
WANG

USERS UBS
Reference

vs
USERSUBS Reference

1st Edition - August, 1982
Copyright © Wang Laboratories, Inc., 1982
800-1315US-01

WANG
WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE, LOWELL, MA 01851 •TEL. (617) 459-5000, TWX 710-343-6769, Telex 94-7 421

Disclaimer of Warranties
and Limitation of Liabilities

VS USERSUBS are made available by the International Society of
Wang Users (ISWU) for the convenience of Wang customers. Cus
tomers choosing to use this software do so at their own risk. Neither
ISWU nor Wang Laboratories, Inc., makes any representations regard
ing the accuracy of these programs or the associated documentation,
and will not be responsible for any damages or loss of data arising
from their use. Any comments or questions regarding VS USERSUBS
should be directed to the International Society of Wang Users, Wang
Laboratories, Inc., One Industrial Avenue, Lowell, Massachusetts.

WANG
WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE. LOWELL. MA 01851 •TEL. (617) 459-5000, TWX 710-343-6769, Telex 94-7 421

PREFACE

This manual describes VS User Subroutines (USERSUBS), a collection of subroutines
that provide programmers with system functions that are helpful in the development of
application programs.

Chapter 1 provides a brief statement of the functions performed by each subroutine.
Chapter 2 contains information about the subroutines and their descriptions, defines
terms used in the manual, and provides instructions for coding the programming state
ments needed to access and use the subroutines. Chapter 3 contains the subroutine
descriptions. Each description lists the subroutine's function(s), the argument list
required to access it, notes on its use, and at least one example.

This manual is intended for a Wang VS user with programming experience. In particu
lar, the programmer should be familiar with at least one supported programming lan
guage and should know how to reference subroutines in that language (although brief
instructions are included in the manual). The programmer should also be familiar with
the reference manual for the programming language being used, the VS Programmer's
Introduction, and the VS Program Development Tools.

Use of some of these subroutines also requires an understanding of VS operating
system details. The user should read, or be familiar with, the contents of both the VS
Operating System Services and the VS Principles of Operation.

The reader should direct any comments about the documentation to Wang via the
Customer Comment form inside the back cover of the manual.

The following VS manuals contain information useful to the programmer accessing
USERSUBS:

Programmer's Introduction
Principles of Operation
Operating System Services
Program Development Tools
Procedure Language Reference
Programming language references:

Assembly Language Reference
BASIC Language Reference
COBOL Language Reference
FORTRAN Language Reference
PL/I Language Reference
RPG II Language Reference

iii

800-1101 Pl
800-1 lOOPO
800-11070S
800-1307PT
800-1205PR

800-1200AS
800-1202BA
800-1201CB
800-1208FR
800-1209PL
800-1203RP

CONTENTS

CHAPTER 1 SUBROUTINE FUNCTIONS 1-1

CHAPTER 2 INTRODUCTION .. 2-1

2.1 Preliminary Information 2-1
Why Use These Subroutines? 2-1
Organization of Individual Subroutine Descriptions 2-1
Conventions Used in the Manual 2-2
Terms Used in the Manual 2-2
Data Types .. 2-3

2.2 How to Use the Subroutines 2-4
BASIC Language 2-4
COBOL Language 2-5
FORTRAN Language 2-9
PL/I Language ·2-11
RPG II Language 2-12
How to Link Subroutines with Programs 2-14

CHAPTER 3 SUBROUTINE DESCRIPTIONS

BELL .. BELL-1
BITPACK .. BITPACK-1
BITUNPK .. BITU NPK-1
CANCEL ... CANCEL-1
CEXIT ... CEXIT-1
CHKPARM ... CHKPARM-1
COMPRESS .. COMPRESS-1
DATE ... DATE-1
DAY .. DAY-1
DISMOUNT .. DISMOUNT-1
EXPAND .. EXPAND-1
EXTRACT ... EXTRACT-1
FIND .. FIND-1
FLOPIO ... FLOPI0-1
GETPARM ... GETPARM-1
HEXPACK ... HEXPACK-1
HEXUNPK ... HEXUNPK-1
LINK , LINK-1
LOADCODE .. LOADCODE-1
LOGOFF ... LOGOFF-1
MESSAGE ... MESSAGE-1

iv

CONTENTS (continued)

MOUNT ... MOUNT-1
PAUSE .. PAUSE-1
PRINT ... PRINT-1
PROTECT ... PROTECT-1
PUTPARM ... PUTPARM-1
READFDR .. READFDR-1
READVTOC .. READVTOC-1
RENAME .. RENAME-1
RETURN ... RETURN-1
SCRATCH ... SCRATCH-1
SEARCH ... SEARCH-1
SET .. SET-1
SORT ... SORT-1
STRING ... STAI NG-1
SUBMIT ... SUBMIT-1
UNITRES .. UNITRES-1
UPDATFDR .. UPDATFDR-1
WSXIO ... WSXI0-1

v

Table 2-1
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6
Table 3-7
Table 3-8
Table 3-9
Table 3-10
Table 3-11
Table 3-12
Table 3-13
Table 3-14
Table 3-15
Table 3-16
Table 3-17
Table 3-18

TABLES

Alphanumeric Size and FORTRAN Specification Statements 2-1 o
DA TE Error Return Codes DATE-4
DISMOUNT Error Return Codes DIS MOU NT-1
EXPAND Error Return Codes EXPAND-1
FLOPIO Error Return Codes FLOPI0-3
LINK Error Return Codes LINK-2
LOADCODE Error Return Codes LOADCODE-2
MOUNT Error Return Codes MOU NT-2
PRINT Error Return Codes PRI NT-2
PROTECT Error Return Codes PROTECT-2
PUTPARM Error Return Codes PUTPARM-6
READFDR Error Return Codes READFDR-4
READVTOC Error Return Codes READVTOC-6
RENAME Error Return Codes RENAME-2
SCRATCH Error Return Codes SCRATCH-2
SUBMIT Error Return Codes SUBMIT-2
UNITRES Error Return Codes UNITRES-1
UPDATFDR Error Return Codes UPDATFDR-3
AID Characters and Their Meanings WSXI0-5

vi

CHAPTER 1
SUBROUTINE FUNCTIONS

This chapter provides a brief statement of the function (s) of each user subroutine.
This information is included in the subroutine descriptions in Chapter 3, but is summa
rized here for your convenience.

Subroutine Function

BELL Sounds the workstation alarm for a specified amount of time.

BITPACK Converts a binary string into its ASCII character equivalent.

BITUNPK Converts an ASCII character string into its binary equivalent.

CANCEL Cancels execution of the calling program and displays a message on the
workstation. The message consists of a message ID, a message issuer,
and a message.

CEXIT Overrides system cancel processing. On abnormal program termination,
you can press PF 1 to enter debug processing, PF 1 6 to cancel processing,
or the HELP key to access the Modified Command Processor. CEXIT
allows you to restrict debug processing, to associate PF 1 6 with alternate
processing, and to disable operation of the HELP key.

CHKPARM Performs table checking on one or more GETPARM keyword fields
entered by a user or a procedure in a previous GETPARM request. You
can use it for any type of field checking, but it is primarily intended for
GETPARM Limited Alphanumeric and Alphanumeric keyword field types.

COMPRESS Converts a character string to compressed format. Compressed format
can reduce storage for records with repeated characters.

DATE Performs the following date functions: (1) converts the current system
date and time to a formatted string, (2) converts dates between
Gregorian and Julian formats, (3) performs calculations with dates, and
(4) determines the day of the week that corresponds to a given 20th cen
tury date.

DAY Computes the day of the week that corresponds to a specified 20th cen
tury date.

1-1

Subroutine Function

DISMOUNT Initiates a dismount operation of a mounted disk or tape volume.

EXPAND Converts a character string from compressed format to external format.
EXPAND removes the special characters used to indicate repeated char
acters and produces text in noncompressed form.

EXTRACT Provides information about the system and the program user.

FIND Obtains one or more file, library, or volume names from complete or par
tial file, library, and volume names supplied by your program. Also indi
cates whether a specified file resides in a specified library and volume.

FLOPIO Performs a variety of 1/0 operations on a nonlabeled (NL) diskette.

GETPARM Enables you to generate parameter requests in a higher level language
program.

HEXPACK Converts a string of hexadecimal digits to its ASCII character equivalent.

HEXUNPK Converts a string of ASCII characters into hexadecimal digits.

· LINK Allows your program to link to a program or procedure and to specify a
cancel exit for the link. Your program can also specify any arguments
that are needed to execute the linked program or procedure.

LOADCODE Allows you to load specified microcode into a device.

LOGOFF Terminates your program and logs you off the system.

MESSAGE Allows communication of messages between workstations.

MOUNT Allows you to mount a volume (disk or tape).

PAUSE Causes a program to pause for a specified amount of time.

PRINT Sends a print file to the print queue.

PROTECT Changes the file security attributes of a file or library.

PUTPARM Performs the following primary functions: (1) creates a parameter list
(parameter reference block) to satisfy a subsequently generated parame
ter request, (2) retrieves a previously created parameter reference block,
and (3) deletes existing parameter reference blocks.

1-2

Subroutine Function

READFDR Provides information about a specified file, including control blocks or
file characteristics.

READVTOC Provides information from the Volume Table of Contents (VTOC).

RENAME Allows you to rename a file or library, with the options of bypassing expi
ration date checking and limiting access rights for a program with special
privileges.

RETURN Allows your program to return through several levels of subroutine calls.

SCRATCH Provides the ability to scratch a file or library, with the options of bypass
ing expiration date checking and limiting access rights for a program
with special privileges.

SEARCH Performs a binary search on a specified table for a particular element and
indicates whether the element exists in the table.

SET Sets any of the allowable defaults that are available through the Com
mand Processor SET Usage Constants function and the Procedure lan
guage SET command.

SORT Sorts a character array on a specified field, in either ascending or
descending order. Output from SORT can be either the sorted array or a
locator-type array. (The elements in a locator-type array indicate the
positions of the sorted elements in the character array.)

STRING Provides the following string manipulation functions: (1) moves a string
to another variable and pads it with a specified character, (2) moves a
portion of a string to another variable, (3) centers a string, (4) left- or
right-justifies a string, (5) reverses the order of characters in a string,
and (6) translates the string according to a standard or user-specified
translation table.

SUBMIT Submits a background job to be run or held for later processing.

UNITRES Allows you to reserve or release a device or peripheral processor on the
system.

UPDATFDR Allows you to update the VTOC entry of a file or library.

WSXIO Performs 1/0 operations at the workstation and returns values associated
with those operations.

1-3

CHAPTER2
INTRODUCTION

2.1 PRELIMINARY INFORMATION

2.1 .1 Why Use These Subroutines?

These subroutines provide very useful functions to the application programmer. With
out them, it would frequently be necessary for you to know operating system details and
how to program in Assembly language. These subroutines provide you with a simple
means of accessing information that is not readily available.

2.1.2 Organization of Individual Subroutine Descriptions

As much as possible, individual subroutine descriptions are similar in format. Each
description is divided into four sections: FUNCTION, USAGE, NOTES, and EXAMPLE. A
description of each section follows.

FUNCTION

USAGE

NOTES

Mentions briefly the functions performed by the subroutine. After reading
this section, you should know whether the subroutine is suitable for an
intended application.

Provides a general form of the argument list and a detailed discussion of
the use of each argument. The following information is included.

Function: Some subroutines offer several different functions. When
this is the case, a statement of each function appears before the applic
able list of arguments.

Position: Indicates argument positions in the calling sequence.

Argument: Includes a descriptive name for each argument.

Type: Specifies the data type of the argument. Section 2.1.5 deals
with data types.

Size: Indicates the number of bytes the argument must have.

Comments: Provides information about each argument, including its
definition, restrictions on its use, and permissible values.

Includes restrictions, precautions, programming hints, and other informa
tion about the subroutine.

2-1

EXAMPLES Illustrate the use of each subroutine. Most subroutines have examples
written in COBOL; some in BASIC, RPG II, and FORTRAN. Examples
were written and tested with the following compiler versions:

BASIC
COBOL
FORTRAN
RPG II

3.03.01
3.03.02
2.05.00
4.02.01

2.1.3 Conventions Used in the Manual

Argument
List

Alpha n

Integer 4

The USAGE section of each subroutine description begins with a general
argument list. Because subroutines have differing requirements, you can
specify the argument list in a number of ways.

"arg 1, ... , argn" means that there are n arguments, which you must
specify in a particular order. The last argument in the general list indicates
the maximum number of arguments that can be specified.

"argn, arguments" means that, for a subroutine that performs several
functi.ons, a particular argument ("argn") selects a function, which has its
own argument requirements. Each function is described in detail.

"key1, rec 1, ... "means that the program specifies arguments in
"keyword-receiver" pairs. A keyword selects a particular option, and a
receiver is associated with, and must be specified for, that keyword. The
receiver can have a value that must be sent to the subroutine, or it can
contain a value provided by the subroutine. Section 2.1 .4 provides a defi
nition of keyword and receiver.

Indicates that the data type for the argument is alphanumeric and that
the number of bytes it must contain is n. "Var" indicates that the program
can select the number of bytes or that the number depends on the infor
mation returned by the subroutine. Section 2.1.5 discusses alphanumeric
data.

Indicates that the data type of the argument is integer and that it must
contain 4 bytes. This requirement presents a problem for COBOL pro
grammers and is discussed in Section 2.2.2. Section 2.1.5 discusses
integer data.

2.1.4 Terms Used in the Manual

AID
Character

Argument
List

Indicates the workstation status (whether the keyboard is locked or
unlocked) or which PF key the program operator pressed last. Table
3-1 8 is a complete list of AID (Attention ID) characters with their hexa
decimal and ASCII character equivalents.

Values (or locations where values can be obtained) required by the sub
routine. It also includes variable names (or locations) that contain values
returned by the subroutine. The CALL statement that references the sub
routine typically contains an argument list.

2-2

CALL
Statement

Character
String

Keyword

Receiver

Return Code

X'nn'

The statement that references the subroutine. It contains the CALL verb,
the subroutine name, and an argument list. Each supported programming
language uses a different form of CALL statement. Each is discussed in
Section 2.2.

A sequence of alphanumeric characters, such as ABCDE or S#. These
subroutines limit most character strings to letters and numbers, although
some use special characters.

Selects an option provided by the subroutine. For example, the SET sub
routine allows you to set system parameters. For this subroutine, a key
word selects a parameter to be set.

A variable that can be used to pass information to or receive information
from a subroutine.

Indicates whether or not the action requested by the program is success
ful. Many subroutines require that the program include an argument for a
return code in the argument list. If the operation of the subroutine is suc
cessful, the value of the return code is zero. If unsuccessful, the return
code corresponds to an error condition. For each subroutine that uses
return codes, the subroutine description includes a table of codes and
their meanings.

Hexadecimal representation for the value enclosed within quotes.

2.1.5 Data Types

All arguments contain data that is either alphanumeric or integer type. A discussion of
both types follows.

Alphanumeric Data

Alphanumeric data consists of all characters in the character set, whether or not
printable. Most alphanumeric subroutine arguments have values that are limited to
uppercase letters and numbers, although some can use special characters and
lowercase letters.

Each character of alphanumeric data requires one byte of storage. The Size section of
each argument description provides the required size of the argument. An Alpha argu
ment with size 8, for example, is an argument of eight alphanumeric characters requiring
eight bytes of storage.

The various programming languages treat alphanumeric data differently. Section 2.2
explains each approach.

Integer Data

In these subroutines, all arguments having numeric values are integer type. Integers
are whole numbers, expressed without fractional parts.

All arguments in these subroutines that contain integer values require four bytes of
storage. The subroutines do not require integer (fullword) alignment.

Different programming languages have different ways of specifying and handling
integer data. Section 2.2 discusses integer data.

2-3

2.2 HOW TO USE THE SUBROUTINES

First, select the appropriate subroutine from the brief description in Chapter 1 and the
detailed description in Chapter 3.

Second, read the description of the subroutine and its arguments. Determine which
values must be supplied by the program and which arguments contain values returned
by the subroutine.

Third, add the necessary statements to the program to define argument values, call
the subroutine, and use the values returned in arguments. Each programming language
treats these statements differently. The necessary statements are described in the sub
sections that follow.

Fourth, run the program, first linking the external USERSUBS subroutine to it. Section
2.2.6 contains brief instructions on the use of the LINKER; refer to the VS Program
Development Tools for more detailed information.

2.2.1 BASIC Language

Calling the Subroutine

The form of the BASIC language CALL statement for these subroutines is as follows:

CALL "subname" ADDA (arguments)

Subname is the name of the subroutine. The double quotation marks must be present in
the CALL statement.

Arguments must be enclosed within parentheses and must be separated by commas.
They must appear in the order specified in the argument list. In addition, each argument
must agree in type and size with the corresponding argument in the list.

Alphanumeric Data

Variables with alphanumeric values must have names whose last character is the
dollar sign($). Alphanumeric constants are specified by enclosing their values within
single or double quotes. (Note that single-quote literals provide lowercase letters.)

Example:

OPT$ = "FC"
PROTECTCLASS$ = ''#''
CALL ''SET'' ADDR (0PT$,PROTECTCLASS$)

are equivalent to
CALL ''SET'' ADDR (''FC'',''#'')

Use the DIM statement to specify the names and number of characters of all alpha
numeric variables.

Example:

DIM OPT$2, PROTECTCLASS$1

2-4

Integer Data

A variable with an integer value is designated as integer data type by appending the
"%" character to its name. An integer constant that is defined in the user program con
tains a number followed by the "%" character. An integer that is input to the program via
the workstation or a data file, computed in the program, or converted from an alpha
numeric expression, is not followed by the "%" character. Integer data is stored in four
bytes.

Example:

TIME% = 5%
CALL "BELL" ADDR (TIME%)

are equivalent to
CALL ''BELL'' ADDR (5%)

2.2.2 COBOL Language

Arguments passed to a subroutine must be defined in the Data Division. They can be
initialized in either the Data Division or the Procedure Division.

Calling the Subroutine

The form of the CALL statement in COBOL is as follows:

CALL "subname" USING arguments

Subname is the subroutine name; it must be enclosed within quotes. Arguments are
passed by means of the USING phrase. If the argument list for the subroutine specifies a
certain order for the arguments, they must appear in that order in the USING phrase.
Arguments that provide data to the subroutine must be variables that have been
assigned values. Literals cannot be passed as arguments.

Alphanumeric Data

To define a data item as alphanumeric, its PICTURE character-string must contain
only the symbols A, X, and 9, but not all A's or all 9's.

Alphanumeric data can be initialized in the Data Division with the VALUE clause. The
value specified must be a nonnumeric literal (a character-string enclosed in double
quotes) or a figurative constant. Alphanumeric data can be initialized in the Procedure
Division with the ACCEPT, MOVE, READ ... INTO, and DISPLAY AND READ statements.

The following program segment uses the EXTRACT subroutine to illustrate initializa
tion of alphanumeric data by means of the VALUE clause and the ACCEPT and MOVE
statements.

Example:

DATA DIVISION.
WORKING-STORAGE SECTION.

*THE NEXT LINE ILLUSTRATES. INITIALIZATION BY THE ~LUE CLAUSE.
77 CURRENT-LIBRARY-KEYWORD X(2) ~LUE ''CL''.
77 CURRENT-LIBRARY-RECEIVER PIC X(8).

2-5

*THE NEXT ITEM IS INITIALIZED IN THE PROCEDURE DIVISION BY MOVE.
77 CURRENT-VOLUME-KEYWORD PIC XX.
77 CURRENT-VOLUME-RECEIVER PIC X(6).

*THE NEXT ITEM IS INITIALIZED IN THE PROCEDURE DIVISION BY ACCEPT.
77 KEYWORD-3 PIC XX.
77 RECEIVER-3 PIC X(8).
PROCEDURE DIVISION.
MAIN-PARAGRAPH.

MOVE ''CV'' TO CURRENT-VOLUME-KEYWORD.
ACCEPT KEYWORD-3.
CALL ''EXTRACT" USING CURRENT-LIBRARY-KEYWORD,

CURRENT-LIBRARY-RECEIVER, CURRENT-VOLUME-KEYWORD,
CURRENT-VOLUME-RECEIVER, KEYWORD-3, RECEIVER-3.

Integer Data

To define a data item as an integer, you must code the USAGE IS BINARY clause in the
data description entry.

COBOL integer items are stored in halfword (two-byte) binary format. The subrou
tines, however, accept only four-byte integer arguments. You can solve this problem by
defining a four-byte group BINARY item composed of two elementary items. For
example:

01 GROUP-ITEM USAGE BINARY.
03 FILLER ~LUE ZERO.
03 INTEGER-DATA.

The CALL USING statement passes GROUP-ITEM to the subroutine. If you use GROUP
ITEM to send data to the subroutine, initialize FILLER to zero. The subroutine then
receives the integer contained in INTEGER-DATA. If you use GROUP-ITEM to receive
integer data from the subroutine, the calling program references the elementary item
INTEGER-DATA rather than GROUP-ITEM on return from the subroutine.

You must use other methods for negative integers and integers greater than 32767.
These methods are explained below, after the discussion of initializing integer data.

Use the VALUE clause to initialize integer data in the Data Division. The value that you
specify must be a numeric literal (not enclosed in quotes) containing only digits or a fig
urative constant ZERO.

There are several methods you can use to initialize integer items in the Procedure Divi
sion. The COMPUTE, MOVE, PERFORM ..• VARYING, and READ ••. INTO statements initial
ize integer items directly. You can use the ACCEPT statement to enter character repre
sentations of integers; integer data items can then be initialized by converting the char
acter representations to their numeric values. Perform the conversion by using the
MOVE or MOVE WITH CONVERSION statement or a BASIC subroutine using the
CONVERT statement, as explained later in this subsection. The DISPLAY AND READ
statement can initialize integer items by transferring data entered at the workstation to
an OBJECT field of the workstation screen description entry.

In the program segment that follows, the READVTOC subroutine returns the names of
the files in a library 1 0 files at a time, beginning with the first file in the library. This seg
ment illustrates initialization by means of the COMPUTE, MOVE, and
PERFORM ..• VARYING statements, but is not meant to illustrate realistic programming
practice.

2-6

WORKING-STORAGE SECTION.
*THE NEXT ITEM IS INITIALIZED IN THE PROCEDURE DIVISION.~Y COMPUTE.

77 COMPUTABLE USAGE BINARY.
77 TY-PE PIC X ~LUE "F".
77 LIB-RARY PIC X(8).
77 VOL-UME PIC X(6).
01 STARTER.

*TWO ELEMENTARY BINARY ITEMS FOLLOW. THE FIRST IS INITIALIZED
*HERE BY THE ~LUE CLAUSE. THE SECOND IS INITIALIZED IN THE
*PROCEDURE DIVISION BY PERFORM ~RYING.

03 FILLER USAGE IS BINARY ~LUE ZERO.
03 STARTNUMBER USAGE IS BINARY.

01 COUN-TER.
03 FILLER USAGE IS BINARY ~LUE ZERO.

*THE NEXT ITEM IS INITIALIZED IN THE PROCEDURE DIVISION BY MOVE.
03 COUNTNUMBER USAGE IS BINARY.

77 RECEIVER PIC X(80).
01 RETURNCODE.

03 FILLER USAGE IS BINARY ~LUE ZERO.
03 RETURN~LUE USAGE IS BINARY.

01 FILE-COUNT.
03 FILLER USAGE IS BINARY.
03 FILECOUNT USAGE IS BINARY.

PROCEDURE DIVISION.
MAIN-PARAGRAPH.

ACCEPT LIB-RARY, VOL-UME.
COMPUTE COMPUTABLE = 10 ** 1.
MOVE COMPUTABLE TO COUNTNUMBER.
PERFORM CALL-PARAGRAPH ~RYING STARTNUMBER FROM 1 BY 10

UNTIL COUNTNUMBER LESS THAN 10.
CALL-PARAGRAPH.

MOVE SPACES TO RECEIVER.
CALL "READVTOC" USING TY-PE, LIB-RARY, VOL-UME, STARTER,

COUN-TER, RECEIVER, RETURNCODE, FILE-COUNT.

You can use negative integers or integers greater than 32767 by writing BASIC
subroutines that use the CONVERT statement. For example, the EXTRACT user subrou
tine obtains the size of a program's Segment 2 area, which is always greater than
32767. To get the Segment 2 size, the COBOL program must provide EXTRACT with a
four-byte numeric receiver. Since the left-most bit of this field is used for the sign, the
value received from EXTRACT cannot be interpreted as an integer. The BASIC
CONVERT statement, however, can convert the four-byte item to a nine-byte item
whose contents represent the sign and the integer value, although not in integer format.
The following is an example of the COBOL code necessary to call a BASIC subroutine
named 4T09, which converts data from four bytes to nine bytes.

77 KEYWORD PIC X(2) ~LUE "S2".
01 TEMP PIC X(4).
77 SEG-2-SIZE PIC S9(8).
PROCEDURE DIVISION.
MAIN-PARAGRAPH.

CALL ''EXTRACT'' USING KEYWORD, TEMP.
CALL ''4T09'' USING TEMP, SEG-2-SIZE.

2-7

The BASIC subroutine requires two parameters from the COBOL program: a four-byte
item and an eight-byte signed item. The BASIC subroutine receives the contents of the
four-byte item and converts it to a nine-byte item, with one byte for the sign and eight
bytes for the value. The following is a BASIC subroutine that performs the conversion.

10 SUB "4T09'' ADDR (COBOL4%, COBOL9$)
20 DIM COBOL9$9
40 CONVERT COBOL4% TO COBOL9$, PIC(+########)
50 END

You can use another BASIC subroutine to convert nine-byte alphanumeric data to
four-byte integer data that can be negative or greater than 32767. The integer data can
then be passed to a user subroutine. The subroutine follows.

10 SUB ''9T04" ADDR (COBOL9$, COBOL4%)
20 DIM COBOL9$9
30 CONVERT COBOL9$ TO COBOL4%
40 END

You can employ a BASIC subroutine like 9T04 to invoke a user subroutine interac
tively, supplying values for data items by means of the COBOL ACCEPT statement,
which transfers only alphanumeric data. The BASIC subroutine converts alphanumeric
data to the integer data required by the user subroutine. The following COBOL program
segment demonstrates how to use the SET subroutine interactively to change the
default lines per page for printer output. The keyword "LI" informs SET that the integer
value passed is the number of lines per page.

77 LINES-CODE PIG X (2) ~LUE ''LI'' .
01 LINES-~LUE.

03 SIGN-ITEM PIG X ~LUE "+"
03 LINES-NUM PIC X(8).

01 LINES-PER PIC X(4).
PROCEDURE DIVISION.
MAIN-PARAGRAPH.

DISPLAY ''TYPE IN LINES-NUM.".
ACCEPT LINES-NUM.
CALL "9T04" USING LINES-~LUE, LINES-PER.
CALL "SET" USING LINES-CODE, LINES-PER.
STOP RUN.

Integers from -1 to -32768 can be passed without the use of a BASIC subroutine.
First, define a group item composed of two BINARY items, as above. Second, the pro
gram moves HIGH-VALUES to the group item, then moves a negative numeric item to
the low-order elementary item. In two's-complement notation, the HIGH-VALUES move
has the effect of propagating the negative sign across the high-order half of the group
item. For a positive number, the program moves LOW-VALUES.

In the following program segment, the G+ function of the DATE subroutine adds a
negative number to a given Gregorian date to determine the earlier date.

77 FUNCTION PIC X(2) ~LUE "G+''.
77 START-DATE PIG X(6) ~LUE "810717".
77 ADD-DAYS PIC S9(4) ~LUE -0001.

2-8

01 INTEGER-DAYS.
03 FILLER USAGE IS BINARY ~LUE ZERO.
03 HALFWORD-DAYS USAGE IS BINARY.

77 END-DATE PIC X(6).
01 RETURN-KODE.

03 FILLER USAGE BINARY ~LUE ZERO.
03 RETURNED USAGE BINARY.

PROCEDURE DIVISION.
MAIN-PARAGRAPH.

MOVE HIGH-~LUES TO INTEGER-DAYS.
MOVE ADD-DAYS TO HALFWORD-DAYS.
CALL ''DATE" USING FUNCTION, START-DATE, INTEGER-DAYS,

END-DATE, RETURN-KODE.
DISPLAY END-DATE.

2.2.3 FORTRAN Language

Calling the Subroutine

The form of the FORTRAN language CALL statement is as follows:

CALL subname (arguments)

Subname is the name of the subroutine. Because subroutine names cannot exceed six
characters, each subroutine whose name is longer has a note indicating the six-character
name that must be used.

Arguments are enclosed within parentheses and are separated by commas. The order
in which the arguments appear must be the same as that specified in the argument list.
Also, each argument must agree in type and size with the corresponding argument in
the list.

Alphanumeric Data

Specify an alphanumeric constant by enclosing its value within single quotes.

Example:

OPT= 'FC'
PCLASS = '#'
CALL SET (OPT, PCLASS)

are equivalent to
CALL SET ('FC', '#')

You can declare variables having alphanumeric values in specification statements
(such as LOGICAL, INTEGER, or REAU. A variable having alphanumeric data can be any
data type, although the number of characters it requires might determine which type is
most appropriate. Table 2-1 provides examples of variable sizes and specification state
ments that define the space required by the variable ("name" indicates the variable
name).

2-9

Table 2-1. Alphanumeric Size and FORTRAN Specification Statements

Integer Data

Number of
Characters

1
2
3
4

6
8

10
16
22

Specification
Statement

LOGICAL* 1 name
INTEGER*2 name
LOGICAL*1 name(3)
INTEGER name or
LOGICAL name
LOGICAL* 1 name(6)
REAL*B name
LOGICAL*1 name(10)
REAL *8 name(2)
LOGICAL* 1 name(22)

The program specifies integer data by indicating its value.

Example:

NSECS = 10
CALL BELL (NSECS)

are equivalent to
CALL BELL (10)

Designate a variable as integer data type by beginning its name with a letter between I
and N, or by including its name in an INTEGER or IMPLICIT specification statement. The
following statements illustrate how to declare a variable (PRINTR) as integer type.

Example:

INTEGER PRINTR
NFORM = 0
PRINTR = 10
CALL SET ('FN' , NFORM, 'PR' , PRINTR)

Integer variables and constants are stored in four bytes by default.

Use of Files with the Subroutines

Some subroutines permit the use of files for output and require that the pointer to the
file UFB be identified so that the necessary file information is present. FORTRAN does
not provide the pointer to the UFB. To use a subroutine that requires a UFB address, you
must code the call to the USERSUBS subroutine as either a BASIC or COBOL subroutine
and link that subroutine to the program. The appropriate programming language refer
ence manual provides additional information.

2-10

2.2.4 PL/I Language

Declaring the Subroutine

A PL/I subroutine accesses the user subroutines as external procedures. PL/I programs
must declare the names of these procedures with the ENTRY attribute. The ENTRY
declaration must also indicate the data types of all arguments passed to or from the sub
routine. Because the user subroutines pass only alphanumeric and four-byte integer
data, the ENTRY declaration should specify only CHARACTER and FIXED BINARY (31)
data types. For example, a PL/I program that calls the SET subroutine must contain the
following declaration:

DECLARE SET ENTRY (CHARACTER(2), CHARACTER(l));

Calling the Subroutine

The form of the PL/I CALL statement is as follows:

CALL subname (arguments);

Subname is the name of the subroutine. It must have been previously declared with the
ENTRY attribute. Arguments must be enclosed within parentheses and separated by
commas. The arguments must appear in the order specified in the argument list. To pre
vent undesirable data type conversion, each argument must agree in type and size with
the corresponding argument in the list.

Alphanumeric Data

Variables with alphanumeric values should be declared with the CHARACTER data
type and the length of the character string. Variables with the STATIC storage class can
be assigned initial values in the declaration statement. Alphanumeric constants are speci
fied by enclosing their values within single or double quotes.

Example:

DECLARE OPT CHARACTER(2), PCLASS CHARACTER(l);
OPT= 'FC';
PCLASS = '#';
CALL SET (OPT, PCLASS);

are equivalent to
DECLARE OPT STATIC CHARACTER(2) INIT("FC");
DECLARE PCLASS STATIC CHARACTER(!) !NIT('#');
CALL SET (OPT, PCLASS);

are equivalent to
CALL SET ('FC' , '' #' ') ;

Integer Data

Variables with integer values should be declared with the FIXED BINARY (31) data
type. Variables with the STATIC storage class can be assigned initial values in the decla
ration statement. Integer constants are specified by indicating an integer value (i.e., 4).
Because integer constants are assigned the FIXED DECIMAL data type by the PL/I

2-11

compiler, integer constants are automatically converted to the FIXED BINARY data type
by the PL/I compiler when passed to the user subroutine.

2.2.5 RPG II Language

Calling the Subroutine

To call USERSUBS subroutines, RPG II programs use the User Aid RPGCALL.
RPGCALL creates an interface between the calling RPG II program and the USERSUBS
subroutine so that arguments can be passed back and forth. To access RPGCALL, you
must write a one-statement Assembly language program. This subsection explains how
to code and use that program in calling USERSUBS subroutines. For additional informa
tion about calling subroutines in RPG II, refer to the VS RPG II Language Reference.

In RPG II, the EXIT operation code indicates the point at which flow of control passes
from a calling program to a subroutine. Factor 2 specifies the name of the subroutine
that is to receive control; factor 1, the result field, and the resulting indicators must be
left blank.

Use the RLABL operation code to pass arguments from the calling program to the sub
routine. Each argument that is passed requires one RLABL statement; name the argu
ment in the result field. Factor 1, factor 2, conditioning indicator (columns 9-17), and
resulting indicator entries must be left blank. The RLABL statements for a subroutine call
can appear anywhere in the calculations. The ULABL operation code is not used in calling
USERSUBS subroutines. After execution of the subroutine, control returns to the first
executable statement after the EXIT statement.

You must take the following steps when using RPGCALL to call a USERSUBS
subroutine:

Step 1. Be sure that RPGCALL is stored on the system. RPGCALL is available from
the International Society of Wang Users (ISWU), Wang Laboratories, Inc.,
One Industrial Avenue, Lowell, MA 01851, Tel. (617) 459-5000.

Step 2. Write and assemble the short Assembler program described below. At
assemble time, supply the name of the library on which the RPGCALL pro
gram resides.

Step 3. Write and compile the calling program. In the EXIT statement, include the
name of the assembled program file from Step 2 (instead of the name of the
USERSUBS subroutine). The RLABL statements must list the arguments that
are to be passed to the USERSUBS subroutine. (The arguments are passed to
the Assembler program, which then passes them to the USERSUBS subrou
tine.)

Step 4. Run the LINKER, either directly from the Command Processor or as an option
when compiling the calling program from the EDITOR. You must link three
program files: the calling program, the USERSUBS subroutine, and the
assembled program file from Step 2. The result of the LINKER' s execution is
one executable program file.

2-12

Format the short Assembler program as follows:

1 2 3 4 5 6 7
123456789012345678901234567890123456789012345678901234567890123456789012

RPGCALL NAME=XXXXXX,CALL=YYYYYY, (arguments)
(arguments-continued)

The word RPGCALL begins in column 1 0 of the first line. The remainder of the state
ment starts in column 20 with the word NAME. If all the arguments cannot fit on one
line, a C in column 72 denotes a continuation. All continuation lines begin in column 16.

The fields have the following meanings:

c

xxxxxx The name of the assembled version of the one-statement Assembler
program. This name is included in factor 2 of the EXIT statement in the
calling RPG II program. It cannot be longer than six characters and must
be unique (not used for any other purpose in the program).

YYYYYY

arguments

The name of the USERSUBS subroutine that the program is calling.

The list of arguments to be passed between the USERSUBS subroutine
and the calling program. The arguments must be in the order and of the
type expected by the subroutine.

This Assembler statement tells the RPGCALL macro which subroutine is being called
and which arguments are being passed. The calling program specifies the arguments in
RLABL statements, as described earlier; the EXIT statement is used to transfer control to
the one-statement Assembler program. When the EXIT statement is executed,
RPGCALL calls the USERSUBS subroutine, resolving memory addresses, and sometimes
converting data types.

Each parameter in the list can be expressed in either of the following formats:

FORMAT A:

FORMATS:

FIELD

This format is used to pass an alphanumeric field.

(FIELD, DIGITS, F)

This format is used to pass an integer field. RPG II programs store
all numeric fields internally in packed decimal format, while the
USERSUBS subroutines require integer data in fullword binary
format. RPGCALL performs the necessary conversions.

Alphanumeric Data and Variables

An alphanumeric field can have any valid RPG II field name: six characters (numerals
and letters only), beginning with a letter. Field names cannot contain embedded blanks.
A blank decimal position entry defines a field as alphanumeric. Alphanumeric literals can
contain any ASCII characters and are always enclosed in quotes.

2-13

Integer Data and Variables

An integer field can have any valid RPG II field name, as described above. A decimal
position entry of 0 defines a field as integer. Integer constants are not enclosed in
quotes.

Use of Files with the Subroutines

Some subroutines permit the use of files for output and require that the pointer to the
file UFB be identified so that the necessary file information is present. RPG II does not
provide the pointer to the UFB. To use a subroutine that requires a UFB address, you
must code the call to the USERSUBS subroutine as either a BASIC or COBOL subroutine
and link that subroutine to the program. The appropriate programming language refer
ence manual provides additional information.

2.2.6 How to Link Subroutines with Programs

To use these subroutines, you must link the program with the USERSUBS subroutine.
There are two ways to perform this link:

1. Through the EDITOR
2. Through the LINKER

Each method is described below. More detailed information on editing and linking
appears rn the VS Program Development Tools.

Linking through the EDITOR

You can use the EDITOR to link a subroutine with a program that is being compiled.
From the EDITOR special menu, PF9 {RUN) compiles and runs the program. Make the
following changes to the Linker screen: LINK=YES causes linking to occur, and
LIBRARY =USERS UBS searches that library for references to subroutines not contained
in the program. Note that the library name should correspond to the library in which
these subroutines reside on your system.

If you are a FORTRAN programmer linking individual files by using the Linkfile screen
instead of specifying the subroutine library name, you must add a step when accessing
user subroutines whose usual names exceed six characters (e.g., GETPARM, EXTRACT).
In this case, you must provide the name and locaticn of both the shortened name (e.g.,
GETPRM, XTRACT) and the full name on the Linkfile screen.

If you are programming in RPG 11, you must also link the short Assembly language pro
gram that calls the RPGCALL macro. {Refer to Section 2.2.5.)

Linking with the LINKER

The LINKER combines a number of separately compiled program units to form a
single executable program file. Use the LINKER to link your program with a USERSUBS
subroutine when you have already compiled your program and saved the program file.

Using the LINKER involves the following steps. First, invoke the LINKER by pressing
PF 1 (RUN) from the Command Processor. Enter LINKER as the program file. Then, on

2-14

the Options screen, specify the library that contains the USERSUBS subroutine to be
linked with your program. Next, specify your program as an input file on an Input screen.
Ot is not necessary to specify more than one input file.) Finally, specify a file name for the
program file output on the Output screen. This file contains the compiled program and
subroutine. The result is an executable program that can be run directly from the Com
mand Processor.

If you are a FORTRAN programmer linking individual files by using Input screens
instead of specifying the subroutine library name, you must add a step when accessing
user subroutines whose usual names exceed 6 characters (e.g., GETPARM, EXTRACT).
In this case, you must specify the usual subroutine name and the shortened name on
separate Input screens. For example, to access EXTRACT, you must link EXTRACT and
XTRACT by specifying those names on separate Input screens. You may, of course, just
specify the subroutine library on the Options or Library screen and not add this extra
step.

RPG II programmers must also link the short Assembly language program that calls
the RPGCALL macro. (Refer to Section 2.2.5)

When a subroutine is revised, making it necessary to replace its program file, the
LINKER can make this replacement. Refer to the VS Program Development Tools for
more information. Note that it may also be necessary to revise the calling sequence and
recompile the program.

How to Find the Subroutine Version Number

You can obtain the version number of a USERSUBS subroutine by running the
DISPLAY utility and displaying the subroutine's object code. The object code appears as
a sequence of random characters. The subroutine version number appears near the
beginning of the code.

2-15

CHAPTER3
SUBROUTINE DESCRIPTIONS

BELL

FUNCTION

Sounds the workstation alarm for a user-specified amount of time.

USAGE (arg 1)

Pos Argument

arg1 Time

NOTE

Type Size

Integer 4

Comments

Amount of time to sound the workstation
alarm, in tenths of a second.

If zero or negative, the alarm is not sounded.

The workstation must be closed before the program calls this subroutine (the calling
statement cannot be immediately preceded by any statement that accesses the worksta
tion, either for input or for output). In BASIC, the CLOSE WS statement closes the
workstation.

BELL-1

BELL Subroutine - A FORTRAN Example

This program causes the workstation alarm to sound for 3/10 of a second.

C SOUND THE WORKSTATION ALARM FOR 3/10 SECOND
!TIME = 3

C CALL BELL SUBROUTINE WITH '!TIME' ARGUMENT
CALL BELL (!TIME)
END

BELL-2

BITPACK

FUNCTION

Converts a binary string into its ASCII character equivalent.

USAGE (arg 1, .•. , arg3)

Pos Argument Type

arg1 Binary Alpha
String

arg2 Receiver Alpha

arg3 Length Integer

NOTES

Size

var

var

4

Comments

Binary string to convert, supplied by user
program. Length must be a multiple of 8.

ASCII equivalent of the input string, returned
by the subroutine. Must be at least 1 /8th the
length of the input string.

Length of the input string; must be a multiple
of eight (any excess digits are ignored).

1. The subroutine does not check to ensure that the input string is binary.

2. For FORTRAN programs, the name of this subroutine must be specified as
BTPACK.

BITPACK-1

BITPACK Subroutine - A FORTRAN Example

This program requests that the user input a binary number from the workstation. The program then
converts the number to its ASCII equivalent and displays it on the workstation.

C 'RCVR' IS THE 1-CHARACTER ASCII EQUI\..ALENT TO THE BINARY STRING
LOGICAL*! RCVR

C 'STRING' IS AN 8-CHARACTER BINARY NUMBER
REAL*8 STRING
WRITE(0,101) ' ENTER 8 BINARY DIGITS:'
READ(0,102) STRING

C END PROGRAM IF STRING = 11111111
IF (STRING . EQ. '11111111') GO TO 99

c
C CALL BITPACK SUBROUTINE ('BTPACK' IN FORTRAN)

CALL BTPACK(STRING,RCVR,8)
c

WRITE(0,103) RCVR
101 FORMAT(A23)
102 FORMAT(A8)
103 FORMAT (1X, 'ASCII: ' , Al)

99 PAUSE
END

BITPACK-2

BITUNPK

FUNCTION

Converts an ASCII character string into its binary equivalent.

USAGE

Pos

arg1

arg2

arg3

NOTE

(arg 1, .•• , arg3)

Argument Type Size

ASCII Alpha var
String

Receiver Alpha var

Length Integer 4

Comments

String of ASCII characters to be converted,
supplied by the user program.

Binary string, returned by the subroutine.
The length of the receiver must be at least 8
times the length of the input string.

Length of the input string.

For FORTRAN programs. the name of this subroutine must be specified as BTUNPK.

BITUNPK-1

BITUNPK Subroutine - A FORTRAN Example

This example requests that the user input an ASCII string from the workstation. The program then
converts the string to its binary equivalent and displays it on the workstation.

C 'OUT' CAN HOLD UP TO 24 SEPARATE CHARACTERS
REAL*8 OUT(3)
WRITE(0,101)
READ (0 , 10 2) IN

C USER ENTERS 'QQQ' TO STOP
IF(IN .EQ. 3HQQQ) GO TO 99

c
C CALL BITUNPK ('BTUNPK' IN FORTRAN)

CALL BTUNPK (IN, OUT, 3)
c

WRITE(0,103) OUT
101 FORMAT(' ENTER 1-3 CHARACTERS (QQQ TO STOP)')
102 FORMAT(A3)
103 FORMAT(' BINARY:' ,3A8)

99 PAUSE
END

BITUNPK-2

CANCEL

FUNCTION

Cancels execution of the calling program and displays a message on the workstation.
The message consists of a message ID, a message issuer, and a message that can be
several lines in length.

USAGE (arg 1, ..• , arg5)

Pos Argument Type Size Comments

arg1 MsglD Alpha 4 Message identification, supplied by the user
program.

arg2 Message Alpha 6 Message issuer identifier, supplied by the
Issuer user program.

arg3 Msg Text Integer 4 Number of message text lines. The program
Line Count can specify the message as separate text

lines (include arg3), or as a block containing
the complete text (omit arg3).
If arg3 is specified, arg4 and arg5 are
repeated for each text line.
If arg3 is omitted, see arg4 for action.

arg4 Message Alpha var Message to be displayed.
Text Arg3 specified: arg4 is a single line of text,

containing no embedded X'OD' characters.
Each line can begin with the following con-
trol characters, singly or in combination:

X'5E' (up-arrow) - center msg text
X'5F' (underscore) - underline msg text
X'21' (exclamation pt) - blink msg text

Arg3 omitted: the message can consist of
several lines of text, where lines are
separated by a single X'OD' character. No
control characters are recognized.

arg5 Msg Text Integer 4 Length of message text.
Length Include control characters in text length. A

text length of zero (excluding control charac-
ters) generates no text line. If the argument
list consists only of empty text strings, the
subroutine generates a single blank as the
message.
Arg3 specified: length of text line (arg4).
Arg3 omitted: length of entire msg (arg4).

NOTE

CANCEL terminates the program, displays a message on the workstation, and allows the
user to enter debug processing or cancel processing.

CANCEL-1

CANCEL Subroutine - A BASIC Example

This program terminates execution and displays a message on the screen. The user supplies the
message ID, issuer, and the cancel message.

000100DIM MESSAGEID$4,ISSUER$6,MESSAGE$60
000200ACCEPT
000300 AT (01,25),
000400''DEMONSTRATION OF CANCEL SUBROUTINE",
000500 AT (08,03),
000600''Message ID:'',
000700 AT (08,20), MESSAGEID$, CH(04),
000800 AT (09,03),
000900''Issuer: '',
001000 AT (09, 20) , ISSUER$, CH (06) ,
001100 AT (10,03),
001200''Cancel Message:",
001300 AT (10,20), MESSAGE$, CH(60),
001400 AT (14,03),
001500''Fill in the information and press ENTER. The program will cance
0016001 with the",
001700 AT (15,03),
001800''above information."
001900 CALL ''CANCEL'' ADDR(MESSAGEID$,ISSUER$,MESSAGE$,60%)

CANCEL-2

CEXIT

FUNCTION

Overrides system cancel processing.

On abnormal program termination, the user can press PF 1 to enter debug processing,
PF 1 6 to cancel processing, or the HELP key to access the Modified Command Processor.
CEXIT allows the programmer to restrict debug processing, to associate PF 1 6 with alter
nate processing, and to disable operation of the HELP key.

USAGE (arg 1, .•. , arg5)

Pos Argument Type Size Comments

arg1 Type Alpha 1 Indicates whether to set or cancel options:
S = Set options.
C =Cancel options (no further arguments

are required).

arg2 Cancel Alpha 1 Indicates whether to allow debug processing
Option after abnormal program termination:

Blank = Normal cancel processing
(default).

N = No debug processing.
D = No debug processing. Provide dump.

Optional. It might not be desirable to initiate
debug processing after abnormal program
termination when the user is not the program
developer.

arg3 HELP Key Alpha 1 Action of HELP key:
Option H =Enable HELP key (default).

N = Disable HELP key.
Disabling the HELP key might be desirable
when the program operator should not have
access to the Command Processor.

arg4 PF16 Alpha var Allows replacement of the PF 1 6 message
Message for cancel option after abnormal termination.

Default is no message replacement.
If included, arg 5 must be included.

arg5 PF16 Msg Integer 4 Length of PF 1 6 message. Maximum of 2 7
Length characters. Must be included if arg4 is pre-

sent.

NOTE

Arguments 2 through 5 are optional. However, if any are included, all preceding argu
ments must be included.

CEXIT-1

CEXIT Subroutine - A COBOL Example

This program sets the Nodebug option and disables the HELP key for a cancel exit.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. CEXITC.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 WORKING-STORAGE SECTION.
000600*THE FOLLOWING ARE THE FIRST THREE ITEMS FROM THE CEXIT ARGUMENT
000700 *LIST.
000800 77 CEXIT-TYPE PIG X ~LUE ''S''.
000900 77 C-OPTION PIG X ~LUE ''N".
001000 77 HELP-OPTION PIG X ~LUE "N".
001100 PROCEDURE DIVISION.
001200 MAIN-PARAGRAPH.
001300 CALL ''CEXIT" USING CEXIT-TYPE, C-OPTION, HELP-OPTION.
001400*THE NEXT INSTRUCTION ALLOWS THE USER TO TEST THE RESULTS OF THE
001500*DISABLED HELP KEY OPTION BY PRESSING THE HELP KEY WHILE THE
001600*SCREEN IS DISPLAYED.
001700 DISPLAY ''THE HELP KEY IS DISABLED.'' .
001800 STOP RUN.

CEXIT-2

CHKPARM

FUNCTION

Performs table checking on one or more data fields entered previously by a user or
procedure. It can be used for any type of field checking but is primarily intended for
GETPARM Limited Alphanumeric and Alphanumeric keyword field types (refer to the
GETPARM subroutine). CHKPARM can optionally identify abbreviations of various
lengths for the table entries it is checking.

USAGE (arg 1, .•. , arg6) for each keyword to be checked

The CHKPARM subroutine argument list consists of one or more sets of arguments,
each consisting of six arguments. There is one set for each GETPARM keyword field
that the subroutine checks.

Pos Argument Type Size Comments

arg1 Field Alpha var Name of data field whose value is to be
checked.

arg2 Length Integer 4 Field length. It must be positive and cannot
exceed 256.

arg3 Table Integer 4 Number of comparison strings in the table
Size that follows, against which the subroutine

checks data values. It must be positive.

arg4 String Alpha var Character string array, which is the table of
Table comparison strings. The length of each table

element must be that of the keyword field
itself, as specified in arg2. The table check
proceeds in element order, starting from the
first element, until either a match is found or
the table is exhausted.

arg5 Length See Note 1 See Note 1 for information.
Table/Flag

arg6 Ret. Code Integer 4 Return code, set to the table element
number that matches the keyword field. If
the subroutine does not find a match, the
return code is set to zero.

CHKPARM-1

NOTES

1. The program can use argument 5 to indicate legal abbreviations for the acceptable
field values (e.g., "Y" or "YE" allowed for "YES"); these abbreviations can be
either a letter (N or A) or an integer table. If no such abbreviations are to be
allowed, then the program specifies N for this argument. Conversely, if all possible
abbreviations (which must be at least one character) are to be allowed, the pro
gram specifies A (for all abbreviations).

For special cases in which some, but not all, abbreviations are to be allowed,
neither N nor A is adequate. This argument becomes, instead, a table of "minimum
lengths." This table is in the form of an integer array having exactly as many ele
ments as the compare string table (arg4), with each integer element corresponding
to the comparably placed string element. The integer value is the minimum
number of compare string characters that must be present in the keyword field in
order to recognize a match. For example, a compare string of "INDEX" and a mini
mum length of 3 matches keyword fields "IND ", "INDE ", and "INDEX", but will
not match ''IN ", since it has fewer than 3 of the compare string characters. A
minimum length of 0 matches any abbreviation of the compare string, and also
matches a completely blank field (used for "default" values); a minimum length
that is equal to the field length (arg2) has the same effect as "no abbreviation"; a
minimum length greater than. the field length specifies "never match." Finally, a
minimum length table containing all 1 values has the same effect as specifying
argument value A, rather than passing the entire table (see above).

2. For FORTRAN programs, the name of this subroutine must be specified as
CHKPRM.

CHKPARM-2

CHKPARM Subroutine - A COBOL Example

This program calls the GETPARM subroutine to solicit parameters for an output file. It then calls the
CHKPARM subroutine to check which of four possible values was entered in response to the
GETPARM request for the file's device type. The program instructs CHKPARM to accept abbrevia
tions for the device types. Each device type has a different length abbreviation.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. CHKPARMC.
000300 ENVIRONMENT DIVISION.
000400 CONFIGURATION SECTION.
000500 FIGURATIVE-CONSTANTS.
000600 CENTER IS "5E".
000700 BLINK IS "21".
000800 DATA DIVISION.
000900 WORKING-STORAGE SECTION.
001000*THE FOLLOWING ITEMS ARE PARAMETERS FOR THE GETPARM SUBROUTINE
001100 77 TY-PE PIC X(2) Y\LUE "I".
001200 77 FO-RM PIC X Y\LUE "R''.
001300 77 PR-NAME PIG X(8) \l\LUE "OUTPUT".
001400 77 KEY-RECEIVER PIC X(l).
001500 77 MESSAGE-NUMBER PIC X(4) Y\LUE "9999".
001600 77 MESS-ENGER PIC X(7) \l\LUE "CHKPARM".
001700*AS EXPLAINED IN SECTION 2.2.2, COBOL ACCEPTS HALFWORD INTEGERS
001800*0NLY. DEFINE A FOUR-BYTE GROUP ITEM TO BE COMPOSED OF TWO
001900*HALFWORD-BINARY ELEMENTARY ITEMS, AND USE THE LOW-ORDER TWO
002000*BYTES FOR THE INTEGER. TO PASS AN INTEGER TO THE SUBROUTINE,
002100*INITIALIZE THE HIGH-ORDER BYTES TO ZERO.
002200 01 LINE-COUNT.
002300 03 FILLER USAGE IS BINARY \l\LUE 0.
002400 03 LINE-OFFSET USAGE IS BINARY \l\LUE 1.
002500 01 MESS-AGE.
002600 03 CONTROL-1 PIC X Y\LUE CENTER.
002700 03 CONTROL-2 PIC X Y\LUE BLINK.
002800 03 TEXT PIC X(27) Y\LUE "PLEASE SUPPLY THESE Y\LUES".
002900 01 MESSAGE-LENGTH.
003000 03 FILLER USAGE IS BINARY \l\LUE 0.
003100 03 M-LENGTH USAGE IS BINARY Y\LUE 29.
003200 77 KEYWORD-TYPE PIC X Y\LUE "K".
003300 77 KEYWORD-1 PIC X(8) Y\LUE "FILE''.
003400 77 \l\LUE-1 PIG X (8) Y\LUE SPACES.
003500 01 \l\LUE-LENGTH.
003600 03 FILLER USAGE BINARY \l\LUE 0.
003700 03 LENGTH USAGE BINARY Y\LUE 8.
003800 01 ROW-1.
003900 03 FILLER USAGE IS BINARY \l\LUE 0.
004000 03 ROW-Y\LUE-1 USAGE IS BINARY \l\LUE 1.
004100 01 COLUMN-1.
004200 03 FILLER USAGE IS BINARY Y\LUE 0.
004300 03 COLUMN-Y\LUE-1 USAGE IS BINARY Y\LUE 10.

CHKPARM-3

004400 77 DATA-TYPE PIC x (2) \,ALUE '' L' I •

004500 77 KEYWORD-2 PIC X(8) \l\LUE "LIBRARY".
004600 77 Y\LUE-2 PIC X(8) Y\LUE SPACES.
004700 01 ROW-2.
~04800 03 FILLER USAGE IS BINARY \l\LUE. 0.
004900 03 ROW-Y\LUE-2 USAGE IS BINARY \,ALUE 4.
005000 77 KEYWORD-3 PIC X(6) \l\LUE "VOLUME".
005100 77 Y\LUE-3 PIC X(6) Y\LUE SPACES.
005200 01 Y\LUE-3-LENGTH.
005300 03 FILLER USAGE IS BINARY Y\LUE 0.
005400 03 VOLUME-LENGTH USAGE IS BINARY Y\LUE 6.
005500 01 ROW-3.
005600 03 FILLER USAGE IS BINARY \.ALUE 0.
005700 03 ROW-Y\LUE-3 USAGE IS BINARY Y\LUE 4.
005800 77 KEYWORD-4 PIC X(6) \l\LUE "DEVICE".
005900*THE FOLLOWING IS THE GETPARM ITEM THAT WILL BE CHECKED BY CHKPARM
006000 77 Y\LUE-4 PIC X(7) Y\LUE SPACES.
006100*THE NEXT ITEM IS PASSED BOTH TO GETPARM AND CHKPARM.
006200 01 Y\LUE-4-LENGTH.
006300 03 FILLER USAGE IS BINARY \.ALUE 0.
006400 03 DEVICE-LENGTH USAGE IS BINARY \.ALUE 7.
006500 01 ROW-4.
006600 03 FILLER USAGE IS BINARY Y\LUE 0.
006700 03 ROW-\.ALUE-4 USAGE IS BINARY \.ALUE 4.
006800*THE NEXT ITEM CONTAINS THE Y\LUES TO BE CHECKED BY CHKPARM
006900 01 DEVICES.
007000 03 FILLER PIC X(7) \.ALUE "DISK".
007100 03 FILLER PIC X(7) \l\LUE "DISPLAY".
007200 03 FILLER PIC X(7) \l\LUE "PRINTER".
007300 03 FILLER PIC X(7) \l\LUE "TAPE''.
007400 01 DEVICE-TABLE REDEFINES DEVICES.
007500 03 DEVICE PIG X(7) OCCURS 4 TIMES.
007600 01 DEVICE-TABLE-SIZE.
007700 03 FILLER USAGE IS BINARY Y\LUE 0.
007800 03 DEVICE-TABLE-LENGTH USAGE BINARY \.ALUE 4.
007900 01 LENGTHS.
008000 03 INTEGER-1.
008100 05 FILLER USAGE BINARY Y\LUE 0.
008200 05 LENGTH-1 USAGE BINARY Y\LUE 3.
008300 03 INTEGER-2.
008400 05 FILLER USAGE BINARY Y\LUE 0.
008500 05 LENGTH-2 USAGE BINARY \l\LUE 4.
008600 03 INTEGER-3.
008700 05 FILLER USAGE BINARY \l\LUE 0.
008800 05 LENGTH-3 USAGE BINARY \l\LUE 5.
008900 03 INTEGER-4.
009000 05 FILLER USAGE BINARY Y\LUE 0.
009100 05 LENGTH-4 USAGE BINARY \l\LUE 2.
009200 01 LENGTH-TABLE REDEFINES LENGTHS.
009300 03 LENGTH-INTEGER OCCURS 4 TIMES.
009400 05 FILLER USAGE BINARY.
009500 05 LENGTH-\1\LUE USAGE BINARY.

CKPARM-4

009600 01 RETURN-KODE.
009700 03 FILLER USAGE BINARY 'vALUE ZERO.
009800 03 TABLE-ITEM USAGE BINARY.
009900 PROCEDURE DIVISION.
010000 MAIN-PARAGRAPH.
010100 CALL "GETPARM" USING TY-PE, FO-RM, PR-NAME, KEY-RECEIVER,
010200 MESSAGE-NUMBER, MESS-ENGER, LINE-COUNT, MESS-AGE,
010300 MESSAGE-LENGTH, KEYWORD-TYPE, KEYWORD-1, 'vALUE-1,
010400 'vALUE-LENGTH, ROW-1, COLUMN-1, DATA-TYPE,
010500 KEYWORD-TYPE, KEYWORD-2, 'vALUE-2, \,ALLIE-LENGTH, ROW-2,
010600 COLUMN-1, DATA-TYPE, KEYWORD-TYPE,
010700 KEYWORD-3, 'vALUE-3, 'vALUE-3-LENGTH, ROW-3,
010800 COLUMN-1, DATA-TYPE,
010900 KEYWORD-TYPE, KEYWORD-4, 'vALUE-4, \,ALUE-4-LENGTH,
011000 ROW-3, COLUMN-1, DATA-TYPE.
011100 IF \,ALUE-1 = "Z" STOP RUN.
011200 CALL "CHKPARM" USING \,ALUE-4, 'vALUE-4-LENGTH,
011300 DEVICE-TABLE-SIZE, DEVICE-TABLE, LENGTH-TABLE,
011400 RETURN-KODE.
011500 DISPLAY TABLE-ITEM.
011600 GO TO MAIN-PARAGRAPH.

CKPARM-5

COMPRESS

FUNCTION

Converts a character string to compressed format. Compressed format can reduce stor
age for records with repeated characters.

USAGE (arg 1, ••• , arg5)

Pos Argument Type Size Comments

arg1 Input Alpha var Character string to be compressed.

arg2 Input Integer 4 Length of input string. Must be nonnegative
length and not greater than 2048.

arg3 Output Alpha var Receiver for compressed string.

arg4 Output Integer 4 Maximum length of output receiver. Must be
Length between 0 and 2048 and is reduced by the

subroutine to reflect the actual size of the
compressed string.

arg5 Ret. Code Integer 4 Error return code:
0 =Successful.
4 =Maximum output length (arg4) too

short, contents of the output string
are unpredictable.

NOTES

1. The operation of this subroutine is identical to the process used by the COMP
Assembler instruction, which is used by OMS to generate compressed records.

2. For FORTRAN programs, the name of this subroutine must be specified as
CMPRES.

3. This subroutine does the reverse of the EXPAND subroutine.

COMPRESS-1

COMPRESS And EXPAND Subroutines - A COBOL Example

This program calls COMPRESS to compress a character string and displays the compressed string in
ASCII characters. It calls HEXUNPK to display the compressed string in hexadecimal characters, calls
EXPAND to expand the string, and displays the expanded string.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. COMPRESC.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 WORKING-STORAGE SECTION.
000600 77 INPUT-STRING PIC X(21) \l\LUE "ABBCCCDDDDEEEEEFFFFFF".
000700*AS EXPLAINED IN SECTION 2.2.2, COBOL ACCEPTS HALFWORD INTEGERS
000800*0NLY. DEFINE A FOUR-BYTE GROUP ITEM TO BE COMPOSED OF TWO
000900*HALFWORD-BINARY, ELEMENTARY ITEMS, AND USE THE LOW-ORDER TWO
001000*BYTES FOR THE INTEGER. TO PASS AN INTEGER TO THE SUBROUTINE,
001100*INITIALIZE THE HIGH-ORDER BYTES TO ZERO.
001200 01 INPUT-LENGTH.
001300 03 FILLER USAGE IS BINARY \l\LUE 0.
001400 03 IN-LENGTH USAGE IS BINARY \l\LUE 21.
001500 77 OUTPUT-STRING PIC X(12).
001600 01 OUTPUT-LENGTH.
001700 03 FILLER USAGE IS BINARY \l\LUE 0.
001800 03 OUT-LENGTH USAGE IS BINARY \l\LUE 12.
001900 77 HEX-STRING PIC X(24).
002000 77 EXPANDED-STRING PIC X(21).
002100 01 RETURNCODE.
002200 03 FILLER USAGE IS BINARY \l\LUE ZERO.
002300 03 ERROR-CODE USAGE IS BINARY \l\LUE 0.
002400 PROCEDURE DIVISION.
002500 MAIN-PARAGRAPH.
002600 CALL ''COMPRESS'' USING INPUT-STRING, INPUT-LENGTH,
002700 OUTPUT-STRING, OUTPUT-LENGTH, RETURNCODE.
002800 IF ERROR-CODE NOT = 0, DISPLAY "OUTPUT LENGTH TOO SHORT",
002900 GO TO EXIT-PARAGRAPH.
003000 DISPLAY OUTPUT-STRING.
003100 CALL ''HEXUNPK" USING OUTPUT-STRING, HEX-STRING,
003200 OUTPUT-LENGTH.
003300 DISPLAY HEX-STRING.
003400 CALL "EXPAND" USING OUTPUT-STRING, OUTPUT-LENGTH,
003500 EXPANDED-STRING, INPUT-LENGTH, RETURNCODE.
003600 IF ERROR-CODE NOT = 0, DISPLAY "ERROR CODE = "ERROR-CODE,
003700 GO TO EXIT-PARAGRAPH.
003800 DISPLAY EXPANDED-STRING.
003900 EXIT-PARAGRAPH.
004000 STOP RUN.

COMPRESS-2

DATE

FUNCTION

DATE has several functions that involve the current system date, as well as user
specified dates:

1. Converts current system date and time to a formatted string, suitable for
report headings, in uppercase or upper and lowercase.

2. Converts dates between Gregorian and Julian formats (see definitions in
USAGE section).

3. Performs calculations with dates, including finding the difference between
two dates and obtaining a new date by adding a number of days to a given
date.

4. Determines the day of the week corresponding to a given date in the 20th
century.

USAGE (arg 1, arguments)

Arg 1 defines the function and determines the number and nature of the additional
arguments.

Several of this subroutine's functions use Gregorian and Julian formats. For example,
for the calendar day January 20, 1 981, the Gregorian equivalent (in YYMMDD format) is
810120; the Julian equivalent (in YYDDD format, where DOD is the number of days
from January 1) is 81 020.

1. Get current date and time (uppercase)

Pos

arg1

arg2

Argument

Function

Date/Time

Type

Alpha

Alpha

Size

2

45

Comments

Value is HD

Returned by the subroutine, in the following
format:

AAAAAAAAA
FRIDAY

BBBBBBBBBBBBBBBBBB
JANUARY 20, 1979

2. Get current date and time (upper and lowercase)

Pos

arg1

arg2

Argument

Function

Date/Time

Type

Alpha

Alpha

Size

2

45

Comments

Value is HL

Returned by the subroutine, in the following
format:

AAAAAAAAA BBBBBBBBBBBBBBBBBB
Friday January 20, 1979

DATE-1

cccccccc
2:30 PM

cccccccc
2:30 PM

3. Convert date in Gregorian format to Julian format

Pos Argument Type Size Comments

arg1 Function Alpha 2 Value is GJ

arg2 Greg. Date Alpha 6 Supplied by user program.

arg3 Jul. Date Alpha 5 Returned by subroutine.

arg4 Ret. Code Integer 4 Error return code. See Table 3-1 below.

4. Convert date in Julian format to Gregorian format

Pos Argument Type Size Comments

arg1 Function Alpha 2 Value is JG

arg2 Jul. Date Alpha 5 Supplied by user program.

arg3 Greg. Date Alpha 6 Returned by subroutine.

arg4 Ret. Code Integer 4 Error return code. See Table 3-1 below.

5. Compute the difference between two dates in Gregorian format

Pos Argument Type Size Comments

arg1 Function Alpha 2 Value is G-

arg2 Start Date Alpha 6 Supplied by user program.

arg3 End Date Alpha 6 Supplied by user program.

arg4 Difference Integer 4 Returned by subroutine. This value can be
in Days positive or negative.

arg5 Ret. Code Integer 4 Error return code. See Table 3-1 below.

6. Compute the difference between two dates in Julian format

Pos Argument Type Size Comments

arg1 Function Alpha 2 Value is J-

arg2 Start Date Alpha 5 Supplied by user program.

arg3 End Date Alpha 5 Supplied by user program.

arg4 Difference Integer 4 Returned by subroutine. This value can be
in Days positive or negative.

arg5 Ret. Code Integer 4 Error return code. See Table 3-1 below.

DATE-2

7. Add a specified number of days to a Gregorian date to produce a new date

Pos Argument Type Size Comments

arg1 Function Alpha 2 Value is G+

arg2 Start Date Alpha 6 Supplied by user program.

arg3 Days to Integer 4 Supplied by user program. Must be in the
Add range of -36524 to +36525. If outside that

range, a return code of 8 results.

arg4 New Date Alpha 6 Returned by subroutine. If the new date is in
the 1 9th or 21 st century, a return code of 4
results.

arg5 Ret. Code Integer 4 Error return code. See Table 3-1 below.

8. Add a specified number of days to a Julian date to produce a new date

Pos Argument Type Size Comments

arg1 Function Alpha 2 Value is J+

arg2 Start Date Alpha 5 Supplied by user program.

arg3 Days to Integer 4 Supplied by user program. Must be in the
Add range of -36524 to +36525. If outside that

range, a return code of 8 results.

arg4 New Date Alpha 5 Returned by subroutine. If the new date is in
the 1 9th or 21 st century, a return code of 4
results.

arg5 Ret. Code Integer 4 Error return code. See Table 3-1 below.

9. Determine the day of the week from a date in Gregorian format

Pos Argument Type Size Comments

arg1 Function Alpha 2 Value is GD

arg2 Date Alpha 6 Supplied by user program.

arg3 Day of Alpha 9 Returned by subroutine. The day is up-
Week percase and left-justified.

arg4 Ret. Code Integer 4 Error return code. See Table 3-1 below.

DATE-3

10. Determine the day of the week from a date in Julian format

Pos

argl

arg2

arg3

arg4

NOTE

Argument

Function

Date

Day of
Week

Ret. Code

Type Size Comments

Alpha 2 Value is JD

Alpha 5 Supplied by user program.

Alpha 9 Returned by subroutine. The day is
uppercase and left-justified.

Integer 4 Error return code. See Table 3-1 below.

The subroutine assumes that all dates provided by the user program are in the 20th cen
tury. If the subroutine computes a date that is not in the 20th century, a return code of 4
results. If the program then uses that date as an input argument to a subsequent call to
the subroutine, DATE assumes that the date is in the 20th century.

Return
Code

0
4

8

Table 3-1. DATE Error Return Codes

Meaning

Successful operation.

The result (for G+ and J+ only) is a year in either the 19th
(1800-1899) or 21st century (2000-2099).

Invalid input value or format.

DATE-4

DATE Subroutine - A COBOL Example

This program returns the date one day before a specified Gregorian date by adding -1 to the speci
fied date. Since COBOL cannot accept negative integer data, the program uses the method explained
in Section 2.2.2 for passing small negative integers.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. DATEC.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 WORKING-STORAGE SECTION.
000600 77 FUNCTION PIC X(2) VALUE "G+".
000700*THE NEXT ITEM IS THE INPUT DATE. IT IS INITIALIZED IN THE
000800*PROCEDURE DIVISION.
000900 77 START-DATE PIC X(6).
001000 77 ADD-DAYS PIC S9(4) VALUE -0001.
001100*IN THE PROCEDURE DIVISION, ADD-DAYS IS MOVED TO THE LOW-ORDER
001200*TWO-BYTES OF THE FOLLOWING ITEM IN ORDER TO BE PASSED TO THE
001300*SUBROUTINE.
001400 01 INTEGER-DAYS.
001500 03 FILLER USAGE IS BINARY VALUE ZERO.
001600 03 HALFWORD-DAYS USAGE IS BINARY.
00170-0 77 END-DATE PIC X(6).
001800 01 RETURN-KOOE.
001900 03 FILLER USAGE IS BINARY VALUE ZERO.
002000 03 RETURNED USAGE IS BINARY.
002100 PROCEDURE DIVISION.
002200 MAIN-PARAGRAPH.
002300 ACCEPT START-DATE.
002400*THE NEXT STATEMENT PROPAGATES THE NEGATIVE SIGN ACROSS THE TOP
002500*HALF OF INTEGER-DAYS, AS EXPLAINED IN SECTION 2.2.2.
002600 MOVE HIGH-VALUES TO INTEGER-DAYS.
002700 MOVE ADD-DAYS TO HALFWORD-DAYS.
002800 CALL "DATE" USING FUNCTION, START-DATE, INTEGER-DAYS,
002900 END-DATE, RETURN-KOOE.
003000 IF RETURNED = 0, DISPLAY "END-DATE IS " END-DATE
003100 ELSE DISPLAY "RETURN-CODE = " RETURNED.
003200 STOP RUN.

DATE-5

DATE Subroutine - A FORTRAN Example

This example gets the current system date and time, and converts a date in Gregorian format to
Julian format.

LOGICAL*! LABEL(45), JDATE(5)
REAL*B GDATE

C THE HD FUNCTION GETS THE DATE AND TIME IN A SPECIFIC FORMAT
CALL DATE('HD' ,LABEL)
WRITE(0,101) LABEL

C THE GJ FUNCTION CONVERTS DATE IN GREGORIAN TO JULIAN FORMAT
C THE NEXT STATEMENT SHOWS ANOTHER ~AV TO SPECIFY
C THE VALUE OF THE FIRST ARGUMENT

ARG1 = 'GJ'
C THE STARTING DATE IS APRIL 24, 1981 IN GREGORIAN FORMAT

GDATE = '810424'
CALL DATE CARG1, GDATE, JDATE, IRET)

C TEST RETURN CODE FOR ERRORS
IF (IRET .EQ. 0) GO TO 1

C ERROR PROCESSING
WRITE(0,102) IRET
GO TO 99

C NO ERROR IN SUBROUTINE OPERATION
1 WRITE(0,103) GDATE, JDATE

101 FORMAT(1X,45A1)
102 FORMAT (lX, 'ERROR - RETURN CODE = I3)
103 FORMAT(lX, 'GREGORIAN DATE = AB/

lX, 'JU LIAN DATE 5A1/)
99 PAUSE

END

The output from this program is as follows:

FRIDAY APRIL 24, 1981
GREGORIAN DATE = 810424
JULIAN DATE = 81114

PAUSE: 0

DATE-6

11: 31 AM

DAY

FUNCTION

Computes the day of the week that corresponds to any user-supplied date in the 20th
century.

USAGE {arg 1, arg 2)

Pos Argument Type Size Comments

arg1 Date Alpha 6 Provided by the user program, in the format
YYMMDD.

arg2 Day of Integer 4 Returned by the subroutine. Range from 1 to
week 7, corresponding to 1 =Sunday, 2=Monday,

... 7 =Saturday.

DAY-1

DAV Subroutine - A COBOL Example

This program accepts a date in Gregorian format for any day in the 20th century and returns the day
of the week as an integer.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. DAYC.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 WORKING-STORAGE SECTION.
000600 77 GREG-DATE PIC X(6).
000700*AS EXPLAINED IN SECTION 2.2.2, COBOL ACCEPTS HALFWORD INTEGERS
000800*0NLY. DEFINE A FOUR-BYTE GROUP ITEM TO BE COMPOSED OF TWO
000900*HALFWORD-BINARY, ELEMENTARY ITEMS, AND USE THE LOW-ORDER TWO
001000*BYTES FOR THE INTEGER.
001100 01 DAY-HOLDER.
001200 03 FILLER USAGE IS BINARY VALUE ZERO.
001300 03 DAY-OF-WEEK USAGE IS BINARY.
001400 PROCEDURE DIVISION.
001500 MAIN-PARAGRAPH.
001600 ACCEPT GREG-DATE.
001700 CALL "DAY" USING GREG-DATE, DAY-HOLDER.
001800 DISPLAY "DAY OF WEEK IS " DAY-OF-WEEK.
001900 STOP RUN.

DAY-2

DISMOUNT

FUNCTION

Initiates a dismount of a mounted volume (disk or tape).

USAGE

Pos

arg1

arg2

arg3

arg4

NOTE

(arg 1 , ... , arg4)

Argument

Volume

Device
Type

Nodisplay
Option

Ret. Code

Type

Alpha

Alpha

Alpha

Integer

Size

6

1

1

4

Comments

Name of volume to be dismounted.

Device type:
D = Disk (default)
T =Tape

Optional. Must be included if arg3 is present.

Indicates whether or not to display the dis
mount screen at the user's workstation:

N = No display
Blank = Display (default)

Optional. If present, arg2 must be included.

Error return code. See Table 3-2 below.

For FORTRAN programs, the name of this subroutine must be specified as DISMNT.

Return
Code

0
4
8

12
16
20
24
28
32

Table 3-2. DISMOUNT Error Return Codes

Meaning

Successful dismount.
Input volume name blank.
Volume not found.
Volume cannot be dismounted.
Device detached.
Volume in use by a user or the operating system.
Volume reserved by another user.
GETMEM failure (no more segment 0 space).
Device reserved by another task.

DISMOUNT-1

DISMOUNT Subroutine - A BASIC Example

This program calls the DISMOUNT subroutine to dismount a volume indicated by the user.

000100DIM VOLUME$ 06
000200DIM DEVICE$ 04
000201DEVICE$ = "DISK"
000202LOOP:
000203GOSUB DISPLAYIT
000204GOSUB DODISMOUNT
000205GOTO LOOP
000210DISPLAYIT:
000360ACCEPT
000410 AT (01,24),
000460"Demonstration of DISMOUNT Subroutine",
000510 AT (07,03),
000560"Input the name of the volume that you wish to dismount. The retu
000610 rn code'',
000660 AT (08,03),
000710"f rom DISMOUNT will then appear.",
000760 AT (10,11),
000810"VOLUME =",
000860 AT (10, 28) , VOLUME$, CH (06),
000910 AT (11,11),
000960"DEVICE =",
001010 AT (11,28), DEVICE$, CH(04),
001060 AT (11,37),
001110'' (DISK, TAPE) '' ,
001160 AT (13,11),
001210"RETURN CODE=",
001260 AT (13,28), RETURNCODE% , PICC##),
001310 AT (16,30),
001360' 'P'ress ENTER to continue.''
002010RETURN
002100
002110DODISMOUNT
002200 CALL "DISMOUNT" ADDRCVOLUME$,DEVICE$,RETURNCODE%)
002210RETURN

DISMOUNT-2

DISMOUNT Subroutine - A COBOL Example

This s~mple program calls DISMOUNT to dismount a disk volume called FLOPPY.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. DSMOUNTC.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 WORKING-STORAGE SECTION.
000600 77 VOLUME-NAME PIG X(6) VALUE "FLOPPY".
000700*AS EXPLAINED IN SECTION 2.2.2, COBOL ACCEPTS HALFWORD INTEGERS
OOOBOO*ONLY. DEFINE A FOUR-BYTE GROUP ITEM TO BE COMPOSED OF TWO
000900*HALFWORD-BINARY, ELEMENTARY ITEMS, AND USE THE LOW-ORDER TWO
001000*BYTES FOR THE INTEGER.
001100 01 RETURN-KODE.
001200 03 FILLER USAGE IS BINARY VALUE ZERO.
001300 03 ERROR-CODE USAGE IS BINARY.
001400 PROCEDURE DIVISION.
001500 MAIN-PARAGRAPH.
001600 CALL "DISMOUNT" USING VOLUME-NAME, RETURN-KODE.
001700 IF ERROR-CODE NOT EQUAL ZERO DISPLAY "ERROR-CODE =
001800 ERROR-CODE.
001900 STOP RUN.

DISMOUNT-3

DISMOUNT Subroutine - AN RPG II Example

This program instructs DISMOUNT to dismount the disk volume VOL 111. The program checks the
subroutine return code and tells the user whether the dismount was successful. The program displays
a return code whose value is greater than 0.

00100FDISPLAY DD F

ACCPTSCRl 00200C
00201C*
00203C*
00205C*
00210C
00220C
00240C
00242C*
00245C*
00247C*
00250C
00255C
00260C
00270C
00271C*
00272C*
00274C*
00275C
00280C
00282C
00284C

*** PREPARE PARAMETERS TO PASS TO RPGCALL

99
N99

00300WSCR1
00400W
00500W
00600WSCR2
00700W
ooaoow
00900WSCR3
01000W
01100W
01200W
01300W

RPGDMT:

* * *

RCODE

MOVE 'VOL111' VOL
MOVE 'D' TYPE
Z-ADDO RCODE

*** EXIT TO RPGCALL MACRO

EXIT RPGDMT
RLABL
RLABL
RLABL

CHECK RETURN CODE

COMP 0
ACCPTSCR3
ACCPTSCR2
SETON

VOL
TYPE
RCODE

6
1
40

99

LR

0707 'PRESS ENTER TO DISMOUN'
0729 'T DISK VOL111.'

0707 'DISMOUNT SUCCESSFUL.'
0907 'PRESS ENTER TO END JOB'

0707 'DISMOUNT l_INSUCCESSFUL. '
0907 'RETURN CODE =
0921RCODE
1107 'PRESS ENTER TO END JOB'

MACRO ***

RPGCALL NAME=RPGOMT,CALL=DISMOUNT,VOL,TYPE, (RCODE,4,F)

DISMOUNT-4

EXPAND

FUNCTION

Converts a character string from compressed format to external format. EXPAND
removes the control characters used to indicate repeated characters and produces text
in noncompressed form.

USAGE (arg 1, ... , arg5)

Pos Argument Type Size Comments

arg1 Input Alpha var String to be expanded.

arg2 Input Integer 4 Length of input string. Must be nonnegative
Length and not greater than 2048.

arg3 Output Alpha var Receiver that contains the expanded string.

arg4 Output Integer 4 Maximum length of output string. Must be
Length between 0 and 2048, and is reduced by the

subroutine to reflect the actual length of the
resulting character string.

arg5 Ret. Code Integer 4 Error return code. See Table 3-3 below.
If the return code is nonzero, the value of the
output string is unpredictable.

NOTES

1 . The operation of this subroutine is identical to the process used by the XPAND
Assembler instruction, used by DMS to expand records.

2. This subroutine is the inverse of the COMPRESS subroutine.

3. The EXPAND subroutine example appears after the description of the COMPRESS
subroutine.

Return
Code

0
4
8

Table 3-3. EXPAND Error Return Codes

Meaning

Successful.
Maximum output length too short.
Bad compression information was found in the input string.

EXPAND-1

EXTRACT

FUNCTION

Provides information about the system and the program user. The available information
appears below.

USAGE (key1, rec1, key2, rec2, ... , keyn, recn)

The argument list includes keyword-receiver pairs. A keyword must be immediately fol
lowed by a receiver. Each keyword selects particular information to be extracted about
the system or the user, which the subroutine returns in the receiver. In a few cases, the
user program must provide input in part of the receiver.

Each keyword is a 2-byte alpha value. A discussion of keywords, receivers, and the infor
mation extracted follows.

Keyword

A?

BP

c

C#

CL

CV

D

Recr
Type

Alpha

Integer

Alpha

Alpha

Alpha

Alpha

Alpha

Recr
Size

256

4

16

4

8

6

24

Receiver
Value

ASCII-to-EBCDIC translation table. Presents EBCDIC
characters corresponding to ASCII characters X'OO'
to X'FF'.

Number of available segment 2 buffer pages.

Cluster information. Bytes 1-2 must contain the
device address of the workstation, in binary. The sub
routine returns the following information:

Byte 1-2- Device address of archiver diskette
(0 if none).

3-16- Binary zeroes (reserved).

CPU ID number (CC), and microcode version (MM), in
the form CCMM (hexadecimal digits).

Current program library.

Current program volume.

Device information. The first byte must contain the
device address, in binary. The subroutine fills the
receiver with the following:

Byte 1 - Device class.
2 - Device type.

3-4-Usage:
EX = Exclusive.
SH= Shared.
OT = Detached.

5-8- Task identifier of device owner, or
-1 if none.

9-14- Volume serial number of removable
volume (disk or tape only). Blank if
nothing mounted.

1 5-20- Volume serial number of fixed
volume (disk only). Blank if nothing
mounted.

21-24- Binary zeroes (reserved).

EXTRACT-1

Recr Recr
Keyword Type Size

D@ Integer 4

DC Integer 4

DK Integer 4

DL Alpha var

DV Alpha 24

Receiver
Value

Disk 1/0 count since logon.

Number of devices in the system.

System diskette device number.

Returns a list of device addresses of the specified
device type. The first 2 bytes must contain the device
type and the number of device addresses to be
returned (specified in binary).

Byte 1 - Device type:
X'O 1' = workstation
X'02' = magnetic tape
X'03' =disk
X'04' = printer
X'05' =telecommunications

Byte 2- Number of device addresses to be
returned (0-253). The receiver size
must be at least this value + 2.

The receiver contains the following information:
Byte 1-Total number of devices in the

specified class.
Byte 2- Number of device addresses sup-

plied.
Rest - Device address list (1 byte for each

device address).

Disk volume information. Bytes 1 -6 must contain the
volume name. The receiver contains the following
information:

Byte 1 - Device address, or -1 if not
mounted.

2-Volume type:
F =Fixed
R = Removable
Blank = Not mounted

3-4- Label type:
SL = Standard label
NL= No label
Blank = Not mounted

5-6-Usage:
SH= Shared
RR = Restricted removal
EX = Exclusive
Blank = Not mounted

7-10- Task identifier of volume mounter,
or -1 if none.

11 -1 2- Blocks per cylinder.
1 3-14- Maximum transfer in bytes.
15-16- Cylinders per volume.
1 7 -1 8- Cylinders per physical volume,

including bad or unused blocks.

EXTRACT-2

Recr Recr Receiver
Keyword Type Size Value

19-20-Number of files open on this
volume.

21-24-Binary zeroes (reserved).

DY Integer 4 Number of clock units in one day.

E: Integer 4 Elapsed time in 1 /1 00 seconds.

E? Alpha 256 EBCDft-ASCll translation table.

FC Alpha 1 Default file protection class.

FN Integer 4 Default printer form number (0-254).

HZ Integer 4 A/C line frequency.

ID Alpha 3 Current user's ID.

IL Alpha 8 Default input library.

IV Alpha 6 Default input volume.

JC Alpha Background job default class (A-Z).

JL Integer 4 Background job default time limit in seconds.

JN Alpha 8 Background job name.

JS Alpha 1 Background job default status (R=Run, H=Hold).

L Alpha 8 Data Link Processor (DLP) status. The first 2 bytes
must contain the device address, in binary. The
receiver contains the following information:

Byte 1 - Device status flag:
X'80' if open
X' 40' if reserved
Zero otherwise

2-4- Task number of the task that
reserved the DLP, zero if device is
unreserved.

5-8-Name of the DLP on which the
device is SYSGENed.

LI Integer 4 Default lines-per-page for printer output.

LN Alpha 38 Data Link Processor (DLP) information. Bytes 1-4
must contain the OLP name. The receiver contains
the following information:

Byte 1-4- Bit map of devices on DLP.
5-6- First device on DLP.

7 - Type of DLP:
1 = 22V06-1
2 = 22V06-2
3 = 22V06-3

8- Number of lines controllable by DLP.
9-Microcode file status:

X'OO' if stopped
X'80' if loaded

1 0-1 2- Reserved for future use.

EXTRACT-3

Recr Recr Receiver
Keyword Type Size Value

13-20-Microcode file name, 0 if not loaded.
21-28- Microcode library name, 0 if not

loaded.
29-34- Microcode volume name, 0 if not

loaded.
35- Reservation status of OLP:

.. ~ X'80' if reserved
X'OO' if not reserved

36-38- Task number of task that reserved
OLP.

ME Alpha 4 Execute-access mask currently in effect.

MF Integer 4 Maximum number of files that the user can open, in
addition to those already opened.

MR Alpha 4 Read-access mask currently in effect.

MW Alpha 4 Write-access mask currently in effect.

NA Alpha 24 Current user's name (from Userlist).

NR Integer 4 Total nonresident physical area, in bytes.

O@ Integer 4 Count of "other" 1/0 transactions (not involving disk,
workstation, printer, tape).

OL Alpha 8 Default output library.

ov Alpha 6 Default output volume.

P+ Integer 4 Program page-in count.

P- Integer 4 Program page-out count.

P: Integer 4 Processor time in 1 I 1 00 seconds.

P@ Integer 4 Printer 1/0 count.

PC Alpha 1 Default print class (A-Z).

PL Alpha 8 Default program library (current). See Note 1.

PM Alpha 1 Default print mode (S, H, K, or O).

PR Integer 4 Default printer number (for online printing).

PV Alpha 6 Default program volume (current). See Note 1.

RL Alpha 8 Run library (initial). See Note 1.

RV Alpha 6 Run volume (initial). See Note 1.

S# Alpha 6 System version number, in the form VVRRPP (Ver-
sion, Revision, Patch).

S+ Integer 4 System page-in count.

S- Integer 4 System page-out count.

S2 Integer 4 Segment 2 size.

SL Alpha 8 Default spool library.

SS Integer 4 Remaining stack space.

EXTRACT-4

Recr Recr Receiver
Keyword Type Size Value

sv Alpha 6 Default spool volume.

T Alpha 48 Task information.
Bytes 1 -4 must contain the task number, in binary.
The receiver contains the following information:

Byte 1 - Workstation device number
{binary), -1 if background task.

2-4- Current user ID for task, blank if
none.

5-28- Current user name for task, blank if
none.

2 9- Type of task specified:
B = Background
F = Foreground

30-Blank.
31-48- Binary zeroes {reserved).

T# Integer 4 Task number.

T@ Integer 4 Tape 1/0 count.

TP Integer 4 Task priority.

TT Alpha 1 Task type:
F = Foreground
B = Background

TV Alpha 20 Tape volume information. Bytes 1-6 must contain the
volume name. The receiver contains the following
information:

Byte 1 - Device address, -1 if not mounted.
2- Binary zero {reserved).

3-4-Density in BPI, in binary:
(556, 800, or 1600)

5-6- Label type:
NL= No Label
IL = IBM Label
AL = ANSI Label
Blank = Not mounted

7-8-Usage:
SH= Shared
EX = Exclusive
Blank = Not mounted

9-12- Task identifier of tape mounter, -1 if
none (in integer (4) format).

1 3-14- Current file sequence number {on
the tape).

15-20- Binary zeroes {reserved).

UE Alpha 4 Default execute-access mask for current user.

UR Alpha 4 Def a ult read-access mask for current user.

uw Alpha 4 Default write-access mask for current user.

W# Integer 4 This workstation's device number, -1 if none.

EXTRACT-5

Recr Recr Receiver
Keyword Type Size Value

W@ Integer 4 This workstation's 1/0 count.

WL Alpha 8 Default work library.

WV Alpha 6 Default work volume.

XL Alpha 8 System library.

XP Alpha 8 System paging library.

xv Alpha 6 System volume.

xw Alpha 8 System work library.

NOTES

1. 11Current" refers to the library or volume applicable to the program that contains
the EXTRACT call. "Initial" refers to the library or volume applicable to the entire
session.

2. For FORTRAN programs, the name of this subroutine must be specified as
XTRACT.

EXTRACT-6

EXTRACT Subroutine - A COBOL Example

This program retrieves its own Segment 2 size. This size is always greater than 32767, the maximum
size for an integer in COBOL's halfword-binary format. The program circumvents the problem (dis
cussed in Section 2.2.2), by calling the BASIC subroutine 4T09.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. EXTRACTC.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 WORKING-STORAGE SECTION.
000600 77 KEYWORD PIC X(2) VALUE ''S2".
000700*THE NEXT ITEM RECEIVES THE SEGMENT 2 SIZE FROM EXTRACT AND
OOOBOO*PASSES IT TO 4T09.
000900 01 TEMP PIC X(4).
001000*THE NEXT ITEM RECEIVES THE SEGMENT 2 SIZE FROM 4T09 AND RETURNS
001100*IT TO THE COBOL PROGRAM.
001200 01 SEG-2-SIZE PIC S9(8).
001300 PROCEDURE DIVISION.
001400 MAIN-PARAGRAPH.
001500 CALL "EXTRACT" USING KEYWORD, TEMP.
001600 CALL "4T09" USING TEMP, SEG-2-SIZE.
001700 DISPLAY SEG-2-SIZE.
001800 STOP RUN.

EXTRACT-7

EXTRACT Subroutine - A FORTRAN Example

This example calls the EXTRACT subroutine to obtain the user's ID, the default output library, and the
number of CPU seconds used. All are displayed on the workstation.

C 'OUTLIB' IS THE DEFAULT OUTPUT LIBRARY
C 'ID' IS THE USER'S ID
C 'CPUSEC' IS THE NUMBER OF CPU SECONDS USED

REAL*8 OUTLIB
INTEGER*4 ID, CPUSEC

C* CALL EXTRACT (XTRACT IN FORTRAN) WITH ID, OL, AND P: KEYWORDS
CALL XTRACT ('ID', ID, 'OL', OUTLIB, 'P: ', CPUSEC)

C* SINCE CPUSEC RETURNS CPU USAGE IN 1/100 SECS, MUST CONVERT
SECS = CPUSEC/100.0
WRITE(0,101) ID, OUTLIB, SECS

101 FORMAT (lX, 'USER ID IS ' , A3 I
1 lX, 'DEFAULT OUTPUT LIBRARY IS ', A8/
2 lX, 'NUMBER OF CPU SECONDS IS ' , F12. 2)

PAUSE
END

EXTRACT-8

EXTRACT Subroutine - AN RPG II Example

This program extracts and displays the user's name and ID, the current device count, the number of
files that the user can still open, and the number of system page-ins performed so far.

00100FSCREEN DD F ws

* * * PREPARE PARAMETERS TO BE PASSED ***

MOVE 'DC' DC 2
Z-ADDO DCX 40
MOVE 'ID' ID 2
MOVE ' ' IDX 3
MOVE 'MF' MF 2
Z-ADDO MFX 40
MOVE 'NA' NA 2
MOVE ' ' NAX 24
MOVE 'S+' SP 2
Z-ADDO SPX 40

*** EXIT TO THE RPGCALL MACRO ***

EXIT RPGEXT
RLABL DC
RLABL DCX
RLABL ID
RLABL IDX
RLABL MF
RLABL MFX
RLABL NA
RLABL NAX
RLABL SP
RLABL SPX

00101C*
00102C*
00103C*
00110C
00120C
00200C
00300C
00400C
00500C
00600C
00700C
00800C
00900C
00910C*
00920C*
00930C*
01000C
01100C
01200C
01210C
01220C
01230C
01240C
01250C
01255C
01265C
01275C
01285C*
01295C*
01305C*
01315C
01355C
01365C

DISPLAY EXTRACTED INFORMATION ***

KG

01455WSCR1
01555W
01655W
01755W
01855W
01955W
02G55W
02155W
02255W
02355W
02455W

ENBLEKG
ACCPTSCR1
SETON

0707
0712NAX
0738
0739IDX
0907
0930DCX
1107
1129
1120MFX
1307

LR

'USER'

' () '

'CURRENT DEVICE COUNT: '

'YOU MAY OPEN MORE'
' FILES.'

'SO FAR, SYSTEM PA'

EXTRACT-9

02555"4
02655"4
02755"4

RPGEXT:

1329
1315SPX
2007

'GEINS.'

'PRESS PF 16 TO EXIT.

RPGCALL NAME=RPGEXT,CALL=EXTRACT,DC, (DCX,4,F) ,ID,IDX,MF, C
(MFX,4,F),NA,NAX,SP, (SPX,4,F)

EXTRACT-10

FIND

FUNCTION

Obtains one or more file, library, or volume names from complete or partial file, library,
and volume names supplied by the user program. Also, indicates whether a specified file
resides in a specified library and volume.

USAGE (arg 1, ... , arg8)

See the note after the argument descriptions for information about specifying the
names of files, libraries, and volumes.

Pos Argument Type Size Comments

arg1 File Alpha 8 File or files to be found. If blank, a library
search is assumed.

arg2 Library Alpha 8 Library or libraries to be found. If blank, a
volume search is assumed.

arg3 Volume Alpha 6 Volume or volumes to be found. The volume
name should not be blank. Only Standard
Label (SL) volumes can be searched.

arg4 Starter Integer 4 Entry at which to begin listing. See Note 3.

arg5 Counter Integer 4 Maximum number of entries to be listed. The
user provides an initial value; the subroutine
sets this to the actual count. See Note 3.

arg6 Receiver Alpha var Entries. Each entry is 22 bytes and contains:
Byte 1-6-Volume

7-14- Library (can be blank)
1 5-22- File (can be blank)

ArgB = A, blank, or omitted: this is the
name or address of the variable that holds
the requested entries.
ArgB = F: this must be the UFB address
(File # in BASIC, or FD in COBOL) of a con-
secutive. file, record size 22, opened in
Output or Extend mode.

arg7 File Integer 4 Actual number of eligible entries, returned
Count by the subroutine. Optional, but must be pre-

sent if arg8 is included. See Note 2.

arg8 Receiver Alpha 1 Type of output to be returned.
Type For alpha receiver (default), specify A or

blank. For file receiver, specify F. Optional. If
included, arg 7 must also be present. See
arg6 description.

FIND-1

How to Specify the Names of Files, Libraries, and Volumes

The file, library, and volume arguments can be either standard alphanumeric names, or
masks that contain both standard characters and one or more of the special characters
? (Ind *. The significance of these special characters is as follows:

? corresponds to anystring of any length in the name. For example, if Library=
?XYZ?, the subroutine returns all libraries whose names contain the string XYZ
preceded and/or followed by any {or no) characters.

* corresponds to a single nonblank character in the name. For example, if Library =
*, the subroutine returns all one-letter libraries in the specified volume.

Blanks are ignored in the input arguments. Also, a completely blank input argument
selects the next level of find. For example, blank file returns a library list, blank file and
library returns a volume list.

Examples of File, Library, and Volume Specifications

File Library Volume Items Returned

x y z Returns X, Y, and Z if file X exists in library Y on volume
Z; otherwise, returns nothing.

* ? ? All one-letter file names.

? ?ABC? ? All file names in every library whose name contains
ABC.

? ? VOL123 All files on volume VOL 1 23.

blank #?PRT SYSTEM All print library names on volume SYSTEM.

blank blank ? All volume names currently mounted on the system.

NOTES

1. If the subroutine cannot read the VTOC of a volume for any reason, it ignores that
volume.

2. Argument 7 provides the total number of entries found, while argument 5 indicates
how many entries are to be returned in the receiver. If the program includes argu
ment 7 and if it is larger than argument 5, the subroutine might take more time to
execute.

3. The program can use arguments 4 and 5 together to successively output a large
number of qualified entries. For example, if Starter= 1 and Counter= 100, the first
100 entries are returned to the receiver. Then, if Starter is incremented to 1 01 and
Counter remains at 1 00, a second use of the subroutine results in returning the
second 1 00 entries. Each increment requires a separate call to FIND and adds time
to the process.

FIND-2

FIND Subroutine - A COBOL Example

This program allows the user to retrieve the names of files, libraries, or volumes on the system. The
program displays output on the workstation.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. FINDC.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 WORKING-STORAGE SECTION.
000600 77 FILE-NAME PIC X(8).
000700 77 LIB-RARY PIC X(8).
000800 77 VOL-UME PIC X(6).
000900*AS EXPLAINED IN SECTION 2.2.2, COBOL ACCEPTS HALFWORD INTEGERS
001000*0NLY. DEFINE A FOUR-BYTE GROUP ITEM TO BE COMPOSED OF TWO
001100*HALFWORD-BINARY, ELEMENTARY ITEMS, AND USE THE LOW-ORDER TWO
001200*BYTES FOR THE INTEGER. TO PASS THE INTEGER TO THE SUBROUTINE,
001300*INITIALIZE THE HIGH-ORDER BYTES TO ZERO.
001400 01 STARTER.
001500 03 FILLER USAGE IS BINARY VALUE ZERO.
001600 03 START-INTEGER USAGE IS BINARY VALUE 1.
001700 01 COUNTER.
001800 03 FILLER USAGE IS BINARY VALUE ZERO.
001900 03 COUNT-INTEGER USAGE IS BINARY.
002000 77 RECEIVER PIC X(110).
002100 01 ENTRIES.
002200 03 FILLER USAGE IS BINARY VALUE ZERO.
002300 03 ENTRY-COUNT USAGE IS BINARY.
002400 PROCEDURE DIVISION.
002500 FIRST-PARAGRAPH.
002600 ACCEPT FILE-NAME, LIB-RARY, VOL-UME.
002700 IF FILE-NAME= "!" GO TO EXIT-PARAGRAPH.
002800*COUNT-INTEGER RECEIVES THE ACTUAL NUMBER OF ENTRIES RETURNED,
002900*IF LESS THAN THE ORIGINAL SPECIFICATION. THUS IT MUST BE
003000*RE-INITIALIZED FOR THE SUBROUTINE TO BE CALLED AGAIN.
003100 MOVE 5 TO COUNT-INTEGER.
003200 SECOND-PARAGRAPH.
003300 PERFORM CALL-PARAGRAPH.
003400*START-INTEGER IS INCREMENTED EACH TIME THROUGH.THE LOOP. WHEN
003500*IT BECOMES GREATER THAN THE NUMBER OF AVAILABLE ENTRIES, CONTROL
003600*RETURNS TO THE FIRST PARAGRAPH.
003700 IF START-INTEGER GREATER THAN ENTRY-COUNT, MOVE 1 TO
003800 START-INTEGER, PERFORM FIRST-PARAGRAPH.
003900 PERFORM SECOND-PARAGRAPH.
004000 CALL-PARAGRAPH.
004100 MOVE SPACES TO RECEIVER.
004200 CALL "FIND" USING FILE-NAME, LIB-RARY, VOL-UME, STARTER,
004300 COUNTER, RECEIVER, ENTRIES.
004400 DISPLAY RECEIVER.
004500 DISPLAY "ENTRY-COUNT= ''ENTRY-COUNT,
004600 '' START-INTEGER= "START-INTEGER,
004700 COUNT-INTEGER = "COUNT-INTEGER.
004800 ADD 5 TO START-INTEGER.
004900 EXIT-PARAGRAPH.
005000 STOP RUN.

FIND-3

FIND Subroutine -A FORTRAN Example

This example finds files, libraries, and volumes on the disk depending on the input that the user
enters. The program displays output on the workstation.

C 'LIBS' CONTAINS THE NAMES OF LIBRARIES
C '!FILE', '!LIB', '!VOL' ARE ENTERED BY THE USER
C EVERY RECORD MUST BE 22 BYTES LONG
C LIBS(22,100) provides 100 RECORDS, EACH 22 BYTES LONG

LOGICAL*! LIBS(22,100)
REAL*8 !FILE, !LIB, !VOL
!COUNT = 100
WRITE(0,103) ' FILE?'
READ(0,103) !FILE
WRITE(0,103) ' LIB?'
READ (0 , 10 3) I LIB
WRITE(0,103) ' VOL?'
READ(0,104) !VOL

c
C CALL FIND TO PROVIDE NAMES DEPENDING ON WHAT THE OPERATOR ENTERED

CALL FINDCIFILE, ILIB, !VOL, 1, !COUNT, LIBS)
c

WRITE(0,102) !COUNT
DO 10 1=1,5
WRITE(0,101) (LIBS(J,I) ,J=l,22)

10 CONTINUE
101 FORMAT(1X,22A1)
102 FORMAT(lX,15)
103 FORMATCA8)
104 FORMATCA6)

PAUSE
END

FIND-4

FLO PIO

FUNCTION

Performs the following 1/0 operations with a nonlabeled (NL} diskette:

OPEN the diskette as a file
CLOSE the diskette
READ or READ-HOLD from the diskette
WRITE or REWRITE to the diskette
Find the status of a specified diskette

USAGE (arg 1, arguments)

Arg 1 determines the 1/0 function that the subroutine performs and the number and
nature of the additional arguments.

1. OPEN the diskette as a file

Pos Argument Type Size

arg 1 Function Alpha 2

arg2 Open Mode Alpha 2

arg3 Prname Alpha 8

arg4 Volume Alpha 6

arg 5 Record Integer 4
Size

arg6 Ret. Code Integer 4

Comments

Value is OP

Mode in which the diskette is open:
IN = Input mode
10=10 mode
OU = Output mode

User-supplied parameter reference name for
the file. Only one file can be open at a time.

Name given the diskette when mounted.

Size of NL diskette records:
4096 for 2200 diskettes (default)

256 for VS/WP and VS diskettes
If omitted, the last value used is assumed.
See Note 3.

Error return code.
0 = Successful open
4 = Not an NL diskette

If neither, the subroutine returns the follow
ing information from the UFB:

Byte 1 - UFBFS2, the second byte
of the file status code

2- UFBXCODE, extended
open exit code

3- UFBF2, open mode flag
4-Hex '08'

Refer to the VS Operating System Services
for a complete explanation of each of these
bytes.

FLOPI0-1

Arguments 3 to 5 are optional. If the program uses an argument, all the previous argu
ments must be included.

If argument 3 or 4 is omitted or contains only hexadecimal zeroes, the prname and
volume names currently in the UFB are moved to these fields.

2. CLOSE the previously opened diskette

Pos

arg1

arg2

3.

Pos

arg1

arg2

arg3

arg4

4.

Pos

arg1

arg2

arg3

Argument

Function

Ret. Code

Type

Alpha

Integer

Size

2

4

Comments

Value is CL

Error return code. See Table 3-4 below. A
nonzero value is the file status code for the
last WRITE to the file.

READ or READ-HOLD from the diskette

Argument Type Size Comments

Function Alpha 2 Type of read to be performed:
RE= READ
RH = READ-HOLD

Record Integer 4 Sector number to be read. The first sector is
Number 1. A value of 0 is equivalent to a READ NEXT.

Buffer Alpha 256 Receiver for the returned record.

Ret. Code Integer 4 Error return code. See Table 3-4 below.

WRITE or REWRITE to the diskette

Argument Type Size Comments

Function Alpha 2 WRITE or REWRITE:
WR =WRITE
RW =REWRITE

Buffer Alpha 256 Buffer containing the record to be written.
See Note 3 for information about its length.

Ret. Code Integer 4 Error return code. See Table 3-4 below.

5. Find the status of a specified diskette

Pos

arg1

arg2

Argument

Function

Volume

Type

Alpha

Alpha

Size

2

6

Comments

Value is Fl

Name assigned the diskette when mounted.
If it contains hexadecimal zeroes or is omit
ted, the subroutine assumes the volume
name currently in the UFB, and replaces the
hexadecimal zeroes with that volume name.
Must be included if arg3 is present.

FLOPI0-2

Pos Argument Type Size Comments

arg3 Diskette Alpha 2 1/0 status of the diskette relative to the cur-
Status rent program, returned by the subroutine:

OU = Open for output
IN = Open for input
10 = Open for 1/0
CL = Not opened by FLOPIO

Optional. If present, arg2 must be included.

arg4 Ret. Code Integer 4 Error return code:
0 = Diskette found
4 = Not an NL diskette
8 = Diskette not mounted

NOTES

1. Input mode allows READ only. 10 mode allows READ, READ-HOLD, and REWRITE.
Output mode allows WRITE only.

2. In all cases, an invalid sequence of functions, such as closing an unopened file or
doing a READ in input mode, causes the user program to be cancelled.

3. An NL diskette is assumed to have 256-byte sectors. That is the record size used
in all READs, REWRITEs, and WRITEs. The size specified for the OPEN command
serves only to tell the subroutine whether the sectors are in 2200, VS/WP, or VS
order. On VS/WP and VS diskettes, consecutively numbered sectors are physically
consecutive and are processed sequentially, starting from the outermost track, 1 6
sectors per track. On a 2200 diskette, consecutively numbered sectors are located
four physical sectors apart within a track. FLOPIO processes the sectors in
numeric, rather than physically consecutive, order.

In Output mode, data is physically written to the diskette in 4096-byte blocks (one
track). Therefore, if a multiple of 1 6 sectors is not written, the unwritten sectors
contain undefined data. If this is not desirable, the programmer can use
READ/REWRITE in 10 mode. This method, however, is noticeably slower.

Table 3-4. FLOPIO Error Return Codes

Return
Code Meaning

0 Successful operation.
10 End-of-diskette encountered (for READ NEXT or READ HOLD).
23 Invalid record number (for READ or READ HOLD).
30 Hardware error.
34 End-of-diskette encountered (for WRITE).

FLOPI0-3

FLOPIO Subroutine - A COBOL Example

This program opens a nonlabeled diskette volume, writes two records to the diskette, closes it, opens
it again, reads and displays the two records, and closes the diskette.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. FLOPIOC.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 WORKING-STORAGE SECTION.
000600 77 FUNCTION PIC X(2).
000700 77 OPEN-MODE PIC X(2) VALUE ''OU''.
000800 77 PRNAME PIC X(8) VALUE "FLOPIO".
000900 77 VOLUME-NAME PIC X(6) VALUE "FLOPPY".
001000*AS EXPLAINED IN SECTION 2.2.2, COBOL ACCEPTS HALFWORD INTEGERS
001100*0NLY. DEFINE A FOUR-BYTE GROUP ITEM TO BE COMPOSED OF TWO
001200*HALFWORD-BINARY, ELEMENTARY ITEMS, AND USE THE LOW-ORDER TWO
001300*BYTES FOR THE INTEGER. TO PASS AN INTEGER TO THE SUBROUTINE,
001400*INITIALIZE THE HIGH-ORDER BYTES TO ZERO.
001500 01 RECORD-SIZE.
001600 03 FILLER USAGE IS BINARY VALUE 0.
001700 03 R-SIZE USAGE IS BINARY VALUE 256.
001800 01 RETURN-KODE.
001900 03 FILLER USAGE IS BINARY VALUE ZERO.
002000 03 ERROR-CODE USAGE IS BINARY.
002100 77 BUF-FER PIC X(256) VALUE SPACE.
002200 01 RECORD-NUMBER.
002300 03 FILLER USAGE IS BINARY VALUE 0.
002400 03 RECORD-COUNTER USAGE IS BINARY.
002500 PROCEDURE DIVISION.
002600 MAIN-PARAGRAPH.
002700 PERFORM OPEN-PARAGRAPH.
002800 PERFORM WRITE-PARAGRAPH VARYING RECORD-COUNTER FROM 1 BY 1
002900 UNTIL RECORD-COUNTER EQUAL 3.
003000 PERFORM CLOSE-PARAGRAPH.
003100 MOVE "IN" TO OPEN-MODE.
003200 PERFORM OPEN-PARAGRAPH.
003300 PERFORM READ-PARAGRAPH VARYING RECORD-COUNTER FROM 1 BY 1
003400 UNTIL RECORD-COUNTER EQUAL 3.
003500 PERFORM CLOSE-PARAGRAPH.
003600 STOP RUN.
003700 OPEN-PARAGRAPH.
003800 DISPLAY "I AM IN THE OPEN-PARAGRAPH."
003900 MOVE "OP" TO FUNCTION.
004000 CALL ''FLOPIO'' USING FUNCTION, OPEN-MOOE, PRNAME, VOLUME-NAME,
004100 RECORD-SIZE, RETURN-KODE.
004200 IF ERROR-CODE NOT EQUAL 0 GO TO ERROR-PARAGRAPH.

FLOPI0-4

004300 WRITE-PARAGRAPH.
004400 DISPLAY "I AM IN THE WRITE-PARAGRAPH."
004500 IF RECORD-COUNTER = 1 MOVE "THE FIRST RECORD" TO BUF-FER
004600 ELSE MOVE "THE SECOND RECORD" TO BUF-FER.
004700 MOVE "WR" TO FUNCTION.
004800 CALL "FLOPIO" USING FUNCTION, BUF-FER, RETURN-KODE.
004900 IF ERROR-CODE NOT EQUAL ZERO GO TO ERROR-PARAGRAPH.
005000 READ-PARAGRAPH.
005100 DISPLAY "I AM IN THE READ-PARAGRAPH."
005200 MOVE "RE" TO FUNCTION.
005300 CALL "FLOPIO" USING FUNCTION, RECORD-NUMBER, BUF-FER,
005400 RETURN-KODE.
005500 IF ERROR-CODE NOT EQUAL ZERO GO TO ERROR-PARAGRAPH.
005600 DISPLAY BUF-FER.
005700 CLOSE-PARAGRAPH.
005800 DISPLAY "I AM IN THE CLOSE-PARAGRAPH."
005900 MOVE "CL" TO FUNCTION.
006000 CALL "FLOPIO" USING FUNCTION, RETURN-KODE.
006100 IF ERROR-CODE NOT EQUAL ZERO GO TO ERROR-PARAGRAPH.
006200 ERROR-PARAGRAPH.
006300 DISPLAY ''ERROR CODE= '' ERROR-CODE.
006400 STOP RUN.

FLOPI0-5

GETPARM

FUNCTION

Provides the ability to generate parameter requests in a higher-level language program.

USAGE

The GETPARM argument list consists of the following sets of arguments. Some are
optional, and some are repeatable.

The GETPARM Definition argument sequence: GETPARM Type, Form, Prname, PF Key
Receiver, Message ID, Message Issuer, Message Line Count, Message Text,
Message Text Length

The Keyword Field type argument sequence: Specification Type, Keyword, Value,
Length, Row Flag, Row, Column Flag, Column, Data Type

The Text Field type argument sequence: Specification Type, Text, Text Length, Row
Flag, Row, Column Flag, Column

The PF Key Mask argument sequence: Specification Type, PF Key Mask

The ENTER Flag specification: Specification Type

Each GETPARM argument sequence is described below.

GETPARM-1

GETPARM Definition Arguments

The following mandatory sequence of nine arguments is included only once in the argu-
ment list.

Pos Argument Type Size Comments

arg1 Type Alpha 2 Type of request:
I = Specify initial parameters
R = Respecify parameter (s) (error cor-

rection)
ID = Satisfy initial parameters from

defaults
RD= Satisfy correction parameters

from defaults
See Note 1 for request type descriptions.

arg2 Form Alpha 1 Form of screen:
A = Acknowledge
R =Request
S =Select

Unless the program specifies a PF key mask
(see PFKEY Mask Specification) with the
Request and Acknowledge forms, all PF
keys are disabled; with the Select form, all
PF keys are enabled. See Note 1 for request
form descriptions.

arg3 Prname Alpha 8 Parameter reference name. To satisfy the
request via Procedure language statements,
prname must be alphanumeric.

arg4 PF Key Alpha AID byte. For type ID or RD, indicates key
Receiver that selects default option. If not used, initial-

ize to @. See Table 3-18 for AID bytes and
their meanings.

arg5 MsglD Alpha 4 Identifies particular GETPARM screen.

arg6 Msg lss. Alpha 6 Identifies source of screen.

arg7 Msg Line Integer 4 Number of lines of message. The message
Count can be specified either as individual lines of

text (arg 7 nonnegative), or as a single block
(arg7 omitted).

arg8 Msg Text Alpha var Message text.
Arg7 specified: arg8 is an individual line of
text, and arg8 and arg9 are repeated for
each separate line of text in the message.
Each line can begin with one or more of the
following control characters:

X' 5E' (up-arrow) = Center msg text
X'5F' (underscore) =Underline msg text
X' 21' (exclamation pt) = Blink msg text

Arg 7 omitted: arg8 is the entire message
text, where lines are separated by an
X'OD' character.

GETPARM-2

Pos Argument Type Size Comments

arg9 Msg Text Integer 4 Length of message text. A text length of
Length 0, excluding control characters, causes no

text line to be generated. If the argument
list contains only empty text strings, a
single blank is generated as the text.

Keyword Field GETPARM Type

The following argument list defines a single Keyword field, for which the user or Proce-
dure language statements can supply the parameters. The entire set of arguments is
specified once for each keyword.

Pos Argument Type Size Comments

arg1 Type Alpha 1 Specifies keyword field type:
K/k = Standard keyword field.
R/r =Error-respecify keyword field.

See Note 2 for uppercase and lowercase
usage.

arg2 Keyword Alpha 8 Keyword name. Can contain any characters,
but must be alphanumeric if Procedure Ian-
guage statements specify parameters.

arg3 Value Alpha var Initial value of keyword. Blanks in the field
are converted to pseudoblanks on the
screen and back to blanks after the user
presses a PF key or the ENTER key.

arg4 Length Integer 4 Length of keyword field. The user specifies
zero to process entire field as skip specifica-
tion (as though arg 1 =k or r).

arg5 Row Flag Alpha 1 Indicates how to position this field:
A= Absolute. Rows 9-24 are available,

but the row depends on how many
lines of message text were dis-
played.

R = Relative (default). Calculated from
the "current" row (most recent row
displayed), or initial default.

Optional.

arg6 Row Integer 4 Row to display this field.
Arg5=A: arg6 is actual row.
Arg5=R". arg6 is number of rows from "cur-
rent" row. If the user has not specified any
fields, current row is (n+8) where n is the
number of lines of message text specified
(minimum of 1 }.

arg7 Col. Flag Alpha 1 Indicates how to position this field:
A= Absolute (columns 2-80 are avail-

able}.

GETPARM-3

Pos Argument Type Size

arg8 Column Integer 4

arg9 Data Type Alpha 1

Text Field GETPARM Type

Comments

R = Relative (default). For a new row,
"current" column is 2. (Can be
0- 78.)

C = Center the field in the specified row.
J = Right-justify the field in the speci-

fied row.
Optional.

Column to display this field.
Arg 7=A: arg8 is column to display field.
Arg 7=R: arg8 is number of columns from
"current" column. Current column is either 2
(initially, or whenever a row value other than
Relative 0 is specified), or the end position
of the last field specified plus 1 trailing blank.
Arg 7=C or J: arg8 is optional, and is ignored
if included.

Data type for this field.
Uppercase generates modifiable fields.
Lowercase generates protected fields.

A/a = Alphanumeric only (A-Z, 0-9, #,
@, $). Letters converted to
uppercase.

Cle = Any character accepted.
1/i = Unsigned integers only (0-9).
N/n = Numeric only (optional decimal

point and sign).
Lil = Limited alphanumeric (A-Z, 0-9,

#, @, &) . Letters converted to
uppercase. First character must

-_ not be a number.
U/u = Any characters. Letters converted

to uppercase.
H/h = Hexadecimal digits only (0-9,

A-F). Numeric and integer fields
are limited to 1 6 characters in
length. The VS Procedure lan
guage allows the user to override
protected fields.

The Text Field type causes text to be displayed on the GETPARM screen. The program
specifies the entire argument list once for each line of text to be displayed.

GETPARM-4

Pos Argument Type Size Comments

arg1 Type Alpha 1 Specifies text field type:
Tit = Text field
U/u = Underlined text field See Note 2

for upper and lowercase usage.

arg2 Text Alpha var Line of text to be displayed.

arg3 Length Integer 4 Length of text line (arg2). Specify zero to
cause the entire text field spec to be pro-
cessed as a skip (as though arg 1 =tor u).

arg4 Row Flag Alpha See arg 5 of Keyword field type.

arg5 Row Integer 4 See arg6 of Keyword field type.

arg6 Col. Flag Alpha 1 See arg 7 of Keyword field type.

arg7 Column Integer 4 See arg8 of Keyword field type.

PF Key Mask Specification

This specification type allows the program to enable/disable any of the 32 PF keys.

Pos Argument Type

arg1 Type Alpha

arg2 PF key Alpha
mask

ENTER Flag Specification

Size

4

Comments

Specifies PF Key Mask specification type:
P/p = PF Key Mask type

See Note 2 for uppercase and lowercase
usage.

Four byte (32 bit) mask. Each bit corre
sponds to a PF key: leftmost bit to PF 1,
rightmost bit to PF32. A bit value of 1
enables the corresponding key, 0 disables
the key. For example, the user enables all
keys by specifying the value X'FFFFFFFF'. If
no mask is supplied, the default action is to
disable all PF keys for Acknowledge and
Request forms, and to enable all PF keys for
the Select form.

This specification type allows the user to enable/ disable the ENTER key. The default for
all form types is to enable the ENTER key.

Pos Argument Type

arg1 Type Alpha

Size

1

Comments

Indicates ENTER Flag specification type:
E/ e = Enable ENTER key
N/ n = Disable ENTER key

See Note 2 for upper and lowercase usage.

GETPARM-5

NOTES

1. The GETPARM request types are 2-byte values, constructed as follows:

Byte 1 = I, generates an "initial" request, which can be satisfied by a procedure.
Byte 1 = R, generates a "respecification" (correction) request, which cannot be
satisfied by a procedure.

Byte 2 = blank, the subroutine satisfies the" request via the workstation. Byte 2 =
D, the subroutine satisfies the request via current ("default") values for the key
words that comprise the request.

Thus, the combinations work as follows:

Type = "I ": the subroutine searches for a procedure to satisfy the requested
parameters. If they are not found in a procedure, it requests input from the work
station.

Type = "ID": the subroutine searches for a procedure to satisfy the requested
parameters. If none, it uses current values and continues without displaying the
request on the workstation.

Type = "R ": the subroutine satisfies the request from a workstation display.

Type= "RD": the subroutine satisfies the request from current values only. (This
type is not very useful.)

The following table lists the screen heading that is displayed for each request type
and form if workstation input is required.

Type Form Heading

A RESPONSE REQUIRED BY PROGRAM name
TO ACKNOWLEDGE prname

R INFORMATION REQUIRED BY PROGRAM name
TO DEFINE prname

S RESPONSE REQUIRED BY PROGRAM name
TO SELECT prname

R A CORRECTION REQUIRED BY PROGRAM name
TO ACKNOWLEDGE prname

R R CORRECTION REQUIRED BY PROGRAM name
TO DEFINE prname

R S CORRECTION REQUIRED BY PROGRAM name
TO SELECT prname

2. Uppercase values cause the field, PF mask, or ENTER flag to be displayed or
executed. Lowercase values cause the sequence of arguments of which this argu
ment is a part to be skipped or ignored. Skip specifications allow a program to
select particular parameters at runtime without having to generate several similar
CALL statements.

3. FORTRAN programs must specify the name of this subroutine as GETPRM.

GETPARM-6

GETPARM Subroutine - A BASIC Example

This program first displays a screen that requests that the user provide the GETPARM type, form,
prname, and the message number, ID, and up to 2 lines of message text. When the user presses the
ENTER key, the program displays a GETPARM screen that includes the user-supplied information. It
also demonstrates the use of a variety of fields, including alphanumeric, blinking, uppercase, integer,
numeric, and protected. The program disables all but PF5.

000100DIM TYPE$ 02
000200DIM FORM$ 01
000300DIM PRNAME$ 08
000400DIM PFKEYRECEIVER$ 1
000500DIM MESSAGENO$ 04
000600DIM MESSAGEID$ 06
000700DIM MESSAGE!$ 60
000800DIM MESSAGE2$ 60
000900TYPE$ = "I "
001000FORM$ = "S"
001100DIM A$121
001200AGAIN:
001300GOSUB FORMATSCREEN
001400GOSUB DOGETPARM
001500GOTO AGAIN
001600
001700DOGETPARM:
001800A$ = MESSAGE!$ & HEX(OD) & MESSAGE2$
001900CALL ''GETPARM'' ADDR(TYPE$,FORM$,PRNAME$,
002000 PFKEYRECEIVER$,MESSAGENO$,MESSAGEID$,
002100 A$,121%,
002200 ''N'',
002300 ''P'', HEX(FFFF),
002400 "T", "This is a TEXT FIELD." ,21%,1%,0%,
002500 "K", "ALPHANUM", "THISALPHANUMERICFIELDHASNOBLKS" ,30%
002600 ,2%,15%,"A",
002700 "R", "BLINK ","This field blinks, allows all characters."
002800 ,44%,1%,0%, "C",
002900 "K","UPPER ","This is an UPPERCASE FIELD.",27%,1%
003000 I 0% ' I I u' I I

003100 "K" I "INTEGER II I "7777788888999996" ,16%,1%,0%, "I" I

003200 ''KI' I'' NUMERIC I I I'' 1234567890. 09876II'24%,1%, 0%, ''NI' I
003300 "T" I "SPECIAL PROTECTED OPTION!!!!" ,28%,3%,15%,
003400 "K", "CHARPROT'', "This is a CHARACTER PROTECTED FIELD."
003500 ,36%,1%,0%, "c" I
003600 ''T'', ''ENTER is disabled; only PFS works.'' ,34%,2%,0%)
003700RETURN

GETPARM-7

003800
003900FORMATSCREEN:
004000ACCEPT
004100 AT (01,24) I

004200"Demonstration of GETPARM Subroutine",
004300 AT (06,04) I

004400"Specify the following parameters, and press ENTER to get a GETPA
004500RM screen.'',
004600 AT (08,03) I

004700''TYPE: '',
004800 AT (08,14), TYPE$ I CHC02),
004900 AT (08,18),
005000" (I-initial; R-respeci fy; ID-initial dfl t; RD-respecify df lt)",
005100 AT (09,03),
005200" FORM: " I

005300 AT (09,14), FORM$ I CH(Ol),
005400 AT (09,18),
005500'' CR-request; S-select; A-acknowledge)'',
005600 AT (10,03),
005700''PRNAME: II I

005800 AT (10 I 14) ' PRNAME$ ' CH (06) I

005900 AT (11,03),
006000''MESSAGE #:"I
006100 AT (11,14), MESSAGENO$ I CH(04) I

006200 AT (12,03),
006300''MESSAGEID: ''I
006400 AT (12,14), MESSAGEID$ ' CH(06) I

006500 AT (13,03),
006600''MESSAGE: II I

006700 AT (13,14), MESSAGE1$ ' CH(60) I

006800 AT (14,14), MESSAGE2$ I CH(60)'
006900 AT (18,03),
007000''Press ENTER, look at the GETPARM, and see where your parameters

.007100were placed."
007200RETURN

GETPARM-8

GETPARM Subroutine - A COBOL Example

This program creates a GETPARM screen that allows the user to specify an output file. The
GETPARM is for initial parameters and has the request form. Fields for the file, library, and volume
names, with a prompt centered and blinking above them, appear on the screen.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. GETPARMC.
000300 ENVIRONMENT DIVISION.
000400 CONFIGURATION SECTION.
000500 FIGURATIVE-CONSTANTS.
000600*THE TWO USER-FIGURATIVE-CONSTANTS ARE CONTROL CHARACTERS FOR THE
000700*GETPARM MESSAGE.
000800 CENTER IS "5E"
000900 BLINK IS "21".
001000 DATA DIVISION.
001100 WORKING-STORAGE SECTION.
001200 77 TY-PE PIC X(2) VALUE "I".
001300 77 FO-RM PIC X VALUE "R".
001400 77 PR-NAME PIC X(8) VALUE "OUTPUT".
001500 77 KEY-RECEIVER PIC X(l).
001600 77 MESSAGE-NUMBER PIC X(4) VALUE "9999".
001700 77 MESS-ENGER PIC X(6) VALUE "GETPAR".
001800*AS EXPLAINED IN SECTION 2.2.2, COBOL ACCEPTS HALFWORD INTEGERS
001900*0NLY. DEFINE A FOUR~BYTE GROUP ITEM TO BE COMPOSED OF TWO
002000*HALFWORD-BINARY, ELEMENTARY ITEMS, AND USE THE LOW-ORDER TWO
002100*BYTES FOR THE INTEGER. TO PASS AN INTEGER TO THE SUBROUTINE,
002200*INITIALIZE THE HIGH-ORDER BYTES TO ZERO.
002300 01 LINE-COUNT.
002400 03 FILLER USAGE IS BINARY VALUE 0.
002500 03 LINE-OFFSET USAGE IS BINARY VALUE 1.
002600 01 MESS-AGE.
002700 03 CONTROL-1 PIC X VALUE CENTER.
002800 03 CONTROL-2 PIC X VALUE BLINK.
002900 03 TEXT PIC X(27) VALUE "PLEASE SUPPLY THESE VALUES".
003000 01 MESSAGE-LENGTH.
003100 03 FILLER USAGE IS BINARY VALUE 0.
003200 03 M-LENGTH USAGE IS BINARY VALUE 29.
003300 77 KEYWORD-TYPE PIC X VALUE "K".
003400 77 KEYWORD-1 PIC X(8) VALUE "FILE".
003500 77 VALUE-1 PIC X(8) VALUE SPACES.
003600 01 VALUE-LENGTH.
003700 03 FILLER USAGE BINARY VALUE 0.
003800 03 LENGTH USAGE BINARY VALUE 8.
003900 01 ROW-1.
004000 03 FILLER USAGE IS BINARY VALUE 0.
004100 03 ROW-VALUE-1 USAGE IS BINARY VALUE 1.
004200 01 COL-UMN.
004300 03 FILLER USAGE IS BINARY VALUE 0.
004400 03 COLUMN-VALUE USAGE IS BINARY VALUE 10.

GETPARM-9

004500
004600
004700
004800
004900
005000
005100
005200
005300
005400
005500
005600
005700
005800
005900
006000
006100
006200
006300
006400
006500
006600
006700
006800
006900-
007000

77 DATA-TYPE PIC X(2) VALUE "L".
77 KEYWORD-2 PIC X(8) VALUE "LIBRARY".
77 VALUE-2 PIC X(8) VALUE SPACES.
01 ROW-2.

03 FILLER USAGE IS BINARY VALUE 0.
03 ROW-VALUE-2 USAGE IS BINARY VALUE 5.

77 KEYWORD-3 PIC X(6) VALUE "VOLUME''.
77 VALUE-3 PIC X(6) VALUE SPACES.
01 VALUE-3-LENGTH.

03 FILLER USAGE IS BINARY VALUE 0.
03 VOLUME-LENGTH USAGE IS BINARY VALUE 6.

01 ROW-3.
03 FILLER USAGE IS BINARY VALUE 0.
03 ROW-VALUE-3 USAGE IS BINARY VALUE 4.

PROCEDURE DIVISION.
MAIN-PARAGRAPH.

CALL ''GETPARM" USING TY-PE, FO-RM, PR-NAME, KEY-RECEIVER,
MESSAGE-NUMBER, MESS-ENGER, LINE-COUNT, MESS-AGE,
MESSAGE-LENGTH, KEYWORD-TYPE, KEYWORD-1, VALUE-1,
VALUE-LENGTH, ROW-1, COL-UMN, DATA-TYPE,
KEYWORD-TYPE, KEYWORD-2, VALUE-2, VALUE-LENGTH, ROW-2,
COL-UMN, DATA-TYPE, KEYWORD-TYPE, KEYWORD-3, VALUE-3,
VALUE-3-LENGTH, ROW-3, COL-UMN, DATA-TYPE.

DISPLAY ''VALUE-1 = ''VALUE-1, '' VALUE-2 = ''VALUE-2, '' VALUE-3
I' = '' VALUE-3.

STOP RUN.

GETPARM-10

GETPARM Subroutine - A FORTRAN Example

This program displays a screen that prompts the user to select the GETPARM type and form, the
prname, and message information and text. When the user presses ENTER, the program displays a
GETPARM screen with the user-specified information. Text fields demonstrate the use of various
fields, including alphanumeric, blinking, forced uppercase, integer, numeric, and protected. The pro
gram disables all but PF5.

LOGICAL*! FORM, LINE1(40), LINE2(40), PFK, PFREC
INTEGER*2 TYPE
REAL*8 PRNAME, MISS
DATA LINE1/40H DEMONSTRATION OF THE GETPARM SUBROUTINE/,

1 LINE2/40H I-TYPE, ACKNOWLEDGE FORM /,
2 PFK,PVALUE/'P' ,ZFFFFOOOO/,PRNAME/'GPFOR '/,
3 TYPE,FORM,MID,MISS/'I ', 'S', '0001', 'GPFORl' I

C SET VALUES FOR GETPARM DEFINITION ARGUMENTS
CALL GTPARM ('I ', 'S' ,PRNAME,PFREC, '0001', 'GPFOR ',2,

1 ' SPECIFY THE FOLLOWING PARAMETERS' ,33,
2 ' THEN PRESS ENTER TO GET A GETPARM SCREEN' ,41,
3 'K','TYPE ',TYPE ,2,1,0,'A',
4 'K', 'FORM ',FORM ,1,1,0, 'A',
5 'K', 'PRNAME ',PRNAME,6,1,0, 'A',
6 'K' , 'MSG ID ' , MID , 4, 1, 0, 'C' ,
7 'K', 'MSG ISS ',MISS ,6,1,0, 'C',
8 'K', 'LINH ',LINEl,40,1,0, 'C',
9 'K' ''LINE2 I ,LINE2,40,1,0, 'C')

CALL GTPARM (TYPE,FORM,PRNAME,PFREC,MID,MISS,2,
1 LINE1,40,LINE2,40,
2 'N',
3 PFK, PVALUE,
4 'K', 'ALPHANUM', 'LETTERSONLY' ,11,1,0, 'U',
5 'R','BLINK ','All characters BLINKING',23,1,0,'C',
6 'K', 'UPPER ','UPPERCASE FIELD' ,15,1,0, 'U',
7 'K', 'INTEGER ', '12345678' ,8,1,0, 'I',
8 'K', 'NUMERIC ', '12345.78' ,8,1,0, 'N',
9 'T' I 'SPECIAL PROTECTED OPTION! I ,25,3,15,
1 'K', 'CHARPROT', 'Char. PROTECTED FIELD' ,21,1,0, 'c',
2 'T', 'ENTER DISABLED, ONLY PF5 WORKS' ,30,2,0)

PAUSE
END

GETPARM-11

GETPARM Subroutine - AN RPG II Example

This program creates the GETPARM screen shown below and displays a screen acknowledging the
user's input.

*** MESSAGE 001 BY TEST1

RESPONSE REQUIRED BY PROGRAM TEST
TO SELECT OPTIONS

ENTER FILE INFORMATION AND PRESS PF5 TO DEFINE INPUT, OR

PRESS PF16 TO END JOB.

FILE =
LIBRARY =
VOLUME =

00100FDISPLAY DD F ws

PREPARE PARAMETERS TO PASS TO RPGCALL MACRO ***

MOVE 'I , TYPE 2
MOVE 'S, FORM
MOVE 'OPTIONS 'PRNAME 8
MOVE PFK 1
MOVE '001 , MSG ID 4
MOVE 'TEST! ' MSG IS 6

00100C*
00150C*
00200C
00300C
00400C
00500C
00600C
00700C
00702C*
00704C*
00706C*
00710C
00720C
00730C
00740C
00750C
00760C
00770C
00780C
00790C
00791C

*** USE TEMPORARY VARIABLES TO BUILD MESSAGE LONGER THAN 8 BYTES ***

MOVEL'ENTER FI'TEMP1 16
MOVE .'LE INFOR'TEMP1
MOVEL'MATION A'TEMP2 16
MOVE 'ND PRESS'TEMP2
MOVELTEMP1 HOLDl 32
MOVE TEMP2 HOLD1
MOVEL' PF5 TO 'TEMP1
MOVE 'DEFINE I'TEMPl
MOVEL'NPUT, OR'TEMP3 8
MOVELTEMP1 HOLD2 24

GETPARM-12

00792C MOVE TEMP3 HOLD2
00793C MOVELHOLD1 MSG 56
00794C MOVE HOLD2 MSG
00900C Z-ADD56 MSGLN 40
G-1000C MOVE 'T' T 1
02000C MOVEL'PRESS PF' TEMP!
o-21ooc MOVE '16 TO EN'TEMP1
02200C MOVE 'D JOB. 'TEMP3
02300C MOVELTEMP1 TEXT 24
02400C MOVE TEMP3 TEXT
02900C Z-ADD24 TEXTLN 40
03000C Z-ADDO ROWSK 40
-03100C Z-ADDO COLSK 40
03200C MOVE 'K' Kl 1
03300C MOVE 'FILE 'KEY1 8
03400C MOVE ' ' VAL1 8
03500C Z-ADD8 LEN1 40
03600C Z-ADD3 ROWSK1 40
03700C Z-ADD5 COLSK1 40
03800C MOVE 'A' TYPE1 1
03810C MOVE 'K' K2 1
03900C MOVE 'LIBRARY 'KEY2 8
04000C MOVE ' ' VAL2 8
04100C Z-ADDB LEN2 40
04200C Z-ADD1 ROWSK2 40
04300C Z-ADD5 COLSK2 40
04400C MOVE 'A' TYPE2 1
04410C MOVE 'K' K3 1
04500C MOVE 'VOLUME 'KEY3 8
04600C MOVE ' ' VAL3 6
04700C Z-ADD6 LEN3 40
04800C Z-ADD1 ROWSK3 40
04900C Z-ADD5 COLSK3 40
osoooc MOVE 'A' TYPE3 1
05100C MOVE 'P' p 1
05102C*
05104C* *** PREPARE PF KEY MASK USING BITON AND BITOF ***
05105C* *** (ENABLE PF 5 AND 16 ONLY) * * *
05106C*
05110C BITON '4' PM1 1
05120C BITOF'0123567' PM1
05121C BITON' 7' PM2 1
05122C BITOF'0123456' PM2
05123C BITOF'01234567'PM3 1
05124C BITOF'01234567'PM4 1
05130C MOVELPM1 PM5 2
-05140C MOVE PM2 PM5
05150C MOVELPM3 PM6 2
05155C MOVE PM4 PM6
05160C MOVELPM5 PMASK 4
05165C MOVE PM6 PMASK

GETPARM-13

05170C*
05175C* *** PMASK IS THE PF KEY MASK; EFLAG IS THE ENTER FLAG * * *
05180C*
05300C MOVE 'N' EFLAG 1
05310C*
05320C* *** EXIT TO RPGCALL MACRO ***
0530C*
05400C EXIT RPGGET
05500C RLABL TYPE
05600C RLABL FORM
05700C RLABL PRNAME
05800C RLABL PFK
05900C RLABL MSG ID
06000C RLABL MSG IS
06100C RLABL MSG
06200C RLABL MSGLN
06300C RLABL T
06400C RLABL TEXT
06500C RLABL TEXTLN
06600C RLABL ROWSK
06700C RLABL COLSK
06800C RLABL Kl
06810C RLABL K2
06820C RLABL K3
06900C RLABL KEY1
07000C RLABL KEY2
07100C RLABL KEY3
07200C RLABL VAL1
07300C RLABL VAL2
07400C RLABL VAL3
07500C RLABL LEN!
07600C RLABL LEN2
07700C RLABL LEN3
07800C RLABL ROWSK1
07900C RLABL ROWSK2
OBOOOC RLABL ROWSK3
08100C RLABL COLSK1
08200C RLABL COLSK2
08300C RLABL COLSK3
08400C RLABL TYPE!
08500C RLABL TYPE2
08600C RLABL TYPE3
08700C RLABL p

08710C RLABL PMASK
08720C RLABL EFLAG
08722C*
08724C* •• * IF PF 16 WAS PRESSED, END JOB; OTHERWISE, ACKNOWLEDGE ...
08725C* *** USER'S INPUT ***
08727C*
08730C PFK COMP 'P' 99
08820C N99 ACCPTSCR1
08830C SETON LR

GETPARM-14

08920WSCR1
09020W
09120W
09220W
09320W
09420W
09520W
09620W

RPGGET:

0707 'INPUT FILE IS'
0721VAL1
0807 'IN LIBRARY'
0821VAL2
0907 'ON VOLUME'
0921VAL3
1205 'PRESS ENTER TO END JOB'

RPGCALL NAME=RPGGET,CALL=GETPARM,TYPE,FORM,PRNAME,PFK, C
MSGID,MSGIS,MSG, (MSGLN,4,F),T,TEXT, (TEXTLN,4,F), C
(ROWS K , 4 , F) , (C 0 LS K , 4 , F) , K 1 , KEY 1 , VAL 1 , (LEN 1 , 4 , F) , C
(ROWSK1,4,F), (COLSK1,4,F) ,TYPE1,K2,KEY2,VAL2, (LEN2,4,F) ,C
(ROWSK2,4,F), (COLSK2,4,F) ,TYPE2,K3,KEY3,VAL3, (LEN3,4,F) ,C
(ROWSK3,4,F), (COLSK3,4,F) ,TYPE3,P,PMASK,EFLAG

GETPARM-15

HEX PACK

FUNCTION

Converts a string of hexadecimal digits to its ASCII character equivalent.

USAGE {arg1, ... , arg3)

Pos Argument Type Size Comments

arg1 Hex Alpha var String of hexadecimal digits to be converted.
digits

arg2 Receiver Alpha var String to receive the ASCII characters. The
length of this string must be at least half the
length of the input string.

arg3 Length Integer 4 Length of input string. If odd, the program
ignores the last character of the input string.

NOTES

1. This subroutine is equivalent to the BASIC language HEXPACK statement.

2. The subroutine does not check for valid hexadecimal digits. ·

3. For FORTRAN programs, the name of this subroutine must be specified as
HXPACK.

HEXPACK-1

HEXPACK Subroutine - A FORTRAN Example

This example converts a user-supplied hexadecimal character string into its ASCII equivalent. Both
are displayed on the screen.

LENGTH = 4
WRITE(0,101) ' ENTER 4 HEX CHARS'

C 'HCHARS' CONTAINS 4 HEXADECIMAL CHARACTERS TO BE CONVERTED
READ(0,102) HCHARS

C STOP IF USER ENTERS 9999
IF(HCHARS.EQ. '9999') GO TO 99

c
C 'ACHARS' CONTAINS THE ASCII STRING THAT CORRESPONDS TO HCHARS
C CALL HEXPACK (HXPACK IN FORTRAN) TO PERFORM THE CONVERSION

c
CALL HXPACK (HCHARS, ACHARS, LENGTH)

WRITE(0,103) HCHARS, ACHARS
101 FORMAT(A20}
102 FORMAT(A4)
103 FORMAT(1X, Z8, 5X, A2)

99 PAUSE
END

HEXPACK-2

HEXUNPK

FUNCTION

Converts a string of ASCII characters into hexadecimal digits.

USAGE

Pos

arg1

arg2

arg3

NOTES

(arg 1, ... , arg3)

Argument Type Size

ASCII st. Alpha var

Receiver Alpha var

Length Integer 4

Comments

String of ASCII characters to be converted.

String to receive the hexadecimal characters.
The length of this string must be at least
twice the length of arg 1 .

Length of the input string.

1. This subroutine is equivalent to the BASIC language HEXUNPACK statement.

2. For FORTRAN programs, the name of this subroutine must be specified as
HXUNPK.

HEXUNPK-1

HEXUNPK Subroutine - A FORTRAN Example

This example converts an ASCII string entered by the user into its hexadecimal equivalent. Both are
displayed on the screen.

C 'ALPHA' CONTAINS UP TO 5 ASCII CHARACTERS
C 'HEX' IS ITS HEXADECIMAL EQUIVALENT

LOGICAL*! ALPHACS), HEXC10)
WRITE (0, 101) ' ENTER LENGTH, STRING'
READ (0, 102) LENGTH, (ALPHA (I) , I=l, LENGTH)

C USER ENTERS * TO STOP
IFCALPHA(l) .EQ. lH*) GO TO 99

c
C CALL HEXUNPK (HXUNPK IN FORTRAN) TO PERFORM CONVERSION

CALL HXUNPK(ALPHA, HEX, LENGTH)
c

WRITEC0,103) HEX
101 FORMAT(A21)
102 FORMAT(Il, 5A1)
103 FORMAT(lX, 10A1)

99 PAUSE
END

HEXUNPK-2

LINK

FUNCTION

Allows the user to link to a program or procedure and to specify a cancel exit for the
link. The user program can also specify any arguments that are needed to execute the
linked program or procedure.

USAGE (arg1, .•• ,arg15)

Pos Argument Type Size Comments

arg1 Program Alpha 8 Program or procedure to be linked to.
arg2 Link Type Alpha 1 Where program to be linked resides:

S = Check system only
P = Use library/volume named in arg3

and arg4
Blank = Use program library and volume

associated with the user

arg3 Library Alpha 8 Library (must be included, but is ignored
unless arg2=P).

arg4 Volume Alpha 6 Volume (must be included, but is ignored
unless arg2=P).

arg5 Argument Integer 4 Number of arguments to be passed to the
Count program. See arg6. This value can be 0.

arg6 Arg(s) Variable Argument(s) to be passed to the linked pro-
gram. Arg5 specifies the number of times
this argument is repeated. If arg5=0, this
argument must be omitted. The length and
type of this argument depend on the require-
ments of the linked program.

arg7 Cancel Alpha 1 Cancel exit option:
Exit Flag C = Cancel exit only

N = Cancel exit, allow no debug process-
ing

D = Cancel exit, allow no debug process-
ing but generate full dump

Blank = No special exit processing

arg8 Message Alpha var Message to override PF16 text. Ignored if
arg 7 is blank. Maximum length is 2 7 charac-
ters.

arg9 Message Integer 4 Length of PF16 message (arg8).
Length Specify zero for no PF 1 6 message override.

arg10 HELP Dis- Alpha 1 HELP key disable/ enable:
able Flag N = Disable HELP

H or blank = Enable HELP

LINK-1

Pos Argument Type Size Comments

arg11 PF Key Alpha 2 32-bit mask to enable/disable Command
Mask Processor PF keys. This feature is not cur-

rently implemented in the operating system.

arg12 Cancel Alpha var Receiver for the cancel exit information list.
Receiver Ignored if arg 7 is blank.

arg13 Cancel Integer 4 Maximum length of arg 1 2. Must be nonzero.
Receiver Register and other information require 1 28
Length bytes; the remainder of arg 12 contains as

much of the cancel message list as fits into
the value of arg 1 3 minus 1 28.

arg14 Completion Integer 4 Indicates the result of the link:
Code 0 = Successful link

8 = Unsuccessful link
1 6 = Program canceled

arg15 Ret. Code Integer 4 Error return code.
Arg14=0: This is the return code from the
linked program.
Arg14=8: See Table 3-5 below.
Arg 14 = 16: This field is not set.

NOTE

Arguments 2 and 5 through 1 3 are optional; however, if any of them is included, all
preceding arguments must be present. Several arguments must be present in pairs,
whether or not both are used {args 8 and 9, and args 12 and 13). If arg5 is zero, arg6
must be omitted, and arguments 14 and 1 5 are both required.

Return
Code

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56

Table 3-5. LINK Error Return Codes

Meaning

Not a program file, and the procedure interpreter cannot be invoked.
Volume not mounted.
Volume in exclusive use by another user.
All buffers in use when one was required.
Directory not found.
File not found.
{Unused).
Access to program's file-protection class denied.
FOX 1 and FDX2 conflict detected by READ FDR.
FDX2 and FDR conflict detected by READFDR.
Invalid parameter passed to READFDR {including NL volume type).
1/0 error on VTOC.
Unable to read FDR2 record (additional extent specifications).
Invalid program file; unable to complete link.
File open other than shared read-only.

LINK-2

LINK Subroutine - A COBOL Example

This program links to the EDITOR dynamically. It also specifies an exit option that returns to the pro
gram rather than to the Command Processor if the linked-to program is cancelled.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. LINKC.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 WORKING-STORAGE SECTION.
000600 77 LINKNAME PIG X(8) VALUE "EDITOR".
000700 77 LOCATION PIG X(1) VALUE "S".
000800*SINCE THE LINK TYPE IS "S", THE NEXT TWO ARGUMENTS ARE IGNOREP
000900*THOUGH THEY MUST BE CODED.
001000 77 LIB-RARY PIG X(8).
001100 77 VOL-UME PIG X(6).
001200*AS EXPLAINED IN SECTION 2.2.2, COBOL ACCEPTS HALFWORD INTEGERS
001300*0NLY. DEFINE A FOUR-BYTE GROUP ITEM TO BE COMPOSED OF TWO
001400*HALFWORD-BINARY, ELEMENTARY ITEMS, AND USE THE LOW-ORDER TWO
001500*BYTES FOR THE INTEGER. TO PASS AN INTEGER TO THE SUBROUTINE,
001600*INITIALIZE THE HIGH-ORDER BYTES TO ZERO.
001700 01 PARAMETERS.
001800 03 FILLER USAGE IS BINARY VALUE 0.
001900 03 PARAMETER-COUNT USAGE IS BINARY VALUE 0.
002000 77 EXIT-OPTION PIC X VALUE "C".
002100 77 PF16-MESSAGE PIG X(16) VALUE "RETURN TO LINKC!''.
002200 01 MESSAGE-LENGTH.
002300 03 FILLER BINARY VALUE 0.
002400 03 FILLER BINARY VALUE 16.
002500 01 COMPLETION.
002600 03 FILLER USAGE BINARY VALUE ZERO.
002700 03 COMPLETION-CODE USAGE BINARY.
002800 01 ERRORS.
002900 03 FILLER USAGE BINARY VALUE ZERO.
003000 03 ERROR-CODE USAGE BINARY VALUE ZERO.
003100 PROCEDURE DIVISION.
003200 MAIN-PARAGRAPH.
003300 CALL "LINK" USING LINKNAME, LOCATION, LIB-RARY, VOL-UME,
003400 PARAMETERS, EXIT-OPTION,
003500 PF16-MESSAGE, MESSAGE-LENGTH,
003600 COMPLETION, ERRORS.
003700 DISPLAY ''THE COMPLETION CODE IS ''COMPLETION-CODE,
003800 " THE RETURN CODE IS "ERROR-CODE.
003900 STOP RUN.

LINK-3

LINK Subroutine - AN RPG II Example

This program allows the user to update the records of File f\ or to run the SORT utility. When the
user presses PF1 from Screen 1 (SCR1), the program calls LINK and links to the SORT utility. If the
user interrupts SORT with the HELP key, the cancel exit message supplied here ("RESUME
UPDATING FILE A:') replaces the usual Command Processor PF16 message. The program checks the
return code and the completion code and displays them if they are nonzero.

00100FFILEA UC F
00200FDISPLAY DD F

00400IFILEA AA 01
00500I
00600I

MENU

KG
KG
Kl

KEYA

END

09R04AI 1 DISK
ws

*** DISPLAY MENU ***

TAG
ENBLEKO,KG,Kl
ACCPTSCR1
SETOF

1 40KEYA
5 9 INFOA

99

JOB OR GO TO WHERE LINK IS PERFORMED
*** READ IN A RECORD TO UPDATE * * *

SETON LR
GOTO END
GOTO SORT
CHAINFILEA

00610C*
00620C*
00630C*
00700C
00800C
00900C
00910C
00920C*
00930C*
00940C*
00950C*
OlOOOC
01010C
01020C
01100C
01110C*
01120C*
01130C*
01200C
01300C
01400C
01500C
01510C*
01520C*
01530C*
01600C
01720C
01800C
01900C
01910C
01920C
01930C
02000C
02005C
02010C
02015C

*** DISPLAY AND UPDATE RECORD ***

KO

ENBLEKO,Kl
ACCPTSCR2
EXCPT
GOTO MENU

*** PREPARE PARAMETERS FOR LINK TO SORT UTILITY

SORT TAG
MOVE 'SORT 'PROG 8
MOVE 'S' TYPE 1
MOVE 'DUMMY 'LIBR 8
MOVE 'DUMMY 'VOLM 6
Z-ADDO PCNT 40
MOVE 'C' CEXT 1
MOVEL'RESUME U'DUM 16
MOVE 'PDATING 'OUM
MOVELDUM MSG 22
MOVE 'FILE A' MSG

LINK-4

OR ***

* * *

02040C
02050C
02055C
02060C*
02065C*
02070C*
02100C
02200C
02210C
02300C
02400C
02500C
02600C
02700C
02710C
02711C
02800C
02801C*
02802C*
02803C*
02810C
02900C
03000C
03110C

032000FILEA
033000
034000

03700WSCR1
03720W
03730W
03740W
03750W
03760W
03800W
03900W
04000W
04100W
04110W
04120W
04200W
04300W
04500WSCR2
04600W
04700W
04800W
04900W
05000W
05100W

RPGLNK:

E

99
99
99
99
99

Z-ADD22
Z-ADDO
Z-ADDO

EXIT TO RPGCALL

EXIT RPGLNK
RLABL
RLABL
RLABL
RLABL
RLABL
RLABL
RLABL
RLABL
RLABL
RLABL

MSGLN 40
CCODE 40
RCODE 40

MACRO ***

PROG
TYPE
LIBR
VOLM
PCNT
CEXT
MSG
MSGLN
CC ODE
RCODE

*** CHECK RETURN CODES ***

CCODE COMP 0 99
RC ODE COMP 0 99

GOTO MENU
END TAG

KEYA 4
INFOA 9

80107 'ERROR IN SORT REQUEST'
80215 'RETURN CODE = '
80315 'COMPLETION CODE = '
B0930RCODE
B1035CCODE

0507 'ENTER THE NUMBER OF TH'
0529 'E RECORD YOU WISH TO U'
0551 'PDATE,'
1015
1207 'OR PRESS PF 1 TO RUN T'
1229 'HE SORT UTILITY,'
1607 'OR PRESS PF 16 TO END '
1629 'THE JOB.'

0507 'MAKE CHANGES AND PRESS'
0530 'ENTER TO UPDATE THIS R'
0552 'ECORD,'
0707 'OR PRESS PF 1 TO EXIT.'

1215KEYA
1315INFOA

KEYA 40

INFOA

RPGCALL NAME=RPGLNK,CALL=LINK,PROG,TYPE,LIBR,VOLM, C
CPCNT,4,F),CEXT,MSG,{MSGLN,4,F),{CCODE,4,F),{RCODE,4,F)

LINK-5

LOADCODE

FUNCTION

Allows the user to load specified microcode into a device.

USAGE (arg 1, ... , arg 14)

Pos Argument Type Size Comments

arg1 Function Alpha 1 The load function to be performed:
C = Load configuration table
D = Load device
P = Load peripheral processor

arg2 TC Line Alpha 8 New TC line name. Specify X'OO' if none
Name (default}. Must be present if arg 1 =P.

arg3 Device Nr. Integer 4 Number of the device to be loaded.

arg4 Load Type Alpha 1 Indicates the type of load to be done:
T = Load by type
N = Load by name
U = Unload to default
I = Interrupt-driven ("load current"}

arg5 Microcode Integer 4 Microcode type ID number. Ignored if arg4 =
Type U or I.

arg6 File name Alpha 8 File name for load-by-name. Must be present
if arg4 = N, otherwise ignored.

arg7 Library Alpha 8 Library name for file named in arg6. Must be
Name present if arg4 = N, otherwise ignored. If

X'OO', the default microcode library is used.

arg8 Volume Alpha 6 Volume name for file named in arg6. Must
Name be present if arg4 = N, otherwise ignored. If

X'OO', the default system volume is used.

arg9 Start Integer 4 Starting location in the specified device to
Location be loaded. Default = 0. Ignored if

arg4 =I.

arg10 Code Integer 4 Length of microcode to be loaded. If 0 or
Length omitted, the entire microcode file is loaded.

Ignored if arg~ = I.
arg11 Condition Alpha Indicates whether to perform the load if the

Flag desired microcode is already loaded:
C = Load conditionally (default}
U = Load unconditionally.

Ignored if arg4 = I.

arg12 Renew Alpha 1 Indicates whether code is to be renewed on
Option OLP/PP error (interrupt-driven call}:

R = Renewable microcode (default)
N = Nonrenewable microcode

Optional.

LOADCODE-1

Pos Argu01ent Type Size Comments

arg 1 3 Interrupt
Flag

Alpha 1 Indicates whether task or system is to
handle power-on/HELP interrupts:

S = System handling (default)
T =Task handling

Optional.

arg 14 Ret. code Integer 4 Error return code. See Table 3-6 below.

NOTE

For FORTRAN programs, the name of this subroutine must be specified as LOADCD.

Return
Code

0
4
8

12
16
20
24

28
32
36

40

Table 3-6. LOADCODE Error Return Codes

Meaning

Successful load.
Device/PP specified cannot be programmed.
Specified microcode file not found. (Also set when specified class and
type of microcode are not included in UCB MC list, or when specified
file name is not a valid alphanumeric string.)
Device/PP not reserved exclusively by the caller.
Error in opening microcode file, or file not consecutive.
1/0 error when reading microcode file.
One of the following errors:
1. 1/0 error while loading device or PP microcode, or configuration

tables; '
2. Error when restarting device or PP after loading microcode;
3. Unable to load device because PP code is missing, or attempt to load

PP fails for any reason;
4. Unable to load PP code because configuration tables are missing, or

attempt to load tables fails for any reason.
Insufficient memory pool (GETMEM failure).
(Reserved)
Incompatible options:
1. UNLOAD and LOAD-BY-NAME both specified.
2. CLOAD and INTERRUPT both specified.
Other devices on cluster not all reserved by the calling task
(non-interrupt-driven LOADCODE only).

LOADCODE-2

LOADCODE Subroutine - A COBOL Example

This program loads microcode for a serial workstation to a combined workstation.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. LOADCDEC.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 WORKING-STORAGE SECTION.
000600 77 FUNCTION PIC X(2) VALUE "D".
000700*AS EXPLAINED IN SECTION 2.2.2, COBOL ACCEPTS HALFWORD INTEGERS
000800*0NLY. DEFINE A FOUR-BYTE GROUP ITEM TO BE COMPOSED OF TWO
000900*HALFWORD-BINARY, ELEMENTARY ITEMS, AND USE THE LOW-ORDER TWO
001000*BYTES FOR THE INTEGER. TO PASS AN INTEGER TO THE SUBROUTINE,
001100*INITIALIZE THE HIGH-ORDER BYTES TO ZERO.
001200 01 DEVICE.
001300 03 FILLER USAGE IS BINARY VALUE ZERO.
001400 03 DEVICE-NUMBER USAGE IS BINARY VALUE 3.
001500 77 LOAD-TYPE PIC X(l) VALUE "N".
001600 01 CODE-TYPE.
001700 03 FILLER USAGE IS BINARY VALUE 0.
001800 03 CODE-ID USAGE IS BINARY VALUE 11.
001900 77 FILE-NAME PIC X(8) VALUE ".MC2246S".
002000 77 LIB-RARY PIC X(8) VALUE ".SYSTEM.".
002100 77 VOL-UME PIC X(6) VALUE "OS".
002200 77 START-ADDRESS PIC X(6) VALUE 0.
002300 01 RETURNCODE.
002400 03 FILLER USAGE IS BINARY VALUE 0.
002500 03 ERROR-CODE USAGE IS BINARY.
002600 PROCEDURE DIVISION.
002700 MAIN-PARAGRAPH.
002800 CALL "LOADCODE" USING FUNCTION, DEVICE, LOAD-TYPE, CODE-TYPE,
002900 FILE-NAME, LIB-RARY, VOL-UME, START-ADDRESS, RETURNCODE.
003000 IF ERROR-CODE NOT EQUAL 0 DISPLAY "ERROR-CODE= ''ERROR-CODE,
003100 ELSE DISPLAY "THE NEXT SCREEN WILL BE BLANK. ONLY THE HEL
003200- "P KEY WILL BE ENABLED.".
003300*WHEN THE ENTER KEY IS PRESSED A BLANK SCREEN WILL APPEAR AND ALL
003400*KEYS BUT THE HELP KEY WILL BE DISABLED. PRESS HELP AND THEN
003500*PRESS PF KEY 1 (CONTINUE) FROM THE COMMAND PROCESSOR MENU. THE
003600*NEXT SCREEN WILL BE BLANK WITH ONLY THE CURSOR POSITION, ENTER
003700*AND HELP KEYS ENABLED. PRESS ENTER TO CONTINUE.
003800 DISPLAY "PRESS ENTER TO TERMINATE THE PROGRAM.".
003900 STOP RUN.

LOADCODE-3

LOGO FF

FUNCTION

Terminates the user program and logs the user off.

USAGE No arguments are required.

NOTE

If the user program containing the reference to this subroutine is run from a program
with a Cancel Exit option, the subroutine terminates the program but does not log the
user off.

LOGOFf-1.

LOGOFF Subroutine - A BASIC Example

This example simply calls the LOGO FF subroutine to terminate processing and log the user off.

000100CALL ''LOGOFF''

LOGOFF-2

MESSAGE

FUNCTION

Allows communication of messages between workstations (tasks).

Each user who is to receive messages must create a "port" (analogous to a mailbox).
The user assigns the port a name, which is used to send messages to the creator of the
port. The port is also assigned a buffer size, which is the maximum total size of all
messages not read (''checked") by the port's creator.

Users can then transmit messages to that port and the port's creator can check for
them. The various options for the transmit and check processes are discussed in the
appropriate sections below.

USAGE (arg 1, arguments)

Arg 1 defines the message function and determines the number and nature of the
remaining arguments.

Pos Argument Type

arg1 Function Alpha

Size

2

Comments

Type of message function:
CR = Create message port
DE = Destroy message port
XM = Transmit message
XW = Transmit message and wait if

buffer is full
CH = Check message port for message

The remaining arguments depend on the function.

1. Create a message port

Pos Argument Type

arg1 Function Alpha

arg2 Port Name Alpha

arg3 Buffer Integer
Size

arg4 Ret. Code Integer

Size

2

4

4

4

Comments

Value is CR

Name of port to be created.

Maximum cumulative message size assigned
to this port (1-2014). Optional. Default is
2014. When the user checks the messages,
the cumulative message size is reduced.

Error return code:
0 = Successful creation of port
4 = Another task is using this port
8 = This task is using this port

MESSAGE-1

2. Destroy a message port

Pos Argument Type

arg1 Function Alpha

arg2 Port Name Alpha

arg3 Ret. Code Integer

Size

2

4

4

Comments

Value is DE

Name of port to be destroyed.

Error return code:
0 = Successful.
4 = Successful, but 1 or more waiting

messages were not received and
have been lost.

8 = No such port was created by this
task.

If there are any messages in the port, they are lost when the user destroys the port. It
might be appropriate to check the port for messages before destroying it.

3. Transmit a message

Pos Argument Type

arg1 Function Alpha

arg2 Port Name Alpha

arg3 Message Alpha

arg4 Msg Length Integer

arg5 Ret. Code Integer

Size

2

4

var

4

4

Comments

Value is either XM or XW. With the XW
function (Transmit-and-Wait), the screen is
locked until the receiving port is checked
and this message is received.

Name of port to which the program trans
mits the message.

Message to be sent.

Length of the message in characters.

Error return code:
0 = Message queued.
4 = Port named has not been created.
8 = For arg 1 =XM only. Unable to

insert message into the message
buffer of the receiving port
because the buffer is full.

1 2 = Port named can only be used by
privileged code.

MESSAGE-2

4. Check message port for message

Pos Argument Type Size Comments

arg1 Function Alpha 2 Value is CH

arg2 Port name Alpha 4 Name of port to be checked.

arg3 Check Type Alpha 1 Type of check to perform:
W = Check and wait until message is

received
T = Check and wait until message is

received or time interval (arg4) has
expired.

K = Check and wait until message is
received or a PF or ENTER key is
pressed

B = Check and wait until message is
received, key is pressed, or time
expires.

For K and B options, if the workstation key-
board is locked, a return code of 1 2 results.

arg4 Time Integer 4 Time to wait in hundredths of a second.
Interval Applicable for check types T and B.

arg5 Message Alpha var Receiver for message. Its length must be at
Receiver least the value of arg6.

arg6 Message Integer 4 Length of message receiver. This is the maxi-
Length mum length to be returned. The subroutine

reduces this value to reflect the actual
message length. If the message is long~r. it
is truncated.

arg7 Ret. Code Integer 4 Error return code:
0 = Message received
8 = Time interval expired

12 = Keyboard locked, probably by PF
or ENTER key being pressed

16 = No such port was created by this
task, or check was canceled (for
arg3 = T)

NOTE

For FORTRAN programs, the name of this subroutine must be specified as MESAGE.

MESSAGE-3

MESSAGE Subroutine - A BASIC Example

This example sets up a message port and demonstrates how the subroutine passes messages
between workstations.

000100DIM TYPE$ 02
000200DIM PORTNAME$ 04
000300DIM MESSAGE!$ 66
000400DIM MESSAGE2$ 66
000410DIM MESSAGE3$ 132
000500DIM CHECKTYPE$ 01
000501CHECKTYPE$ = "T"
000510LOOP:
000520GOSUB PUTSCREEN
000530GOSUB DOMESSAGE
000540GOTO LOOP
000541
000550PUTSCREEN:
000600ACCEPT
000700 AT (01,12),
000800"Demonstration of Sending Messages through MESSAGE Subroutine",
000900 AT (03,03),
001000"Fill in the following information to either (1) create a message
001100 po rt, '' ,
001200 AT (04,03),
001300" (2) destroy a message port, (3) transmit to a port (either retur
001400n immediately'',
001500 AT (05,03),
001600"or wait until port space is available), or (4) check port for me
001700ssage. '',
001800 AT (07,03),
001900' 'TYPE:'',
002000 AT (07,14), TYPE$, CH(02),
002100 AT (07, 19),
002200'' (CR-create port; DE-destroy po rt; XM/XW-t ransmi t; CH-check)'',
002300 AT (08,03),
002400"PORTNAME: ",
002500 AT (08,14), PORTNAME$, CH(04),
002600 AT (08,19),
002700'' '' ,
002800 AT (09,03),
002900"BUFSIZE:",
003000 AT (09,14), BUFSIZE%, PIC(####),
003100 AT (09, 19),
003200'' (1-2014 bytes - for CR)'',
003300 AT (10,03),
003400"MESSAGE: ",
003500 AT (10,14), MESSAGE!$, CH(66),
003600 AT (11,14), MESSAGE2$, CH(66),

MESSAGE-4

003700 AT (12,03) I

003800''CHECKTYPE: II I

003900 AT (12,14) I CHECKTYPE$, CH(01) I

004000 AT (12,19) I

004100" (for CH: W-wait;T-interval wait;K-PFkey wait;B-key & interval)",
004200 AT (13,03) I

004300"INTERVAL: II I

004400 AT (13,14) I INTERVAL%, PIG(####) I

004500 AT (13,19) I

004600''(for CHECKTYPE=T, time to wait in 1/100 seconds)'',
004700 AT (15,03) I

004800"RETURN CODE",
004900 AT (15,16) I RETURNCODE% I PIC(##),
005000 AT (19,14) I

005100"Fill in information and press ENTER for desired action."
005200RETURN
005300
005400DOMESSAGE:
005410STR(MESSAGE3$,1,66) =MESSAGE!$
005420STR(MESSAGE3$,67,66) = MESSAGE2$
005500 IF TYPE$= ''CR" THEN CALL ''MESSAGE" ADDR(TYPE$,PORTNAME$,
005600 BUFSIZE%,RETURNCODE%)
005700 IF TYPE$= ''DE" THEN CALL "MESSAGE" ADDR(TYPE$,PORTNAME$,
005800 RETURNCODE%)
005900 IF TYPE$= ''XM" THEN CALL "MESSAGE" ADDR(TYPE$,PORTNAME$,
006000 MESSAGE3$,132%,RETURNCODE%)
006100 IF TYPE$= ''CH" THEN CALL "MESSAGE" ADDR(TYPE$,PORTNAME$,
006200 CHECKTYPE$,INTERVAL%,MESSAGE3$,132%,RETURNCODE%)
006310MESSAGE1$ = STR(MESSAGE3$,1,66)
006320MESSAGE2$ = STR(MESSAGE3$,67,66)
006400 RETURN

MESSAGE-5

MESSAGE Subroutine - A COBOL Example

This program creates a port, transmits a message to the port, retrieves and displays the message,
and destroys the port.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. MESSAGC.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 WORKING-STORAGE SECTION.
000600 77 FUNCTION-TYPE PIG X(2) VALUE "CR".
000700 77 PORT-NAME PIG X(4) VALUE "FRED".
000800 77 THE-MESSAGE PIC X(11) VALUE ''THE MESSAGE''.
000900*AS EXPLAINED IN SECTION 2.2.2, COBOL ACCEPTS HALFWORD INTEGERS
001000*0NLY. DEFINE A FOUR-BYTE GROUP ITEM TO BE COMPOSED OF TWO
001100*HALFWORD-BINARY, ELEMENTARY ITEMS, AND USE THE LOW-ORDER TWO
001200*BYTES FOR THE INTEGER. TO PASS AN INTEGER TO THE SUBROUTINE,
001300*INITIALIZE THE HIGH-ORDER BYTES TO ZERO.
001400 01 MESSAGE-LENGTH.
001500 03 FILLER USAGE IS BINARY VALUE ZERO.
001600 03 LENGTH-OF-MESSSAGE USAGE IS BINARY VALUE 11.
001700 77 CHECK-TYPE PIC X(l) VALUE "W".
001800 77 RECEIVER PIC XC255) VALUE SPACE.
001900*THE NEXT ITEM MUST BE CODED BUT IS IGNORED SINCE THE CHECK TYPE
002000* IS NOT ''T''.
002100 01 INTERVAL.
002200 03 FILLER USAGE IS BINARY VALUE ZERO.
002300 03 TIME-LENGTH USAGE IS BINARY VALUE ZERO.
002400 01 RECEIVER-LENGTH.
002500 03 FILLER USAGE IS BINARY VALUE ZERO.
002600 03 LENGTH-OF-RECEIVER USAGE IS BINARY VALUE 255.
002700 01 RETURNCODE.
002800 03 FILLER USAGE IS BINARY VALUE ZERO.
002900 03 ERROR-CODE USAGE IS BINARY.
003000 PROCEDURE DIVISION.
003100 MAIN-PARAGRAPH.
003200 PERFORM CREATE-PARAGRAPH.
003300 PERFORM SEND-PARAGRAPH.
003400 PERFORM CHECK-PARAGRAPH.
003500 PERFORM DESTROY-PARAGRAPH.
003600 STOP RUN.
003700 CREATE-PARAGRAPH.
003800 DISPLAY "I AM IN THE CREATE-PARAGRAPH".
003900 CALL "MESSAGE" USING FUNCTION-TYPE, PORT-NAME, RETURNCODE.
004000 IF ERROR-CODE NOT EQUAL ZERO DISPLAY "ERROR-CODE = "
004100 ERROR-CODE, ELSE DISPLAY "PORT CREATED".

MESSAGE-6

004200 SEND-PARAGRAPH.
004300
004400
004500
004600
004700
004800
004900
005000
005100
005200
005300
005400
005500
005600
005700
005800
005900
006000
006100

DISPLAY "I AM IN THE SEND-PARAGRAPH.''
MOVE "XM'' TO FUNCTION-TYPE.
CALL "MESSAGE" USING FUNCTION-TYPE, PORT-NAME, THE-MESSAGE,

MESSAGE-LENGTH, RETURNCODE.
IF ERROR-CODE NOT EQUAL ZERO DISPLAY ''ERROR-CODE= "

ERROR-CODE, ELSE DISPLAY "MESSAGE DELIVERED".
CHECK-PARAGRAPH.

DISPLAY "I AM IN THE CHECK-PARAGRAPH."
MOVE "CH" TO FUNCTION-TYPE.
CALL "MESSAGE" USING FUNCTION-TYPE, PORT-NAME, CHECK-TYPE,

INTERVAL, RECEIVER, RECEIVER-LENGTH, RETURNCODE.
IF ERROR-CODE NOT EQUAL ZERO DISPLAY "ERROR-CODE =

ERROR-CODE, ELSE DISPLAY RECEIVER.
DESTROY-PARAGRAPH.

DISPLAY "I AM IN THE DESTROY-PARAGRAPH.".
MOVE "DE" TO FUNCTION-TYPE.
CALL "MESSAGE" USING FUNCTION-TYPE, PORT-NAME, RETURNCODE.
IF ERROR-CODE NOT EQUAL ZERO DISPLAY "ERROR-CODE =

ERROR-CODE, ELSE DISPLAY "PORT DESTROYED".

MESSAGE-7

MOUNT

FUNCTION

Allows the user to mount a volume.

USAGE {arg 1, ... , arg 11}

Pos Argument Type Size Comments

arg1 Device Integer 4 Device number of the disk or tape to be
mounted. Must be nonnegative.

arg2 Volume Alpha 6 Name of the volume to be mounted.

arg3 Label Alpha Label type:
S or A = Standard label {default}
N =No label
I = IBM label (tape}

arg4 Mount Alpha 1 Type of mount:
Usage S = Shared (default}

E =Exclusive
p = Protected {disk}
R = Restricted removal {disk)

arg5 Drive Alpha Type of drive {ignored for tape mount):
Type F = Fixed drive

R = Removable drive (default}

arg6 System Alpha System files that can be written onto the
Use Option device if the default volume is full {ignored

for tape mount):
W = Work files
S = Spool files
A = Work and spool files
N = Neither work nor spool files

{default}

arg7 Bypass Alpha Bypass label processing option:
Option B = Bypass label

Blank = Normal mount (default)

arg8 No-Msg Alpha No mount message option:
Option N = No message (used when the volume

is already physically mounted)
Blank = Normal mount message {default)

arg9 No-Display Alpha No user display option:
Option N = No display

Blank = Normal mount (default}
No mount message is displayed at the
workstation; a message is usually displayed
at the operator console and the user task
hangs until the mount is complete.

arg10 Address Alpha 1 Disk addressing option:

MOUNT-1

Option N = Nonstandard (used for non-Wang
soft-sectored diskette)

Blank = Standard (default)

arg 11 Ret. Code Integer 4 Error return code. See Table 3- 7 below.

NOTES

1. Arguments 3 through 10 are optional; however, if any is included, all preceding
arguments must be present. Omitted arguments assume the default values speci
fied in the argument descriptions.

2. All arguments must have acceptable values, even if they are ignored.

Return
Code

0
4

8

12

16
20
24
28

32
36

40
44
48
52
56

60

64

68

72

76

80
84

Table 3-7. MOUNT Error Return Codes

Meaning

Successful mount.
Successful mount, but new volume label type does not agree with input
parameters.
Successful mount, but new volume name is not the volume name
requested.
Disk or tape 1/0 error detected while reading new volume label or new
volume has a bad VTOC. VCBSER set to blank. This return code is set
when the new volume is physically mounted on the drive but the VCB
cannot be filled in.
Device not disk or tape, or device number invalid.
Device detached.
Disk does not have the requested volume type (fixed or removable).
Request to mount an unlabeled volume on a disk unit other than a
22 70V diskette.
Input volume name blank
Requested volume already mounted on a disk unit, or duplicate volume
name.
Volume currently in use.
Currently mounted volume reserved by another user for exclusive use.
1/0 buffer space insufficient to perform mount.
Unable to allocate space for Tape 1/0 control blocks.
Invalid request: work and/or spool filing requested in a nonlabeled
volume.
Invalid request: nonstandard addressing attempted with Standard Label
option or on hard-sectored device.
Wrong media: soft-sectored diskette inserted into device for hard
sectored diskettes only.
Wrong media: hard-sectored diskette inserted into device for soft
sectored diskettes only.
Wrong media: hard-sectored diskette inserted for nonstandard
addressing request.
Wrong addressing mode: caller requested MOUNT for standard
addressing but diskette is nonstandard.
Device reserved by another user.
MOUNT failed, aborted by user or operator request.

MOUNT-2

MOUNT Subroutine - A COBOL Example

This program allows the user to mount a nonlabeled diskette.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. MOUNTC.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 WORKING-STORAGE SECTION.
000600*AS EXPLAINED IN SECTION 2.2.2, COBOL ACCEPTS HALF~ORD INTEGERS
000700*0NLY. DEFINE A FOUR-BYTE GROUP ITEM TO BE COMPOSED OF TWO
000800*HALFWORD-BINARY, ELEMENTARY ITEMS, AND USE THE LO~-ORDER TWO
000900*BYTES FOR THE INTEGER. TO PASS AN INTEGER TO THE SUBROUTINE,
001000*INITIALIZE THE HIGH-ORDER BYTES TO ZERO.
001100 01 DEVICE.
001200 03 FILLER USAGE IS BINARY VALUE 0.
001300 03 DEVICE-NUMBER USAGE IS BINARY VALUE 23.
001400 77 VOLUME-NAME PIC X(6) VALUE "FLOPPY".
001500 77 LABELED PIC X VALUE "N".
001600 01 RETURN-KODE.
001700 03 FILLER USAGE IS BINARY VALUE ZERO.
001800 03 ERROR-CODE USAGE IS BINARY.
001900 PROCEDURE DIVISION.
002000 MAIN-PARAGRAPH.
002100 CALL "MOUNT" USING DEVICE, VOLUME-NAME, LABELED,
002200 RETURN-KODE.
002300 IF ERROR-CODE = ZERO DISPLAY "MOUNT SUCCESSFUL"
002400 ELSE DISPLAY "RETURN CODE = " ERROR-CODE.
002500 STOP RUN.

MOUNT-3

MOUNT SUBROUTINE - AN RPG II EXAMPLE

This program instructs the MOUNT subroutine to mount a nonlabeled volume called "ARCHIV" on
Device 50 of the system. The program checks the return code from the subroutine, displaying it if it
is nonzero.

00100FDISPLAY DD F ws

00200C ACCPTSCR1
00210C*
00220C* *** PREPARE PARAMETERS TO PASS TO RPGCALL MACRO * * *
00230C*
00300C Z-ADD50 DEVICE 40
00400C MOVE 'ARCHIV' NAME 6
00500C MOVE 'N' LABEL 1
00600C MOVE 'E' USAGE 1
00700C MOVE 'R, TYPE 1
00800C MOVE I IN' WORK 1
00900C MOVE . , BYPASS 1
01000C MOVE 'N, NOME SS 1
01200C Z-ADDO RCODE 40
01210C*
01220C* * * * EXIT TO RPGCALL MACRO ***
01230C*
01300C EXIT RPGMNT
01400C RLABL DEVICE
01500C RLABL NAME
01600C RLABL LABEL
01700C RLABL USAGE
01800C RLABL TYPE
01900C RLABL WORK
02000C RLABL BYPASS
02100C RLABL NOME SS
02300C RLABL RCODE
02310C*
02320C* CHECK RETURN CODE ***
02330C*
02400C RCODE COMP 0 99
02500C 99 ACCPTSCR3
02600C N99 ACCPTSCR2
02700C SETON LR

MOUNT-4

02800WSCR1
02900W
03000W
03100W
03200W
03400WSCR2
03500W
03600W
03700WSCR3
03800W
03900W
04000W
04100W

RPGMNT:

0707
0729
0751
0907

0707
0729

0707
0907
0921RCODE
1107

'PRESS ENTER TO MOUNT A'
' NO-LABEL DISKETTE CAL'
'LED ''ARCH IV'''
'ON SYSTEM DEVICE 50.'

'MOUNT SUCCESSFUL. PRE'
'SS ENTER TO END JOB.'

'MOUNT UNSUCCESSFUL;'
'RETURN CODE =

'PRESS ENTER TO END JOB'

RPGCALL NAME=RPGMNT,CALL=MOUNT,DEVICE,NAME,LABEL,USAGE,TYPE,C
WORK,BYPASS,NOMESS, (RCODE,4,F)

MOUNT-5

PAUSE

FUNCTION

Causes a program to pause for a user-specified amount of time.

USAGE (~rg 1)

Pos Argument

arg1 Time

Type

Integer

Size

4

Comments

Amount of time to pause, in hundredths of a
second.

PAUSE-1

PAUSE Subroutine - A FORTRAN Example

This FORTRAN ptogram first notifies the user that the program is still running, then pauses for one
second.

C PROGRAM CODE APPEARS BEFORE THIS STATEMENT
DO 10 l=l, 1000

C COMPUTATION APPEARS HERE
IF(! .NE. 500) GO TO 10
WRITE(0,101)

c
C CAUSE A ONE SECOND PAUSE

CALL PAUSE(100)
c

10 CONTINUE
101 FORMAT(!X, 'COMPUTING')

C REMAINDER OF PROGRAM FOLLOWS

PAUSE-2

PRINT

FUNCTION

Sends a print file to the print queue.

USAGE (arg 1, arg2, ... , arg9)

Pos Argument Type Size Comments

arg1 File Alpha 8 Print file submitted by the program.

arg2 Library Alpha 8 Library on which print file resides. Default is
SPOOLIB value, as set with PF2 (SET) of the
Command Processor.

arg3 Volume Alpha 6 Volume on which print file resides. Default is
SPOOLVOL value, as set with PF2 (SET) of
the Command Processor.

arg4 Mode Alpha 1 Print mode:
S = Spooled (default)
H =Hold

arg5 Disposition Alpha 2 Disposition of file after printing:
OS = Dequeue and save (default)
DX = Dequeue and scratch
RS = Requeue and save

arg6 Copies Integer 4 Copies to be printed. Default is 1 .

arg7 Print Alpha 1 Print class. Must be A-Z or blank. Default is
Class SET PRTCLASS value, as set with Pf 2 (SET)

of the Command Processor.

arg8 Form Integer 4 Form number. Must be 0-255. Default (if
Number omitted or 255) is SET FORM# value, as set

with PF2 (SET) of the Command Processor.

arg9 Ret. code Integer 4 Error return code. See Table 3-8 below.

NOTE

Arguments 2 through 8 are optional. If omitted, defaults are as specified above. If an
argument is present, all preceding arguments must also be present.

PRINT-1

Return
Code

0
4
8

12
16
20
24
28
32
36

Table 3-8. PRINT Error Return Codes

Meaning

Successful.
Volume not mounted.
Volume in exclusive use.
All buffers in use, unable to perform verification.
Library not found.
File not found.
Improper file type, or zero records.
File access denied.
VTOC error, FOX 1 and FDX2 do not agree.
VTOC error, FDX2 and FDR do not agree.

PRINT-2

PRINT Subroutine - A BASIC Example

This program provides a way of submitting print files that are stored on disk to the printer. The user
simply provides the file, library, and volume names. The program displays the default print mode, the
disposition of the file after printing, the number of copies, and the form number. The program exe
cutes again by flashing the workstation screen briefly and indicating a return code.

000100DIM FILE$ 08
000200DIM LIBRARY$ 08
000300DIM VOLUME$ 06
000400DIM MODE$ 01
000500DIM DISPOSITION$ 02
000600DIM PRINTCLASS$ 01
000700MODE$ =' 'S''
000800DISPOSITION$ ="DS"
000900COPIES% =0001
001000FORMNUMBER% =255
001100
001200LOOP:
001300GOSUB PUTSCREEN
001400GOSUB DOPRINT
001500GOTO LOOP
001600
001700PUTSCREEN:
001800ACCEPT
001900 AT (01,14),
002000"Demonstration of Submit a Print File (PRINT) Subroutine",
002100 AT (03,03),
002200"Fill in the following information to submit a print file via the
002300 PRINT'' ,
002400 AT (04,03),
002500''subroutine: '',
002600 AT (06,03),
002700' 'FILE: '' ,
002800 AT (06,18), FILE$, CH(08),
002900 AT (06,29),
003000'' (Print file to be submitted)'',
003100 AT (07,03),
003200"LIBRARY: '',
003300 AT (07,18), LIBRARY$, CH(08),
003400 AT (08,03),
003500"VOLUME:",
003600 AT (08,18), VOLUME$, CH(06),
003700 AT (09,03),
0 0 3 8 0 0 ' ' MODE : ' ' ,
003900 AT (09,18), MODE$, CH(01),
004000 AT (09,29),
004100'' (S-spool; H-hold) '',
004200 AT (10,03),
004300''DISPOSITION:",

PRINT-3

004400 AT (10,18), DISPOSITION$, CH(02),
004500 AT (10,29),
004600" (OS-dequeue & save;DX-dequeue & scratch;RS-requeue)",
004700 AT (11,03),
004800''COPIES: ",
004900 AT (11,18), COPIES%, PIC(####),
005000 AT (12,03),
005100''PRINT CLASS:",.
005200 AT (12,18), PRINTCLASS$, CH(01),
005300 AT (13,03),
005400''FORM NUMBER:",
005500 AT (13,18), FORMNUMBER%, PIC(###),
005600 AT (15,03) I

005700''RETURN CODE:" I

005800 AT (15,18) I RETURNCODE%, PIC(##)
005900RETURN
006000
006100DOPRINT:
006200 CALL "PRINT" ADDR(FILE$,LIBRARY$,VOLUME$,
006300 MODE$,DISPOSITION$,COPIES%,
006400 PRINTCLASS$,FORMNUMBER%,RETURNCODE%)
006500 RETURN

PRINT-4

PRINT Subroutine - AN RPG II Example

This program allows the user to print any file in the library #ABCPRT on volume SYSTEM. The user
can specify the number of copies desired and whether the file should be scratched after printing.

00200FDISPLAY DD F ws

00300C ENBLEKO
00400C ACCPTSCRl
00410C*
00500C* * * * PREPARE PARAMETERS TO BE PASSED * * *
00600C*
OlOOOC MOVE '#ABCPRT 'LIBR 8
01100C MOVE 'SYSTEM 'VOLM 6
01200C MOVE 'S' MODE 1
01210C DIS Pl COMP 'Y' 88
01220C N88 MOVE 'DS' DISP 2
01300C 88 MOVE 'DX' DISP 2
01500C Z-ADDO RCODE 40
01510C*
01520C* *** EXIT TO THE RPGCALL MACRO * * *
01530C*
01600C EXIT RPGPRT
01700C RLABL FILE
01800C RLABL LIBR
01900C RLABL VOLM
02000C RLABL MODE
02100C RLABL DISP
02200C RLABL COPS
02300C RLABL RCODE
02310C*
02320C* * * * CHECK THE RETURN CODE ***
02330C*
02400C RCODE COMP 0 99
02500C 99 ACCPTSCR2
02600C SETON LR

02700WSCR1
02800W 0707 'WHICH FILE IN LIBRARY '
02900W 0729 '#ABCPRT WOULD YOU LIKE'
02910W 0752 'TO PRINT?'
03000W 0915 FILE 8
03100W 1107 'HOW MANY COPIES WOULD '
03200W 1129 'YOU LIKE?'
03300W 1315 COPS 40
03400W 1507 'SCRATCH THE FILE AFTER'
03410W 1530 'PRINTING? (Y OR N)'
03420W 1715 DIS Pl 1

PRINT-5

03500114SCR2
03600114
03700114
03800114
03900114

RPGPRT:

0707 'ERROR IN PRINT REQUEST'
0729 ' ; RETURN CODE = '
0746RCODE
0907 'PRESS ENTER TO END JOB'

RPGCALL NAME=RPGPRT,CALL=PRINT,FILE,LIBR,VOLM,MODE,DISP, C
CCOPS,4,F), CRCODE,4,F)

PRINT-6

PROTECT

FUNCTION

Changes the protection attributes of a file or library.

USAGE (arg 1, ... , arg5, arg6 [repeatable keyword-value pairs], ... , arg8)

Pos Argument Type Size Comments

arg1 Protect Alpha Indicates scope of protect change:
Range F = Single file

L = All files in a library

arg2 File Name Alpha 8 File whose protect class is to be modified.
Must be present, but is ignored if arg 1 = L.

arg3 Library Alpha 8 Library.

arg4 Volume Alpha 6 Volume.

The following two arguments indicate keyword-value pairs. They can be repeated.

Pos Argument Type Size Comments

arg5 Keyword Alpha 2 Specifies the file attribute to change.

arg6 Value Alpha var New value.

Recr Recr Receiver
Keyword Type Size Value

ED Alpha 6 Expiration date, in the form YYMMDD.

FC Alpha 1 File protection class.

ID Alpha 3 Owner's ID.

Pos Argument Type Size Comments

arg7 Limitation Alpha 1 Access rights:
Flag L = Restricted to the user's access rights

Blank or omitted = No restriction (use
the special access rights of the pro-
gram, if available)

Optional.

arg8 Ret. Code Integer 4 Error return code. See Tabte 3-9 below.

NOTE

For FORTRAN programs, the name of this subroutine must be specified as PROTCT.

PROTECT-1

Return
Code

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56

Table 3-9. PROTECT Error Return Codes

Meaning

Successful.
Volume not mounted.
Volume used exclusively by another user.
All buffers in use, no protection change.
Library not found.
File not found.
Update access denied, no protection change.
(Unused).
File in use, no protection change.
VTOC error. FOX 1 and FDX2 do not agree.
VTOC error. FDX2 and FDR do not agree.
Invalid argument list address.
1/0 error. VTOC unreliable.
Open or protected files bypassed in protecting library.
Invalid new protection data.

PROTECT-2

PROTECT Subroutine - A BASIC Example

This program allows the user to protect a previously unprotected single file or an entire library on a
single volume. The user must also specify the limitation flag, the expiration date, the protect class,
and the owner of record.

000100DIM RANGE$ 01
000200DIM FILE$ 08
000300DIM LIBRARY$ 08
000400DIM VOLUME$ 06
000500DIM LIMIT$ 01
000600DIM VY$ 02
000700DIM MM$ 02
000800DIM 00$ 02
000900DIM DATE$ 06
001000DIM PROTECTCLASS$ 01
001100DIM OWNER$ 03
001200LOOP:
001300GOSUB PUTSCREEN
001400GOSUB PROTECTIT
001500GOTO LOOP
001600
001700PUTSCREEN:
001800ACCEPT
001900 AT (01,24),
0 0 2 0 0 0 ' ' Demons t rat i on of PR 0 TE CT Sub r o u t i n e ' ' ,
002100 AT (06,04),
002200''Enter the information below to protect a file or a library:",
002300 AT (08,03),
002400''RANGE: '',
002500 AT (08,22), RANGE$, CH(01),
002600 AT (08,32),
002700'' (F-f ile; L-library) '',
002800 AT (09,03),
002900''FILE: '',
003000 AT (09,22), FILE$, CH(08),
003100 AT (09,32),
003200"(ignored if RANGE=L)'',
003300 AT (10,03),
003400''LIBRARY:",
003500 AT (10,22), LIBRARY$, CH(08),
003600 AT (11,03),
003700''VOLUME: '',
003800 AT (11,22), VOLUME$, CHC06),
003900 AT (12,03),
004000''LIMITFLAG: '',
004100 AT (12,22), LIMIT$, CH(Ol),
004200 AT (13,03),
004300"EXPIRATION DATE:",

PROTECT-3

004400 AT (13,22), VY$,
004500 AT (13,25), MM$,
004600 AT (13,28), DD$,
004700 AT (13,33),
004800" (VY MM DD)",
004900 AT (14,03),
005000"PROTECT CLASS:'',

CH(02),
CH(02),
CH(02) I

005100 AT (14,22), PROTECTCLASS$,CH(01),
005200 AT (15,03),
005300"0HNER OF RECORD:",
005400 AT (15,22), OHNER$, CH(03),
005500 AT (19,17),
005600"Press ENTER to protect either the file or library"
005700RETURN
005800
005900PROTECTIT:
006000DATE$ = VY$ & MM$ & DD$
006100 CALL "PROTECT" ADDR(RANGE$,FILE$,LIBRARY$,VOLUME$,
006200 "ED" ,DATE$,
006300 ''FC" ,PROTECTCLASS$,
006400 "ID" ,OHNER$,
006500 LIMIT$,RETURNCODE%)
006600 PRINT "RETURN CODE = ": PRINT RETURNCODE%
006700 PRINT "IF RETURN CODE= 0 SEE IF FILE OR LIBRARY HAS PROTECTED."
006800 STOP
006900 RETURN

PROTECT-4

PUTPARM

FUNCTION

This subroutine has the following primary functions:

1 . Creates a parameter list (called a Parameter Reference Block, or PRB) to satisfy
a subsequently generated GETPARM request.

2. Retrieves a previously created PRB.

3. Deletes existing PRBs.

Other functions combine these three.

USAGE (arg 1, arguments)

Argument 1 indicates the PUTPARM function and determines the number and nature of
other arguments.

Pos Argument Type

arg1 Type Alpha

Size

1

Comments

Defines the PUTPARM type:
D = Create (Display) type
E = Create (Enter) type
R = Retrieve and Block type
M = Retrieve and Merge type
C = Cleanup type

Remaining arguments depend on the PUTPARM type selected. A detailed description of
each type appears below.

1. Create a Parameter Reference Block (Type = D or E)

This type creates a PRB in one of three ways:

(1) By specifying keywords and values directly;

(2) By referencing a previously created PRB and using its keywords and values
to create the new PRB (see Note 1 for a discussion of a limitation of
PUTPARM and the use of this feature); and

(3) By referencing a previously created PRB and merging its keywords and
values with new keywords and values to create the new PRB.

PUTPARM-1

Pos Argument Type Size Comments

arg1 Type Alpha 1 Value is D or E. D causes a GETPARM screen
to be displayed when the PUTPARM call is
encountered and allows the user to modify
keyword values. E causes no GETPARM
interaction; the user-specified PF key indi-
cates the action desired. These types corre-
spond to the DISPLAY and ENTER Procedure
language statements.

arg2 Usage Integer 4 Number of times the PRB can be used:
Count 0 = Use generated PRB an unlimited

number of times.
Other = Use generated PRB arg2 times.

Range is 1 to 32 768, default is 1 .
Optional.

arg3 Prname Alpha 8 Prname of associated GETPARM request to
be satisfied. Cannot begin with X'OO'.

arg4 Keyword Integer 4 Number of keywords to be associated with
Count this PRB. Arg5-arg7 contain the names and

values for these keywords. Range is 0 to
255.

arg5 Keyword Alpha 8 Name of keyword. Arg5-arg7 are repeated
the number of times specified in arg4.

arg6 Value Alpha var Value of keyword.

arg7 Length Integer 4 Length of value (arg6) in characters. Range
is 1 to 256.

arg8 PF Key Alpha 1 Indicates PF key associated with the PRB. If
Value omitted, the default value is"@" (ENTER).

See Table 3-1 8 for AID values.

arg9 PRB Label Alpha '8 Label to be generated for the PRB. If omitted,
or if the label field begins with a blank or
X'OO', no label is generated.

arg10 Reference Alpha 8 Label of previously defined PRB, whose key-
Label words are to be used in this reference. If this

argument begins with a blank or X'OO', or is
omitted, no "backward reference" is made
and the new PRB will be generated directly
from arguments 5-7.
Arg4=0: The program uses all keyword/-
value fields in the backward referenced PRB
to generate a new PRB.
Arg4#0: The program creates a PRB con-
sisting of keywords and values specified in
args 5-7, updated by values of identical key-
words in referenced PRB.

arg11 Cleanup Alpha 1 Indicates action to take after reference to a
Option backward referenced PRB (see arg 1 0):

C = Delete backward referenced PRB
after reference.

PUTPARM-2

Pos Argument Type

arg 1 2 Ret. Code Integer

Size

4

Comments

Blank= Retain backward referenced PRB.
Ignored if no backward reference is speci
fied.

Error return code. See Table 3-10 below.

Arguments 4 through 11 are optional; however, if any of them is present, all preceding
ones must be included (with the exception of Arguments 5 through 7, which must be
omitted if arg4=0). Argument 2 can be omitted even if other arguments are specified.

2. Retrieve a previously created parameter reference block (R type)

This type allows the program ·to examine keywords/values of a previously created PRB,
whose values are generally provided for a GETPARM screen request. This option does
not create a new PRB; the PRB must have been created earlier in the program (at this
level) and must be labeled. This type is generally used to pass file references.

Pos Argument Type Size Comments

arg1 Type Alpha 1 Value is R

arg2 PRBLabel Alpha 8 Label of the previously created PRB that is to
be retrieved and examined.

arg3 Receiver Alpha var Receiver for the keyword fields in the pre-
viously created PRB. Ignored if arg4=0.

arg4 Receiver Integer 4 Total length of the receiver (arg3). The sub-
Length routine returns the PRB fields in the receiver

in the order in which they are defined in the
PRB, as follows:

Byte 1-8-Keyword
9-1 2- Keyword field length

1 3-end- Keyword field data; length
indicated in bytes 9-1 2

This sequence of bytes repeats until the
receiver is filled, or until all keyword fields
are transferred. Arg4 is adjusted to reflect
the actual number of bytes used.

arg5 Total Integer 4 Total length required by the receiver to hold all keyword
Length field information. If the receiver is large enough to hold

all the data, this value will be identical to the value of arg4
on return from the subroutine.

arg6 PF Key Alpha 1 Indicates the PF key receiver from the referenced PRB.
Receiver See Note 4 for a problem with this feature. Optional. See

Table 3-1 8 for AID byte values.

arg7 Cleanup Alpha 1 Indicates the action to take after the PRB has been refer-
Option enced:

C = Delete PRB after fields are extracted
Blank = Retain PRB

arg8 Ret. Code Integer 4 Error return code. See Table 3-10 below.

PUTPARM-3

Arguments 3 through 7 are optional; however, if any of them is present, all preceding
arguments must be included. Arguments 3 and 4 must both be either included or
omitted.

3. Retrieve a previously created PRB (M type)

The M type allows the program to obtain keyword values from a GETPARM screen. It is
generally used to pass file references. The M type is identical in function to the R type; it
differs only in the manner in which values in the PRB are returned to the caller.

Pos Argument Type Size Comments

arg1 Type Alpha 1 Value is M

arg2 PRB Label Alpha 8 Label of the previously created PRB that is to
be examined.

arg3 Keyword Integer 4 Number of keywords whose values are to be
Count merged. Each is specified in arguments 4-6.

arg4 Keyword Alpha 8 Keyword name. Arguments 4-6 are repeated
the number of times specified in arg3.

arg5 Receiver Alpha var Receiver for the value of the keyword speci-
fied in arg4. If this keyword is found in the
"backward referenced" PRB, the receiver
contains the value as follows:

If the PRB field is longer than the length of
arg5, the leftmost arg6 characters are
returned.
If the PRB field is shorter than arg5, it will
be placed left-justified into the field, with
the remainder of the field set to blanks.

arg6 Length Integer 4 Length of the receiver in characters (arg5).

arg7 PF Key Alpha 1 Receiver for the PF key value from the refer-
Receiver enced PRB. See Note 4 for a problem with

this feature. Optional. See Table 3-18 for
AID values.

arg8 Cleanup Alpha 1 Indicates action to take after reference to
Option the PRB:

C = Delete value after reference
Blank = Retain value after reference

arg9 Ret. code Integer 4 Error return code. See Table 3-10 below.

Arguments 3 through 8 are optional; however, if any of them is present, all preceding
arguments must be included.

4. Delete (''cleanup") old parameter reference blocks (C type)

This type causes PRBs created by the program to be removed.

PUTPARM-4

Pos

arg1

arg2

arg3

Argument Type

Type Alpha

PRB Label Alpha

Ret. Code Integer

Size

1

8

4

Comments

Value is C

Label of PRB to delete. Optional. If omitted,
or if the first byte is blank or X'OO', all PRBs
at this level are deleted.

Error return code. See Table 3-10 below.

NOTES

1. Only the PUTPARM user's program can examine or delete a PRB that it has created
(via PUTPARM type E or D). This refers specifically to "backward references"
(types Rand M, and the backward reference option of types E and D) and to
"cleanups" (type C and the cleanup option of types E, D, R, and M).

2. A PRB created by the user program can be used to satisfy a GETPARM screen that
is exactly one link level beyond it (i.e., in a program linked to, via LINK, by the
PUTPARM user's program).

There are situations in which it is desirable to get around this limitation. For
instance, a user menu program might wish to link to another menu which, in turn,
runs the COPY utility. The first menu cannot directly create parameters for the
COPY screens, since two link levels separate them. However, if the second menu
does a PUTPARM type E or D for each of the COPY screens, and specifies a label
(arg9) for each of the PRBs, the first menu can create parameters for each of the
second menu's PRBs just as if it were a GETPARM screen. The only difference is
that the "prname" argument (arg3) in the first menu's PUTPARM should be
replaced by the "label" assigned by the second menu. Also, the second menu need
not specify any keyword fields in the PRBs, since any fields specified by the first
menu are simply added to the second menu's PRBs. The following example helps
to clarify this.

Two BASIC programs might contain the following statements:

(First menu program, called MENU 1)

CALL '' PUTPARM'' ADDR (' 'E'', '' LABLNAME'', 3%, ''FILE , FILE$, 8%,
"LIBRARY ", LIBRARY$, -8%, "VOLUME , VOLUME$, 6%, RETCODE%)

CALL ''LINK'' ADDR (' 'MENU2 '' , CMPCODE%, RETCODE%)

(Second menu program, called MENU2)

CALL ''PUT PARM'' ADDR ('' E'' , ''INPUT
RETCODE%)

'' 0%, ''@'''

CALL "LINK" ADDR ("COPY ", CMPCODE%, RETCODE%)

'' LABLNAME'' ,

This example allows the first menu to create parameters for COPY' s input screen
with FILE$, LIBRARY$, and VOLUME$ even though MENU2 is performing the
LINK. LABLNAME is used as the PRB label in MENU2 and as the pseudo-"prname"
in MENU1.

The program can use this method of "chaining" PUTPARMs across as many link
levels as desired.

PUTPARM-5

3. The old B and F options have been replaced by the R and M options, respectively.
The new options perform the same functions, but their argument lists have been
modified. The B and F options still work, but will probably be removed at some
point in the future; programs using these options should be modified appropri
ately.

4. For FORTRAN programs, the name of this subroutine must be specified as
PUTPRM.

Return
Code

0
4
8

12
16
20

Table 3-1 O. PUTPARM Error Return Codes

Meaning

Successful.
Backward referenced label not found.
Bad format list supplied.
Error found in a previous PRB.
Invalid input parameter while using "cleanup" (C) parameter option.
Invalid input parameter while using M or R option.

PUTPARM-6

PUTPARM Subroutine - A COBOL Example

This program allows the user to enter file, library, and volume names for corresponding fields of the
EDITOR's Input screen. After calling PUTPARM, the program links dynamically to the EDITOR by call
ing the LINK subroutine. When the EDITOR' s Input screen appears, the file, library, and volume fields
contain the values entered by the user.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. PUTPARMC.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 WORKING-STORAGE SECTION.
000600*THE FOLLOWING ITEMS ARE THE ARGUMENTS FOR THE PUTPARM SUBROUTINE
000700 77 TY-PE PIC X VALUE "D".
000800 77 PRNAME PIC X(8) VALUE "INPUT".
000900 01 KEYWORD-COUNT.
001000 03 FILLER USAGE IS BINARY VALUE 0.
001100 03 WORD-COUNT USAGE IS BINARY VALUE 4.
001200*THE NEXT TWO ITEMS INITIALIZE THE LANGUAGE FIELD OF THE
001300*EDITOR INPUT SCREEN TO ''C" FOR COBOL.
001400 77 KEYWORD-1 PIC X(9) VALUE "LANGUAGE".
001500 77 LANGUAGE PIC X(9) VALUE "C".
001600*AS EXPLAINED IN SECTION 2.2.2, COBOL ACCEPTS HALFWORD INTEGERS
001700*0NLY. DEFINE A FOUR-BYTE GROUP ITEM TO BE COMPOSED OF TWO
001800*HALFWORD-BINARY, ELEMENTARY ITEMS, AND USE THE LOW-ORDER TWO
001900*BYTES FOR THE INTEGER. TO PASS AN INTEGER TO THE SUBROUTINE,
002000*INITIALIZE THE HIGH-ORDER BYTES TO ZERO.
002100 01 LENGTH-1.
002200 03 FILLER USAGE IS BINARY VALUE 0.
002300 03 COUNT-1 USAGE IS BINARY VALUE 9.
002400 77 KEYWORD-2 PIC X(8) VALUE "FILE".
002500 77 FILE-NAME PIC X(8) VALUE SPACE.
002600 01 LENGTH-2.
002700 03 FILLER USAGE IS BINARY VALUE 0.
002800 03 COUNT-2 USAGE IS BINARY VALUE 8.
002900 77 KEYWORD-3 PIC X(8) VALUE "LIBRARY".
003000 77 LIB-RARY PIC X(8) VALUE SPACE.
003100 01 LENGTH-3.
003200 03 FILLER USAGE IS BINARY VALUE 0.
003300 03 COUNT-3 USAGE IS BINARY VALUE 8.
003400 77 KEYWORD-4 PIC X(8) VALUE "VOLUME".
003500 77 VOL-UME PIC X(6) VALUE SPACE.
003600 01 LENGTH-4.
003700 03 FILLER USAGE IS BINARY VALUE 0.
003800 03 COUNT-4 USAGE IS BINARY VALUE 6.
003900 77 PRB-LABEL PIC X(8) VALUE "EDITPARM".
004000 01 RETURN-KODE.
004100 03 FILLER USAGE IS BINARY VALUE ZERO.
004200 03 ERROR-CODE USAGE IS BINARY.

PUTPARM-7

004300*THE
004400 77
004500 77
004600 77
004700 77
004800 01
004900

FOLLOWING ITEMS ARE THE ARGUMENTS FOR THE LINK SUBROUTINE
LINKNAME PIG X(8) VALUE "EDITOR".
LOCATION PIG X(l) VALUE "S".
LINK-LIBRARY PIG X(8).
LINK-VOLUME PIG X(6).
PARAMETERS.
03 FILLER USAGE IS BINARY VALUE 0.

005000
005100
005200
005300
005400
005500
005600
005700
005800
005900
006000
006100
006200
006300
006400
006500
006600
006700
006800
006900
007000
007100
007200
007300
007400
007500
007600
007700
007800
007900

03 PARAMETER-COUNT USAGE IS BINARY VALUE 0.
77 EXIT-OPTION PIG X VALUE "C".
77 PF16-MESSAGE PIG X(18) VALUE "RETURN TO PUTPARMC".
01 MESSAGE-LENGTH.

03 FILLER BINARY VALUE 0.
03 FILLER BINARY VALUE 18.

01 COMPLETION.
03 FILLER USAGE BINARY VALUE ZERO.
03 COMPLETION-CODE USAGE BINARY.

01 ERRORS.
03 FILLER USAGE BINARY VALUE ZERO.
03 LINK-ERROR-CODE USAGE BINARY VALUE ZERO.

PROCEDURE DIVISION.
MAIN-PARAGRAPH.

ACCEPT FILE-NAME, LIB-RARY, VOL-UME.
CALL ''PUTPARM'' USING TY-PE, PRNAME, KEYWORD-COUNT,

KEYWORD-1, LANGUAGE, LENGTH-1, KEYWORD-2, FILE-NAME,
LENGTH-2, KEYWORD-3, LIB-RARY, LENGTH-3, KEYWORD-4,
VOL-UME, LENGTH-4, RETURN-KODE.

IF ERROR-CODE NOT EQUAL ZERO, GO TO PUTPARM-ERROR.
CALL ''LINK" USING LINKNAME, LOCATION, LINK-LIBRARY,

LINK-VOLUME, PARAMETERS, EXIT-OPTION,
PF16-MESSAGE, MESSAGE-LENGTH,
COMPLETION, ERRORS.

IF COMPLETION-CODE= 8 DISPLAY "LINK-ERROR-CODE IS "
LINK-ERROR-CODE, ELSE DISPLAY ''YAY! ".

STOP RUN.
PUTPARM-ERROR.

DISPLAY "PUTPARM ERROR-CODE = " ERROR-CODE.
STOP RUN.

PUTPARM-8

PUTPARM Subroutine - AN RPG II Example

This program calls the PUTPARM subroutine four times. Each time, PUTPARM is used to supply
parameters for one of the GETPARM screens displayed by the COPY utility. The program then calls
the LINK subroutine to link to the COPY utility. In the COPY utility, the file EXPENSES in library
ABCDATA on volume SYSTEM is copied to a file called EXPENSE2 in the same library. The user does
not see any of COPY' s GETPARM screens, since the PUTPARM type is E (Enter) rather than D
(Display).

00100FDISPLAY DD
00200C
00210C*

F ws
ACCPTSCR1

00220C*
00230C*
00300C

*** PREPARE PARAMETERS TO PASS DURING FIRST PUTPARM CALL ***

00400C
00500C
00600C
00700C
00800C
00900C
OlOOOC
01100C
01200C
01300C
01400C
01500C
01600C
01700C
01800C
01810C*
01820C*
01830C*
01900C
02000C
02100C
02200C
02300C
02400C
02500C
02600C
02700C
02800C
02900C
03000C
03100C
03200C
03300C
03400C
03500C

MOVE 'E' TYPE
MOVE 'INPUT 'PRN
Z-ADD4 KCNT
MOVE 'FI LE 'KEY!
MOVE 'EXPENSES'VAL1
Z-ADD8 LEN!
MOVE 'LIBRARY 'KEY2
MOVE 'ABCDATA' VAL2
Z-ADD7 LEN2
MOVE 'VOLUME 'KEY3
MOVE 'SYSTEM' VAL3
Z-ADD6 LEN3
MOVEL'COPY 'KEY4
MOVE 'FILE' VAL4
Z-ADD4 LEN4
Z-ADDO RCOD

*** EXIT TO RPGCALL MACRO

EXIT RPGPTA
RLABL
RLABL
RLABL
RLABL
RLABL
RLABL
RLABL
RLABL
RLABL
RLABL ·
RLABL
RLABL
RLABL
RLABL
RLABL
RLABL

...

TYPE
PRN
KCNT
KEY!
VAL!
LEN!
KEY2
VAL2
LEN2
KEY3
VAL3
LEN3
KEY4
VAL4
LEN4
RCOD

PUTPARM-9

1
8
40
8
8
40
8
7
40
8
6
40
8
4
40
40

03510C*
03520C* *** CHECK RETURN CODE * * *
03530C*
03600C RCOD COMP 0 10
03700C 10 GOTO ERRS
03710C*
03720C * * * * PREPARE PARAMETERS TO PASS DURING SECOND PUTPARM CALL
03730C*
03800C MOVE 'OPTIONS 'PRN
03900C Z-ADDO KCNT
04000C Z-ADDO RCOD
04010C*
04020C* EXIT TO RPGCALL MACRO ***
04030C*
04100C EXIT RPGPTB
04510C*
04520C* *** CHECK RETURN CODE ***
04530C*
04600C RCOD COMP 0 20
04700C 20 GOTO ERRS
04710C*
04720C* * * * PREPARE PARAMETERS TO PASS DURING THIRD PUTPARM CALL ***
04730C*
04800C MOVE 'OUTPUT 'PRN
04900C Z-ADD3 KCNT
05000C MOVE 'EXPENSE2'VAL1
05100C Z-ADDO RCOD
05101C*
05110C* *** EXIT TO RPGCALL MACRO
05120C*
05200C EXIT RPGPTC
06150C*
06155C* CHECK RETURN CODE
06160C*
06200C RCOD COMP ·a 30
06300C 30 GOTO ERRS
06310C*
06320C* * * * PREPARE PARAMETERS TO PASS DURING FOURTH PUTPARM CALL
06330C*
06400C MOVE ' EOJ 'PRN
06500C Z-ADDO KCNT
06600C MOVE 'P' PFK 1
06700C Z-ADDO RCOD
06710C*
06720C* EXIT TO RPGCALL MACRO
06730C*
06800C EXIT RPGPTD
06900C RLABL PFK
06920C*
06930C* CHECK RETURN CODE ***
06940C*
07000C RCOD COMP 0 40
07100C 40 GOTO ERRS

PUTPARM-10

07101C*
07110C*
07120C*
07200C
07300C
07400C
07500C
07510C*
07520C*
07530C*
07600C
07700C
07800C
07900C
08000C
08010C*
0-8020C*
08030C*
08100C
08200C
08300C N50
08310C*
08320C*
08330C*
08400C
08500C
08600C
08700C
08800WSCR1
08900W
09000W
09100W
09200WSCR2
09300W
09400W
09500W
09600W
09700W
09800W
09900W
10000W
10100W
10200W
10300W
10400W

*** PREPARE PARAMETERS TO PASS DURING LINK CALL

N50
10
20
30
40

N50
N50

50
50
50
50
50

MOVE 'COPY
MOVE 'S'
Z-ADDO
Z-ADDO

'PROG 8
LTYPE 1
CCODE 40
RCODE 40

... EXIT TO RPGCALL MACRO ***

EXIT RPGPTE
RLABL
RLABL
RLABL
RLABL

PROG
LTYPE
CCODE
RC ODE

*** CHECK COMPLETION AND RETURN CODES

CCODE
RCODE

COMP 0
COMP 0
GOTO END

50
50

*** DISPLAY ERROR MESSAGE SCREEN

ERRS TAG
ACCPTSCR2

END TAG
SETON LR

1207 'PRESS ENTER TO COPY TH'
1229 'E EXPENSES FILE INTO A'
1251 ' FILE CALLED EXPENSE2.'

0707 'ERROR IN PUTPARM CALL '
0729 'DEFINING INPUT. '
0729 'DEFINING OPTIONS.'
0729 'DEFINING OUTPUT.'
0729 'DEFINING EOJ.'
1010 'RETURN CODE = '
1025RCOD
0707 'ERROR IN LINK CALL.'
1010 'COMPLETION CODE =
1030CCODE
1210 'RETURN CODE = '
1225RCODE

PUTPARM-11

...

...

RPGPTA:

RPGCALL NAME=RPGPTA,CALL=PUTPARM,TYPE,PRN, (KCNT,4,F), C
KEY1 'VAL!' (LEN1'4' F) 'KEY2 'VAL2 I (LEN2 I 4 IF) I KEY3 'VAL3'

(LEN3,4,F) ,KEY4,VAL4, (LEN4,4,F), (RCOD,4,F) C

RPGPTB:

RPGCALL NAME=RPGPTB,CALL=PUTPARM,TYPE,PRN, (KCNT,4,F), C
(RCOD,4,F)

RPGPTC:

RPGCALL NAME=RPGPTC,CALL=PUTPARM,TYPE,PRN, (KCNT,4,F),KEY1, C
VAL1' (LEN1I4 IF) I KEY2 'VAL2' (LEN2' 4' F) 'KEY3 'VAL3'
(LEN3,4,F),(RCOD,4,F) C

RPGPTD:

RPGCALL NAME=RPGPTD,CALL=PUTPARM,TYPE,PRN, (KCNT,4,F) ,PFK, C
(RCOD,4,F)

RPGPTE:

RPGCALL NAME=RPGPTE,CALL=LINK,PROG,LTYPE, (CCODE,4,F) I c
(RCODE,4,F)

PUTPARM-12

READ FDR

FUNCTION

Obtains information about a specified file. READFDR can return specified control blocks
or various characteristics about the file. The control blocks and characteristics appear
below.

USAGE (arg 1, ... , arg4, arguments)

Arg 1 through arg3 identify the file about which information is obtained. Arg4 defines
the function to be performed and the number and nature of the additional arguments.

Pos Argument Type

arg1 File Alpha

arg2 Library Alpha

arg3 Volume Alpha

arg4 Function Integer

Size

8

8

6

4

Comments

File whose FDR (s) and/ or AXD 1 are to be
retrieved.

Library containing the file.

Volume being accessed.

Type of information to be returned:
0 = Return specified control blocks
1 = Return FDR 1
2 = Return FDR2
3 = Return FDR 1 and FDR2
4 = Return AXD 1
5 = Return FDR 1 and AXD 1
6 = Return FDR2 and AXD 1
7 = Return FDR 1 and FDR2 and AXD 1

The remaining arguments depend on the function type.

1. Return specified control blocks (arg4 is nonzero)

Pos Argument Type Size Comments

arg5 Receiver Alpha· var Data item that receives the blocks specified
in arg4. Its length depends on which blocks
are returned. FDR 1 and FDR2 are 80 bytes
each. AXD 1 is 60 bytes plus 28 bytes for
each alternate key. The maximum length for
AXD 1 is 2048 bytes. The order in which the
blocks are received is specified in arg4.

arg6 Ret. Code Integer 4 Error return code. See Table 3-11 below. If
the return code is nonzero, only FDR 1 and
FDR2 are returned.

READFDR-1

2. Return specified fields (arg4 is zero)

Each of the keywords is Alpha(2). Definitions of the type and contents of the receivers
appear in the following list. The last argument in the argument list (arg5) must be the
error return code.

Keyword

AC

AX

BA

BC

CD

DP

EA

ED

EL

FC

FT

Recr
Type

Integer

Alpha

Integer

Integer

Alpha

Integer

Integer

Alpha

Alpha

Alpha

Alpha

Recr
Size

4

var

4

4

6

4

4

6

var

Receiver
Value

Number of defined alternate keys.

Alternate. key information entry. Must be at least 1 2
times the number of alternate keys. This information
is not available if the return code (arg5) is nonzero.
Each entry is 1 2 bytes and consists of the following:

Byte l-2-Alternate key number.
3-4- Position of the key field in record.
5-6-Key length.

7 - Duplicates flag:
D = Duplicate alternate keys

a11owed
Blank = Duplicates not allowed

8- Compression flag:
C = Key entries are compressed
Blank = Key entries not com

pressed
9-12- Number of records on this alternate

key path.

Number of blocks allocated to the file.

Number of blocks used by the file.

Creation date of the file, in the form YYMMDD.

Data packing factor.

Number of extents allocated to the file.

Expiration date of the file, in the form YYMMDD.

Starting and ending sectors of the extents allocated
to the file, listed in pairs of 4-byte integer entries. The
length of the EL receiver must be at least eight times
the value of the EA receiver.

File protection class.

File type:
C = Consecutive
I =Indexed
P = Print
0 = Object program
A = Alternate indexed
L =Log
W = Word processing document

READFDR-2

Recr
Keyword Type

ID Alpha

IP Integer

KP Integer

KS/KL Integer

MD Alpha

ME Alpha

MR Alpha

MW Alpha

PF Alpha

RC Integer

RS Integer

RT Alpha

Pos Argument

arg5 Ret. Code

NOTE

Recr
Size

3

4

4

4

6

4

4

4

1

4

4

1

Type

Integer

Receiver
Value

File creator's ID.

Index packing factor.

Position of the first byte of the primary key (counting
from 1).

Length of the primary key.

Date of the last modification to the file, in the form
YYMMDD.

Special execute access flags for the file.

Special read access flags for the file.

Special write access flags for the file.

Partial file indicator, created by BACKUP utility:
P = Partial file
Blank = Normal file

Number of records in the file.

Size of the records in the file. For fixed length
records, this is the actual size. For variable length
records, this is the specified maximum size.

Record type:
F = Fixed-length
V = Variable-length
C = Compressed

Size Comments

4 Error return code. Code 1 00, 1 04, or 1 08
returned only for an unsuccessful attempt to
access AXD 1 and only if no error has
occurred in attempting to access FDR 1 and
FDR2. See Table 3-11 below.

For FORTRAN programs, the name of this subroutine must be specified as RDFDR.

READFDR-3

Table 3-11. READFDR Error Return Codes

Return
Code

0
4
8

12
16
20
32
36
40
44

100
104
108

Meaning

Operation performed successfully.
Volume not mounted.
Volume used exclusively by another user.
All buffers in use.
Library not found.
File label not found.
VTOC error. FDX 1 and FDX2 do not agree.
VTOC error. FDX2 and FDR do not agree.
Invalid input parameters.
Disk 1/0 error. VTOC unreliable.
Possession conflict.
Protection violation.
Partial BACKUP file (cannot be opened).

READFDR-4

READFDR Subroutine - A COBOL Example

This program accepts file, library, and volume names specified by the user. It also returns the number
of blocks allocated for the file, the number of blocks used, the number of ext~nts allocated, and the
file's data packing factor.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. READFDRC.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 WORKING-STORAGE SECTION.
000600 77 FILE-NAME PIC X(8).
000700 77 LIB-RARY PIC X(8).
000800 77 VOL-UME PIC X(6).
000900*AS EXPLAINED IN SECTION 2.2.2, COBOL ACCEPTS HALFWORD INTEGERS
001000*0NLY. DEFINE A FOUR-BYTE GROUP ITEM TO BE COMPOSED OF TWO
001100*HALFWORD-BINARY, ELEMENTARY ITEMS, AND USE THE LOW-ORDER TWO
001200*BYTES FOR THE INTEGER. TO PASS AN INTEGER TO THE SUBROUTINE,
001300*INITIALIZE THE HIGH-ORDER BYTES TO ZERO.
001400 01 FUNCTION.
001500 03 FILLER USAGE IS BINARY VALUE ZERO.
001600 03 FUNCTION-CODE USAGE IS BINARY VALUE 0.
001700 77 BLOCKS-ALLOCATED PIC X(2) VALUE "BA".
001800 01 NUMBER-ALLOCATED.
001900 03 FILLER USAGE IS BINARY VALUE ZERO.
002000 03 ALLOCATED USAGE IS BINARY.
002100 77 BLOCKS-USED PIG X (2) VALUE ''BC''.
002200 01 NUMBER-USED.
002300 03 FILLER USAGE IS BINARY VALUE ZERO.
002400 03 USED USAGE IS BINARY.
002500 77 EXTENT-KEY PIG X(2) VALUE "EA".
002600 01 EXTENT-NUMBER.
002700 03 FILLER USAGE IS BINARY VALUE ZERO.
002800 03 EXTENTS USAGE IS BINARY.
002900 77 DATA-PACK-KEY PIG X(2) VALUE "DP".
003000 01 DATA-PACK-NUMBER.
003100 03 FILLER USAGE IS BINARY VALUE ZERO.
003200 03 DATA-PACK USAGE IS BINARY.
003300 01 RETURNCODE.
003400 03 FILLER USAGE IS BINARY VALUE ZERO.
003500 03 ERROR-CODE USAGE IS BINARY.

READFDR-5

003600
003700
003800
003900
004000
004100
004200
004300
004400
004500
004600
004700
004800
004900
005000
005100
005200

PROCEDURE DIVISION.
FIRST-PARAGRAPH.

ACCEPT FILE-NAME, LIB-RARY, VOL-UME.
IF FILE-NAME = "ABC" GO TO EXIT-PARAGRAPH.
CALL "READFDR" USING FILE-NAME, LIB-RARY, VOL-UME, FUNCTION,

BLOCKS-ALLOCATED, NUMBER-ALLOCATED,
BLOCKS-USED, NUMBER-USED, EXTENT-KEY, EXTENT-NUMBER,
DATA-PACK-KEY, DATA-PACK-NUMBER, RETURNCODE.

IF ERROR-CODE NOT= 0 DISPLAY "RETURN CODE= "ERROR-CODE,
GO TO EXIT-PARAGRAPH.

DISPLAY "ALLOCATED = "ALLOCATED,
" USED = "USED,
" EXTENTS = "EXTENTS,
" DATA-PACK = "DATA-PACK.

GO TO FIRST-PARAGRAPH.
EXIT-PARAGRAPH.

STOP RUN.

READFDR-6

READVTOC

FUNCTION

Provides information from the Volume Table of Contents (VTOC). The available informa
tion includes the following:

Files in a specified library
Libraries on a specified volume
Standard label volumes on the system
Free extents on a volume
General information about a volume
Specified VTOC blocks
Files and free extents on a volume

USAGE (arg 1, arguments)

Arg 1 defines the function to be performed and the number and nature of the additional
arguments.

1. Obtain the names of files in a specified library

Pos Argument Type Size Comments

arg1 Function Alpha 1 Value is F

arg2 Library Alpha 8 Library containing the files.

arg3 Volume Alpha 6 Volume being accessed.

arg4 Starter Integer 4 File entry at which to begin listing. Must be
nonnegative. Value of 0 is treated as 1 .

arg5 Counter Integer 4 Number of file entries to list. Must be non-
negative. If fewer entries are returned than
specified, arg5 is set to the actual number of
entries returned.

arg6 Receiver Alpha var Data item that receives the file entries. The
length must be at least eight times the value
of arg5. Each entry is 8 bytes and contains
one file name.

arg7 Ret. Code Integer 4 Error return code. See Table 3-12 below.

arg8 File Count Integer 4 Number of files in the specified library.

READVTOC-1

2. Obtain the names of libraries on a specified volume

Pos Argument Type Size Comments

arg1 Function Alpha 1 Value is L

arg2 Volume Alpha 6 Volume containing the libraries.

arg3 Starter Integer 4 Library entry at which to begin listing. Must
be nonnegative. A value of 0 is treated as 1 .

arg4 Counter Integer 4 Number of library entries to list. Must be
nonnegative. If fewer entries are returned
than specified, arg4 is set to the actual
number of entries returned.

arg5 Receiver Alpha var Data item that receives the library entries.
The length must be at least 1 0 times the
value of arg4. Each library entry is 1 0 bytes
and contains the library name (the first 8
bytes) and the number of files in the library
(the last 2 bytes).

arg6 Ret. Code Integer 4 Error return code. See Table 3-1 2 below.

arg7 Library Integer 4 Number of libraries on the specified volume.
Count

3. Obtain the names of standard label (SL) volumes on the system

Pos Argument Type Size Comments

arg1 Function Alpha 1 Value is V

arg2 Starter Integer 4 Volume entry at which to begin listing. Must
be nonnegative. A value of 0 is treated as 1.

arg3 Counter Integer 4 Number of volume entries to list. Must be
nonnegative. If fewer entries are returned
than specified, arg3 is set to the actual
number of entries returned.

arg4 Receiver Alpha var Data item that receives the volume entries.
The length must be at least 1 6 times the
value of arg3. Each item is 16 bytes and is
structured as follows:

Byte 1-6- Volume name.
7-8-X'OO' (unused).

9-10- Total number of libraries.
11-12- Total number of files.
13-16- Error return code. See Table 3-12

below. If the return code is nonzero,
Bytes 9-12 are not set.

arg5 Volume Integer 4 Number of SL disk volumes on the system.

READVTOC-2

4.

Pos

arg1

arg2

arg3

arg4

arg5

arg6

arg7

5.

Pos

arg1

arg2

arg3

arg4

Obtain the locations of free extents on a volume

Argument Type Size Comments

Function Alpha 1 Value is X

Volume Alpha 6 Volume whose free extents are to be listed.

Starter Integer 4 Relative order of the entry at which to begin
the listing. A value of 0 is treated as 1 .

Counter Integer 4 Number of extent entries to list. Must be non-
negative. If fewer entries are returned than
specified, arg4 is set to the actual number of
entries returned.

Receiver Alpha var Data item that receives the extent entries.
Must be at least eight times the value of
arg4. Each entry consists of two four-byte
integers containing the starting and ending
block numbers for the extent.

Ret. Code Integer 4 Error return code. See Table 3-1 2 below.

Extents Integer 4 Number of free extents on the specified
volume.

Obtain general information about a volume

Argument

Function

Volume

Keyword

Receiver

Keyword

BC

BF

DC

FC

LC

PC

vc

Type Size Comments

Alpha 1 Value is G

Alpha 6 Volume whose VTOC is being read.

Alpha 2 Type of information to be returned in arg4.
Each arg3 must be paired with arg4 and can
be repeated.

Integer 4 Receives the information specified by arg3.
Each arg4 must be paired with arg3. The
keywords and information received are as
follows.

Contents of receiver

Number of blocks on the volume available to the user.

Number of free user blocks on the volume.

Number of blocks on the volume, not including the spare
cylinder.

Number of files on the volume.

Number of libraries on the volume.

Number of physical blocks on the volume, including the spare
cylinder.

Number of blocks in the VTOC.

READVTOC-3

Keyword Contents of receiver

VF Number of free blocks in the VTOC. The maximum value
returned is 255; therefore, for large disks, this result may be
meaningless. (A value of exactly 255 can probably be dismissed
as incorrect.)

XF Number of free user extents on the volume.

Pos Argument Type Size Comments

arg5 Ret. Code Integer 4 Error return code. See Table 3-12 below.

6. Obtain specified VTOC blocks

Pos Argument Type Size Comments

arg1 Function Alpha Value is#

arg2 Volume Alpha 6 Volume whose VTOC is being read.

arg3 Starter Integer 4 Entry at which to begin listing. Must be non-
negative. A value of 0 is treated as 1 .

arg4 Counter Integer 4 Number of VTOC blocks to return. Must be
nonnegative. If fewer blocks are returned,
arg5 is set to the number of blocks returned.

arg5 Receiver Alpha var User file UFB (file number in BASIC, or FD in
COBOL) which receives the VTOC blocks
requested. The file must consist of
2048-byte records and must be open in
Output mode; there should be as least as
much space in the file as specified by arg4.
Any existing records in the file are destroyed.

arg6 Ret. Code Integer 4 Error return code. See Table 3-12 below.

arg7 Blocks Integer 4 Number of blocks in the VTOC.

7. Obtain the names of files and the locations of free extents on a volume

Pos Argument Type Size Comments

arg1 Function Alpha 1 Value is D

arg2 Volume Alpha 6 Volume whose VTOC is to be read.

arg3 File Integer 4 Relative order of VTOC entry at which to
Starter begin listing. Must be nonnegative. Value of

0 is treated as 1 .

arg4 File Integer 4 Number of file names to return. Must be non-
Counter negative. If fewer entries are returned, arg4

is set to the number of entries returned.

READVTOC-4

Pos Argument Type Size Comments

arg5 File Alpha var FD name (COBOL) or file number (BASIC) of
Receiver a file that receives the entries for the files on

the volume. This file must be open in either
Output or Extend mode; on return from the
subroutine, it is open in Extend mode. The
records in the file must consist of 1 82-byte
consecutive records and will have the follow-
ing structure:

Byte 1-6-Volume name
7-14- Library name

15-22- File name
23-1 02- FDR 1 record for the file

103-182- FDR2 record for the file,
or zeroes if none

arg6 Extent Integer 4 Free extent at which to begin listing.
Starter Optional.

arg7 Extent Integer 4 Number of free extent entries to return.
Counter Optional. If fewer entries are returned than

specified, arg6 is set to the actual number of
entries returned.

arg8 Extent Alpha var FD name (COBOL) or number (BASIC) of the
Receiver file that receives the entries. Optional. This

file must be open in Output or Extend mode
and consists of 8-byte consecutive records.
Bytes 1 to 4 contain the starting block
number of a free extent; bytes 5 to 8 contain
the ending block number. Upon return from
the subroutine, this file is open in the Extend
mode.

arg9 Ret. Code Integer 4 Error return code. See Table 3-12 below.

arg10 Files Integer 4 Number of files on the volume, computed
from the VTOC blocks.

arg11 Extents Integer 4 Number of free extents on the volume,
computed from the VTOC blocks. Optional.
See Note 1.

Arguments 6 through 8 and 11 must all be either present or absent. These options can
be used for VTOC verification, since the free extent information and the file information
are extracted from the same VTOC state. If verification is not desired or if the VTOC is
guaranteed to be unchanging, the programmer can use the X function (function 4) to
retrieve the same free extent information without requiring a user file for the output.

NOTES

1. This subroutine makes two important assumptions:

(a) That the disk volume has a readable VTOC; otherwise, the results are not
predictable and the user file records and/or free extent records might con
tain incorrect information.

READVTOC-5

(b) That the current structure of the VS VTOC is the basis for the subroutine.
Should this change in a future release, a new version of the subroutine
would be required to ensure correct processing of this option.

2. For FORTRAN programs, the name of this subroutine must be specified as
RDVTOC.

3. The General Information option (G) replaces the Extends option (8), which con
tinues to be supported.

Table 3-12. READVTOC Error Return Codes

Return
Code

0
4
8

12
16
20

Meaning

Successful.
Invalid argument list address.
Volume not mounted.
Volume used exclusively by another user.
All buffers in use.
Volume specified is nonlabeled.

READVTOC-6

READVTOC Subroutine - A COBOL Example

This program retrieves the names of the files in a library specified by the user. Ten files are read
simultaneously. The program also returns the number of files in the library. Output appears on the
workstation.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. RDVTOCC.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 WORKING-STORAGE SECTION.
000600 77 TY-PE PIC X VALUE "F".
000700 77 LIB-RARY PIG X(8).
000800 77 VOL-UME PIC X(6).
000900*AS EXPLAINED IN SECTION 2.2.2, COBOL ACCEPTS HALFWORD INTEGERS
001000*0NLY. DEFINE A FOUR-BYTE GROUP ITEM TO BE COMPOSED OF TWO
001100*HALFWORD-BINARY, ELEMENTARY ITEMS, AND USE THE LOW-ORDER TWO
001200*BYTES FOR THE INTEGER. TO PASS AN INTEGER TO THE SUBROUTINE,
001300*INITIALIZE THE HIGH-ORDER BYTES TO ZERO.
001400 01 STARTER.
001500 03 FILLER USAGE IS BINARY VALUE ZERO.
001600 03 STARTNUMBER USAGE IS BINARY.
001700 01 COUN-TER.
00180-0 03 FILLER USAGE IS BINARY VALUE 0.
001900 03 COUNTNUMBER USAGE IS BINARY.
002000 77 RECEIVER PIG X(80).
002100 01 RETURNCODE.
002200 03 FILLER USAGE IS BINARY VALUE ZERO.
002300 03 RETURNVALUE USAGE IS BINARY.
002400 01 FILE-COUNT.
002500 03 FILLER USAGE IS BINARY VALUE ZERO.
002600 03 FILECOUNT USAGE IS BINARY.
002700 PROCEDURE DIVISION.
002800 MAIN-PARAGRAPH.
002900 ACCEPT LIB-RARY, VOL-UME.
003000 IF LIB-RARY = "X" GO TO STOP-PARAGRAPH.
003100*COUNTNUMBER MUST BE INITIALIZED WHENEVER A NEW LIBRARY IS READ,
003200*SINCE THE VALUE RETURNED MAY THE LESS THAN THE ORIGINAL.
003300 MOVE 10 TO COUNTNUMBER.
003400 PERFORM CALL-PARAGRAPH VARYING STARTNUMBER FROM 1 BY 10
003500 UNTIL COUNTNUMBER LESS THAN 10.
003600 GO TO STOP-PARAGRAPH.
003700 CALL-PARAGRAPH.
003800 MOVE SPACES TO RECEIVER.
003900 CALL "READVTOC" USING TY-PE, LIB-RARY, VOL-UME, STARTER,
004000 COUN-TER, RECEIVER, RETURNCODE, FILE-COUNT.
004100 IF RETURNVALUE NOT= 0 DISPLAY ''RETURN CODE= ''RETURNVALUE,
004200 GO TO STOP-PARAGRAPH.
004300 DISPLAY RECEIVER.
004400 IF STARTNUMBER = 1 DISPLAY "FILECOUNT = "FILECOUNT.
004500 DISPLAY ''COUNTNUMBER = ''COUNTNUMBER.
004600 STOP-PARAGRAPH.
004700 STOP RUN.

READVTOC-7

RENAME

FUNCTION

Allows the user to rename a file or library, with the options of bypassing expiration date
checking and limiting access rights for a program with special privileges.

USAGE (arg1, .•• , arg10)

Pos Argument Type Size Comments

arg1 Type Alpha 1 Type of rename: Specify F to rename a file, L
to rename a library,-G to rename a file across
library boundaries (specify new file and
library names).

arg2 File Name Alpha 8 Name of the file to be renamed. Ignored if
arg1 =L.

arg3 Library Alpha 8 Rename library:
Arg 1 =F: Library where file resides.
Arg 1 =L or G: Library to be renamed.

arg4 Volume Alpha 6 Volume where library resides.

arg5 New File Alpha 8 New file name.

arg6 New Lib. Alpha 8 New library name. Optional, but required for
library rename.

arg7 Bypass Alpha 1 Indicates whether to bypass expiration date
flag checking. Optional.

B = Bypass checking
Blank = Do not bypass checking.

arg8 Access Alpha 1· Access rights to the new file or library:
Limit Flag L = Restrict rights to the access rights of

the program user.
Blank = Allow full access privileges.

Optional.

arg9 Allow- Alpha 1 Rename-when-open option:
OPEN Flag 0 = Allow rename when open

Blank = Do not allow rename
Optional.

arg10 Ret. Code Integer 4 Error return code. See Table 3-13 below.

RENAME-1

NOTES

1 . The user cannot rename a library that contains a file for which the user does not
have update access rights.

2. Any arguments that are omitted have the default values associated with the user.

3. Arguments 6 through 9 are optional, but if any of them is present, all preceding
arguments must also be present.

Return
Code

0
4
8

12
16
20
24

28
32
36
40
44
48
52
56
60
64

Table 3-13. RENAME Error Return Codes

Meaning

File or library renamed.
Volume not mounted.
Volume used exclusively by other user.
All buffers in use, no rename.
Library not found.
File not found.
Update access to some file protection class in the library denied, no
rename.
Unexpired file, no rename.
File in use, no rename.
VTOC error. FDX 1 and FDX2 do not agree.
VTOC error. FDX2 and FDR do not agree.
Invalid argument list address.
1/0 error. VTOC unreliable.
New file name or library name already exists, no rename.
New file name invalid, or first character is #, no rename.
VTOC currently full. Insufficient space for new FDX 1 /FDX2.
Reserved bits in parameter list options byte are nonzero.

RENAME-2

RENAME Subroutine - A COBOL Example

This program allows the user to change the name of a file whose retention period might not have
expired. Argument 7 is omitted because access rights are not restricted.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. RENAMEC.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 WORKING-STORAGE SECTION.
000600 77 FUNCTION PIC X VALUE "G".
000700 77 FILE-NAME PIC X(8).
000800 77 LIB-RARY PIC X(8).
000900 77 VOL-UME PIC X(6).
001000 77 NEW-NAME PIC X(8).
001100 77 EXPIRE-CHECK PIC X VALUE "B".
001200*AS EXPLAINED IN SECTION 2.2.2, COBOL ACCEPTS HALFWORD INTEGERS
001300*0NLY. DEFINE A FOUR-BYTE GROUP ITEM TO BE COMPOSED OF TWO
001400*HALFWORD-BINARY, ELEMENTARY ITEMS, AND USE THE LOW-ORDER TWO
001500*BYTES FOR THE INTEGER.
001600 01 RETURNCODE.
001700 03 FILLER USAGE IS BINARY VALUE ZERO.
001800 03 ERROR-CODE USAGE IS BINARY.
002900 PROCEDURE DIVISION.
002000 FIRST-PARAGRAPH.
002100 ACCEPT FILE-NAME, LIB-RARY, VOL-UME, NEW-NAME.
002ioo IF FILE-NAME= ''ABC'' GO TO EXIT-PARAGRAPH.
002300 PERFORM CALL-PARAGRAPH.
002400 CALL-PARAGRAPH.
002500 CALL ''RENAME" USING FUNCTION, FILE-NAME, LIB-RARY, VOL-UME,
002600 NEW-NAME, EXPIRE-CHECK, RETURNCODE.
002700 IF ERROR-CODE NOT EQUAL ZERO GO TO ERROR-PARAGRAPH.
002800 DISPLAY ''TO VERIFY USE PF KEY 5 FROM THE COMMAND PROCESSOR."
002900 GO TO FIRST-PARAGRAPH.
003000 ERROR-PARAGRAPH.
003100 DISPLAY ''ERROR-CODE= "ERROR-CODE.
003200 GO TO FIRST-PARAGRAPH.
003300 EXIT-PARAGRAPH.
003400 STOP RUN.

RENAME-3

RENAME Subroutine - A FORTRAN Example

This example is a general purpose, interactive program that allows the user to rename a file or library
by providing names during program execution.

LOGICAL*! TYPE, EXP, LIM
REAL*8 FILE, LIB, VOL, NEW

C RCODE IS THE RETURN CODE FOR THE SUBROUTINE
INTEGER RCODE

C ASK THE USER FOR THE NECESSARY INPUTS
PRINT 101,' RENAME FILE (F) OR LIBRARY (L)?'
READ(0,103) TYPE
IFCTYPE . EQ. 'L')GO TO 10
PRINT 101,' ENTER NAME OF FILE TO BE RENAMED'
READ(0,102) FILE
PRINT 101,' ENTER NAME OF LIBRARY'
READ(0,102) LIB
GO TO 20

10 PRINT 101,' ENTER LIBRARY TO BE RENAMED'
READ (0 , 10 2) LIB

20 PRINT 101,' ENTER VOLUME NAME'
READ(0,102) VOL
PRINT 101,' ENTER NEW FILE/LIBRARY NAME'
READ(0,102) NEW

C SET EXPIRATION DATE AND ACCESS LIMITS
EXP = 'B'
LIM = 'L'

c
C CALL THE RENAME SUBROUTINE

CALL RENAME (TYPE, FILE, LIB, VOL, NEW, EXP, LIM, RCODE)
c
c PRINT THE RETURN CODE

PRINT 104, RCODE
101 FORMAT(A35)
102 FORMAT(A8)
103 FORMAT(Al)
104 FORMATC1X, 'RETURN CODE = 'I4)

PAUSE
END

RENAME-4

WANG Customer Comment Form Title ----=-V-=S_;;:U....::S:;;..:E~R=S;..:U:...:B:...=S:......:R-==E==-F-=E:=...:R=E=-=N:.=..:-CE

Publications Number 800-1315US-01
Help Us Help You ...

We've worked hard to make this document useful, readable, and technically accurate. Did we succeed? Only you can tell us!
Your comments and suggestions will help us improve our technical communications. Please take a few minutes to let us
know how you feel.

How did you receive this publication? How did you use this Publication?

D Support or D Don't know D Introduction D Aid to advanced
Sales Rep to the subject knowledge

D Wang Supplies D Other D Classroom text D Guide to operating
Division (student) instructions

D From another D Classroom text D As a reference
user (teacher) manual

D Enclosed D Self-study D Other
with equipment text

Please rate the quality of this publication in each of the following areas.

EXCELLENT GOOD FAIR POOR

Technical Accuracy - Does the system work the way the manual says it does? D D D D

Readability - Is the manual easy to read and understand? D D D D

Clarity - Are the instructions easy to follow? D D D D

Examples - Were they helpful, realistic? Were there enough of them? D D D D

Organization - Was it logical? Was it easy to find what you needed to know? D D D D

Illustrations - Were they clear and useful? D D D D

Physical Attractiveness - What did you think of the printing, binding, etc? D D D D

VERY
POOR

D

D

D

D

D

D

D

Were there any terms or concepts that were not defined properly? D Y D N If so, what were they? ________ _

After reading this document do you feel that you will be able to operate the equipment/software? D Yes D No

D Yes, with practice

What errors or faults did you find in the manual? (Please include page numbers)------------------

Doyouhaveanyothfilcommen~orsuggestions? ____________________________ _

Name __________________ _ Street ____________________ _

Title ___________________ _ City ____________________ _

Dept/Mail Stop ____________ _ State/Country _______________ ~

Company _________________ _ Zip Code _____ Telephone ________ _

Thank you for your help.

All comments and suggestions become the property of Wang Laboratories, Inc. Printed in U.S.A. 14-3140 3-82-5C

WANG

Fold

111111

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 16 LOWELL, MA

POSTAGE WILL BE PAID BY ADDRESSEE

WANG LABORATORIES, INC.
CHARLES T. PEERS, JR., MAIL STOP 1363
ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01851

Fold

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

RETURN

FUNCTION

Allows the user to return through several levels of subroutine calls.

USAGE (arg 1, arg2)

Pos Argument Type Size Comments

arg1 Level Integer 4 Number of levels to pass through. If zero,
Count the subroutine does a simple return. If posi-

tive, the subroutine returns to that number
of levels from the calling program. However,
it always stops. at either the Command Pro-
cessor or the next lower LINK level, if this
argument is too large.

arg2 Ret. Code Integer 4 Return code from the calling program.
Optional. (0 if omitted.)

NOTES

1. This subroutine can be used in a program that has several subroutine layers; when
called from an inner routine, it allows the program to return to an outer level,
bypassing intermediate levels. This is typically done when an error condition exists
and a user wants to bypass further processing and return directly to another step
(e.g., an initial menu or error handler).

2. Note that the RETURN subroutine can operate only within subroutine levels of the
same program (the same object file). If the level count is larger than the current
nesting level of subroutine CALLs, it causes an unlink back to the linking program
(or Command Processor). It does not go any further, however, regardless of level
count (thus, it can never interfere with the logic of any program other than the
user's own).

RETURN-1

RETURN Subroutine - A COBOL Example

In the following three programs, control passes from RETURN 1 to RETURN2 to RETURN3 via the
CALL statement. It then passes from RETURN3 to RETURN 1, bypassing RETURN2, via the RETURN
subroutine called from RETURN3.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. RETURN!.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 PROCEDURE DIVISION.
000600 MAIN-PARAGRAPH.
000700 DISPLAY "THIS IS LEVEL 1. ".
000800 CALL ''RETURN2''.
000900*THE NEXT STATEMENT WILL BE EXECUTED AFTER THE RETURN SUBROUTINE
001000*PASSES CONTROL BACK TO RETURN1C FROM RETURN3C.
001100 DISPLAY "THIS IS LEVEL 1 AGAIN.".
001200 STOP RUN.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. RETURN2.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 PROCEDURE DIVISION.
000600 MAIN-PARAGRAPH.
000700 DISPLAY "THIS IS LEVEL 2. ".
000800 CALL '' RETURN3'' .
000900*THE NEXT STATEMENT WOULD BE EXECUTED IF CONTROL WERE PASSED BACK
001000*TO THIS LEVEL FROM RETURN3.
001100 DISPLAY "THIS IS LEVEL 2 AGAIN.".
001200 GOBACK.
001300 EXIT PROGRAM.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. RETURN3.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 WORKING-STORAGE SECTION.
000600*AS EXPLAINED IN SECTION 2.2.2, COBOL ACCEPTS HALFWORD INTEGERS
000700*0NLY. DEFINE A FOUR-BYTE GROUP ITEM TO BE COMPOSED OF TWO
000800*HALFWORD-BINARY, ELEMENTARY ITEMS, AND USE THE LOW-ORDER TWO
000900*BYTES FOR THE INTEGER. TO PASS AN INTEGER TO THE SUBROUTINE,
001000*INITIALIZE THE HIGH-ORDER BYTES TO ZERO.
001100 01 LEVEL-COUNT.
001200 03 FILLER USAGE IS BINARY VALUE 0.
001300*THE NEXT ITEM IS INITIALIZED TO 2 IN ORDER TO INSTRUCT THE
001400*RETURN SUBROUTINE TO PASS CONTROL BACK THAT MANY LEVELS.
001500 OJ LEVELCOUNT USAGE IS BINARY VALUE 2.
001600 PROCEDURE DIVISION.
001700 MAIN-PARAGRAPH.
001800 DISPLAY "THIS IS LEVEL THREE.".
001900 CALL "RETURN" USING LEVEL-COUNT.
002000 GOBACK.
002100 EXIT PROGRAM.

RETURN-2

SCRATCH

FUNCTION

Provides the ability to scratch a file or library. It has the options of bypassing expiration
date checking and limiting access rights for a program with special privileges (as
described in system security documentation).

USAGE (arg 1, .•• , arg7)

Pos Argument Type Size Comments

arg1 Type Alpha 1 Type of scratch:
F = File scratch
L = Library scratch

arg2 File Name Alpha 8 File to be scratched. Must be included, but
ignored if arg 1 =L.

arg3 Library Alpha 8 Scratch library:
Arg 1 =F: Library where file resides
Arg 1 =L: Library to scratch

arg4 Volume Alpha 6 Volume where library resides.

arg5 Expiration Alpha 1 Indicates whether or not to bypass expiration
Check date checking:

B = Bypass checking
Blank/ omitted = No bypass

Optional. Must be included if arg6 is
included.

arg6 Access Alpha 1 Access rights for the file or library:
Limit Flag L = Restrict access rights

Blank/ omitted = Full access
The program cannot scratch a fiJe or a library
containing a file that the user does not have
access rights to. Optional. If present, arg5
must be included.

arg7 Ret. Code Integer 4 Error return code. See Table 3-14 below.

NOTES

1. Scratching the only file in a library results in scratching the library.

2. For FORTRAN programs, the name of this subroutine must be specified as
SCRTCH.

SCRATCH-1

Return
Code

0
4
8

12
16
20
24

28
32
36
40
44
48
52

Table 3-14~ SCRATCH Error Return Codes

Meaning

File or library scratched from volume.
Volume not mounted.
Volume used exclusively by another user.
All buffers in use, no scratch.
Library not found.
File not found.
Update access to file protection class denied (single file scratch
only).
Unexpired file, no scratch (single file scratch only).
File in use, no scratch.
VTOC error. FDX 1 and FDX2 do not agree.
VTOC error. FDX2 and FDR do not agree.
Invalid argument list address.
1/0 error. VTOC unreliable.
Open, protected, and/or unexpired file(s) bypassed in scratching
library.

SCRATCH-2

SCRATCH Subroutine - A COBOL Example

This program allows the user to scratch a file or library, bypassing the check of the expiration period.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. SCRATCHC.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 WORKING-STORAGE SECTION.
000600 77 FUNCTION-TYPE PIC X.
000700 77 FILE-NAME PIC X(8).
000800 77 LIB-RARY PIC X(8).
000900 77 VOL-UME PIC X(6).
001000 77 EXPIRE-CHECK PIC X VALUE "B".
001100*AS EXPLAINED IN SECTION 2.2.2, COBOL ACCEPTS HALFWORD INTEGERS
001200*0NLY. DEFINE A FOUR-BYTE GROUP ITEM TO BE COMPOSED OF TWO
001300*HALFWORD-BINARY, ELEMENTARY ITEMS, AND USE THE LOW-ORDER TWO
001400*BYTES FOR THE INTEGER.
001500 01 RETURNCODE.
001600 03 FILLER USAGE IS BINARY VALUE ZERO.
001700 03 ERROR-CODE USAGE IS BINARY.
001800 PROCEDURE DIVISION.
001900 FIRST-PARAGRAPH.
002000 ACCEPT FUNCTION-TYPE, FILE-NAME, LIB-RARY, VOL-UME.
002100 IF FUNCTION-TYPE= ''Z" GO TO EXIT-PARAGRAPH.
002200 PERFORM CALL-PARAGRAPH.
002300 CALL-PARAGRAPH.
002400 CALL "SCRATCH" USING FUNCTION-TYPE, FILE-NAME, LIB-RARY,
002500 VOL-UME, EXPIRE-CHECK, RETURNCODE.
002600 IF ERROR-COPE NOT = 0 DISPLAY "RETURN CODE = "ERROR-CODE,
002700 GO TO EXIT-PARAGRAPH.
002800 DISPLAY ''TO VERIFY USE PF KEY 5 FROM THE COMMAND PROCESSOR~''

002900 GO TO FIRST-PARAGRAPH.
003000 EXIT-PARAGRAPH.
003100 STOP RUN.

SCRATCH-3

"
SCRATCH Subroutine - A FORTRAN Example

This program allows the user to scratch a file or library. The user must provide the file, library, and
volume names.

C '.FNAME', 'LNAME', AND 'VNAME' ARE FILE, LIBRARY, AND VOLUME NAMES
REAL*8 FNAME, LNAME, VNAME
LOGICAL*! OPTION, EXPIRE, ACCESS
INTEGER RCODE

C USER PROVIDES NECESSARY FILE, LIBRARY, VOLUME NAMES
WRITE(0,101) ' ENTER F TO SCRATCH FILE, L TO SCRATCH LIBRARY'
READ(0,102) OPTION
IF(OPTION .EO. 'F') WRITE(0,101) ' ENTER FILE NAME'
IF(OPTION .EO. 'F') READ(0,103) FNAME
WRITE(0,101) ' ENTER LIBRARY NAME'
READ(0,103) LNAME
WRITE(0,101) ' ENTER VOLUME NAME'
READ(0,104) VNAME

C SET EXPIRATION DATE AND ACCESS LIMITATION OPTIONS
EXPIRE = 'B'
ACCESS = ' '

c
C CALL SCRATCH SUBROUTINE (SCRTCH IN FORTRAN)

CALL SCRTCH (OPTION, FNAME, LNAME, VNAME, EXPIRE, ACCESS, RCODE)
c
C WRITE RETURN CODE TO WORKSTATION

WRITE(0,105) RCODE
101 FORMAT<A50)
102 FORMAT(Al)
103 FORMAT(A8)
104 FORMAT(A6)
105 FORMAT(!X, 'RETURN CODE = ',I4)

PAUSE
END

SCRATCH-4

SCRATCH Subroutine - An RPG II Example

This program allows the user to scratch any file or library on the system. The program displays the
return code if it is greater than 0.

00100FDISPLAY
00200C
00201C*
00202C*.
00203C*
00210C
00220C 88
00230C N88
00231C
00232C*
00233C*
00234C*
00240C
00250C
00255C
00260C
00265C
00270C
00271C*
00272C*
00273C*
00275C
00280C 99
00282C
00300WSCR1
00400W
00500W
00510W
00520W
00530W
00600W
00700W
oo8oow
00900W
01000W
ouoow
01200WSCR2
01300W
01400W
01500W

RPGSCR:

DD F ws
ACCPTSCR1

*** PREPARE PARAMETERS TO BE PASSED ***

FILE COMP '
MOVE 'L'
MOVE 'F'
Z-ADDO

88
TYPE 1
TYPE 1
RCODE 40

*** EXIT TO RPGCALL MACRO ***

* * *

RC ODE

EXIT RPGSCR
RLABL
RLABL
RLABL
RLABL
RLABL

TYPE
FILE
LIBR
VOLM
RCODE

TEST RETURN CODE

0507
0529
0607
0629
0651
0815
0830
0915
0930
1015
1030

0707

COMP 0
ACCPTSCR2
SETON

'WHICH FILE DO YOU
' TO SCRATCH?'

99

LR

WISH'

'(LEAVE FILE ENTRY BLAN'
'K TO SCRATCH AN ENTIRE'
' LIBRARY)'
'FILE:'

'LIBRARY:'

'VOLUME: '

'RETURN CODE IS'
0725RCODE
0907 'PRESS ENTER TO END JOB'

FILE

LIBR

VOLM

8

8

6

RPGCALL NAME=RPGSCR,CALL=SCRATCH,TYPE,FILE,LIBR,VOLM, C
(RCODE,4,F)

SCRATCH-5

SEARCH

FUNCTION

Performs a binary search for a particular element in a specified table and indicates
whether the element exists in the table.

USAGE {arg 1, •.. , arg6)

Pos Argument Type Size Comments

arg1 Table Alpha var Input table to be searched.

arg2 Table Size Integer 4 Number of items in the input table.

arg3 Item Integer 4 Length of each table item.
Length Range is 1 to 256.

arg4 Search Alpha var Value to be searched for in the table.
Item

arg5 Search Integer 4 Effective length to be used in searching for
Item Length the supplied item in the table. Specifying a

value less than the item length (arg3) allows
the search to match fewer than the entire
item length. If omitted, the item length
{arg3) is assumed.

arg6 Ret. Code Integer 4 If the search is successful, this is the index
of the item found in the table. If unsuccess-
ful, its value is 0.

NOTES

1. The table should be in either ascending or descending order. SEARCH might not
correctly handle tables whose entries are not in ascending or descending order.

2. If the table contains duplicate entries, the binary search might not find the first
occurrence of the item in the table.

SEARCH-1

SEARCH Subroutine - A COBOL Example

This program allows the user to search a five-item table of names to find the location of a specified
name.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. SEARCHC.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 WORKING-STORAGE SECTION.
000600 01 NAMES-LIST.
000700 03 FILLER PIC X(10) VALUE "ADAMS".
000800 03 FILLER PIC X(10) VALUE "BROWN".
000900 03 FILLER PIG X(10) VALUE "CUNNINGHAM".
001000 03 FILLER PIC X(10) VALUE ''DESMOND''.
001100 03 FILLER PIC X(10) VALUE "EDWARDS".
001200 01 NAMES-TABLE REDEFINES NAMES-LIST.
001300 03 NAMES PIC X(10) OCCURS 5 TIMES.
001400*AS EXPLAINED IN SECTION 2.2.2, COBOL ACCEPTS HALFWORD INTEGERS
001500*0NLY. DEFINE A FOUR-BYTE GROUP ITEM TO BE COMPOSED OF TWO
001600*HALFWORD-BINARY, ELEMENTARY ITEMS, AND USE THE LOW-ORDER TWO
001700*BYTES FOR THE INTEGER. TO PASS AN INTEGER TO THE SUBROUTINE,
001800*INITIALIZE THE HIGH-ORDER BYTES TO ZERO.
001900 01 TABLE-SIZE.
002000 03 FILLER USAGE IS BINARY VALUE ZERO.
002100 03 TABLE-COUNT USAGE IS BINARY VALUE 5.
002200 01 TABLE-ITEM-LENGTH.
002300 03 FILLER USAGE IS BINARY VALUE ZERO.
002400 03 TABLE-ENTRY-LENGTH USAGE IS BINARY VALUE 10.
002500 77 SEARCH-ITEM PIC X(10).
002600 01 LOCATION.
002700 03 FILLER USAGE IS BINARY VALUE ZERO.
002800 03 INDEX-OF-ITEM USAGE IS BINARY.
002900 PROCEDURE DIVISION.
003000 START-PARAGRAPH.
003100 PERFORM MAIN-PARAGRAPH UNTIL SEARCH-ITEM = "Z".
003200 GO TO EXIT-PARAGRAPH.
003300 MAIN-PARAGRAPH.
003400 ACCEPT SEARCH-ITEM.
003500 IF SEARCH-ITEM = "Z" GO TO EXIT-PARAGRAPH.
003600 CALL "SEARCH" USING NAMES-TABLE, TABLE-SIZE,
003700 TABLE-ITEM-LENGTH, SEARCH-ITEM, LOCATION.
003800 DISPLAY INDEX-OF-ITEM.
003900 EXIT-PARAGRAPH.
004000 STOP RUN.

SEARCH-2

SEARCH Subroutine - A FORTRAN Example

This program allows the user to search a table of color names for an value that the user enters and
indicates its position within the table.

REAL*8 TABLE(13) I NAME
INTEGER RCODE
DATA TABLE/'BLACK' I 'BLUE' I 'BROWN' I 'GOLD' I 'GREEN' I 'GREY' I

1 'ORANGE' I 'PURPLE' I 'RED' I 'SILVER' I 'TAN' I 'WHITE' I 'YELLOW'/
C ASK USER FOR A COLOR TO FIND

WRITE(0,101)' ENTER COLOR TO FIND (ENTER STOP TO QUIT)'
READ(0,102) NAME

C ENTERING STOP TERMINATES THE PROGRAM
I F (NAME . EQ . ' s T 0 p I) G 0 T 0 9 9

C SET TABLE SIZE AND ELEMENT LENGTH
!SIZE = 13
LENGTH = 8

c
C CALL SEARCH SUBROUTINE

CALL SEARCH (TABLE, !SIZE, LENGTH, NAME, RCODE)
c
C DISPLAY THE RETURN CODE ON THE WORKSTATION

WRITE(0,103) RCODE
101 FORMAT(A41)
102 FORMAT(A8)
103 FORMAT (1X I 'RETURN CODE = I I 13)

99 PAUSE
END

SEARCH-3

SET

FUNCTION

Sets any of the allowable defaults that are available through the Command Processor
SET Usage Constants function.

USAGE (key1, rec1, ... , keyn, recn)

Arguments are specified in keyword-receiver pairs, where the keyword selects the
default and the receiver specifies its new value. The user can specify any number of
pairs, but each _keyword must be immediately followed by a receiver.

Each keyword is a 2-byte alpha value. The keywords, their associated receivers, and the
defaults to be set are provided below.

Recr Recr Receiver
Keyword Type Size Value

FC Alpha 1 Default file protection class.

FN Integer 4 Default printer form number (0-255).

IL Alpha 8 Default input library.

IV Alpha 6 Default input volume.

JC Alpha 1 Default job class for background processing.

JL Integer 4 Default CPU time limit, in seconds, for background
processing.

JS Alpha 1 Default job status for background processing.

LI Integer 4 Default lines per page for printer output.

OL Alpha 8 Default output library.

ov Alpha 6 Default output volume.

PC Alpha 1 Default print class (A-Z).

PL Alpha 8 Default program library (current). See Note.

PM Alpha 1 Default print mode (S, H, K, or 0).

PR Integer 4 Default printer number for online printing.

PV Alpha 6 Default program volume (current). See Note.

RL Alpha 8 Run library (initial). See Note.

RV Alpha 6 Run volume (initial). See Note.

sv Alpha 6 Default spool volume.

WV Alpha 6 Default work volume.

SET-1

NOTE

"Current" refers to the library or volume that applies to the program containing the call
to SET. "Initial" refers to the default library or volume which, when set, applies to the
entire session.

SET-2

SET Subroutine - A COBOL Example

This program allows the user to set the default file protection class, lines-per-page for printer output,
and print mode. The user enters the desired values via the ACCEPT statement. Since ACCEPT trans
fers alphanumeric data only, a BASIC subroutine using the CONVERT statement is called to convert
the input for lines-per-page from alphanumeric to integer data. This is explained in Section 2.2.2.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. SETC.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 WORKING-STORAGE SECTION.
000600 77 FILE-CODE PIC X(2) VALUE "FC".
000700 77 FILE-CLASS PIC X.
000800 77 LINES-CODE PIC X(2) VALUE "LI".
000900*THE NEXT ITEM RECEIVES THE INPUT FOR LINES-PER-PAGE AND PASSES
001000*IT TO THE BASIC SUBROUTINE.
001100 01 LINES-VALUE.
001200 03 SIGN-ITEM PIC X VALUE "+"
001300 03 LINES-NUM PIC X (8).
001400*THE NEXT ITEM RECEIVES THE CONVERTED LINES-PER-PAGE AND PASSES
001500*IT TO THE SET SUBROUTINE.
001600 01 LINES-PER PIC X(4).
001700 77 PRINT-MODE-CODE PIC X(2) VALUE "PM".
001800 77 PRINT-MODE PIC X.
001900 PROCEDURE DIVISION.
002000 MAIN-PARAGRAPH.
002100 DISPLAY "TYPE IN FILE-CLASS, LINES-NUM, PRINT-MODE.".
002200 ACCEPT FILE-CLASS, LINES-NUM, PRINT-MODE.
002300*THE NEXT STATEMENT CALLS THE BASIC SUBROUTINE. SEE SECTION
002400*2.2.2 FOR THE BASIC CODE.
002500 CALL "9T04" USING LINES-VALUE, LINES-PER.
002600 CALL "SET" USING FILE-CODE, FILE-CLASS, LINES-CODE,
002700 LINES-PER, PRINT-MODE-CODE, PRINT-MODE.
002800 DISPLAY "TO VERIFY RESULTS, USE PF KEY 2 FROM THE COMMAND PRO
002900- ' 'CESSOR. '' .
003000 STOP RUN.

SET-3

SET Subroutine - An RPG II Example

This program allows the user to set default input and output libraries and volumes, as well as print
class and print mode. The program displays a screen confirming that the parameters have been set
as requested.

00100FDISPLAY DD F ws

00200C ACGPTSCR1
00202C*
00204C* *** PREPARE PARAMETERS TO PASS TO RPGCALL MACRO ***
00206C*
00210C MOVE 'IL' IL 2
00220C MOVE 'IV' IV 2
00230C MOVE 'OL' OL 2
00240C MOVE 'OV' ov 2
00250C MOVE 'PC' PC 2
00255C MOVE 'PM' PM 2
00256C*
00257C* *** EXIT TO RPGCALL MACRO
00258C*
00260C EXIT RPGSET
00265C RLABL IL
00270C RLABL IV
00275C RLABL OL
00280C RLABL ov
00282C RLABL PC
00284C RLABL PM
00286C RLABL LIB IN
00288C RLABL VOLIN
00290C RLABL OUT LB
00291C RLABL OUTVL
00292C RLABL CLASS
00293C RLABL MODE
00294C ACCPTSCR2
00295C SETON LR
00300WSCR1
00400W 0707 'THIS PROGRAM WILL SET '
oosoow 0729 'DEFAULTS FOR THE PARAM'
00600W 0751 'ETERS LISTED BELOW.'
00700W 0807 'FILL IN THE VALUES AND'
OOBOOW 0829 ' PRESS ENTER.'
01000W 1215 'INPUT LIBRARY'
01100W 1240 LIB IN 8
01200W 1315 'INPUT VOLUME'
01300W 1340 VOLIN 6
01400W 1415 'OUTPUT LIBRARY'
01500W 1440 OUT LB 8
01600W 1515 'OUTPUT VOLUME'
01700W 1540 OUTVL 6
01800W 1615 'PRINT CLASS (A TO z) '

01900W 1640 CLASS 1
02000W 1715 'PRINT MODE (S, H, 0) '
02100W 1740 MODE 1

SET-4

02200WSCR2
02300W
02400W
02500W

RPGSET:

0707
0729
0751

'PARAMETERS SET AS REOU'
'ESTED. PRESS ENTER TO'
' END JOB.'

RPGCALL NAME=RPGSET,CALL=SET,IL,LIBIN,IV,VOLIN,OL,OUTLB, C
OV,OUTVL,PC,CLASS,PM,MODE

SORT

FUNCTION

Sorts a character array on a specified field, in either ascending or descending order.
Output from the subroutine can be either the sorted array or a locator-type array. A
locator-type array contains pointers to the elements in the array and indicates the sorted
order of those elements.

USAGE (arg1, ..• , arg9)

Pos Argument Type Size Comments

arg1 Input Alpha var Input array to be sorted.

arg2 Elements Integer 4 Number of elements in, the input array.
Range is 0 to 32767.

arg3 Element Integer 4 Length of each element in the array. Range is
Length 1 to 256.

arg4 Output Alpha var Output array to receive the sorted values or
pointers (if locator type sort - see arg8). If
omitted, the sorted elements are placed in
the input array (arg 1) .

arg5 Start Integer 4 Starting position of the sort field in the ele-
ment. Default is character 1.

arg6 Sort Integer 4 Length of the sort field.
Length Standard sort - a 255-byte sort field

cannot be used with a 256-byte record.
Locator-type sort - the sort length plus the
locator size cannot exceed 256 bytes.
Default is to sort the entire record.

arg7 Sort type Alpha 1 Type of sort to be performed:
A = Ascending (default)
D = Descending

arg8 Locator Alpha 1 Flag for locator (addrout) type sort:
Flag S = Standard sort (default)

L = Locator type sort

arg9 Locator Integer 4 Desired size of each locator element. Range
Length is 1 to 4. Default is 2.

NOTES

1. Arguments 4 through 9 are optional; however, if one is present, all previous argu-
ments must be included.

2. No check is made for appropriate locator element size (e.g., locator length of 1
would be insufficient for an input array with more than 255 elements).

SORT-1

SORT Subroutine - A FORTRAN Example

This program allows the user to perform a standard sort, in ascending order, on a table of 4-charac
ter values read from an external data file. Arguments 5 through 9 are omitted because the sort starts
in column 1 and affects the entire record.

C 'ARRAY!' CONTAINS THE UNSORTED TABLE
C 'ARRAY2' CONTAINS THE SORTED TABLE

DIMENSION ARRAY1(12), ARRAY2(12)
C READ TABLE OF 12 VALUES FROM DATA FILE

DO 1 I=l,12
1 REA0(2,101) ARRAYl(I)

c
C CALL SORT SUBROUTINE

CALL SORT(ARRAY1, 12, 4, ARRAY2)
c
C DISPLAY BOTH TABLES ON THE WORKSTATION

WRITE(0,102) ARRAY!, ARRAY2
101 FORMATCA4)
102 FORMAT(' UNSORTED:' /3(1X,4(1X,A4)/)/' SORTED:-'/3(1X,4(1X,A4)/))

PAUSE
END

SORT-2

STRING

FUNCTION

Performs the following string manipulation functions:

1. Moves a string to another variable and pads it with a user-specified character.

2. Moves a portion of a string to another variable.

3. Centers a string.

4. Left- or right-justifies a string.

5. Reverses the order of characters in a string.

6. Translates the string according to a selected or user-specified translation
table.

USAGE (arg 1, arguments)

Arg 1 defines the string function and determines the number and nature of the additional
arguments.

1. Move a string and pad it with a user-specified character

Pos Argument Type Size Comments

arg1 Function Alpha 2 Value is MV

arg2 Input Alpha var String to be processed.

arg3 Input Integer 4 Length of input string.
Length

arg4 Output Alpha var Output location for the moved string.

arg5 Output Integer 4 Length of output string. If omitted, assumed
Length to be the input string length. Must be present

if arg6 is included.

arg6 Pad Alpha 1 Character to be used as the pad if the output
Character length (arg5) !s greater than the input length

(arg3).
If omitted, blank (hex 20) is assumed.
If included, arg 5 must also be present.

STRING-1

2. Move a contiguous string of characters from one location to another (move-
indexed)

Same as MV, but includes an offset for input and output locations (primarily for BASIC
STR emulation).

Pos Argument Type Size Comments

arg1 Function Alpha 2 Value is Ml

arg2 Input Alpha var Input string to process.

arg3 Input Integer 4 Offset (from 0) of the first character of the
Index input string to be moved.

arg4 Input Integer 4 Number of characters to be moved, starting
Length with the character indicated by arg3.

arg5 Output Alpha var Output location for the moved string.

arg6 Output Integer 4 Offset within the output string to move
Index string to. Optional. If omitted, offset 0 is

assumed.

arg7 Output Integer 4 Length of the output string.If omitted, length
Length of the input string assumed. If present, the

program must include arg6.

arg8 Pad Alpha 1 Character to be used as the pad if the output
Character length (arg7) exceeds the input length

(arg4). If omitted, blank (hex 20) is assumed.
If present, the program must include arg6
and arg7.

3. Center, left- or right-justify, or reverse the characters in the input string

Pos Argument Type Size Comments

arg1 Function Alpha 2 String manipulation function:
CT= Center
LJ = Left-justify
RJ = Right-justify
RV= Reverse

arg2 Input Alpha var Input string to process.

arg3 Length Integer 4 Length of the input string.

arg4 Output Alpha var Output location for the shifted characters.
Length is the same as that of the input
string. Optional. If omitted, assumed to be
the same as the input string (the string tune-
tion is performed "in place").

STRING-2

4. Translate the input string with a user-supplied translation table

Pos Argument Type Size Comments

arg1 Function Alpha 2 Value is TT

arg2 Input Alpha var Input string to process.

arg3 Length Integer 4 Length of the input string.

arg4 Translate Alpha 256 Table to be used for the translation. The
Table character in the input string whose binary

value is N is translated into the character in
position (N+ 1) in the table. (See an ASCII
Collating Sequence table for binary values of
ASCII characters.)

arg5 Output Alpha var Input string translation. Optional. If omitted,
the input string contains the translation.

5. Translate the input string with a user-supplied translation list

Pos Argument Type Size Comments

arg1 Function Alpha 2 Value is TL

arg2 Input Alpha var Input string to process.

arg3 Length Integer 4 Length of the input string.

arg4 Translate Alpha var List of to/from character pairs used in the
List translation. Indicate the end of the list by the

pair X'OOOO'. In each byte pair in the transla-
tion list, all occurrences in the input string of
the character indicated by the second byte
are translated to the character indicated by
the first byte. Any input characters not rep-
resented in the list are not changed in the
translation.

arg5 Output Alpha var Input string translation. Optional. If omitted,
the input string contains the translation.

STRING-3

6. Translate ASCII input to EBCDIC or translate EBCDIC input to ASCII

Pos

arg1

arg2

arg3

arg4

NOTES

Argument

Function

Input

Length

Output

Type

Alpha

Alpha

Integer

Alpha

Size

2

var

4

var

Comments

Translation function:
AE = ASCII to EBCDIC
EA = EBCDIC to ASCII

Input string to translate.

Length of the input string.

Output location for translated characters.
Length is the same as that of the input
string. Optional. If omitted, the length is
assumed to be the same as the input string
(translation is performed ''in place").

1 . If the input and output locations are the same, the functions are performed "in
place."

2. With the exception of the MV and Ml functions, the results are not guaranteed to
be correct if the input and output locations are different but overlap in some other
way.

3. The MV and Ml functions are always performed one byte at a time, from left to
right. Thus, overlapping operands result in either "correct" moves or character
propagation, depending on the type of overlap. This is similar to the way in which
the BASIC "COPY" instruction operates.

STRING-4

STRING Subroutine - A FORTRAN Example

This example demonstrates the center string (CT) and reverse string (RV) functions. Results are
shown after the program.

c

REAL*8 CHARS!, CHARS2
CHARS! = 'ABCD
LENGTH = 8

C CALL STRING TO CENTER CHARS! - RESULT IS CHARS2
CALL STRING ('CT', CHARS!, LENGTH, CHARS2)

c
WRITEC0,101) ' 12345678 12345678'
WRITEC0,102) ' CT', CHARS!, CHARS2

c
C CALL STRING TO REVERSE CHARS! - RESULT IS CHARS2

CALL STRING ('RV', CHARS!, LENGTH, CHARS2)
c

WRITEC0,102) ' RV', CHARS!, CHARS2
101 FORMAT(A23)
102 FORMATCA3, 2(2X, A8))

PAUSE
END

The output from this program appears like this:

12345678 12345678
CT ABCD ABCD
RV ABCD DCBA
PAUSE: 0

STRING-5

STRING Subroutine - AN RPG II Example

This program asks the user to input a 40-character string and choose a function (center, reverse, left
justify, convert ASCII to EBCDIC, or move to a longer string and pad with a chosen character). The
program performs the requested function and displays the results. The user can then make another
choice.

00100FDISPLAY DD F WS

00110C
00120C
00200C
00300C
00310C*
00320C*
00330C*
00340C*
00400C
00403C*
00404C*
00406C*
00410C
00420C*
00430C*
00435C*
00440C*
oosooc
00600C
00700C
00800C
00900C
01000C
01002C*
01004C*
01006C*
01010C
01020C
01030C
01040C
01041C
01050C

KG

KS
Kl
K2
K3
K4

TOP TAG
SETOF
ENBLEK1,K2,K3
ENBLEK4,K5,KG

88

*** DISPLAY SCREEN ALLOWING USER TO CHOOSE STRING FUNCTION ***
OR TO END THE JOB ***

ACCPTSCR1

END JOB IF PF 16 WAS PRESSED ***

GOTO END

*** PREPARE PARAMETERS TO PASS TO RPGCALL MACRO
*** (FOR ALL FUNCTIONS EXCEPT MOVE) ***

Z-ADD40 LEN 40
GOTO MOVE
MOVE 'CT' FN 2
MOVE 'RV' FN 2
MOVE 'LJ' FN 2
MOVE 'AE' FN 2

* * * EXIT TO RPGCALL MACRO (FOR ALL FUNCTIONS

EXIT RPGST1
RLABL FN
RLABL STR
RLABL LEN
SETON 88
GOTO ANSR

STRING-6

EXCEPT MOVE)

01060C*
01070C*
01080C*
ouooc
01200C
01210C
01220C
01300C
01610C
01620C
01630C
01640C*
01650C*
01660C*
02110C
02120C
02130C
02140C
02150C

02200WSCR1
02300W
02400W
02500W
0260tlW.
02700W
02800W
02900W
03000W
03010W
03100W
03200W
03300W
03340W
03350W
03351W
03355W
03400WSCR2
03410W 88
03500W N88
03600W
03700W

RPGST1:

... PERFORM MOVE FUNCTION . ..
MOVE TAG

MOVE 'MV' FN 2
MOVE ' ' OSTR 70
Z-ADD70 OLEN 40
EXIT RPGST2
RLABL OSTR
RLABL OLEN
RLABL PAD

... DISPLAY RESULT OF STRING MANIPULATION

ANSR

END

TAG
ACCPTSCR2
GOTO TOP
TAG

0707
0729
0751
1015
1210
1310
1410
1510
1532
1610
1632
1654
1715
1736
1737
2007

SETON

0702STR
07020STR
1007
1029

LR

'PLEASE ENTER A CHARACT'
'ER STRING AND CHOOSE A'
' FUNCTION. '

'PF 1 - CENTER'
'PF 2 - REVERSE'
'PF 3 - LEFT JUSTIFY'
'PF 4 - DISPLAY EBCDIC '
'EQUIVALENT'
'PF 5 - MOVE TO A LARGE'
'R STRING AND PAD WITH '
'A SPECIFIED CHARACTER'
'{PADDING CHARACTER =

') '
'PRESS PF 16 TO END JOB'

STR 40

PAD 1

STR
OSTR

'PRESS ENTER TO TRY AGA'
'IN.'

RPGCALL NAME=RPGST1,CALL=STRING,FN,STR, (LEN,4,F)

RPGST2:

RPGCALL NAME=RPGST2,CALL=STRING,FN,STR, (LEN,4,F),OSTR, C
(OLEN,4,F),PAD

STRING-7

SUBMIT

FUNCTION

Submits a background job to be run or held for later processing.

USAGE (arg 1, ••• , arg 11)

Pos Argument Type Size Comments

arg1 File Alpha 8 Name of the procedure file to be submitted.

arg2 Library Alpha 8 Library containing the procedure. The
default is the PROGLIB value, as defined by
PF2 (SET) of the Command Processor.

arg3 Volume Alpha 6 Volume containing the procedure. The
default is the PROGVOL value, as defined by
PF2 (SET) of the Command Processor.

arg4 Job Name Alpha 8 User-supplied name for the job using the
submitted procedure. The default is blank.

arg5 Status Alpha 1 Status of the submitted job:
R = Run immediately.
H =Hold.
Blank = Use the value specified by a SET

SVC, a SET Procedure language-state-
ment, or by PF2 (SET) of the Command
Processor. The default is blank.

arg6 Job Alpha 1 Disposition of the job after completion:
Disposition D = Delete from queue (default).

R = Return to queue.

arg7 Job Class Alpha 1 Job class of the procedure submitted. Must
be a letter from A to Z or blank. If blank, use
the value specified by the SET SVC, a SET
Procedure language statement, or by PF2
(SET) of the Command Processor. The
default is blank.

arg8 Abort Alpha 1 Action to take if the job aborts:
Action D = Produce program dump.

N = No program dump.
R = Produce dump only if requested

elsewhere in the program. (Default).

arg9 CPU Time Integer 4 CPU time limit, in 1I100 seconds:
Limit 0 = No time limit (default).

-1 = Use the value specified by a SET
SVC, a SET Procedure language
statement, or PF2 (SET) of the Com-
mand Processor.

SUBMIT~1

Pos Argument Type Size Comments

arg10 Limit Alpha 1 Action to take if the CPU time limit (arg9) is
Flag exceeded:

c = Cancel program.
p =Pause.
W = Continue the procedure, but gener-

ate an operator warning. (Default).

arg11 Ret. Code Integer 4 Error return code. See Table 3-15 'below.

Arguments 2 through 1 0 are optional. If the program uses an argument, all the preceding
arguments must be used.

Return
Code

0
8

12
16
20
24
28
32
36
40
48
52
56

Table 3-15. SUBMIT Error Return Codes

Meaning

Successful.
Volume not mounted.
Volume used exclusively by another user.
All buffers in use, unable to perform verification.
File not found.
Improper file type, or the file contains zero records.
File access denied.
VTOC error. FOX 1 and FDX2 do not agree.
VTOC error. FDX2 an'd the FDR 1 and FDR2 do not agree.
Invalid specification of file, library, and volume.
System task not running, no spooled printing or interactive jobs.
Error in performing XMIT to system task.
Invalid options specified in argument list.

SUBMIT-2

SUBMIT Subroutine - A BASIC Example

This program allows the user to submit any procedure as a background job by specifying the Proce
dure language file, library, volume, and job names. The program provides default values for status,
disposition, abort action, and limit action in lines 1 000-1 300.

000100DIM FILE$ 08
000200DIM LIBRARY$ 08
000300DIM VOLUME$ 06
000400DIM JOBNAME$ 08
000500DIM STATUS$ 01
000600DIM DISPOSITION$ 01
000700DIM JOBCLASS$ 01
000800DIM ABORTACTION$ 01
000900DIM LIMITACTION$ 01
001000STATUS$ ="R"
001100DISPOSITION$ ="D"
001200ABORTACTION$ ="R"
001300LIMITACTION$ ="W"
001400
001500LOOP:
001600GOSUB PUTSCREEN
001700GOSUB DOSUBMIT
001800GOTO LOOP
001900
002000PUTSCREEN:
002100ACCEPT
002200 AT (01,10),
002300"Demonstration of Submitting a Background Job (SUBMIT) Subroutine
002400 '''
002500 AT (05,03),
002600''Fill in the information requested below, press ENTER, to submit
002700a job. '',
002800 AT (07,03),
002900'' FILE NAME: '',
003000 AT (07,17), FILE$, CH(08),
003100 AT (07,29),
003200" (Procedure file to be submitted)'',
003300 AT (08,03),
003400"LIBRARY: '',
003500 AT (08,17), LIBRARY$, CH(08),
003600 AT (09,03),
003700"VOLUME: '',
003800 AT (09,17), VOLUME$, CH(06),
003900 AT (10,03),
004000"JOB NAME:",
004100 AT (10,17), JOBNAME$, CH(08),
004200 AT (10,29),
0 0 4 3 O O ' ' (Name of assoc i at e d back g round j ob) ' ' ,

SUBMIT-3

004400 AT {11,03),
004500''STATUS: '',
004600 AT (11,17), STATUS$, CH(Ol),
004700 AT (11,29),
004800'' (R-run ;H-hold) '',
004900 AT {12,03),
005000''DISPOSITION: '',
005100 AT {12,17), DISPOSITION$, CH(01),
005200 AT {12,29),
005300" W-dequeue;R-requeue)",
005400 AT {13,03),
005500''JOB CLASS:",
005600 AT {13,17), JOBCLASS$, CH(Ol),
005700 AT (14,03),
005800''ABORT ACTION:'',
005900 AT {14,17), ABORTACTION$, CH{Ol),
006000 AT (14,29),
006100'' {D-program dump;N-no program dump;R-dump on request)",
006200 AT (15,03),
0~6300"CPU LIMIT:",
006400 AT (15,17), CPULIMIT% , PIC (####),
006500 AT (15,29),
006600"(Time limit for CPU usage)",
006700 AT (16,03),
006800"LIMIT ACTION:",
006900 AT (16,17), LIMITACTION$, CH(01),
007000 AT (16,29),
007100" (C-cancel program;P-pause;~-warning message)",
007200 AT (18,03),
007300"RETURN CODE:",
007400 AT (18,17), RETURNCODE% , PIC{##)
007500RETURN
007600
007700DOSUBMIT:
007800 CALL "SUBMIT"
007900
008000
008100
008200RETURN

ADDR{FILE$,LIBRARY$,VOLUME$,
JOBNAME$,STATUS$,DISPOSITION$,
JOBCLASS$,ABORTACTION$,CPULIMIT%,
LIMITACTION$,RETURNCODE%)

SUBMIT-4

UNITRES

FUNCTION

Allows the user to reserve or release a device or peripheral processor on the system.

USAGE (arg 1, ••. , arg3)

Pos

arg1

arg2

arg3

Argument Type Size Comments

Function Alpha 2 Function code:
D + = Reserve the device
D- = Release the device
P+ = Reserve the peripheral processor
P- = Release the peripheral processor

Unit No. Integer 4 Number of the device or peripheral proces-
sor. It must be nonnegative (only values
0-255 are recognized; larger values produce
an error return code).

Ret. Code Integer 4 Error return code. See Table 3-1 6 below.

Table 3-16. UNITRES Error Return Codes

Return
Code Meaning

0
4
8

12
16
20
24
28
32
36
40

Successful reserve/release.
Invalid unit address in argument list.
Invalid function code in argument list.
Invalid unit type in argument list.
(Reserved)
PP specified for nonprogrammable device.
PP reservation conflict.
(Reserved)
Release specified for a device or PP that the caller does not own.
Invalid device type.
Device reservation conflict.

UNITRES-1

UNITRES Subroutine - A COBOL Example

This program allows the user to reserve and then release a device or peripheral processor interactive
ly by entering the unit number and type (D or P) at the workstation. Since the COBOL ACCEPT state
ment transfers only alphanumeric data, this program calls the BASIC subroutine 9T04, discussed in
Section 2.2.2, to convert the entered unit number to a format that the UNITRES subroutine can use.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. UNITRESC.
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 WORKING-STORAGE SECTION.
000600 01 FUNCTION.
000700 03 FUNCTION-NAME PIG X.
600800 03 FUNCTION-SIGN PIG X VALUE "+"
000900*THE NEXT ITEM PASSES THE UNIT NUMBER TO THE BASIC SUBROUTINE.
001000 01 UNIT-NUMBER.
001100 03 SIGN-ITEM PIG X VALUE "+".
001200 03 UNIT-VALUE PIG X(8).
001300*THE NEXT ITEM RECEIVES THE CONVERTED UNIT NUMBER FROM THE BASIC
001400*SUBROUTINE
001500 01 UNIT-INTEGER PIG X(4).
001600*AS EXPLAINED IN SECTION 2.2.2, COBOL ACCEPTS HALFWORD INTEGERS
001700*0NLY. DEFINE A FOUR-BYTE GROUP ITEM TO BE COMPOSED OF TWO
001800*HALFWORD-BINARY ELEMENTARY ITEMS, AND USE THE LOW-ORDER TWO
001900*BYTES FOR THE INTEGER.
002000 01 RETURN-KODE.
002100 03 FILLER USAGE IS BINARY VALUE ZERO.
002200 03 ERROR-CODE USAGE IS BINARY.
002300 PROCEDURE DIVISION.
002400 MAIN-PARAGRAPH.
002500 ACCEPT UNIT-VALUE.
002600 CALL "9T04" USING UNIT-NUMBER, UNIT-INTEGER.
002700 ACCEPT FUNCTION-NAME.
002800 DISPLAY ''PRESS ENTER TO RESERVE UNIT "UNIT-VALUE.
002900 PERFORM CALL-PARAGRAPH.
003000 MOVE "-'' TO FUNCTION-SIGN.
003100 DISPLAY ''PRESS ENTER TO RELEASE UNIT ''UNIT-VALUE.
003200 PERFORM CALL-PARAGRAPH.
003300 GO TO EXIT-PARAGRAPH.
003400 CALL-PARAGRAPH.
003500 CALL "UNITRES" USING FUNCTION, UNIT-INTEGER, RETURN-KODE.
003600 IF ERROR-CODE NOT= 0 DISPLAY ''ERROR-CODE= ''ERROR-CODE,
003700 GO TO EXIT-PARAGRAPH.
003800 DISPLAY ''TO VERIFY RESULT USE PF KEY 6 FROM THE COMMAND
003900- " PROCESSOR.".
004000 EXIT-PARAGRAPH.
004100 STOP RUN.

UNITRES-2

UPDATFDR

FUNCTION

Allows the user to change attributes of a file or library. The attributes are listed below.

USAGE (arg 1, •.• , arg5, arg6 [repeatable keyword-value pairs], .•. , arg8)

Pos Argument Type Size Comments

arg1 Update Alpha Specifies range of the update:
Range F = Update single file

L = Update all files in a library

arg2 File Name Alpha 8 File to be modified. Ignored if arg 1 =L.

arg3 Library Alpha 8 Library.

arg4 Volume Alpha 6 Volume.

The program can use the following two arguments as optionally repeatable keyword
value pairs.

Pos Argument Type Size Comments

arg5 Keyword Alpha 2 File attribute to be changed.

arg6 Value Alpha var New value.

Recr Recr Receiver
Keyword Type Size Value

CD Alpha 6 Creation date in the form YYMMDD.

ED Alpha 6 Expiration date in the form YYMMDD.

FC Alpha 1 File protection class.

ID Alpha 3 Owner's ID.

MD Alpha 6 Last modification date in the form YYMMDD

ME Alpha 4 Special execute access flags. See Note 3.

MR Alpha 4 Special read access flags. See Note 3.

MW Alpha 4 Special write access flags. See Note 3.

RS Value ignored. Release unused space in the
file{s).

Pos Argument Type Size Comments

arg7 Access Alpha 1 Specifies access rights:
Limit Flag L = Restricted to the user's access rights

Blank or omitted = No restriction (use the
special access rights of the program, if
available)

Optional.

UPDATFDR-1

Pos Argument Type Size

arg8 Ret. Code Integer 4

NOTES

Comments

Error return code.
Nonzero value depends on the value of arg 1 :

Arg1 = F: Return codes as follows:
4-96= UPDATFDR return codes

{see Table 3-17 below)
1 04-1 96 = Ret. Code for READ FDR

+ 100
Arg1 = L: Additional return codes:

1 00= One or more files could
not be updated (for any
reason)

204-296= Ret. Code for
READVTOC + 200

1. Return codes are structured as described in the arg8 description for these reasons:
for single-file updates, READ FDR is called; for library updates, READ FDR and
READVTOC are both called.

2. A "blocks-lost" condition, indicated by return code 44, is not detected if arg 1 =L.

3. The ME, MR, and MW keywords require that the user have security administrator
rights. The remaining keywords require only that the user be the creator of the file
or files to be modified.

4. For FORTRAN programs, the name of this subroutine must be specified as
UPDFDR.

UPDATFDR-2

Return
Code

0
4
8

12
16
20

24
28
32
36
40
44
48
52
56
60
64
68
72

Table 3-17. UPDATFDR Error Return Codes

Meaning

File label updated.
All buffers in use, no update.
Volume not mounted, no update.
Volume used exclusively by another user.
Wrong disk type, no update.
File not open in an exclusive mode for group 1, group 2, and/ or
group 3, no update.
Library not found.
File not found.
Update access to this file protection class denied, no update.
File not closed for group-4 and/or group 5, no update.
VTOC full, no spare for FDR2 label.
VTOC full, no spare for freed extent. Extent lost.
VTOC error, FOX 1 and FDX2 do not agree.
VTOC error, FDX2 and FDR do not agree.
VTOC error, FOX 1 and FDR do not agree.
VTOC error, invalid data in FDR 1 or FDR2.
System/VTOC error, FLUB and FDR 1 do not agree.
Disk 1/0 error, VTOC unreliable.
Group 5 update attempted on nonprogram file.

UPDATFDR-3

UPDATFDR Subroutine - A COBOL Example

This program allows the user to modify the expiration date, file protection class, and owner's ID for
individual files or all the files in a library.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. UPDTFDRC
000300 ENVIRONMENT DIVISION.
000400 DATA DIVISION.
000500 WORKING-STORAGE SECTION.
000600*THE FOLLOWING ITEMS ARE THE ARGUMENTS FOR THE UPDATFDR SUBROUTINE
000700 77 UPDATE-RANGE PIG X(l).
000800 77 FILE-NAME PIG X(8).
000900 77 LIB-RARY PIG X(8).
001000 77 VOL-UME PIG X(6).
001100 77 EXPIRE-KEY PIG X(2) VALUE ''ED''.
001200 77 EXPIRE-DATE PIG X(6).
001300 77 PROTECT-KEY PIG X(2) VALUE "FC".
001400 77 FILE-CLASS PIG X:
001500 77 ID-KEY PIG X(2) VALUE "ID".
001600 77 ID PIG X(3).
001700 77 LIMIT -FLAG PIG x VALUE 'I '' .
001800*AS EXPLAINED IN SECTION 2.2.2, COBOL ACCEPTS HALFWORD INTEGERS
001900*0NLY. DEFINE A FOUR-BYTE GROUP ITEM TO BE COMPOSED OF TWO
002000*HALFWORD-BINARY, ELEMENTARY ITEMS, AND USE THE LOW-ORDER TWO
002100*BYTES FOR THE INTEGER. TO PASS AN INTEGER TO THE SUBROUTINE,
002200*INITIALIZE THE HIGH-ORDER BYTES TO ZERO.
002300 01 RETURNCODE.
002400 03 FILLER USAGE BINARY VALUE ZERO.
002500 03 ERROR-CODE USAGE BINARY.
002600 PROCEDURE DIVISION.
002700 MAIN-PARAGRAPH.
002800 ACCEPT UPDATE-RANGE, FILE-NAME, LIB-RARY, VOL-UME,
002900 EXPIRE-DATE, FILE-CLASS, ID.
003000 CALL "UPDATFDR" USING UPDATE-RANGE, FILE-NAME, LIB-RARY,
003100 VOL-UME, EXPIRE-KEY, EXPIRE-DATE, PROTECT-KEY,
003200 FILE-CLASS, ID-KEY, ID, RETURNCODE.
003300 DISPLAY "TO VERIFY RESULTS USE PF KEY 5 FROM THE COMMAND PROC
003400- ''ESSOR.".
003500 STOP RUN.

UPDATFDR-4

WSXIO

FUNCTION

Performs 1/0 operations at the workstation and returns values qssociated with those
operations.

This subroutine provides a variety of 1/0 operations. The following options are available
in most, but not all, higher-level programming languages:

Open or Close the Workstation file
READ Altered
READ Diagnostic
READ Tabs
WRITE Selected
WRITE Tabs

The VS Principles of Operation provides a description of these operations.

USAGE (arg1, arg2, arguments)

Arg 1 defines the type of function to be performed, arg2 specifies a file or a User File
Block (UFB). Arg 1 determines the number and nature of the remaining arguments.

Pos

arg1

arg2

Argument

Function

User File
Receiver

Type

Alpha

Alpha

Size

1

140

Comments

Type of function to be performed:
0 = Open the workstation file
C = Close the workstation file
X = Perform an 1/0 operation
W = Wait for interrupt ·
A = Move AID character

File name (COBOL), file number (BASIC),
parameter reference name for a UFB
(Assembler), or data item used to hold a UFB
address. A data item used to hold a UFB
address must have a length of 140 and be
fullword aligned before the file is opened. It
can be examined or used at any time
between OPEN and CLOSE, but it should not
be changed during this time.

The remaining arguments depend on the function type. If the function type is C, no fur
ther arguments are necessary.

WSXI0-1

1 . OPEN the Workstation file

Pos

arg1

arg2

arg3

arg4

NOTE

Argument

Function

Device

File Recr

Ret. Code

Type

Alpha

Integer

Alpha

Integer

Size

1

4

140

4

Comments

Value is 0

Device number of workstation to be opened
(must be nonnegative). If the device number
is 255, the user's workstation is assumed.

Area to be used as the UFB for the worksta
tion file. It is initialized to valid UFB informa
tion prior to OPEN. It can be an FD {COBOL),
a file number {BASIC), a UFB block (Assem
bler), or a variable or array that this subrou
tine uses to hold the UFB. (If it is the latter, it
must be fullword aligned.) It can be examined
or used (standard OMS) at any time between
OPEN and CLOSE, but should not be erased
or otherwise radically changed during this
time.

Error return code for OPEN operation:
0 = Successful.
4 = Not a workstation.
8 = OPEN error. The OPEN error status

can be found in the UFB file status
bytes FS 1 /FS2; either an Open Exit
or a Cancel/Respecify exit was taken.

Older versions of WSXIO did not require arguments 2 and 4. That argument list will con
tinue to be supported for a limited amount of time; programs using WSXIO with the
previous argument list should be updated.

2. Perform an 1/0 operation (the operations are listed in the description of argu
ment 3)

Pos

arg1

arg2

Argument

Function

File Recr

Type

Alpha

Alpha

Size

1

140

Comments

Value is X

As in OPEN.

WSXI0-2

Pos Argument Type Size Comments

arg3 Command Alpha 1 Indicates the 1/0 operation to be performed.
Code Arg3 is a hexadecimal character in the first

byte of the 1/0 Command Word (IOCW).
Any arg3 value is accepted; the following
should be used to perfoem standard OMS
functions:

X'40' = READ
X'44' = READ tabs
X'48' = READ diagnostic
X'50' = READ altered
X'SO' = WRITE
X'84' = WRITE tabs
X'90' = WRITE selected

arg4 Order Alpha var Order area to be transmitted to the worksta-
Area tion for the 1/0 operation. Provided_ by the

user program.

arg5 Order Integer 4 Length of the order area. Value can be 0 to
Area Length Area 4096. The sum of arg5 and arg7

cannot exceed 4096. Optional. Default is 4
bytes.

arg6 Mapping Alpha var Mapping area transmitted to the workstation
Area for the 1/0 operation, provided by the user

program.

arg7 Mapping Integer 4 Length of the mapping area. Value can be 0
Area Length to Area 4096.

arg8 IOSWRecr Alpha 8 Data item that receives the 1/0 Status Word
(IOSW) after the 1/0 operation.

NOTES

1. For READ and WRITE operations, arg4, arg6, and arg7 are mandatory.

2. If possible, the order and mapping areas are sent to the workstation directly from
the locations specified by arg4 and arg6; however, in the following situations, the
data must be moved to a temporary location for the 1/0 operation.
a) When the order and mapping areas do not occupy adjacent locations, and

neither length is zero.
b) When the combined area is not fullword aligned.
c) When the combined area spans more than 2 contiguous pages of memory.

The minimum amount of stack space required to properly align the data is
used.

WSXI0-3

3. Wait for interrupt

Pos Argument Type Size Comments

arg1 Function Alpha 1 ValueisW
Indicates an instruction to wait for an unso-
licited interrupt from the workstation.

arg2 File recr Alpha 140 As in OPEN.

arg3 Timeout Integer 4 Number of 1I1 00 seconds to wait for an
Value interrupt.

arg4 IOSWrecr Alpha 8 Data item that receives the IOSW after the
timeout is taken. If no interrupt occurs
before the timeout is taken, the IOSW is
unchanged.

4. Return AID character (See Table 3-1 8 below for a list of AID characters and
their meanings.)

Pos

arg1

arg2

arg3

Argument

Function

File recr

AID recr

Type

Alpha

Alpha

Alpha

Size

140

1

Comments

Value is A
Indicates that the A.ID character is to be
moved to the data item referenced by arg3.

As in OPEN.

Data item that receives the current AID char
acter. This character is also available in the
third byte of the IOSW immediately after the
1/0 operation.

WSXI0-4

Table 3-18. AID Characters and Their Meanings

AID Hexadecimal ASCII
Character Character Character

Keyboard
unlocked
by write 20 (blank)
Keyboard
locked by
write 21 ,

ENTER key 40 @

PF1 41 A
PF2 42 B
PF3 43 c
PF4 44 0
PF5 45 E
PF6 46 F
PF7 47 G
PF8 48 H
PF9 49 I
PF10 4A J
PF11 48 K
PF12 4C L
PF13 40 M
PF14 4E N
PF15 4F 0
PF16 50 p
PF17 61 a
PF18 62 b
PF19 63 c
PF20 64 d
PF21 65 e
PF22 66 f
PF23 67 g
PF24 68 - h
PF25 69 i
PF26 6A j
PF27 68 k
PF28 6C I
PF29 60 m
PF30 6E n
PF31 6F 0
PF32 70 p

WSXI0-5

WSXIO Subroutine - A COBOL Example

This program opens the workstation file, performs a WRITE to the workstation, allows the user to
modify fields already written, and performs a READ AL TEAED (which reads into memory only the
fields that have been altered). It also erases and protects the screen, performs a WRITE SELECTED
(which writes to the screen only the fields that have been altered), and closes the workstation file.
The program also displays the workstation's 1/0 Status Word (IOSW) after calling the subroutine
HEXUNPK to convert the IOSW from ASCII characters to hexadecimal digits.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. WSXIOC.
000300 ENVIRONMENT DIVISION.
000400 CONFIGURATION SECTION.
000500*THE FOLLOWING ITEMS WILL BE USED FOR ARGUMENT 3 (THE COMMAND
000600*CODE) FOR THE ORDER AREA OF THE SCREEN, AND FOR FIELD ATTRIBUTE
000700*CHARACTERS.
000800 FIGURATIVE-CONSTANTS. WRITE-CO~MAND IS "80",
000900 FIRST-ORDER IS "01AO"
001000 SECOND-ORDER IS "0000"
001100 SELECT-COMMAND IS "90",
001200 ALTERED-COMMAND IS "50",
001300 ERASE-PROTECT IS "0102".
001400 INPUT-OUTPUT SECTION.
001500 FILE-CONTROL.
001600 SELECT SCREEN, ASSIGN TO ''SCREEN'', ''DISPLAY'',
001700 ACCESS MODE IS RANDOM,
001800 PFKEY IS PFKEY-RECEIVE.
001900 DATA DIVISION.
002000 FILE SECTION.
002100 FD SCREEN,
002200 LABEL RECORDS ARE STANDARD.
002300 01 SCREEN-REC.
002400 03 ORDERAREA.
002500 05 ORDER-1 PICTURE IS XX.
002600 05 ORDER-2 PICTURE IS XX.
002700 03 SCREEN-AREA PIC X(1920).
002800 WORKING-STORAGE SECTION.
002900 01 MAPPING-AREA.
003000 03 FILLER PIC X(720) VALUE SPACE.
003100*IN FAC-1 AND FAC-2, FIGURATIVE-CONSTANT "WRITE-COMMAND" IS USED
003200*FOR THE BRIGHT-MODIFY FIELD ATTRIBUTE CHARACTER.
003200 03 FAC-1 PIG X VALUE WRITE-COMMAND.
003300 03 FIELD-1 PIG X(49) VALUE ''MODIFY THIS FIELD
003400 03 FILLER PIG X(400) VALUE SPACE.
003500 03 FAC-2 PIG X VALUE WRITE-COMMAND.
003600 03 FIELD-2 PIG X(15) VALUE "DO NOT MODIFY".
003700*THE NEXT ITEM IS THE FUNCTION FLAG. IT IS INITIALIZED TO "O"
003800*FOR THE FIRST FUNCTION, OPEN.
003900 77 FUNC-FLAG PIC X VALUE ''O".

WSXI0-6

004000*THE NEXT ITEM IS THE COMMAND CODE INITIALIZED TO THE WRITE
004100*COMMAND FOR THE FIRST USE OF THIS ARGUMENT.
004200 77 COMMAND PIC X VALUE WRITE-COMMAND.
004300*AS EXPLAINED IN SECTION 2.2.2, COBOL ACCEPTS HALFWORD INTEGERS
004400*0NLY. DEFINE A FOUR-BYTE GROUP ITEM TO BE COMPOSED OF TWO
004500*HALFWORD-BINARY, ELEMENTARY ITEMS, AND USE THE LOW-ORDER TWO
004600*BYTES FOR THE INTEGER. TO PASS AN INTEGER TO THE SUBROUTINE,
004700*INITIALIZE THE HIGH-ORDER BYTES TO ZERO.
004800 01 ORDER-AREA-LENGTH.
004900 03 FILLER USAGE IS BINARY VALUE IS ZERO.
005000 03 ORDAREA-LENGTH BINARY VALUE IS +4.
005100 01 SCREEN-LENGTH.
005200 03 FILLER USAGE IS BINARY VALUE ZERO.
005300 03 ROW-LENGTH USAGE IS BINARY VALUE 1920.
005400 77 IOSW PIC X(8).
005500*THE NEXT TWO ITEMS WILL BE USED BY HEXUNPK TO RETURN THE IOSW
005600*IN HEX REPRESENTATION.
005700 01 CONVERTED-IOSW PIC X(16).
005800 01 EIGHT-BYTES.
005900 02 FILLER BINARY VALUE 0.
006000 02 FILLER BINARY VALUE +8.
006100*THE NEXT ITEM IS USED FOR THE MAPPING AREA LENGTH ONLY DURING
006200*THE OPERATION THAT ERASES AND PROTECTS THE SCREEN.
006300 01 MAP-LENGTH.
006400 03 FILLER USAGE IS BINARY VALUE 0.
006500 03 MAP-INTEGER USAGE BINARY VALUE 0.
006600 PROCEDURE DIVISION.
006700 OPEN-PARAGRAPH.
006800 CALL ''WSXIO" USING FUNC-FLAG, SCREEN.
006900 DISPLAY "THE WORKSTATION FILE IS OPEN."
007000 WRITE-PARAGRAPH.
007100 MOVE MAPPING-AREA TO SCREEN-AREA.
007200 MOVE "X" TO FUNC-FLAG.
007300*THE NEXT TWO STATEMENTS INITIALIZE THE WORKSTATION'S ORDER AREA.
007400*FIRST-ORDER SETS THE ROW NUMBER TO ONE AND THE WRITE CONTROL
007500*CHARACTER TO UNLOCK THE KEYBOARD AND SET THE CURSOR POSITION.
007600*SECOND-ORDER INITIALIZES THE CURSOR COLUMN AND ROW ADDRESSES TO
007700*ZERO.
007800 MOVE FIRST-ORDER TO ORDER-1.
007900 MOVE SECOND-ORDER TO ORDER-2.
008000 PERFORM CALL-WSXIO.
008100 READ-PARAGRAPH.
008200*THE NEXT STATEMENT MOVES THE READ ALTERED COMMAND TO THE COMMAND
008300*CODE ARGUMENT.
008400 MOVE ALTERED-COMMAND TO COMMAND.
008500*THE NEXT STATEMENT WILL CAUSE THE CONTENTS OF SCREEN-AREA TO BE
008600*DISPLAYED. THE READ WILL TAKE PLACE WHEN THE ENTER KEY IS
008700*PRESSED. EITHER FIELD MAY BE MODIFIED.
008800 CALL "WSXIO" USING FUNC-FLAG, SCREEN, COMMAND, ORDERAREA,
008900 ORDER-AREA-LENGTH, SCREEN-AREA, SCREEN-LENGTH, IOSW.

WSXI0-7

009000*THE ALTERED FIELDS HAVE BEEN READ INTO MAIN MEMORY, BUT THE
009100*ENTIRE CONTENTS OF SCREEN-AREA REMAIN IN THE WORKSTATION'S
009200*MEMORY. IN ORDER FOR TO DISPLAY ONLY THE MODIFIED FIELDS BY A
009300*WRITE SELECTED, THE CONTENTS OF SCREEN-AREA MUST BE REMOVED FROM
009400*THE WORKSTATION'S MEMORY. THIS IS ACCOMPLISHED BY THE FOLLOWING
009500*THREE STATEMENTS, WHICH ERASE AND PROTECT THE SCREEN.
009600 MOVE WRITE-COMMAND TO COMMAND.
009700 MOVE ERASE-PROTECT TO ORDER-1.
009800 CALL "WSXIO" USING FUNC-FLAG, SCREEN, COMMAND, ORDERAREA,
009900 SCREEN-AREA, MAP-LENGTH, IOSW.
010000*NOW THAT THE WORKSTATION HAS BEEN CLEARED, ONLY THE MODIFIED
010100*FIELDS WILL BE DISPLAYED WHEN THE NEXT STATEMENT IS EXECUTED.
010200 PERFORM SELECT-PARAGRAPH.
010300 CLOSE-PARAGRAPH.
010400 MOVE "C" TO FUNG-FLAG.
010500 CALL "WSXIO" USING FUNG-FLAG, SCREEN.
010600 DISPLAY "THE WORKSTATION FILE IS CLOSED.".
010700 STOP RUN.
010800 CALL-WSXIO.
010900*THIS PARAPGRAPH CAUSES THE CONTENTS OF THE SCREEN-AREA TO BE
011000*WRITTEN TO THE SCREEN. SINCE THE WRITE COMMAND IS NOT FOLLOWED
011100*BY A READ, THE CONTENTS ARE NOT HELD ON THE SCREEN. INSTEAD
011200*THE IOSW IS DISPLAYED AFTER HEXUNPK IS CALLED.
011300 CALL "WSXIO" USING FUNG-FLAG, SCREEN, COMMAND, ORDERAREA,
011400 ORDER-AREA-LENGTH, SCREEN-AREA, SCREEN-LENGTH, IOSW.
011500 CALL "HEXUNPK" USING IOSW CONVERTED-IOSW EIGHT-BYTES.
011610 DISPLAY "IOSW = " CONVERTED-IOSW.
011700 SELECT-PARAGRAPH.
011800 DISPLAY "THE NEXT SCREEN WILL SHOW THE ALTERED FIELD ONLY."
011900*IF THE USER DID NOT MODIFY EITHER OF THE FIELDS, ONLY THE CURSOR
012000*WILL BE DISPLAYED ON THE SCREEN.
012100 MOVE SELECT-COMMAND TO COMMAND.
012200 MOVE FIRST-ORDER TO ORDER-1.
012300 CALL "WSXIO" USING FUNG-FLAG, SCREEN, COMMAND, ORDERAREA,
012400 ORDER-AREA-LENGTH, SCREEN-AREA, SCREEN-LENGTH, IOSW.
012500*THE FOLLOWING TWO STATEMENTS CAUSE THE DISPLAY TO BE HELD ON THE
012600*SCREEN UNTIL ENTER IS PRESSED.
012700 MOVE ALTERED-COMMAND TO COMMAND.
012800 CALL "WSXIO" USING FUNC-FLAG, SCREEN, COMMAND, ORDERAREA,
012900 ORDER-AREA-LENGTH, SCREEN-AREA, SCREEN-LENGTH, IOSW.

WSXI0-8

WANG

ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01851
TEL. (617) 459-5000
TWX 710-343-6769, TELEX 94-7421

Printed in U.S.A.
800-1315US-01

8-82-5M

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	bell-01
	bell-02
	bitpack-01
	bitpack-02
	bitunpk-01
	bitunpk-02
	cancel-01
	cancel-02
	cexit-01
	cexit-02
	chkparm-01
	chkparm-02
	chkparm-03
	chkparm-04
	chkparm-05
	compress-01
	compress-02
	date-01
	date-02
	date-03
	date-04
	date-05
	date-06
	day-01
	day-02
	dismount-01
	dismount-02
	dismount-03
	dismount-04
	expand-01
	extract-01
	extract-02
	extract-03
	extract-04
	extract-05
	extract-06
	extract-07
	extract-08
	extract-09
	extract-10
	find-01
	find-02
	find-03
	find-04
	flopio-01
	flopio-02
	flopio-03
	flopio-04
	flopio-05
	getparm-01
	getparm-02
	getparm-03
	getparm-04
	getparm-05
	getparm-06
	getparm-07
	getparm-08
	getparm-09
	getparm-10
	getparm-11
	getparm-12
	getparm-13
	getparm-14
	getparm-15
	hexpack-01
	hexpack-02
	hexunpk-01
	hexunpk-02
	link-01
	link-02
	link-03
	link-04
	link-05
	loadcode-01
	loadcode-02
	loadcode-03
	logoff-01
	logoff-02
	message-01
	message-02
	message-03
	message-04
	message-05
	message-06
	message-07
	mount-01
	mount-02
	mount-03
	mount-04
	mount-05
	pause-01
	pause-02
	print-01
	print-02
	print-03
	print-04
	print-05
	print-06
	protect-01
	protect-02
	protect-03
	protect-04
	putparm-01
	putparm-02
	putparm-03
	putparm-04
	putparm-05
	putparm-06
	putparm-07
	putparm-08
	putparm-09
	putparm-10
	putparm-11
	putparm-12
	readfdr-01
	readfdr-02
	readfdr-03
	readfdr-04
	readfdr-05
	readfdr-06
	readvtoc-01
	readvtoc-02
	readvtoc-03
	readvtoc-04
	readvtoc-05
	readvtoc-06
	readvtoc-07
	rename-01
	rename-02
	rename-03
	rename-04
	replyA
	replyB
	return-01
	return-02
	scratch-01
	scratch-02
	scratch-03
	scratch-04
	scratch-05
	search-01
	search-02
	search-03
	set-01
	set-02
	set-03
	set-04
	set-05
	sort-01
	sort-02
	string-01
	string-02
	string-03
	string-04
	string-05
	string-06
	string-07
	submit-01
	submit-02
	submit-03
	submit-04
	unitres-01
	unitres-02
	updatfdr-01
	updatfdr-02
	updatfdr-03
	updatfdr-04
	wsxio-01
	wsxio-02
	wsxio-03
	wsxio-04
	wsxio-05
	wsxio-06
	wsxio-07
	wsxio-08
	xBack

