
WANG

Procedure Language Reference

VS Procedure
Language Reference

4th Edition - June, 1982
Copyright ®Wang Laboratories, Inc., 1979
800-1205PR-04

WANG
WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE. LOWELL, MA 01851 •TEL: 617 /459-5000, TWX 710-343-6769, TELEX 94-7 421

Disclaimer of Warranties
and Limitation of Liabilities

The staff of Wang Laboratories, Inc., has taken due care in preparing
this manual; however, nothing contained herein modifies or alters in any
way the standard terms and conditions of the Wang purchase, lease, or
license agreement by which this software package was acquired, nor
increases in any way Wang's liability to the customer. In no event shall
Wang Laboratories, Inc., or its subsidiaries be liable for incidental or con
sequential damages in connection with or arising from the use of the soft
ware package, the accompanying manual, ot any related materials.

NOTICE:

All Wang Program Products are licensed to customers in accordance
with the terms and conditions of the Wang Laboratories, Inc. Standard
Program Products License; no ownership of Wang Software is trans
ferred and any use beyond the terms of the aforesaid License, without the
written authorization of Wang Laboratories, Inc., is prohibited.

This manual replaces the third edition of the VS Procedure Language
Reference (800-1' 205PR-03). For a list of changes made to this manual
since the previous edition, consult the Summary of Changes.

WANG
WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE, LOWELL, MA 01851 •TEL: 617/459-5000, TWX 710-343-6769, TELEX 94-7421

PREFACE

This manual is both a tutorial and a reference for the Procedure language user. Chapter 1 discusses
the uses of procedures for controlling limited and noninteractive job execution. Chapter 2 lists each
procedure statement and its syntactical requirements.

Before using this manual, the user should be familiar with the concepts discussed in the VS
Programmer's Introduction (800-1101 Pl) and VS Program Development Tools (800-1307PT). To
supplement this manual, the VS Procedure Language Quick Reference (800-6201 PP) is available as a
convenient syntax reference.

In addition, topics treated in the following manuals provide information that can be helpful when
writing procedures.

VS File Management Utilities Reference

VS Operating System Services

VS System Operation Guide

VS System Management Guide

VS System Utilities Reference

iii

800-1308FM

800-11070$

800-1102$0

800-1104SM

800-1303UT

TOPIC

New Statements

New Features

Miscellaneous

Summary of Changes for the Fourth Edition

DESCRIPTION

ASSIGN statement permits assignment. of
values. to either a variable or to a substring of
a string-variable.

DECLARE statement defines variables to be
used within the procedure.

EXTRACT statement extracts information
from the system and stores it in variables.

MESSAGE statement displays text on the
workstation and continues execution of the
procedure.

PROMPT statement displays information on
the workstation and accepts data for
variables.

AFFECTED
PAGES

1-20to 1-21,
2-3 to 2-4

1-20, 2-5

1-21to1-22,
2-1 Oto 2-11

1-23, 2-1 7 to
2-18

1-22, 2-22

USING statement declares the formal 2-32
parameters to a procedure.

Enhancement to GOTO statement; now
backward branching is allowed.

Enhancement to IF statement; expanded to
include numeric comparisons among integer
variables, integer-constants, or step-labels,
and string comparisons among string
variables, string-constants, or substrings.

Enhancement to RENAME statement; a new
library name, as well as a new file name can
be specified now.

Enhancement to RUN statement; a library
and/or volume can be specified.

Enhancement to SET statement; addition of
SPOOLIB and PRTFCLAS.

Enhancement to SUBMIT statement; a library
and/or volume can be specified.

Addition of string-variables, integer
variables, string-constants, and integer
constants.

Parameters can be passed to and from a
procedure or language.

This manual documents version 2.07 of the
Procedurelnterprete~

v

1-26 to 1-33

2-13 to 2-15

1-24, 2-25

2-27

1-9 to 1-10,
2-29

1-38 to 1 -39,
2-30to 2-31

1-4to 1-6

1-30 to 1-31

CHAPTER 1

1.1

1.2
1.3
1.4

1.5

1.6

1.7
1.8

1.9

1.10
1.11

1.12
1.13
1.14

CONTENTS

INTRODUCTION TO THE VS PROCEDURE LANGUAGE

Procedures . 1-1
Procedure Terminology. 1-2
Entering and Running Procedures . 1-6
Procedure Language Syntax . 1 - 7

Procedure Steps and Return Codes . 1-8
SET Statement. 1-9
Running Programs with a Procedure (RUN, DISPLAY, and ENTER) 1-1 0

Levels of Default . 1 -1 0
RUN Step . 1-11
Running a Series of Programs from a Procedure 1-1 2
Declaring the Parameters Passed to a Procedure 1 -1 3

Using DISPLAY and ENTER Statements to Supply Parameter Values
to a Program . 1-1 3

GETPARM Request . 1-1 3
Parameter Reference Name . 1-1 5
Keywords . 1-1 6
ENTER Statement . 1 -1 8
DISPLAY Statement . 1 -1 9

Using DECLARE and ASSIGN Statements to Use Variables
as Operands in Procedures . 1-20

DECLARE Statement . 1-20
ASSIGN Statement . 1-20

Extracting Information from the System (EXTRACT) 1-21
PROMPT and MESSAGE . 1-22

PROMPT .. 1-22
MESSAGE . 1-23

SCRATCH, RENAME, and PROTECT . 1-23
SCRATCH . 1-23
RENAME . 1-24
PROTECT . 1-24

MOUNT and DISMOUNT .. 1-25
Conditional Branching: Inspecting and Testing Return

Codes (IF, GOTO, and RETURN) . 1-26
Return Codes and Step-labels... 1-26
Testing and Branching: IF and GOTO . 1-27
RETURN Statement and Clause . 1-28
CODE Clause . 1-28

Unconditional Branching (GOTO and RETURN) . 1-29
LOGOFF Statement . 1-30
Backward Reference . 1 -30

Backward Reference to a Parameter List . 1-30
Backward Reference to Individual Parameters 1-32
Summary of Rules for Backward Reference . 1-32

vii

CONTENTS (continued)

1.15 Nested Procedures . 1-33
Modifying Parameter Values in an lriner Procedure from an

Outer Procedure . 1-34
An Example of Nested Procedures ... ; . 1-35
Restrictions on Parameter Specifications between

Nested Procedures . 1-36
Nesting Procedures to More than One Level.. 1-36
Testing the Return Code of an Inner Procedure 1-36

1.16 Background Processing . 1-37
1. 1 7 PRINT and SUBMIT . 1-38

PRINT ... 1-38
SUBMIT . 1-38

CHAPTER 2 PROCEDURE LANGUAGE STATEMENTS

APPENDIX

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22

ASSIGN . 2-3
DECLARE . 2-5
DISMOUNT . 2-6
DISPLAY 2-7
ENTER . 2-8
EXTRACT . 2-10
GOTO.. 2-12
IF -. 2-13
LOGOFF . 2-1 6
MESSAGE . 2-1 7
MOUNT . 2-19
PRINT.. 2-20
PROCEDURE . 2-21
PROMPT . 2-22
PROTECT ·. 2-24
RENAME ... -. 2-25
RETURN . 2-26
RUN ~ , . . 2-2 7
SCRATCH _ ; 2-28
SET 2-29
SUBMIT . 2-30
USING . 2-32

VS SYSTEM UTILITIES AND PROCEDURE LANGUAGE STATEMENTS
RETURN CODE VALUES A-1

DOCUMENT HISTORY . DH-1

GLOSSARY ... GLOSSARY-1

INDEX . INDEX-1

viii

Figure 1-1
Figure 1-2

FIGURES

Sample GETPARM from Program COPY . 1-13
Sample SORT GETPARM . 1-1 7

ix

CHAPTER 1
INTRODUCTION TO THE VS PROCEDURE LANGUAGE

1.1 PROCEDURES

VS Procedure language is used to write special routines that are referred to as procedures. Proce
dures can run system functions and supply required parameter information with or without user inter
action. The capability to automate operational sequences is useful for restricting user interaction at
the workstation, and is essential for running background jobs since user interaction is not permitted
in background processing. Specifically, the user can write procedures to perform the following
functions:

• Run a program or series of programs

• Set default values for commonly used parameters

• Supply requested parameter information directly to a running program, thus modifying or
eliminating prompts that would be displayed at the workstation during interactive
processing

• Extract information from the system and store it in variables defined in the procedure

• Mount and dismount volumes

• Scratch or rename files

• Print or submit jobs

Because procedures enable the writer to automate a sequence of operations and supply relevant
parameters, procedures have several important uses:

• Procedures minimize the number of keystrokes required to perform an operation or a
series of operations, and thus reduce the possibility of errors. Procedures also relieve the
user of remembering operational sequences and fixed parameters. In general, whenever a
job involving the same operation or sequence of operations must be performed repeatedly,
it is worthwhile to use a procedure.

• Procedures enable the writer to control which parameter information requests are dis
played to the user, and which parameter information requests are fixed and the user
cannot modify. For many applications, it is beneficial to restrict the user from making file
assignments or specifying other types of parameters at runtime. In such cases, a procedure
can provide those parameters that the user cannot modify.

Prompts that would normally appear on the workstation can be suppressed when a proce
dure provides the information they request. Since the prompts never appear, such parame
ter specification is completely transparent to t:1e user. The procedure writer, therefore, has
total control over which prompts the user sees, and which responses are required when
ever an application program is run. This control is particularly useful when designing appli
cations involving data entry personnel. By providing procedures for such applications,
management is assured of complete command over data security.

1-1

• Procedures can be used to modify system-provided parameters that cannot be modified in
any other way. The system fully defaults certain file assignment parameters (such as work
files and print files); the user never receives a prompt soliciting file assignment information
for these files. In such cases, the user can modify the default parameters that the system
assigns by writing a procedure specifying the desired parameters.

• Procedures can be used to run background procedures. All parameters required by a back
ground program must be supplied by the controlling procedure, since background proce
dures are prohibited from any interaction with a workstation. For more information on
background procedures, refer to the VS Programmer's Introduction.

Procedures provide a flexible, easy-to-use mechanism for running system functions and supplying
required parameter information with or without interactive user communication.

1 .1.1 Procedure Terminology

Procedures are constructed of a series of procedure statements, each consisting of one or more of
the following: verbs, operands, constants, variables, substrings, and labels.

Verbs

Each procedure statement must begin with a Procedure language verb describing the operation to
be performed. The statement verbs available in the Procedure language fall into five categories:

• Verbs that can invoke system functions (RUN, SET, SCRATCH, RENAME, PROTECT,
PRINT, SUBMIT, MOUNT, DISMOUNT, LOGOFF, and EXTRACT). All these verbs, except
EXTRACT, perform essentially the same operations as the corresponding options and com
mands issued interactively through the Command Processor. Although EXTRACT cannot
be issued interactively through the Command Processor, it is a Supervisor Call (SVC) that
can invoke a system function.

• Verbs used to supply parameters to a program or to modify the default parameters dis
played at a workstation (DISPLAY and ENTER).

• Verbs used to perform testing and branching within a procedure (IF, GOTO, and RETURN).

• Verbs used within a procedure (DECLARE, ASSIGN, and USING).

• Verbs used for workstation 1/0 (MESSAGE and PROMPT).

The procedure verbs are listed as follows. The syntax and general format of each verb is discussed
in both this chapter and in Chapter 2.

ASSIGN

DECLARE

DISMOUNT

DISPLAY

Assigns values to variables defined in the procedure.

Defines the variables to be used within the procedure.

Logically dismounts a disk or tape volume.

Supplies or modifies the displayed default values in a file assignment or
option list prompt and generates a screen transaction.

1-2

ENTER

EXTRACT

GOTO

IF

LOGO FF

MESSAGE

MOUNT

PRINT

PROMPT

PROTECT

RENAME

RETURN

RUN

SCRATCH

SET

SUBMIT

USING

Operands

Supplies file assignment or option list parameters requested by a running
program without generating a screen transaction.

Extracts information from the system and stores it in the variables defined
in the procedure.

Specifies the next executable procedure language statement (performs
either a forward or backward branch).

Controls conditional execution of procedure steps.

Terminates procedure execution and logs the user off the system.

Displays text on the workstation and continues execution of the procedure.

Logically mounts a disk or tape volume.

Places a print file in the PRINT Queue.

Displays variables and constants on the workstation and also allows the
user to accept data for variables.

Protects a disk file or library.

Renames a disk file or library.

Terminates procedure execution.

Runs a program or another procedure.

Scratches a disk file or library.

Sets default values for file assignments, procedure submittal defaults, and
print mode options.

Submits a procedure file into the PROCEDURE Queue for noninteractive
execution.

Declares the formal parameters to a procedure.

Procedure language statements (except PROCEDURE, LOGOFF, and RETURN) must contain one or
more operands that constitute the portion of the statement operated upon. Operands vary in syntax,
depending upon the verb they follow, and are discussed in detail in conjunction with their corre
sponding verbs. (For further syntactical information on the operands associated with a particular
verb, refer to the discussion of that verb in Chapter 2.)

Constants

There are two types of constants: string and integer. A string-constant is a sequence of 1 - 256
characters enclosed in paired quotes. Either single quotes (') or double quotes (") can be used. To use
quotes as characters within the string, the user must supply two occurrences of the character, for
example, "He said, ""I don't care."""

1-3

The following string-constants, in conjunction with their corresponding verb, need not be enclosed
in quotes. To simplify procedure writing, the procedure interpreter allows quotes around all
string-constants.

DISMOUNT

DISPLAY

ENTER

MOUNT

PRINT

PROTECT

RENAME

RUN

SCRATCH

SET

SUBMIT

vol name

value 1 , value2

value 1 , value2

volname, unit#

filename, libname, volname, class, form#, copies, status, disp

filename, libname, volname, owner, period, fileclass

filename 1, libname 1, volname, filename2, libname2

filename, libname, volname

filename, libname, volname

value 1 , value2

procname, library, volume, procedure-id, class, cpu limit (ss form only),
status, dump, action, disp

An integer-constant is a sequence of one or more digits whose value is in the range -99999999 to
99999999.

Variables

A variable is used for storing information. For example, a user can store in a variable the number of
blocks allocated for a file. There are two types of variables: string and integer. String-variables are
fixed length (between 1 - 256 characters). Integer-variables are full-word signed integers whose
value is in the range of -2147483648 to 2147483647.

A string of 2 to 31 characters identifies a variable. The first character must be an ampersand (&).
The other characters in a string can be: A - Z, a - z, 0 - 9, @, $, #,and-·

Variables must be declared (defined) for use in a procedure. (Refer to Subsection 1.6.1 for more
information on declaring variables.)

A variable can be used as a procedure statement operand. The content of a variable used as an
operand is the value of that operand. For example, if variable &A= 'FILEXYZ', then RUN &A is legal. If
&A = 'FILEXYZ IN LIB 1 ', then RUN &A is illegal (since blanks are not allowed in this context).

The following user-specified names or strings, in conjunction with their corresponding verb, can
also be used as variables:

DISMOUNT volname

DISPLAY value 1 , value2

1-4

ENTER

MOUNT

PRINT

PROTECT

RENAME

RETURN

RUN

SCRATCH

SET

SUBMIT

Substrings

value 1 , value2

volname, unit#

filename, libname, volname, class, form #, copies, status, disp

filename, libname, volname, owner, period, fileclass

filename 1 , libname 1, volname, filename2, libname2

integer

filename, libname, volname

filename, libname, volname

value1, value2

procname, library, volume, procedure-id, class, cpu limit (ss form only},
status, dump, action, disp

A substring is a portion of a string-variable represented by the character position defined by
"start" for a specified "length". Start and length can be either integer-constants or integer-variables.
The three ways to specify the substring length are as follows:

• When the procedure writer specifies a length, an integer-constant or integer-variable
defines the substring length.

• When the procedure writer specifies *, the substring from start to the last non blank charac
ter is used.

• When the procedure writer does not specify either a length or *, the substring from start to
the end of the string is used.

The first character position of a string-variable is 1 . The defined substring must be fully contained
within the string-variable, i.e., the start must be within the variable, and start plus length must not
exceed the length of the variable plus one.

Labels

Any statement in a procedure can be identified with a label. A label can be up to eight characters in
length. Labels can exceed eight characters in length, but the Procedure Interpreter only examines the
first eight characters. Duplicate label names or labels containing the same first eight characters are
permitted. To resolve problems that might occur from duplicate labels, the Procedure Interpreter
selects the label according to the rules stated in Section 1 .1 2.

A label used to identify a statement must be immediately followed by a colon (:}, except where
noted throughout the text. The colon does not constitute part of the label name; it is merely a separa
tor. The first character of a label name must be alphabetic. Succeeding characters can be alpha
numeric; embedded blanks are not allowed.

1-5

Multiple labels can precede a statement. For example:

LABELA: LABELS: RUN PROCA

Only the label closest to the statement (LABELS:} can be used for backward referencing, return code
testing, or return code generation. The other labels are for branching only. Labels, have the following
uses:

• A labelled statement can be referenced from other statements in the procedure for the pur
pose of obtaining parameter information - this is known as backward referencing. (Refer
to Section 1 . 1 4.)

• A labelled statement can be branched to from a GOTO statement located elsewhere in the
procedure. (Refer to Section 1.11.)

• A label causes the return code generated by certain statements to be saved for user inspec
tion or for testing using an IF statement. (Refer to Sections 1.2 and 1.11.)

• A label in an inner nested procedure can be used as a parameter reference name by an
outer nested procedure. (Refer to Section 1 . 1 5.)

For the purpose of this manual, labels of certain types of statements are given different names
when they are used in referencing, branching, or return code testing of those statements. For such
uses, the labels of system function statements (step statements, SET, MOUNT, DISMOUNT,
SCRATCH, RENAME, PROTECT, PRINT, SUBMIT, and RUN} are termed step-labels; the labels of
parameter-supplying statements (specification statements DISPLAY and ENTER} are termed spec
labels; and the labels of other statements (IF, GOTO, RETURN, EXTRACT, MESSAGE, PROMPT,
DECLARE, ASSIGN, and LOGOFF} are termed stmt-labels.

1.1.2 Entering and Running Procedures

A user creates, edits, and runs procedures in the same manner as programs. On execution, proce
dures are interpreted by the Procedure Interpreter. To create or edit a procedure, the user must run
the EDITOR and specify PROCEDURE as the language name. The procedure text, like source program
text, is stored as a named file. (For more information on the EDITOR, refer to the VS Program
Development Tools.)

Once created, a procedure source file can be directly executed; it does not need to be compiled
into an object file. Unlike programs, procedures are executed interpretively. The Interpreter examines
each statement in the procedure file and performs the specified operation. As the Interpreter runs
each program specified in a procedure, the user is requested to enter any parameters the procedure
does not supply. If the Interpreter detects an error, it displays an error message describing the nature
of the problem. To correct the error, the user must edit and rerun the file.

1-6

1.1.3 Procedure Language Syntax

The Procedure language syntax is generally free form, subject only to the following rules:

• Each procedure must contain a line starting with the letters PROCEDURE or PROC; every
thing following the letters PROCEDURE or PROC on the same line is interpreted as a com
ment. The line containing the letters PROCEDURE or PROC must precede any procedure
statement but can itself be preceded by comment lines. In the following example the Proce
dure Interpreter treats PROGA LISTS PERSONNEL as a comment:

PROC PROGA LISTS PERSONNEL
RUNPROGA

• Other comment lines within the procedure must either begin with an asterisk (*) in column
1 or be enclosed in paired brackets. The Procedure Interpreter considers all characters
within the brackets, including the brackets, as blanks. The following example illustrates the
use of comments in a procedure:

*SORTS PERSONNEL
PROCEDURE
RUN SORT [SORT BY STATE CODE]

• The user can nest a comment within another comment, for example, [SORT BY STATE [TO
OBTAIN ZIP]]. Brackets within a quoted constant are part of that constant and are not con
sidered comment delimiters.

• A colon (:) must be used to separate a statement label from the verb that follows. Space
between the label and the colon should not occur, e.g., step1 :.

• Spaces are used to separate verbs and parts of operands· in a statement. Multiple spaces
between the elements of a procedure statement are ignored by the Procedure Interpreter.
Blank lines are allowed between statements or comments.

• Commas must separate multiple operands in a procedure statement, if the syntax indicates
commas (refer to Chapter 2). Spaces are optional.

• Uppercase and lowercase text (A - Z, a - z) can be used within a procedure. However,
lowercase text automatically converts to uppercase, except when part of a constant
enclosed in quotes.

• The character in column 71 of line n is adjacent to the character in column 1 of line n + 1 .

• All entries in column 72 are ignored.

1-7

A procedure statement can be extended onto more than one line without special continuation char
acters. For example:

SET INLIB=MS, INVOL=VOL444, OUTLIB=
MSCOPY, PROGLIB=MSCOPY

1.2 PROCEDURE STEPS AND RETURN CODES

Each procedure contains one or more functional units called steps .. The procedure steps control
the basic functions that a procedure performs. These steps and functions are listed as follows. The
remaining procedure language statements support these functions.

Step

MOUNT
DISMOUNT
PRINT
PROTECT
RENAME
RUN
SCRATCH
SUBMIT

Function

Mounts disk and tape volumes
Dismounts disk and tape volume
Prints files
Protects files and libraries
Renames files and libraries
Runs programs and procedures
Scratches files and libraries
Executes procedures noninteractively

MOUNT, DISMOUNT, SCRATCH, RENAME, PROTECT, PRINT, and SUBMIT are stand-alone state
ments providing all parameter information for the operations they perform. All operands for these
statements are contained within the statements themselves. The procedure steps defined by these
statements, therefore, consist only of the single MOUNT, DISMOUNT, SCRATCH, RENAME,
PROTECT, PRINT, or SUBMIT statement. The RUN statement, however, runs a program or procedure
that might require the specification of many different runtime parameters. The user can supply these
parameters through one or more DISPLAY or ENTER statements following the RUN statement.

An important characteristic of procedure steps is that they generate return codes. When a user
runs a program at a workstation, the program generates a return code which, if nonzero, is displayed
upon program completion. The return codes that the system utility programs generate indicate suc
cess or failure and, in many instances, indicate which failure occurred. Similarly, user-written applica
tion programs can use return codes to indicate specific conditions the program recognizes.

When a program is run in a procedure RUN step, its return code can be tested and used to make
decisions affecting procedure execution (refer to Section 1.11). The MOUNT, DISMOUNT,
SCRATCH, RENAME, PROTECT, and SUBMIT statements also generate return codes upon comple
tion. These return codes are the same as those returned by the MOUNT, DtSMOUNT, SCRATCH,
RENAME, PROTECT, and SUBMIT SVC instructions. For the list of return codes these statements
generate, refer to the appendix of this manual. For the discussion of the corresponding SVCs refer to
the VS Operating System Services.

Although the RUN, MOUNT, DISMOUNT, SCRATCH, RENAME, PROTECT, and SUBMIT steps
always produce return codes indicating the status of the operation performed, the Procedure
Interpreter saves those codes only if the step is labelled. (Note that the label assigned to a procedure
step, when used in reference or return code testing, is called a step-label.) The Interpreter discards
the return code that the unlabelled step generates. The return code can be neither displayed at the
workstation nor tested with a subsequent IF statement in the procedure. Return codes are discussed
further in Section 1 . 11 .

1-8

1.3 SET STATEMENT

The SET statement is similar to the SET Usage Constants command issued interactively through
the Command Processor (refer to the VS Programmer's Introduction). The SET statement can specify
default names to be used by commands and programs to identify the input, output, the program
libraries and volumes, and the work and spool volumes. SET is also used to specify job submittal
defaults, a default file protection class, and print mode options. For example, the following statement
sets the user's default input library, program library, and print mode:

SET INLIB=GS, INVOL=VOL555, PROGLIB=MS, PROGVOL=VOL444, PRNTMODE=H

When this statement is executed in a procedure, GS on VOL555 becomes the user's default input
library with VOL555 as the input volume, MS becomes the default program library with VOL444 as
the volume, and the print mode is set to HOLD. Subsequently, any procedure statement, program, or
command that refers to the input library uses the default names GS and VOL555, unless different
library and volume names are supplied at runtime. Similarly, all programs this procedure runs are
assumed to be located in library MS on VOL444, unless otherwise specified. The parameters not
defined in a SET statement are not changed. In the previous example, the output library and volume
are not specified; default values for these parameters remain unmodified, unless specified in another
SET statement.

When the SET Usage Constants command is invoked interactively from the Command Processor,
the user must enter default values into the fields in the displays. These fields are labelled with iden
tifying names called keywords. For example, the default name for the output library must be entered
opposite the keyword OUTLIB. The same keywords are used to identify the corresponding parame
ters in a procedure SET statement. On the previous example, INLIB identifies the input library, INVOL
the input volume, etc.)

Two keywords are offered through the SET statement that are not available through the SET
Usage Constants command. These keywords are PROGLIB and PROGVOL, and are used as the
default program library and volume. PROGLIB and PROGVOL are used only in procedures, for pro
grams run by those procedures. PROGLIB and PROGVOL cari be specified only in a procedure SET
statement. If the user runs a program interactively through the RUN command from the Command
Processor, i.e., not through a procedure, the program library and volume are specified by RUNLIB and
RUNVOL.

The keywords that can be used in a procedure SET statement are as follows. (Refer to Chapter 2
of this manual and the VS Programmer's Introduction for further information.)

INLIB
INVOL
OUTLIB
OUTVOL
RUNLIB
RUNVOL
PROGLIB
PROGVOL
WORKVOL
SPOOLIB
SPOOLVOL

Input library
Input volume
Output library
Output volume
Run library
Run volume
Program library
Program volume
Work volume
Spool library
Spool volume

PRNTMODE
PRINTER
PRTCLASS
PRTFCLAS
FORM#
FILE CLAS
LINES
JOBQUEUE
JOBCLASS
JOBLIMIT

Print mode
On-line printer
Print class
Print file class
Form number
File class
Number of lines per page
Job status
Job class
Job CPU time limit

Keywords in a SET statement must be spelled correctly. The Procedure Interpreter ignores mis
spelled keywords; misspellings are not flagged as errors. Keywords are discussed in greater detail in
Subsection 1.5.3 and in Chapter 2.

1-9

All default values specified in a SET statement, with the exceptions of PROGLIB and PROGVOL,
become the permanent defaults for the rest of the user's session (until the user logs off the system),
remaining in effect even after the procedure is terminated.

1.4 RUNNING PROGRAMS WITH A PROCEDURE (RUN, DISPLAY, AND ENTER)

The most significant and useful feature of procedures is that they can be used to run programs (or
other procedures) and supply parameter information to those programs (or procedures). A procedure
can run a single program or a series of programs with a minimum of user intervention. The RUN state
ment is used for this purpose. Like the RUN command issued from the Command Processor, the RUN
statement must specify the name of the program to be run. The library and/ or volume can be speci
fied. The following examples illustrate four different ways to write the RUN statement:

RUN COPY

RUN PROC 1 IN LIB 1

RUN FILEX ON VOL4

RUN FILEY IN LIB2 ON VOL6

Note that unlike the SET statement, the RUN statement does not use keywords to identify the indi
vidual parameters. Instead, the parameter's library and/ or volume name are specified. The program
name immediately follows RUN, the library name follows the connective IN, and the volume name fol
lows the connective ON.

The RUN statement also allows parameters to be passed by reference to a program or another
procedure through the USING option. The following example illustrates the RUN statement with the
USING option:

RUN &PROGA ON VOL 1 USING ¶meter 1, "ABC"

1.4.1 Levels of Default

The RUN statement is used to run either user-written programs stored in a program library or
system utility programs stored in the system library @SYSTEM@. In either case, the system always
checks the program library first for a named program. If the program cannot be located in the pro
gram library, the system library is checked automatically. (Note that the system library is checked
automatically only for the RUN statement of a RUN step; it is not checked automatically for ENTER
and DISPLAY statements contained within the RUN step.) Therefore, the user should not use system
program names when naming user programs. If a user program has the same name as a system pro
gram and is located in the currently specified or default program library, the user program will always
be run when a RUN statement with that name is executed.

The user does not need to specify the name of the program library and/or volume in the RUN state
ment, if default names for the program library and/or volume have been specified in a preceding SET
statement. These names are used as defaults when a RUN statement is executed. For example, the
following statement defines default names for the program library and volume:

SET PROGLIB=DJDDATA, PROGVOL=VOL666

1-10

A subsequent RUN statement, such as RUN PROGA, in which no program library is specified, auto
. matically uses DJDDATA as the library name and VOL666 as the volume. (If PROGA is not found in
library DJDDATA, the system automatically searches the system library before displaying a message
at the workstation indicating that the program cannot be found.)

If the user does not specify PROGLIB and/or PROGVOL in a SET statement, the library containing
the running procedure is used as the default program library. For example, if a procedure is located in
library PRO on volume VOL444 and PROGLIB and PROGVOL are not specified in a SET statement,
any RUN statement within that procedure, which does not specify a program library,
automatically uses PRO on VOL444. If the procedure is not located in PRO, then the system library is
searched.

No library or volume name is required when the user runs a system utility program because the
system library is automatically searched when a program cannot be found in the program library.
Thus, the following statement is sufficient to run the COPY utility unless there is a program named
COPY in the program library:

RUN COPY

1.4.2 RUN Step

A RUN step consists of the RUN statement used to run a specified program, followed by any
DISPLAY and ENTER statements used to supply parameter information for that program. A procedure
can contain zero or more RUN steps; each RUN step executes a single program or procedure, and,
depending upon the amount of interaction desired, provides some or all of the runtime parameters
required by that program or procedure.

The use of DISPLAY and ENTER statements within a RUN step to provide runtime parameters for a
program is a particularly valuable feature of procedures. When a program is run interactively from
the workstation with a RUN command, the user must supply the parameter information that the pro
gram prompts request. Such information includes the identification of files the program uses, and
the selections offered by the program at runtime. In the case of file assignments, default file names
and locations usually are predefined with the SET Usage Constants command; these default names
appear in the display. The user can press ENTER to accept default names or type new values to
modify default names.

---------- NOTE ------------.

Unlike the case for the RUN statement, the system
. library is not used for def a ult parameter values for

ENTER and DISPLAY statements contained within
the RUN step.

In many instances, it is advantageous to place complete control of parameter specifications (such
as file assignments) with the procedure writer, so that the program user never is given the option to
alter these parameters. Alternatively, it may be desirable to provide the user with a specific set of
default values that can be either accepted or overridden. When a procedure runs a program with a
RUN statement, the DISPLAY and ENTER statements can be used to supply required parameters at
runtime. An ENTER statement provides the parameters that the program requires with no prompt dis
played at the workstation. A DISPLAY statement issues a prompt displaying the modifiable default
values the procedure writer specifies.

1-11

Program parameter requests not modified or satisfied by a DISPLAY or ENTER statement automati
cally generate a screen transaction (a prompt to the user), even if the program is run from a proce
dure. Thus, the procedure writer can determine which parameters will be provided and transparent to
the program user, and which will be modifiable by the user at runtime.

The following RUN step might be used to run the COPY utility from a procedure:

RUN COPY
ENTER INPUT FILE=FILE1, LIBRARY=MS, VOLUME=VOL444
ENTER OUTPUT FILE=FILE2, LIBRARY=GS, VOLUME=VOL444

In this example, the input and output file names and their locations are provided; the user would
not be prompted for this information when COPY is run. Note, however, that the COPY program
requires the specification of several other parameters (including the options desired) that are not
provided in this RUN step. (R~fer to the VS System Utilities Reference.) Prompts requesting this infor
mation are displayed at the workstation when COPY is run.

1.4.3 Running a Series of Programs from a Procedure

A procedure can contain a series of RUN steps, each of which runs a program or another proce
dure. Therefore, the procedure writer can construct procedures that automatically run a number of
programs in sequence with a minimum of user intervention. In this case, individual programs are run
in the order in which their corresponding RUN steps appear in the procedure. Each program must
complete execution before the next program is run (except when forward branching is used; refer to
Section 1.11). The following example illustrates sequential RUN steps:

PROCEDURE RUNNING MULTIPLE PROGRAMS
SET INLIB=MS, INVOL=VOL444, OUTLIB=MSCOPY,

OUTVOL=VOL444, PROGLIB=MSCOPY, PROGVOL= VOL444
STEP 1: RUN COPY

DISPLAY INPUT FILE = FILE 1
ENTER OPTIONS
ENTER OUTPUT FILE = FILECOPY

STEP2: RUN FILECOPY

The first line identifies this file as a procedure and contains a comment the author has made. The
SET statement sets the default values for the input, output, and program libraries and volumes.
STEP 1 is the label of the first RUN step, which runs the system program COPY. Since COPY is a
system utility, no values need be supplied for its library and volume (the system library is checked
automatically). The DISPLAY statement forces a screen display for the input file for COPY. The
values that will be displayed on this screen are the file name, FILE 1, which the DISPLAY statement
supplies, and the library MS and volume VOL444, which the SET default input library and volume
provides. The user can accept or override these values.

The line, ENTER OPTIONS, functions as though the user had pressed ENTER on the options screen,
thereby accepting the existing defaults. The ENTER OUTPUT line specifies the output file as
FILECOPY and obtains the output library and volume from the defaults specified in SET; no screen
transaction occurs. (Refer to Section 1.5 for more information on DISPLAY and ENTER.) The second
RUN statement is labelled STEP2 and runs the program FILECOPY. No library or volume need be
specified for FILECOPY, since these values are obtained from the default program library and volume.

The technique of running one or more procedures from a procedure, i.e., nesting procedures,
requires special discussion and is treated in Section 1. 1 5.

1-12

1.4.4 Declaring the Parameters Passed to a Procedure

To declare parameters passed to a procedure, the USING statement is used. The USING statement,
not to be confused with the USING option in the RUN statement, defines the parameters passed to
the procedure by reference. In the following example, the variables &INPUT and &OUTPUT are
passed to PROCEDURE TO DO SOMETHING:

PROCEDURE TO DO SOMETHING
USING &INPUT AS STRING (10), &OUTPUT AS INTEGER

Any program that uses appropriate types and lengths of parameters can call to a procedure and pass
data. The number of parameters passed must equal the number of parameters declared in the USING
statement.

The USING statement is optional. If the statement is present, it must immediately follow the
PROCEDURE statement. (Refer to Chapter 2 for the USING syntax.)

1.5 USING DISPLAY AND ENTER STATEMENTS TO SUPPLY PARAMETER
VALUES TO A PROGRAM

1.5.1 GETPARM Request

A GETPARM is a request for parameter information by a program or procedure. A GETPARM can
be satisfied either by a user at a workstation or by a procedure DISPLAY or ENTER statement. A
GETPARM request for parameter information is illustrated in Figure 1 -1 .

Figure 1-1. Sample GETPARM from Program COPY

1-13

In Figure 1-1, program COPY issues the GETPARM to solicit specification of the input file parame
ters. In this case, the user supplies the parameters interactively by running the program COPY. The
user should note that each GETPARM issued by a program produces a single screen prompt soliciting
one or more parameters.

The following example illustrates the same GETPARM when the parameters are supplied in a
procedure using the ENTER statement:

PROCEDURE
RUN COPY
ENTER INPUT FILE=FILEA, LIBRARY=DJDDATA, VOLUME=VOL444

The relationship between a GETPARM issued interactively at the workstation (Figure 1-1), and a
GETPARM supplied by a procedure (in the previous example) are as follows:

• The name of the program issuing the GETPARM is specified on line 1 after the Message
number in a GETPARM request. In Figure 1 -1, the program name is COPY. In a procedure,
the name of the program is specified after the RUN verb.

• Each GETPARM request in a program is identified with a parameter reference name
(prname). The pmame is specified on the second line of the heading (line 4) in a GETPARM
request. In Figure 1 -1, the prname is INPUT. In a procedure, the prname is specified after
the DISPLAY or ENTER verb to associate the statement with the GETPARM. (Refer to Sub-
section 1.5.2 for more in.formation on parameter reference names.) ·

• Many ·GETPARM requests for information contain one or more modifiable fields into which
the user (or a procedure) can enter information. Each modifiable field is referred to by a
keyword. (Refer to Subsection 1.5.3 for more information on keywords.) In either a
GETPARM prompt or a procedure, the keyword immediately precedes the modifiable field
associated with it. In Figure 1 -1, the keywords are COPY, FILE, LIBRARY, and VOLUME. In
the procedure, the keywords are FILE, LIBRARY, and VOLUME; COPY is not specified since
the keyword value defaults to FILE. Fields that· are not assigned new values retain their
default values. (Refer to Subsection 1 .5.3 for more information on keyword value defaults.)

The user should note that if the GETPARM request does not receive valid parameters for all fields,
it automatically generates a screen transaction. The prnames, keywords, and options must be spelled
correctly.

Specifically, a GETPARM is an SVC or macro instruction that a user can write in an Assembler pro
gram; its function is to create a formatted prompt to solicit, receive, and verify parameter informa
tion. An Assembler language program can directly issue a GETPARM; a high-level language, such as
BASIC, cannot directly issue a GETPARM. (The exceptions are the ACCEPT and DISPLAY statements
in COBOL; refer to Chapter 2.)

When a procedure runs an Assembler program, and a GETPARM instruction is issued by the
Assembler program, the prompt defined by that GETPARM is displayed on the workstation to solicit
information from the user, unless there is a corresponding DISPLAY or ENTER statement in the con
trolling procedure RUN step. If the procedure contains an appropriate DISPLAY or ENTER statement,
GETPARM obtains its parameters from the procedure. As a result, the GETPARM prompt either is
never displayed or modified to contain specified default values before being displayed.

1-14

Wherever possible, all VS system utilities use GETPARM requests to solicit par~meter information.
It is, therefore, generally possible to provide most or all parameters a system program requires
through a procedure. User-written Assembler programs that employ GETPARM to solicit parameter
information can also be satisfied by DISPLAY or ENTER statements in a procedure.

DISPLAY and ENTER are restricted as to the types of parameter requests they can satisfy; they do
not provide a general means of supplying information to a program. These statements cannot supply,

. for example, information that a COBOL DISPLAY and READ statement or a BASIC INPUT statement
requests. Such high-level language features are designed to facilitate conversational interaction
between a program and a user at the workstation. When one of these statements is executed, only a
user or a procedure can satisfy the request for information.

Although high-level languages, such as BASIC, do not have the capability to issue GETPARM
requests directly, programs written in these languages do issue GETPARM requests indirectly when
ever they open a file. The Data Management System (OMS), an integral component of the VS Operat
ing System, handles the process of opening a file. Whenever a program attempts to open a file, OMS
automatically intervenes and issues a GETPARM request for the file parameter information. This spe
cial GETPARM request, called an OPEN GETPARM, can be supplied with parameters from a procedure
DISPLAY or ENTER statement. It is possible, therefore, to supply any file assignment information
required by a program from a procedure, even if the program itself is written in a high-level language.

In addition to GETPARM requests explicitly issued by an Assembler program and the OPEN
GETPARM request issued whenever a file is opened, there is a class of GETPARMs that the system
always automatically defaults'. These default GETPARMs typically request information, such as file
assignment parameters, for work files or print files. Since the system automatically provides default
values, these GETPARM requests are never displayed at the workstation. Defaulted GETPARM
requests can, however, be assigned values other than those provided by the system with a procedure.
The procedure writer, therefore, can control the assignment of work files and print files that the user
cannot control when a program is run from the workstation.

A brief description of GETPARMs, along with the lists of prnames, keywords, and options used in
GETPARM requests can be found in the VS System Utilities Reference and the VS System
Management Guide for GETPARMs issued by the system utilities, and in the VS File Management
Utilities Reference for GETPARMs issued by the file management utilities.

1.5.2 Parameter Reference Name

A parameter solicited by a GETPARM request is identified as a parameter reference name
(prname). Since each GETPARM instruction a program issues produces a single prompt soliciting one
or more parameters, the prnames are collectively referred to as the parameter list for that request.
The prnames associated with each GETPARM parameter list are usually unique within that program.

For easy reference, certain conventions are observed when prnames are assigned in system and
file management utilities. For example, whenever a GETPARM requests parameter information for an
input file, the prname for its parameter list is INPUT. Similarly, for an output file, the prname is
OUTPUT. All GETPARM requests issued by system and file management programs, such as the
system and file management utilities, and the associated prnames are listed in the manuals that docu
ment those programs. (Refer to the VS System Utilities Reference, VS System Management Guide,
and VS File Management Utilities Reference.)

1-15

In a procedure, the prname is used in the DISPLAY or ENTER statement to associate the parameters
specified in that statement with the parameter list of a particular GETPARM request. For example,
INPUT is the prname in the following statement:

ENTER INPUT FILE=FILEA, LIBRARY=DJDDATA, VOLUME=VOL444

The DISPLAY and ENTER statements to be used with a particular program must be specified in the
RUN step for that program, but they do not need to appear in any particular order. Whenever a
GETPARM request is issued during program execution, the VS Operating System scans the list of
DISPLAY and ENTER statements in the RUN step for a matching prname. If a DISPLAY or ENTER
statement with a prname matching that of the GETPARM request is found, the parameters specified
in the statement are assigned to the GETPARM parameter list. Otherwise, the GETPARM request pro
duces a normal screen transaction. (Refer to the VS System Operation Guide for further information.)

If a program must solicit the same set of parameters more than once (for example, if several input
files must be identified), the same prname is used to identify the parameter list each time the
GETPARM request is issued. In this case, multiple DISPLAY or ENTER statements with the same
prname are used in their order of appearance in the RUN step.

1.5.3 Keywords

Within a parameter list, individual parameters are identified by keywords. When a GETPARM
prompt is displayed at the workstation, the modifiable fields that the user must enter parameter
values are labelled with keywords identifying the requested parameters. These identifying keywords
are used when parameters are supplied in ENTER or DISPLAY statements. For example, in the follow
ing statement the words FILE, LIBRARY, and VOLUME are keywords identifying file assignment
parameters for the input file. The words FILEA, MS, and VOL444 are the keyword values, i.e., the
names assigned to these parameters.

ENTER INPUT FILE=FILEA, LIBRARY=MS, VOLUME=VOL444

A keyword can be from 1 - 8 characters in length, with no embedded blanks. The keywords used
in a DISPLAY or ENTER statement must be spelled correctly. The value associated with an incorrectly
spelled keyword is ignored, and is not assigned to the appropriate parameter in the GETPARM
parameter list. A list of the keywords used in each GETPARM request for each system program can
be found in the manual that documents that program. (Refer to the VS System Utilities Reference,
the VS File Management Utilities Reference, and the VS System Management Guide.)

Some keywords are assigned default values that a program or a SET statement supplies. In Figure
1-2, the keyword values YES, DISK, and 1 are defaulted. These default values can be accepted or
overridden by a DISPLAY or ENTER statement. Fields for which no defaults are supplied must be
given values by an ENTER statement in order to prevent a screen transaction. In Figure 1-2, keyword
values need to be supplied for output FILE, LIBRARY, and VOLUME. If the GETPARM request does not
receive valid parameters for all fields, it automatically generates a screen transaction.

1-16

Figure 1-2. Sample SORT GETPARM

An example of an ENTER statement that provides enough parameter information to satisfy the
GETPARM request in Figure 1-2 is as follows:

ENTER OUTPUT FILE=ABC, COMPRESS=NO, LIBRARY=DJDCTL, VOLUME=VOL666

In this example, the file name, library, and volume are specified. COMPRESS=NO automatically
overrides the default supplied. Because no other keywords are included in the ENTER statement,
default values are used for all other fields in the request. Note that the keywords do not appear in the
same order in the ENTER statement as in the GETPARM request. As long as keywords are correctly
spelled, they need not appear in any particular order.

To specify parameters containing spaces, the values assigned to keywords must be enclosed in
paired single or double quotes. The following example illustrates the use of quotation marks when
assigning multiple tab values in the EDITOR:

RUN EDITOR
ENTER DEFAULTS TABS= '10 16 36 68'

To specify a blank keyword value, the procedure writer must specify a comma(,) as a separator, or
a blank enclosed in quotes as the keyword value assigned to the corresponding parameter. If the last
keyword value on a line is to be blank, then the procedure writer must specify a space enclosed in
paired single or double quotes, since a comma(,) at the end of a line is interpreted as a continuation.
In the following example, the keyword values corresponding to FILE and LIBRARY are blank as indi
cated by the comma; the keyword value corresponding to VOLUME is blank as indicated by the
space enclosed in paired double quotes:

RUN EDITOR
DISPLAY INPUT FILE=, LIBRARY=, VOLUME=""

1-17

1.5.4 ENTER Statement

The ENTER statement supplies parameters for a GETPARM request. Execution of an ENTER state
ment is the equivalent of satisfying a prompt at the workstation by supplying requested parameters
(or accepting displayed defaults), and keying ENTER or pressing a specific PF key. Each ENTER state
ment supplies parameter information for one GETPARM request. If the parameter information pro
vided by ENTER is complete and correct, no screen transaction is generated by the corresponding
GETPARM request.

The ENTER statement must specify the parameter reference name of the GETPARM parameter list
for which values are supplied. Individual values in the ENTER statement must be identified by key
words associated with parameters in the corresponding GETPARM parameter list.

For example, the following procedure runs the COPY utility without user intervention by supplying
all required parameters with ENTER statements. (The COPY utility is described in the VS System Utili
ties Reference and the GETPARM requests are listed in an appendix.)

PROCEDURE
RUN COPY
ENTER INPUT FILE=FILEA, LIBRARY =MS, VOLUME=VOL444
ENTER OUTPUT FILE=FILEB, LIBRARY =GS, VOLUME=VOL555
ENTER OPTIONS
ENTER EOJ

In the previous example, the COPY utility issues four separate GETPARM requests whose prnames
are INPUT, OUTPUT, OPTIONS, and EOJ. The order in which the corresponding ENTER statements
are written is unimportant. (The order in which ENTER statements are listed in the previous procedure
is different from the order in which the corresponding GETPARM requests are issued by COPY.)

If the user does not specify a value for a parameter in an ENTER statement, the parameter retains
its default value, if any. For example, the INPUT GETPARM for COPY requests four parameters: FILE,
LIBRARY, VOLUME, and COPY. COPY is used to specify the copy option (file, library, or volume); its
default is file. Because the ENTER INPUT statement in the previous procedure does not specify a
value for COPY, this parameter retains its default value.

The user should note that if no default value is specified for a parameter that is omitted from an
ENTER statement, the GETPARM request generates a screen transaction to solicit the missing
parameter. In general, whenever an ENTER statement contains insufficient or incorrect information,
the corresponding GETPARM generates a screen transaction requesting the user to correct the infor
mation. If the parameter reference name is incorrectly spelled, the entire ENTER statement is ignored.

The last two statements in the sample procedure (ENTER OPTIONS and ENTER EOJ) deserve spe
cial comment. ENTER OPTIONS satisfies the OPTIONS prompt that COPY displays. Since no options
are specified in the ENTER statement, this statement accepts all default options. It is the equivalent of
a user's acceptance of default values by keying ENTER without changing displayed values. To change
any options, the ENTER statement must specify the appropriate keyword and the new value. For
example, to specify an indexed rather than sequential file, with an eight-byte key starting at byte one,
the ENTER statement would be as follows:

ENTER OPTIONS FILEORG=I, KEYLEN=8, KEYPOS= 1

1-18

The ENTER EOJ statement ends the COPY program. When COPY is run from the workstation, the
user must, in response to the EOJ prompt, select either PF1 to rerun the COPY program or ENTER or
PF16 to end the program. If the program is to be rerun from a procedure, the following statement
would be used, where 1 represents PF 1 :

ENTER EOJ 1

1.5.5 DISPLAY Statement

The DISPLAY statement is used to set default values for specified parameters in a GETPARM
parameter list and then to force a screen transaction to display the parameter list to the user. The
DISPLAY statement supplies default values that the user can accept or modify when the GETPARM
request screen is displayed.

The DISPLAY statement has several uses. First, it can be used in situations where some parameters
are to be provided and others are to be modifiable by the user at runtime. A file assignment, for
example, might have predefined default values supplied for the library and volume, while the user
must enter the file name. DISPLAY also can be used to solicit user entry of parameters, which then
will be used repeatedly within the procedure. The backward reference technique (discussed in Sec
tion 1. 11) makes it possible to pass the parameters entered in response to a DISPLAY statement to
subsequent ENTER statements, thereby minimizing the number of times the user must be prompted
to enter the same parameters.

For example, the ENTER INPUT statement used in the preceding sample procedure might be rewrit
ten as follows:

DISPLAY INPUT FILE=FILEA, LIBRARY=MS, VOLUME=VOL444

In this case, the GETPARM request is displayed at the workstation with the values specified in the
DISPLAY statement. The user has the option of accepting these values (by keying ENTER) or modify
ing one or more of them before keying ENTER.

Like the ENTER statement, DISPLAY specifies values for a single GETPARM request, and its
parameter reference name and keywords must be spelled correctly. A value associated with an incor
rectly spelled keyword is ignored; an incorrectly spelled prname causes the entire DISPLAY statement
to be ignored.

The DISPLAY statement cannot be used in a
procedure run as a noninteractive, background
job. Any use of DISPLAY in a background proce
dure causes job cancellation (except when
DISPLAY is overridden by an ENTER statement in
an outer nested procedure. Refer to Section 1.14.)

1-19

1.6 USING DECLARE AND ASSIGN STATEMENTS TO USE VARIABLES
AS OPERANDS IN PROCEDURES

1.6.1 DECLARE Statement

The DECLARE statement defines variables that are to be used within the procedure. This statement
also specifies the attributes of the variables and their initial values. In the following example, &FILE 1
and &DOUB are declared for use in PROCEDURE TWO:

PROCEDURE TWO
DECLARE &FILE 1, &DOUB AS STRING (8)

Two types of variables can be declared: string and integer. In the previous example, both variables
are declared as string with a length of 8. Since the INITIAL clause is not specified, the initial value of
the variable is all blanks. (Refer to Chapter 2 for the syntax of the DECLARE statement.)

When multiple variables are declared in the same statement, they all have the same type, length,
and initial value.

The DECLARE statement is an executable statement; it must be executed prior to the use of any
variables declared in the statement. Variables can be redeclared. If duplicate declarations are made,
the most recently executed declaration is used.

1.6.2 ASSIGN Statement

The ASSIGN statement is used to assign values to either a variable, or to a substring of a string
variable. Two types of expressions are integer and string. Integer expressions are formed using +
and-. For example:

ASSIGN &variable 1 = &variable 1 + 1

In this example, &variable 1 is assigned the value of &variable 1 + 1 .

String expressions are formed using the concatenation operator (!!). Concatenation of two oper
ands takes the contents of the first operand and immediately follows them with the contents of the
second operand. For example:

ASSIGN &library = &proglib (1,3) ! ! "LIB"

In the previous example, &library is assigned the value of &proglib starting at position one for a
length of three followed by the letters LIB.

A substring is a portion of a string-variable represented by the character position defined by
.. start" for a specified length. In the previous example, (1,3) designates a substring of variable
&proglib starting at position one for a length of three characters.

Start and length can be either integer-constants or integer-variables. There are three ways to
specify the length of a substring:

• When the procedure writer specifies a length, an integer-constant or integer-variable
defines the substring length.

• When the procedure writer specifies * the substring from start to the last nonblank
character is used.

1-20

• When the procedure writer does not specify either a length or *, the substring from start to
the end of the string is used.

The first character position of a string-variable is 1 . The defined substring must be fully contained
within the string-variable, i.e., the start must be within the variable, and start plus length must not
exceed the length of the variable plus one. For example, the following statement is legal if &data_area
is greater than 37 characters, i.e., the string-constant "abc" is the value in &data_area starting at
character position 35 for a length of 3 (which is less than the length of &data_area plus one).

ASSIGN &data_area (35,3) = "abc"

In an assignment to a string-variable or substring, the sending value is stored left justified. Excess
character positions are truncated. If the sending length is shorter than the receiving length, the
excess is blank filled. For example:

ASSIGN &library (4,6) = "LIBDOC"

If &library is a 6 character variable with the contents CNTRLB, then when the previous statement is
executed an error occurs.

In an assignment to an integer-variable, if the size of the sending value exceeds the receiving field
size, high order digit truncation occurs.

If a step-label is used in an expression, but it does not have an associated value, an error is issued.
(Refer to Chapter 2 for more information on the ASSIGN syntax.)

1.7 EXTRACTING INFORMATION FROM THE SYSTEM (EXTRACT)

The EXTRACT statement is used to extract information from the system and store it in variables.
The information can be one of the following:

• Items available from the EXTRACT SVC
• Either the number of blocks allocated for a file or the number of records used in a file

Examples of the EXTRACT statement are as follows:

step 1 : EXTRACT &var = SYSVOL

EXTRACT &recs = RECORDS USED BY source IN srclib ON vol2

The EXTRACT statement function is analogous to the EXTRACT SVC executed with the specified
keywords. In the first example (above), SYSVOL is the specified keyword. The keywords identifying
fields for which data can be extracted are as follows:

CURLIB PRO GLIB SYSLIB FILE GLAS TAPEIO USERNAME
CURVOL PROGVOL SYSVOL FORM# DISKIO USERID
INLIB RUNLIB SYSWORK LINES PRINTIO VERSION
INVOL RUNVOL WORKLIB PRINTER OTIO TASK#
OUTLIB SPOOLIB WORKVOL PRNTMODE WSIO WS
OUTVOL SPOOLVOL TASKTYPE PRTCLASS

1-21

The restrictions for the lengths of variables are as follows:

• If the receiving string-variable is too short to contain the data, the data is truncated from
the right.

• If the receiving string-variable is longer than the data, the variable is blank filled on the
right.

•
• Integer results are right justified, zero filled in the variable.

All variables must be declared in the procedure. A string-variable can receive data for all keywords
(listed previously). An integer-variable can receive data for the following keywords:

TAPEIO
DISKIO

PRINTIO
OTIO

WSIO
ws

TASK#
FORM#

LINES
PRINTER

To extract the blocks allocated, the system sets the variable to the number of blocks allocated for
the referenced file. If the file does not exist, the value -1 is assigned.

To extract the records used, the system sets the variable to the number of records used by the
reference file. If the file does not exist, the value -1 is assigned. (Refer to Chapter 2 for more informa
tion on the EXTRACT syntax.)

1.8 PROMPT AND MESSAGE

Workstation 1/0 is available through the PROMPT and MESSAGE statements.

1.8.1 PROMPT -

The PROMPT statement is used to display information (variables and constants) on the work
station, and then to accept data for variables.

The user can create up to 24··1ines of 79 characters consisting of text and modifiable fields inter
mixed. Lines that are longer than 79 characters are truncated from the right. When a user creates
more than 24 lines or uses an invalid attribute an error occurs. A semicolon (;) is used to mark the
end of the constants and variables that are to appear on one line. Refer to Chapter 2 for the syntax of
PROMPT.

To answer a PROMPT, the user presses either ENTER or a PF key. After a key is pressed, the screen
is cleared automatically. Then the message "Procedure XXX In Progress" is displayed, and procedure
execution continues.

If a PROMPT is issued and the workstation is open (opened, but not closed by other than the Proce
dure Interpreter) an error is automatically issued. If a procedure running in background issues a
PROMPT, an error occurs.

The user should note that there is no relationship between PROMPT and GETPARM, i.e., the proce
dure writer cannot satisfy a PROMPT from a procedure.

1-22

1.8.2 MESSAGE

The MESSAGE statement displays text on the workstation and continues execution of the proce
dure. The procedure writer can arrange variables and constants on the screen using a simple state
ment format.

The user can create up to 24 lines of 79 characters consisting of text and variable values inter
mixed. Lines longer than 79 characters are truncated from the right. When a user creates more than
24 lines, an error occurs. A semicolon (;) is used to mark the end of the constants and variables
which are to appear on one line. Refer to Chapter 2 for the syntax of MESSAGE.

When executed, the MESSAGE statement clears the current screen and displays the newly created
screen, and procedure execution continues. The new screen remains until either another MESSAGE
or PROMPT statement is executed, or until a RUN statement is executed. Prior to a RUN, the current
screen is saved and after the RUN returns it is redisplayed on the workstation.

If MESSAGE is issued and a workstation is not available, (the workstation is opened but not closed
by other than the Procedure Interpreter) or the procedure is running in background, then the
message is not displayed and execution of the procedure continues.

1.9 SCRATCH, RENAME, AND PROTECT

The SCRATCH statement is used to scratch a named disk file or library, the RENAME statement is
used to rename a disk file or library, and the PROTECT statement is used to change the protection
parameters of a disk file or library. These statements are analogous to the SCRATCH, RENAME, and
PROTECT options of the Manage FILES/LIBRARIES command issued interactively through the Com
mand Processor.

1.9.1 SCRATCH

The procedure SCRATCH statement deletes.all reference to the specified file from the disk Volume
Table of Contents (VTOC) and frees the space occupied by the file for other use. For example, the fol
lowing statement scratches file FILE1 in library MS on volume VOL444:

SCRATCH FILE1 IN MS ON VOL444

The user should note that this use of the IN and ON connectives is similar to that of the RUN state
ment. If the library and volume names are omitted from a SCRATCH statement, the default names
specified for OUTLIB and OUTVOL in a preceding SET statement are used automatically.

The SCRATCH statement also can be used to scratch an entire library. Scratching a library causes
files contained in that library to be scratched, except the files for which the user does not have
scratch access rights or which have unexpired retention periods. For example, the following state
ment scratches library MS from volume VOL444:

SCRATCH LIBRARY MS ON VOL444

The user should note that the identifier LIBRARY and the connective ON are used to indicate a library
scratch. To avoid ambiguity, the name LIBRARY is not allowed as a file name in the SCRATCH
statement.

1-23

1.9.2 RENAME

The RENAME statement changes a file name in the disk VTOC to a new name, without altering the
file. For example, the following statement changes the name FILE 1 in library MS on volume VOL444
to FILE2. The name FILE 1 can no longer be used to access the file.

RENAME FILE 1 IN MS ON VOL444 TO FILE2

The RENAME statement can also change a file name in a library to a new file name and library. For
example, the following statement changes the name FILE 1 in library MS on volume VOL666 to FILE2
in library DJDLIB:

RENAME FILE 1 IN MS ON VOL666 TO FILE2 IN DJDLIB

The user should note that this is equivalent to moving a file from one library to another on the same
volume.

Like SCRATCH, RENAME uses the defaults specified for OUTLIB and OUTVOL in a SET statement
if no library or volume is specified. The RENAME statement also can be used to rename a library
(refer to the preceding discussion of scratching a library).

1.9.3 PROTECT

The PROTECT statement changes the protection parameters for a disk file or library. These
parameters include the owner of record, the file protection class, and the retention period. For exam
ple, the following statement modifies the protection parameters of FILE1 so that DJD becomes the
new owner of record, the file protection class becomes A, and the retention period becomes 21 days:

PROTECT FILE 1 IN MS ON VOL444 TO
OWNER = DJD, PERIOD = 21, FILECLAS =A

PROTECT can also be used to change the protection parameters of a library. For example:

PROTECT LIBRARY MS ON VOL444 TO
OWNER= DJD

The SCRATCH, RENAME, and PROTECT statements can receive default parameters from the SET
statement. For all of these statements, the default is the output library and/or volume. For example:

PROCEDURE
SET OUTLIB=DJDLIB
PROTECT FILE1 ON VOL444 TO OWNER=DJD, FILECLAS=B

The PROTECT statement protects the file named FILE 1 in the output library DJDLIB (the default
output library is used since no library was specified in the PROTECT statement) on the volume
VOL444.

1-24

Unlike the Command Processor SCRATCH,
RENAME, and PROTECT options of the Manage
FILES/LIBRARIES command, the SCRATCH,
RENAME, and PROTECT procedure statements
cause no message to be sent to the user if the
statement cannot be executed. However, the
SCRATCH, RENAME, and PROTECT statements
do generate return codes. If the statements are
labelled, these return codes, which indicate the
success or the cause of failure, can be tested
within the procedure and used as the basis for
subsequent actions. Return codes are discussed in
Subsection 1 .11. 1 .

1.10 MOUNT AND DISMOUNT

MOUNT and DISMOUNT are used to automate mounting and dismounting of disk and tape
volumes by permitting these operations to be performed from procedures. These statements are
analogous to the MOUNT and DISMOUNT commands issued interactively through the Command
Processor.

The MOUNT statement logically mounts a specified disk or tape volume on a specified unit prior to
physical volume mounting. For disk mounting, the user may optionally specify a label type
(STANDARD or NO) and a usage parameter (SHARED, PROTECTED, RESTRICTED REMOVAL, or
EXCLUSIVE). Similarly, the user may optionally specify a label type (STANDARD, IBM, ANSI, or NO)
and usage parameter (SHARED or EXCLUSIVE) for tape mounting. For example, the following state
ment mounts the disk volume named VOL444 on unit number 11 :

MOUNT DISK VOL444 ON 11 WITH STANDARD LABEL FOR EXCLUSIVE USAGE

VOL444 has a standard label and is reserved for use only at the workstation from which it is
mounted. The user should note that volumes mounted as EXCLUSIVE through a background process
ing job can be dismounted only through that background processing job. Such mounts must be dis
mounted before the background job can terminate. (Refer to Section 1.16 for further information.)
To avoid ambiguity, the volume type {DISK or TAPE) must precede the volume name of any disk
volumes named DISK and any tape volumes named TAPE in the MOUNT statement.

The DISMOUNT statement logically dismounts a specified disk or tape volume prior to physical
volume dismounting. For example, the following statement dismounts the tape volume named
TAPEVOL:

DISMOUNT TAPE TAPEVOL

As in a MOUNT statement, the volume type (DISK or TAPE) must precede the volume name of any
disk volume named DISK or any tape volume named TAPE in the DISMOUNT statement to avoid
syntax ambiguity.

1-25

The MOUNT and DISMOUNT statements are particularly useful for background processing to auto
mate the mounting and dismounting of volumes needed in background jobs. When a MOUNT is
issued from a background procedure, a message requesting the physical mounting of that volume is
displayed at the Operator's Console. If there is more than one Operator's Console on the system, the
message appears on the console with the highest priority. (Refer to the VS System Operation Guide
and the VS Programmer's Introduction.) The MOUNT message remains on the screen until the speci
fied volume is mounted. Similarly, a DISMOUNT issued from a background job forces an operator
message, which remains on the screen until the operator keys ENTER from the Operator's Console,
signifying that the DISMOUNT has been completed.

Unlike the Command Processor MOUNT and
DISMOUNT commands, the MOUNT and
DISMOUNT statements cause no message to be
sent to the user if the statement cannot be exe
cuted. However, MOUNT and DISMOUNT do
generate return codes. If the statements are
labelled, these return codes, which indicate the
success or the cause of failure, can be tested
within the procedure and used as the basis for
subsequent actions. Return codes are discussed in
the following section.

1.11 CONDITIONAL BRANCHING: INSPECTING AND TESTING RETURN CODES
(IF, GOTO, AND RETURN)

Each labelled step in a procedure generates a return code upon completion. A return code is a
numeric value (0 - 9999), assigned to a special register, and may be provided by user programs,
system programs, or the VS Operating System. Return codes can be used in conditional branching
within a procedure. When multiple labels precede a statement, only the label closest to the statement
can be used for return code testing or return code generation.

1.11.1 Return Codes and Step-labels

The SCRATCH, RENAME, PROTECT, SUBMIT, MOUNT, and DISMOUNT steps generate return
codes that indicate the status of the SCRATCH, RENAME, PROTECT, SUBMIT, MOUNT, or
DISMOUNT operation (successful or unsuccessful; if unsuccessful, for what reason). RUN steps pro
duce return codes generated by the program being run. In the case of system utility programs, the
return code automatically indicates the status of the program upon termination. In user-written appli
cation programs, the programmer can set return codes within the program itself to indicate any spe
cial condition.

The return code generated by a labelled and executed procedure step can be tested by a procedure
IF statement and used to conditionally execute a subsequent procedure statement. A procedure step
return code also can be used within a RETURN statement to construct a return code for the procedure
itself.

It must be emphasized that only labelled and executed procedure steps generate return codes that
are retained. Although all programs produce return codes upon termination, these return codes are
retained by the Procedure Interpreter for subsequent inspection and/ or testing only if the corre
sponding RUN step has a label. The same situation holds for SCRATCH, RENAME, PROTECT, PRINT,

1-26

SUBMIT, MOUNT, and DISMOUNT. The label a procedure writer assigns to a procedure step that is
used in testing and branching is called a step-label. Only steps with step-labels that are executed
generate retained return codes. For example:

NEWFILE: RENAME FILE1 IN MS ON VOL444 TO FILE2

In this RENAME statement, NEWFILE is the label of the step. This name could be used to examine and
test the return code generated by the RENAME operation.

1.11.2 Testing and Branching: IF and GOTO

Return codes can be us.ed for testing IF statements for conditional execution of procedure steps.
Conditional execution is performed through the IF statement.

The IF statement is used to compare two operands and either branch to another statement or
return to the invoker of the procedure if the condition is true. The comparisons are relational, i.e.,
equal, less than, greater than, not equal, not less than (greater or equal), and not greater than (less or
equal). The comparisons can be numeric (among integer-variables, integer-constants, or step-labels},
or string (among string-variables, string-constants, or substrings}.

Conditional execution is accomplished by performing either a forward or backward branch to a
specified step with a GOTO clause. For example:

COB: RUN COBOL

IF COB GT 4 GOTO END

In this example, COB is the label of the RUN step that runs the COBOL compiler (none of the spe
cification statements associated with this RUN step are shown in the example}. Because a label is
specified, the return code generated by the COBOL compiler is saved and is tested in the subsequent
IF statement.

The IF statement tests the return code associated with COB to determine whether it is greater than
4 (indicating a serious problem with the compilation}. If it is greater than 4, the procedure branches
to a statement labelled END, which ends the procedure. If the return code is less than or equal to 4,
no branch is taken, and the next sequential procedure statement is executed. This example can be
expanded to a complete procedure that runs the COBOL compiler to compile a source program, then,
depending upon the return code, either runs the compiled object program or terminates. For example:

PROCEDURE
COB: RUN COBOL

ENTER OPTIONS
DISPLAY INPUT LIBRARY=GS, VOLUME=VOL444
ENTER OUTPUT FILE=TEST, LIBRARY=GS,

VOLUME=VOL444

IF COB GT 4 GOTO END

RUN TEST IN GS ON VOL444

END: RETURN

1-27

It is not possible to perform multiple tests in a single IF statement. S~veral IF statements can be
used, however, to perform multiple tests on the same return code. For example:

IF RCODE EQ 1 GOTO STEP 1
IF RCODE EQ 2 GOTO STEP2
IF RCODE EQ 3 GOTO STEP3

Here, the step-label RCODE is tested for a return code of 1, 2, or 3, and a different procedure step
is executed depending upon the value found. This feature provides great flexibility for the conditional
execution of procedure steps, particularly when used in conjunction with application programs that
set predetermined return codes.

The user should note that the GOTO clause can be used only to branch to a labelled statement
either forward or backward within the procedure. (Refer to Section 1 .1 2 for more information.)

1.11.3 RETURN Statement and Clause

In the previous procedure example, a RETURN statement, labelled END, is used to end the proce
dure. RETURN also can be used as a clause in an IF statement to terminate the procedure. {GOTO also
functions as both a clause and a statement; refer to the discussion of GOTO in Subsection 1 . 11 .2
and in Section 1. 1 2.) Thus, the following statements could be replaced by the single statement: IF
COB GT 4 RETURN.

IF COB GT 4 GOTO END

END: RETURN

In this case, the procedure immediately terminates if the COBOL return code is greater than 4.

1.11.4 CODE Clause

For a procedure run from the Command Processor, a labelled procedure step that generates the
return code can be displayed at the workstation upon procedure termination with the CODE clause.
The CODE clause is used in conjunction with a RETURN clause (or RETURN statement) to display the
return code associated with a specified labelled step. If the user does not specify a CODE clause, the
return code displayed following termination of a procedure is always zero.

For example, a user can add the CODE clause to the IF COB GT 4 RETURN statement to produce
the following statement:

IF COB GT 4 RETURN CODE=COB

In this case, the RETURN clause in the IF statement causes termination of the procedure if the
COBOL return code is greater than 4, and CODE=COB specifies that the return code of the COBOL
compilation step be displayed upon procedure termination.

The CODE clause also permits the procedure writer to specify an integer value to be displayed as a
return code upon procedure termination or an integer-constant to be added to the program's return
code. For example: -

IF COB GT 4 RETURN CODE=lO
IF COB LT 4 RETURN CODE=COB+ 100

1-28

This feature is a useful debugging tool for procedures that run multiple programs, since it provides
a means of identifying which program caused the procedure to terminate. A different integer con
stant can be added to each program's return code. The constant then can be used to identify the pro
gram that caused termination, while the return code itself can be helpful in diagnosing the cause of
the problem. The following short procedure illustrates this technique:

PROCEDURE
SCR: SCRATCH TEST IN GS ON VOL666

IF SCR GT 0 RETURN CODE=SCR+ 100
COB: RUN COBOL

ENTER OUTPUT FILE=TEST, LIBRARY=GS, VOLUME=VOL666
IF COB GT 4 RETURN CODE=COB+200
RUN TEST IN GS ON VOL666

A second important function of the CODE clause permits the procedure writer to test return codes
when procedures are nested. A procedure can run one or more other procedures exactly as it runs
programs. In this case, the return code produced by a nested or inner procedure can be tested by the
outer procedure that runs it. This use of the CODE clause is further discussed in Section 1.15.

1.12 UNCONDITIONAL BRANCHING (GOTO AND RETURN)

Both the GOTO and RETURN verbs can be used as separate unconditional procedure statements.
The statements function as they do in an IF statement where the relation tested is always true. Three
examples are as follows:

GOTO STEP1

RETURN

RETURN CODE = COB

The GOTO statement specifies the next Procedure language statement to be executed. Both for
ward and backward branches are allowed.

Multiple statements can be labelled by the same label. For example:

RUN COPY
INP: ENTER INPUT FILE=FILE1, LIBRARY=MS, VOLUME=VOL444

GOTO INP
INP: DISPLAY INPUT

Therefore, the following rules are used to determine which statement is the target of the branch:

• The first occurrence of the label following the GOTO statement in the procedure text, if it
exists, is the target. In the previous example, the statement GOTO INP branches to INP:
DISPLAY INPUT.

1-29

• Otherwise, the closest preceding occurrence of the label preceding the GOTO statement in
the procedure text, if it exists, is the target.

• If neither rule applies, then an error has occurred.

The user should note that a backward GOTO works differently from a backward reference. The
backward GOTO references the closest textual occurrence of a label, while the backward reference
references the most recently executed occurrence of a labelled DISPLAY or ENTER statement. (Refer
to Section 1. 14 for more information on backward referencing.)

1.13 LOGOFF STATEMENT

The LOGOFF statement terminates the user's current session. All of the user's currently executing
programs and procedures are terminated, all of their files are closed, and a Command Processor
LOGOFF command is automatically issued.

When the EDITOR is used to run programs or procedures in a test environment, the LOGOFF state
ment is intercepted by the invoking program and returns to the EDITOR rather than terminating the
user's session.

1.14 BACKWARD REFERENCE

Just as procedure statements defining steps can be identified for reference purposes with labels
called step-labels, the specification statements DISPLAY and ENTER can be given labels termed spec
labels. A spec-label, enclosed in parentheses, can be used to identify a previously executed DISPLAY
or ENTER statement for subsequent backward reference from other procedure statements. (This
backward reference is not possible between statements of nested procedures.) When multiple labels
precede a statement, only the label closest to the statement can be used for backward referencing.

A backward reference enables a procedure statement to obtain some or all of its required parame
ters from a preceding, previously executed labelled DISPLAY or ENTER statement. (Note that forward
reference or reference to a preceding DISPLAY or ENTER statement which has not been executed is
not allowed.)

1.14.1 Backward Reference to a Parameter List

Backward reference is a useful technique for eliminating repetitious user interaction when the
same set of runtime parameters is used repeatedly. In the following example, a DISPLAY statement is
used to request parameters from the user. These parameters subsequently are obtained through
backward reference by other ENTER statements without additional screen transactions. For example:

INP: DISPLAY INPUT

ENTER INPUT (INP)

This technique reduces redundant parameter solicitation and eliminates errors introduced by incon
sistent user responses. There is no restriction on the number of statements that can reference a
labelled DISPLAY or ENTER statement to obtain runtime parameters.

1-30

DISPLAY statements can be used in backward reference to permit a user to make runtime specifi
cation of files, libraries, or volumes to be run, printed, submitted, protected, scratched, renamed,
mounted, or dismounted. DISPLAY is used to request parameters, which subsequently are obtained
through a backward reference by one or more RUN, PROTECT, SCRATCH, RENAME, PRINT,
SUBMIT, MOUNT, or DISMOUNT statements. For example:

SPECS: DISPLAY INPUT

RUN (SPECS)

The file specifications the user enters in response to the DISPLAY INPUT statement are later used
by RUN to identify the program to be run.

Backward reference also provides a convenient form of abbreviation when a fixed set of parame
ters is used repeatedly within a procedure. This saves the procedure writer keystrokes, minimizes the
possibility of typing errors, and makes subsequent modification or correction easier (the parameters
must be changed in only one place). For example:

SPEC1: ENTER OUTPUT FILE=FILE1, LIBRARY=MS, VOLUME=VOL444

SCRATCH (SPEC 1}

In this example, the ENTER statement, identified by the spec-label SPEC 1, provides file parameters
that are used by a subsequent SCRATCH statement, and can be used by any number of other state
ments within the procedure.

The use of backward reference simplifies the process of correcting incorrect parameters by avoid
ing multiple transactions when the same erroneous parameters are used in several places. For exam
ple, whenever a procedure-provided file assignment fails to anticipate the exact information required
to locate or create a disk file, the system automatically displays a prompt to the user requesting the
necessary corrections. These corrections can involve finding a file that has been moved, mounting a
new volume, or finding a volume with sufficient available space to create a new file. When a backward
reference obtains file parameters from a labelled DISPLAY or ENTER statement, the values obtained
are the (possibly corrected) values actually used by the earlier procedure step, not necessarily those
specified in the referenced statement itself.

For example, the wrong file name has been specified in the ENTER statement labelled INP in the
sample procedure that follows:

PROCEDURE
START: RUN COPY
INP: ENTER INPUT FILE=FILE2, LIBRARY=MS, VOLUME=VOL444

ENTER INPUT (INP}

1-31

Here, the same set of input file parameters are used by two different ENTER statements. However,
the file name specified in INP is incorrect (perhaps FILE2 refers to a nonexistent file). When program
COPY is run, the system requests correction by the user. At that time, the user must enter the correct
file name (perhaps FILE 1). Subsequently, when the second ENTER statement is executed, the parame
ters obtained by it are those actually used by COPY. Thus, although the referenced ENTER statement
specifies FILE2 as the file name, the file name obtained is the corrected one. The use of a backward
reference in this case guarantees that, no matter how many times the file parameters are used, the
correction must be made only once.

1.14.2 Backward Reference to Individual Parameters

In addition to obtaining the entire parameter list from a previous DISPLAY or ENTER statement, a
backward reference can also be used to obtain selected parameters. Backward reference to a specific
parameter is performed by means of a modified keyword called a refkey. A refkey is constructed
from the spec-label of the referenced statement, followed by a period, and followed by the keyword
identifying the desired parameter. The refkey, like the spec-label, is always enclosed in parentheses
when used in a backward reference. The following example illustrates a backward reference to a
specified parameter:

INP: DISPLAY INPUT FILE=FILE1, LIBRARY=MS,
VOLUME=VOL444

ENTER OUTPUT FILE=FILE2, LIBRARY=(INP.LIBRARY),
VOLUME= (!NP.VOLUME)

In this example, (!NP.LIBRARY) and (!NP.VOLUME) in the ENTER statement are refkeys that refer
back to specific parameters in the DISPLAY statement. INP is the spec-label of the DISPLAY state
ment, while LIBRARY and VOLUME are keywords used in the DISPLAY statement to identify the
library and volume names. When the ENTER statement is executed, it sets the output file name to
FILE2, but obtains the library and volume names from the preceding DISPLAY statement labelled INP.
(Although MS and VOL444 are specified as defaults in the DISPLAY statement, these are not
necessarily the names obtained by ENTER. If the user changes the defaults when the input GETPARM
prompt is displayed, the changed values and not the specified defaults are obtained by ENTER.)

The use of refkeys is not restricted to corresponding parameters in a backward reference. For
example, if the procedure writer wishes to name a library with a name previously used for a volume,
backward reference can be made to the volume name:

LIBRARY= (!NP.VOLUME)

1.14.3 Summary of Rules for Backward Reference

To use backward reference in a procedure, a user must follow these rules:

1. Backward reference can be made only to a labelled specification statement (DISPLAY or
ENTER) located within the same procedure as the referencing statement.

1-32

2. Backward reference can be used either to obtain an entire parameter list or to obtain only
selected parameters.

a. If a backward reference is used to obtain a complete set of parameters from a preced
ing specification statement, the parenthesized spec-label of the referenced statement
is used as the operand of the referencing statement. For example:

SCRATCH (STEP 1)

If the referencing statement is itself a specification statement, the appropriate prname
must also be specified. For example:

ENTER INPUT (INP)
DISPLAY OUTPUT (OUT)

b. If a backward reference is used to obtain selected parameters from a preceding spe
cification statement, a refkey must be used to identify each referenced parameter. A
refkey consists of the spec-label of the referenced statement, followed by a period,
and followed by the keyword that identifies the desired parameter in the referenced
statement, all enclosed in parentheses. For example:

ENTER INPUT FILE=(INP.FILE), LIBR.~.RY=(INP.LIBRARY),
VOLUME=VOL444

RUN (STEP 1 .FILE) IN MS ON VOL444

SCRATCH (STEP2.FILE) IN SFK ON (STEP3.LIBRARY)

The backward reference cannot be used to pass a
PF key value from one ENTER statement to
another. Each ENTER statement must directly
specify its own PF key value.

3. When used in a backward reference, the spec-label and the refkey must be enclosed in
parentheses.

1.15 NESTED PROCEDURES

A procedure RUN statement can be used to execute other procedures, as welt as programs. The
technique of executing one or more procedures from another procedure is called nesting procedures.
A procedure that executes another procedure in this manner Is the outer procedure. The procedure
(or procedures) executed through RUN statements in the outer procedure are inner procedures. An
inner procedure can, in turn, run a program or another procedure. The maximum level of nesting
depends upon certain system conditions; in general, it is 16.

1-33

A RUN statement used to execute a procedure must include the same information required when
running a program: the file name of the procedure file and its library and volume. For example:

PROCEDURE THIS IS PROCEDURE "OUTER"
RUN INNER IN MS ON VOL444

PROCEDURE THIS IS PROCEDURE "INNER"
RUN COPY

SPEC1:
SPEC2:
SPEC3:

ENTER EOJ

DISPLAY INPUT LIBRARY=MS, VOLUME=VOL444
ENTER OUTPUT FILE= TEST, LIBRARY=GS, VOLUME=VOL555
ENTER OPTIONS

In this example, procedure OUTER runs procedure INNER, which in turn runs the COPY utility and
specifies values for the input and output libraries and volumes. (The name INNER must be the name
of a procedure file in library MS on volume VOL444.)

1. 15.1 Modifying Parameter Values in an Inner Procedure
from an Outer Procedure

When a procedure is run with a RUN statement, DISPLAY and ENTER statements in the RUN step
can be used to specify parameters that override parameters supplied in DISPLAY or ENTER state
ments in the procedure being run (the inner procedure). This feature, in effect, gives an outer proce
dure control over the parameter specifications made by all inner procedures run by that outer proce
dure. Thus, one or more existing procedures can be combined into a single large procedure by
executing them with RUN statements from an outer procedure. Any changes required to parameter
specifications in an inner procedure can be made simply by specifying the new parameters in the
RUN step of the outer procedure. No modification of the inner procedures themselves is necessary.

When a procedure is executed by a RUN statement from an outer procedure, a DISPLAY or ENTER
statement in the RUN step of the outer procedure can be associated with a labelled DISPLAY or
ENTER statement in the inner procedure to supply parameter values to the inner statement. In this
case, the parameters specified in the outer statement override those specified in the inner statement.
The outer statement refers to an inner statement by specifying the spec-label of the inner statement
as the prname in the outer statement. For example, consider the following ENTER statement that
appears in procedure INNER:

SPEC2: ENTER OUTPUT FILE=TEST, LIBRARY=GS, VOLUME=VOL555

An ENTER statement of the following form could be added to the RUN step in procedure OUTER to
specify a new set of parameters for this statement:

ENTER SPEC2 FILE=NEWFILE, LIBRARY=NEWLIB, VOLUME=NEWVOL

The spec-label of the inner ENTER statement (SPEC2) is specified as the prname in the outer state
ment. When statement SPEC2 in procedure INNER is executed, the file parameters used are those
specified in the outer statement (NEWFILE, NEWLIB, and NEWVOL) rather than those supplied in
INNER statement SPEC2 itself.

Parameters for which no new values are specified in an outer procedure statement retain the
values specified in the inner statement. For example, the ENTER statement from an outer procedure
discussed in the preceding paragraph could be rewritten as follows:

ENTER SPEC2 LIBRARY=NEWLIB, VOLUME=NEWVOL

1-34

In this example, no value is specified for the file name. When statement SPEC2 is executed, therefore,
its specified file name (TEST) is used; NEWLIB and NEWVOL are used as the library and volume
names.

An ENTER statement in an outer procedure can modify a DISPLAY statement in an inner procedure.
If an ENTER statement is used to supply parameters for a DISPLAY statement in an inner procedure,
then no screen transaction occurs when the inner DISPLAY is executed, i.e., the request for user inter
action generated by the inner DISPLAY statement is satisfied by the outer ENTER statement without
a screen transaction.

Correspondingly, a DISPLAY statement in an outer procedure can modify an ENTER statement in
an inner procedure. An outer DISPLAY always forces a screen transaction, even when it refers to an
inner ENTER statement.

1.15.2 An Example of Nested Procedures

The example of nested procedures shown in the previous example can now be expanded to include
a number of specification statements in the outer RUN step:

PROCEDURE THIS IS PROCEDURE "OUTER"
RUN INNER

A:
B:

ENTER SPEC1 FILE=OLDFILE, LIBRARY=OLDLIB, VOLUME=OLDVOL
ENTER SPEC2 LIBRARY=NEWLIB, VOLUME=NEWVOL

C: DISPLAY SPEC3

PROCEDURE THIS IS PROCEDURE "INNER"
RUN COPY

SPEC1:
SPEC2:
SPEC3:

ENTER EOJ

DISPLAY INPUT LIBRARY=MS, VOLUME=VOL444
ENTER OUTPUT FILE=TEST, LIBRARY=GS, VOLUME=VOL444
ENTER OPTIONS

When the RUN statement executes procedure INNER from procedure OUTER, the following
sequence of events occurs:

• Procedure INNER runs the COPY utility.

• The default values specified in statement SPEC 1 in INNER are overridden by those specified
in statement A in OUTER. Because statement A is an ENTER statement, statement SPEC 1
does not generate a screen transaction.

• The values specified for library and volume in statement SPEC2 are overridden by those
specified in statement B. Because statement B does not specify a file name, the file name
supplied in SPEC2 is used.

• Statement SPEC3 is overridden by statement C, causing the OPTIONS prompt to be dis
played for user interaction.

• Because the last statement in procedure INNER, ENTER EOJ, does not have a spec-label, it
cannot be referenced by a statement in procedure OUTER. The statement ENTER EOJ,
therefore, cannot be modified by OUTER.

1-35

1.15.3 Restrictions on Parameter Specifications between Nested Procedures

It is possible for an outer specification statement to supply values to an inner statement that is
itself used to provide parameters to one or more other statements in the inner procedure through
backward reference. In this case, the values obtained by the referencing statement{s) are those sup
plied in the outer statement, not those specified in the referenced statement itself.

Specification statements in an inner procedure that are not labelled, cannot be modified from an
outer procedure, since it is the spec-label that is used to associate a particular inner statement with
an outer statement. In this case, the parameters specified in the unlabelled inner statement are not
altered by an outer procedure. Similarly, GETPARM requests for which no specification statement is
provided in the inner procedure cannot be supplied values from an outer procedure. This difficulty is
overcome by editing the inner procedure to supply missing specification statements or labels. The
need to edit an existing procedure can be avoided; however, if the procedure writer consistently
labels all specification statements and is careful to supply a specification statement for every
GETPARM request the program issues. Even when no parameters or defaults are specified for a par
ticular GETPARM request, a simple DISPLAY statement for that GETPARM provides a means for
future parameterization from an outer procedure.

1.1 5.4 Nesting Procedures to More than One Level

When procedures are nested to more than one level, only the inner procedure{s) directly run by an
outer procedure can be directly modified by the outer procedure. The procedure{s) run by an inner
procedure cannot be directly affected by the outer procedure. However, dummy specification state
ments in the inner procedure that reference statements in a procedure run by the inner procedure can
be used to pass values from the outermost procedure. For example:

PROCEDURE THIS IS PROCEDURE "OUTER"
RUN INNER1

OUT1: ENTER IN1 FILE=NEWFILE, LIBRARY=NEWLIB, VOLUME=NEWVOL

PROCEDURE THIS IS PROCEDURE "INNER 1"
RUN INNER2

IN 1: ENTER IN2

PROCEDURE THIS IS PROCEDURE "INNER2"
RUN COBOL

IN2: ENTER INPUT FILE=OLDFILE, LIBRARY=OLDLIB, VOLUME=OLDVOL

In this example, statement IN 1 in procedure INNER 1 is a dummy statement that specifies no values
of its own, but serves as a conduit through which values are supplied to statement IN2 from state
ment OUT 1 . Statement OUT 1 cannot directly modify values in IN2 because procedure INNER2 is run
by INNER 1 rather than by OUTER.

1.15.5 Testing the Return Code of an Inner Procedure

When one or more inner procedures are run by an outer procedure, the return code produced by
an inner procedure can be tested following its termination by the outer procedure. In this way, the
return code of an inner procedure can be used conditionally to determine which procedure step(s)
are subsequently executed in the outer procedure. Procedures always produce zero return codes

1-36

unless the CODE clause is specified in the RETURN statement (or clause) that terminates the proce
dure. This is true whether the procedure is run from the Command Processor, EDITOR, or another
procedure. If the CODE clause is used in a procedure run from the Command Processor or EDITOR,
the return code is displayed at the workstation upon procedure termination. If the procedure is
executed from a RUN step in an outer procedure, the return code is associated with the RUN step
(the RUN step itself must be labelled) and can be tested in the outer procedure.

The following procedures provide an example of editing, compiling, and running of programs using
nested procedures and return codes. Procedure OUTER runs procedure INNER. Procedure INNER, in
turn, runs the EDITOR (to create the source program) and COBOL (to compile it). Upon completion,
INNER returns the COBOL return code (indicating the status of the compilation). This code is tested
by OUTER. If it is greater than 7 (indicating one or more serious compilation errors), a second proce
dure, FIXIT, is run. FIXIT reruns the EDITOR, permitting the programmer to make corrections to the
source code, then recompiles the program. (The code for procedure FIXIT is not shown in this exam
ple.) If the return code obtained from INNER is less than 8 (indicating no serious compilation errors), a
final return code of 1 00 is displayed to the user.

PROCEDURE OUTER
OUT 1 : RUN INNER

IF OUT1 LT 8 GOTO OUT3
OUT2: RUN FIXIT

IF OUT2 GT 7 RETURN CODE = OUT2
OUT3: RETURN CODE = 100

PROCEDURE INNER
RUN EDITOR

ENTER INPUT
IN1: DISPLAY OUTPUT
IN2: RUN COBOL

ENTER OPTIONS
ENTER INPUT IN1
DISPLAY OUTPUT
RETURN CODE = IN2

1.16 BACKGROUND PROCESSING

All background processing on the VS is implemented through procedures. Procedures used for
background processing can include any of the available procedure statements, with the single restric
tion that background procedures cannot generate screen transactions. Any statements in a back
ground procedure that attempt to force a screen transaction result in immediate abnormal termina
tion of the procedure. Upon abnormal termination, a one-page, dump that resembles a DEBUG
screen is automatically printed. Additional termination information may also be dumped, depending
upon the value specified for the DUMP parameter at the time the job is submitted.

The exception to the rule against screen transactions is for the MOUNT and DISMOUNT state
ments, which were designed for background processing applications. These statements force screen
messages at the Operator's Console requesting their specified mounts and dismounts. The volumes
being mounted or dismounted, or their units for mounting, are not modifiable at this time.

1-37

Since workstation displays, except MOUNT and DISMOUNT messages, cannot be generated by
background procedures, the procedure writer must include values for all parameter requests issued
by background programs. For example, the following procedure results in an abnormal termination,
since no values are specified for OUTPUT:

PROCEDURE
RUN COPY
ENTER INPUT FILE=FILE1, LIBRARY=SFK, VOLUME=SYSTEM
ENTER OUTPUT
RETURN

In interactive processing, this causes a workstation transaction. Similarly, any incorrect parameter
values, misspelled prnames or keywords, or missing statements that otherwise cause workstation
transactions result in abnormal termination. The user should note that DISPLAY statements should
not t;>e used in background procedures. DISPLAY statements can only be used in background pro
cessing in inner procedures of nested procedures when the DISPLAY statements are overridden by
ENTER statements in the outer procedures. Any other use of DISPLAY attempts a workstation trans
action and results in abnormal termination of the background job. Therefore, all procedures should
be tested first in interactive mode to identify and eliminate any workstation transactions that cause
abnormal termination, before background execution is attempted.

1.17 PRINT AND SUBMIT

The PRINT statement is used to queue a print file into the PRINT Queue, and is analogous to the
PRINT option of the Manage FILES/LIBRARIES command issued interactively through the Command
Processor. The SUBMIT statement is used to queue a procedure file into the PROCEDURE Queue for
execution on a noninteractive basis, and is analogous to the SUBMIT Procedure command on the
Command Processor.

1.17.1 PRINT

The PRINT statement submits a print file to the PRINT Queue. The file can either be printed as soon
as a printer is available, or can be held for later use. After printing, the file can be deleted, requeued,
or saved in the user's print library but not listed on the queue. Additionally, the print class, form

I

number, and number of copies can be specified. For example, the following statement enters the
print file EDIT0004 in library #DJDPRT on volume SYSTEM onto the PRINT Queue:

PRINT EDIT0004 IN #DJDPRT ON SYSTEM, CLASS=A, FORM#=OOO,
COPIES=2, DISP=SAVE

For printing, the print file class is specified as A, the form number as 000, and two copies will be
printed. After printing, the file is saved in library #DJDPRT, but is not listed again in the PRINT Queue.

1.17.2 SUBMIT

The SUBMIT statement submits a procedure file to the PROCEDURE Queue. When specifying the
file to be submitted, the user must specify the libarary and/or volume. For example:

SUBMIT-FILE1 IN DJDLIB

SUBMIT FILE 1 ON VOL2

1-38

If the user specifies the IN phrase, but not the ON phrase, the specified file is searched for in the
specified library on PROGVOL. If that file does not exist, the specified file is searched for in the speci
fied library on SYSVOL. If that file does not exist, a return code is issued. In the previous example,
FILE 1 IN DJDLIB is first searched for on the program volume, and if either the file or the program
volume does not exist, then FILE 1 IN DJDLIB is searched for on the system volume.

If the user specifies the ON phrase, but not the IN phrase, the specified file is searched for in
PROGLIB on the specified volume. If that file does not exist, the specified file is searched for in
SYSLIB on the specified volume. If that file does not exist, a return coded is issued. In the previous
example, FILE 1 ON VOL2 is first searched for in the program library, and if either the file or the pro
gram library does not exist, then FILE 1 ON VOL2 is searched for on the system volume.

If the user specifies neither the IN phrase nor the ON phrase, the specified file is searched for in
PROGLIB on PROGVOL. If not found, SYSLIB and SYSVOL are used as inputs to the SUBMIT SVC.

While in the queue, the procedure is listed with a procedure-id (a name used to identify the proce
dure on the queue). If the user does not supply the procedure-id, the system automatically assigns
and generates one. Once in the queue, the procedure is either executed as soon as possible or is held
pending later execution.

In addition, the queued procedure can be assigned a procedure class, a CPU time limit for execu
tion, and an action to be taken if the specified limit is exceeded. In the event of abnormal termination,
a dump can be made either automatically or through program control. After execution, the procedure
is either removed from the PROCEDURE Queue or is listed again at the end of the queue. For example,
the following statement enters the procedure file PROC 1 in library PROCLIB into the PROCEDURE
Queue under the job name TEST:

SUBMIT PROC1 IN PROCLIB AS TEST, CLASS=A, STATUS=
HOLD, DUMP=YES, CPULIMIT=0:05:00, ACTION=WARN, DISP=
REQUEUE

The procedure class is specified as A, and the procedure is held in the queue until the user releases or
removes it. When executed, the operator is sent a message if the procedure exceeds five minutes of
CPU time. If the procedure terminates abnormally, a dump is printed. When the job has successfully
completed execution, it is listed again in the PROCEDURE Queue .

.----------NOTE ---------

Unlike their corresponding options on· the Com
mand Processor, the PRINT and SUBMIT state
ments cause no message to be sent to the user if
the statement cannot be executed. However,
PRINT and SUBMIT do generate return codes that
can be tested (if labelled) and used as a basis for
subsequent action. Refer to Section 1 .11 for more
information on return codes.

1-39

CHAPTER2
PROCEDURE LANGUAGE STATEMENTS

This chapter contains the general format and syntax of each procedure statement, including a
description of the purpose and function of each. The terms describing the syntax of each procedure
statement are defined for each statement. Certain parameters and ranges of these syntax charac
teristics are common to all of the procedure statements, and are provided below for reference
purposes.

fileclass A one character value from among A - Z, #, $, th or @. Fileclass can also be
a string-constant, string-variable, or substring.

filename A one to eight character alphanumeric value, that must begin with either an
alphabetic or numeric character, @, $, or # and contain no embedded
spaces. Filename can also be a string-constant, string-variable, or substring.

integer-constant A whole number in the range -99999999 to 99999999.

integer-variable A variable of type integer whose value must be in the range -214 7 483648
to 2147483647.

label A one to eight character alphanumeric value, that must begin with an
alphabetic character and contain no embedded spaces. A label must be fol
lowed by a colon (:), except a step-label is referenced in an IF, GOTO, or
ASSIGN statement, or used in a refkey.

libname A one to eight character alphanumeric value, that must begin with either an
alphabetic or numeric character, @, $, or # and contain no embedded
spaces. Libname can also be a string-constant, string-variable, or substring.

owner A one to three character alphanumeric value, that must begin with an
alphabetic character and contain no embedded spaces. Owner can also be a
string-constant, string-variable, or substring.

period A numeric value in the range 0 - 999. Period can also be a constant, vari
able, or substring.

pfkey A numeric value in the range 1 - 32. Pfkey can also be a constant, variable,
or substring.

prname The parameter reference name is used in the DISPLAY or ENTER statement
to identify the parameters specified in that statement.

refkey A special type of keyword identifying a field in a labelled DISPLAY or
ENTER statement preceding the current statement. The value associated
with this keyword in the referenced statement is to be obtained for the cur
rent field through backward reference. A refkey consists of the label of the
referenced statement, followed by a period, and followed by the keyword
identifying the referenced field. Refkeys must be enclosed in parentheses.

2-1

spec-label

step-label

stmt-label

string-constant

substring

unit#

variable

vol name

The label of a previou.s specification statement (ENTER or DISPLAY) from
which parameters are to be obtained through backward reference for use
in the current statement.

The label of a DISMOUNT, MOUNT, PRINT, RUN, SCRATCH, SET, SUBMIT,
ASSIGN, RENAME, or PROTECT statement. Used in IF and RETURN state
ments to identify the return code to be tested.

The label of a MESSAGE, PROMPT, EXTRACT, DECLARE, ASSIGN, SET,
LOGOFF, IF, GOTO, or RETURN procedure statement.

A string of text of from 1 - 256 characters enclosed in single or double
paired quotes.

A portion of a string-variable represented by the character position defined
by "start" for a specified length. Start and length can be either integer
constants or integer-variables. Substrings are allowed wherever a string
variable is allowed, except for the following statements: DECLARE, USING,
RUN USING (as a parameter).

A numeric value in the range 1 - 099. Unit can also be a string-constant,
string-variable, or substring.

A string of from 2 to 31 characters. The first character must be an amper
sand (&). The other characters can be chosen from the characters A - Z,
a - z, 0 - 9, @, $,#,and-· Variables can be either uppercase or lowercase.
Lowercase characters are cor:werted internally to uppercase.

A one to six character alphanumeric value, that must begin with either an
alphabetic or numeric character, @, $, or # and contain no embedded
spaces. Volname can also be a string-constant, string-variable, or substring.

The syntax of each procedure follows the format below:

Capitalized Words
Lowercase Words
·=()+-·II&'" n

[]

=
=
=
=
=
=

Keywords
Terms (see above)
Required syntax
One item must be encoded
Optional item
Preceding item can be repeated

The procedure verbs with their syntax descriptions are arranged in alphabetical order in this sec
tion for easy reference.

2-2

2.1 ASSIGN

General Format:

[label:] ... ASSIGN

where:

{

integer-variable}
string-variable
substring

= {int~ger-operand}
string-operand

{~nteger-variable }} [{+}
integer-constant
step-label - {

~ nteger-va riable }]
1 nteger-consta nt
step-label

integer-operand = { [~]

string-operand = { ::~:~~~~~~=~~t} [!! { ::~:~~~~~~=t~~t }]
(ref key) (ref key)
substring substring

substring = string-variable (start [, { ~ength}])

The ASSIGN statement is used to assign values to either a variable or to a substring of a
string-variable.·

Two types of expressions are integer and string. Integer expressions are formed using + and - .
String expressions are formed using the concatenation operator (! !) . Concatenation of two operands
takes the contents of the first operand and immediately follows them with the contents of the
second operand.

A substring on the left of the = refers to the character positions within the variable into which the
assignment is made. A substring on the right of the = refers to the contents of those character
positions.

In an assignment to a string-variable or substring, the sending value is stored left justified. Excess
character positions are truncated. If the sending length is shorter than the receiving length, the
excess is blank filled.

In an assignment to an integer-variable, if the size of the sending value exceeds the receiving field
size, high order digit truncation occurs.

If a step-label is used in an expression, but it does not have an associated value, an error is issued.

The four assignments possible are as follows:

• Integer-operand to integer-variable. To assign an integer-operand to an integer-variable a
left to right evaluation of the integer-operand is performed. The resultant value is stored in
the integer-variable.

2-3

• String-operand to integer-variable. To assign a string-operand to an integer-variable the
string-operand is evaluated left to right. The resultant string must not exceed 1 6 characters
(11 maximum of which can be a sign and digits) and must be in the following format:
optional leading blanks, followed by optional sign, and followed by the digits of the integer,
followed by optional trailing blanks. An error is issued if the size or format rules are
violated. The string is converted to its integer value and is stored in the integer-variable.
Strings must be in the range -2147483648 to 2147483647.

• Integer-operand to string-variable or substring. To assign an integer-operand to a string
variable or a substring, a left to right evaluation of the integer-operand is performed. The
resultant value is converted to a string and stored in the string-variable or substring. If the
receiving field is shorter than the sending field, truncation occurs from the right. The string
consists only of the significant digits in the integer, and if negative, is preceded by a minus
sign (if zero, then the string is '0').

• String-operand to string-variable or substring. To assign a string-operand to a string
variable or a substring, the string-operand is evaluated left to right. The resultant string is
stored in the string-variable or substring. If the receiving field is shorter than the sending
field~ truncation occurs from the right.

2-4

2.2 DECLARE

General Format:

[label:] ... DECLARE variable [, variable] ... [AS] {STRING (n)} [INITIAL {~tring-constant }]
INTEGER integer-constant

The DECLARE statement defines variables that are to be used within the procedure. It also specifies
the type of the variables and their initial values. Two types of variables can be declared: STRING and
INTEGER.

STRING defines fixed length string-variables with length n. The value of n must be 1 - 256. If the
INITIAL clause is not specified, the initial value of the variable is all blanks.

INTEGER defines int_eger-variables. They are full-word signed integers. If the INITIAL clause is not
specified, the initial value of the variable is zero. The integer specified for the initial value must be in
the range -99999999 to 99999999.

If the INITIAL clause is specified, the initial value must agree in type with the declared variable.

When multiple variables are declared in the same statement, they all have the same type, length,
and initial value.

The DECLARE statement is an executable statement. It must be executed prior to the use of any
variables declared in the statement. Variables can be redeclared; if duplicate declarations are made,
the most recently executed declaration is used.

2-5

2.3 DISMOUNT

Format 1:

[label:] ... DISMOUNT [DISK] volname

Format 2:

[label:) ... DISMOUNT TAPE volname

The DISMOUNT statement is used to dismount a mounted disk or tape volume. Its function is anal
ogous to the DISMOUNT command issued interactively through the Command Processor. The
DISMOUNT statement is particularly useful for automating dismounts for background processing
and generally is used in conjunction with the MOUNT statement.

If the optional label is provided, a return code equal to that supplied by the DISMOUNT SVC is
associated with the label. (Refer to the appendix for return code values.) This return code can be
used for conditional branching by other procedure statements.

Unlike the DISMOUNT command issued interactively through the Command Processor, the
DISMOUNT statement does not generate an error display if the specified volume cannot be
dismounted.

The disk volume type (DISK) is not optional for
disk volumes named DISK. Therefore, a disk
volume named DISK is dismounted in a procedure
through the statement DISMOUNT DISK DISK.

2-6

2.4 DISPLAY

General Format:

[label:] ... DISPLAY
{

prname }
inner-label

[

ke 1 _ {value1 }
Y - (refkey1)

(spec-label)

[{ value2 }] l ' key2 = (refkey2) ···

The DISPLAY statement is used to override current default values for a specified GETPARM
request. This statement is also used to display a prompt enabling the user to supply file assignments
or options that are variable at runtime. A DISPLAY statement is always part of the same procedure
step as the RUN statement it follows.

Any values supplied by a DISPLAY statement override defaults specified in the corresponding
GETPARM request. When the GETPARM prompt is displayed, these values are displayed as defaults,
along with any GETPARM-specified default values that have not been overridden. If a DISPLAY state
ment uses the label of an earlier ENTER or DISPLAY statement for a backward reference, any fields in
the GETPARM request associated with this DISPLAY statement, whose keywords correspond to
keywords in the backward-referenced statement, receive the values specified in the backward
referenced statement. (Default values in the GETPARM request are replaced by values from the corre
sponding fields in the referenced statement.)

Fields in the GETPARM request whose keywords have no match in the backward-referenced state
ment are not changed. An individual field for which a refkey is specified in. the DISPLAY statement
receives the value associated with the keyword referenced by that refkey in the backward-referenced
statement.

In a DISPLAY statement a key may contain hyphens.

When the corresponding GETPARM request is displayed, the user can change any parameters a
DISPLAY statement provides. When a DISPLAY statement is used by other statements to obtain
values in a backward reference, the values obtained are those the user enters or modifies, rather than
those the DISPLAY statement specifies.

2-7

2.5 ENTER

General Format:

{ } []

[

{ value 1 } [rname ke 1 = ke 2 =
[label:] ... ENTER fnner-label [pfkey] [,] Y (refkey1) ' Y

(spec-label)

{ value2 }] l (refkey2) . ···

The ENTER statement is used to supply parameters for a GETPARM request without generating a
workstation transaction. Executing an ENTER statement is the equivalent of either typing in values
solicited by the GETPARM request and keying ENTER, pressing a legal PF key, or keying ENTER with
out modifying displayed default values. Each ENTER statement can satisfy one GETPARM request.
ENTER is always part of the procedure step defined by the RUN statement it follows.

Values specified in an ENTER statement are supplied to the appropriate fields in the corresponding
GETPARM request, overriding any defaults specified for those fields in the GETPARM prompt itself.
Fields for which no values are provided in the ENTER statement retain the default values specified in
the GETPARM prompt. If the parameter information supplied by ENTER is correct and completely
satisfies .the GETPARM request, then no workstation transaction occurs. If, however, the information
provided by ENTER is illegal or inadequate, a request for correction is displayed at the workstation.

In an ENTER statement a key may contain hyphens.

An ENTER statement can use the label of an earlier ENTER or DISPLAY statement for backward
reference. In this case, those fields in the GETPARM request associated with the current ENTER state
ment whose keywords correspond to keywords in the referenced statement receive values from the
referenced statement. (Defaults specified in the GETPARM request are overridden.) Fields in the
GETPARM request whose keywords have no match in the referenced statement are not changed.
Any individual keyword for which a refkey rather than a value is specified in the ENTER statement,
receives the value associated with the keyword referenced by that refkey in the backward-referenced
statement.

If an erroneous ENTER statement results in a prompt requesting correction by the user, the values
associated with each keyword in the ENTER statement are those modified by the user rather than
those specified in the ENTER statement itself. Thus, when subsequent backward reference to this
statement is made by other statements, the user-corrected values are obtained .

.--------- NOTE---------

The value of a PF key cannot be passed from one
ENTER statement to another through backward
reference. Each ENTER statement must specify its
PF key value(s).

2-8

COBOL Considerations

The COBOL verbs ACCEPT and DISPLAY issue GETPARMS that can be satisfied through the
procedure statement ENTER.

The prname associated with the GETPARM request issued by ACCEPT is ACCEPT. To supply
values for an ACCEPT statement through an ENTER statement, the prname is ACCEPT, the keyword
is the first 8 characters of the program-defined field name associated with the COBOL ACCEPT
statement, and the value is any user-supplied value.

The prname associated with the GETPARM request issued by the COBOL DISPLAY statement is
DISPLAY. The use of ENTER in this case restricts the DISPLAY from the workstation.

2-9

2.6 EXTRACT

Format 1:

[label:] ... EXTRACT variable = key1 [, variable = key2] ...

Format 2:

[label·] EXTRACT a·nteger-vara·able = {BLOCKS ALLOCATED FOR}
. . . . RECORDS USED BY

{
filename [IN libname] [ON volname] }
(spec-label)

The EXTRACT statement is used to extract information from the system and store it in variables.
The information can be one of the following:

• Items available from the EXTRACT SVC
• Either the number of blocks allocated for a file, or the number of records used in a file

The Format 1 , the EXTRACT statement function is analogous to the EXTRACT SVC executed with
the specified keywords. The keywords identifying fields for which data can be extracted are as
follows:

CURLIB PROGLIB SYSLIB FILE CLAS TAPEIO USERNAME
CURVOL PROGVOL SYSVOL FORM# DISKIO USERID
INLIB RUNLIB SYSWORK LINES PRINTIO VERSION
INVOL RUNVOL WORKLIB PRINTER OTIO TASK#
OUTLIB SPOOLIB WORKVOL. PRNTMODE WSIO ws
OUTVOL SPOOLVOL TASKTYPE PRTCLASS

The restrictions for the lengths of variables are as follows:

• If the receiving string-variable is too short to contain the data, the data is truncated from
the right.

• If the receiving string-variable is longer than the data, the variable is blank filled on the
right.

• Integer results are right justified, zero filled in the variable.

The procedure writer must declare all variables in the procedure. A string-variable can receive data
for all the keywords (listed previously). An integer-variable can receive data for the following
keywords:

TAPEIO
DISKIO

PRINTIO
OTIO

WSIO
ws

TASK#
FORM#

2-10

LINES
PRINTER

To extract the blocks allocated, the system sets the variable to the number of blocks allocated for
the referenced file. If the file does not exist, the value -1 is assigned.

To extract the records used, the system sets the variable to the number of records used by the
reference file. If the file does not exist, the value -1 is assigned.

In Format 2, if IN is not specified, OUTLIB is assumed. If ON is not specified, OUTVOL is assumed.

2-11

2.7 GOTO

General Format:

{
step-label}

[label:] ... GOTO stmt-label

GOTO can be used as a stand-alone statement and as a clause in an IF statement. When GOTO is
used as a separate statement, it performs an unconditional branch to a specified statement. When
used in an IF statement, it performs a branch conditioned by the result of the IF test.

Multiple statements can be labelled by the same label. Therefore, the following rules are used to
determine which statement is the target of the branch:

• The first occurrence of a label following the GOTO statement in the procedure text, if it
exists, is the target.

• Otherwise, the closest preceding occurrence of the label preceding the GOTO statement in
the procedure text, if it exists, is the target.

• If neither rule applies, then an error has occurred.

The user should note that a backward GOTO works differently from a backward reference. The
backward GOTO references the closest textual occurrence of a label, while the backward reference
references the most recently executed occurrence of a labelled DISPLAY or ENTER statement.

2-12

2.8 IF

Format 1:

{

integer-variable }
[label:] ... IF integer-constant

EQ
NEQ
LT
NE
NLT
GT
NGT
LE
GE

{

~nteger-variable }
integer-constant
step-label

Format 2:

step-label

GOTO

RETURN

{
step-label}
stmt-label

<
<=
>
>=
<>

[{

integer-variable
CODE = integer-constant

step-label
{

integer-variable }] } l
integer-constant ...
step-label

.[label:] ... IF strbing-_constant
{

string-variable }

su string

EQ
NEQ
LT
NE
NLT
GT
NGT
LE
GE

{

str~ng-variable }
string-constant
substring
(refkey) (refkey)

GOTO

RETURN

{
step-label}
stmt-label

<
<=
>
>=
<>

[{

integer-variable
CODE = integer-constant

step-label

2-13

{

integer-variable }] }]
integer-constant ...
step-label

Format 3:

[label:] ... IF [Non EXISTS FILE {t:~~:;,e}
(spec-label)

GOTO

{{
libname}

LIBRARY (refkey)
(spec-label)

{

volname }
VOLUME (refkey)

(spec-label)

{
step-label }
stmt-label

IN {
libname}
(ref key)

ON { vol name}}
(refkey) .

ON { volname}}
(ref key)

integer-variable
RETURN

[{

integer-variable
CODE = integer-constant [] l >

+ {integer-constant} ... }
step-label step-label

')

The IF statement is used to compare two operands and either branch to another statement or
return to the invoker of the procedure if the condition is true. The comparisons are relational, i.e.,
equal, less than, greater than, not equal, not less than (greater or equal), and not greater than {less or
equal). The comparisons can be numeric (among integer-variables, integer-constants, or step-labels),
or string (among string-variables, string-constants, or substring).

The IF statement is used to test return code values and make decisions that affect the sequence of
procedure step execution. The return code of the procedure step referenced by a step-label is com
pared, according to the specified relation, with an integer value the procedure writer furnishes. If the
relation is true, the GOTO or RETURN clause is executed. Otherwise, the procedure continues with
the next statement.

If the user specifies the GOTO clause, a branch is taken to the statement identified by step-label or
stmt-label when the te~ted relation is true. If the user. specifies the RETURN clause, the procedure is
terminated when the tested relation is true. The CODE clause can be used to produce a nonzero
return code upon procedure termination.

If the procedure is run from the Command Processor, this return code is displayed. If the procedure
is run from another procedure, the return code can be used and tested by the outer procedure.

In Format 1, a numeric comparison is done.

In Format 2, a character comparison is done using the ASCII collating sequence. If the lengths of
the operands are unequal, the comparison occurs as if the shorter operand is extended on the right
with blanks until the length equals that of the longer operand.

In Format 3, if FILE is specified, and the file named by filename IN libname ON volname exists, then
the associated GOTO or RETURN is executed. Otherwise, the next statement in the procedure is
executed.

2-14

In Format 3, if LIBRARY is specified, and the library named by libname ON volname exists, then the
associated GOTO or RETURN is executed. Otherwise, the next statement in the procedure is
executed.

In Format 3, if VOLUME is specified, and the volume named by volname exists, then the associated
GOTO or RETURN is executed. Otherwise, the next statement in the procedure is executed.

When NOT is specified in Format 3, the previous procedures for FILE, LIBRARY, and VOLUME are
reversed.

In Format 3, a file, library, or volume does not exist if one of the following is true:

• The specified volume is being used exclusively by another user
• There is insufficient buffer space to perform the IF EXISTS operation
• There is a VTOC error
• A disk 1/0 error occurs
• The specified volume is not mounted
• The specified file and/or library cannot be found on the specified volume

2-15

2.9 LOGOFF

General Format:

[label:] ... LOGOFF

The LOGOFF statement terminates the user's current session. All programs and procedures whose
execution is initiated by the user's current RUN command are terminated, their files are closed, and a
Command Processor LOGOFF command is issued.

When programs or procedures are run from the
EDITOR or a menu, the LOGOFF statement returns
control to the EDITOR or menu rather than cancel
ling the user's session. This feature is particularly
useful when running programs in a test
environment.

2-16

2.10 MESSAGE

General Format:

[label:] ... MESSAGE

tCENTER] [[attribute]
{

string-constant }
integer-constant
string-variable
integer-variable

[{

string-constant }
[CENTER] [attribute] int~ger-c~nstant

strmg-vanable
integer-variable

[{

string-constant } l I }
, [attribute] int~ger-c~nstant

strmg-vanable '
integer-variable

[{

string-constant } l I
, [attribute] int~ger-c~nstant ...

stnng-vanable
integer-variable

The MESSAGE statement displays text on the workstation and continues execution of the proce
dure. The procedure writer can arrange variables, constants, and text strings on the screen using a
simple statement format. The MESSAGE statement allows the procedure writer to specify any
number of the following:

• Constants (either integer or string).

• Variables (either integer or string).

• End of line characters.

• Attributes for constants or variables. The attributes available are UPPER, UPLOW,
NUMERIC, BRIGHT, DIM, BLINK, BLANK, and LINE. The user should note that UPPER,
UPLOW, and NUMERIC are used only with variables that are to be modifiable.

• Variables (either integer or string) to be used to receive the value of PF key or ENTER.

The user can create up to 24 lines of 79 characters consisting of text and variable values inter
mixed. Lines longer than 79 characters are automatically truncated from the right. If the user creates
more than 24 lines, an error occurs. A semicolon (;) is used to mark the end of the constants and
variables which are to appear on one line.

If CENTER is not specified for a line, that line is left justified beginning in column 2. If CENTER is
specified for a line, the text on that line is horizontally centered.

The MESSAGE statement produces lines that are centered vertically on the workstation. For exam
ple, if the user creates four lines then the lines are displayed on lines 11 through 14 on the
workstation.

If attributes are specified, they apply only to the associated constant or variable. If conflicting attri
butes are specified (for example, both BRIGHT and DIM for the same field), the last specified attribute
is used.

2-17

When at least one of two contiguous fields is specified with attributes, one space is introduced
between them. When no attribute is specified for a field, the display is dim protect all noline. When
neither of two contiguous fields is specified with attributes, no space is introduced between them.

An integer-variable is displayed as a character string consisting of a minus sign if the integer is
negative, followed by the significant digits in the integer. Zero is displayed as 'O'.

When executed, the MESSAGE statement clears the current screen and displays the newly created
screen, and execution of the procedure continues. The new screen remains until either another
MESSAGE statement is executed, or until a RUN statement is executed. Prior to a RUN, the current
screen is saved and, after the RUN returns, it is redisplayed on the workstation.

If MESSAGE is issued and the workstation is not available (the workstation is opened but not
closed by other than the Procedure Interpreter} or the procedure is running in background, then the
MESSAGE is not displayed and execution of the procedure continues.

2-18

2.11 MOUNT

General Format:

DISK . IBM LABEL

[{

STANDARD} l
[label:) ... MOUNT hAPE] volname ON unit# [WITH] ~~SI {LABELS}

[{

SHARED }
[FOR] EXCLUSIVE

PROTECTED
RESTRICTED [REMOVAL]

USAGE l
The MOUNT statement is used to mount a disk or tape volume. Its function is analogous to that of

the MOUNT command on the Command Processor. The MOUNT statement is particularly useful for
automating logical mounts for background processing and is used in conjunction with the
DISMOUNT statement.

For disk mounting, the user can optionally specify a label type (STANDARD or NO) and a usage
parameter (SHARED, EXCLUSIVE, PROTECTED, or RESTRICTED REMOVAL). Similarly, the user can
optionally specify a label type (STANDARD, IBM, ANSI, or NO) and usage parameter (SHARED or
EXCLUSIVE) for tape mounting. If the MOUNT statement is labelled, a return code equal to that sup
plied by the MOUNT SVC is associated with the label. (Refer to the appendix for the return code
values.) This return code can be used for conditional branching by other procedure statements.

When mounting is performed through background processing, a display requesting the mount is
forced at the highest priority Operator's Console that is available. (Refer to the VS System Operation
Guide.) This display requests that the operator perform the physical mounting operation.

Background processing jobs cannot mount a
volume on the removable volume of a disk unit
containing the system volume.

Unlike the MOUNT command issued interactively through the Command Processor, the MOUNT
statement does not generate an error display if the specified volume cannot be mounted.

The volume type (DISK or TAPE) is not optional
for disk volumes named DISK or tape volumes
named TAPE. For example, a disk volume named
DISK is mounted in a procedure through the state
ment MOUNT DISK DISK ON unit#.

2-19

2.12 PRINT

General Format:

[label:] ... PRINT { {;~~f~:;,~}
(spec-label)

[, CLASS = class]

[, COPIES = copies]

[IN {:~~~:e~;)}] [ON { ~~f~:;:i} l}
[. STATUS = {~gl~L}] [, FORM# =form]

[

I {DISPOSITION} =
DISP {

SCRATCH}]
REQUEUE
SAVE

The PRINT statement permits a print file to be entered into the PRINT Queue from within a proce
dure. Its function is analogous to that of the PRINT option of the Manage FILES/LIBRARIES command
on the Command Processor.

If the optional label is provided, a return code equal to that supplied by the PRINT SVC is associated
with the label. This return code can be used for procedure statement conditional branching. If the
library and volume for the print file are not specified, the user's default print library and volume are
used. (The default print volume can be specified through the Command Processor or Procedure lan
guage SET statement).

In addition to the required parameters, the user can optionally specify the print class, status (HOLD
or SPOOL), form number, number of copies, and disposition (SAVE, REQUEUE, or SCRATCH) of the
print file. The user can also specify class, status, form number, copies, and disposition as
string-variables.

2-20

2.13 PROCEDURE

General Format:

{
PROC }
PROCEDURE

[comment]

The PROCEDURE (or PROC) statement defines a procedure; everything following the letters
PROCEDURE or PROC on the same line is interpreted as a comment. The line containing the letters
PROCEDURE or PROC must precede any procedure statement but can itself be preceded by comment
lines.

2-21

2.14 PROMPT

General Format:

[label:] ... PROMPT [PFKEY = variable]

{ [{

string-constant }
[CENTER] [attribute] integer-constant

string-variable
integer-variable

[CENTER] [[attribute] 1 string-constant }
integer-constant

l string-variable
integer-variable

[{

string-constant }]
, [attribute] int~ger-c~nstant

strmg-vanable
integer-variable

[{

string-constant }]
, [attribute] int~ger-c~nstant

strmg-vanable
integer-variable

··.J }··

··· l
The PROMPT statement is used to display information (variables and constants) on the workstation

and then to accept data for variables. The PROMPT statement allows the procedure writer to specify
any number of the following:

• Constants (either integer or string).

• Variables (either integer or string).

• End of line characters.

• Attributes for constants or variables. The attributes available are UPPER, UPLOW,
NUMERIC, BRIGHT, DIM, BLINK, BLANK, and LINE. The user should note that UPPER,
UPLOW, and NUMERIC are used only with variables that are to be modifiable.

• Variables (either integer or string) to be used to receive the value of PF key or ENTER.

The user can create up to 24 lines of 79 characters consisting of text and variable values inter
mixed. Lines that are longer than 79 characters are automatically truncated from the right. If the user
creates more than 24 lines, an error occurs. A semicolon (;) is used to mark the end of the constants
and variables which are to appear on one line.

If CENTER is not specified for a line, that line is left justifjed beginning in column 2. If CENTER is
specified for a line, the text on that line is horizontally centered.

The PROMPT statement produces lines that are centered vertically on the workstation. For exam
ple, if the user creates four lines, then the lines are displayed on lines 11 through 14 on the
workstation.

If the user specifies attributes, they apply only to the associated constant or variable. If conflicting
attributes are specified (for example, both BRIGHT and DIM for the same field), the last specified· attri
bute is used.

2-22

To make a field modifiable, the attributes UPPER, UPLOW, or NUMERIC must be specified. UPPER
and UPLOW cannot be used on integer-variables. Only string-variables can be made modifiable.

If the same modifiable field is displayed more than once in a single prompt, e.g., PROMPT UPLOW
&X, UPLOW &X, then the value supplied (by the user at the workstation) to the first field, i.e., the
uppermost, leftmost, duplicate, and modifiable field on the screen, is used for the assignment.

Modifiable integer-variables display as eleven pseudoblanks. This allows room for the full range
-214 7 483648 to 214 7 48364 7. Values entered outside of this range cause the field to btink and the
workstation to beep. Data can be entered with leading or trailing signs but no space between sign and
number.

When at least one of two contiguous fields is specified with attributes, one space is introduced
between them. When no attribute is specified for a field, the display is dim protect all noline. When
neither of two contiguous fields is specified with attributes, no space is introduced. between them.

An integer-variable is displayed as a character string consisting of a minus sign if the integer is
negative, followed by the significant digits in the integer.

To answer a PROMPT, the user presses either ENTER or a PF key. After the user presses a key, the
screen is cleared automatically. Then the message uProcedure XXX In Progress" is displayed, and
execution of the procedure continues.

When executed, the PROMPT statement clears the current screen and displays the newly created
screen, and execution of the procedure continues. The new screen remains until either another
PROMPT statement is executed, or until a RUN statement is executed. Prior to a RUN, the current
screen is saved and after the RUN returns it is redisplayed on the workstation.

If a PROMPT is issued and the workstation is open (opened, but not closed by other than the Proce
dure Interpreter), an error is automatically issued. If a PROMPT is issued by a procedure running in
background, an error is issued.

The user should note that there is no relationship between PROMPT and GETPARM, i.e., the proce
dure writer cannot satisfy a PROMPT from a procedure.

2-23

2.15 PROTECT

Format 1:

[{
volname}]}

ON (refkey3) [label:] ... PROTECT{{;~~~=;,~} [IN {:~~~:e~~)}]
(spec-label)

TO {[OWNER = owner] [.PERIOD = period] [.FILECLAS = fileclass]}

Format 2:

{{
libname}

[label:] ... PROTECT LIBRARY (refkey1) [J vol name}]}
ON l(refkey2)

(spec-label)

TO {[OWNER = owner] [,PERIOD = period] [,FILECLAS = fileclass]}

The first format of the PROTECT statement is used to protect a file, and the second format is used
to protect a library.

The PROTECT statement is used to modify the disk file or library protection information, and is
analogous to the PROTECT option of the Manage FILES/LIBRARIES command on the Command Proc
essor. If the optional label is provided, a return code equal to that supplied by the PROTECT SVC is
associated with the label. (Refer to the appendix for the return code values.) This return code can be
used for procedure statement conditional branching. If the optional library and/or volume (Format 1)
or volume (Format 2) are not specified in the PROTECT statement, the OUTLIB and OUTVOL defaults
from SET are used automatically.

Unlike the PROTECT option of the Manage FILES/LIBRARIES command issued interactively
through the Command Processor, the PROTECT statement does not generate an error display if the
protection status of the file or library cannot be modified.

r---------- NOTE----------

Due to syntax ambiguity, the PROTECT statement
cannot be used to protect a file named LIBRARY.

2-24

2.16 RENAME

Format 1:

[label:] ... RENAME

TO

Format 2:

{{ :;~~=;,~ 1}
(spec-label)

{
filename2}
(refkey4)

l {libname1}] [{volname }] }
IN (refkey2) ON (refkey3)

[IN {
libname2}]
(refkey5)

[label:] ... RENAME LIBRARY {{:~~~:e~~:} [{
volname}] }

ON . (refkey2)

TO

(spec-label)

{
libname2}
(refkey3)

The first form of the RENAME statement is used to rename a disk file, and the second form is used
to rename a library. RENAME is analogous to the RENAME option of the Manage FILES/LIBRARIES
command on the Command Processor.

If the optional label is specified, a return code equal to that supplied by the RENAME SVC is asso
ciated with the label. (Refer to the appendix for the return code values.) This return code can be used
for conditional branching within a procedure.

If the optional library and/ or volume (Format 1) or volume (Format 2) are not specified through the
RENAME statement, the OUTLIB and OUTVOL defaults from SET are used automatically.

Libname2 must follow the syntax rules for a VS library name. When libname2 is specified in
Format 1, the old file and library name of the file are renamed to filename2 and libname2, respec
tively. The user should note that this is equivalent to moving a file from one library to another on the
same volume.

Unlike the RENAME option of the Manage FILES/LIBRARIES command issued interactively through
the Command Processor, the RENAME statement does not generate an error display if the file cannot
be renamed.

Due to syntax ambiguity, the RENAME statement
cannot be used to rename a file named LIBRARY.

2-25

2.17 RETURN

General Format:

[label:] ... RETURN [CODE
{

~nteger-variable
integer-constant
step-label [{

integer-variable }] } l
+ integer-constant ···

step-label

RETURN can be used either as a separate statement or as a clause in the IF statement. In either
case, it unconditionally terminates procedure execution. It is not, however, required to terminate a
procedure.

If the CODE clause is specified, a nonzero return code is returned upon procedure termination. The
return code can be an integer value the procedure writer specifies or can be the return code a proce
dure step identified by step-label generates. If the procedure is run from the Command Processor,
this return code (if nonzero) is displayed at the workstation upon procedure termination. If the proce
dure is run from another procedure, the return code is available to the outer procedure for testing in
an IF statement.

·2-26

2.18 RUN

General Format:

{{
filename}

[label:] ... RUN (refkey1)
(spec-label)

[
USING {variable }

constant

{
libname }]
(refkey2) [

ON {volname} l}
(refkey3)

{
variable }]
constant ...]

The RUN statement is used to run a program or procedure. Its function is analogous to that of the
RUN command on the Command Processor.

If the IN phrase is specified, but the ON phrase is not, the specified file is searched for in the speci
fied library on PROGVOL. If that file -does not exist, the specified file is searched for in the specified
library on SYSVOL. If that file does not exist, an error is issued.

If the ON phrase is specified, but the IN phrase is not, the specified file is searched for in PROGLIB
on the specified volume. If that file does not exist, the specified file is searched for in SYSLIB on the
specified volume. If that file does not exist, an error is issued.

The RUN statement defines a procedure step. The specification statements, DISPLAY and ENTER,
can be used to supply parameters needed by a program run with a procedure RUN step. All DISPLAY
and ENTER statements following a RUN statement, up to the first statement other than DISPLAY or
ENTER, are part of the RUN step, and are associated with GETPARM requests issued by the program
being run.

If the spec-label (or refkey) is specified in place of the name and/or location of a file, the DISPLAY
or ENTER statement identified by this label is used to supply the required file parameters through
backward reference.

USING allows the programmer to pass parameters by reference to a program or another proce
dure. When a constant is passed, a copy is made and a pointer to the copy is passed.

2-27

2.19 SCRATCH

Format 1:

{{
filename}

[label:] ... SCRATCH (refkey1)
[{

libname}]
IN (refkey2) [{

volname}]} ON (refkey3)
(spec-label)

Format 2:

[label:] ... SCRATCH LIBRARY (refkey1) {{
libname}

[{
volname}] }

ON (refkey2)
(spec-label)

Format 1 is used to scratch a disk file, and Format 2 is used to scratch a library. SCRATCH is analo
gous to the SCRATCH option of the Manage FILES/LIBRARIES command on the Command Processor.

If the optional label is used, a return code equal to that supplied by the SCRATCH SVC is associ
ated with the label. (Refer to the appendix for an explanation of the return codes.) This return code
can be used for conditional branching by other procedure statements. If the optional library and/ or
volume are not specified in the SCRATCH statement, the OUTLIB and OUTVOL defaults from SET
are used automatically.

Unlike the SCRATCH option of the Manage FILES/LIBRARIES command issued interactively
through the Command Processor, the SCRATCH statement does not generate an error display if the
file cannot be scratched .

.---------NOTE ----------.

Due to syntax ambiguity, the SCRATCH statement
cannot be used to scratch a file named LIBRARY.

2-28

2.20 SET

General Format:

[label:] ... SET { setkey1 = value1 [,setkey2 = value2] ... }

The SET statement is used to specify default names for commonly used libraries and volumes, to
specify the default file class, and to select print mode and jQb submittal options. Default values set
through the SET statement are used automatically as defaults in all subsequent procedure
statements.

The SET statement is analogous to the SET Usage Constants command on the Command Proces
sor. All parameters specifiable with the SET statement can, with the exception of PROGLIB and
PROGVOL, also be specified with the SET Usage Constants command. For a discussion of these
parameters, refer to the VS Programmer's Introduction.

PROGLIB and PROGVOL are unique to the SET statement. They identify the library and volume that
are to serve as the default program library and volume for all programs the procedure runs. (RUNLIB
and RUNVOL identify the default program library and volume to be used for programs run with the
RUN command from the Command Processor.} If PROGLIB and PROGVOL are not specified, the
library and volume in which the procedure itself is located serve as the default program library and
volume for all programs run by the procedure.

Setkey is a keyword identifying a field for which a default parameter value is to be specified. The
legal keywords are as follows:

INLIB
INVOL
OUTLIB
OUTVOL
RUNLIB
RUNVOL

PRO GLIB
PROGVOL
WORKVOL
SPOOLIB
SPOOLVOL
PRTFCLAS

PRNTMODE
PRINTER
PRTCLASS
FORM#
FILE CLAS
LINES

JOBQUEUE
JO BC LASS
JOBLIMIT

All parameters except PROGLIB and PROGVOL become default parameters for the remainder of
the user's session, remaining in effect after the procedure is terminated.

---------NOTE-----------.

The system defines the work library default name.
The default name for this library cannot be modi,..
fied by the user with a SET statement. For this
reason, WORKLIB is not listed as a legal keyword
even though it appears in the File Defaults display
of the SET Usage Constants command of the
Command Processor.

2-29

2.21 SUBMIT

General Format:

[label:] ... SUBMIT { { r,~~~:~~e}
(spec-label)

{
vol name}]}
(refkey3)

[AS procedure-id] [, CLASS = class] [. STATUS {~~~o} J

[DUMP = { ~i~GRAM }] [· CPULIMIT = {:::mm:ss}]

[{
CANCEL}] , ACTION = WARN
PAUSE

r · { g:;~OSITION} = REOUEUE 1

The SUBMIT statement is used to submit a procedure into the PROCEDURE Queue for execution
on a noninteractive basis. Its function is analogous to that of the SUBMIT command on the Command
Processor.

If the optional label is provided, a return code equal to that supplied by the SUBMIT SVC is asso
ciated with the label. This return code can be used for procedure statement conditional branching.
(Refer to the appendix for the return code values.)

The SUBMIT statement allows the library and/or volume to be specified. If the IN phrase is speci
fied, but the ON phrase is not, the specified file is searched for in the specified library on PROGVOL.
If that file does not exist, the specified file is searched for in the specified library on SYSVOL. If that
file does not exist, a return code is issued.

If the ON phrase is specified, but the IN phrase is not, the specified file is searched for in PROGLIB
on the specified volume. If that file does not exist, the specified file is searched for in SYSLIB on the
specified volume. If that file does not exist, a return code is issued.

If neither the IN phrase nor the ON phrase is specified, the specified file is searched for in PROGLIB
on PROGVOL. If it is not found, SYSLIB and SYSVOL are used as inputs to the SUBMIT SVC.

Class, status, dump, cpulimit, action, and disposition can be specified as string-variables.

In addition to the required parameters, the user can optionally specify a number of characteristics:
a queueing status for the submitted procedure (RUN or HOLD); whether or not a program dump is
produced on abnormal termination (PROGRAM, YES, or NO; PROGRAM indicates program default);
a CPU time limit, an action to be taken if the CPU time limit is exceeded (CANCEL, WARN, or PAUSE,
valid only when the CPU time limit is specified and is nonzero); and whether or not the procedure is
to be queued again upon completion.

2-30

The maximum CPU processing time allowed can be specified in hours, minutes, and seconds, or in
seconds alone. The values specified must fall within the following ranges: hours: 0 - 99; minutes:
0- 59; seconds: 0 - 59; seconds only: 0 - 359999 .

.----------- NOTE ---------

If an ACTION is specified and the CPULIMIT is 0
or is not specified, the procedure cancels and dis
plays an error message.

2-31

2.22 USING

General Format:

{
STRING (n)}

USING variable [, variable] ... AS INTEGER

[· variable [. variable] ... ·AS { ~::~~~R (n)}]

The USING statement declares the formal parameters to a procedure. This statement is optional. If
the statement is present, it must immediately follow the PROCEDURE or PROC statement.

The USING statement defines the parameters passed to the procedure by reference. Any program
that uses appropriate types and lengths of parameters can call to a procedure and pass data.

The number of parameters passed must equal the number of parameters declared in the USING
statement.

The value n is an integer between 1 and 256, inclusive.

2-32

APPENDIX
VS SYSTEM UTILITIES AND PROCEDURE
LANGUAGE STATEMENTS RETURN CODE VALUES

All programs run on the VS generate return codes which, if other than zero, can be displayed on
the workstation after program completion. Some system utility programs, along with the procedure
statements DISMOUNT, MOUNT, PROTECT, RENAME, SCRATCH, and SUBMIT generate return
codes that indiCate success or failure and can indicate the type of failure that occurred. These non
zero return codes and their meanings are listed below.

Program Name

BACKUP

COPY

DISKINIT

EZFORMAT

Return Code

100
104
108
112
116
120
124
128
132
136
140
144

4
8

12
16
20
24
28
32

1-4
5-7

8-16

VS SYSTEM UTILITIES

Meaning

Number of errors found

No copy took place
Some program privileges lost
Disk error: run LISTVTOC
No space in output volume
1/0 error on output
Boundary violation
Key out of sequence
Duplicate key
The primary extent was exceeded
There was a OMS error
Duplicate file name encountered
Copy completed in 1/0 mode after primary
extent was exceeded

Termination by user
Insufficient space in 1/0 buffer
Mount operation unsuccessful
Bad disk sector encountered
Bad MOUNT SVC return code
Bad FREEBUF return code
Bad XIO return code
Disk 1/0 error

Warning; program will probably run
Severe error; program will not run correctly
Fatal error; object code not generated

A-1

Program Name

LINKER

LISTVTOC

SORT

All compilers

VS SYSTEM UTILITIES

Return Code

4

8

4
8

12
16

4

8
12
16
20
24

1-4
5-8

9-16

Meaning

Either unsatisfied external reference(s), or labeled
COMMON sections of unequal lengths encoun
tered (FORTRAN only)
1 . Multiple entry points with the same name

encountered

2. Static section in segment 0 address space
encountered

3. Initialized blank COMMON static section
encountered (FORTRAN only)

4. Illegal replacement attempted (possible only in
object programs generated in FORTRAN). This
error occurs when a code or static section and
a labeled or blank COMMON section of the
same name are encountered

Extent lost on disk
Error on file label
Error in library directory
Error in VTOC

No records to be sorted: input records did not
meet selection criteria, or input file specified by
user was empty
Insufficient space in stack or 1/0 buffer
Record size is more than 1 024 bytes long
Invalid sort key
Unexpected program check
Input records out of order in file to be merged;
program cannot proceed

Warning
Severe error; program will not execute correctly
Fatal error; program will not execute

A-2

Sta1ement Name

DISMOUNT

MOUNT

PROCEDURE LANGUAGE STATEMENTS

Return Code

4

8
12
16
20
24
28
32

4

8

12

16

20
24
28

32
36

40

44
48
52

56

60

64

68

72

76

80
84

Meaning

Input volume name is blank, or bytes 0 - 1 in the
input are nonzero
Volume cannot be found
Volume cannot be dismounted
Device detached
Volume in use by a user or the operating system
Volume reserved by another user
GETMEM (SVC) pool failure
Device is reserved by another task

Successful mount, but new volume label type
does not agree with the input parameters
Sucessful mount, but the new volume name is not
the volume name requested
Disk or tape 1/0 error detected while reading the
new volume label, or the new volume has a bad
VTOC. VCBSER is set to blank
Device not a disk or tape, or the device number is
not valid
Device detached
Volume type (REM or FIX) not found
Request to mount unlabelled volume on disk other
than diskette
Input volume name is blank
Volume already mounted. Also set for a duplicate
volume name
Volume is currently in use by a user or the operat
ing system
Volume reserved by another user for exclusive use
1/0 buffer is insufficient to perform the mount
Unable to allocate space for tape 1/0 control
blocks
Invalid request: work and/or spool filing requested
in a nonlabeled volume
Invalid request: nonstandard addressing
attempted with standard label option or on a hard
sectored device
Wrong media: soft-sectored diskette inserted into
a device for hard-sectored diskettes only
Wrong · media: hard-sectored diskette inserted
into a device for soft-sectored diskettes only
Wrong media: hard-sectored diskette inserted for
a nonstandard addressing request
Wrong addressing mode: caller requested
MOUNT for standard addressing but diskette is
nonstandard addressing
Device reserved by another user
PF 1 6 was entered when the mount message was
displayed

A-3

Statement Name

PROTECT

RENAME

SCRATCH

PROCEDURE LANGUAGE STATEMENTS

Return Code

4
8

12
16
20
24
28
32
36
40
44
48
52

56

4
8

12
16
20
24

28
32
36
40
44
48
52

56

60
64

4
8

12
16
20
24

28
32
36
40
44
48
52

Meaning

Volume not mounted
Volume used exclusively by other user
All buffers in use, no protection change
Library not found
File not found
Update access denied, no protection change
(Unused)
File in use, no protection change
VTOC error
VTOC error
Invalid argument list address
1/0 error; VTOC unreliable
Open or protected files bypassed in protecting
library
Invalid new protection data

Volume not mounted
Volume used exclusively by other user
All buffers in use, no rename
Library not found
File not found
Update access to file protection class denied, no
rename
Unexpired file, no rename
File in use, no rename
VTOC error
VTOC error
Invalid argument list address
1/0 error. VTOC unreliable
New filename or library name already exists, no
rename
New filename invalid (or first character #), no
rename
VTOC is currently full
Reserved bits in the parameter list options byte
are nonzero

Volume not mounted
Volume used exclusively by other user
All buffers in use, no scratch
Library not found
File not found
Update access to file protection class denied
(single-file scratch only)
Unexpired file, no scratch (single-file scratch only)
File in use, no scratch
VTOC error
VTOC error
Invalid argument list address
1/0 error; VTOC unreliable
Open, protected, and/or unexpired file(s) bypassed
in scratching library

A-4

Statement Name

SUBMIT

PROCEDURE LANGUAGE STATEMENTS

Return Code

4
8

12
16
20
24
28
32
36

Meaning

Volume not mounted
Volume in exclusive use
All buffers in use; unable to perform verification
Library not found
File not found
Improper file type
File access denied
VTOC error
VTOC error

A-5

TYPE

New Statements

New Features

Miscellaneous

DOCUMENT HISTORY

Summary of Changes for the Third Edition

DESCRIPTION

PRINT statement; permits a print
file to be queued from within a
procedure.

SUBMIT statement; permits a
procedure to be queued for nonin
teractive processing from within a
procedure.

Enhancement to SET statement;
addition of JOBCLASS,
JOBQUEUE, and JOBLIMIT.

AFFECTED PAGES

1-4,2-11

1-4,2-21,2-22

1-5,2-20

Enhancement to CODE clause of 2-1 7
RETURN and IF statements; allows
a series of values to be added to
an initial CODE value.

Modified syntax in DISMOUNT 2-3
statement; requires keyword
TAPE for tape volumes.

For a listing of system utility return
codes, refer to the VS Utilities
Reference (800-1303UT).

DH-1

TYPE

New Statements

New Features

DOCUMENT HISTORY

Summary of Changes for the Second Edition

DESCRIPTION

MOUNT statement; permits
mounting of disk and tape volumes
from within a procedure.

DISMOUNT statement; permits
dismounting of disk and tape
volumes from within a procedure.

Background processing; provides
ability to run procedures as back
ground jobs.

Enhancement to SET statement;
addition of the LINES options.

DH-2

AFFECTED PAGES

4,16,38

4, 16,31

26-27

5-7,47

backward GOTO

backward reference

comment

fileclass

filename

GETPARM

inner-label

integer-constant

keyword

label

libname

operand

owner

period

pf key

prname

GLOSSARY

The backward GOTO references the closest textual occurrence of a label.

A backward reference enables a procedure statement to obtain some or
all of its required parameters from a preceding, previously executed
DISPLAY or ENTER statement.

Any user-written message. The Procedure Interpreter interprets com
ments as blanks.

The protection class of the specified file or library. A protection class
must be one of the following: A - Z, #, $, V>. or @.

The name of the program or procedure file to be acted upon by the cur
rent statement.

A request for parameter information by a program or procedure.

The label of an ENTER or DISPLAY statement in the inner procedure of
two nested procedures, which functions as the prname of an ENTER or
DISPLAY statement in the outer procedure. An inner-label, therefore,
passes parameter values to the inner statement from the outer statement.

A whole number in the range -99999999 to 99999999.

Identifies a field in the GETPARM request, the value of which is supplied
or solicited by the current ENTER or DISPLAY statement.

An optional name up to eight characters in length that identifies a proce
dure statement for reference by other statements. A label must begin
with an alphabetic character and must be followed by a colon (:), except
when a step-label is referenced in an IF, GOTO, or ASSIGN statement, or
used in a refkey.

The name of the library containing the file to be operated upon, or the
name of the library to be operated upon.

Data that is to be operated upon by the current procedure statement.

The one to three-character user ID that identifies the owner-of-record of
the specified file or library. Must be alphanumeric, begin with an alphabetic
character, and contain no embedded spa-ces.

The retention period in days {0 - 999) for the specified file or library.

A Program Function key (1 - 32) for the GETPARM request.

A parameter reference name is a parameter solicited by a GETPARM
request.

GLOSSARY-1

program library

ref key

setkey

spec-label

step-label

stmt-label

string-constant

substring

system library

unit#

value

variable

vol name

The library containing user-written files.

A special type of keyword identifying a field in a previous ENTER or
DISPLAY statement whose value is to be obtained for the current field
through backward reference. A refkey consists of the label of the refer
enced specification statement, followed by a period, and followed by the
keyword identifying the referenced field. Refkeys must be enclosed in
parentheses.

A keyword identifying a field for which a default parameter value is to be
specified. The legal keywords are as follows:

INLIB
INVOL
OUTLIB
OUTVOL
RUNLIB
RUNVOL
PROGLIB

PROGVOL
WORKVOL
SPOOLIB
SPOOLVOL
PRNTMODE
PRINTER
PRTCLASS

PRTFCLAS
FORM#
FILE CLAS
LINES
JOBQUEUE
JOBCLASS
JO BUM IT

The label of a previous specification statement (ENTER or DISPLAY) from
which parameters are to be obtained through backward reference for use
in the current statement.

The label of a DISMOUNT, MOUNT, PRINT, RUN, SCRATCH, SET, SUBMIT,
RENAME, or PROTECT statement. Used in IF and RETURN statements to
identify the return code to be tested.

The label of a MESSAGE, PROMPT, EXTRACT, DECLARE, ASSIGN, SET,
LOGOFF, IF, GOTO, or RETURN procedure statement.

A string of text of from 1 - 256 characters enclosed in quotes.

A portion of a string-variable represented by the character position defined
by "start" for a specified length. Substrings are allowed wherever a string
variable is allowed, except for the following statements: DECLARE, USING,
RUN USING (as a parameter).

The library containing system program files (@SYSTEM@).

The number of the device on which a volume is being mounted.

A user-specified value to be supplied to the keyword, which is legal for that
particular application.

A string of from 2 to 31 characters. The first character must be an amper
sand (&). The other characters can be chosen from the characters A - Z,
a - z, 0 - 9, @, $,#,and-· Variables can be either uppercase or lowercase.
Lowercase characters are converted internally to uppercase.

The name of the volume on which the specified library is located, or the
name of the volume that is being mounted or dismounted.

GLOSSARY-2

INDEX

ASSIGN . 1-2, 1-20 to 1-21, 2-3 to 2-4
attribute . 2-1 7 to 2-1 8, 2-22 to 2-23

BACKUP return codes . A-1
background processing . 1-37 to 1-38, 2-19
backward branching . 1-29 to 1-30
backward GOTO . 1-30, GLOSSARY-1
backward reference . 1-30 to 1-33, 2-7, 2-8, GLOSSARY-1
branching . 1-26 to 1-27, 1-29 to 1-30

COBOL considerations... 2-9
CODE clause . 1-28 to 1-29, 2-26
comment lines . 1-7, 2-21, GLOSSARY-1
conditional branching . 1 -26
COPY return codes . A-1

DECLARE . 1-2, 1-20, 2-5
INITIAL clause . 1-20, 2-5

DISKINIT return codes ... A-1
DISMOUNT . 1-2, 1-25 to 1-26, 2-6

return codes . 2-6, A-3
DISPLAY . 1-2, 1-10 to 1-11, 1-19, 2-7
dummy statements . 1 -36

ENTER . 1-3, 1-10 to 1-11, 1-18 to 1-19, 2-8 to 2-9
EXTRACT . 1-3, 1-21 to 1-22, 2-10 to 2-11
EZFORMA T return codes . A-1

fileclass , . 2-1, GLOSSARY-1
filename . 2-1, GLOSSARY-1
forward branching . 1-29 to 1 -30
forward reference . 1-30

GETPARM. 1-13 to 1-19, 2-7, 2-8 to 2-9, GLOSSARY-1
GOTO . 1-3, 1-27, 1-29 to 1-30, 2-12

backward GOTO . 2-1 2
clause . 1-27 to 1-28, 2-12
statement . 1-3, 1-29 to 1-30, 2-12

IF. 1-3, 1-27, 2-13 to 2-15
GOTO clause . 1-27 to 1-28, 2-14 to 2-15
RETURN clause . 1-28 to 1-29, 2-14 to 2-15

INITIAL clause. 1-20, 2-5
inner-label . GLOSSARY-1
integer-constant. . . . 1-4, 1-20 to 1-21, 2-1, 2-5, 2-17, 2-22 to 2-23, GLOSSARY-1
integer-variable 1-4, 1-20 to 1-21, 2-1, 2-3 to 2-5, 2-10, 2-17, 2-22 to 2-23 ·

keyword 1-16 to 1-17, 1-32 to 1-33, 2-2, 2-7, 2-8, GLOSSARY-1

INDEX-1

label . 1-5 to 1-6, 2-1, GLOSSARY-1
spec-label . 1-30, 1-32 to 1-35, 2-2, GLOSSARY-2
step-label 1-26 to 1-27, 1-30, 2-2, GLOSSARY-2
stmt-label . 2-2, GLOSSARY-2
type .. 2-19

libname . 2-1, GLOSSARY-1
libraries

program . GLOSSARY-2
system . GLOSSARY-2

LINKER return codes . A-2
LISTVTOC return codes . A-2
LOGOFF . 1-3, 1-30, 2-1 6

MESSAGE . 1-3, 1-23, 2-1 7 to 2-1 8
attributes . 2-1 7 to 2-1 8

MOUNT . 1-3, 1-25 to 1-26, 2-19
background processing . 2-1 9
label type . 2-1 9
return codes ... A-3
usage parameter . 2-1 9

nested procedures . 1-33 to 1-37

operand . 1-3, 2-3 to 2-4, GLOSSARY-1
overriding parameters . 1 -34
owner . 2-1, GLOSSARY-1

parameter reference name (prname) 1-1 5 to 1 -1 6, 2-1, GLOSSARY-1
period . 2-1, GLOSSARY-1
pfkey . 2-1, GLOSSARY-1
PRINT . 1-3, 1-38, 2-20

class .. 2-20
disposition . 2-20
form number . 2-20
number of copies . 2-20
status . 2-20

PROCEDURE . 1-1 to 1-2, 1-6, 2-21
background . 1-1 to 1-2, 1-37 to 1-38
comments . 1-7, 2-21
constant . 1-3
entering procedures. 1-6
inner . 1-34 to 1-37
label ... 1-5to1-6
nested . 1-33 to 1 -3 7
operand . 1-3
outer . 1-34 to 1 -36
return codes . 1-8. 1-36 to 1-37
running procedures . 1-1, 1-6
step . 1-8
substring . 1-5
variable . 1 -4
verb . 1-2

Procedure Interpreter . v, 1-6
program library . GLOSSARY-2

INDEX-2

PROMPT . 1-3, 1-22, 2-22 to 2-23
attributes . 2-22 to 2-23

prompts . 1 - 1
PROTECT . 1-3, 1-24, 2-24

return codes . A-4

refkey . 1-32, 2-1, 2- 7, 2-8, GLOSSARY-2
RENAME . 1-3, 1-24, 2-25

return codes ... A-4
RETURN . 1-3, 1-28 to 1-30, 2-26

CODE clause . 1-28 to 1-29, 2-26
return codes . 1-8, 1-26 to 1-27

all compilers ... A-2
BACKUP utility . A-1
COPY utility . A-1
DISKINIT utility . A-1
DISMOUNT statement . A-3
EZFORMA T utility . A-1
LINKER program . A-2
LISTVTOC utility . A-2
MOUNT statement . A-3
PROTECT statement . A-4
RENAME statement . A-4
SCRATCH statement . A-4
SORT utility . A-2
SUBMIT statement .. A-5
testing . 1-26 to 1-27, 1-36 to 1-37

RUN . 1 -3, 1-10, 2-2 7
statement . 1 -3, 1-1 0 to 1-11, 2-2 7
step . 1-11
USING option ... 2-27

SCRATCH . 1-3, 1-23, 2-28
return codes . A-4

SET . 1-3, 1-9, 2-29
setkey . 2-29, GLOSSARY-2
software version number . v
SORT return codes ... A-2
spec-label . 1-30, 1-32 to 1-35, 2-2, GLOSSARY-2
step-label 1-26 to 1-27, 1-30, 2-2, GLOSSARY-2
stmt-label . 2-2, GLOSSARY-2
string-constant 1-3 to 1-4, 2-2, 2-5, 2-17, 2-22 to 2-23, GLOSSARY-2
string-variable 1-4, 1-20 to 1-21, 2-3 to 2-4, 2-5, 2-10, 2-17, 2-22 to 2-23
SUBMIT . 1-3, 1-38 to 1-39, 2-30 to 2-31

action . 2-30
class .. 2-30
cpulimit . 2-30
disposition -. 2-30
dump ... 2-30
return codes. A-5
status . 2-30

substring . 1-5, 1-20, 2-3 to 2-4, GLOSSARY-2
system library . GLOSSARY-2

INDEX-3

unconditional branching . 1-29 to 1-30
unit# . 2-2, GLOSSARY-2
usage parameter . 2-1 9
USING . 1 -3, 2-33

option . 1-13, 2-27
statement . 1 -3, 1-1 3, 2-33

value ... , GLOSSARY-2
variable 1-4, 1-20 to 1.:21, 2-2, GLOSSARY-2
volname . 2-2, GLOSSARY-2

workstation 1/0 1-22

INDEX-4

WANG Customer Comment Form Publications Number 800-1205PR-04

Title VS PROCEDURE LANGUAGE REFERENCE
Help Us Help You , ..

We've worked hard to make this document useful, readable, and technically accurate. Did we succeed? Only you can tell us!
Your comments and suggestions will help us improve our technical communications. Please take a few minutes to let us
know how you feel.

How did you receive this publication? How did you use this Publication?

D Support or D Don't know 0 Introduction D Aid to advanced
Sales Rep to the subject knowledge

D Wang Supplies D Other D Classroom text D Guide to operating
Division (student) instructions

D From another D Classroom text D As a reference
user (teacher) manual

D Enclosed D Self-study D Other
with equipment text

Please rate the quality of this publication in each of the following areas.

EXCELLENT GOOD FAIR POOR

Technical Accuracy - Does the system work the way the manual says it does? D D D D

Readability - Is the manual easy to read and understand? D D D D

Clarity - Are the instructions easy to follow? D D D D

Examples - Were they helpful, realistic? Were there enough of them? D D D D

Organization - Was it logical? Was it easy to find what you needed to know? D D D D

Illustrations - Were they clear and useful? D D 0 D

Physical Attractiveness - What did you think of the printing, binding, etc? D 0 0 D

VERY
POOR

D

D

D

D

D

D

D

Were there any terms or concepts that were not defined properly? D Y D N If so, what were they? ---------

After reading this document do you feel that you will be able to operate the equipment/software? D Yes D No
0 Yes, with practice

What errors or faults did you find in the manual? (Please include page numbers)------------------

Doyouhaveanyofufilcommenbmsuggestio~? ____________________________ _

Name __________________ _ Street ____________________ _

Title __________________ _ CitY--------------------~

Dept/Mail Stop ____________ _ State/Country _______________ ~

Company ________________ _ Zip Code ______ Telephone---------

Thank you for your help.

All comments and suggestions become the property of Wang Laboratories, Inc. Printed in U.S.A. 14-3140 3-82-5C

WANG

Fold

111111

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 16 LOWELL. MA

POSTAGE WILL BE PAID BY ADDRESSEE

WANG LABORATORIES, INC.
CHARLES T. PEERS, JR., MAIL STOP 1369
ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01851

Fold

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

I
I

WANG

ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01851
TEL. (617) 459-5000
TWX 710-343-6769, TELEX 94-7421

Printed in U.S.A.
800-1205PR-04

11-82-10M

	000
	001
	002
	003
	005
	007
	008
	009
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	A-01
	A-02
	A-03
	A-04
	A-05
	DH-01
	DH-02
	Glossary-01
	Glossary-02
	Index-01
	Index-02
	Index-03
	Index-04
	replyA
	replyB
	xBack

