than 78, or omitted (in which
case, zero is assumed), the value of
space-advance plus 1 is the number of
spaces that will appear on the
workstation screen between either the
previous field (if zero line-advance)
or the left side (if nonzero
line-advance) and the keyword or text
of the current field.

The space-advance may also be
specified in three alternative formats:

'Ann'

"nn" represents one or two digits with
a value no less than "2" and no
greater than "80" that indicate the
"absolute" colunm in which the field
is- to begin. The appropriate
field-advance value is calculated and
placed in the control block.

'CENTER'

The appropriate field-advance value is
calculated (and placed in the control
block) such that the field is centered
within the 80 column workstation
screen line.

'RIGIIT'

The appropriate field-advance value is
calculated (and placed in the control
block) such that the field is
right-justified on the 80 column
workstation screen line.

Regardless of how the space-advance is
specified, a MNOTE is generated if an
attempt is made to generate a
workstation line over 80 characters in
length or if an absolute, centering,
or right-adjust request cannot be
honored.

A character string in quotes to be
displayed as embedded text.

4-50

'Keyword2', •••

PREVIEW

Example

KEYLIST

Any number of keyword or embedded text
operands may be supplied.

If YES is specified, the screen
the display specified by

macroinstruction operands will be
printed in the source listing. NO is
the default.

LABl KEYLIST PRNAME='OPT' ,LABELPFX=' A I' x
x
x
x

I LI ST I , {I NOb I ,AN) ,
'DISPLAY', {'YES' ,AN,0,5),
TEXT,{'NUMBER OF LINES'),

+LABl
+
+
+ALI ST
+

DC
DC
DC
DC
DC

+ DC
+ADISPLAY DC
+
+
+
+
+ALINECNT
+
+

DC
DC
DC
DC
DC
DC
DC

'LINECNT' ,('50',INT,0,5)
CLS'OPT' PRNAME
HLl'O' PF KEY
HL1'4' FIELD COUNT
HLl'l,0,0,2'
CL8'LIST'
C'NOb'
HLl'0,5,0,2'
CL8'DISPLAY'
C'YES'
HLl'l,0,-1,14'
C'NUMBER OF LINES'
HLl'O,S,1,1'
CL8'LINECNT'
C'SO'

4-51

LA,SA,FLAGS,LGTH-1
KEYWORD
FIELD
LA,SA,FLAGS,LGTH-1
KEYWORD
FIELD
LA,SA,FLAGS,LGTH-1

LA,SA,FLAGS,LGTH-1

Link to Another Program or Subprogram

Syntax

[label] LINK [EP=' 1 i teral ']
[EPLOC=Address of name]

[,SYSTEM] [,NOFAIL] [,LOADONLY]

[,LIBRARY={Address }]
{'literal'}

[,VOLUMB ={Address }]
{'literal'}

Restrictions

A stack, with stack top addressed by general register 15,
must be available to the issuer.

Function

Pushes the name parameter and flag byte onto the top of the
stack and invokes the specified program by SVC LINK. If
the LIBRARY and VOLUME operands are specified, they
override the user program library and volume specified on
the SET or RUN command. The invoked program may return to
the invoker by means of the RETIJRN macroinstruction.
Execution of the LINK macroinstruction pushes status
information onto the stack, as well as the 'static' areas
of the LINKed-to program as described in section 2.2.1.1.3
of this document. Addresses on the stack to be passed to
an invoked program should be placed in a parameter list
addressed by register Rl. This parameter 1 ist may not be
in the reentrant program segment (segment 1) • On entry to
a LINKed-to' program, register R14 addresses the (new)
'static' area base (if any) as defined in Part I of this
document. Register Rl addresses the user's argument list
(that is, Rl is preserved across the LINK). Any user
program exception exit previously set by SVC PCEXIT is
eliminated, but is restored when an UNLINK is issued to
return to the LINKed-from program.

If the specified file exists but is not a program file, the
file, library, and volume names are pushed onto the stack
and LINK initiates execution of the system's Procedure
Interpreter, which then attempts to intetj:>ret the file as a
procedure.

4-52

Operand Descriptions

EP=

EPLOC=

LIBRARY=

VOLUME=

SYSTEM

NOFAIL

A name of up to eight characters, enclosed in
quotes, which is used in conjunction with the
current program 1 ibrary name {as a member name
in that library) to form a complete file name,
which is then sought and the corresponding file
invoked as a program if found. If not found,
the supplied name is used in conjunction with
the system library name, and the resulting file
name is sought.

A byte address, which must not be in a user's
program segment (segment 1), at which-there is
a character string of length eight giving the
name of the member to be concatenated with the
current program library name or system library
name (as for the EP= operand) • This must be
specified in a form allowable in the D2(B2)
fields of the SS-type assembler instruction
format.

A byte address at which there is a character
string of length eight giving the overriding
user program library name for use on this LINI<
and LINKs nested below this link, or a
character literal in single quotes giving this
name. The previous default library name
becomes effective again upon UNLINK to this
LINK issuer.

Name of volume containing the overriding user
program library, specified as for the LIBRARY
operand.

Specifies that the user's program library is
not to be searched for the requested member.
Only the system library is searched.

Specifies that the program is not to be
terminated by the CANCEL SVC in the event that
the requested program is not found, or cannot
be acquired or executed, but rather that
control is to be returned to the address of the
LINK SVC instruction plus six bytes (next
sequential instruction address plus four) •
'!his option is intended primarily for Command
Processor use. A code is returned in the top
word of the stack to indicate the specific
error condition (see LINK SVC description).

4-53

LINK

LOADONLY

Examples

LABl
+LABl
+
+LGOOl
+LG002

LAB2
+LAB2
+
+
+

Specifies that after the new program or
subprogram has been made addressable in segment
1, and all initialization of segment 2 areas
(including the Link Retum List) has been
accomplished, control will be returned to the
address of the LINK SVC plus 10 bytes, instead
of being passed to the new program. The new
program's entry point address will be in
register zero when control is returned to the
LINK issuer. The LINK SVC must be issued from
segment 0 if this option is to be used.

LINK EP='PROGl'
PUSHC 0 (16) ,LGOOl
B LG002
DC X'OO',CL8'PROG1',XL7'0'
SVC 4 (LINK)

LINK EPLOC=PNAME,SYSTEM
PUSHN 0,16
MVI O(SP) ,B'lOOOOOOO' FLAG BYTE
MVC 1(8,SP) ,PNAME PROGRAM NAME
SVC 4 (LINK)

4-54

Supply Program Parameters

Syntax

(1) [label] LINKPARM PUT, {DISPLAY}
{ENTER }

,PRNAME= •string'

,REFERLABEL= {address }
{'string' }
{(register)}

,FMTLIST= {address }
{ (register) }

[,AID= {address }]
[{ ' string' }]
[{(register)}]

[,PFKEY=
[

[,LABEL=
[
[

[,REPEAT=
[
[
[
[

{ENTER}
{1-32 }

]
]

{address }]
{ ' string ' }]
{(register)}]

{address }]
{'string' }]
{ (register) }]
{NO }]
{YES }]

(2) [label] LINKPARM CLEANUP [,REFERLABEL=
[

{address }]
{'string' }]
{ (register) }] [

(3) [label] LINKPARM REFER

Restrictions

None.

,MERGE [, REMOVE] ,FMTLIST= {address }
{ (register) }

,NOMERGE ,REFERLABEL= {address }
{'string' }
{ (register) }

4-55

LINKPARM

Function

The LINKPARM macro accesses the functions of. the PUTPARM SVC (SVC
33) • The primary function (the PUT function) is to supply
parameters to another program's GETPARMs before issuing the LINK
SVC to invoke that program. The second function (the CLEANUP

·function) is to deallocate the various internal data structures
created by the Ptrr function. The third function (the REFER
function) is to allow the calling program access to any parameters
which the user may have changed at GETPARM time (the MERGE
option), or to return the address of a previously created and
labelled FMTLIST (the NOMERGE option). See the PUTPARM SVC
description for further detail on each of these functions of the
PUTPARM SVC.

Note that both the PUTPARM macro and the LINKPARM macro call the
PUTPARM SVC (SVC 33). The PUTPARM macro allows only the
parameterization of another program (the PUT function), while the
LINKPARM macro accesses all the functions of the PUTPARM SVC.
Users of the PUTPARM macro are encouraged to use the LINKPARM
macro because of the more extensive functionality. The PtrrPARM
macro is kept for compatibility with existing programs.

Operand Descriptions

Pl.IT

DISPLAY
ENTER

PRNAME=

Enables a program to supply parameters to a GETPARM
issued by another program. The parameters to be
supplied to the GETPARM are contained in a format list
(FMrLIST), created with the FMTLIST macroinstruction.
The program issuing the LINKPARM PUT must link via the
LINK SVC to the program issuing the GETPARM. A
program may not use LINKPARM PUT to pass parameters to
its own GETPARM.

If DISPLAY is specified, requests a workstation
transaction when the FMTLIST supplied to the linked-to
program is accessed. If ENTER is specified,
suppresses a workstation transaction when this FMTLIST
is accessed. The default is ENTER.

A name of up to 8 alphanumeric characters which
identifies the PRNAME to be associated with the
FMTLIST being supplied to the linked-to program or the
new PRNAME to be used if this is a backward
reference. Specified as a character string in quotes.

4-56

LINKPARM

REFERLABEL= A name of up to 8 alphanumeric characters which
identifies a previously labeled FMTLIST. This
parameter is used to "backward reference" a previously
created FMTLIST. The backward reference facility
allows a program to reuse the (possibly updated)
parameters of a labelled FMTLIST. (See Ptrl'PARM SVC
description for further detail regarding backward
reference facility) • Specified as an expression
addressing an 8-byte field containing the name of the
FMTLIST, as a register in parentheses pointing to an
8-byte field containing the name of the FMTLIST, or as
a character string in quotes which is the name of the
FMTLIST. Note that, for the PUT function, REFERLABEL=
and FMTLIST= are mutually exclusive • For the CLEANUP
function, REFERLABEL= specifies a particular FMTLIST
to be deallocated. For the MERGE option, RBFERLABEL=
contains the name of the source FMTLIST, while
FMTLIST= is the address of the destination FMl'LIST.

FMTLIST= The address of the FMTLIST to be used. The FMTLIST
is created by the FMTLIST macro. (See the FM'I'LIST
macro description for further detail). Optionally the
address of a KEYLIST+S may be supplied. Specified as
an expression addressing a FMTLIST, or as a register
in parentheses containing the address of the FMTLIST.
Note that, for the PUT function, REFERLABBL= and
FMTLIST= are mutually exclusive.

AID= The AID (Attention ID) character of a PFkey to be
passed to the GETPARM. AID characters are 'A'- 1 P'
(i.e., PFkeys 1-16, respectively) , 'a' - 'p' (i.e. ,
PFkeys 17-32, respectively), and'@' (i.e., the ENTER
key) • Specified as an expression addressing a
one-byte field containing the AID character, as a
register in parentheses pointing to a one-byte field
containing the AID character, or as a character string
in single quotes which is the AID character. Note
that AID= and PFKEY= are mutually exclusive.

PFKEY= A PFkey to be passed to the GETPARM. PFKEY= may be
a number from 1 through 32 , or the word ENI'ER. PFKEY=
must be a character string not in quotes. Note that
PFKEY= and AID= are mutually exclusive.

LABEL= A FMrLIST may be labelled for later use by the
backward reference and override facilities. (See
PUI'PARM SVC description for further detail.) A name
of up to 8 alphanumeric characters is used to label
the saved FMTLIST. May be specified as an expression
addressing an 8-byte field containing the label, or as
a register pointing to an 8-byte field containing the
label.

4-57

LINKPARM

REPEAT=

CLEANUP

REFER

MERGE

NOMERGE

REMOVE

Normally, no two GETPARM requests access the same
FMTLIST. A FMTLIST may be declared to be for repeated
use via the macro parameter REPEAT=. · If REPEAT=NO (or
is missing), the FMTLIST will be used only once. If
REPEAT=YES, the FMTLIST will be used until it is
removed. If REPEAT=n, the FMTLI ST wi 11 be used n+ 1
times (initial use + n repeats) • May also be
specified as an expression addressing a 2-byte binary
repeat count or as a register in parentheses pointing
to a 2-byte binary repeat count. 11>.e value of the
repeat count can range from 1-32768.

If CLEANUP is specified, the various internal
structures created by the Ptrr function are
deallocated. If no REFERLABEL is provided, all
FMTLISTs created at this level and above are removed.
If a REFERLABEL is provided, only the labeled FMTLIST
will be removed. If the CLEANUP option is used,
REFERLABEL is the only other parameter which may be
suppplied.

Allows previously created and used FMTLISTs at the
current link level to be accessed.

The MERGE option of the REFER function allows the
"merging" of an updated 'used' labelled FMTLIST with a
program-designated FMTLIST in the user's address
space. The contents of the FMTLI ST addressed by
REFERLABEL= (the source) are merged into the FMTLIST
addressed by FMTLIST= (the destination). Fields which
are present in the source, but not in the destination,
are ignored. Fields present in the destination but
not in the source are left unchanged.

Requests LINKPARM to return the address (in the
Segment 2 buffer) of the FMTLIST referenced by the
REFERLABEL= operand (i.e., a previously created and
labelled FMTLIST). The address is returned on the
stack.

Requests LINKPARM to remove (CLEANUP) the source
FMTLIST after performing the merge. ibis option is
only available with MERGE.

4-58

LINKPARM

Examples

LABl LINKPARM Ptrr ,DISPLAY ,PRNAME='OLDPRNAM' ,FMTLIST=FMTLl,
LABEL='FOOl' ,AID='A'

+LABl DS OH PLACE HOLDER FOR LABBL
+ PUSHC 0(8) ,=CL8'F001' FMTLIST LABEL
+ PUSHC 0(8),=CL8'0LDPRNAM' PRNAME
+ PU SHA 0, 0 UNUSED
+ PUSHA FMTLl FMTLIST
+ MVI FMTLl ,c I A I AID CHARACTER
+ PU SHA 0, 0 INITIAL FLAG BITS
+ OI 0(15) ,X'80' DISPLAY FLAG
+ SVC 33 (PUTPARM)

LAB2 LINKPARM PUT ,PRNAME= I NBWPRNAM I ,REFERLABEL=. FOOl I ,PFI<EY•l
+LAB2 DS OH PLACE HOLDER FOR LABEL
+ PUSHC 0 (8) '=CL8 I I NULL LABEL FOR FMTLI ST
+ PUSHC 0(8),=CLS'NEWPRNAM' PRNAME
+ PUSHC 0(8),=CL8'F001' REFKRLABEL
+ PUSHA O,O INITIAL FLAG BITS
+ MVI 1 (15) , 65 AID CHARACTER
+ SVC 33 (PUTPARM)

LAB3 LINKPARM REFER,NOMERGE,REFERLABEL='FOOl'
+LAB3 PUSHC 0(16) ,=CL16'' NULL LABEL AND PRNAME
+ PUSHC 0(8),=CLS'FOOl' REFERLABEL
+ PUSHA 0, 0 INITIAL FLAG BITS
+ OI 0 (15) ,x I 40 I REFER FLAG
+ SVC 33 (PtrrPARM)

4-59

Log Off Interactive Terminal

Syntax

[label] LOGOFF

Function

'lbe LOGOFF macroinstruction generates the code
appropriate SVC call and parameter list to effect
program request."

Operand Descriptions

No operands are required.

Example

LAB2
+LAB2
+
+

LOGO FF
PUSHA O,O
PUSHA 0,0
SVC 43

NULL
PARAMETERS
(LOGO FF)

4-60

to issue the
a "logof f by

Mount Disk or Tape Volume

Syntax

(1) [label] MOUNT

(2) [label] MOUNT

DISK= { (register) } ,VOLUME= { (register) }
{integer } {'string' }

{address } {address }

,LABEL= {SL } ,BLP= {NO } ,USAGE=
{NL } {YES}

,VOLTYPE= {R} ,SPOOL= {NO } ,WORI<=
{Fl {YES}

,NSA= {NO } ,NOD I SPLAY= {NO } ,NOMESSAGE=
{YES}

TAPE= {(register)}
{integer }
{address }

{YES}

,VOLUME= {(register)}
{'string' }
{address }

{SH }
{RR }
{PR }
{EX }

{NO }
{YES}

{NO }
{YES}

,LABEL= {AL }
{NL }
{IL }

,BLP= {NO }
{YES}

USAGE= {SH }
{EX }

Restrictions

None.

Functions

,NOMESSAGE= {NO }
{YES}

1) To request the mounting of a disk volume on the indicated
device with the specified label, usage, type, SPOOL file,
and Work file attributes.

2) To request the mounting of a tape volume on the indicated
device with the indicated device with the specified label
attributes.

MOUN!' issues a return code to the user program in the stack top
word which indicates the success/failure/status of the operation
(see MOUNI SVC description).

4-61

MOUNT

Operand Descriptions

DISK= A number between 0 and 255 which is the system-defined
device m.unber of the disk unit on which the volume is to
be mounted.

TAPE= A number between 0 and 255 which is the system defined
device number for the tape unit on which the volume is to
be mounted.

DISK and TAPE may be specified as a register in
parentheses containing the device number in binary in its
low-order position, as an integer not in quotes which is
the device number in decimal, or as an expression
addressing a one-byte field containing the device number
in binary. One of these operands is required and they
are mutually exclusive.

VOLUME= The name of the volume which is to be mounted. It may be
specified as a register in parentheses pointing to the
volume name, as a character string in single quotes which
is the volume name, or as an expression addressing a
6-byte field containing the volume name. This operand is
required.

'k1'1'HE FOLLOWING OPERANDS ARE OPTIONAL'k*

BLP= This operand instructs the system to bypass label
processing/checking and should be specified with care.
Valid values are YES and NO. The default is to NO.

LABEL= Denotes the type of volume label present on a volume.
Valid values are:

SL - Standard WANG VS labels.
NL - No labels are present on the volume.
AL - Standard ANSI-type labels.
IL - Standard IBM-type labels·.

The default for a disk volume is to SL; for a tape
volume the default is to AL. Note that SL is valid for
disk volumes only and that AL and IL are valid for tape
volumes only.

USAGE= Denotes volume access and dismounting restrictions. Note
that dismounting restrictions also apply to remounting
with different attributes. Valid values are:

SH - Shared: Volwne may be accessed and
dismounted by any user.

4-62

RR - Restricted Removal:
by any user but
user only.

Volume may be accessed
dismounted by the mounting

PR - Protected: Files on the volume may be read
by any user but updated and dismounted by the
mounting user only.

EX - Exclusive: Volwne may be accessed and
dismounted by the mounting user only.

Default is to SH for both disk and tape volumes. RR and
PR are valid for disk volumes only.

VOLTYPE= Denotes the type of disk volwne being mounted as
either fixed or removable. Valid values are F and R

SPOOL=

respectively, with the default being to R.
is valid for disk volumes only.

This operand

Denotes whether the volume is to be included in the list
of volumes scanned when the system creates a SPOOL
(Print) file for a user whose values are YES and NO, with
the default being to NO. This operand is valid for disk
volumes only.

WORK= Denotes whether the volwne is to be included in the list
of volumes scanned when the system creates a Work file
for a user whose default work volume has not been SET.
Valid values are YES and NO, with the default being to
NO. This operand is valid for disk volumes only.

NSA= If YES is specified, indicates that the volume to be
mounted follows non-standard addressing conventions
(soft-sectored diskette only). lbe default is to NO.

NODISPLAY= If YES is specified, indicates that no messages
are to be displayed on the user's workstation; the
operator console messages must be used to coordinate
physical mounting. The default is to NO.

NOMESSAGE= If YES is specified, indicates that the volume to be
mounted is already on the disk or tape drive. No MOUNT
message will be displayed, and the Volume Control Block
(VCB) information is updated from the volume label. The
default is to NO.

4-63

MOUNT

Examples

LAB MOUNT DISK=(Rl),VOLUME='SYSTEM',LABEL=SL,USAGE=SH, x
VOLTYPE=F,SPOOL=NO,WORK=YES

+LAB PUSHN 0,8 GET TWO WORDS ON THE STACK
+ STC Rl ,1(,15) SET DEVICE NUMBER
+ MVC 2(6,15) ,*+10 SET VOLUME NAME
+ B #''+10 BRANCH AROUND CONSTANT
+ DC CL6'SYSTEM' VOLUME NAME
+ MVI 0(15) ,8'00010001' SET FLAGS
+ SVC 30 (MOUNT) ISSUE SVC

LAB MOUNT DISK=DISKVOL,VOLUME=(R4)
+LAB PUSHN 0,8 GET TWO WORI<DS ON THE STACK
+ MVC 1(1,15) ,DISKVOL SET DEVICE NUMBER
+ MVC 2 (6 ,15) ,O (R4) SET VOLUME NAME
+ MVI 0(15) ,8 100000000' SET FLAGS
+ SVC 30 (MOUNT) ISSUE SVC

LAB MOUNT TAPE=28,VOLUME=TAPEVOL,LABEL=IL,USAGE=EX
+LAB PUSHN 0,8 GET TWO WORDS ON 'nlE STACK
+ MVC 0(1,15) ,*+10 SET DEVICE NUMBER
+ B *+6 BRANCH AROUND CONSTANT
+ DC ALl (28) DEVICE NUMBER
+ MVC 2(6,15),TAPEVOL SET VOLUME NAME
+ MVI 0(15),B'OlOlOOOO' SET FLAGS
+ SVC 30 (MOUNT) ISSUE SVC

4-64

Generate Display Message

Syntax

[label] MSGLIST msg#,issuer,'message-segment-1'
[,'message-segment-2' , •••]

Restrictions

Intended for use in conjunction with the GETPARM and CANCEL
macroinstructions. See those macroinstructions and the
corresponding Supervisor Call descriptions.

Function

Generates a data structure suitable for use as the object of
'MSG=' operands of the GETPARM and CANCEL macroinstructions.

Operand Descriptions

msg/I

issuer

Up to
single
number,
message.
row 1 of

Up to
single

four characters enclosed in
quotes, normally a message

to be displayed with the
The msg # is displayed on

the workstation screen.

six characters enclosed in
quotes, normally an

identification of the issuing
routine, to be displayed with the
message. The issuer is displayed on
row 1 of the workstation screen.

'message-segment-n' Message text in single quotes to be
displayed on a single line. May be
repeated as often as required, to
define additional lines to be
displayed. No line may be over 79
characters long. The message may
contain single quotes (apostrophes).
Message text is displayed beginning
on row 3 of the workstation screen.

Example

LABl MSG LIST '123' ,'ISSUER' ,'LINE 1' 'I LINE 2'
+LABl DC CL4' '123 I
+ DC CL6'ISSUER'
+ DC AL2(6+6+1)
+ DC C'LINE 1'
+ DC X'OD' NEW LINE
+ DC C'LINE 2'

4-65

Open a File

Syntax

[label] OPEN UFB= {(register)}
{expression}

Restrictions

None.

Function

[,MODE= {OUTPUT}]
{INPUT }
{IO }
{EXTEND}
{SHARED}

[,{NOGETPARM}]
{NODISPLAY}

[,EXIT= {(register) }]
{absolute expression}

[,PLOG= {YES }]
{ NO }

Prepares a file for processing by Data Management System
functions. The User File Block (UFB) is normally created
prior to OPEN by means of the UFBGEN macroinstruction. The
OPEN macroinstruction includes provision for optional
modification of the 'Open mode' flags of the UFB. If the file
was already open to the issuing task, no additional OPEN
processing occurs. In this case the file remains open in the
mode specified in the Open File Block addressed by this UFB.

Operand Descriptions

UFB=

MODE=

The address of a User File Block, which must be
specified either as a register designation in
parentheses, where the register is assumed to
contain the UFB address, or as a UFB address
expression not in parentheses. If omitted,
only the MVI for open mode modification and the
SVC instruction will be generated.

Specifies a value to be placed in the UFB to
designate an open mode. This is done before

4-66

NOGETPARM

NOD I SPLAY

the OPEN Supervisor Call is issued.
operand is optional~

This

Causes a GETPARM type "RD" to be issued rather
than a type "I". This suppresses user
interaction and causes procedure-supplied
parameters to be ignored. This option should be
used only when run-time parameters have already
been obtained through a program-issued GETPARM.
In this case, the programmer should also use the
OPEN exits which enable the program to handle
error conditions.

Causes a GETPARM type "ID" to be issued rather
than a type "I". This suppresses user
interaction as long as the values supplied in
the UFB or through a procedure are not lexically
in error.

NOTE:

User interaction will occur even with the NOGETPARM or
NODISPLAY options if a field is semantically in error
(e.g., an invalid device type).

EXIT=

PLOG=

Example

LABl
+LABl
+
+

A value indicating which file assignment
problems should cause control to be returned to
the issuing program rather than cause generation
of a user interaction via a GETPARM (Type "R").
See description of OPEN SVC for possible
values. May be specified as a register
designation in parentheses, or as an absolute
expression not in parentheses. The value in the
low-order byte of the register, or the value of
the expression, is stored in the high-order byte
of the OPEN parameter word on the stack.

If YES is specified, a file prologue will be
created when the file is OPENed. Valid only for
Word Processing files. This operand must be
specified when the file is OPENed in OUTPUT mode
(MODE=OUTPUT) in order for the file prologue to
be identified with the file to be created. The
default is to NO.

OPEN
MVI
PUSH
SVC

UFB=(R2) ,MODE=INPUT
44(R2) ,X'20' INPUT MODE
O,R2
0 (OPEN)

4-67

Modify Program Exception Exit Status

Syntax

1. [label] PCEXIT SET, [(list) ,ADDRESS={(register)}]
{expression}]

2. (label] PCEXIT {RESET }
{CANCEL}

where 'list' may contain any of the following, separated by
commas:

OP Operation
PO Privileged Operation
EX Execute
PR Protection
AD Addressing
SP Specification
DA Data
FIO Fixed Point Overflow
FID Fixed Point Divide
DO Decimal Overflow
DD Decimal Divide
SR Supervisor Call Range
SO Stack Overflow
FPO Floating Point Overflow
FPU Floating Point Underflow
SI Significance
FPD Floating Point Divide

To specify that all types of program exception interrupts
are to be intercepted, specify 'ALL' instead of a 'list'.

Function

SET

RESET

CANCEL

To specify user-program exception handling for
the listed program interruptions. The previous
program exception handling status, if any, is
saved for use by the RESET function.

Restores user-program exception handling status
to its state before the most recent SET
function, if there was a 'PCEXIT SET' issued in
the current program. The most recent status is
discarded.

Removes all user-program exception handling in
the current program (since a LINK from another
program or Command Processor program
initiation). All such status is discarded.

4-68

PC EXIT

Operand Descriptions

ADDRESS= This and the '(list)' operand may be specified
only with the 'SET' operand. A register
specification in parentheses signifies that the
register contains the exit address. An
expression not in parentheses is evaluated to
the exit address directly.

See above for other operand descriptions and 'list•
suboperand descriptions.

Example

LABl PCEXIT SET,(FPU,SI),ADDRESS=(Rl)
+LABl PUSHC 0(4,0) ,*+10
+ B *+8
+ DC BL4 '0000000000000000110' LIST
+ PUSH O,Rl EXIT ADDRESS
+ MVI O(SP) ,0 SET
+ SVC 31 (PCEXIT)

4-69

Protect a Disk File

Syntax

[label] PROTECT { PLIST = {expr }
{ {(reg)}
{

}
}
}
}
}
}
}
}
}

Function

{ { LIBRARY }
{ { FILE=expr }
{
{
{
{

,LIBRARY=expr

,VOLUME=expr
[, OWNER=expr]

[,FILECLAS=expr]

[, {RBTPD=expr }]
[{ EXPRDT=expr}]

[,RESTRICT=
[

NO]
YES]

To update the protection information (protection class, owner of
record, and/or expiration date) for a disk file or a library of
disk files on a volume. The structure of the Volume Table of
Contents (VTOC) is not affected by the change. No file that is
to have its protection information modified may be open when the
PROTECT is attempted.

Return codes in binary in the top word of the stack indicate the
result of the request:

Return Code = 0 - Protection status successfully changed
Return Code = 4 - Volume not mounted
Return Code = 8 - Volume used exclusively by other user
Return Code = 12 - All buffers in use, no protection change
Return Code = 16 - Library not found
Return Code = 20 - File not found
Return Code = 24 - Update access denied, no protection

change
Return Code = 28 - (unused)
Return Code = 32 - File in use, no protection change
Return Code = 36 - VTOC error! FDXl & FDX2 don't agree
Return Code = 40 - VTOC error! FDX2 & FDR don' t agree
Return Code = 44 - Invalid argwnent list address
Return Code = 48 - I/0 error! VTOC unreliable!
Return Code = 52 - Open or protected files bypassed in

protecting library
Return Code = 56 - Invalid new protection data

Note: If the PLIST= option is not utilized, it is the program's
responsibility to pop 32 bytes of£ the stack beyond the
return code word on the stack.

4-70

PROTECT

Operand Descriptions

PLIST=

LIBRARY

FILE=

LIBRARY=

VOLUME=

OWNER=

FILECLAS=

The address of a PROTECT parameter list. (For
a description of the format of the parameter
list, please ref er to the description of the
PROTECT SVC in Chapter 6.) If PLIST= is
specified, no other operand may be specified.
If PLIST= is ~ specified, the macro generates
code to dynamically build a parameter list on
the stack prior to issuance of the PROTECT SVC.

Indicates that the protection attributes of all
files within the library specified are to be
modified. Use of this operand is mutually
exclusive with the FILE= operand.

Specifies the address at which the file's name
is located. May be specified as a character
string delimited by single quotes, in which
case, a constant is assumed. Use of this
operand is mutually exclusive with the LIBRARY
operand descrbed above.

Specifies the address at which the library's
name is located. May be specified as a
character string delimited by single quotes, in
which case, a constant is assumed. This
operand is required if PLIST= is not specified.

Specifies the address at which the volume's
name is located. May be specified as a
character string delimited by single quotes, in
which case, a constant is assumed. This
operand is required if PLIST= is not specified.

If specified, indicates that the 3 byte "Owner
of Record" protection attribute is to be
modified and the address at which the new value
is located. May be specified as a character
string delimited by single quotes, in which
case, a constant is assumed.

If specified, indicates that the 1 byte "File
Class" protection attribute is to be modified
and the address at which the new value is
located. May be specified as a character
string delimited by single quotes, in which
case, a constant is assumed.

4-71

PROTECT

EXPRDT=

RETPD=

RESTRICT=

Example

LABl

+LABl
+
+
+
+
+
+
+
+
+
+

If specified, indicates that the "Expiration
Date" protection attribute is to be modified
and the address at which the new value (3 byte
packed decimal, YYDDD+) is located. May be
specified as a character string delimited by
single quotes, in which case a constant is
assumed. Use of this operand is mutually
exclusive with use of the RETPD= operand.

If specified, indicates that the "Expiration
Date" protection attribute is to be modified
and the address at which a "Retention Period,"
in terms of days (3 byte packed decimal,
OODDD+) is located. May be specified as a
character string delimited by single quotes, in
which case a constant is assumed. Use of this
operand is mutually exclusive with use of the
EXPRDT= operand.

If NO is specified, or the operand is omitted,
the PROTECT , operation precedes utilizing
current file access rights. If YES is
specified, the operation is restricted,
assuming only the file access rights of the
user, ignoring any special access rights of the
program.

PROTECT FILE=PROFILE,LIBRARY=PROLIBR,VOLUME=PROVOLUME, x
OWNER='DOV',FILECLAS=PROCLAS,RETPD=PRORETPD

PUSHA O,O
PUSHA 0,0
MVC 3(3,15) ,PRORETPD RETENTION PERIOD
MVC 0(3,15),=CL3'DOV' FILE OWNER OF RECORD
PUSHN 0,8
MVC 7(1,15),PROCLASS FILE CLASS
MVI 6(15) ,B'OOOOllll'
MVC 0(6,15),PROVOLUME VOLUME
PUSHC 0(8) ,PROFILE FILE
PUSHC 0(8) ,PROLIBR LIBRARY
SVC 42 (PROTECT)

4-72

Supply Program Parameters

Syntax

[label] PtrrPARM [DISPLAY]
[ENTER]

I PRNAME = 'literal'

I FMTLIST = { (register) }
{ expression }

[,LABEL = 'literal']

Restrictions

None.

Function

PtrrPARM enables a program to supply parameters to a GETPARM
issued by another program. Tile Ptrl'PARM issuer must dynamically
link to the program issuing the GETPARM via the LINK SVC. (A
program may not use PUTPARM to parameterize its own GETPARMs.)

The parameters to be supplied to the GETPARM are contained
in a format list (FMTLIST), created with a FMTLIST
macroinstruction. When PUTPARM is issued, it verifies that the
specified FMTLIST is in the proper format, then saves it in a
Segment-2 buffer area for subsequent GETPARM use. Ptrl'PARM also
constructs a Parameter Reference Block (PRB) to save the label,
PRNAME, display option, and certain other information.

When a GETPARM in the linked-to program is issued , it
searches through the FMTLISTs in the Segment-2 buffer area. If a
FMTLIST is found whose PRNAME matches the PRNAME of the GETPARM's
KEYLIST, the FMTLIST parameter values are copied to the KEYLIST,
thus supplying the required GETPARM parameters. A workstation
transaction is suppressed if the 'ENTER' option is selected;
otherwise, a GETPARM screen is displayed. PUTPARM returns to the
issuer eight bytes of output on the top of the stack:

Bytes 0-3
0
8

12

Bytes 4-7

return code
success
Bad FMTLIST supplied to this SVC
Error detected in previously constructed
parameter reference blocks.
Address of FMTLIST saved for GETPARM

4-73

PUTPARM

Operand Descriptions

DISPLAY
ENTER

PRNAME=

FMTLIST=

requests GETPARM to display
displaying the screen.

A name of up to 8 alphanumeric
enclosed in quotes, identifying the
the FMTLIST.

The address of the FMTLIST in
specified in GETPARM SVC. (See
macroinstruction.)

or bypass

characters
PRNAME of

the
the

format
FMTLIST

LABEL= A name of up to 8 alphanumeric characters
enclosed in quotes. 'nle label of this
parameter reference block to be used by GETPARM.

Examples

LABl PUTPARM ENTER,PRNAME='ABCDE'
,FMTLIST=ADDRl,LABEL='XYZ'

LAB PUTPARM PRNAME='ABCDE' ,FMTLIST=(R2)

4-74

x

Read a Record

Syntax

[]*
[label] READ !HOLD I UFB={ (register)} [,COND=number]

IREL I {expression}
I KEYED I
INODATA I
ITABS I
IMOD I
I ALTERED I
ICONNECTPARMI
ISTA'IDS I
[]

(* Various combinations in parentheses are allowed. See
below.)

Function

To read a record from any file or device for which READ is
supported by the Data Management System. This includes the
special workstation READ functions (READ TABS, READ MOD) •
The function of the READ macroinstruction depends on the
value of its first operand. Valid first operands for
various device and file types are as follows:

Fixed Length Consecutive disk files - omitted
HOLD
(HOLD ,NODATA)
REL
(REL,HOLD)
(REL ,NODATA)
(REL,HOLD,NODATA)

Variable Length Consecutive disk files - omitted
HOLD

Indexed disk files

Telecommunications

- omitted
HOLD
(HOLD ,NODATA)
KEYED
(KEYED ,HOLD)

(HOLD ,NODATA)

(KEYED ,NODATA)
(KEYED,HOLD,NODATA)

- omitted
CONNECTPARM
STATUS

4-75

READ

Workstation files - {omitted
{REL

{MOD
{ (MOD,REL)

} treated
} identically

} treated
} identically

{ALTERED } treated
{(ALTERED,REL)} identically

TABS

A file must have been opened in modes INPUT, IO or SHARED,
or placed in temporary IO mode by the 'START IO' function,
before attempting to READ the file. The record or
workstation line, fields, or tab position indications are
returned in the user's record area, as addressed by field
UFBRECAREA of the UFB. For 'READ REL' or any workstation
READ other than 'READ TABS' , the records number within the
file, or line nwnber on the screen (from 1) to be read is
taken from the word addressed by field UFBKBYAREA of· the
UFB. For 'READ KEYED', the key value is taken from the
memory area beginning with the byte addressed by
UFBKEYAREA, and extending for the number of bytes specified
by UFBKEYSIZE. Descriptions of the functional effects of
the various allowable suboperands (HOLD, RBL , KEYED,
NODATA, TABS, ALTERED, MOD) may be found in the Data
Management System description (Part IV of this document)
and in the operand descriptions below.

Invalid key and end-of-data conditions on a READ result in
return to the address in UFBEODAD with the normal return
point address in register 0 and file status bytes (UFBFSl,
UFBFS2) set to the following ASCII characters:

10 - End of data
23 - Invalid key (no record found) on 'READ REL' or

'READ KEYED'

Other exceptional and error conditions result in return to
the address in UFBERRAD with the nonnal return point
address in register 0 and file status bytes (UFBFSl,
UFBFS2) se't to the following ASCII characters:

30 - Permanent I/0 error
34 - Order check on workstation
95 - Invalid function sequence for block-level I/0
96 - Invalid data area location or alignment
97 - Invalid length for device
98 - Magnetic tape trailer label error (block count)

If UFBEODAD contains binary zero, the address in UFBERRAD
is used for invalid key and end-of-data returns. If it too
is zero, these conditions and I /0 errors cause program
terminations.

4-76

READ

Operand Descriptions

REL

KEYED

HOLD

NODATA

Indicates that the record or workstation line
to be read is specified by the binary number
(from 1) in the word addressed by UFBKEYAREA.
Asswned for workstation files.

Indicates that the record to be read from an
indexed disk file is specified by the key value
in bytes beginning at the address in
UFBKEYAREA, and extending for the number of
bytes specified in UFBKEYSI ZE • The user' s
program should not modify UFBKEYSIZE.

Indicates that the record read from a disk file
may be rewritten by REWRITE. Must be specified
in order to successfully complete a REWRITE of
this record. For SHARED open mode, indicates
that the record read from a disk file is not to
be made available to any other simultaneously
executing program which is sharing the file
until either the record is rewritten, it is
deleted, or another record in any shared file
is read with HOLD requested. Note that this
implies that a program may only HOLD one record
at a time, no matter how many files are being
shared.

Indicates that the record requested is to be
read from the file in the manner indicated by
other suboperands (including the HOLD
suboperand) , but that the record is not to be
placed in the user's record area as addressed
by UFBRECAREA. The address of the record in
the Data Management System buff er is placed in
register 1. This option is not val id in SHARED
open mode.

CONNECTPARM Indicates that telecommunication line

STATUS

TABS

connection parameters are to be read.

Indicates that telecommunication device status
is to be read.

Indicates that current tab settings for the
specified workstation are to be placed in the
fifth through fourteenth bytes of the user's
record area as addressed by UFBRECAREA. Values
are column numbers 1-80 in binary. Zeroes
indicate unset tab positions.

4-77

READ

MOD

ALTERED

UFB=

COND=

Examples

LABl
+LABl
+
+

LAB2
+LAB2
+
+

Indicates that the modifiable fields within the
specified workstation line are to be placed in
their corresponding positions in the user• s
record area as addressed by UFBRECAREA.
Protected fields may or may not be read and
placed in the user's record area. depending on
the workstation model. If protected fields are
not transferred, the corresponding positions in
the user's record area are not changed.

Indicates that only those fields with
selected-field tags set are to be placed in the
user's record area, in positions corresponding
to their screen positions. Other data on the
user's record area remains unchanged. Field
attribute characters of altered fields have
their selected-field tags set on the
corresponding field attribute characters in the
user's record area.

The address of a User File Block (UFB), which
may be supplied as a register specification in
parentheses, where the register contains the
UFB address, or as an expression not in
parentheses, where the word addressed is
assumed to begin the UFB.

If specified, the number or absolute expression
becomes the first operand of the JSCI
instruction by which the READ function is
entered. READ is thus made conditional.
COND=15 is the default. Register 1 is loaded
with the UFB address even when the condition is
not satisfied.

READ (REL,HOLD) ,UFB=(R3)
LR 1,R3 SET REGISTER 1
M\11 0(1),B'OOOOOlOl' MODIFIERS
JSCI 15,0(,l) READ FUNCTION

READ UFB=UFBADDR
LA 1,UFBADDR SET REGISTER 1
M\TI 0(1),B'OOOOOOOO' MODIFIERS
JSCI 15,0(,1) READ FUNCTION

4-78

Read File Descriptor Record(s)

Syntax

[label] READFDR PLIST={(register)}
{ address }

[label] READFDR LIBRARY={(register)}, FILE={(register)}, VOLUME={(register)},

Restrictions

{'string' } {'string' } {'string' }
{ address } { address } { address }

AREA={(register)}
{ address }

[,FDR={! }]
{n }
{BOTH}

AL'IVOL={(register)}][,PLOG={NO },
{'string' } {YES }
{ address } {ONLY }

[,ALTLIB={(register)},
{'string' }
{ address }

PAREA= {(register)}]
{ address }

The area addressed by PLIST must not be in the user's
segment one (re-entrant code segment).

If any operand is specified by a string, the invoking user
program must allow for the generation of a literal pool.

With the exception of specification by character strings,
specifications of libraries and files must reference 8-byte
fields, those for volumes must reference 6-byte fields.

Function

Allows user programs to locate a disk file on the specified
volwoe and copy its File Descriptor Record(s) (label) into
the memory location denoted by the AREA operand; also reads
a WP file prologue and returns the file prologue into the
specified AREA.

If PLIST is not specified, then operands FILE, LIBRARY,
VOLUME, and AREA are required and the user program is
responsible for popping 36 bytes (50 if ALTLIB is
specified) beyond the FDRl disk address word since the
parameter list is dynamically built on the stack.

If an alternate search library (ALTLIB) is specified, then
the values of the LIBRARY and VOLUME are modified as
required to indicate in which library the file was found.

READFDR issues a return code to the user program in the
stack top word which indicates the success/failure of the
operation, and the disk address of the FDRl in the next

4-79

READ FDR

stack word (this address is usable only if the read was
successful, i.e., the return code equals zero). (See
READFDR SVC for return codes and address .)

Operand Descriptions

PLIST= A user-generated parameter list as described in the
READ FDR SVC; specified as a register in parentheses
pointing to the parameter list, or as an expression
addressing the parameter list. If this operand is
specified, then all other operands are ignored.

LIBRARY= The name of the primary library to be searched for the
file in question; specified as a register in
parentheses pointing to the library name, as a literal
in single quotes which is the library name, or as an
expression addressing a character string whose value is
the library name.

FILE=

VOLUME=

AREA=

The name of the file in question. It may be specified
as for LIBRARY above.

The name of the volume on Which the primary library
resides. It may also be specified as for LIBRARY above.

A user receiving area for the obtained file descriptor
record(s); 80 bytes if one FDR is requested and 160 if
BOTH is specified. It may be specified as a register
in parentheses pointing to the address of the receiving
area, or as an expression addressing a 4-byte field
containing the address of the receiving area.

FDR= This optional operand indicates which FDR(s) to read.
If omitted, the default is to 1 (read FDRl only).

1 - Read the FDRl only.
n - Read the (n-l)th FDR2 only where "n"

is integer 2 or higher. For
example, "3" reads the second FDR2.

BOTH- Read both FDRl and the first FDR2.

ALTLIB= The name of a library to be searched if the file in
question cannot be located in the library specified by
the LIBRARY operand. It may be specified as for
LIBRARY above. TI1is operand is optional. However, if
specified, then AL'IVOL must be specified as well.

ALTVOL= The name of the volume on which the alternate search
library resides. It may also be specified as for
LIBRARY above. This operand is valid only in
conjunction with ALTLIB.

4-80

READ FDR

PLOG= If YES, then read the WP file prologue along with any
other options set. If ONLY, then the caller wants only
the file prologue to be read. If NO is specified, then
the caller does not request the file prologue be read.

PAREA=

Examples

If YES or ONLY is specified, then the caller must
specify in the PAREA operand a receiving area for the
file prologue.

Indicates the address of the receiving area for the
file prologue. May be specified as a register in
parentheses containing the address of the receiving
area, or as an address expression pointing to a
four-byte area containing the address of the receiving
area.

LAB READFDR PLIST=(R4)
+LAB PUSHA 0,0 GET ONE WORD OF ZEROES ON THE STACK

POINT TO PLIST WITH STACK TOP WORD
ISSUE SVC

+ PUSH O,R4
+ SVC 24 (READFDR)

LAB READFDR LIBRARY='SYSLIB' ,FILE=(Rl),VOLUME=SYSVOL,AREA=FDRAREA,X
FDR=BOTH,ALTLIB='SYSLIB2' ,ALTVOL=SYSVOL

+LAB PUSHN 0,50 GET SPACE ON STACK FOR PLIST
+ MVC 0(8,15) ,=CL8'SYSLIB' SET LIBRARY NAME
+ MVC 8(8,15) ,O(Rl) SET FILE NAME
+ MVC 16(6,15) ,SYSVOL SET VOLUME NAME
+ MVI 22(15) ,X'04' SET FLAG TO READ FDRl AND lST FDR2
+ MVI 23(15) ,X'OO' (THIS FIELD NOT USED FOR FDR=BOTH)
+ MVC 24(4,15),FDRAREA SET FDR RECEIVING AREA ADDRESS
+ XC 28(8,15) ,28(15) (THIS FIELD RESERVED)
+ OI 22(15) ,X'08' SET FLAG TO INDICATE ALTERNATES
+ MVC 36(8,15) ,=CL8'SYSLIB2' SET ALTERNATE LIBRARY NAME
+ MVC 44(6,15) ,SYSVOL SET ALTERNATE VOLUME NAME
+ PUSHA O,O GET ONE WORD OF ZEROES ON THE STACK
+ PUSHA 0,4(,15) POINT TO PLIST WITH STACK TOP WORD
+ SVC 24 (READFDR) ISSUE SVC

LAB READFDR LIBRARY='USERLIB' ,FILE=(Rl) ,VOLUME=SYSVOL,AREA=(R6)
+ LAB PUSHN 0,36 GET SPACE ON STACK FOR PLIST
+ MVC 0(8,15) ,=CL8'USERLIB' SET LIBRARY NAME
+ MVC 8(8,15),0(Rl) SET FILE NAME
+ MVC 16(6,15) ,SYSVOL SET VOLUME NAME
+ MVI 22(15) ,x•oo• CLEAR FLAGS
+ MVI 23(15) ,O INDICATE READ FDRl ONLY
+ ST R6,24(,15) SET FDR RECEIVING AREA ADDRESS
+ XC 28(8,15) ,28(15) (TIIIS FIELD RESERVED)
+ PUSHA 0,0 GET ONE WORD OF ZEROES ON THE STACK
+ PUSHA 0,4(,15) POINT TO PLIST WITH STACK TOP WORD
+ SVC 24 (READFDR) ISSUE SVC

4-81

Read Volume Table of Contents

Syntax {ATTRIBUTES}
{EXTENTS }

[label] READVTOC OPTION = {LIBRARIES }
{FILES }
{BLOCKS }

[,PLIST= {(register) }]
[{ expression}]

[,VOLUME= {(register) }]
[{ expression}]
[{'literal' }]

[,LIBRARY= { (register) }]
[{ expression}]
[{'literal' }]

[,COUNT= { (register) }]
[{ number }]

[,START= { (register) }]
[{ expression}]
[{ 1 }]

[,OFB= { (register) }]
[{ expression}]

Restrictions

The area addressed by PLIST must be in the user's Segment 2.
If any operands are supplied as 'literals' (and in some other
cases}, the user must allow for generation of a literal pool.

Function

Provides information from a Disk Volume Table of Contents
(VTOC). Specific functions are described under OPTIONS.

READVTOC
indicating
operation.

issues a return
success, or the

code in
reason

the
for

stack top
failure, of

word,
the

If PLIST is not specified, space for the parameter list is
obtained from the stack; the length of the area is returned
in General Register 1 (whose previous contents are lost).

If PLIST is specified, the designated area must be large
enough to hold the desired output.

4-82

READVTOC

Operand Descriptions

OPTION=

PLIST=

VOLUME=

One of the following, coded as shown, indicating
which type of information is desired. This
operand is required, unless PLIST is specified.

ATI'RIBUTES

EXTENTS

LIBRARIES

FILES

BLOCKS

1. VTOC extents in use.
Number of unused blocks in VTOC.

2. Number of Libraries on Volume.
Number of Files on Volume.

3. Number of Free Extents on Volume.
Total size of Free Extents.

4. Descriptions of m (m=COUNT)
largest Free Extents from
(n=START) Free Extent.

- Descriptions of m
Extents from nth
Extent.

(m=COUNT)
(n=START).

nth

Free
Free

- Lists m (m=COUNT) Library names and
number of Files in each Library
listed, starting from nth (n=START)
Library name.

- Lists m (m=COUNT) Filenames starting
from nth (n=START) File in specified
Library.

- Reads m (m=COUNT) consecutive VTOC
blocks starting from nth (n=START)
block in VTOC and copies into File
specified by OFB=.

An expression, or a register in parentheses,
pointing to an area to be used as the READVTOC
parameter list. If PLIST is specified, no OPTION
is required, nor are any of the other operands
(in this case, it is assumed that the user has
placed values in the PLIST for operands that
would otherwise have been required) •

An expression, a register in parentheses pointing
to a 6-byte name, or a literal in single quotes,
indicating the Volwne from which VTOC information
is desired. Required for all OPTIONs (unless
PLIST is specified).

4-83

READVTOC

LIBRARY= An expression, a register in parentheses pointing
to an 8-byte name, or a literal in single quotes
indicating the Library about which VTOC
information is desired. Required when
OPTION=FILES (unless PLIST is specified).

COUNT= A number or a register in parentheses containing
a number, indicating how many items (one or more)
are requested (see OPTION descriptions) •
Required for all OPTIONS unless "PLIST" is
specified.

START= An expression, or a register in parentheses
containing a number, indicating which item (see
OPTION descriptions) is the first item
requested. Required for all OPTIONS (unless
"PLIST" is specified) • START=l is the default.

OFB= The address, or a register in parentheses
containing the address, of the Open File Block.
The file specified must be open for output with
enough space allocated to accOD1Dodate m VTOC
blocks (as specified in BLOCKS) •

Return Codes

Examples

0 - Requested operation performed.
4 - Invalid argument PLIST address.
8 - VOLUME not mounted.

12 - VOLUME used exclusively by another user or job.
16 - Insufficient buffer space to perform operation.
20 - Invalid OPTION request.
24 - LIBRARY not found.
28 - VTOC error; FDXl and FDX2 conflict.
32 - Disk I/0 error; V'l'OC not reliable.

FOOBAR READVTOC OPTION=ATl'RIBUTES,VOLUME='VOLVO' ,COUNT=32,START=(R8)
+FOOBAR DS OH
+ LA 1,222
+ PUSHN 0 ,O (,1)
+ MVC 8(2,15) ,=Y(32)
+ MVI 6 (15) ,O
+ STH RB,10(15)

SIZE OF PARAMETER LIST
SPACE FOR PARAMETER LIST
SET COUNT FIELD
INSERT OPTION BYTE
SET START FIELD

+ MVC 0(6,15),=CL6'VOLVO' MOVE IN VOLUME NAME
+ PUSH 0,15 PARAMETER LIST TO STACK
+ SVC 19 (READVTOC) ISSUE READVTOC SVC

4-84

READVTOC

READVTOC OPTION=BXTENTS,VOLUME=VCBSER,COUNT=(7)
+ DS OH
+ LR 1,7 COPY COUNT
+ MH 1,=Y(6) TIMES ELBMENT SIZE
+ LA 1,4(,1) PLUS MINIMUM SECTION LENGTH
+ PUSHN 0 ,o (,1) GET SPACE REQUIRED
+ sm 7 ,8(15) SET COUNT FIELD
+ MVI 6(15),1 INSERT OPTION BYTE
+ MVC 10 (2 ,15) ,=Y (1) SET START FIELD
+ MVC 0(6,15),VCBSER MOVE IN VOLUME NAME
+ PUSH 0,15 PARAMETER ADDRESS TO STACK
+ SVC 19 (READVTOC) ISSUE READVTOC SVC

READVTOC OPTION=LIBRARIES,VOLUME=(6),COUNT=32
+ DS OH
+ LA 1,340 SIZE OF PARAMETER LIST
+ PUSHN 0 ,O(,1) SPACE FOR PARAMETER LIST
+ MVC 8(2,15) ,=Y (32) SET START FIELD
+ MVI 6(15) ,2 INSERT OPTION BYTE
+ MVC 10(2 ,15) ,=Y(l) SET START FIELD
+ MVC 0(6,15) ,0(6) MOVE IN VOLUME NAME
+ PUSH 0,15 PARAMETER LIST TO STACK
+ SVC 19 (READVTOC) ISSUE READVTOC SVC

READVTOC OPTION=FILES, VOLUME= I SYSTEM I , LIBRARY=. SYSS' ,COIJNT:sl 6
+ DS OH
+ LA 1,148 SIZE OF PARAMETER LIST
+ PUSHN 0,0(,1) SPACE FOR PARAMETER LIST
+ MVC 0(2,15) ,=Y(l6) SET COUNT FIELD
+ MVI 6(15) ,3 INSERT OPTION BYTE
+ MVC 10(2,15) ,=Y (1) SET START FIELD
+ MVC 0(6,15),=cL6'SYSTEM' MOVE IN VOLUME NAME
+ MVC 12(8,15) ,=CLS'SYSS' MOVE IN LIBRARY NAME
+ PUSH 0,15 PARAMETER LIST TO STACK
+ SVC 19 (READVTOC) ISSUE READVTOC SVC

READVTOC OPTION=BLOCKS,VOLUME=VCBSER,COUNT=(3) ,START=(4),
OFB=(ROFB)

+ DS OH
+ LA 1,20 SIZE OF PARAMETER LIST
+ PUSHN 0 ,o (,1) SPACE FOR PARAMETER LIST
+ sm 3 ,8(15) SET COUNT FIELD
+ MVI 6(15) ,4 INSERT OPTION BYTE
+ sm 4,10 (15) SET START FIELD
+ MVC 0(6,15) , VCBSER MOVE IN VOLUME NAME
+ ST ROFB ,12 (,15) SET OFB ADDRESS
+ PUSH 0,15 PARAMETER LIST TO STACK
+ SVC 19 (READVTOC) ISSUE READVTOC SVC

READVTOC PLIST=(RLIST),START=
+ DS OH
+ PUSH O,RLIST PARAMETER ADDRESS TO STACK
+ SVC 19 (READVTOC) ISSUE READVTOC SVC

4-85

Register Equation

Syntax

REGS FP = {YES}
{NO }

Restrictions

None.

Function

'!he REGS macroinstruction equates register numbers with the
standard symbolic names used by all other system
macroinstructions which refer to general registers. It should be
included in all program assemblies which make use of system
macroinstructions. Register names are as follows:

General Register Numbers

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Floating Point Register Numbers

Operand Descriptions

0
2
4
6

Names

RO
Rl,AP
R2
R3
R4
RS
R6
R7
R8
R9
RlO
Rll
Rl2
Rl3,EP
R14
R15,SP

Names

FO
F2
F4
F6

FP= If NO is specified, symbolic names for the Floating-Point
Registers are not generated. '11l.e default is to YES.

4-86

Rename a Disk File

Syntax

1. [label] RENAME PLIST= { address }
{ (register) }

2. [label] RENAME LIBRARY ,LIBRARY={ address
{'string'

,VOLUME={ address } ,NEWNAME={ address
{'string' } {'string'

[,RESTRICT={NO }] [,BYPASS={ NO }]
{YES} {YES}

3. [label] RENAME FILE={ address } ,LIBRARY={ address
{'string' } {'string'

,VOLUME={ address } ,NEWNAME={ address
{'string' } {'string'

}
}

}
}

}
}

}
}

[,NEWLIB ={ address }] [,RESTRICT={NO }] [,BYPASS={NO }]
{'string' } {YES} {YES}

Restrictions

If any of the operands is specified as a character string in
single quotes, then the issuing program must provide for the
generation of a literal pool.

RENAME now examines all of the bits of the Option Byte in the
input parameter list. Previously, bits 3-7 were not examined.
Therefore, previously coded invocations of RENAME may fail or
produce undesirable results if bits 3-7 are set. Bits 5-7 of the
Option Byte are reserved and must be zeroes.

RENAME requires a minimum of 2K bytes of stack for buffer space
to rename a library or a file. RENAME requires a minimum of 91<
of stack for buffer space to rename both a library name and a
file name for a given file ("Full RENAME").

Function

To rename a disk file or a library on a volume. A "Full RENAME"
(renaming both a library name and a file name for a given file)
may alter the Volume Table of Contents; otherwise, the structure
of the VTOC is not altered. No file that is to be renamed may be
open when the RENAME is attempted. Note that a "Full RENAME" is
equivalent to moving a file from one library to another on the
same volume.

4-87

RENAME

If the PLIST= option is not utilized, then RENAME dynamically
builds its parameter list on the stack, and it becomes the
invoking program's responsibility to pop 32 bytes (40 for "Full
RENAME") off the stack beyond the return code word.

Operand Descriptions

PLIST= The address of a user-generated parameter list, the
format of which is described in the RENAME SVC in
Chapter 6. If PLIST= is specified, no other operand is
allowed; if it is not specified, the macro generates
code to dynamically build a parameter list on the stack
prior to issuance of the RENAME SVC.

PLIST may be specified as a register in parentheses
containing the address of the user-generated parameter
list, or as an expression addressing it.

LIBRARY Indicates that the library specified in the LIBRARY=
operand is to be renamed. Use of this operand is
mutually exclusive with the FILE= operand. Note that
this operation is equivalent to "moving" all the files
in that library to a new library on the same volwne.
Libraries may not, however, be merged in this manner:
the library specified by the NEWNAME= operand can exist
when the RENAME SVC is issued.

FILE= Specifies the name of the file to be RENAMEd. Tilis
operand may be specified as a character string in
single quotes which is the name of the file, or as an
address expression containing the name of the file to
be renamed. Use of this operand is mutually exclusive
with the LIBRARY operand described above.

LIBRARY= Specifies the name of the library to be RENAMEd or the
name of the library containing the file to be renamed.
This operand may be specified as a character string in
single quotes which is the name of the library, or as
an address expression pointing to an eight-byte field
containing the library name. This operand is required
if PLIST= is not specified.

VOLUME= Specifies the name of the volume containing the file
and/or library to be RENAMEd. This operand may be
specified as a character string in single quotes which
is the name of the volume, or as an address expression
pointing to an six-byte field containing the volume
name. This operand is required if PLIST= is not
specified.

4-88

NEWNAME= Specifies the new name
RENAMEd. This operand may
string in single quotes
library or file, or as an
to an eight-byte field
name. This operand is
specified.

RENAME

of the file or library being
be specified as a character

which is the name of the
address expression pointing

containing the library or file
required if PLIST= is not

RESTRICT= YES specifies that the RENAME SVC is to ignore any
special access rights which may have been granted to
the invoking program, and thus restrict itself to the
user's LOGON access rights in determining whether the
user may RENAME the specified file(s). If NO is
specified, or the operand is omitted, the RENAME
operation proceeds, utilizing current file access
rights.

BYPASS= If NO is specified, or the operand is omitted, the
RENAME operation performs an expiration date check. If
the date is unexpired, the entire RENAME operation is
not performed. If YES is specified, the expiration
date check is bypassed.

NEWLIB= The name of the library in which the renamed file is to
be placed. This operand is used only for the "Full
RENAME" option, that is, for the renaming of both the
file name and the library name for a given file. The
library specified by the NEWLIB= operand can exist when
the RENAME SVC is issued. If omitted, then the same
library as specified by the LIBRARY= operand is
assumed. This operand may be specified as a character
string in single quotes which is the new file name or
library name, or as an address expression pointing to
an eight-byte field containing the new file name or
library name. Use of this operand is mutually
exclusive with use of the LIBRARY operand.

Example

LABl RENAME
FILE=RENFILE,LIBRARY=RENLIBR,VOLUME=RENVOLUME,

NEWNAME=RENNEWNAME
+LABl PUSHN 0,8
+ MVI 0(15) ,O
+ MVI 6(15) ,B'OOOOOOOO'
+ MVC 0(6,15) ,RENVOLUME
+ PUSHC 0(8) ,RENNEWNAME
+ PUSHC 0(8) ,RENFILE
+ PUSHC 0(8) ,RENLIBR
+ SVC 26 (RENAME)

4-89

x

VOLUME
NEW NAME
FILE
LIBRARY

RENAME

LAB RENAME PLIST=(Rl)
+LAB PUSH O,Rl POINT TO USER-DEFINED PARAMETER LIST
+ SVC 26 (RENAME)

LAB RENAME LIBRARY,LIBRARY=OLDLIB,VOLUME='MYVOL',NEWNAME=NEWLIB
+LAB PUSHN 0,8 GET TWO WORDS ON THE STACK
+ MVI 7(15) ,O RESERVED; MUST BE ZERO
+ MVI 6(15),B'OlOOOOOO' SET OPTION FLAGS
+ MVC 0(6,15) ,=CL6'MYVOL' CURRENT VOLUME NAME
+ PUSHC 0(8) ,NEWLIB NEW FILE/LIBRARY NAME

PUSHN 0,8 RENAME LIBRARY (FILENAME OMITIED)
PUSHC 0,8,0LDLIB CURRENT LIBRARY NAME
PUSH 0,15 POINT TO PLIST WITH STACK TOP WORD
SVC 26 (RENAME)

4-89.1

4-89.2

Remove Timer Interval

Syntax

[label] RESETIME

Function

Cancels an interval timing request previously established
by 'SETIME' which has not been the subject of a 'CHECK
INTERVAL' or previous 'RESETIME' • A programming error is
assumed and the issuing program cancelled if there is no
such request.

Operand Description

There are no operands.

Example

LABl
+LABl
+
+

RESET I ME
PUSHN
MVI
SVC

0,4
0(15),X'SO' RESET
32 (RESETIME)

4-90

Retutn to Invoker

Syntax

[] []
I ,CODE={(register)}I I ,COND=numberl

[label] RETIJRN [UNLINK] I {expression} I I I
[] []

Restrictions

(A CALL, LINK or program invocation must have occurred for
the issuing task.)

Function

The RETURN macroinstruction is used to (conditionally) exit
from a program to the system when normal termination of the
run is required. It is also used to exit from a subprogram
and return to the calling program. '!be stack top pointer
(register 15) and control register 1 are restored to their
values before the CALL or LINK which effected entry to the
program or subprogram. General register 1-14 contents are
restored to their state before the CALL, LINK or program
invocation. A retutn code, if requested, is set in
register 0. Otherwise, register 0 is set to zero. (Note
that "RETURN CODE=(O)" leaves register 0 unchanged.)

Operand Descriptions

UNLINK

CODE=

COND=

Example

LABl
+LABl
+

Specifies return to the most recent LINK
issuer, Command Processor or Procedure
Interpreter, thus terminating all routines
invoked by a sequence of CALLs. • COND=' must
not be specified with this operand.

If the CODE= operand is supplied,
loaded with the number specified
register specified. In this

register 0 is
or from the

case, the
instruction "LA 0 ,number" or "LR
generated.

O,Rn" is

If supplied, specifies the condition codes
under which the return is to be made, as for a
machine instruction. If omitted, 1 COND=l5 1 is
assumed. Invalid if 'UNLINK' operand specified.

RETURN
LA
RTC

CODE=ZERO,COND=7
RO,ZERO
7

4-91

Rewrite a Record

Syntax

[label] REWRITE [TABS,]UFB={ (register)} [,COND=number]
[SELECTED,] {expression}

Function

Rewrites a disk record or workstation line. The file must
be open in IO or SHARED mode or placed in temporary IO mode
by the 'START IO' function. In IO mode, the last
successful function addressed to the file must have been a
READ with HOLD option unless the file is a workstation
file. In SHARED mode, the program must be HOLDing the
record to be rewritten (as a result of a preceding READ
with the HOLD option not overridden by a later READ with
HOLD. Record or line is taken from the user' s record area
as addressed by field UFBRECAREA of the specified User File
Block (UFB) •

Additional control information (order area) precedes the
line to be written in the record area for workstation line
REWRITES. Refer to the specific device description for
details on this area.

For indexed disk file REWRITEs, the key field in the record
to be rewritten is validated. REWRITE may not change this
field.

An error condition discovered on REWRITE will result in
nonzero ASCII digit settings of the file status bytes
(UFBFSl , UFBFS2) and return to the address in UFBEODAD or
UFBERRAD, with the normal return address in register O.

Possible file status codes indicating errors are:

Return to UFBEODAD:

23 - Block beyond end of file for block-level I/0

Return to UFBERRAD:

30 - Permanent I/0 error
34 - Order check on workstation
95 - Invalid function or function sequence (includes

key validation failure for indexed file REWRITE)

If UFBERRAD is binary zeroes, these conditions
program termination.

4-92

cause

REWRITE

Operand Descriptions

TABS Indicates that bytes 4-13 of the user's record
area contain tab position settings for the
workstation (in ascending order, terminated by
the first zero item, binary column numbers
1-80), and that the purpose of the REWRITE is
to set these tabs.

SELECTED

UFB=

COND=

Example

LABl
+LABl
+
+

Indicates that only
selected-field tags
attribute characters are
workstation screen.

those
set in

to be

fields
their

written

with
field
to a

'!be address of a User File Block (UFB) , which
may be supplied as a register specification in
parentheses, where the register contains the
UFB address, or as an expression not in
parentheses, where the word addressed is
assumed to begin the UFB.

If specified, the number or absolute expression
becomes the first operand of the JSCI
instruction by which the REWRITE function is
entered. Thus the REWRITE is made
conditional. COND=lS is the default. Register
1 is loaded with the UFB address even when the
condition is not satisfied.

REWRITE
LR
MVI
JSCI

UFB=(R2)
1,R2
8(1),B'OOOOOOOO'
15,8(,1)

4-93

SET REGISTER 1
MODIFIERS
REWRITE FUNCTION

Scratch a File

Syntax

1. [label] SCRATCH PLIST= {expression}
{(register)}

2. [label] SCRATCH {LIBRARY } ,LIBRARY={ expression}

Function

{FILE={expression}} {'literal' }
{ {'literal' }}

,VOLUME={ expression}
{'literal' }

[,RESTRICT={ NO}]
[{YES}]

[,BYPASS={ NO}]
[{YES}]

To delete ("scratch") a disk file or a library of disk files on a
volume, making the space utilized by the file(s) available for
reallocation and removing all references to the file(s) from the
Volume Table Of Contents (VTOC) • No file that is to be deleted
may be open when the SCRATCH is attempted.

Return codes in binary in the top word of the stack indicate the
result of the request:

Retum code = 0 - File or library successfully
scratched

Retum code = 4 - Volume not mounted
Return code = 8 - Volume used exclusively by other user
Retum code = 12 - All buffers in use, no scratch
Return code = 16 - Library not found
Return code = 20 - File not found
Return code = 24 - Update access denied, no scratch

(single-file scratch only)
Return code = 28 - Unexpired file, no scratch

(single-file scratch only)
Return code = 32 - File in use, no scratch
Return code = 36 - VTOC error! FDXl and FDX2 don't

agree
Re tum code = 40 - VTOC error! FDX2 and FDR don't agree
Return code = 44 - Invalid argument list address
Return code = 48 - I/0 error! VTOC unreliable!
Retum code = 52 - Open, protected, and/or unexpired

file bypassed in scratching library

If space on the volume is lost during SCRATCH because there is no
room in the VTOC to record released extents, the. high-order three
bytes of the return code word contain the number of blocks lost.
Otherwise they are zeroed.

4-94

SCRATCH

Note: If the PLIST= option is not utilized, it is the program's
responsibility to pop 24 bytes off the stack beyond the re tum
code word on the stack.

Operand Descriptions

PLIST= - The address of a SCRATCH parameter list. (For a
description of the format of the parameter list,
please ref er to the description of the SCRATCH SVC in
Chapter 6.) If PLIST= is specified, no other operand
may be specified. If PLIST= is not specified, the
macro generates code to dynamically build a parameter
list on the stack prior to issuance of the SCRATCH
SVC.

LIBRARY - Indicates that all files within the library specified
are to be deleted. Use of this operand is mutually
exclusive with the FILE= operand.

FILE= Specifies the address at which the file's name is
located. May be specified as a character string
-delimited by single quotes, in which case a constant
is assumed. Use of this operand is mutually
exclusive with the LIBRARY operand described above.

LIBRARY= - Specifies the address at which the library's name is
located. May be specified as a character string
delimited by single quotes, in which case a constant
is assumed. This operand is required if PLIST= is
not specified.

VOLUME= Specifies the address at which the volume• s name is
located. May be specified as a character string
delimited by single quotes, in which case a constant
is assumed. This operand is required if PLIST= is
not specified.

RESTRICT= If NO is specified, or the operand is omitted, the
SCRATCH operation proceeds utilizing current file
access rights. If YES is specified, the operation is
restricted, assuming only the file access rights of
the user and ignoring any special access rights of
the program.

BYPASS= If NO is specified,
SCRATCH operation
For any unexpired
performed. If YES
check is bypassed.

or the operand is omitted, the
perfonns an expiration date check.
file(s), the SCRATCH is not
is specified, the expiration date

4-95

SCRATCH

Example

LABl SCRATCH FILE=SCRFILE,LIBRARY=SCRLIBR,VOLUMB=SCRVOLUME
+LABl PUSHN 0,8
+ MVI 0 (15) ,O
+ MVI 6(15),8'00000000'
+ MVC 0 (6,15) ,SCRVOLUME VOLUME
+ PUSHC 0(8),SCRFILE FILE
+ PUSHC 0(8) ,SCRLIBR LIBRARY
+ SVC 27 (SCRATCH)

4-96

Set Task-Related Defaults

Syn.tax

[label] SET PROGVOL= {(register)} ,PROGLIB= {(register)}
{'string' } {'string' }
{address } {address }

. ,INVOL= { (register) } ,INLIB= { (register) }
{'string' } {'string' }
{address } {address }

,OUl'VOL= { (register)} ,OtrrLIB= { (register) }
{'string' } {'string' }
{address } { address }

,POOL VOL= { (register) } ,WORKVOL= { (register) }
{'string' } {'string' }
{address } {address }

-
,PRINTER= { (register)} ,PRN'IMODE= { (register) }

{'string' } {'string' }
{address } {address }

,FILECLASS= { (register)} ,LINES= { (register) }
{'string' } {'string' }
{addrGss } {address }

,PRTCLASS= { (register)} ,FOR.Mii= { (register) }
{'string' } {'string' }
{address } {address }

,RUNVOL= {(register)} ,RUNLIB= { (register) }
{•string' } {•string' }
{address } {address }

,JOBQUEUE= {(register)} ,JOBCLASS= { (register) }
{'string' } {'string' }

{address } {address }

,JOBLIMIT= {(register)}
{'string' }
{address }

4-97

Restrictions

All library and volume name specifications (except literals) must
reference eight- and six-byte fields respectively, as the SET SVC
cannot determine the length of the character string and assumes
the maximum.

If any operand is specified as a literal or an integer, then the
user program must allow for the generation of a literal pool.

Function

Allows user programs to set default values according to the
operands specified. These values are used by the various system
utilities and SVCs. Note that none of the operands have defaults
and that any unspecified operands will be unaffected.

Operand Description

NOTES:

(1) All operands are optional (although at least one should
be specified).

(2) Operands may be specified as:

PROGVOL=
PROGLIB=

(a)

(b)

(c)

A register in parentheses pointing to a
character string which is the desired value. If
the item is numeric (PRINTER, LINES, or FORM#),
then the value is assumed to be in binary.

A character string in single quotes which is the
desired value, except for the numeric items
(PRINTER, FORM/I, and LINES) which use an integer
(not in quotes) which is the desired value in
decimal,

An expression addressing a character string
which is the desired value. If the item is
numeric (PRINl'ER, LINES, or FORM/I) , then the
value is assumed to be in binary.

Default program/procedure volume name.
Default program/procedure library name. This
pair of operands is used only in procedures, for
programs run by those procedures, and identify
default library and volume names for all such
programs.

4-98

INVOL=
INLIB=

OU'IVOL=
OUTLIB=

SPOOLVOL=

WORKVOL=

PRINTER=

PRNTMODE=

FILECLASS=

Default non-output volume name.
Default non-output library name~

operands is used primarily by the
locate files OPENed as input.

This pair of
OPBN SVC to

Default output volume name.
Default output library name. This pair of
operands is used primarily by the OPBN SVC to
assign files OPENed as output.

Default volume for assignment of SPOOLed (Print)
files.

Default volume for assignment of WORK files.

Default printer device number for on-line
printing. Note that this operand in no way
affects printer assignment for SPOOLed files.
This number must be in the range 0 to 255.

Default print mode. Permissible values and
their meanings are as follows:

0

s

K

H

ONLINE: Printing will be done using
the printer as a direct output
device; a Print file is NOT created.

SPOOL: Print files will be created
and will be queued by the System
Task (@SYSTSK@) for printing at the
earliest opportunity,

KEEP: Print files will be created
but will NOT be queued for printing
by the System Task.

HOLD: Print files will be placed in
the user's Print Library and will be
queued by the System Task, but will
NOT be printed until requested by
the system operator or the user.

Default file protection class.
values are valid:

The following

II

$

Accessible only
Administrators
Owner-of-Record.

by
and

Security
the

READ only files. READ access
granted to all users regardless of
the individual access privileges.

4-99

LINES=

PRTCLASS=

FORMIJ=

RUNVOL=
RUNLIB=

JOBQUEUE=

JOBCLASS=

@

A-Z

(BLANK)

EXECUTE only files. EXECUTE
granted to all users as above.

Accessible by users with
access privileges matching the
of access desired.

access

class
type

Unprotected file. WRITE access
implied for all users regardless of
their individual access privileges.

Default number of lines-per-page.
is used primarily by the Print
system utilities. This number
range 0 to 255.

This operand
functions of

must be in the

Default print class. This operand determines
the class to which print requests sent to the
system task will be assigned. Printer
assignment, scheduling priority, and header page
options are set for each class by the system
operator and, as such, may vary from time to
time. Valid values are the letters A-Z, or a
blank.

Default form number for Print files. The
association of a form number with a specified
form is installation-defined. Thia number
becomes part of the queue record for a Print
file and is examined by the System Task. This
number must be in the range 0 to 254.

Default program/procedure execution volume
and library name. This operand
pair is used by the CoD1Dand Processor RUN
command to locate program/procedures to be
executed.

Default job status for a background job.
Determines when the submitted background job is
executed. Possible values are:

R - Run: The job is executed as soon as
possible.

H - Hold: The job is held in the job queue
until it is released for execution

Default job class for a background job.
Background jobs are processed according to the
job class priority hierarchy specified from the
Operator's Console. Within a given job class,
background jobs are processed in order of
submittal. Possible values are A-Z.

4-100

JOBLIMIT=

Example

LAB SET
+LAB PUSH
+ PUSHN
+ xc
+*
+*
+ ST
+*
+*
+ LA
+ ST
+*
+*
+ LA
+ ST
+*
+*
+ LA
+ ST
+*
+*
+ ST
+ OI
+ SVC
+ POP

Default CPU time limit for job execution. The
time limit is specified in seconds. Possible
values are 0-35999 (thus the maximum time limit
is 99:59:59). If zero, then the job has no time
limit.

PROGVOL=(R2),PROGLIB='MYLIB',PRINTER=PRTID,FORM#=(R5) ,LINES•55
O,O SAVE REGISTER ZERO IN THE STACK
0,64 PUSH AREA FOR SVC PLIST
0(64,15),0(15) INITIALIZE AREA TO ZEROES

SET DEFAULT PROGRAM VOLUME NAME
R2,0(,15) PLACE ADDRESS IN PLIST

SET DEFAULT PROGRAM LIBRARY NAME
RO,=CL8'MYLIB' POINT TO LITERAL
RO ,4 (,15) SET ADDRESS IN PLIST

SET DEFAULT PRINTER NUMBER
RO ,PRTID POINT TO DATA ITEM
R0,40(,15) PLACE ADDRESS IN PLIST

SET DEFAULT LINES-PER-PAGE
RO,=AL1(55) POINT TO LITERAL
R0,52(,15) PLACE ADDRESS IN PLIST

SET DEFAULT FORM NUMBER
RS,60(,15) PLACE ADDRESS IN PLIST
60(15) ,x•ao• FLAG END OF PLIST
35 (SET) ISSUE SVC
O,O RESTORE REGISTER ZERO FROM STACK

4-101

Set Interval Timer

SY!} tax

[label] SETIME {UNTIL}= {(register)}
{CSEC } {expression}

Function

Sets a timer interval for the issuing task to expire at the
time specified, or after the number of 1/100 second units
specified. If a previous interval timing request was
active for this task, it is cancelled and the new one
instated.

Operand Descriptions

UNTIL=

CSEC=

Example

LABl
+LABl
+
+

Either a register specification in parentheses,
where the register contains a binary time value
in 1/100 second units into a day (from
midnight), or an address expression, where the
four bytes starting at that address contain the
time as above. To request expiration at some
time tomorrow, the value supplied must be 24
hours plus the required time-of-day. A
requested time less than the current
time-of-day will result in inunediate expiration.

Either a register specification in parentheses,
where the register contains the number of 1/100
second units to delay processing, in binary; or
an expression, not in parentheses, for the
required number of 1/100 second units. May not
exceed one day.

SETIME
PU SHA
MVI
SVC

CSEC=SS
0,55
0(15) ,O UNITS
32 (SETIME)

4-102

Start File Processing in Specified Mode or at Specified Record
Location

Syntax

[label] START {IO } ,UFB={ (register)} [,COND=number]
{OUTPUT } {expression}
{EXTEND }
{BEG.IN }
{SKIP }
{EQ }
{GT }
{GE }
{ATI'NT }
{WAIT }
{HOLD }
{RELEASE}
{TCWAIT[,MULTIPLE][TIMEOUT={register }]}
{ [(MULTIPLE ,ATl'N)] [{expression}]}
{HALTIO}

Function

The function of START differs for various file types.

(1) Consecutive disk files (normal DMS):

START is valid in OUTPUT or EXTEND open modes only.
•START IO' writes any remaining buffered records to
disk, and then enters temporary IO mode• with the next
record to be read set to the first record of the file.
'START OUTPtrr' places the file in OUTPUT mode, after
effectively deleting all records in the file (but not
necessarily releasing space allocated for them on a
disk file). Tile next WRITE will then place a new first
record in the file. 'START EXTEND' places the file in
EXTEND mode (thus having significant effect only when
'START IO' has been previously issued). The next WRITE
will then add a record to the end of the file.
Possible error indications in the file status bytes
(UFBFSl, UFBFS2) are as follows:

30 - Permanent I/0 error
95 - Invalid function or function sequence

4-103

(2) Consecutive disk files:
(variable-length records, normal DMS):

START BEGIN and START SKIP are valid in INPUT and IO
modes. A READ NEXT issued after START BEGIN will read
the first record of the file. A READ NEXT issued after
a START SKIP (with a signed binary number "n" in the
word addressed by UFBKEYAREA) will skip over "n"
records and read the record after them (n>O), will
merely read the next record (n=O) , will reread the
current record (n=-1) or will read a preceding record
(n<-1).

(3) Consecutive disk and magnetic tape files (physical
access method):

START WAIT is valid in INPUT, OUTPUT, or IO modes. The
program is paused until a preceding READ or WRITB
operation is completed. START IO and START OU'l'Ptrr have
the same function as for normal consecutive DMS.
Possible error indications in the file status bytes
(UFBFSl, UFBFS2) are as follows:

30 - Permanent I/O error
95 - Invalid function or function

(including START WAIT issued without
block-level READ, REWRITE OR WRITE)

(4) Indexed disk files:

sequence
preceding

START is valid in INPUT, IO or SHARED modes only.
Valid options are EQ, GT and GE. The START function is
essentially a READ (KEYED, NODATA) operation (key from
area addressed by UFBKEYAREA, with length UFBKEYSIZE)
with the following additional options:

EQ - If a record with the specified key is not
found in the file, invalid-key and
no-record-found conditions are indicated.
(This is like READ KEYED.)

GT - The first record with key greater than the
supplied key is sought. (Collating sequence
is normal ASCII •) If no such record is found,
invalid-key and boundary-violation conditions
are indicated.

GE - The first record with key
equal to the supplied
Otherwise like the GT option.

4-104

greater
key is

than or
sought.

START

After a successful START function, a succeeding READ
(without KEYED option) will read the record located by
START. Successive READs will then read successive
records.

If UFBGKSIZE is not all binary zeroes, the binary value
in UFBGKSIZE is used as the key length for the above
searches, in place of UFBKEYSIZE. UFBGKSIZE may be set
by the user's program before issuing a START. It must
always be less than or equal to UFBKEYSIZE. If not, a
fatal error resulting in program termination will
occur. UFBGKSIZE is set to zero by every such START
function.

Possible invalid-key and error indications in the file
status bytes (UFBFSl, UFBFS2) are as follows:

23 - Invalid-key, no record found
24 - Invalid-key, boundary violation
30 - Permanent I/0 error
95 - Invalid function or function sequence

(5) Workstation files:

The only valid option is 'ATI'NI''. Only the file status
bytes are modified. They are set as follows:

UFBFSl - 0
UFBFS2 - AID character as indicated on the most

recent interruption for this workstation;
hexadecimal values as follows:

20 -
21 -

Keyboard unlocked.
Keyboard locked
function or other
workstation.

by REWRITE
write to

3F - Display screen, tab positions,
or other workstation status
lost.

Other - Indication of last AID
character (e.g., ENTER, PROGRAM
FUNCTION) received. See
specific device description.

(6) Disk files (IO or SHARED open modes only) :

START HOLD acquires temporary exclusive control of the
entire File addressed. It has no significant effect in
IO mode.

START RELEASE may be used to remove a record or File
from HOLD status without issuing a REWRITE, DELETE, or
another READ with the HOLD option. It has no
significant effect in IO mode.

4-105

For all START functions and all file types, an
invalid-key condition results in return to the address
in UFBEODAD, with the normal return point address in
register 0. Other exceptional and error conditions
result in return to the address in UfBERRAD, with the
normal return point address in register 0. If UFBEODAD
is zero, UFBERRAD is used in its place. If UFBERRAD is
zero as well, any exceptional condition results in
abnormal termination of the program.

(7) Teleconununication devices:

START TCWAIT waits for the completion of current 'READ'
or 'WRITE' operations issued on this TC file (this UFB).

START TCWAIT, MULTIPLE waits for completions on all TC
devices for which this program has an outstanding
'READ' or 'WRITE' operation.

START, TCWAIT, (MULTIPLE ,A'ITN) waits for unsolicited
interrupts for any TC 1 ines, which this program
controls, in addition to START TCWAIT, MULTIPLE.

The TIMEOUT operand can be used in conjunction with
either of the above options. The expression field is
an unsigned integer with value less than or equal to
255. If 'register' is specified, the right-most byte
of the register will be used. In either case, TIMEOUT
specifies the time interval in seconds.

4-106

START

The following table summarizes the uses of START:

START - MODES OF USE WITH DISK FILES

Open Op~n Open Open Open
for for for for for
Input Output I/0 EXTEND Shared

IO

Fixed Start IO Start IO
Consecutive OUTPUT OUTPUT
RAM EXTEND EXTEND

Variable Start SKIP Start SKIP
Length BEGIN BEGIN
Consecutive Start IO Start IO
RAM OUTPUT OUTPUT

EXTEND EXTEND

Indexed Start EQ Start EQ Start EQ
RAM CT CT GT

CE CE CE
Start HOLD

RELEASE

Start IO Star1: IO
BAM OUTPUT OUTPUT

EXTEND EXTEND

Start WAIT Start WAIT Start WAIT
PAM

Start IO
OUTPUT

4-107

START

Operand Descriptions

IO
OU!PUT
EXTEND
BEGIN
SKIP
EQ
GT
GE
ATrNT
WAIT
HOLD
RELEASE
TCWAIT
HALT IO

UFB=

COND=

Example

LABl
+LABl
+
+

As described above.

The address of a User File Block (UFB) , which may
be presented as a register specification in
parentheses, where the register contains the UFB
address, or as an expression not in parentheses,
where the word at the address designated is
assumed to begin the UFB.

If specified, the number or absolute expression
becomes the first operand of the JSCI instruction
by which the START function is entered. Thus the
START is made conditional • COND=l 5 is the
default. Register 1 is loaded with the UFB
address even when the condition is not satisfied.

START
LR
MVI
JSCI

GE ,UFB=(R2)
1,R2
16(1),B'OOOOOOll'
15 ,16 (1)

4-108

SET REGISTER 1
MODIFIERS
START FUNCTION

4-109
[deleted]

4-110
[deleted]

Submit Job or Print Request

Syntax

(1) [label] SUBMIT JOB [,PLIST= { (register) }] [,PROCNAME={ (register) }]
[{ expression}] [{'literal 1

}]

[,LIBRARY= {(register) }] [,VOLUME= {(register) }]
[{ ' 1i teral ' }] [{ ' 1i teral ' }]
[{ expression}] [{ expression}]

[,JOBNAME= {(register) }] [,JOBCLASS={(register) }]
[{ ' literal ' }] [{ ' literal • }]
[{ expression}] [{ expression}]

[,STATUS=
[

{'RUN' }]
{'HOLD' }]

[,DISP= { I REQUEUE I }]

[{ expression}]
[{ expression}] [{ }]

[,CPULIMIT=({ (register) } [,{'CANCEL' }])] [,DUMP={ 'YES' }]
[{ expression} [, { 'PAUSE' }]] [{ 'NO' }]
[[' { I WARN' }]] [{ • PROO I }]

[[, { expression}]] [{ expression}]

(2) [label] SUBMIT PRINT[,PLIST={ (register) }] [,FILENAME={ (register) }]

Function

[{expression}] [{'literal' }]
[{ }] [{ expression}]

[,LIBRARY= {(register) }] [,VOLUME=
[{ ' 1i teral ' }] [
[{ expression}] [

[,PRTCLASS= {(register) }] [,FORM#=
[{ ' literal ' }] [
[{ expression}] [

[,COPIES=
[
[

[,DISP=
[
[

{(register) }] [,STATUS=
{ ' H teral ' }] [
{ expression}] [

{ 'REQUEUE' }]
{'SAVE' }]
{ expression}]

{ (register) }]
{ ' 1 i teral ' }]
{ expression}]

{ (register) }]
{'literal' }]
{ expression}]

{'SPOOL' }]
{'HOLD' }]
{ expression}]

If initial parameter is JOB, SUBMIT requests the queuing of
a procedure file for execution as a non-interactive job.
If initial parameter is PRINT, SUBMIT requests the queuing
of a print file for printing. SUBMIT issues a return code
in the stack top word indicating the success/failure/status
of the operation.

4-111

SUBMIT

Operand Descriptions

PLIST= A 44-byte user-supplied parameter list (FULLWORD
ALIGNED) for use by the SUBMIT SVC and constructed as
follows:

For "JOB" Requests:

Bytes 0-7:

Bytes 8-15:

The name of the Procedure (PROCNAME) to be
run.

The name of the LIBRARY in which the
Procedure resides.

Bytes 16-21: The name of the VOLUME
Procedure resides.

on which the

Bytes 22-29: A user-supplied JOBNAME or spaces.

Byte 30:

Byte 31:

The JOBCLASS to which this job is to be
queued.

The action to be taken in case of
abnormal termination of this job:

an

x•co• - Produce a DUMP for this job
('YES').

X1 80 1 - Do NOT produce a DUMP for this
job ('NO').

X'OO' - Produce a DUMP only if requested
by the abnormally terminating
program ('PROG').

Bytes 32-35: The CPU Time Limit (in timer units) imposed
upon this job. If zero, then the job has no
time limit.

Byte 36: The initial STATUS of this job when it is
queued:

X'80' - HOLD - NOT eligible for scheduling
until released by the operator or the
submitter.

X'OO' - RUN - eligible for
submission of the request.

4-112

scheduling upon

Byte 37:

SUBMIT

Whether or not to check for a CPU Time
Limit, the action to be taken in case the
limit is exceeded, and whether or not the
job should be requeued after execution:

X'80'

X'40'

X'20'

X'04'

- Check for timer limit expiration
(IF a CPU Time Limit is specified
then this bit MUST be on).

- CANCEL this job if the CPU Time
Limit is exceeded.

- PAUSE this job if the CPU Time
Limit is exceeded. (If neither
of these bits is on and a CPU
Time Limit has been set, then a
WARNing will be issued).

- REQUEUE this job after execution.

Bytes 38-43: RESERVED (Should be ZEROS).

For "PRINT" Requests:

Bytes 0-7:

Bytes 8-15:

'nle name of the File (FILENAME) to
printed.

be

The name of the LIBRARY in which the file
resides.

Bytes 16-21: The name of the VOLUME on which the file
resides.

Byte 22:

Byte 23:

The Print Class (PRTCLASS) to which this
file is to be queued.

The Form Number (FOBMll) (in binary) of this
file to be printed.

Bytes 24-25: The number of COPIES (in binary) of this
file to be printed.

Byte 26: The initial STATUS of this file when it is
queued:

X'80' - HOLD - NOT eligible for printing
until released by the
operator or the submitter.

X'OO' - SPOOL - eligible for printing upon
submission of the request.

4-113

SUBMIT

Byte 27: Whether or
REQUEUBed,
printing:

not this
SAVEed, or

file should
scratched

be
after

X'40' - REQUEUE this file after printing.

X'20' - SAVE this file after printing.

Bytes 28-43: RESERVED (Should be ZEROS).

"PLIST" may be specified either as a register in
parentheses pointing to the user-supplied parameter
list or as an expression addressing the
user-supplied parameter list.

If "PLIST" is specified, then the remaining
operands are optional and, if present, are used to
modify the parameter list IN PLACE. The default
values of any omitted operands are NOT recognized
so as not to override the value set in the user's
parameter list.

If "PLIST" is not specified, then the remaining
operands are used to build a parameter list on the
stack. '!be default values of omitted operands are
used in this case. The user is responsible for
POPping off the 44 bytes beyond the stack top word
(SVC Return Code) on return.

"PROCNAME/FILENAME", "LIBRARY", ''VOLUME",
"JOBCLASS/ PRTCLASS", and "FORMll" are required by
their respective functions unless "PLIST" is also
specified. All other operands are always optional.

PROCNAME/FILENAME= The n~e of the Procedure to be run or the
File to be printed.

LIBRARY= The name of the library
Procedure/File reside.

VOLUME= The name of the volume
Procedure/File reside.

in

on

which the

which the

JOBNAME= An optional user-supplied name for the job to
be submitted (limited to 8 characters).

JOBCLASS/PRTCLASS= The class to which the job/print request is to
be assigned. Valid values are the letters A-Z.

The above operands may be specified as a
register in parentheses pointing to the
required value, a literal in single quotes
which is the required value, or an expression
addressing a field containing the required
value.

4-114

FORM#=

COPIES=

SUBMIT

The number of the form on which to print this file.
This number must be in the range 0-254.

'!he number of copies of this file to be printed. ntis
number must be in the range 1-327 67. nte default
value is 1.

"FORM/I" and "COPIES" may be specified as a register in
parentheses containing the value in binary, an integer
not in quotes which is the value in decimal, or an
expression addressing a field containing the value in
binary.

CPULIMIT= lhe total amount of time that this job may use the CPU
(1st sub-operand) and the action to be taken if that
limit is exceeded (2nd sub-operand) •

STATUS=

The actual time may be specified as a register in
parentheses or an expression addressing a 4-byte field
containing the limit in timer units. A value of zero
implies that the job has no limit and any action
indicated by the 2nd sub-operand will be ignored. The
default is to zero (no limit).

The action to be taken upon completion may be
specified either as one of the following literals in
single quotes, or as an expression addressing a
one-byte field containing the appropriate flag value
(See "PLIST" entry for byte 37 ("JOB") above) • The
default is to "WARN".

'CANCEL' - Force abnormal
Procedure.

termination of the

'PAUSE'

'WARN'

- Suspend execution of the Procedure until
resumed by the operator.

- Issue a WARNing message to the operator.

NOTE: The time (1st sub-operand) may
always be specified by itself; the action
on expiration (2nd sub-operand) may only
be specified by itself if "PLIST" is also
specified.

The initial status of the request when it is placed on
the queue. It may be specified either as one of the
following literals in single quotes or as an
expression addressing a one-byte field containing the
appropriate flag value (see "PLIST" entry for byte 36
("JOB") or byte 26 ("PRINT") above) • The default is
to 'RUN'/'SPOOL':

'RUN' - Eligible for scheduling upon submission
of the request ("JOB" only) •

4-115

SUBMIT

DISP=

DUMP=

'SPOOL'

'HOLD'

- Eligible for printing upon submission of
the request ("PRINT" only).

- NOT eligible for print/execution
scheduling until released by the operator
or the submitter.

The action to be taken at completion of the request.
It may be specified as a literal in single quotes or
as an expression addressing a one-byte field
containing the appropriate flag value (see "PLIST"
entry for byte 37 ("JOB") or byte 27 ("PRINT")
above) • The default is to NOT set these options (do
NOT requeue or save).

'REQUEUE' - Place the request back onto the queue for

'SAVE'

re-execution/re-printing (for "PRINT"
requests, this implies 'SAVE').

- Do not scratch this file after printing
("PRINT" only) •

The action to be taken in the event of an abnormal
termination. It may be specified as a literal in
single quotes or as an expression addressing a
one-byte field containing the appropriate flag value
(see "PLIST" entry for byte 31 above) • The default is
to 'PROG'.

'YES'

'NO'

'PROG'

- Produce a DUMP for this job.

- Do NOT produce a DUMP for this job.

- Produce a DUMP only if requested by the
program abnormally terminating.

4-116

SUBMIT

Return Codes

= 0 Successful

Examples

LAB

+LAB
+
+
+
+
+
+
+
+
+*
+
+
+
+*
+*
+*
+
+*
+*
+
+*
+
+*
+

4 Volume Not Mounted
8 Volume in Exclusive Use

12 All Buffers in Use, Unable to Perform Verification
16 Library Not Found
20 File Not Found
24 Improper File Type (or Zero Records as Indicated in

Label
28 File Access Denied
32 VTOC Error, FDXl/2 Do not Agree
36 VTOC Error, FDX2 /FDR Do not Agree
40 Invalid Specification of File/Library/Volume
44 VTOC Unreliable
48 System Task not Running,

NO SPOOLED PRINTING OR NON-INl'ERACTIVE JOBS
52 Error in Performing XMIT to System Task
56 Invalid Options Specified In Parameter List

SUBMIT JOB,PROCNAME='MYPROC',LIBRARY=PROCLIB,VOLUME=(RS),
JOBCLASS='A',CPULIMIT=((R3),'PAUSE') ,DISP='REQUBUE'

x

PUSHN
xc
MVC

0,44
0(44,15) ,O (15)
0 (8 ,15) ,*+10
*+12
CL8'MYPROC'

GET SPACE ON STACK FOR "PLI ST" •••
• • • AND CLEAR IT TO ZEROES

B
DC
MVC
MVC
MVPC
MVI

ST
MVI
QI

OI

8 (8 ,15) ,PROCLIB
16(6,15) ,O(R5)
22(8,15),*+2(1),C'
30(15) ,C' A I

R3 ,32 (,15)
37 (15) ,X' 80'
37 (15) ,X 1 20 I

37 (15) ,X' 04'

PUSHA 0,0(,15)

MVI 0 (15) ,1

SVC 46 (SUBMIT)

4-117

SET PROCEDURE NAME
BRANCH AROUND LITERAL
PROCEDURE NAME
SET LIBRARY NAME
SET VOLUME NAME
DEFAULT JOBNAME TO SPACES
SET JOB CLASS
(STATIJS OPTION DEFAULTED TO 'RUN')
SET CPU TIME LIMIT
FLAG CPU TIME LIMIT SET
SET CPU LIMIT EXPIRE OPTION:

X'40' - CANCEL
X'20' - PAUSE
X'OO' - WARN

SET JOB DISPOSITION TO 'REQUEUE'
(DUMP OPTION DEFAULTED TO "ON
PROGRAM REQUEST ONLY")
POINT TO "PLIST" WITH STACK TOP
WORD
FLAG REQUEST TYPE: 1 = JOB

2 = PRINT
ISSUE SVC

SUBMIT

LAB

+LAB
+*
+
+*
+
+
+
+
+*
+*
+*
+
+

LAB

+LAB
+
+
+
+
+
+
+
+
+
+*
+*
+*
+
+*
+
+*
+
+*
+

SUBMIT JOB,PLIST=MYPLIST,LIBRARY=PROCLIB,JOBNAME=MYJOB,
JOBCLASS=(R5),CPULIMIT=(,'CANCEL') ,DUMP=DUMPOPT

PUSHA 0 ,MYPLIST POINT TO "PLIST" WITH STACK TOP
WORD

MV 0 (15) , 1 FLAG REQUEST TYPE: 1 - JOB

MVC
MVC
MVC
OI

MVC
SVC

2 - PRINT
MYPLIST+8(8) ,PROCLIB
MYPLIST+22(8),MYJOB
MYPLIST+30(1),0(R5)
MYPLIST+37,X'40'

SET LIBRARY NAME
SET JOB NAME
SET JOB CLASS
SET CPU LIMIT EXPIRE

X'40'
X'20'
X'OO'

MYPLIST+31(1),DUMPOPT SET DUMP OPTION
46 (SUBMIT) ISSUE SVC

OPTION:
- CANCEL
- PAUSE
- WARN

SUBMIT PRINT,FILENAMB='MYFILE" ,LIBRARY=PRINTLIB,VOLUMB=(RS),
PRTCLASS=(R2),FORM#=27,DISP='SAVB'

x

x

PUSHN
xc
MVC

0,44
0 (44 ,15) ,o (15)
0(8,15) ,*+10
*+12

GET SPACE ON STACK FOR "PLIST" •••
• • • AND CLEAR IT TO ZEROBS

B
DC
MVC
MVC
MVC
MVI
MVI

MVI

CL8'MYFILE'
8(8,15) ,PRINTLIB
16 (6 ,15) ,O (R5}
22 (1 , 15) ,O (R2)
23 (15) ,27
25 (15) ,1

27 (15) ,X' 20 I

PUSHA 0 ,O (, 15)

MVI 0(15) ,2

SVC 46 (SUBMIT)

4-118

SET FILE NAME
BRANCH AROUND LITERAL
FILE NAME
SET LIBRARY NAME
SET VOLUME NAME
SET PRINT CLASS
SET FORM NUMBER
DEFAULT NUMBER OF COPIES TO 1
(HIGH ORDER BYTE ALREADY CLEARED)
(STATIJS OPTION DEFAULTED TO
'SPOOL')
SET DISPOSITION: X'40' - REQUEUE

X'20' - SAVE
POINT TO "PLIST" WITH STACK TOP
WORD
FLAG REQUEST TYPE: 1 - JOB

2 - PRINT
ISSUE SVC

Set Telecommunications Stream Options

Syntax

[label] TCOPTION UFB={(register)}[,STREAM={READER }]

Restriction

None.

Function

{expression}[{PUNCH }]
[{PRINTER}]

[,DEVTYPE={2780 }]
[{ 3780 }]
[{TCDIAG}]
[,COMP={YES}][,PRINT={NO }][,BLOCKED={YES}]
[{NO }][{YES}] [{NO }]
[,RECSIZE=integer]
[,TRANSMISSION=([TRANSPARENT,]]
[[NONTRANSPARENT,]]

[[BLOCKED,]]
[[UNBLOCKED,]]

[[UNPADDED,]]
[[PADDED,]]

[[COMPRESSED ,]]
[[UNCOMPRESSED,]]

[[EBCDIC]]
[[ASCII]) l

Sets the TC stream options in the UFB. The TC stream
options consist of 3 bytes, the data option, the
transmit/receive option, and maximum record size. They are
stored in the UFBTCDATAOPT, UFBTCXMITOPT, and
UFBTCMAXRECSZ. 'Ihe stream options are defined as fol lows:

TC data option:

bit 0 = 1 print format VS records in use
1 = 1 compressed VS record format
2 = 1 blocked VS record fonnat
3-5 (reserved)
6-7 = 0 for card reader stream

= 1 for card punch stream
= 2 for printer stream
= 3 (reserved)

4-119

TCOPTION

TC transmit/receive option:

bit 0

1
2

3
4
5-7

=

=
=

=
=

1

1
1

1
1

perform code translation
EBCDIC to ASCII

from

compress transmitted record data
pad transmitted records to exact
length with space codes
blocked transmitted records
transmit in transparent mode
(reserved)

Th.e third byte in the TC stream option is equal to the
maximum or exact transmitted record length minus one.

Operand Descriptions

UFB =

STREAM =

DEVTYPE =

PRINT =

BLOCKED =

COMP =

TRANSMISSION =

REC SIZE =

The address of a User File Block (UFB) , which
may be supplied as a register specified in
parentheses, where the register contains the
UFB address, or as an expression not in
parentheses, where the word addressed is
assumed to begin the UFB.

To identify the stream of the TC line, valid
values are READER for cardreader, PUNCH for
cardpuncher, or PRINTER for printer.

To identify the device type of the TC line,
valid values are 2780, 3780 for IBM-2780,
IBM-3780 batch TC stream, and TCDIAG for TC
diagnostic use. 'This option does not take
effect until the addressed UFB has been OPENed
again (unlike the other options of TCOPTION,
which are effective on the next DMS Function
request).

If YES, the corresponding bit in the data
option will be set to 1; otherwise, to O.

If NO, the corresponding bit in the data
option will be set to O; otherwise, to 1.

If NO, the corresponding bit in the data
option will be set to O; otherwise, to 1.

'lb.e bits in the transmit/receive option will
be set according to the operand specified.
For example, if TRANSPARENT is specified, the
corresponding bit 4 in the transmit/received
option will be set to 1; if NONTRANSPARENT is
specified, the bit 4 in the transmit/received
option will be set to O.

'lb.e 3rd byte in the TC stream option will be
set to the integer value minus 1.

4-120

TCOPTION

Example

LABl TCOPTION UFB=(R2),STREAM=PUNCH,BLOCKED=NO,RECSIZE=10, X
TRANSMISSION=(NONTRANSPARENT,PADDED)

' +LABl LR 1,R2 SET REGISTER 1
+ MVI 85(1),65 SET TC DATA OPTIONS
+ MVI 86(1),8'01111000' SET TC XMIT OPTIONS
+ MVI 87(1),10-1 SET TC MAXIMUM RECORD SIZE

4-121

Get Date and Time

Syntax

[label] TIME [JUL][HMS]
[YMD] [, CLK]

Function

The current date is returned in the higher-addressed word
(stack pointer plus four) of a two-word area pushed onto
the stack, in one of the following forms:

JUL - as a packed number OOYYDDDF, where YY is the
year, DDD the day in year, and F a hexadecimal
'F' (positive sign);

YMD - as a packed number OYYMMDDF, where
year, MM the month, DD the day,
hexadecimal 'F' •

YY is
and

the
F a

If HMS is specified (or by default) , the current time is
returned in the lower-addressed word of the two-word area
pushed onto the stack, in packed digits: HHMMSSth, where

HH is hours in day,
MM is minutes in hour,
SS is seconds in minute,
t is tenths of second in second,
h is hundredths in tenth.

The minimwn time value is 00000000.
23595999.

The maximum is

If CLK is specified, the current clock value is returned in
the lower-addressed word of the two-word area pushed onto
the stack, in binary, in 1/100 second units from the
previous midnight.

Operand Descriptions

See the above function description.
default to 'JUL' and 'HMS'.

Example

LABl TIME JUL
+LABl PU SHA o,o 'JUL'
+ PU SHA 0,0 'HMS'
+ SVC 2 (TIME)

4-122

Omitted operands

REQUEST
REQUEST

Generate a User File Block

Syntax

[label] UFBGEN [PRNAME=pl]

(,MODE={ OUT }]
{IN }
{IO }
{EXTEND}
{SHARED}

[,COMP={YES}]
{NO }

[, FORG={ CON SEC. }]
{INDEXED}
{ANY }

[,PRINT={YES}]
{NO }

[,DEVCLASS={DISK }]
{PRT }
{WS }
{MTAPE}

[,VLEN={YES}
{NO }

[,PROG={YES}]
{NO }

[,NRECS=p2] [,RECSIZE={integer}] [,BLKSIZE={integer}]
{Q } {Q }
{ANY }

[,BUFSIZE={integer}] [,FORM={Q }]
{2048 } {1-255}

[,DEVNO=integer] [,KPOS=p4]

[,DPACK={lOO }] [,IPACK={lOO }]
{1-100} {l-100}

[,VERIFY={YES}] [,RELEASE={YES}]
{NO } {NO }

[,LIBRARY=p7] [, VOLSER=p8]

[,NODISPLAY={YES}] [,RECAREA=p9]
{NO }

[,ERRAD=pll] [,EODAD=p12]

[,ALTCNT={Q } ,ALTAREA=plS]
{1-16}

[,BLKAL={YES},NBLKS=pl3]
{NO }

4-123

[,PRTCLASS={~ }]
{B-Z}

[,KSIZE=pS]

[,NOVTOC={YES}]
{NO }

[,FILENAME=p6]

[,FILECLAS={O }]
{fl ,A-Z}

[,KEYAREA=plO]

[,POOL={YES},BCT=p14]
{NO }

[, {PAM}={YES}]
{BAM} {NO }

[,STREAM={READER }]
{PUNCH }
{PRINTER}

UFBGEN

[,TRANSMISSION=[{TRANSPARENT }]
{NONTRANSPARENT}

[,{BLOCKED }]
{UNBLOCKED}

[,{UNPADDED}]
{PADDED }

[,{COMPRESSED }]
{UNCOMPRESSED}

[,{EBCDIC}]]
{ASCII }

[,MCTYPE={2780 }]
{3780 }
{TCDIAG}

[,DEN={ 556 }]
{800 }
{1600}

[,ALLOWTAPE={YES}]
{NO }

[,ALLOWNL={YES}]
{NO }

Function

[,EOD=EOV]

[,LABEL= { [NL] [,AL] [,IL] t ,ANY]}]

[,FSEQ={integer}]
{! }

[,TRACK7={YES-}]
{NO }

[,PARITY={ EVE~}]
{ODD }

[,VSEQ={integer}]
{! }

[,HEADER={PARTIAL}]
{FULL }

[,PLOG={YES}]
{NO }

Generates a User File Block (UFB) with the specified fields
initialized. Tilis macroinstruction does not produce
executable code.

Operand Usage

The following operands are only used for Physical or Block Access
Method:

PAM=YES
BAM=YES
BLKAL=YES
NBLKS=p13

The other operands are for the nonnally used Record Access
Method. The following table summarizes their use.

4-124

Operand Usage Table (Record Access Method)

Legend:

R = Required for Open processing. Can optionally be set
1 by the program prior to OPEN.

0 = Optional for Open processing. Can also be set by
1 the program before OPEN.

R = Required for DMS functions. Can be set by the pro-
2 gram before use.

0 = Optional for DMS functions. Can be set by the pro-
2 gram before use.

Underlines are used to identify default values.

4-125

OPERAND USAGE TABLE (RECORD ACCESS METHOD)

Commonly used operands
S5
ti:!

New New Existing New New Workstation ~
Consecutive Indexed Disk Work or Temp Print Files

t::;j

Disk Files Disk Files Files Files Files c::
t/l

value value value value value values E;
ts'J

PRNAME R 1 -a char R 1-8 char R 1-8 char R 1 -8 char R 1-a char R 1-8 char
~ alphanumeric a 1 phanumeric l alphanumeric 1 alphanumeric 1 alphanumeric 1 alphanumeric
t-t
tli:I

DEVCLASS R QI§! R DISK R ~ R lli.!S R PRT R ws -1 1 1 ~
n

MODE R OUT R OUT R {!!!,IO, } R QM! R .QY! R IO ~ {EXTEND,}
{SHARED } ~

~
(')

I 7 tli:I
~ en
I\) FORG R CONS EC R INDEXED R {CONSEC, } R CONS EC R CONS EC R CONS EC en
C' 1 {INDEXED,} 1 1 1

~ {ANV }

VLEN 0 VES 0 VES 0 VES R ~
1 s

COMP 0 VES 0 VES R Yll

PRINT 0 YES 0 VES R Yil

PROC 0 VES 0 YES

2 R numeric R numeric R numeric R (1,000,numeric)
NRECS 1 1

RECSIZE R numeric R numeric R {ANV,numeric} R numeric R {.!~,numeric} R {1924, numeric}
1 1

BUFSIZE 0 n*2k 0 n*2k 0 n*2k 0 n*2k 0 n*2k

-I>
I

......
"' """'

Operands used for print files only

5
FORM

PRTCLASS

OEVNO

Operands
KPOS
KPOS

KSIZE

DP ACK

I PACK

Special

3
NOVTOC

4
VERIFY

5

New
Consecutive
Disk Files

value

New
Indexed
Disk Files

value

used for new indexed files only
R numeric
R numeric

R numeric

0 numeric
1-100

0 numeric
1-100

purpose operands

0 VES

0 YES 0 YES

Existing
Disk
Files

value

0 YES

New
Work or Temp

Files

value

0 VES

0

0

0

0

New
Print
Files

value

{.Q.,1-255}

{A,B-Z}

numeric

VES

Workstation
Files

value

.po
I

I-'
!'-.)
co

Operands used to default run-time assignments

5
FILENAME

5
LIBRARY

5
VOLS ER

5
FILECLAS

6
NODISPLAV

New
Consecutive
Disk Fi 1 es

value

0 1-8 char
1 alphanumeric

(See Note 5)

0 1-8 char
alphanumeric

0 1-6 char
alphanumeric

0 {#A-Z}
1

0 YES

New
Indexed
Disk Files

value

0 1-8 char
alphanumeric

0 1-8 char
alphanumeric

0 1-6 char
1 alphanumeric

{#,A-Z}

0 YES

Existing
Disk
Fi 1 es

value

0 1 -8 char
1 alphanumeric

0 1 -a char
alphanumeric

0 1-6 char
alphanumeric

0 YES

New
Work or Temp

Files

value

R #AAAA
1 or

#IAAAA
where AAAA
is 1-4 char
alphanumeric

See NOTE (1)

R {#,A-Z}
1

R :!!§
1

R

1

R

New
Print
Files

value

{#,A-Z}

Yil

Workstation
Files

value

R ill

.i=--
J,

\0

Operands used for OMS requests

RECAREA

KEY AREA

ERRAD

EODAO

New
Consecutive
Disk Files

value

R address
2 segment

in
2

0 instruction
2 address

0 instruction
2 address

New
Indexed
Disk Files

value

R address
2 segment

R address
2 segment

in
2

in
2

0 instruction
2 address

0 instruction
2 address

Existing
Disk
Fi 1\es

value

0 address
2 segment

0 address
2 segment

in
2

in
2

0 instruction
2 address

0 instruction
2 address

New
Work or Temp

Files

value

R address in
2 segment 2

0 instruction
2 address

0 instruction
2 address

R
2

0
2

0
2

New
Print
Files

value

address
segment

in
2

instruction
address

instruction
address

R
2

0
2

0
2

Workstation
Files

value

address in
segment 2

instruction
address

instruction
address

UFBGEN

Notes:

(1) The escape characters # and ## are used to request
unique name generation and to identify work files (#)
and temporary files (##) to the system. Work Files and
temporary files are placed in the user's workfile
library regardless of what is supplied for library and
volume. The work files are automatically scratched
when the file is closed. The temporary files are
automatically scratched at the end of the run.

(2) NRECS should preferably be set by the program as a
value determined after opening the associated input
file(s) and learning its (their) size.

(3) See the description of NOVTOC files. When
used, FORG=CONSEC, VLEN=NO, COMP=NO, and
LIBRARY, and FIL8CLAS are ignored.

NOVTOC is
FILENAME,

(4) The use of the VERIFY option significantly degrades
performance. Its use, unle:ss specifically intended, is
not recommended.

(5) These operands r.:apresent run·-time parameters ultimately
determined via GETPARM. Unless required to identify
WORK or TEMP files, thes·e operands serve only to
provide default values. If left unspecified, defaults
are provided by OPEN using values supplied via the SET
command or via system conventions.

(6) Causes a GETPARM type "ID" to be
suppressing user interaction. Should
minimize transactions for fixed file
only.

issued, thus
be used to
specifications

(7) Other file organizations including INDEXED, VLEN, COMP,
PRINT, and PROG, are supported but apparently not very
useful. If these organizations are used, other
supplied operands must be consistent.

Notes on operands

PRNAME= The parameter reference name is the fundamental
identifier used to locate or solicit run-time parameter
information. The prnames used should be indicative of
function.

FORG= The file organization parameter is used for existing
files to verify file organization. If FORG=ANY is
specified, any file organization is accepted.

4-130

VLEN=
PRINT=
PROG=

NRECS=

RECSIZE=
BLKSIZE=

BUFSIZE=

DEVNO=

I PACK=
DP ACK=

UFBGEN

FORG=ANY can be specified for tape in INPur mode. For
unlabelled tape, FORG is set to consecutive.

These attributes are used for existing files to
limit acceptance to files of the indicated
attribute.

The number of records is defaulted to 1000 for existing
files.

The record size (or maximwn record size) and block
size are used for existing files to verify this file
attribute. A RECSIZE (BLKSIZE) of zero is used to
accept any record (block) size.

The buff er size option is used to increase efficiency
for sequential processing. See Chapter 7, DMS, for
details.

The device number option can be used for print files to
request printing on a specific printer.

These options are used to specify the relative
percentage of data to space (packing) desired on a new
indexed file. If not specified, system default values
are used.

PAM= Optional request for Physical Access Method support or
multiple-line printing. Defaults to PAM=NO.

BAM= Optional request to process a disk file as if it had
2048-byte logical records, irrespective of the record
size recorded in its file descriptor record. Defaults
to BAM=NO.

NOVTOC= Optional file attribute for diskette only. Specify
only for unstructured diskette.

RELEASE=

RECAREA=
KEYAREA=

If set to YES in output mode, the unused disk space
allocated for the file will be released at file close.

These operands must be acceptable in "DC A(pn)
assembler statements. They may be written only when
the UFB is generated in~ segment ~ 'static' ~·

DEVCLASS= Valid options are DISK, MTAPE, WS, TC, or PRT.

VERIFY= Requests read-after-write verification on a disk file.

BLKAL= Allocate space for a new disk file in number of blocks,
as specified in UFBNBLKS (see NBLKS=operand) , rather
than in number of logical data records.

4-131

UFBGEN

POOL= Buffer pooling requested. The BCT operand addresses a
Buffer Control Table in the user-modifiable segment, as
created by the BCTGEN macroinstruction.

ALTCNT= An integer between 0 and 16. If not O, ALTAREA operand
must be supplied. This is the number of alternate
indices processable for the file.

ALTAREA= Address of AXDl block, as generated by the AXDGEN
macroinstruction.

STREAM= Sets the TC STREAM DATA option in UFBTCDATAOPT.

TRANSMISSION= Sets the TC STREAM TRANSMIT/RECEIVE options in
UFBTCXMITOPT (see also T'~OPTION macro) •

MCTYPE=

EOD=

LABEL=

FSBQ=

VSEQ=

Sets the microcode type for progr:3Jlllllable devices.
Currently, valid options ar~ 2780 and 3780 for IBM-2780
and IBM-3780 batch telecommunications emulation, and
TCDIAG for telecommunications diagnostic use.

Forces EOD exit when a data management operation
reaches the end of a tape volume in INPUT mode and an
EOVl trailer label is detected.

Magnetic tape label types allowed (NL for no-label, AL
for ANSI-label, IL for IBM-Label; none, one, or more
than one may be specified).

Magnetic tape density: 556 for 556 BPI tape, 800 for
800 BPI tape, and 1600 for 1600 BPI tape. lbe default
value is 1600 BPI.

Tape file sequence number.

Tape volume sequence number for multiple-volume tape
file.

ALLOWTAPE= If set to YES, OPEN will allow tape
alternative device for disk file.

as an

TRACK7= If YES is specified, then 7-track tape is indicated.
The default is NO. The user must specify a non-zero
value for tape density in the UFB in the case of a
7-track tape.

HEADER= This operand supports IBM DOS labelled tapes. If FULL
is specified, then both HDRl and HDR2 file labels are
present on the tape. If PARTIAL is specified, then
only HDRl is present. If HEADER=FULL is specified, and
no HDR2 is found on the tape, OPEN will cancel with an
indication of an invalid label type. If HEADER=PARTIAL

4-132

UFBGEN

is specified, but a HDR2 label is found on the tape,
OPEN will proceed to open the file using structural
information from the HDR2.

When only HDRl is present, the user must provide valid
information about file organization, record length, and
block size in the UFB.

ALLOWNL= Allows non-labelled tape. The default is NO.

PARITY= If EVEN is specified, then the tape uses even parity.

NOD I SPLAY=

PLOG=

If ODD is specified, theu the tape uses odd parity.
EVEN is the default.

If YES is spc~cif ied, then the OPEN SVC will
issue a GETPARM to the user's workstation
CANCEL messages or for respecification messages.

not
for

If YES is specified, indicates that a file prologue
will be present. Valid only for Word Processing
files. Tilis operand is applicable only when OPEN mode
is OtrrPtrr, and will be ignored for any other OPEN
mode. The default is to NO.

4-133

Write a Record

Syntax

[label] WRITE [EOM,]
[EOT ,]

UFB={(register)}
{expression}

[,COND=number]

Function

Writes the next sequential record to a consecutive or
indexed disk, magnetic tape, or printer file. The file
must be open in OUTPUT or EXTEND mode, or the specified
record (Key addressed by UFBKEYAREA) to an indexed disk
file open in IO or SHARED mode. For indexed disk files,
open in OUTPUT or EXTEND mode, the key in the record to be
written is checked to insure that it is greater than any
key already in the file. If not, a record sequence error
is indicated.

A possible invalid-key condition which can be indicated in
file status bytes (UFBFSl, UFBFS2) is:

21 - Record sequence error (indexed files only)
22 - Duplicate Key (indexed files only)
24 - Boundary violation (primary extent size

exceeded in output mode - indexed files only}

Possible error conditions which can be indicated in file
status bytes are:

30 - Permanent I/O error
34 - Boundary violation (consecutive files in output

or extend mode; indexed files in I/O or shared
mode)

95 - Invalid function or function sequence
96 - Invalid data area location or alignment
97 - Invalid length for device

An invalid-key condition results in return to the address
in UFBEODAD, with the noanal return address in register 0.
Other exceptional and error conditions result in return to
the address in UFBERRAD, with the normal return point
address in register 0. If UFBEODAD is zero, UFBERRAD is
used in its place. If UFBERRAD is zero as well, any
exceptional condition results in abnormal termination of
the program.

4-134

Operand Descriptions

EOM= This option indicates that the data transmitted by
the WRITE fWlction is to be followed with a
telecooununications end-of-message character.
(Pertains only to batch telecommunications devices.)

EOT= This option indicates that a telecommunications
end-of-transmission signal is to be transmitted,
following any data specified. (Pertains only to
batch telecommWlications devices.)

UFB= The address of a User File Block (UFB) , which may
be presented as a register specification in
parentheses, where the register contains the UFB
address, or as an expression not in parentheses,
where the word at the address designated by the
expression is assumed to begin the UFB.

COND= If specified, the number or absolute expression
becomes the first operand of the JSCI instruction
by which the WRITE function is entered. Thus the
WRITE is made conditional. The default is
COND=15. Register 1 is loaded with the UFB address
even when the condition is not satisfied.

4-135

Execute Physical I/0

S~tax

[label] XIO [OFB= {address }] [,COMMAND= {address }]
[{ (register) }] [{ (register) }]

[,MEMA= {address }] [,BLKNUM= {address }]
[{(register)}] [{ (register) }]

[,BLKSIZE= {address }] [,PLIST= {address }]
[{ (register) }] [{ (register) }]

[,RELEASE]

[,VOLIO= {YES} ,VCB= {address }]
[{NO } { (register) }]

[,MLPRINT= {YES} ,FORM= {LIST}]
[{NO } {EXEC}]

[,UCPRINT= {YES}] [,DEVSTATUS= {CLEAR }]
[{NO }] [{CHECK }]

[{NOCHECK}]

Restrictions

XIO is intended for use by Data Management System routines. XIO
with the VOLIO option is allowed only when requested from within
System Mutual Exclusion (SME) state or when addressed to a disk
volume placed in initialization state by the issuing task. It is
valid only for disk operations.

Function

Normal (without VOLIO option):

Validates disk extents; acquires available physical pages of
memory for input operations if the virtual pages referenced
are not in main memory; "short-term fixes" the virtual data
page or pages in physical pages during the I/0 operation;
constructs indirect data address lists for workstation and
disk operations; insures that the "change" bit in the Page
Frame Table for each modified page is set when read-type I /0
is accomplished; enters the System Start I/0 Routine to
initiate the operation; returns to the issuer on completion of
its functions with a one-word return code field replacing the
input parameters on the top of the stack, as described below.

4-136

With VOLIO option:

Validates Volume Control Block address, disk block numbers,
and data address; validates that usage of the VOLIO option is
to be allowed; translates memory address; converts block on
volume to disk address; constructs IOCW (from COMMAND operand,
converted MEMA operand, converted BLKNUM operand) in the IORE
contained in this VCB;· "fixes" data page if required, as
described above; sets "change" bit if required; enters System
Start I/0 Routine to initiate the operation; returns to issuer
with return code field on the top of the stack.

Low-order halfword of return code field - binary return codes:

0 - Success
4 - Truncation at end-of-extent (non-VOLIO disk

only)
8 - Truncation at end-of-cylinder or

end-of-track (disk only)
12 - Starting block number beyond end-of-file

(non-VOLIO disk) or beyond end-of-volume
(VOLIO disk)

16 - Invalid data address or data length (Data
address for disk must be page-aligned; for
other devices word-aligned. Virtual memory
area encompassed by data address through
data address plus block size minus one must
either be in the segment 2 I/0 buffer area
or entirely above the XIO parameter list on
the stack if the XIO is issued from
unprivileged state)

20 - Second XIO on file without intervening CHECK
24 - TC XIO attempted on an OFB that was not

created as the result of an 'IPOPEN' on an
IPCB

28 - TC XIO attempted on a device reserved
exclusively by another task

32 - XIO has been issued to an inoperative
workstation and the I/0 has not been issued
(Bit 5 of option flag must be set for
issuance of this return code)

36 - TC XIO attempted on a peripheral processor
{DLP) reserved exclusively by another task

40 - Write XIO attempted to file opened in
"WPSHARE" mode, file not locked.

44 - Read XIO attempted to file opened in
"WP SHARE" mode, file locked by another user.

High-order halfword of return code field - residual block
counts:

Retuni codes 4, 8 - block size specified minus
number of bytes actually read or written. All
other return codes are always zero.

4-137

Note: If return codes 0, 4, or 8 are set, the I/0 operation
is queued for initiation and a CHECK must be issued to
test for completion. If return codes 12, 16, or 20
are set, the operation has been suppressed. XIO never
waits for I/0 completion.

Operand Descriptions

OFB= The address of the Open File Block (OFB) for file
involved in the 1/0 operation. The OFB is supplied
when the file is OPENed. This operand is not used in
conjunction with the VOLIO option.

COMMAND= The address of the value to be placed in the Command
Byte of the I/0 Coounand Word (IOCW) constructed by the
XIO SVC. The command byte specifies the operation to
be performed. Possible values are contained in
descriptions of the IOCWs for the various colllllands.

MEMA= The address of a 4-byte area containing a virtual data
address for the 1/0 operation in its low-order three
bytes, to be translated to a physical address and then
placed in the IOCW, or as a register specification in
parentheses where the register contains the virtual
address.

BLKNUM= For disk I /0, the address of a three-byte area
containing the block number (from zero) within the
file of the block to be read from the file. If the
'VOLIO' option is specified, or if an unstructured
diskette devcie is being referenced, this is to be the
block on volume, from block 0.

BLKSIZE= For all read or write operations, the address of a
halfword area containing the length in bytes for the
operation (or maximum length, as for magnetic tape)

PLIST= The address of a 16-byte area containing the parameter
list for XIO. If this operand is supplied, any other
operands are used to modify the parameter list after
it has been moved to the stack. The original copy is
not modified.

RELEASE Specified on a disk or tape write operation when it is
desired to make the fixed page frames available after
the operation without preserving their contents (i.e.,
without pageout).

4-138

VOL IO=

VCB=

If YES is specified, then perform volume-oriented disk
I/O without extent limitations, as described above.
Valid only for disk files, and only when requested by
system routines in System Mutual Exclusion (SME) state
or when the accessed volume is mounted for
initialization by the issuing task.

Address of Volume
Required with VOLIO
or the FORM=EXEC
with VOLIO option.
this operand is
parentheses.

Control Block for a disk volume.
option unless PLIST= is supplied
option is specified. Allowed only
Register 1 will be modified if

written as an expression not in

MLPRINT= If YES is specified, then requests a block-print
opeation of one or more lines. Record-length bytes
must be provided in the data area if this option is
not specified. Ignored if the operation is not
directed to a printer. Data must be 2K-aligned and is
not moved to the device's resident print buffer.

FORM= If EXEC is specified, the parameter list is assumed to
already be enstacked. The supervisor call is
generated. If other operands are supplied, they are
used to modify the existing. parameter list. The

VOLIO=YES and RELEASE operands must be
specified if required, even if the parameter
list already contained these options.

If LIST is specified, the parameter list is
created on the stack, but the supervisor call
is not generated. The RELEASE operand is
normally not useful on an XIO macroinstruction
with FORM=LIST.

UCPRINT= If YES is specified, then upper case printing is
used. The default is NO.

DEVSTATUS= This operand is intended for the use of hardware
diagnostics personnel when simulating error conditions
on serial workstations and printers.

If CLEAR is specified, XIO will reset two
fields in the Unit Control Block (UCB) , i.e. ,
UCBSTATNOTOP and UCBSTATNOCODE, thus permitting
I/0 to a device which is being simulated to
malfunction.

If CHECK is specified and an XIO is issued to
an inoperative workstation, then a return code
of 32 is generated and the I/0 is not issued.

4-139

XIO

If NOCHECK is specified, then any attempts at
I/0 to a malfunctioning workstation will cause
the task to wait for the device to become
operational. NOCHECK is the default value.

Examples

(1) LABl XIO COMMAND=RDCMD,PLIST=XIOPARM

(2)

+LABl PUSHC 0(16,0),XIOPARM
+ MVC 5(1,SP) ,RDCMD
+ SVC 3 (XIO)

LAB2 XIO OFB=R(l),MEMA=(R2),BLKNUM=UFBBUFBLOCK,
BLKSIZE=UFBBLKSIZE,COMMAND=WRCMD,RELEASE

+LAB2 PUSHN 0,16
+ MVC 8(2,15) ,UFBBLKSIZE
+ MVC 12(3,15),UFBBUFBLOCK
+ ST R2,4(,15) MEMA
+ ST Rl,0(,15) OFB
+ MVC 4(1,15) ,WRCDM COMMAND
+ MVI 0(15) ,x•ao• RELEASE
+ SVC 3 (XIO)

(3) LAB3 XIO COMMAND=RDCMD,PLIST=XIOPARM,VOLIO=YES
+LAB3 PUSHC 0(16,0) ,XIOPARM
+ MVC 5(1,SP) ,RDCMD
+ OI O(SP),X'40' VOLIO
+ SVC 3 (XIO)

4-140

x

Transmit Intertask Message

Syntax

[label] XMIT MESSAGE= {(register)}
{expression}

,PORT= {(register)}
{expression}
{'string' }

[,NOWAIT] [,OTHERTASK]

Function

Queues the message at the specified address for receipt by
the owner of the specified message port. The CHECK
macroinstruction is used to accept receipt of a message.

Return codes are placed in the word on the stack top as
follows:

0 - Successful

4 - No receiving message port with the specified
name

8 - Unable to insert message in receiving port's
message buffer ('NOWAIT' option only)

12 - Unable to insert message in receiving port ' s
message buffer due to receiving port's use of
PRIVILEGED option

16 - Message not transmitted; OTHERTA.SK option was
specified and the designated message port
belongs to the XMIT-issuing task

Operand Descriptions

MESSAGE= The address of a message, which may be anywhere
in the issuer's address space. The first two
bytes of the message area must contain the
length of the message in binary, including
these bytes, and may not be greater than 2016.

May be specified as a register in parentheses
containing the address of the message, or as an
expression addressing the message.

4-141

XMIT

PORT= The four-character name of the receiving
message port, which may be specified as an
address expression, or as a register
designation where the register contains the
address of the four characters in memory, or as
a literal value in quotes.

NOWAIT If specified, return to issuer immediately with
return code 8 if there is insufficient space in
the receiving port's message buffer to insert
the message.

OTHERTASK If specified, return to issuer immediately with
return code 16 if the designated receiving
message port belongs to XMIT-issuing task.

Example

LABl
+LABl
+
+
+
+
+

XMIT
PUSHC
B
DC
PUSH
MVI
SVC

PORT='DBMS' ,MESSAGE=(R2)
0(4,0) ,*+10
*+8
C'DBMS'
O,R2
0(15),B'OOOOOOOO'
36 (XMIT)

4-142

CHAPTER 5: CONTROL BLOCKS

5.1 INTRODUCTION

This chapter documents the internal control blocks of the VS
Operating System which are of interest for the general user. The
following control blocks are described, in Assembler language
format, and with offset locations:

AXDl
BCE
BCTBL
EXTRD
FDRl
FDR2

IORE
OFB
TPLAB
TPLB2
UFB
VOLl

Blocks FDRl and FDR2 constitute part of the disk Volume Table of
Contents (VTOC) , and normally are present on disk only. Blocks
TPLAB and TPLB2 are tape labels. Block VOLl is the tape and disk
volume label. All other blocks are kept in the user's modifiable
segment (Segment 2), when present.

The control blocks change frequently. 'Ibey can be assembled by
the user with the following lines of code:

<ctl block>
END

where <ctl block> is replaced by a block name.

A second set of control blocks, intended for operating system use
only, is kept in the protected system memory segment
(Segment 0). They consist of the following blocks: CMSG, DBTB,
DPT, ETCB, FLUB, FMSG, LCB, MCB, PFB, PFSA, PFT, PPB, PRB, PT,
PXE , RMSG, STMB, SVCT, TCB, TQEL, UCB, and VCB. These control
blocks are described in a separate document.

5-1

AXDl
000000 AXDl DSECT

*
*
*
*
*

THE ALTERNATE INDEX DESCRIPTOR BLOCK (AXDl) DESCRIBES nm
ALTERNATE INDEX STRUCTURES OF AN INDEXED FILE. AN INDEXED
FILE HAS AN AXDl BLOCK IF AND ONLY IF FLAG FDRlFLAGSALTX
IS SET IN ITS LABEL (FDRl) • THE AXDl BLOCK CONTAINS

*
*
*

UP TO 16 (64) ALTERNATE INDEX DESCRIPTIONS (AXDlENTRY)·. THE
NUMBER OF DESCRIPTIONS IS CONT~INBD IN FDRlALTXCNT OF THE
FDRl RECORD.

* * THE AXDl IS LOCATED IN BLOCK NUMBER ZERO OF THE FILE.
* THE AXDl IS DIVIDED INTO 4 AREAS:
* 1. BLOCK DESIGNATOR AREA (AXDlBL)
* 2. DMS PROCESSING AREA (AXDlMASK TO AXDlEN'l'RY)
* 3. AXD ENTRIES (ONE AXD ENTRY PER ALT-INDEX)
* 4. SPARE AREA (UP TO END OF 2K BLOCK)
* AREAS 1-3 ARE HELD IN THE AXDl-AREA (POINTED TO BY UFBALTPTR)
* DURING FILE PROCESSING.
* * DATE 3/28/79
* VERSION 4.0

* BLOCK DESIGNATOR AREA:
000000 AXDlBEGIN
000000 AXDlBL

*
* * DMS PROCESSING AREA:

DS OF
DS BL4 BLOCK TYPE DESIGNATION

AXDBLl MUST EQUAL XL4'2'

000004 AXDlMASK DS BL8 BITS ON INDICATE ALTERNATE
* INDEX STRUCTURES (NUMBERED
-le 1 TO 16) PRESENT
* (INITIAL IMPLEMENTATION OF
* 2-BYTE MASK ONLY)

OOOOOC AXDlUFB DS A POINTER TO UFB FOR THIS FILE
* AFrER THE FILE HAS BEEN OPENED

000010 AXDlALTINX DS BLl ORDINAL INDEX NUMBER FOR READ
000011 AXDlFLAGS DS BLl DMS FLAG BYTE

AXDlFLAGSOK EQU X' 80' ALTERNATE INDEX STRUCTURES HAVE
* BEEN CREATED WHEN FLAG SET
* THE FOLLOWING FLAGS ARE USED FOR DMS PROCESSING (0 IN LABEL)
AXDlFLAGSQ EQU X'04' START QUALIFIED OPTION
AXDlFLAGSTYPER EQU X'02' TYPE R SAVEAREA IN USE
AXDlFLAGSTYPEV EQU X'Ol' TYPE V SAVEAREA IN USE

000012 AXDlMSIZE

"'"
*

000013 AXDlDUPINX

DS BLl SIZE OF MASK PER FILE
VALUE FROM 2-8 BYTES (MUST BE 2
FOR FIRST IMPLEMENTATION)

5-2

DS BLl ORDINAL INDEX NUMBER OF TIIE
ALT-TREE HAVING DUPLICATED KEY

* MINIMUM AXDl-ARBA FOR SHARED MODE ENDS HERE.
* AXDlMASK, AXDlMSIZE, AND AXDlALTINX ARE REQUIRED.

* 000014 AXDlBCB
000024 AXDlPMASK

DS BL16 BCB FOR DMS PROCESSING (SEE UFB)
DS BL8 MASK OF VALID ALTERNATE ACCESS

PATHS (SET AT FILE CREATION ONLY) *
* * THE FOLLOWING FIELDS ARE INTERMEDIATE OUTPUT MODE FIELDS
*

00002C AXDlORECSIZE DS H WORK RECORD - MAX LENGTH
00002E AXDlOFLAGS DS BLl OUTPtrr FLAGS (RESERVED)
00002F AXDlOSTART DS BL3 FIRST BLOCK CONTAINING WORK RECORDS
000032 AXDlONRECS DS BL3 TOTAL COUNT OF WORK RECORDS
000035 AXDlOEBLK DS BL3 LAST USED BLOCK NUMBER IN PRIMARY

* TREE (ALT-TREE TO AXDlEBLK+l)
000038 DS H USED FOR AXDlADMSMASK (SEE BELOW)
00003A AXDlOSPARE DS BL2 RESERVED IN OUTPUT MODE

** 00003C ORG AXDlORECSIZE
* THE FOLLOWING FIELDS ARE USED FOR DMS PROCESSING (EXISTING FILES)

**
00002C AXDlSAVEADR DS A SAVE AREA ADDRESS (TYPE V)
000030 AXDlSAVELTH DS H SAVE AREA LENGTH (TYPE V)
000032 ORG AXDlORECSIZE

* THE FOLLOWING 3 FIELDS ARE USED FOR SAVE AREA TYPE S
00002C AXDlSKEYSIZE DS BLl SAVED PRIMARY KEYSIZE
00002D AXDlSHXBLK DS BL3 SAVED PRIMARY ROOT BLOCK NUMBER
000030 AXDlSEREC DS H SAVED PRIMARY LEVEL COUNT

*
000032 AXDlENTOFF DS H OFFSET OF ACTIVE AXDlENTRY(IN AXDl)
000034 AXDlPTRN DS BL3 NEXT SEQUENTIAL BLOCK (ALT-TREE)
000037 AXDlCURINX DS BLl ORDINAL NUMBER-ASSOCIATED WITII

* BLOCK IN AXDlBCB
000038 AXDlADMSMASK DS H ALTERNATE INDEX PATH MASK WITIIIN

* THE VIEW (ADMS USE ONLY)
00003A AXDlEXSPARE DS BL2 SPARE - ALL FILES

**
*
* AXDlMASK AND AXDlALTINX ARE THE ONLY FIELDS IN THE AXDl-AREA WHICH
* MAY BE MODIFIED BY THE USER-PROGRAM WHILE THE FILE IS OPEN.
* * FOR EXISTING FILES, NO FIELDS IN THE AXDl-AREA ARE USER-SUPPLIED
* PRIOR TO ISSUING SVC OPEN.
*.
* FOR OUTPUT MODE, USER-PROGRAM FILLS IN THE REQUIRED AXDl -AREA WITH:
* AXDlMSIZE (THE ACCESS MASK PREFIX SIZE);
* AXDlKEYPOS, AXDlKEYSIZE, AXDlEFLAGS, AND AXDlXORD
* FOR EACH AXDlENTRY (COUNT IN UFBALTCNT) •
'k-'~k-Jrklr-klrlrlrlr,rlrlrklrlrlrk-~.c-'~~'c-'~~:rlrlrlt

5-3

* * AXD EN'I'RIES:
00003C AXDlENTRY DS OXL28 UP TO 64 ENTRIES

* (EACH A DESCRIPTION OF ONE
* ALTERNATE INDEX STRUCTURE;
* UNUSED ENTRIES ZERO-FILLED)

00003C AXDlXORD DS HLl ORDINAL NUMBER (STARTING FROM 1)
* IDENTIFYING THIS INDEX STRUCTURE
* (CORRESPONDS TO BIT IN
* AXDlMASK)

00003D AXDlEFLAGS DS BLl OPTION FLAGS
AXDlEFLAGSDUPS EQU X'80' DUPLICATE KEYS ALLOWED
AXDlEFLAGSKCOM EQU x I 40 I KEY COMPRESSION IN INDEX
* (NOT IN FIRST VERSION)
* THE FOLLOWING FLAGS ARB USED FOR DMS PROCESSING (0 IN LABEL)
AXDlEFLAGSACT BQU X'02' INDICATES THIS ALT-TREE IS THE
* ACTIVE ALT-TREE DURING PROCESSING
AXDlEFLAGSUP BQU x I 01 1 INDICATES AXDlPTRD' AXDlXLEVBLS
* OR AXDlHXBLK HAS BEEN MODIFIED
* DURING ALT-TREE PROCESSING

000038 AXDlXLBVELS DS H NUMBER OF LEVELS OF THIS
* ALTERNATE INDEX STRUCTURE
* EXCLUDING LOWEST LEVEL

000040 AXDlKEYPOS DS H KEY POSITION IN RECORD
000042 AXDlKEYSIZE DS HLl KEY LENGTH
000043 AXDlHXBLK DS FL3 BLOCK-IN-FILE OF ROOT BLOCK

* OF THIS ALTERNATE INDEX
000046 AXDlNRECS DS BL3 ITEM COUNT - LOW LEVEL OF TREE
000049 AXDlPTRD DS FL3 FIRST BLOCK OF LOW LEVEL

* OF THIS ALTERNATE INDEX
,., (ALTERNATE KEY SEQUENCE)

00004C AXDlESPARE DS BL12 (RESERVED IN EACH ENTRY)
AXDlENTRYEND EQU *
AXDlENTRYLENGTH EQU AXDlENTRYEND-AXDlENTRY
*

000058
00073C AXD1SPARE3

ORG AXD1ENTRY+64*L'AXD1ENTRY
DS XL196 (RESERVED)

* AXDlEND EQU *
AXDlLENGTII EQU AXDlEND-AXDlBEGIN

5-4

000000 BCE
*
*
*
*
*
*
*
*
*
*

BCE
DSECT

THE BUFFER CONTROL ENTRIES (BCE) ARE CONTAINED IN THE BUFFER
CONTROL TABLE (BCTBL) • THERE IS ONE BCE PER 2K BUFFER IN A
DATA MANAGEMENT BUFFER POOL. BCTNBUF (WHICH AGREES WITH
OFBBCOUNT FOR AN ACTIVE BUFFER POOL) INDICATES nm NUMBER
OF BUFFER CONTROL ENTRIES PER BCTBL.

DATE 3/28/79
VERSION 4.00

000000 BCEBEGIN DS OF (FULLWORD ALIGNMENT)
000000 BCEOFB DS A OFB ADDRESS
000004 BCEBUFCMD DS OBLl COMMAND BYTE
000004 BCEBUFADR DS A BUFFER MEMORY ADDRESS
000008 BCEBUFDATAL DS H IO-LENGTH (2K)
OOOOOA BCESPARB DS H OFFSET (UNUSED IN BCE)
OOOOOC BCEBUFBLOCK DS FL3 BLOCK WITHIN

* FILE OF BUFFERED DATA
OOOOOF BCEBCBFLAGS DS BLl FLAGS

BCEBCBFLAGSLOD EQU X'Ol' BUFFER CONTENTS VALID
BCEBCBFLAGSTOR EQU X' 02' BUFFER TO BE REWRITI'EN
BCEBCBFLAGSIO EQU X'04' BUFFER I/O IN PROGRESS
BCEBCBFLAGSREF EQU X' 80' REFERENCE BIT
* BIT=l ON ANY READ/WRITE

000010 BCEKEYHI DS CL12 TRUNCATED HI KEY VALUE
* (TYPE D)
* BLOCK TYPE (BCETYPE) CONTAINS INI'ERNAL AND EXTERNAL VALUES
* DEPENDING ON FILE ORG (INDEXED FILES HAVE **** NO **** BLOCK TYPE
* BYTE IN THE BLOCK; nrus I ,D ,A BELOW ARE INTERNAL TYPES.)

OOOOlC BCETYPE DS CLl BLOCK TYPB (ASCII CHAR)
* BLOCK TYPE VALUES (I:NTEBNAL) FOR INDEXED FILES
BCETYPEI EQU C'I' INDEX BLOCK
* (CONTAINS INDEX ITEMS)
BCE'IYPED EQU C'D' DATA BLOCK
* (CONTAINS DATA RECORDS)
* BCEKEYHI/LOW SET IF TYPE = D
BCETYPEA EQU C'A' AVAILABLE BLOCK (CHANGED TO
* TYPE I OR D IF USED
* BY BLOCK SPLIT)
BCETYPES EQU C'S' BLOCK FROM LOW-LEVEL OF AN
* ALTERNATE TREE

OOOOlD BCEWT DS BLl STARTING WEIGHT VALUE
OOOOlE BCEAGEWT DS BLl AGED WEIGH!' VALUE
OOOOlF BCESPAREl DS BLl SPARE
000020 BCEIOCHN DS A CHAIN FOR BCE'S WITH I/0

* IN PROGRESS
000024 BCEKEYLOW DS CL12 TRUNCATED LOW KEY VALUE

* (TYPE D)
000030 BCEEXPAND DS 818 BCE EXPANSION

* EXPANSION = 12 (TRUNC KEYS =12) , PLUS 4 (CHN BCE PER UFB) +4 EXTRA
BCELENGTH EQU *-BCEBEGIN BCE LENGTH (=56)

5-5

000000 BCTBL

*

BCTBL
DSECT

* TIIE BUFFER CONTROL TABLE (BCTBL) IS ADDRESSED FROM THE USER
* FILE BLOCK (UFB) , AND CONTAINS A HEADER DEFINING A DATA
* MANAGEMENT BUFFER POOL AND BUFFER CONTROL ENl'RIES (BCE)
* DEFINING TIIE CONTENTS OF EACH BUFFER IN THE POOL.
* * DATE 3-28-79
* VERSION 4.00

*
000000 BCTBLBEGIN

* *** BUFFER CONTROL TABLE
*

DS OF (FULLWORD ALIGNMENT)

000000 BCTBLNBUF DS OHLl COUNT OF BUFFERS (BCE'S)
000000 BCTBLHITCT DS A HIT-COUNT (READ)
000004 BCTBLLOCKl DS A BCE LOCKl (DMS INTERNAL)
000008 BCTBLREPLNUM DS OHLl CIRCULAR BCE NUMBER (SCAN)

* BCTBLHITCT AND BCTBLMISSCT INDICATE PERCENTAGE OF READ OPERATIONS
*HANDLED WITHIN THE BUFFER POOL (WITHOtrr PHYSICAL IO OPERATION).

000008 BCTBLMISSCT DS A MISS-COUNT (READ)
OOOOOC BCTBLFILECT DS BLl COUNT OF FILES USING BCT
OOOOOD BCTBLFLAGS DS BLl BCTBL FUNCTION FLAGS

BCTBLFLAGSEXT EQU X' 80' INTERNAL FLAG FOR
* EXTRACT FUNCTION
BCTBLFLAGSRPL EQU X' 40' GET REPLACEMENT BUFFER
* WI1i:IOUT IO OPERATION

OOOOOE BCTBLTYPE DS CLl BLOCK TYPE FOR FUNCTION
* (VALUE AS IN BCE'IYPE)

OOOOOF BCTBLSPARE DS BLl SPARE
000010 BCTBLIOHEAD DS A HEAD OF CHAIN FOR BCES

* WITH I/0 OUTSTANDING
000014 BCTBLWTABLE DS XL8 TABLE OF WEIGHTS FOR REPL

* VALUE IN PAREN BELOW IS DEFAULT VALUE LOADED BY SVC OPEN.
OOOOlC ORG BCTBLWTABLE
000014 BCTBLWDATA
000015 BCTBLWDATAH
000016 BCTBLWINDEX
000017 BCTBLWROOT
000018 BCTBLWADATA
000019 BCTBLWAINDEX
OOOOlA BCTBLWAROOT
000018 BCTBLWRES
OOOOlC BCTBLEXPAND

-;, END OF BCTBL HEADER;
000020 BCTBLBCEl
000058 BCTBLBCE2

DS XLl
DS XLl
DS XLl
DS XLl
DS XLl
DS XLl
DS XLl
DS XLl

DS BL4
BCE'S BEGIN HERE

DS 8156
DS BL56

5-6

DATA BLOCK NO HOLD (1)
DATA BLOCK HOLD (2)
INDEX BLOCK (PRIMARY) (3)
INDEX ROOT (PRIMARY) (5)
LOW LEVEL ALT BLOCK (1)
INDEX BLOCK (ALT) (3)
INDEX ROOT (ALT) (5)
RESERVED WEIGHT CLASS (0)

EXPANSION AREA (BCTBL)

BUFFER CONTROL ENI'RY
BUFFER CONTROL ENTRY 2,ETC

000000 EXTRD

*
*
*
*

*
*

EXTRD
DSECT

SYMBOLIC DEFINITION OF THE RESULT AREA OF THE 'EXTRACT'
SUPERVISOR ROUI'INE, AND ID CODES FOR CLASS 3 AND 4 EXTRACT
ITEMS

DATE 5/27/79
VERSION 2.01 (INCLUDES 2246C WORKSTATION)

000000 EXTRDBEGIN DS OXLl (UNALIGNED)
*

EXTRD

EXTRDIDMAX EQU 73 MAX ID fl CURRENTLY IN 111'
* USE-FROM EXTRACT MACRO 11+
~'***'1c-k'~A"k-'.r'~k*-14""~'CLASS O**********'trlcAAAk*AAA"k'k*~AAAAAAAAAAAAAAAAA

000000 EXTRDCLASSO DS OXL12 RETURNED FOR CLASS O:
000000 EXTRDNRES DS AL4 PHYSICAL MEMORY (BYTES)

* NOT PERMANENTLY RESIDENT
000004 EXTRDOCNT DS HL2 NUMBER OF FILES WHICH

* CURRENT TASK MAY HAVE
* OPEN, EXCLUDING FILES
* ALREADY OPEN

000006 EXTRDWS DS HL2 TASK'S ASSOCIATED
* WORKSTATION NUMBER, OR
* -1 IF NONE

000008 EXTRDSTACK DS AL4 REMAINING STACR SPACE

*
-klrlrlrlc-'6'*-kl..-kk-k-'~"*****"lrlrkCLASS l********",ri'AAAAAAA~~·~r1r1c****1~rkk'k*':~Wr"k

OOOOOC ORG EXTRDBEGIN
000000 EXTRDCLASSl DS OXL98 RETURNED IN ADDITION

* FOR CLASS 1:
000000 ORG EXTRDBEGIN+L'EXTRDCLASSO
OOOOOC EXTRDDYVAL DS FL4 ONE DAY IN CLOCK UNITS
000010 EXTRDSYSVOL DS OCL6 SYSTEM DEFAULT LIBRARY
000010 EXTRDSCDVOL DS CL6 VOLUME NAME
000016 EXTRDSYSLIB DS OCL8 SYSTEM DEFAULT LIBRARY
000016 EXTRDSCDNAME DS CL8 NAME
OOOOlE EXTRDPRINTER DS OHL2 DEFAULT ONLINE PRINTER
OOOOlE EXTRDDEFPRT DS HL2 DEVICE NUMBER,

* OR -1 OF NONE
000020 EXTRDRUNVOL DS OCL6
000020 EX'I'RDUPDVOL DS CL6 USER PROGRAM LIB.VOLUME
000026 EXTRDRUNLIB DS OCL8
000026 EXTRDUPDNAME DS CL8 USER PROGRAM LIB.NAME
00002E EXTRDEXFLGS DS BL4 'EXECUTE' ACCESS MASK
000032 EX'I'RDINVOL DS OCL6
000032 EXTRDVOL DS CL6 DEFAULT INPUT VOLUME
000038 EXTRDINLIB DS OCL8
000038 EXTRDFILEl DS CL8 DEFAULT INPUT LIBRARY
000040 EXTRDRDFLGS DS BL4 'READ' ACCESS MASK
000044 EXTRDOUTVOL DS OCL6
000044 EXTRDVOLO DS CL6 DEFAULT OUTPUT VOLUME
00004A EXTRDOUTLIB DS OCL8
00004A EXTRDFILElO DS CL8 DEFAULT 01.ITPUT LIBRARY
000052 EXTRDWTFLGS DS BL4 'WRITE' ACCESS MASR

5-7

EXTRD

000056 EXTRDSEG2BUF

*
*

000058 EXTRDPRNI'MODE
000058 EXTRDPRTI'YPE

*
000059 EXTRDFILECLAS
000059 EXTRDFPCLASS

"'' 00005A EXTRDUSERID
OOOOSD EXTRDTCBSCC
OOOOSD EXTRDEXTPRIOR
OOOOSE EXTRDLINES
OOOOSF EXTRDSPAREl

*
OOOOSF EXTRDVERSION

*
*

000062 ORG EXTRDBEGIN
000000 EXTRDCLASS2
000000 EXTRDPCPCW

*

DS BL2

DS OCLl
DS CLl

DS OCLl
DS CLl

DS CL3
DS OHLl
DS HLl
DS HLl
DS OBL3

DS XL3

DS OXL8
DS BL8

NUMBER OF SEGMENT 2
'BUFFER' PAGES
CURRENTLY AVAILABLE

PRINT OUTPUT MODE
(' S ' , ' H ' , OR ' 0 ')

DEFAULT FILE PROTECT
CLASS

CURRENT USER LOGON ID
(DO NOT USE)
TASK'S PAGING PRIORITY
SUGGESTED LINES/PAGE

UNUSED PRIOR TO RELEASE
(WAS BINARY ZEROES)
SYSTEM VERSION NUMBER
(SEE BXTRDIDVERSION)

RETURNED FOR CLASS 2
PROGRAM OLD PCW FOR

LAST PROGRAM CHECK

3.1

*
* FOR CLASS 3, ITEM ID CODES ARE SUPPLIED BY THE EXTRACT SVC

ISSUER AND RETURNED IN INDIVIDUAL AREAS SUPPLIED PER ITEM.

*
*
*

THE FOLLOWING IS A LIST OF ITEM ID CODES. THE LENGTH OF AN
ITEM "ITEMID" MAY BE REFERENCED "L' ITEMID". TIIE TYPE ATrRIBUTE
MAY BE REFERENCED AS "T' ITEMID".

* SYSTEM-WIDE INFORMATION:

*
EXTRDIDNRES

*
EXTRDIDDYVAL
EXTRDIDSYSVOL

*
EXTRDIDSYSLIB

*
EXTRDIDSYSWORK

*
EXTRDIDSYSPAGE

EXTRDIDCPU
EXTRDIDHZ
EXTRDIDVERSION

*
EXTRDIDDEVCNT

5-8

EQU 0,4,A

EQU 4,4,F
EQU 5,6,C

EQU 6,8,C

EQU 24,8,C

EQU 60,8,C

EQU 61,2,H
EQU 62,2,H
EQU 25,3,X

EQU 56,4,F

PHYSICAL MEMORY (BYTES)
NOT PERMANENTLY RESIDENT

ONE DAY IN CLOCK UNITS
SYSTEM DEFAULT LIBRARY

VOLUME NAME
SYSTEM DEFAULT LIBRARY

NAME
SYSTEM WORK LIBRARY NAME

(BACKUP SKIPS)
SYSTEM PAGING LIB NAME 1~

(BACKUP SKIPS) 1~
CURRENT CPU ID l~

A/C LINE FREQUENCY 1~

SYSTEM VERSION NUMBER
(PACKED VVRRPP, WHERE
'W' IS VERSION
'RR' IS REVISION
'PP' IS PATCH LEVEL

II OF DEVICES ON SYSTEM

EXTRDIDATOETRT

*
EXTRDIDETOATRT

EXTRDCDISKET

*

* TASK-RELATED INFORMATION:

*
EXTRDIDOCNT

*
*
*
EXTRDIDWS

*
"'' EXTRDIDSTACK
EXTRDIDEXFLGS
EX'I'RDIDRDFLGS
EXTRDIDWTFLGS
EXTRDIDUEXFLGS
EX'I'RDIDURDFLGS
EXTRDIDUWTFLGS
EXTRDIDSEG2BUF
*
*
EXTRDIDUSERID
EXTRDIDUSERNAME
EXTRDIDEXTPRIOR
EXTRDIDPCPCW

*
EXTRDIDTASK//
EXTRDIDTASKTYPE

*
*
"le

*
*
*
EXTRDIDCURVOL
EXTRDIDCURLIB
EXTRDIDWORKLIB

* -;,

EXTRDIDSPOOLIB

*
*
EXTRDIDJOBNAME
EXTRDIDSEG2SIZE
EXTRDIDSTATIC
* ,.,
*

S-9

EQU 57,256,C

EQU 58,256,C

EQU 66,2,H

EQU 1,2,H

EQU 2,2,H

EQU 3,4,A
EQU 10,4,B
EQU 13,4,B
EQU 16,4,B
EQU 63,4,B
EQU 64,4,B
EQU 65,4,B
EQU 17,2,H

EQU 20,3,C
EQU 26,24,C
EQU 21,1,H
EQU 23,8,X

EQU 27,4,A
EQU 28,2,C

EQU 29,6,C
EQU 30,8,C
EQU 31,8,C

EQU 32,8,C

EQU 71,8,C
EQU 33,4,F
EQU 34,4,A

ASCII-TO-EBCDIC
TRANSLATE TABLE
EBCDIC-TO-ASCII
TRANSLATE TABLE

EXTRD

DEVICE # OF SYSTEM'S 06~
CENTRAL DISKE'ITE 06+

NUMBER OF FILES WHICH
CURRENT TASK MAY HAVE
OPEN, EXCLUDING FILES
ALREADY OPEN

TASK'S ASSOCIATED
WORKSTATION NUMBER, OR
-1 IF NONE

REMAINING STACK SPACE
'EXECUTE' ACCESS MASK
'READ' ACCESS MASK
'WRITE' ACCESS MASK
USER'S 'EXECUTE' ACCESS 21
USER'S 'READ' ACCESS 21
USER'S 'WRITE' ACCESS 2+
NUMBER OF SEGMENT 2

'BUFFER' PAGES
CURRENTLY AVAILABLE

CURRENT USER LOGON ID
USER NAME (FROM USERLIST)
TASK'S PAGING PRIORITY
PROGRAM OLD PCW FOR

LAST PROGRAM CHECK
UNIQUE TASK IDENTIFIER
TASK TYPE:

'F I FOR FOREGROUND
'FS' FOR DEDICATED

SYSTEM TASK (FG)
'B ' FOR BACKGROUND
'BS' FOR DEDICATED

SYSTEM TASK (BG)
VOLUME OF CURRENT PROGRAM
LIBRARY OF CURRENT PROGRAM
WORK LIBRARY NAME

CONTRUCTED FROM USER ID
OR BG TASK /I

SPOOL LIBRARY NAME
CONSTUCTED FROM USER ID
OR BG TASK II

NAME OF BACKGROUND JOB 8~

LENGTII OF SEG 2 IN BYTES
ADDRESS OF START OF STATIC

AREAS (Rl4 AT PROGRAM
INVOCATION)

* USER DEFAULTS. MAY BE SET USING SET SVC.
'~~~'********kA
*
EXTRDIDPRINTER

*
*
EXTRDIDRUNVOL

*
EXTRDIDRUNLIB

*
EXTRDIDINVOL
EXTRDIDINLIB
EXTRDIDOUlVOL
EXTRDIDOUTLIB
EXTRDIDPRNTMODE
*
EXTRDIDFILECLAS
*
EXTRDIDLINES
EX'I'RDIDPROGVOL

*
EXTRDIDPROGLIB
*
EXTRDIDWORKVOL
EXTRDIDSPOOLVOL
EXTRDIDPRTCLASS
*
EX'I'RDIDFORM/I

*
EXTRDIDJOBQUEUE
"/(

EXTRDIDJOBCLASS
*
EXTRDIDJOBLIMIT
*
*
* RUN STATISTICS

* EXTRDIDWSIO

*
EXTRDIDTAPEIO
EXTRDIDDISKIO
EXTRDIDPRINTIO
EX'I'RDIDOTIO
EXTRDIDPICOUNT
EXTRDIDPOCOUNT
EXTRDIDSICOUNT
EX'I'RDIDSOCOUNT
EXTRDIDETIME

*
*
*

5-10

EQU 7,2,H

EQU 8,6,C

EQU 9,8,C

EQU 11,6,C
EQU 12,8,C
EQU 14,6,C
EQU 15,8,C
EQU 18,1,C

EQU 19,1,C

EQU 22,1,H
EQU 35,6,C

EQU 36,8,C

EQU 37,6,C
EQU 38,6,C
EQU 39,1,C

EQU 40,1,H

EQU 68,1,C

EQU 69,1,C

EQU 70,4,F

EQU 41,4,F

EQU 42,4,F
EQU 43,4,F
EQU 44,4,F
EQU 45,4,F
EQU 46,4,F
EQU 47,4,F
EQU 48,4,F
EQU 49,4,F
EQU 50,4,F

' ***"""******
DEFAULT ONLINE PRINTER

DEVICE NUMBER,
OR -1 IF NONE

USER PROGRAM VOLUME
USED BY CP RUN COMMAND

USER PROGRAM LIBRARY
USED BY CP RUN COMMAND

DEFAULT INPUT VOLUME
DEFAULT INPUT LIBRARY
DEFAULT OUTPUT VOLUME
DEFAULT OUTPUT LIBRARY
PRINT OUTPUT MODE

(' s ' , ' H' ' ' 0 I , OR 'K')
DEFAULT FILE PROTECT

CLASS
SUGGESTED LINES/PAGE
USER PROGRAM VOLUME

USED BY LINK SVC
USER PROGRAM LIBRARY

USED BY LINK SVC
DEFAULT WORK VOLUME
DEFAULT SPOOL VOLUME
DEFAULT PRINI' CLASS FOR

PRINT FILES (A-Z)
DEFAULT FORM NUMBER FOR

PRINT FILES (0-254)
DEFAULT JOB STATIJS 81'

('R' OR 'H') 81'
DEFAULT JOB CLASS 81'

('A' TO 'Z') 81'
DEFAULT JOB CPU TIME 81'

LIMIT (SECONDS) 81'

COUNT OF WORKSTATION IOS
THIS RUN

COUNT OF TAPE IOS THIS RUN
COUNT OF DISK IOS THIS RUN
COUNT OF PRINTER IOS
COUNT OF OTHER IOS
PROGRAM PAGEIN COUNT
PROGRAM PAGEOUT COUNT
SYSTEM PAGEIN COUNT
SYSTEM PAGEOUT COUNT
ELAPSED TIME OF RUN SINCE

COMMAND PROCESSOR
INITIATION, IN
HUNDRED'nlS OF SECONDS

EXTRDIDPTIME

*
*
*
*

EQU 51,4,F

EXTRD

PROCESSOR TIME OF RUN
SINCE COMMAND PROCESSOR
INITIATION, IN
HUNDREDTHS OF SECONDS

*lc-K-k"l'"°"":rA"'""k-l'"kk"h-k-k-k-k-'.d~-<kCLASS 4~~kkk-~-lrl~rlrlr'~~~n"kk

*
*
*
*

CLASS 4 ITEMS ARE SIMILAR TO CLASS 3 ITEMS, EXCEPT THAT
ADDITIONAL INPUT IS REQUIRED PER ITEM.

EXTRDIDDEVICE
* INPUT = DEVICE ADDRESS
* OUTPUT AS FOLLOWS:

000008 ORG EXTRDBEGIN
000000 EXTRDDEVCLASS

EXTRDDEVCLASSWS
EXTRDDEVCLASSMT
EXTRDDEVCLASSDK
EXTRDDEVCLASSPR
EXTRDDEVCLASSTC

000001 EXTRDTYPE
EXTRDTYPE2246P
EXTRDTYPE2246S
EXTRDTYPE2246R
EXTRDTYPE2246C
EXTRDTYPE2246K
EXTRDTYPE2266C
EXTRDTYPE2266S
EXTRDTYPE2246SI
EXTRDTYPE2246D
EXTRDTYPE2256C
EXTRDTYPE2276C
EXTRDTYPE22460
EXTRDTYPE2246CI
EXTRDTYP2246SIK
EXTRDTYPE2246RK

*
EXTRDTYPE8021
EXTRDTYPE2209V

*
EXTRDTYPE2209V2

*
EXTRDTYPE2209V3
EXTRDTYPE2260V
EXTRDTYPE2265Vl
EXTRDTYPE2265V2
EXTRDTYPE2270V

*
EXTRDTYPE2280Vl
EXTRDTYPE2280V2
EXTRDTYPE2280V3
EXTRD'l'YPE2270Vl
*
EX'I'RDTYPE2270V2

*
5-11

BQU 52,24,B
(1 BYTE)

DS HLl
EQU 1
EQU 2
EQU 3
BQU 4
EQU 5
DS HLl
EQU 017
EQU 018
EQU 019
EQU 020
EQU 021
EQU 022
EQU 023
EQU 024
EQU 025
EQU 026
EQU 027
BQU 028
EQU 029
EQU 030
EQU 031

EQU 033
EQU 034

EQU 035

EQU 036
EQU 050
EQU 051
EQU 052
EQU 053

EQU 054
EQU 055
EQU 056
EQU 057

EQU 058

DEVICE CLASS:
WORKSTATION 9+
MAGNETIC TAPE 9~

DISK 9+
PRINTER 9+
TELECOMMUNICATIONS 9+

DEVICE TYPE:
2246P WORKSTATION 9~

2246S WORKSTATION 91
2246R WORKSTATION 9~

2246C WORKSTATION 9~

2246K WORKSTATION 0+9~

ARCHIVER C W/S 3A+9+
ARCHIVER S W/S 3A+9+
IDEOGRAPHIC S W/S 7+9~14~
IBM 029 S W/S 10+
64K C W/S 12+
ARCHIVER C 64K W/S 12+
OKIDATA WORKSTATION 12+
IDEOGRAPHIC C W/S 14+
IDEOGRAPHIC/K S W/S 14+
REMOTE KATAKANA W/S 14+

8021 MAG TAPE (800 BPI)9+
2209V MAG TAPE 9+

(1600 BPI)
2209V-2 MAG TAPE 9+

(800/1600 BPI)
2209V-3 7-'l'RACK MAG TAPE9+
2260V DISK (408CYL F/R)9+
226SV-1 DISK(823CYL REM)9+
2265V-2 DISK(823CYL REM)9+
2270V DISKETrE 9+

(77CYL REM)
2280V-1 DISK(823CYL F/R)9+
2280V-2 DISK(823CYL F/R)9+
2280V-3 DISK(823CYL F/R)9+
2270V-1 DISKETl'E 03+9+
(HARD SECTORED) 03+
2270V-2 DISKETl'E 03+9+
(SOFT SECTORED) 03+

EXTRD

EXTRDTYPE2270V3 EQU 059 2270V-3 DISKETI'B 03+9+

* (HARD OR SOFT SECTORED)03+
EXTRDTYPE9614 EQU 060 9614 FIXED DISK 4+9+

*
EXTRDTYPE2221V EQU 065 2221V PRINTER 91'

* (200CPS MAT)
EXTRDTYPE2231V2 EQU 067 2231V-2 PRINTER 91'

* (120CPS MAT)
EXTRDTYPE2261V EQU 068 2261V PRINTER 91'

* (240LPM MAT)
EXTRDTYPE2263Vl EQU 069 2263V-1 PRINTER 91'

* (300LPM TR)
EXTRDTYPE2263V2 EQU 070 2263V-2 PRINTER 91'

* (600LPM TR)
EXTRDTYPE804 7 EQU 071 8047 PRINTKR 9+

"'' (225LPM TR)
EXTRDTYPE8048 EQU 072 8048 PRINTER 9.,
* (450LPM TR)
EXTRDTYPE2281V EQU 073 2281V PRINTER (30CPS 94'

* DAISY WHEEL)
EXTRDTYPE2231V6 EQU 074 2231V-6 PRINTER 9.,

* (120 CPS MATRIX)
EXTRDTYPE2263V3 EQU 075 2263V-3 PRINTER 9-t

* (430 LPM TR)
EXTRDTYPE2273Vl EQU 076 2273V-l PRINTER 01'9,,.

* (REMOTE) 0-t

*** ***
*** (SERIAL PRINl'ERS -- TENTATIVE PRODUCT NUMBERS) ***
'k-A'1c ***
EXTRDTYPE2221VS EQU 097 2221v-s PRINTER 91'

* (200 CPS MATRIX)
EXTRDTYP2231V2S EQU 099 2231V-2S PRINI'ER 91'

* (120 CPS MATRIX)
EXTRDTYPE2261VS EQU 100 2261V-S PRINTER 91'

* (240 LPM MATRIX)
EXTRD'I'YP2263V1S EQU 101 2263V-1S PRINTER 9+

* (300 LPM TR)
EXTRDTYP2263V2S EQU 102 2263V-2S PRINI'ER 94'

* (600 LPM TR)
EXTRDTYPE2281VS EQU 105 2281V-S PRINTER (30CPS 9+

* DAI SY WHEEL)
EXTRDTYPE6581W EQU 105 6581W PRINTER 01'94'

* (30 CPS DAISY) 01'
EXTRD'IYP2231V6S EQU 106 2231V-6S PRINI'ER 9+

* (120 CPS MATRIX)
EXTRDTYP2263V3S EQU 107 2263V-3S PRINTER 94'
* (430 LPM TR)
EXTRDTYPE6581WC EQU 108 6581-WC WIDE .PRINTER 0+9+
-le (40 CPS DAISY) o+
EXTRDTYPE5573 EQU 109 5573 PRINTER 01'91'

* (300 LPM BAND) 01'
EXTRDTYPE5574 EQU 110 5574 PRINTER 01'91'

* (600 LPM BAND) o+
EXTRDTYPE5521K EQU 111 5521K KATAKANA PRINTER41'9+ ..,, (200 CPS MATRIX) 41'

5-12

EXTRDTYPE55312K
*
EXTRDTYPE5548Z

*
EXTRDTYPEIP41D

*
EXTRDTYPE5521I
*
EXTRDTYPE5581WD

* EXTRDTYPECP210

EXTRDTYPE5521IK
*
EXTRDTYPE1022S
*
EXTRDTYPETC
*

000002 EXTRDDEVUSAGE
EXTRDDEVUEX
EXTRDDEVUSH
EXTRDDEVUDT

000004 EXTRDDEVUSER
*
*

000008 EXTRDDEVREM

*
*
*

OOOOOE EXTRDDEVFIXED
*
* 000014 EXTRDDEVSPARE

*
*

EQU 112

EQU 113

EQU 114

EQU 115

EQU 116

EQU 117

EQU 118

EQU 119

EQU 081

DS CL2
EQU C'EX'
EQU C'SH'
EQU C'DT'
DS AL4

DS CL6

DS CL6

DS CL4

EXTRDIDVOLUME EQU 53,24,B
* INPUT = VOLUME SERIAL NUMBER (6 BYTES)
* OUTPUT AS FOLLOWS:

000018 ORG EXTRDBEGIN

EXTRD

5531-2K KATAKANA PRT 4+9+
(120 CPS MATRIX) 4+

5548Z TYPESE'ITER 4+9+

INTELLIGENT IMAGE PRT 5+9+

IDEOGRAPHIC MAT PRT 7+9+

DUAL-HEAD DAISY PRT

OKIDATA MATRIX PRT

12+
12+
12+
12+

IDEOGRAPHIC/K MAT PRT 14+
14+

180 CPS MAT PRT 14+
14+

BATCH TC DEVICE 9+

DEVICE USAGE:
EXCLUSIVE USE 06+
SHARED USE 06~

DETACHED 06~

TASK IDENTIFIER OF
CURRENT DEVICE OWNER,
-1 IF NONE

VOLSER OF REMOVABLE VOLUME
DEFINED ONLY FOR DISK AND
TAPE. CL6' ' IF NOTHING
MOUNI'ED.
VOLSBR OF FIXED VOLUME
DEFINED ONLY FOR DISK.
CL6' ' IF NOTIIING MOUNTED.
(UNUSED)

000000 EXTRDVOLDEV DS ALl DEVICE NUMBER, OR -1 IF
* VOLUME NOT MOUNTED
* NOTE: EXTRDVOL'I'YPE, EXTRDVOLLABEL,
* EXTRDVOLUSAGE, AND EXTRDVOLUSERID
* ARE ALL BLANK IF VOLUME IS NOT MOUNTED.

000001 EXTRDVOLTYPE DS CLl VOLUME TYPE:
EXTRDVOL'I'YPER EQU C'R' REMOVABLE
EXTRDVOL'I'YPEF EQU C'F' FIXED

000002 EXTRDVOLLABEL DS CL2 LABEL TYPE:
EXTRDVOLLABSL EQU c I SL I STANDARD LABEL 0 6+
EXTRDVOLLABNL EQU C 'NL' NO LABEL 0 6+

000004 EXTRDVOLUSAGE DS CL2 VOLUME USAGE:
EXTRDVOLUSH EQU c I SH I SHARED USE 0 6+
EXTRDVOLURR EQU C'RR' RESTRICTED.. 06+

5-13

EXTRD

*
EXTRDVOLUPR EQU C'PR'
EXTRDVOLUEX EQU C'EX'

000006 EXTRDVOLUSER DS AL4

*
OOOOOA EXTRDVOLBC DS HL2
OOOOOC EXTRDVOLMAXTFR DS HL2
OOOOOE EXTRDVOLCV DS HL2
000010 EXTRDVOLCVP DS HL2

*
*

000012 EXTRDVOLOCNT DS HL2
000014 EXTRDVOLSECT DS CLl

*
EXTRDVOLSECTS EQU C'S'
EXTRDVOLSECTH EQU C'H'

000015 EXTRDVOLADDR DS CLl

*
EXTRDVOLADDRN EQU C'N'
EXTRDVOLADDRS EQU C'S'

000016 EXTRDVOLSPARE DS BL2

*

*
EXTRDIDOTASK EQU 54,48,B
* INPUT = TASK IDENTIFIER (4 BYTES)
* OUl'PUT AS FOLLOWS:

000018 ORG EXTRDBEGIN
000000 EXTRDOTASKWS

*
*

000001 EX'l'RDOTASKUID

*
000004 EX'l'RDOTASKNAME

*
OOOOlC EXTRDOTASKTYPE

*
OOOOlE EXTRDOTASKSPARE

*

DS ALl

DS CL3

DS CL24

DS CL2

DS BL18

•• REMOVAL 06..,.
PROTECTED USE 06..,.
EXCLUSIVE USE 06""

TASK IDENTIFIER OF VOLUME
MOUNI'ER, -1 IF NONE

BLOCKS PER CYLINDER
MAXIMUM TRANSFER IN BYTES
CYLINDERS PER VOLUME
CYLINDERS PER PHYSICAL

VOLUME, INCLUDING BAD
AND UNUSED BLOCKS

NUMBER OF FILES OPEN
SECTOR TYPE: 3B1'

-- DISKETl'E ONLY -- 3B1'
SOFr SECTOR 381' 061'
HARD SECTOR 3B1' 061'

ADDRESSING IN EFFECT: 3B1'
-- DISKETI'E ONLY -- 3B'f'

NON-STANDARD 381' 061'
STANDARD 3B..,. 061'

(UNUSED) 03.,

WORKSTATION DEVICE NUMBER
OF TASK SPECIFIED,
OR -1 IF NOT FOREGROUND
TASK

CURRENT USER ID FOR TASK
SPECIFIED, OR BLANK

CURRENT USER NAME FOR TASK
SPECIFIED, OR BLANK

TASK TYPE -
SEE EXTRDIDTASKTYPE

(UNUSED)

lrlrlrldrkkk-k*-:r',rldrk"l<"'t0'rlr-k-kk'ftl'"k'lrk-k-:<**-k-k-k-Jrldrlrlrlrlrlr~rkl~k-k-k-lrlrlrlrlnrlc

*
EXTRDIDTAPEVOL EQU 55,20,B
* INPUT = VOLUME SERIAL NUMBER (6 BYTES)
* OUTPUT AS FOLLOWS:

000030 ORG EXTRDBEGIN
000000 EXTRDTAPEDEV DS ALl

*
000001 EXTRDTAPESPARl DS BLl

* * NOTE: EXTRDTAPELABEL,

DEVICE NUMBER, OR -1 IF
VOLUME NOT MOUNTED

(UNUSED)

* EXTRDTAPEUSAGE, AND EXTRDTAPEUSER ARE ALL BLANK
* IF NO TAPE MOUNTED.

000002 EXTRDTAPEDEN

5-14

DS HL2 TAPE DENSITY IN BINARY
BPI (556~800 OR 1600)

000004 EXTRDTAPELABEL
EXTRDTAPELABAL
EXTRDTAPELABNL
EXTRDTAPELABIL

000006 EXTRDTAPEUSAGE
EXTRDTAPEUSH
EXTRDTAPEUEX

000008 EXTRDTAPEUSER

OOOOOC EXTRDTAPEFSEQ
OOOOOE EXTRDTAPESPAR2

DS CL2
EQU C'AL'
EQU C'NL'
EQU C' IL'
DS CL2
EQU C'SH'
EQU C'EX'
DS AL4

DS HL2
DS BL6

EXTRD

LABEL TYPE: -
ANSI LABEL 061'
NO LABEL OM
IBM LABEL O~

VOLUME USAGE:
SHARED USE 06~

EXCLUSIVE USE 061-
TASK IDENTIFIER OF VOLUME

MOUNTER, -1 IF NONE
FILE SEQUENCE NUMBER
(UNUSED)

k-JrkldrldrJ..-J~k-kk-k-klrJc-kk-J~Jr'.rlrk"Jrlrk/rk-',r',r'~k-k-kk/r',rlrlrl~'rl.Jcrillcriclc~'lc*'k""k'k' >\'mWO.~rk'k*k.~~'1di.rk

*
EXTRDIDDEVLIST EQU 59,3,B
-;, INPUT = DEVICE CLASS, AS IN EXTRDDEVCLASS (1 BYTE)
* OUTPUT AS FOLLOWS:

000014 ORG EXTRDBEGIN
000000 EXTRDDLTOT

*
000001 EXTRDDLNUM

*
000002 EXTRDDLIST
000002 EXTRDDLENTRY

*

*

DS HLl

DS HLl

DS ox
DS ALl

* TC RELATED INFORMATION
EXTRDIDDLPNAME EQU 72,38,B
* INPUT = DLPNAME (4 BYTE CHAR. STRING)
* OUTPUT AS FOLLOWS:
*

000003 ORG EXTRDBEGIN
000000 EXTRDDLPDEVMAP
000004 EXTRDDLPDEV#l
000006 EXTRDDLPTYPE

EXTRDDLPTYPEl
EXTRDDLPTYPE2
EX'I'RDDLPTYPE3

000007 EXTRDDLPLINECNT

000008 EXTRDMCSTATUS

*
*

000009 EXTRDDLPSPARE
OOOOOC EXTRDMCFILE
000014 EXTRDMCLIB
OOOOlC EXTRDMCVOL

*
000022 EXTRDDLPRSRV

-;,

000023 EXTRDDLPTASK#
000026 ORG

5-15

DS XL4
DS XL2
DS XLl
EQU 1
EQU 2
EQU 3
DS XLl

DS XLl

DS XL3
DS XL8
DS XLS
DS XL6

DS XLl

DS XL3

TOTAL NUMBER OF DEVICES IN
SPECIFIED CLASS

NUMBER OF DEVICES
ADDRESSES SUPPLIED

DEVICE LIST
DEVICE ADDRESS, OR X'FF'

IF NO MORE DEVICES

11+
11+
11~

11~

11+
11~

BITMAP OF DEVS ON DLP 11+
lST DEV ON DLP 11+
DLP TYPE 11~

TYPE 22V06-1 11~

TYPE 22V06-2 11+
TYPE 22V06-3 11~

OF LINES CONTROLLABLE 11+
BY DLP 11+
MICROCODE FILE STA'l1JS 11~

0 - IF STOPPED 11~
HI BIT ON IF LOADED 11~

RESERVED FOR FtrrURE USE 11~
MICROCODE FILE NAME 11~

MICROCODE LIB NAME 11~

VOLUME NAME FOR MCFILE 11+
111'

RESERVATION STATUS-DLP 11~

HI BIT ON IF RESERVED 11+
RESERVING TASK H 13+11~

11+

EXTRD

*
EXTRDIDDLPDEV# EQU 73,8,B
* INPUT = DEVICE NUMBER (2 BYTES)
* OUTPUT AS FOLLOWS:

*
000062 ORG EXTRDBEGIN
000000 EXTRDDEVSTATUS

EXTRDDEVRSRV
EXTRDDEVOPEN

000001 EXTRDDEVTASK#
000004 EXTRDDEVDLPNAME
000008 ORG ,

DS XLl
EQU X'40'
EQU X'80'
DS XL3
DS XL4

DEV RESERVATION STATUS
DEVICE RESERVED
DEVICE OPEN

111'
111'
111'
111'
111'
111'
111'
111'
111'

RESERVING TASK #
DLPNAME FOR DEVICE

134-111'
111'
111'

'k-kk-lrk-klc-Jr'#C"k-'"*lrk**lrk-klrlrlr'~;r',rlrk-k-Jr'~kkl'******'kJrn' ~~****'~~rira**'k'."lr'#C*k

*
* DEVICE CLUSTER INFORMATION
EXTRDIDCLUSTER EQU 67,16,B
* INPUT = DEVICE NUMBER (2 BYTES)
* OUTPtrr AS FOLLOWS:

000062 ORG &XTRDBEGIN
000000 EXTRDADISKET DS HL2

*
000002 EXTRDSPARE DS BL14

*
000010 ORG

5-16

061'
061'
061'
061'
061'

DEVICE # OF ASSOCIATED 06~
ARCHIVER DISKETI'E, 06-'t
OR ZERO IF NONE 06~

(UNUSED) OM

FDRl

FDRl
000000 FDRl DSECT

* * THE FORMAT 1 FILE DESCRIPTOR RECORD (FDRl) DESCRIBES THE
* A'ITRIBUTES OF A FILE, INCLUDING THE FIRST THREE EXTENTS
* OF THE FILE. EVERY FILE ON A VOLUME (EXCEPT THE VTOC
* AND VOLUME LABEL/ IPL TEXT AREA) HAS A FORMAT 1 FDR
* ASSOCIATED WITH IT. FORMAT 1 FDRS ARE LOCATED THROUGH nm
')" FDXl AND FDX2 BLOCKS. THERE ARE UP TO 2 5 80-BYTE
* FDR RECORDS PER VTOC BLOCK. THE 2045TH BYTE OF A BLOCK
* CONTAINING FDRS CONTAINS AN ASCII 'F'. ALL BLOCKS CONTAINING
* AVAILABLE 80-BYTE SLOTS FOR
* FDRS ARE CHAINED TOGETHER BY BLOCK NUMBERS (WITHIN VTOC,
* FROM 0) IN THE 2047TH AND 2048TH BYTES OF EACH SUCH
* BLOCK, EXACTLY AS ARE THE FDX2 BLOCKS.
* THE NUMBER OF AVAILABLE 80-BYTE SLOTS IN A BLOCK
* IS MAINTAINED IN BINARY IN THE 2043TH AND 2044TH
* BYTES OF THE BLOCK.

* DATE 5-17-77
* VERSION 2.02 (UPDATED FOR ALTERNATE INDEXING)
*

000000 FDRlBEGIN
000000 FDRlFORMAT

*
FDRlINUSE
FDRlNOTUSED

000001 FDRlXTNTCOUNT
000002 FDRlORG

FDRlORGCONSEC
FDRlORGINDEXED
FDRlORGWP
FDRlORGVLEN
FDRlORGPRINT
FDRlORGPROG

000003 FDRlFLAGS
FDRlFLAGSUPDAT

*
FDRlFLAGSCOMP
FDRlFLAGSRECOV

*
FDRlFLAGSALTX

* FDRlFLAGSLOG
FDRlFLAGSPART
FDRlFLAGSADMS
FDRlFLAGSPRIV

000004 FDRlXlPTR

*
FDRlFILENAME DS
OOOOOE FDRlFILESECTION

*
OOOOOF FDRlCREDATE
000012 FDRlMODDATE

DS OF
DS CLl

('N'
EQU C'l'
EQU C'N'
DS BLl
DS BLl
EQU X'Ol'
EQU x•o2•
EQU X'04'
EQU X'20'
EQU X'40'
EQU X'80'
DS BLl
EQU x•so•

EQU X'40'
EQU X'20'

EQU X'lO'

EQU X'08'
EQU X'04 1

EQU X'02'
EQU x•o1•

DS H

FORMAT OF FDR (ASCII '1'}
FOR FDR RECORD NOT IN USE)

FDRl IN USE l~

FDRl NOT IN USE l+
COUNr OF EXTENTS IN USE
FILE ORGANIZATION
CONSECUTIVE ORGANIZATION
INDEXED ORGANIZATION
WORD PROCESSING FILE
VARIABLE-LENGTH RECORDS
PRINT FILE
PROGRAM FILE
FLAGS FOR STATUS
SET TO 0 BY CREATFDR,
SET TO 1 BY UPDATFDR
COMPRESSED RECORDS
USE PREFORMAT AND RECOVERY
PROCEDURES FOR THIS FILE
INDEXED FILE HAS AN AXDl
BLOCK AND ALT-INDICES IF SET
CONSEC LOG FILE FLAG
PARTIAL BACKUP FILE
ADMS FILE
PROGRAM FILE CARRIES
ADDITIONAL ACCESS PRIVILEGES
FDXl BLOCK * 169 + FDXl

CL8
ITEM IN BLOCK (FROM 0)000006

MEMBER NAME
DS CLl

DS PL3
DS PL3

5-17

VOLUME IN A MULTI-VOLUME
FILE (ALWAYS ASCII '1')
CREATION DATE (PACKED YYDDD+
LAST MODIFICATION DATE

FDRl

* (PACKED YYDDD+)
000015 FDRlEXPDATE DS PL3 EXPIRATION DATE (PACKED YYDD
000018 FDRlFPCLASS DS CLl FILE PROTECTION ACCESS-CLASS
000019 FDRlCREATOR DS CL3 USER LOGON IDENTIFICATION OF

* FILE CREATOR
OOOOlC FDRlBLKSIZE DS H PHYSICAL BLOCK SIZE (2048)
OOOOlE FDRlSECEXT DS H NO. BLOCKS SECONDARY EXTENT
000020 FDRlXlSTRT DS FL3 PRIMARY EXTENT START BLOCK
000023 FDRlXlEND DS FL3 PRIMARY EXTENT END BLOCK + 1
000026 FDR1X2STRT DS FL3 2ND EXTENT START
000029 FDR1X2END DS FL3 2ND EXTENT END
00002C FDalX3STRT DS FL3 3RD EXTENT START
00002F FDR1X3BND DS FL3 3RD EXTENT END

-lr'~rlrlrlr'"*klrAAAAAAA*kAAAAAAAAAAAA***lckAAAAAAAAAAAAAAAAAk

* ORGANIZATION-DEPENDENT SECTION:

000032 FDR1SPARE2

*
000034 FDRlNRECS
000038 FDRlRECSIZE
00003A FDR1SPARE3

*
000038 FDRlEBLK

* 00003E FDRlEREC

*
*
*
*

000040 FDR1SPARE4

*
*

DS BL2

DS F
DS H
DS BLl

DS FL3

DS H

DS BL12

* FOR WORD PROCESSING FILES ONLY:

00004C
000032 FDRlWPBLKSIZE
000033 FDRlWPBLS

*

ORG FDR1SPARE2
DS XLl
DS XLl

(UNUSED FOR CONSEClfl'IVE
FILES)
NUMBER OF DATA RECORDS
LOGICAL RECORD SIZE
(UNUSED UNLESS
FDRlFLAGSALTX SET)
LAST RECORD'S BLOCK WITIUN
FILB
LAST RECORD'S NUMBER IN LAST
BLOCK FOR CONSECUTIVE FILES
WITH FIXED-LENGTH RECORDS
(FOR INDEXED FILES, NUMBER
OF PRIMARY INDEX LEVELS)
(UNUSED FOR CONSECUTIVE
FILES WHICH ARE NOT PROGRAM
FILES)

WP FILE BLOCK SIZE
BYTES IN LAST
SECTOR

* FOR PROGRAM FILES ONLY:
***"lr:drlrkk-k"~.rk-Jn'r'.rlrk":rirk-k-',rkkk-A-k-k-Jrlrlrlc-k-'~'"'k-Jdrlrk-',rJrlrJrlr:O'rk-'~r-'d"'kl~A'lrlr',rJ,

000034 ORG FDR1SPARE4
000040 FDRlACFLAGS DS OBL12 ADDITIONAL ACCESS

-;, PRIVILEGES:
000040 FDRlWTFLAGS DS BL4 ADDITIONAL WRITE

* PRIVILEGES
000044 FDRlRDFLAGS DS BL4 ADDITIONAL READ .,, PRIVILEGES
000048 FDRlEXFLAGS DS BL4 ADDITIONAL EXECl!rE

"le PRIVILEGES

*FOR INDEXED FILES ONLY (FILEORG X'02'):

00004C ORG FDR1SPARE2

5-18

000032 FDRlPKI

*
000033 FDRlPKD

*
000034
00003A FDRlALTCNT

*
*
*

00003B
000040 FDRlKEYPOS

DS HLl PACKING FACTOR FOR INDEX
ITEMS

DS HLl PACKING FACTOR FOR DATA
RECORDS

ORG FDR1SPARB3
DS HLl NUMBER OF ALTERNATE INDEX

STRUCTURES DEFINED IN 'DIE
AXDl-BLOCK (UNUSED UNLESS
FDRlFLAGSALTX SET)

ORG FDR1SPARE4
DS H PRIMARY KEY POSITION IN

-,,"c DATA RECORD
000042 FDRlKEYSIZE DS HLl PRIMARY KEY LENGTH IN BYTES
000043 FDRlHXBLK DS FL3 BLOCK-IN-FILE OF ROOT BLOCK

* OF PRIMARY INDEX
000046 FDRlDABLK DS FL3 BLOCK-IN-FILB OF STARTING

* BLOCK OF AVAILABLE-BLOCK
* CHAIN

000049 FDRlPTRD DS FL3 FIRST DATA BLOCK IN FILE
* (PRIMARY KEY SEQUENCE)
*4/rk-/rlr',C'k-k-~~ra-JrJc'lcJc********~~,ric-A*******A*AAhAA*AAAhA

* FDR CHAIN - IN ALL FDR RECORDS:
tdcJ"*1r:rlr-kk-k*"',f"k-Jf"'~Jrlrlrk-ldc-Jrlddddc"l~'rlf"klr',r;r'~~,<*'lrldrk-k/rlrlrlC'k

00004C FDRlCHAIN

*
*
*

DS F (HL1,FL3) ADDRESS OF A FORMAT 2 FDR
FOR '111IS FILE'S ADDITIONAL EXTENTS,
OR A FORMAT 3 FDR FOR THIS FILE'S
ALTERNATE INDEXING DESCRIPTIONS,

*
*
*
*
FDRlBND
FDRlLENGTH
FDRlCNT

EQU *

OR BINARY ZEROES. THE ADDRESS IS
IN nm FORM:
(HLl) NUMBER STARTING FROM 0
OF FDR IN 1-PAGE BLOCK
(FL3) BLOCK NUMBER IN VTOC FROM 0

EQU FDRlEND-FDRlBEGIN
EQU 25 I OF FDRl RECORDS PER BLOCK

5-19

11'

000000 FDR2

*

FDR2
DSECT

*
*
*
*
*
*

THE FORMAT 2 FILE DESCRIPTOR RECORD (FDR2) DESCRIBES UP TO
TEN (10) ADDITIONAL EXTENTS FOR A FILE (BEYOND THE FIRST
THREE). IT IS CHAINED FROM THE FILE'S FORMAT 1 FILE
DESCRIPTOR RECORD. A FORMAT 2 FDR MAY BB CHAINED TO ANOTHER
FORMAT 2 FDR.

* DATE 3/28/79
* VERSION-4.00

000000 FDR2BEGIN
000000 FDR2FORMAT
000001 FDR2SPARE1
000006 FDR2FILENAMH
OOOOOE FDR2SPARE2
000010 FDR2X4STRT

*
000013 FDR2X4END
000016 FDR2X5TOX13
00004C FDR2CHAIN

*
*
FDR2END
FDR2LENGTII

DS OF FULLWORD ALIGNMENT
DS CLl FORMAT (ASCII '2')
DS CLS (UNUSED)
DS CL8 FILE NAME AS IN FORMAT 1 FDR
DS CL2 (UNUSED)
DS FL3 EXTENT 4 (OR 14, 24, ETC.)

STARTING BLOCK ON VOLUME (FROM 0)
DS FL3 EXTENT 4 ENDING BLOCK ON VOL
DS 18FL3 EXTENT DEFINITIONS 5 TO 13
DS F (HLl ,FL3) CHAIN TO NEXT FORMAT 2 f'DR

EQU *

FOR ADDITIONAL EXTENTS
(SEE FDRlCHAIN)

EQU FDR2END-FDR2BEGIN

5-20

IORE
DSECT 000000 !ORE

*
*

THE I/0 REQUEST ELEMENT (IORE) IS PASSED TO THE SYSTEM'S
START I/0 ROUTINE TO INITIATE AN OPERATION, IS QUEUED BY

*
*

THAT ROUTINE TO REPRESENT A REQUEST FOR PHYSICAL I/0 SERVICE,
AND CONTAINS THE I/0 STATUS WORD ON COMPLETION OF THE

* REQUEST. IORES MUST BE RESIDENT IN THE SYSTEM
*
*

AREA. TASK CONTROL BLOCKS CONTAIN IORES FOR PAGING.
OFBS ADDRESS IORES FOR OTHER I/0.

*
*
*

DA:TE 3/28/79
VERSION 4.00

*
000000 IOREBEGIN
000000 IOREREQF

IOREREQFNOUNFIX

000001

*
'It

IOREREQFPAGEIN

*
IOREREQFPAGEOtrr

*
IOREREQFIOACT

*
IOREREQFNOCHK

*
IOREREQFHALTQ
*
IOREREQFIVRQ
"It

*
IOREREQFCIO
"It

000000 IORECHN
000004 IOREIOSW
OOOOOC IOREIOCW
000015
000014 IORESEMA

*
*
*

DS OF
DS BLl
EQU X'BO'

EQU X'40'

EQU X'20'

EQU X'lO'

EQU X'08'

EQU X'04'

EQU X'02'

EQU X'Ol'

ORG IOREREQF

ORG *-1

DS A
DS CL8
DS CL9

DS A

* FIELDS PRESENT IN NON-PAGING !ORES ONLY:
*

000018 IOREIALCNT DS HLl
000019 IOREIALUSED DS HLl

*
OOOOlA IORESCC DS HLl

'le

OOOOlB IOREWSLEVEL DS HLl
*
"le

5-21

REQUEST FLAGS
SVC XIO DID NOT TEMPORARILY
FIX THIS PAGE, SO ISR MUST
NOT UNFIX IT
THIS IORE IS BEING USED
FOR DEMAND PAGEIN
THIS IORE IS BEING USED
FOR DEMAND PAGEOUT
IORE ON PHYSICAL I/0
QUEUE
XIO ISSUED; SUCCEEDING
CHECK NOT ISSUED
'HALT I/0 QUEUE' OPTION OF
XIO PASSED HERE TO ISR
'INTERVENTION REQUIRED'
INTERRUPT RECEIVED, BUI
NOT YET NOTICED BY CHECK SVC
ISSUE CIO INSTRUCTION IF ON
(ELSE ISSUE SIO INSTRUCTION)

CHAIN (FROM UCB) IN 3 LOW BY
I/0 STATUS WORD SAVE AREA
I/0 CONTROL WORD SUPPLIED BY

ADDRESS OF COMPLETION
SEMAPHORE
OR PAGING CODE

COUNT OF IAL SLOTS
NUMBER OF IAL SLOTS USED BY
nus IO OPERATION
SCAN CLASS FOR PAGE AFTER
'UNFIX' ON I/O COMPLETION
STORE AID CHARACTER ON THIS
WORKSTATION LEVEL AFTER IO
COMPLETION

OOOOlC IOREIAL

*
*
*

DS OA INDIRECT ADDRESS LIST
IF IDA BIT IN COMMAND
(VARIABLE LENG'I11)

* SPECIAL FIELDS FOR PAGING IORES (IN TCBS) ONLY:

*
OOOOlC
000018 IOREPGFLG

IOREPGFLGRECL

*
*

000019
000018 IOREPGTCB
OOOOlC IOREPGPAGENO
OOOOlD IOREPGFLUB

*
IOREPGEND
IOREPGLENGTH

ORG IOREIALCNT
DS BLl
EQU X'80'

ORG IOREPGFLG
DS A
DS BLl
DS AL3

EQU *

PAGING FLAGS
PAGE RECLAIMED DURING THIS
PAGEOUT IF SET ON PAGEOUT
COMPLETION (DEFERRED USE)

ADDRESS OF ASSOCIATED TCB
PAGE NUMBER FOR REQUEST
FLUB ADDRESS FOR REQUEST

EQU IOREPGEND-IOREBEGIN

5-22

000000 OFB
*

OFB
DSECT

*
*
*
*
*
*

THE OPEN FILE BLOCK (OFB) IS CONSTRUCTED WHEN A FILE IS
OPENED, AND CONTAINS INFORMATION FOR USE BY DATA MANAGEMENT
AND I/O INITIATION ROUTINES WHICH MUST BE PROTECTED FROM
USER PROGRAM MODIFICATION. ALL OPEN FILE BLOCKS ARE RESIDENT
IN THE SYSTEM AREA. ALL OPEN FILE BLOCKS FOR A PARTICULAR
DISK FILE POINT TO THE SAME FILE LOCATION AND USE BLOCK

*
*
*
*

(FLUB). WHEN AN OFB IS CREATED, SPACE FOR AN IORE IS
ALLOCATED AS WELL, AND THE IORE ADDRESS IS PLACED IN
OFBIOREPTR.

000000 OFBBEGIN DS OD (DOUBLBWORD ALIGNMENT REQD) * ***1<"'~A'l~A'l<"'.drlr',c-'~("'~~""k*'l'***1drk'irlrlc"klc1rkkkl~c'I<*
* BASIC SECTION:
* ***************,(""***"'~"******"''lc*ic*****'h

000000 OFBFLAGS DS OBLl FLAG BYTE
* MODE FLAGS:
OFBFLAGSWPSHARE
OFBFLAGSOUT
OFBFLAGSIN
OFBFLAGSIO
OFBFLAGSEXTEND
OFBFLAGSSHARED
OFBFLAGSCPL2

*
*
OFBFLAGSIPCB

000000 OFBUFB

*
*

*
*
*
* 000004 OFBUCB

* 000008 OFBIOREPTR
OOOOOC OFBTCB
000010 OFBSEMA

*
000018 OFBXIOCNT

*
OOOOlC OFBTASKCHN
000020 OFBLINKLEV

000021 OFBFLAGl
OFBFLAGlLOCKED
OFBFLAGlCAN
*

EQU X'80'
EQU X'40'
EQU X'20'
EQU X'lO'
EQU X'08'
EQU X'04'
EQU X'02'

EQU X'Ol'
DS A

OPENED FOR WP SHARE MODE
OPENED FOR OUTPtrr MODE
OPENED FOR INPUT MODE
OPENED FOR IO MODE
OPENED FOR EXTEND MODE

181'

OPENED FOR SHARED MODE
FOR USE BY LEVEL 2 COMMAND
PROCESSOR - LEVEL 1 MUST
NOT USE
OPENED VIA "IPCB"
UFB ADDR (USER FILE BLOCK)
(CONTAINS BINARY VALUE -1 IF
PRESUPPLIED OFB FOR
WORKSTATION USED BY COMMAND
PROCESSOR; CONTAINS 0 IF NO
UFB'S ARE CHAINED TO THE
OFB, OR IF THE OFB WAS
OPENED VIA "IPOPEN")

DS A UCB ADDRESS
(ZERO IF DUMMY)

DS A !ORE ADDRESS (FOR XIO SVC)
DS A ASSOCIATED TCB ADDRESS
DS D (BL1,AL3,BL1,AL3)

I/0 COMPLETION SEMAPHORE
DS F NUMBER OF XIOS TO THIS

FILE SINCE OPENED
DS A NEXT OFB THIS TASK OR ZERO
DS HLl LINK LEVEL ON WHICH

DS BLl
EQU X'80'
EQU X'Ol'

S-23

FILE WAS OPENED
FLAGl BYTE
FILE LOCKED 11'
CLOSE ATI'EMPTED BY CANCEL 1~

000022

*
OFBBASICEND

DS H

EQU *

*** SPARE (MUST BE ZERO) lA+

END OF BASIC OFB BLOCK

* DISK-ONLY SECTION (DEFINED IN OFBS FOR DISK FILES)
* 1r'.rirkk-Jr"***"'n->~~~"*""~~·Wt11rkk**1"1ridra*k.~1 rc-lrlrk'l4rk****************

000024
000024 OFBFLUBPTR
000028 OFBCFLAGS

OFBCFLAGSBYP

*
*
*
*

000028 OFBFILECHN

*
00002C OFBBCOUNT

*
00002C OFBBCT

ORG OFBBASICEND
DS A ADDR OF FLUB FOR THIS FILE
DS OBLl OFB SPECIAL CLOSE FLAGS
EQU x•ao• DENOTES DMS-CLOSE VECTOR

SHOULD BE BYPASSED AT CLOSE
TIME DUE TO OPEN OR CLOSE
ERROR. (ALSO, NO LABEL
UPDATE DONE IF SET)

DS A CHAIN OF OFBS THIS FILE
(HEAD IN FLUB)

DS OHLl COUNT OF BUFFERS IN BUFFER
POOL IF PRESENT

DS A BUFFER POOL CONTROL TABLE
ADDRESS, IF ANY

* OFB "IPCB" EXTENSION (DEFINED ONLY IF "OFBFLAGSIPCB" SET) * 'l~"***'~kklc l<'lclc Jc le I< ***********"~~kk-l<*kA le 'le kk 'le 'le "k **1c Jc Jc Jc Jc Jc 'k 'k*

000030 ORG OFBBASICEND
000024 OFBIPCB DS A ADDRESS OF THE "IPCB ..

* CONTROLLING THIS DEVICE
000028 DS 2A (RESERVED)

OFBEND EQU *
· OFBLENGTH EQU OFBEND-OFBBEGIN

5-24

TPLAB

TPLAB
000000 TPLAB DSECT

*
* MAGNETIC TAPE FILE HEADER, TRAILER, AND END OF VOLUME

*
*

LABELS CONFORM TO ANSI STANDARDS, AND ARE AS DESCRIBED HERE:
ONLY ID AND BLI<COUNT FIELDS ARE REQUIRED IN EOVl AND EOFl.

*
*
*
*

DATE 3/28/79
VERSION 4.00

TPLABBEGIN
000000 TPLABID
000004 TPLABFILE

*
*

000015 TPLABVOLlSER

*
*
*

OOOOlB TPLABFILESECTION
*
*

OOOOlF TPLABFILESEQ

*
000023 TPLABGENERATION

*
000027 TPLABVERSION

*
000029 TPLABCREATION

*
*
*

00002F TPLABEXPIRATION
*

000035 TPLABACCESS

*
000036 TPLABBLKCOUNT

*
*

00003C TPLABSYSTEM

000049 TPLABCREATOR
00004C TPLABSPAREl

TPLABEND
TPLABLENGTii

EQU *
DS CL4 'HDRl I' 'EOVl', OR 'EOFl'
DS CLl 7 UP TO 17 ASCII CHARACTERS,

LEFT ADJUSTED AND PADDED
WITH BLANKS, NAMING THE FILE

DS CL6 VOLUME SERIAL NUMBER MATCHIN
'VOLlSER' IN VOLUME LABEL (OF THE
FIRST VOLUME, IF A MULTI-VOLUME
FILE)

DS CL4' 0001' ORDER OF VOLUME IN A MULTI
VOLUME FILE (ASCII '0001' FOR A
SINGLE-VOLUME FILE)

DS CL4 FILE SEQUENCE NUMBER
ON MULTI-FILE VOLUME (lST FILE
IS ASCII '0001 ')

DS CL4 1 0001' GENERATION NUMBER (CURRENTLY
ALWAYS '0001', USE DEFERRED)

DS CL2'00' VERSION IN GENERATION,
CURRENTLY ALWAYS ZERO

DS CL6 CREATION DATE IN THE FORM
BYYDDD, WHERE B IS A BLANK,
YY IS YEAR INTO CENTURY,
DDD IS JULIAN DAY (001 TO 366)

DS CL6 EXPIRATION DATE IN THE
ABOVE FORMAT

DS CLl' ' ACCESS PROTECTION (FILE
PROTECTION CLASS OR BLANK)

DS CL6 BLOCK COUNT IN TRAILER LABEL
AS SIX ASCII DIGITS. ALWAYS
PLACED IN I EOVl I AND I EOFl I

LABELS. ASCII ZEROS IN HDR LABEL.
DS CL13 CHARACTERS IDENTIFYING

THE CREATING SYSTEM
DS CL3 FILE CREATOR ID OR BLANKS
DS CL4 RESERVED - MUST BE BLANKS
EQU *
EQU TPLABEND-TPLABBEGIN

5-25

TPLB2
000000 TPLB2 DSECT

*
*
*

MAGNETIC TAPE SECONDARY HEADER, TRAILER, AND END OF
VOLUME LABELS CONFORM TO ANSI STANDARDS, AS FOLLOWS:

* DATE 3/28/79
* VERSION 4.00
*
TPLB2BEGIN EQU *

000000 TPLB2ID DS CL4 ' HDR2 I ' • EOV2 • , OR 'EOF2'
000004 TPLB2RECFM DS CLl 'F' - FIXED LENG'nl RECORDS

*
* 'F' - FIXED LENGTH RECORDS

* 'D' - VARIABLE LENGTH RECORDS

* IBM FORMAT
* 'W' - VARIABLE LENGTH RECORDS

* WANG FORMAT
* 'X' - VARIABLE LENGTH COMPRESSED .,, RECORDS WANG FORMAT
* 'U' - UNDEFINED LENG'lli RECORDS

000005 TPLB2BLKL DS CL5 BLOCK LENGTH (ASCII)
OOOOOA TPLB2RECL DS CL5 RECORD LENGTH (ASCII)
OOOOOF TPLB20RG DS BLl FILE ORGANIZATION

TPLB20RGCONSEC EQU X'Ol' CONSEClITIVE
TPLB20RGPRINT EQU X'40' PRINI' FILE
TPLB20RGPROG EQU X'SO' PROGRAM FILE

000010 TPLB2SPARE1 DS CL34 RESERVED FOR OPERATING

* SYSTEM USE
000032 TPLB2BOFF DS CL2 BUFFER OFFSET
000034 TPLB2SPARE2 DS CL28 RESERVED - MUST BE ASCII

TPLB2END EQU *
TPLB2LENGTH EQU TPLB2END-TPLB2BEGIN

5-26

BLA

000000 UFB

*

UFB
DSECT

*
*
*
*
*
*
*

THE USER FILE BLOCK (UFB) IS SU~PLIED IN THE USER'S
MODIFIABLE AREA BY THE USER'S PROGRAM BEFORE OPENING
A FILE, AND IS ADDRESSED TO REQUEST EACH OPERATION
ON THAT FILE. THE ADDRESS OF THIS BLOCK IS PLACED
IN THE OPEN FILE BLOCK BY 'OPEN', AND THE ADDRESS OF
THE OPEN FILE BLOCK IS PLACED IN THIS BLOCK.

* DATE 1-9-81
* VERSION 5.4

*
000000 UFBBEGIN DS OF (FULLWORD ALIGNMENT REQUIRED

* ACCESS METHOD SECTION
* NO FIELDS NEED BE SUPPLIED BEFORE 'OPEN', BUT UFBERRAD
* UFBEODAD, UFBRECAREA, AND UFBKEYAREA MAY BE PRESET
*IF DESIRED. AFTER 'OPEN', THE USER'S PROGRAM NORMALLY
* HAS OCCASION TO MODIFY ONLY THIS SECTION OF THE UFB.
* THE FIRST BYTES OF EACH OF UFBVREAD, UFBVWRITE, UFBVREWRITE,
* UFBVDELETE AND UFBVSTART ARE ZEROED BY 'OPEN' AND SET
*THEREAFTER TO FUNCTION MODIFIER VALUES BY THE USER'S PROGRAM.
* THE SUCCEEDING BYTES OF THESE FIELDS CONTAIN ADDRESSES
* SUPPLIED BY 'OPEN' WHICH SHOULD NOT BE ALTERED BY THE
* USER'S PROGRAM WHILE THE FILE IS OPEN.
* UFBFSl AND UFBFS2 ARE SET TO X'30' BY 'OPEN' AND MODIFIED
* THEREAFTER BY DATA MANAGEMENT FUNCTIONS.

000000 UFBVECT DS SA BRANCH POINTS TO ACCESS

* METHOD ROUTINES

* THE FOLLOWING FUNCTION MODIFIER VALUES ARE PLACED IN THE FIRST
* BYTE OF THE WORD CONTAINING THE ADDRESS OF THE FUNCTION TO BE
* PERFORMED FOR A USER PROGRAM BEFORE BRANCHING TO THE ROUTINE
-;, ADDRESS.

000014 ORG UFBVECT
000000 UFBV DS OF (PREFIX TO EQUATE LABELS)

* MODIFIERS FOR READ:
UFBVHOLD EQU X'Ol' (HOLD BLOCK EXCLUSIVELY)
UFBVREL EQU X'04' (RELATIVE READ)
UFBVKEYED EQU x I 04' (KEYED READ)
UFBVNODATA EQU X'08' (DO NOT MOVE DATA TO WORK
* AREA ON READ)
* MODIFIERS FOR READ OR REWRITE (WORKSTATION ONLY) :
UFBVTABS EQti X'lO' (READ OR REWRITE TABS - WS)
*MODIFIERS FOR READ (WORKSTATION ONLY):
UFBVMOD EQU x I 02 I (READ MODIFIABLE - WS)
UFBVALTR EQU X'40' {READ ALTERED - WS)
* MODIFIERS FOR REWRITE (WORDSTATION ONLY) :

UFBVSELW EQU X'40' (REWRITE SELECTED - WS)

5-27

* MODIFIERS FOR START (INPtrr, IO, SHARED MODES; INDEXED DISK ONLY):
UFBVEQ EQU X'Ol' (EQUAL TO)
UFBVGT EQU X'02' (GREATER THAN)
UFBVGE EQU X'03' (GREATER THAN OR EQUAL TO)
*MODIFIER FOR START (SHARED MODE; IGNORED FOR INPUT & IO MODES):
UFBVHFILE EQU X' 80' (HOLD FILE)
UFBVRLS EQU X'20' (RELEASE HELD FILE)
UFBVRANGE EQU X'04' (HOLD REQUEST FOR A RANGE)
UFBVRETRIEVAL EQU X'40' (HOLD CLASS IS RETRIEVAL)
UFBVLIST EQU X'lO' (LIST OPTION)
*MODIFIERS FOR START (CONSECUTIVE OUTPUT & EXTEND MODES ONLY):
UFBVINPUT EQU X'04 1 (CHANGE TO TEMPORARY IO MODE
UFBVOUTPUT EQU X'08' (CHANGE TO OUTPUT MODE)
UFBVEXTEND EQU X' 20' (CHANGE TO EXTEND MODE)
* MODIFIERS FOR START (CONSECUTIVE FILES WITH VARIABLE-LENGTH
*RECORDS, INPUT AND I/0 MODES ONLY):
UFBVBEGIN EQU X'lO'
UFBVSKIP EQU X'40'

*
*

(BEGINNING OF FILE)
(FROM CURRENT RECORD
USING SIGNED WORD
ADDRESSED BY KEYAREA)

* MODIFIERS FOR START
UFBVCMD

(PHYSICAL ACCESS METHOD ONLY):

UFBVWAIT
UFBVWAITS
*
UFBVWAITM
*
*
UFBVWAITA

*

EQU X' 80' (~k*VAGUE NOTE***)
EQU X'40' (WAIT FOR I/O COMPLETION)
EQU X'41' WAIT FOR TC I/O COMPLETION

ON THIS DEVICE ONLY
EQU X1 42'

EQU X'43'

WAIT FOR TC I/0 COMPLETION
ON ALL DEVICES OPENED BY
THIS PROGRAM

UFBVHALTIO EQU X'20'

WAIT FOR TC I/0 COMPLETIONS
AND TC UNSOLICIT INTERRUPTS
HALT TC IO OPERATION

*MODIFIERS FOR START (WORKSTATION ONLY):
UFBVATl'NT EQU X'lO' (TEST FOR A'ITENTIONS RECEIVE

000000 ORG UFBVECT
000000 UFBVREAD DS A •• FOR READ
000004 UFBVWRITE DS A •• FOR WRITE
000008 UFBVREWRITE DS A •• FOR REWRITE
OOOOOC UFBVDELETE DS A •• FOR DELETE
000010 UFBVSTART DS A •• FOR START

* THE FOLLOWING FOUR FIELDS MAY BE SET BEFORE 'OPEN' OR
* BEFORE THE FIRST FUNCTION AFI'ER 'OPEN' . THEY MAY BE CHANGED
* BY THE USER'S PROGRAM BEFORE ANY FUNCTION. IF UFBEODAD IS O,
* UFBERRAD WILL BE USED FOR END OF DATA AND INVALID-KEY CONDITIONS.
* IF UFBERRAD IS 0, ABNORMAL TERMINATION WILL OCCUR ON ANY
* ERROR (AND ON THE ABOVE CONDITIONS IF UFBEODAD IS 0 ALSO).

000014 UFBERRAD DS A I!O UNUSUAL CONDITION USER
-Jc ROUTINE ENTRY POINT, OR ZERO

000018 UFBEODAD DS A END OF DATA AND INVALID KEY
* USER ROUTINE

ENTRY POINT, OR ZERO.

5-28

OOOOlC UFBRECAREA
*

000020 UFBKEYAREA

*
*
* 1c

1c

000024 UFBFSl
UFBFSlSUCCESS
UFBFSlATEND
UFBFSlINVKEY
UFBFSlIOERR
UFBFSlADMSERR
UFBFSlCANCEL
*
UFBFSlTIME

UFBFSlSHARE
*
UFBFSlOTHER

000025 UFBFS2
UFBFS2NOINFO

DS A ADDRESS IN USER-MODIFIABLE S
OF RECORD WORK AREA

DS A ADDRESS OF AREA CONTAINING
SUPPLIED KEY OR RECORD NUMBER
FOR START OR READ FUNCTIONS
(IF ZERO FOR WORKSTATION FILES,
LINE NUMBER (ROW) TAKEN FROM ORDER
AREA)

DS CLl FILE STATUS BYTE 1 FOR DMS
EQU X'30' SUCCESSFUL COMPLETION
EQU X'31' AT END
EQU X'32' INVALID KEY OR RECORD NO.
EQU x I 33 I PERMANENT I /0 ERROR
EQU X'34' ADMS FUNCTION ERROR
EQU X'36' CANCEL CODE STORED
FOR UFBFlNOMSG (OPEN,DMS,CLOSE); UFBFS2=C'O'
MSGID AT UFBVREAD FOR 0/C; NO MSGID IF DMS
EQU X'37' TIME-OUT CONDITION ON

SHARED MODE RESOURCE WAIT
EQU X'38' FS FOR SHARER CONDITION

EQU X'39'

DS CLl
EQU X'30'

RESOURCE WAIT
OTHER CONDITIONS

FILE STATUS BYTE 2 FOR OMS
NO FURTHER INFO

*THE FOLLOWING UFBFS2 VALUES ARE SET WITH UFBFSlINVKEY (X'32')
UFBFS2SEQERR EQU X'31' SEQUENCE ERROR
UFBFS2DUPKEY EQU X'32' DUPLICATE KEY
UFBFS2NOREC EQU x I 33 I NO RECORD FOUND
UFBFS2BYVIOL EQU X'34' BOUNDARY VIOLATION
* UFBFS2BDYVIOL IS ALSO USED WITH UFBFSlIOERR (FS = C'34')

** *THE FOLLOWING UFBFS2 VALUES ARE SET WITH UFBFSlADMSERR (X'34')
UFBFS2INTS EQU X' 31' ATrEMPT TO UPDATE FILE
* WHILE NOT IN A TRANSACTION
UFBFS2MCC EQU X'32' MCC ERROR
UFBFS2ICK EQU x I 33 I ICl< VIOLATION
UFBFS2LOG EQU X'34' UNABLE TO LOG RECORD IMAGE
UFBFS2VAB EQU X'35' INVALID VAB INFORMATION
UFBFS2CRASH EQU X'36' FILE PREVIOUSLY CRASHED
UFBFS2DATA EQU X'37' ICK CHECK FAILED
UFBFS2UNQERR EQU X'38' ADMS FILE WITH RECOVERY, 041'
'i< HAS ALTERNATE INDEX WITH NO DUPS; USER MUST HOLD ENTIRE FILE TO 041'
* MAKE UPDATE, Btrr DIDN'T HOLD WHOLE FILE. 04+
*
*THE FOLLOWING UFBFS2 VALUES ARE SET WITH UFBSlSHARE (X'38')
UFBFS2ACC EQU X'35' UPDATE ACCESS DENIED FOR
* USER WITH READ-ONLY RIGHTS
* IN SHARED MODE
UFBFS2RESERR EQU X' 36' RESOURCE CONI'ROL ERROR

*THE FOLLOWING UFBFS2 VALUES ARE SET WITH UFBFSlOTHER (X'39')
UFBFS2INVFUN EQU X'35' INVALID FUNCTION OR
* FUNCTION SEQUENCE

S-29

UFBFS2INVCMD

*
UFBFS2INVLTH
UFBFS2MASK
..,.,

UFBFS2TRLERR

*
UFBFS2FMTERR

*
*

EQU X'36' INVALID COMMA.ND (ALIGNMENT
OR ADDRESS ERROR FOR DIRECT 1/0)

EQU X'37' INVALID LENGTH
EQU X'38' INVALID ACCESS MASK

(ALTERNATE INDEXED FILES)
EQU X'38' TRAILER COUNI' NOT EQUAL

TO BLOCKS READ (SET BY SVC
CLOSE ONLY)

EQU X'39' FORMAT ERROR (BLOCK PREFIX,
RECORD PREFIX,EXPANSION ERROR OR
INVALID CHAIN FIELD)

* NOTE: UFBFS2 CONTAINS THE TERMINATING A'ITENTION CHARACTER (AID BYTE)
* ON WORKSTATION READ SUCCESSFUL COMPLETION.

* NOTE: THE FOLLOWING UFBFS2 VALUES ARE SET ONLY IF AN SVC OPEN
1' EXIT IS TAKEN. 'IHESE VALUES ARE ALSO USED WHEN CREATING
-le THE OPEN EXIT MASK TO BE SUPPLIED TO THE OPEN SVC •
UFBFS2XFILE EQU X'80' DUPLICATE FILE OR
* FILE NOT FOUND
UFBFS2XLIB
UFBFS2XVOL
UFBFS2XSPACE
UFBFS2XVTOC
UFBFS2XTAPELD
UFBFS2XPOS
UFBFS2XPROT
UFBFS2XFORMAT

*

EQU X'40'
EQU X'20'
EQU X'lO'
EQU X'08'
EQU X'08'
EQU X'04'
EQU X'02'
EQU X'Ol'

LIBRARY NOT FOUND
VOLUME NOT, MOUNTED
NO SPACE ON VOLUME
NO VTOC SPACE ON VOLUME
WRONG TAPE LABEL/DENSITY
POSSESSION CONFLICT
PROTECTION CLASS VIOLATION
OPEN FORMAT ERROR - ERROR
CLASS DESCRIBED IN UFBXCODE

UFBAMEND EQU *
UFBAMLENGTH EQU (UFBAMEND-UFBBEGIN)
-.'c 'fc-/('"k°k"k"/c-k":rk-k"kii"Jrio'c-kk-lr-k-'n-lrk-Jrk"k-'n-k"k"k*"k-',rk";.-;r;r;rlr',r:O'rlrlrkk-k-lrldo'rlrJrkklo'rlckk

* FILE LOCATION AND ATI'RIBUTE SECTION
* ALL FIELDS IN TIIIS SECTION MUST BE SET (S0~1E OF THEM POSSIBLY
* TO 'NULL' VALUES) BY THE USER'S PROGRAM BEFORE INITIALLY
* ADDRESSING AN 'OPEN' TO THE UFB •
.._., ALL RELEVANT FIELDS AND FLAGS SET NULL BEFORE 'OPEN' ARE SUPPLIED
*HERE BY 'OPEN' PROCESSING AND MAY BE EXAMINED BY THE USER'S
* PROGRAM. THE PROGRAM SHOULD NOT MODIFY THESE FIELDS BETWEEN
* 'CLOSE' AND A SUCCESSIVE 'OPEN' IF THE SAME FILE IS REQUIRED
* (WITHOlIT REPROMPTING).
"le m'r'n-'"*'°:c-Jc-k-/r'n-:.-:rkkA-k'k-Jc-'n-k"Jrlrlrlrlrlr'n-',dr'd'klc-Jrlrlrlrk"lrlC"k-Jr'~:O'rk"lrlrln'drk-',ddr',rk-~4*

000026 UFBBLKSIZE

*

*
000028 UFBRECSIZE

-:,

DS H MAGNETIC TAPE - MUST CONTAIN
PHYSICAL BLOCK SIZE BEFORE OPEN
IF OUTPUT MODE OR UNLABELLED
TAPE.
DISK OR DISKETI'E - ALWAYS 2048
AFI'ER OPEN EXCEPT WHEN USING
PHYSICAL ACCESS METHOD (PAM)

DS H LOGICAL RECORD SIZE

5-30

(MUST BE SUPPLIED BEFORE OPEN FOR
OUTPUT OPEN MODE)

00002A UFBFORG
UFBFORGCONSEC
UFBFORGINDEXED
UFBFORGWP
UFBFORGVIBM
UFBFORGU
UFBFORGVLEN
UFBFORGPRINT
UFBFORGPROG

DS BLl
EQU X'Ol'
EQU X'02'
EQU X'04'
EQU X'08'
EQU X'lO'
EQU X'20'
EQU X'40'
EQU X'80'

FILE ORGANIZATION
CONSECUTIVE
INDEXED
WORD PROCESSING FILE
IBM VARIABLE-LENGTH RECORDS
UNDEFINED RECORD FORMAT
VARIABLE-LENGTH RECORDS
PRINT FILE
PROGRAM FILE

000028 UFBFl DS BLl OPTION FLAGS
UFBFlNOGET EQU x I 80 I USE GETPARM = TYPE RD
UFBFlNODISP EQU X'40' USE GETPARM = TYPE ID
* UFBFlNOGET AMD UFBFlNODISP USED BY SVC OPEN ONLY; NOT RESET BY DMS
UFBFlPAM EQU X'20' PHYSICAL ACCESS METHOD
UFBFlBAM EQU x I 10 I BLOCK ACCESS METHOD
UFBFlPREVO EQU X'08' THIS UFB PREVIOUSLY OPENED
UFBFlWORK EQU X'04' SCRATCH THIS WORK FILE ON
* CLOSE IF SET & FILE HAS A
* TEMPORARY NAME
UFBFlPOOL EQU X'02' BUFFER POOLING FOR RAM
* (UFBBUFSTART MUST CONTAIN
* BCT ADDRESS AT OPEN TIME)
UFBFlOPEN EQU X'Ol' THIS UFB OPEN IF SET

00002C UFBF2 DS BLl OPEN MODE FLAGS
UFBF2ADMS EQU X' 80' TO OPEN IN ADMS MODE
UFBF20UT EQU X' 40' TO OPEN FOR OUTPUI MODE
UFBF2IN EQU X'20' TO OPEN FOR INPUT MODE
UFBF2IO EQU X' 10' TO OPEN FOR IO MODE
UFBF2EXTEND EQU X'08' TO OPEN FOR EXTEND MODE
UFBF2SHARED EQU X'04' TO OPEN FOR SHARED MODE
UFBF2DALT EQU X'02' DELETIONS IN PROGRESS 00~
* ON ALT-INDEX FILE 00~

00002D UFBDEVCLASS DS BLl DEVICE CLASS (REQUIRED
* BY 'OPEN')
UFBDEVCLASSWS EQU X'Ol' WORKSTATION
UFBDEVCLASSTAPE EQU X'02' MAGNETIC TAPE
UFBDEVCLASSDISK EQU X'03' DISK
UFBDEVCLASSPRT EQU X'04' PRINl'ER
UFBDEVCLASSTC EQU x I 05 I TC DEVICE
UFBDEVCLASSDUMM EQU X' FF' DUMMY FILE

00002E UFBFLAGS DS BLl FILE A'ITRIBUTE FLAGS
UFBFLAGSUPDAT EQU X'80' FILE HAS BEEN CLOSED
UFBFLAGSCOMP EQU X' 40' DATA RECORDS IN COMPRESSED
* FORMAT
* **"~lrlrlrk UFBFLAGSRECOV - RECOVERY=YES FOR BIT = ZERO **"kkk-'"***°'"*
UFBFLAGSRECOV EQU X'20' USE PREFORMAT AND RECOVERY
* PROCEDURES IF ZERO (INDEXED ONLY)
UFBFLAGSALTX EQU X'lO' ALTERNATE INDICES IN FILE
UFBFLAGSLOG EQU X'08' CONSEC LOG FILE FLAG
UFBFLAGSALTP EQU X' 08' ALTERNATE-TREE PROCESS FLAG

5-31

UFBFLAGSPART

*
*
*
*
*
UFBFLAGSADMS
UFBFLAGSPRIV

*
00002F UFBDEVADDR

*
*
*
*
*

000030 UFBF3
000030 UFBPRTCLASS

*
000031-UFBFORMNO
000032 UFBPRNAME

*
00003A UFBVOLSER

*
*
*
*
-Jc

000040 UFBDIRNAME

*
*
*
*
*

000048 UFBFILENAME

*
*
*
*
*
*
*
*

EQU X'04' PARTIAL BACKUP FILE
PROGRAM SETS BIT BEFORE OPEN OUTPlIT
(BAM OR PAM) TO SET BIT IN FILE
LABEL, OR SETS BIT BEFORE NON-OUTPUT
OPEN (BAM OR PAM) IF ABLE TO PROCESS
PARTIAL FILES. INVALID FOR RAM.

EQU X'02' ADMS DISK FILE INDICATOR
EQU X'Ol' PROGRAM FILE CARRIES

ADDITIONAL ACCESS PRIVILIGES
DS HLl DEVICE ADDRESS (FOR PRINTERS

AND WORKSTATIONS ONLY.
USED IF SUPPLIED
AND PLACED HERE BY 'OPEN' IF
NOT SUPPLIED. HEX FF IF
NOT SUPPLIED.)

DS OBLl (* NAME KEPT FOR COMPATIBILITY *)
DS CLl PRINT CLASS (A-Z)

DS HLl
DS CL8

PRINTER FORM NUMBER (BINARY)
PARAMETER REFERENCE NAME

(MUST ALWAYS BE SUPPLIED HERE
FOR 'OPEN')

DS CL6 VOLUME SERIAL NUMBER FOR
VOLUME-ORIENTED FILES (TAPE
OR DISK)
(IF 6 ASCII BLANKS, TAKEN FROM
PROCEDURE SPECIFICATION OR
'OPEN'-TIME PROMPT. IF SPECIFIED
IN NEITIIER OF TIIESE WAYS,
TAKEN FROM DEFAULT IN
ETCB)

DS CL8 DIRECTORY NAME (IF 8 ASCII
BLANKS, DIRECTORY NAME TAKEN
FROM PROCEDURE SPECIFICATION
OR 'OPEN'-TIME PROMPT.
IF SPECIFIED IN NEITHER PLACE
AND VOLUME SERIAL ALSO
OMI1TED, DEFAULT IN ETCB
USED)

DS CL8 FILE NAME (UNDER DIRECTORY)

S-32

(IF 8 BLANKS, FILE NAME TAKEN
FROM PROCEDURE SPECIFICATION
OR 'OPEN'-TIME PROMPT.
WORK FILE SPECIFICATION IF
ASCII '#' OR '$' FOLLOWED BY
FOUR ALPHAMERICS - LAST
3 CHARACTERS THEN MUST BE
BLANKS - SEE WORK FILE
DOCUMENTATION)

000050 UFBFPCLASS

*
*
*
*

000051 UFBCREATOR

*
000054 UFBALTCNT

*
000054 UFBALTPTR

*
*
*

DS CLl FILE PROTECTION CLASS
VALUE TO LABEL IF OUT-MODE;
TAKEN FROM USER 'SET' DEFAULTS IF
X'OO' IS SUPPLIED;
VALUE FROM LABEL IF EXISTING FILE

DS CL3 FILE CREATOR FOR NEW OR
EXISTING DISK FILES

DS OBLl COUNT OF ALTERNATE INDICES
IN FILE AFTER SVC OPEN

DS A POINTER TO AXDl-AREA FOR DMS
PROCESSING (ALL REFERENCE TO THE
AXDl-AREA MUST USE UFBALTPTR)

*·FOR DEVICES OTHER THAN DISK, nm ALTCNT FIELD IS FOR MICROCODE TYPE
000058 ORG UFBALTCNT
000054 UFBMCTYPE DS XLl

UFBMCTYPE2780 EQU X'Ol'
UFBMCTYPE3780 EQU X'02'
UFBMCTYPETCD EQU X'03'
*

DEVICE TYPE
2780 BATCH TC
3780 BATCH TC
TC DIAGNOSTICS

* FOR TC2780, TC3780 FILES, THE ALTPTR FIELD IS USED FOR mE TC
* BATCH STREAM OPTIONS

000055 UFBTCDATAOPT DS BLl TC STREAM DATA OPTION
000056 UFBTCXMITOPT DS BLl TC STREAM TRANSMIT/RECEIVE

* OPTION
000057 UFBTCMAXRECSZ DS XLl TC STREAM MAXIMUM RECSIZE

* MINUS 1
* FOR WORD PROCESSING WORKSTATIONS, THE ALTPTR FIELD IS USED FOR
* EXTENDED WS-ATTENTION INFORMATION

000058 ORG UFBALTP'IR+l
000055 UFBWPAID DS XL3 EXTEND WS-ATl'N INFORMATION

000058 UFBF4

*
UFBF4NOVTOC
UFBF4RLSE

*
UFBF4BLKAL

*
*
UFBF-4VERIFY

*
UFBF4NOMSG

*
*
"' UFBF4NOACK

*
*
UFBF4PMSG

*

DS BLl

EQU X1 80 1

EQU X'40'

EQU X'20'

EQU X' 10'

EQU X'08'

EQU X'04'

EQU X'02'

5-33

ADDITIONAL DEVICE-DEPENDENT
FLAGS
UNSTRUCTURED DISKETTE
RELEASE UNUSED SPACE
ON CLOSE
ALLOCATE SPACE FOR NEW
DISK FILE IN BLOCKS,
FROM UFBNBLKS

VERIFY OPTION ON ALL
DISK WRITES
NO RESPECIFY OR CANCEL
MESSAGE FOR SVC OPEN
ALSO NO CANCEL ON CLOSE; NO
ACK/CANCEL FOR DMS.
NO EXCEPTIONAL CONDITION
ACKNOWLEDGMENT MESSAGES
FOR DMS FUNCTIONS
FOR INI'ERNAL USE BY DMS -
CLOSE SENDS MESSAGE TO
UNSPOOLER IF SET

UFBF4ALLOWT

*
*
*

000059 UFBNRECS

*
*

OOOOSC UFBLRECSAVE

*
OOOOSE UFBRETPD

*
UFBLOCEND
UFBLOCLENGTH

EQU X' 01' USED BY SVC OPEN. PROGRAM
SUPPLIES BIT=l TO ALLOW DEV=TAPE.
(OPEN SETS=l IF UFBDEV-TAPE ALSO)
OTHERWISE, DEV=TAPE NOT ACCEPTED.

DS FL3 NmmER OF DATA RECORDS IN
FILE (EXAMINED BY 'OPEN' FOR
OUTPUT OPEN MODE ONLY.
EXCLUDES INDEX RECORDS, ETC)

DS H RECSIZE SAVED HERE
BY OPEN (BAM)

DS H RETENTION PERIOD IN DAYS
(MAXIMUM 999)

EQU *
EQU (UFBLOCEND-UFBBEGIN)

* DATA MANAG~MENT SYSTEM SECTION

000060 UFBBCBl

*
*

000070
000060 UFBXIOFLAGS

UFBXIOFLAGSRLS
000060 UFBOFB
000064 UFBBUFCMD

. 0000 64 UFBBUFADR

*
*

000068 UFBBUFDATAL

00006A UFBBUFOFFSET

*
00006C UFBBUFBLOCK

00006F UFBBCBFLAGS
UFBBCBFLAGSLOD
UFBBCBFLAGSTOR
UFBBCBFLAGSIO
UFBBCBFLAGSPROT
UFBBCBFLAGSEOB
UFBBCBFLAGSEOF

**

DS BL16 BUFFER CONTROL BLOCK
(CORRESPONDS TO SVC XIO PARAMETER
LIST)

ORG UFBBCBl
DS OBLl
EQU X'80'
DS A
DS OBLl
DS A

FLAG BYTE FOR SVC XIO
RELEASE BUFFER AFTER WRITE
OFB ADDRESS
COMMAND BYTE FOR OPERATION
BUFFER MEMORY ADDRESS
(BLOCK ADDRESS WITHIN
BUFFER IF BUFFER LARGER
THAN 2K)

DS H LENGTH IN BYTES FOR
OPERATION

DS H OFFSET OF NEXT RECORD
IN BUFFER

DS FL3 (STARTING) BLOCK WITHIN
FILE OF BUFFERED DATA

DS BLl FLAGS
EQU X'Ol' BUFFER CONTENTS VALID
EQU x I 02 I BUFFER TO BE REWRITTEN
EQU X'04' BUFFER I/0 IN PROGRESS
EQU X'lO' BUFFER IN PROTECTED MEMORY
EQU X'20' END OF BLOCK REACHED
EQU X'40' EOF BLOCK IN BUFFER

* THE FOLLOWING FIELDS ARE USED FOR THE TIME-OUT OPTION IN SHARED
*MODE ONLY.

000070
000068 UFBTIMEEXIT

*
00006C UFBHOLDID

*
00006F UFBTIME

ORG UFBBUFDATAL
DS A EXIT ADDRESS FOR TIME-OUT

DS CL3

DS XLl

5-34

RETURN (0 = NO TIME-Otrr)
INITIALS OF HOLDER OF
RESOURCE
WAIT TIME IN SECOND
(0 = NO WAIT)

000070 UFBBUFSIZE DS H BUFFER SIZE
000072 UFBCHKSIZE DS H RESIDUAL COUNT FROM XIO

* (DMS USE ONLY)
* UFBXDATE OR UFBOUTRECS IS AVAILBLE AFTER SVC OPEN AND BEFORE THE
* FIRST DMS REQUEST; UFBRES3 IS AN INI'ERNAL DMS FIELD AFTERWARDS.

000074 UFBRES3 DS BL3 RESERVED FOR INTERNAL DMS
000077 ORG UFBRES3
000074 UFBXDATE DS BL3 EXPIRATION DATE (EXIST FILE)
000077 ORG UFBRES3
000074 UFBOUTRECS

* 000077 UFBNBLKS

*
00007A ORG UFBNBLKS
000077 UFBDMSGID
00007A UFBMAXTFR

00007C ORG UFBMAXTFR
00007A UFBRESl
000078 UFBOPFLAGS

UFBOPFLAGSPFA
UFBOPFLAGSPFS
UFBOPFLAGSWKA
UFBOPFLAGSPVS
UFBOPFLAGSSCAN

00007C UFBLF
UFBLFOPEN
UFBLFREAD
UFBLFWRITE
UFBLFREWRITE
UFBLFDELETE
UFBLFSTART
UFBLFCLOSE

00007D UFBLFMOD
*
* 00007E ORG UFBLFMOD

DS FL3

DS FL3

DS BL3
DS H

DS BLl
DS BLl
EQU X'80'
EQU X'40'
EQU X'20'
EQU X'lO'
EQU X'08'

NUMBER OF RECORDS REQUESTED
FOR OUTPUT MODE
NUMBER OF 2048-BYTE BLOCKS
IN THE FILE

STORED MSG-ID(DMS NOMSG EXIT)
MAXIMUM DATA TRANSFER IN
BYTES FOR DISK (SET BY OPEN)

FUTURE SPARE BYTE
INTERNAL OPEN FLAGS

PRINT-FILE ASSIGNMENT TO DISK
PF - USER SUPPLIED FILE NAME
WORK-FILE ASSIGNMENT BY OPEN
PF - USER SUPPLIED VOLUME
IN SCAN BIT (WORK/SPOOL)

LAST FUNCTION PERFORMED
OPEN
READ
WRITE
REWRITE
DELETE
START
CLOSE

DS BLl
EQU X'OO'
EQU X'04'
EQU X 1 08 1

EQU X'OC'
EQU X'lO'
EQU X'14'
EQU X'18'
DS BLl LAST FUNCTION MODIFIER

(DOESN IT CHANGE ON 'REWRITE I)
(SEE UFBV ABOVE)

00007D UFBXCODE DS BLl EXTENDED OPEN EXIT CODE
* UFBXCODE VALUES 1-8 SET FOR POSSESSION CONFLICT
UFBXCODENOINFO EQU X'OO' NO FUR'IlIER INFORMATION
UFBXCODEUSE EQU X'Ol' DEVICE IN USE
UFBXCODEDET EQU X'02' DEVICE DETACHED
UFBXCODEVOLX EQU X'03' VOLUME EXCLUSIVE
UFBXCODEPOSS EQU X'04' FILE POSSESSION CONFLICT
UFBXCODEPAGE EQU X'OS' PAGING FILE - SYSTEM ONLY
UFBXCODEIMAG EQU X'06' IMAGE FILE (INPlIT MODE ONLY)
UFBXCODEAOPEN EQU X'07' ALREADY OPEN - THIS USER
UFBXCODEAUSE EQU X'08' ALREADY IN USE - THIS USER

* UFBXCODE VALUES X'lO' - X'lF' SET FOR OPEN FORMAT ERROR
UFBXCODETRACK EQU X'lO' PROGRAM REQUIRES 7 TRACK
* TAPE WHILE DRIVE IS 9 TRACK
* OR VICE VERSA

5-35

UFB

UFBXCODEDNPRT

*
UFBXCODEDNPRG
*
UFBXCODEDNCSC

*
UFBXCODEDNWP

*
UFBXCODEDNINX
*
UFBXCODEDFGR

00007E UFBEREC

*

EQU X'll'

EQU X'12'

EQU X'13'

EQU X'14'

EQU X'15'

EQU X'l6'

DS H

UFB FORG=PRINT, WHILE LCK
FDR FORG NOT= PRINT LCK
UFB FORG=PROG, WHILE LCK
FDR FORG NOT= PROG LCK
UFB FORG=CONSEC, WHILE LCK
FDR FORG NOT= CONSEC LCK
UFB FORG=WP, WHILE LCK
FDR FORG NOT= WP LCK
UFB FORG=INDEXED, WHILE LCK
FDR FORG NOT= INDEXED LCK
UFB FORG NEITHER CONSEC LCK
NOR INDEXED---ERROR LCK
LAST RECORD NUMBER WITHIN

LAST BLOCK
000080 UFBVERSION
000081 UFBEBLK

DS HLl UPB VERSION NUMBER **1rk-lrl<*

DS FL3 LAST BLOCK NO. WITHIN FILE
* FROM 0

000084 UFBBUFSTART DS A BUFFER MEMORY ADDRESS;
BUFFER CONTROL TABLE
ADDRESS BEFORE 'OPEN'
IF BUFFER POOLING

*
*
*
*

000088 UFBRDLTH DS H
SPECIFIED (UFBFlPOOL SET)
LENGTH IN BYTES OF

* DATA IN BUFFER
00008A UFBPRTCOPIES DS H NUMBER OF PRINT COPIES

(FOR PRINTER FILES ONLY) *
00008C ORG UFBPRTCOPIES
OOOOSA UFBWPBLKSIZE
000088 UFBWPBLS

DS X
DS X

WORD PROCESSING FILE CONTROi~
FIELDS, WP FILES BLKSIZE

* AND BYTES IN LAST SECTOR
00008C ORG UFBBUFSTART
000084 UFBPTRB DS FL4 FIRST BLOCK IN INDEX

*
*

000088 UFBPTRC

*
UFBDMSEND
UFBDMSLENGTH

AREA OF PRIMARY EXTENT
(INDEXED FILES)

DS FL4 LAST BLOCK IN INDEX AREA
OF PRIMARY EXTENT
(INDEXED FILES)

EQU *
EQU (UFBDMSEND-UFBBEGIN)

* END OF UFB FOR ALL FILES/DEVICES EXCEPT TAPE FILES, INDEXED DISK
* FILES AND ADMS(DATA AND RESTART) DISK FILES.

* INDEXED DISK FILE EXTENSION SECTION:
* UFBKEYPOS AND UFBKEYSIZE SHOULD BE FILLED IN BY THE PROGRAM BEFORE
*'OPEN' FOR A NEW INDEXED FILE (UFBF20UT AND UFBFORGINDEXED SET).
* THEY ARE SET BY 'OPEN' FOR AN EXISTING INDEXED FILE. 'OPEN'
* WILL SET UFBGKSIZE TO ZERO. THE USER'S PROGRAM MAY SET IT NON-ZERO
* BEFORE A 'START' FUNCTION. 'START' WILL ZERO IT AGAIN. THE
* USER'S PROGRAM MUST NOT MODIFY ANY OTHER FIELDS THAN
* UFBGKSIZE IN THIS SECTION WHILE THE FILE IS OPEN.

5-36

00008C UFBKEYPOS
00008B UFBKEYSIZE
00008P UFBGKSIZE

*
*
* .,,

000090 UFBHXBLK
*

000093 UFBDABLK

*
000096 UFBPKI

* 000098 UFBPTRD

*
*

00009C UFBPTRI
*
*

OOOOAO UFBPTRN

*
*

OOOOA4 UFBBCBIOUT

*
OOOOB4 UFBPKD

*

DS H KEY POSITION IN LOGICAL RECO
DS HLl KEY SIZE IN BYTES
DS HLl GENERIC KEY LENGTH OVERRIDE

MAY BE SET BEFORE 'START' ;
USED ONLY BY 'START' FUNCTION;
RESET TO BINARY 0 BY 'OPEN' AND
EVERY 'START' FUNCTION

DS FL3 HIGHEST-LEVEL INDEX BLOCK

DS FL3

DS H

ADDRESS FOR KEYED ACCESS
FIRST DATA BLOCK ADDRESS
(CURRENTLY ALWAYS 0)
INDEX ITEMS PER BLOCK

FOR OUTPUT MODE
DS FL4 FIRST BLOCK BEYOND

DS F

DS F

PRIMARY EXTENT
(INDEXED FILES)

NEXT AVAILABLE INDEX
BLOCK WITHIN PRIMARY EXTENT
INDEX AREA

NEXT AVAILABLE INDEX
OR DATA BLOCK IN A SECONDARY
EXTENT (INITIALLY ZERO)

DS BL16 BCB FOR INDEX CREATION,

DS H
OUTPUT MODE

RECORDS PER BLOCK FOR
OUTPUT MODE

OOOOB6 UFBSPAREINX DS XL2 (RESERVED)

000088

UFBINXDISKEND EQU *
UFBINXDISKLG'111 EQU (UFBINXDISKEND-UFBBEGIN)
* ***""*"'~~-k-',drk*-/'**********'lr'#Ckk'lc'lc"lc "lc'lc"Jrlrl.,~'lrlrl~**'if1n"****'~'**
* MAGNETIC TAPE FILE EXTENSION SECTION:
* FIELDS UFBTLABELS, UFBTDEN, UFBTSEQ AND UFBTFLAGS MAY BE SET
* BEFORE 'OPEN' TO REQUEST OUTPUT LABELING OPTIONS, DENSITY
* AND FILE POSITIONING.
* ALL RELEVANT FIELDS AND FLAGS NOT SET BEFORE 'OPEN' ARE SUPPLIED
* HERE BY 'OPEN' PROCESSING AND MAY BE EXAMINED BY THE USER'S
* PROGRAM. * **'k-k-kk*-klrlrl.-:r',c-klrk-:r'~nirlrl.-/rlrlr',c-kkk-'"*k-'~'**l'**k-Jrlrlr~.<"lrk

ORG UFBDMSEND
00008C UFBTSPAREl DS BL4 (RESERVED)
000090 UFBTBCB DS 8116 ADDITIONAL BUFFER CONTROL

* BLOCK FOR TAPE DOUBLE

* BUFFERING
OOOOAO UFBTLABELS DS BLl REQUESTED LABELING (OUTPUT)

* OR LABEL TYPE ON TAPE
* (INPUT)
UFBTLABELSNL EQU X'Ol' UNLABELLED
UFBTLABELSANY EQU X'02' ANY TYPE OF LABEL
UFBTLABELSAL EQU X'04' ASCII LABELS
UFBTLABELSIL EQU x•·oa• IBM LABELS

OOOOAl UFBTDEN DS BLl TAPE DENSITY
UFBTDEN800 EQU X'Ol' 800 BPI
UFBTDEN1600 EQU X'02' 1600 BPI

5-37

UFBTDEN556
OOOOA2 UFBTSEQ

*
*
*

OOOOA4 UFBTFLG
UFBTFLGALLOWNL
UFBTFLGSWITCH
*
UFBTFLGEODEOV

* UFBTFLG7TRACK

*
UFBTFLGNOHDR2

OOOOA5 UFBTVOLSEQ

"'
*

OOOOA6 UFBTSAVEVOL
*

OOOOAC UFBTPARITY

*
UFBTPARI'IYODD
UFBTPARITYEVEN

OOOOAD UFBTSPARE2
UFBTAPEEND
UFBTAPELGTH

EQU X'03'
DS H

DS BLl
EQU x•so•
EQU X'40'

EQU X'20'

EQU X'lO'

EQU X'08'
DS BLl

DS CL6

DS BLl

EQU X'Ol'
EQU X'02'
DS BLll
EQU *

556 BPI 02+
TAPE FILE SEQUENCE NUMBER
(SET BEFORE OR DURING
OPEN TO REQUEST POSITIONING
AND AVAILABLE AFTER OPEN)
TAPE-RELATED FLAGS
*** OBSOLETE ***
TAPE VOLUME SWITCH REOPEN
IN PROGRESS
TAKE EOVl TRAILER LABEL AS
EOFl LABEL
USE 7 TRACK TAPE DRIVE FOR
THIS FILE
NO HDR2 FILE LABEL 01+
TAPE VOLUME SEQUENCE NUMBER
(ORDER OF VOLUME IN A
MULTIPLE VOLUME FILE)
VOLUME NAME OF FIRST
VOLUME OF A MULTI-VOLUME
FILE SAVED HERE
TAPE PARITY (7 TRACK TAPE
ONLY)
ODD PARITY
EVEN PARITY
(RESERVED - MUST BE 0)

EQU (UFBTAPEEND-UFBBEGIN)

* ADMS DISK FILE EXTENSION SECTION:

000088 UFBADMSFLG
UFBADMSFLGRS
UFBADMSFLGBI
UFBADMSFLGAI
UFBADMSFLGCRASH
*
UFBADMSFLGCUPD

UFBADMSFLGEXTCK

*
000088 UFBMCCPTR

*
OOOOBC UFBMCC/I
OOOOBE UFBSCHEMAID
OOOOCO UFBVIEWID
OOOOC2 UFBRECORDID
OOOOC4 UFBADMSLOG

OOOOC4 UFBADMSSPB

*
*

DS OBLl
EQU X'80'
EQU X'40'
EQU X'20'
EQU X'lO'

EQU X'08'

EQU X'04'

DS A

DS XL2
DS XL2
DS XL2
DS XL2
DS OXLl

DS A

5-38

ADMS FLAG
RESTART FILE
KEEP BEFORE IMAGE
KEEP AFTER IMAGE
SOFT OR HARD CRASH OCCURED
ON THIS FILE
INDICATE CONSECUTIVE FILE
SIZE CHANGED
INDICATES FIRST WRITE 03~

TO EXTENDED FILE 03+
POINTER TO MCC CONTROL
BLOCK(MAP-CONVERSION-CHECK)
OF MCC ENTRIES
SCHEMA ID
VIEW ID
RECORD TYPE ID
RECORD IMAGE LOG TYPE ON
THE AUDIT TRAIL FILE
RESERVED USE BY SHARING
TASK ONLY. ADDRESS OF 'I1IE
SHARED FILE POSITION BLOCK
(SPB) OF THIS USER/FILE

OOOOC8 UFBADMSREC DS A
*
UFBADMSEND EQU *
UFBADMSLGTH EQU (*-UFBBEGIN)

ADDRESS OF THE DEFAULT
RECORD FOR THIS SCHEMA

* **1dr'~rlr,c-"******1dr'~~"*'~"*'-'rlrn*h'k*k-k-J'<*J<.rlrlc**~~~
* RESTART DISK FILE EXTENSION SECTION: * ****'1'**"'"*********'~~~,rt~,r'"**1rJc1'1clclctclc'/c'/ch'lf'lc'lc'lc'lc'lc'lc***

oooocc
000088

UFBADMSFLGND
UFBADMSFLGNEXT
UFBADMSFLGPRIOT

000089 UFBRSUSCNT
OOOOBA UFBRSCURR
OOOOBC UFBRSFILENAME
OOOOC4 UFBRSSPAR2

UFBRSEND
UFBRSLGTH
UFBEND

ORG UFBADMSFLG
DS XLl
EQU X'40'
EQU X'20'
EQU X'lO'
DS XLl
DS XL2
DS CL8
DS BL8
EQU *
EQU (*-UFBBEGIN)
EQU *

5-39

RESTART FILE EMPTY
RESTART FILE READ NEXT
RESTART FILE READ P~IOR
COUNT OF RESTART USER

RESTART CURRENCY POINTER 05+
PSEUDO-RESTART FILB NAME
(RESERVED)

VOLl
DSECT 000000 VOLl

*
*
*
*

THE VOLl RECORD IS THE STANDARD VOLUME LABEL FOR DISK OR
MAGNETIC TAPE. ALL FIELDS ARE IN ASCII CHARACTERS.EXCEPT 'TIIE
FDIR EXTENTS AND CREATION DATE. THIS RECORD ON DISK IS AT
ADDRESS F' 1' , FOLLOWING THE IPL TEXT RECORD.

* * DATE 11-12-74
* VERSION 1.01
*
VOLlBEGIN

000000 VOLlID
000004 VOLlSER
OOOOOA VOLlACCESS

*
OOOOOB VOLlRESRVl
000025 VOLlCREATOR

*
000028
000025 VOLlOWNER

*
000033 VOL1RESRV2
00004F VOLlLEVEL

VOLlTAPEEND
VOLlTAPELENGTH

000050 VOLlSYSTEM
000058 VOLlCREDATE

*
OOOOSB VOLlXlSTRT

*
OOOOSE VOLlXlEND

*
000061 VOL1X2STRT

*
*

000064 VOL1X2END

000067 VOL1X3STRT
~"

EQU *
DS CL4'VOL1'
DS CL6
DS C' '

DS 8126
DS CL3

ORG VOLlCREATOR

CHARACTERS 'VOLl'
VOLUME SERIAL NUMBER
FILE PROTECTION CLASS
OR BLANK
RESERVED - ASCII BLANKS
FILE CREATOR ID OR BLANKS
FOR MAGNETIC TAPE ONLY

DS CL14 OWNER ID (OPTIONAL)

DS BL28
DS CLl'l'
EQU *

FOR DISK AND TAPE VOLUMES
RESERVED - ASCII BLANKS
MUST BE AN ASCII 'l' FOR

EQU VOLlTAPEEND-VOLlBEGIN
DS CL8 SYSTEM IDENTIFICATION

TAP

DS PL3 VOLUME INITIALIZATION DATE
(PACKED YYDDD+)

DS FL3 VOLUME TABLE OF CONTENTS 1 ST
EXTENT STARTING BLOCK ON
VOLUME FROM 0

DS FL3 FDIR lST EXTENT ENDING BLOCK
PLUS 1

DS FL3 VOLtME TABLE OF CONTENTS 2ND
EXTENT STARTING BLOCK ON
VOLUME FROM 0

DS FL3 FDIR 2ND EXTENT ENDING BLOCK
PLUS 1

DS FL3 VOLUME TABLE OF CONTENTS 3RD
EXTENT STARTING BLOCK ON

* VOLUME FROM 0
00006A VOL1X3END DS FL3 FDIR 3RD EXTENT ENDING BLOCK

* PWSl
* (EXTENTS 2 AND 3 RESERVED. X2STRT THOUGH X3END MUST CONTAIN
* BINARY ZEROES.)

00006D VOL1RESRV3
00006F VOLlUCBTYPE
000070 VOLlVCBBC
000072 VOLlVCBMAXTFR
000074 VOLlVCBCV
000076 VOLlVCBCVP
000078 VOL1RESRV4

*
VOLlDISKEND
VOLlLENGTII

DS BL2
DS ALl
DS AL2
DS AL2
DS AL2

RESV'D IN DISK VOLl
UCB TYPE
BLOCKS PER CYLINDER
MAX TRANSFER (BYTES)
CYLINDERS PER VOLUME

LABEL O~
o~

o~
o~

01'
DS AL2 CYLINDERS PER PHYS VOLUME O~
DS BL136 RESV'D IN DISK VOLl LABEL 01'

EQU *
EQU 256

5-40

ASCII BLANKS

CHAPTER 6: SUPERVISOR CALLS

6.1 INTRODUCTION

This chapter describes the input parameters, outputs, and
function of each supervisor call (SVC) which is directly
accessible to normal user programs. SVC descriptions are ordered
by SVC number, beginning with SVC O. The following list is a
summary of all available SVC's. Those with names in parentheses
are normally not accessible to user programs and so are not
described in this manual.

*

Name Nwnber Residenc~

OPEN SVC 0 (NR)
CLOSE SVC 1 (NR)

TIME SVC 2 (NR)
XIO SVC 3 (R)
LINK SVC 4 (NR)
GETBUF SVC 5 (NR)

FREEBUF SVC 6 (NR)
(WAIT) SVC 7 (R)
(SEND) SVC 8 (R)
(FIX/UNFIX) SVC 9 (NR)
(GETMEM) SVC 10 (R)
(FREEMEM) SVC 11 (R)
HALT IO SVC 12 (NR)
(DTI) SVC 13 (R)
ALEX SVC 14 (NR)
UNLINK SVC 15 (NR)

CANCEL SVC 16 (NR)

CHECK SVC 17 (R/NR)*
(SEIZE/RELEASE) SVC 18 (R)

'Intervention required' handling and
facilities of CHECK may be non-resident.

6-1

I/O

Inner SVC Only

error

I
I
I
I
I

I

logging

READVTOC SVC 19 (NR)
GETPARM SVC 20 (NR)
(GETDISK) SVC 21 (NR) I
(FREED I SK) SVC 22 (NR) I
(CREATFDR) SVC 23 (NR) I
READ FDR SVC 24 (NR)
(UPDATFDR) SVC 25 (NR) I
RENAME SVC 26 (NR)
SCRATCH SVC 27 (NR)
EXTRACT SVC 28 (NR)

(PLEASE) SVC 29 (NR)
MOUNT SVC 30 (NR)
PCEXIT SVC 31 (NR)
SETIME/RESETIME SVC 32 (NR)

PUTPARM SVC 33 (NR)
(MWAIT) SVC 34 (R) I
SET SVC 35 (NR)
XMIT SVC 36 (R)
CREATE SVC 37 (NR)
DESTROY SVC 38 (NR)
CEXIT SVC 39 (NR)

GETDIAG/FREEDIAG SVC 40 (NR)
DISMOUNT SVC 41 (NR)

PROTECT SVC 42 (NR)

LOGO FF SVC 43 (~)
reserved SVC 44
(LOADCODE) SVC 45 (NR)

Where input parameters to an SVC routine are supplied on the
stack, they are removed before retuining to the issuer, leaving
only the specified output values.

6-2

Open File

OPEN (SVC 0) NON-RESIDENT

Inputs: The top word of the stack addresses a User File Block
(UFB) containing:

Reference name (UFBPRNAME)
Optional parameter indicators (UFBFl)
Mode £lags (UFBF2)
Device' class (UFBDEVCLASS)
Device dependent flags (UFBF4)

A new workstation file or printer file must contain:
File organization (UFBFORG)
Logical record size (UFBRECSIZE)

A new indexed disk file must contain:
Key position (UFBKEYPOS)
Key size (UFBKEYSIZE)

A new magnetic tape file must contain:
Physical block size (UFBBLKSIZE)
Tape sequence number (UTBTSEQ)

And a new disk file must contain:
Disk space requirement UFBNRECS

A new or existing file may optionally contain:
Complete actual file name and volume
(UFBVOLSER,UFBDIRNAME,UFBFILENAME), or device
number, or unqualified name of member within
library or volume (UFBFILENAME) • For an existing
tape or disk file, if UFBFORG or UFBRECSIZE are
supplied, they must agree with the values in the
file label. Also, for tape files, either filename
must be supplied or UFBTSEQ must be non-zero. For
disk files, UFBBUFSIZE may be supplied as the
maximum buffer size required.

Fields which may be preset, but are not used during
'OPEN' (except for TC files):

UFBERRAD, UFBEODAD, UFBRECAREA, UFBKEYAREA.
For TC files, UTBRECAREA contains the address of the TC
connection parameters.

The high-order byte of the top word of the stack may be
set for the OPEN exit option as described below.

Outputs: Open File Block (OFB) created in protected memory.
Device indication placed in OFB (OFBUCB). Mode flags
copied to OFB from UFB (UFBF2) • File Location and Use
Block (FLUB) created for disk file if not already
present (for another task). Extent information placed
in FLUB for disk files. Length of extent list placed
in FLUB for disk files. File Descriptor Record (FDRl)
block and record numbers placed in FLUB for disk
files. Sharing mode flags set in FLUB.

6-3

OPEN (SVC 0)

Addresses of I/O function processing routines placed in
UFBVREAD through UFBVSTART. Number of records in file
placed in UFBNRECS for disk files or for magnetic tape
files opened in EXTEND mode. Sequential record pointer
initialized to first record of file (last record of
file plus one record if EXTEND mode) • Buffer addresses
and lengths placed in buffer control fields of UFB
(UFBBUFADR, UFBBUFSIZE) , and these buffers marked
'contents not valid' (in UCBBCBFLAGS) and 'buffer in
protected memory' when required. The file status bytes
(UFBFSl, UFBFS2) are set = '00'; UFBLF is set = Open.

For existing files only:
File organization indicated (UFBFORG)
Logical record size supplied (UFBRECSIZE)
Block size supplied (UFBBLKSIZE)

For disk files only:
File attribute flags indicated (UFBFLAGS)
Record size from label supplied (UFBLRECSAVE)
Last block number in file supplied (UFBEBLK)
Last record number in this block supplied (UFBEREC)
Number of 2K blocks within file extents supplied
(UFBNBCKS)

For indexed disk files only:
First data block number (re la ti ve within file)
supplied (UFBDABLK)
Highest-level index block number {relative within
file) supplied (UFBHXBLK)

For existing indexed disk files only:
Key position supplied (UFBKEYPOS)
Key size supplied (UFBKEYSIZE)

The Volume Control Block (VCB) for a volume containing a
disk file is updated to indicate that an additional file
is open on this volume (VCBOCNT).

For disk or tape files, buffers are allocated from the
user-modifiable segment and their allocation recorded in
the task's extended Task Control Block. For disk or
tape files, no buffers are allocated when physical
access method functions are used (UFBFlPAM set).

Program-supplied file, volume, and device information
(as supplied through the 'Open Parameters' sections of
the UFB) remains in the UFB, or is replaced with
information acquired by OPEN through GETPARM.

For device = dummy, an OFB is set up to indicate that a
null file has been opened. There is no IORE, and
OFBIOREPTR and OFBUCB are zero. A null file is valid in
INPUT mode only and all DMS read requests to the file
return with file-status='lO' (end-of-file). UFBRECSIZE
and UFBFORG are not set by OPEN for a null file.

6-4

OPEN (SVC 0)

For device = disk and UFBF4NOVTOC set, a disk volume
without a Volume Table of Contents (VTOC) is indicated.
In this case, the unique filename in the FLUB is created
by setting FLUBFILENAMl and FLUBFILENAM2 = blanks;
FLUBFDRR and FLUBFDRB are zero; and the volume (through
FLUBVCB) will have VCBFLAGSNOVTOC set. The FLUB
contains one extent which allows access to all blocks on
the volume. For NOVTOC, the file organization is
consecutive and the record size is 2K unless the user
program supplies a record-size. Extend and Shared Modes
are not supported for NOVTOC volumes.

For output mode, UFBF4RLSE is set. 'Ibis setting may be
overridden by the user when the OPEN-GETPARM is issued
or the bit may be cleared by the program after OPEN.
The bit causes unused space in the file to be released
by CLOSE.

The OPEN exit option is available by setting the high
order byte of the top word of the stack. This byte can
indicate the conditions listed below. If a condition
arises for which the corresponding bit is set, then
control returns to the program at the next instruction
in sequence, rather than SVC OPEN issuing a GETPARM
(RESPECIFY). If the exit is taken, UFBFSl = X' 39' ,
UFBFS2 = a mask for the appropriate condition; and
UFBPREVO is set. The SVC OPEN may be reissued after an
OPEN exit has been taken.

OPEN exit conditions:

UFBFS2XFILE (X 180') -

UFBFS2XLIB (X'40') -

UFBFS2XVOL (X 1 20') -

Return if the file is not found
(non-OUTPUT) or if a duplicate
file name is found (OUTPUT
mode).

Return if the library is not
found (non-OUTPUT mode).

Return if the volume is not
mounted.

UFBFS2XSPACE (X'lO') - Return if there is insufficient
space on the volume for a new
file (OUTPUT mode).

6-5

OPEN (SVC 0)

UFBFS2XVTOC (X'08')

UFBS2XTAPELD (X'08') -

UFBFS2XPOS (X'04')

UFBFS2XPROT (X'02')

Return if there is no VTOC space
on the volume (OUTPUT mode).

Return tape
density is
the program.

label type or tape
not acceptable to

Return for possession con
flict, which includes file
already open by current pro
gram, file opened by other
program and open modes con
flict and volume possession is
exclusive for another user.

Return if the user does not
have access rights required to
open the file.

UFBFS2XFORMAT (X' 01 ') - Return if there is an error in
specification of file format.
Error class is described in
UFBXCODE.

A NO-MESSAGE option is also available such that control
will return to the program (at the next instruction in
sequence) whenever any condition arises for which a
RESPECIFY (or CANCEL) message would normally be returned.
If UFBF4NOMSG is set, then the MSG-ID (4 bytes) of any
RESPECIFY or CANCEL message is stored in the first 4
bytes of the UFB and UFBFSl =X' 3 6' and UFBFS2=X' 0' • The
NO-MESSAGE option is checked after any open-exit checking
is perfonned. (Open-exits provide a more exact
indication of the problem; the NO-MESSAGE option is
useful for tasks with special processing requirements.)

Note 1: This list of indirect
although extensive, is
completely exhaustive.

outputs of
not intended

I OPEN''
to be

Note 2: When creating an indexed file in OUTPtIT mode,
the 'packing density' for both index blocks and
data blocks may be set by the user. ·For exam
ple, if 20 records at 100 bytes each would nor
mally fit into a data block, then at 80 percent
packing, each data block would be loaded with
only 16 records. UFBPKD (data) and UFBPKI
(index) are settable by the user before Open;
OPEN will use the binary value as a percent
age. A value of 50-100 will be accepted as the
percentage value for packing. Any value
outside this range will be ignored; the default
used will produce full packing. UFBPKD and
UFBPKI should not be modified after OPEN.

6-6

OPEN (SVC 0)

Note 3: For OUTPUT MODE DISK FILES, UFBOUTRECS
contains the record count used when allocating
file space. This value is available immedi
ately after SVC OPEN. UFBNRECS=O after OPEN.

Note 4: A complete description of Work files and Print
files (including SVC OPEN processing) is
included in Chapter 2 of this docwnent.

Function: Prepares a file for processing by Data Management
System functions. Information from the file label is
brought into memory. Devices and volumes are allocated
and reserved as required. Control blocks are set up.
Buffer space is allocated. The OPEN function may
interface with a conversational user's workstation to
request information which has not been supplied.

6-7

Close File

CLOSE

Inputs:

(SVC l) NON-RESIDENT

The top word of the stack addresses (open) User File
Block (UFB) • The high-order byte of this word may have
the following flag bits set:

Bit 0 = 1
Bit 1 = 1
Bit 2 = 1

Force end-of-volume REEL.
No rewind (magnetic tape).
Rewind and unload (magnetic tape).

The other bits of this byte must be zeroed.

Outputs: Open File Block (OFB) in protected area is deallocated,
and unchained from the task's TCB (OFBTASKCHN) and the
FLUB for the file (OFBFILECHN). File Location and Use
Block (FLUB) in protected area is deallocated if the
file is no longer open to any task.

Volume Control Block (VCB) for volwne containing disk
file is updated to indicate that the file has been
closed (VCBOCNT). Unit Control Block (UCB) for
nonshared devices marked 'deallocated'.

Any records which remain to be written from buffers are
written (as specified by UFB buffer control fields) ,
and then these buffers are deallocated and marked as
such in the Task Control Block (TCBAVBUF).

For a TC file, a DISCONNECT operation is performed for
the associated line if no other files remain open which
are associated with that line.

For disk and tape files, the file label is rewritten if
the file was being processed in IO, SHARED, OUTPUT or
EXTEND modes (FDRl for disk, trailer labels for tape).
The updated number of records in the file is placed in
this label (from UFBNRECS or as calculated from UFBEBLK
and UFBBUFOFFSET).

For OUTPlIT mode (consecutive files only), unused. blocks
in the file are released when UFBF4RLSE is set.

For disk files, these additional label fields are
updated when required:

Date of last modification (FDRlMODDATE)
Last record's block within file (FDRlEBLK)
Last record's number in block (FDRlEREC)
Highest-level index block number (FDRlHXBLK)
First data block number (FDRlDABLK)

6-8

CLOSE (SVC 1)

Function: Removes a file from processable status. Information
remaining in memory is written to the secondary storage
device containing the file or discarded. Memory areas
allocated for processing this file are released and may
be used for other purposes. The User File Block (UFB)
is returned to a state in which another OPEN can be
issued on the file. '!be file status reflects the last
operation performed on the file by Close (if any) or by
DMS.

6-9

Get Date and Time

TIME

Inputs:

(SVC 2) NON-RESIDENT

The top word of the stack contains a binary 0 if the
time is to be returned .in hours, minutes , seconds , and
hundredths of seconds (packed decimal) , or a binary 1 if
the time is to be returned in hundredths of seconds
(from midnight) binary.

The next word contains a binary 0 if the Julian day is
to be returned, or a binary 1 if the date as
year-month-day is to be returned.

Outputs: Time returned in the top word of the stack as either:

(a) Packed decimal 'HHMMSSth • where Jill is
24-hour clock), MM is minute-in-hour,
second-in-minute, t is. tenth of second
hundredth of second, or

hour (on
SS is

and h is

(b) Binary hundredths of second from preceding midnight.

Date returned in the next word as packed digits in one
of these formats:

(a) 'OO Y'i DD DF', where YY is year-in-century, DDD is
day-in-year, F is hexadecimal 'F' for unpacking.

(b) 'OY YM MD DF • , where YY is year-in-century, MM is
month-in-year, DD is day-in-month, F is hexadecimal
'F' for unpacking.

Function: Supplies the current date and time to users' programs or
system routines in the fonns described above.

Stack on entry and return:

ENTRY:

SP -->

OTHER
DATA

0 or 1

0 or 1

RETIJRN:

SP -->

6-10

OTHER
DATA

Date

Time

Execute Physical I/0

XIO

Inputs:

(SVC 3) RESIDENT

The top 16 bytes of the stack are a parameter list
containing:

Byte O: Flags
Bit 1 = 1 - Special block-on-volume-oriented disk

I/0 request - "VOLIO" - valid only when
requested by system routines in System
Mutual Exclusion state or when the
accessed volume is mounted for
initialization by the issuing task.

Bit 2 = 1 - Block print operation. Data must be
2K-aligned and is not moved to the
device's resident print buffer.

Bit 3 = 1 - 'Halt I/0 Queue' option (for Disk Mount
operation).

Bit 4 = 1 - Reset UCBSTATNOTOP and UCBSTATNOCODE to
allow I/O device being simulated to
malfunction.

Bit 5 = 1 - Issue Return Code = 32 if I/O issued to
inoperative workstation.

Bit 6 = 1 - Force uppercase printing.
Bit 7 = 1 - Telecommunications Option--TRANSMIT or

RECEIVE.
Bytes 1-3

Byte 4
Bytes 5-7

Bytes 8-9

Bytes 10-11 -
Bytes 12-14 -

Byte 15

Address of Open File Block (OFB) for
file with the following exceptions:
When flag bit 7 = 1 (TC option) , the OFB
address is for the VS-DLP communication
path; when flag bit 1 = 1 (VOLIO option) ,
the address of the Volume Control Block
(VCB) for the disk volume.
Command byte for I/0 Command Word (IOCW).
Memory address (virtual) for IOCW if
read or write command in byte 4.
Length in bytes for operation (read or
write command, all devices).
Unused.
For disk files only. Block number
within file (in binary) of the first
block to be read or written (where the
first block of a file is block 0) • With
the following exceptions: If VOL IO
option is selected, the block number
within the volume (in binary) of the
first block to be read or written (where
first volume block is block O); if TC
option is selected, bytes 12-14 contain
bytes 6-8 of the IOCW.
Unused

6-11

XIO (SVC 3)

Outputs: Return codes in the top word of the stack (replacing the
input parameters).

Low-order halfword of return code field - binary return
codes:

0 - Success
4 - Truncation at end-of-extent (non-VOLIO disk only)
8 - Truncation at end-of-cylinder or end-of-track (disk

only)
12 - Starting block number beyond end-of-file (non-VOLIO

disk) or beyond end-of-volume (VOLIO disk)
16 - Invalid data address or data length. (Data address

for disk must be page-aligned; for other devices
word-aligned. Virtual memory area encompassed by
the area from data address through data-address plus
block-size-minus-one must either be in the segment 2
1/0 buffer area or entirely above the XIO parameter
list on the stack if the XIO is issued from
unprivileged state. The specified length must not
imply spanning of more pages than there are Indirect
Address List entries for the device.)

20 - Second XIO on file without intervening CHECK
24 - TC XIO attempted on an OFB that was not created as

the result of an 'IPOPEN' on an IPCB.
28 - TC XIO attempted on a device reserved exclusively by

another task.
32 - XIO has been issued to inoperative workstation and

I/0 has not been issued (bit 5 of option flag must
be set for issuance of this return code) •

36 - TC XIO attempted on a peripheral processor (DLP)
reserved exclusively by another task.

High-order halfword of return code field - residual block
counts:

Return codes 0, 12, 16, 20 - Always zero.
Return codes 4, 8 - Specified block size minus number of

bytes actually read or written.

Note: If return codes 0, 4, or 8 are set, the I/0
operation is queued for initiation and a CHECK must
be issued to test for completion. If return codes
12, 16, or 20 are set, the operation has been
suppressed. XIO never waits for I/0 completion.

6-12

XIO (SVC 3)

Function: Initiates I/0 operations for the Data Management System,
as requested by its parameter list.

'lbe following restrictions on general I/0 capability are
enforced by the XIO routine:

All - (1) All memory addresses for a read or
ation must be valid (present in main
page faulted) and, unless the
routine is privileged, must be
user-modifiable segment and either:

(a) in the I/0 buffer area, or

write oper
memory or
requesting

in the

(b) entirely above the XIO parameter list on
the stack.

Disk - (1) A block to be read or written must fall within
the current extent limits of the specified file
(except for "VOLIO" disk requests) •

(2) The specified memory address must be on a page
boundary.

(3) The "VOLIO" option (flag bit 1 = 1) is allowed
only when requested from within System Mutual
Exclusion state.

(4) The length specified for a READ or WRITE oper
ation must be a multiple of the page size.

(5) Indirect data addressing is always used for
disk 1/0.

Diskette - Library-Structured

(1) All restrictions as for other disk.

Diskette - Unstructured

NOTE:

(1) A block to be read or written must fall within
the bounds of the diskette platter (blocks 0
through 153); otherwise, return code 16 is set.

(2) The "VOLIO" option is ignored.

A non-standard addressing option is
that allows the user to format a

now supported
soft-sectored

diskette in any combination of sector size and
density. The use of this option is intended to be
limited to specialized utilities. User programs
which employ this option are responsible for per
forming direct and sequential I /0 on a physical
sector basis. The user program must calculate the
sector size and addresses, set mode, and set den
sity. When non-standard addressing is specified,

6-13

XIO (SVC 3)

the XIO SVC will not perform extent validation or
address translation, but simply passes the address
to the firmware via the I/O Control Word (IOCW) •

Tape - (1) Maximum size permitted for tape records is 32K
bytes.

Printer
(1) Bit 2 of the first byte of the XIO parameter

list distinguishes between print operations
through a resident print buffer and multiple
line ('block') print operations. The data
length for single-line print operations must be
not less than 2 or more than 134. The data for
a block print operation must be on a single
page.

(2) The data for a block print operation must in
clude record length bytes. The data for single
line print operations through a resident buffer
should include only the printer control char
acters and the characters to be printed.

Workstation

(1) An Attention Identification (AID) character is
stored in the current status portion of the
device Unit Control Block (UCB) on successful
completion of each I/O operation. (Refer to VS
Principles of Operation Manual or VS Operating
System Services Pocket Guide for a listing of
these characters.) The AID character also
serves to indicate whether the workstation
keyboard is in locked or unlocked state after
the operation.

(2) If the device's UCB indicates 'Keyboard
unlocked' when a READ operation is requested,
the XIO routine will wait for an attention
interruption from this device. When such an
interruption is received, the interrupt service
routine will mark the UCB 'Keyboard locked' and
then will allow XIO to initiate the read
operation.

(3) Indirect data addressing is always used by XIO
for workstation I/0.

6-14

Link to Another Progr~m

LINK

Inputs:

(SVC 4) NON-RESIDENT

The top 16 or 32 bytes of the stack. contain a parameter
Hst as follows:

Byte 1 - Flags, as follows:
Bit 0 = 1 Search only system library for member

Bit 1 = 1

Bit 2 = 1

Bit 3 = 0
Bit 4 = 1

(see below).
Report failure to find the specified
member, member not executable, member
already opened (other than Shared
Read-only) , or password for member or
directory not provided, or other error
by returning to location of SVC
instruction plus 6 (next instruction
plus 4), rather than by entering the
Help Processor. See outputs below for
return codes in these cases.
Branch to location of LINK SVC plus 10
(next instruction plus 8) after
setting up to enter new program or
subprogram, with entrypoint address of
new program in register 0. (See
LOADONLY operand description of LINK
macro in Chapter 4.)
Must be zero.
Overriding user program library and
volume specified in parameter
bytes 17-30.
Must be zero.

list

Bits 5-7
Bytes 2-9 - Character string (ASCII) containing name

of program to be LINKed to. This name is
used with the current program library
specification as a member name within a
library or volwne, and the resulting
complete filename is sought. If such a
file is not found, the member name is
used with the system library
specification, and the resulting complete
filename is sought. If flag bit 0 above
is set, only the system 1 ibrary
specification is used. If flag bit 1 is
not set, failure to find the program in
either library causes abnonnal
tennination of the issuing task.

Bytes 10-16 - Not examined.
Bytes 17-22 - Character string containing overriding

user program library's volume serial.
Totally absent unless flag bit 4=1.

6-15

LINK (SVC 4)

Bytes 23-30 - Character string containing overriding
user program library. Totally absent
unless flag bit 4=1.

Bytes 31-32 - Not examined. Absent unless flag bit 4=1.

Register Rl by convention addresses a standard argument
list to be passed to the program invoked as a result of
the LINK.

Outputs: A new Program File Block is built and chained to the
active TCB, indicating that a program has been
entered. A new Program Exception Element is built and
enstacked from TCBPXE, indicating that no program
exception exits are set. Register R14 addresses the
first (doubleword-aligned) address of the newly created
group of 'static' areas (see below) • Register Rl
addresses the argument list passed by the issuer (if
provided) • Other register contents (except register
15) are unchanged. Static storage areas for the
LINKed-to program are pushed onto the stack. A single
word of control infonnation (address of UNLINK' routine
to be executed on RETURN) follows. '!his is fol lowed by
a save area chain word and register save area suitable
for use with the RETURN macroinstruction (RTC
instruction). Control register 1 contains the address
of this save area (as does general register 15) on
completion of the LINK. The stack on entry to the
LINKed-to program is as follows:

ISSUING PROGRAM'S STACK
AREA

'LINK' SVC SAVE AREA
USER PROGRAM LIBRARY
AND VOLUME BEFORE 'LINK')
(RESTORED BY • UNLINK I)

LIBRARY, MEMBER, VOLUME
OF PROCEDURE FILE
IF PROCEDURE INTERPRETER
INITIATED

'STATIC' AREA FOR LINKED-TO
(Rl4) - - - - ___ P_R_OG_RAM _________ _...

SAVE AREA FOR I RTC. TO
STACK TOP (SP) - - - - 'UNLINK' SVC

~~~~~~~~~~~~~~~ 

VARIABLE 

72 BYTES 

16 BYTES 

24 BYTES 

VARIABLE 

68 BYTES 

If no linkage can be made to the specified member, the 
above does not occur; but if parameter byte 1, bit 1 
was set, control passes to the location of the LINK SVC 
instruction plus 6 with binary return codes in the top 

6-16 



LINK (SVC 4) 

word of the stack (replacing the input parameters) as 
follows: 

Return code = 0 - Not a program file, and the procedure 
interpreter cannot be invoked. 

Return code = 4 - Volume not mounted 
Return code = 8 - Volume in exclusive use by another user 
Return code = 12 - Al 1 buffers in use when one was required 

by LINK 
Return code = 16 - Directory not found 
Return code = 18 - Access to program's file-protection 

class denied 
Return code = 20 - File not found 
Return code = 24 - Unused 
Return code = 32 - FDXl and FDX2 conflict 

READ FDR 
detected by 

Return code = 36 - FDX2 and FDR conflict detected by READ FDR 
Return code = 40 - Invalid parameter passed to READ FDR 

(including NL volume type) 
Return code = 44 - I/0 error on VTOC 
Return code = 48 - Unable to read FDR2 record (additional 

extent specifications) 
Return code = 52 - Invalid program file; unable to complete 

LINK 
Return code = 56 - File open other than shared read-only 

Function: To pass control to a user-level program or subprogram 
not linkage-edited with the issuing program. Also used 
by the command processor to initiate execution of a 
requested program, or of the system's procedure 
interpreter. 

User parameters to be passed to the invoked program 
must not be in the reentrant program area (segment 1) • 

'Static areas' , as defined, are static only within a 
group of program modules 1 inkage-edi ted together, and 
will be removed (popped) from the stack by execution of 
the 'UNLINK' supervisor call routine. 

6-17 



Get Buffer Space 

GBTBUF (SVC 5) NON-RESIDENT 

Inputs: A 2-word parameter list on top of the stack. The 
lower-addressed word contains the buffer length 
requested, which must be a multiple of the page size 
(2048). The second word of the parameter list is 
ignored on entry. 

Outputs: A zero return code and the starting address of the 
allocated buffer OR a nonzero return code placed on top 
of the stack: 

(SP) 

Return code= 0 - A buffer area is allocated (Figure 1). 
Return code= 4 - All buffers in use (Figure 2). 
Return code = 8 - Requested length is not a multiple of 

2K (Figure 2) • 

preceding data 

buffer start. addr. 4 bytes 

return code = 0 4 bytes 

(Figure 1) 

preceding data 

ignored 

non-zero return 
code 

(Figure 2) 

4 bytes 

4 bytes 

Function: To allocate a buffer area as requested. Buffer space 
is taken from the low address end of segment 2. Value 
in control register 2 (the stack limit) may be modified. 

6-18 



Free Buffer Space 

FREEBUF (SVC 6) NON-RESIDENT 

Inputs: Address of the buffer to be returned in the top word of 
the stack. Length of the buffer area to be returned in 
the next word above. This length must be a multiple of 
the page size (2048) . 

NOTE: 
In the case of calls by the GETHEAP/FREEHEAP SVC, the 
high-order byte of the word specifying the length of 
the buffer area is set to X'04'. In the case of such 
calls, GETHEAP/FREEHEAP places the address of the 
corresponding subpool block (SPB) in the third word 
from the top of the system stack. 

Outputs: A return code in the top word of the stack replacing 
inputs: 

Return code = 0 - Buffer deallocated. 
Retuni code = 4 - Invalid buffer address. 
Retuni code = 8 - Invalid buffer length. 

Function: To de-allocate a buffer area allocated by GETBUF (SVC 
5). Value in control register 2 (the stack limit) may 
be modified. 

6-19 



Halt I/0 Operation 

HALTIO (SVC 12) NON-RESIDENT 

(1) PRINTER OPTION (retained but made obsolete by "General 
Option", below): 

Inputs: word on top of stack 
byte 0: X'OO' 
bytes 1-2: ignored 
byte 3: device number of a printer 

Outputs: HIO instruction issued to the specified device, if a 
valid printer which is in use by the issuing task. If 
an "I/0 processor busy" response is received, the 
corresponding Unit Control Block (UCB) is marked, and 
the HIO instruction reissued when an "I/O processor now 
ready" interrupt is received. The issuing task must 
still wait for any outstanding I/0 to complete (see SVC 
CHECK). .The condition code from the HIO instruction is 
returned in the word on the stack top. 

Function: To speed termination of multiline print operations 
which are to be aborted. 

(2) GENERAL OPTION 

Inputs: word on top of stack 
byte Q : XI 80 t 
bytes 1-3: OFB address, or VCB address + 1 

Outputs: none (parameters removed from stack). 

HALTIO should be issued only if an XIO has been issued, 
but the CHECK has not been done. CHECK should be 
issued after HALT IO (as in a normal 
wait-for-completion) • 

6-20 



Allocate Additional Extent 

ALEX (SVC 14) NON-RESIDENT (No longer available.) 

Inputs: The top word of the stack addresses an Open File Block 
(OFB) for the file. 

Outputs: An additional extent is allocated for the given file. 
Subsequently the entries containing extent information 
in FLUB and FDR records of the file are modified to 
record the allocation. A re tum code is placed on top 
of the stack replacing the inputs: 

Return code = O -
Return code = 4 -
Return code = 8 -
Return code = 12 -
Return code = 16 -

Return code = 20 -
Return code = 24 -
Return code = 28 -

Return code = 32 -

Additional extent allocated 
Invalid OFB address; no allocation 
File in INPUT mode; no allocation 
Wrong device type; no allocation 
Extent limit exceeded; no 
allocation 
All buffers in use; no allocation 
Volume full; no allocation 
No space in VTOC for FDR2; no 
allocation 
Disk I/0 error; VTOC unreliable 

Function: To allocate an additional extent for a disk file. 'llle 
extent size to be allocated is found in FDRlSECEXT of 
the FDRl. If an extent of the size specified in Field 
FLUBSECEXT of the corresponding FLUB is not available 
on the volume, the largest available extent is 
allocated. 

Note: A file has to be opened for exclusive use before ALEX 
is issued. 

6-21 



Return From Program Entered By Link 

UNLINK (SVC 15) NON-RESIDENT 

Inputs: Field ETCBPFB of the taskps Extended Task Control Block 
(ETCB) addressing save area and control information for 
'UNLINK' use as pushed onto the stack by LINK (SVC 4). 

Outputs: The program which issued the LINK (SVC 4) to enter the 
issuing program is restor'ed to the reentrant program 
area (segment 1) of the task's virtual address space. 
The previously active program's PFB and all its PFEs 
are released. UNLINK closes shared files OPENed on the 
link level it is destroying, if the user fails to do 
so. UNLINK releases any devices reserved on the level 
it is destroying, if the calling program fails to do 
so. The save area and control information is removed 
(popped) from the stack. The LINKed-to program's 
'static' area is popped from the stack. UNLINK 
attempts to close those files which were opened at the 
Link level being unlinked (UNLINK determines which 
files should be CLOSEd by comparing a byte in the OFB 
(OFBLINKLEV), which was set at OPEN time, with the 
current link level being UNLINKed (ETCBLINKLEV)). 
Control i.s then passed to the program which issued the 
LINK, at the instruction address folllowing the LINK 
SVC. 

Function: To return from a LINKed-to program. 'Ibis SVC is 
nonnally issued by code in the system area (segment 0) 
entered as a result of a RETURN sequence in the 
LINKed-to program. 'lb.e 'UNLINK' SVC may, however, be 
issued directly by a program. 

6- 22 



Cancel Program 

CANCEL 

Inputs: 

(SVC 16) NON-RESIDENT 

Word on top of stack containing address of message to 
be displayed. 

Outputs: Help Processor entered with no return to issuing 
program. Program abnormally terminated when the user 
issues the 'CANCEL' command to the Help Processor. 

Function: To tenninate a program in the event of uncorrectable 
program failure, such as: 

(a) exhaustion of a system resource, 

(b) illegal or invalid parameters to an SVC routine or 
other system service program, 

(c) a program-detected condition which cannot be 
satisfactorily resolved within the program. 

A standard message is generated to notify the user of 
the error situation. The supplied message is also 
displayed. The user cannot immediately resume program 
execution by the •CONTINUE' command. He may, however, 
examine the program by means of the Help Processor's 
debugging facilities, modify the current instruction 
address by means of the 'CHANGE 1 coounand, and then 
attempt to resume program execution. A program 
terminated by a CANCEL SVC issued by another SVC 
routine cannot be continued. 

The message at the specified address is in the 
following fonnat: 

(1) Four-byte message nwnber in 
Always required. 

ASCII characters. 

(2) Six-byte issuer identification in ASCII characters. 

(3) Two-byte message length in binary. This is the 
length of the text which follows as (4) here. 

(4) Message text in ASCII characters. If the message 
is of more than one line, an end-of-line is 
indicated by an ASCII 'new line' character. No 
line may contain more than 79 characters, including 
the end-of-line indicator. The last (or only) line 
does not require an end-of-line character. 

6-23 



CANCEL (SVC 16) 

Message format: 

I I 
I Message number I Issuer ID Length Text 
I I _________ _ 
0 4 10 12 end 

6-24 



Check For Event Occurrence 

CHECK (SVC 17) PARTIALLY RESIDENT 

Inputs: Eight-byte parameter items. For single-event CHECK, 
the single item is on top of the stack. For multiple
event CHECK, the top word of the stack contains the 
address of the list of items. The high-order byte of 
this word (bits 1-7) contains a count of the number of 
i terns, and bit 0 of this bytt~ is set to 1; the next 
word on the stack is not examined in this multiple
event case. For multiple-event CHECK, if the option 
flag (byte 0) in the input parameter list for the event 
is set equal to X'FF', then the particular event is 
bypassed, i.e., no WAIT is done for the event. 

The FORM=LIST option of th:3 CHECK macro can be used to 
build a multiple-event CHECK list on the stack (see 
CHECK macro description for further details). 

Each eight-byte item is as follows. 

(1) Normal I/0 check (OFB) item: 
Byte 0 Zero. 
Bytes 1-3 OFB address. 
Bytes 4-7 Alternate return address to be used in case 

of I/0 error, or zero. If the low-order 
bit of Byte 7 is on, then completion IOSW 
is returned in general registers 0 and 1. 

(2) VOLIO I/0 check (VCB) item: 
Byte 0 Zero. 
Bytes 1-3 VCB address plus 1. 
Bytes 4-7 Alternate return address to be used in case 

of I/0 error, or zero. If the low-order 
bit of Byte 7 is on, then completion IOSW 
is returned in general registers 0 and 1. 

(3) Timer check item: 
Byte o x•10• 
Bytes 1-7 Ignored. 

(4) Intertask message check item: 
Byte o x•20• 
Bytes 1-3 Address of an area in segment 2 in which to 

receive a message. The first two bytes of 
this area must contain its length in bytes 
(binary) including these bytes. This 
length must not be greater than 2016. The 
message (not including its length bytes) is 

6-25 



CHECK (SVC 17) 

Bytes 4-7 

moved to the area following these bytes and 
truncated if too long for the specified 
area. The area's length bytes are adjusted 
to reflect the length of the message, 
including these bytes. 

The name (CL4) of one of this task's active 
message receipt ports, as established by 
CREATE. 

(5) Workstation prog~am function key check item: 
Byte 0 X'40' 
Bytes 1-3 Workstation device nwnber 
Bytes 4-7 Ignored 

(6) Unsolicited 
Byte 0 
Bytes 1-3 
Bytes 4-7 

interrupt: 
X'08' 
Number of any device on line 
Address of 8-byte area to receive IOSW 
(must be in user-modifiable buffer area or 
in stack as validated by MCBRWTST) 

(7) TC event: 
Byte O: 
Bytes 1-3: 

Bytes 4-7: 

X'Ol' 
The OFB address of the TC device on which 
XIO was issued 
The address of an eight-byte receiving area 
for the completion IOSW, or binary zeroes 
if the IOSW is not desired 

Outputs: Single-Event CHECK) 

Function: 
(1,2) 

Inputs popped from stack. For I/0 completion CHECK, a 
workstation message is displayed if possible on 
'intervention required' conditions. See the XMIT SVC 
description for the fonnat of intertask messages after 
a 'message' CHECK. 

Multiple-Event CHECK 
One word of inputs popped from stack. Second word 
replaced by displacement within parameter item list of 
item corresponding to the event which has occurred. 
(Displacement is from O, by 8.) Device 'intervention 
required' conditions must be handled by the CHECK 
issuer, who must re-issue a CHECK (single- or 
multiple-event) to wait for I/0 completion. 

Waits for completion of an I/O operation initiated by 
means of the XIO supervisor call. In the event of a 
permanent error completion (IOSW bit EC set, bits NC 
or IRQ not set), returns to the alternate return 

6-26 



CHECK (SVC 17) 

address. Otherwise returns to the next sequential 
instruction address. If 'intervention required' (IOSW 
bit IRQ) is indicated on completion, issues an 
appropriate workstation message if possible, expecting 
either an unsolicited interrupt from the device when 
it becomes ready, or a response when the condition has 
been corrected; may reissue the message if the 
condition has not been corrected; then waits for 
another completion indication~ Writes an I/0 error 
logging record in the event of a device malfunction or 
main memory parity error. The Volume Control Block 
address option is available only to routines in System 
Mutual Exclusion (SME) state, or which have exclusive 
use 'for initialization' of the disk volume to which 
the VCB refers. (The VCB option is intended for use 
in conjunction with the VOLIO option of the XIO 
supervisor call.) 

(3) Waits for expiration of a timing interval. 'Tile 
issuing program is cancelled if no interval is set. 

(4) Waits for receipt of a message directed to the 
specified port name, which must have been established 
by the issuing task by means of the CREATE SVC. 

(5) Waits for a program function key to be struck at 
specified workstation. The issuing program 
cancelled if an un-CHECKed I/0 operation (XIO) 
been issued to the specified workstation, or if 
workstation is not reserved for use by this task. 

the 
is 

has 
that 

(6) Waits for an unsolicited interrupt from a workstation 
or printer. For a workstation, this CHECK option 
waits for a program function key whether the keyboard 
is locked or not. The issuing task will be cancelled 
if the device is not reserved for use by the issuing 
task or an unCHECKed I/0 is outstanding. The IOSW of 
the unsolicited interrupt will be moved to the 8-byte 
area specified in the input parameter list. 

(7) Waits for telecommunications reception or trans
mission. Also waits for unsolicited interrupt from 
telecommunications device. If the TC I/0 completes 
with an error because of missing device microcode or 
missing peripheral processor microcode, the error is 
logged but the microcode is not loaded. 

Sequencing rules for alternation of RECEIVE/TRANSMIT 
followed by CHECK TCIO are enforced by the XIO SVC 
routine. XIO also checks that the device and DLP are 
not exclusively reserved by another task, and that the 
device is currently open (IPOPENed by this task). 

6-27 



CHECK (SVC 17) 

CHECK TCIO may be issued without any previous I/0 
being issued provided the device is reserved by the 
calling task. In this case the CHECK is taken to be 
for an unsolicited interrupt from the DLP on the 
specified device. To receive an unsolicited interupt 
from the DLP, at least one of the devices on the DLP 
~ust have been IPOPENed and reserved by the caller. 
For this option, an IOSWADDR must be provided for the 
transfer of· the IOSW to the caller. 

If an unsolicited IOSW was returned by the DLP and the 
user has issued an XIO and is awaiting the completion 
IO~W to that I/O, the unsolicited IOSW does not cancel 
the effects of that condition. Th.at is, the user is 
able to receive the unsolicited IOSW, and allowed to 
reissue the CHECK TCIO to receive the IOSW in response 
to the XIO. The general status byte of the IOSW 
returned will indicate to the user that it is an 
unsolicited IOSW rather than a nonnal IOSW in response 
to an XIO. If the user has received an unsolicited 
IOSW while waiting for the completion of an 
outstanding XIO, he must wait for the completion of 
the XIO by resubmitting the CHECK TCIO before issuing 
another XIO on the specified VS/DLP I/0 channel. 

The issuing task will be cancelled if the device is 
not reserved for use by the issuing task or an 
unCHECKed I/O operation is outstanding. 

6-28 



Read Volume Table Of Contents Block 

READVTOC (SVC 19) NON-RESIDENT 

Inputs: The top word of the system stack addresses the 
following argument list: 

preceding data 

not used 

directory name/ 
OFB ptr (First 4 bytes)/not used 

starting item number = n >= 0 

count nwnber = m >= 0 

not used 

option number = 0, 1, 2, 3, or 4 

size depends 
on options 

8 bytes 

2 bytes 

2 bytes 

1 byte 

1 byte 

Input Argument List ___ v_o_l_um __ e __ n_am __ e ____________________ ____ 6 bytes 

Option number = 0 - To read VTOC attributes: 

i. VTOC extents in use; no. of 
unused blocks in VTOC. 255 
is returned if the number of 
unused blocks is greater than 
or equal to 255. 

ii. Total no. of directories on 
volume; total no. of files on 
volume. 

iii. Total no. of free extents on 
volume; total size of free 
extents. 

iv. m largest free extents on 
volume. 

Option nwnber = 1 - To list m free extents starting from 
nth (from 1) free extent in VTOC. 

Option nwnber = 2 - To list m directory names and 
corresponding no. of files in 
directory starting from nth 
directory name (from 1) in VTOC. 

6-29 



RBADVTOC (SVC 19) 

Option number = 3 -

Option number = 4 -

To list m file names starting 
1) in from nth file (from 

specified directory. 

To read in m 
Control blocks 
block in VTOC 
file specified 
pointer. 

consecutive VTOC 
starting from nth 

and copy into a 
by the given OFB 

Outputs: A return code on top of system stack replacing inputs. 

Option 
Number 0 

Output 
Argument 
List 

Return code = 0 -
Return code = 4 -
Return code = 8 -
Return code = 12 -

Return code = 16 -
Return code = 20 -

Return code = 24 -
Return code = 28 -

Return code = 32 -

Requested function performed. 
Invalid argument list address. 
Volume not mounted. 
Volume used exclusively by other 
user. 
All buffers in use. 
Invalid option request or 
address. 
Directory not found. 

OFB 

VTOC error; FDXl and FDX2 do not 
agree. 
Disk I/0 error; VTOC unreliable. 

When return code = O, the input argument 1 ist is 
replaced by one of the following output argument lists 
depending on the option specified. 

mth largest free extent start & end block 
number. 

1st largest free extent start & end block 
number. 

Total size of free extents. 

Total no. of free extents. 

Total no. of files on volume. 

Total no. of directories on volume. 

3rd VTOC extent start & end block numbers. 

2nd VTOC extent start & end block nwnbers. 

1st VTOC extent start & end block nwnbers. 

Number of VTOC extents in use. 

Number of unused blocks in VTOC. 

6-30 

6 bytes 

6 bytes 

4 bytes 

4 bytes 

2 bytes 

2 bytes 

6 bytes 

6 bytes 

6 bytes 

1 byte 

1 byte 



Option 
Number 1 

Output 
Argument 
List 

Option 
Number 2 

Output 
Argument 
List 

Option 
Number 3 

Output 
Argument 
List 

READVTOC (SVC 19) 

(n+m-l)st free extent start & end block no. 6 bytes 

nth free extent start & end block no. 6 bytes 

Total no. of free extents listed <= m 2 bytes 

Total no. of free extents on volume 2 bytes 

__ N_o_._o_f_f_i_le_s_i_n_d_i_re_c_t_o_ry __ n_am_e ___ (n_+_m_-_1 .... ) _____ 2 bytes 

...___d_i_r_ec_t~o~ry....._n_am=-e""--n_+_m_-1 ___________________ __.. 8 bytes 

---N_o~·-o~f_f_i_le~s.;;;..._;i~n~n~t_h_d~1~·r~e~c~t~o~ry-..;n~am=-e--n=---------~ 2 bytes 

Directory name n 8 bytes 

Total no. of directories listed <=m 2 bytes 

Total no. of directories on volume 2 bytes 

Filename n+m-1 8 bytes 

___ F_i_l_en_am_e_n ___________________ ~ 8 bytes 

__ T_o_t_a_l_n_o_._o_f_f_i_l_e_s_l1_·s_t_e_d_<_=_m _______________ 2 bytes 

Total no. of files in directoiy 2 bytes 

6-31 



READVTOC (SVC 19) 

Option 
Number 4 

Output 
Argument 
List 

not used 16 bytes 

~~#~o=f~b~l=o~c=k=s~r~e~a~d;._:(~<m=);..._ __________ ~~--~----+ 2 bytes 
..;_.._T~o~t~a~l_VTO~~C_s~i~z~e~i~n_b~l_o~c~k~s'---------~------------ 2 bytes 

Additional Output for option number 
(n+m-l)st VTOC control blocks copied 
specified by the given OFB. 

4: nth through 
to the file 

Function: To read the specified information from VTOC of a 
specified volume. 

Note: The size of the input argument list must be big enough 
to hold the desired output argument list for successful 
operation. 

6-32 



Request Parameters 

GETPARM (SVC 20) NON-RESIDENT 

Inputs: Parameter list of eight or twelve bytes on stack top: 

(1) One-byte Request Type Indicator: 

Bits 0-3: Header Type/Acceptable Response Designator 

0 = Request for Information. Acceptable 
response is modification of variable fields 
with completion signaled by pressing the 
ENTER key or any enabled PROGRAM FUNCTION 
KEY. By default, all PFKs are disabled. 

1 = Request for Selection. Acceptable response 
is selection indicated and signaled by 
pressing the ENTER key or any enabled 
PROGRAM FUNCTION KEY. By default, all PFKs 
are enabled. 

3 = System Request for Information. Reserved 
for use by OPEN and SYSTEM INITIALIZATION. 
The generated display header is different 
from that for type 0. Acceptable response 
is the same as that for type O. 

4 = System Request for Device Action. Reserved 
for use by OPEN, MOUNT, and CHECK. 
Acceptable response involves performance of 
machine operator duties with completion 
signaled by an interrupt from the indicated 
device, or by pressing the ENTER or any 
enabled PROGRAM FUNCTION KEY. By default, 
only PFK #16 is enabled, and by convention, 
it is used to allow the user to request 
termination of the device action request. 

Bit 4: If set, indicates that the ENTER key will be 
accepted as a response to the GETPARM (ENTER 
key disabled), in addition to any keys 
specified in the PF key mask. This bit is 
ignored unless bit 5 is set. 

Bit 5: PFK Mask Present Indicator. 

0 = Default Mode. PFK's are enabled or disabled 
according to default values. The PFK mask 
should not be present in the parameter list. 

6-33 



GETPARM (SVC 20) 

1 = Override Mode. PFK' s are disabled as 
indicated by the PFK mask which must be 
present in the parameter list. 

Bit 6: Request Sequence Identifier 

0 = TYPE I Initial request for specification 
of information, selection among 
alternatives, or response. 

1 = TYPE R For correction of infonnation, 
selection, or response just received as a 
result of the previous request. 

Bit 7: User-Interaction Suppressor 

0 = Nonnal Mode 

(Tilis mode will generate a workstation interaction 
even if the default data in the receiving fields of 
all Field Format Control Blocks satisfy lexical 
requirements for correctness. The workstation 
interaction is suppressed only if the 
procedure-specified data supplied is lexically 
correct and is sufficient in conjunction with the 
default data to completely satisfy the request.) 

1 = Default Mode 

(This mode is intended for use by OPEN only. This 
mode accepts procedure-supplied data if available, 
but will not generate a workstation interaction 
unless a field default value is lexically in error.) 

(2) Tilree-byte address of message to be displayed. 
(See fonnat.) 

(3) One-byte zero, or for Device Action request only, 
the device ntunber of the device requiring service. 

(4) Three-byte address 
List. (See format.) 

6-34 

of Parameter Group Control 



GETPARM (SVC 20) 

(5) Optional four-byte Program Function Key Mask. Each 
bit indicates whether the corresponding PFK should 
be enabled or not. The high-order bit corresponds 
to PFK. 

1 = PFK enabled 
0 = PFK disabled 

8(SP) Optional Program Function Key Mask 

4(SP) 

O(SP) 

4(SP) 

O(SP) 

Device 
no. or 0 

Reg. Type 

Device 
no. or 0 

Reg. Type 

A (Control List) 

A(Message) 

A (Control List) 

A(Message) 

6-35 



GETPARM (SVC 20) 

The message at the specified address is in the 
following format: 

I I I I 
I Message Number I Issuer ID I Length I Text 
I I I I 
0 4 10 12 end 

The fields in this fonnat are: 

(1) Four-byte message number in ASCII characters. 
number is displayed in the GETPARM header on 
associated screen transactions. 

This 
any 

(2) Six-byte issuer ID in ASCII characters. 'Ibis ID is 
displayed in the GETPARM header on any associated 
screen transactions. 

(3) Two-byte message length in binary. 
length of the text which follows. 

This is the 

(4) Message text in ASCII characters. If the message 
is longer than 79 characters , an end-of-1 ine can be 
indicated by an ASCII "new-line" character. 

No line may be longer than 79 characters excluding 
the end-of-line indicator. The message text is 
displayed beginning in colwnn 2 of line 7. Each 
new line begins in column 2 of the next line. 
Lines longer than 79 characters are truncated. The 
last line does not require an end-of-line indicator. 

6-36 



GETP ARM (SVC 20) 

The Parameter Group Control List is in the. following 
format: 

+O 

+8 

+10 

+10 + BL 
1 

n-1 

+10 + BL 
i 

i=l 

PRNAME 

PF key field fl of fields 

FIELD 1 FORMAT 
CONTROL BLOCK 

FIELD 2 FORMAT 
CONTROL BLOCK 

FIELD N FORMAT 
CONTROL BLOCK 

6-37 



GETPARM (SVC 20) 

The fields in this format are: 

(1) Eight-character, left-justified Parameter Reference 
Name (i.e., PRNAME). 

(2) One-byte receiving field for AID character of 
program function key response. (This field may be 
set by procedure specification of a function key 
number.) 

(3) One-byte binary count - number of Field Format 
Control Blocks. 

The following is repeated for each displayable field. 

(4) • • • (n) 

Variable length Field (display and entry) Format 
Control Block. There are two fonnats for the Field 
Format Blocks: one for control of the 
keyword/receiving field pairs, and the other to 
control the use of displayable imbedded text. 

6-38 



GETPARM (SVC 20) 

The Field Format Control Blocks 
keyword/receiving field pairs are in the 
format: 

I 
+O LINE ADVANCE SPACE ADVANCE I 

COUNT COUNI' I 
I 

+2 ERROR FLAG & I RECEIVING I 
RESTRICTIONS IFIELD LENGTH -11 

I 
+4 I 

I 
KEYWORD I 

+12 

RECEIVING FIELD 

The fields in this format are: 

for the 
following 

(1) One-byte binary Line-Advance-Count for display 
control. 

(2) One-byte binary Space-Advance-Count for display 
control. (Line advance takes place before space 
advance. Both take place before display of keyword 
and receiving field.) 

(3) One-byte binary Field Error Flag and Receiving 
Field Entry Restriction Indicator: 

Bit O: Field Error Flag (1 = error) 
program to draw attention to 
error - Reset by GETPARM.) 

Bits 5-7: Entry restrictions 

6-39 

(Set 
fields 

by 
in 



GETPARM (SVC 20) 

0 = Character-string 

No restrictions on content; maximum usable 
field length is 68 characters. 

1 = Positive integer 

Nonblank response need not be justified, 
but must consist entirely of the numerals 
0-9 with leading and trailing blanks 
ignored. All blanks will be treated as a 
legitimate NULL specification. Field 
length is restricted to 16 characters. 

2 = Numeric 

Response must consist entirely of the 
numerals 0-9 optionally containing one 
decimal point and optionally preceded by a 
+ or -. Leading and trailing blanks will 
be ignored. All blank response will be 
treated as a legitimate NULL response. 
Field length is restricted to 16 characters. 

4 = Uppercase alphanumeric 

All entered letters will be converted to 
uppercase. A legal nonblank response must 
be left-justified and consist entirely of 
the numerals 0-9, the letters A-Z, the 
national characters (@, #, or $), and 
trailing blanks. An all blank response 
will be treated as a legal NULL response 
indicator. Maximum usable field length is 
68 characters. 

5 = Uppercase hexadecimal 

All entered letters will be converted to 
uppercase. A legal nonblank response need 
not be justified, but must consist entirely 
of the numerals 0-9, and the letters A-F 
with leading and trailing blanks ignored. 
All blanks will be treated as a legitimate 
NULL specification. Maximum usable field 
length is 68 characters. 

6 = Uppercase Character String 

All letters are converted on 
uppercase; maximum usable field 
68 characters. 

6-40 

entry 
length 

to 
is 



GETPARM (SVC 20) 

7 = Alphanumeric Limited 

All entered letters will be converted to 
uppercase. Legal nonblank response will 
be left-justified, begin with a letter 
A-Z, or one of the national characters 
(@,#,or$), and consist entirely of the 
nwnerals 0-9, the letters A-Z, the 
national characters, and trailing 
blanks. An all blank response will be 
treated as a legal NULL response 
indicator. Maximum usable field length 
is 68 characters. 

(4) One-byte binary receiving field length minus one 
(in characters) • 

(5) Eight-character, left-justified keyword used for 
display purposes (and to support noninteractive 
access via the Procedure Interpreter). 

(6) Variable-length receiving field with default or 
current value in place. 

The Field Fonnat Control Blocks for imbedded text are in 
the following format: 

+O 

+2 

+4 

LINE ADVANCE 
COUNI' 

-1 

SPACE ADVANCE 
COUNT 

TEXT LENGTII 
MINUS ONE 

TEXT 

The parameters in this format are: 

(1) One-byte binary Line-Advance-Count for display 
control. 

6-41 



GETPARM (SVC 20) 

Outputs: 

(2) One-byte binary · Space-Advance-Count for 
display control. (Line advance takes place 
before space advance. Both take place before 
display of keyword and receiving field.) 

(3) -1 (=255) • 

(4) One-byte binary text field length minus one 
(in characters) • 

(5) Variable-length text field. 

(1) Receiving fields as modified by 
interaction or procedure specified data. 

user 

(2) Program Function Key Receiving Field set to 
accepted AID byte or procedure specified value. 

(3) Field error flags in control list reset to 
ZERO. 

(4) Input parameters popped from stack upon re tum. 

Function: The GETPARM SVC enables user programs (and OPEN) to 
solicit and accept run-time parameter information, and 
to display and wait for acknowledgment of run-time 
messages. The requested infomation (or response) is 
gathered either through direct interaction with the user 
(at the workstation) or by calling prespecified data in 
the procedure which invoked the program. The program 
issuing the GETPARM SVC need not be aware of the data 
source; any interactive program that communicates with 
the user exclusively using GETPARM requests which can be 
identified and anticipated, can also be run in batch 
mode from a procedure. The parameters supplied to 
GETPARM are primarily related to the generation of a 
meaningful display. 

When displayed at the workstation, the GETPARM request 
generates a header section, followed by the program
supplied message, followed by the keyword identified 
receiving fields and imbedded text section. These 
requests are divided into three functional types. A 
request for infonnation should be indicated whenever one 
or more receiving fields are present. The expected user 
response is to modify one, all, or none of these fields 
and to signal when ready by pressing the ENTER key. 

A request for selection should be indicated when a list 
of valid choices has been displayed (rather than 
modifiable receiving fields) and the expected user 
response is to identify and signal his choice by 
pressing one of the program function keys or the ENTER 
key. A request for acknowledgment should be indicated 
when the user has been asked to take some operator 

6-42 



GETPARM (SVC 20) 

action, or merely acknowledge receipt of an infor
mational message. In this mode, the expected user 
response is to press the ENTER key as a ready signal. 

When the issuance of a GETPARM SVC results in a screen 
display, the contents of the screen (if in use) are 
saved and are restored when the user indicates 
completion of his response. 

GETPARM parameters should always be encoded with the 
assumption that they must be capable of generating an 
acceptable display. Lines 1 through 6 of the displays 
are reserved for system-generated headers which assist 
the user in responding to the GETPARM request. '!be 
headers are varied according to request type with spe
cial handling given when the issuer is OPEN. These 
lines include display of the message number and the 
issuer ID in the fixed format section of the message. 
The message text is placed on the screen beginning with 
column 2 of line 7. One additional line beginning at 
column 2 is displayed for each line-feed encountered. 
The line-feed is not displayed and does not use a char
acter position. Tile maximum length for a line of text 
is 79 characters. Tile message section is completed with 
a blank line. 

The receiving field display section begins with column 2 
of the next line after the message section. Each 
receiving field is displayed with its associated keyword 
as follows: 

(a) The screen line position advances the indicated num
ber of lines from the current position. If line ad
vancement takes place, colwnn position is set to 2. 

(b) The screen colwnn position advances the indicated 
number of spaces from the current position. 

(c) The eight-character keyword, followed by a blank, 
followed by an "=" character, followed by a blank, 
followed by the receiving field, followed by a blank 
is displayed. If any part of the receiving field is 
not on the screen, the keyword and field will not be 
displayed and will not be validated. Fields flagged 
as being in error will be blinked to attract user 
attention. 

Each imbedded text field is displayed as follows: 

(a) The screen line position advances the indicated nwn
ber of lines from the current position. If line ad
vancement takes place, column position is set to 2. 

(b) The screen column position advances the indicated 
number of spaces from the current position. 

6-43 



GETPARM (SVC 20) 

(c) The variable length text is displayed followed by a 
blank. If any part of the text is not on the 
screen, no text is displayed. 

The message text plus the receiving 
be truncated if it exceeds 18 
information. 

field 
lines 

display will 
of displayable 

Default or current information in the receiving fields 
is displayed as is without regard for entr:y control 
information. However, this information will be flagged 
for user correction if the format does not match when 
the user presse~ the ENTER key. 

After the display is generated, the cursor is placed at 
the beginning of the first receiving field, or on type 
"R" request, to the beginning of the first keyword field 
which has an error flag set. A read is then issued to 
wait for a legal user response. Upon a signal from the 
user, the receiving fields are checked for legal con
tents and, if all are correct, are moved into the pro
gram's receiving fields. If any are in error, an error 
message is g~nerated in the display header, the field in 
error is blinked, and another read is issued. When the 
user has successfully supplied the information of his 
choosing, control is returned to the user's program, and 
if the screen was in use, its contents are restored. 

The user can suspend GETPARM processing and enter the 
Help Processor by pressing the HELP key. The screen 
will be saved as is, and the issuance of a CONTINUE 
command will return control to GETPARM with a restored 
screen. The user can then reenter his program by 
completing hi~ response to GETPARM. 

The program using GETPARM cannot assume that the user's 
response (or the accessed procedure data) will be 
valid. Consequently, the displayable parameters 
presented _to GETPARM include a parameter-group receiving 
section with imbedded explanatory text, and a separate 
message section. nie GETPARM user is expected to 
initiate a sequence of repeated requests until an 
acceptable response is received. During this sequence 
the ·requested information should be the same, while the 
message changes to best explain the difficulties 
encountered in the previous responses. 

The request sequence indicator is used by GETPARM to 
differentiate between an initial request and a request 
for correction of material which the program did not 
find satisfactory. An initial request (Type "I") will 
be satisfied using procedure-specified data (located 
using the keywords and the parameter reference name) if 
available, generating a user-interaction only if all 

6-44 



GETPARM (SVC 20) 

such data has been exhausted. (Each initial request 
with a given PRNAME will consume one equivalent 
specification statement in a procedure.) A request for 
respecification (Type "R") will always generate a 
user-interaction. 

If user-interaction suppressor bit is set, initial re
quests will access procedure-specified data if available, 
but will not ordinarily generate a user-interaction. 

6-45 



Read File Descriptor Record 

READ FDR (SVC 24) NONRESIDENT 

Inputs: Two words on the top of the stack, as follows: 

Note: 

Bytes 0-3: Address of the parameter list, in the format 
given below. 

Bytes 4-7: Ignored on input but used for output. 

Parameter List Format: 

Bytes 0-7: Primary search library name (LIBRARY) 
Bytes 8-15: File name (FILE) 
Bytes 16-21: Volume name for primary search library 

(VOLUME) 
Byte 22: Option flags: 

bits 0-3 Reserved 
bit 4 = 1 Alternate search library and volume (last 

two entries in parameter list) are 
present. 

bit 5 =1 Read both the FDRl and the first FDR2 (if 
any), in ascending order, into the 
160-byte area specified by the FDR 

bit 6 =l 

receiving 
ignored. 
Read the 

area. The FDRn field is 

file prologue along with other 
options that are set. 

bit 7 =1 Read the file prologue only. 
Byte 23: FDR record number: 

Bytes 24-27: 
Bytes 28-31: 

Bytes 32-35: 
Bytes 36-lJ.3: 
Bytes 44-49: 

FDRn = 0 if 80 bytes of FDRl are to be 
read; = 1 if 80 bytes of first FDR2 
are to be read; = 2 if 80 bytes of 
second FDR2 are to be read, etc. 

Address of FDR receiving area (AREA) 
Address into which to read the file 
prologue. (Used only when bit 6 or 7 is 
set in option flag.) 
Reserved; should be zeros. 
Alternate search library name (ALTLIB) 
Volume name for alternate search library 
(ALTVOL) 

'TI1.e parameter list for READFDR may not be located in 
segment 1 (user progr~n reentrant segment). 

Outputs: A return code in the top word of the stack replacing 
inputs: 

6-46 



READ FDR (SVC 24) 

Return code = 0 - File label copied into memory 
Return code = 4 - Volume not mounted 
Return code = 8 - Volume exclusively used by other 

user, no read 
Return code = 12 - All buffers in use, no read 
Return code = 16 - Library not found 
Return code = 20 - File label not found 
Return code = 24 - Attempt to read a file prologue 

when none was present. 
Return code = 28 - Unused 
Return code = 32 - VTOC error. FDXl and FDX2 do not 

agree 
Return code = 36 - VTOC error. FDX2 and FDR do not 

agree 
Return code = 40 - Invalid input parameters 
Return code = 44 - Disk I/0 error. Volume Table of 

Contents unreliable 

If return code=O only, the next 
contains the di.sk address of the FDR 
the following format: 

word on the stack 
record read, in 

Byte 0 (high-order) - Record on block, from O. 
Bytes 1-3 - Block on volume, from O. 

If return code nonzero, the contents of this word are 
irrelevant on output. 

When the alternate library name is supplied, the 
library name and volume name entries in the parameter 
list are modified if required to indicate the library 
in which the specified file was found. The alternate 
library is searched after the nonnal (Filename!) 
library. 

Function: To locate a disk file in the Volume Table of Contents 
of the specified volume and copy its label (File 
Descriptor Record) into the specified 80-byte memory 
area. 

Also to read the file prologue (only supported for 
Word Processing files) and return the prologue to the 
caller in the specified area. 

6-47 

I 



Rename Disk File 

RENAME (SVC 26) NONRESIDENT 

Inputs: The top word of the stack addresses an argument list of 
the following format: 

Bytes 0-7: Old library name 
Bytes 8-15: Old file name or ignored 
Bytes 16-23: New library name (if only library is to 

be renamed) or new file name. (For "Full 
RENAME," the m~w file name.) 

Bytes 24-29: Volume name 
Byte 30: Option flag 

bit 0 =l 
bit 1 =1 

bit 2 =1 

bit 3 =O 
bit 4 =l 

Bypass expiration date check 
Ret"1ame a 1 ibrary (Bytes 16-23 of the 
parameter list then contain a new library 
name). 
File access rights for this request to be 
limited to user LOGON rights. 
Reserved; must be zero. 
"Full RENAME" (i.e., rename both file and 
library -- Bytes 32-39 must contain the 
new library name. 

bit 5-7 
Byte 31: 

Reserved; must be zero. 
Not used. 

Bytes 32-39: New library name (for "Full RENAME"). 

Outputs: The file or library identified by the old name is 
renamed (old file name is ignored for rename of just a 
library). Consequently the contents of the file name 
or library name entries of the file index records 
and/or file descriptor record in the Volume Table of 
Contents are replaced by the new file name and/or 
library name. 

A return code is placed in the top word of the stack 
replacing inputs: 

Return code = 0 - File or library renamed. 
Return code = 4 - Volume not mounted. 
Return code = 8 - Volume used exclusively by other user. 
Return code = 12 - All buffers in use, no rename. 
Return code = 16 - Library not found. 
Return code = 20 - File not found. 
Return code = 24 - Update access to some f ileprotection 

class denied, no rename. 
Return code = 28 - Unexpired file, no rename. 
Return code = 32 - File in use, no rename. 
Return code = 36 - VTOC error. FDXl and FDX2 do not 

agree. 
Return code = 40 - VTOC error. FDX2 and FDR do not agree. 
Return code = lt-4 - Invalid argument list address. 

6-48 



RENAME (SVC 26) 

Return code = 48 - I/0 error. Volume Table of Contents 
unreliable. 

Return code = 52 - New file name or library name already 
exists, no rename. 

Return code = 56 - New file name invalid (or first 
character • 41 ' ) , no rename . 

Return code = 60 - 'The VTOC is currently full 
insufficient space exists for the new 
FDX1/FDX2 ("Full RENAME" only) • 

Return code = 64 - Reserved bits in the Parameter list 
Options Byte are non-zero. 

Function: To change the name of a disk file or library on a 
volume. The structure of the Volume Table of Contents 
may be affected in the case of a "Full RENAME." The 
file must not be in use (open) when the RENAME is 
attempted, or it will fail (with return code 32). 
Similarly, no file in a library to be renamed may be in 
a file protection class for which the issuer does not 
have update access rights. Likewise, no file in such a 
library may be unexpired unless option flag bit 0 is set. 

6-49 



Scratch Disk File 

SCRATCH (SVC 27) NONRESIDENT 

Inputs: The top word of the stack addresses an argument list of 
the following format: 

not used 1 byte 

option flag 1 byte 

volume name 6 bytes 

file name or ignored 8 bytes 

Argument list library name 8 bytes 

The option flag indicates whether password checking is 
to be bypassed: 

0 1 2 3 4 5 

I 
I 

6 7 

-1- - - - - - - - - -

I = 'l' if file access rights for this request 
I to be limited to user logon rights 
I = '1' to scratch all closed and expired files 
I in library for which update access is allowed 
I (scratch library if all files are closed, 
I expired, and update-accessible). 
= 'l' to bypass expiration date check. 

File name: When specified, indicates the specific 
member in the library to be deleted. Ignored if option 
bit 1 (scratch entire library) is set. 

6-50 



SCRATCH (SVC 27) 

Outputs: The file descriptor record of the file specified by the 
given filenames is scratched from the Volume Table of 
Contents of the specified volume and the disk space 
occupied by the file is deallocated. If an entire 
library is to be scratched, the file descriptors for 
all included files are eliminated and al 1 space is 
deallocated. 

A two-field return code on top of the stack replacing 
input: 

Byte 1 Byte 2 Byte 3 Byte 4 

return code field 

Lost extent size in blocks during scratch 
file or library (size equals zero for no 
extent lost) 

Return code = 0 - File or library scratched from volume 
Return code = 4 - Volume not mounted 
Return code = 8 - Volume used exclusively by other user 
Return code = 12 - All buffers in use, no scratch 
Return code = 16 - Library not found 
Return code = 20 - File not found 
Return code = 24 - Update access to file protection 

class denied (singlef ile scratch 
only) 

Return code = 28 - Unexpired File, no 
(singlefile scratch only) 

Return code = 32 - File in use, no scratch 
Return code = 36 - VTOC error. FDXl and FDX2 

scratch 

do not 
agree 

Return code = 40 - VTOC error. FDX2 and FDR do not 
agree 

RetulT1 code = 44 - Invalid argument list address 
Return code = 48 - I/0 error. Volume table of contents 

unreliable 
Return code = 52 - Open, 

file (s) 
library 

protected, 
bypassed 

·and/or 
in 

unexpired 
scratching 

Function: To delete a disk file or library from a volume. 

Note: Scratching the only file in a library 
(directory) eliminates the library itself. 

6-51 



Extract Data From System Control Blocks 

EXTRACT 

Inputs: 

(SVC 28) NONRESIDENT 

A variable-length parameter list on the stack top. The 
high-order byte of the lowest-addressed word designates 
the class of data required. 

Class codes are: 

Binary 0 
Binary 1 
Binary 2 
Binary 3 

Binary 4 

Binary 5 to 255 

- Limited output 
- Full output 
- Program exception PCW 
- User-supplied list of items 

requested 
- User-supplied list of items 

requested with additional input 
required 

- Reserved 

For classes O, 1, and 2, a one-word parameter is supplied. 
The high-order byte of the word designates the class code 
(i.e., binary 1, 2, and 3, respectively). The three low
order bytes contain the address of a segment 2 area to 
receive the data (which must be on the existing stack or in 
the I/0 buffer area). 

For class 3, the parameter list consists of a header word 
and a list of 8-byte entries corresponding to the requested 
entries. The high-order byte of the header word designates 
the class code (i.e., binary 3), the next lower byte is 
reserved and should be zero, the two low-order bytes 
contain a count of the item entries that follow. Each 
8-byte entry is in the following format: 

Bytes 0-3 - Item identifier code. See EXTRD macro for a 
list of possible codes. 

Bytes 4-7 - Address of a segment· 2 area to receive the item. 

For class 4, the parameter list consists of a header word 
and a 1 ist of 8-byte entries corresponding to the requested 
entries. The high-order byte of the header word designates 
the class code (i.e. , binary 4) , the next lower byte is 
reserved and should be zero, the two low-order bytes con
tain a count of item entries that follow. Each 12-byte 
entry is in the following format: 

Bytes 0-3 - Item identifier code. See EXTRD macro for a 
list of possible codes. 

Byte 4 - Length in bytes of area to receive the data. 
Bytes 5-7 - Address of a segment 2 area to receive the data. 
Bytes 8-11- Address of additional input for this item. See 

EXTRD macro for a description of these items. 

6-52 



EXTRACT (SVC 28) 

Outputs: For classes 0-2, data in area addressed by word on 
stack, as follows, by ascending addresses: 

Class O: 

(1) Total physical area in bytes not currently 
resident (4 bytes). 

(2) Number of files which current task may open 
simultaneously (2 bytes). 

(3) Workstation number associated with requesting 
task, or -1 if none (2 bytes) • 

(4) Remaining stack · space in bytes after return 
from 'EXTRACT' (4 bytes). 

Class 1: 

(1) Total physical area in bytes not currently 
resident (4 bytes). 

(2) Number of files which current task may open 
simultaneously (2 bytes). 

(3) Workstation number associated with requesting 
task, or -1 if none (2 bytes). 

(4) Remaining stack space in bytes after return 
from 'EXTRACT' (4 bytes). 

(5) One day in clock units (4 bytes). 
(6) System default library's volume name (6 bytes) • · 
(7) System default library name (8 bytes). 
(8) Task's default printer number, or -1 if- none 

{2 bytes). 
(9) User program library volume (6 bytes). 

(10) User program library name (8 bytes). 
(11) Current file-access bit map for 'execute' 

access from Program File Block (PFB--4 bytes). 
(12) Default nonoutput volume for 'OPEN' (6 bytes). 
(13) Default nonoutput library name (8 bytes). 
(14) Current file-access bit map for 'read' access 

from Program File Block (4 bytes). 
(15) Default output volume for 'OPEN' (6 bytes). 
(16) Default output library name (8 bytes). 
(17) Current file-access bit map for 'update• access 

from Program File Block (4 bytes) • 
(18) Number of segment 2 buffer pages currently 

available (2 bytes). 
(19) Print output mode (1 byte). 
(20) Default output file-access protection class, or 

blank (1 byte) • 
(21) User logon identification (3 bytes). 
(22) Paging priority from TCBSCC (1 byte). 
(23) Suggested lines-per-page for print files 

(1 byte). 
(24) Operating System version number (A packed 

number VVRRPP, where 'VV' is the version, 'RR• 
is the revision, and 'PP' is the patch level) 
(3 bytes). 

6-53 



EXTRACT (SVC 28) 

Class 2: 

(1) Program Control Word (PCW) at time of most 
recent program exception for which a user exit 
was specified (8 bytes). 

Class 3: 

Data is returned as 
list. (See EXTRACT 
for possible values.) 

Class 4: 

ID=EXTRDIDDEVICE: 

specified in the parameter 
macroinstruction description 

(1) Device class (1 byte). 
(2) Device type (1 byte). 
(3) Usage - 'EX' (exclusive), 'SH' (shared) , or 

'DT' (detached) (2 bytes). 
(4) Task identifier of device owner, or -1 if none 

(4 bytes). 
(5) Volume name of removable volume (disk or tape 

only). Blank if nothing mounted. (6 bytes). 
(6) Volume name of fixed volume (disk only) • Blank 

if nothing mounted (6 bytes) • 
(7) 4 bytes of binary zeros (reserved). 

ID=EXTRDIDVOLUME: 

(1) Device address, or -1 if volume not mounted 
(1 byte). 

(2) Volwne type: 'F' for fixed, 'R' for removable, 
or blank if not mounted. (2 bytes). 

(3) Label type: 'SL' (standard label) , 'NL' (no 
label), or blank if not mounted. (2 bytes). 

(4) Usage--' SH' (shared), 'RR' (restricted re-
moval), 'PR' (protected), 'EX' (exclusive), or 
blank if not mounted .. 

(5) Task identifier of volume mounter, or -1 if 
none (4 bytes) . 

(6) Blocks per cylinder (2 bytes) • 
(7) Maximum transfer in bytes (2 bytes) . 
(8) Cylinders per volume (2 bytes) • 
(9) Cylinders per physical volume, including bad or 

unused blocks (2 bytes). 
(10) Number of files open on this volume (2 bytes). 
(11) Sector type (diskette only) : soft sector (S) , 

hard sector (H) 
(12) Addressing in effect (diskette only) : 

Non-standard (N), Standard (S) 
(13) Unused (2 bytes) 

6-54 



EXTRACT (SVC 28) 

ID=EXTRDIDOTASK: 

(1) Workstation device number of task specified, or 
-1 if none (1 byte). 

(2) Current user ID for task specified, or blank if 
none (3 bytes). 

(3) Current user name for task specified, or blank 
if none (24 bytes). 

(4) Type ('F', 'FS', 'B', 'BS') of task specified 
(see TASKTYPE) (2 bytes). 

(5) 18 bytes of binary zeros (reserved) • 

ID=EXTRDIDTAPEVOL: 

(1) Device address, or -1 if volume not mounted 
(1 byte). 

(2) 1 byte of binary zero (reserved) • 
(3) Density, BPI in binary: 556, 800 or 1600 

(2 bytes). 
(4) Label type: 'AL' (ANSI) , 'NL' (no label) , 'IL' 

(IBM label), or blank if volwne not mounted. 
(2 bytes). 

(5) Usage--' SH' (shared), 'EX' (exclusive) , or 
blank if not mounted. (2 bytes) • 

(6) Task identifier of tape mounter, or -1 if none 
(4 bytes). 

(7) Current file sequence number (2 bytes). 
(8) Six bytes of binary zeros (reserved) • 

ID=EX"rRDIDDEVLIST: 

(1) Total number of devices for specified device 
class (1 byte). 

(2) Number of device addresses supplied (1 byte). 
(3) Device address list (1 byte for each device 

address). 

ID=EXTRDIDDLPNAME: 

(1) Bit map of devices on DLP (4 bytes) 
(2) First device on DLP (2 bytes) 
(3) Type of DLP (1 = 22V06-1, 2 = 22V06-2, 

3 = 22V06-3) (1 byte) 
(4) Number of lines (RS-:'232) controllable by the 

DLP (1 byte) 
(5) Microcode file status (X'OO' if stopped, X'80' 

if loaded) (1 byte) 
(6) Reserved for future use (3 bytes) 
(7) Microcode file name (8 bytes, zero if not 

loaded) 
(8) Microcode library name (8 bytes, zero if not 

laoded) 

6-55 



EXTRACT (SVC 28) 

(9) Microcode volume name (6 bytes, zero if not 
loaded) 

(10) Reservation status of DLP (X • 80 • if reserved, 
X'OO' if not reserved) 

(11) Task nwnber of the task which reserved the DLP 
(3 bytes) 

ID=EXTRDIDDLPDEV#: 

(1) Device status flag (X'80' if open, X'40' if 
reserved, zero otherwise) 

(2) Task number of the task which reserved the DLP, 
or zero if device is unreserved (3 bytes) 

(3) Name of the DLP on which the device is SYSGENed 
(4 bytes) 

ID=EXTRDIDCLUSTER: 

(1) Device number of the archiver driver, or zero 
(zero may indicate that there are no other 
devices on the cluster, or that among the 
devices there is no archiver drive) 

(2) Unused (14 bytes) 

ID=EXTRDVOLVCB: 

(1) Volume Control Block address (4 bytes) 

Function: Extracts data from system control blocks which may be 
of interest to user programs. 

6-56 



Mount Disk Or Tape Volwne 

MOUNT 

Input: 

(SVC 30) NONRESIDENT 

The input list is 8 bytes long, unless the high-order 
bit of the first byte in the Volume Name field (Bytes 
2-7) is set to 1, in which case the parameter list is 16 
bytes long. The parameter list on top of the stack 
contains: 

Byte O - Flags 

For disk mount, the flags are used as follows: 

Bit 0 = 1 - To mount an unlabelled volume. 
= 0 - To mount a standard labelled volume. 

Bits 1-2 - Two bits used for volume usage description: 
=00 - Mount for shared use. 
=01 - Mount with restricted removal. 
=10 - Mount with protected use, and restricted 

removal. 
=11 - Mount for exclusive use. 

Bit 3 = 1 - Mount a fixed volwne. 
= 0 - Mount a removable volume. 

Bit 4 = 1 - 'No message' option (see function below). 
Bit 5 = 1 - Mount volume for bypass-label-processing 

(see function below). 
Bit 6 = 1 - The volume to be mounted allows spool files. 
Bit 7 = 1 - The volume to be mounted allows work files. 

For tape mount, the flags are used as follows: 

Bit 0 = 1 - To mount an unlabelled volume. 
= 0 - To mount a standard labelled volume. 

Bit 1 = 1 - Volwne mounted for exclusive use. 
= 0 - Volwne mounted for shared use. 

Bit 2 = 1 - Unused. 
Bit 3 = 1 - Mount an IBM tape volume. 

= 0 - Mount an ANSI tape volume. 
Bit 4 = 1 - 'No message' option (see function below). 
Bit 5 = 1 - Mount volume for bypass-label-processing 

(see function below). 
Bit 6-7 - (Unused). 

Byte 1 - Device number in binary (0-255). 

Bytes 2-7 - Volume name (if high-order bit is set to 1, 
then an 8-byte extension is added to the 
parameter list). 

6-57 



MOUNT (SVC 30) 

Parameter List Extension 

Byte 8 Bit 0 = 1 - Non-standard addressing in effect (for 
soft-sectored diskettes only). 

Bit 1 = 1 - 'No display option': do not display message 
on user's workstation. 

Bits 2-7 - (Unused - must be zero) 
Bytes 9-15 - (Unused - must be zero) 

Outputs: Binary Return Code in the top word of the stack, 
replaces the input parameterft 

The following return codes are set when the new volume 
is physically mounted on the drive, and the 
corresponding VCB updated with the mounter TCB address, 
new volume label type, volume name and VTOC Block 
address (for labelled volume only) • The sharing status 
('shared' or 'exclusive') and the initialization status 
are updated as specified in ·;.:he 'MOUNT' input parameter. 

0 - Success. 
4 - Successful mount, but new volume label type does 

not agree with input parameters 
8 - Successful mount, but new volwne name is not the 

volume name requested 
12 - Disk or tape 1/0 error detected while reading the 

new volume label or the new volume has a bad VTOC. 
VCBSER is set to blank. This return code is set 
when the new volume is physically mounted on the 
drive, but the VCB cannot be filled in. 

The following return codes are set without the mount 
message being shown on the workstation. 'Ille VCB for the 
volume is unchanged by the mount attempt. 

16 - Device is not a disk or a tape, or device number is 
invalid. 

20 - Device is detached. 
24 - Disk does not have the requested volume type (fixed 

or removable). 
28 - Request to mount an unlabelled volume on a disk 

unit other than an 2270V diskette. 
32 - Input volume name is blank. 
36 Requested volume is already mounted on a disk 

unit. Also set for a duplicate volume name. 
40 - Volume currently in use (by the operating system or 

user) • 
44 - Currently mounted volume reserved by another user 

for exclusive use. 
48 - I/0 buffer space insufficient to perform mount. 
52 - Cannot allocate space for Tape I/0 control blocks. 

6-58 



Function: 

MOUNT (SVC 30) 

56 - Invalid request: work and/or spool filing requested 
in a non-labelled volume. 

60 - Invalid request: non-standard addressing attempted 
with standard label option or on a hard-sectored 
device. 

64 - Wrong media: 
a device for 

68 - Wrong media: 
a device for 

soft-sectored diskette 
hard-sectored diskettes 
hard-sectored diskette 

soft-sectored diskettes 
72 - Wrong media: hard-sectored diskette 

non-standard addressing request. 

inserted into 
only. 

inserted into 
only. 
inserted for a 

76 - Wrong addressing mode: MOUNT request is 
standard addressing but diskette is non-standard. 

80 - Device reserved by another user. 

for 

84 MOUNT failed: aborted by user or operator request. 

To mount a disk or tape volume. 'Ihe input parameters are first 
validated, and if successful, a mount message will be displayed on 
the workstation to direct the user to mount the proper vollUile, 
unless the NODISPLAY option is chosen, in which case the message 
will appear only on the operator console. When the volume is 
mounted and the device is ready, the new volume label will then be 
read and checked, and the information in VCB is updated. 

'lbe NO MESSAGE option indicates that the volume to be mounted is 
already on the drive. No mount message will be displayed, and the 
VCB information is updated from that volume label. 

'Ille BYPASS-LABEL-PROCESSING option is used by the disk or tape 
initialization program and the floppy copy program (FLOPYDUP). At 
SVC EXIT, the VCB information is updated as follows: 

VCBSER is set to input bytes 2-7. 
VCB is set to be NOVTOC to allow non-labelled processing. 
VCB is set for exclusive use by the user. 
VCBFLAGSINIT = 1 to indicate that the VCB information could be 

inconsistent with the volume label. 

NOTE: 
A non-standard addressing option is now supported which allows the 
user to format a sof t~sectored diskette in any combination of 
sector size and density. The use of this option is intended to be 
limited to specialized utilities. User programs which employ this 
option are responsible for perfonning direct and sequential I/0 on 
a physical-sector basis. The user program must calcu- late the 
sector size and addresses, set mode, and set density. When 
non-standard addressing is specified, the XIO SVC will not perform 
extent validation or address translation, but simply passes the 
address to the finnware via the I/O Control Word (IOCW). 

6-59 



Modify Program Exception Bxit Status 

PCEXIT 

Inputs: 

(SVC 31) NONRESIDENT 

One or two words on stack top. The lower-addressed 
word contains class codes (0, 1 or 2 in binary) in its 
high-order byte. For class 0 only, the three low-order 
bytes of ttiis word contain the specified exit address. 
The higher-addressed word, present for class 0 only, 
contains a bit map of exceptions for which the user 
exit is to be taken. 

Class codes are: 

0 - Establish new program exception exit address 
and conditions (exception list) , saving the old 
status if any. 

1 - Restore previous program exception status, 
~iscarding current status. 

2 - Cancel all program exception exits for the 
current program, discarding all status. 

The bit map of exceptions is as follows: 

Bit 0 - Unused 
1 - Operation 
2 - Privileged Operation 
3 - Execute 
4 - Protection 
5 - Addressing 
6 - Specification 
7 - Data 
8 - Fixed Point Overflow 
9 - Fixed Point Divide 

10 - Decimal Overflow 
11 - Decimal Divide 
12 - Supervisor Call Range 

13-15 - Unused 
16 - Floating Point Overflow 
17 - Floating Point Underflow 
18 - Significance 
19 - Floating Point Divide 

20-23 - Unused 
24 - Stack Overflow 

25-31 - Unused 

6-60 



PCEXIT (SVC 31) 

Outputs: Program exception element (s) chained or removed from 
chain rooted in TCBPXE of the issuer's Task Control 
Block. Input parameters removed from stack. 

Function: ·To modify the handling of program exceptions occurring 
in unprivileged user code, supplying or eliminating a 
current user exit address to receive control in the 
event of such an exception. 

Note: When a program issues a LINK supervisor call, any 
current user program exception exit is eliminated, but 
the current status is preserved for restoration by 
UNLINK. (Execution of PCEXIT SVC Class 1 will not 
restore a program check exit status existing prior to a 
LINK.) 

6-61 



Set Or Reset Timing Interval 

SETIME/RESETIME (SVC 32) NONRESIDENT 

Inputs: Word on top of stack. The high-order byte of the 
lower-addressed word contains a class code in binary as 
follows: 

X'40' - Set timing interval to expire at time of day 
specified in the three low-order bytes of 
parameter word, where this time is in 1/100 
seconds into a day, from midnight. To request 
expiration at some time tomorrow, the value 
supplied must be 24 hours plus the required 
time of day. A requested time less than the 
current time of day will result in immediate 
expiration. 

x•oo• - Set times interval to expire after the number 
of 1/100 second units in the three low-order 
bytes of parameter word have elapsed. 

X'80' - Remove timing_ interval previously established 
(can require removal of a TQEL from the time 
queue). 

Outputs: A Timing Queue Element (TQEL) is placed in 
time-sequenced order on the timing queue (from MCBTIMQ) 
or is removed from that queue. The clock comparator 
value is modified if required. The input word is 
removed from the stack. The issuing task continues. 

Function: To establish a timer interval, which 
awaited by means of the CHECK supervisor 
remove an unCHECKED interval. 

6-62 

may then be 
call, or to 



Supply Program Parameters 

PUTPARM (SVC 33) Non-Resident 

Inputs: The top 28 bytes of the stack contain the parameter 
list as follows: 

Byte O: Flags 
Bit 0 = 1 

= 0 
Bit 1 = 1 
Bit 2 = 1 
Bit 3 = 1 

= 0 
Bit 4 = 1 
Bit 5 = 1 

Bits 6-7 

DISPLAY option 
ENTER option 
REFER option 
CLEANUP option 
MERGE option 
NOMERGE option 
Enable Repeat Count 
CLEANUP labelled FMTLIST (Bit 2 must 
also be set) 
Reserved, must be zero 

Byte 1: The AID character of a PFkey to be passed to 
the GETPARM if this is a backward reference; 
otherwise, not used and must be zero. 

Bytes 2-3: Repeat count as follows (if flag bit 4 is 
on): 

X'OOOO' 
X'l'-X'7FFF' 
X'8000' 

Never repeat 
Repeat n times 
Repeat indefinitely 

If flag bit 4 is off, field is not used and 
must be zero. 

Bytes 4-11: If REFER NOMERGE or labeled CLEANUP option, 
bytes 4-11 contain the label of the FMTLIST 
to be referenced. If REFERLABEL is used in 
PUT option, bytes 4-11 contain the 
REFERLABEL. For unlabelled CLEANUP option, 
bytes 4-11 are all blanks. Otherwise, byte 
4 must be zero, bytes 5-7 contain the 
address of the supplied FMTLIST (the 
destination FMTLIST for the REFER MERGE 
option), and bytes 8-11 are unused and must 
be zero. 

Bytes 12-19: The PRNAME to be associated with the 
FMTLIST. 

Bytes 20-27: The label of the FMTLIST to be created or 
accessed. Blanks indicate that no label is 
specified. If the MERGE or MERGE,REMOVE 
option is being used, bytes 20-27 contain 
the label of the source FMTLIST. 

6-63 



PUTPARM (SVC 33) 

Outputs: PUTPARM returns to the issuer eight bytes on the 
top of the stack: 

Bytes 0-3: 

Bytes 4-7: 

Retum Code: 

0 - Successful. 
4 - Backward reference label not 

found. 
8 Bad FMTLIST supplied. 
12 - Error found in previously 

constructed Parameter 
Reference Blocks (PRBs). 

16 - Invalid input parameter 
while using CLEANUP option. 

20 - Invalid input parameter 
while using MERGE option. 

If Return Code is 0 , 
FMTLIST specified in 
backward referenced. 

address of 
the input or 

Function: The PUTPARM SVC has three major functions. The primary 
function (PUT function) is to supply parameters to 
another program's GETPARMs before issuing the LINK SVC 
to invoke. The second function (the CLEANUP function) 
is to cleanup the various internal data structures 
created by the PUT function. The third function (the 
REFER function) is to allow the calling program access 
to any parameters which the user may have changed at 
GETPARM time (the MERGE option) , or to return the 
address of a previously created and labelled FMTLIST 
(the NOMERGE option). 

Both the PUTPARM macro and the LINKPARM macro call the 
PUTPARM SVC. The PUTPARM macro allows only the 
parameterization of another program (the PUT function) , 
while the LINK.PARM macro accesses all the functions of 
the PUTPARM SVC. 

PUT PUIPARM' s primary use is to enable a program to supply 
parameters to a GETPARM issued by another program (the 
Pur function) • The program supplying the parameters 
must link to the program issuing the GETPARM via the 
LINK SVC. A program may not use PUl'PARM to pass 
parameters to its own GETPARMs. 

6-64 



. PUl'PARM (SVC 33) 

The parameters to be supplied to the GETPARM are 
contained in a format list (FMTLIST) , created with the 
FMTLIST macroinstruction. (A FMTLIST is identical to a 
KEYLIST, except that a FMTLIST contains no PRNAME.) 
When a PUTPARM is issued, it verifies that the specified 
FMTLIST is in the proper fonnat, then saves the FMTLIST 
in a segment 2 buffer for subsequent GETPARM use. 
PUTPARM also constructs a Parameter Reference Block 
(PRB) to save the label, PRNAME, display option, and 
certain other information. The PRB is constructed in 
the segment 2 buffer area allocated by the PUTPARM SVC 
and chained to the previously constructed PRBs. 

When a GETPARM in the linked-to program is issued, it 
searches through the current 1 ink level' s saved (and 
unused) PRBs for one whose PRNAME matches the PRNAME of 
the GETPARM' s KEYLIST. If one is found, the value for 
the keywords in the FMTLIST will be copied to the 
GETPARM KEYLIST (left-aligned and truncated) • To 
solicit modifications by the user, A GETPARM workstation 
transaction may be requested by selecting the DISPLAY 
option; otherwise, a workstation transaction is 
suppressed. The KEYLIST (possibly modified by the user) 
is merged back into the FMTLIST for later backward 
reference. 

If more than one GETPARM is issued with the same PRNAME, 
the PUTPARM-saved FMTLISTs will be used in the order in 
which they were supplied to the PUTPARM SVC. Normally, 
no two GETPARM requests access the same FMTLIST. A 
FMTLIST may be declared to be for repeated use via the 
macro parameter REPEAT=. 

A FMTLIST may be labeled (via the LABEL= parameter) for 
later use. The backward reference facility allows a 
program to reuse the (possibly updated) parameters of a 
labeled FMTLIST. If a backward reference label is 
supplied to the PlITPARM SVC rather than a FMTLIST (e.g., 
via the REFERLABEL= parameter of the LINKPARM macro) , a 
point.er to the labeled FMTLIST will be stored thus 
causing GETPARM to reuse the labled FMTLIST. 

As an example of the backward reference facility, 
suppose that the program being parameterized requests 
the same set of parameters several times and that the 
calling program is suppressing the workstation trans
actions. The calling program could issue LINKPARM PUT 
several times, each specifying fully the GETPARM 
parameters. If one of the parameters was in error, the 
user would be forced to correct each transaction. If 
instead, only the first LINKPARM PUT specified the 
parameters (and was labeled) and the others referred 
back to the first, the user would only have to correct 
the first transaction. 

6-65 



PUTPARM (SVC 33) 

The PUTPARM SVC also supports an override facility. If 
the PRNAME specified by the linking program matches the 
LABEL of a FMTLIST specified by the linked-to program, 
the parameter values in the linking program's FMTLIST 
will override those of the linked-to program's FMTLIST. 
Parameters not specified by the linking program retain 
the values specified by the linked-to program. 

For example, suppose program 1 issues the fol lowing 
LINRPARM (FMTLl sets KEY2 to 'PROGl'): 

LINKPARM PUT, PRNAME=' OVERRIDE' ,FMI'LIST=FMI'Ll 

and then links to program 2. Now suppose that program 2 
issues the following LINKPARM (FMTL2 sets KEYl and KEY2 
to 'PROG2'): 

LINKPARM PUT ,PRNAME= 'DEMO I ,LABEL= I OVERRIDE I , 

FMTLI ST=FMTL2 

and then links to program 3. A GETPARM for PRNAME 
'DEMO' by program 3 will set KEYl to 'PROG2' and KEY2 to 
'PROGl'. 

As well as passing parameters to GETPARMs, PUTPARM may 
also pass a PFkey. This may be done in one of two ways, 
via either the PFKEY= or AID= parameter. Both can pass 
the full range of 32 PFkeys plus ENTER. PFKEY= takes 
either the actual key nwnber (1-32) or the keyword 
ENTER. AID= takes the 'AID' character of the PFkey, 
where 'A'-'P' correspond to PFkeys 1-16 respectively, 
'a'-'p' correspond to PFkeys 17-32 respectively, and @ 
corresponds to the ENTER key. Both methods have the 
same result (PFKEY= values are translated into AID= 
values for the SVC by the macro) • The way in which the 
PFkey is passed to GETPARM depends on whether the 
LINKPARM is a normal or a backward reference. 

In the normal case, the PFkey is placed into the first 
byte of the FMTLIST addressed by FMTLIST= by the 
LINKPARM macro. Note that the original FMTLIST is 
modified. In the case of a backward reference, the 
PFkey is placed onto the stack and then into the FMTLIST 
buffer. The original FMTLIST is not modified in this 
case. 

CLEANUP The CLEANUP option is used to deallocate all the PRBs 
(and their associated FMTLISTs) chained to the Program 
File Block (PFB) of the current link level and above. 
This option enables the user to free the segment 2 
buffers allocated for PUTPARM use. If no REFERLABEL is 
provided on the call, all PRBs and FMTLISTs at the 

6-66 



REFER, 
NOMERGE 

REFER, 
MERGE 

PUTPARM (SVC 33) 

current link level and above are removed. If a 
REFERLABEL is provided, only the PRB and associated 
FMTLIST referenced by REFERLABEL is removed. The 
CLEANUP option may be used concurrently with the REFER 
option via specification of the REFER,REMOVE option in 
the LINKPARM macro (see below). The CLEANUP function is 
useful for programs which loop executing a large number 
of LINKPARMs to prevent FMTLIST buffers from becoming 
full. 

The REFER ,NOMERGE function of the PUl'PARM SVC is to 
return the address (in the segment 2 buffer) of a 
previously created and labeled FMTLIST without the 
overhead of creating a new FMTLIST or a reference 
pointer. This function is used primarily by the 
Procedure Interpreter. 

This feature is used primarily by programs which desire 
to keep track of any GETPARM parameters which a user 
might have overridden. This option allows the user of 
the LINKPARM macro to specify both a FMTLIST and a 
REFERLABEL. The contents of the FMTLIST address_ed by 
the REFERLABEL= (the source) are merged into the FMTLIST 
addressed by FMTLIST= (the destination). Fields which 
are present in the destination but not the source are 
left unchanged. Fields which are present in the source 
but not the destination are ignored. The MERGE option 
may be combined with the CLEANUP option (the MERGE 
option is performed first) via the REMOVE operand. 

6-67 



Set Task-Related Defaults 

SET (SVC 35) NONRESIDENT 

Inputs: A variable-length parameter list on the stack top, 
consisting entirely of address pointers or words 
containing binary zeros. The last word of the list 
must have its highest bit on (' l ') . Nonzero words 
address data items which replace corresponding task 
defaults as follows: 

Index of Parameter Length Corresponding 
Procedure Keyword List Address Default of Item 

Outputs: 

0 ETCBLINKVOL 6 
4 ETCBLINKNAME 8 
8 unused 

12 ETCBDEFVOL 6 
16 ETCBDEFFILEl 8 
20 unused 
24 ETCBDEFVOLO 6 
28 ETCBDEFFILElO 8 
32 ETCBDEFVOLS 6 
36 ETCBDEFVOLW 6 
40 ETCBDEFPRT 1 
44 ETCBPR'ITYPE 1 
48 ETCBFPCLASS 1 
52 ETCBLINEAGE 1 
56 ETCBPRTCLASS 1 
60 ETCBFORMNO 1 
64 ETCBUPDVOL 6 
68 ETCBUPDNAME 8 
72 BTCBJOBSTATUS 1 
76 ETCBJOBCLASS 1 
80 ETCBJOBLIMIT 4 

PROGVOL 
PROGLIB 

INVOL 
INLIB 

OUTVOL 
OUTLIB 
SPOOLVOL 
WORKVOL 
PRINTER 
PRNTMODE 
FILECLAS 
LINES 
PRTCLAS 
FORM/I 
RUNVOL 
RUNLIB 
JOBQUEUE 
JOBCLASS 
JOBLIMIT 

The task's Extended Task Control Block 
requested. The parameter list is 
stack. 

is modified as 
removed from the 

Function: To allow programs (especially the system's Procedure 
Interpreter) to modify default values. Most of these 
can also be modified by means of the 'SET' coD1Dand. 

Fields ETCBLINKVOL or ETCBLINKNAME modified by means of 
this SVC routine will be restored to their previous 
values when the issuing program UNLINKs. 

6-68 



Transmit Intertask Message 

XMIT SVC 36 RESIDENT 

Inputs: Two words on top of the stack as follows: 

Byte O, Bit 0 = 0 Wait if not enough buffer space. 
1 NOWAIT option, return if not 

enough buffer space. 
1 = 0 OTHERTASK option, transmit only 

to other tasks. 
2-7 = 0 (Reserved) 

Bytes 1-3 Address of a message to be 
transmitted. 

Bytes 4-7 Name (any characters) of receipt 
port for messages. 

Outputs: The supplied message is placed in a system message 
buffer. This is copied to the address specified by the 
receiver as a result of the CHECK SVC routine with the 
MESSAGE option. The first two bytes of the supplied 
message indicate its length, including those bytes, and 
must be not greater than 2016. 

Return codes are placed in a word on the stack . top , 
replacing the inputs: 

0 - Successful. 

4 - No receiving port with the specified name. 

8 - Unable to insert message in rece1v1ng port's 
message buffer -- insufficient remaining space 
in message buffer (NOWAIT option only). 

12 - Unable to insert message in receiving port's 
message buffer due to receiving port's use of 
PRIVILEGED option. 

16 - Message not transmitted; OTIIERTASK option was 
specified and the designated message port 
belongs to the XMIT-issuing task. 

Function: To communicate between user tasks, or between a user 
task and a specific subsystem of the operating system. 

6-69 



Create Intertask Message 

CREATE (SVC 37) NONRESIDENT 

Inputs: Two words on top of stack, as follows. 

Byte O, Bit 0 = 0 
1 

1-7 = 0 

Byte 1 

Bytes 2-3 

Bytes 4-7 

0 

Receive all messages. 
Privileged Option. 
(Reserved) 

Reserved (X'O'). 

Space to be 
to receive 
than 2016). 

allocated in buffer 
messages (not greater 

Name (any characters) of receipt 
port for messages. 

Outputs: Resident buffer with specified name created to receive 
intertask messages. 

Return codes are placed in a word on the stack top, 
replacing the inputs. 

0 - Successful. 

4 - Another task has activated the specified port 
name. 

8 - Same task has already activated the specified 
port name. 

12 - GETMEM failure. 

Function: ~llows the issuing task to receive intertask messages 
sent by XMIT (SVC 36) to the specified port name, 
rejecting any messages from non-privileged state code 
or from tasks that are not dedicated system tasks if 
the port was created with the PRIVILEGED option. 

6-70 



Destroy Intertask Message Buffer 

DESTROY (SVC 38) NONRESIDENT 

Inputs: One word on top of stack, containing name of one of 
this issuer's message receipt ports. 

Outputs: The message buffer associated with the 
is eliminated. If no such message 
CREATEd by this task, the issuer is 
return code. 

specified name 
buffer has been 
informed by a 

Return codes are placed in a word on the stack top, 
replacing the inputs: 

0 - Successful. 

4 - One or more messages were not received and are 
lost; otherwise successful. 

8 - No such message buffer was allocated by this 
task. 

Function: To remove from the issuing task the ability to receive 
messages directed to the specified name. 

6-71 



Set Cancel Exit Options 

CEXIT 

Inputs: 

(SVC 39) NONRESIDENT 

One or three words on stack top. For the CANCEL 
option, a word of binary zeros is on the stack. 
Otherwise, three words of the following format: 

Byte 0 Flags 
Bit 0 = 1 SET Option. 

Bits 1-2 = 00 Debug enabled. 
= 01 NODEBUG Option. 
= 11 DUMP option. 

Bit 3 = 0 HELP Key enabled. 
= 1 HELP Key disabled. 

Bytes 1-3 Address of User Cancel Exit Intercept 
Routine, or zero. 

Bytes 4-7 Address of User-Supplied Message to be used 
in place of the "CANCEL PROCESSING" Menu 
descriptions, or zero. 

Bytes 8-11 Reserved (must be zero) • 

Outputs: PFB updated with CEXIT options as specified with 
parameters. Input parameters removed from stack. 
Abnormal termination occurs if either an invalid Cancel 
Intercept Address is provided (Message 0001 by SVC39) 
or an invalid Cancel Menu Message Mask Address is 
provided (Message 0002 by SVC39). 

Function: To set CEXIT options in the current link level PFB. 

6-72 



Dismount Disk or Tape Volume 

DISMOUNT (SVC 41) NONRESIDENT 

Inputs: 8 bytes on top of stack: 

Byte 0 

Bit 0 = 0 -- Dismount disk volume. 
= 1 -- Dismount tape volume. 

Bit 1 = 1 -- No display option: do not write to 
caller's workstation. 

Bits 2-7 -- Reserved; must be zero. 

Byte 1 -- Reserved; must be zero. 

Bytes 2 - 7 -- Volume name. 

Outputs: 4 bytes of Return Code on stack top, replacing input: 

0 
4 

8 
12 -
16 -
20 -
24 -
28 -
32 -

Successful 
Input volume name is blank, or bytes 0-1 in 
input are nonzero 
Volume not found 
Volume not dismountable 
Device detached 
Volume in use by a user or the operating system 
Volume reserved by another user 
GETMEM failure 
Device is reserved by another task 

Function: To perform disk and tape dismount operations for the 
volume specified in the input. 

6-73 



Protect File or Library 

PROTECT (SVC 42) NONRESIDENT 

Inputs: The top word of the stack addresses an argument list of 
the following format: 

Argument List 

New Expiration Date 
or Retention Period 
New ID of Owner 
New Protection Class 
Option Flag 
V'olwne Serial 
File Name or Ignored 
Library Name 

3 Bytes 

3 Byte 
1 Byte 
1 Byte 
6 Bytes 
8 Bytes 
8 Bytes 

The Option Flag indicates which protection data is to 
be changed and whether to protect a file or a full 
library: 

0 l 2 3 4 5 6 7 

= '1' To Set OWner ID 

= 1 1 1 To Set Protection Class 

= 'l' If Expiration Date Supplied 
(YYDDD+) 

= '1' If Retention Period Supplied 
(OODDD+) 

= '1' If File Access Rights are to be limited 
to User Logan Rights 

= '1' To Protect a Library 

Bits 0 and 3 should have values of 0. 

6-74 



PROTBCT (SVC 42) 

Outputs: The protection attributes for the file or library 
identified is modified. Return codes in binary in the 
top word of the stack indicate the result of the request: 

Return Code = 0 - Protection status successfully 
changed 

Return Code = 4 - Volume not mounted 
Return Code = 8 - Volume used exclusively by other user 
Return Code = 12 - All buffers in use, no protection 

change 
Return Code = 16 - Library not found 
Return Code = 20 - File not found 
Return Code = 24 - Update access denied, no protection 

change 
Return Code = 28 - Unused 
Return Code = 32 - File in use, no protection change 
Return Code = 36 - VTOC error! FDXl & FDX2 don' t agree 
Return Code = 40 - VTOC error! FDX2 & FDR don' t agree 
Return Code = 44 - Invalid argument list address 
Return Code = 48 - I/0 error! VTOC unreliable! 
Return Code = 52 - Open or protected files bypassed in 

protecting library 
Return Code = 56 - Invalid new protection data 

Function: To update the protection information (protection class, 
owner of record, and/or expiration date) for a disk file 
or a library of disk files on a volume. The structure 
of the Volume Table of Contents (VTOC) is not affected 
by the change. No file that is to have its protection 
information modified may be open when the PROTECT is 
attempted. 

6-75 



Log Off Interactive Terminal 

LOGO FF (SVC 43) NONRESIDENT 

Inputs: Two words on stack top. These words are reserved for 
future use and currently must contain binary zeroes. 

Outputs: PFB updated with the CEXIT option of NODEBUG and the 
logo ff flag in the ETCB is set (ETCBFLGLOGOFF) for 
subsequent inspection by the appropriate Command 
Processor routines. A CANCEL SVC is issued with Message 
0001 by SVC43. If the input parameter words are not 
binary zeroes, a CANCEL SVC is issued (Message 0002 by 
SVC43) and the logof f flag bit is not set, 

Function: To effect logoff by program request. 

6-76 



Submit Job or Print Request 

SUBMIT (SVC 46) NONRESIDENT 

INPUTS: Accepts a parameter list of one word on the stack top: 

Byte O: Operation (Binary value, 1-255) 

=1 Submit job for processing. 
=2 Request printing of print file. 

Bytes 1-3: Address of a 44-byte parameter 1 ist 
(word-aligned) for the operation. 

Operation: Submit Job for Processing 

Parameter List Format: 

Bytes 0-7 
8-15 
16-21 
22-29 
30 
31 

32-35 

36 

37 

38-43 

Procedure name 
Library name 
Volume name 
Job name or blanks (optional) 
Job class (A-Z) 
DUMP options: 
X'80' User has specified DUMP or NODUMP on 

CANCEL (ETCBBGDUMPOPT) 
X'40' Force DUMP on CANCEL (ETCBBGDUMP) 
CPU time limit in timer units; if zero is 
supplied, then there is no time limit. 
Initial status of job when queued: 
X'80' Hold Not eligible for scheduling 

until released by the 
operator or submitter. 

X'OO' Active Eligible for scheduling upon 
submission of the request. 

X'80' Test for time limit up -- must be 
set of a time limit is specified 
(TCBTIMLIMCHK). 

X'40' Force CANCEL if limit is up 
(TCBTIMLIMCNCL) • 

X'20' Force Pause/HELP if limit is up 
(TCBTIMLIMPAUSE). 

(If neither TCBTIMLIMCNCL nor 
TCBTIMLIMPAUSE is set and a CPU time limit 
is set, then a warning will be issued.) 

X'04' Disposition after job processing: 
Requeue after e&ecution. 

Reserved (should be zeros) • 

6-77 



SUBMIT (SVC 46) 

Outputs: A return code is returned in the stack top word• with 
the following meaning: 

0 - Successful 
4 - Volume not mounted 
8 - Volume in exclusive use 

12 - All buffers in use unable to perform 
verification 

16 - Library not found 
20 - File not found 
24 - Improper file type (or zero records as 

indicated in FDRlNRECS). 
28 - File access denied 
32 - VTOC error, FDXl and FDX2 do not agree 
36 - VTOC error, FDX2 and FDR do not agree 
40 - Invalid specification of file, library, and 

volume 
48 - System task not running, no spooled printing or 

interactive jobs 
52 - Error in perfonning XMIT to System task 
56 - Invalid options specified in parameter list 

Operation: Request Printing of Print File 

Parameter List Format: 

Bytes 0-7 
8-15 
16-21 
22 
23 
24-25 
26 

27 

28-43 

Print file name 
Library name 
Volume name 
Print class (A-Z) 
Form # in binary (0-255) 
Number of copies in binary 
Initial status of this file when queued: 
X'80' Hold Not eligible for print 

scheduling until released by 
the operator or the 
submitter. 

X'OO' Spool Eligible for printing upon 
submission of the request. 

Disposition after printing: 
X'40' - Requeue after print 
X'20' - Save after printing 
X'02' - Collective print 
Reserved (should be zero) 

Outputs: A return code is returned in the stack top word with 
the same meaning as above for the SUBMIT job processing 
function. 

6-78 



Allocate Heap Storage 

GETHEAP (SVC 56) NONRESIDENT 

Inputs: The top 16 bytes of the stack contain a parameter list 
as follows: 

Byte O: Option flags: 

Bit 0 =l SEARCH flag. Search backward for the 
subpool name specified in the 'POOLNAME' 
parameter of the GETHEAP macro (Bytes 8-15 
of this input para.meter list) , starting 
from the link level specified in the 
'LINKLEV' parameter of the GETHEAP macro 
(Byte 4 of this input parameter list) and 
going backwards until the subpool is found 
or all the link levels are exhausted. 

=O Search only at the link level specified in 
the 'LINKLEV' parameter of the GETHEAP 
macro (Byte 4 of this input parameter list). 

Bit 1 =1 CREATE flag. Create a new subpool with the 
name specified in the 'POOLNAME' parameter 
of the GETHEAP macro (Bytes 8-15 of this 
input parameter list) and at the link level 
specified in the 'LINKLEV' parameter of the 
GETHEAP macro (Byte 4 of this input 
parameter list) • A backward search is 
never initiated if the CREATE flag is set, 
and the SEARCH flag, if specified, is 
ignored. 

Bit 2 =1 ALIGN flag. A 2K-aligned block is 
requested by the user. Useful only when a 
multiple of 2K bytes is requested; ignored 
otherwise. 

Bits 3-7 Reserved; must be zero. 

Bytes 1-3: SIZE Size of the block. All sizes are 
allowed, but they will be rounded up to 
their nearest 8-byte multiple. 

Byte 4: 

Bytes S-7: 

LINKLEV Link level from which to start 
searching for the subpool. 'O' means 
the current link level, '1' its parent, 
and so on. A value of 255 (X'FF') in 
this field represents the lowermost 
link level. 

Reserved; must be zero. 

6-79 



GETHEAP (SVC 56) 

Bytes 8-15: POOLNAME 8-byte character string 

Out12uts: 

representing the subpool name. Blank names are 
not allowed. Trailing blanks are insignificant. 

A return code is returned in the stack top word. If 
Return Code = 0, the next word in the stack contains the 
starting address of the block; if Return Code = 4, the 
next word in the stack contains the size of the largest 
block available. Return codes have the following 
meanings: 

0 - A buffer area has been allocated. The next word on 

4 

the stack contains the block starting address. If 
requested, a subpool has also been created. 

- Not enough space in segment 2. 
stack contains the size of 
available. If requested, a 
created. 

The next word on the 
the largest block 

subpool has also been 

8 - Nonexistent link level specified. 

12 - Nonexistent subpool name specified. 

16 - User has overwritten area used by GETHEAP. User 
should CANCEL at this point. 

20 - Error in parameter list. 'POOLNAME' all blank or a 
nonzero value in reserved fields. 

24 - GETMEM failure. A new subpool cannot be created. 
This however does not prevent the user from 
allocating space from an existing subpool. 

28 - CREATE failure. A subpool with the same name 
already exists at this link level. 

Function: To allocate a block as requested. All block sizes 
including zero are legal. If, however, the block size 
is not a multiple of 8 bytes, the size is rounded up to 
the nearest 8-byte multiple. Maximum size is restricted 
only by the caller's segment 2 size less the size used 
by the system stack. lhe space is taken from the low 
end of segment 2. The value in control register 2 may 
be modified. Both the creation of a new subpool and 
allocation of a block out of the subpool can be 
accomplished in a single GETHEAP call. Successful 
creation of a subpool does not guarantee that a block of 
proper size can be allocated. There is no fixed space 
associated with the creation of a subpool; the space is 
allocated as and when requested. 

6-80 



Deallocate Heap Storage 

FREEHEAP (SVC 57) NONRESIDENT 

Inputs: 'The top 16 bytes of the stack contain a parameter list 
as follows: 

Byte O: Option flags: 

Bytes 

Bit 0 =1 SEARCH flag. Search backward for the 
subpool name specified in the 
'POOLNAME' parameter of the FREEHEAP 
macro (Bytes 8-15 of this input 
parameter list) , starting from the 
link level specified in the 'LINKLEV' 
parameter of the FREEHEAP macro (Byte 
4 of this input parameter list) and 
going backwards until the subpool is 
found or all the link levels are 
exhausted. 

=O Search only at the link level 
specified in the 'LINKLEV' parameter 
of the FREEHEAP macro (Byte 4 of this 
iuput parameter list) • 

Bit 1 =1 DELETE flag. Delete an entire subpool 
with the name specified in the 
'POOLNAME' para.meter of the FREEHEAP 
macro (Bytes 8-15 of this input 
parameter list) and at the link level 
specified in the 'LINKLEV' parameter 
of the FREEHEAP macro (Byte 4 of this 
input parameter list). A backward 
search is never initiated if the 
DELETE flag is set, and the SEARCH 
flag, if specified, is ignored. 

Bits 2-7 Reserved; must be zero. 

1-3: SIZE Size of the block. All sizes are 
allowed, but they will be rounded up 
to their nearest 8-byte multiple. 

Byte 4: LINKLEV Link level from which to start 
searching for the subpool. 'O' means 
the current link level, 'l' its 
parent, and so on. A value of 255 
(X'FF') in this field represents the 
lowennost link level. 

Bytes 5-7: BUFLOC Starting address of the block to be 
deleted. 

6-81 



FREEHEAP (SVC 57) 

Bytes 8-15: POOLNAME 8-byte character string 
representing the subpool name. Blank 
names are not allowed. Trailing 
blanks are insignificant. 

When the deletion of an entire subpool is desired, the 
SIZE and BUFLOC parameters have no meaning and are 
ignored. 

Outputs: A return code on the top word of the system stack with 
the following meaning: 

0 A buffer area has been deallocated or an entire 
subpool has been deleted. 

4 Invalid buffer address specified. 

8 Nonexistent link level specified. 

12 - Nonexistent subpool name specified. 

16 - User has overwritten area used by FREEHEAP. 
User should CANCEL at this point. 

20 - Error in parameter list. 'POOLNAME • all blank 
or nonzero value in reserved fields. 

Function: To de-allocate a block as requested. All block sizes, 
including zero, are legal, but they will be rounded up 
to their nearest 8-byte multiple. An entire subpool 
can also be deleted in a single FREEHEAP call, through 
the use of the DELETE flag. The value in control 
register 2 may be modified. 

On UNLINK, all the subpools belonging to that link 
level are automatically deleted. 

6-82 



CHAPTER 7: DATA MANAGEMENT SYSTEM SERVICES 

7.1 INTRODUCTION 

The Data Management System (DMS) is described from the user 
program viewpoint in this section. The user program communicates 
with DMS routines through the User File Block (UFB). A user 
program has one UFB for each file it can process. When a UFB is 
connected to an OFB by SVC OPEN, the file is considered OPEN and 
may be processed through function requests to the Data Management 
System using the UFB. The system enforces a limit on the number 
of files a user program can have OPEN at any one time. A file is 
removed from the OPEN state by using SVC CLOSE. A user program• s 
UFBs are located in the user's modifiable data area (Segment 2). 
SVC 0 (OPEN) and SVC 1 (CLOSE) are described in Chapter 6. 

DMS function-routines are reentrant routines and are located as 
part of the system code (Segment 0). They execute in User State 
and use SVCs (XIO, CHECK, ALEX, UPDATFDR, DTI) to perform 
privileged I/0 operations and to modify protected control blocks 
(OFB, FLUB, etc.). DMS function-routines can be used by multiple 
users; they perform as if they were an extension of the user 
program. 

'!he UFB is logically divided into four sections as follows: 

a. Access Method Section - This section contains some 
basic infonnation used by the DMS function-routines. 

i. Five function vectors, corresponding to the five 
function-requests allowed on a file. A function 
vector consists of a modifier byte and the 
address of a DMS function-routine (loaded by 
OPEN). 

ii. Two user-supplied 
addresses. 

function-routine 

iii. The record-area pointer (user supplied). 

iv. The key-area pointer (user supplied). 

7-1 

error-exit 



b. 

v. Two r'ile Status Bytes (UFBFSl and UFBFS2) used to 
return an ASCII-character code to the user for 
each function-request. 

File Location 
contains various 
about the file. 

and Attributes Section 
information (assembled 

This section 
by SVC OPEN) 

c. Data Management System Section - This section contains 
an Open File Block (OFB) pointer for the file, 
buffer-related infonnation (including two Buffer control 
Blocks), and other data used by the Data Management 

System. 

d. Indexed Disk File Extension 
for indexed disk files only; 
regarding the file index, etc. 

- This Section is present 
it contains information 

7.2 VS DISK FILES 

This section describes the DMS functions, open-modes, and access 
methods for disk files residing on a disk volwne with a VTOC. DMS 
does not distinguish between disk volumes and diskette volumes. 

a. A disk file resides on a disk volume. A disk file is 
fully contained within a disk volwne (a file cannot span 
a volume) . 

b. Each file has an associated file 
File label format is described 
control blocks. 

label in the vroc. 
by the FDRl and FDR2 

c. The physical block size for a disk file 
Records in a disk file are always 
physical blocks) • 

is 2048 
blocked 

bytes. 
(in 2K 

There are three access methods supported by the VS Data Management 
System: 

1. Record Access Method (RAM). 
2. Block Access Method (BAM). 
3. Physical Access Method (PAM). 

The VS DMS access methods are characterized by several factors 
such as: 

a. unit of data transfer. 
b. buffer support; blocking and deblocking support by DMS. 
c. physical I/0 support provided by DMS. 
d. file-organization dependence. 

7-2 



The following pages within this section describe each of these 
access methods in detail for disk devices and disk files. Other 
files (on other devices) are also processed under one or more of 
the access methods. The other devices are described separately. 

The pages at the end of this section (Notes on VS Disk Files) 
describe certain specific UFB and FDR (file label) fields that 
may be of interest to the assembly language programmer. Other 
topics such as NOVTOC diskettes are also noted. 

7.2.1 Record Access Method (RAM) - Disk Files 

The unit of data transfer is the logical record as indicated in 
UFBRECSIZE. This Access Method is the normal (default) access 
method assigned by SVC OPEN. Files are accessed in a file 
organization dependent manner. This access method includes: 

a. random and sequential access of consecutive 
(fixed length or variable length records). 

files 

b. sequential and keyed access of consecutive files (data 
records). 

c. indexed file sequential creation. 

d. sharing files for update. 

Open Modes supported under RAM 

a. Output mode - This mode supports the creation of a 
file. Records are presented by the user program in 
sequential order. For indexed files, each record must 
have a greater key value than the preceding record. 
The WRITE function request causes the record from the 
user-record-area to be the last record in the file. 

The following modes are used with existing files. 

b. Input mode - This mode supports the retrieval of 
records from a file. Records may be read (random, 
sequential or keyed) but may not be modified. Multiple 
user-programs can access the same file in Input mode 
since no modification is allowed. 'llle READ function 
request causes a record from the file to be read into 
the user-record-area. 

7-3 



c. Input/Output mode (I/O mode) This mode supports 
retrieval and modification of records in a file. Only 
one user-program (at a time) can access a particular 
file in I/0 mode. The REWRITE function request is 
available to rewrite the (updated) record from the 
user-record-area to the file. The REWRITE fllnction 
request accesses the last record read from the file by 
the program; REWRITE must be preceded by a READ(HOLD) 
function request. If the file is an indexed file, 
records may also be added (keyed , WRITE) or removed 
(DELETE) from the file in I/0 mode. 

d. Extend mode - This mode supports the addition of new 
records to the end of an existing disk file. Only one 
user program (at a time) can access a particular file 
in Extend mode. SVC OPEN positions the logical record 
pointer so that all WRITE function-requests add records 
to the end of the file. Extend mode is valid for 
consecutive files only (for indexed files, I/0 mode 
provides the ability to add records to the files). 

e. Shared mode - This mode supports all the functions 
supported in I /0 mode except READ NODATA. However, 
shared mode also provides an update-interlock system 
which allows multiple user-programs to update the same 
file concurrently. DMS grants exclusive control of a 
record to a program to insure that concurrent file 
updates are processed correctly. DMS provides all 
shared file support. 

7-4 



FUNCTION REQUESTS PROVIDED FOR DISK FILES UNDER THE DMS RECORD 
ACCESS METHOD 

FILE ORGANIZATION - CONSECUTIVE 
RECORD FORMAT - FIXED LENGTH RECORDS 

In~ut Output I/O Extend Shared 
Read x x 
Write x x 
Rewrite x 
Start x x 
Delete 

FILE ORGANIZATION - INDEXED 
RECORD FORMAT - FIXED LENGTH RECORDS 

Input Output I I/0 Extend Shared 
Read x I x x 
Write x I x x 
Rewrite I x x 
Start x I x x 
Delete I x x 

FILE ORGANIZATION - CONSECUTIVE 
RECORD FORMAT - VARIABLE-LENGTH RECORDS* 

Input Output I/0 Extend Shared 
Read X X 
Write X X X 
Rewrite X 
Start X X X X 
Delete 

* Shared mode is supported for consecutive log files. (A 
consecutive log file must have variable-length records.) 

7-5 



File Organization Definitions 

Consecutive Disk File 
Fixed Length Records (Blocked) 

Disk Block (2K) 

I Record 1 I Record 2 I Record 3 I Record 4 I /// 

'Ib.e fixed-length records are blocked; block size is 2048. Each 
block in the file except (possibly) the last block contains the 
same number of records. Records do not span blocks. A 2K disk 
block contains unused space at the end if the record size is not 
an even divisor of 2K. 

Record Format 

Record length is fixed. The file label contains fields 
indicating the number of records in the file (FDRlNRECS) and the 
number of records in the last block of the file (FDRlEREC). 

The length of the record is a fixed value (UFBRECSIZE) • This 
value is set when the file is created (OUTPUT mode) • This value 
is held in UFBRECSIZE and used for data transfer between the 
user-record-area and the file when an existing file is processed 
under RAM. Valid record length is 1-2048. 

Indexed Disk File 
Fixed Length Records (Blocked) 

Disk Block (2K) 

BL Record 1 Record 2 Record 3 II/ Data 
Level 
Chain 

Record Format 

Key 
field 

fixed length record 

Records are fixed length. Each record has a key field upon which 
the records are ordered. The record length can range from 1-2040 
bytes. The key length can range from 21-55 bytes. The key 
position can range from 1 up to any value such that the whole key 
fits within the length of the record. The key position field is 
nwnbered from 0 inten1ally (UFBKEYPOS is numbered from 0) • 

The file label contains a record count (FDRlNRECS) • 

7-6 



An indexed file contains both data blocks and index blocks. The 
index blocks form a tree structure by which data blocks may be 
located. Only DMS routines manipulate index blocks. Under RAM, 
the user program has access only to data records. Index blocks 
have a chain field and a block prefix (BL) similar to data 
blocks. The block prefix field (BL) is described in the next 
section on variable length records. 

Consecutive Disk File 
Variable-Length Records (Blocked) 

Disk Block (2K) 

BL Record 1 Record 2 Record 3 /Ill/ 

Tile two-byte block prefix (BL) indicates the length of the block 
(i.e. , sum of record lengths plus 2) • DMS blocks records as 
tightly as possible during file creation (OUTPUT mode). 

Record Format 

RL data portion of record 

Tile two-byte record pref ix indicates the length of the record 
(i.e., data portion of record plus 2). UFBRECSIZE at SVC OPEN 
(OUTPUI' mode) is the maximum record size; this value is stored in 
the label. Valid record length is 1-2024. 

For OUTPUT mode, UFBRECSIZE indicates the length of the record in 
the user-,record-area. The record prefix (RL) is not included in 
this length; the record prefix is not present in the 
user-record-area. UFBRECSIZE may be varied by the user program 
in order to write different sized records. 'Tile data management 
system supplies the BL and RL prefixes. 

For existing files, UFBLRECSAVE equals the maximwn record size 
(from the file label) • UFBRECSIZE is set by DMS to equal the 
length of the record in the user-record-area after each read. 
Tile RL is not moved to the user-record-area (i.e., UFBRECSIZE is 
set to RL2). There are two minor restrictions for variable 
length consecutive files (as opposed to fixed lengths); 

1. Read relative is an invalid function-request for 
variable length consecutive files. The START SKIP and 
START BEGIN function-requests are available for 
positioning within a variable length consecutive file. 

2. The record size (UFBRECSIZE) 
REWRITING a record (flagged 
request). 

7-7 

may not be changed when 
as invalid function-



Compression Option 

A compression option is available for variable length con
secutive files. This option can allow significant saving in disk 
space. The option is requested when the file is created. In this 
case, the data portion of the record is stored in compressed for
mat (as described by the COMPRESS and EXPAND machine instructions). 

Record Format 

RL compressed data I 
I 

'Ille use of the compress option is transparent to the user program 
under RMfk; however, the REWRITE function is not allowed for 
consecutive files with compressed variable-length records. DMS 
performs compression on OUl'PUT (WRITE) and expansion on INPUT 
(READ) • The value of UFBRECSIZE, UFBLRECSAVE and the file label 
is always the length of the noncompressed record (i.e., for a 
READ, UFBRECSIZE is set to the noncompressed length regardless of 
the value of RL). For compressed format, the maximum record size 
(established at file creation) is 2024. 

NOTE: 

Print records are stored as compressed variable 
length records when directed to a disk file. 

* If Read Nodata is used, the user receives a pointer to the 
compressed data portion of the record (in a buffer). In 
this case, the user program must expand the record directly. 

Indexed Files with Variable Length Records 

The indexed filed organization is available with variable length 
records. In this case, UFBRECSIZE is used to indicate the length 
of the record read for existing files. The ful 1 range of 
function-requests available with indexed files (fixed-length 
records) is also available for indexed files with variable-length 
records. The compress option is also available. The length of 
the record may be changed when rewriting a variable-length record 
to an indexed file. DMS will handle any index updating required. 

Function-Requests and Function-Request Modifiers - RAM 

There are five DMS function-requests (READ, WRITE, REWRITE, 
DELETE, and START) . Macroinstructions have been provided for 
these function-requests. The macroinstructions also provide for 
all the possible function-request modifiers. The preceding charts 
illustrate which of these function-requests are available under 
RAM for a particular Open Mode/Disk File Organization combination. 

7-8 



Read (NEXT, RELATIVE RECORD NUMBER or KEY) - The indicated record 
is read into a system buffer by DMS if not already present. The 
record is moved from the buffer to the user record area 
(addressed by UFBRECAREA). For fixed-length records> the record 
length is taken from UFBRECSIZE. 

Read Modifiers 

a. NEXT - The desired record is the next record in the 
file. After OPEN, READ NEXT yields record number 1. 

b. REL - The desired record is indicated by the relative 
record number in the fullword addressed by the 
UFBKEYAREA. REL is only available for consecutive 

files with fixed length records. 

c. KEYED - '!he desired record is indicated by the 
starting at the location addressed by UFBKEYAREA. 
length of the key is UFBKEYSIZE. KEYED is 
available for indexed files. 

key 
The 

only 

d. NODATA - The record is not moved 
instead, the address of the record in 
returned in general register 1. 

to UFBRECAREA; 
the buffer is 

e. HOLD - The HOLD modifier is used in I/0 or Shared mode 
to indicate that the record just read may be rewritten 
or deleted. In this case, DMS will retain the current 
block for the record so that the rewrite or delete may 
occur. The HOLD modifier is required in all cases 
where the record is to be rewritten. 

Read File Status With UFBEODAD Return 

The following file status conditions cause a return to the 
program at the address in UFBEODAD. These conditions arise when 
the indicated record cannot be found. 

FS='lO' 

FS='23' 

Write 

End-of-data. A READ NEXT function request 
attempted to read past the end of the file. 

Record not found. A READ REL function supplied a 
relative record nlllnber equal to zero or greater 
than the highest record number in the file; or a 
READ KEYED function-request supplied a key value 
which was not equal to any key value in the file. 

For OUTPUT mode (file creation) or EXTEND mode, the record is 
moved from the user-record area to the file. The record be
comes the last record in the file. For indexed files, the key in 
the record written must be greater than the preceding key value. 

7-9 



For indexed files in I/0 or SHARED mode, the record is moved from 
the user-record area to the file. The key field of the record 
must not be the same as a key already in the file. There are no 
modifiers for the write-function request. 

Write file status with UFBEODAD return. 

The following file status conditions may occur when using the 
WRITE function-request to process an indexed file under RAM. 

FS='21' Record key out of sequence - OUTPUT mode 

FS='22' Duplicate key - I/O or SHARED mode 

FS='24' End of primary extent--OUTPUT mode. Insufficient 
space was provided; the file may be CLOSED; 
additional records may be added in I/0 mode. 

Rewrite 

The last record must have been read with the HOLD option. The 
record is moved from the user-record area to the file. For 
variable length records, the length must be unchanged. For 
indexed records, the key field of the record must be unchanged. 
There are no modifier values for rewrite. 

Delete 

'!he last record must have been read with the HOLD option. The 
record is removed from the file (indexed files only) • The 
content of the user-record area is not used. 

'!he start function can be used for three different purposes under 
RAM: 

a. Switch Processing Mode--this option is available for 
consecutive files, fixed length records, open mode of 
OUTPUT or EXTEND. The modifiers are START OtrrPUT (sets 
the number of records in the file to zero), START 
EXTEND (allows the file to be extended by subsequent 
WRITES) or START 1/0 (allows READ and REWRITE 
operations after set ting temporary end-of-file 
indicator); functions available are READ, REWRITE, and 
START OUTPUT and START EXTEND. 

If Start I/O is used, an additional option is available. If 
UFBVAM is set in the modifier byte, then the Access Method will 
be switched. If switching from BAM to RAM, UFBNRECS may be 
provided to allow exact setting of the end-of-file indicator. 

7-10 



b. Position to a Record within the File--this is the common 
usage of START under RAM. Positioning within an indexed 
file is accomplished using modifiers EQUAL,· GREATER 
THAN, or GREATER THAN OR EQUAL. Positioning within a 
variable-length consecutive file uses START SKIP where 
the word addressed by UFBKEYAREA indicates a signed 
number of records to be skipped. START BEGIN is also 
available to position to the first record of a consec
utive variable-length file. The HOLD modifier is 
available for START on an indexed file. The generic 
keysize feature (UFBGKSIZE) is also available with the 
START request on an indexed file. 

c. HOLD a file, or release a file or record from HOLD 
status (shared mode - ignored in IO mode). 

START HOLD acquires protected update (HOLD) rights to the entire 
file. This HOLD status is released by START RELEASE, which 
removes any file or record from HOLD status for the issuer. 

Start Function UFBEODAD Retunis 

These UFBEODAD returns may occur when START is used to position 
within a file. 

FS='lO' 

FS='23' 

FS='24' 

end-of-file. End of file can occur when the value 
in UFBKEYAREA for START(SKIP) causes the end-of-file 
(positive value) or start-of-file (negative value) 
to be exceeded. 

record not found when START EQUAL issued. 

record not found when START (GREATER THAN) or START 
(GREATER 11lAN OR EQUAL) issued; key value is greater 
than any key in the file. 

Notes for Record Access Method (RAM) 

1. File size specification for file creation (OUTPUT MODE): 
The amount of disk space allocated for a file is deter
mined by DMS. DMS uses a record number count supplied by 
the user program (UFBNRECS). For indexed files, DMS also 
calculates the additional space required for the index. 
Extra space can be released when the file is closed. 

2. Buffers - The user program can specify the buffer size 
to be allocated under RAM. A large buffer size can 
represent a significant performance improvement for 
sequential access of the file. The buffer size is 
supplied in UFBBUFSIZE before SVC OPEN. The buffer size 
must be a multiple of 2K (otherwise the default size is 
used) • The buffer size may also be adjusted .by DMS 
depending on the maximum data transfer size supported by 
the device. Default buffer size is 2K. 

7-11 



3. Record size at SVC OPEN (NonOlITPUT mode) - For existing 
files, UFBRECSIZE is used to request a file with a 
specific record size. UFBLRECSAVE is filled in from 
the record size field in the file label. If 
UFBRECSIZE = 0 at SVC OPEN, the field is simply filled 
with the value from the file label. 

4. Anticipatory buffer priming is automatically performed 
under RAM. Also, sequential rewrites (or deletes) are 
blocked. 

7.2.2 Block Access Method (BAM) - Disk Files 

The unit of data transfer is the physical disk block; the length 
of a disk block is always 2K (2048 bytes). This Access Method 
can be selected by setting UFBFlBAM before SVC OPEN. Files are 
accessed in a file-organization-independent manner. This access 
method supports: 

a. random or sequential access of any disk 
relative block number in file (from 1). 
transfer is 2K bytes. 

file using 
The unit of 

b. creation of new disk files by copying existing disk 
files in a file-organization-independent manner. 

c. user program blocking or deblocking of records. 

The Open Modes supported under RAM are also supported under BAM. 
The only significant difference is the unit of data transfer 
(always 2K under BAM). 

FUNCTION REQUESTS PROVIDED FOR DISK FILES UNDER THE DMS BLOCK 
ACCESS METHOD 

FILE ORGANIZATION - ANY 
RECORD FORMAT - ANY 

lnQUt OUtQUt I/0 ,.,Extend 
Read x x 
Write x x 
Rewrite x 
Start x x 
Delete 

'ic - Extend Mode is not supported for indexed 

7-12 

Shared 

files under BAM. 



Function-Requests and Function-Request Modifiers - BAM 

'lll.e preceding chart indicates the function-requests available 
under BAM for a particular open mode. The Block Access Method 
allows the user program to access any disk file in a file 
organization independent manner. 

Read - The indicated 2K disk block (NEXT or RELATIVE BLOCK 
NUMBER) is read into a system buffer by DMS if not already 
present. The block is moved from the buff er to the user-record 
area as addressed by UFBRECAREA; the length is 2048 bytes. 

Read Modifiers 

a. NEXT - The desired block is the next block in the 
file. After SVC OPEN, READ NEXT yields block number 1. 

b. REL - The desired block is indicated by the relative 
block number in the full-word addressed by UFBKEYAREA 
(from one). 

c. The NODATA and HOLD modifiers are available under BAM 
in the same way as described in RAM. (The KEYED 
modifier is not used under BAM.) 

Read File Status Using UFBEODAD Return 

The end of file (FS='lO') and record not found (FS='23') 
conditions occur under BAM the same as they occur under RAM. 

Write - The 2K block is moved from the user-record area 
file. The block becomes the last block in the file. 
no modifiers; the UFBEODAD return is not taken for 
function-request under BAM. 

to the 
There are 

a write 

Rewrite - The last block must have been read with the HOLD 
option; i.e., the preceding function-request must have been a 
READ with the HOLD modifier. The block is moved from the user 
record area to the file. No modifiers are used with the rewrite 
command. 

Start Tile start function is used to switch processing modes in 
BAM. This function is available in OUTPUT or EXTEND modes. The 
modifiers allowed a START OUTPITr, START EXTEND and START I/O. No 
UFBEODAD returns are taken when switching modes. 

7-13 



Notes for Block Access Method (BAM) 

1. File size specification for file creation (Output 
Mode): The amount of disk space to be allocated for a 
file may be specified using a record number count (from 
UFBNRECS) as in RAM. However, under BAM, the user 
program may optionally specify file size as a number of 
2K blocks (UFBNBLKS) by setting UFBF4BLKAL. In this 
case, UFBNBLKS contains the number of blocks to be 
allocated; UFBNRECS is not used for disk space allo
cation. If UFBNBLKS is used and sufficient disk space 
is not available, the program will be cancelled (unless 
an OPEN EXIT has been supplied) • The program will also 
be cancelled if UFBF4BLKAL is set and UFBNBLKS is zero. 

2. Buffers - The user program can specify the buffer size to 
be allocated under BAM by supplying an appropriate value 
in UFBBUFSIZE before SVC OPEN. A larger buffer can 
improve performance for sequential access of the file. 

3. Record Size at SVC OPEN - For Output mode, the value of 
UFBRECSIZE will be placed in the file label. For other 
modes, UFBRECSIZE may be used to specify the particular 
record size desired. After SVC OPEN, UFBLRECSAVE 
contains the record size (from the file label) ; 
UFBRECSIZE is set to 2048 after OPEN. 

4. Anticipatory buffer priming is automatically performed 
under BAM. 

5. Setting Number of Records in File at Close The Block 
Access Method operates in a file organization 
independent manner. Therefore, at SVC CLOSE, additional 
information may be required in order to update the file 
label correctly for OUTPUT or EXTEND mode. 

The number of the last block in the file is maintained by DMS 
UFBEBLK. The additional information required at CLOSE 
dependent on the file organization. 

in 
is 

a. Fixed Length Consecutive - The total record count 
(UFBNRECS) should be supplied (this includes the number 
of records in the last (perhaps partial) block). The 
default is a DMS supplied count based on a full last 
block. The user supplied value (UFBNRECS) is ignored if 
it is inconsistent with UFBEBLK. 

b. Variable Length Consecutive - The record count should be 
supplied (UFBNRECS). Otherwise, DMS will set a record 
count assuming that all records are maximum size. This 
approximate DMS default value is only used if no other 
value has been supplied (i.e., UFBNRECS=O). 

7-14 



c. Indexed Files - The following fields are required before 
SVC CLOSE: UFBEREC , UFBNRECS , UFBHXBLK , UFBPTRD, and 
UFBDABLK. These values should be taken from the Input 
file for the file copy application. (Other than the 
file copy application, it is not recommended that 
indexed files be created under BAM.) 

7.2.3 ~sical Access Method (PAM) - Disk Files 

The unit of data transfer is defined by the user-program. No 
buffer support is provided by PAM. This Access Method can be 
selected by setting UFBFlPAM before SVC OPEN. Files are accessed 
in a file organization independent manner. 'Ibis access method 
supports: 

a. random and asynchronous access of any disk file. 

b. use-initiated physical I/0 operations of more than one 
physical disk block. 

c. user-implemented buffering strategies. 

The following Open Modes are supported under PAM: 

a. Output mode - This mode supports the (sequential) 
creation of a file. The user-program controls the units 
of data transfer; the block nwnber in file is adjusted 
by DMS for the length transferred. Tite data is written 
to the end of the file. 

b. Input mode - This mode supports retrieval of data from 
the file. Data retrieval is random; the user-program 
supplies both the data length and the block number in 
file. The user-program may pass through the file 
sequentially by updating the block number appropriately. 

c. I/0 mode - This mode supports retrieval and modification 
of records in the file. The REWRITE function is random; 
the user-program supplies the data length and block 
number in file. In PAM, the REWRITE function need not 
be preceded by a read function. 

FUNCTION-REQUESTS PROVIDED FOR DISK FILES UNDER THE DMS PHYSICAL 
ACCESS METHOD 

FILE ORGANIZATION - ANY 
RECORD FORMAT - ANY 

Input Output 
Read x 
Write x 
Rewrite 
Start x x 
Delete 

I/0 Extend Shared 
x 

x 
x 

7-15 



Function-Requests and Function-Request Modifiers - PAM 

'Tile function-requests used in the Physical Access Method have two 
common characteristics: 

a. The data length desired is set in UFBBLKSIZE. 
UFBBLKSIZE is 2 bytes long; it is considered as a 
positive number. The data length specified must be a 
multiple of 2K. After the data transfer is initiated, 
UFBBLKSIZE is set to the data length actually 
transferred. The data length actually transferred may 
be less than the requested data length due to 
end-of-file truncation, end-of-extent truncation or 
end-of-cylinder truncation. 

b. The user-program must issue a START(WAIT) 
request in order to wait for I/0 completion. 
not wait for I/0 completion in PAM. 

function
DMS does 

Read - The data as indicated by the block number in the fullword 
addressed by UFBKEYAREA (block number from 0) and the contents of 
UFBBLKSIZE (data length) is read into the user-record-area 
addressed by UFBRECAREA. UFBBLKSIZE is adjusted, if necessary, to 
reflect the length of the actual data transferred. There are no 
modifiers. UFBEODAD returri with FS='23' is taken if the starting 
block number is beyond the end of the file. 

Write - The indicated data is written to the end of the file. 
UFBBLKSIZE is updated to indicate the length of the data 
transfer. DMS also updates the next block number for the data 
blocks transferred. After OPEN, the block number is O. There are 
no modifiers. 

Rewrite - The data as indicated by UFBRECAREA and UFBBLKSIZE is 
written to the file starting with the block number from the word 
addressed by UFBKEYAREA. UFBBLKSIZE is then adjusted to reflect 
the length of the data actually transferred. There are no 
modifiers. UFBEODAD returri with FS=' 23' may be taken for Record 
Not Found (as in Read). 

7-16 



Start - The start function is primarily used with the WAIT 
modifier to wait for I/0 completion for the preceding READ, WRITE 
or REWRITE command. In OUTPUI mode , the modifiers OUTPUT, EXTEND 
and I/O are available for mode switching (as in the other access 
methods). 

Notes for Physical Access Method (PAM) 

1. File size specification for file creation (Output 
mode) . The amount of disk space to be allocated may be 
specified as in BAM (record count or block count). 
Record size at SVC OPEN is also handled as in BAM. 

2. PAM uses no buffers, all I/0 is performed using the 
user-record-area directly. 

3. Setting the number of records in the file at SVC Close 
requires the same file-organization-dependent 
information as in BAM. 

7.2.4 Notes on 2200VS Disk Files 

1. File labels - The VTOC holds the file labels (File 
Descriptor Record FDR) for all the files on a disk 
volume. The FDR fields defined below are of particular 
interest for DMS routines. 

a. FDRlRECSIZE size of logical record. This field 
indicates logical record size for fixed-length 
records. For variable-length records, this field 
is the maximum record size for the file. This 
field is only set at file creation. 

b. FDRlBLKSIZE - blocksize; always 2048. 

c. FDRlNRECS - record count. This field indicates the 
nlUllber of logical records in the file. This field 
is not used by DMS as the end-of-file indicator. 

d. FDRlEBLK - last block in file. This field contains 
the block number (in file from 0) of the last used 
block in the file. This field is set for the last 
block number in file regardless of the file 
organization. This field (in conjunction with 
FDRlEREC if necessary) is used by DMS as the end of 
file indicator. 

FDRlEBLK is a sufficient end-of-file indicator for 
variable-length records since in this case the end-of-block 
condition is determined by the contents of the block. Indexed 
files use the data chain for end-of-file detection; FDRlEBLK 
(plus 1) serves as a free space pointer in this case. 

7-17 



For fixed-length records, FDRlEREC is used as a count of the 
records in the last file block; i.e., for fixed-length records, 
the end-of-file indicator is FDRlEBLK with FDRlEREC. 

FDRlEREC is 1 for variable-length records. For indexed files 
FDRlEREC is used as an index level count (used by DMS only). 

FDRlNRECS, FDRlEREC an FDRlEBLK are always updated as a group by 
CLOSE. They are updated under RAM for OUTPUT and EXTEND modes 
and for indexed file SHARED and I/0 modes. 

FDRlRECSIZE is never changed by SVC CLOSE. DMS does not support 
the use of different logical record sizes under RAM. FDRlRECSIZE 
always indicates the noncompressed maximum record size for files 
containing compressed variable-length records. 

2. UFB fields - The following fields are availble to the 
user-program for inspection during DMS processing. The 
uses of other UFB fields should not be assumed. For 
disk files, no fields other than the modifier bytes, 
UFBRECAREA, UFBKEYAREA, and the error addresses should 
never be changed by the user program while the file is 
open (except for setting required yalues in certain 
fields inunediately before closing the file when using 
BAM or PAM) • Also, UFBRECSIZE and UFBGKSIZE (indexed 
files) are modifiable in certain circumstances. 

a. UFBLF, UFBLFMOD - these fields contain the last 
function and last modifier value. 

b. UFBLRECSAVE - this field contains FDRlRECSITE after 
a file is OPENED. 

c. UFBRECSIZE this field contains the record size 
for fixed-length records under RAM. This field 
contains the current record length under RAM for 
variable-length records. This field contains 2048 
under BAM. 

Note that UFBNRECS is not always maintained during DMS 
processing. Also, UFBNRECS is always set to 0 by SVC OPEN for 
OUTPUT mode. UFBNRECS is available after OPENING an existing 
file (equals FDRlNRECS). UFBRES3 contains the UFBNRECS value 
(used for space allocation) after SVC OPEN OUTPUT MODE. 
(UFBRES3 may be re-used during DMS processing.) 

7-18 



3. Access Method notes - VS disk files can be accessed or 
created by any access method. (However, creation of an 
indexed file under BAM or PAM is generally restricted to 
the file copy case, since no index building support is 
supplied.) Selection of an Access Method will gener
ally depend on the unit of data transfer desired or the 
file-organization support desired (e.g., indexed files 
under RAM) • RAM provides the fullest DMS support. BAM 
can be used to advantage for consecutive files to reduce 
DMS overhead by performing user-program blocking and de
blocking. Significant sequential performance improve
ments may be accomplished in RAM or BAM by requesting a 
larger buffer at OPEN. PAM offers the most flexibility 
and the least DMS support; it is recom- mended primarily 
when data movement is to be minimized or when a flexible 
user-supported buffering scheme is desired. 

4. NOVTOC diskettes - 'Ibis section has dealt with disk files 
which reside on a volume with a VTOC (i.e. , disk files 
which have an associated disk file label). The diskette 
without a VTOC is used primarily as a meditun for exchang
ing information between the VS system and other computer 
systems. The DMS support for NOVTOC diskettes includes 
all three access methods. In addition~ the user-program 
can select any logical record size from 1-2048 since 
there is no file label information available. The 
following restrictions do notapply to NOVTOC volumes. 

1. indexed files are not supported 
2. extend mode and shared mode are not supported. 

In order to have the full range of VS system support and utility 
support, it is recommended that NOVTOC volumes be copied to 
standard disk files before processing rather than being processed 
in place. 

5. Specification of File Organization and Record Size at 
SVC OPEN. 

The fields UFBFORG and UFBRECSIZE may be supplied by the 
user program in order to request a specific file organ
ization or record size. If these fields are zero, then 
any file o~ganization or record size is allowed. These 
fields are both required (non-zero) for OUTPUI' mode in 
which case the values are stored in the file label. 

The following file organizations are supported. (The 
only valid organizatons allowed in the file label.) 

a. Consecutive file; fixed-length records UFBFORGCONSEC. 

b. Program file; fixed-length records as described in 
VS Object fonnat (1024 nominal record size) 
UFBFORGCONSEC + UFBFORGPROGRAM. 

7-19 



c. Consecutive file; variable length records 
UFBFORGCONSEC + UFBFORGVLEN. 

d. Indexed files; fixed records UFBFORGINDEXED. 

e. Indexed files; variable length records 
UFBFORGINDEXED + UFBFORGVLEN. 

f. Print file; variable length records (compressed) 
UFBFORGCONSEC + UFBFORGVLEN + UFBFORGPRINT. 

Notes on File Organization 

a. For OUTPUT MODE, if UFBFLAGSCOMP is set (i.e., 
compression option) , then SVC OPEN will force 
UFBFORGVLEN=l so that a file with compressed variable 
length records will be created. 

b. For nonOtITPUT mode, any consecutive file will be 
accepted if UFBFORG = UFBFORGCONSEC at SVC OPEN. 

c. For any mode, if UFBFORG = UFBFORGCONSEC + UFBFORGPRINT, 
SVC OPEN will set UFBFORGVLEN and UFBFLAGSCOMP in order 
to generate a standard print file. (UFBFORGPRINT 
indicates that the user program has supplied a two-byte 
print control field for each record.) 

Note 
FDRlORGCONSEC + FDRlORGPRINT is not a valid value 
for the file label (FDRlORG). 

The following list indicates the valid range of values for 
UFBRECSIZE when a file is being created in OUTPUT mode. (These 
same values also apply when UFBRECSIZE is specified at SVC OPEN 
for nonOUI'PUT mode.) 

a. Consecutive file; fixed-length records 1-2048. 

b. Indexed file; fixed-length records 1-2040. 

c. Variable length records with or without the compress 
option - 1-2024 (represents noncompressed size). 

The compress option may be set using UFBFLAGSCOMP when 
creating a file in OUTPUT mode. This flag is ignored for fixed 
length records. This flag is not considered to be part of the 
file organization. 

7-20 



7.3 2200VS INDEXED FILE SUPPORT 

This section describes 2200VS Indexed Files and the access level 
support provided by the 2200VS Data Management System (DMS) • 
Indexed files provide efficient sequential access and random 
access by primary key. 'Ihe record fonnats available are fixed 
length, variable length, and compressed. Tile topics covered in 
this section are: 

Indexed File Creation 
Accessing an Existing Indexed File 
Buffer Options for Indexed Files 
Indexed File Structure 
Functional Overview of Alternate Indexed File Support 
Alternate File Error Log 
Overview of Indexed and Alternate Indexed File Structures 
Internal DMS Record Formats for Alternate Indexed Files 
Shared Mode 
Log Files 
Advanced Sharing (Multiple Resources) 
Detailed Functional Overview for Shared Mode 
Summary of START Functions 

This section describes file access using the Record Access Method 
(RAM). It is intended as a detailed guide to 2200VS DMS support 
of Indexed Files. '!his section also includes descriptions of 
actual 2200VS file structures. While an in-depth understanding 
of the file structure is not required to effectively access 
indexed files, the sophisticated programmer should be able to use 
the file structure information for performance and packing 
considerations and for lowlevel debugging. 

Indexed File Creation 

An Indexed file is created using OUTPur mode. 'Th.e number of 
records to be supplied in OUTPur mode is used for initial file 
allocation. There is no restriction on the number of records 
which may be added later; also, no additional space for file 
expansion need be included at file creation. 'Th.e format of a 
record in an indexed file is: 

Primary Key Field 

IPositionlSizel 

Data 
Record 

Primary key size and position is detennined by the user. This 
information is stored in the file label. All records in the file 
must have a unique primary key value (duplicates not allowed) • 
(For variable-length records, the minimwn record size = position 
plus key size.) Primary key size can be from 1-255 bytes. 
Primary key position can be from 1 up to the maximum value (MAX = 
Record size minus key length). If data records are compressed, 
it is somewhat advantageous to have the Primary Key position be 
near the beginning of the record. 

7-21 



Records are added to the file in OUTPUT mode using the WRITE 
function. Each record must have a higher primary key value than 
the preceding record. 1he records are blocked and written to the 
file in OUTPUT mode. (The low-level index is also built as 
records are added; the full index structure is created only when 
the file is CLOSED (OUTPUT mode) • This last feature (index 
creation at CLOSE) is used only in OUTPUT mode, i.e., in IO or 
SHARED mode the index structure is maintained for each 
function-request and no additional index update at all is 
required at CLOSE for these modes. 

OUTPUT mode provides very fast sequential loading (creation) of 
an Indexed file. However, it is possible to create an indexed 
file containing no records (record count = O); in this case, 
records could be later added randomly in IO or SHARED MODE. The 
WRITE function-request in OUTPUT mode is significantly faster 
than the dynamic WRITE request available in IO or SHARED modes. 

A file packing option is available in OUI'PUT mode. This option 
allows data blocks and index blocks to be filled to 100% 
capacity. The default is 100% packing. Loose packing may allow 
subsequent random record additions to be processed without 
requ1r1ng a block to be split. Loose packing also has a slight 
effect on efficient allocation of Data Base Key values (to be 
described later). It should be noted that loose packing is never 
required and that loose packing has no significant effect on the 
number of records which may be added to the file at a later time. 

Accessing an Existing Indexed File 

An existing Indexed file can be accessed in INPtrr, IO or SHARED 
MODE. The functions available in INPUT MODE are: 

READ NEXT (next in primary key sequence from current 
position) 

READ KEY (primary key value supplied) 

START (KEY) (modifiers and generic keysize options; START 
KEY used to establish file position for READ 
NEXT) 

7-22 



These functions allow records to be read; record modification is 
not allowed. 

The additional functions available in IO MODE are: 

REWRITE 

DELETE 

WRITE 

must follow READ w/HOLD 

allows current record to be rewritten or deleted 

add record to file; record has unique primary 
key value. 

'nle functions available in SHARED mode are the same as those 
available in IO mode. 

The HOLD option for the READ function - READ NEXT and READ KEY 
may be used with the HOLD modifier (i.e., READNEXTHOLD and 
READKEYHOLD). The HOLD modifier bit has no effect in INPUT 
MODE. In IO mode the HOLD bit has two effects: 

1. A REWRITE or a DELETE may be issued for this record. 

2. The buff er containing the record wil 1 not be used for 
sequential buffer priming. 

Buffer Options for Indexed Files 

When an indexed file is OPENED buffers are assigned; these 
buffers are used by DMS when perfonning the user's function
requests. The three buffer options available are discussed here. 

1. Fixed Buffer Strategy - This strategy is used if 
neither of the two options below are indicated (i.e. , 
this is the default strategy) . Two buffers are 
allocated. For Read functions, one buffer can hold the 
Index ROOT block while the other is used for subsequent 
index levels and the data block itself. The two 
buffers are used effectively when the Block Split 
operation is required for file growth. 

2. Buffer Pool - This strategy may be selected by the 
user. The user creates a Buffer Control Table (BCTBL 
using BCTGEN) which is filled in by OPEN and maintained 
by DMS. All indexed files per task may be accessed 
from the same buffer pool. Also, more than one buffer 
pool can be used within the same program. 

A buffer pool consists of a group of 3 to 60 buffers; 
each buffer is 2048 bytes (2K) and is acquired from the 
Segment 2/task using GETBUF. TI1e BCTBL requires 56 
bytes/buffer for buffer management. 

7-23 



lhere is no restriction of the order of opening and 
closing file$ using a buffer pool. 

lhe Buffer Pool is managed using an LRU approach; all 
write operations are initiated directly (rather than 
being initiated at buffer replacement time, e.g. , 
pageout by page). lhe internal features of DMS buffer 
pool maintainence are adjusted for performance in an 
interactive environment. 

3. Large Buffer Strategy - This strategy may be selected 
by the user. In general, two buffers are assigned; 
however, one of these is a large buffer (large buffer 
size can be from 41< to 18K) • This strategy is 
available for INPUT mode. For INPUT mode and 
sequential access, this strategy can save many IO 
operations. 

these three strategies may be combined within a program if 
required. The use of buffer pooling for general indexed file 
random operations will certainly be helpful in significantly 
reducing the total number of 1/0 operations. The sharing task 
also makes use of the buffer pool to provide access to a number 
of SHARED files with efficient perfonnance. 

Indexed File Structure 

Indexed files contain a number of 2K blocks. However, the 
relationship between blocks is established using chain fields and 
pointer fields. (In an indexed file, block (n) and block (n+l) 
are not necessarily accessed in order.) 

Logical View of Blocks in a sample Indexed File 

I 

D D D 

ROOT 
I 

I 

D 

I 

D D D 

The above figure shows 3 levels. The first level is the ROOT 
block. lhe ROOT block is used when a primary key is supplied and 
a record is to be read. In the above figure, the ROOT contains 
POINTERS to 3 low-level index blocks. In turn, each of these 
index blocks contains POINTERS to the lowest level block - the 
structure. These lowest level blocks contain the data records in 
the indexed file. 

7-24 



The ab~ve figure shows 2 index levels and the lowest level of the 
structure (the record level). All blocks on one level are 
chained forward using a 3-byte CHAIN field at the end of each 
block. 

Type I blocks (above) contain index items. An index item 
consists of a key field and a 3-byte pointer to a block on the 
next lower level. The key field in the item is equivalent to the 
highest key in the block pointed to. 

Functional Overview Of Alternate Indexed File Support 

Introduction 

The alternate indexing facility for Wang 2200VS Indexed 
Files allows the creation of up to sixteen (extendable to 32 or 
64) alternate access paths to records in a file. A program may 
specify on WRITE and REWRITE functions the access paths through 
which a particular record is to be accessible, and on READ and 
START functions may specify the access path to be used. 

Each al temate access path is implemented as a 
tree-structured index defined on a field (starting position and 
length) within the data record, and referenced within the file's 
label (and by programs) as an ordinal between 1 and 16. The Data 
Management System maintains a map with each record of the file, 
indicating the access paths through which that record may 
currently be accessed. 

New Fields for DMS Functions (UFB and AXDl) 

In discussing the Data Management functions, fields have 
been added to the User File Block; also a new block (AXDl) is 
used. The AXDl is described in detail later; for the purpose of 
this section, it can simply be regarded as a UFB extention-type 
block. 

(1) AXDlMASK - A two-byte field into which a bit map is 
placed as a result of READ functions, indicating the currently 
available access paths for the record read. This field is to be 
set by the program before REWRITE or WRITE requests to indicate 
the access paths to be made available for accessing the record 
written. (A variable mask size from 1-8 bytes is a planned 
additional feature.) 

(2) AXDlALTINX - A one-byte field containing a binary 
nwnber from O to 16. This indicates the access path (index 
structure) to be used on READ and START functions. Zero (0) 
indicates the primary index structure. One (1) through sixteen 
(16) select alternate index structures. The field contains 0 
when the file is opened. 

7-25 



(3) UFBALTCNT - One byte, containing in binary the number 
of altetnate index structures which can be processed using this 
User File Block. A file with more al temate access paths than is 
specified in this field will require that the Data Management 
System allocate additional storage (in the requestor's segment 2 
buffer area) at OPEN time in which to keep alternate index 
structure descriptions. Compilers are expected to supply a 
proper value in this field and in UFBALTPTR, and to reserve 
sufficient space at the location addressed by UFBALTPTR to hold 
the index structure descriptions; they should not rely on the 
Data Management System to allocate buffer space, since that is a 
relatively inefficient use of memory. (Also see notes on 
AXDl-AREA at end of chapter.) 

(4) UFBALTPTR - Three-byte address of an area (User File 
Block appendage or other segment 2 area) to contain alternate 
index structure descriptions (from AXDlENTRY). If zero, space in 
the segment 2 buffer area will be allocated. 

DMS Functions 

READ Function 

A READ by key value uses AXDlALTINX to determine the proper 
access path. If the requested record can be found, it is placed 
in the record area. AXDlMASK is set to indicate the available 
access paths to that record. If duplicate key values are allowed 
on the specified access path, all other records with the same key 
value can be retrieved by repeatedly issuing READ NEXT requests. 
AXDlALTINX is unchanged. If the access path specified by 
AXDlALTINX does not exist, an invalid key condition occurs (as if 
the access path existed, but no records were accessible through 
it). 

A READ NEXT uses AXDlALTINX to determine the current access 
path. It reads the next record in sequence by the key field 
associated with that access path. (Immediately after OPEN, this 
is the first record on the primary access path.) AXDlMASK is set 
as for READ by key. The established key of reference access path 
corresponds to the AXDlALTINX path (where AXDlALTINX was set by a 
previous function request). If AXDlALTINX is changed by the 
program between an OPEN, READ, or START, and a following 
READ-NEXT, that READ-NEXT will fail and 'Invalid Function 
Sequence' will be reported in the UFB file-status bytes; in this 
case, the UFB error exit is taken if present. 

Invalid-Key and End-Of-File conditions 
circumstances as for primary key access. 
that if 10 records are accessible through 
access path of a file, End-Of-File status 
more than 10 successive READ NEXT requests on 
no matter how many records are in the file.) 

7-26 

occur under the same 
(Notice, for example, 
the first alternate 
will be set after not 

that access path, 



WRITE Function 

A WRITE request does not use AXDlALTINX, but sets it to 
zero (indicating the primary access path) when the WRITE 
completes. The new record becomes accessible through alternate 
access paths corresponding to the bits on (1) in AXDlMASK. If 
bits not corresponding to any defined access path are set, the 
WRITE operation fails with file status indicating 'Error, Invalid 
Mask' and the error exit is taken. Unless duplicate key values 
are allowed for an access path, an attempt to WRITE or REWRITE 
(IO mode) a record containing such a value results in the same 
file status as for a WRITE with duplicate primary key (22) , and 
the entire operation fails. (The file is not changed.) 

Duplicate key errors for output mode are not detected until 
CLOSE, at which time only the first of the records involved in 
the duplication is recorded in the alternate index structure for 
this access path and the CLOSE proceeds; the file status in the 
UFB is set to 'Invalid Key, Duplicate (22)' and is available 
there for examination by the program after CLOSE (an error-log 
file can be optionally created; this feature is described later). 

REWRITE Function 

REWRITE does not use AXDlALTINX. It affects the current 
record, after READ WITH HOLD. The replaced record becomes 
accessible through the alternate access paths corresponding to 
the bits on (1) in AXDlMASK (as for WRITE). The record is no 
longer accessible through the access paths corresponding to zero 
(0) bits in AXDlMASK. (In this sense, REWRITE is equivalent to 
DELETE followed by WRITE.) The REWRITE operation fails with 
'Invalid Mask' if any invalid mask bits are set (as in WRITE), or 
with 'Invalid Key, Duplicate (22)' if an alternate key field for 
which duplicates are not allowed contains a duplicate key. 

DELETE Function 

DELETE affects the current record, 
AXDlALTINX and AXDlMASK are not used. 
longer available on any access path. 

START Function 

after READ WITH HOLD. 
The deleted record is no 

AXDlALTINX detennines the key to be compared for equal 
(eq), greater-than (gt), or greater-than-or-equal (ge) 
conditions. When duplicate keys are allowed on the specified 
access path, START positions the conceptual current-record-pointer 
to the first of these, so that successive READ NEXT requests will 
retrieve them all in primary key order. 

7-27 



OPEN Function - Existing File 

AXDlALTINX is zero after OPEN, thus indicating that the 
primary key is the current key of reference, and AXDlMASK 
indicates the existing index structures (as indicated in the file 
label) • A READ NEXT retrieves the first record in primary key 
sequence. 

OUTPUT Mode File Attribute Specification 

UFBALTCNT and UFBALTP'l'R must be supplied in OUTPUT mode. 
UFBALTPTR must address an AXDl control block with AXDlMSIZE 
supplied (2 in binary for the first implementation) , and 
containing alternate index structure description entries (as 
defined in control block AXDl) for each alternate access path to 
be defined. 

The key field ordinal (AXDlXORD) , key location 
(AXDlKEYPOS) , key length (AXDlKEYSIZE) , and selectable options 
(AXDlEFLAGS) must be supplied in each entry. Selectable options 
in AXDlEFLAGS are: duplicate keys allowed and key compression in 
index structure. 

Alteniate File Errorlog (OUTPtrr Mode) 

When an alternate indexed file is created in OUTPUT mode, 
the user program presents records in ascending primary key 
sequence to DMS. (Each record has an associated user-supplied 
access mask.) The primary index structure is created as records 
are added. The alternate key information is held in a group of 
work records until the file is closed. 

At SVC CLOSE, a program (BUILDALT) is called to create the 
al teniate tree structures using these work records. The work 
records are sorted and the alternate tree structures are built. 

Only during thi.s last phase is it possible to detect the 
following error condition: 

An alternate access path which does not support duplicates 
has duplicates (i.e., two or more records have the same alternate 
key value for the particular access path). 

In this case, the record with the lowest primary key value 
will be accessible through the access path while other duplicates 
are not. (However, no masks in the records are updated.) 

If this error occurs, the program (BUILDALT) will issue a 
message giving the user the choice of creating an error log file 
or not. 

7-28 



If an error-log file is to be created, BUILDALT will use 
filename = 'ERRORLOG' in the library (and volume) containing the 
alternate file. This consecutive file will contain fixed length 
records in the following format: 

BYTES 1-2 = 2 unpacked decimal digits representing the 
ordinal number of the access path (e.g., 
X'3031'). 

BYTE 3 = ASCII blank (X'20'). 

BYTES 4-N = primary key value of record in error (i.e., 
record not accessible through the access 
path). 

Using Tile Error Log To Correct Errors 

1. Records in error can be rewritten with appropriate mask 
and/or alternate key values. This would require a separate user 
program (in COBOL). 

2. If the access path definition was 
duplicates should have been allowed) , then the 
re-created using a correct definition. 

Notes: 

in error (i.e., 
file should be 

1. Getting an error-log is always recoDIDended. 

2. The alternate file can be read sequentially with 
the access masks intact in order to recreate the 
file. All functions on the file will perform 
correctly although records in error will not be 
accessible through access paths where an invalid 
duplicate condition occurred. 

3. Fixing all errors before further use of the file is 
recommended. 

Overview Of Indexed And Alternate Indexed File Structures 

Indexed Files 

Consist of a primary-tree structure with data blocks at 
the lowest level. 

Each data block contains 
sequence; the data records 
DMS-record formats. 

Each data record contains 
imbedded primary key. 

records in 
may be 

ascending key 
in one of the 3 

a unique fixed-length 

Blocks on levels other than the lowest level are index 
blocks; these index blocks have item size = PK size + 3 
(a 3 byte pointer to a block on the next lower level) . 

7-29 



All blocks in the primary tree (or any alternate tree) 
structure have a 2-byte block length (BL) prefix 
(DISP=O) and a 3-byte chain field (DISP=2045). 

Alternate Indexed Files 

Contain a primary-tree structure. 

Contain one or more alternate tree structures. 

Contain a label block for alternate tree description 
and processing. 

The primary-tree structure is the same as for indexed files 
except that each data record has a 2-byte access mask. 

Internal Representa!ion Of Low-Level Of Primary-Tree (Data 
Records Within Data Blocks) 

The record size in the file label (FDRlRECSIZE) does not include 
the mask length. Internally, however, the mask is always stored 
with the record and is reflected in the RL prefix for variable
length records or an adjusted internal record size (=RECSIZE plus 
MASKSIZE) for fixed length record processing. 

The access mask indicates through which alternate paths the 
record may be accessed. The access mask is not referenced as 
part of the record; it is present in AXDlMASK (through UFBALTPTR) 
and is never present in the user-record area. For variable
length data records, the record size supplied in UFBRECSIZE by 
the user (for REWRITE or WRITE) does not include t.he mask length; 
likewise, the value returned in UFBRECSIZE by DMS after a READ 
request does not include the mask length. 

There is one tree structure for each alternate index (access 
path). The lowest level of an alternate tree structure contains 
items of the form: 

Al ten1ate Key 
Value (AK) 

Primary Key 
Value (PK) 

This item indicates that the data record with Primary Key = PK 
has the particular alternate field with value = AK. This 
fixed-length item will be used for the initial implementation 
(see note 2 below). 

Blocks on levels other than the lowest 
within the alternate-tree structure. 
item size = AK size +3. 

7-30 

level are index blocks 
These index blocks have 



An alternate indexed file also has an alternate index descriptor 
block (AXDl) as the first block in the file (block number 0) • 

Initial Implementation Notes: 

1. For access mask = 2 bytes, 16 (max) alternate trees are 
allowed. All DMS related control blocks contain space 
for possible expansion to access mask size of 4 or 8 
bytes (with 32 or 64 maximum alternate trees). 

The access mask size is defined as 2 bytes for initial 
implementation. 

2. The low-level items are fixed length for a given 
alternate tree (size= PK size plus AK size); this fact 
is indicated in the information describing that tree. 
Variable-length, low-level items are a later extention 
(VLEN items will be useful for duplicates) • 

Internal DMS Record Formats For Alternate Indexed Files 

The internal DMS record formats for data records and for 
work records are briefly listed here. Naturally, the formats for 
data records apply to all data records in the file regardless of 
open mode. 

The three DMS record fonnats are listed here for alternate 
indexed files. Note that the access mask is stored at the end of 
the record and that the mask is always maintained with its 
associated data (i.e. , the mask length is included in the RL 
prefix for variable length records). 

Fixed Length 
Format 

Variable Length 
Format 

Compressed 
Format 

RL 

RL 

Data 

Data 

Data 
(Compressed) 

Mask 

Mask 

Mask 

Note that for compressed format, the length of the compressed 
data is RL minus 2 minus mask-size; the compressed data begins at 
RL+2 as usual. Note that the mask is not compressed. 

7-31 



Work records are created from data records during OUI'Ptrr mode DMS 
WRITE functions. These work records are sorted during CLOSE 
processing and used to create the low-level part of each 
alternate tree structure. 

Work Record 
Fonnat 

XORD Alt-key value Primary Key 
Value 

The length of each work record = 1 plus max (alt-key size) plus 
primary key size. (Stored in AXDlORECSIZE.) 

XORD refers to the ordinal tree structure number (AXDlORD). For 
a work record containing an alternate key smaller than the 
maximwn size, the work record contents beyond the end of the 
primary key field are undefined. Using fixed-length work records 
allows all records to be sorted on the same record size. 

SVC OPEN - Existing Alternate Indexed File 

'llle user supplies an AXDl-Area addressed by UFBALTPTR; the 
length is indicated by UFBALTCNT (length = (AXDlENI'RY-AXDlBEGIN) 
plus (UFBALTCNT * L'AXDlENTRY)). If either field is zero (or if 
the area is invalid as flagged by MCBRWTST), then no 
user-supplied AXDl-Area is used by SVC OPEN. This case is not an 
error; SVC OPEN allocates the appropriate AXDl-Area from the user 
buffer space. (No AXDl-Area is used for BAM or PAM.) 

'llle SVC OPEN requires almost no changes from nonnal indexed 
file ~upport until the end of the routine when the UFB is set 
up. At this point, the appropriate DMS function vector addresses 
are placed in the UFB; also a third buffer is allocated 
(AXDlBCB). Block 0 in the file is the AXDl-Block; this block is 
read to a buffer area by SVC OPEN and then it is moved to the 
AXDl -Area. The information in each AXDlENTRY ('label' 
information) is verified as in output mode (key size, key 
position and ordinal tree value). AXDlMASK is also verified as 
follows: 

a. Create existing tree mask while checking ordinal number 
values (for duplicate or invalid ordinal tree 
structure-AXDlXORD) • 

b. This existing tree mask must equal AXDlPMASK. 

If AXDlPMASK is invalid, or if any field within an AXDlENTRY is 
invalid, a cancel message indicating invalid label information is 
displayed. The AXDl-Area which is loaded is either user-supplied 
or allocated directly by SVC OPEN. 

7-32 



After SVC OPEN, the following fields are set: 

a. 
*b. 

AXDlALTINX = O; AXDlCURINX = 0 
AXDlMASK = AXDlPMASK (indicating all 
(AXDlPMASK is validated as part of 
information verification) 

trees) 
label 

* c. UFBALTCNT = FDRlALTCNT (this is true after BAM 
and PAM OPEN also.) 

d. UFBALTPTR = address of AXDl-Area 
e. AXDlUFB = address of UFB 
f. AXDlBCB = buffer address and OFB pointer set 

For SHARED MODE, any user-supplied AXDl-Area is ignored. 

*After an alternate indexed file 
UFBALTCNI' is zero and AXDlMASK is zero 
(from UFBALTPTR). 

7. 4 SHARED MODE 

is opened in SHARED MODE, 
in the user's AXDl-Area 

SHARED MODE is an OPEN MODE which allows multiple user programs 
(in effect) to access the same file through IO MODE type 
functions (i.e., multiple realtime requests for record addition, 
deletion or modification are supported.) The function-requests 
available to the user-program in SHARED MODE are identical to 
those in IO MODE (some situations do occur in SHARED MODE, based 
on the need for exclusion between concurrent requests for the 
same record, which do not occur in IO MODE) • The user may have 
multiple files open in SHARED MODE. 

SHARED MODE is implemented on the 2200VS System through a SHARING 
TASK. This task has exclusive control of the file; it processes 
requests from user-programs one at a time and resolves any record 
conflicts. This task uses IO mode functions (with buffer 
pooling) for all file access. A mapping facility is provided by 
the 2200VS operating system (see SVC DTI) to allow efficient 
record transfer between a user task and the SHARING TASK. 

'11le SHARING TASK is a separate task (which does not require a 
workstation). It has its own Segment 1 and Segment 2 and runs 
unpriviledged. It (currently) has no special privileges (i.e., 
it must adhere to all the restrictions of unprivileged 
operation). The only distinguishing feature it has is a port for 
intertask messages whose name is "@SHR". SVC OPEN and SVC CLOSE 
identify the SHARING TASK solely by PORT=@SHR. 

The two following figures show the general steps in a request for 
one user accessing a record in one SHARED file. 

7-33 



USER 

PROGRAM 

request OMS 

Interface 

intertask 
boundary 

I I 
I 

-~-----1 SHARINC 
IFMSGI TASK 
I 
I 

I/0 MOOE IFILEI 
I request I I 

l____J_ 

The user-program's request is packaged as a function message 
(FMSG) by the 'called' DMS interface vector. (Interface vector 
addresses - are placed in the user's UFB by SVC OPEN.) The FMSG is 
sent to the SHARING TASK. The SHARING TASK issues corresponding 
IO MODE request(s) using DMS on the file. 

intertask 
boundary 

I I 
I 

USER 
PROGRAM 

Fi 1 e Status I OMS __________ 1 __ RM ___ s __ c ___ 1 SHARI NC (record) FILE 
I Interface I I I TASK 

The SHARING TASK receives file status as a result of the IO MODE 
operation. The SHARING TASK sends a response message (RMSG) to 
the interface vector. 'Ihe interface vector moves the file status 
to the UFB. All OPEN, DMS , and CLOSE messages use the same 
message format: function message (FMSG) and response message 
(RMSG). 

The steps for MAPPING THE RECORD AREA involve virtual memory 
mapping such that the record area in the SHARING TASK Segment 2 
(which, for example, receives a record on a READ request) can be 
mapped to (and from) the USER'S SEGMENT 2 without any actual data 
movement. 

In a general environment, we have the following: 

!Many I Call OMS IDMS intertask messages ISHARINGI OMS 
luser !for SHAREOIINTERFACEI (FMSG+RMSC) I TASK I 
lprogramslfile I I and mapping I 
I !request 

7-34 

I Files opened byl 
lthe SHARING I 
!TASK in IO MODEi 
I (exclusive I 
I possession) I 
!available for 
!SHARED access 



The number of user programs able to have SHARED FILES open, the 
number of SHARED FILES per user, and the total nwnber of SHARED 
FILES supported by the SHARING TASK are restricted only by the 
amount of space available in the SHARING TASK's segment 2 for 
control blocks and mapping areas. 

In this structure, a high degree of protection is automatically 
achieved since: 

1. User programs cannot access the file directly. 

2. File buffers are in the SHARER'S segment 2 and are 
unavailable to any user program. 

The HOLD mechanism in SHARED MODE The READ HOLD 
function-request is required if a record is to be rewritten or 
deleted. The HOLD mechanism in SHARED MODE is maintained by the 
SHARING TASK. The SHARING TASK allows each user program to HOLD 
one record (in any shared file) through READ HOLD. While this 
record is HELD, no other user may access it with READ HOLD; i.e., 
other READ HOLD requests will be forced to WAIT until the record 
desired is released by the user. 

A HELD record in a file is released (removed from HELD state) 
only when one of the following occurs: 

1. The user (holding the record) issues another READ HOLD 
on any SHARED file 

2. The user issues a REWRITE, DELETE, or START RELEASE on 
this file. 

3. The user CLOSES the file or abnonnally terminates 
processing. 

The HOLD mechanism provides lockout on a record basis so that 
concurrent requests for the same record can be handled 
correctly. A program should attempt to HOLD records for the 
shortest possible time in order to improve concurrency with other 
users. Extensions to provide a fuller capability for multiple 
record updates are to be added at the SHARING TASK level. 

7-35 



Additional functions available to the user program in SHARED mode 
are: 

1. START RELEASE - This function is available to 
specifically release a HELD record (or HELD file as 
below) • Thus, the general rule for avoiding record 
conflict is that a READ HOLD should be followed by a 
REWRITE, DELETE or START RELEASE as quickly as possible. 

2. START HOLD - This function al lows a user to gain 
control of a file for the purpose of modifying several 
records or insuring that the file remains consistent 
while an update is made. It insures that no records 
are HELD by other users. This function naturally 
increases the possibility of forcing other users to 
wait. The FILE HOLD is removed by START RELEASE. A 
START HOLD is invalid if issued when already holding 
any record or any file. 

The above functions are considered as null operations if issued 
in IO mode (i.e., at the DMS level). 

The READ KEYED and START KEYED functions in SHARED Mode return 
with FS = 80 if UFBKEYAREA does not point to the key embedded in 
the record. 

Log Files 

A Log-File is a consecutive file which can be opened in 
SHARED mode. A Log-File has records in variable length or 
compressed format. 

When a consecutive file is opened in SHARED mode, the 
sharer will use an existing Log-File (in EXTEND mode, if found). 
Otherwise, the sharer will create a Log-File with the 
user-supplied file name. When a Log-File is created, the 
compress flag and the record count can be supplied by the user 
program (default record count = 1000) • The record size for the 
file (maximum) must be supplied when the file is created. (When 
a Log-File is created by the sharer, file protec ti.on class is set 
to blank (any user); Log-Files created by a user program and 
subsequently used in SHARED mode will have normal file protection 
class validation.) 

Multiple users can write records to a Log-File once it is 
opened in SHARED mode. Each record is added at the end of the 
file. The sharer will support more than one Log-File opened at a 
time. Log-Files are accessed as not10al consecutive files (with 
variable-length or compressed records) in INPUT, IO, OUTPUT, and 
EXTEND modes. 

7-36 



Log-File Special Features: 

1. Recovery Feature A 
successfully even if it was not 
The recovery is automatic during the 
file (in any mode). Both record 
recovered; no message is issued. 

Log-File will be opened 
closed due to a system crash. 
next SVC OPEN issued on the 

2. Write-Through Feature - Even 
block of data in the DMS buffer 
crashes. This can be avoided if a 
performed for every logical record 
Write-Through feature). 

count and EOF indicator are 

with recovery, the last 
will be lost if the system 
disk write operation is 
WRITE operation (i.e., the 

If the first character of the filename = C '@' , then the 
Write-Through feature will be in effect for all writes to that 
file (for OUTPUT, EXTEND, or SHARED mode). 

Read-Only Access In SHARED Mode 

Opening a file for shared update requires full (write) 
access rights. This new feature will allow a user having only 
read-access rights (to a file) to open the file in SHARED mode. 
However, the sharer will flag as invalid any REWRITE, DELETE, or 
WRITE function by that user. (All READ and START functions are 
allowed.) A file status value of 85 is returned if such an 
invalid function is attempted. 

Advanced Sharing (Multiple Resources) 

The current sharing facilities 
HOLD-FILE, START RELEASE) will be 
following additional features: 

(e.g. ' 
expanded 

READ-HOLD, START 
to support the 

1. Two hold classes (hold for update/hold for 
retrieval) 

2. Explicit resource control by range or list 
3. Extension rights 
4. Timeout option for wait on resource 

These new features will be available using the standard DMS 
START vector and a UFB timeout field (value/exit-address) for 
SHARED mode processing. The features are designed for ease of 
use by the application programmer while providing powerful 
functions and being expandable. A general description of each of 
the features is provided below. These new features apply to both 
indexed files and alternate indexed files opened in SHARED mode. 
These features do not apply at all to log files opened in SHARED 
mode. 

1. Hold For Update I Hold For Retrieval 

7-37 



When Hold For Update is used, no other user will be allowed 
to hold the particular resources for either update or retrieval 
until the current holder releases them. Hold For Update is 
always implied when a READ-HOLD function request is issued; in 
this way, the user can then rewrite the record without conflict 
in the shared envirorunent. 

When Hold For Retrieval is used, more than one user is 
allowed to hold the particular resources; however, a file or 
record held for retrieval will not be granted to a user who 
wishes to hold it for update. Hold for Retrieval is useful when 
a file is to be scanned (for a report for example) and no updates 
are to be made on the file during the time of the operation. 

Switching between the two hold classes is not supported 
under advanced sharing. When a user is 'explicitly' holding a 
resource for update, a request to hold that same resource for 
retrieval is always flagged as an invalid function sequence. The 
same is true when a user 'explicitly' holding a resource for 
retrieval requests that it be held for update. 

2. Explicit Resource Control By Range Or List 

A resource may be held 'explicitly' without extension 
rights by using one of the following function requests: 

START HOLD FILE - Hold the whole file 
START RANGE - Hold a .range of records (primary key) 

These functions support hold for update or retrieval (set 
by user; default= update). They also support a list option such 
that repeated requests to hold file or range are gathered into a 
list by the sharer; the resources are only obtained (held) when 
the user issues a request to end the list and hold all the 
resources in one operation. Thus the list option allows any 
variety of resources within multiple files to be held in one 
operation; since the operation is indivisible with respect to 
other hold requests, deadlock cannot occur. 

The START RANGE request and the list option are discussed 
in detail in the following paragraphs. 

a. The START RANGE Request this request does not 
affect file position. The request describes a range of primary 
key values by supplying parameters in the UFBKEYAREA and 
UFBGKSIZE. UFBGKSIZE is used to specify the effectve key size of 
the range; a value of zero or a value greater than primary key 
size causes the primary key size to be the effective key size for 
the range. 

If the effective key size is the primary key size, then the 
range contains only one record (since primary keys are unique). 
The following examples illustrate the range specification rules: 
(GK = UGBGKSIZE, PK = primary key size, let key field contain 
'ABCDEFG'). 

7-38 



1. PK=7, GK=4 
2. PK=7, GK=2 

Range = all PK where first 4 chars = ABCD 
Range = all PK where first 2 chars = AB 

When a range is specified, no record may be added within 
that range by a WRITE request from another user. Thus the range 
notation is similar to the hold file concept where a range is 
merely a contiguous logical subset (by primary key value) of the 
whole file. When ranges overlap for the same hold class, the 
largest limits of the range are used. When ranges overlap with 
opposite hold classes, then the last function (which caused the 
overlap) is invalid. 

It is possible and even practical to hold a range which 
contains no records. The number of records within a range does 
not affect the function of the range request or other DMS 
requests. 

b. The List Option - 'The list modifier bit is 
available with the START HOLD-FILE and START RANGE function 
requests. A value of zero indicates the end of the list (default 
value). A value of 1 indicates that the current hold request 
should be added to any pending hold list for this user. The 
pending hold list will expand until a START function with 
End-Of-List causes all resources in the list to be held. As each 
entry is added to the list, it is checked against the other list 
entries for validity (no overlap of different hold class on the 
same resource) and for compaction (if several entries on the list 
may be combined} . The order of the list is never of any 
significance since all resources on the list must be acquired 
together. 

When a list is pending, it will remain pending until it is 
ended by a START HOLD-FILE or START RANGE with list = 0 (END) or 
until a START-RELEASE (or SVC CLOSE) is issued on any shared file 
by this user. (START RELEASE (ALL) and SVC CLOSE cause the 
pending list to be erased). 

All DMS functions other than START (as above) are flagged 
as invalid if issued while a list is pending. 

3. Extension Rights 

Extension rights are requested using the 
ST.ART-EXTENSION-RIGHTS function request. In order to avoid the 
possibility of deadlock, only one user at a time may have 
extension rights and a user may not hold any resources when the 
request for extension rights is issued. 

START XRIGHTS may be issued while 'implicitly' holding a 
record; in this case, the function is valid and the record is 
automatically released at the beginning of the function request. 

7-39 



Extension rights provide the only way a user may acquire 
more resources when already holding resources. When a user has 
extension rights, he may issue READ-HOLD, START HOLD (file) and 
START RANGE in order to accumulate as many resources as desired. 
Each resource request is performed iDIDediately when issued while 
having extension rights (the list option is ignored when 
extension rights are active). 

Immediately after the user has obtained all the desired 
resources, extension rights (only) should be released so that 
another user might acquire these rights. 

4. Timeout Option 

A user-supplied error exit specifically for timeout while 
waiting for a resource will be provided. A specific file status 
value for timeout will be used and RO will contain the address of 
the function request if the timeout exit is taken (same as 
EODAD/ERRAD exit). 

Note - File position remains unchanged after a time-out 
exit has been taken (i.e., a READ-NEXT HOLD with time-out could 
be repeated if the record was unavailable when first issued). 

The UFB fields UFBTIME (1 byte for timeout wait period in 
seconds) and UFBTIMEEXIT (user supplied exit address) will be 
available in order to set a time value. Time values will remain 
in effect for all function requests until changed by the 
user-program. A time value = O implies an immediate return 
through the timeout exit if the resource is unavailable (i.e., 
wait zero seconds). If UFBTIMEEXIT (timeout exit address) is 
zero, then no timeout option is to be used (i.e., the program 
will wait as long as required until the desired resource becomes 
available) . 

The timeout exit may be taken as a result of any of the following 
DMS functions issued on a file opened in SHARED mode: 

1. READ HOLD (next or by key) 
2. START HOLD-FILE, START RANGE 
3. START XRIGHTS 
4. WRITE 

(The timeout exit would be taken whenever the resource required 
was unavailable within the given time period (UFBTIME) and 
UFBTIMEEXIT was not equal to zero). 

The timeout option should be very useful and easy to use 
for application programmers. Other fields in the UFB have been 
provided so that the resource held and the current owner are 
available after a timeout exit has been taken. This information 
allows the application programmer to create an exact message to 
the user whenever a resource is unavailable. For example, a 
message containing primary key value and current owner's initials 
might be: 

"TIIE JONES RECORD IS BEING USED BY ABB" 

7-40 



New UFB fields (SHARED mode) for time-out option: 
(Note - these 3 fields are all set = 0 by SVC OPEN.) 

1. UFBTIME 

2. UFBTIMEEXIT -
3. UFBHOLDID 

One-byte wait time in seconds (0 = no 
limit) 
Exit address for timeout retutn 
Initials of holder of resource 

When a timeout exit is taken, a file status value of C'70' is 
set. UFBHOLDID is always set. UFBKEYAREA will be set with the 
primary key value of the record in conflict if the function was 
'READ NEXT HOLD'. For all other functions, UFBKEYAREA is 
unchanged when the timeout exit is taken. 

General Notes 

1. The File-Hold Feature 

A file may be held for retrieval or update by using the 
START HOLD function. Holding a file is a logical concept and is 
not equivalent to holding all the records in the file 
individually. When a file is held for retrieval, a WRITE 
fwiction on the file will not be executed until the file is 
released. When a file is held for update, only the user holding 
the file may issue a WRITE (to add a record to the file) • When 
holding a file, attempting to hold a range of records within the 
file (in the same hold class)* has no affect. Likewise, a READ 
HOLD issued on a file one holds for update will proceed without 
affecting the hold status on the whole file. (A subsequent 
REWRITE or DELETE would also not affect the hold status on the 
whole file.) 

* If the hold class for the range is different than that for 
the file, the start range function is flagged as an invalid 
function-request. Also, a START HOLD-FILE request would be 
flagged as invalid if issued while holding a range within 
that file of the opposite hold class. 

2. Releasing Resources 

When a record is held for update by issuing a READ-HOLD 
· function request, the record is said to be held • implicitly' • In 
all other cases, a resource record (or file) is said to be held 
'explicitly'. (If a user holds a file or range and issues a 
valid READ-HOLDt or if a user issues a READ-HOLD function while 
having extension rights, the resource is still considered to be 
held 'explicitly'.) 

If a record is held implicitly, it will be released by any 
one of the following actions: 

7-41 



a. Issue REWRITE or DELETE on held record 
b. Issue another READ W/HOLD on a shared file 
c. Issue any START function other than positioning 
d. Issue CLOSE (this file) 
e. Issue WRITE on any shared file 

Case B above must include the automatic release of the 
'implicitly' held record before the other record is read with 
hold. For cases A,C,D,E, no resource is held after the request 
completes. By definition, if a record is held 'implicitly', it 
will be the only resource held by the program at that time. 

If a resource is held 'explicitly', it must be explicitly 
released by using START-RELEASE or closing the file. The START 
RELEASE-FILE function is also available; it releases all 
resources within one file only. (Closing a file also causes 
release of the resources in that file only.) 

If a program fails to release an explicitly held resource 
before issuing a READ-HOLD, etc. for another resource, this would 
be flagged as an invalid function (assuming the program did not 
have extension rights) • This means that there is never any 
automatic release for an explicitly held resource. 

Detailed Functional Overview - SHARED Mode 

The following function descriptions assume that the user 
program does not have extension rights. 

1. READ HOLD - A READ HOLD involves holding one record for 
update. A READ HOLD may have to wait if the required record is 
held by another user. 

A READ HOLD may be issued when holding no resources. In 
this case, the record will be held for update by the user after 
the function-request completes. If a READ HOLD is issued while 
'implicitly' holding any record, that record will be 
automatically released at the start of the function request. 

If a READ HOLD is issued while 'explicitly' holding one or 
more resources, several situations may occur. If the user is not 
holding the indicated record for update, then the READ-HOLD is an 
invalid function (the user may be holding the .whole file (or an 
appropriate range) for update in which case the READ-HOLD is 
valid). If the record is held for retrieval by this user, the 
READ-HOLD is flagged as an invalid function. 

2. REWRITE and DELETE - These functions require that the 
record to be processed be held for update. The record will be 
automatically releasd after the function if the record was held 
'implicitly'; the record will remain held for update if it was 
held 'explicitly'. There is never a wait for resource for these 
functions. 

7-42 



3. READ NO-HOLD and START For Positioning 
functions are not affected by the sharing mechanism. 

These 

4. WRITE Function - A WRITE function may be successfully 
issued when holding no resources. The WRITE function may have to 
wait if the file is held (for retrieval or update) by another 
user; a wait is also required if the new record would fall within 
the range of records held by another user. 

If a WRITE function is issued while 'implicitly' holding a 
record, that record will be automatically released at the start 
of the WRITE function-request. A WRITE function-request will be 
flagged as invalid if it is issued while 'explicitly' holding any 
resources (unless the file involved or an appropriate range (held 
for update) is included in those resources). 

5. Resource Control Commands {START Function) All 
resource control START commands are valid if issued while holding 
no resources; the user program must wait if the resource request 
conflicts with resources held by other users. 

All resource control START commands cause an automatic 
release of any 'implicitly' held record. 

The START HOLD commands (with or without the 1 ist option) 
are invalid if issued while 'explicitly' holding any resource. 

The START RELEASE (ALL) and the START RELEASE-FILE commands 
are always valid; no operation occurs if no resource can be 
released. 

The following functional descriptions asswne the user has 
extension-rights. Under extension rights, the user can 
continually hold more resources; all resources are released along 
with extension rights when the program issues a START RELEASE or 
terminates. 

1. READ HOLD - The READ HOLD function can be used to hold 
records explicitly (for update) while the user has extension 
rights. If the user already holds the record for update (e.g., 
by holding the file or a range containing the record) , the record 
remains held within the larger group and the READ HOLD is 
successful. If the user holds the record for retrieval, the READ 
HOLD request is flagged as an invalid function. The user may 
have to wait if the record is held by another user. 

2. REWRITE and DELETE Functions - Tilese functions must be 
issued on a record which is held for update. When the user has 
extension rights, there is no 'automatic release' on the record 
after a REWRITE or DELETE (i.e., the record was held explicitly). 

3. WRITE Function 
any time if the user has 
condition results if the 
retrieval by the user. 

The WRITE function may be issued at 
extension rights; the only error 

file (or record range) is held for 

7-43 



4. Resource Control Commands (START Function) - These 
commands can be issued while having extension rights. 
Overlapping requests are handled such that more resources may be 
obtained; requests for records already held have no effect if the 
hold class agrees. Any request which would require changing a 
hold class for resources already held by this user is flagged as 
invalid (i.e., changing between update and retrieval classes is 
not supported). The START EXTENSION-RIGHTS command is also 
flagged as invalid if issued when the user already has those 
rights. 

Summary Of START Functions ('#' Indicates New Feature) 

START EQUAL, START EQUAL OR GREATER, and START GREATER THAN 
positioning functions are unchanged. 

START HOLD (80} Hold file for update 
START HOLD RETRIEVAL (CO) # Hold file for retrieval 
START RANGE (84) # Hold range for update 
START RANGE RETRIEVAL (C4) # Hold range for retrieval 

(The 4 functions above have the list option also (10) .) 

START RELEASE (20) 

START RELEASE FILE (24) 

START RELEASE XRIGHTS (21) # 

START HOLD XRIGHTS (81) # 

UFB Field Updates 

Release all resources (this 
user) 
Release all resources in 
this file 
Release Xrights only 

Obtain extensions rights 

The new fields UFBTIME, UFBTIMEEXIT, and UFBHOLDID will be added 
for SHARED mode only. 

The following equated values will also be added: 

START modifier bits indexed files -

Existing values remaining unchanged are UFBVEQ (01) , UFBVGT (02) 
and UFBVGE (03). The following two values are unchanged although 
their meaning is slightly altered. 

UFBVHFILE (80) 
UFBVRLS (20) 

New Values: 
UFBVRANGE (04) 
UFBVRETRIEVAL (40) 
UFBVXRTS (01) 
UFBVLIST (10) 

7-44 

START function = HOLD 
START function = RELEASE 

Request is for a range 
Hold class = retrieval if set 
Extension rights for hold/RLS 
List option (hold range or 
file) 



New File Status Values: 
UFBFSlTIME EQU C'7' 

UFBFSlSHARE EQU C'S' 

UFBFS2ACC EQU C'S' 

UFBFS2RESERR EQU C'6' 

FS value for time-out on 
resource 
FS class for 
conditions 
Update 
(FS=C' 85 ') 
read-only 
mode 
Resource 
(FS=C' 86 ') 

access 
for user 

rights in 

control 

sharer 

denied 
with 

SHARED 

error 

In using FS=86 for all invalid resource control commands, some 
FS=95 should be updated. FS=95 for record not held would remain 
valid for IO mode; however, for SHARED mode this case would be 
changed so that FS = 86 was used. 

7-45 



7.5 DMS FUNCTION-REQUESTS 

This section contains a brief list of the UFB values used by 
DMS. An extensive list of all DMS filestatus conditions is also 
included, along with a description of the various DMS error 
returns. 

7.5.1 DMS Function-Request Entry 

The performance of a DMS function-request on a file is effected 
by calling a DMS (function-request) routine. The DMS routine 
addresses are available in the UFB (after OPEN). The DMS 
routines define the access method to be used in processing the 
file; functions not supported for a particular filetype OPEN mode 
combination are indicated by a DMS routine address (in the UFB) 
which returns an INVALID FUNCTION error indication. 

DMS routines are entered using the CALL macroinstruction (JSCI) 
with the following registers loaded: 

a. Rl - UFB pointer 
b. Rl5 - Stack pointer (updated by CALL) 

Several standard operations are taken at the start of all DMS 
routines. 

a. Establish addressability, etc. 

b. Verify that the file has been opened by checking that 
OFBUFB (UFB pointer from indicated OFB) equals UFB 
pointer in Rl. (This check insures that a valid OFB 
exists. Failure will cause a 'fatal error' with a 
meaningful error indication.) The OPEN Mode 
(processing mode) is established through OFBFLAGS. 

7-46 



'!he following UFB fields are generally 
request. The specific UFB fields 
described later. 

used 
per 

during a function
function-request are 

i. UFBOFB - Pointer to OFB for this UFB. 

ii. Modifier byte from function vector - used by some 
DMS routines. 

iii. UFBRECSIZE Length in bytes used for all record 
movement and for maintaining the sequential 
record pointer (SRP). 

iv. UFBBUFDATAL Length in bytes for 12h~sical I/0 
data transfer. 

v. UFBRECAREA - Pointer to user-record-area (loaded 
from UFB for each function-request). 

vi. UFBBCBFLAGS, 
information. 

UFBBUFOFFSET buffer control 

vii. UFBEODAD, 
condition 
required). 

UFBERRAD Error and 
exit address (loaded 

exceptional 
from UFB as 

viii. UFBFSl, UFBFS2 - File Status (bytes) set by all 
DMS routines on return. 

ix. UFBLF - Last function on file, loaded by each DMS 
routine (also UFBLFMOD - last modifier byte) • 

x. UFBKEYAREA - Pointer to user supplied key or 
relative record number. 

Common UFB Input Parameters - Available for all consecutive disk 
file operations. 

UFBEODAD 
UFBERRAD 
UFBLF 
UFBLFMOD 
UFBBUFSIZE 

(May be supplied by user prior 
to function-request) 

The following UFB fields are used as 16-bit positive numbers 
rather than halfwords (15 bits and sign). These fields are used 
only by DMS for most cases: UFBBLKSIZE, UFBBUFSIZE, UFBCHKSIZE, 
UFBBUFDATAL, UFBBUFSIZE, and UFBMAXTFR. 

7-47 



7.5.2 DMS Function-Request Return 

DMS returns to the user program using the RETURN macro
instruction. User registers 2 through 15 are always restored. 
Register 0 (RO) is restored unless UFBEODAD or UFBERRAD is used 
-- RO then contains the normal return address. Register 1 (Rl) 
is restored unless the Read-No-Data opt~on has been used, in 
which case Rl contains the record address. 

DMS indicates the result of the function-request through the file 
status bytes UFBFSl and UFBFS2. These bytes generally contain a 
value of X'30' - X'39' corresponding to the ASCII characters 0 
through 9. This value is called the File Status (FS) Code. 
Refer to Appendix C for a list of the DMS and ADMS File Status 
Codes. 

Return Address Usage (Return to User-Program) 

1. Normal return The RETURN instruction causes 
registers to be restored and the program 
continues at the instruction after the DMS call. 

2. UFBEODAD return (UFBEODAD not = 0) - 'Ihe address 
in UFBEODAD is used. The program continues at 
this address; file status is set to the 
appropriate value and RO = the normal return 
address.* 

3. UFBEODAD return (UFBEODAD = 0 and UFBERRAD not -
0) In this case, the address in UFBERRAD is 
used. The program continues at this address; 
file status is set and RO = the normal return 
address.* 

4. UFBERRAD return (UFBERRAD not = 0) - The address 
in UFBERRAD is used. Before returning to the 
program, an acknowledge-type GETPARM message is 
issued by DMS. This message indicates the UFB 
address, the DMS function-request address, the 
file status value and a brief description of the 
significance of the file status. The user may 
continue or CANCEL at this point. If the program 
is continued, return is made to the address in 
UFBERRAD with file status set and RO = the nonnal 
return address.* If UFBF4NOACK is set, the 
acknowledge message is not issued and return is 
made using UFBERRAD. 

* - The high-order byte of RO is set to zero 

7-48 



DMS Fatal Errors 

A fatal error causes DMS to issue an SVC CANCEL. The CANCEL 
message describes the situation and gives the UFB address, 
function-request address and PRNAME of the file. The 
user-program cannot be continued after a CANCEL is issued. 

1. Fatal errors for file status error conditions If 
UFBERRAD is zero (for file-status greater than or equal 
to C 1 30 ') or if both UFBEODAD and UFBERRAD are zero 
(for file-status less than C'30'), then the user has 
not supplied a return address for file-status error 
conditions. In this case, the CANCEL message will 
include the file status value and a description of the 
file status significance. 

2. Other fatal errors In the course of performing a 
function-request, DMS uses several UFB fields. If any 
of these fields is inconsistent or invalid, DMS will 
recognize this and CANCEL the program. The CANCEL 
message will indicate which field had the invalid 
value. These errors are generally caused by the 
user-program incorrectly modifying OMS fields in the 
UFB. 

3. Program check during DMS function-request If a 
program check occurs in DMS, the most likely reason is 
an invalid address in UFBRECAREA or UFBKEYAREA. (These 
fields are not checked since the general DMS 
requirement is efficiency.) A program check in DMS can 
be identified by inspecting the save area trace 
(available as a debugging command in HELP); register Rl 
in the DMS save area contains the UFB address. 

7.6 PRINTER SUPPORT 

Records output to a printer file are variable-length (P-type) 
records as described in Section 4.2.1. Data may be written to a 
printer using either the Record Access Method (RAM) or the 
Phsyical Access Method (PAM). The Write function-request under 
RAM is described in this section. The Physical Access Method (as 
described in Section 4.8) is available to write a block of P-type 
records to a printer. 

Tile user program views a printer file as an output-only file 
containing an unlimited nwnber of variable-length records. A 
printer file record contains a 2-byte user-supplied control field 
and a variable number of data characters (depending on record 
size). DMS routines are available to write a user record to the 
printer file. The maximt..UD record size for the file is 
established by the value of UFBRECSITE at SVC OPEN. File Status 
= 1 97' (invalid length) is returned if the value of UFBRECSITE 
for a function-reguest exceeds this value. 

7-49 



A printer file always has UFBFORGPRINT set. ('TI'l.is implies that 
the user progr&n has supplied the 2-byte printer control field as 
part of the record*.) UFBBUFDATAL (length used for physical I/0) 
is set from UFBRECSIZE. (UFBBUFDATAL is maximwn 134 for a 
printer file using RAM.) For expanded characters, the device 
will truncate any line after 68 characters; no error reported. 

Tile only valid OPEN mode for a printer file is OUTPUT mode. The 
only valid function-request for a printer file is WRITE. 

If UFBFORGPRINT is set for a disk file, a consecutive file 
with variable-length compressed records is created. A large 
buffer size may be set for a printer file prior to SVC OPEN. 
This buffer size will have no effect if the output is 
directed to a printer. However, if the sequential output is 
directed to a disk file, the large buffer will result in 
fewer physical I/O operations. 

7.6.1 Write Function-Request (OUTPUT) 

Inputs: a. Common UFB Input Parameters 
b. UFBRECAREA - Location of the user record area (any 

Segment 2 address). 
c. UFBRECSIZE Length of record. This length is 

moved to UFBBUFDATAL for each Write 
function-request. 

DMS routine operations: The record (as indicated by UFBRECAREA 
and UFBBUFDATAL) is moved to a protected buffer (by SVC 
XIO) and then the printer I/0 write operation is 
initiated. The operation is waited on (at the DMS 
level) before the next record is moved to the buffer. 
(The modifier byte is ignored.) Trailing blanks are 
stripped from the record by DMS before calling SVC XIO. 

Since the file has been successfully opened there are 
no (I /0) error conditions returned to the user other 
than invalid length or invalid command (FS=' 9 6' or 
'97'). (Out-of-paper, deselected, power-off, or device 
not operational are handled by SVC XIO.) 

Outputs: UFBFSl, UFBFS2 stored in UFB. 
Record written to printer file. 
UFBLF is set to indicate WRITE. 

7-50 



7.7 WORKSTATION SUPPORT 

A workstation on the 2200VS system is defined as a CRT and a 
keyboard. All workstation processing by DMS is performed under 
the Record Access Method (RAM) in IO mode. 

The user program views a workstation file as an interactive file 
containing a fixed number of records (i.e. , CRT rows) of a fixed 
maximum length (i.e. , CRT columns) • A workstation record (in the 
user-record-area) contains a 4-byte order-area followed by a 
variable number of data characters (mapping area) • Workstation 
records are written to the CRT by the user program. The user 
program can read CRT records which can be modified by the 
workstation operator (through the keyboard). 

UFBBUFDATAL (length used for physical IO) is set from 
UFBRECSIZE. Workstation Read or Rewrite operations are performed 
directly on the record area in Segment 2. The record area must 
be word aligned; otherwise, File Status indicating the error will 
be returned. Each workstation has an associated unit control 
block (UCB) which contains the 'current' AID character and 
keyboard status (locked or unlocked). 

A workstation file can only be OPENED in IO Mode. The 
function-requests available are READ, REWRITE, and START. 

An order check is returned as C'34'. An order check is detected 
by examining the IOSW; however, it is not considered an I/0 error 
for logging purposes. (Power-off, deselected or device not 
operational are handled by SVC XIO.) Other error conditions are 
incorrect length and record area not aligned (File Status = 1 97' 
and '96' respectively). 

'nle input for workstation function-requests is the common UFB 
(workstation) Input Parameters. This includes the Common UFB 
Input Parameters, UFBRECAREA (an address pointing to the 
user-record-area), and UFBKEYAREA for address of word containing 
the Relative Record number (i.e., row number, not used for START 
function-request). 

Workstation operations use U1'"'BRECSIZE as the length of 
record. UFBRECSIZE less than 4 results in the Order Check 
condition. The user may set UFBRECSIZE before 
function-request. UFBRECSIZE is moved to UFBBUFDATAL by the 
vector routine before initiating the physical I/0 operation. 

7-51 

the 
error 

any 
DMS 



7.7.1 Read Function-Reguest (I/0) 

Inputs: a. Common UFB (WS) Input Parameters 
b. Modifier byte at UFBVREAD 

MODIFIABLE option 
TABS option (nonCOBOL) 

c. UFBRECSIZE - Length of record 

DMS routine operations: The relative record number (at the word 
pointed to by UFBKEYAREA) is moved to the first byte of 
the order area. (RRN other than 124 causes an order 
check re tum to the issuer.) If UFBKEYAREA=O, the row 
number already in the order area is left unchanged. 
The DMS routine then calls SVC XIO to initiate the read 
I/0 operation (the modifier byte is reflected in the 
command byte sent to SVC XIO). SVC XIO will issue the 
command when the keyboard is locked (or when it becomes 
locked through operator action). After the wait for 
I/0 completion, the following information is available: 

a. The record (at order area +4) is available in the 
user-record-area. 

b. Order area bytes 2-3 in the user-record-area 
receive the current cursor position. 

c. UFBFS2 receives the AID character (from the UCB). 

MODIFIABLE option* - 'Ibis option causes the following 
actions: 

a. The modifiable fields within the record are loaded 
from the corresponding workstation CRT positions. 

b. Protected fields within the record are either 
skipped (leaving those relative locations within 
the user-record-area unchanged) or moved from the 
workstation to the user-record-area (depending on 
workstation model). In the later case, the 
protected fields will receive the characters 
present when that line was last written to the 
screen. 

c. Pseudo-blank characters on the screen are changed 
to blanks before transmission; therefore, they are 
also represented as blanks within the 
user-record-area. 

d. Blinking characters within the range of the READ 
.operation will be changed to high-intensity 
nonblinking characters (by changing the associated 
field attribute character both on the screen and in 
the user's record area). 

7-52 



e. Order area bytes 2-3 in the user-record-area receive 
the current cursor position. 

f. UFBFS2 receives the AID character (from the UCB). 

Outputs: UFBFSl stored. 
UFBFS2 stored (equal AID character) • 
Order check (UFBFSl, UFBFS2 = 34) is a possible 
exception (return through UFBERRAD, no logging of 'I /0 
error'). 

Record is available in user-record-area. 
UFBLF, UFBLFMOD set. 

(Keyboard is locked.) 

* The recoounended sequence of 
function-requests involves Read Modifiable 
Read. 

workstation 
rather than 

Recommended sequence (one user-record-area) 

1. Rewrite record to workstation. 

2. Read modifiable; data entered by workstation 
operator is now available in the user-record-area. 

3. The user-program may change fields within the 
user-record-area based on the data received. 

4. Rewrite record to workstation (for additional 
information, error correction (reentry), etc.). 

It is important to note that protected fields within 
user-record-area should be changed after the 
Modifiable function-request (rather than before the 
Modifiable function-request). 

the 
Read 
Read 

7.7.2 Rewrite Function-Request (I/0) 

Inputs: a. Common UFB (WS) Input Parameters 
b. Modifier byte at UFBVREWRITE 

TABS option (nonCOBOL) 
c. UFBRECSIZE - Length of record 

DMS routine operations: The relative record number (at UFBKEYAREA, 
indicating row number) is moved to the first byte of the 
order area (user-record-area) • (RRN greater than 24 
causes an order check return to user.) If UFBKEYAREA=O, 
the row number already in the order area is left 
unchanged. The second byte of the order area is a 
user-supplied Write Control Character (WCC); the third 
byte is a user-supplied column number (for optional 
cursor positioning) ; these bytes are not used by the DMS 
routine. 

7-53 



The DMS routine initiates the physical I/O write 
operation and waits for completion. After completion, 
the DMS routine retunis control to the user-program. 

Outputs: UFBFSl, UFBFS2 set for operation successful. 
(Order check is also possible.) 

The workstation record 
directed by the WCC). 

is written (including 
UFBLF, UFBLFMOD are set. 

actions 

7.7.3 Start Function-Request (I/0) 

Inputs: Conunon UFB (WS) Input Parameters 

DMS routine operations: The DMS routine inspects the UCB for the 
current state of the workstation; it then sets the file 
status bytes accordingly. 

UFBFSl = C'O' - Operation successful 
UFBFS2 = AID character - If AID character = blank, then 
the keyboard is unlocked; otherwise, the keyboa1rd is 
locked and UFBFS2 = current AID character. 

(The Start function-request can be issued (prior to a 
Read function-request) to detennine whether a 
subsequent Read function-request would wait (for 
keyboard to be locked) or would process immediately.) 

Outputs: UFBFSl, UFBFS2 set 
UFBLF, UFBLFMOD set. 

7.8 MAGNETIC TAPE SUPPORT 

Wang magnetic tapes are processed through the Data Management 
System, using OPEN, DMS functions, and CLOSE. 

Two tape densities, 800 and 1600 BPI, are supported. At tape 
mount, a physical I/0 will test the tape density and indicate it 
in the UCB Tape Density Field. At OPEN, the density will be 
checked against the user-specified value. 

Tape labels supported in the first release are ANSI-Label (AL) , 
IBM-Label (IL), and No-Label (NL). They are described in our 
Tape Label Control Blocks. Tape labels are written in ASCII code 
for AL, and EBCDIC for IL. Tape data structure and labels are 
compatible with the industry standard (see the IBM OS Tape 
Manual, for example) , with the following restriction and 
extensions: 

(1) The label-handling routines will always skip existing User 
Header and Trailer labels, and will not create them on new 
tape files. 

7-54 



(2) Only 80-byte labels are accepted. 

(3) Five kinds of record formats are supported: 

'F' - fixed-length format 
'V' - variable-length IBM format 
'W' - variable-length Wang format 
'X' - compressed Wang format 
'U' - undefined-length format 

Tape data blocks of format 'W' and 'X' are to contain a 
block length pref ix (like the corresponding disk blocks) in 
order that short blocks (less than 18 bytes) can be padded 
to prevent their being interpreted as 'noise' blocks. 

Tape files in 'V' format have IBM variable-length record 
blocking format. Short blocks are padded, as above, if 
less than 18 bytes long. 

For 'U' 
record. 

format files, each block is considered 
Short 'U' format blocks are never padded. 

as a 

Receipt of a block of less than 12 bytes (in INPUT mode) is 
treated as a length error. 

(4) Minimwn block size is 12 bytes for INPUT, and 18 bytes for 
Otfl'PUT. 

(5) For IBM-label tape, EXTEND mode is not supported. 

Tape files may be positioned by file-sequence number. The 
program specifies file sequence in UFBTSEQ before opening the 
file. For NL tape, each file is separated by tape marks. For an 
existing labelled tape file being opened in INPUT or EXTEND mode, 
positioning can also be done by library and file names (see 
below). 

The Wang Data Management System supports tape access in INPUT, 
OUTPUT, and EXTEND modes, through the RAM, BAM, and PAM access 
methods. CLOSE allows a user to rewind, rewind and unload, or 
not rewind the tape. 

For an existing labelled tape file, DMS will use label 
infonnation to determine the buffer size. For a new tape file or 
NL tape file, the program must supply the buffer size in 
UFBBLKSIZE. 

Multiple-volume tape files are also supported in this release. 
Double buffering is always used for tape I/0 processing. 

7.8.1 Mount/Dismount a Tape 

Tape can be mounted through the 'MOUNT' corrunand or during 
•OPEN' • The MOillIT SVC and command are described elsewhere and 
will not be repeated here. 

7-55 



The tape · drive density is set to 1600 BPI for 
bypass-label-processing (BLP) type mount, and set to the physical 
tape density for normal mount. 

If the tape volwne is not found at OPEN, the OPEN SVC will issue 
a respecif ication message directing the user to mount the tape 
volume, much like the disk mount respecification. The only 
difference is that tape mount through OPEN is always for 
Exclusive use. 

A tape volume mounted for SHARED use can be opened by all users. 
However, once the tape is opened, it will become mounted for 
Exclusive use and will remain so until remount or dismount. 

To dismount a tape, the DISMOUNT SVC must be used or the file 
must be CLOSEd with Rewind-And-Unload specified. 

7.8.2 Initialize a Tape Volume 

The VS utility program TAPEINIT is used to initialize a new 
labelled volwne. TAPEINIT first mounts the new tape using BLP 
option. The MOUNT SVC positions the tape at the Load Point 
Marker, and sets the Label Type to UNLABELLED. TAPEINIT then 
opens the NL tape in Otrl'PlIT mode with File Sequence Number 1, and 
with Tape Density chosen. OPEN sets the drive density, and 
writes the VOLl LABEL (in ASCII for ANSI label and EBCDIC for IBM 
label). At CLOSE, two tape marks are written by the CLOSE SVC to 
indicate that no file is on the tape. TAPEINIT then uses the 
Mount With No-Message option to tell the system the new tape 
voltune name and its label type. 

7.8.3 Open a Tape File 

Input to OPEN SVC includes the following UFB fields: 

UFBBLKSIZE (Tape Block Size): 

For NL Tape, UFBBLKSIZE is the maximum block size 
of the tape file. 

For labelled tape, VFBBLKSIZE is interpreted 
differently for different OPEN modes. In OUTPlIT 
mode, it is the maximum block size of the tape 
file, and is the block size recorded in the tape 
label. In EXTEND mode for all access methods or in 
INPUT mode using BAM or PAM, UFBBLKSIZE is the 
maximum block size acceptable, unless it is set to 
0, meaning that the maximum block is size 
unknown. 

Maximum size is 32K in all cases. Minimum size is 
12 bytes for existing files, 18 bytes for new files. 

7-56 



UFBRECSIZE (Tape Record Size): 

UFBFORG: 

UFBFl: 

UFBF2: 

Ignored in BAM or PAM. In RAM, UFBRECSIZE is used 
as follows: for NL tape with fixed-length records 
specified, UFBRECSIZE is the record size expected. 
For NL tape with variable-length or undefined
length records, it is the maximum record size 
expected. For labelled tape (AL/IL) in OUl'PUT 
mode, it is the record size to be recorded in the 
label. For labelled tape in INPUT mode, it is the 
maximum record size acceptable, unless it is set to 
0, meani.ng that the maximum record size is 
unknown. For labelled tape in EXTEND mode, 
UFBRECSIZE is ignored. Tape record size must be 
less than or equal to BLKS I ZE (no record may span 
two or more blocks). For RAM with fixed-length 
records, the UFB is considered to be in error if 
BLKSIZE is not a multiple of RECSIZE. 

Maximum record size in 32K in all cases. 

Indexed files are not supported. If UFBFORGVLEN is 
set, OPEN will accept a variable-length record 
format (W-format) tape file only. If UFBFORGU is 
set, OPEN will accept an undefined record format 
(U-format) tape file only. If UFBFORGVIBM is set, 
OPEN will accept an IBM variable-length record 
fonnat (V-format) tape file only. If none of the 
above flags is set, OPEN will cancel the program 
with an error indicator. 

All options are supported. 

For AL and NL tapes, INPtrI', OUTPUT, and EXTEND 
modes are supported. For IL tapes, only INPUT and 
OUTP1IT modes are supported. PAM in EXTEND mode is 
not supported. 

UFBDEVCLASS: Set to X'02' to indicate tape (but see UFBF4ALLOWT, 
below). 

UFBFLAGS: Only the 'COMPRESS ' option is used. 

UFBPRNAME: OPEN prname. 

UFBVOLSER: Tape volume name. If the volume is not found, OPEN 
will either display a respecification message to 
request that the tape volwne be mounted or take the 
specified OPEN Exit. 

7-57 



UFBFILENAME 
and 
UFBDIRNAME: 

UFBF4: 

UFBTLABELS: 

UFBTDEN: 

UFBTSEQ: 

The library name · and file name are ignored for NL 
tape. For AL or IL tape, they must be specified 
in OUI'Ptrr mode. In these cases, the specified 
names are entered into the tape label in the form 
'library.file' (for example, YKW.TEST). For IL 
tape, translation to EBCDIC is performed. For an 
existing labelled file, if file sequence is 
supplied in UFBTSEQ, UFBFILENAME and UFBDIRNAME are 
nonblank and OPEN uses the library and file names 
to position the tape. The tape file name in the 
HDRl is decoded accordin·g to the format 
'library. file' , and will be treated as blank 
otherwise. If the file sequence is supplied, OPEN 
positions the tape by File Sequence Number and then 
checks the file name (if nonblank) against the file 
label. File and library names in IL labels are 
translated to ASCII for comparison with the 
corresponding UFB fields. 

UFBF4NOMSG and UFBF4ALLOWT are used. In order to 
open a tape file, either UFBDEVCLASS must indicate 
'TAPE' (X'02) before OPEN, or UFBF4ALLOWT must be 
set. 

Tape label type (NL ,AL, IL,~) • If ANY is 
specified, OPEN will allow any label type tape 
file. If more than one type is specified, OPEN 
will accept tape files with the specified label 
types. 

Tape density (800 BPI, 1600 BPI) • If UFBTDEN is 
set to binary zeroes (tape density not specified) , 
OPEN will set the UFBTDEN to the density found in 
the UCB. If UFBTDEN is specified , and the tape 
volume is not mounted for "Bypass Label Processing" 
(BLP), OPEN will check the UFBTDEN against the 
actual tape density, and will respecify or take the 
OPEN Exit if they do agree. If BLP is in use, the 
tape drive density will be set to the density 
according to UFBTDEN, and will be recorded in the 
UCB. 

File sequence number. OPEN uses this number to 
position the tape. It must be specified for NL 
tape and for labelled tape in OUTPUT mode. For 
existing files on a labelled tape, one can also 
position by file name. 

7-58 



OPEN EXIT 
FLAGS: 

Tape OPEN Exits are handled exactly as disk OPEN 
Exits. The OPEN Exit masks are set up in the first 
byte on the top of the stack in the SVC input 
parameter. Currently supported OPEN Exits are: 

(1) Volume not found 
(2) File not found, or sequence ntunber out of range 
(3) No space available on tape volume to create new 

file 
(4) Possession conflict 
(5) Wrong label type or wrong density 

No other fields in the UFB are used as 'OPEN' input. 

Output of the OPEN SVC includes the following UFB fields: 

UFBVREAD 
and 
UFBVSTART: 

UFBFSl 
and 
UFBFS2: 

UFBBLKSIZE: 

UFBRECSIZE: 

UFBFORG: 

UFBFLAGS: 

UFBFl: 

Set to DMS routine entry address. 

Set to OPEN Return Code. If UFBF4NOMSG is 
requested and OPEN is not successful, a 4-byte 
message ID is set at the beginning of the UFB, just 
as for Disk OPEN. If OPEN Exits are set, UFBFS2 is 
the exit flag. (The exit flag indicates which OPEN 
Exit condition is taken, just as for Disk OPEN 
Exit.) 

For labelled tape, existing file (INPtrr and EXTEND 
mode), UFBBLKSIZE is set to the tape block size 
from the file label. This is the maximum allowable 
block size for DMS operations. 

For an existing file on labelled tape, (INPUT and 
EXTEND modes), using RAM, UFBRBCSIZE is set to the 
record size from the file label, and is the maximum 
acceptable record size for DMS operations. For an 
existing file on labelled tape, using RAM with 
undefined record format, it is set to the block 
size from the tape label , and is the maximum 
acceptable record size for DMS. 

Set to actual tape file organization in INPUT and 
EXTEND modes. 

Compress flag set for an "X" format file in INPIIT 
and EXTEND modes. 

UFBFlPREVO and UFBFlOPEN flags are set. 

7-59 



UFBDEVADDR: 

UFBFILENAME 
and 
UFBDIRNAME: 

UFBNRECS: 

UFBLRECSAVE: 

Set to the device number of the device on which the 
tape volume is mounted. 

For a labelled tape in INPUT and EXTEND modes, OPEN 
will decode the tape file name in the HDRl and put 
it in these fields. The name in the label must be 
in the form ' library.file' in order to be decoded. 
Otherwise, these fields are left blank. 

Set to o. 

Set to the same value as that in UFBRECSIZE. 

UFBTLABELS: Will be set to the actual tape label type after 
successful OPEN. 

UFBTDEN: 

UFBTSEQ: 

Will be set to the actual tape density after 
successful OPEN. 

Will be set to the tape file sequence number after 
successful OPEN. 

UFB fields in the DMS section are initialized. No other fields 
are used. 

OPEN SVC functions - Existing File (INPUT and EXTEND Modes) : 

OPEN issues a 'GETPARM' to obtain the volume name, file name, and 
file sequence number. If the volume is not mounted, a message is 
displayed requesting the user to mount the volwne. The tape is 
then positioned by file sequence number or file name. 
Information in the file label (for labelled tape) is then 
extracted and placed in UFB fields and control blocks are 
allocated. UFB fields are initialized and the tape positioned to 
the first data block for INPUT mode to the tape mark following 
the last data block for EXTEND mode.. Two I/0 buffers of the size 
specified in UFBBLKSIZE are allocated in the Segment 2 buffer 
area. 

7-60 



OPEN SVC Functions - New File (OUTPUT MODE): 

OPEN issues a 'GETPARM' to obtain the volume name, file name, and 
file sequence number. If the volwne is not mounted, a message is 
displayed requesting the user to mount the volume. The tape is 
then positioned by file sequence number. For labelled tape, the 
file labels HDRl and HDR2 are constructed and written on the tape 
(and followed by a tape mark) • Library and file names are 
converted to the form (lib.file) and placed in the HDRl file. 
(No labels are written for NL tape.) Control blocks are 
allocated. UFB fields are initialized, and the tape is 
positioned to the first data block. Two buffers are allocated 
(as for INPUT mode). 

7.8.4 READ Function Request 

INPUTS: The following UFB fields are used: 

UFBEODAD, 
UFBERRAD: Error Exit address. 

UFBVREAD: Function modifier. 

UFBRECAREA: Record area for the record read. 

Outputs: The following UFB fields are set: 

UFBFSl, 
UFBFS2: File status after DMS functions. 

UFBRECSIZE: Set to record size after READ in RAM. 

Set to block size after READ in BAM. For "U" 
format file, in RAM, RECSIZE is the block size of 
the block which was read. 

UFBNRECS: Number of records processed. 

DMS Routine The next record on the tape file is moved to 
Operations: user-specified record area. For multiple-volume 

tape files, volume switching may be performed (see 
7.8.8 below). If the NODATA option is used, the 
record is not moved to the record area. Instead, 
the record pointer is returned in general 
register 1. 

7-61 



7.8.5 WRITE Function-Request 

Inputs: TI1e following UFB fields are used: 

UFBEODAD 
and 
UFBERRAD: Error Exit address. 

UFBRECAREA: Record area of the record to be written. 

UFBBLKSIZE: Tape block size to be written. (Used in PAM only.) 

UFBRECSIZE: Record size, specified when 
variable-length-record files 
X, and U). 

writing records for 
(record formats v, W, 

Outputs: The following UFB fields are set: 

UFBFSl, 
UFBFS2: File status after DMS functions. 

UFBNRECS: Number of records processed. 

DMS Routine The record addressed by UFBRECAREA is written to 
Operations: the tape. For multiple-volume tape files, volume 

switching may be performed (see 7.8.8 below). 

7.8.6 START Function-Reguest 

Inputs: The following UFB fields are used: 

UFBEODAD, 
UFBERRAD: Error Exit address. 

Outputs: lhe following UFB fields are set: 

UFBFSl, 
UFBFS2: File status after DMS functions. 

DMS Routine To wait for the completion of a previous READ/WRITE 
Operations: request (in PAM only). 

7-62 



7.8.7 Close Tape File 

Inputs: UFB fields used by CLOSE: 

All UFB fields left from previous DMS functions will be used by 
CLOSE. No unauthorized modifications should be made to the UFB. 
Options supported are "NOREWIND' , 'UNLOAD' , and •REEL' • 

Output: 

Uf'BFSl, 
UFBFS2: 

UFBFl: 

CLOSE 
SVC 
Functions: 

UFB fields used by CLOSE: 

Return Code. 

UFBFlOPEN flag turned off 

In OUTPUT and EXTEND modes, CLOSE writes out data 
in buffers. For labelled tape, the trailer labels 
EOFl and EOF2 are constructed and written to tape, 
followed by two tape marks. For NL tape, only two 
tape marks are written; trailer labels are 
written. In INPUT Mode, CLOSE completes the last 
I/0 operation. CLOSE then deallocates control 
blocks and buffers, cleans up UFB fields, rewinds 
the tape, and returns unless the • NOREWIND' or 
'UNLOAD' options are specified. For the 'NOREWIND' 
option, CLOSE positions the tape to the tape mark 
following the processed tape file, rather than 
rewinding it. For the 'UNLOAD' option, the tape is 
rewound, unloaded, and logically dismounted. 

The 'REEL' option asks CLOSE to terminate the 
current volume with an 'End Of Volume' label and 
continue the tape file on next volume (see 7.8.8 
Multiple-Volume Tape File, below) • 

7.8.8 Multiple-Volwne Tape File 

The multiple volume tape processing is supported by DMS for AL 
and IL tape files, as described below. 

To Read a Multiple-Volume Tape File (INPtrr Mode) 

When end-of-tape is reached, DMS reads the trailer label (if 
neither EOFl nor EOVl is found, a warning message will be 
displayed, and the End-Of-Data exit will be taken) , compares the 
tape block count with the actual number of tape blocks read, and 
warns the user if the counts are inconsistent. 

7-63 



If the trailer label is an EOFl block (indicating end-of-file 
reached), the End-Of-Data exit is taken with File-Status= 10. 

If the trailer label is an EOVl block (indicating file to be 
continued to next volume) , and if the user has specified the 
NOMSG option or EOD=EOV option, the End-of-Data Exit is taken 
with File-Status = 11. 

Otherwise, the tape tile is continued to the next volume. A 
volume switch message is displayed, directing the user to mount 
the next volume. The newly mounted volume is checked for the 
correct volume sequence number and the 'READ' operation continues 
from the new volume. 

To Create a Multiple-Volwne Tape File (OUTPUT Mode) 

When end-of-tape is reached, DMS checks the NOMSG flag and EOD = 
EOV flag. If either of these flags is set, the Boundary 
Violation Exit is taken with File-Status = 34. Otherwise, the 
EOVl and EOV2 blocks are written on the tape·followed by two tape 
marks, and DMS displays a message asking the user to specify the 
next volume and device. A MOUNT SVC is issued asking the user to 
mount the next volume and the WRITE operation continues on the 
next volume. 

7.8.9 7-Track Tape Support 

Til.e 7-track tape records only six bits of data for . each byte. 
Thus, only the six low-order bits of each byte are written on 
tape and, during a read, the two high-order bits are set to zeros 
in main memory. 

Data can be recorded on the tape using odd or even parity. Note, 
however, that a data pattern of X'OO' cannot be recorded on tape 
with even parity; instead, it is recorded as X'OA'. If it is 
recorded with odd parity, it is recorded as X'OO'. 

Data Management supports only unlabelled tape files for 7-track 
tape. The tape mount function is the same as for 9-track tape; 
tape density is set to 800 bpi (the only density supported). 
System control blocks always indicate label type 'NL'. 

When opening a 7-track tape file, the user must specify the 
parity of the file in UFBTPARITY, even for an existing file. All 
other UFB fields are used as for 9-track tape. In RAM, only 
fixed-length and undefined-length records can be used for 7-track 
tape. BAM and PAM are supported as for 9-track tape. 

All DMS functions as well as CLOSE are then same as four 9-track 
tape. 

7-64 



7.9 PHYSICAL ACCESS METHOD FUNCTIONS 

Any disk file can be accessed under the Physical Access Method 
(PAM) when UFBFlPAM is set in the UFB (at OPEN.) In this case, 
the file is the accessed by block number (from zero) rather than 
record number. SVC OPEN does not allocate I/0 buffers when 
UFBFlPAM is set. All I /0 is performed by reading or writing 
directly from a user-supplied address. The length of the data 
transfer is also set by the user-program. 

NOTE: The Physical Access Method (PAM) provides the user with 
asynchronous waits for I/O operation completions. A 
physical 1/0 operation is initiated by a read, rewrite 
or write function request. The data area for the 
physical I/0 operation is defined by UFBRECAREA and the 
data length (UFBBLKSIZE) as returned in the UFB by the 
DMS routine. This data area should not be used until 
the 1/0 operation has been completed successfully; ie., 
it should not be used until a wait for I/0 completion 
(START(WAIT) function-request) has been executed. 

7.9.1 UFB Field Definitions for Physical Access Method 

1. UFBMAXTFR is a 2-byte positive number which 
indicates the maximum data length which may be 
transferred per I/0 request on a particular disk 
drive. This field is available after OPEN and will 
be a multiple of the disk block size (2048 bytes) • 
UFBMAXTFR is 2048 if the device is a printer. 

2. Common PAM Input Parameters 

a. UFBERRAD, UFBLF , UFBLFMOD and the UFB 
BCBsection are used as in the Conunon UFB Input 
Parameters. UFBEODAD is taken when File status 
= '23' (record not found) is returned. 

b. UFBKEYAREA - Pointer to word containing the 
beginning block number of the data to be read 
or written. The first block in the file is 
block number zero. 

c. UFBRECAREA - Address (Segment 2) of data. Data 
areas are completely controlled by the 
user-program. The data address must be 
properly aligned; otherwise, file-status = '96' 
will be set for invalid command. (Page 
alignment is required). 

7-65 



d. UFBBLKSIZE This 2-byte field indicates the 
length for the data transfer desired. DMS 
function-requests will set UFBBLKSIZE equal to 
the length of the data actually read or written 
when end-of-extent, end-of-cylinder, or 
end-of-file cause the data transfer to be 
truncated. UFBBLKSIZE must be a multiple of 2K 
or file status = '96' will be set for invalid 
command. 

UFBBLKSIZE may equal UFBRECSIZE = 2K for 
appropriate files. In this way, files with 
block size = record size may be accessed 
without record movement and without any extra 
user-program support. In this case, UFBBLKSIZE 
will never be reset by DMS (i.e., the data 
transfered will always = one disk block.) 

7.9.2 Read Block Fwiction-Request (INPur or I/O) 

Inputs: a. Common PAM Input Parameters 

b. UFBEBLK - block number of last block within file 

DMS routine operations: The desired block(s) as indicated by 
UFBKEYAREA and UFBBLKSIZE is read into the user area 
(UFBRECAREA). The read block function is random (block 
number required) and asynchronous. (START is used to 
wait for completion.) File status is set equal '95' if 
there is I/0 in progress (invalid function sequence). 
File status is set equal to '23' (record not found) if 
the block number supplied is greater than UFBEBLK or if 
the file contains no records (UFBEREC=O and 
UFBEBLK=O). UFBEODAD is taken for file status= '23'. 

Outputs: UFBFSl, UFBFS2 stored (operation initiated ok or errors 
as above). 

Note: 

BCB updated for read operation initiated. 
UFBLF set for read. 
UFBBLKSIZE set equal to actual length of the transfer. 

UFBEREC and UFBRECSIZE are available in the UFB and may 
be used by the user-program to determine the last 
record in the last block (end-of-file) • (UFBEREC 
equals the nwnber of records in the last block of the 
file; UFBEREC=O only when the file contains zero 
records (null-file.) 

7.9.3 Rewrite Block Function-Request (I/O) 

Inputs: a. Common PAM Input Parameters 

b. UFBEBLK - block nwnber of last block within file. 

7-66 



DMS routine operations: The desired block (s) as indicated by 
UFBKEYAREA and UFBBLKSIZE is written from the user area 
(UFBRECAREA) to the disk file. The rewrite block 
function-request is random and asynchronous (see "Read 
Block", Subsection 4. 9 .1) • The rewrite block 
function-request does not require a prior read block 
operation. File status errors (' 23' or '95 ') may occur 
(as in Read block). UFBBUFSIZE is set following the 
initiation of the write operation. (No extents are 
allocated in I/0 mode.) 

Output: UFBFSl, UFBFS2 stored 
BCB updated for write operation initiated. 
UFBLF set for REWRITE 
UFBBLKSIZE set equal to the actual length of the 
data transfer 

7.9.4 START Function-Request (INPUT, I/0, or OUTPUT) 

Inputs: a. Common PAM Input Parameters 
b. UFBEBLK - block number of last block within file 
c. Modifier byte at UFBVSTART 

DMS routine operations: This function-request has two different 
operations depending on the value of the modifier byte: 

START (WAIT) - The last I/0 operation is waited on for 
I/0 completion. File status = '95' if there is no 1/0 
in progress. The file status of the completed I/0 
operation is available in UFBFSl, UFBFS2 after START 
(WAIT) ; the record area is also available to the 
user-program after I/0 completion. 

The START (WAIT) function-reguest is required for 
waiting on I/0 completion for all the asynchronous PAM 
operations. 

START OlITPUT/START IO - This request is available 
in OUTPUT mode and in temporary I /0 mode. 
similar to the START request for consecutive disk 
(Subsection 4.4.4) 

only 
It is 
files 

START IO - The last I/0 operation (if any) is waited 
on. 1hen the vectors are modified to provide the Read 
block and Rewrite block function-requests. 'Ille size of 
the file is determined by UFBEBLK. 

START OUTPUT - The last 1/0 operation (if any) is 
waited on. Then the vectors are modified to provide 
the' write -block function-request. UFBEBLK is set equal 
zero for no records in file. 

START El'TEND - This option is similar to START OUTPUT 
except that UFBEBLK is adjusted so that subsequent 
WRITES will add blocks to the end of the file. 

7-67 



Outputs (START OUTPUT and START I/O): 

UFBFSl, UFBFS2 stored 
BCB section updated (no I/0 in progress) 

For Start I/0- UFBVWRITE set for invalid functions; 
UFBVREAD and UFBVREWRITE set for I/O mode functions. 

For Start Output 
invalid function. 
function. 

- UFBVREAD and UFBVREWRITE set for 
UFBVWRITE set for OUTPUT mode write 

UFBFSl , UFBFS2 stored in the UFB; UFBLF and UFBLFMOD 
set. 
BCB section updated for no I/0 in progress. 

7.9.5 Write block function-request (OUTPUT) 

Inputs: a. Conunon PAM Input Parameters 
b. UFBEBLK - block number of last block within file 

DMS routine operations: The desired block (s) as indicated by 
UFBBUFBLOCK and UFBBLKSIZE are written from the user 
area (UFBRECAREA) to the disk file. UFBBUFBLOCK is the 
number of the next highest block beyond the current end 
of the file. UFBBUFBLOCK is maintained by DMS and 
allows a file to be created sequentially; it should not 
be modified by the user program. The write block 
function-request is thus sequential and asynchronous. 
The file status for Invalid function ('95') occurs if 
the last write has not been waited on. UFBBLKSIZE is 
set to indicate the length of the data transferred 
after I/0 initiation. Also, UFBEBLK and UFBBUFBLOCK 
are updated for the number of blocks transferred. 
Additional extents are added as necessary; file status 
= '34' when an additional extent is required and none 
can be allocated. 

Outputs: UFBFSl, UFBFS2 stored 
UFBBLKSIZE set equal to the actual length of the data 
transfer 
UFBBUFBLOCK and UFBEBLK updated for number of blocks 
tansferred. 
BCB section updated (write initiated) 
UFBLF set for write. 

7-68 



APPENDIX A - DATA AREA MACROINSTRUCTION FORMAT 

Corresponding to each system data structure is a macroinstruction 
which may be used freely by system and user's programs to define 
standard labels for fields within the structure. If only the 
macroinstruction name is written, a dummy section (DSECT) of that 
name is generated. If a register specification (e.g. , UFB 
REG=Rl) is included, a USING pseudo-operation is also generated 
(e.g., USING UFB ,Rl). If the "SUFFIX=" operand is provided, each 
label is generated to contain the SUFFIX character iDIDediately 
following the block name (e.g., for "UFB SUFFIX=/#", the label 
"UFBFl" becomes "UFB/IFl"). Only a one-character suffix should be 
specified. If "NODSECT" is specified (e.g., "UFB NODSECT, 
REG=Rl ") , the DSECT (and termination CSECT) pseudo-operations are 
not generated. The block name is not included as a label name in 
this case. The general fonnat of these macroinstructions is as 
follows: 

&blockname 
.LO 

blockname&SUFFIX 
.Ll 

* 

MACRO 
blockname 
GBLB 
AIF 
AIF 
SETB 
ANOP 
AIF 
DSECT 
ANOP 

&NDS,&REG=,&SUFFIX= 
&NODS,&block.name 
( I &SUFFIX I NE ' I ) • LO 
(&blockname) • L3 
(1) 

('&NDS' EQ 'NODSECT' OR &NODS).Ll 

* BLOCK DEFINITION FITS IN HERE 

* 
&SY SECT 
.L2 

.L3 

AIF 
&SYSTYP 
ANOP 
AIF 
USING 
ANOP 
MEND 

('&NDS' EQ 'NODSECT' OR &NODS).L2 

(' &REG. EQ I ') • L3 
blockname&SUFFIX,&REG 

A-1 



APPENDIX B - USER PROGRAMS IN THE WANG 2200VS 

THE PROGRAM 

A program is an entity invoked by the command processor or by a 
LINK SVC. The name of the program is the two-level name of its 
disk file. There is only one program in a file. A program file 
is a consecutive file with lK (1024) byte records and the 
'program' flag set in its file descriptor record. The object 
program is originally built by a language translator (compiler or 
assembler). It then may be modified by a linker program. 

THE PROGRAM SKELETON 

A program is partitioned into blocks of information. Each block 
represents common information that will be needed either when the 
program is running or when the program is processed by the linker 
program. To describe the skeleton at this level and for the 
lower levels, a special notation will be used. Each item to be 
described will be listed in a table. To the left of the item's 
description will be its 'level' nwnber and its length. The level 
number is a designation of the relationship of this item with the 
preceding items in the table. The start of the table will be the 
program with a level number of zero. Th.en to describe structures 
within the program, there will be one or more level one items 
listed under the level zero item. The first of the items with 
the next higher level number will be assumed to be located at the 
start of the item specified with the lower level number. To help 
see how this system works, take a look at the following example: 

Level Number Length Description 

0 var A 

1 5 B 

2 3 c 

2 2 D 

1 var E 

Example 1 

B-1 



In this example, the whole is 'A' • The first level below 'A• is 
level 1. There are two parts to this level : 'B ' and 'B ' • The 
start of B corresponds to the start of A. At the next level, 
level number 2, there are also two parts. These are • C' and 
'D'. The start of C corresponds to the start of B and also the 
start of A. A slightly more general use of this notation would 
specify that there can be any number of replications of B. If 
this was the case: 

Level Length Description 

0 var Object program 

1 var The RUN block 

1 var The SYMBOLIC block 

1 var The LINKAGE block 

B-2 



THE RUN BLOCK 

'lhis contains the infonnation needed by the system 
program. The block will be used by the operating 
paging file when the program is running. It contains 
instructions to be run and the information needed to 
'static' area on the stack when the program is started. 

to run a 
system as a 
the actual 

format the 

Level Length 

1 var 

2 var 

3 8 

4 4 

4 4 

3 var 

Description 

The RUN block 

(First location has an assumed address 
of 1,048,576 (or 1024K) .) 

CODE and PROLOG block 

PROLOG block 

Length of CODE and PROLOG block 

(Tilis value is used to find the start 
of the 'STATIC' AND LENGTHS block.) 

Entry point address 

This is the point to which control 
will be passed when the program is 
started. It will be the address of 
any external name in the CODE 
sections. If the high-order bit is 1, 
the program has been assembled to run 
in segment 0 (as for standalone 
utilities and operating system 
routines). 

CODE block 

This may contain any number of CODE 
sections. This block contains all of 
the executable instructions in the 
program and may contain nonmodified 
data. It is composed of any number of 
sections, where a section is 
contiguous area of code that can be 
moved by the linker program as whole. 
'lbere is no requirement for a 
particular order of the sections 
within the CODE block. 

B-3 



Level Length 

4 var 

2 16 

3 4 

3 4 

3 4 

3 4 

2 var 

Description 

CODE section 

• 
lbis is a block externally identified 
by its name. It is an independent 
contiguous area of code supplied by 
the language translator. The first 
location will be on a double word 
boundary, and the length will be 
divisible by eight. All address 
constants that are resolvable will be 
resolved so that the program can be 
run without changing any locations in 
the section. 

LENGTHS block 

Length of 'static' block in 
(object time) . 

bytes 

This length reflects the length of 
data in the STATIC area. If the 
length is not divisible by 4, up to 
four bytes of slack will be added 
after the end of the block to make the 
following block start on a word 
boundary. These slack bytes are not 
counted in the length. 

Length of 'static' area in bytes (run 
time). 

Reserved, must be zero 

Reserved, must be zero 

'Static' block 

This block contains 
initial value records. 

sections of 
There can be 

any number of 'static' sections in 
this block (including zero). 

B-4 



'STATIC' BLOCK 

'Ihis block contains initial value records that are to be processed 
by the program startup facility in the operating system. These 
records will cause initial values to be assigned to locations in 
the 'static' area. There can be any number of 'static' sections 
within this block. All address constants in the static sections 
that reference locations in the CODE sections will be resolved by 
linker or translator programs as if they were in a code section. 
Address constants that address locations within the 'static' 
sections will be resolved as if the start of the 'static' block 
were location zero. 

Level Length 

2 var 

3 var 

Description 

'Static' block 

This may contain any number of 'static' 
sections (including zero). 

'Static' section 

A 'static' section can be any length, 
including zero. The section contains 
only the compressed initial value 
records for this section. If no 
locations in the static section are to 
have initial values, there will be no 
records for that section and the object 
time length will be zero. It should be 
noted that the length of these 'static' 
sections does not correspond to the 
length of the expanded 'static' section 
at run time. In order to distinguish 
between the two, the following naming 
convention will be used. Locations in 
the object code (the disk file) will be 
referred to as object time locations or 
will be specified by their object time 
address. Locations that are used 
during running of a program will be 
referred to as run time locations or 
will be specified by their run time 
addresses. Because the CODE block is 
used without change at run time, this 
distinction will normally not be made 
for any locations of the code block. 
When descriptions apply to both static 
and code areas, 'run time' and 'object 
time' may be used interchangeably to 
refer to the code area. 

B-5 



Level Length 

4 5-2054 

5 1 

5 . 4 

5 2 

Description 

Initial value records 

These records specify locations that 
are to have initial values in the 
named 'static' section and the values 
the program startup mechanism is to 
assign to these locations. There are 
five types of initial value record: 
1) The origin record, which specifies 
how far from the start of the expanded 
run time static area this section will 
start. 
2) The value record which specifies 
the value to be placed into the static 
area. 
3) The relocation record which 
specifies that program startup is to 
supply the address of a run time 
location in a static area. 
4) The repeated record which specifies 
a value and a repetition factor to 
indicate how many occurrences of the 
value are to be placed in the static 
area. 
5) The compressed record which 
specifies the compressed value to be 
expanded and placed into the static 
area. 

Length of data within the data field 
in this record minus one (this field 
is not used for the compressed record 
type). 

Record type . 

= 0 Value 
= 1 Origin 
= 2 Relocation 
= 4 Repeated 
= 8 Compressed 

Run time displacement 

This field has two interpretations. 
For or1g1n records (record type - lJ , 
this indicates the displacement from 
the start of the static area of this 
static section. For all other record 
types, this indicates the run time 
displacement from the start of the 
static section of the record's data. 

B-6 



5 

Data field of 

Level 

5 

Data field of 

Level 

5 

Data field of 

Level 

5 

6 

6 

6 

6 

1-256 

value type 

Length 

1-256 

origin type 

Length 

1 

Data field. The length and format of 
this field varies depending on the 
record type as follows: 

record 

Description 

Data to be moved to the 'static' 
section. 

This data is moved unchanged to the 
run time static area. 

record 

Description 

One byte of dummy data. 

the relocation type record 

Length 

4 

.3 

.1 

.1 

.1 

Description 

Relocation item 

These are similar to the relocation 
entries in the linkage block of the 
program. Each one represents an 
address constant in the static section 
and the initial value the location is 
to have. Every address constant in a 
STATIC section must be initialized by 
a relocation item. 

Reserved, must be zero 

Base for relocation 

= 0 Relocate relative to the static 
area 

= 1 Relocate relative to the current 
static section 

Length of target address constant 

= 0 Tilree bytes 
= 1 Four bytes 

Direction of relocation 

= O Positive 
= 1 Negative 

B-7 



6 .1 

6 .25 

Do not relocate flag 

= 0 Relocate the address constant 
= 1 Move the address constant to the 

specified location but do not 
relocate with respect to the 
static area. 

This flag is used if the address is 
unresolved, if the address referenced 
a code location, or if this is an R 
type address constant. 

Initial value of the address constant 

If the target is three bytes long, 
only the last three bytes will be 
moved to the target area and the 
high-order bit will be ignored. If 
the target is four bytes long, the 
high-order bit will be propagated 
through the seven remaining bits of 
the high-order target byte. 

Data field of repeated type record 

Level 

5 

5 

Length 

2 

1-256 

Description 

Repetition factor (2-32767) 

Data to be repeated wthin the static 
area. 

Data field of compressed type record 

Level Length 

5 2 

5 1-2048 

Description 

Length of compressed data. (1-2048) 

Compressed data 

Thi.s data is expanded before being 
moved to the static area. 

B-8 



THE SYMBOLIC BLOCK 

The symbolic block is a pool of information to be used by the 
system's debugging support. The block is partitioned into a 
length field and any number of section related blocks. 

Level Length 

1 var 

2 4 

2 var 

3 var 

Description 

Tile SYMBOLIC block 

Tilis contains all of the program's 
special debugging information. 

Fullword Aligned Length of SYMBOLIC 
block. 

(If there are no symbolic sections, 
the length will be 4.) 

Section area 

This can contain 
SYMBOLIC sections. 

SYMBOLIC section 

any number of 

Every CODE section can have a SYMBOLIC 
section. If it does, these sections 
will be in the same order as the 
corresponding CODE sections. 

B-9 



THE SYMBOLIC SECTIONS 

The SYMBOLIC section contains information used by the system's 
debugging support for the named code section. It is partitioned 
into a part at the start of the block that contains all of the 
external labels that are referenced, followed by any number of 
subblocks of specialized debugging information. Each of these 
subblocks will contain information grouped by type (i.e., one of 
the blocks may be the 'statement' number block with the list of 
locations of each line of source code's generated object code). 

Level Length 

3 var 

4 4 

4 8 

4 4 

4 22 

5 8 

5 8 

5 6 

Description 

The SYMBOLIC section. 

This is the pool of debugging 
information for the system debugging 
support for the named section. 

Length in bytes of data in this 
symbolic section (including this word). 

This length reflects the length of 
data in the area. If the length is 
not divisible by 4, up to three bytes 
of x'OO' filler will be added after 
the end of the section to make the 
following section start on a word 
boundary. These slack bytes are not 
counted in the length. 

External name of corresponding CODE 
section. 

Doubleword aligned object time length 
of the corresponding section block in 
the RUN block. 

Location of source file at compilation 
time. 

Source filename. 

Source Library Name. 

Source Volume. 

B-10 



Level Length 

4 22 

5 8 

5 8 

5 6 

4 var 

5 4 

5 var 

6 12 

7 8 

7 4 

Description 

Location of listing file at 
compilation time (or blank). 

Listing filename. 

Listing Library name. 

Listing Volume. 

External reference pool. 

'!his lists all labels that are 
externally referenced. Each label is 
listed only once, no matter how many 
times it is used in the program. 
'!here is no order in the list, but the 
position of an entry in the list 
represents the internal number used 
for referencing that label. Tilis 
structure allows modules to be added 
or dropped by a linker program without 
changing any locations in SYMBOLIC 
section (other than adding or dropping 
the whole section) • 

Length of external reference pool (in 
bytes), including this word. 

Any number of 
Entries. 

external Reference 

External Reference Entry. 

External name (ASCII with 
blanks). 

trailing 

Displacement within code section to 
4-byte RCON. 

B-11 



Level Length 

4 var 

5 var 

6 1 

6 3 

6 var 

Description 

SYMBOLIC subblock area. 

This may 
subblocks. 
only of 
info11nation 
block). 

contain any number of 
Each subblock is composed 

one type of debugging 
(i.e., 'statement number' 

SYMBOLIC subblock. 

Subblock type. 

The types are language independent 
codes and are interpreted the same for 
all languages. 

Length of data in subblock. 

This length reflects the length of 
data in the subblock. 

This includes the first four bytes of 
the subblock. 

If this length is not divisible by 4, 
up to 3 bytes of X'OO' filler will be 
added at the end of the subblock to 
make the following subblock start on a 
fullword boundary. These filler bytes 
are not counted in the length. 

Collected information about this 
section. These subblocks 
processed by a common 
independent program. 

B-12 

are 
language 



STATEMENT NUMBER SUBBLOCK 

This subblock is generated by all high-level language 
translators. It contains language independent infonnation 
identifying individual statements in the program's section. 
Exactly one statement number subblock must be present in each 
symbolic section. 

Level Length 

5 var 

6 1 

6 3 

6 var 

7 10 

8 2 

8 5 

Description 

STATEMENT NUMBER subblock. 

= 1 (STATEMENT NUMBER type subb lock) • 

Length of data in the subblock 
including this word. If this length 
is not divisible by 4, up to 3 bytes 
of X'OO' filler will be added to the 
end of the subblock to make the 
following subblock start on a fullword 
boundary. 

Any number of statement entries. 

Each entry represents one 'statement' 
in the source program. The definition 
of statement is language dependent, 
but is consistent within any one 
language (i.e., in COBOL there will be 
one entry per verb in the COBOL 
source). The entries will be in order 
of increasing displacements. 

Statement entry. 

Line number in binary (no negative 
values) or zero to indicate inline 
nonsymbolic code. 

The exact definition of this entry is 
language dependent, but normally will 
indicate the statement line number. 

Character string 
trailing blanks) , 
indicate COBOL, 
header linkage. 

(in ASCII with 
or XLS'OO' to 

perform paragraph 

The use of this field is language 
dependent, but can be used either for 
the statement label or the conunand 
starting at the specified 
displacement. (In COBOL this will be 
used for an abbreviation of the COBOL 
verb.) 

B-13 



Level Length Description 

8 3 Displacement (run-time) into the code 
SECTION. 

This is the run-time displacement into 
the section of the start of the 
statement. 

B-14 



DATANAME SUBBLOCK 

'Ibis subblock is generated by all high-level language translators 
to support symbolic access to data items at runtime through 
command language facilities. Exactly one dataname subblock must 
be present in each symbolic section. 

Level Length 

5 var 

6 1 

6 3 

6 var 

7 4 

7 var 

8 4 

6 var 

Description 

DATANAME SUBBLOCK 

=2 (Data name type subblock). 

Length of data in subblock (including 
this word). 

If this length is not divisible by 4, 
up to 3 bytes of X'OO' filler will be 
added at the end of the subblock to 
make the next section start on a 
fullword boundary, 

DATANAME INDEX 

This index contains compiler 
dependent information used to 
efficiently search the subblock or a 
given symbol. 

Number of index items. 

Any number of positional index items. 

Index item = 
symbolic section 
Entry with the 
indexed attribute. 

displacement within 
to first Dataname 
compiler dependent 

(For COBOL and BASIC, the index is by 
alphabetical order and points to 
groups of Dataname Entries for 
symbols beginning with the same 
character. This implies that there 
are exactly 26 Dataname Index entries 
for COBOL and BASIC.) 

Any number of data name entries. 

These can be in any order. It is 
expected that any one compiler will 
order these such that when the 
compiler is identified they can be 
efficiently searched. 

8-15 



Level Length 

7 var 

8 1 

8 5 

9 1 

9 1 

9 3 

8 3 

9 1 

10 .1 

10 .1 

Description 

Data name entry. 

Length of entry minus one. 

Path to the data. 

Index of the external section that 
the displacement references. This is 
the number of the entry in the 
external reference pool in the 
symbolic section. 

Type of path to the data item; 

0 = Displacement 
constant in 
code section 

locates the data 
the corresponding 

1 = Displacement locates the data 
item in the references 
external section. 

2 = Displacement locates a 

3 = 

four-byte ACON in the 
referenced external section 
which should be used as a base 
address. The displacement 
from this address is found in 
the offset field. 

Displacement equals value 
(right-justified) 

Displacement from the indexed 
external section to the data item 
(for type 2 path this is the 
displacement to the address constant). 

Data description. 

Type of variable. 

Indicator referenced item (whether 
referenced using subscripts or not) 
is an elementary data item if = 1. 

Indicator 
1. 

B-16 

Subscripts required if = 



Level Length 

10 .6 

Description 

Format Indicator; 

0 = Mixed (applies to 

1 = 

2 = 
3 = 
4 = 

5 = 
6 = 

nonelementary items only 
and implies that the scale 
is to be used as the 
high-order byte of the 
variable-length field). 

Character (this 
that the scale 
used as part 
variable length). 

Binary. 

Packed decimal. 

implies 
is to be 
of the 

Bit string (value always 
interpreted as full bytes). 

Floating point. 

Display Field Attribute 
Character 

8 = Zoned number with no high 
or low order sign zones 
but may contain either a 
leading or trailing sign 
character and one deciaml 
point character. 

9 = Binary COBOL halfword 
index value (length per 
occurrence number is in 
item length - length is 2 
bytes) • 

10 = Zoned Numeric with 
High-Order Sign Zone. 

11 = Zoned Numeric with 
Low-Order Sign Zone. 

12 = Zoned Numeric with Leading 
Sign Character. 

13 = Zoned Numeric with 
Trailing Sign Character 

B-17 



Level Length 

9 1 

9 1 

8 1 

Description 

Format Indicator: 

14 = Unsigned Zone Numeric 

Note: Zoned numeric fields 
contain all numeric characters, 
0-9, except for sign. Scale 
factor indicates decimal point 
location. 

15 = BASIC array. 

16 = COBOL group item. 

17 = BASIC string scalar. 

18 = Binary COBOL fullword 
index value (Length per 
occurrence number is in 
item length. Length is 
two bytes). 

19 = Logical (FORTRAN) 

20 = Complex (FORTRAN) 

Scale 

This is a signed binary nwnber 
indicating how far left of the 
rightmost digit the decimal point 
is to be relocated (relocation is 
to the rigth fro negative 
numbers). (For character type 1 
fields, this byte will be 
considered part of the item 
length.) 

Data item length. 

This specified the length 
data time. If the 
character type, both this 
preceding byte will be 
the length. 

of the 
data is 
and the 
used for 

Length of data name minus one. 

B-18 



Level Length 

8 var 

8 2 

8 var 

,9 1 

9 var 

10 4 

11 2 

11 2 

* For the general 
"Length of Subscript 
defined as follows: 

For Row Major Ordering, 

Description 

Data name. 

If the data name must be 
qualified, all necessary levels of 
the name are to be listed with 
highest level first and the 
levels of qualifications separated 
by points ('.'). If the name is 
qualified but is unique in the 
program, only the lowest level of 
the name should be listed. 

Optional offset (present with data 
path 2 only). 

Array descriptor. 

Number of subscripts required. 

There will be one dimension 
description for each subscript. 

Indicated 
descriptions. 

number 

Dimension description. 

of dimension 

There will be one entry for each 
subscript indicated in the maximum 
subscript value (entry for leftmost 
subscript first). The first element 
of each dimension of the array will be 
assumed to be 1. 

High bound of subscript 

Length of Subscript Item.* 

array: A[1 ••• u1 ,1 ••• u2 , ••• ,1 ••• un], the 
Item" for the J_th subscript (LSij) is 

n 
1T 1 =j =n-1 

k=j+l 

1 j=n 

B-19 



For Column Major Ordering, LSij 

1 

j-1 
1l' 

k=l 

j=l 

2 =j =n 

The Length of Subscript Item entry is used by internal routines of the 
Symbolic Debugger to efficiently locate array elements in a storage 
independent manner. The following formula is used to locate element 
A[i1,i2•••••••,in]: 

n 

LOC A[11 ••••• 1nJ + l: 
j=l 

B-20 

LSI·*(i--1) J J 



THE LINKAGE BLOCK 

'Ibis is a pool of information required for the linker program to 
add or delete sections of the program. It is partitioned into a 
length field and then any number blocks of section information. 

Level Length 

1 var 

2 4 

2 var 

3 var 

2 var 

3 var 

Description 

The LINKAGE block. 

Fullword aligned length of the LINKAGE 
block. 

CODE section block area. 

This is composed of exactly one 
section block for each CODE section. 
lhe blocks are in the order in which 
the CODE sections appear in the CODE 
block of the RUN block. 

CODE section block. 

'Static' section block area. 

This is composed of exactly one 
section block for each 'static' 
section. The blocks are in the order 
in which the 'static' sections appear 
in the 'STATIC' block. 

'STATIC' section block. 

B-21 



CODE AND 'STATIC' SECTION BLOCKS IN THE LINKAGE AREA 

These blocks have sufficient information so that sections can be 
added to or deleted from a program, and so that all addresses can 
be correctly resolved after this operation is complete. With 
minor exceptions both the CODE and the STATIC blocks have the 
same basic skeleton. One skeleton will be presented, and the 
differences will be noted in the skeleton. 

Level Length Description 

3 var Section block (CODE or STATIC). 

4 4 
Length of data in this section block in bytes. 

This length reflects the length of data in the area. If the 
length is not divisible by 4, up to three bytes of X'OO' filler 
will be added after the end of the block to make the following 
block start on a word boundary. These filler bytes are not 
counted in the length. 

4 8 
External name of section (in ASCII with trailing blanks) • 

4 1 Type of block: 

= 0 for code and = 1 for static. 

4 3 
Doubleword aligned object time length of the corresponding 
section block in the RUN block. 

4 4 
Compiler name or designation (ASCII with trailing blanks). 

4 1 
Version and modification level of the compiler (packed decimal) 
VM. 

4 3 
Date of compilation of this section (packed decimal) YYDDD. 

B-22 



Level Length 

4 4 

4 var 

5 4 

5 var 

6 8 

6 4 

4 var 

Description 

For a CODE section block: 
Fullword aligned length of the 
corresponding SYMBOLIC section 
(or =O if there is no 
corresponding SYMBOLIC section) • 

For a STATIC section block: 
Doubleword aligned run time 
length of section block in the 
RUN block. 

ENTRY POINT list. 

(This is a list of all names in this 
section that are known outside of the 
section.) This list may have any 
number of names. 

Length of ENTRY POINT list (including 
this word). 

The list. 

This may contain any number of names 
and address pairs. They may be in any 
order, but must not be repeated. 

ENTRY POINT name (ASCII with trailing 
blanks). 

Runtime displacement into the section 
of this ENTRY POINT. 

RELOCATION REFERENCE BLOCK. 

This lists all locations within the 
section that will need to have 
addresses changed if the relative 
location of the section within the 
program is changed or if the location 
of specified external labels changes. 

B-23 



RELOCATION REFERENCE BLOCK 

All address constants in the section that would be relocated if 
either the starting location of the section or the location of an 
external name was changed will be listed in this block. The 
block is composed of two main parts: a list of external names 
and a list of addresses in the section to be relocated. 

Level Length 

4 var 

5 4 

5 var 

6 4 

6 var 

7 8 

5 var 

Description 

RELOCATION REFERENCE BLOCK. 

This block contains al 1 of the 
information required to relocate 
address constants in this section. 

Actual length in bytes 
RELOCATION REFERENCE BLOCK. 

of the 

'nlis 
NAMES 
items. 

includes 
BLOCK, 

this word, the EXTERNAL 
and the relocation 

EXTERNAL NAMES BLOCK. 

This block contains a list of all 
external names referenced by this 
section. An external reference is an 
address constant that references a 
label that is not part of the current 
section. The label must be the name 
of a section or an ENTRY type symbol 
in a section. 

Length of external 
(including this word). 

names block 

List of external reference names. 

These names can be in any order, but 
they will be referenced by their 
position in the list. The first name 
is nwnber one. 

External name (ASCII with 
blanks). 

List of relocation items. 

trailing 

This list is in order of increasing 
displacements. There can be any 
number of entries in this list. 

B-24 



Level Length 

6 5 

1 1 

8 .2 

8 .1 

8 .1 

8 .1 

8 .1 

8 .1 

8 . 1 

7 3 

7 1 

Description 

Relocation item. 

Flag byte. 

Reserved, must be zero. 

RCON if = 1. 

The referenced name must be in a 
STATIC section. If the address 
constant is in a STATIC section, the 
relocation record will have the do not 
relocate bit set. 

Address is a relocation record (8 
bytes). (If this is set, the 
following bit of length of target is 
ignored.) All items in a 'STATIC' 
section except origw records and 
in a CODE section will have this 
set. 

Length of target address constant: 

= 0 Three bytes. 
= 1 Four bytes. 

Direction of relocation: 

none 
bit 

= 0 Positive (add the address of the 
start of the section to the 
specified location. 

= 1 Negative (subtract 
location). 

from the 

Unresolved flag if set to =l (if set, 
the address will be resolved relative 
to an address of X'FOOOOO'). 

Reserved, must be zero • 

Object time displacement into the 
section of the address constant. 

Number of external name referenced. 

lb.is number is either zero if the item 
is to be relocated relative to the 
start of this section or is the number 
of the external name in the EXTERNAL 
NAMES BLOCK (the first name in the 
list is one) • 

B-25 



TRANSLATOR PROCESSING 

The object program is produced by a language translator. At this 
time, all address constants will be resolved, or marked as 
unresolved. The program can then optionally be processed by the 
linker program. It will add, rearrange or delete sections in the 
program. After either a language translator has produced an 
object program or a linker program has processed it, the program 
can be invoked by the operating system. · 

The language translator creates a complete object program that is 
runnable by the operating system (if no sections are unresolved 
at translation time). Tilis program must have linkage information 
for the linker program to resolve addresses after adding or 
deleting sections. The translator also has the responsibility to 
generate the symbolic section of information for debugging. 

1. The RUN block - This contains 
required to run the program. 
use this part of the file 
running program. This area 
and the initial value records 
static areas when the program 

all of the information 
The operating system will 

for segment one of the 
contains the code sections 

used to initialize the 
is started. 

2. The SYMBOLIC block - This contains information to aid 
in run time debugging of the program. This area is 
used by the debug facilities in the HELP processor. 

3. The LINKAGE block This infonoation is used by the 
linker program. After adding or deleting sections, the 
linker program will relocate the address constants in 
the program using this infonnation. 

B-26 



LINKER PROCESSING 

When the linker program processes an object program, it will 
perfonn the following operations to the basic parts of the object 
program: 

1. The RUN block - It can add new sections to either the 
code or the static areas. These must be added as a 
whole section. It can also delete whole sections or 
reorder the sections, again only as whole sections, 
never as a part of a section. Locations within the 
sections will not be inspected or changed other than 
relocatable address constants having their values 
adjusted by the linker. In some circumstances, the 
linker may have to change a flag in one of the 
relocation records. When a section is deleted from a 
program, all relocation records that reference that 
section must have the flag turned off. If a static 
section is added, all references to it must be 
examined. If the reference is in a code section, it 
must be an R type (relocation address constant) of 
address constant. If not, it will be flagged as an 
error. 

Only the terms add or delete have been 
the linker can be used to replace 
should be considered a deletion of the 
and an addition of the new section. 

used. Al though 
a section, this 

current section 

2. The LINKAGE block When a code or static section is 
added or deleted, the linker will add or delete the 
corresponding linkage section. It will also adjust the 
object time and run time starting address of the 
sections that follow. When adding a section, all 
references to it are marked as resolved and relocated. 
If a section is deleted, all references are marked as 
unresolved and are relocated relative to hexadecimal 
FOOOOO. 

3. The SYMBOLIC block - If a section is added or deleted, 
the linker will add or delete the corresponding 
symbolic section. It will not inspect or change any of 
the records within a section for any reason. 

B-27 



RUN PROCESSING 

A program is invoked by the command processor or by another 
program using the LINK facility of the operating system. First, 
the run portion of the program is made addressable as segment 1. 
('Ille first location will be location 1,048,576.) The system will 
then double word align the stack, find out the run time length of 
the static area and push this much space onto the stack. The 
start of this area will be passed to the program in register 14. 
The initial value records will then be processed. When an origin 
record is encountered, the origin displacement will be added to 
the value in register 14 and this will be used as the starting 
location of the section. When either text or relocation records 
are read, their displacement will be added to this value and 
moved to the location calculated. If a relocation record has the 
relocate flag on, the value in register 14 is to be added to the 
initial value in the record. 

B-28 



APPENDIX C DATA MANAGEMENT SYSTEM MESSAGES 

Appendix C contains the following types of messages, ·1isted in 
the order they appear in the appendix: 

1. SVC OPEN Cancel Messages. 
2. SVC OPEN Respecify Messages. 
3. DMS Function-Request Cancel Messages. 
4. SVC CLOSE Cancel Messages. 
5. File Status (FS) Codes for DMS and ADMS. 

'lhe following types of messages are not included in this appendix: 

1. Messages issued by program 'BUILDALT' for OtrrPUT mode 
creation of alternate indexed files (acknowledge and 
cancel messages). 

2. Miscellaneous acknowledge messages from SVC OPEN and 
DMS function requests. 

VS DMS No-Message Option 

'Ibe No-Message Option is available in SVC OPEN, SVC CLOSE, and 
DMS. This option causes the suppression of messages normally 
appearing on the workstation screen. 

If UFBF4NOMSG = 1, the file status for the operation is set equal 
to C' 60'. For SVC OPEN and SVC CLOSE, the message ID is stored 
in the first four bytes of the UFB. Return 1s made using the 
address in UFBERRAD; if this address is zero, UFBF4NOMSG is 
ignored. 

C-1 



1. SVC OPEN Cancel Messages 

These messages deal primarily with invalid information supplied in the 
UFB. Some also refer to unusual conditions that rarely arise during normal 
SVC OPEN usage; for example, UPDATFDR SVC errors, I/O errors when reading AXDl 
blocks, etc. 

NOTE 

'lb.ere is no continuation possible when these messages are issued. 

ERROR 
NUMBER MESSAGE 
EOOO INVALID UFB ADDRESS PRESENTED TO SVCOPEN. 
EOOl DEVICE CLASS (XX) = INVALID OPEN MODE (XX) = INVALID FIL~ 

ORGANIZATION (XX)= INVALID RECORD SIZE = INVALID RECORDS ARE FIXED 
LENGTH. KEY SIZE = XXX KEY POSITION = INVALID 

E002 FILE ALREADY OPEN (UFBFlOPEN SET) 
E006 TASK WORKSTATION NOT AVAILABLE. 
E007 MAXIMUM NUMBER OF FILES ALREADY OPEN 
EOll R~QUIRED BUFFER(S) NOT AVAILABLE FOR FILE PROCESSING 
E014 UNEXPECTED DEALLOCATION ERROR FOR MAGTAPE DEVICE. 

-·~· 

E016 BACKGROUND TASK ATI'EMPTED TO OPEN WORKSTATION. TIIE WORKSTATION MAY 
BE OPENED IN FOREGROUND ONLY. 

E017 INVALID OPEN MODE FOR PHYSICAL ACCESS METHOD. (EXTEND AND SHARED 
MODES ARE INVALID.) 

E018 THE PROGRAM IS REQUESTING AN INVALID OPEN MODE (SHARED, EXTEND) FOR 
A FILE RESIDING ON AN UNSTRUCTURED DISKETTE VOLUME. 

E019 TIIE PROGRAM IS REQUESTING AN INVALID MODE (EXTEND MODE) FOR INDEXED 
FILE PROCESSING. 

E021 THE PROGRAM IS REQUESTING AN INVALID FILE ORGANIZATION (INDEXED) 
FOR A FILE RESIDING ON AN UNSTRUCTURED DISK VOLUME. 

E023 INVALID ACCESS METHOD SPECIFICATION IN UFB (UFBFl) • 
E024 BLOCK ALLOCATION ERROR. SPACE NOT AVAILABLE ON VOLUME AND 

EXIT-OPTION NOT IN USE. 
E025 TIIE PROGRAM IS REQUESTING AN INVALID MODE (SHARED MODE) FOR FILE 

PROCESSING UNDER THE BLOCK ACCESS METHOD (BAM). 
E027 SHARING TASK NOT ACTIVE. 
E028 UNABLE TO GET UNIQUE PORT NAME. 
E029 SHARER RESPONSE CODE = XX.-YYYY. UNEXPECTED ERROR HAS OCCURRED 

WHILE OPENING A FILE FOR SHARED ACCESS. 
E030 INVALID BUFFER POOL SPECIFICATION. (ACCESS METIIOD SUPPLIED IS 

INVALID.) BUFFER POOLING CAN ONLY BE USED WI'IH INDEXED FILES IN 
INPUT OR IO MODE. 

E031 
t--· 

THE BUFFER POOL TABLE ADDRESS SUPPLIED (IN UFBBUFSTART) IS INVALID. 
E032 THE BUFFER POOL TABLE HAS NOT BEEN CORRECTLY INITIALIZED. 
E033 THE BUFFER COUNT SUPPLIED BY THE PROGRAM IS TOO SMALL. TilE MINIMUM 

BUFFER COUNT IS 3. 
E034 AN UNEXPECTED ERROR HAS OCCURRED WHIE UPDATING THE FILE LABEL. TIIE 

FILE C~1NOT BE SUCCESSFULLY OPENED FOR UPDATE. 
E035 TiiE ALTERNATE INDEX BLOCK (AXDl) ADDRESS SUPPLIED IS INVALID. 

C-2 



ERROR 
NUMBER MESSAGE 
E036 THE ALTERNATE INDEX COUNT IN UFBALTCNT IS INCORRECT. 
E037 ALTERNATE INDEX INFORMATION FOR FILE CREATION IS INCORRECT. 
E038 UNABLE TO READ AXDl BLOCK FROM FILEBLOCK O. 
E039 FAIL TO FREE THE BUFFER AFTER READING AXDl FROM FILE BLOCK 0. 
E040 ALTERNATE INDEX KEYSIZE PLUS PRIMARY KEYSIZE TOO LARGE. 
EOSO UNABLE TO ALLOCATE SYSTEM MEMORY--GE'IMEM FAILURE. 
EOSS UNABLE TO SET UP TIIE MAPPING CONTROL TABLE (MCC) FOR TIIE ADMS FILE 

IN SHARED MODE. 
E056 THE ADDRESS OR SIZE OF THE MAPPING CONTROL TABLE (MCC) FOR THIS 

ADMS FILE IS INVALID. 
E057 UNABLE TO EXTRACT INFORMATION FROM DATA DICTIONARY TO SET UP THE 

UFB FOR THIS ADMS FILE. 
E058 THE PROGRAM HAS ATTEMPTED TO PROCESS AN ADMS FILE, BUT THE VIEW OF 

THE FILE IS NOT OPENED. 
E059 TIIE VIEW OF THIS FILE DOES NOT HAVE TIIE EXLCUSIVE ACCESS RIGHT TO 

OPEN IT IN NON-SHARED MODE. 
E060 THE PROGRAM HAS ATTEMPTED TO OPEN AN ADMS FILE, BUT THE FILE 

SPECIFIED IS NOT AN ADMS FILE. 
E061 ADMS DATA DICTIONARY ERROR--INCORRECT FILE ATTRIBUTE FOUND. 
E062 THE PROGRAM HAS ATTEMPTED TO OPEN AN EXISTING ADMS FILE IN A 

DATABASE WITH RECOVERY. BUT TIIE DATABASE HAS NOT BEEN BACKED UP, 
AND RECOVERY CANNOT WORK WITHOUT THE BACKUP. PLEASE RUN DATABASE 
BACKUP. 

E063 THE PROGRAM HAS ATTEMPTED TO CREATE AN ADMS FILE IN A DATABASE WI'I~ 
RECOVERY Bur OUTPUT MODE WITH RECOVERY IS NOT ALLOWED AFTER SCHEMA 
BACKUP. THE SCHEMA MUST BE RE-ACTIVATED W/0 RECOVERY. 

E064 ADMS FILE CREATION ERROR--UNABLE TO RECORD TIIE CREATION OF THIS 
FILE IN THE DATA DICTIONARY. 

E065 THE ADMS FILE TO BE OPENED IS NOT YET LOADED INTO THE DATABASE. 
E082* UNABLE TO COMMUNICATE WITH SHARER TASK TO OBTAIN SCHEMA STATUS. 
E083* THIS FILE IS PART OF AN ADMS DATABASE WHICH HAS ENCOUNTERED A CRASH 

CONDITION. RESTORE MUST BE RUN BEFORE THE FILE CAN BE SUCCESSFULLY 
OPENED IN ADMS MODE. 

* This is a new error message added to OS Release 5.1. Older OS releases do 
not generate this error. 

C-3 



2. SVC OPEN Respecify Messages 

These messages deal with situations where the user may successfully 
continue either by supplying additional information or by correcting 
information already supplied. Situations involving possession conflicts or 
volume mounting are also handled by these respeci:fication messages. The user 
may always continue after a respecify message. 

ERROR 
NUMBER MESSAGE 
ROOl FILE IDENTIFICATION INFORMATION IS INCOMPLETE. PLEASE SUPPLY THE 

MISSING INFORMATION BELOW. 
R002 PLEASE SUPPLY THE APPROXIMATE NUMBER OF RECORDS IN THE DISK FILE TQ 

BE CREATED. TIIIS VALUE WILL BE USED FOR INITIAL DISK-SPACE 
ALLOCATION. -

R003 DEVICE SPECIFIED IS UNKNOWN OR NOT SUPPORTED. PLEASE RESPECIFY. 
R004 DEVICE SPECIFIED IS INVALID FOR THIS PROCESSING MODE. PLEASE 

RESPECIFY. 
ROOS THE PROGRAM IS NOT REQUESTING A CONSECl!rIVE-PRINT FILE. THEREFORE, 

THE FILE CANNOT BE ASSIGNED TO A PRINTER. PLEASE SPECIFY ANOTHER 
DEVICE TYPE. 

R006 DEVICE NUMBER INCORRECTLY SPECIFIED. PLEASE RESPECIFY DEVICE (E.G. 
PRINTER 3). (NOTE--DEVICE NUMBER IS OPTIONAL AND MAY BE OMI'YfED)_·._···· 

R007 DEVICE NUMBER DOES NOT CORRESPOND TO DEVICE CLASS. PLEASE 
RESPECIFY DEVICE. ________ .... 

R008 NO PRINTER CURRENTLY AVAILABLE. ASSIGN OUTPUT TO DISK OR FREE 
PRINTER FOR ALLOCATION. 

R013 THE FILE BELOW IS ALREADY OPENED BY THIS PROGRAM. PLEASE SPECIFY 
ANOTHER FILE. 

R014 UNEXPECTED READFDR SVC ERROR. 
R014 FILE SPECIFIED NOT FOUND IN LIBRARY. PI.EASE RESPECIFY FILENAME. 

·-1 
R014 LIBRARY NOT FOUND IN VOLUME TABLE OF CONTENTS. PLEASE RESPECIFY 

LIBRARY. 
R016 THE FILE SPECIFIED IS IN USE AS A SYSTEM-ONLY PAGING FILE. PLEASE 

RESPECIFY. 
R018 THIS FILE IS CURRENTLY IN USE AS A PROGRP-.M FILE. THEREFORE, IT CAN 

ONLY BE OPENED IN INPUT MODE. PLEASE RESPECIFY THE FILE. 
R020 UNEXPECTED CREATFDR SVC ERROR. 
R020 FILE SPECIFIED ALREADY EXISTS. PLEASE RESPECIFY FILE. 
R020 VTOC FULL, NO ROOM FOR FILE LABEL. PLEASE SPECIFY ANOTHER VOLUME. 
R020 VOLUME FULL, NO ROOM FOR FILE. PLEASE SPECIFY ANOTHER VOLUME OR 

USE A SMALLER FILE SIZE. 
R021 INVALID INFORMATION IN FILE LABEL. PLEASE RESPECIFY FILE. 
R022 THE TAPE SPECIFIED BELOW IS AN NL-TAPE, BUT PROGRAM REQUIRES A TAPE 

WITH A DIFFERENT LABEL TYPE. PLEASE RESPECIFY. 
R024 THE FILE AT POSITION :XXX WITHIN THE TAPE VOLUME IS xxxxxxxxxxxxxx. 

THIS DOES NOT AGREE WITH THE FILE SPECIFIED BELOW. PLEASE 
RESPECIFY. 

R025 THE DEVICE SPECIFIED IS ALREADY IN USE BY THIS PROGRAM. PLEASE 
RESPECIFY. 

R026 THE DEVICE SPECIFIED HAS BEEN LOGICALLY DETACHED AND IS THEREFORE 
NOT AVAILABLE. PLEASE RESPECIFY. 

R027 THE PROGRAM REQUIRES XXXXXXXXXX. THE FILE SPECIFIED BELOW IS XXXXX 
xxxxx. PLEASE RESPECIFY. 

C-4 



ERROR 
NUMBER MESSAGE 
R028 THE PROGRAM REQUIRES A FILE CONTAINING XXXXX-CHARACTER RECORDS. 

THE FILE SPECIFIED BELOW CONTAINS XXXXX-CHARACTER RECORDS. PLEASE 
RESPECIFY. 

R029 A FILE SEQUENCE NUMBER OF ZERO IS INVALID. PLEASE RESPECIFY. 
R030 TAPE IO ERROR OCCURRED DURING TAPE POSITIONING OR LABEL 

PROCESSING. IOSW = XXXXXXXX XXXXXXXX. PLEASE RE-MOUNT THE TAPE 
VOLUME IN ORDER TO TRY AGAIN. 

R031 TIIE TAPE VOLUME IS WRITE-PROTECTED, AND TIIEREFORE CANNOT BE 
PROCESSED IN OUTPUT OR EXTEND MODE. PLEASE Ptrr A WRITE-ENABLE RING 
ON TI!E TAPEi AND RE-MOUNT THE VOLUME_1 OR USE (ENTER) TO RESPECIFY. 

R032 THE UNSTRUCTIJRED DISKE'ITE VOLUME SPECIFIED FOR OlITPUT IS CURRENTLY 
IN USE. PLEASE RESPECIFY. 

R033 THE PROGRAM IS REQUESTING A FILE THAT RESIDES ON AN UNSTRUCTURED 
DISK VOLUME. THE FILE SPECIFIED BELOW RESIDES ON A DISK VOLUME 
WITH A VTOC. PLEASE RESPECIFY. 

R0-34 THE INDEXED FILE SPECIFIED BELOW CAN NOT BE PROCESSED IN EXTEND 
MODE. PLEASE RESPECIFY. (EXTEND MODE IS ONLY SUPPORTED FOR 
CONSECUTIVE FILES.) ··-

R035 THE INDEXED FILE SPECIFIED BELOW WAS NOT CLOSED AT FILE CREATION. 
THE FILE IS CURRENTLY NOT USEABLE AND SHOULD BE RE-CREATED. PLEAS I! 
SPECIFY ANOTHER FILE. 

~-

R036 THE FILE SPECIFIED BELOW WAS NOT CLOSED AT FILE CREATION. 
THEREFORE, THE FILE LABEL INDICATES THAT THE FILE CONTAINS NQ 
RECORDS. IF YOU WISH TO ACCESS THE WHOLE FILE SPACE (MAX !Mm-~ 
NUMBER OF RECORDS), USE PF2 AND THE END-OF-FILE INDICATOR WILL BE 
SET ACCORDINGLY. OTHERWISE 2 PLEASE SPECIFY ANOTHER FILE. ·-·---

R037 CODE = XX; UNEXPECTED OUTPUT-FILE SCRATCH ERROR. PLEASE SPECIFY 
ANOTHER OUTPUT FILE NAME IN ORDER TO CONTINUE. 

R038 UNABLE TO FIND FILE SPACE ON ANY ELIGIBLE VOLUME. PLEASE SPECIFY ~ 
SMALLER FILE, USE A PRIVATE VOLUME, OR RELEASE (THROUGH SCRATCH) 
THE RE_Q_UIRED DISK SPACE. 

R039 THE DISKETTE VOLUME SPECIFIED BELOW IS WRITE-PROTECTED. PLEASE 
RE-MOUNT THIS DISKE'ITE WITH WRITE-ENABLED 1 OR SPECIFY ANOTIIER FILE. 

R040 THE FILE SPECIFIED BELOW ALREADY EXISTS. USE PF3 IF YOU WISH TO 
SCRATCH THE EXISTING FILE AND CONTINUE. OTHERWISE, PLEASE SPECIFY 
ANOTHER FILE NAME. 

R041 THE FILE SPECIFIED BELOW IS CURRENTLY IN USE AND CANNOT BE 
SCRATCHED. PLEASE SPECIFY ANOTIIER OUI'PUT FILE NAME. 

R045 ENTER KEY USED WITII INVALID DEVICE SPECIFICATION BELOW. USE PF~ 
KEY FOR MOUNT OPERATION. IF A MOUNT OPERATION IS NOT REQUIRED, 
PLEASE USE THE ENTER KEY WITH DEVICE = DISK. 

R047 SHARER RESPONSE CODE = XX-YYYY. CONSULT SHARER ERROR LIST FOR 
EXPLANATlON. PLEASE SPECIFY ANOTHER FILE IN ORDER TO CONI'INUE. 

R048 INVALID VALUE ENTERED FOR PRINTER OPTION. FORM # MUST BE LESS THAN 
256. PRTCLASS MUST BE A LETI'ER (A-Z). COPIES MUST BE A NUMBER 
BETWEEN 1 AND 32L767. PLEASE RESPECIFY. 

R049 THE FILE SPECIFIED BELOW IS A PROGRAM FILE WITH SPECIAL ACCESS 
RIGHTS. ONLY A SECURITY ADMINISTRATOR MAY MODIFY THIS FILE. 
PLEASE RESPECIFY. 

R049 THE CURRENT USER DOES NOT HAVE THE REQUIRED ACCESS RIGIITS FOR THE 
FILE SPECIFIED BELOW. PLEASE RESPECIFY. 

C-5 



ERROR 
NUMBER MESSAGE 
ROSO* THIS FILE IS A PARTIAL FILE CREATED BY BACKUP, AND MAY BE OPENED IN 

BAM OR PAM _.l_ WITH THE PARTIAL FILE FLAG SET. PLEASE RESPECIFY. 
R051 nm SHARER HAS RUN our OF MEMORY FOR ITS CONTROL BLOCKS. THIS FIL~ 

MAY BE OPENED SUCCESSFULLY AFTER ENOUGH MEMORY HAS BEEN RELEASED 
(BY OTHER SHARED USERS) . 

R052 THE FILE BELOW IS ALREADY OPENED IN SHARED MODE BY THIS PROGRAM. 
PLEASE SPECIFY ANOTHER FILE. 

ROS3 FILE SPECIFIED NOT FOUND IN LIBRARY. PLEASE RESPECIFY FILENAME. 
R054 LIBRARY NOT FOUND IN VOLUME TABLE OF CONTENTS. PLEASE RESPECIFY 

LIBRARY. 
R059 THE VOLUME SPECIFIED IS MOUNTED FOR EXCLUSIVE USE. A FILE ON AN 

EXCLUSIVE VOLUME MAY NOT BE SHARED. PLEASE SPECIFY ANOTHER FILE 
(OR RE-MOUNT THIS VOLUME). 

R060 THE PROGRAM REQUIRES A FILE WITH A DIFFERENI' FILE-ORGANIZATION FROM 
THE FILE SPECIFIED BELOW. PLEASE RESPECIFY. 

R061 THE PROGRAM REQUIRES A FILE WITH A DIFFERENT RECORD SIZE FROM THE 
FILE SPECIFIED BELOW. PLEASE RESPECIFY. 

R062 THE DISK VOLUME SPECIFIED IS NOT MOUNTED. PLEASE MOUNT THE DISK 
VOLUME OR RESPECIFY. 

R063 THE FILE SPECIFIED BELOW IS CURRENI'LY IN NON-SHARED USE. PLEASE 
RESOLVE THIS POSSESSION CONFLICT OR RESPECIFY. 

R064 THE CURRENT USER DOES NOT HAVE THE REQUIRED ACCESS RIGHTS TO 
SCRATCH THE FILE SPECIFIED BELOW. PLEASE SPECIFY ANOTHER FILE. 

R065 THE RETENI'ION PERIOD FOR THE FILE SPECIFIED BELOW HAS NOT EXPIRED. 
THE FILE CANNOT BE SCRATCHED UNLESS nm EXPIRATION DATE I$ 
MODIFIED. PLEASE SPECIFY ANOTHER FILE OR USE THE COMMAND PROCESSOR 
TO MODIFY THE EXPIRATION DATE AND SCRATCH TIIIS FILE. 

R066 THE CONSEClITIVE FILE SPECIFIED BELOW CAN NOT BE OPENED IN SHARED 
MODE. PLEASE RESPECIFY. 

R067 THE FIRST CHARACTER OF A LOG-FILE BEING OPENED IN SHARED MODE MAY 
NOT BE "#". PLEASE RESPECIFY 

R068 THE PROGRAM WILL NOT ACCEPT THIS FILE FROM TAPE. PLEASE RESPECIFY. 
R069 END OF TAPE REACHED WHILE POSITIONING TAPE BY FILE SEQUENCE NUMBER. 
R070 VOLUME FULL, UNABLE TO ADD ANOTHER FILE ON THE TAPE. PLEASE 

RESPECIFY. 
R071 THE TAPE FILE SPECIFIED BELOW IS NOT ON THE TAPE VOLUME. PLEASE 

RESPECIFY. 
R072 TIIE DEVICE SPECIFIED IS NOT A TELECOMMUNICATION DEVICE. PLEASE 

RESPECIFY. 
R073 CONTROL BLOCKS (PPB, LCB) FOR THIS TC DEVICE ARE NOT PROPERLY SET 

UP. PLEASE RESPECIFY. 
R074 UNABLE TO LOAD THE MICROCODE FOR THIS TC DEVICE. PLEASE RESPECIFY. 
R075 UNABLE TO CONNECT THE TC LINE, OR INCORRECT CONNECT PARAMETERS 

SUPPLIED. PLEASE RESPECIFY. 
R076 THE PROGRAM HAS SUPPLIED AN INVALID ADDRESS FOR THE CONNECT 

PARAMETER. PLEASE RESPECIFY. 
R077 TIIE TAPE VOLUME IS NOT THE CORRECT SEQUENTIAL VOLUME FOR TIU S TAPE 

FILE. PLEASE RESPECIFY. 
R078 EXTEND MODE PROCESSING FOR IBM LABELED TAPE IS NOT SUPPORTED. 

PLEASE RESPECIFY. 

C-6 



ERROR 
NUMBER MESSAGE 
ROSO THE PROGRAM HAS ATI'EMPTED TO OPEN A. RE-RESTART FILE, BUT THE FILE 

SPECIFIED IS NOT A RESTART FILE. PLEASE RESPECIFY. ' 
R081 nm PROGRAM HAS ATI'EMPTED TO MODIFY nm ADMS FILE NAME AND ITS 

A.Tl'RIBUTES. BlIT THESE A'ITRIBUTES ARE ASSIGNED BY THE DATA 
DICTIONARY AND CANNOT BE CHANGED AT OPEN. THEIR CORRECT VALUES 
ARE DISPLAYED BELOW~ PRESS (ENI'ER) TO CONTINUE. 

*With the introduction of OS Release 5.1, the text for error number ROSO is 
modified as follows: 

THIS FILE IS A PARTIAL FILE CREATED BY BACKUP FOR USE BY RESTORE. IT MAY 
BE OPENED ONLY IN BAM OR PAM, WITH THE PARTIAL FILE FLAG SET. PLEASE 
RESPECIFY. 

C-7 



(') 
I 

CX> 

3. OMS Function-Request Cancel Messages 

The file status message (ID 000) covers all file status values including cases where the 
significance of the FS value is determined by additional factors such as current function request and file 
organization. The file status message appears as a cancel message if UFBERRAD 0. Otherwise, an 
acknowledge message is issued before taking the error exit. (The acknowledge message may be masked out by 
using UFB4NOACK.) 

Other OMS cancel messages reflect unusual conditions caused mainly by incorrect user modification of 
UFB fields, unexpected errors, or invalid block contents for indexed file processing. 

These messages may be issued as a result of any one of the five OMS function requests or by the OMS 
CLOSE vector (for th.e last IO operation on the file). 

ERROR 
NUMBER 
000 

001 

002 

003 

004 

005 

006 

007 

008 

009 

010 

011 

012 
013 

MESSAGE 
ERROR DETECTED ANO USER ERROR EXIT NOT IN USE. 
FILE STATUS = XX. 
INVALID FIELD FOUND WHILE PROCESSING FILE x 
_iUFBBCBFLAGSl. 
INVALID BLOCK NUMBER DETECTED BY SVC XIO 
(UFBBUFBLOCK) WHEN ATTEMPTING DISK I/0. 

INVALID FIELD FOUND WHILE PROCESSING FILE x 
iUFBRECSIZE=OJ_. 
INVALID BUFFER POOL INFORMATION DETECTED AT 
BEGINNING OF FUNCTION RE_Q_UEST. 
INVALID OFB POINTER FOUND (UFBOFB). 

UNEXPECTED ERROR FOUND WHILE ATTEMPTING TO 
ALLOCATE ADDITIONAL DISK SPACE. 
VTOC I/O ERROR OCCURED DURING SVC ALEX. 

UNABLE TO ALLOCATE DISK EXTENT SINCE ALL 
BUFFERS OR GETMEM POOL IN USE. 
MAC TAPE READ OPERATION FAILED; NO DATA WAS 
TRANSFERRED. 
FUNCTION-REQUEST ISSUED ON NON-OPENED FILE. 

SECOND PHYSICAL I/O OPERATION ISSUED ON FILE 
WITHOUT WAITING FOR PREVIOUS I_LO COMPLETION. 
UNUSED 
ERROR FOUND WHILE READING FILE INDEX. THIS 
FILE SHOULD BE REORGANIZED IN ORDER TO GENERATE 
THE INDEX CORRECTLY. 

POSSIBLE CAUSE 
Check meaning of File Status code for cause of 
error messa_g__e. _iRefer to _Q_a_g_e 354.3.J_ 
Invalid buffer status flags in the UFB. 

UFBBUFBLOCK contains invalid data. Can be 
caused by invalid data in Data Link Chain of the 

• _Q_rior block . 
Cannot have fi 1 es with record lengths of zero. 

There is an error in the Buffer Control Entry. 

OFB Pointer in the UFB contains an address which 
is not an OFB. 
SVC return code is incorrect. This is an indi-
cation of a serious OMS ..Q.roblem. 
A VTOC IO error occurred while trying to obtain 
an additional extent. ALEX.is an acronym for 
Allocate Extent. 
ALEX return code = 20. No work space available 
for UPDATFDR. 
Residual count greater than or equal to block 
size--probable IOP firmware error. 
Before performing a task wjthin a fi 1 e, the file 
must first be O_Q_ened. 
Occurs when two XIO's in a row were performed 
with no CHECK O..Q.eration between them. 

Invalid condition exists in the index block 
currently being read. 



n 
I 

\D 

ERROR 
NUMBER 
014 

015 

016 

017 

018 

019 

020 

021 

022 

023 

024 

MESSAGE 
INVALID RECORD FORMAT DETECTED. ERROR OCCURRED 
WHEN EXPANDING COMPRESSED DATA RECORD. 
INVALID BLOCK NUMBER FOUND WHILE BUILDING OR 
UPDATING THE FILE INDEX. 
FILE INDEX. 
RESIDUAL COUNT NOT ZERO AFTER REWRITE OPERATION 
(LARGE BUFFER). 

INVALID UFB FIELD FOUND FOR REWRITE OPERATION 
J..OFFSET=O_l. 
BUFFER POOL ERROR DETECTED. LOCKED BUFFER 
(BCE) IN CONTROL TABLE DOES NOT AGREE WITH 
CURRENT BUFFER J.BCB_l. 
BLOCK TYPE (BCE) IN BUFFER POOL DOES NOT AGREE 
WITH CURRlNT READ R~UEST. 
BUFFER POOL ERROR DETECTED. BLOCK TYPE (BCE) 
IS INVALID FOR IO INITIATION. 
BUFFER POOL ERROR DETECTED. BUFFER (BCE) WITH 
IO IN PROGRESS NOT ON BCTBL CHAIN OR INTERNAL 
LOCK OTHER BCE OPERATION FAILED. 
ERROR DETECTED IN THE ALTERNATE INDEX DATA 
STRUCTURE...1.. UNABLE TO LOCATE THE RECORD. 
TRACE ROUTINE FOR DUPLICATE KEY VALUES FAILED. 
ALTERNATE TREE NOT MODIFIED. 
UNEXPECTED ERROR OCCUR.ED DURING FILE RESTORE 
OPERATION. WRITE OR REWRITE FUNCTION FOR 
ALTERNATE INDEX FILE FAILED DUE TO DUPLICATE 
KEY ERROR, AND ATTEMPT TO RESTORE FILE WAS 
UNSUCCESSFUL. 

POSSIBLE CAUSE 
A record within a block contains garbage. 

Occurs when contents of a Data Link Chain in a 
data block contains incorrect data. This error 
_g_enerated when data len_g_th in block exceeds 7FC. 
On a rewrite all bytes are subtracted from the 
block length> the difference must equal zero. 
This error occurs when it is not. 
User damaged segment 2 (UFB) data. 

User damaged segment 2 (UFB or BCT) data. 

Buffer Control Entry in the buffer pool is 
invalid. 
Block Type in the buffer pool is invalid. 

User damaged UFB or BCT. 

Alternate index block contains a primary key 
value which is not in a11Y_ data block. 
The offset into the alternate index block is 
invalid for a user. 
On a WRITE or REWRITE to an alternate-indexed 
fi 1 e. if a duplicate key is encountered on a 
path with no duplicates allowed, the system 
attempts to delete the record from the primary 
tree and all alternate trees on which it has 
been written. This error occurs if the attempt 
fails unexpectedly. User should attempt 
COPY_L_REORG. 



4. SVC CLOSE Cancel Messages 

'lbese messages refer to unexpected error conditions that rarely occur. 

ERROR 
NUMBER MESSAGE 
EOOl SVC CLOSE ISSUED FOR NON-OPENED FILE. -
E002 DEALLOCATION ERRl OFB NOT FOUND. 
E003 DEALLOCATION ERRi IORE _QUEUED. 
E004 CODE = l UPDATFDR SVC ERR. NO DEALLOCATION. 
EOOS UNABLE TO DEALLOCATE BUFFER DUE TO INVALID BUFFER ADDRESS OR 

BUFFER LENG'IH IN UFB. 
E006 INVALID UFB POINTER RETURNED AFTER LAST DMS OPERATION. 
E007 CODE = XXl SCRATCH SVC ERROR. FILE CLOSED OK...t. Btrr NOT SCRATCHED. 
E008 INVALID UFB ADDRESS PRESENTED TO SVC CLOSE. 
E009 UNEXPECTED ERROR OCCURRED WHILE ATI'EMPTING TO CLOSE FILE (SHARED 

MODE). 
EOlO UNABLE TO DEALLOCATE BUFFER WITHIN BUFFER POOL DUE TO INVALID 

ADDRESS OR LENGTII IN BUFFER CONTROL TABLE ENTRY. 
E012 FAIL TO LOCATE PROGRAM BUILDALT. UNABLE TO BUILD ALTERNATE INDEXES. 
E013 FILE LABEL NOT UPDATED ( ) . USER PROGRAM HAS INCORRECTLY 

MODIFIED THE UFB. 
E014 FILE LABEL NOT UPDATED ( ) . VTOC ERROR DETECTED. -... ·--"" 
E015 THE PROGRAM TRIED TO CLOSE nm ADMS FILE WHILE IN THE 

TRANSACTION STATE. 

C-10 



5. FILE STATUS (FS) CODES FOR OMS AND ADMS 

OMS and ADMS return to the user program by means of the RETURN macroinstruction. User registers 2 through 
15 are always restored. Register O (RO) is also restored ~ UFBEODAD or UFBERRAD is used--RO then 
contains the normal return address. Register 1 (Rl) is also restored unless the Read-No-Data option has 
been used--Rl then contains the record address. 

OMS and ADMS indicate the result of the function request through file status bytes UFBSl and UFBS2. These 
bytes generally contain a value of X'30' - X'39', corresponding to the ASCII characters 0 through 9, called 
the File Status (FS) Code. File Status Byte 1 (UFBSl) indicates the general type of file status and File 
Status Byte 2 (UFBS2) indicates a specific item within the group. The various groups are defined as follows: 

0 - Successful Completion. 
1 - End of File. 
2 - Record Not Found (Disk File). 
3 - IO Error or Boundary Violation. 
4 - ADMS Codes. 
6 - Cancel . 
1 - Time-Out. 
8 - Special Shared Mode Errors. 
9 - Miscellaneous - This Croup includes errors caused by incorrect user-supplied information; 

e.g., Invalid Function, Invalid Mask, Invalid Length, or Invalid Format. 

Following is a list of File Status codes with a description of each code and the conditions under which it 
can occur. 

FILE STATUS FOR NORMAL RETURNS 

FS 
CODE MEANING 

00 Successful 
Completion. 

ox Successful 
Completion. 

02 Successful 
Completion. 

FILE STATUS FOR UFBEODADRETURN 

FS 
CODE 

10 
MEANING 
End of File 
Reached. 

FUNCTION 
REQUEST 
N/A 

N/A 

Read 

FUNCTION 
RE UEST 
READ NEXT 

DEVICE 
Disk, 
Tape, 
Printer 
Workstation 

Disk 

DEVICE 
Disk or 
Tape 

FILE 
ORGANIZATION 
N/A 

N/A 

Alternate 
Indexed 

FILE 
ORGANIZATION 
N/A 

MODE 
N/A 

N/A 

N/A 

MODE 
Input, 
I/0, or 
Shared 

CAUSE 
N/A 

UFBFS2 (IX I in code field) 
contains the AID b_yte. 
After successfully complet-
ing a READ KEV ED or REAC 
NEXT on an alternate ke~ 

path, the return code is 02 
indicating at least one more 
record exists with the same 
alternate key value. 

CAUSE 
End of file was reached. 



n 
I ..... 
"' 

FILE STATUS FOR UFBEOOADRETURN (cont'd) 

FS FUNCTION 
CODE MEANING R~UEST 

11 End of Volume. READ NEXT 

21 Record Key Out of WRITE 
Sequence or Dupli-
cate Key Found 
During Indexed 
File Creation. 

22 Duplicate Key WRITE 
Value. 

23 Record Not Found READ 
in File. RELATIVE 

23 Record Not Found READ KEY 
in File. or START 

_iE_g_uaU 
23 Record Fot Found READ or 

in File. REWRITE 
24 Primary Extent WRITE 

Exceeded (Indexed 
File Creation). 

24 Record Not Found. START 
Key Supplied (Greater 
Greater Than Key Than) or 
Value in File. (Greater 

Than or 
Ec:iualJ 

FILE 
DEVICE ORGANIZATION 
Tape N/A 

Disk Indexed 

Disk Indexed 

Disk Consecutive 

Disk Indexed 

Disk N/A 

Disk Indexed 

Disk Indexed 

MOOE CAUSE 
N/A This code is returned if the 

user program indicates Cb~ 
UFBTFLGEODEOV) that no auto-
matic volume switch is 
desired. 

Output The current record key is 
not greater than the pre-
ceding record key. 

I/O or The record to be added to 
Shared the file has the same key as 

an existing record in the 
file. 

Input or The supplied record number 
I/O is equal to zero or greater 

than the highest record num-
ber in the file. 

Input, There is no record in the 
I/O*, or file containing a key equal 
Shared to the suoolied ke_y_. 
I/0 The supplied block number is 

be_y_ond the end of the file. 
Output Primary extent exceeded. 

The record cannot be added 
to the file. The file may be 
closed successfully and then 
opened in I/0 Mode to add 
more records. 

Input, The supplied key is greater 
I/O, or than the highest key value 
Shared in the file. 



FILE STATUS FOR UFBERRAD RETURN 

FS 
CODE 

30 

34 

34 

34 

60 

70 

MEANING 
Permanent IO Error 
IOSW = XXXXXXXX 
xxxxxxxx. 

Workstation Order 
Check. 

FUNCTION 
RE_Q_UEST 
N/A 

READ or 
REWRITE 

Boundary Violation WRITE 
(Extent Cannot Be 
Obtained). 

Boundary Violation WRITE 
(Extent Limit of 
13 Has Been 
Reached). 

OMS Cancel Condi
tion Occurred; 
Cancel Message 
Suppressed. 

Shared Time-Out 
Condition. 

N/A 

N/A 

DEVICE 
N/A 

Workstation 

Disk 

Disk 

Disk or 
Tape 

N/A 

FILE 
ORGANIZATION 
N/A 

N/A 

Consecutive 

Indexed 

N/A 

N/A 

MODE 
N/A 

I/0 

Output 
or 
Extend 

I/0 or 
Shared 

Shared 

N/A 

CAUSE 
A physical I/O operation was 
attempted and a hardware 
error occurred. The error 
is logged separately by SVC 
CHECK. This file status is 
returned for hardware errors 
only; it is not returned for 
..Q.ro_g_ram related errors. 
Invalid information supplied 
in the workstation order 
area; i.e .• Invalid Cursor 
Position: Row 25 Column 10. 
There is no more space in 
the file for additional re-
cords. An additional exten~ 

is unavailable because 
either the maximum number of 
extents are already allo
cated or the extent size is 
not available on volume. 
There is no more space in 
the file for additional re
cords (as above) due to ex
tent limit (13) exceeded or 
no available extent on vol
ume. For Shared mode, an 
additional extent may alsq 
be unavailable due to maxi
mum number of additional ex
tents per run already 
allocated. 
User requested suppression 
of all OMS-Cancel messages. 
Process the file in non
Shared mode to set the error 
message flag. If a OMS 
error condition code 
FS=60-019 occurs, refer 
OMS error code 019 in 
A_D_Q_end ix C. 

with 
to 

This feature will be avail
able with the Advanced 
Sharer. 

V1 



("} 
I ...,,, 

+:" 

FILE STATUS FOR UFBERRAD RETURN (cont'd) 

FS FUNCTION 
CODE MEANING R~UEST 

80 Invalid Key Area READ KEYED 
Found for Read Key or START 
or Start Key. KEYED 

81 Invalid Read No- READ NO-
Data Issued. DATA 

82 Label Update Oper- N/A 
at ion after Last 
Function Was Un-
successful . 

83 The Sharing Task N/A 
Has Terminated and 
Must be Restarted. 

84 Invalid Record N/A 
Size or Area Sup-
plied for Shared 
Request. 

85 Update Access WRITE, 
Denied. REWRITE, 

or DELETE 
86 Resource Control N/A 

Error. 

95 Invalid Function REWRITE, 
Sequence. DELETE, or 

READ NEXT 
HOLD 

95 READ RELATIVE In- READ RELA-
valid for Variable TIVE 
Leri._g_th Records. 

FILE 
DEVICE ORGANIZATION - MODE 
N/A Indexed Shared 

Disk Indexed or Shared 
Consecutive 

N/A N/A Shared 

N/A N/A Shared 

N/A N/A Shared 

N/A N/A Shared 

N/A N/A Shared 

Disk Indexed IO or 
Shared 

Disk Consecutive Input, 
or IO 

CAUSE 
UFBKEYAREA does not point to 
the key embedded in the rec-
ord; i.e., specifies the key 
has a value of one for a 
length of five but it actu-
ally has a value of two for 
a 1 en_g_th of five. 
Attempting to do a Read No-
Data in Shared mode which is 
an invalid function re_g_uest. 
Internal error by OMS. The 
file 1 abel (FORl) is updated 
whenever any of the follow-
ing fields are modified bYJ 
OMS: Root Block Number; 
First Data Block Number; or 
Count of Levels in the (Pri-
mary) Index. If UPOATFOR i~ 
unsuccessful, FS equals 82 
is returned. 
Sharing task is functioning 
incorrectly. Must IPL the 
S_ystem to restart Sharer. 
User Attempted to rewrite a 
variable length record whose 
length is greater than the 
maximum record size speci-
fied in the VTOC. 
User Attempted to update a 
file in Shared mode but has 
Read-Onl_y_ access. 
Incorrect sequence of Shared 
function requests; e.g., At-
tempting to do a Start Hold 
on a file while another file 
is alread_y held. 
Invalid function sequence 
similar to consecutive file 
case above occurred. Also 
returned if Read Next Hold 
issued without a fi 1 e block 
HELD _iinvalid se_g_uencel. 
Read Relative is only valid 
for fixed-length consecutive 
files. 



Q 
I .... 

VI 

FILE STATUS FOR UFBERRAD RETURN (cont'd) 

FS FUNCTION 
CODE MEANING REJlUEST 

95 Invalid Function N/A 
Request. 

95 Invalid Function~ REWRITE 
Sequence. 

95 REWRITE Function REWRITE 
Invalid for Con-
secutive File with 
Com_Q_ressed Records. 

95 Invalid Function N/A 
Issued on Alter-
nate Indexed File. 

95 READ NEXT Issued N/A 
on Indexed Fi 1 e 
when Current Posi-
tion Was Undefined. 

95 Invalid Function N/A 
Issued in Shared 
Mode. 

95 Invalid START START 
Function (Modifier 
B_y_te Error i 

95 Primary Key Value REWRITE 
Was Changed when 
Rewriting an 
Indexed Record. 

FILE 
DEVICE ORGANIZATION MODE 
N/A N/A N/A 

Disk N/A Shared 

Disk Consecutive IO 

N/A N/A N/A 

N/A N/A N/A 

N/A N/A N/A 

Disk Consecutive Input, 
or Indexed IO, or 

Shared 
Disk Indexed or IO or 

Alternate Shared 
Indexed 

CAUSE 
Valid function requests are 
described for the given com-1 
binations of device class, 
open mode and file organiza-1 
ti on supported by OMS. 
After a file has bee!1 
opened. an invalid functio~ 
request is flagged with F~ 
equals 95. Example: 
attempting to write a record 
while the file is opened in 
In_Q_ut mode. 
Record was not read with the 
HOLD option. For Share~ 
Mode, an intervening REAQ 
with HOLD on another file 
may have released the HOLD. 
A function sequence error 
exists since the record can-
not be rewritten unless it 
is 'HELD'. 
Consecutive files can be re-
written only for fixed-
length records. 

N/A 

N/A 

N/A 

START function modifier byte 
does not correspond to a 
valid START O_Q_tion. 
Attempted to change the val-
ue of the Primary Key while 
rewriting a record. 



FILE STATUS FOR UFBERRAD RETURN (cont'd) 

FS 
CODE 

96 

96 

96 

96 

97 

97 

97 

MEAN INC 
Invalid Disk Add
ress Detected. 

Write Operation 
Attempted on Write
Protected Disk. 

Invalid Data Area 
Location or Align
ment (IO Command 
error). 

Same as 96 above. 

Invalid Length 
when Rewriting 
Variable Length 
Record. 

Same as 97 above. 

Invalid Length 
Supplied when 
Writing Variable
Length Record. 

FUNCTION 
REQ_UEST 
N/A 

N/A 

READ, 
REWRITE, 
or WRITE 

READ or 
REWRITE 

REWRITE 

REWRITE 

WRITE 

DEVICE 
N/A 

N/A 

N/A 

Workstation 

Disk 

Disk 

N/A 

FILE 
ORGANIZATION 
N/A 

N/A 

N/A 

N/A 

Indexed 

Consecutive 

MODE 
N/A 

N/A 

1 

Input, 

I 
IO, or 

I 
Output 
(Block 
Level) 

IO 

IO 

Output, 
Shared, 
IO, or 
Extend 

CAUSE 
Error usually not caused by 
user program. Error ca~ 

occur for invalid disk ad~ 

dress in the extent lis~ 

(possibly caused by incor
rect device arrangement a~ 

SVSGEN}. This file status 
is returned only if the IOSW 
indicates invalid command or 
data address. Under RAM, 
OMS supplies the buffer area 
and command; thus, FS = 96 
is a rare error under RAM. 
An attempt was made to write 
to an open write-protected 
diskette (this can occur if 
a user remounts a diskette 
changing it to write-pro
tected but not using the 
MOUNT commandJ_. 
Data area location is inval
id or alignment is not on a 
page boundary. Data area 
location is checked with 
data area length to ensure 
that only the stack, static 
area, or buffer area is 
bein_g_ used. 
Invalid data area location 
or alignment (word align
ment re_g_uired. 
Invalid length is indicated 
when attempting to rewrite a 
variable-length record whose 
length is longer than the 
value established in 
UFBRECSIZE. 
Invalid, cannot change re
cord length of a consecutive 
file. 
Invalid length is indicated 
when attempting to write a 
variable-length record whose 
length is greater than the 
value established in 
UFBRECSIZE. 



FILE STATUS FOR UFBERRAD RETURN (cont'd) 

FS 
CODE 

97 

97 

98 

99 

MEAN INC 
Invalid Record
Prefix Found in 
Variable-Length 
Record. 

Invalid Length 
Specified for IO 
Operation. 

Invalid Alternate 
Tree Mask Supplied 
on Write or Re
write Function. 

Invalid Format 
Found for Current 
File Block. 

FUNCTION 
RE_Q_UEST 
N/A 

N/A 

WRITE or 
REWRITE 

N/A 

DEVICE 
N/A 

Printer, 
Tape, or 
Workstation 

Disk 

N/A 

FILE 
ORGANIZATION 
N/A 

N/A 

Alternate 
Indexed 

N/A 

MODE 
N/A 

N/A 

Output, 
IO, or 
Shared 

N/A 

CAUSE 
Error encountered while OMS 
is attempting to extract a 
variable-length record from 
its buffer. Error should 
not normally be encountered 
b_y_ the user. 
Length specified is not val
id for the device. For the 
printer, length is invalid 
if it equals zero or is lar
ger than the length speci
fied at SVC OPEN. For the 
workstation, length is 
invalid if data length and 
starting row cause screen 
overflow. For tape, length 
is invalid if a long block 
or a short block (with non
integral number of records) 
is read. 
Alternate key mask refer
ences a nonexistent alter
nate key. For Write or Re
write, the user-supplied 
mask must indicate valid 
ALT-trees and the alternate 
key fields must fall within 
the record; otherwise, FS=98 
is returned. NOTE: A mask 
of zero is alwa_ys valid. 
A block within a variable
length record file has an 
invalid prefix, a VLEN 
record has an invalid 
prefix, or a compressed 
record has an invalid form~t 
when ex_Q_anded. 



(') 
I ..... 

CX> 

All file status codes peculiar to ADMS fall within the range of FS=40 to 
FS=49. These codes and their meanings are as follows: 

FS FUNCTION FILE 
CODE MEAN INC RE_Q_UEST DEVICE ORGANIZATION MODE 

41 Attempt to Update WRITE, Disk ADMS N/A 
an ADMS File while REWRITE, 
Not in Transaction DELETE 
State. 

42 ADMS Mapping Con- READ, Disk ADMS N/A 
trol Table (HCC) WRITE, 
Error Detected. REWRITE, 

DELETE 
43 ADMS Data Item WRITE, Disk ADMS N/A 

Integrity Violated. REWRITE 

44 Unable to Log Re- WRITE, Disk ADMS N/A 
cord Image for REWRITE 
ADMS Recovery. 

45 View Access Block N/A Disk ADMS N/A 
(VAS) Information 
Not Consistent 
with UFB. 

46 Unable to Do Oper- N/A Disk AOMS Shared 
tion, File Previ-
ously Crashed. 

47 Unable to Perform WRITE, Disk ADMS N/A 
AOMS Data Conver- REWRITE 
sion Due to Inval-
id Data Format. 

48 Entire ADMS File WRITE, Disk Alternate- Shared 
Must Be Held for REWRITE, Indexed 
Shared Update with DELETE ADMS 
Unique ALT Key. 

CAUSE 
User error in order of 
operation. 

Internal error in MCC table; 
unable to perform data 
mapping. 

Data item failed Integrity 
Check (ICK). 

DTI SVC failed while at-
tempting to map the record 
image to sharer for logging 
to audit file. 
VAB improperly set up 
(System error). 

A crash condition has been 
detected for the data base. 
No request except CLOSE wi 11 
be honored. 
Unable to perform data map-
ping due to invalid data. 
Example: attempt to convert 
signed ASCII to binary but 
s i_g_n byte is invalid. 
Error in user's hold logic. 
ADMS file with recovery has 
ALT index with no dups; user 
failed to hold entire file 
when makin_g_ u...Q.date. 



Summary of Changes 

For 1st Edition of VS Operating System Services* 

Type 

NEW FEATURES 

DOCUMENTATION 
CHANGES 

Description 

• Labelled tape support: 
- Changes to DMS functions 

and OPEN and CLOSE 

• Telecommunications Support 
- New Macro: TCOPTION 
- Changed Macros: READ 

START, UFBGEN, WRITE 
- Changed SVCs: OPEN 

CLOSE, CHECK 

. New Macrointructions 
- DISMOUNT 
- HALTIO 
- MOUNT 
- READFR 
- SET 
- TCOPTION 

. Documentation of the follow
ing macroinstructions is not 
included in this manual: 
- FREEMEM 
- GETMEM 
- LOW 
- SEND 
- WAIT 

• Documentation of 
ing SCVs is not 
this manual: 
- WAIT 
- SEND 
- FIX/UNFIX 
- GETMEM 
- FREEMEM 

the follow
included in 

- GETDISK 
- FREEDISK 
- CREATFDR 
- UPDATFDR 
- PLEASE 

- DTI - MWAIT 
- SEIZE/RELEASE 

Affected Pages 

305-315 

127 

100, 121, 131, 142 

177, 182, 199 

63 
77 
87 
104 
116 
127 

See VS System 
Development Guide 
(800-1108SD-Ol) 

See VS System 
Development Guide 
(800-1108SD-Ol) 

-;, This manual replaces the VS System Programmer's Guide. The 
summary of changes refers to differences between this manual and 
the last edition of the System Programmer's Guide 
(Pub. #800-1103SP-03). 

DH-1 



Type 

TECHNICAL 
CHANGES 

EDITORIAL 
CHANGES 

Description 

. Documentation of the follow
ing control blocks is not 
included in this manual: 
- CMSG - PRB 
- DBTB - PT 
- DPT - PXE 
- ETCB - RMSG 
- FLUB - STMB 
- FMSG - SVCT 
- IORE - TCB 
- MCB - TQEL 
- OFB - UCB 
- PFB - VCB 
- PFSA 
- PFT 

. Changes to EXTRACT Macro and 
SVC 

• Changes to HALTIO SVC 

• Revisions and clarifications 
of DMS messages 

• Changes to EXTRD control 
Block 

• Miscellaneous Editorial 
Changes 

DH-2 

Affected Pages 

See VS System 
Development Guide 
(800-1108SD-01) 

64, 226 

194 

348 - 354 

156 



TYPE 

SUMMARY OF CHANGES FOR 2ND EDITION OF 
VS OPERATING SYSTEM SERVICES MANUAL 

DESCRIPTION 

RELEASE 4 SUPPORT CHANGES CEXIT 

CHECK 

CLOSE 

CREATE 

DISMOUN'I' 

EXTRACT 

FMTLIST 

HALTIO 

KEYLIST 

MOUNT 

READVTOC 

REGS 

SET 

SUBMIT JOB 

RETURN CODES 

XMIT 

EDITORIAL CHANGES IORE (I/0 Request Element) 

OFB (Open File Block) 

UFB (User File Block) 

READVTOC SVC 

MOUNT 

STATIC BLOCK 

DATANAME SUBBLOCK 

DH-3 

AFFECTED PAGES 

53 through 54.1 

55 through 56.1 

51 

58 

63, 63.1 

64, 67 through 69.l 

70 

77 through 7 3. 1 

79 through 81.1 

87 through 89 

106.1 through 106.4 

107 

116 through 119 

126.1 through 126.6 

126.7, 126.8 

148, 148.1 

171.1, 171.2 

171.3, 171.4' 

173.1 through 173.12 

204, 205 

231 

326, 327, 328 

338 



Summary of Changes 
for the 

VS Operating System Services Addendum 
(800-11070S-02.0l) 

TYPE 

NEW 
FEATIJRE 

TECHNICAL 
CHANGES 

DESCRIPTION 

Index 

Chapter 2 

External Names in Code 

Chapter 4 

BCTGEN Buffer Pool 
CEXIT 
CHECK Operand 
CXT Suffix 
DELETE Syntax 
DESTROY Operand 
EXTRACT 
FREEBUF Return Code 
GETBUF 
GETPARM Operand 
MSGLIST Operand 
OPEN Syntax and Operand 
RENAME Syntax, Operand, 

Return Code 
REWRITE Coding Example 
SCRATCH Syntax 
SET Operand 
SUBMIT Syntax 
XIO Coding Example 

Chapter 5 

OFB Fields and Flag 
TPLAB 

DH-4 

PAGES 

355-367 

29, 30, 
31, 32, 
32.1 

49 
54 
55, 56.1 
59 
60 
62 
65' 69 
72 
73 
74, 76 
90 
91, 92 
108, 109 
109.1 
113 
114 
117 
126.1 
147 

171.3, 171.4 
172 



TYPE 

TECHNICAL 
CHANGES 

EDITORIAL 
CHANGES 

DESCRIPTION 

UFB Open Format Error 
WP and Workstation 
UFBFPCLASS & UFBFILENAME 
UFBXCODE 
WP File Control 
7-Track Tape 

Chapter 6 

OPEN File & Volume Names 
UFBFS2XFORMAT 

XIO Halt 1/0 Queue 
Return Codes 

GETBUF Return Codes 
FREEBUF Return Code 
HALTIO Input 
CHECK Input 

Unsolicited Interrupt 
Function 6 

READVTOC Return Code 
GETPARM Uppercase Alphanum 

Alphanumeric Limited 
RENAME Return Code 
EXTRACT OS Version Number 

EXTRDIDTAPEVOL 
MOUNT Input Parameter 

Return Code 
SET Procedure Keyword 
XMIT NOWAIT & OTHERTASK 
CREATE Privileged & GETMEM 
CEXIT NODEBUG & HELP 
DISMOUNT GETMEM 

Mi see llaneous 
Editorial Changes 

DH-5 

PAGES 

173.4 
173.5, 173.7 
173.7 
173.10 
173.10 
173.12 

177 
180 
185 
186 
192 
193 
194 
199 
200 
201 
203 
213 
214 
223 
227 
229 
230 
231 
239 
240 
241 
243 
244 

53, 58, 74, 
76, 83, 90, 
93, 97, 98, 
106.2, 106.3, 
106.4, 109, 
109.1, 110, 
113, 114, 115, 
126.3, 126.4, 
126.5, 126.6, 
173.10, 202, 
203, 222, 241, 
327 



Access Methods 
BAM (Block Access) 
PAM (Physical Access). 
RAM (Record Access). 

INDEX 

. . . . . 
Selection Criteria • • • • • • • 

Additional Extents for a File (FDR2) 
Address Translation. • • • • • • • • 
Allocate Memory Storage (GETHEAP) • • • • 

. . . . . . 

Alternate File Error Log • • • • • 
Alternate Index Descriptor Block (AXDl) •• 
Alternate Indexed File 

AXDl Block • • • • • • • • • 
Compared with Indexed File • 
Error Log. • • • • • • • 

. . . . 
Fields in UFB. • •••• . . 
Internal Representation. • 
I/0 Functions 

Delete •• 
Open •••• 
Read ••• 
Rewrite • 
Start • 

. . . . . . 
Write • • • • • 

Output Mode File Attributes 
Error Log • • • • • • • • • • • • • • 
Specification • • • • • • • • • • • • 

AXDl (Alternate Index Descriptor Block) •• 
AXDGEN Macro • • • • • • • • • • 

BAM (See "Block Access Method") 
BCE (Buffer Control Entries) • • • • 
BCTBL (Buffer Control Table) • • • • 
BCTGEN Macro • • • • • • • • • • 
Block Access Method (BAM) Files 

Buffer Size Specification. • • 
File Size Specification. • • • 
Function Requests and Modifiers •• 
General Description. • • • • • • • • 
Information Needed at CLOSE. 
Record Size Specification. • • • • • 

Blocks (See "Control Blocks"} 
Disk File. 
VTOC 

INDEX-1 

. . . . 

. 

. . . . 
•• 7-12/7-15 

7-15/7-20 
• • 7-3/7-12 
• • • • 7-19 
• • • • 5-20 
• • • • • 3-2 

4-39, 6-79 
• • • • 7-28 

• • • • 5-2 

•• 7-15/7-16 
• • 7-19/7-20 

• • • • 7-18/7-19 
•• 7-15/7-16 
• • 7-20/7-22 

. . . . 

. . . . 7-17 

. . . . 7-18 . . . . 7-16 
7-17 . . . . 7-17 . . . . 7-17 

•• 7-18/7-19 
• • • • 7-18 

• • 5-2 
• • • • . 4-4 

• • 5-5 
•• 5-6 
• • 4-6 

• • • • 7-14 
• • • • 7-14 
• • 7-12/7-13 
• • • • 7-12 
• • 7-14/7-15 

7-14 

3-10 
3-11 



Buffer Control Entries (BCE) • • • • 
Buffer Control Table (BCTBL) • • • • 
BUILDALT Program to Fix Error Log. • 

CALL Macro • • • • • •• 
Call a Subroutine (CALL) 

Argument Lists • 
CANCEL Macro • • • • • • 
CANCEL (SVC 16). • • • • • • 
Cancel Program (CANCEL) •• 
Cancel Exit (CEXIT) ••• 
Cancel Messages 

DMS Function Request • 
SVC CLOSE. . • • • • • • • 

. . . . . . 

SVC OPEN •••• 
CEXIT Macro. • 

. . . . . . 
CEXIT (SVC 39) 
CHECK Macro. • • • • • • 
CHECK (SVC 17) • • • • • • • 
Check for Event Occurrence (CHECK) • • • • 
Clock Interruptions. • 

. . . . . . 

. . . 

•• 5-5 
• • • • 5-6 
• • • 7-28 

• • 4-7 
•• 4-7 

2-17 
•• 4-8 

• • • • 6-23 
• • 4-8, 6-23 

• 4-9 

C-9 
C-11 

• • C-2 
•• 4-9 

6-72 
• • • • • • 4-12 

• • • • 6-25 
4-12, 6-25 

• • • • • 3-6 
CLOSE Macro. • ••• 
CLOSE (SVC 1) •••• 
Close File (CLOSE) • • 

. . . . . . . . • • • • • • 4-16 

CLOSE SVC Cancel Messages. 
Compression Option for RAM Files 
Consecutive Disk File Records 

Fixed Length • • • 
Variable Length. • • 

Control Blocks 
(AXDl) Alternate Index Descriptor Block. • 
(BCE) Buffer Control Entries • • • 
(BCTBL) Buffer Control Table • • • • 
(EXTRD) Extract SVC Result Area. • • • • 
(FDRl) File Descriptor Record Format 1 • 
(FDR2) File Descriptor Record 

Format 2 -- Additional Extents. 
(IORE) I/O Request Element • • 
(OFB) Open File Block. • • • • 
(TPLAB) Tape Labels. • • • • • 
(TPLB2) Tape Labels -- Secondary • 
(UFB) User File Block. • • 

,General Description • 
(VOLl) Volume Labels • 

CREATE Macro . • 
CREATE (SVC 37) .•••. 
Create Intertask Message Port (CREATE) 

INDEX-2 

• • 

• 6-8 
• • 4-16, 6-8 

•• C-8 
7-8 

• • 7-6 
• • • • • 7-7 

• 5-2 
• • • • • • • 5-5 

• 5-6 
5-7 

• • • • • • 5-17 

• • • • 5-20 
5-21 
5-23 
5-25 
5-26 
S-27 

•• 7-1 
• • • • 5-40 

• • • • • 4-17 
6-70 

• • • • 4-17, 6-70 



Data Area Macroinstruction Format. • • • • 
Data Management Support SVCs: CHECK, XIO 
Data Management System (See "DMS") 
Dataname Subblock. • • • • • • • • • • • • 
Deallocate Memory Storage 
Default File Specifications. • • • • • 
DELETE Macro • • • • • • • • • • • • • • • 
Delete Function (DMS RAM) ••••••••• 
Delete Function (DMS Indexed) •• 
Delete Record from Index (DELETE). 
DESTROY Macro. • • • • • • • • 

• • 

. . 
DESTROY (SVC 38) • • • • • • • . . . . . . 
Destroy Intertask Message Port (DESTROY) 
Disk Storage Description • • • • • • • • • 

Extent Organization. • • • 
Volume Label • • • • • • • • 
Volume Table of Contents • • • • • • • • 

DISMOUNT Macro • • • • • • • 
DISMOUNT (SVC 41) • • • • • • • • • • • • • 
Dismount Disk or Tape Volume (DISMOUNT) •• 
DMS (Data Management System) 

Fatal Errors • • • • • • • • • • • • • • • • 
Function Requests 

Cancel Messages • • • • • • • • • • • 
Entry • • • • . . • • • • • . 
File Status Return Codes. 

Magnetic Tape Support. 
Close File •• 
Initializing. • 
Labels. • • • • • • • 
Mount/Dismount. • • • • 
Multiple Volume 
Open File •• 
Read •• 
Start • 
Write • 
7-Track • 

Messages 

. . . 

SVC CLOSE Cancel Messages • • 
Function Request Cancel • • • 
SVC OPEN Cancel Messages. 
SVC OPEN Respecify Messages • 

Printer Support. • • • • 
Workstation Support •• 

Read Request ..•• 
Rewrite • • • • • 
Start Function Request. 

INDEX-3 

. . 

• • • 

• • • 

. . . 
. . . . . 

• • • 

. . . 

. . . 

. . 

A-1 
•• 3-9 

. . . . 
4-36, 

• • 

. . . 

. . 
4-21, . . . . 

. . . . 
4-22, 

B-15 
6-81 
2-19 
4-19 
7-10 
7-27 
4-19 
4-21 

.6-71 
6-71 
3-10 
3-10 
3-10 
3-11 
4-22 
6-73 
6-73 

7-49 

• C-9 
•• 7-46/7-47 
•• C-12/C-19 
•• 7-54/7-64 

7-63 
7-56 

7-54/7-55 
•• 7-55/7-56 
• • 7-63/7-64 
•• 7-56/7-61 

7-61 
7-62 
7-62 
7-64 

C-11 
• C-9 
• C-2 
• C-4 

7-49/7-50 
• 7-51/7-54 

7-52 
7-53 
7-54 



Error Handling 
Classifications. 2-23 
I /0 Errors • • • • • • • • • • • 2-23 

Hard Errors • • • • • • • • • • • • • 2-23 
Logical File Processing Errors. • • • • • 2-23 
Soft Errors • • • • • • • • 2-23 

Program Exception Errors • • • • • • • • 2-23 
User's I/0 Error Processing. • • • • • • 2-24 

Error Log, Alternate Indexed File. 7-28 
Using to Correct Errors. • • • • • • • 7-29 

Execute Physical I/0 (XIO) • • • • 4-136, 6-11 
Extent Organization. • • • • • • • • • • • 3-10 
EXTRACT Macro. . • • • • • • 4-24 
EXTRACT (SVC 28) • • 6-52 
Extract Data from System Control Blocks (EXTRACT) • • • 4-24, 6-52 
EXTRD (Result Area of "Extract" SVC) • • • • • • • • • • • • • 5-8 

FDR Fields in VTOC, of special DMS interest ••••••• 7-17/7-18 
FDRl (File Descriptor Record Block) • • • • • • • • • • • • • 5-17 
FDR2 (File Descriptor Record Block -- Additional Extents) • • 5-20 
File Extents • • • • • • • • • • • • • • • • • • 3-10 
File Organization Definitions (RAM). • • • • • • • • 7-6 
File Organization and Record Size at SVC OPEN. • 7-19/7-20 
File Specifications, Default • • • • • • • 2-19 
FMTLIST Macro. • • 4-33 
FREEBUF Macro. • • • • • • • • • • • • 4-35 
FREEBUF (SVC 6) • • • • • • • • • • • 6-19 
Free Data Management Buffer Space (FREEBUF). • • • 4-35, 6-19 
FREEHEAP Macro • • • • • • • • 4-3 6 
FREEHEAP (SVC 57) • • • • • • • • 6-81 
Function Requests and Modifiers 

(BAM) 
(PAM) 
(RAM) 

• 7-12/7-13 
• 7-15/7-16 

7-8/7-12 

• • • • 4-123 
•• 4-4 

Generate a User File Block (UFBGEN) ••••••••• 
Generate Alternate Index Descriptor Block (AXDGEN) 
Generate Display Message (MSGLIST) • • • • • • • • • 
Generate Parameter Group Control List (KEYLIST) ••• 
Generate Parameter Group Control List Fields (FMTLIST) 

• • • • 4-65 
4-47 
4-33 
4-38 
6-18 

GETBUF Macro • • • • • • • • • • • • • • • 
GETBUF (SVC 5) • • • • • • • • • • • • • • 
Get Data Management Buffer Space (GETBUF). 
Get Date and Time (TIME) • • • • 
GETHEAP Macro . • • • 
GETHEAP (SVC 5 6) • • • • • • • • • • • 

INDEX-4 

. . 
4-38, 6-18 

4-122, 6-10 
• • • • 4-39 
• • • • 6-79 



GETPARM Macro. • • • • • 
GETPARM (SVC 20) • • • • 
Get Parameters (GETPARM) 

Halt I/0 Operation (HALTIO) •• 
HALTIO Macro • • 
HALTIO (SVC 12) ••••••• 

I/O Initiation • • • • • • • 
I/0 Interruptions. • • • • • 
I/0 Request Element (IORE) • • • • 
Indexed Disk Files (RAM) 

Fixed Length Records • • • 
Variable Length Records. • 

Indexed RAM Files 

• • • • • • • • • • 4-42 
• • • • • • • • 6-33 

• • 4-42, 6-33 

4-45, 6-20 
4-45 

• • • • 6-20 

• 3-5 
• • • • 3-5 

• • • s-21 

• 7-6 
• • • 7-8 

Access of Existing Files • • • • • • 7-22/7-23 
Buffer Options and Strategies. • • • • • • • 7-23/7-24 
Creation of. • • • • • • • • • • • • • 7-21/7-22 
Indexed File Structure • • • • • • 7-24/7-25 

Indexed and Alternate Indexed Files; General Comparison. 7-29/7-30 
Internal DMS Representation of Alternate Indexed Files • 7-30/7-32 
Interruptions 

Clock Interrupt Service Actions. • 
I/O Interrupt Service Actions. • • 
Program Interrupt Service Actions. 

IORE (I/0 Request Element Block) • • 

• 3-6 
• 3-5 
• 3-6 
5-21 

KEYLIST Macro. • • • • • • • • • • • • • • • • • • • • • • • 4-47 

LINK Macro • • • • . • 
LINK (SVC 4) • • • • • 
LINK Argument Lists. • • • • • 
Link to Another Program or Subprogram (LINK) 
Linkage Area, Code and Static Sections 
Linkage Block. . • 
Linker Processing. 
LINKPARM Macro 
Log Files (See "Error Log") 

Recovery •. 
Shared ••. 
Special Features 
Write-through. 

Logoff • . • . . 
LOGO FF Macro • . 
LOGOFF (SVC 43). 

INDEX-5 

in •• 
4-52, 

4-52 
6-15 
2-17 
6-15 
B-22 
B-21 
B-27 
4-55 

• • • • 7-37 
• 7-37 /7-38 

7-37 
• • • • 7-37 

• 3-8 
4-60 
6-76 



Macroinstructions and SVCs 
Alphabetical List 

AXDGEN () Generate Alternate Index Descriptor Block • 4-4 
BCTGEN () Generate Buffer Pool Control Table • 4-6 
CALL () Call a Subroutine • • • 4-7 
CANCEL (16) Cancel Program. • • • • • • • • • • • 4-8, 6-23 
CEXIT (39) Cancel Exit • • • • • • • • • • • 4-9, 6-72 
CHECK (17) Check for Event Occurrence. 4-12, 6-25 
CLOSE (1) Close File. • • • • • • • • • • • 4-16, 6-8 
CREATE (37) Create Intertask Message Port 4-17, 6-70 
CXT () Return CEXIT Information. • • • • • • • • 4-18 
DELETE () Delete Record from Indexed File • • • • • 4-19 
DESTROY (38) Destroy Intertask Message Buffer. • 4-21, 6-71 
DISMOUNT (41) Dismount Disk or Tape Volume. • • • 4-22, 6-73 
EXTRACT (28) Extract Data from Control Blocks. • 4-24, 6-52 
FMTLIST () 

FREEBUF (6) 
FREEHEAP (57) 
GETBUF (5) 
GETHEAP (56) 
GETPARM (20) 
HALTIO (12) 
KEYLIST 0 
LINK (4) 
LINKPARM () 
LOGOFF (43) 
MOUNT (30) 
MSGLIST () 
OPEN (0) 
PCEXIT (31) 

PROTECT () 
PUTPARM (33) 
READ () 
READFDR (24) 
READVTOC (19) 
REGS () 
RENAME (26) 
RESETIME (32) 
RETURN () 
REWRITE Q, 
SCRATCH (27) 
SET (35) 
SETIME (32) 
SUBMIT (46) 
START 0 

TCOPTION 0 
TIME (2) 
UFBGEN () 
WRITE () 
XIO (3) 
XMIT (36) 

Generate Selected Parameter 
Group Control Block Fields. • ••• 
Free Data Management Buffer Space • 4-35, 
Deallocate Memory Storage • • • • • 4-36, 
Get Data Management Buffer Space. • 4-38, 
Allocate Memory Storage • • • • 4-39 , 
Get Parameters. • • • • • • • • • • 4-42 , 
Halt I/0 Operation. • • • • • • • • 4-45, 
Generate Parameter Group Control List • • 
Link to Another Program • 4-52, 
Supply Program Parameters • • • • 
Log Off Workstation • • • • 4-60, 
Mount Disk or Tape Volume • • 4-61, 
Generate Display Message. 

4-33 
6-19 
6-81 
6-18 
6-79 
6-33 
6-20 
4-47 
6-15 
4-55 
6-76 
6-57 
4-65 

Open a File • • • • • • • 
Modify Program Exception Exit 

• • 4-66, 6-3 

Status. • • • • • • • • • 
Protect a Disk File • • • 
Supply Program Parameters 
Read a Record • • • • • • 
Read File Descriptor Record • 
Read Volume Table of Contents • 

4-68, . . . . 
4-73, 

4-79, 
4-82, 

4-87' 
4-90, 

Register Equation • • • • 
Rename Disk File. • • • 
Reset Timing Interval 
Return to Invoker • • 
Rewrite a Record. • • . . . . . . 
Scratch a Disk File • 4-94, 
Set Task-Related Defaults 4-97, 
Set Timing Interval • • • • • • 4-102, 
Submit Job or Print Request • • 4-111, 

6-60 
4-70 
6-63 
4-75 
6-46 
6-29 
4-86 
6-48 
6-62 
4-91 
4-92 
6-50 
6-68 
6-62 
6-77 

Start File Processing in Specified 
Mode or Record Location • • • • • • • • • 4-103 

• • . 4-119 
• 4-122, 6-10 

• • • 4-123 

Set Teleco111Dunications Options. 
Get Data and Time • • • • • • 
Generate a User File Block. • 
Write a Record. • • • • • • • 
Execute Physical I/O. • • • • 
Transmit Intertask Message. • 

• • • 4-134 
• • • 4-136, 6-11 

4-141, 6-69 

INDEX-6 



Macroinstructions and SVCs: Functional Group List 
Data Management Routine Use 

CHECK. 
FREEBUF. 
FREEHEAP • 
GETBUF • 
GETHEAP 
HALTIO • 
XIO. 

Intertask CoD1Dunication 
CEXIT. 
CHECK. 
CREATE • 
CXT. 
DESTROY. 
LINKPARM • 
XMIT • 

Program Structuring and Control 
EXTRACT. 
PCEXIT • 
REGS . 
SET. 

Program Termination 
CANCEL • 
RETURN . 

Timing 
CHECK. 
SETIME . 
RESETIME • 
TIME • 

User-Level I/0 
AXDGEN • 
BCTGEN • 
CLOSE. 
DELETE • 
DISMOUNT 
MOUNT. 
OPEN • 
PROTECT. 
READ • 
READFDR. 
READVTOC • 
RENAME • 
REWRITE. 
SCRATCH. 
SUBMIT • 
START. 
TCOPTION . 
UFBGEN • 
WRITE. 

User Program Linkage 
CALL • 
LINK . 
RETURN • 
UNLINK • 

INDEX-7 

4-12, 6-25 
4-35, 6-19 
4-36, 6-81 
4-38, 6-18 
4-39, 6-79 
4-45, 6-20 

4-136, 6-11 

4-9, 6-72 
4-12, 6-25 
4-17, 6-70 

4-18 
4-21, 6-71 

4-55 
4-141, 6-69 

4-24, 6-52 
4-68, 6-60 

4-86 
4-97, 6-68 

4-8, 6-23 
4-91 

4-12, 6-25 
4-102, 6-62 
4-90, 6-62 

4-122, 6-10 

4-4 
4-6 

4-16, 6-8 
4-19 

4-22, 6-73 
4-61, 6-57 
4-66, 6-3 

4-70, 6-74 
4-75 

4-79, 6-46 
4-82, 6-29 
4-87, 6-48 

4-92 
4-:94, 6-50 

4-111, 6-81 
4-103 
4-119 
4-123 
4-134 

4-7 
4-52, 6-15 

4-91 
6-21 



Workstation Display, Messages 
FMTLIST •• 
GETPARM. 
LOGOFF •• 
KEYLIST •• 
MSGLIST •• 
PUI'PARM. • • • • • 

. . . 

Magnetic Tape File Header, Trailer, 

. . . . 4-42, 
4-60, 

. . . . 
4-73, 

4-33 
6-33 
6-76 
4-47 
4-65 
6-63 

and End-of-Volume Labels (TPLAB) • • • • • • • • • • • • • 5-25 
Magnetic Tape Secondary Header, 

Trailer, and End-of-Volume Labels (TPLB2) •• 
Magnetic Tape Support (DMS). • • ••• 

7-Track Tape Support • • • • • • 
Close Tape File. • • • • 
Initialize a Tape Volume • • 
Mount/Dismount a Tape. : • • 
Multiple Volume Tape Files 

Creating ••• 
Reading • • • • • • • 

Open a Tape File • • • • 
Read Function Request. • 
Start Function Request • 
Write Function Request • 

Microcode Loading. • • • • • • • • 

. . . • • • • 5-26 
• • 7-54/7-64 
• • • • 7-64 

7-63 
• • 7-56 

7-55 

• • • • 7-64 
• • • • 7-63 

7-56 
• • • • 7-61 

Modify Program Exception Exit Status (PCEXIT) • • 

7-62 
7-63 

• • • • 3-7 /3-8 
4-68, 6-60 

MOUNT Macro. • • • • • • • • • • • • • • • 4-61 
MOUNT (SVC 30) • • • • • • • • • • • • • • 
Mount Disk or Tape Volume (MOUNT). • • ••• 

• • • • 6-57 
• • • 4-61, 6-57 

MSGLIST Macro. • • • • • • • • • • 

Naming Conventions 
Label Names. • • • • • • 
System Data Structures • 

NOVTOC Diskettes • • • • • 

Object Program, Definition of. 
OFB (Open File Block) ••• 
OPEN Macro • • • • 
OPEN (SVC 0) • . • • • • • • • • 
Open a File (OPEN) • • 
Open File Block (OFB). 
Open Function (DMS Existing Indexed File). 
OPEN SVC Cancel Messages • • • • • • • • • 
OPEN SVC Respecify Messages •••••••• 

INDEX-8 

• • • • 4-65 

• • • • 2-25/ 2-27 
2-27 

• • • • 7-19 

• • • • • • 2-1 
5-23 

• • • • 4-66 
•• 6-3 

• • 4-66, 6-3 
• • • • 5-23 

7-28 
C-2 

• • C-3 



Packing Density ••••• 
Pages and Page Faults •• 
PAM (See "Physical Access Method") 
Parameter Passing 

Default File Specifications. 
Run-Time Device and File Assignment. 
Run-Time Specification of Options. 
Standard Argument Lists for CALL or LINK • 
Standard Parameter-Reference Names • 
User Program Parameter Passing • 

PCEXIT Macro • • • • 
PCEXIT (SVC 31) ••• 
Physical Access Method (PAM) Files 

File Size Specification. • 
Function Requests and Modifiers. 
General Description. 
Read Block •• 
Rewrite Block. 
Start. 
Write Block. • • • 

Printer Support (DMS) •• 
Program 

Abnormal Termination • 
Dataname Subblock. 
Definitions. 
Efficiency • • • • 
Initiation •• 
Interruptions. 

. . 
Linkage Block. • • • • • • 
Linker Processing. 
Normal Termination • • 
Program Skeleton • 
Relocation Reference Block • 
Run Block. 
Run Processing • • 
Static Block • • • 
Statement Number Subblock. 
Symbolic Block • • 
Symbolic Sections. 
Translator Processing. • 

PROTECT Macro. • • • 
PROTECT (SVC 42) 
Protect a Disk File (PROTECT). 
PUTPARM Macro. • 
PUTPARM (SVC 33) 

RAM (See "Record Access Method") 
READ Macro • • • • • 
Read a Record (READ) 

INDEX-9 

6-6, 7-22 
• 3-2 

2-19 
2-18 
2-19 
2-18 
2-20 
2-18 
4-68 
6-60 

7-17 
• 7-15/7-16 

7-15 
7-66 

7-66/7-67 
• 7-67/7-68 

7-68 
• 7-49/7-50 

• 3-6/3-7 
B-15 

• 2-1 
• 3-3 
• 3-7 

3-5/3-6 
B-21 
B-27 

• 3-6 
• B-1 
B-24 

• B-3 
B-28 

• B-5 
B-13 

• B-9 
B-10 
B-26 
4-70 
6-74 

4-70, 6-74 
4-73 
6-63 

4-75 
4-75 



Read File Descriptor Record(s) (READFDR) 
Read File Status 

(BAM) UFBEODAD Return. • • 
(RAM) UFBEODAD Return. • • • • • • • • • 

Read Function (DMS Indexed) •••••• 
READFDR Macro. • • • • 
READFDR (SVC 24) • • 
Read Modifiers (BAM) 
Read Volume Table of Contents (READVTOC) • 
READVTOC Macro • • • • • • • • 
READVTOC (SVC 19) •••••••• 
Record Access Method (RAM) Files 

Buffer Size Specification. • • 
Consecutive Files, Definitions 

Fixed-Length Records. • 
Variable-Length Records 

Compression Option • 
File Size Specification. • • 
Function Requests 

Read and Read Modifiers • 
Write, Rewrite, Delete, Start 
Summary of Requests • • • 

Indexed Files, Definitions 
Fixed Length. • • • • • 
Variable Length • • • • • • 

Record Size Specification. 
REGS Macro • • • • • • • • 
Register Conventions • • • • 
Register Equation (REGS) • • • 
Relocation Reference Block • 
RENAME Macro • • • • • • • 
RENAME (SVC 26) ••• 
Rename a Disk File (RENAME) •• 
Remove Timer Interval (RBSETIME) 
Request Parameters (GETPARM) 
RESETIME Macro • • • • • 
RESETIME (SVC 32) ••••••• 

. . . . . 

Result Area of "Extract" SVC (EXTRD) 

4-79, 6-46 

. . . . 7-13 

• • . . . . . . 
. . . . 

4-82, . . . . 

• 7-9 
7-26 
4-79 
6-46 
7-13 
6-29 
4-82 
6-29 . . . . . . 

. . . 

. . . . 

7-11 

• 7-6 
• 7-7 
• 7-8 
7-11 

•• 7-8/7-9 
• • • • 7-9/7-11 

• 7-5 

. . 

• • • • • 7-6 
• • • • • 7-8 

7-12 
4-86 

• • • • 2-11 

4-87, . . . . . . 
4-42, 

. . . 

4-86 
B-24 
4-87 
6-48 
6-48 
4-90 
6-33 
4-90 
6-62 

Return from Program Entered by LINK (uNLINI<) 
• 5-8 
6-22 
4-91 
4-91 
4-92 
4-92 
7-10 
7-27 

RETURN Macro • • • • • • • 
Return to Invoker (RETURN) 
REWRITE Macro. • • • • • • • • 
Rewrite a Record (REWRITE) 
Rewrite Function (DMS RAM) 
Rewrite Function (DMS Indexed) 
Run Block. • • • • • • • • • • • 
Run-Time Device and File Assignments • 
Run-Processing ••••• 

INDEX-10 

. . . • B-3 
2-18 
B-28 



Scratch a File (SCRATCH) 
SCRATCH Macro. • • 
SCRATCH (SVC 27) • • • • 
Segments, Program 

4-94, 6-50 
• • • • 4-94 

6-50 

Segment 0 (System) • • • 1-2 
Segment 1 (User Program Re-entrant). • 1-3, 2-2 
Segment 2 (User Modifiable). • • 1-4, 2-2 

SET Macro. . • • • • • • • • • • • • • • • • 4-97 
SET (SVC (35) • • • • • • • • • • • • • • 6-68 
Set Cancel Exit Options (CEXIT) • • • • • 6-72 
Set Interval Timer (SETIME). • • • 4-102, 6-62 
Set Task-Related Defaults (SET). • ••• 4-97, 6-68 
Set Telecommunications Stream Options (TCOPTION) • 4-119 
SETIME Macro • • • • • • • • • • 4-102 
SETIME (SVC 32). • • • 6-62 
Shared Mode. • . • • • • 7-33/7-45 

Detailed Overview. • • • • • • • 7-42/7-45 
START Functions (Summary). • • ••• 7-44 
UFB Field Updates. • • • • • • • 7-44/7-45 

Sharing, Advanced. • • • . • • • • • • • 7-37 /7-41 
Explicit Resource Control. • • • • • • • • • 7-38/7-39 
Extension Rights • • . • 7-39/7-40 
General Notes. • • • • • • • • 7-41 
Timeout Option • • • • • • • • • • • • • 7-40 

Sharing Task 
General Description. 
HOLD Mechanism • • • • . 
Hold for Update/Retrieval ••••• 

Statement Number Subblock. • • • • • 
Static Areas (see Segments) 

Assembler Language Conventions • • 
Creation of •• 

• • 7-34/7-36 
7-35/7-36 
7-37 /7-38 

• • • • B-13 

2-9 
2-3 

Definition • • • • • • • • • • • • • • • • • • 2-1 
Example usage. • • • • • • • • • • • • • • 2-6/ 2-8 
Support during Compiling, Linking, and Start-up. • 2-4, 2-5 

Static Block . . • • . • • • • • • • . • • • • • • • • • B-5 
START Macro. • • • • • • • • • • • • • • • • • 4-103 
Start File Processing in Specified 

Mode or at Specified Record Location (START) • 4-103 
7-10 Start Function (DMS RAM) • • • • • • • • 

Start Function (DMS Indexed) • • • • • • 
Start Function UFBEODAD (RAM) Returns. 
Submit Job or Print Request. • • • • • 
Supervisor Calls 

Alphabetical List (See "Macroinstructions") 
General Introduction • . • • 
0 (OPEN) Open File • • • • • 
1 (CLOSE) Close File. • • • • 
2 (TIME) Get Date and Time 
3 (XIO) Execute Physical I/O. 
4 (LINK) Link to Another Program • 

• • • • 7-27 
• • • • 7-11 
• 4-111, 6-77 

• 2-17, 2-21, 6-1 
• • • • • 6-3 

6-8 
• • • • 6-10 
• • • • 6-11 

6-15 
5 (GETBUF) Get Data Management Buffer Space •• 6-18 

INDEX-11 



6 (FREEBUF) Free Data Management Buffer Space •• 
12 (HALTIO) Halt I/0 Operation. • • • • • • • • 
15 (UNLINK) Return from Program Entered by Link • 
16 (CANCEL) Cancel Program. • • • • • • • 
17 (CHECK) Check for Event Completion ••• 
19 (READvrDC) Read Volume Table cf Contents 
20 (GETPARM) Request Parameters. • • • • 
24 (READFDR) Read File Descriptor Record • 
26 (RENAME) Rename Disk File. • • • • • 
27 (SCRATCH) Scratch Disk File • • • • • • 
28 (EXTRACT) Extract Data from System Control Blocks • 
30 (MOUNT) Mount Disk or Tape Volume • • • • • • 
31 (PCEXIT) Modify Program Exception Exit Status. • • 
32 (SETIME/RESETIME) Set/Reset Timing Interval • • • • 
33 (PUTPARM) Supply Program Parameters to GETPARM. 
35 (SET) Set Task-Related Defaults • • • • • • • • 
36 (XMIT) Transmit Intertask Message. • • • • • • • 
37 (CREATE) Create Intertask Message Buffer • • • • • 
38 (DESTROY) Destroy Intertask Message Buffer. • 
39 (CEXIT) Set Cancel Exit Options • • • 
41 (DISMOUNT) Dismount Disk or Tape Volume. • • • • • • 
42 (PROTECT) Protect File or Library . • • 
43 (LOGOFF) Log Off Workstation • • • • • 
46 (SUBMIT) Submit Job or Print Request • • • • 4-111, 
56 (GETHEAP) Allocate Memory Storage • • 
57 (FREEHEAP) Deallocate Memory Storage . . . 

6-19 
6-20 
6-22 
6-23 
6-25 
6-29 
6-33 
6-46 
6-48 
6-50 
6-52 
6-57 
6-60 
6-62 
6-63 
6-68 
6-69 
6-70 
6-71 
6-72 
6-73 
6-74 
6-76 
6-77 
6-79 
6-81 

Supply Program Parameters (LINKPARM) 
Supply Program Parameters (PUTPARM). 
Symbolic Block . • . . • . . 
Symbolic Sections. • • • • • • • • • • • • • 

• • • • 4-55 
4-73, 6-63 

Tape Support (See "Magnetic Tape") 
Task Scheduling and Timing • • • 

Intertask Message Primitives • • • • • 
WAIT and SEND Primitives • 

TCOPTION Macro . • . 
TIME Macro • • • • • • • • • 
TIME (SVC 2) • • • • • • • • • • • • • • • 
TPLAB (Magnetic Tape File Header, 

Trailer, and End-of-Volume Labels) 
TPLB2 (Magnetic Tape Secondary Headers). 
Transfer of Control •• 

CALL . . . • • • • • • • 
Lim . . . . . . . . . . 

Translator Processing. . . • • • 
Transmit Intertask Message (XMIT) •• 

UFB Fields of special DMS interest • • 
UFB (User File Block) Control Block. • 

INDEX-12 

• • • • • B-9 
• • • • B-10 

• • • • • 3-3/3-4 
• • • • • 3-4 

• •• 3-4 
• 4-119 

• • • • • • 4-122 
• • • • • • 6-10 

• 2-9, 
2-14, 

• • • 4-141, 

5-25 
5-26 
2-10 
2-15 
2-16 
B-26 
6-69 

7-18 
5-27 



UFBGEN Macro • • • • • • 
UNLINK (SVC 15) ••••• 
User File Block (UFB)~ • 

Virtual Address Components • 
Virtual Memory 

. . 

Address Translation. • 
Definition • • • • • • 
Paging, description of 
Program Efficiency • • 
Relation to Physical Memory. 

. . . . . . . . . . . 4-123 
6-22 
5-27 

3-1/3-2 

• • • • 3-2 
3-1, 3-2 

• • • 3-2/3-3 
• • • • • 3-3 

• • • • • • 3-1 
VOLl (Standard Volume Label for Disk or Magnetic Tape) 5-40 
Volume Label • • • • • • • • • • • • 

Standard Label for Disk or Magnetic Tape 
Volume Table of Contents (VTOC) ••••• 
VTOC (Volume Table of Contents) •••••• 

Workstation Messages and Response 
(Introduction) • • • • • 

Workstation Support (DMS). 
Read Function Request •• 
Rewrite Function Request 
Start Function Request • 

WRITE Macro. • • • • • • 
Write a Record (WRITE) • 
Write Function (DMS RAM) • 
Write Function (DMS Indexed) 

XIO Macro •••• 
XIO (SVC 3) •• 
XMIT Macro • 

INDEX-13 

3-10 
5-40 

• • • • • 3-11 
3-11 

. • • • 2-22 
•• 7-51/7-54 

7-52 
7-53 
7-54 

• • • • • 4-134 
• 4-134 

• 7-9 
• • • • • • 7-27 

• 4-136 
6-11 

• 4-141 



WANG Customer Comment Form 
VS OPERATING SYSTEM 

Title SERVICES MANUAL 

Publications Number soo-11o7os-o3 

Help Us Help You ... 

We've worked hard to make this document useful, readable, and technically accurate. Did we succeed? Only you can tell us! 
Your comments and suggestions will help us improve our technical communications. Please take a few minutes to let us 
know how you feel. 

How did you receive this publication? How did you use this Publication? 

0 Support or 0 Don't know D Introduction D Aid to advanced 
Sales Rep to the subject knowledge 

0 Wang Supplies 0 Other D Classroom text D Guide to operating 
Division (student) instructions 

0 From another D Classroom text D As a reference 
user (teacher) manual 

0 Enclosed D Self-study D Other 
with equipment text 

Please rate the quality of this publication in each of the following areas. 

EXCELLENT GOOD FAIR POOR 

Technical Accuracy - Does the system work the way the manual says it does? 0 D 0 0 

Readability- Is the manual easy to read and understand? D D 0 D 

Clarity - Are the instructions easy to follow? D D D D 

Examples - Were they helpful, realistic? Were there enough of them? D D D D 

Organization - Was it logical? Was it easy to find what you needed to know? D D 0 D 

Illustrations - Were they clear and useful? D D D D 

Physical Attractiveness - What did you think of the printing, binding, etc? D D D D 

VERY 
POOR 

D 

D 

D 

D 

D 

D 

D 

Were there any terms or concepts that were not defined properly? D Y D N If so, what were they? ---------

After reading this document do you feel that you will be able to operate the equipment/software? D Yes D No 
D Yes, with practice 

What errors or faults did you find in the manual? (Please include page numbers)------------------

Doyouhaveanyothercommentsorsuggestions? ___________________________ ~ 

Name _________________ ~ Street ___________________ ~ 

Title __________________ _ 
Citv~-------------------~ 

Dept/Mail Stop ____________ _ State/Country ______________ _ 

Company ________________ _ Zip Code _____ Telephone ________ _ 

Thank you for your help. 

All comments and suggestions become the property of Wang Laboratories, Inc. Printed in U.S.A. 14-3140 3-82-5C 



WANG 

Fold 

I 1111 I 

BUSINESS REPLY CARD 
FIRST CLASS PERMIT NO. 16 LOWELL, MA 

POSTAGE WILL BE PAID BY ADDRESSEE 

WANG LABORATORIES, INC. 
CHARLES T. PEERS, JR., MAIL STOP 1363 
ONE INDUSTRIAL AVENUE 
LOWELL, MASSACHUSETTS 01851 

Fold 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 



WANG 

ONE INDUSTRIAL AVENUE 
LOWELL, MASSACHUSETTS o l 8 5 l 
TEL. (617) 459-5000 

TWX 710-343-6769, TELEX 94-7421 

Printed in U.S.A. 
800-"11070S-03 

8-82-BM 


	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	4-001
	4-002
	4-003
	4-004
	4-005
	4-006
	4-007
	4-008
	4-009
	4-010
	4-011
	4-012
	4-013
	4-014
	4-015
	4-016
	4-017
	4-018
	4-019
	4-020
	4-021
	4-022
	4-023
	4-024
	4-025
	4-026
	4-027
	4-028
	4-029
	4-030
	4-031
	4-032
	4-033
	4-034
	4-035
	4-036
	4-037
	4-038
	4-039
	4-040
	4-041
	4-042
	4-043
	4-044
	4-045
	4-046
	4-047
	4-048
	4-049
	4-050
	4-051
	4-052
	4-053
	4-054
	4-055
	4-056
	4-057
	4-058
	4-059
	4-060
	4-061
	4-062
	4-063
	4-064
	4-065
	4-066
	4-067
	4-068
	4-069
	4-070
	4-071
	4-072
	4-073
	4-074
	4-075
	4-076
	4-077
	4-078
	4-079
	4-080
	4-081
	4-082
	4-083
	4-084
	4-085
	4-086
	4-087
	4-088
	4-089.0
	4-089.1
	4-089.2
	4-090
	4-091
	4-092
	4-093
	4-094
	4-095
	4-096
	4-097
	4-098
	4-099
	4-100
	4-101
	4-102
	4-103
	4-104
	4-105
	4-106
	4-107
	4-108
	4-109
	4-110
	4-111
	4-112
	4-113
	4-114
	4-115
	4-116
	4-117
	4-118
	4-119
	4-120
	4-121
	4-122
	4-123
	4-124
	4-125
	4-126
	4-127
	4-128
	4-129
	4-130
	4-131
	4-132
	4-133
	4-134
	4-135
	4-136
	4-137
	4-138
	4-139
	4-140
	4-141
	4-142
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	6-60
	6-61
	6-62
	6-63
	6-64
	6-65
	6-66
	6-67
	6-68
	6-69
	6-70
	6-71
	6-72
	6-73
	6-74
	6-75
	6-76
	6-77
	6-78
	6-79
	6-80
	6-81
	6-82
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	7-41
	7-42
	7-43
	7-44
	7-45
	7-46
	7-47
	7-48
	7-49
	7-50
	7-51
	7-52
	7-53
	7-54
	7-55
	7-56
	7-57
	7-58
	7-59
	7-60
	7-61
	7-62
	7-63
	7-64
	7-65
	7-66
	7-67
	7-68
	A-01
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	DH-01
	DH-02
	DH-03
	DH-04
	DH-05
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	replyA
	replyB
	xBack

