
-

. , .
. -··

..

vs
Procedure Language

Quick Reference

. (·-

_/

~
~ _,

""" ·-·-
'~

~ ._,

~
~

vs
Procedure Language

Quick Reference

1st Edition - August, 1982
Copyright © Wang Laboratories, Inc., 1982
800-6201 PP-03

,.-. WANG LABORATORIES. INC •• ONE INDUSTRIAL AVENUE, LOWELL. MA 01851 •TEL: 617 /459-5000, TWX 710-343-6769, TELEX 94-7421

Disclaimer of Warranties
and Limitation of Liabilities

The staff of Wang Laboratories, Inc., has taken due care in preparing this manual; how
ever, nothing contained herein modifies or alters in any way the standard terms and condi
tions of the Wang purchase, lease, or license agreement by which this software package
was acquired, nor increases in any way Wang's liability to the customer. In no event shall
Wang Laboratories, Inc., or its subsidiaries be liable for incidental or consequential dam
ages in connection with or arising from the use of the software package, the
accompanying manual, or any related materials.

NOTICE:

All Wang Program Products are licensed to customers in accordance with the terms
and conditions of the Wang Laboratories, Inc. Standard Program Products License; no
ownership of Wang Software is transferred and any use beyond the terms of the aforesaid
License, without the written authorization of Wang Laboratories, Inc., is prohibited.

This quick reference replaces the VS Procedure Language Pocket Guide (800-6201 PP-02).

iWfi§(!t
WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE, LOWELL, MA 01851 •TEL: 617/459-5000. TWX 710-343-6769, TELEX 94-7421

INTRODUCTION

This quick reference is a guide for the users of Wang VS Procedure language and is
intended for those already familiar with VS Procedure language. For a detailed discussion
of the language, refer to the VS Procedure Language Reference {800-1205PR).

This reference defines the various VS Procedure language statements, diagrams the cor
rect syntax and includes an example for each. It also presents a glossary of terms used in
the VS Procedure language and lists the Procedure language return code values and their
meanings.

The user of this document should be familiar with the concepts discussed in the VS Pro
grammer's Introduction (800-11 01 Pl) and the VS Program Development Tools
{800-1307PT).

iii

/! .((."/•
~. :....- .: .. ,. I

TABLE OF CONTENTS

PROCEDURE LANGUAGE SYNTAX

ASSIGN... 2
DECLARE . 2
DISMOUNT.. 3
DISPLAY.. 3
ENTER.. 4
EXTRACT... 4
GOTO . 5
IF . 6
LOGOFF... 8
MESSAGE... 9
MOUNT ... 10
PRINT .. 10
PROCEDURE . 11
PROMPT .. 11
PROTECT ... 12
RENAME .. 13
RETURN .. 14
RUN .. 14
SCRATCH ... 15
SET .. 16
SUBMIT ... 17
USING .. 17

GLOSSARY OF TERMS . 1 8

PROCEDURE LANGUAGE RETURN CODE VALUES . 21

v

PROCEDURE LANGUAGE SYNTAX

This section contains the general format and syntax of each Procedure language state
ment, including a description of the purpose and function of each. Procedure language
syntax is generally free-form, but subject to the following rules:

1. Each procedure must contain a line starting with PROCEDURE or PROC.

2. Comment lines within the procedure must begin with an asterisk (*) in column 1, or
be enclosed in paired square [] brackets.

3. A colon (:) must separate a statement label from the verb which follows. There can
be no space between the label and the colon.

4. Multiple spaces between procedure elements are ignored by the Procedure Inter
preter. Blank lines are allowed between statements or comments.

5. A procedure statement can be extended onto more than one line, if necessary,
without special continuation characters.

6. Both uppercase and lowercase text can be used within a procedure. However,
lowercase text is automatically converted to uppercase, except when such text is
part of a constant enclosed in quotes.

7. The character in column 71 of line n is adjacent to the character in column 1 of line
n+1.

8. All entries in column 72 are ignored.

The procedure verbs, with their syntax descriptions, are arranged in alphabetical order in
this section for ease of reference. The syntax of each procedure conforms to the following
format:

Capitalized words
Lowercase words
,:=0+-; II&'".
II
[]

= Keywords
= Terms

Required syntax
One item must be encoded

= Optional item
Preceding item may be repeated

In this guide, all statement examples that can be preceded by a label are given the label
name of Test for consistency. In actual practice, any name that meets Procedure language
naming conventions is permissible.

1

ASSIGN

The ASSIGN statement assigns a value to a variable or a variable substring.

General Format:

!label:) .,, ASSIGN siring-variable " . g P d
{

integer-variable} {•nte er-o erand}

substring string-operan

where:

{
integer-variable}} [{+}
integer-constant
step-label ·

on1e9e,-ope.and ~ { ['.]
{

integer -variable}]
integer-constant
step-label f '"ng-vanable}

[II

{ s1nn9-va,;able }] ··· string-operand ~
string-constant string-constant
(refkey) (refkey)
substring substring

substring string-variable ([{'••9th}]) start . •

Example:
Test: ASSIGN &VOLUME=VOL444

DECLARE

The DECLARE statement defines variables that are to be used within the procedure. It also
specifies the types of variables and, optionally, their initial values.

General Format:

[label:) DECLARE variable [. variable) ... [AS) {STRING (n)} [INITIAL {strong-constant }]
INTEGER integer-constant

Example:
Test: DECLARE &FILE, &LIBRARY AS STRING (8)

•The value (n) is an integer between 1 and 256, inclusive.

2

~

~

'!,', ., i ·:'.',1tii\:\
·.·.·~•.:r

~

,....

~

~

~

~

,.,,._

it"t\

~

~

~

~

~

~

~

~

iAI

f""!I

~

~

~

jl9\

,,.,.
~

,....
,...
~

~

fl"'\

~

,,,,..

;'..0. '~·.· .. ·· ... ·.·· .. ,·.·.·,·.··,·.: .. · .. ;··.:.:'·'.·, .. · ... ··:·.·.·.·.'.:: ... ;.':····.·· .. · ;1·.·.~.: '.,;, •. 1.·.· ••• :1,: .•.. ·.·.·.·.·. :'..·,,:::· ;.; . ' . ~, , .;:..-·:,'~·.·.//\.~('"• ·:·;(,; , '"',',, ·i·.·.:·:)

DISMOUNT

The DISMOUNT statement logically dismounts a disk or tape volume. It is analogous to the
DISMOUNT command issued through the Command Processor.

Format 1:

(label:] ... DISMOUNT (DISK] volname

Format 2:

(label:] ... DISMOUNT TAPE volname

Example:
Test: DISMOUNT TAPE VOL 1

DISPLAY

The DISPLAY statement overrides current default values for a GETPARM request and dis
plays a prompt enabling the user to supply values at runtime. DISPLAY is always part of
the procedure step defined by the RUN statement it follows.

General Format:

(label:] ... DISPLAY {~~~=~l:bel} [keyl = {~r~f~:~l)}
(spec-label)

[{ value2 }]] ' key2 = (refkey2) ...

Example:
Test: DISPLAY INPUT FILE=XYZ, LIBRARY=#ABCLIB, VOLUME=VOL444

3

ENTER

The ENTER statement overrides current default values for a GETPARM request without
generating a workstation transaction. ENTER is always part of the procedure step defined
by the RUN statement it follows.

General Format:

{ }[]

[

k 1 fvaluel } [k 2 {value2 }]
[label:) ... ENTER ~~~=~l:bel (pfkey) [.) ey =) (refkeyl) · ey = (refkey2)

(spec-label)

Example:
Test: ENTER OUTPUT FILE=OUTFILE

EXTRACT

The EXTRACT statement retrieves information from the system and stores this informa
tion in variables. EXTRACT Format 1 is analogous to the EXTRACT SVC executed with the
specified keywords. In Format 2, if IN is not specified, OUTLIB is assumed; if ON is not
specified, OUTVOL is assumed. In Format 1 , the keywords identifying fields from which
data can be extracted are as follows:

CURLIB
CURVOL
DISKIO
FILE CLAS
FORM#

Format 1:

INLIB
INVOL
LINES
OTIO
OUTLIB

OUTVOL
PRINTER
PRINT IQ
PRNTMODE
PRO GLIB

PROGVOL
PRTCLASS
RUNLIB
RUNVOL
SPOOLIB

SPOOLVOL
SYSLIB
SYSVOL
SYSWORK
TAPEIO

[label:) ... EXTRACT variable = keyl (. variable = key2) ...

Example:
Test: EXTRACT &MYNAME=&USERNAME, &WS=WS

4

TASK#
TASKTYPE
USERID
USERNAME
VERSION

WORKLIB
WORKVOL
WS
WSIO

:{ff'']
''··--"'·

~ ,.,

EXTRACT (continued)

Format 2:

{
BLOCKS ALLOCATED FOR}

(label:] ... EXTRACT integer-variable = RECORDS USED BY

GOTO

Example:

{
filename (IN libname] (ON volname] }
(spec-label)

Test: EXTRACT &BLKS=BLOCKS ALLOCATED FOR FILEl 23

GOTO can be a stand-alone statement or an IF statement clause. As a stand-alone state
ment, GOTO performs an unconditional branch to a specified statement. When part of an
IF statement, GOTO performs a branch conditioned by the result of the IF test. Because
multiple statements can have the same label, the following rules determine the target
statement of the branch:

~ 1. The first occurrence of a label following the GOTO statement in the procedure text
is the target.

2. If no label exists, the closest occurrence of the label preceding the GOTO state
ment in the procedure is the target.

General Format:

{
step-label}

!label:] ... GOTO stmt-label

Example:
Test: GOTO LABEL2

5

IF

The IF statement compares two values. If the result is true, then the following RETURN or
GOTO statement is executed; otherwise it is ignored. The IF EXISTS statement checks for
the existence of a file, library, or volume.

Format 1:

{

integer-variable }
[label:] ... IF integer-constant

step-label

EQ

NEQ
LT
NE
NLT
GT
NGT
LE
GE

{

integer-variable }
integer-constant
step-label

<>

stmt-label

{

GOTO {step-label}

integer-variable
RETURN [CODE · {integer-constant

step-label

Example:
Test: IF &COUNTER > 100 GOTO LOOP

6

[{
integer-variable }] } l }

• integer-constant ...
step-label

~ IF (continued)

~ Format2:

{

string-variable }
[label:] ... IF strbingt -.constant

su s rmg
(refkey)

EQ
NEQ
LT
NE
NLT
GT
NGT
LE
GE

{

str~ng-variable }
string-constant
substring
(refkey)

Example:

GOTO {
step-label}
stmt-label

<

<=

>

>-=
<>

[{

integer-variable
RETURN CODE = integer-constant

step-label

Test: IF &ID=&USERLIST (&INDEX,3) GOTO OK

7

{

integer-variable }] }]
integer-constant ...
step-label

iif?·:.1.· .. eifi.·. • ..•. ·.····· ... iilfiRElliiii6ilsi1S~NiFA1t.·.·.·····
~-~~-~: ... • ~~- :,,....,-,:r;s::;::;,~.- .. · :.. --'t!',,:: .. , :r=± :':"·:::':'.·... : · · .. ·.-.""·.·.····::·."·::: ::.~:·.

IF (continued)

Format 3:

[label:] ... IF [Non EXISTS FILE {t~~~:;,e}
(spec-label)

GOTO

LIBRARY {{:~~~:e~~}
(spec-label)

{

volname }
VOLUME (refkey)

(spec-label)

{
step-label }
stmt-label

IN { libname} ON
(refkey)

{volnam•}}
(refkey)

ON { volnam•}}
(ref key)

[{

integer-variable [{integer-variable }] } 1)'
CODE = integer-constant + integer-constant ...

step-label step-label
RETURN

\.

Example:
Test: IF EXISTS LIBRARY @SYSTEM@ ON VOL444 GOTO LABEL 10

LO GOFF

LOGOFF terminates the user's current session. All programs and procedures initiated by
the current RUN command are terminated, their files are closed, and a Command Proces
sor LOGOFF command is issued. When programs or procedures are invoked from the
EDITOR, the LOGOFF statement returns control to the invoking utility rather than cancelling
the user's session.

General Format:

[label:] . .. LOGO FF

Example:
Test: LOGOFF

8

MESSAGE

MESSAGE displays text on a workstation and resumes execution of the procedure. A
semicolon (;)marks the end of a text line.

A constant or variable can optionally be preceded by one or more of the following attri
butes: UPPER, UPLOW, NUMERIC, BRIGHT, DIM, BLINK, BLANK, or LINE. The user should
note that UPPER, UPLOW, and NUMERIC are used only with variables that are modifiable.
If CENTER is specified for a line, the text on that line is horizontally centered. Otherwise,
text lines are left justified beginning in column 2.

119\ General Format:

!label:) ... MESSAGE

{CENTER] [[at1ribu1eJ
{

string-constant }
integer-constant
string-variable
integer-variable

[{

string-constant }
[CENTER) [attribute] integer-con.stant

string-variable
integer-variable

Example:

[{

string-constant } 1 l }
[tt 'b] integer-constant . • a n ute

string-variable ·
integer -variable

[{

string-constant } l l
. [attribute] int~ger-constant ...

string-variable
integer-variable

Test: MESSAGE CENTER "STEP 5 HAS COMPLETED"

9

MOUNT

MOUNT is analogous to the MOUNT option of the Manage DEVICEs command on the
Command Processor. It logically mounts a disk or tape. Volume type is not optional for
disk volumes named DISK or tape volumes named TAPE.

General Format:

(label I ... MOUNT [~~~~ l volname ON und# [(WITH({ ~?s~DARD } {~:~~s} l

[{

SHARED }
(FOR] EXCLUSIVE

PROTECTED
RESTRICTED [REMOVAL)

USAGE l
Example:
Test: MOUNT TAPE VOL 1 ON 28 WITH NO LABEL FOR EXCLUSIVE USAGE

PRINT

PRINT permits a print file to be entered into the PRINT Queue from within a procedure.

General Format:

(label:) ... PRINT { {:;~~=;,~}
(spec-label)

{ libname }] [{vol name}] }
IN (refkey2J ON (refkey3)

(. CLASS = class) [{
SPOOL}] • STATUS = HOLD [. FORM# = form)

[
· {DISPOSITION} {SCRATCH } l

DISP = REOUEUE
SAVE

[. COPIES = copies)

Example:
Test: PRINT REPORT12 IN ABCREPS ON VOL444, CLASS=A. COPIES=2

10


~~~· ~-· '~· -~--------·--·- ---·--- --------l9jjG-~E~j]j-8i·1~r;j-~j~cjE-'.S-'MNi*···. ·J 
~ 

PROCEDURE 

PROCEDURE (PROC) defines a procedure; anything following the letters PROCEDURE or 
PROC on the same line is interpreted as a comment. PROCEDURE must be the first state
ment in a procedure. 

General Format: 

{
PROC } 
PROCEDURE 

[comment] 

Example: 
PROCEDURE LOGON for user ABC 

PROMPT 

PROMPT displays text on the workstation screen and accepts data for variables. A feature 
of PROMPT is the ability to accept PF key values in a declared variable. With PROMPT, 
procedure execution is halted until the user responds appropriately to the prompt. 
PROMPT syntax is similar to MESSAGE. 

General Format: 

llabel:) ... PROMPT [PFKEY ~ variable) 

{ [ { 

string-constant } 
(CENTER] (attribute] integer-constant 

string-variable 
integer-variable ll [ {

string-constant } l 
I _b ] integer-constant 

· attn ute string-variable 

integer-variable 

[ J string-constant } [ {string-constant }] l 
[CENTER] (attribute] int~ger-c~nstant . [attribute) integer-constant ... 

l string-variable string-variable 
integer-variable integer-variable 

Example: 
Test: PROMPT PFKEY=&PF 

"ENTER FILE = ", UPPER &FILE;; 
LINE "PRESS ENTER TO CONTINUE, PF16 TO EXIT" 

11 



PROTECT 

PROTECT modifies file or library protection information; it is analogous to the PROTECT 
option of the Manage FILES/LIBRARIES command. 

Format 1: 

(label I ... PROTECT { {;;~~:;,~} [IN {:;~:;.;,} l [ON {;,~f~:~:i} l} 
(spec-label) 

TO {[OWNER owner) [,PERIOD = period) (.FILECLAS ' fileclass)} 

Example: 
Test: PROTECT myfile IN mylib ON VOL2 TO FILECLAS=A 

Format 2: 

(label:] ... PROTECT LIBRARY { {:~~~:~~)} 
(spec-label) 

[ {
volname} J} 

ON (refkey2) 

TO {[OWNER · owner] [.PERIOD = period) [.FILECLAS · fileclass]} 

Example: 
Test: PROTECT SALARIES TO OWNER=GSS, FILECLAS=Q 

12 



RENAME 

RENAME allows the user to retitle a file or library; it is analogous to the RENAME option of 
the Manage FILES/LIBRARIES command. 

Format 1: 

[label:) ... RENAME 

TO 

Example: 

{{ :;~~=~~ 1} 
(spec-label) 

{
filename2} 
(refkey4) 

[IN {:~:~:~~;} 1 [ON { ~f~:~;,} 1} 
[IN { :::7:.~m l 

Test: RENAME ABCFIL IN deflib ON VOL444 TO xyzfil IN QRSLIB 

Format 2: 

[label:) ... RENAME LIBRARY 

TO 

Example: 

{ { :~:7:;~;} 
(spec-label) 

{
libname2} 
(refkey3) 

[ {
volname} l } 

ON (refkey2) 

Test: RENAME USERLIB ON VOL444 TO ABCLIB ON VOLDEF 

13 



RETURN 

RETURN unconditionally terminates procedure execution. It can be used either as a separ
ate statement or as a clause in an IF statement. 

General Format: 

(label:) RETURN ( CODE 

Example: 

{

integer-variable 
integer-constant 
step-label [ {

integer-variable}] } l 
• integer-constant ··· 

step-label 

Test: RETURN CODE = LABEL 1 + LABEL2 + 1000 

RUN 

RUN executes a program or procedure and is analogous to the RUN command on the 
Command Processor except that with RUN the user can pass parameters to the program 
or procedure being run. 

General Format: 

[label:] ... RUN {{ :~~f~:;,~} 
(spec-label) [ 

ON {volname} ] } 
(refkey3) 

[ USING { ~:~=~~1 } [
. {variable}] 

constant l 
Example: 
Test: RUN DATE IN USERAIDS ON SYSTEM USING "HD", &date 

14 



;·.·.;·.:-;·. 

SCRATCH 

SCRATCH deletes a file or library from a specified volume. It is analogous to the 
SCRATCH option of the Manage FILES/LIBRARIES command. 

Format 1: 

{{
filename} 

[label:) ... SCRATCH (refkeyl) 
(spec-label) 

[ {
libname}] 

IN (refkey2) [ {
volname} l} ON (refkey3) 

Example: 
Test: SCRATCH USERFILE IN ABCLIB ON VOL444 

1191\ Format 2: 

(label:) ... SCRATCH LIBRARY {{ :~:~:e~~l} 
(spec-label) 

[ {
volname}] } 

ON (refkey2) 

Example: 
Test: SCRATCH LIBRARY USERLIB ON VOL444 

15 



SET 

SET can specify library and volume default names, default file classes, print mode, and job 
submittal options. SET is analogous to the SET Usage Constants command on the Com
mand Processor. Legal setkey keywords that identify fields for specifying default para
meter values are as follows: 

General Format: 

FILE CLAS 
FORM# 
JO BC LASS 
JOBLIMIT 
JOBQUEUE 
LINES 
PRINTER 

INLIB 
INVOL 
OUTLIB 
OUTVOL 
RUNLIB 
RUNVOL 
WORKVOL 

(label:] ... SET { setkeyl = valuel [.setkey2 = value2] ... } 

Example: 

PR NT MODE 
PROGLIB 
PROGVOL 
PRTCLAS 
PRTFCLAS 
SPOOLIB 
SPOOLVOL 

Test: SET PROGLIB=USERPROG, PROGVOL=VOL444, FILECLAS=A 

16 



SUBMIT 

SUBMIT places a procedure into the PROCEDURE Queue for noninteractive execution. It is 
analogous to the SUBMIT command on the Command Processor. 

General Format: 

(label:) ... SUBMIT { { ~~~~::~e} [ IN {:~~~::v~)} l [ ON 
(spec-label) 

{
vol name} l} 
(refkey3) 

(AS procedure-id) [. CLASS = class] [. STATUS = { ~~~D}] 

[DUMP • {~~~GRAM } ] [· CPULIMIT • {::mmss} l 
[ {

CANCEL}] , ACTION ~ WARN 
PAUSE 

Example: 
Test: SUBMIT JOB123 AS PAYROLL, CLASS=A, STATUS=HOLD, 

CPULIMIT=0:1 :30, ACTION=WARN 

USING 

USING declares the formal parameters to a procedure. It is optional. If the USING state
ment is present, it must immediately follow the PROCEDURE or PROC statement. 

General Format: 

USING variable [. variable] ... AS {STRING (n)} 
INTEGER 

[· var;able (, var;able] ... AS { ~r:~~~R (n)}] ... 

Example: 
USING &PARM 1, &PARM2 INTEGER, &PARM3 STRING (8) 

•The value (n) is an integer between 1 and 256, inclusive. 

17 



~~~~~~~~'----~ ·~·· 

GLOSSARY OF TERMS

Certain parameters and ranges of terms are common to all Procedure language statements
and are provided below for reference purposes.

TERM

comment

fileclass

filename

integer-constant

integer-variable

label

libname

DEFINITION

Any user-written message. The Procedure Interpreter
interprets comments as blanks.

A one character value from among A-Z, #, $, ;J. or @.

Fileclass can also be a string-constant, string-variable, or
substring.

An alphanumeric value of up to eight characters that must
begin with an alphabetic character, integer, @, $, or # and
contain no embedded spaces. Can also be a string
constant, string-variable, or substring.

A sequence of one or more digits whose value is in the
range -99999999 to 99999999.

Fullword signed integers whose value is in the range of
-214 7483648 to 214 748364 7.

An alphanumeric value of up to eight characters that must
begin with an alphabetic character, contain no embedded
spaces, and be followed by a colon (:), except when a step
label is referenced in an IF, GOTO, or ASSIGN statement,
or used in a refkey. Labels identify procedure statements
and are named according to the function being performed.
Labels of statements which provide return codes (MOUNT,
DISMOUNT, SCRATCH, RENAME, PROTECT, PRINT,
SUBMIT, RUN) are termed step-labels; labels of parameter
supplying statements (DISPLAY, ENTER) are termed spec
labels; labels of other statements (IF, GOTO, RETURN,
EXTRACT, MESSAGE, PROMPT, DECLARE, ASSIGN, SET,
LOGOFF) are termed stmt-labels.

An alphanumeric value up to eight characters that must
begin with either an alphabetic character, @, $, or # and
contain no embedded spaces. Libname can also be a string
constant, string-variable. or substring.

18

id\

~

~

't-.;::.
~

.-.
'""'
~

~

~

~

~

~

~

~

~

~

l9t

i-.

~

~

~

_,
,....

At\

~

~

~

~

~

~

~

~

~

~

\: (•'

TERM

owner

period

pf key

prname

ref key

spec-label

step-label

stmt-label

string-constant

DEFINITION

A one to three character alphanumeric value that must
begin with an alphabetic character and contain no embed
ded spaces. Owner can also be a string-constant, string
variable, or substring.

A numeric value in the range 0-999. Period can also be a
constant, variable, or substring.

A numeric value in the range 1-32. Pfkey can also be a
constant, variable, or substring.

Used in the DISPLAY or ENTER statement to identify the
parameters specified in that statement.

Keyword identifying a field in a labeled DISPLAY or ENTER
statement preceding the current statement. The value
associated with this keyword in the referenced statement
is obtained for the current field through backward refer
ence. A refkey consists of the label of the referenced state
ment, followed by a period and the keyword identifying the
referenced field. Refkeys must be enclosed in parentheses.

The label of a previous specification statement (ENTER or
DISPLAY) from which parameters are to be obtained
through backward reference for use in the current state
ment.

Label of a DISMOUNT, MOUNT, PRINT, RUN, SCRATCH,
SUBMIT, SET, RENAME, ASSIGN, or PROTECT statement.
Used in IF and RETURN statements to identify the return
code to be tested.

The label of a MESSAGE, PROMPT, EXTRACT, DECLARE,
ASSIGN, SET, LOGOFF, IF, GOTO, or RETURN procedure
statement.

A text string up to 256 characters in length enclosed in
single (') or double (") paired quotes.

19

TERM

substring

unit#

variable

verb

vol name

DEFINITION

A portion of a string-variable represented by the character
position defined by "start" for a specified length.
Substrings are allowed wherever a string-variable is
allowed, except for the following statements: DECLARE.
USING, RUN ... USING (as a parameter).

A numeric value in the range 1-099. Unit can also be a
string-constant, string-variable, or substring.

Variable names can be 2 to 31 characters. The first charac
ter must be an ampersand (&); the other characters can be
chosen from the characters A-Z, a-z, 0-9, @, $,#,and-·
The content of a variable operand is the value of that oper
and. Variables can be either uppercase or lowercase.
Lowercase characters are converted internally to
uppercase.

A command to carry out a specific task. Each statement in
a procedure must begin with a Procedure language verb
describing the operation to be performed.

A one to six alphanumeric value that must begin with
either an alphabetic character, integer, @. $, or # and con
tain no embedded spaces. Volname can also be a string
constant, string-variable, or substring.

20

~

.~ PROCEDURE LANGUAGE RETURN CODE VALUES

~ Statement
Name

DISMOUNT

MOUNT

Return
Code

4

8
12
16
20

24
28
32

4

8

12

16

20
24
28

32
36

40
44

48
52

56

60

Meaning

Input volume name is blank, or bytes 0-1 in
the input are nonzero.
Volume cannot be found.
Volume cannot be dismounted.
Device detached.
Volume in use by a user or the operating
system.
Volume reserved by another user.
GETMEM (SVC) pool failure.
Device is reserved by another task.

Successful mount, but new volume label type
does not agree with the input parameters.
Successful mount, but the new volume name
is not the volume name requested.
Disk or tape 1/0 error detected while reading
the new volume label, or the new volume has
a bad VTOC. VCBSER is set to blank.
Device not a disk or tape, or invalid device
number.
Device detached.
Volume type (REM or FIX) not found.
Request to mount unlabeled volume on disk
other than diskette.
Input volume name is blank.
Volume already mounted. Also set for a dupli
cate volume name.
Volume is currently in use.
Volume reserved by another user for exclusive
use.
1/0 buffer is insufficient to perform the mount.
Unable to allocate space for tape 1/0 control
blocks.
Invalid request: work and/or spool filing
requested in a nonlabeled volume.
Invalid request: nonstandard addressing at
tempted with standard label option or on a
hard-sectored device.

21

1,:::::·(:i/~!IJRl'lft!l~N@'•§'Wl,@11f,\[Jljl,~,1(~1i)J~.~~'11@!\>'<;,:'.t·.'.i,::;:;:.<·./,\.::·,(;"!,·:.' ·,•':'/,i\A(·;6t:\):;}'·.· ··;·7:::s::::e".::·
,,...,

Statement
Name

MOUNT

PROTECT

RENAME

Return
Code

64

68

72

76

BO
84

4
8

12
16
20
24
32
36
40
44
48
52

56

4
8

12
16
20
24

28
32
36
40
44

Meaning

Wrong media: soft-sectored diskette inserted
into a device for hard-sectored diskettes only.
Wrong media: hard-sectored diskette inserted
into a device for soft-sectored diskettes only.

Wrong media: hard-sectored diskette inserted
for a nonstandard addressing request.
Wrong addressing mode: caller requested
MOUNT for standard addressing but diskette
is nonstandard addressing.
Device reserved by another user.
PF16 was entered when the MOUNT message
was displayed.

Volume not mounted.
Volume used exclusively by other user.
All buffers in use, no protection change.
Library not found.
File not found.
Update access denied, no protection change.
File in use, no protection change.
VTOC error.
VTOC error.
Invalid argument list address.
1/0 error; VTOC unreliable.
Open or protected files bypassed in protecting
library.
Invalid new protection data.

Volume not mounted.
Volume used exclusively by other user.
All buffers in use, no rename.
Library not found.
File not found.
Update access to file protection class denied,
no rename.
Unexpired file, no rename.
File in use, no rename.
VTOC error.
VTOC error.
Invalid argument list address.

22

~

~ -.~...._,...,.
~

..._
Statement

~
Name

~ RENAME

~

,..
~

~

~
SCRATCH

~

~

-. .,
~

~

~

,..
~

,.,
~

SUBMIT
~

~

~

idlt\

~

~

~

~

~

~

~

Return
Code

48
52

56

60
64

4
8

12
16
20
24

28

32
36
40
44
48
52

4
8

12

16
20
24
28
32
36

Meaning

1/0 error, VTOC unreliable.
New filename or library name already exists,
no rename.
New filename invalid (or first character #), no
rename.
VTOC is currently full.
Reserved bits in the parameter list options
byte are nonzero.

Volume not mounted.
Volume used exclusively by other user.
All buffers in use, no scratch.
Library not found.
File not found.
Update access to file protection class denied
(single-file scratch only).

Unexpired file. no scratch (single-file scratch
only).
File in use, no scratch.
VTOC error.
VTOC error.
Invalid argument list address.
1/0 error, VTOC unreliable.
Open. protected. and/or unexpired file(s) by
passed in scratching library.

Volume not mounted.
Volume in exclusive use.
All buffers in use; unable to perform verifica
tion.
Library not found.
File not found.
Improper file type.
File access denied.
VTOC error.
VTOC error.

23

WANG
Title -----=V~S;_;,P....;.R=O;...;;C:;..:;E=D~U;..;..R=E~L;;.:_A;;.:...N:....:G:....:U::;.:..A..:..:G::..:E:.....;Q=U=..:...::IC;..;..K:....:R~E==-F-=E:.:....:R=EN:...:.C.:.E=---

Publications Number ____ ____;;8.....;;;0.....;;;0'---6..;;;..2=0.;;;;...1..;;....P;._P;._-.....;;;0....;;;3 ____ _

Customer Comment Form
Help Us Help You

We've worked hard to make this document useful, readable, and technically accurate. Did we
succeed? Only you can tell us! Your comments and suggestions will help us improve our
technical communications. Please take a few minutes to let us know how you feel.

Please rate the quality of this publication in each of the following areas.
VERY VERY
GOOD GOOD FAIR POOR POOR

Technical Accuracy - Does the system work the way D D D D D
manual says it does?

Readability - Is the manual easy to read and D D 0 0 0
understand?

Clarity - Are the instructions easy to follow? D 0 0 0 D

Examples - Were they helpful, realistic? Where there D D 0 0 D
enough of them?

Organization - Was it logical? Was it easy to find 0 0 0 D D
what you needed to know?

Illustrations - Were they clear and useful? 0 0 0 0 0

Physical Attractiveness - What did you think of the 0 0 0 0 0
printing, binding, etc?

~ What errors or faults did you find in the manual? (Please include page numbers) _____ _

~

~

i\9l\ Do you have any other comments or suggestions? ________________ _

Name~-------------------------------

CompanY~----------------------------

Street~-------------------------------

CitY ~-----------------------------~
State/Country _________________________ _

Zip Code _____ Telephone------------------

Thank you for your help.

All comments and suggestions become the property of Wang Laboratories. Inc.

WANG

Fold

I II II I

BUSINESS REPLY CARD
FIRST CLASS PERMIT N0.16 LOWELL. MA

POSTAGE WILL BE PAID BY ADDRESSEE

WANG LABORATORIES, INC.
CHARLES T. PEERS, JR., MAIL STOP 1363
ONE INDUSTRIAL AVENUE
LOWELL, MASSACHUSETTS 01851

Attention: Technical Writing Department

Printed in U.S.A. 14-3151 8-82-5C

5
NO POSTAGE I u ,-_

NECESSARY I
I

IF MAILED I ~
INTHE I

UNITED STATES I (8\.

~

~

~

,..,
~

~

i'9\

~

tai

~

~

~

~

~
~

f9+

~

~
"-

~

~

~

~

~

~

~

f9i

~

~'

~

~

~

~

~

~ ,..
~

~

~

~

~

~

~

~ ...
~

~

~ -

~~ ,.,~.--, ----:- :':~ - :-~~'731.--_- ;"'~ -_ ~, ~ ~ _- -- . " ' . '; -« _'t. .- :

& ---·~~- - ____ _. ___ -- ·--~r ~~ ~ '"""-'~--~ ~- ~..:...:.:. -- -~ ~ -~ - - -

ONE INDUSTRIAL AVENUE
WWELL, MASSACHUSETIS 01851
TEL. (617) 459-5000
TWX 710-343-6769, TELEX 94-7421

Printed in U.S.A. ~
800-6201 PP-03

8-82-SM f!"'?

~~

