
Release: 2
July 1, 1980

COBOL
Conversion

Guide

©Wang Laboratories, lnc.1979
800-1204CC-02

WANG
WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE, LOWELL, MA 01851 •TEL: 617/459-5000, TWX 710-343-6769, TELEX 94-7421

Disclaimer of Warranties
and Limitation of Liabilities

The staff of Wang Laboratories, Inc., has taken due care in preparing
this manual; however, nothing contained herein modifies or alters in any
way the standard terms and conditions of the Wang purchase, lease, or
license agreement by which this software package was acquired, nor
increases in any way Wang's liability to the customer. In no event shall
Wang Laboratories, Inc., or its subsidiaries be liable for incidental or con
sequential damages in connection with or arising from the use of the soft
ware package, the accompanying manual, or any related materials.

NOTICE:

All Wang Program Products are licensed to customers in accordance
with the terms and conditions of the Wang Laboratories, Inc. Standard
Program Products License; no ownership of Wang Software is trans
ferred and any use beyond the terms of the aforesaid License, without the
written authorization of Wang Laboratories, Inc., is prohibited.

This manual replaces and obsoletes the first edition of the VS COBOL Conversion Guide
(800-1204CC-01). For a list of updates made to this manual since the previous edition, see the "Sum
mary of Changes".

WANG
WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE, LOWELL, MA01851 •TEL: 617/459-5000, TWX 710-343-6769, TELEX 94-7421

PREFACE

Tilis VS COBOL Conversion Guide is intended as an aid for the programmer
already familiar with COBOL. The conversion process of an IBM card batch
system to a VS interactive system is specifically addressed. However, many of
the topics discussed in this guide are discussed in terms sufficiently general
to apply to any non-Wang to Wang VS COBOL conversion.

While the specific examples provided in this guide do apply specifically
to an IBM-to-Wang conversion, many of the topics discussed, such as syntax,
device considerations and file organization apply to any non-Wang to Wang
conversion.

Appendix A is a table of syntactical conversion considerations for the
IBM-to-Wang VS conversion. Appendix B is a sample VS COBOL program
demonstrating the use of figurative constants, FACs, DISPLAY AND READ, SHARED
files and display picture record entries. Appendix C is a demonstration of
IBM COBOL programs and the resulting VS COBOL programs after conversion.
Appendix D is list of reserved words recognized by the Wang compiler, but not
the IBM COBOL compiler, and vice versa. Appendix E lists the ASCII and EBCDIC
collating sequences.

'!his guide should be used in conjunction with the following VS manuals:

Manual

VS COBOL Language Reference
VS Utilities Reference
VS Programmer's Introduction
VS Procedure Language Reference

iii

Wang Order Number

800-1201CB
800-1303trr
800-llOlPI
800-1205PR

SUMMARY OF CHANGES
FOR THE 2nd EDITION OF THE VS COBOL CONVERSION GUIDE

TOPIC DESCRIPTION PAGES

Documentation Update 1,2,6,
Reference 8,9,14,

21,25,
26

iv

ACKNOWLEDGEMENT

COBOL is an industry language and is not the property of any company or group
of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
CODASYL Programming Language Committee as to the accuracy and functioning of
the programming system and language. Moreover, no responsibility is assumed
by any contributor, or by the committee, in connection therewith.

Tile authors and copyright holders of the copyrighted material used herein

FLOW-MATIC (trademark of
UNIVAC I and II, Data
Sperry Rand Corporation;
copyrighted 1959 by IBM;
Minneapolis Honeywell

Sperry Rand Corporation) , Programming for the
Automation Systems copyrighted 1958, 1959, by
IBM Commercial Translator Form No. F 28-8013,

FACT, DSI 27A5260-2760, copyrighted 1960 by

have specifically authorized the use of this material in whole or in part, in
the COBOL specifications. Such authorization extends to the reproduction and
use of COBOL specifications in programming manuals or similar publications.

v

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTORY CONVERSION CONCEPTS

1.1 The VS COBOL Environment .•..
1.2 Syntactical Differences •.•.•..•.
1.3 Data File Considerations•.
1.4 Control Language Modifications •.
1.5 Logic Design Changes•

CHAPTER 2

2.1
2.2
2.3

CHAPTER 3

3.1

3.2

CHAPTER 4

DEVICE AND DATA CONSIDERATIONS

Character Code Conversion
Device Accessibility .
File Assignment • . . . • .

FILE ORGANIZATION AND ACCESS METHODS

File Organization Guidelines . • • • .
3.1.1 File Organizations .••••
3.1.2 Record Organizations
3.1.3 Compression ..

Sharing • . . . • •
3.2.1 File Sharing
3.2.2 COBOL Implementation

CODING FOR THE WORKSTATION

4.1 Interactive Workstation Overview •
4.2 Coding for the Workstation •

4.3
4.4

APPENDICES

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

4.2.1 Workstation File ••••
4.2.2 Screen Definition .
4.2.3 DISPLAY AND READ

Additional Workstation Coding Features •
Additional Utilities to Aid in Workstation Coding

SYNTAX CONVERSION FACTORS

SAMPLE VS COBOL PROGRAM

SAMPLE CONVERSION
IBM COBOL Programs
VS COBOL Programs .

RESERVED WORDS
Part 1 - Not Recognized by IBM
Part 2 - Not Recognized by Wang

COLLATING SEQUENCES

vii

PAGE

1
3
4
5
6

8
8

12

15
15
18
19
19
19
20

22
22
22
23
23
24
25

27

51

55
57
64

71
72

73

CHAPTER1
INTRODUCTORY CONVERSION CONCEPTS

1.1 mE VS COBOL ENVIRONMENT

VS COBOL is a prograouning language which is compatible with ANSI
standard COBOL and IBM COBOL. Til.e COBOL compiler is supported by the
programming environment of the user-oriented VS operating system. The VS
COBOL language, extended to support interactive processing, is supported by
many VS utilities to edit, compile, execute, debug and link programs. Other
utilities provide capabilities to generate formatted screen displays and
create and maintain data files.

The following is a list of major VS utilities with a brief description
of their capabilities.

EDITOR:

EZCOBOL:

CONTROL:

DATENTRY:

LINKER:

allows the development and maintenance
programs and integrates all the functions
create, edit, compile and execute programs.
(See VS Programmer's Introduction.)

of source
needed to

provides default source and object file locations to the
EDITOR and allows the operator to execute other VS
utilities such as COPY and DISPLAY.
(See VS Programmer's Introduction.)

creates and maintains description files (control files)
which contain the file characteristics and field
attributes of any data file.
(See VS Utilities Reference.)

creates and maintains data files conforming to the file
characteristics defined by the CONTROL file.
(See VS Utilities Reference.)

links two or more program modules into a single
executable program. The VS does not require a link for
a self-contained object file (a program file that does
not issue calls to external subroutines) .
Self-contained programs can be compiled and executed
directly.
(See VS Progranuner's Introduction.)

1

This second list contains a brief description of utilities and user aids
that are mentioned in the text as being useful for the conversion programmer.

CONVERTC:

COPY2200:

TAPECOPY:

TRANSL:

3740 Diskette
Compatibility
software:

TCCOPY:

makes global text changes to COBOL source files by file
or library.
(User aid information is available through the
International Society of Wang Users (ISWU)).

copies data files from a Wang 2200 diskette to a VS
library, automatically converting from 2200 format to VS
format or copies VS files from hard disk to diskette,
automatically reformatting them to 2200 format.
(See VS Utilities Reference.)

copies data from 9-track tape to VS disk,
record format and file organization, if
TAPECOPY can also copy files from disk to
tape to tape or from disk to disk.
(See VS Utilities Reference.)

converts EBCDIC to ASCII or ASCII to EBCDIC.
(See VS Utilities Reference.)

converting
necessary.
tape, from

converts a 3740 formatted diskette file to a Wang TC
formatted file accessible by the Wang 2200 series. This
utility is executable only on the Wang 2200 series with
a 3740 compatible diskette drive. The information on
the TC formatted diskette can be transferred to the VS
by the COPY2200 utility.
(See 3740 Diskette Compatibility Software Manual.)

enables the VS system to imitate the protocol of an IBM
2780/3780 and receive and transmit data between two
systems over telecommunications lines.
(See Data Communications User's Guide.)

In addition to these utilities, the Wang VS Command Processor of the
operating system enables the user to:

execute a program or procedure,
set default constant values,
examine device status and volume contents, and
rename, scratch and protect files.
(See VS Programmer's Introduction.)

The American National Standards Institute (ANSI) standardized COBOL
after many vendors had developed their own version of the language. The
standard was determined by taking the best options and processing methods of
each of these major vendors. Most vendors now use this standard to measure
their versions of the language. The standard, however, is always being
revised for improvement as better COBOL mousetraps are built. In attempting
to improve it and test other verbs and usages which could be incorporated into
the standard, each vendor offers extensions to its particular version of the
language. These extensions represent the major differences between VS COBOL
and other vendors' COBOL.

2

Wang VS COBOL supports 1974 ANSI Level 1 nucleus elements with many
Level 2 features. Most Wang extensions to the COBOL language provide for
interactive processing which is not currently part of the standard. The
following is a complete list of verbs supported by VS COBOL.

ACCEPT DIVIDE OPEN
ADD ENTER PERFORM
ALTER EXIT READ
CALL EXIT PROGRAM REWRITE
CLOSE GO TO SET
COMPUTE IF START
COPY INSPECT STOP
DELETE MOVE SUBTRACT
DISPLAY MOVE WITH CONVERSION * USE
DISPLAY AND READ * MULTIPLY WRITE

*Wang extensions

This guide is intended as a source of information for programmers
converting from an ANSI standard batch environment to the VS interactive
environment. The examples used, therefore, are based on IBM to VS conversions.

The four major topics of conversion discussed in this manual are:

1. Syntax The orderly arrangement of words and punctuation to form
clauses, sentences, paragraphs, sections and divisions.

2. Data file considerations

a. Code set - The character code set used to represent data on the
external media, and

b. File organization - Permanent logical file structure.

3. Control language - the commands which control program execution.

4. Logical design - The orderly flow of operational functions performed
on data.

1.2 SYNTACTICAL DIFFERENCES

IBM COBOL and VS COBOL have syntactical differences, most of which can
be converted with a global edit. For example, the IBM compiler accepts the
abbreviated name "ID DIVISION" for "IDENIIFICATION DIVISION". The VS compiler
does not. The IBM compiler recognizes the single quotation mark ('); the VS
compiler recognizes the double quotation mark(").

3

The user
character strings
of modifications:

aid CONVERTC is specifically designed to globally edit
in COBOL source code. CONVERTC can make the following types

source text global editing,
comment out specified lines of source text, and
add new source text to lines.

For a complete list of syntax differences between IBM COBOL and VS
COBOL, refer to Appendix A.

1.3 DATA FILE CONSIDERATIONS

Before data files can be read and processed by a VS, they must be
translated to machine-compatible code and format. Wang provides several
utilities to copy, reorganize if necessary, and translate nonconforming files
to an acceptable code and format.

The code set used by a computer system is transparent to the user.
Both Wang and IBM provide a default code set. ANSI specifies ASCII (American
Standard Code for Information Interchange) as the standard code set for use
with COBOL. The VS code set is extended ASCII. The IBM code set is EBCDIC
(Extended Binary Coded Decimal Interchange Code). Both are based on the
32-bit word. EBCDIC cannot be processed directly by VS hardware; therefore,
the IBM data files must be translated to ASCII. The Wang VS utility TRANSL
performs this conversion function.

The VS supports two file organizations, each with three access methods.
The storage method used on the VS is virtual. Consecutive file organization
(also known as sequential) where the logical file structure is composed of
records identified by a predecessor-successor relationship, is supported.
Indexed file organization, where each record of the logical file structure is
identified by one or more keys, is also supported. Both consecutive and
indexed files can be accessed sequentially, randomly or dynamically. Indexed
files with sequential access method (similar to IBM ISAM files) are available.

FILE ORGANIZATION

Consecutive

Indexed

ACCESS METiiOD

Sequential
Random
Dynamic

Sequential
Random
Dynamic

Figure 1-1. File Organization and Access Methods

4

1.4 CONTROL LANGUAGE MODIFICATIONS

'nle operator of a VS system can control program execution interactively
at the workstation by invoking the Command Processor. Procedure language can
also be used to perform these same functions, without constant operator
intervention.

The Procedure language is functionally similar to IBM's Job Control
Language (JCL) since it is used to write special routines which can execute
system commands. Procedures are used to run a series of programs in a
specified sequence. The operator is only required to execute the procedure.
A special procedure may be written to be executed at logon time. This logon
procedure can set default values for the duration of the logon session and
execute specified programs.

RUN
ENTER

DISPLAY -

SCRATCH -
PROTECT -
RENAME

SET

IF
GOTO
RETURN
LOGO FF

executes a program or another procedure.
provides run-time file information such as file, library and
volume name. 'nlis verb can also be used to pass instream
data to the executing program.
allows the operator to modify default run-time file
information.
scratches a file or library.
protects a file or library.
allows the operator to specify a new file name for an
existing file.
allows the user to specify default file information and
print modes.
controls conditional execution of procedure steps.
performs forward branching within the procedure.
terminates procedure execution.
terminates procedure execution and logs the user off the
system.

The above is a list of all of the Procedure language commands necessary
and available to control program execution.

Instream data can be passed to an executing program either interactively
or by the Procedure language. The programmer must define the data fields that
will be passed to the program at run-time. The Procedure Division code should
include an ACCEPT of these data fields. The name of the field to be accepted
should not exceed eight characters and should contain no hyphens. The value
for this field is supplied by the procedure.

If the program is executed interactively from the Command Processor, a
prompt for the data field values is displayed. If the program is executed via
a procedure, the ENIER verb provides the parameter value. If the data to be
accepted by the program is not provided by the procedure, then a system prompt
is issued to the screen. Tile following example demonstrates a sample program
and procedure used to pass instream data to an executing program.

5

WORKING-STORAGE SECTION.
77 ACCPTFLD PIC X.

PROCEDURE DIVISION.
ACCEPT ACCPTFLD.
IF ACCPTFLD = "O"

THEN GO TO EXIT-CLOSE
ELSE NEXT SENTENCE.

PROCEDURE
RUN DPLSAMPL IN DPLOBJ ON VOL444
ENTER ACCEPT ACCPTFLD=O

Sample Code Procedure Language

Example 1-1. Sample Program Code and Procedure Language

For more information on the use of the Procedure language, refer to the
I VS Procedure Language Reference.

1.5 LOGIC DESIGN CHANGES

Interactive systems, by design, logically process data differently than
batch systems. A sample card batch system goes through this cycle:

1. Entries are keypunched to create a card deck.

2. The deck is read onto disk or tape.

3. The disk or tape is used as input to program.

4. The program, which will sequentially process an accumulation of
data, is executed.

5. Corrections are handled which were due to keypunch errors.

A sample online interactive system does not require the intermediary
steps of first keying cards and then transferring the card information to tape
or disk. The entry is keyed directly onto tape or disk. The VS programmer
may design a system to accumulate all transactions onto disk or tape and then
process this group of transactions (VS batch processing). The alternate
system design is to interactively process/update each transaction as it is
keyed (VS interactive processing).

The VS hardware configuration does not include any card-oriented
devices. All data used by a program must be read from a disk or tape file or
entered interactively from the workstation. Therefore the batch system, as
enumerated above, must be redesigned to eliminate all card processing.

6

Tilere are two approaches to this redesign:

1. Redesign the front-end programs that process card input. The main
processing logic remains intact, but all card input is replaced.
The new front-end could accwnulate keyed transactions directly onto
a disk file. Tilis file can then be input to the rest of the system,
design logic unchanged.

2. Incorporate interactive capability. This alternative requires a
major redesign of the system logic. More lead development time is
required, but the production processing time and methods would be
totally interactive. Several VS utilities, such as EZFORMAT and
DATA ENI'RY, aid in the implementation of this approach.

Tile VS provides an interactive environment. Most programs being
considered for conversion are based on a batch design. Batch processing does
not necessarily infer card input, but it does require an accumulation of items
of raw data. Interactive processing, during which each unit of data is
processed immediately at execution time, is performed on-line.

7

CHAPTER2
DEVICE AND DATA CONSIDERATIONS

Data files which are to be processed and read on the VS computer must
confol'.111 to VS standards. There are several important considerations for the
programmer who wishes to convert files from a non-Wang system to the Wang VS
and insure data integrity. They include:

1. character code difference,

2. media compatibility, and

3. file assignment.

2.1 CHARACTER CODE CONVERSION

As noted in Chapter 1, IBM data files are represented in EBCDIC and must
be converted to ASCII for use by the VS. The VS utility, TRANSL, described in
the VS Utilities Reference, translates EBCDIC to ASCII. TRANSL may also be
used to change the order of· fields within the records of a file, delete
existing fields, and insert new blank fields, without converting the character
code set.

2.2 DEVICE ACCESSIBILITY

The storage medium of the data file must be accessible by VS equipment.
Data files on IBM series 3740 diskette can be made accessible to the VS, if
they are first transferred to a Wang fonnatted diskette. The VS can also
emulate an IBM 2780/3780 remote job entry (RJE) terminal, and transmit and
receive data from the host central processing unit over telecooununication
lines. If the files to be converted are not on these devices, then they can
be copied onto a 9-track tape, possibly by the IBM OS utility IEBGENER. The
principle medium for data interchange between non-Wang and VS equipment is
9-track magnetic tape. Both 800 and 1600 bpi tape are supported.

8

Table 2-1. Device Conversion Utilities

System Utility Input Output Manual

vs TAP ECO PY 9-track tape 9-track tape vs Utilities Reference
800 bpi 800 bpi

1600 bpi 1600 bpi

2200 3740 Diskette 3740 2200 3740 Diskette Compatibilit~
Compatibility formatted formatted Software Reference
Software diskette diskette

vs COPY2200 2200 VS formatted VS Utilities Reference
formatted diskette
diskette

vs TCCOPY 2780/3780 VS disk VS Data Communications
files file User's Guide

3740 Diskette Files

If data files are on IBM series 3740 diskette, the Wang 2200 Series 3140
Diskette Compatibility Software Utility can convert the IBM 3740 file to a
Wang 2200 TC formatted file. 'Ibis 2200 file can then be used as input to the
VS utility COPY2200 to create a converted VS formatted disk file. COPY2200
provides the mechanism of data exchange between the VS and the Wang 2200
series. '!be two-system process described below requires both Wang 2200
hardware and VS hardware.

Step 1. System:
Input:
Execute:
Output:

Step 2. System:
Input:
Execute:
Output:

Wang 2200 with a 2270A diskette drive.
3740 diskette file.
3740 Diskette Compatibility Software.
Wang TC formatted file.

Wang VS.
Wang TC formatted diskette file.
VS utility COPY2200.
converted VS formatted disk file.

9

9-track Tape Files

If the files are on 9-track tape, the VS utility TAPECOPY can be used to
copy the file from tape to VS disk. The TAPECOPY utility also has an option
to translate from EBCDIC to ASCII during the COPY processing.

All tape files are organized consecutively. If an indexed disk file is
copied to tape, the indices are not transferred, and the data portion of the
file is written as a consecutive file. The DEFINE DISKFILE option of TAPECOPY
allows the operator to specify file organization. A consecutive tape file may
be changed to an indexed file with no alternate keys by specifying "I" in the
FILEORG field and supplying the length and position of the primary key. The
user is also given the opportunity to change other file characteristics
(record format, packing density, printclass, and compression).

2780/3780 Emulation

The Wang TCCOPY utility's main function is to enable emulation. It
enables the VS workstation to emulate the RJE terminal. Data received by the
VS system via this utility is stored on disk in VS blocked format. lllese
files, if in EBCDIC, must be translated to ASCII before further processing by
the VS.

Data files can also be transmitted by the VS system by executing this
emulation utility.

Print Records

Printer characteristics should also be reviewed for compatibility.

VS print records do not reserve the first byte for a write control
character. All bytes described in the print record file description are
usable for character display. Spacing and line positioning of VS print
records are controlled by a two-byte write control area which is automatically
added to the beginning of the print record. These two bytes are not counted
with the total number of bytes for the print record definition. A print file
that will produce 132 printed characters is defined in the COBOL program as
containing 132 characters.

10

As long as the programmer writes print records BEFORE or AFTER ADVANCING
a number of lines or PAGE, there is no need to provide values for the control
area. The values in the control area are provided by the compiler when either
reserved word, BEFORE or AFTER, is recognized. ·

SYNI'AX: WRITE record-name [FROM identifier-!]

[{;} ADVANCING {~~:::!!ier-2} [~~::s] l
PAGE }
user-figurative-constant

If the programmer needs to specify non-standard spacing, the record can
be written BEFORE or AFTER ADVANCING a user-figurative-constant. 'Ihe
user-figurative-constant must be defined in the FIGURATIVE-CONSTANTS paragraph
of the Environment Division as one byte.

If bit 0 of byte 1 is zero, then bits 1-7 of byte 2 indicate the nwnber
of lines to be skipped. If bit 0 of byte 1 is one, then byte 2 indicates
either TOP OF FORM (HEX "01") or VERTICAL TAB (HEX "02").

'Tile bits indicated in Figure 2-1 must be zeroes.

CONTROL BYTE 1 CONTROL BYTE 2

0 0 0 0 0 0

Figure 2-1. Print Record Control Bytes

'Tile VS implementation of the write control allows either standard
hands-off line/page advancing or programmer-controlled line/page advancing.

The maximum length for any VS print record is limited by the printer
device used. Most VS printers support print lines of up to 132 characters.
Some models of the matrix line printer support up to 160 characters per line
and the daisy printer can support up to 158 characters per line.

11

2.3 FILE ASSIGNMENT

VS files must be described in the COBOL program and they must be
assigned a system name. This is done through the SELECT and ASSIGN clauses.
Tile file-name associated with the SELECT clause is the file-name as it is used
throughout the program. The name associated with the ASSIGN clause is called
the parameter-reference-name. This parameter-reference-name is used to keep
track of· system related information for the file, such as record type, file
organization and blocksize. Any system prompts to the operator for
information about the file use the parameter-reference-name. To complete the
assignment of the file, it must be associated with a device-type. Valid
devices are DISK, TAPE, PRINTER and DISPLAY. If no device is supplied, the
default is DISK.

SYNTAX: SELECT file-name
ASSIGN TO "parameter-reference-name" [,"device-type"][,NODISPLAY]

The NODISPLAY option of the ASSIGN
operator for file information as long as
elsewhere (from a procedure, for example).

clause suppresses prompts to the
that information is provided

For those familiar with IBM operating systems, the system name assigned
to the file in the Data Control Block (DCB) is similar to the VS
parameter-reference-name assigned to the Unit File Block (UFB). The DCB and
UFB contain the same type of file information, although the UFB contains more
file characteristic information. IBM uses Job Control Language (JCL) to
control program execution and provide run-time file information. IBM's DDName
is equivalent to the VS parameter-reference-name. The cataloged data set name
(dsn) provides the same information to the IBM operating system that the data
file-name, library name and volume name provide to the VS operating system.
With the VS, this run-time data file information can be provided in any of
four ways:

1. by an operator response to a system prompt,

2. through a procedure,

3. by a literal compiled with the program in the VALUE OF clause, or

4. by a data-name compiled with the program in the VALUE OF clause.

The examples of program code and procedures on the next page exhibit
these four methods.

12

Four Examples of Assignment of Run-Time Information

ASSIGN "PUTIN"

FILENAME=TESTDATA LIBRARY=DPLDATA VOLUME=VOLOOl

Example 2-1. Thru an Operator Response to System Prompting

PROCEDURE
SET INLIB=DPLDATA, INVOL=VOLOOl, PROGLIB=DPLOBJ,

PROGVOL=VOLOOl
RUN SAMPLE
ENTER PUTIN FILE=TESTDATA

Example 2-2. Thru a Procedure

FD PUTIN

VALUE OF FILENAME IS "TESTDATA"
LIBRARY IS "DPLDATA"
VOLUME IS "VOLOOl".

Example 2-3. Thru Literals in the VALUE OF Clause

FD PUTIN

VALUE OF FILENAME IS FILE-NAME
LIBRARY IS LIB-NAME
VOLUME IS VOL-NAME.

WORKING-STORAGE SECTION.
77 FILE-NAME PIC X(8).
77 LIB-NAME PIC X(8).
77 VOL-NAME PIC X(6).

PROCEDURE DIVISION.

MOVE "TESTDATA" TO FILE-NAME.
MOVE "DPLDATA" TO LIB-NAME.
MOVE "VOLOOl" TO VOL-NAME.

Example 2-4. Thru Data-names in the VALUE OF Clause

13

CHAPTER 2 REFERENCES:

Compression

COPY2200

Emulation

3740 Diskette
Compatibility
Software

TRANSL

VS COBOL Language Reference Manual

VS Utilities Reference

VS Data Communications User's Guide

3470 Diskette Compatability Software Manual

VS Utilities Reference

14

Order Number

800-1201CB

800-1303UT

800-1302DC

700-4369

800-1303lIT

CHAPTER3
FILE ORGANIZATION AND ACCESS METHODS

3.1 FILE ORGANIZATION GUIDELINES

The VS manages, maintains, and supports files through system-provided
code known as the Data Management System (DMS). DMS is independent of
individual user programs and is, in effect, transparent to the user. The Data
Management System is invoked by the user's program whenever that program
opens, accesses, or closes a file. DMS keeps track of all file
characteristics, such as file organization, record length, access method,
record count, parameter-reference-name, blocksize and format.

The Data Management System is resident in one common area of main
memory. All user programs access this one area for file control. DMS is used
by all languages, not just COBOL.

3.1.1 File Organizations

IBM COBOL offers five types of file processing with associated access
methods. They are referred to as sequential (QSAM), direct (BSAM, BDAM),
relative (BSAM, BDAM), indexed (QISAM, BISAM) and virtual (VSAM). The VS
offers comparable counterpart processing to each of these five techniques.

IBM's standard sequential file is organized in serial order. As each
record is written, it is added to the end of the file. Records are read in
the order in which they were written. The VS equivalent is a file with
consecutive organization and SEQUENTIAL access. This consecutive file, like
the IBM sequential file, is ordered as the records were originally written.

15

Direct file processing in IBM COBOL permits records to be accessed by
the relative track address provided through the ACTUAL KEY clause. An ACTUAL
KEY value is composed of a relative track number and an identifying key
utilized for the record search. A direct file cannot be allocated more space
after it is created. Due to differences in data storage on disk, the VS Data
Management System does not offer a keyed processing technique that is strictly
compatible with IBM's direct file processing. A comparable effect may be
achieved by use of VS indexed files. The VS programmer can directly access
any specified record by identifying a key value in the RECORD KEY clause. The
RECORD KEY clause specifies the data-name of a field in the record and has a
unique value for each record. VS indexed files are discussed below.

IBM's relative file processing accesses records based on their ascending
relative position in the file. The relative record number is provided via the
NOMINAL KEY clause. The relative record number must be assigned to the
NOMINAL KEY data-name before executing a READ, WRITE, or REWRITE. Relative
file records are arranged in the same order that they were originally written
to the file. The first record has a relative record number of zero (0). Once
a file is created, its space allocation cannot.be changed. A comparable VS
technique to relative file processing utilizes consecutive file organization
with RANDOM access. All records stored in a consecutive file are uniquely
identified by a relative record number which specifies the record's ordinal
position in the file. The relative record number must be assigned to the
RELATIVE KEY data-name before executing a READ, WRITE or REWRITE. The first
logical record has a relative record number of one (1) and subsequent logical
records have relative record numbers of 2,3,4 ••••

Indexed file processing techniques offered by IBM and Wang are very
comparable, although there are some structural and implementation
differences. Both IBM and Wang offer indexed file organization which permits
RANDOM and SEQUENTIAL access to the file based on a record key. Both use a
RECORD KEY clause to define a data item within the record by which the record
can be uniquely identified. The data item is defined as any fixed length item
from 1 to 255 bytes in length. 'nle records are ordered in ascending sequence
based on the key values. (Remember that the IBM collating sequence is EBCDIC
and the Wang collating sequence is ASCII; see Appendix E.) Both offer indexed
records that may be accessed sequentially; in such case each successive record
obtained has a key value greater than the key value of the preceding record.
Indexed records may also be accessed randomly by naming a specific key value.
RANDOM access allows the user to specify which record is needed.

Both the IBM access methods (QISAM and BISAM) and the VS Data Management
System offer system maintenance of indexes. However, there are notable
structural differences. IBM defines three storage areas for an indexed file
-- prime, index and overflow. The VS allocates one storage area only. When a
new record is added to an IBM file, the actual record could be placed in the
overflow area with an index pointer to that area. The new record added to the
VS file will be placed in physical ·order in the file. This is performed
through a process known as block-splitting.

16

Space is allocated differently. The IBM programmer must calculate space
requirements dependent upon the number of records in the file, and the area
required for index and overflow areas. The programmer specifies the primary
and secondary space parameters in JCL. IBM's indexed files must have total
space allocated at create time, and the amount specified must account for
future file growth. VS indexed files, when opened in OUTPt.rr mode,
automatically calculate and allocate required space depending upon the
estimated number of records provided by the programmer. If additional space
is needed as the file expands, secondary space is allocated automatically by
Data Management.

File reorganization is sometimes necessary to consolidate and optimize
space usage and to improve degraded input/output performance. One reason to
reorganize IBM files is improvement of input/output performance which has been
reduced because of chaining from index to prime to overflow areas. VS
reorganizations may be necessary to improve performance, but because of the
technique used by DMS to allocate file space, they are not required as
frequently as with the IBM chaining.

Tile IBM method of data set cataloguing permits retrieval based on data
set name and disposition only. VS Data Management does not support
cataloguing. VS files must be retrieved by file, library and volume name.

Tile notable implementation differences for indexed file processing
between IBM access methods and the VS Data Management System concern the
flexibility and utility of the record key. To randomly access an IBM record
by identifying key value, the programmer must move the identifying value to a
data-name storage field. Tilis data-name is identified as a NOMINAL KEY. A
NOMINAL KEY is required when an indexed file is accessed randomly. The VS
system does not use a NOMINAL KEY. Tile identifying VS key value is moved to
the primary key field in the record area. As the record is read, it is moved
into the record area, overlaying the primary key identifying value which was
supplied by the programmer.

IBM COBOL does not allow direct REWRITE of a record with an altered
length. The existing record must be deleted and the altered-length record
then written. VS COBOL does not face this implementation restriction; REWRITE
of a record with an altered length is allowed.

17

VS indexed files may be accessed along alternate key paths in addition
to the primary key path. Each file may be defined with one primary and up to
sixteen (16) alternate keys. Records in a file do not have to be part of all
alternate access paths. A file with implicitly redefined records at the
01 level may have different data-names for the alternate key field, depending
on the record type. This alternate key must still occupy the same left-most
byte position in each record. Only those records with the data-name specified
in the ALTERNATE RECORD KEY clause are indexed along that alternate key path.
Alternate keys need not be unique if so defined at file creation: duplicate
alternate key values are allowed. In order to randomly read a file to
retrieve a record with a duplicate key value, the identifying value is first
moved to the alternate key field in the record area. Next, the READ is issued
specifying the alternate key data-name in the KEY clause. The record obtained
will have the specified alternate key value, and the lowest primary key value
associated with that alternate key, if the alternate key is duplicated. A
READ NEXT will obtain the next record on this alternate key path. This READ
NEXT process can continue until the AT END condition is encountered,
indicating that there are no more records on this path. Tile file status of
each READ NEXT is "OO" unless the alternate key has one or more duplicates.
In this latter case, the file status returned is "02". Tile file status of
"00" is returned when the last of the duplicate key values is read.

For example, consider an inventory parts file with indexed organization
and a primary key of parts number and two alternate keys -- supplier code and
usage code. Supplier code allows duplicates. If the application requires a
list of all parts supplied by Supplier-X, the list produced by randomly
accessing the file on alternate duplicate key would be in primary key order
within alternate key order.

VSAM processing of indexed files, as implemented through IBM COBOL, with
direct and sequential access to indexed and sequential files, is most like the
file processing techniques offered by the VS Data Management System. VS
indexed file organization adds additional features to the READ, START and
REWRITE I-0 statements (as mentioned above).

3.1.2 Record Organizations

Disk files, by default, are blocked in 2K physical records. Spanned
records, logical records that are stored in two or more physical records, are
not supported. Because of the blocking considerations and other factors,
there are limitations on record length.

Fixed
Variable
Compressed

Consecutive

2048
2024
2024

Indexed

2040
2024
2024

Figure 3-1. Maximum Record Lengths Depend on File
Organization and Record Type.

18

3.1.3 Compression

Tile Data Management System supports a special feature for both indexed
and consecutive files called data compression. A Wang extension to the RECORD
CONTAINS clause is used to specify data compression. The general format is:

RECORD CONTAINS [integer-1 TO] integer-2 [COMPRESSED] CHARACTERS

When COMPRESSED is used, all characters of three or more duplicate and
consecutive characters are compressed into two bytes which contain the number
of occurrences of the character and the character itself. Every COMPRESSED
file contains compression indicator bytes which note (1) whether or not the
bytes following the indicator bytes are COMPRESSED and (2) the number of bytes
following the indicator bytes and preceding the next indicator bytes.

COMPRESSED is only specified when a file is being opened for output and
the user wants the file to be compressed. Compression is not provided by
default. DMS automatically expands compressed records to original format when
they are read. Thus, compression is completely transparent to the user
program. Compressed records are stored as variable length records. Variable
length consecutive records cannot be updated via a REWRITE; therefore, a file
that is to be updated must not be defined with consecutive organization and
compressed records. This combination, consecutive compressed, is useful for
record keeping logs. For example, this file may be used to record all update
information which was processed against an updat~ble file. Because of this
special function, compressed consecutive files are called log files.

3.2 SHARING

Sharing allows multiple users access to the same information, be it
program or data files. 'lllere are two levels of sharing in the VS Operating
System: automatic program sharing controlled by the operating system, and file
sharing controlled by the Data Management System.

3.2.1 File Sharing

File sharing is a useful, easily implemented feature which can be used
by the conversion programmer to redesign front-end programs or an entire
system. Since files can be shared, system design can include concurrent
multiple transactions to the shared file. One data file may be shared by many
users. Shared files can even be simultaneously accessed by users performing
different tasks. For example, one operator may update a shared file while
another user is running inquiries against the file.

The single-user access constraint, which the system undergoing
conversion had before, is no longer a design limitation.

File sharing allows multiple users update access to the same data file.
File sharing is controlled by the sharing task of DMS. Ibis task completely
controls access to all shared files. If two users simultaneously attempt to
access the same record, the sharing task puts one user in a "wait" state until
the first user releases the record. When the record is released, the
"waiting" user is then granted free access to it. This "wait" is generally
not noticeable to the user.

19

The sharing task:

1. permits simultaneous multi-user update access to an indexed file,

2. prioritizes all aser requests and resolves multi-user conflicts,
and

3. executes I-0 mode commands for file access requests.

3.2.2 COBOL Implementation

To implement file sharing, the VS programmer need only identify the open
mode as SHARED and realize the effects of holding and releasing records.

SYNTAX: OPEN SHARED file-name.

The sharing task of DMS controls users' access to files which are in use.
Tilis control is established by DMS, not by the program code.

The COBOL programmer should be familiar with the standard INPUT, OUTPUT,
I-O, AND EXTEND MODES and their access restrictions.

INPUT:

OUTPUT:

I-0:

EXTEND:

Multiple users have READ only access.

One user at a time may, depending on file organization,
WRITE to or START the file.

One user at a time may READ or modify the file.

One user may WRITE records to an existing consecutive file.

SHARED mode, a Wang extension, allows multiple users concurrent access
to READ and modify a file.

While one user is
from other user requests.
when obtaining the record.

altering a record, that record should be protected
This protection is insured by specifying a HOLD

A record should be held only during modification.

SYNTAX: READ file-name WITH HOLD

When the user has completed processing that record, it must be released to
allow access by other users. A record may be released by (1) issuing another
READ WITH HOLD for the file, (2) issuing a REWRITE or DELETE for the held
record, (3) issuing a WRITE for the record, or (4) issuing a CLOSE for the
file. A user may hold only one record at a time.

The sample code in Appendix B demonstrates the Wang extensions to COBOL
which are required to implement shared mode processing.

20

CHAPTER 3 REFERENCES:

Topic

Automatic File Sharing

Automatic Program Sharing

Data Management System

File Organization

File Access

Shared Mode COBOL Code

Text

vs Operating System Services

vs Operating System Services

vs Operating System Services

vs Operating System Services

VS COBOL Language Reference

vs Operating System Services

VS COBOL Language Reference

VS COBOL Language Reference

21

Order Number

800-11070S

800-11070S

800-11070S

800-11070S

800-1201CB

800-11070S

800-1201CB

800-1201CB

CHAPTER4
CODING FOR THE WORKSTATION

4.1 INTERACTIVE WORKSTATION OVERVIEW

The vs system is an interactive system in which the primary means of
program and data entry is the interactive workstation terminal. The user
"converses" with the system via keyed entries and the system cooununicates to
the user via screen-formatted displays.

In COBOL the workstation is associated with a workstation file. The
workstation file, just like any file, has a file description in the Data
Division. It can be read from or written to. The records of a workstation
file, called screen display records, are similar in function to record
description entries. These properties are conunon to all COBOL files. The
uniqueness of the interactive extension to COBOL is the manipulation of data,
as demonstrated by the Procedure Division statement DISPLAY AND READ.

4.2 CODING FOR THE WORKSTATION

Coding for the workstation in COBOL is supported by Wang extensions to
the language. These extensions and coding requirements are described as
follows and demonstrated in the sample program in Appendix B.

4.2.1 Workstation File

The workstation file is described in the COBOL FILE-CONTROL paragraph
and file description. This file is assigned to the device DISPLAY. Access
mode must be RANDOM and file organization must be consecutive. This file
contains 1924 bytes 24 rows times 80 characters per row yields 1920 byte
positions, plus a four byte order area. This order area can be used to
control cursor positioning. The file-name for the workstation file is used by
the COBOL program when manipulating the screen record.

22

ENVIRONMENT DIVISION.
INPUT-OUTPur SECTION.
FILE-CONTROL.

SELECT CRT ASSIGN TO "SCREEN" "DISPLAY"
ORGANIZATION IS SEQUENTIAL
ACCESS MODE IS RANDOM.

DATA DIVISION.
FD CRT.
01 DISPLAY-REC PIC X(1924).

Example 4-1. Sample Code for a Workstation File

4.2.2 Screen Definition

Once the file has been defined, the screen record formats can be
defined. A screen record entry defines positioning of data fields on the
screen, field lengths, field sources, validation ranges and other field
characteristics. There are three clauses- VALUE, SOURCE and OBJECT- used in
the screen display record entry and by the screen manipulation verb DISPLAY
AND READ.

01 RECORD-NAME USAGE IS DISPLAY-WS.
05 DATA-NAME-1 PIC X(5) ROW 4 COLUMN 9

VALUE IS "TOTAL".
05 DATA-NAME-2 PIC X(S) ROW 4 COLUMN 15

SOURCE IS FIELD-NAME-1
OBJECT IS FIELD-NAME-2.

Example 4-2. Sample Screen Display Record Entry

The VALUE clause specifies the literal exactly as it is to appear on the
screen. The SOURCE clause specifies a data-name of a Data Division item to be
displayed on the screen. The value in the storage area identified by this
data-name will be displayed on the screen when the DISPLAY AND READ is
issued. The VALUE and SOURCE clauses are used exclusively of one another.

The OBJECT clause indicates that the described field is modifiable.
This clause also specifies a data-name of an item to receive data from the
screen. This value will be supplied by the operator and then moved to the
storage area identified by the OBJECT data-name.

4.2.3 DISPLAY AND READ

record is displayed.
clauses. The system
values and press the

When the DISPLAY AND READ is executed, the screen
The values displayed are provided via the SOURCE or VALUE
then waits for the operator to examine, add or change
ENTER or one of the PFKEYS. This response is then read.
modified, the new values are validated and stored in the
the OBJECT clause. Thus, DISPLAY AND READ could be
five-process step: MOVE, DISPLAY, READ, Verify, and MOVE.

23

If fields have been
area determined by
considered as a

4.3 ADDITIONAL WORKSTATION CODING FEATURES

Figurative Constants and FACs

Another Wang extension to COBOL allows the programmer to define
figurative constants. This feature can be used in conjunction with screen
field attribute characters (FACs). FACs control the display mode
characteristics for all characters in a field in the display, and are
represented by hexadecimal values, but they appear on the display as a space.
Default FACs are provided. The FAC value provided depends on the clauses used
when defining the display picture definition.

The programmer may override the default FAC values by naming a FAC value
in the figurative constants paragraph and then moving that FAC value to the
FAC field of any data item described in the display picture definition entry.

ENVIRONMENT DIVISION.

FIGURATIVE-CONSTANTS.
BLINK-MOD-NUMERIC IS "90".

PROCEDURE DIVISION.

MOVE BLINK-MOD-NUMERIC TO
FAC OF DATA-NAME-2.

Example 4-3. Sample Figurative Constants Code

The FAC display characteristics are a combination of one from each of
the four columns in Table 4-1.

BRIGHr
DIM
BLINK
BLANK

Table 4-1. Field Attribute Characteristics

MODIFY
PROTECT

UPPERCASE
NUMERIC
ALPHANUMERIC UPPER AND LOWER

UNDERLINED
NOT UNDERLINED

The default FAC for a field with an OBJECT clause is bright modifiable
ALL, not underlined. This combination has a hex code value of "80".

The default FAC for a field with a SOURCE or VALUE clause and no OBJECT
clause is dim, protected, ALL, not underlined. This combination has a hex
code value of "BC".

24

4.4 ADDITIONAL UTILITIES TO AID IN WORKSTATION CODING

The following is a list of additional utilities which may be useful to
the conversion prograouner:

EZFORMAT:

DISPLAY:

COPY:

PRINT:

generates the source code necessary to reproduce a screen
display fonnat defined by the user.

The COBOL option of EZFORMAT creates a compilable source
file which can be copied into the working-storage section of
the COBOL program. The DATA ENTRY option creates an entire
data entry program based on the users graphic description of
the screen fonnat and the field characteristics.
(See VS Programmer's Introduction.)

displays any file on the screen. It can translate records
from ASCII to HEX and locate records or text strings.
(See VS Utilities Reference.)

copies files from one location to another.
(See VS Utilities Reference.)

produces a hard copy of a print file.
(See VS Utilities Reference.)

25

CHAPTER 4 REFERENCES:

DISPLAY AND READ

Field Attribute
Characters

Screen Definition

Workstation File

Text Order Number

VS COBOL Language Reference 800-1201CB

VS COBOL Language Reference 800-1201CB

VS COBOL Language Reference 800-1201CB

VS COBOL Language Reference 800-1201CB

26

APPENDIX A
SYNTAX CONVERSION FACTORS
TABLE A-1. IDENTIFICATION DIVISION ANO OVERALL CONVERSION FACTORS

ITEM

IDENTIFICATION DIVISION IBM:

WANG:

REMARKS:

PROGRAM-IO IBM:

WANG:

REMARKS:

REMARKS IBM:

WANG:

REMARKS:

RESERVED WORDS REMARKS:

.,,, id identifier imp-st

SYNTAX ANO CONVERSION REMARKS*

IDENTIFICATION DIVISION.
ID DIVISION.

IDENTIFICATION DIVISION.

The abbreviated form is not accepted by the Wang compiler.

PROGRAM-IO. program-name.
PROGRAM-ID. 'program-name•.

PROGRAM-ID. program-name.

The program name, in quotes, is not accepted by the Wang compiler.

REMARKS. reserved word

(not supported).

REMARKS is not a Wang COBOL reserved word. Comment lines can be used by specifying
an asterisk <*> in column 7.

See Appendix o for IBM reserved words not recognized by the Wang compiler, and Wang
reserved words not recognized by the IBM compiler.

imperative-statement 1 it 1 i teral ind-nm index-name

N
00

EJECT
SKIP

QUOTES

* id

ITEM

identifier

IBM:

WANG:

REMARKS:

IBM:

WANG:

REMARKS:

imp-st

SYNTAX AND CONVERSION REMARKS*

(not supported).

These
by the
column

statements which generate spacing for IBM-compiler listings are not supported
Wang compiler. An EJECT to top-of-form, next page is generated by a (/) in

7. A SKIP condition is created by writing blank lines or blank comment
lines in the source code.

(single quotation marks)

(double quotation marks)

The Wang compiler requires double quotation marks.

imperative-statement lit literal ind-nm index-name

TABLE A-2. ENVIRONMENT DIVISION CONVERSION FACTORS

ITEM

SOURCE AND OBJECT COMPUTER

OBJECT COMPUTER

FIGURATIVE CONSTANTS
(system-defined)

FIGURATIVE CONSTANTS
(user-implemented)

* id = identifier

IBM:

WANG:

IBM:

WANG:

REMARKS:

IBM:

WANG:

REMARKS:

IBM:

WANG:

REMARKS:

imp-st

SYNTAX AND CONVERSION REMARKS*

SOURCE-COMPUTER. IBM .. .
OBJECT-COMPUTER. IBM .. .

SOURCE-COMPUTER. WANG-VS.
OBJECT-COMPUTER. WANG-VS.

OBJECT-COMPUTER.
[SEGMENT-LIMIT is priority-number].

OBJECT-COMPUTER.
[PROGRAM COLLATING SEQUENCE is alphabet-name].

Wang supports the ANSI standard clause of PROGRAM COLLATING as a comment only. The
VS collating sequence is ASCII. The IBM extension of SEGMENT-LIMIT is not
supported.

ZERO(E)(S)
SPACE(S)
HICH-VALUE(S)

ZERO(E)(S)
SPACE(S)
HIGH-VALUE(S)

LOW-VALUE(S)
QUOTE(S)
ALL

LOW-VALUE(S)
QUOTE(S)

The reserved word> ALL> is not supported as a system-defined figurative constant.

(not available).

user-defined.

The concept of implementor-defined figurative constants is mentioned in Chapter 4.

imperative-statement lit literal ind-nm index-name

w
0

ITEM

SELECT CLAUSE

ASSIGN CLAUSE

RESERVE

* id identifier

IBM:

WANG:

REMARKS:

IBM:

WANG:

REMARKS:

IBM:

WANG:

REMARKS:

imp-st

SYNTAX ANO CONVERSION REMARKS*

SELECT [OPTIONAL] file-name
Optional is a keyword required for input files that are not necessarily present
each time the program is executed.

SELECT file-name

The IBM keyword OPTIONAL is omitted.

ASSIGN TO [integer-1] system-name-1 [system-name-2] ... [FOR MULTIPLE {UNIT}]
{REEL}

ASSIGN TO "parameter-reference-name" [,"device-type"] [,NODISPLAV]

Parameter-reference-name can be a maximum of eight characters. The first character
must be alphabetic and the rest must be alphanumeric. The parameter-reference-name
associates the FD with run-time file specifications supplied via the command
language. The parameter-reference-name is functionally equivalent to IBM's OD name
in JCL.

Device-type must be "DISPLAY", "DISK", "TAPE" or "PRINTER". The default value is
"DISK".

MULTIPLE REEL/UNIT is related to tapes and is not supported on the disk-based Wang
vs.
NOOISPLAV is a VS option that suppresses system prompts for getparm information.

[AREA]
RESERVE {integer} ALTERNATE [AREAS]

[AREA]
RESERVE integer [AREAS]

The NO option, used by IBM to control buffering, is not required by the WANG system
since Data Management and the I-0 processor handle these buffer requests.
The RESERVE clause can be used to optimize buffers with buffer pooling. The
RESERVE clause when used in conjunction with the SAME AREA clause indicates that
the specified indexed files are sharing a buffer.

imperative-statement lit literal ind-nm index-name

w -

ITEM

FILE LIMIT IBM:

WANG:

REMARKS:

PROCESSING MODE IBM:

WANG:

REMARKS:

ACTUAL KEY IBM:

WANG:

REMARKS:

NOMINAL KEY IBM:

WANG:

REMARKS:

SYNTAX AND CONVERSION REMARKS*

{FILE-LIMIT IS {data-name-1} {data-name-2}
{FILE-LIMITS ARE} {lit-1 } THRU {lit-2 }
[{data-name-3} {data-name-4}]
[{lit-3 } THRU {lit-4 }]

(not supported).

This clause serves as documentation only on the IBM system.

PROCESSING MOOE IS SEQUENTIAL

(not supported).

This clause serves as documentation only on the IBM system.

ACTUAL KEV IS data-name

RECORD KEY IS data-name

The ACTUAL KEV is used when processing a direct file. The ACTUAL KEV contains a
track identifier and a record identifier. There is no one-to-one corresponding use
of the ACTUAL KEV in VS COBOL because there is no direct file processing. However,
the VS Data Management System offers indexed file organization which permits
retrieval of a specific record by an identifying Key value. The key field is
identified in the RECORD KEY clause.

NOMINAL KEV IS data-name
This clause is required when an indexed or relative file is accessed randomly or
when an indexed file is accessed sequentially using the START function.

(not supported).

Random access of an
record is accessed by
item in the record area.

indexed file is controlled by the programmer. The desired
placing the value of its record Key in the record key data

* id identifier imp-st imperative-statement 1 it literal ind-nm index-name

---r---
ITEM

TRACK-AREA IBM:

'IJANG:

REMARKS:

SYNTAX ANO CONVERSION REMARKS*

TRACK-AREA IS {data-name}
{integer } CHARACTERS

This clause is optional when adding records to an indexed file in the random access
mode.

(not supported).

This clause is unnecessary since Data Management and the I-0 processor supervise
track allocation functions.

--~--

TRACK-LIMIT IBM:

\<JANG:

REMARKS:

CURSOR POSITION IBM:

WANC:

REMARKS:

BUFFER SIZE IBM:

WANG:

REMARKS:

* id identifier imp-st

TRACK-LIMIT IS integer [TRACK]
[TRACKS]

This clause indicates the relative number of the last track to be initialized for
the creation of files with direct organization.

(not supported).

This clause is unnecessary since Data Management and the I-0 processor supervise
track allocation functions.

(not supported).

CURSOR POSITION is data-name

This clause is optional but only applicable when device-type is "DISPLAY" and a
workstation file is being referenced.

The data-name value> provided by the operating system> indicates current row and
column position after every I-0 operation on the workstation file.

(not supported).

~ SIZE IS integer BLOCKS

This optional clause is valid for sequential files only.
It is another optimization tool used to create large buffers.

imperative-statement lit literal ind-nm index-name

ITEM

PF KEV IBM:

WANC:

REMARKS:

PASSWORD IBM:

WANC:

REMARKS:

w
w

RERUN IBM:

WANC:

REMARKS:

MULTIPLE FILE IBM:

WANC:

REMARKS:

* id identifier imp-st

SYNTAX ANO CONVERSION REMARKS*

(not supported).

PFKEV is data-name

This optional clause is valid
area that receives the numeric
the command DISPLAY ANO READ.

for workstation files only. It identifies a data
value of the entered PFKEY following execution of

PASSWORD IS data-name
This optional clause defines a working-storage data item that controls object-time
access to the file.

(not supported).

Files are protected by limiting user's access. Files can only be accessed by users
who are authorized for that file's protection class. The protection class is
defined when the file is created.

~ ON system-name EVERY {integer RECORDS}

M.filll:! ON system-name { [fil!Q OF] {~} OF file-name
{~}

{ file name-1 }]

~ [ON {implementor-name}] EVERY integer RECORDS Q!. file-name-2]

RERUN is treated as a comment by the Wang compiler.

MULTIPLE f..!.hg TAPE CONTAINS file-name-1 [POSITION integer-1]

[file-name-2 [POSITION integer-2]] ...

(not supported).

This clause is not supported by this disk-based system.

imperative-statement lit literal ind-nm index-name

ITEM

APPLY IBM:

WANC:

REMARKS:

* id identifier imp-st

SYNTAX AND CONVERSION REMARKS*

~WRITE-ONLY ON file-name-1 [file-name-2] .. .
APPLY CORE-INDEX ON file-name-1 [file-name-2] .. .
~RECORD-OVERFLOW ON file-name-I [file-name-2]
APPLY REORG-CRITERIA TO data-name ON file-name

(not supported).

The APPLY clause is an IBM-implemented method of forcing optimal buffer and device
space. Optimum space allocation is "automatically" handled by the vs Data
Management System.

imperative-statement lit literal ind-nm index-name

TABLE A-3. DATA DIVISION CONVERSION FACTORS

ITEM

LEVEL INDICATORS IBM:

WANG:

REMARKS:

LE\/£L NUMBERS IBM:

WANG:

REMARKS:

DATA REFERENCE IBM:

WANG:

REMARKS:

SYNTAX AND CONVERSION REMARKS*

FD file description
SO sort file description

FD file description

CD communication description
RO report description

Sorting on the Wang VS is supported by a Wang utility, SORT. This utility can be
run directly or called dynamically. Direct COBOL SORT and REPORT WRITER features
are not currently available. Reports can be produced by using the WRITE statement
or the REPORT utility.

A communication description is not used, since interactive workstation I/0
functions are handled directly.

Levels 01-49, 66, 77 and 88.
Level 66 is used with RENAMES clause.

Levels 01-49, 77 and 88.

Special level number 66 is not currently supported.

QUALIFICATION and CORRESPONDING

(not supported).

Currently, all data-names, paragraph-names and section-names must be unique
(planned product enhancement).

* id identifier imp-st imperative-statement lit literal ind-nm index-name

ITEM

BLOCK

RECORD

RECORDING MODE

LABEL RECORDS

* id = identifier

IBM:

WANG:

REMARKS:

IBM:

WANG:

REMARKS:

IBM:

WANG:

REMARKS:

IBM:

WANG:

REMARKS:

SYNTAX AND CONVERSION REMARKS*

BLOCK CONTAINS [integer-1 TO]
{CHARACTERS}

integer-2 {RECORDS }

BLOCK CONTAINS
{RECORDS

integer {CHARACTERS}

IBM systems require this clause unless the physical record length equals the
logical record length.

Blocking is automatic for disk files with the Wang VS. Disk default blocking
factor is 2K. Tape file blocking information is provided via this clause. If this
clause is used, it must be in conjunction with a corresponding BUFFER SIZE clause.

RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS

RECORD CONTAINS [integer-1 TO] integer-2 [COMPRESSED] CHARACTERS

Compression is a space-saving option. When specified, all character strings cf 3
or more repeated characters are compressed into 2 bytes.

RECORDING MODE IS mode
If this clause is not coded, the IBM compiler will scan each record description
entry to determine the correct mode.

(not supported).

The Wang compiler does not recognize this clause as it automatically scans each
record description entry to determine the correct mode.

{RECORD IS {OMITTED
LABEL {RECORDS ARE} {STANDARD

{data-name-1 [data-name-2]}

[TOTALING AREA IS data-name-3 TOTALED AREA IS data-name-4]

{RECORD IS {STANDARD}
~ {RECORDS ARE} {OMITTED }

This clause is required for every FD defined to the IBM system. The Wang compiler
assumes standa~d label for all disk files. Tape labels may be either standard or
omitted.

imp-st = imperative-statement lit= literal ind-nm = index-name

ITEM

VALUE OF IBM:

WANG:

REMARKS:

CODE-SET IBM:

WANG:

REMARKS:

PICTURE
IBM:

WANG:

REMARKS:

a.) alphabetic IBM:

WANG:

REMARKS:

* id identifier imp-st

SYNTAX AND CONVERSION REMARKS*

~ OF data-name-1

VALUE OF [{FILENAME
[{SPACE
[

[{LIBRARY }
[{~ }
[{POSITION }
[{~AREA}

[{DATA ~ }

{ 1 i t-1
IS {data-name-2}

{data-name}]
IS { 1 it }]

]

]

]

]

{lit-2 }]. ..
[data-name-3 IS {data-name-4}]

This clause is documentation only on the IBM system; optional on the Wang VS.

If the information specifying filename, space, volume, etc., is not provided via
this clause, the operating system will prompt the operator for it.

(not supported).

CODE-SET IS alphabet-name

The CODE-SET clause is treated as a comment. All Wang VS data is stored in ASCII
format.

{PIC
{PICTURE} IS character-string

{E.!.£
{PICTURE} IS character-string

There are no syntax changes, but some symbols used in the picture clause require
mention.

symbol A only

symbol A and B

Symbol B represents a space.

imperative-statement lit literal ind-nm index-name

w
CX>

ITEM

b.) alphanumeric edited

c.) numeric edited

SIGN

SYNC

* id identifier

IBM:

WANG:

REMARKS:

IBM:

WANG:

REMARKS:

IBM:

WANG:

REMARKS:

IBM:

WANG:

REMARKS:

imp-st

SYNTAX AND CONVERSION REMARKS*

symbols A x 9 B O

symbols A x 9 B o I

The stroke (/) represents a position where the character "/" is to be inserted.

symbols B P v z 0 9 , * + - CR OB $

symbols B I P v z 0 9 , * + - CR DB $

The stroke (/) represents a position where the character "/" is to be inserted.

{LEADING }
SIGN IS {TRAILING} [SEPARATE CHARACTER]

{LEADING }
§1Q!i IS {TRAILING} [SEPARATE CHARACTER]

If SEPARATE CHARACTER is not specified, the IBM default is to include the sign
wit~in the last byte; the Wang default adds another byte for the sign.

{SYNC } (.!:&fl.]
{SYNCHRONIZED} (~]
Synchronization is performed, whether specified or not, for fields to be used in
computation.

{~ (.b.lll]
{SYNCHRONIZED} [~]

This clause is treated as a comment since the Wang compiler will, by default,
synchronize all 01 levels to full-word boundaries. Level 77s are not synchronized.

imperative-statement 1 it literal ind-nm index-name

w
CD

ITEM

USAGE

VALUE

RENAMES

IBM:

WANG:

REMARKS:

IBM:

SYNTAX ANO CONVERSION REMARKS*

USAGE IS {DISPLAY
{COMPUTATIONAL
{COMP
{COMPUTATIONAL-1}
{COMP-1 }
{COMPUTATIONAL-2}
{~ }

{COMPUTATIONAL-3}
{~ }

{DISPLAY-ST }
{!..t!Qg }
{COMPUTATIONAL-4}
{COMP-4 }

USAGE IS {§.!l!ABY
{COMPUTATIONAL}
{COMP }
{DISPLAY }
{OISPLAV-WS }
{~ }

All COMP-3 and COMPUTATIONAL-3 usages may be changed to COMP or COMPUTATIONAL
usage. All COMP or COMPUTATIONAL items of 32K or less may be changed to BINARY.
Binary items are currently limited to two bytes (full word and double word support
is planned). There is no corresponding Wang usage for COMP-1, COMP-2, and COMP-4,
internal floating-point items. OISPLAV-WS is used when defining workstation screen
records.

VALUE is lit

{~IS lit-1 [THRU lit-2] [lit-3 [THRU lit-4]]
{~ ARE}

WANG: {lit

REMARKS:

IBM:

WANG:

REMARKS:

~ IS {user-figurative-constant}

{VALUE IS
{VALUE are

{lit-1 [{ THRU { lit-2 }]
{user-figurative-constant} [{THROUGH} {user-figurative-constant-2}]

The VALUE can be defined as a user-figurative-constant.

66 data-name RENAMES data-name-2 [THRU data-name-3]

(not supported).

RENAMES is functionally similar to REDEFINES which is accepted by the Wang compiler.

7-----------~---
* id = identifier imp-st = imperative-statement lit= literal ind-nm = index-name

ITEM

OCCURS

SEGMENTATION

* id = identifier

IBM:

WANG:

REMARKS:

IBM:

WANG:

REMARKS:

SYNTAX AND CONVERSION REMARKS*

FORMAT 1:

[{ASCENDING }
OCCURS integer-I TIMES [{DESCENDING} KEV IS data-name-1 [data-name-3] ...]

[INDEXED BY ind-nm-1 [ind-nm-2] ...]

FORMAT 2:

OCCURS integer-1 TO integer-2 TIMES [DEPENDING ON data-name-1]

({ASCENDING }
[{DESCENDING} KEV IS data-name-2 [data-name-3] ...] ...

[INDEXED BY ind-nm-1 (ind-nm-2] ...]

FORMAT 3:

OCCURS integer-2 TIMES [DEPENDING ON data-name-1)

[{ASCENDING }
[{DESCENDING} KEY IS data-name-2 [data-name-3]

[INQEXED BY ind-nm-1 (ind-nm-2] ...]

OCCURS integer-1 TIMES (INDEXED BY ind-nm-1 (,ind-nm-2] ...]

ANS COBOL LEVEL 1 FORMAT 1 is supported, but the LEVEL 2 and IBM extensions
ASCENDING, DESCENDING, and DEPENDING ON -- are not.

COBOL segmentation in the form of static overlays is available with the IBM
operating systems {DS/MFT, OS/MVT, DOSi, although it is little used on the larger
machines which accommodate paging.

COBOL-defined segmentation is not available with the Wang VS operating system.

The same effect of COBOL-defined segmentation is achieved automatically by the Wang
VS virtual memory system.

imp-st = imperative-statement lit= literal ind-nm = index-name

TABLE A-4. PROCEDURE DIVISION CONVERSION FACTORS

ITEM

CORRESPONDING OPTION

ADD/SUBTRACT
MULTIPLE RESULTS

* id identifier

IBM:

WANG:

REMARKS:

IBM:

WANG:

REMARKS:

SYNTAX AND CONVERSION REMARKS*

{CORR
~ {CORRESPONDING} id-1 TO id-2 [ROUNDED] [ON SIZE ERROR imp-st]

{CORR
SUBTRACT {CORRESPONDING} id-1 FROM id-2 [ROUNDED] [ON SIZE ERROR imp-st]

{CORR
~ {CORRESPONDING} id-1 IQ. id-2

(not supported).

As noted in Table A-2, all data-names must be unique; therefore, the CORRESPONDING option
is not available (planned product enhancement).

{id-1 } [id-2]
~ {lit-1} [lit-2]

{id-1 } [id-2]
SUBTRACT {lit-1} [lit-2]

{id-1 } [id-2]
AQQ {lit-1} [lit-2]

{id-1 } [id-2]
SUBTRACT {lit-1} [lit-2]

TO id-m [ROUNDED] [id-n [ROUNDED] ... [ON SIZE ERROR imp-st]

FROM id-m [ROUNDED] [id-n [ROUNDED]] ... CON SIZE ERROR imp-st]

TO id-m [ROUNDED] [ON ~ ERROR imp-st]

!!QM id-m [ROUNDED] [ON ~ ~ imp-st]

Values may only be added to/subtracted from one identifier, not to/from a series of
identifiers. The Wang format follows the ANS COBOL LEVEL 1 standard.

imp-st imperative-statement 1 it literal ind-nm index-name

ITEM

PERFORM (Format 4)

MOVE WITH CONVERSION

* id identifier

SYNTAX ANO CONVERSION REMARKS*

{ind-nm-2}
{ind-nm-1} {lit-2 }

IBM: PERFORM procedure-name-1 [THRU procedure-name-2) VARYING {id-1 } FROM {id-2 }

{ind-nm-5}
{lit-3} {ind-nm-4} {lit-5 }

BY {id-3 } UNTIL condition-1 [AFTER {id-4 } FROM {id-5 }

{ind-nm-8}
{lit-6} {ind-nm-7} {lit-8 } {lit-9}

BY {id-6 } UNTIL condition-2 [~ {id-7 } .E.RQt! {id-8 } BY {id-9 } UNTIL condition-3))

{THROUGH} {ind-nm-1}
WANG: PERFORM procedure-nm-1 [{THRU } procedure-nm-2] VARYING {id-1 }

{ind-nm-2}
{id-2 } {id-3 }

FROM {lit-1 } BY {lit-2} Y!:!I!.!: condition-1

REMARKS: The command format that allows for testing of varying multiple conditions is not yet accepted
by the Wang compiler. This function may be performed by coding multiple PERFORMS that will
only be executed if a coded conditional test is passed (planned product enchancement).

The Wang compiler will accept either form of THROUGH -- THRU or THROUGH.

IBM: (not supported).

WANG: MOVE ~ CONVERSION data-name-1 TO data-name-2 [ON ERROR imp-st]

REMARKS: This Wang-implemented verb will move free-form ASCII character strings containing a character
representation of a number to a field with binary, computational or display usage. The move
will decimal-align. Data-name-1 describes either an alphanumeric field or a numeric-edited
field. The allowable edit characters include "+", "-" and the non-embedded blank.
Data-name-2 describes a data item with a usage of binary, computational or display.

imp-st imperative-statement lit literal ind-nm index-name

ITEM

EXAMINE/INSPECT

IBM:

WANG:

REMARKS:

* id iden'tifier

SYNTAX ANO CONVERSION REMARKS*

{UNTIL FIRST}
{~ }

EXAMINE id-1 TALLYING {LEADING } li't-1 [REPLACING BY lit-2]

{ALL
{LEADING
{FIRST

EXAMINE id-1 REPLACING {UNTIL FIRST} lit-1 BY lit-2

INSPECT id-1 TALLYING

{{ALL
{{LEADING}

{id-2 !QB{
{ { CHARACTERS

{id-3
{lit-1}

INSPECT id-1 REPLACING

]}

[{~} {id-4 }]}
[{AE.I.fil!} INITIAL {lit-2}]}
[]}

{id-6 } [{BEFORE} {id-7 }] }

}

}
{CHARACTERS §Y {lit-4} [{AFTER} INITIAL {lit-5}]
{{ALL }
{{LEADING} {id-5 } {id-6 } [{~}
{{f.!..8.§.! } {lit-3} §Y {lit-4} [{~} INITIAL

{id-7 }]}
{lit-5}]}

EXAMINE is IBM-implemented.
an individual character. A
statement.

INSPECT is standard ANS COBOL used for counting and/or replacing
third format is available which will tally and replace with one

For example, if FIELD-ONE contains a value of bbb690, the IBM statement
Ill

EXAMINE FIELD-ONE TALLYING ALL SPACES REPLACING BY ZEROES

will yield a new value for FIELD-ONE of 000690 and the special register TALLY will contain the
value 00003.

The vs and ANSI approach is the INSPECT statement:

INSPECT FIELD-ONE TALLYING COUNTER FOR ALL SPACES REPLACING BY ZEROES

which wi 11
COUNTER must

yield
be

a new value for FIELD-ONE of 000690 and COUNTER will contain a value of 3.
defined in the Data Division and initialized before each use or the COUNTER

values will be accumulated.

imp-st imperative-statement lit literal ind-nm index-name

ITEM

TRANSFORM

OPEN

* id = identifier

SYNTAX ANO CONVERSION REMARKS*

{figurative-constant-1} {figurative-constant-2}
{nonnumeric-literal-1 } {nonnumeric-literal-2}

IBM: TRANSFORM id-3 CHARACTERS FROM { id-1 } TO { id-2 }

WANG: (not supported).

REMARKS: TRANSFORM, IBM-implemented, can alter a string of characters. This verb may be replaced with
multiple INSPECTS.

IBM:

WANG:

For example, the IBM statement

TRANSFORM FIELD-TWO CHARACTERS FROM "ABC" TO "XYZ"

where FIELD-TWO has an initial value of BQARABCC, will result in a new value in FIELD-TWO of
YQXRXYZZ.

The vs implementation takes t~e form:

INSPECT FIELD-TWO REPLACING ALL
INSPECT FIELD-TWO REPLACING ALL
INSPECT FIELD-TWO REPLACING ALL

"A"
"B"
"C"

BY "X".

BY "Y".
BY "Z".

The FIELD-TWO value changes after each INSPECT from the original BQARABCC to BQXRXBCC, then to
YQXRXYCC, and then to YQXRXYZZ, the desired result.

[REVERSED
OPEN [INPUT {file-name-1 [WITH NO~]}

[OUTPUT {file-name-2 [WITH NO REWIND]}]

[I-0 {file-name-3 }]

[~ {file-name-4 } ...]

OPEN {INPUT file-name-1 [file-name-6]

{Q.filQI file-name-2 [file-name-7]

{I-0 file-name-e [file-name-8]

{~ file-name-4 [file-name-9] } ...
{SHARED file-name-5 [file-name-10]} ...

REMARKS: REVERSED and NO REWIND are used with tape files. They are not yet implemented for the OPEN
statement tape support.

SHARED MOOE is discussed in Chapter 3.

imp-st = imperative-statement lit= literal ind-nm = index-name

ITEM

START

SEEK

READ

* id = identifier

SYNTAX AND CONVERSION REMARKS*

IBM: START file-name [INVALID KEV imp-st]
{EQUAL TO}

START file-name USINC KEV data-name { } id [INVALID KEV imp-st]

WANC: §.IAfli fi 1 e-name

{IS EQUAL TO
START file-name [KEV [data-name-1] {IS data-name-2]

[{IS GREATER THAN]

[{IS]

[{IS ~ LESS THAN}]

[{IS NOT < }]

[INVALID KEY imp-st]

REMARKS: IBM's FORMAT 2 requires data-name to be the same as the data-name specified in the RECORD KEY
clause.

Wang's FORMAT 2 requires data-name-1, if used, to be an alternate key.

IBM: SEEK file-name RECORD

WANG: (not supported).

REMARKS: This command serves as documentation only on the IBM system.

IBM:

WANG:

REMARKS:

{AT ~
~ file-name [~] RECORD [!!!IQ id] {INVALID KEV} imp-st

~file-name [~] RECORD [WITH .!:!.2.!::.Q] [!!!IQ id] [{AT filiQ
[MODIFIABLE] [{INVALID KEV}
[ALTERED]

[~ IS data-name
~ file-name RECORD [WITH tlQ.b_Q] [!.t!.!Q id] [INVALID KEV imp-st]

imp-st]
]

These formats
of WITH HOLD,

include all combinations for indexed and sequential files. For an explanation
MODIFIABLE and ALTERED, refer to Chapter 3 and the Wang vs COBOL Language

Reference Manual .

imp-st = imperative-statement lit= literal ind-nm = index-name

ITEM

DISPLAY

COPY

WRITE
~
O>

* id = identifier

{lit-1}
IBM: DISPLAY { id-1 }

{ id·-1 }

WANG: DISPLAY {lit-1}

[lit-2]
[id-2]

[id-2]

[1 it-2]

SYNTAX AND CONVERSION REMARKS*

{CONSOLE
{SYSPUNCH

[.!le.Q!! { ~

}

}

}]

{mnemonic-name}

REMARKS: The choice of display medium is not available on the VS. All displays are directed toward the
workstation screen. If a hard copy is needed, the screen display can be printed.

{word-2} {word-4}
IBM: COPY library-name [SUPPRESS] [REPLACING word-1 by{lit-1 } [word-3 BY {lit-1 } ...] ...]

{id-2 } {id-1 }
{IN}

WANG: COPY file-name {OF} library-name.

REMARKS: The COPY statement incorporates text into a COBOL source program. Wang does not support the
COPY ... REPLACING option.

IBM:

WANG:

REMARKS:

WRITE

WRITE

~

~

WRITE

Wang
line.
file

{~} {integer-2 LINES}] {EOP
record-name [FROM id-1] [{AFTER } ADVANCING {integer LINES }] [AT {END-OF-PACE} imp-st]

{mnemonic-name }]

{id-2 {ENO-OF-PAGE}
record-name [FROM id-1] 8f.I..[B POSITIONING {integer} LINES [AT {EOP } imp-st]

record-name [FROM id-1] INVALID KEY imp-st

{{id-2 [LINE] }

record-name [FROM id-1] [{BEFORE} ADVANCING {{integer} [LINES] }]

[{AFTER } {{PAGE } }]
{{user-figurative constant}

record-name [~ id-1] [INVALID KEV imp-st]

printers, depending upon the model in use, can accomodate up to 158 characters per print
Most vs printers support 132 character print lines. A file description of such a print

describes 132 usable characters. The first character need not be defined as unused
filler to hold space for a write carriage control character.

A WRITE, issued against a SHARED sequential file, releases the record to the buffer but does
not write it to the disk until the buffer is filled. To prevent possible loss of these
buffer-stored SHARED sequential records, a WRITE-THRU option is available which forces a write
of the record as soon as the WRITE command is issued.

imp-st = imperative-statement lit= literal ind-nm = index-name

ITEM

REWRITE

CLOSE

* id = identifier

IBM:

WANG:

SYNTAX AND CONVERSION REMARKS*

REWRITE record-name [FROM id] [INVALID KEY imp-st]

REWRITE record-name [.E.RQ!,1 id] [INVALID KEY imp-st]

REWRITE record-name [FROM id] AFTER

[~

[SETTING ~ COLUMN
[

[ROLL DOWN
[ROLL UP
[ERASE PROTECT
[ERASE MODIFY

{ id-1 {ROW t {id-2
]

}]

{integer-1} {LINE} {integer-2}]
]

J
]

]

REMARKS: All additional clauses provided by the Wang format relate to screen-positioning control of the
workstation files. Further discussion is in Chapter 4.

IBM:

WANG:

[B!fil:_] {NO REWIND} [B!fil:_] {NO REWIND}
CLOSE file-name-1 [UNIT] [WITH {LOCK }] [file-name-2 [!llil.Il [WITH {.!::.Q£.!S }]] •••

{NO REWIND} {NO REWIND}
{LOCK } {LOCK }

CLOSE file-name-1 [WITH {DISP }] [file-name-2 [WITH {DISP }]] ...

{NO REWIND {NO REWIND
{ B!fil:.} { .lli.!S { B!fil:.} { LOCK

~ file-name-1 {!H!II} [WITH {POSITIONING}] [file-name-2 {UNIT} (WITH {POSITIONING}]]

CLOSE file-name-1 (WITH LOCK] {file-name-2} [WITH LOCK]

({B!fil:_} (WITH NO REWIND]
CLOSE file-name-1 [{UNIT} [FOR REMOVAL]

[{NO REWIND}
[WITH {LOCK }

({~} (WITH NO REWIND]]
[file-name-2 [{!m.!.!} [FOR REMOVAL]]]

[{NO REWIND}]
(WITH {LOCK }]

REMARKS: The OISP and POSITIONING options in the IBM format, not available with the Wang format, could
be used to specify positioning of the current tape volume. These options are not supported
for Wang tape processing.

imp-st = imperative-statement lit= literal ind-nm = index-name

ITEM SYNTAX ANO CONVERSION REMARKS*

ACCEPT {~

CANCEL

ENT RV

GOBACK

* id = identifier

{CONSOLE
IBM: ACCEPT identifier (FROM {mnemonic-name}]

Each data item to be accepted cannot exceed 80 characters.

WANC: ~ id-1 (id-2] ...

The workstation operator is prompted for identifier-1 if it is not available from procedure
specifications.

REMARKS: A maximum of 64 characters per data item may be made available to the Wang system using the
ACCEPT command. Up to 16 data items may be accepted from operator entries at the screen on
through a procedure ENTER statement.

IBM:

WANG:

{lit-1} [lit-2]
~ {id-1 } [id-2]

(not supported).

REMARKS: A program can be cancelled through program code by calling a cancel subroutine.

IBM: fil!!.BY 1 it-1 [USING id-1 [id-2] ...]

WANG: (not supported).

REMARKS: Each program can have only one entry point. If the programmer requires multiple entry points,
a passed paramenter list could be utilized to indicate desired processing. (See Appendix. C as
an example.)

IBM:

WANG: (not supported).

REMARKS: EXIT PROCRAM provides the same end result action as does the COBACK.

imp-st = imperative-statement lit= literal ind-nm = index-name

ITEM

NOTE

IF

.J=lo
co

SEARCH

SORT

* id = identifier

SYNTAX AND CONVERSION REMARKS*

IBM: NOTE. reserved word

WANG: (not supported) .

REMARKS: NOTE is not an ANSI COBOL reserved word. All comment lines are indicated by a '*' in column 7.

IBM: !.E condition

{ statt:tment-2
THEN {~ SENTENCE}

{ELSE } {statement-2
{OTHERWISE} {~ SENTENCE}

WANG: !.E condition

{ statt:tment-1
THEN {~ SENTENCE}

{ELSE {statement-2
{NEXT SENTENCE}

REMARKS: OTHERWISE is not accepted by the Wang compiler.

{ind-nm} {imp-st-2
IBM: SEARCH id-1 [VARYING {id-2 }] [AT END imp-st-1] WHEN condition-1 {NEXT SENTENCE}

{imp-st-2 }
SEARCH ALL id-1 [AT~ imp-st-1] ~ condition-1 {NEXT SENTENCE}

WANG: (not supported).

REMARKS: The SEARCH command, used with the table handling feature, is not yet available (planned
product enhancement) .

IBM: ANS COBOL SORT/MERGE feature.

WANG: Utility

REMARKS: Sorting is handled in a Wang VS environment by the utility SORT. SORT enables the user to
sort a file according to one or more record-embedded keys and to merge multiple sorted files.
There is also a SORT subroutine which may be called from any COBOL program.

imp-st = imperative-statement lit= literal ind-nm = index-name

0'1
0

ITEM

REPORT

STRING/UNSTRING

* id = identifier

SYNTAX ANO CONVERSION REMARKS*

IBM: ANS COBOL REPORT WRITER feature.

WANC: Utility or "hard coding".

REMARKS: Reporting and report-formatting is performed by the Wang Utility REPORT. This utility allows
the user to develop specialized reports, without programming, once the data file is available.

IBM:

WANG:

{id-1} [id-2] {id-3} {id-4} [id-5] [{id-6 }]
STRING {lit-1} [lit-2] ... DELIMITED BY {lit-3} [{lit-4} [lit-5] ... DELIMITED BY [{lit-6}]

{SIZE } [{§_gg }]

INTO id-7 [WITH POINTER id-8] [ON OVERFLOW imp-st]

{id-2 } {id-2 }
UNSTRING id-1 [DELIMITED BY [ALL] {lit-1} [OR ALL] {lit-2}] ...]

INTO id-4 [DELIMITER IN id-5] [COUNT IN id-6] [id-7 [DELIMITER IN id-8] [COUNT IN id-9]] ...

[WITH POINTER id-10] [TALLYING IN id-11] [ON OVERFLOW imp-st]

Functionally, STRING provides juxtaposition of partial or complete contents of 2 or more data
items into a single data item. UNSTRING causes contiguous data in a sending field to be
separated and placed into multiple fields.

(not supported).

imp-st = imperative-statement lit= literal ind-nm = index-name

APPENDIXB
SAMPLE VS COBOL PROGRAM

IDENTIFICATION DIVISION.
PROGRAM-ID. DATENTRY.
ENVIRONMENT DIVISION.
FIGURATIVE-CONSTANTS.

ONE IS "01", ~TAB IS "80", DIM IS "8C", HIDE IS "9C",
MOD-BRITA IS "81", BRITE IS "84", TAB IS "AO".

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT CRT ASSIGN TO "DISPLAY", "DISPLAY",
ACCESS IS RANDOM,
FILE STATUS IS FILESTAT.

SELECT DEFILE ASSIGN TO "DATAFILE",
ORGANIZATION IS INDEXED,
RECORD KEY IS ACCTOO · ,
ALTERNATE RECORD KEY 01

02
03
04

IS CUSTOMER
IS CITY
IS STATE
IS ZIP

ACCESS IS DYNAMIC.
DATA DIVISION.
FILE SECTION.
FD CRT

LABEL RECORDS ARE STANDARD.
01 DISPLAY-REC! PIC X(1924).
FD DEFILE

RECORD CONTAINS 0100 CHARACTERS,
IABEL RECORDS ARE STANDARD.

01 DE-RECORD-ARFA.
02 ACC'l'tl) PICTURE IS
02 CUSTOMER PICTURE IS
02 STREm' PICTURE IS
02 CITY PICTURE IS
02 STATE PICTURE IS

X(lO).
X(30).
X(20).
X(20).
X(02).

WITH DUPLICATES
WITH DUPLICATES
WITH DUPLICATES

02 ZIP PICTURE IS S9(05)
X(lS).

COMP.
02 FILLER PICTURE IS

WORKING-STORAGE SECTION.
01 DESCREENl USAGE IS DISPLAY-WS.

OS FILLER PIC X(43) ROW 6 COLUMN 20
VALUE IS "FILE MAINTAINENCE PROGRAM FOR FILE DEM>

OS FILLER PIC X(S4) ROW 9 COLUMN 15

n

VALUE IS "SELECT THE APPROPRIATE PFKEY FOR THE FUNCTION D
"ESIRED.".

05 FILLER PIC X(23) ROW 12 COLUMN 30
VALUE IS "PFKEY FUNCTION" •

05 FILLER PIC X(37) ROW 14 COLUMN 31
VALUE IS "PF3 ADD ENTRIES TO THE FILE".

05 FILLER PIC X(46) ROW 15 COLUMN 31
VALUE IS "PF4 MAINTAIN THE ENTRIES IN THE FILE

n 'n

05 FILLER PIC X(40) ROW 16 COLUMN 31
VALUE IS "PFS DELETE ENTRIES IN THE FILE".

05 FILLER PIC X(35) ROW 18 COLUMN 31
VALUE IS "PF16 EXIT FROM THE PROGRAM".

01 DESCREEN2 USAGE IS DISPLAY-WS.
05 FILLER PICTURE IS X(14) ROW 07 COLUMN 41

51

VALUE IS n ACCOUNT NUMBER" •
05 KEYFIELDl PICTURE IS X(lO) ROW 07 COLUMN 57

RANGE IS FROM "A" TO "ZZZZZZZZZZ'"
SOURCE IS ACCTNO OBJECT IS ACCTNO

05 LINE232 PIC X(79) ROW 23 COLUMN 2,
SOURCE IS LINE23S.

05 LINE242 PIC X(79) ROW 24 COLUMN 2,
SOURCE IS LINE24S.

01 FILESTAT.
02 FILESTATl PIC X.
02 FILESTAT2 PIC X.

01 POSITION-SCREENl.
02 FILLER PIC X VALUE ONE.
02 SAFILLER PIC X VALUE TAB.
02 FILLER PIC X(2) VALUE ONE.

01 DISPLAY-REC USAGE IS DISPLAY-WS.
05 FILLER PICTURE IS X(31) ROW 01 COLUMN 26

VALUE IS "*** WANG VS COPUTER SYSTEM ***"·
05 FILLER PICTURE IS X(30) ROW 05 COLUMN 03

VALUE IS "SAMPLE DEMONSTRATION SCREEN ••• ".
05 FILLER PICTURE IS X(l4) ROW 07 COLUMN 41

VALUE IS "ACCOUNT NUMBER".
05 ROW07-COL57 PICTURE IS X(lO) ROW 07 COLUMN 57

RANGE IS FROM "A" TO "ZZZZZZZZZZZZ"
SOURCE IS ACCTNO OBJECT IS ACCTNO

05 FILLER PICTURE IS X(08) ROW 09 COLUMN 11
VALUE IS "CUSTOMER".

05 ROW09-COL21 PICTURE IS X(30) ROW 09 COLUMN 21
SOURCE IS CUSTOMER OBJECT IS CUSTOMER

05 FILLER PICTURE IS X(06) ROW 10 COLUMN 13
VALUE IS "STREET".

05 ROW10-COL21 PICTURE IS X(20) ROW 10 COLUMN 21
SOURCE IS STREET OBJECT IS STREET

05 FILLER PICTURE IS X(04) ROW 11 COLUMN 15
VALUE IS "CITY".

05 ROW11-COL21 PICTURE IS X (20) ROW 11 COLUMN 21
SOURCE IS CITY OBJECT IS CITY

05 FILLER PICTURE IS X(05) ROW 11 COLUMN 44
VALUE IS "STATE".

05 ROW11-COL51 PICTURE IS X(02) ROW 11 COLUMN 51
SOURCE IS STATE OBJECT IS STATE

OS FILLER PICTURE IS X (03) ROW 11 COLUMN 56
VALUE IS "ZIP".

OS ROW11-COL61 PICTURE IS Z (05) ROW 11 COLUMN 61
SOURCE IS ZIP OBJECT IS ZIP

OS LINE23 PICTURE IS X(77) ROW 23 COLUMN 03
SOURCE IS LINE23S

05 LINE24 PICTURE IS X(77) ROW 24 COLUMN 03
SOURCE IS LINE24S

77 LINE23S PICTURE IS X(77) VALUE SPACES.
77 LINE24S PICTURE IS X(77) VALUE SPACES.
PROCEDURE DIVISION.
START-CODE.

OPEN I-0 CRT.
MOVE POSITION-SCREEN! TO ORDER-ARFA OF DESCREENl.

52

OPEN SHARED DEFILE
MENU.

DISPLAY AND READ DESCREENl ON CRT
ONLY PFKEY 3, 4, 5, 16.

IF FILESTAT2 = "P", CLOSE DEFILE, GO TO END-PROGRAM.
MOVE SPACES TO LINE24S.
IF FILESTAT2 = "D", MOVE DIM 'ID FAC OF ROW07-COL57

GO TO MODIFYR.
IF FILESTAT2 = "E", MOVE DIM TO FAC OF ROW07-COL57

GO TO DELETER.
MOVE "PRESS ENTER TO ADD ENTRY TO FILE, PF16 TO EXIT TO MENU

"." TO LINE23S.
MOVE SPACES TO DE-R~ORD-ARFA.

ADDR-0.
PERFORM RE-INIT.

ADDR-1.
DISPLAY AND READ DISPLAY-REC ON CRT,

ON PFKEY 16, PERFORM START-FILE, GO TO MENU.
MOVE HIDE TO FAC OF LINE24.
WRITE DE-RECORD-AREA INVALID KEY,

MOVE BRITE TO FAC OF LINE24,
MOVE "ENTRY ALREADY EXISTS. n TO LINE24S, GO TO ADDR-1.

GO TO ADDR-0.
MODIFYR.

PERFORM RE-INIT.
MOVE "ENTER=RETRIEVE BY KEY, PF2=FIRST ENTRY, PF3

"=NEXT ENTRY, PF16=EXIT" TO LINE23S.
MOVE HIDE TO FAC OF LINE242.

MCONT.
DISPLAY AND READ DESCREEN2 ON CRT,

PFKEY 2, 3, 16,
ON PFKEY 16,
MOVE MOD-BRITA TO FAC OF ROW07-COL57 , GO TO MENU.

MOVE HIDE TO FAC OF LINE242.
IF FILESTAT2 = "@", GO TO EXACT-KEY.
IF FILESTAT2 = "C", GO TO READ-NEXT.
PERFORM START-FILE, IF FAC OF LINE242 = BRITE, GO TO MCONT.

GO TO READ-NEXT.
START-FILE.

MOVE LOW-VALUES TO ACCTNO
START DEFILE KEY 'R:>T LESS THAN ACCTNO ,

INVALID KEY MOVE BRITE TO FAC OF LINE242,
MOVE "NO ENTRIES IN FILE." TO LINE24S.

READ-NEXT.
READ DEFILE NEXT WITH HOLD, INVALID KEY,

MOVE BRITE TO FAC OF LINE242,
MOVE "END OF FILE RFACHED." TO LINE24S,
GO TO MCONT.

GO TO DISPLAY-MODSCREEN.
EXACT-KEY.

READ DEFILE WITH HOLD INVALID KEY
MOVE BRITE TO FAC OF LINE242,
MOVE "ENTRY tl>T FOUND." TO LINE24S,
PERFORM START-FILE,
GO TO MCONT.

53

DISPLAY -MODSCREEN.
MOVE "MAKE THE MODIFICATIONS AND PRESS ENTER TO REPLACE THE E

"NTRY," TO LINE23S.
MOVE "OR PRESS PF16 TO EXIT WITHOUT REPLACING THE ENTRY." TO

LINE24S.
MOVE DIM TO FAC OF LINE24.
DISPLAY AND READ DISPLAY-REC ON CRT,

ON PFKEY 16, GO TO MODIFYR.
REWRITE DE-RECORD-AREA.
GO TO MODIFYR.

DELETER.
PERFORM RE-INIT.

MOVE "ENTER THE KEY OF THE ENTRY TO BE DELETED, OR PRESS
"PF16 TO EXIT TO MENU." TO LINE23S.

MOVE HIDE TO FAC OF LINE242.
DCONT.

DISPLAY AND READ DESCREEN2 ON CRT,
ON PFKEY 16, PERFORM START-FILE,
MOVE MOD-BRITA 'ID FAC OF ROW07-COL57 , GO TO MENU.

MOVE HIDE TO FAC OF LINE242.
READ DEFILE WITH HOLD INVALID KEY,

MOVE BRITE TO FAC OF LINE242,
M:>VE "ENTRY 'tl>T FOUND." 'ID LINE24S,
GO TO DCONT.

DISPIAY-DELSCREEN.
MOVE "PRESS PF3 TO DELETE THIS ENTRY," 'ID LINE23S.
MOVE "OR PRESS PF16 TO EXIT WITHOUT DELETING THE ENTRY." TO

LINE24S.
MOVE DIM TO FAC OF LINE24.
DISPLAY AND READ DISPLAY-REC ON CRT,

ONLY PFKEY 3, 16, ON PFKEY 16 GO TO DELETER.
DELETE DEFILE.
GO TO DELETER.

END-PROGRAM.
CLOSE CRT.
STOP RUN.

RE-INIT.
MOVE SPACES TO ACCTNO
MOVE SPACES TO CUSTOMER
MOVE SPACES TO STREET
MOVE SPACES TO CITY
MOVE SPACES TO STATE
MOVE ZERO TO ZIP

54

APPENDIXC
SAMPLE CONVERSION PROGRAMS

The following programs are an example of a conversion from a
batch-designed IBM COBOL program to a VS COROL program with no interactive
features. The IBM program consists of a main program called "SAMPLE" and a
subprogram called "BDLEDIT". The main program reads a file of variable length
records with different record descriptions. It accumulates information and
performs calculations for each group of records based on man number. E~ch

group of records must contain an "A-type" record. If not, an error record is
written. This program also performs calculations based on information
contained in the records and passed to the program via a parm.

The main program calls the edit program using the records and calculat~d
data. The subprogram then produces an edited listing of the record
information.

These two programs, when converted to VS COBOL, require the code changes
which are highlighted in the following VS source listings. Most changes can
be handled through a global edit. These changes include converting:

1. all single quotation marks (') to double quotation marks("),
2. all COMP-3 usage to COMP usage,
3. REMARKS section to remark lines _(by coding an asterisk (*) in

column 7),
4. the SOURCE and OBJECT computer name to WANG-VS,
5. all WRITE of print lines to include AFTER ADVANCING, and
6. WRITE AFTER POSITIONING 0 LINES, which will cause top-of-form

advancing, to WRITE AFTER ADVANCING PAGE, which will also result in
a page advance.

In addition, some logic changes are required to accomodate a single,
rather than multiple, entry point in a subprogram, PARM passing and blocking
factors.

1. By testing a flag indicator set in the main program, certain edit
program code sections can be conditionally executed.

2. The parm definition is not set up automatically by the VS, but this
parm information may be accepted by the program at run-time through
a procedure or through an interactive response. The parm value is
replaced by an ACCEPT statement in the VS program. 'TI>.e value
accepted is described with usage of DISPLAY. It can then be moved
to a numeric field with the VS extension MOVE WITH CONVERSION. This
statement will convert the character string supplied in response to
the ACCEPT getparm, into a number that can be used for computation.
It will also decimal align and numerically justify the value.
LENGTH-OF-PARM, a special value passed to the program from the IBM
operating system, is not valid in the VS operating system
environment since PARMS, in this program sense, are not supported.
However, the value accepted by the VS program may be validity
checked.

3. Blocking information must be provided in an IBM operating
environment by the program in the BLOCK CONTAINS clause, by the JCL,
or by the label information. VS disk files are blocked in 2K
increments, by default.

55

The procedure to execute the program converted to VS COBOL follows.

PROCEDURE
SET PROGLIB=DPLOBJ, PROGVOL=VOL444, INLIB=DPLDATA,

INVOL=VOL444, OUTLIB=#DPLPRT, OUTVOL=VOL444
RUN DPLCONL
ENTER ACCEPT FACTOR1="32.9"
ENTER ACCEPT FACTOR2="16.3"
ENTER RECORDS FILE=DPLCONV
ENTER ERROUT FILE=DPLERR
ENTER PRTREC FILE=DPLPRT

56

IBM COBOL Programs

DIVISION.
PROGRAM-ID. DPLCONL.
AUTHOR. J.P. PROGRAMMER.
DATE-WRITTEN. FEB. 28, 1979.
DATE-COMPILED. MARCH 1, 1979.
-~g;~! THIS PROGRAM WILL SCREEN CASES, CALCULATE TAXES

AND TOTALS, AND YIELD A LIST SHOWING ERRORS (MISSING TAX
MULTIPLIERS OR RECORDS NOT PRECEDED BY AN A-TYPE RECORD) •
THIS MAIN CONTROL K>DULE WILL CALL IN AN EDIT MODULE.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. 11iilR·allllf~l\e!!li~;
OBJECT-COMPUTER.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT OUTPUT-1 !'illi,~B:t:l~:iill~l~lml&I-~
SELECT ERRORS :'Jlllilel:J!lltl l~:lfflll;IDll.II~

DATA DIVISION.
FILE SECTION.
FD OUTPUT-1

''IRQiQ~~ll.\lmll!Jf!tl;W.ll
RECORD CONTAINS 9 TO 35 CHARACTERS
11~m1m:mm111111·iil';!i:~11111.t111
LABEL RECORDS ARE 1lllWlmtlJI·~

01 A-VALIDS.
05 A-TIPE PICTURE X.
05 A-RECINFO

10 A-DEPTNO
10 A-MANNO
10 A-TAX-STATUS
10 A-EARNINGS

PICTURE S999.
PICTURE S9(5).
PICTURE S9.
PICTURE S999V99.
PICTURE X(25}. 05 A-NAME

01 B-VALIDS.
05 B-TIPE PICTURE X.
05 B-RECINFO

10 B-DEPTNO
10 B-MANNO
10 B-BONUS

PICTURE S999.
PICTURE S9(5).
PICTURE S999V99.

FD ERRORS
1.:mnltli1:;1.11u:mm1mI1
RECORD CONTAINS 80 CHARACTERS
.1·a~m1,1::;~•11111111ni11.1m1111
LABEL RECORDS ARE ;:_lliitt•·~

01 ERROR-LIST.
05 E-TIPE
05 E-DEPTNO
05 E-MANNO
05 E-BONUS
05 FILLER

01 ERR-LIST

PICTURE X.
PICTURE 999.
PICTURE 9(5).
PICTURE 9(5).
PICTURE X(66).
PICTURE X(80) •

57

WORKING-STORAGE SECTION.
77 PRIOR-DEPT-NO PICTURE S999 VALUE ZEROES.
77 RECS-LEFT PICTURE XXX VALUE ;tYESt•.
77 TAXE PICTURE S9 ':-iillii~l1 VALUE ZERO.
77 CHECK PICTURE S999V99],f4t-.l~,~~,ftl VALUE ZEROES.
77 A-REC-SW PICTURE X VALUE SPACE.

88 A-READ VALUE iiiiAi•i.

01 WSREC.
05 DEPT-NO
05 MAN-NO
05 NAME
05 FARNINGS
05 BONUS-1
05 BONUS-2
05 GROSS
05 FED-TAX

PICTURE S999

PICTURE S9(5) ---~,-~If
PICTURE X(25)
PICTURE S999V99 '1!-IOO•MJ~l:J
PICTURE S999V99 :-11~111~1::
PICTURE S999V99 ;~lllllflllllllll~I'
PICTURE S999V99 i_l-lllfll81~1r
PICTURE S999V99 '.'1111111:11~ .. Uil

01 TOTREC
05 T-DEPTNO PICTURE S999
05 T-EARNINGS PICTURE S9999V99
05 T-BONUS-1 PICTURE S9999V99
05 T-BONUS-2 PICTURE S9999V99
05 T-GROSS PICTURE S9999V99
05 T-FEO-TAX PICTURE S9999V99

llillllil:!':!l•llllI~
11,11 'IMltDl~~1;S1&1Jllll88ltl:~:

cg11i llllatli!~:
c
c
c :;~,l;,,:~~~lli:;IJl~lm~EI:~::

PROCEDURE DIVISION ~;jli~',i'i!llli~Jllli~i
100-START-HERE.

OPEN INPUT OUTPUT-1
OUTPUT ERRORS.

200-RFAD.
READ OUTPUT-!

AT END MOVE !rt No•': TO RECS-LEFT.
200-EXIT.

EXIT.

58

VALUE ZEROES.
VALUE ZEROES.
VALUE SPACES.
VALUE ZEROES.
VALUE ZEROES.
VALUE ZEROES.
VALUE ZEROES.
VALUE ZEROES.

VALUE ZEROES.
VALUE ZEROES.
VALUE ZEROES.
VALUE ZEROES.
VALUE ZEROES.
VALUE ZEROES.

300-PARM-TEST.
1rtl1:1illliii~i~lriil,'~R8:iiitlJlll~I!l1;:

THEN MOVE SPACES TO ERR-LIST
MOVE YWtERROR MESSAGE: FACTORS NOT COPIED. *'1: TO ERR-LIST
WRITE ERR-LIST
MOVE 3 TO RETURN-CODE
GO TO 550-STOP
ELSE MOVE SPACES TO ERR-LIST
MOVE ~1ERRORS: TYPES B AND C NOT PRECEDED BY TYPE A. :1;

TO ERR-LIST
WRITE ERR-LIST.

MOVE A-DEPTNO TO PRIOR-DEPT-NO.
MOVE B-MANNO TO MAN-NO.

400-CONTROL.
IF A-DEPTNO NOT = PRIOR-DEPT-NO

THEN PERFORM 525-COMPUTE THRU 525-EXIT
;]~~w::,,:sqp~-1~~:?!1;s11c111:1:~·::i1--~~1t11;.
MOVE A-DEPTNO TO PRIOR-DEPT-NO
MOVE B-MANNO TO MAN-NO
GO TO 425-BADRECCHECK

ELSE NEXT SENTENCE.
IF B-MANNO NOT = MAN-NO

THEN PERFORM 525-COMPUTE THRU 525-EXIT
MOVE B-MANNO TO MAN-NO

ELSE NEXT SENTENCE.

425-BADRECCHECK.
IF A-TIPE = !!!Al'

THEN PERFORM 530-WSREC-FORM THRU 530-EXIT
ELSE NEXT SENTENCE.

IF A-RFAD
THEN NEXT SENTENCE
ELSE PERFORM 535-ERROR THRU 535-EXIT

GO TO 430-PERFREAD.
IF A-TI PE = ;!'B :,

THEN MOVE B-BONUS TO BONUS-1
ELSE NEXT SENTENCE.

IF A-TIPE = !lC~
THEN MOVE B-BONUS TO BONUS-2
ELSE NEXT SENTENCE.

430-PERFREAD.
PERFORM 200-READ THRU 200-EXIT.
IF RECS-LEFT = Z•·NOi''

THEN NEXT SENTENCE
ELSE GO TO 400-CONI'ROL.

IF A-READ
THEN PERFORM 525-COMPUTE THRU 525-EXIT
ELSE NEXT SENTENCE.

:~·;:·,)i~IJ:P:~-1~'·· ·ql'~~:-.mtl~f:~~Rm:,·

500-STOP.
CLOSE OUTPUT-1 ERRORS.
·.lti,i'f'.~;i~ftij'.l~-,~~···.·~

59

510-COPY.
COPY DISPEOJ.

C DISPLAY 1i1:YOUR PROGRAM HAS REACHED END OF JOB
STOP RUN.

525-COMPUTE.
IF A-RFAD

THEN NEXT SENTENCE
ELSE GO TO 525-EXIT.

COMPUTE GROSS
ROUNDED = EARNINGS + BONUS-1 + BONUS-2.

COMPUTE CH:ECK
ROUNDED = (GROSS - (TAXE * .·;~l~ftl)) •

IF CHECK NOT GREATER THAN 0
THEN MOVE ZEROES TO FED-TAX
ELSE COMPuTE FED-TAX

ROUNDED = CHECK * :.~l~~I!~;!
MOVE DEPT-NO TO T-DEPTNO.
ADD EARNINGS TO T-EARNINGS.
ADD BONUS-1 TO T-BONUS-1.
ADD BONUS-2 TO T-BONUS-2.
ADD GROSS TO T-GROSS.
ADD FED-TAX TO T-FED-TAX.
MOVE SPACE TO A-REC-SW.
::~.n1:=:1p;~~~l,¥fgMP :::g$~:N'li\\!ll~~~:

525-EXIT.
EXIT.

530-WSREC-FORM.
MOVE A-MANNO TO MAN-NO.
MOVE A-TAX-STATUS TO TAXE.
MOVE A-EARNINGS TO EARNINGS.
MOVE A-NAME
MOVE !iA 1i
MOVE ZEROES
MOVE ZEROES
MOVE A-DEPTNO

530-EXIT.
EXIT.

535-ERROR.

TO NAME.
TO A-REC-SW.
TO BONUS-1.
TO BONUS-2.
TO DEPT-NO.

MOVE SPACES TO ERR-LIST.
MOVE B-TIPE TO E-TIPE.
MOVE B-DEPTNO TO E-DEPTNO.
MOVE B-MANNO TO E-MANNO.
MOVE B-BONUS TO E-BONUS.
WRITE ERROR-LIST.

535-EXIT.
EXIT.

575-STOP.
CLOSE OUTPUT-1 ERRORS.

STOP RUN.

*** END OF LISTING ***~

60

lit DIVISION.
PROGRAM-ID. DPLEDIT.
l~I:~; THIS IS A SUBPROGRAM OF DPLCONL AND IS USED TO

PROVIDE HEADINGS AND AESTHETICALLY FORMAT OUTPUT.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. JRJi~3~fJ~if;i:'EJE~~
osJECT-coMPuTER. 11e~'1Q~i1:a::~':
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT EDOUT ~~,J~: i~~·:,:i:ttii~~J;'#J•~ ~~~;~]

DATA DIVISION.
FILE SECTION.
FD EDOUT

Rifldlti!ua:·.•·Mdt;!.: !Smt:e:·
RECORD CONTAINS CHARACTERS
:n~1:1i!~E~nsi,t11••·:~~m•~
LABEL RF.CORDS ARE elMil~ED·ll

01 DETAIL-REC.
05 FILLER
05 DEPT-NO
05 FILLER
05 MAN-NO
05 FILLER
05 NAME
05 FILLER
05 FARNINGS
05 FILLER
05 BONUS-2
05 FILLER
05 BONUS-1
05 FILLER
05 GROSS
05 FILLER
05 FED-TAX
05 FILLER

01 TOTAL.
05 EMPTY
05 T-DEPTNO
05 T-MESSAGE
05 FILLER
05 T-EARNINGS
05 FILLER
05 T-BONUS-1
05 FILLER
05 T-BONUS-2
05 FILLER
05 T-GROSS
05 FILLER
05 T-FEO-TAX
05 FILLER

PICTURE X(~;).
PICTURE 9(3).
PICTURE X(lO).
PICTURE 9(5).
PICTURE X(lO).
PICTURE X (25) •
PICTURE X(5).
PICTURE $$$$.99.
PICTURE X(8).
PICTURE $$$$.99.
PICTURE X(8).
PICTURE $$$$.99.
PICTURE X(8).
PICTURE $$$$.99.
PICTURE X(8).
PICTURE $$$$.99.
PICTURE X(S).

PICTURE X(~·').
PICTURE 9(3).
PICTURE X(24).
PICTURE X(31).
PICTURE $$,$$$.99.
PICTURE X(6).
PICTURE $$,$$$.99.
PICTURE X(6).
PICTURE $$,$$$.99.
PICTURE X(6) •
PICTURE $$,$$$.99.
PICTURE X(6).
PICTURE $$,$$$.99.
PICTURE X(3) •

61

WORKING-STORAGE SECTION.
77 LINE-CTR PICTURE S99 i.mfiitill~··ij ~-~~······VALUE +61.
01 MAIN-HEADING.

05 FILLER PICTURE xc1.:~) V~LUE SPACES.
05 MH PICTURE X(29) VALUE 11 LISTING OF DEPT
05 FILLER PICTURE X(53) VALUE SPACES.

PAYROLL DATA'°.

01 SUB-HEAD.
05 FILLER
05 Al
05 FILLER
05 A2
05 FILLER
05 A3
05 FILLER
05 A4
05 FILLER
05 AS
05 FILLER
05 A6
05 FILLER
05 A7
05 FILLER
05 AS

PICTURE X (3:)
PICTURE X(8)
PICTURE X(5)
PICTURE X(6)
PICTURE X{9)
PICTURE X(4)
PICTURE X{26)
PICTURE X(l2)
PICTURE X(3)
PICTURE X{l.2)
PICTURE X(3)
PICTURE X(l2)
PICTURE X{3)
PICTURE X(l4)
PICTURE X
PICTURE X(12)

VALUE ~PACES. r:

VALUE !:DEPT-NO:!<.
VALUE SPACES.
VALUE 'MAN NO' •
VALUE SPACES.
VALUE ·~NAME

VALUE SPACES.
VALUE ,;ST. EARNINGS
VALUE SPACES.
VALUE :!SPEC BONUS
VALUE SPACES.
VALUE 'BASIS BONUS
VALUE SPACE.
VALUE !iGROSS EARNINGS' •
VALUE SPACES.
VALUE .fFTX WITHHELD':.

LINKAGE SECTION.
77 RECS-LEFT PICTURE XXX.
01 WSREC.

01

05 DEPT-NO
05 MAN-NO
05 NAME
05 FARNINGS
05 BONUS-2
05 BONUS-1
05 GROSS
05 FED-TAX
TOTREC

PICTURE S999
PICTURE S9(5)
PICTURE X(25).
PICTURE S999V99
PICTURE S999V99
PICTURE S999V99
PICTURE S999V99
PICTURE S999V99

~$~rlitii0ili~~·~:i•
~~1m10M.D~l.'~;1:

~o•t.lrtat~owiih~~ ····
~~d'A'!~<>IA~~3··~
eo~!ttEONlij~l:~.
~i!ifi'Pittoual~3·~·
~m:tr111m~~~1~····
-mtl~iONl:tl.ot~··~··

05 T-DEPTNO
05 T-EARNINGS
05 T-BONUS-1
05 T-BONUS-2
05 T-GROSS
05 T-FED-TAX
·.-~lf

PICTURE S999.
PICTURE S9999V99.
PICTURE S9999V99.
PICTURE S9999V99.
PICTURE S9999V99.
PICTURE S9999V99.

62

PROCEDURE DIVISION.

OPEN OUTPUT EDOUT.
;g11•ft·
~fft'\:t,.~;1g.Q·i4~lt¥l''~···:i·~g;: ...)ll~.

210-WRITE-A-LINE.
IF LINE-CTR GREATER THAN 57

THEN PERFORM 220-WRITE-HEADINGS
ELSE MOVE SPACES TO DETAIL-REC

MOVE·~li~ljlQJI§ WSREC TO DETAIL-REC
WRITE DETAIL-REC AFTER ~~~·~;i~j~~· 2 LINES
ADD 2 TO LINE-CTR.

GO TO 230-GOBACK.

220-WRITE-HEADINGS.
WRITE DETAIL-REC FROM MAIN-HEADING AFTER ~~$.~~~Q9~ffG.t Q LINES.
WRITE DETAIL-REC FROM SUB-HEAD AFTER ~$~~~os~:m 2 LINES.
MOVE SPACES TO DETAIL-REC.
MOVE·a:~Dl~~~i~WSREC TO DETAIL-REC.
WRITE DETAIL-REC AFTER)gQ$;C~;IQ!fiflG3 LINES.
MOVE 9 TO LINE-CTR.

230-GOBACK.
:~~~~t(·.
·~lt'f·····••·•··~~p.g~~:t~r :· .. ·.·p$·m§•···)~f:~~$ff.A~n.
IF T-GROSS ~;;.: ~)!;~. = 0

THEN GO TO 230-GOBACK
ELSE NEXT SENTENCE.

MOVE SPACES TO TOTAL.
MOVE'.~~J3$~ll)~~ TOTREC TO TOTAL.
MOVE \•DEPARTMENT TOTALS FOLLOW' TO T-MESSAGE.
WRITE TOTAL AFTER .:BJ$lt~~()jl;NQ. 3 LINES.
MOVE ZEROES TO T-DEPTNO :~'···;m~.
MOVE ZEROES TO T-EARNINGS ·:~~ii~~~.
MOVE ZEROES TO T-BONUS-1 Q~j~~.
MOVE ZEROES TO T-BONUS-2 ~~ht~~.
MOVE ZEROES TO T-GROSS l,i ~.~C
MOVE ZEROES TO T-FED-TAX g~)~~.

310-WRITE-HEADINGS.
IF RECS-LEFT = ••'NO '

THEN GO TO 230-GOBACK
ELSE NEXT SENTENCE.

WRITE DETAIL-REC FROM MAIN-HEADING AFTER ·~~~~·f:Qj~j~· 0 LINES.
WRITE DETAIL-REC FROM SUB-HEAD AFTER ~s:r~·io'N~~ 2 LINES.
MOVE 6 TO LINE-CTR.
GO TO 230-GOBACK.
~t: !~() B~ .. ,.
CLOSE EDOUT.
:(;Q~;A(?I(.

*** END OF LISTING **~

63

VS COBOL Programs
!:illll1!illi~~-llmfi1M! DIVIS ION.
PROGRAM- ID. DPLCONL.
AUTHOR. J. P. PROGRAMMER.
DATE-WRITTEN.
DATE-COMPILED.

FEB. 20, 79.

FRIDAY MAR 16, 1979
IREMARKS. THIS PROGRAM WILL SCREEN CASES, CALCULATE TAXES

AND TOTALS, AND YIELD A LIST OF ERRORS (AN ERROR
OCCURS WHEN A TAX MULTIPLIER IS MISSING OR A GROUP
OF RECORDS IS NOT PRECEDED BY AN A-TYPE RECORD) •
THIS MAIN CONTROL MODULE WILL CALL IN AN EDIT MODULE.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COM?UTER. '.jlflfl~IS:.
OBJECT-COMPUTER. ','llli~IG.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT OUTPUT-1 '~li,il:~ 1i;!§J1'i!ii~l~J:tmll~ ~~-~~S,~i •
SELECT ERRORS 'i~,~~;1;-;:,m::i1:lcl~--~:< :~~l~I;~-~!.

DATA DIVISION.
FILE SECTION.
FD OUTPUT-1

RECORD CONTAINS 9 TO 35 CHARACTERS
LABEL RECORDS ARE 'll9f•llJfl

01 A-VALIDS.
05 A-TIPE
05 A-RECINFO

10 A-DEPTNO
10 A-MANNO

PICTURE X.

10 A-TAX-STATUS
10 A-EARNINGS

PICTURE S999.
PICTURE S9(5).
PICTURE S9.
PICTURE S999V99.
PICTURE X(25). 05 A-NAME

01 B-VALIDS.
05 B-TIPE
05 B-RECINFO

10 B-DEPTNO
10 B-MANNO
10 B-BONUS

FD ERRORS

PICTURE X.

PICTURE S999.
PICTURE S9(5).
PICTURE S999V99.

LABEL RECORDS ARElllMBI: ..
RECORD CONTAINS 80 CHARACTERS.

01 ERROR-LI ST.
05 E-TH~E
05 E-DEPTNO
05 E-MANNO
05 E-BONUS
05 FILLER

01 ERR-LIST

PICTURE X.
PICTURE 999.
PICTURE 9(5).
PICTURE 9(5).
PICTURE X(66).
PICTURE X(80).

64

WORKING-STORAGE SECTION.
77 PRIOR-DEPT-NO PICTURE S999 1118111111111! VALUE ZEROES.
77 RECS~LEFT PICTURE XXX VALUE ll1yEsll.
77 TAXE PICTURE S9 ---~VALUE ZERO.
77 PICTURE S999V99 llilllllliJll VALUE ZEROES.
77 PICTURE X VALUE SPACE.

01 WSREC.
05 DEPT-NO
05 MAN-NO
05 NAME
05 EARNINGS
05 BONUS-1
05 BONUS-2
05 GROSS
05 FED-TAX

01 TOTRF.C
05 T-DEPTNO
05 T-EARNINGS
05 T-BONUS-1
OS T-BONUS-2
05 T-GROSS
05 T-FED-TAX

VALUE lliAii*•

PICTURE S999 lailltllllifll! VALUE ZEROF.S.
PICTURE S9(5) lfJBlilllMlli VALUE ZEROES.
PICTURE X(25) VALUE SPACES.
PICTURE S999V99 llilllllltlflll VALUE ZEROES.
PICTURE S999V99 llllllR'tlilll! VALUE ZEROF.S.
PICTURE S999V99 lllillllllillll VALUE ZEROES.
PICTURE S999V99 -lallt VALUE ZEROF.S.
PICTURE S999V99 i-lillll VALUE ZEROES.

PICTURE S999
PICTURE S9999V99
PICTURE S9999V99
PICTURE S9999V99
PICTURE S9999V99
PICTURE S9999V99

65

VALUE ZEROES.
VALUE ZEROES.
VALUE ZEROES.
VALUE ZEROES.
VALUE ZEROES.
VALUE ZEROES.

PROCEDURE DIVISION.
100-START-HERE.

OPEN INPUT OUTPUT-!
OUTPUT ERRORS.

MOVE 1 TO ENTRY-FLAG.

200-READ.
READ OUTPUT-I

AT END MOVE i!!No~l TO RECS-LEFT.
200-EXIT.

EXIT.

300-PARM-TEST.
!'1lllllli1:liifliEll.
t\111111'1!1-.
lll1lili1llll11~:f,._1lll!i:illlmi~l;l\1~EtllllllllllBIMI

ON ERROR MOVE 999 TO RETURN-CODE
DISPLAY !IBAD FACTORf!li
GO TO 575-STOP.

1111;11~iillll~~-lllllli;i-•1il!llilt1lJll-i1,Ri1R1
ON ERROR MOVE 999 TO RETURN-CODE

DISPLAY iiBAD FACTOR2tli
GO TO 575-STOP.

IF FACTORl-CONV IS LESS THAN 0
OR FACTOR2-CONV IS LESS THAN 0

THEN MOVE SPACES TO ERR-LIST
MOVE l~'ERROR MESSAGE: FACTORS NOT COPIEDJil TO ERR-LIST
WRITE ERR-LIST !llilliltl.llllll1Illl!l~ll\tll§81J
MOVE 3 TO RETURN-CODE
GO TO 575-STOP

ELSE MOVE SPACES TO ERR-LIST
MOVE :!!'ERRORS: TYPES B AND C NOT PRECEDED BY TYPE A Jl1

TO ERR-LIST
WRITE ERR-LIST ':li!ll~l!m1~lhlMl=ll!l;l!l·!~HHlilll.

MOVE A-DEPTNO TO PRIOR-DEPT-NO.
MOVE B-MANNO TO MAN-NO.

400-CONTROL.
IF A-DEPTNO NOT = PRIOR-DEPT-NO

THEN PERFORM 525-COMPUTE THRU 525-EXIT
MOVE 3 TO ENTRY-FLAG

MOVE A-DEPTNO TO PRIOR-DEPT-NO
MOVE B-MANNO TO MAN-NO
GO TO 425-BADRECCHECK

ELSE NEXT SENTENCE.
IF B-MANNO NOT = MAN-NO

THEN PERFORM 530-WSREC-FORM THRU 530-EXT~
ELSE NEXT SENTENCE.

66

425-BADRECCHECK.
IF A-TIPE = Ji:Ai'

THEN PERFORM 530-WSRF.C-FORM THRO 530-EXIT
ELSE NEXT SENTENCE.

IF A-READ
THEN NEXT SENTENCE
ELSE PERFORM 535-ERROR THRU 535-EXIT

GO TO 430-PERFREAD.
IF A-TIPE = !•sl

THEN MOVE B-BONUS TO BONUS-I
ELSE NEXT SENTENCE.

IF A-TIPE = I!c!Z
THEN MOVE B-BONUS TO BONUS-2
ELSE NEXT SENTENCE.

430-PERFREAD.
PERFORM 200-READ THRU 200-EXIT.
IF RECS-LEFT = :!Noii

THEN NEXT SENTENCE
ELSE GO TO 400-CONTROL.

IF A-READ
THEN PERFORM 525-COMPUTE THRU 525-EXIT
ELSE NEXT SENTENCE.

MOVE 3 TO ENTRY-FLAG.

500-STOP.
CLOSE OUTPUT-I ERRORS.
MOVE 4 TO ENTRY-FLAG.
:'IBll1:i'''lllli'..1lll!::!lJ!lllllJ 1:i-l~liQll.

SIO-COPY.
COPY DISPEOJ.
DISPIAY !YOUR PROGRAM HAS REACHED END OF JOB
STOP RUN.

525-COMPUTE.
IF A-READ

THEN NEXT SENTENCE
ELSE GO TO 525-EXIT.

COMPUTE GROSS
ROUNDED = EARNINGS + BONUS-1 + BONUS-2.

COMPUTE CHECK
ROUNDED = (GROSS - (TAXE * ~---t~lllJ;) .

IF CHECK NOT GREATER THAN 0
THEN MOVE ZEROES TO FED-TAX
ELSE COMPUTE FED-TAX

ROUNDED = CHECK * 1~~i~ilJlllW.

67

MOVE DEPT-NO TO T-DEPTNO.
ADD EARNINGS TO T-EARNINGS.
ADD BONUS-I TO T-BONUS-1.
ADD BONUS-2 TO T-BONUS-2.
ADD GROSS TO T-GROSS.
ADD FED-TAX TO T-FED-TAX.
MOVE SPACE TO A-REC-SW.
MOVE 2 TO ENTRY-FLAG.
'l11R!:iifMIB,Alllll:l:l!!ll:11t1!l!i:11Blf&lllllW:'illlllillllm;!f1111111111\1l,IllBmi'.

525-EXIT.
EXIT.

530-WSRF.C-FORM.
MOVE A-MANNO
MOVE A-TAX-STATUS
MOVE A-EARNINGS
MOVE A-NAME
MOVE :!Al!
MOVE ZEROES
MOVE ZEROES
MOVE A-DEPTNO

530-EXIT.
EXIT.

535-ERROR.

TO MAN-NO.
TO TAXE.
TO EARNINGS.
TO NAME.
TO A-REC-SW.
TO BONUS-1.
TO BONUS-2.
TO DEPT-NO.

MOVE SPACES TO ERR-LIST.
MOVE B-TIPE TO E-TIPE.
MOVE B-DEPTNO TO E-DEPTNO.
MOVE B-MANNO TO E-MANNO.
MOVE B-BONUS TO E-BONUS.
WRITE ERROR-LIST AFTER ADVANCING 1 LINE.

535-EXIT.
EXIT.

575-STOP.
CLOSE OUTPUT-I ERRORS.
MOVE 4 TO ENTRY-FLAG.
1~M~';i::;~11a11:1!:1,l'in111'.111i-11~11a.
STOP RUN.

68

!iii1n:i:'m'r•li~T!i:ON; DIVISION.
PROGRAM-ID. DPLEDIT.

~REMARKS. THIS IS A SUBPROGRAM OF DPLCONL AND IS USED TO
:t PROVIDE HEADINGS AND AESTHETICALLY FORMAT OUTPUT.
·~

*'

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. 'lfg(';~JIS.
OBJF.cT-COMPUTER. iWARG+.VS.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT EOOUT ~~IGtt.' '!~ ~'BTR~~! !!~BtNi'Ell~.

DATA DIVIS ION.
FILE SECTION.
FD EOOUT

RECORD CONTAINS l.'32 CHARACTERS
LABEL RECORDS ARE'STAND~.

01 DETAIL-REC.
05 FILLER PICTURE X (2-) •
05 DEPT-NOeED PICTURE 9 (3).
05 FILLER PICTURE X(lO).
05 MAN-N~BJ) PICTURE 9 (5).
05 FILLER PICTURE X(lO).
05 N.AMEi-flD PICTURE X(25).
05 FILLER PICTURE X(5) •
05 EARNINGS~ED PICTURE $$$$.99.
05 FILLER PICTURE X(8).
05 BONUS-2~ED PICTURE $$$$.99.
05 FILLER PICTURE X(8) •
05 BONUS-l~ED PICTURE $$$$.99.
05 FILLER PICTURE X(8).
05 GROSS~ID PICTURE $$$$. 99.
05 FILLER PICTURE X(8).
05 FED-TAX~ED PICTURE $$$$.99.
05 FILLER PICTURE X(5).

01 TOTAL.
05 EMPTY PICTURE X (2).

05 T-DEPTNd~ml PICTURE 9(3).
05 T-MESSAGE PICTURE X(24).
05 FILLER PICTURE X(31).
05 T-EARNINGS~.BD PICTURE $$,$$$.99.
05 FILLER PICTURE X(6).
05 T-BONUS-l~EO PICTURE $$,$$$.99.
05 FILLER PICTURE X(6).
05 T-BONUS-2~Sfi PICTURE $$,$$$.99.
05 FILLER PICTURE X(6).
05 T-GROSS~ED PICTURE $$,$$$.99.
05 FILLER PICTURE X(6).
05 T-FED-TAX~ID PICTURE $$,$$$.99.
05 FILLER PICTURE X(3).

69

WORKING-STORAGE SECTION.
77 LINE-CTR PICTURE S99 m•u~Al.~QttitJ VALUE +61.
01 MAIN-HEADING.

05 FILLER PICTURE X (5Qi) VALUE SPACES.
05 MH PICTURE X(29) VALUE '*'LISTING OF DEPT PAYROLL DATA'! .•
05 FILLER PICTURE X(53) VALUE SPACES.

01 SUB-HEAD.
05 FILLER
05 Al
05 FILLER
05 A2
05 FILLER
05 A3
05 FILLER
05 A4
05 FILLER
05 AS
05 FILLER
05 A6
05 FILLER
05 A7
05 FILLER
05 A8

PICTURE X (2)
PICTURE X(8)
PICTURE X(S)
PICTURE X(6)
PICTURE X(9)
PICTURE X(4)
PICTURE X(26)
PICTURE X(12)
PICTURE X(3)
PICTURE X(l2)
PICTURE X(3)
PICTURE X(l2)
PICTURE X(3)
PICTURE X(l4)
PICTURE X
PICTURE X(l2)

VALUE SPACE.
VALUE "DEPT-NO "
VALUE SPACE.
VALUE I.~MAN NO~ •
VALUE SPACE.
VALUE 'NAME'~.
VALUE SPACE.
VALUE ?flSTD EARNINGSfl.
VALUE SPACE.
VALUE flORD VARIABLE".
VALUE SPACE.
VALUE ijGRP VARIABLE~.
VALUE SPACE.
VALUE "GROSS EARNINGS 0 •

VALUE SPACE.
VALUE >JJ:FTX WITHHELD''.

LINKAGE SECTION.

77 R~S-LEFT

01 WSREC.
05 DEPT-NO
05 MAN-NO
05 NAME
05 EARNINGS
05 BONUS-2
05 BONUS-I
05 GROSS
05 FED-TAX

01 TOTREC
05 T-DEPTNO
05 T-EARNINGS
05 T-BONUS-1
05 T-BONUS-2
05 T-GROSS
05 T-FEO-TAX

PICTURE XXX.

PICTURE S999
PICTURE S9(5)
PICTURE X(25).
PICTURE S999V99
PICTURE S999V99
PICTURE S999V99
PICTURE S999V99
PICTURE S999V99

~Q~~~~~QN'~ .•
!~~'~'1,m~·.

c~tJTA'PmG~M.;.
C~~~'l!:iO~~.
·coMm'l!:A'l"IONtil.
¢<1>~i~~'i'·:t.(),N'~.
C€>M~U'1!:11,·I€>NAL.

®MJ!.'l!i'!'t()•~$.
PICTURE S999.
PICTURE S9999V99.
PICTURE S9999V99.
PICTURE S9999V99.
PICTURE S9999V99.
PICTURE S9999V99.

70

PROCEDURE DIVISION

OPEN-IT.
OPEN OUTPUT EDOUT.

s~€~~oma.;·.•.s1e'l':tQ~.
210-WRITE-A-LINE.

IF LINE-CTR GREATER THAN 57
THEN PERFORM 220-WRITE-HEADINGS
ELSE MOVE SPACES TO DETAIL-REC

MOVi?·aEl?'l'~ffQ: we.•::o.g~~NO~~b
Mc>g:;~ttNO :':••·.i'OI~~~!n
MOYlt :j~··· 'm(;)· NUl~lo
.Mc)yg .•.•..•. :EARNINGS;t'J:'o·'EARN(NGS·+ED
sow:1~sus~2 ···.····m:·'~lfus~~.·~m1··
·~~.nao1fi.s~~·.'.;:'fo:·;iao1:1is~'l:;giti
•1'4QVf;··;i(Jl\iSS.••ti·:'.1:.•.'.imI:G~Ss;$'1
M¢>Y$:···ir~~"i;XHUr'l'Ot;F*t1~mu~$b;
WRITE DETAIL-REC AFTER IUY~.l'IG 2 LINES
ADD 2 TO LINE-CTR.

GO TO 230-EXIT.
220-WRITE-HEADINGS.

WRITE DETAIL-REC FROM MAIN-HEADING AFTER ·1iv~~~-~1•1·:::11e.:.
WRITE DETAIL-REC FROM SUB-HEAD AFTER ltf)V.Emiii 2 LINES.
MOVE SPACES TO DETAIL-REC •

.. ~u·n~'";~ ·~;o~~~m'.~~.
il)D·•·•MN•§;~ ·m·:MA1;~.ms.
ao•;.BAMB :! ··m s.l.Ml~m.
m•1i~~xKB$.,~o·:-~·ilass1n.
iiQ~ffillONb$§;~ t~;··~'N,fl$~~S8Q.
lMQgj··~omi~;~ .wt):;BONSS:.lf~U~lfj.
·i0Yii:IGk(1)$S f TO G!lss~ID.
:m1ii·:;fte~w1xn :·.··wo 1 ~i~'f~~80.
WRITE DETAIL-REC AFTER fitll~iNG 3 LINES.
MOVE 9 TO LINE-CTR.

230-EXIT.
EXIT.

71

~·
'lmi!1~11,i.i,.111~~111.
300-WRITE-TOTAL.

IF T-GROSS = 0
THEN GO TO 320-EXIT
ELSE NEXT SENTENCE.

MOVE SPACES TO TOTAL.
lllllm;~~---~~f W.:.:U!!Q·.·•;~:I~"'·
:111':J::!l~'lllR*i1lllt:~i!l~-INGS~m.

c81:Ri;i.~ttt\-~~; ;,:i!JO';~*Al~S~~g;li):.
iMQ1li!1:~,;;;;-~':t::.J;i i:~;;'~~mmss~m!rl.
118.z:fl~~:IMI: :;.:.mi·;;~~ilE'~M·Y+•n.
MOVE ;.ltDEPARTMENT TOTALS FOLLOW" TO T-MESSAGE.
WRITE TOTAL AFTER ~f~~m-~ 3 LINES.
MOVE ZEROES TO T-DEPTNO T-EARNINGS T-BONUS-1

T-BONUS-2 T-GROSS T-FED-TAX.
310-WRITE-HEADINGS.

IF RECS-LEFT = ... NOff
THEN GO TO 320-EXIT
ELSE NEXT SENTENCE.

WRITE DETAIL-REC FROM MAIN-HEADING AFTER ~V~C:~tlG.··'.fj,f.;I.
WRITE DETAIL-REC FROM SUB-HEAD AFTER ADVUCli:HGW 2 LINES.
MOVE 6 TO LINE-CTR.

320-EXIT.
EXIT.

ll~tl>Ri!l~i~I.
CLOSE-UP.

CLOSE EDOUT.

72

APPENDIXD
RESERVED WORDS

PART 1 - Reserved Words Recognized by Wang, but not IBM Compiler

ALARM NATIVE
ALSO NODISPLAY
ALTERED NO-MOD
BINARY OBJECT
BLOCKS ONLY
BUFFER ORDER-AREA
CODE-SET PFKEY
COLLATING PFKEYS
COMPRESSED PROTECT
CONVERSION RANGE
CURSOR ROLL
DIRECT-ACCESS ROW
DISPLAY-WS SEQUENCE
ERASE SETI ING
FAC SHARED
FIGURATIVE-CONSTANTS STANDARD-1
INSPECT TIMES
MEMBER VOLUME
MODIFY WANG-VS
MODIFIABLE

73

PART 2 - Reserved Words Recognized by IBM, but not Wang Compiler

ACTUAL NOTE
APPLY NSTD-REELS
BASIS OTHERWISE
BEGINNING PASSWORD
CBL POSITIONING
CHANGED PRINT-SWITCH
COMP-1 RECORD-OVERFLOW
COMP-2 RECORDING
COMP-3 RELOAD
COMP-4 REMARKS
COMPlITATIONAL-1 REORG-CRITERIA
COMPlITATIONAL-2 REREAD
COMPlITATIONAL-3 SEEK
COMPlITATIONAL-4 SERVICE
CONSOLE SKI Pl
CORE-INDEX SKIP2
CSP SKIP3
CURRENT-DATE SORT-CORE-SIZE
CYL-INDEX SORT-FILE-SIZE
COl SORT-MESSAGE
C02 SORT-MODE-SIZE
C03 SORT-OPTION
C04 SYS IN
cos SYS I PT
C06 SYSLST
C07 SYSOlIT
COB SYSPCH
C09 SYS PUNCH
ClO SOl
Cll 502
C12 TALLY
DEPTH TIME-OF-DAY
DISPLAY-ST TOTALED
DISP TOTALING
EJECT TRACK
ENDING TRACK-AREA
ENTRY TRACK-LIMIT
EXHIBIT TRACKS
FILE-LIMIT TRANSFORM
FILE-LIMITS UPSI-0
GO BACK UPSI-1
ID UPSI-2
INSERT UPSI-3
LABEL-RETURN UPSI-4
MASTER-INDEX UPSI-5
MORE-LABELS UPSI-6
NAMED UPSI-7
NOMINAL WHEN-COMPILED

WRITE-ONLY
WRITE-VERIFY

74

APPENDIXE
COLLATING SEQUENCES

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.

12.
13.
14.

15.
16.

17-42.
43-52.

EBCDIC Collating Sequence

(

+
$
-·· ..
)

I

II

(space)
(period)
(less than)
(left parenthesis)
(plus symbol)
(currency symbol)
(asterisk)
(right parenthesis)
(semicolon)
(hyphen, minus symbol)
(stroke, virgule,
slash)
(colllllla)
(greater than)
(apostrophe, single
quotation mark)
(equal sign)
(quotation mark)
A through Z
0 through 9

1.
2.
3.
4.

5.
6.
7.
8.
9.

10.
11.
12.

13-22.
23.
24.
25.
26.

27-52.

75

ASCII Collating Sequence

"
$

(

)

+

I

=

(space)
(quotation mark)
(currency symbol)
(apostrophe, single
quotation mark)
(left parenthesis)
(right parenthesis)
(asterisk)
(plus symbol)
(conuna)
(hyphen, minus symbol)
(period, decimal point)
(stroke, virgule, slash)
0 through 9
(semicolon)
(less than)
(equal sign)
(greater than)
A through Z

ACCEPT •••••••••••• 3 , 5 , 6 , 4 8 , 5 5 , 5 6
ACCESS •••••••••••••• 4, 15, 16, 17, 22

BDAM •••••••••••••••••.•••••.••••. 15
BI SAM • 15 , 1 6
BSAM ••••••••••••••••••••••••••.•• 15
D'YNAMIC • ••••••.••.••..••...••..••• 4
QI SAM • . • • • 15 , 16
QSAM • •••••••••••.••.••....•..••.• • 15
RANDOM • • • • • • • • • • • • 4 , 1 6 , 18 , 2 2 , 2 3
SEQUENTIAL ••••••••••••••• 4, 15, 16
VSAM • •••••.••••••••.•••.•••.• 15 , 18

ACTUAL KEY ••••••••••.•••••••••• 16, 31
ADD •••••••••••••••••.••••.•••••• 3, 41
ALTER ••••••••••••••••••••••••••••••• 3
ANSI ••••••••••• 1, 2, 3, 4, 29, 43, 49
APPLY ••.•.••••••••.•.••••••••••.••• 34
ASCII •••••••••• 2, 4, 8, 10, 16, 26, 29

...•.... 37, 42, 73
ASSIGN ••••••••••••.•••••••••••• 12, 30
ALTERNATE KEY •••••••••.•••••••••••• 18
ALTERNATE RECORD KEY •.••••••••••••• 18

BLOCK •••.•••••••••• 18, 32, 36, SS, 71
BLOCK SPLITTING •••••••••••••••••••• 16
BUFFER SIZE ••••••••••••.••••••••••• 32

CALL •••••••••••••••••••••••••••••••• 3
C~CEL ••••••••••••••••••••••••••••• 48
CARD READER • 6
CATALOGUE ••••••.••••••••••••••• 12, 17
CliAINING •••••.••••••••••••••.•••••• 17
CLOSE ••••••••••••••••••••••• 3 , 20 , 4 6
CODE-SET ••••••••••••••••••••• 3, 4, 37
COLLATING SEQUENCE ••••••••••••• 16, 73
COMMAND PROCESSOR •••••••••••••••• 2, 5
COMPRESSION ••••••••••••••• 19, 36, 72
COMPlJTE ••••••••••••••••••••••••••••• 3
CONSEClJTIVE

FILE ORGANIZATION ••••• 4, 15, 19, 22
CON1'ROL ••••••••••••••••••••••••••••• 1
CONTROL LANGUAGE ••••••••••••••••• 3 , 5
CONVERTC ••••••••••••••••••••••••• 2 , 4
COPY (COBOL) •••••••••••••••••••• 3, 46
COPY (tITILITY) •••••••••.••••••••••• 25
COPY2200 ••••.••.••••••••••••• 2, 9, 10
CORRESPONDING •••••.••••.••••••• 35, 41
CURSOR POSITION •••.•••••••••••••••• 32

INDEX

DATA CONTROL BLOCK (DCB) ••••••••.•• 12
DATA DIVISION •••••••••••••• 22, 23, 35
DATA MANAGEMENT SYSTEM (DMS) ••• 15, 16

17, 18, 19, 20, 30
31, 32' 34

DATENTRY . .•••..••.••••••••.• ,• •...•.. 1
DEVICES •••••••••••••••••••••••••.•• 12

DI SK ••••••••••••••••••••••••••••• 12
PRINTER ••••••••••••••••••••.• 11 , 12
TAPE •••.••••••••••••••.•••••• 10, 12
WORKSTATION •••••••••••••••••• 12, 22

DELETE •••••••••••••••••••••••••• 3 , 20
DIRECT

FILE PROCESSING •••••••.••••••.••• 16
DISPLAY (COBOL) ••••••••••••••.•• 3, 46
DISPLAY (PROCEDURE) ••••••••••••••••• 5
DISPLAY (UTILITY) •••••••••••••••••• 25
DISPLAY AND READ •••••••••••• 3, 22, 23
DIVIDE •••••••••••••••••••••••••••••• 3
DUPLICATE KEY •••••••••••••••••••••• 18
DYNAMIC ACCESS •••••••••.••••••••.••• 4

EBCDIC ••••••••••••••• 4, 8, 10, 16, 73
EDITOR •••••••••••••••••••••••••••••• 1
EJECT ••••••••••••••••.••••••••••••• 28
ENTER (COBOL) ••••••••••••••••••••••• 3
ENTER (PROCEDURE) ••••••••••••••••••• 5
ENI'RY ••••••••••••••••••••••••• 48, 55
ENVIRONMENT DIVISION ••••••• 23, 24, 28
EXAMINE •••••.•.•••••••••••••.•••••• 43
EXIT •••••••••••••.•••••.•••••••••••• 3
EXIT PROGRAM •••••••••••.••.••••.•••• 3
EX1'END ••••••••••••••••••••••••••••• 20
EZFORMAT ••••••.•••••••••••••••••••• 2 5

FAC (FIELD ATI'RIBUTE CHARACTER) ••.• 24
FIGURATIVE CONSTANT ••••••• 11, 24, 29

SYSTEM-DEFINED •••••••••.••••••••• 29
USER-DEFINED •.••••••••••••••• 11, 29

FILE LIMIT 31
FILE ORGANIZATION ••••••••••••••••• 3 ,4

CONSECtITIVE ••••••••••• 4, 15, 19, 22
INDEXED ••••••••••••••• 4, 16, 17, 18
SEQUENTIAL •••••••••••••••••••• 4, 15

FILE PROCESSING
DIRECT ••••.•.•••••••••••••••••••• 16
RELATIVE ••.••••••.•••••.••••••••• 16

FI LE STATUS ••••••••••.••••••••••••• 18

GOBACK • •••••••••••••••••••••••••••• 48
GOTO • ••• I ••••• I ••••••••••••••••••••• 5
GO TO • .•.•.•.•••.••.•••....•...•.... 3

IDENTIFICATION DIVISION ••••••••• 3, 27
IF (COBOL) •••••••••••••••••••••• 3, 49
IF (PROCEDURE) •••••••••••••••••••••• 5
INDEXED FILE ORGANIZATION.4, 16,17,18
INPtJT . .•.•......................... 20
INSPECT ••••••••••••••••••••••••• 3, 43
I-0 20

JOB CONTROL LANGUAGE (JCL) ••• 5, 12,17
30,55

LABEL RECORDS •••••••••••••••••••••• 3 6
LEVEL •••••••••••••••••••••••••••••• 35
LINKER •••••••••.••.••.•••••••••••.•. 1
LOGOFF •••••••••••••••••••••••••••••• 5

MODES •••••••••••••••••••••••••••••. 20
EXTEND ••••••••••••••••••••••••••• 20
INPUT •••••••••.•••••••••••••••••• 20
I-0 •....................•........ 20
OUTPUT •••••••••••••••••••••••• 17 , 20
SHARED • 18 , 1 9

MOVE • ••••••••••••••••••••••••••••••• 3
MOVE WITH CONVERSION ••••••••• 3, 42,55
11ULTIPLE FILE •••••••••••••••••••••• 33
t-ruLTIPLY . •.................•........ 3

NODISPLAY •••••••••••••••••••••••••• 12
NOMINAL KEY •••••••••••••••• 16, 17, 31
NOTE • .•••••••.•••••.••..••••••••••. 49

OBJECT ••••••••••••••••••••••••• 23, 24
OBJECT-COMPlITER •••••••••••••••• 29, 55
OCClJRS ••••••••••••••••••••••••••••• 40
OPEN •••••••••••••••••••••••• 3 , 20 , 44
OUTPtJT • ••••••••••••••••.••••••• 1 7 , 20

PARAMETER-REFERENCE-NAME ••••••• 12, 30
PASSWORD ••••••••••••••••••••••••••• 33
PERFOR.r.1 • •••••••••••••••••••••••• 3 , 42
PFKEY (PROGRAM FUNCTION KEY) ••••••• 33
P I CTI.JRE • 3 7
PRIMARY KEY ••••••••••••••••••••• 17, 18
PRINT RECORD ••••••••••••••••••••••• 11
PRINT UTILITY •••••••••••••••••••••• 25
PRiflr!'ER •••••••••••••••••••••••• 11, 12

PROCEDURE ••••••••••••••••••••••• 5 , 12
PROCEDURE DIVISION ••••••••••••• 22., 24
PROCESSING MODE •••••••••••••••••••• 31
PROGRAM-IDENTIFICATION ••••••••••••• 27
PROTECT•........ 5

QUOTATION MARKS ••.•.•........•.• 3, 28

RANDOM ACCESS .••••• 4, 16, 18, 22, 23
READ ••••••••••••••••• 3, 16, 18, 20,45
RECORDS

LENGIB • 18 , 1 9 , 3 6
ORGANIZATION •••••••••••••• 18, 19,36
PRINT •••••••••••••••••••••••••••• 11
SCREEN •••••••••••••••••••••••• 22, 23

RECORDING MODE ••••••••••••••••••••• 36
RECORD KEY ••••••••••••••••••••••••• 16
RELATIVE FILE PROCESSING ••••••••.•• 16
RELATIVE KEY ••••••••••.•••••••••••• 16
RE11ARK.S •••••••••••••••••••••••• 2 7 , 5 5
REMOTE JOB ENTRY (RJE) ••••••••.• 8, 10
RENA1'1E •••••••••••••••••••••••••••••• 5
RENAMES •••••••••••••••••••••••••••• 39
REORGANIZATION ••••••••••••••••••••• 17
REPORT •••••••••••••••••••••••••••••. 50
RERlJN •••••••••••••••••••••••••••••• 33
RESERVE •••••••••••••••••••••••••••• 30
RESERVED WORDS ••••••••••••• 27, 71- 72
RETURN •••••••••••••••••••••••••••••• 5
REWRITE ••••••• 3, 16, 17, 18,19, 20,46
RlJN •••••••••••••••.••••••.••••.••••• 5

SCRATCH ••••••••••••••••••••••••••••• 5
SEARCH •••••••.•••••••.••••••••••••• 49
SEEK •••••••••••••••••.••••••••.•••• 45
SEGMENTATION ••.•••••••••••••••••••• 40
SELECT •••••.••••••••••••••••••• 12, 30
SEQUENTIAL ACCESS ••••••••.••• 4,15, 16
SEQUENTIAL

FILE ORGANIZATION ••••••••• 4, 15, 22
SET (COBOL) ••••••••••.••.•••••••••.. 3
SET (PROCEDURE) ••••••••••••••••••••• 5
SHARED ••••••••••••••••••••••••• 19, 20
SHARING TASK ••••••••••••••••••• 19, 20
SIGN ••••••••••••••••••••••••••••••• 38
SKIP ••••••••••••••••••••••••.•••••• 28
SORT ••••••••••••••••••••••••••••••• 49
SOlJRCE ••••••••••••••••••••••••• 2 3 , 24
SOlJRCE-COMPUTER •••••••••••••••• 29, 55
SPACE •••••••••••••••••••••••••••••• 17

ST ART • • • • • • • • • • • • • • • • • • • 3 , 18 , 20 , 4 5
STOP •••••••••••••••••••••••••••••••• 3
S'I'RING ••••••••••••••••••••••••••••• 50
SUBTRACT ••••••.•••••••••••.••••• 3, 41
SYNCliRONI ZED ••••••••••••••••••••••• 38
SYNTAX •••••••••••••••••••••••••• 3, 4

TAPE •••••••••••••••••••••••••••• 8, 10
TAPECOPY ••••••••••••••••••••• 2, 9, 10
TCCOPY ••••••••••.••••••••••••••••••• 9
'!'RACK-AREA ••••••••••••••••••••••••• 32
1'R.ACK-Lit-tIT •••••••.•••••••••••••••• 32
'I'RANSFORI~I •••••••••••••••••••••••••• 44
'TRANSL ••••••••••••••••••••••• 2, 4, 8

UNIT FILE BLOCK (UFB) •••••••••••••• 12
UNS'I'RING ••••••••.•••••••••••••••••• 50
USAGE •••••••••••••••••••••••••••••• 39

BINARY ••••••••••••••••••.•••••••• 39
COMPUTATIONAL •••••••••••••••••••• 39
DISPLAY ••••.••••••••••••••••••••• 39
INDEX •••••••••••••••••••••••••••• 39

USE ••••••••••••••••••••••••••••••••• 3
USERAIDS ••••••••.••••••••••••••••••• 4

CONVER1'C ••••••••••••••••••••••• 3 , 4
lITILITIES

CON'fROL•..•..•..•••••••• 1
COPY ••••••.•..••••••••••••••••••• 25
COPY2200 •••.•...•••••.••••• 2, 9, 10
DATEN'fRY •••.•.•••••••••••••••••••• 1
DISPLAY ••.••••..••••••••••••••••• 25
EDITOR •••••••••••••••••••••••••••• 1
EZCOBOL •.••.•••••••••••••••••••••• 1
EZFORMAT ••••••••••••••••••••••••• 25
LINKER •••••.•••.••.••••••••••••••• 1
PRINr •••••••••••••••••••••••••••• 25
TAPECOPY ••••••••••••••••••• 2, 9, 10
TCCOPY •••••••.•••••••••••••••••••• 9
'TRANSL ••••••••••••••••••••• 2 , 4 , 8
3740 DISKETI'E CONVERSION ••••••• 2, 9

VALUE ••••••••••••••••••••••• 23, 24,39
VALUE OF •••••••••••••••••••••••• 12 ,37

WORKSTATION ••••••••••••••••••••••• 22
ACCESS •••••••••••••••••••••••••• 22
FILE •••••••••••••••••••••••••••• 22
RECORD • ••••.....•••••••••••••••• 23

WRITE ••••••••••• 3, 11, 16, 20, 46,55
WRITE CONTROL AREA •••••••••••••••• 10
WRITE CONTROL CHARACTER (WCC) ••••• 10

WANG Customer Comment Form Title VS COBOL CONVERSION GUIDE

Publications Number 800-1204CC-02
Help Us Help You ...

We've worked hard to make this document useful, readable, and technically accurate. Did we succeed? Only you can tell us!
Your comments and suggestions will help us improve our technical communications. Please take a few minutes to let us
know how you feel.

How did you receive this publication? How did you use this Publication?

0 Support or 0 Don't know 0 Introduction 0 Aid to advanced
Sales Rep to the subject knowledge

0 Wang Supplies 0 Other D Classroom text 0 Guide to operating
Division (student) instructions

D From another D Classroom text 0 As a reference
user (teacher) manual

0 Enclosed D Self-study 0 Other
with equipment text

Please rate the quality of this publication in each of the following areas.

EXCELLENT GOOD FAIR POOR

Technical Accuracy - Does the system work the way the manual says it does? 0 D D D

Readability - Is the manual easy to read and understand? 0 D D D

Clarity - Are the instructions easy to follow? 0 D D D

Examples - Were they helpful, realistic? Were there enough of them? D D D D

Organization - Was it logical? Was it easy to find what you needed to know? D D D D

Illustrations - Were they clear and useful? D D D D

Physical Attractiveness - What did you think of the printing, binding, etc? D D D D

VERY
POOR

D

D

D

D

D

D

D

Were there any terms or concepts that were not defined properly? D Y D N If so, what were they? ________ _

After reading this document do you feel that you will be able to operate the equipment/software? D Yes D No

D Yes, with practice

What errors or faults did you find in the manual? (Please include page numbers)------------------

Do you have any other comments or suggestions?

Name __________________ _ Street ____________________ ~

Title __________________ _ City ____________________ _

Dept/Mail Stop ____________ _ State/Country _______________ _

Company _________________ _ Zip Code _____ Telephone ________ _

Thank you for your help.

All comments and suggestions become the property of Wang Laboratories. Inc. Printed in U.S.A. 1 4-3140 3-82-5C

WANG

Fold

111111

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 16 LOWELL. MA

POSTAGE WILL BE PAID BY ADDRESSEE

WANG LABORATORIES, INC.
CHARLES T. PEERS, JR., MAIL STOP 1369
ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01851

Fold

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

....
::::i
u

	001
	002
	003
	004
	005
	006
	007
	008
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	Index-01
	Index-02
	Index-03
	replyA
	replyB

