VS-85 Computer System

PREFACE

This document is the Standard Maintenance (STD) Manual for the VS-85 Computer Systems. It is organized in accordance with the approved STD outline established at the Field/Home Office Publications meetings conducted on September 14 th and 15 th, 1982. The scope of this manual reflects the type of maintenance philosophy selected for this product (swap unit, printed circuit assembly, chip level or any combination thereof).

The purpose of this manual is to provide the Wang-trained Customer Engineer (CE) with instructions to operate, troubleshoot and repair the VS-85 Computer Systems. It will be updated on a regular schedule.

The last page before the back cover is a comment sheet. Please take the time to fill out the comment sheet and return it, via the Home office mail pouch, addressed to:

Wang Laboratories, Inc.
Customer Engineering Technical Documentation
M/S 8237
437 South Union Street.
Lawr ence, Mass.
01843-9984

Fourth Edition (August 1984)
This edition of the VS-85 Computer Systems STD manual obsoletes document(s) no. 729-1224-A/A1/A2. The material in this document may only be used for the purpose stated in the Preface. Updates and/or changes to this document will be published as Product Service Notices (PSN's) or subsequent editions.

This document is the property of Wang Laboratories, Inc. All information contained herein is considered company proprietary, and its use is restricted solely for the purpose of assisting the Wang-trained CE in servicing this Wang product. Reproduction of all or any part of this document is prohibited without the prior consent of Wang Laboratories, Inc.
© Copyright WANG Labs., Inc. 1983, 1984

WARNING

$* *$	
$*$	DO NOT OPEN THE SWITCHING POWER SUPPLY UNDER ANY

WARNING

```
****************************************************************************
* *
* THIS COMPUTER EQUIPMENT HAS BEEN VERIFIED AS FCC CLASS A. *
* *
****************************************************************************
```

IN ORDER TO MAINTAIN COMPLIANCE WITH FCC CLASS A VERIFICATION, THE FOLLOWING CONDITIONS MUST BE ADHERED TO DURING NORMAL OPERATION OF EQUIPMENT.

- ALL COVERS MUST BE ON SYSTEM AND SECURED IN THE PROPER MANNER.
- ALL INTERNAL CABLES MUST BE ROUTED IN THE ORIGINAL MANNER WITHIN THE CABLE CLAMPS PROVIDED FOR THAT PURPOSE.
- THE MAINTENANCE PANEL DOOR MUST BE KEPT CLOSED.
- ALL EXTERNAL CABLING MUST BE SECURED AND THE PROPER CABLE USED TO ENSURE THAT CABLE SHIELDING IS PROPERLY GROUNDED TO THE CABLE CLAMPS PROVIDED.
- MAKE SURE CONTACT FINGER STRIP CLIP-ON (WLI P/N 654-2139) IS IN PLACE AND UNDAMAGED. (CONTACT FINGER STRIP MAY BE ORDERED AND CUT TO PROPER LENGTH).
- ALL HARDWARE MUST BE PROPERLY SECURED.

The last page before the back cover is a comment sheet. Please take the time to fill out the comment sheet and return it, via the Home Office mail pouch, aduressed to:

Wang Laboratories, Inc. Customer Engineering Technical Documentation M/S 8237
437 South Union Street. Lawrence, Mass. 01843-9984

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION Page
1.1 Purpose 1-1
1.2 Scope 1-1
1.3 Related Publications 1-2
1.41.4 .1System Dtscription1-41.4 .2Central Processor1-5
1-61.4 .3Control Memory1-6
1.4.4 Cache Memory 1-6
1.4 .5 Memory Control
1.4 .5 Memory Control 1.4.5 Memory Controller II 1-7
1.45 System Bus Controller 1-7
1.4.7 Main Memory 1-7
1.4.8 Bus Adapler 1-7
1.5 CP Motherboard 1-8
1.6 Input/Output Processors 1-8
1.7 Display and Maintenance Panels 1-9
1.8 Power Supply 1-10
1.9 Software Description 1-10
1.9 .1 Operating System 5.03 Description 1-10
1.9 .2 Operating System 6.10 Description 1-11
1.9.3 User Convenience Features 1-12
1.9.4 Expanded Operating System Features 1-12
1.9.5 Additional System Utilities 1-12
1.9.6 File Protection and Security 1-14
1.9.6.1 File Protection Codes 1-14
1.9.6.2 Special Protection Codes 1-14
1.9.6.3 User Access Rights 1-15
1.10 Error Detection and Correction 1-15
1.11 Configurations 1-16
1.11 .1 Model Numbers 1-16
1.11.2 Domestic Upgrade Kits 1-16
1.11.3 International Upgrade Kits 1-16
1.12 Associated Peripherals 1-18
1.13 System Specifications 1-18
CHAPTER 2 THEORY OF OPERATION
2.1 Introduction 2-1
2.2 Control Memory 2-1
2.2.1 Writing Control Memory 2-5
2.2.2 Reading Control Memory 2-5
2.2.3 Traps 2-6
2.2.4 Br anching 2-6
2.2.5 Clock Generation and Control 2-7
2.3 Central Processor 2-7
2.3.1 A Bus 2-7
2.3.1.1 C Bus Main Memory Multiplexer 2-7
2.3.1.2 Memory Data Registers 2 and 3, and Rotating Multiplexer 2-7
2.3.1.3 Memory Data Register 4, Data Buffer, Work Multiplexers/Registers, and Shift Register 2-9
2.3.1.4 Multiplier 2-10
2.3.1.5 A Bus Multiplier 2-10
2.3.1.6 CP Stack 2-10
2.3.1.7 CP Ctatus Register 2-11
2.3.1.8 Program Clock 2-11
2.3.2 B Bus 2-12
2.3.2.1 C Bus Main Memory Multiplexer 2-12
2.3.2.2 Memory Deta Registers 0, 1 , and $4 B$, andCurrent Hal fword Buffer2-12
2.3.2.3 Work Registers, Indirect Counter, and Indirect Register 2-14
2.3.2.4 B Bus Multiplexer 2-14
2.3.2.5 Binary Arithmetic Logic Unit, Decimal Arithmetic Logic Unit, and C Bus Multiplexer 2-14
2.3.2.6 Program Mask Register and Virtual Memory Address Register 2-15
2.3.2.7 Control Memory Address Buffer and Control Memory Data Buffer 2-15
2.3.2.8 Memory Operation Overviews, Memory Address Multiplexer, and Memory Address Registers 0, 1, and 2 2-16
2.3.2.8.1 General Memory Operations Overview 2-16
2.3.2.8.2 Read and Write Overview 2-16
2.3.2.8.3 Translation Overview 2-16
2.3.2.8.4 Ripple Overview 2-16
2.3.2.8.5 Memory Address Registers 0,1 , and 2 2-17
2.3.2.9 Address Multiplexer and Memory Address Latch 2-18
2.3.2.10 Translation RAM Address Latch, Translation RAM, Reference/Change Table, and Translation RAM Multiplexer 2-18
2.3.2.10.1 Translation RAM 2-18
2.4 Main Memory 2-20
2.4 .1 Control Signals 2-20
2.4.2 Memory Write and Read 2-20
2.4.3 Addressing 2-23
2.4.4 Refresh 2-24
2.5 Memory Controller I (MCI) 2-24
2.5 .1 Main Memory Addresses From BA and CP 2-24
2.5.2 Main Memory Data Direct To CP 2-26

TABLE OF CONTENTS (Cont'd)

2.5.3 Main Memory Control 2-26
2.5.4 Interprocessor Communications Control 2-26
2.6 Cache Memory 2-26
2.6.1 Configuration 2-28
2.6.2 Data Written To Cache 2-28
2.6.3 Data Read From Cache 2-29
2.6.4 Main Memory Addresses From BA and CP 2-29
2.6.5 Tag Compare (MISS) and Parity 2-29
2.6 .6 Valid and Invalid Cache Locations 2-30
2.6 .7 Main Memory Data Direct To CP 2-30
2.6.8 Main Memory Control 2-30
2.6.9 Interprocessor Communications Control 2-32
2.7 Memory Controller II (MCII) 2-35
2.8 System Bus Controller 2-35
2.8 .1 Data Error Correction 2-35
2.8.2 Read Data Path 2-37
2.8.3 Data To Main Memory 2-37
2.8.4 Interprocessor Communications 2-38
2.8.5 External Condition Register 2-38
2.8.6 Bus Transaction Log 2-39
2.9 Bus Adapter 2-39
2.9 .1 IOP Priority 2-39
2.9.2 IOP Instructions 2-41
2.9.3 Encoding Of BA Memory Commands 2-41
2.9.4 Write IOP Data To Main Memory 2-41
2.9.5 Addresses To Main Memory 2-42
2.9.6 Main Memory Data To IOP With Byte Switching 2-42
2.9.7 Interprocessor Communications 2-43
2.9.8 Status Register 2-43
CHAPTER 3 OPERATION
3.1 General 3-1
3.2 Controls 3-13.2 .1
3-3
Display Panel Control Buttons 3-4
3.2.3 Boot Pushbutton 3-5
3.2.4 Control Mode Pushbutton 3-5
3.2.5 Initialize Pushbutton 3-5
3.2.6 System Load Pushbutton 3-5
3.2.7 Main Memory Size 3-5
3.2.8 Main Memory Size Selection 3-6
3.2.9 IOP Switches 3-6
3.3 Indicators 3-7

TABLE OF CONTENTS (Cont'd)

3.3.1 Display Panel 3-8
3.3.2 Central Processor Indicators 3-8
3.3.3 IOP Parity Error Indicators 3-8
3.3 .4 Internal Indicators 3-8
3.3 .5 ECC Indicator LEDs 3-8
3.3 .6 IOP Activity LEDs 3-8
3.4 Support Materials 3-9
3.5 Daily Turn-On Procedures 3-9
3.6 Daily Verification Procedures 3-10
3.7 Daily Shut-Down Procedures 3-10
3.8 Emergency Shut-Down Procedures 3-10
3.9 Operator Preventive Maintenance 3-11
CHAPTER 4 INSTALLATION Page
4.1 General 4-1
4.2 Installation Site Check 4-1
4.3Tools and Test Equipment4-2
4.44.4.1,
Claims Information 4-24.4.2
4-3
4.4 .3 Unpacking The Peripherals 4-4
4.5 Main Frame Inspection 4-9
4.5 .1 Peripheral Inspection 4-9
4.6 Minimum Requirements 4-10
4.6 .1 Hardware 4-10
4.6.2 Software 4-10
4.6 .3 Diagnostics 4-11
4.7 Main Frane Power Source Check 4-12
4.7.1 115VAC Domestic Power Source 4-12
4.7.2 208-240VAC Domestic Power Source 4-13
4.7.3 Initial Main Frame Power-Up 4-14
4.7.4 DC Voltage Checks 4-14
4.8 Running Diagnostics 4-18
4.9 Initial Microcode Loading 4-18
4.10 System Generation (SYSGEN) 4-20
4.10.1 Performing A SYSGEN 4-20
4.11 System Intercolinection 4-24
4.11.1 Connector Plate-To-IOP Cabling 4-26
4.11.2 BNC/TNC Connectors 4-26
4.11.3 Disk Cable Connectors 4-27
4.11.4 Telecommunication Connectors 4-29
4.11.5 Tape Cable Connectors 4-30
4.11.6 Installing the Archiving Workstation 4-31

TABLE OF CONTENTS (Cont'd)

4.12 System Checkout 4-33
4.13 On-Line Checkout4-33
4.13 .1 Disk Drive Checkout 4-33
4.13.2 Printer Checkout 4-34
4.13.3 Tape Drive Checkout 4-35
4.13.4 Workstation Checkout 4-35
4.13 .5 Final Checks 4-36
4.14 Close Up Main Frame 4-36
4.15 Daily System Power-Up/Power-Down Procedures 4-364.16
System Turnover 4-37
CHAPTER 5 PREVENTIVE AND CORRECTIVE MAINTENANCE
5.1 General 5-1
5.2 Preventive Maintenance 5-1
5.2 .1 Tools 5-1
5.2 .2 Test Equipment 5-1
5.2 .3 Materials 5-1
5.2 .4 Preventive Maintenence Schedule 5-1
5.2 .5 Cleaning Mini-Floppy Drive Heads 5-2
5.2.6 Electrical Adjustments 5-2
5.2.6.1 Main Frame Voltage Adjustments 5-2
5.2.7 Peripheral Preventive Maintenance 5-2
5.3 Corrective Maintenance 5-3
5.3.1 Tools 5-3
5.3.2 Test Equipment 5-3
5.3.3 Materials 5-3
5.3.4 Alignments 5-3
5.3.4.1 Mini-floppy Drive Data Separator Adjustments 5-3
5.3.4.2 Preliminary Mini-floppy Drive Adjustment Procedures 5-3
5.3.4.3 Performing the Adjustment 5-5
5.3.5 Removal/Replacement 5-9
5.3.5.1 Top Cover Removal 5-9
5.3.5.2 Front Cover Removal 5-9
5.3.5.3 CP Circuit Board Removal/Replacement 5-9
5.3.5.3.1 210-7602 Control Memory Removal/Replacement 5-9
5.3.5.3.2 210-7600 A Bus Removal/Replacement 5-12
5.3.5.3.3 210-7600 B Bus Removal/Replacement 5-13
5.3.5.3.4 210-8230 Memory Controller I Removal/Replacement 5-14
5.3.5.3.5 210-8804 Cache Memory Removal/Replacement 5-16
5.3.5.3.6 210-8231 Memory Controller II Removal/Replacement 5-18
5.3.5.3.7 210-7605 System Bus Controller Removal/Replacement 5-19
5.3.5.3.8 210-7803/8203 Main Memory Removal/Replacement 5-20
5.3.5.3.9 210-8311 Bus Adapter Removal/Replacement 5-22
5.3.5.3.10 Internal Cable Connections 5-23
5.3.5.4 IOP Circuit Board Removal/Replacement 5-26
5.3.5.4.1 22V28/22V88 Disk Drive IOP Removal/Replacement 5-27
5.3.5.4.2 22V27-2 Serial Device IOP Removal/Replacement 5-31
5.3.5.5 Motherboard Removal/Replacement 5-35
5.3.5.5.1 Motherboard Removal 5-35
5.3.5.5.2 Motherboard Replacement 5-37
5.3.5.6 Display/Maintenance Panel Assembly Removal 5-37
5.3.5.7 Display/Maintenance Panel Assembly Replacement 5-39
5.3.5.8 Display Panel Board Removal 5-39
5.3.5.9 Display Panel Board Replacement 5-40
5.3.5.10 Maintenance Panel Board Removal 5-40
5.3.5.11 Maintenance Panel Board Replacement 5-41
5.3.5.12 Mini-floppy Drive Controller Board Removal 5-41
5.3.5.13 Mini-floppy Drive Controller Board Replacement 5-42
5.3.5.14 Mini-floppy Drive Removal 5-42
5.3.5.15 Mini-floppy Drive Replacement 5-43
5.3.5.16 Switching Power Supply Removal 5-43
5.3.5.17 Switching Power Supply Replacement 5-45
5.3.5.18 Power Controller Board Removal 5-45
5.3.5.19 Power Controller Board Replacement 5-45
5.3.5.20 Power Filter Assembly Removal 5-46
5.3.5.21 Power Filter Assembly Replacement 5-46
5.3.5.22 Fan Removal 5-47
5.3.5.23 Fan Replacement 5-47
CHAPTER 6 SCHEMATICS 6-1
CHAPTER 7 ILLUSTRATED PARTS BREAKDOWN
7.1 Scope 7-1
CHAPTER 8 TROUBLESHOOTING Page
8.1 General 8-1
8.2 VS-85 Microcode Diagnostics 8-1
8.3 The Maintenance Panel 8-3
8.3.1 Running Microcode Diagnostics 8-4
8.3.2 Monitor Diagnostic Switch 8-5
8.3.3 Using The Monitor Diagnostic Switch 8-7
8.3.3.1 Diagnostic Clock Adjustment 8-7
8.3.4 Using The Data Display 8-9
8.3.5 Using The Loop On Error 8-9
8.3 .6 Using The Loop On Test 8-9
8.4 VS-85 Memory and Peripheral Diagnostics 8-9
8.4 .1 On Line Diagnostics 8-9
8.4 .2 Stand-Alone Diagnostics 8-10
8.4 .3 Control Mode 8-11
8.5 Control Mode Dump 8-13
8.6 Filing A Memory Dump 8-14
APPENDIX A MNEMONICS, WORDS/PHRASES, MICROINSTRUCTIONS, A-1
AND MISCELLANEOUS HARDWARE RELATED FUNCTIONS
APPENDIX B VS-85 TO VS-100 CONVERSION B-1

LIST OF ILLUSTRATIONS

Figure Title Page
1-1 VS-85 Central Processing Unit Architecture 1-5
1-2 VS-85 Configurations 1-17
2-1 VS-85 System Block (with MCI/MCII) 2-2
2-2 VS-85 System Block (with Cache/SBC) 2-3
2-3VS-85 Control Memory2-4
2-4VS-85 A Bus2-8
2-5VS-85 B Bus2-12
2-62-21
2-7VS-85 1 Megabyte Main Memory
2-8VS-85 2 Megabyte Main Memory2-22
2-92-10VS-85 Memory Controller I2-25
VS-85 System Bus Controller 2-362-14
VS-85 Cache Memory 2-27
VS-85 Memory Timing 2-31
VS-85 Interprocessor Communication 2-33
VS-85 Memory Controller II 2-34
VS-85 Bus Adapter 2-46
3-1 Main Frame Switch and Indicator Locations 3-2
3-2 Power Filter Assembly 3-3
3-3Display Panel Switches and Indicators3-4
3-4 Internal Indicator Locations 3-9
4-1 VS-85 Shipping Carton 4-5
4-2 Swinging Cushion Pallet Feet 4-6
4-3Rolling Cabinet Off Cushion Pallet4-6
4-4VS-85 With Top and Front Covers Removed4-7
4-5
115 Volt AC Power Source Requirementsfor VS-85 Main Frame4-12
4-6
208-240 Volt AC Power Source Requirementsfor VS-85 Main Frame4-13
210-8250 Power Controller Board 4-15
4-7
Switching Power, Inc Switching Power Supply 4-16
4-9 LH Switching Power Supply 4-16
4-10 Powertec Switching Power Supply 4-17
4-11 C.alidyne Switching Power Supply 4-17
4-12 VS-85 Display Panel Controls and Indicators 4-19
4-13 System Interconnection Diagram 4-24
4-14 VS-85 Rear Panel Connector Plate Locations 4-25

LIST OF ILLUSTRATIONS (Cont'd)

4-15
4-16
4-17
4-18
4-19

5-1
5-2
5-2a
5-3
5-3a

BNC/TNC Connector Plates
4-26
"B" and "A" Cable Connections
4-28
Telecommunications Connector Plate
4-29
Tape Cable Connections 4-30
Connecting the Archiving Workstation
4-32

> 210-7610 Mini-diskette Drive Controller Testpoint Locations .. 5-4

Top Cover Removal ... 5-7
Top Cover Removal ... 5-7
Front Cover Removal .. 5-8
Front Cover Removal ... 5-8
Motherboard With Circuit Boards 5-10
210-7602 Control Memory Board 5-11
210-7600 A Bus Board .. 5-12
210-7601 B Bus Board .. 5-13
210-8230 Memory Controller I Board 5-14
Main Memory Board Size Selection Jumpers 5-15
Main Memory Size Selection ... 5-15
210-8804 Cache Memory Board 5-16
Main Memory Board Size Selection Jumpers 5-17
Main Memory Size Selection ... 5-17
210-8231 Memory Controller II Board 5-18
210-7605 System Bus Controller Board 5-19
210-7803 Main Memory Board .. 5- 5-20
210-8203 Main Memory Board ... 5-21
210-8311 Bus Adapter Board .. 5-22
210-7614 Maintenance Panel Board 5-24
210-8513 Display Panel Board 5-25
IOP Switch Settings (Except TC) 5-26
22V28 Large Disk Drive IOP .. 5-27
22 V 88 Very Large Disk Drive IOP (3-Port Version) 5-28
22V28 Large Disk Drive Disk Device Type Switch Settings

5-29
22V88 Very Large Disk Drive Disk Device Type Switch Settings

5-30
22V27-2 16-Port Serial IOP .. 5-31
22V25-2 Tape Drive IOP ... 5-32
TC IOP Switch Settings .. 5-33
22V26-3 TC IOP ... 5-34
Motherboard Removal 5-36
Rear View of Display/Maintenance Panel Assembly 5-38
Display Panel Board Removal 5-39
Maintenance Panel Board Removal 5-40

LIST OF ILLUSTRATIONS (Cont'd)

5-34 Mini-diskette Drive Controller Board Removal 5-41
5-35 Mini-diskette Drive Removal 5-42
5-36 Power Supply Removal 5-44
5-37 Power Filter Assembly Removal 5-46
5-38 Fan Filter Assembly 5-48
5-39 Lowering Fan Assembly 5-49
8-1 Maintenance Panel 8-3
8-2 Diagnostic Monitor Switch 8-5Diagnostic Clock Adjustment Pots8-8
Operator Troubleshooting Flowchart (1 of 3) 8-15
Operator Troubleshooting Flowchart (2 of 3) 8-16
Operator Troubleshooting Flowchart (3 of 3) 8-17
CE Troubleshooting Flowchart (1 of 5) 8-18
CE Troubleshooting Flowchart (2 of 5) 8-19
CE Troubleshooting Flowchart (3 of 5) 8-20
CE Troubleshooting Flowchart (4 of 5) 8-21
8-4 CE Troubleshooting Flowchart (5 of 5) 8-22
LIST OF TABLES
Table Title Page
1-1 Customer Engineering Publications 1-2
1-2 Corporate VS Documents 1-2
1-3 Corporate VS Data Sheets 1-3
1-4 VS-85 System Utility Programs 1-13
1-5 Serial Devices 1-18
1-6 Disk Devices 1-18
1-7
Tape Devices 1-18
1-8 Telecommunications Processors 1-18
2-1 VS-85 Trap Addresses 2-5
2-2VS-85 Status Bit Groups2-11
2-3VS-85 Main Memory Addresses (1 Meg)2-23
2-4 VS-85 Main Memory Addresses (2 Meg) 2-24
3-1 VS-85 Switches and Controls 3-1
3-2 VS-85 Indicators 3-7

LIST OF TABLES (Cont'd)

4-1 DVM Voltage Measurements for the 115VAC Receptacle 4-12
4-2 DVM Voltage Measurements for the 208-240VAC Receptacle 4-13
4-3 DC Voltage Measurements at Power Controller Board 4-14
5-1 Main Memory Size 5-20
5-2VS-85 Internal Signal Cable Connections5-23
5-35-45-5VS-85 IOP Priority List5-26
22V28 Disk Drive Types 5-29
22V88 Disk Drive Types 5-30
8-1 VS-85 Microdiagnostic Packages 8-2
8-2 VS-85 Maintenance Panel Controls 8-4
8-3VS-85 Maintenance Panel Indicators8-4
8-4 Diagnostic Switch Settings 8-6
8-5File Register Contents8-7
8-6 On Line Diagnostics 8-108-7
8-8
Stand-alone Diagnostics 8-11
8-9 Machine Check Error Codes 8-12Operating System Error Codes8-11

 M 4

 5

\qquad

CHAPTER 1

INTRODUCTION

1.1 PURPOSE

This manual contains information necessary to install and maintain the VS- 85 CPU. As new information becomes available it will be provided as either update/revisions to this manual or as PSN (Product Service Notice) documents.

1.2 SCOPE

This manual is divided into eight chapters, as follows:
Chapter 1: "Introduction" provides information on available vs documentation; gives a brief description of the VS-85 system and system software, system configurations, and associated peripherals; and provides system specification information.

Chapter 2: "Theory of Operation" provides block diagram level theory discussion for the vS-85 CPU and main frame components.

Chapter 3: "Operation" identifies all vs-85 main frame switches and indicators, including a functional description of each, together with settings and operating procedures.

Chapter 4: "Installation" gives guidelines necessary to make sure that the installation site conforms to specific requirements of the VS-85 system; provides procedures for unpac!eing and inspecting the VS-85 main frame; and provides instructions for initial set-up and operation of the VS-85, together with associated program-loading and operation-confirmation procedures.

Chapter 5: "Preventive and Corrective Maintenance" gives guidelines and schedules for necessary preventive maintenance ruatines. Included in this chapter is a list of tools and test equipment required for proper repair and maintenance of the vS-85 system. Also included are removal and replacement procedur- es pertaining to disassembly and replacement of system com- ponents that are field-replaceable.

Chapter 6: "Schematics" are not provided as part of this Standard Manual. The schematics will be published in the VS-100 Computer System Schematics Manual, WLI P/N 729-0872-A.

Chapter 7: "Illustrated Parts Breakdown" contains the illustrated parts breakdown used for identification when ordering field-replaceable components.

Chapter 8: "Troubleshooting" identifies the available microcode diagnostics, and off-line and on-line diagnostic test programs and gives guidelines for their use. Also provides troubleshooting flow charts for isolating fault locations to field-
replaceable or repairable components.

Appendix: The appendix provides the $C E$ with a ready reference of necessary information. The appendix includes a mnemonics listing, signal name definitions, and VS-85 microinstructions.

1.3 RELATED PUBLICATIONS

The following is a list of Customer Engineering and Corporate publications that contain information pertaining to the VS-85 system and related equipment.

Table 1-1. Customer Engineering Publications

SUBJECT	CLASS	PART NUMBER
90 KB Diskette Drive (Shugart SA-400)	3101	729-0123
75-Mbyte CDC SMD Disk Drive	3106	729-0211-A
90-Mbyte CDC Phoenix Disk Drive	3105	729-0198-B
288-Mbyte CDC SMD Disk Drive	3106	729-0211-A
620-Mbyte CDC FMD Disk Drive	3106	729-1253/54
2209V Tape Drive	3202	729-0249A/50A
2219V Tape Drive	3204	729-1136/37
6554 TC Processor	7303	729-1043
Systems Installation Guide - VS, 2200, WP/OIS	1106	729-0907
VS Diagnostics Handbooks	6302	729-XXXX
VS Printers	33XX	729-XXXX
VS Reference Summary Guide	6101	729-0716
VS Workstations	3404	729-XXXX

Table 1-2. Corporate VS Documents

DOCUMENT TITLE	PART NUMBER
Customer Site Planning Guide	$700-5978 \mathrm{D}$
VS 3271 Emulation User's Guide (2nd Edition)	$800-1306 \mathrm{EM-02}$
VS ATMSWPS Conversion Guide	$800-1499 \mathrm{TL}-02$
VS Assembler Language Pocket Guide	$800-6203 \mathrm{AP}-02$
VS Assembler Language Reference	$800-1200 \mathrm{AS}-03$
VS BASIC Language Reference	$800-1202 \mathrm{BA}-04$
VS BASIC Quick Reference	$800-6205 \mathrm{BQ}-01$
VS Batch Communications User Guide	$800-1305 \mathrm{BC}-01$
VS Batch Communications User Guide Addendum	$800-1305 \mathrm{BC}-01.01$
VS COBOL Conversion Guide	$800-1204 \mathrm{CC}-02$
VS COBOL Quick Reference	$800-6200 \mathrm{CP}-04$
VS COBOL Reference	$800-1201 \mathrm{CB}-06$
VS Card Reader Utility Reference	$800-1323 \mathrm{CU}-01$
VS Customer Planning and Resource Guide	$700-6727$
VS EZQUERY Reference	$800-1129 \mathrm{ER-02}$
VS Emulation of SNA 3274 and 3777, General Description	$800-1326 \mathrm{SE}-01$
VS FORTRAN Reference	$800-1208 \mathrm{FR}-01$
VS File Management Utilities Reference	$800-1308 \mathrm{FM}-02$
VS General Purpose Asynch. Comm. Programmers Guide	$800-1325 \mathrm{AI}-01$
VS/IIS 5548Z Typesetter Operating Instructions	$800-1501 \mathrm{TO}-01$
VS/IIS Advanced Functions Reference Guide	$800-1122 \mathrm{AR}-01$
VS/IIS List Managemen Operators Guide	$800-1120 \mathrm{LO-01}$

Table 1-2. Corporate VS Documents (cont'd)

DOCUMENT TITLE	PART NUMBER
VS/IIS Supervisors Procedures	800-1110WS-02
VS KEYENTRY Operator's Guide	800-1113KO-02
VS KEYENTRY Supervisor's Guide	800-1114KS-01
VS 2265V-3 Disk Drive Operating Procedures Sum. Card	800-6209
VS Model 5575 Band Printer User's Manual	800-6212
VS Operating System Services	800-11070S-04
VS Operating System Services Pocket Guide	800-62040P-02
VS PL/I Language Reference Manual	800-1209PL-02
VS Principles of Operation	800-1100PO-05
VS Procedure Language Quick Reference	800-6201PP-03
VS Procedure Language Reference	800-1205PR-04
VS Progran Development Tools Reference	800-1307PT-03
VS Programmer's Guide to VS/IIS	800-1304PW-04
VS Programmer's Introduction	800-1101PI-06
VS RPG II Language Reference	800-1203RP-05
VS RPG II Language Reference Addendum	800-1203RP-05.01
VS RPG II Language Reference Addendum	800-1203RP-05.02
VS Software Bulletin - Release 5.3	800-3109
VS Software Bulletin - Release 5.3 Addendum	800-3109.01
VS Software Bulletin - Release 5.3 Addendum	800-3109.02
VS Software Bulletin - Release 6.0	800-3111-01
VS SNA 3777-3 Emulator User's Guide	800-1330
VS SYSGEN Procedure (Release 5.01)	800-8201SP-05
VS System Activity Monitor (SAM) Reference Manual	800-1324-01
VS System Management Guide	800-1104SM-03
VS System Operation Guide	800-1102SO-06
VS System Utilities Reference	800-1303UT-03
VS TOTAL Pocket Guide	800-6207
VS TOTAL Neference Guide	800-1123TR.01
VS Teletypewriter Emulation (TTY) User's Guide	800-1314TU-02
VS USERSUBS Reference	800-1315US-01
VS User Aid COMPILE	800-3312
VS User Aid COMPUTE	800-3301CP-02
VS User Aid LIBRXREF	800-3309XR-01
VS User Aid MAIL	800-3302MA-01
VS User Aid PRINTIBM	800-3308PI-01
VS User Aid PRINTVS	800-3303PR-01
VS User Aid SORT LINK	800-3310SL-01
VS User Aid TAPEDUMP	800-3311
VS 100 Technical Notes	800-3102-01
VS/WP Introducing Word Processing on the VS	800-1407IW-02

Table 1-3. Corporate VS Data Sheets

DATA SHEET TITLE	PART NUMBER
VS Data Communications	$800-2107-03$
VS Disk Drives	$800-2504-03$
VS Ergo 2 Ergonomic	$800-2500-01$
VS EZQUERY	$800-2113-01$
VS Graphics Facility	$800-1446-01$
VS Ideographic Data Processing System (Chinese)	$800-2502-01$

Table 1-3. Corporate VS Data Sheets (cont'd)

DATA SHEET TITLE	PART NUMBER
VS Ideographic Data Processing System (Japanese)	$800-2501-01$
VS / IIS List Management	$800-2407 \mathrm{LM}-01$
VS /IIS Readability Index Generator	$800-2406 R$ I-01
VS /IIS 5548Z Typesetter	$800-2110-01$
VS KEYENTRY	$800-2300-01$
VS Languages	$800-2201-07$
VS MATHPLANNER	$800-1484-01$
VS MATHPLANNER	$800-1484-02$
VS Printers	$800-2507-01$
VS Processors	$800-2105-03$
VS Punched Card Reader	$800-2506-01$
VS Remote WangNet	$800-2304-02$
VS SNA 3274 Emulation	$800-2302-01$
VS SNA 3777 Emulation	$800-2303-01$
VS SNA Emulation	$800-2307-01$
VS System Activity Monitor (SAM)	$800-2116$
VS System Software	$800-2101-04$
VS Tape Drive	$800-2505-01$
VS Teletypewriter Emulation (TTY)	$800-2109-02$
VS Transdata 810	$800-2119$
VS Workstations	$800-2503-01$
VS/WP Integrated Information System	$800-2103-04$

1.4 SYSTEM DESCRIPTION

The Wang VS-85 computer system is a high-performance data processor with the programming flexibility of Virtual Storage. The VS-85 supports interacti.ve, multiuser operations in a general purpose computer environment and offers programming capability in BASIC, COBOL, FORTRAN, PL/l, and RPG II languages. The VS-85 also supports Assembler and Procedure languages, allowing operational sequences to be performed without user interaction.

The VS-85 uses the same CP4 processor as the VS-100, but the basic VS-85 does not have the VS-100's Cache memory. Cache Memory is an option and, when installed, must be accompanied by a System Bus Controller (SBC). Cache allows the VS-85 64-bit main memory accesses. When the Cache/SBC is not installed, it is substituted for with a Memory Controller I (MCI) and a Memory Controller II (MCII) combination. The MCI and MCII combination allows only 32-bit main memory access. The MCI provides all of the normal memory control functions of the Cache, but does not have the 32 K bytes of RAM memory. The MCII is similar to the SBC, except that one half of the 64 -bit path to Cache has been removed. The Bus Adapter (BA) functions remain the same, except that the BA is signaled as to when a Cache/SBC is or is not installed. This permits the BA to process either 32 -bit or 64 -bit data words.

The VS-85 minimum main memory, without the Cache Memory/SBC option, is 1 Megabytes and the maximum memory is 4 Megabytes. However, a VS-85 with the Cache Memory/SBC option must contain at least 2 Megabytes of main memory.

The VS-85 can control up to 2.5 gigabytes of on-line disk storage (5.1 gigabytes with the optional Cache Memory); a maximum of 32 serial devices (48
with the optional Cache Memory), including the Archiver Workstation; up to four tape drives; and telecommunications interface capabilities ranging from a single remote terminal to full protocol compatibility with a larger host computer. The VS-85 supports all serial VS peripheral devices. Parallel printers and workstations, except remote TC devices, are NOT supported on the VS-85.

Figure 1-1. VS-85 Central Processing Unit Architecture

1.4.1 CENTRAL PROCESSOR

Housed in a compact cabinet with the Main Memory and optional IOPs, the CP4 central processor (CP) is the heart of the VS-85. It consists of an A Bus board and a B Bus board. The CP4 processor is a faster, more sophisticated version of the 8300 CP used in the VS-60/80. It supports the same instruction set as the 8300 , with the exception of certain privileged instructions related to address translation.

The VS-85 CP supports binary, packed-decimal, and floating-point arithmetic. Included in the $C P$ are sixteen $32-b i t$ general purpose registers and four 64-bit floating-point registers. As in the VS-60/80, the machine instruction set is compatible with the IBM 370 instruction set.

The following features of the CP4 are not found in the 8300. They provide the CP4 processor with much of its expanded processing power.

1. 32-Bit CP Architecture - ALU operations in the $C P$ use 32-bit register operands. The $C P$ also has a 32 or 64 -bit data bus to Main Memory.
2. Fast Cycle Time - Processing time in the CP4 is approximately 160 nanoseconds/micro-instruction.
3. Overlapped Macro-Instruction Decoding - The use of a dedicated, buffered Memory Address Register (MARO) allows the simultaneous processing of several different macroinstructions.
4. Buffered Operand Access - Allows the 32-bit ALU path to be used in important storage-to-storage macroinstructions (for example, MOVE, COMPARE).
5. Hardware Multiplication and Division Support - Hardware within the CP supports the multiplication of two 16 -bit operands to form a 32-bit result within two instrustion cycles (i20 nsecs). This feature allows floating-point fractional and fixed-point multiplication, and the processing of array-orientated macroinstructions. An efficient non-restoring binary division operation is provided by two microinstructions, ASH and ASL.

1.4.2 CONTROL MEMORY

Control Memory (CM) in the VS-85 is based on $4 \mathrm{Kxl-bit}$ loadable RAM chips located on a Control Memory board. To load operational or diagnostic microcode into $C M$, a mini-diskette drive is provided on the front of the VS-85 chassis. A loadable $C M$ allows for functional $C P$ expansion, $C P$ microcode updates using a diskette instead of replacing expensive PROMs, and the use of loadable CP microdiagnostics.

Control Memory in the $:-85$ is 8 K bytes in size. A 1 K PROM located on the mini-diskette controlle soard contains the bootstrap program necessary to load the operational or diagnostic microcode into Control Memory.

1.4.3 MEMORY CONTROLLER I (MCI)

Unlike the VS-100, the standard VS-85 system has a lower cost 32-bit memory data bus. This 32 -bit bus is controlled by the Memory Controller I (MCI) board. The MCI contains the same basic memory control and data passing services as the Cache Memory board (described below), but does not contain the 32 K bytes of Cache RAM.

1.4.4 CACHE MEMORY

An optional feature recently added to the VS-85 is a VS-100 type Cache Memory, a 32 K byte block of high-speed (80 nsec) local memory. The Cache option not only decreases the CP's data retrieval time, it also provides a 64-bit Main Memory data bus.

The cache function is transparent to the user, "cached" or concealed within the depths of the CP. Onl.y the apparent increase in Main Memory access speed is visible to the user. With this feature, the CP is able to access needed data without initiating a full Main Memory read cycle. If the necessary information is found in cache, a considerable savings in processing time is achieved (on the order of 480 nsecs).

Cache Memory is a buffer between the $C P$ and Main Memory. Its main function is to improve memory transfer rate by providing high speed access to needed data. It accomplishes this by storing a copy of the most recently used subset of Main Memory. When the $C P$ does a memory read, it first references the cache. If the needed data is found here, a cache "hit" occurs and no Main Memory cycle is initiated. If the required data is not found in cache, a cache "miss" occurs and a Main Memory cycle is initiated. The data read from memory is then gated to both the $C P$ and the cache, keeping the cache contents current with Main Memory.

Cache Memory operates on the "locality of reference" concept, which is based on two assumptions: once a location in memory is referenced, it is often referenced again within a short period of time; and once a location is referenced, a nearby location will also be referenced. These assumptions hold true for the most part because, in programming, commonly used variables are usually located near each other and much use is made of program loops and common subroutines. The use of sequential instruction indexing and linear data arrays also play a part in the successful incorporation of a Cache Memory. For a detailed look at the cache and its operation, refer to Chapter 2, Theory of Operation.

1.4.5 MEMORY CONTROLLER II

The Memory Controller II (MCII) is used in conjunction with the MCI board. The Memory Controller II contains basically the same logic functions as the System Bus Controller (SBC), described below, but does not support the 64-bit memory data bus.

1.4.6 SYSTEM BUS CONTROLLER

The SBC must be installed in place of the Memory Controller II when the optional Cache Memory board is installed. The SBC acts as the "traffic cop" of the VS-85 CP and controls the routing of data between the CP, the Bus Adapters (BA), and Main Memory. The SBC is also responsible for generating parity on $M M$ writes and correcting single bit errors on MM reads. Other features of the SBC include Error Logging, Read Modify Writes and single byte CP reads, and the use of an External Condition Register to select and record events occurring outside the CP.

1.4.7 MAIN MEMORY

The VS-85 can contain one to two 210-7803 or 210-8203 Main Memory boards. Memory can range in size from 1 Megabytes to a maximum of 4 Mbytes with memory size increasing in 1 or 2 Megabyte increments. Each Main Memory board contain a maximum of 1 Megabytes of data for the 7803 board or 2 Megabytes for the 8203 board.

A VS-85 with no Cache option (MCI installed) can support 1,2 and 4 megabytes of Main Memory. A VS-85 with the Cache option only supports 2 and 4 megabytes of Main Memory.

1.4.8 BUS ADAPTER

The Bus Adapter (BA) is the interface between the VS-85 CP and up to six IOPs and attached peripheral devices. The BA also provides data buffering and routing between the 16 -bit IOP data path and the 64 -bit Main Memory (MM) data bus (with the optional Cache Memory board installed), or the 32-bit Main Memory data bus (without the optional Cache Memory board). Because the IOPs use a 16 -bit path and $M M$ uses a 64 or 32 -bit bus, the BA must put data going from the IOP to $M M$ into 64 or 32 -bit blocks for transfer to $M M$. It must also perform the reverse function on data going from MM to an IOP. Only one BA can be installed in the VS-85, allowing the $C P$ to interface with a maximum of six IOPs.

1.5 CP MOTHERBOARD

The Central Processor Motherboard (210-8508) contains all CP logic circuit boards, the Main Memory boards, associated bus control logic boards, and I/0 Processors.

All circuit boards installed on the VS-85 CP Motherboard, along with a brief description of each board, follows:

1. 210-7600 A Bus (CP 非1) - Contains all A bus registers, status registers, branch decision logic, multiplier, and the real-time clock.
2. 210-7601 B Bus (CP 非2) - Contains all B bus registers, Translation RAM, binary ALU, and the decimal ALU.
3. 210-7602 Control Memory - Contains microinstruction storage, instruction counter, trap handling logic, and system clock.
4. 210-7803 1 Megabyte Main Memory Board - Used for storage of software instructions and data.
5. 210-8203 2 Megabyte Main Memory Board - Used for storage of software instructions and data.
6. 210-8230 Memory Controller I - Contains memory sequencing controls and buffers for all read data. Only supports a 32-bit memory access.
7. 210-8804 Cache Memory - Optionally replaces the Memory Controller I. Contains 32 K bytes of Cache Memory, memory sequencing controls, and buffers for all read data. Supports a 64 -bit memory access. Used for s.pport of a 2nd disk IOP or a tape IOP for the 2.219 V tape drive.
8. 210-8231 Memory Controller II - Controls all Read/Write data to/from Main Memory, ECC generation, correction logic, and error checking. The MCII also contains the External Condition Register (ECR). Only supports a 32-bit memory access.
9. 210-7605 SBC - Must be used with Cache option and replaces Memory Controller II. Controls all Read/Write data to/from Main Memory, ECC generation, correction logic, and error checking. The SBC also contains the Bus Transaction Log (BTL) and the External Condition Register (ECR). Supports a 64-bit memory access.
10. 210-8311 Bus Adapter - Contains the logic necessary to interface up to six IOPs with the SBC/Memory Controller II.

1.6 INPUT /OUTPUT PROCESSORS

In the VS-85 as in the $60 / 80 / 100$, the IOPs relieve the $C P$ of the time consuming task of communicating directly with attached peripherals. With this feature, I / O processing and data processing can run concurrently on the VS-85 with the resultant increase in processor job-handling speed. Following is a list of the available IOPs with a description of the individual peripherals each IOP can support.

1. 22V27-1/2 Serial IOPs (WLI P/N 212-3021/22) - Supports the 2246 S Serial Workstation, the $2246 / 56 \mathrm{C}$ Combined Workstation, the 2266 S/C Archiving Workstation, or serial printers, in any combination. The 22V27-1 supports up to eight serial devices and the $22 \mathrm{~V} 27-2$ supports up to 16 serial devices. Also supports the $6554-1 / 2 / 3 / 4$ TC Processor.
2. 22V28 Large Disk Drive IOP (WLI P/N 212-3023) - Supports up to four 2265V-1/2265V-2 Storage-Module Disk Drives or 2280V-1/2280V-2/-2280V-3 Cartridge Module Disk Drives in any desired combination.
3. 22V88-1/4 Very Large Disk Drive IOP (WLI P/N 212-3050/49/48/47) Supports up to four $2265 \mathrm{~V}-1 / 2265 \mathrm{~V}-2 / 2265 \mathrm{~V}-3$ Storage-Module Disk Drives or Fixed Module Disk Drives, or 2280V-1/2280V-2/-2280V-3 Cartridge Module Disk Drives, in any desired combination.

NOTE

The 22V65-3 620 Megabyte drive requires support by Operating System software version 6.10.
4. 22V15-2 Triple-Density Tape Drive IOP (WLI P/N 212-3030) - Supports up to four 2219V-1/2219V-3 Nine-Track Magnetic Tape Transports, in any desired combination. To use this IOP, the optional dache Memory board must be installed.
5. 22V25-2 Dual-Density Tape Drive IOP (WLI P/N 212-3017) - Supports up to four $2209 \mathrm{~V}-1 / 2209 \mathrm{~V}-2$ Nine-Track Magnetic Tape Transports and 2209V-3 Seven-Track Magnetic Tape Transports, in any desired comi:nation.
6. 22V26-1/2/3 Telecommunications IOP (WLI P/N 212-3018/19/20) - Supports up to three separate synchronous communications lines (includ-ing Automatic Calling Units). Currently available line speeds include 1200, 2400,4800 , and 9600 baud. The system can run different protocols on separate lines concurrently from the same IOP. Currently supported industry standard protocols for bisynchronous transmission include $2780 / 3780$ emulation, 3270 emulation, and HASP. Model 2246R Remote Stand-Alone Workstations also can be attached to the system via 22 V 26 IOPs, either locally through a dummy modem or remotely through a standard modem.
7. 22V67W WangNet IOP (WLI P/N 212-3046) - Supports up to 32 WangNet devices on a single Peripheral Band channel.

1.7 DISPLAY AND MAINTENANCE PANELS

The Display Panel, located in the top left front corner of the main frame, provides the user with pertinent information concerning the operating condition of all I/O devices connected to the main frame as well as data concerning the CP status. The panel contains 10 LEDs arranged in one vertical column with four LEDs for CP status and one horizontal row with 6 LEDs for IOP Parity Error status. (See figure 3-3.)

The Display Panel control pushbuttons allow the user to load system or diagnostic microcode, initialize the system, or force it into the Control Mode. These pushbuttons are part of the Display Panel board and are hardwired directly to it.

The Maintenance Panel, located directly below the mini-diskette drive, is used by the CE in conjunction with the microcode diagnostics for troubleshooting the vS-85 main frame. (Refer to paragraph 8.3.)

1.8 POWER SUPPLY

WARNING

$* *$	
$*$	
$*$	DO NOT OPEN THE SWITCHING POWER SUPPLY UNDER ANY

女****************

Power for the vS-85 main frame is supplied from one source: an OEM switching power supply providing the $+/-5 \mathrm{Vdc}$ and the $+/-12 \mathrm{Vdc}$. The unit is located behind the front cover, directly below the IOP portion of the Motherboard. The unit is not accessible by the customer, and any work involving the unit should be done by a Wang CE. (Refer to Chapter 5, Preventive and Corrective Mairtenance.)

1.9 SOFTWARE DESCRIPTION

The VS-85 supports Release 5.03 of the VS Operating System (OS). This software release contains several new features and functional improvements over previous releases. Major areas of change are in the Command Processor, the Operator's Console Menu, and the SYSGEN procedure. Most other features of Release 5.03 are similar to previous releases and are discussed in paragraphs 1.9.3 through 1.9.6.

However, Operating System 5.03 will not support the 22V65-3 620 Megabyte Fixed Module disk drive (FMD). These drive will require a later version of the VS Operating System; e.g. Release 6.10.

1.9.1 OPERATING SYSTEM 5.03 DESCRIPTION

Changes in the Command Processor include a slightly changed Main Menu to reflect the combination of two commands, SHOW DEVICE STATUS and MOUNT/DISMOUNT VOLUMES, into one called COMMAND DEVICES. This new command also includes several new options that allow the user to perform such functions as changing mount restrictions and modifying work and spool file eligibility more easily.

Changes in the Operator's Console menu include the displaying and controlling of all devices through separate PF keys (PF9 through PF13), the setting of up to eight workstations as dual operator/user mode terminals with

PF14, and the activating of the PRINT I/O ERROR LOG command also with PF14.
Major changes have been made in the SYSGEN Procedure in Release 5.03. These changes include the use of a dynamic procedure as opposed to the assemble and link method of other software releases.

1.9.2 OPERATING SYSTEM 6.10 DESCRIPTION

New operating system release 6.10 includes several new features and functional changes to vS systems. For details, refer to vS Software Bulletin Release 6.10, WLI P/N 800-3111-01. Some of the highlights are listed below.

1. Operating system enhancements:
a. A Broadcast facility to allow workstation messages to be sent between an Operator's Console and user workstations, including Operator-to-user and user-to-Operator facilities.
b. Allows assignment of Operator privileges to a User ID as well as to a workstation.
c. Allows reservation of diagnostic cylinders on $2265 \mathrm{~V}-3$ and $\mathbf{Q} 2040$ disk drives for stand-alone disk diagnostics.
d. Extends disk I / O operation timeout period from 60 seconds to 160 seconds.
e. Changes in the Set Print Mode Default screen to allow spooled print files to be sent to a specific device address (a printer, or a TC device which may be changed to a remote printer) instead of the lowest device-numbered printer available.
2. Networking Operations:
a. Allows automatically queuing a print file to the Transmit queue so that it can be printed on a remote system.
b. Allows automatically queuing a print file to the physical system after logging on to a remote VS.
3. COLDSTART:
a. Can now be used with any vs system.
b. Permits bringing up a new system by formatting the system disk and copying a minimum system to it.
4. Control Mode Dump:
a. Is now the same for all vS systems.
b. Supports an option on VS-24/45/85/90/100 processors to put a dump on a disk volume as a file, using DISKINIT, while preserving the volume's VTOC.
5. System Software:
a. Enhancements to several utilities, including BACKUP, CONTROL, COPY, DISKINIT, EDITOR, and SECURITY.
b. Supports a new utility, IOELOG, for examining an I/O error log file.
6. New Devices:
a. Release 6.0 supports the following new devices - Wang Professional Computer, 6300 GM Graphics workstation, 2529 V cartridge tape drive, $2265 \mathrm{~V}-3620 \mathrm{Mb}$ disk drive, SW04(-3) disk switch option, and the 5575 band printer.

1.9.3 USER CONVENIENCE FEATURES

The continuing implementation of user convenience features make the vs-85 easy to use by programmers and nonprogrammers alike. These features, along with many others, include a versatile data entry, file maintenance, and report generation facility; an interactive text editor for entering and editing souree programs; an easy-to-use symbolic debug facility for program debugging; and a large assortment of system utility programs.

1.9.4 EXPANDED OPERATING SYSTEM FEATURES

Recent changes in the Command Processor include a slightly changed Main Menu to reflect the combination of two commands, SHOW DEVICE STATUS and MOUNT/ DISMOUNT VOLUMES, into one called COMMAND DEVICES. This new command also includes several new options that allow the user to perform such functions as changing mount restrictions and modifying work and spool file eligibility more easily.

Changes in the Operator's Console menu include the displaying and controlling of all devices through separate PF keys (PF9 through PF13). PF14 now allows setting up eight workstations as dual operator/user mode terminals, and the activating of the PRINT I/O ERROR LOG command.

1.9.5 ADDITIONAL SYSTEM UTILITIES

The VS-85 system provides a variety of additional system utility programs to support the general programming task. These include, among others, the COPY, SORT, and LINK utilities summarized below.

The versatile COPY utility permits the user to copy a single program or data file, an entire library of such files, or a complete disk volume. For data files, the COPY utility provides an option to change the file organization from sequential to indexed or indexed to sequential.

The SORT utility provides high-speed sorting and merging capabilities for both indexed and sequential files, with either fixed or variable-length records.

The LINK program is used to link together two or more program modules into a single large program, and also offers the option to remove the symbolic debug information previously inserted for debugging purposes.

Ot eer utilities include a translation utility which translates from EBCDIC to ASCII and vice-versa; a special copy utility which copies and automatically translates Wang 2200 program and data files to vS format (and vice-versa); a display utility, which can be used to display and/or print printer files; a procedure language interpreter utility which allows the programming of operational sequences performed without user interaction.

Table 1-4 lists currently available vs-85 utility programs with a brief description of the function of each.

Table 1-4. VS-85 System Utility Programs

PROGRAM NAME	DESCRIPTION
ASSEMBLER	Assembles a source program written in VS assembler language.
BACKUP	Copies, consolidates, and Restores a file, library, volume.
BASIC	Compiles a program written in VS BASIC.
COBOL	Compiles a program written in VS COBOL.
COMPRESS	Consolidates used and free extents on a volume.
CONDENSE	Generates single record type data file from multi-record type.
CONTROL	Creates a Control file that defines all field, record, and file attributes for a specified data file.
COPY	Copies files/libraries/volumes from one location to another. Also modifies/rebuilds file organization or index structures.
COPY 2200	Copies and automatically converts files from standard 2200 format to standard VS format, and vice versa.
COPYWP	Copies/deletes/renames/reorganizes/merges documents/libraries from one VS WP system to another. Converts a document to file or a file to document for VS data, source, print, or 2780 TC.
DATENTRY	Creates and/or maintains records in a data file as defined by specifications in Control File(s); also lists or prints files.
DEBUGGER	VS Symbolic Debugger allows user to interactively monitor an executing program, locate and correct errors, and alter flow.
DISKINIT	Initializes, Reformats, Relabels, or Verifies a disk volume. Writes a volume label and optional Volume Table of Contents in VS format. Removes and identifies all bad blocks in VTOC.
D ISPLAY	Displays file contents on the workstation screen.
DUMP	Creates a print file from a full Segment 2 memory dump which includes a program's variables, buffers, and control blocks using the DUMP function of the Debug Processor.
EDITOR	Enters, displays, and edits source procedure or program text.
EZFORMAT	Generates a customized data entry and maintenance program corresponding to a user-designed screen format and control. file. Alternate to DATENTRY for existing DMS files.
FORMCNTL	Creates Forms Definition file for VS forms-loadable printers.
FORTRAN	Compiles a program written in VS FORTRAN.
FLOPYDUP	Duplicates diskettes, creates/transfers diskette image files.
I BMCOPY	Copies/converts TBM format diskette file to/from VS file for mat soft-sectored diskettes. Translates ASCII to/from EBCDIC.
INFO	A custom on-line help and information documentation facility.
INQUIRY	Interrogates/tests data files for user-specified field values.
LINKER	Combines two or more compiled or assembled program modules into a single executable program.
LISTVTOC	Produces complete or selective listings of a specified volume's Table of Contents, and examines the VTOC for errors.
LIS TWP	Generates summary reports of VS WP documents/file attributes.
PL/l	Compiles source programs written in VS PL/l.
PATCH	Modifies specific HEX values or object files. Prints HEX dump.
PRINT	Places a print file in print queue with user-selected options.
PROCEDURE	An Interpreter utilizing a source program written in Procedure Language to perform interactive and/or background operations.
REPORT	Produces customized reports from a data file.
RPG II	Compiles source programs written in VS RPG II.
SAM	Interactive monitor provides performance/usage of VS system.
SECUR ITY	Protects system resources at System, File, and Access level.

Table 1-4. VS-85 System Utility Programs (cont'd)

PROGRAM NAME	DESCRIPTION
SORT	Sorts records in data file(s) by key values, with optional capability to merge two or more sorted files.
SYSGEN	Generates control blocks that comprise the Operating System nucleus.
TAPECOPY	Copies any combination of files where tape is in/output media.
TAPEINIT	Initializes 7 or 9 track tape to Wang std., IBM , or NO label format; user select Parity, Density, write end-of-tape marker.
TCCOPY	Emulates IBM 2780/3780 protoculs for non-VS communication.
TRANSL	Automatically translates files to or from ASCII or EBCDIC character sets. Also translates files according to USER defined translation table.
TTY	Emulates standard, asynchronous (ASCII) teletypewriter device.
VERIFY	Tests primary index, alternate indices, and data chain of indexed files to disclose file structure problems.
VSCOPY	VS to VS communication/manipulation of executable image files.

1.9.6 FILE PROTECTION AND SECURITY

All VS-85 system disk and tape files are classified according to a flexible file protection and security system, tailored at installation to the specific needs of the user. This system is under the direct control of the System Security Administrator(s) at each installation. The System Security Administrator (s) are specially recognized users who determine the meaning and use of the file protection classes. They are able to access all files on the system, including the System User List and have unlimited access rights.

1.9.6.1 File Protection Codes

Every program, procedure, and data file on the system can be placed in one of thirty file protection classes. Protection class codes are designated by a capital letter, 'A' through ' Z ', which represent protection classes whose meanings are assigned by the System Security Administrator(s). Such assignments normally are given memonic relationships, as indicated in the following list of "typical" examples:

Class $W=$ The Work Order File
Class $P=$ The Product File
Class $C=$ The \bar{C} ustomer File
Class $Q=$ The \bar{S} ales Quota File

1.9.6.2 Special Protection Codes

The system also recognizes four special (system) classes, " " (space or blank), "\$" (currency symbol), "@" (at sign), and "非" (number or pound sign), each of which are reserved for specific uses:

Class " " - Designates UNPROTECTED FILE: Files in this class may be deleted, executed, read, and/or written to by all users. This is the default class for files that are not assigned a system class.

Class＂\＄＂	－Designates READ／EXECUTE FILE：This file class allows any
	system user or program to read and／or execute the file，but only the owner of record（that is，the user who created the file）and the system security administrator can write to it．This class is used for subroutines and macros that can be read and incorporated into other program files，but most be protected against direct modification．All system macros are assigned to this file class．
Class＂＠＂	－Designates EXECUTE－ONLY FILE：All users may use the file， but only the owner of record and the system security admini－ strator can read it or write to it．Files which must be protected from modification，should be assigned this classi－ fication．All system utility files，at system generation time，should also be assigned to this class．
Class＂非＂	－Designates PRIVATE or SYSTEM SECURITY ADMINISTRATION FILES： These files are not available to any of the normal class codes．The＂非＂class，unlike the other file protection classes，is used to define one protection class（PRIVATE） for each user．When specified，the＂非＂class code identi－ fies those files which can be accessed only by the owner of record and by the System Security Administrator．

1．9．6．3 User Access Rights

Before users of the system can access a protected file，they must identify themselves using the LOGON command．At logon time，the user＇s LOGON ID and PASSWORD are validated by lookup in the SYSTEM USER LIST，and the user＇s＂ac－ cess rights＂are determined relative to the defined file protection classes． Access rights are listed in the SYSTEM USER LIST for each file of a protection class and are used to specify three different levels of privilege in order of increasing responsibility，as follows：

1．BLANK＂＂－Access by System Security Administrator（s）Only．
2．EXECUTE＂E＂－Execute－Only Access．Applicable to program files only．User may run files of this class，but may not copy，examine，link，modify，or read them．

3．READ＂R＂－Read，and Execute Access．Program files may be copied，debugged，and linked．Data files may be opened in INPUT mode only．

4．WRITE＇W＂－Write，Read，and Execute Access．User has com－ plete access rights and may also Scratch，Protect， Modify，Delete and Debug this classification of files．

These access rights are checked whenever a user attempts to execute a program or procedure，open an existing file，or rename or scratch a file．

1.10 ERROR DETECTION AND CORRECTION

To ensure the integrity of information stored in memory and on external
storage devices（disk or tape），the system provides automatic error detection and correction facilities．In physical memory，all single－bit errors are corrected automatically，while multi－bit errors cause an error indication． Similar checks also are performed on information stored on disk or tape．

1．11 CONFIGURATIONS

The modular design of the $V S-85$ system permits it to be readily expanded with additional physical memory（a maximum of 4 Mbytes ），more on－line storage devices（a maximum of 8 devices），and additional workstations and printers（a maximum of 48 serial devices）．Expansion can be carried out with no impact on existing software，except for the need to regenerate the system to update the Operating System software to reflect the newly－added devices．Consequently， the user with distributed data processing requirements can purchase several assorted system configurations of differing size and complexity，and can use a common set of application software on all systems．Typical VS－85 system con－ figurations are as follows：

1．11．1 MODEL NUMBERS

MODEL 非	WLI P／N	MEMORY S IZE
VS－85－1	$157 / 177-7225$	1 MEGABYTE
VS－85－2	$157 / 177-7226$	2 MEGABYTE
VS－85－4	$157 / 177-7228$	4 MEGABYTE

Part number prefix $157=50 \mathrm{cps} / 230$ Vac systems Part number prefix $177=60 \mathrm{cps} / 115 \mathrm{Vac}$ systems

1．11．2 DOMESTIC UPGRADE KITS

MODEL 非	WLI P／N	DESCRIPTION
UJ－3188	$206-3188$	1 MB to 2MB
UJ－3192	$206-3192$	2 MB to 4MB
VS85 CACHE	VS85 CACHE	32 K Cache Option

1．11．3 INTERNATIONAL UPGRADE KITS

MODEL 非	WLI P／N	DESCRIPTION
UJ－3188	$205-3188$	1 MB to 2MB
UJ－3192	$205-3192$	2 MB to 4MB
VS85．CACHE	VS85 CACHE	32K Cache Option

* VS85 WITH CACHE OPTION mAY have an optional second disk iop, a 22V15-2 tape iop, or a fourth serial Iop.

1.12 ASSOCIATED PERIPHERALS

The VS-85 system supports currently offered VS peripheral devices, with the exception of all parallel workstations and printers. The following tables list those peripherals available for the VS-85.

Table 1-5. Serial Devices

DEVICE	MAXIMUM 非	IOP	NOTES
Workstations and Printers	32	$22 V 27-1 / 2$	CPU without optional Cache Memory Supports all VS workstations/Printers
Workstations and Printers	64	$22 V 27-1 / 2$	CPU with optional Cache Memory Supports all VS workstations/Printers

Table 1-6. Disk Devices

DEVICE	MAXIMUM \#	IOP	NOTES
2270V-1/2/3	32	22V27-1/2	CPU without optional Cache Memory. Plus 32 Archiving Workstations
22V70-1/2/3	64	22V27-1/2	CPU with optional Cache Memory Plus 64 Archiving Workstations
$\begin{gathered} 2280 \mathrm{~V}-1 / 3 \\ \text { CMD } \end{gathered}$	$\begin{gathered} 4 \\ (8) \\ \hline \end{gathered}$	$\begin{aligned} & 22 \mathrm{~V} 28 \\ & (\mathrm{l}) \end{aligned}$	CPU without optional Cache Memory (CPU with optional Cache Memory)
$\begin{gathered} 2265 \mathrm{~V}-1 \\ \text { SMD } \end{gathered}$	$\begin{gathered} 4 \\ (8) \\ \hline \end{gathered}$	$\begin{aligned} & \text { 22V28 } \\ & (\mathrm{ll}) \end{aligned}$	CPU without optional Cache Memory (CPU with optional Cache Memory)
$\begin{gathered} 2265 \mathrm{~V}-2 \\ \text { SMD } \end{gathered}$	$\begin{gathered} 4 \\ (8) \end{gathered}$	$\begin{aligned} & 22 \mathrm{~V} 28 \\ & (\mathrm{l}) \end{aligned}$	CPU without optional Cache Memory (CPU with optional Cache Memory)
$\begin{gathered} 2265 \mathrm{~V}-3 \\ \text { FMD } \end{gathered}$	$\begin{array}{r} 4 \\ (8) \\ \hline \end{array}$	$\begin{aligned} & 22 \mathrm{~V} 88-1 / 4 \\ & (\mathrm{I}) \end{aligned}$	CPU without optional Cache Memory (CPU with optional Cache Memory)

Table 1-7. Tape Devices

DEVICE	MAXIMUM \#	IOP	NOTES
$2209 \mathrm{~V}-2 / 3$	4	$22 \mathrm{~V} 25-2$	Kennedy tape drives, all models
2219 V	4	$22 \mathrm{~V} 15-2$	Telex tape drives. Requires optional Cache Memory

Table 1-8. Telecommunications Processors

DEVICE	MAXIMUM 非	IOP	NOTES
6554 TCP	1	$22 V 27-1 / 2$	1 TCP with maximum of 4 ports
TC IOP	2	$22 V 26-1 / 2 / 3$	6 data communications ports maximum

1.13 SYSTEM SPECIFICATIONS

DIMENS IONS

Width
Height
Depth

INCHES	CENTIMETERS
27.0	68.6
36.0	91.4
29.0	73.7

Front
Rear Left Right Top

INCHES	CENTIMETERS
36	91.4
24	60.9
0	0
0	0
20	50.8

NET WEIGHT

POWER REQUIREMENTS (DOMESTIC)

POWER REQUIREMENTS (INTERNATIONAL)
heat output

TEMPERATURE

HUMIDITY

ALTITUDE (Note)

CABLE LENGTH

Maximum

FEET	METERS
10,000	3048

Power

POUNDS	KILOGRAMS
300	136

Ac Variation Amps
Watts
Dedicated
Circuit

Ac Variation
Amps
Watts
Dedicated
Circuit

BTU/HR	$\mathrm{KCAL} / \mathrm{HR}$
2737	690

MINIMUM	MAXIMUM
$+60^{\circ}$	$+90^{\circ}$
$+15.5^{\circ}$	$+32.2^{\circ}$

MINIMUM	MAXIMUM
20%	80%

$115 \mathrm{~V} / 60 \mathrm{~Hz}$	$208-240 / 60 \mathrm{~Hz}$
$+/-10 \%$	$+/-10 \%$
7.0	3.5
805	805
Yes. With 30 Amp (115 Vac) or 20 Amp (208-240 Vac) circuit breaker in the computer room.	

$230 \mathrm{~V} / 50 \mathrm{~Hz}$
$+/-10 \%$
3.5
805
Yes. With 20 Amp circuit breaker in the computer room.

FEET	METERS
8	2.4

Tape drives installed above 4000 ft ．（ $1200 \mathrm{me}-$ ters）and disk drives installed above 6500 ft ． （1960 meters）require high－altitude options．

VS－85 ARCHITECTURAL SPECIFICATIONS				
Min imum Main Memory	1 MB	Maximum storage／diskette	N / S	
Maximum Main Memory	4 MB	Maximum 非 of IOPs	6	
Incremental Main Memory	$1 / 2 \mathrm{MB}$	Maximum 非 serial devices	48	
Control Memory size	8 K Inst	Concurrent serial W／Ss（Note）	$32 / 64$	
Cache（optional）	32 KB	Maximum 非 of disk，no Cache	4	
Max disk storage，no Cache	2.5 GB	Maximum 非 of disk，w／Cache	8	
Max disk storage，w／Cache	5.1 GB	Maximum 非 of tape drives	4	
Console controller	N／S	Maximum 非 of TC lines	6	

Main Memory cycle time	480 ns	Microinstruction cycle time	160ns
MCII／SBC cycle time	160 ns	Cache cycle time	160ns
CP data path	$32-\mathrm{bit}$	Main memory data path	$64-\mathrm{bit}$
CP Address path	$24-\mathrm{bit}$	Main Memory address path	$20-\mathrm{bit}$
CP word length	$32-\mathrm{bit}$	IPC word	$32-\mathrm{bit}$
BA－IOP data path	$16-\mathrm{bit}$	BA－IOP Control path	$8-\mathrm{bit}$
System Clock	25 Mhz	Main Memory refresh cycle	15 us
Main memory band width	$8.3 \mathrm{MB} / \mathrm{s}$	Virtual address space／user	2 MB

N／S＝Not supported．

NOTE

1．Thirty two（32）concurrent serial workstations without Cache option．
2．Sixty four（64）concurrent serial workstations with Cache option．

CHAPTER

CHAPTER 2

THEORY OF OPERATION

2.1 INTRODUCTION

The VS-85 consists of eight major board assemblies, as shown in figures $2-1$ and 2-2, the System Block diagrams. The System Block diagrams should be used to observe the multitude of inter-board signal lines and busses and the direction of data flow while reading the block theory of operation. Because the I/O Processor (IOP) is common to other VS systems, it will only be referred to when necessary in relation to the remaining seven boards. A block diagram of the major logic elements on the other boards accompanies the theory of the board. The theory explains the major logic element functions of each board, but these explanations do not trace specific signals, busses, or microinstructions through the entire system.

The vS-85 architecture is the same as the vS -100 , but the basic vS -85 does not have the VS-100's Cache memory. Cache Memory is an option and, when installed, must be accompanied by a System Bus Controller (SBC). Cache allows the VS-85 64-bit main memory access. When the Cache/SBC is not installed, it is substituted by a Memory Controller I (MCI) board and a Memory Controller II (MCII) board combination. The MCI and MCII combination allows only 32-bit main memory access. The MCI provides all of the normal memory control functions of the Cache, but does not have the 32 K bytes of RAM memory. The MCII is similar to the SBC, except that one half of the 64 -bit path to Cache has been removed. The Bus Adapter (BA) functions remain the same, except that the $B A$ is signaled as to when a Cache/SBC is or is not installed. This permits the $B A$ to process either 32 -bit or $64-$ bit data words.

The vS-85 minimum main memory, without the Cache Memory/SBC option, is 1 Megabytes and the maximum memory is 4 Megabytes. However, a VS-85 with the Cache Memory/SBC option must be configured with a minimum of 2 Megabytes of main memory.

2.2 CONTROL MEMORY

The VS-85 Control Memory, (figure 2-3) a loadable Random Access Memory, stores all Central Processor microinstructions. The loadable Control Memory permits CP microcode updates, microcode expansion, and use of microlevel diagnostics. The Control Memory board, containing 8 K of 50 -bit instructions, is separate from the CP to allow flexible Control Memory size. The CP branch field allows 14 -bits (16 K possible locations) for Control Memory addressing. CP micro instructions are 6 bytes (48 bits) long with a seventh byte containing two parity bits.

All system microcode is recorded on a mini-floppy diskette. A simple, low cost, mini-floppy diskette drive is used to load the microcode into the Control Memory RAM. A 1 K PROM, located on the diskette drive controller, contains microroutines to support the mini-floppy 280 microprocessor during the microcode loading.

Fetching a microinstruction from Control Memory requires a full 48-bit path to the CP. Two microinstructions, Write Control Memory and Read Control

Memory, are provided for reading or writing one Control Memory byte at a time. Traps, branching, and master timing are all functions of the Control Memory board, even though not directly related to Control Memory functions.

2.2.1 WRITING CONTROL MEMORY

There are two methods for writing to Control Memory RAM. The first method allows the system microcode to be loaded from the mini-floppy diskette using the $C P$ ' $B T$ ' ($B O O T$) button on the front panel. One byte of data read from the mini-floppy, as LWD0-7, is written through the Control Memory Data Input Buffer to a RAM location. Addresses (LICO-13) are supplied to the CM Address Latch from the $Z 80$ microprocessor chip on the mini-floppy controller as the data is read from the diskette. A Byte Counter tallies the number of bytes loaded for each $C M$ word. The Byte Counter increments the RAM write enable inputs (WEO-6) each time a byte is written. As each CM word is 50 bits long (48 data and 2 parity), the Byte Counter cycles 7 bytes per word. When the last byte of a word has been written, the counter is reset.

The second method, using an outer level Patch CP microcode instruction, can be used for testing microcode updates. Control Memory is modified one byte at a time using RDO-7 (6 data bits and 2 parity bits) from the Program Mask Register on the B Bus through the CM Data Input Buffer. The byte will be written to the RAM using addresses (RAO-13) from the B Bus Virtual Memory Address Register to the Control Memory Address Buffer and through the Control Memory Address Latch. The Byte Counter tallies the number of bytes loaded for each CM word.

2.2.2 READING CONTROL MEMORY

After the system microcode has been loaded, pressing the system load button on the front panel causes a trap (see paragraph 2.2.3) and branch to Control Memory location zero to begin system IPL execution. The trap address will be forced into the Branch Multiplexer and sent to the Next Address Multiplexer for loading into the Control Memory Address Latch. The Instruction Counter is also loaded with this current address and incremented by one to prepare the next address. The RAM write enable inputs are inactive, allowing the RAM to be read. The Control Memory Register is always output enabled and the data, as CM bits 0-47, is available to the A Bus, B Bus, Cache Memory/MCI, and System Bus Controller/MCII. The sequential incrementing of the Instruction Counter and the fetching of microinstructions continues unless interrupted by branch, trap, or write Control Memory operations.

Table 2-1. VS-85 Trap Addresses

TRAP	CONDITION	TRAP ADDRESS
POWERON	CP Power-on	0000
LOAD	CP Initialize	0001
INVA	Invalid (physical) Memory Address	0002
TT0	MAR0 Translation	0003
TT1	MAR1/MAR2 Translation	0004
TT2	Protection (any MAR)	0005
ATR1	Word Alignment (CM27-29 $=001$)	0006
ATR2	Word Alignment (CM27-29 $=010$)	0007
ATW	Word Alignment (write)	0008

Table 2-1. vS-85 Trap Addresses (cont'd)

TRAP	CONDITION	TRAP ADDRESS
ATM0	Alignment MAR0 (halfword)	0009
OVFT	Overflow (ACT or SCT instructions)	000A
MMPT	Main Memory Parity	000B
BEX	Execute Target (EXEC $=1$)	000C
PAR	CP Control Memory Parity	000D
BX	External Event (EXT $=1$)	0011
BDEBUG	Software (${ }^{\text {a }}$ (DEBUG $=1$)	0012
BCLKM	Clock Maintenance \quad (CS1 $=1$)	0013
BCLK I	Clock Interrupt $\quad($ CS3 $=1 ;$ CS4 $=1)$	0014
BIO	IO Interrupt $\quad(\mathrm{IO3}=1 ;$ IOMASK $=1$)	0015
BPAGE	Pagebreak (PAGEOV $=0$)	0016
BENTRY	Entry Pagebreak(New PAGEOV $=0$) and not rr case)	0017

Trap BEX and traps 0011-0017 are Branch to Next Macro-related traps.

2.2.3 TRAPS

Traps, interrupts to the CP microprogram, are caused by conditions not initiated within the CP. (Refer to table 2-1.) CP microtrap conditions can occur due to process, memory, branch field operations, or external conditions. When a trap condition is detected, the hardware forces a branch to a specific Control Memory address, determined by the type of trap, for execution of a routine intended to take action in response to the condition causing the trap. All microtraps branch to locations in the Control Memory RAM. Return addresses can be saved, when necessary, with a microroutine that follows the trap handling routine, so that execution of a program in progress prior to the trap can resume. Traps are first loaded into the Trap Latch for servicing. The trap will be prioritized to produce a specific Control Memory address of the trap handling routine for the Branch Multiplexer. The address from the Branch Multiplexer will be sent to the Next Address Multiplexer for loading into the Control Memory Address Latch and the trap routine will begin execution. The Instruction Address Counter is also loaded with this current address and incremented by one.

2.2.4 BRANCHING

Three formats of branching are available to the vS-85: full address, conditional, and status setting. All are dependent on the state of the current microinstruction branch field. The branch field logic decodes the current microinstruction branch field, CM bits $30-33$. The Branch Multiplexer (using CM bits $34-47$ and other inc̣uts to determine a branch address) loads the address into the Next Address Multiplexer. The NAMX might also contain the contents of the Instruction Counter (used for status setting and certain types of branching).

The address is loaded from NAMX into the Control Memory Address Latch for instruction execution. The Instruction Counter is also loaded with the address from NAMX and incremented by one. This logic operates much the same as trap logic as far as sequencing is concerned. The branch logic also allows nesting of branch routines to a depth of 16 when certain branch conditions require current or next microinstruction addresses to be saved.

2.2.5 CLOCK GENERATION AND CONTROL

The VS-85 Master Clock is generated by a 50 Mhz oscillator and is then divided by two. The clock produces two strings of 40 nanosecond master timing pulses, Limes (La-L8) and times (ta-t8). The times are activated by the free running L times and are delayed 20 nanoseconds from the L times. A different number of L and t time clocks occur for each microinstruction execution. The instruction length time period is synchronously controlled by a binary counter. This counter is counted up from 0 to 2 and then loaded with the results of the decoding of $C M$ bits $0-6$. CMO-6 determines the type of: instruction to be executed. The counter then resumes count from this new value. When the counter reaches a count of 15 (F) this signals the end of the instruction length. The counter is reset and the L sequence begins again.

The master clock is distributed to the A and B Bus for generation of their own L and t times in synchronization with the $C M$ board. Gating signals GI! and GT2 will reset the t time clocks on the $C M$, A Bus, and B Bus, to halt program execution upon occurrence of certain conditions such as Cache miss, halt, and the run/step maintenance switch.

The clock margin control logic varies the L time and time clock frequencies within 10% of the standard frequency. Microinstructions are available to increase or decrease the clock speed, or to reset the clock speed to normal. The use of these microinstructions is for detecting marginal hardware problems and not for system performance acceleration.

2.3 CENTRAL PROCESSOR

The Central Processor (also known as CP4) is the heart of the VS-85 system. The primary task of the Central Processor is to execute the machine instruction set and monitor the results of execution. The $C P$ contains facilities for addressing physical main memory, fetching and storing information, arithmetic and logical processing of data, sequencing instructions in the desired order, and initiating communication between main memory and external devices. The Central Processor is composed of two boards, the A Bus and the B Bus, with each board containing many standard and unique logical elements.

2.3.1 A BUS

The VS-85 A Bus (figure $2-4$) contains all A Bus registers and multiplexers, the status register, multiplier, stack, and program clock.

2.3.1.1 C Bus Main Memory Multiplexer (CBMMX)

The CBMMX, 32 bits wide, receives C Bus data (CB0-31) from the B Bus board, or main memory data (MMO-31). The C Bus inputs are selected by default (no main memory read) while the Main Memory data inputs are selected when main memory is being read. The data can be transferred to four possible receiving elements: Memory Data Registers 2, 3 or, 4 , or Multiplier Buffer Storage l.

2.3.1.2 Memory Data Registers 2 and 3, and Rotating Multiplexer

The three memory data registers (MDR 2, 3, and 4) are also 32 bits wide. MDR 2 and 3, in conjunction with Memory Address Register 1 , provide buffered

read access of four non-aligned bytes for storage to storage operations. MDR2 is also used for general memory operations. Output data (from MDR2 or MDR3) is sent to the Rotating Multiplexer. Two Control Memory bits and three MARI address bits determine which data bytes (a maximum of 4) from the available four data bytes will be sent to the Rotating Multiplexer. Whether MDR2 or MDR 3 is selected depends upon gating developed on the Cache/MCI board from decoded memory commands.

The R tating Multiplexer (RMUX) is 32 bits wide and has the ability to shift the four bytes of a word to suit the requirements of the particular instruction being executed. For example, the switch 16 instruction requires that the high and low halfwords be reversed. The RMUX input data can come from either MDR2 or MDR3. The 32 bits of output data are Or'd with the Shift Register output data and forwarded to the A Multiplexer. The RMUX function select process is used in conjunction with MDR2/MDR3 Byte Selection. Byte selection determines whether one byte or all bytes of MDR2 or MDR3 are sent to the RMUX. The RMUX function select logic determines in what order the bytes are to be transmitted on the RMUX output lines.

2.3.1.3 Memory Data Register 4, Data Buffer, Work Multiplexers/ Registers, and Shift Register

Memory Data Register 4 (MDR4), a 32-bit register, along with Memory Address Register 2 is available as a general purpose register for memory data, and Interprocessor Communications data. It is the data output path to main memory. Input data comes from the CBMMX and is transferred out by gating developed on the Cache/MCI board from decoded memory commands. The output is forwarded to the Data Buffer (DTBF), Memory Register 4 Buffer (M4BF), and Multiplier Buffer Storage 2 (MBS2).

The 64-bit Data Buffer (DTBF) receives 32 input bits from MDR4 and transfers 32 bits, as WDO-31, to main memory via the System Bus Controller/MCII. The remaining 32 bits (identical to WDO-31) are used for the CP Tester Interface.

Memory Register 4 Buffer (M4BF) is a buffer between MDR4 and the Shift Register. The buffer is controlled by several process field A Bus operations.

The Work 1 and Work 2 Multiplexers (WMX1 and WMX2) are each 16 bits wide. WMX1 selects bits $16-31$ from either the C Bus or the Multiplier for delivery to Work 1 or Work 2 Registers. The C Bus input is selected by a multiply operation decoded from an instruction memory operation field. The outputs are enabled by not performing a Store Counter or Store Comparator operation. WMX2 multiplexer selects bits $0-15$ from either the C Bus or the Multiplier for delivery to Work 1 or Work 2 Registers. WMX2 is identical in operation and controls to WMX1.

The Work 1 and Work 2 Registers (WK1-A and WK2-A) are both 32-bit registers. They are used for gating data from WMX1 and WMX2 to the Shift Register. Both can also transfer the Program Clock outputs to the Shift Register as data bits $0-15$ or $16-31$. The outputs are controlled by Work 1 and Work 2 A Bus operands.

The 32-bit Shift Register operates in three shift modes; shift l bit right, shift 4 bits right, or shift 4 bits left. For all other functions, the
input data (from MDR4, WK1, or WK2) is gated directly through. The 32-bit output is forwarded to the A Multiplexer. Channel selection for the shift register is accomplished using the Shift instruction group.

2.3.1.4 Multiplier

Multiplier Buffered Storage 1 (MBS1) and Multiplier Buffered Storage 2 (MBS2) are 32 and 16-bit storage buffers for the Multiplier. MBS1 input data comes from the CBMMX. MBS2 input data comes from MDR4, and MBS2 forwards 16 of the 32 input bits to the Multiplier. Output of both MBS 1 and MBS2 are controlled by the memory field translation and ripple operations.

The Multiplier consists of 4 high-speed 8×8 multiplier chips which multiply two 16 -bit operands to form a 32 -bit output result. The Multiplier inputs are from MBS1 and MBS2. The outputs, after passing thru a 4-bit binary full-adder, are forwarded to WMX1.

2.3.1.5 A Bus Multiplexer

The 32-bit A Bus Multiplexer (AMX) collects data from several sources. It receives its high order 24 input bits from the Stack, or from an Or'd combination of RMUX and the Shift Register. The low order 8 input bits are from five possible sources: Stack bits 24-31, RMUX bits 24-31, Shift Register bits 24-31, B Bus Indirect Register bits 0-7, or Control Memory bits 5-12. Output data, ABO-31, is used at the Binary Arithmetic Logic Unit (BALU) and the Decimal Arithmetic Logic Unit (DALU).

2.3.1.6 CP Stack

The CP Stack, a local RAM storage area, is configured as 256 32-bit registers logically divided into two halves of 128 32-bit registers. The first half of the Stack is again divided into two banks of 64 32-bit registers, containing general registers used for address calculation and accumulation of fixed point arithmetic or logical operations, and floating point registers used for floating point arithmetic operations. Other registers in the Stack include file and auxiliary registers used as temporary storage areas for microprogram functions, and control registers used to store Program Control Word (PCW) trap addresses and the time of day. The second half of the Stack is used for Translation RAM (T-RAM) monitoring. (Refer to paragraph 2.5.10, the T-RAM.)

The unit of access from the Stack is always 32 bits (one word). Since the Stack access time is significant compared to the total microinstruction cycle time, only one Stack access is performed within a microinstruction. The Stack can be addressed using A Bus operands (read oniy access) or C Bus operands (read and write access). The Stack is addressed using 8 bits made up of some of the following: Bank Select Status bit, Control Memory bits 8-12 (for A Bus selection), Control Memory bits 17-21 (for C Bus selection), Indirect Register bits 0-7, and Current Halfword bits 0-3.

The A Bus Operand Multiplexer, in the Stack Address General Logic block, selects and delivers the appropriate A Bus operand Stack address value to the Stack via the A / B operand Stack Address Multiplexer. The multiplexer has 8 inputs, one of which can be selected according to the value of Control Memory bits 7,10, and 11. Control Memory bit 7 specifies direct Stack access. Stack
write operations are not allowed with A Bus operands (read operations only). Channel 4 of the multiplexer is selected for access to the Operating System File Registers.

The C Bus Operand Multiplier, in the Stack Address General Logic block, selects and delivers the appropriate C BUS operand Stack address value to the Stack via the A/B operand Stack Address Multiplexer. The multiplexer has 4 inputs, any one of which can be selected according to the value of Control Memory bits 16, 19, and 20. Control Memory bit 16 allows direct Stack access and also write enables the Stack. Channel 3 of the multiplexer is selected for access to the Operating System File Registers.

The Stack Address Multiplexer (STKMX) is also part of the Stack Address General Logic. It is used to gate either the A Bus operand or C Bus operand address to the Stack address lines. The multiplexer is always output enabled and A or B half selection depends on the value of Stack Load, decoded from Control Memory bits 16-18.

2.3.1.7 CP Status Register

The CP maintains a 32 -bit status register whose contents are designated SO through S31. The status bits are described in four 4-bit and two 8-bit groups as follows: Loop Control, MARO Status, Decode, Indirect Register, Bank Select/ MAR2 Translation, and Process Field/ Miscellaneous. (Refer to table 2-2.) The Loop Control status bit group contains the most frequently used status bits. Only status bits SO-S15 can be directly accessed for conditional branch operations. For Status Setting operations, the A and B status bit select fields of the Status Setting portion of the branch field format can indicate any one of the 32 status bits. Control Memory bit 39 indicates A bit usage or A bit inverse usage. (The CP Assembler supports A bit inverse usage through the SSI mnemonic.) The bit operations are indicated by Status Operation Control Memory bits $40-41$. The B bit is updated with the resultant bit value. The Control Memory bit 40-41 assignments are Move, And, Or, and Xor. (Refer to Appendix A for a complete list of the CP status bits).

Table 2-2. VS-85 Status Bit Groups

GROUP NAME	STATUS BITS
Loop Control	S0-S3
MAR0 Status	$\mathrm{S} 4, \mathrm{~S} 21-23$
Decode	$\mathrm{S} 24-31$
Indirect Register	$\mathrm{S} 13-15, \mathrm{~S} 19$
Bank Select/MAR2 Translation	$\mathrm{S} 6-7, \mathrm{~S} 16, \mathrm{~S} 20$
Process Field/Miscellaneous	$\mathrm{S} 5, \mathrm{~S} 8-12, \mathrm{~S} 17-18$

2.3.1.8 Program Clock

The CP supports a 64 -bit program clock and comparator at the macrolevel. The hardware provides a 16 -bit counter and a 16 -bit comparator. These 16 bits correspond to the low order 16 bits of the macrolevel registers. There are four CP status bits (CS1-4) associated with clock operations. A Continuous Counter (CCNT) increments once every 500 nanoseconds and when a carry out at the high order bit of the counter occurs, the hardware will set a Counter

Overflow status bit. The Continuous Comparator (CCMP) is enabled by a Compare Enable status bit. The counter is compared against the comparator for every counter increment. If the counter value is greater than or equal to the comparator, the Clock Interrupt Request status bit is set.

Clock related microinstructions are available to set the counter to zero, store the counter (in WK1-A and WK2-A registers), load the comparator, and store the comparator. The $C P$ can move the counter contents (proccss field) and counter overflow bit (branch field) within one microinstruction.

There are 2 clock microtraps related to the clock status bits. These traps can occur only within the Branch to Next microinstruction. The Clock Maintenance microtrap (BCKLM) is taken when the Continuous Counter overflows. This microtrap is used to propagate the carry-out from the hardware counter into the high order 48 bits of the macrolevel clock. The Clock Interrupt microtrap (BCKLI) is taken when both the Clock Interrupt Request and the Clock Interrupt Enable status bits are set. This microtrap is used to determine Clock Interrupts at the macrolevel.

2.3.2 B BUS

The VS-85 B Bus (figure 2-5) contains all B Bus registers, buffers and multiplexers and the translation RAM, binary ALU, and decimal ALU.

2.3.2.1 C Bus Main Memory Multiplexer (CBMMX)

The CBMMX, 32 bits wide, receives either main memory data (MMO-31), or C Bus data (CBO-31) for the B Bus. The main memory data inputs are selected when main memory is being read and the C Bus inputs are selected by default (no main memory read). The data can be transferred to three possible receiving elements, Memory Data Register 0,1 , or 4B.

2.3.2.2 Memory Data Registers 0, 1, and 4B, and Current Halfword Buffer

Memory Data Register 0 and 1 (MDRO and MDR1), both 32-bit registers, are dedicated to accessing halfwords from the macro-instruction stream to provide overlapped macro-instruction fetching. Input is main memory data from the C Bus Main Memory Multiplexer. Whether MDRO or MDR1 is selected depends upon the decoding of process field C Bus destination operands and gating developed on the Cache/MCI board from memory commands.

Multiplexed access of the 16 -bit Current Halfword from MDRO or MDR1 is controlled by Virtual Memory Address Register bits 21-22 passed through the Control Memory Address Buffer (RABF) to the Current Halfword selector: The Current Halfword ($\mathrm{CH} 0-15$) is then forwarded to the B Bus Multiplexer. Also, the high order byte of the Current Halfword will be sent to the Current Halfword Buffer.

The 32-bit Memory Data Register 4B (MDR4B buffered) is a buffer between input data from the CBMMX and the output data to the B Bus Multiplexer. The register is selected by decoding of process field C Bus destination operands and by gating developed on the Cache/MCI board from memory commands. The register output is always enabled.

The 8-bit Current Hal fword Buffer (CHBF) accepts the high order byte from MDRO or MDR1 as the CH (Current Halfword). The buffer is always enabled and outputs the data (an address or index for a Branch to Next macro-instruction) as BCHO-7 to the Branch Multiplexer and Same Address Multiplexer on Control Memory.

2.3.2.3 Work Registers, Indirect Counter, and Indirect Register

The input data to the 32-bit general Work Registers 1 and 2 (WK1 and WK2) is from the C Bus Multiplexer (CBO-31). Whether WK1 or WK2 is selected depends upon the decoding of process field C Bus destination operands. Access to the 32 -bit word from WK1 or WK2 is controlled by process field B Bus operand selection and the output data is sent the B Bus Multiplexer.

The 8-bit Indirect Register Multiplexer (IREG MUX) input comes from MDRO or MDR1 via the Current Halfword Buffer as CH8-15, or from the C Bus as CB24-31. A Branch to Next or Branch to Next (Execute) macro-instruction selects the CH8-15 inputs for the Current Halfword. All other instructions select the CB24-31 inputs. The outputs go to the Indirect Register Counter.

The 8-bit binary Indirect Register Counter (IREG Counter) input data comes from the IREG Multiplexer. The counter is disabled during a Branch to Next or Branch to Next (Execute) instruction, or Indirect Register Load instruction, and will cause the outputs to equal the inputs. During a Move and Increment IREG instruction (move A bus operands or B Bus operands to C Bus) the counter is up-counted. A Move and Decrement IREG instruction will cause the counter to be down-counted. Outputs go to the Indirect Register and the A Bus Stack Addressing logic as IRO-7, and to the B Bus Multiplexer as IR4-7.

The 8-bit Indirect Register (IREG) is a work register used for indirect Stack addressing. Input data comes from the IREG counter and output data goes to the B Bus Multiplexer. The only control for the IREG is the process field B Bus IREG operand.

2.3.2.4 B Bus Multiplexer

The 32-bit B Bus Multiplexer (BMX) collects data from several sources, including WK1, WK2, IREG and IREG Counter, Address Multiplexer (MG0-31), MDRO-1, or MDR4-B. Output data, BB0-31, is used at the Binary Arithmetic Logic Unit (BALU) and the Decimal Arithmetic Logic Unit (DALU).

2.3.2.5 Binary Arithmetic Logic Unit, Decimal Arithmetic Logic Unit, and C Bus Multiplexer

The Binary ALU (BALU) consists of eight 4 -bit high speed parallel arithmetic logic units. Each ALU has a complexity of 75 equivalent gates per chip. The eight chips are cascaded to allow 32 bits (one word) of data to be acted upon as a whole. Controlled by four function select inputs and a Mode control input, it can perform 16 possible logic operations or 16 different arithmetic operations. The Mode control input will determine whether all internal carries are inhibited and the device performs logic operations (Or, Nor, Exclusive Or, And, Nand, or Compare) on the individual bits, or whether the carries are enabled and the device performs arithmetic operations (Add, Subtract, Compare, or Double) on the two 4 -bit words. BALU operations, whether logical or arithmetic, are completed within one system clock period.

The Decimal ALU (DALU) consists of eight 4-bit high speed binary coded decimal ($B C D$) arithmetic units. The eight chips are cascaded to allow 32 bits (one word) to be acted upon as a whole. Depending on the state of the Add/ Subtract control, the unit produces the BCD sum or difference of two decimal numbers. A decimal addition is performed by adding the A Bus to the B Bus and placing the results on the C Bus. A decimal subtract operation (B minus A) is performed by internally adding the 9 's complement of the A Bus to the B Bus and placing the result on the C Bus. ALU operations are completed within one system clock period.

The 32-bit C Bus Multiplexer (CMX) receives data from either the Decimal Arithmetic Logic Unit or the Binary Arithmetic Logic Unit for transmission on the C Bus as CBO-31. The DALU is selected for output during any of the four decimal instructions. Otherwise, the output will be from the BALU. C Bus data is used at the C Bus Main Memory Multiplexer, Program Mask Register, Work 1 and 2 Registers, Stack, Indirect Register Multiplexer, Virtual Memory Address Register, T-RAM Address Latch, and Memory Address Multiplexer.

2.3.2.6 Program Mask Register and Virtual Memory Address Register

The 8-bit Program Mask Register (FMR) is dedicated to part of the Linkword macro and is used with Linkword as a B Bus operand for Arithmetic Logic Unit input. The C Bus ($\mathrm{CB} 0-7$) is used as input to the PMR when the PMR is accessed, along with the Virtual Memory Address Register, during Move operations. Together PMR and VMAR compose the Linkword. $C B 0-7$ is also used as data input to the PMR during a Write Control Memory operation. The CM RAM address (CB18-31) is set into the Virtual Memory Address Register and then forwarded to the Control Memory Address Buffer to become RAO-13. CBO-7 is moved from the PMR as data to be written and is sent on to Control Memory as RD0-7. Program Mask Register bits 0 and 1 are used with Condition Code instructions.

The 24-bit Virtual Memory Address Register (VMAR) is dedicated to Virtual Addresses of current halfwords in the macro-instruction stream. Input to the VMAR comes from the C Bus as CB8-31. Used as a B Bus operand source for Arithmetic Logic Unit input, VMAR outputs go to the Address Multiplexer for transfer to the B Bus and ALUs.

As a C Bus operand destination register, VMAR outputs are sent to the T-RAM as a Page Frame number entry or to the Control Memory Address Buffer as addresses. These addresses, in conjunction with data from the Program Mask Register, will be used when writing Control Memory.

VMAR can be incremented by two to allow the next halfword to become current. There are several microinstructions which use the current halfword as an Arithmetic Logic Unit input or as the input for a multiway branch. VMAR incremented by two occurs during a Branch to Next or Branch to Next (Execute) microinstruction.

2.3.2.7 Control Memory Address Buffer and Control Memory Data Buffer

The 14 -bit Control Memory Address Buffer (RABF) will gate 14 bits of address (VMAR10-19 and CB28-31) from the Virtual Memory Address Register to the Control Memory as RAO-13 for a Write Control Memory instruction.

The one-byte Control Memory Data Buffer (RDBF) transfers data as RDO-7 between the Program Mask Register and the Control Memory. The buffer is enabled during a Write Control Memory instruction.

2.3.2.8 Memory Operation Overviews, Memory Address Multiplexer, and Memory Address Register: 0,1 , and 2

2.3.2.8.1 General Memory Operations Overview

The CP can initiate only one memory read or write operation for each microinstruction. $C P$ memory read or write requests rely on a physical address contained in a Memory Address Register (MAR) and data contained in a Memory Data Register (MDR). There are three MARs (MAR1, MAR2, and MAR3) and five MDRs (MDR0, MDR1, MDR2, MDR3, and MDR4). The memory operation field (MOP) of the microinstruction will select a Memory Address Register and indicate the type of read/write operation, address translation operation, or address ripple operation. Translation, changing virtual memory addresses into physical memory addresses, and Ripple, incrementing or decrementing a MAR value, are mutually exclusive.

A Word Alignment feature is used with MAR2 doubleword writes and translation operations if the virtual addresses are not word aligned. There are three microtrap locations for address translation and three microtrap locations for word alignment. An address translation trap has priority over a word alignment trap. (Refer to table 2-1.)

2.3.2.8.2 Read and Write Overview

The read operation uses the selected Memory Address Register contents at the start of the microinstruction. The $C P$ must wait for the data to be returned before resuming microinstruction execution. Error returns for read operations are handled by microtraps during the microinstruction. Buffered read memory support is provided for MARO and for MAR1 by having 2 MDRs associated with one MAR. The MDRs receive either the even or odd addressed word when a buffered read operation is performed. The write operation uses MAR2 and MDR4 contents at the start of the microinstruction. The $C P$ can continue program execution without waiting for memory operation completion. Asynchronous error returns for write operations are handled through the External Condition Register on the System Bus Controller/MCII.

2.3.2.8.3 Translation Overview

When a translation operation changing virtual memory addresses into physical memory addresses is performed, no memory read or write operations are allowed. The translation is coded by specifying a No $O p$ in the memory operation portion of the memory operation field and a translation operation in the translation/ripple field of the MOP. The Translation RAM, after translating the virtual address, supplies the physical addresses for the three Memory Address Registers. The Memory Address Register select field indicates the destination MAR of the physical address. MARO, MAR1, and MAR2 support read translations while MAR2 supports read and write translations.

2.3.2.8.4 Ripple Overview

The Memory Address Register ripple operation involves a small increment or
decrement of the MAR value. All three Memory Address Registers support ripple operations. The ripple operation is specified by the Translation/Ripple portion (CM27-29) of the memory operation field format. The ripple operation for the MARs only affects the low order 12 bits of the MAR value and any carry or borrow beyond 12 bits is lost. If a memory read or write operation is also requested, then the ripple occurs after the memory operation has been initiated. A ripple operation always involves a corresponding Page bit to indicate that the MAR address has or has not crossed a 2 K memory page boundary. If the 2 K boundary has been crossed, a new address must be supplied.

The 32 -bit Memory Address Multiplexer (MAMX) supplies data to the Memory Address Registers from either the Translation RAM and the Translation Address Latch (as a Page Frame number and a location within the page) for Translation operations, or from the C Bus (CBO-31) for read or write operations.

2.3.2.8.5 Memory Address Registers 0,1 , and 2

The CP uses the three Memory Address Registers (MARs) with the five Memory Data Registers (MDRs), grouped as follows:

The 24-bit Memory Address Register 0 (MARO), with MDRO and MDR1, is dedicated to accessing halfwords from the macro-instruction stream. The buffered MDRs provide overlapped macro-instruction fetching. Only three memory operations affect MARO. A Read Translation operation with halfword alignment check is used when a new physical address is required for current halfword access because a Branch micro causes a new virtual address to be used. The address is a Page Frame number and location within the page. A Buffered Read operation follows a Read Translation and uses that physical address now in MARO to point to the data in memory to be read into MDRO or MDR1. After the operation has been initiated, a count of four will be added to the contents of MARO. (MARO will be rippled plus four.)

A Word Conditional Read operation allows prefetching of the next word in the macro-instruction stream. The condition is that neither MDRO or MDR1 is full. The word addressed by MARO will again be read into MDRO or MDRI and MARO will be rippled plus four.

The 32-bit Memory Address Register 1 (MAR1), with MDR2 and MDR3, provides read only access for main memory operands. Several memory read operations, including byte, word, word conditional, and multi-conditional reads, are supported by MAR1. A byte read will cause data to be placed in the low order byte position of MDR2 with the three high order byte positions of MDR2 set to zero. Data from a word read will also be placed in MDR2. A word conditional read places the word into MDR2 or MDR3 with the condition that the new MAR address be within the same 2 K memory area (Page l) as the initial MAR address. If the MAR address is not within the same 2 K memory area, a Page boundary has been crossed and a new virtual address must be supplied. No read or ripple will be performed. A multi-conditional read also places the word into MDR2 or MDR3, again depending on the 2 K memory area plus the state of the two low order bits of MAR1. MAR1 supports plus one or four ripples, or minus one or four ripples, as indicated by the memory operation field, for conditional and multi-conditional reads.

The 32 -bit Memory Address Register 2 (MAR2), with MDR4, is available for general, non-buffered read and write access of main memory. MAR2 supports
byte, word, byte conditional, and word conditional reads as well as byte and word writes. All data is read into and written from MDR4. A byte read will cause the data to be placed in the low order byte position of MDR4 with the three high order byte positions of MDR4 set to zero. The byte and word conditional reads are the same as MAR1 except that the 2 K memory area is Page 2 . If the MAR address is not within the same 2 K memory area, a Page boundary has been crossed and a new virtual address must be supplied. No read or ripple will be performed. MAR2 supports plus one or four ripples, or minus one or four ripples, as indicated by the memory operation field for conditional reads. A byte write (Read Modified Write) uses the data in low order byte position of MDR4. For a word write operation, the internal counters of MAR2 are disabled. MAR2 then operates as a straight forward gate by allowing its outputs to follow its inputs when the register receives a clock pulse.

2.3.2.9 Address Multiplexer and Memory Address Latch

The 32-bit Address Multiplexer (ADMX) receives input from the Program Mask Register and Virtual Memory Address Multiplexer, or from one of the three Memory Address Registers. ADMX input selection is based on the microinstruction process field B Bus operand for input from PRM and VMAR, and the MARselect portion of the memory operation field for inputs from the Memory Address Registers. The Address Multiplexer output is sent to the B Bus Multiplexer for input to the Arithmetic Logic Units, or to the Memory Address Latch as main memory addresses.

The 24-bit Memory Address Latch (MAL) consists of three eight bit latches with the outputs always enabled. Input is from the Address Multiplexer and output is transferred to the Cache/MCI as main memory addresses, MA0-23.

2.3.2.10 Translation RAM Address Latch, Translation RAM, Reference/ Change Table, and Translation RAM Multiplexer

The input to the 24 -bit Translation RAM Address Latch (TAL) is 13 bits (CB8-20) of the virtual address from the C Bus (C Bus microcode operation output), of which 12 bits are used to address a Page Frame in the Translation RAM. The TAL also forwards the 11 low order bits (CB21-31) of the virtual address to the Memory Address Multiplexer as the location within the page. The TAL outputs will be available for the Translation instruction group and two microinstructions (MVN and MVX) from the Move instruction group.

2.3.2.10.1 Translation RAM

The physical main memory storage capacity of the VS-85 is currently limited to 4 Megabytes. Because the VS -85 uses Virtual Memory techniques, main memory can be made to appear much larger. The translation of virtual (disk) addresses to physical (main memory) addresses is performed by the CP. Three elements recognized by the Operating System during translations are segments, pages, and page frames.

A segment is a block of contiguous disk storage. There are three types of segments. The first type (Segment 0) is 512 K bytes containing supervisory routines and data for the Operation System. The second type (Segment l) is 1 Megabytes for each user program. The third type (Segment 2) is 4 K to l Megabytes (in 4 K increments) for each users data. A page is 2 K of contiguous
bytes of disk storage space within the user program or data segments, and a page frame is a main memory area exactly large enough to contain a disk page.

Since the system is intended to operate in multi-task, multi-user environment, it is necessary to have a mapping mechanism to direct the $C P$ to the pages of the tasks being executed. The $C P$ uses a $4 \mathrm{~K} \times 1$-bit local Translation RAM (T-RAM) to perform the mapping (translation) of a 24-bit virtual memory address into its current corresponding 24-bit physical main memory address. Each T-RAM entry (a C Bus operand destination from the Virtual Memory Address Register) contains a 13-bit page frame number, a fault bit, and read and write protect bits. These correspond to a particular page within the total virtual address space. The Translation operation addresses the T-RAM entry using the 12 bits (TRAO-11), or 4 K , of the virtual address (C Bus microcode operation output) from the Translation RAM Address Latch.

Reading and writing the RAM is controlled by the Load T-RAM instruction. The 13 -bit page frame number read from the $T-R A M$ is concatenated with the low order 11 bits of the virtual address (location within the page) from the Translation Address Latch at the Memory Address multiplexer to create the 24-bit physical main memory address. If the operation traps on an invalid virtual address (fault), the microinstruction can be restarted if the T-RAM entry can be updated; otherwise, a page fault interrupt is generated. A trap will also be taken if the page is protected against being read or over-written.

The T-RAM can be monitored to provide rapid clearing of T-RAM entries for a user whose time slice has expired, while allowing entries for other users to remain. Monitoring occurs by segment and is based on a flag bit associated with the segment. The current users entries in the T-RAM are faulted when a different virtual address space is to be accessed. The CP will store these virtual addresses in the second half of the CP Stack when servicing a T-RAM fault. The CP microprogram maintains a counter of the monitored entries. The Stack is read one word at a time to get the virtual address for clearing each T-RAM entry when that users time slice has expired.

The CP maintains a table for each page frame entry in the T-RAM to record a reference bit, indicating a page was recently used, and a change bit indicating the contents of page were modified. An 8 K by 2-bit Reference and Change Table (RCT) RAM is responsible for maintaining the table. The reference bits tell the operating system what pages have not been used recently and could be written over with new pages. The change bit allows the operating system to determine what pages have been modified and should be written back onto disk to make room in memory for new pages. These two R and C bits (M2BI and M2HI) are updated to reflect the page frame status during each MOP translation process. Addressing the RCT is done by using the Page Frame Number from the T-RAM entry. An entry can be cleared or inspected by microinstructions.

The 13 -bit Translation RAM Multiplexer (TRMUX) normally passes the selected T-RAM entry to the Memory Address Multiplexer. However, if the selected entry should be faulted indicating that it is invalid, then the virtual address from the T-RAM Address Latch used for addressing the T-RAM is routed directly to the Memory Address Multiplexer by the TRMUX.

2.4 MAIN MEMORY

With the MCI/MCII combination, the VS-85 Main Memory (figures 2-6 and 2-7) can contain one to two 210-7803 (1 Megabyte) or two 210-8303 (2 Megabyte) Main Memory boards. Memory can range in size from 1 Megabytes to a maximum of 4 M bytes with memory size increasing in 1 or 2 Megabyte increments.

If a Cache/SBC combination is installed, a minimum of two 210-7803 boards are required to satisfy the 64 -bit word requirement.

The 7803 board contains 256 K 32-bit half words and is logically divided into four rows of 64 k 32 -bit half words for a total of 1 Megabytes. The 8203 board contains 512 K 32 -bit half words and is logically divided into eight rows of 64 k 32 -bit half words for a total of 2 Megabytes. Both boards use a 64Kword x l-bit Dynamic RAM chip.

2.4.1 CONTROL SIGNALS

Main memory control signals are generated on the Cache/MCI board. (Refer to paragraph 2.5.3, Main Memory Control.) They are RAS (Row Address Strobe), CAS (Column Address Strobe), CEN (Column Enable), R/W (Read/Write), two Write Pulses (WPO-31 and WP32-63 for the Cache and WP for the MCI), Module Select 非, and REF (Refresh). The Main Memory cycle runs synchronously with the SBC/MCII cycle.

2.4.2 MEMORY WRITE AND READ

CP or BA data transfer to and from the memory is controlled by the SBC/MCII. The basic memory data word is 32 bits with a 7 bit ECC (Error Correction Code) field. Write operations allow any board to be accessed separately for word writes, or in pairs for doubleword writes. The SBC/MCII can align units of $1,2,4$, or, for the SBC, 8 bytes, but only words or doublewords can be written. For the SBC, all read operations cause a doubleword (8 bytes or 64 bits) to be accessed with the first board containing the even addressed word, and the second board containing the odd addressed word. Hence, the necessity of a minimum configuration of two boards for the Cache option.

For a memory write operation, the even word of data (MMWD0-31) and parity (WPH0-6), and/or the odd word of data (MMWD32-63) and parity (WPLO-6) from the SBC will be written into the RAM by the Write Pulse as long as R/W (Read/Write), CAS (Column Address Strobe), and RAS (Row Address Strobe) are active. For the MCII, only the even word of data (MMWDO-31) and parity (WPO-6) are used. Row and column addresses are available coincident with RAS and CAS. WP is generated on the Cache for the odd and/or even word boards, and on the MCI for the even word. This allows a single word write without having to encode an address to distinguish between boards in a pair.. When the Check ECC (Error Correction Code) feature is active, all data RAMs will be disabled and writing will only be allowed into the parity RAMs.

For a memory read operation, the even word of data (MMRDO-31) and parity (RPHO-6), and the odd word of data (MMRD32-63) and parity (RPLO-6) will be read from the RAM and transferred to the $S B C$, when the Column Address Strobe is active, as long as Read/Write remains inactive. Again, row and column addresses are available coincident with RAS and CAS.

For the MCII, only the even word of data (MMRDO-31) and parity (RPO-6) will be read from memory.

2.4.3 ADDRESSING

Memory addresses are supplied by the $C P$ or the BA. Of the 24 address bits available (BMARO-23), 18 bits (BMAR3-20) are used at the 210-7803 memory board. (Refer to table 2-3.) BMAR3-4 are used to decode one of four 64 K word rows for a total of 1 Megabytes.

For the 210-8203 memory board, 19 bits (BMAR2-20) are used. (Refer to table 2-4.) BMAR2-4 are used to decode one of eight 64 K word rows for a total of 2 Megabytes.

For either board, sixteen address bits (BMAR5-20) are required to decode one of the 64 k memory locations. The eight row addresses (BMAR6-13) are latched into the RAM's internal row address decoder by the Row Address Strobe. The eight column addresses (BMAR5 and BMAR14-20) are selected by CEN (Column Enable). These addresses are then latched into the RAM's internal column address decoder by the Column Address Strobe. BMAR21-23 are not used because the lowest accessible addressed unit is eight bytes (two words).

Table 2-3. VS-85 Main Memory Addresses (1 Meg.)

BMAR BIT	FUNCTION
BMAR 0	NOT USED
BMAR 1	NOT USED
BMAR 2	NOT USED
BMAR 3	64 K ROW SELECT
BMAR 4	64K ROW SELECT
BMAR 5	COLUMN ADDRESS
BMAR 6	ROW ADDRESS
BMAR 7	ROW ADDRESS
BMAR 8	ROW ADDRESS
BMAR 9	ROW ADDRESS
BMAR 10	ROW ADDRESS
BMAR 11	ROW ADDRESS
BMAR 12	ROW ADDRESS
BMAR 13	ROW ADDRESS
BMAR 14	COLUMN ADDRESS
BMAR 15	COLUMN ADDRESS
BMAR 16	COLUMN ADDRESS
BMAR 17	COLUMN ADDRESS
BMAR 18	COLUMN ADDRESS
BMAR 19	COLUMN ADDRESS
BMAR 20	COLUMN ADDRESS
BMAR 21	NOT USED
BMAR 22	NOT USED
BMAR 23	NOT USED

Table 2-4. VS-85 Main Memory Addresses (2 Meg.)

BMAR B IT	FUNCTION
BMAR 0	NOT USED
BMAR 1	NOT USED
BMAR 2	64 K ROW SELECT
BMAR 3	64 K ROW SELECT
BMAR 4	64 K ROW SELECT
BMAR 5	COLUMN ADDRESS
BMAR 6	ROW ADDRESS
BMAR 7	ROW ADDRESS
BMAR 8	ROW ADDRESS
BMAR 9	ROW ADDRESS
BMAR 10	ROW ADDRESS
BMAR 11	ROW ADDRESS
BMAR 12	ROW ADDRESS
BMAR 13	ROW ADDRESS
BMAR 14	COLUMN ADDRESS
BMAR 15	COLUMN ADDRESS
BMAR 16	COLUMN ADDRESS
BMAR 17	COLUMN ADDRESS
BMAR 18	COLUMN ADDRESS
BMAR 19	COLUMN ADDRESS
BMAR 20	COLUMN ADDRESS
BMAR 21	NOT USED
BMAR 22	NOT USED
BMAR 23	NOT USED

2.4.4 REFRESH

Because a dynamic RAM will not store data indefinitely, the data must be written back at least once every two milliseconds. Rewriting the RAM is done internally and is called "refresh". The VS-85 will refresh every 15 microseconds. This operation has priority over all other memory operations.

When a refresh cycle (REF) is initiated, RAS (Row Address Strobe) will be enabled for all RAMs, as they require refresh with only RAS cycles. Row refresh addresses, BMAR6-13, are supplied by the Cache/MCI. All CAS inputs will be disabled by the refresh. Normal memory operations also accomplish refresh.

2.5 MEMORY CONTROLLER I (MCI)

The Memory Controller I (figure 2-8) contains the same basic memory control and data passing services as the Cache. There is no 32 K bytes of RAM memory on the MCI.

2.5.1 MAIN MEMORY ADDRESSES FROM BA AND CP

Both the $C P$ and the $B A$ 24-bit main memory addresses, for their respective main memory operations, pass through the MCI; CP addresses (MA0-23) through the CP Memory Address Latch and BA addresses (BAO-23)through the BA Address latch. The addresses are sent to the Main Memory Address Multiplexer and the memory operation in progress (CP or BA) will gate the correct set of addresses through to main memory as BMAR0-20.

2.5.2 MAIN MEMORY DATA DIRECT TO CP

Data from main memory to the $C P$ also passes through the MCI board on the way to the $C P$. The data word, DTRD0-31, is directed from the MCII. The word can also be IPC data from the B_{i} to the $C P$.

2.5.3 MAIN MEMORY CONTROL

The Main Memory Control logic on the MCI board is the same as on the Cache board. Refer to paragraph 2.6.8.

2.5.4 INTERPROCESSOR COMMUNICATIONS CONTROL

The Interprocessor Communications Control logic (figure 2-11) on the MCI board is the same as on the Cache board. Refer to paragraph 2.6.9.

2.6 CACHE MEMORY

The Cache Random Access Memory (figure 2-9) provides high speed data read access for the $C P$ by acting as a buffer between the $C P$ and Main Memory. Its main function is to improve memory transfer rate by providing high speed access to needed data. Two other sections of the Cache board, although not part of the Cache Memory, are the Main Memory control and the IPC (Initrprocessor Commications) control logic. Main Memory refresh logic is also part of the memory control to provide refresh control and refresh row addresses to the Main Memory.

A complete Cache cycle is 160 nanoseconds while a Cache read only cycle is 80 nanoseconds, compared with the 480 nanosecond cycle time for a main memory doubleword read. The Cache is in synchronization with the memory control.

The Cache contains a subset of the same data found in main memory and allows the $C P$ to read this subset data, making it unnecessary for the $C P$ to wait for data read from main memory. To accomplish this, the Cache has a write through strategy so when the $C P$ writes to main memory, via the System Bus Controller, the Cache entry is fully updated.

The effectiveness of the Cache is measured by the "hit" ratio, or how often the requested data is found in Cache. The hit ratio will increase as job execution proceeds because the job tends to reuse data it has already referenced. A "miss" indicates the requested data was not found in Cache. The $C P$ then requests a doubleword read directly from main memory and that doubleword will be written to Cache to keep the Cache updated.

Because of timing constraints, the Bus Adapter does not write to Cache Memory. When the BA modifies a data word which is also buffered in Cache, the Cache entry is invalidated because it is no longer current.

The Cache can be disabled and enabled by setting a bit (ECR8) in the External Condition Register on the $S B C$. When the Cache is disabled, all CP read accesses are satisfied directly with a main memory doubleword read. When the Cache is enabled, it contains stale data and must be cleared, as it is upon system initialization.

Cache parity errors, which also cause a doubleword read, are recorded in the Bus Transaction Log on the SBC, but are otherwise invisible to the CP microprogram. The only indication of Cache parity errors is system access degradation.

Two other sections of the Cache board, although not part of the Cache Memory, are the main memory control and the IPC (Interprocessor Communications) control logic. This logic is actually SBC logic, but is placed on the Cache board due to the physical limitations of the SBC board.

2.6.1 CONFIGURATION

There are four thousand Cache Memory entry pairs (32 K bytes), and each pair contains an even word entry and an odd word entry. Each entry contains a 32-bit data word and a 9-bit "tag" field. The tag, which is used for address comparison, identifies the actual physical address of an entry. As each location in Cache can contain the corresponding main memory location and every 32 K increment of the location to the end of memory, the tag indicates which 32 K increment is resident in Cache.

Of the 24 bits of physical address available, MAO-23 from the CP or BAO-23 from the BA, the 12 "middle" bits (MA9-20 or BA9-20) are used to select a Cache entry pair. One of the remaining 12 bits (MA21 or BA21) is used to select the even or odd Cache entry from the pair, and nine bits, (MAO-8) from the CP address, are used to compare tag fields of the selected entry. The low order 2 bits are ignored because the unit of access is one word.

2.6.2 DATA WRITTEN TO CACHE

Data to the Cache can be written in 1,4 , or 8 -byte increments. There are two types of 8 -byte writes. This data, appearing at the main memory Data Latch as CAWDO-63, is either one or two words of $C P$ data, or is a doubleword of memory read data, corrected by the $S B C$. The $C P$ data appears here to update the Cache, and at the SBC for a normal one or two word CP memory write. If the data is a doubleword of read data, then a Cache "miss" occurred and the CP was forced to do a memory read access.

The doubleword of read data can also be for the Bus Adapter and it will not be written to Cache, but will be sent directly to the BA as CAWD0-63. This route of data to the $B A$ is because of the convenience of locating hardware at this point.

The Cache will generate its own write pulses for 1,4 , or 8 -byte writes, decoded from $C P$ memory operation commands. When the Cache writes one byte it overwrites (replaces) one byte of a word already stored in Cache. The location of the byte to be written is software controlled by the tag identification and memory address bits MA21-23. MA21 controls the odd or even word selection while MA22-23 decide on the most or least significant halfword and byte of the word. A 4-byte (word) write is also controlled by the tag and MA21. The 8-byte (doubleword) CP write is accomplished by tag comparison only when the $C P$ transfers two words.

The second type of 8 -byte write happens when the tags did not compare, the Cache missed, and the $C P$ was forced to read a doubleword from main memory. This operation is done by default, when no CP write operation is decoded and

Control Memory bit 24 (MCM24) is on indicating that the $C P$ requested a Cache read. The tag indicates the correct location to be written and MCM24 produces two write pulses to write the entire doubleword. Four bits of parity are generated and written to Cache for every word.

If the BA writes a dout, leword to main memory, the memory address of the write is compared to the corresponding address and tag in Cache, and, if there is a match, the data in the Cache location is invalidated.

2.6.3 DATA READ FROM CACHE

The read instruction for the Cache is a normal memory read operation determined by the decoding of a Control Memory word. The word of data addressed in Cache for transfer to the $C P$ is made available, through the Cache Tri State Drivers, to the CP's Memory Data Register on the MMO-3l lines. Nothing prevents main memory from being read, but the data word returned (DIRD0-31) is effectively blocked from the $C P$ at the $T r i$ State Drivers.

2.6.4 MAIN MEMORY ADDRESSES FROM BA AND CP

Both the $C P$ and the $B A$ produce a 24 -bit main memory address for their respective main memory operations. The $C P$ addresses (MA0-23) pass through the CP Memory Address Latch while the $B A$ addresses (BAO-23) pass through the BA Address latch. The addresses are sent to the Main Memory Address Multiplexer and the memory operation in progress (CP or BA) will gate the correct set of addresses through to main memory as BMAR1-20.

These addresses are also made available to the Cache Address Multiplexer for Cache entry pair selection in an attempt to locate the subset of data in Cache. Twelve of the "middle" address bits (MA9-20 or BA9-20) pass through the multiplexer for Cache entry selection. The BA addresses are only used to invalidate the cache entry, not to write a new entry.

2.6.5 TAG COMPARE (MISS) AND PARITY

The nine tag bits (TWDO-8) from the $C P$ memory address are written into the Cache RAM, through the Tag Data Latch, at the same time that the Cache word is written. One bit of parity is also written for each tag entry. When the CP requests a Cache read of a selected entry, the tag bits of the current CP memory address are compared, through the Tag Compare Address Multiplexer and Compare Logic, to the tag bits of the selected Cache entry. If the tag comparison is not correct, the MISS signal is generated and sent to the Control Memory to stop the $C P$ and L clocks, if no $B A$ is requesting a main memory cycle, as a main memory doubleword read must be initiated. The MISS is also recorded in the External Condition Register of the System Bus Controller only for diagnostic purposes as the miss will be invisible to the micro program.

As the tag was being compared, both the tag and data parity bits are being checked in the Parity Check logic. If a parity error occurs, MISS is generated regardless of the tag comparison results as bad parity indicates an unusable word. A main memory doubleword read will be initiated.

2.6.6 VALID AND INVALID CACHE LOCATIONS

Because of timing constraints, the BA will not access any data in Cache. But, if the $B A$ writes to main memory and that particular main memory location's data was in Cache, then the data in Cache will no longer be current or "valid". When the BA does a main memory write, the Cache checks to see if that main memory location also resides in Cache. If it does, a Cache location "valid" bit is written into the Cache RAM to indicate that the Cache entry is no longer valid. There is an even and odd valid bit for the even and odd cache word. If the $C P$ requests a read of that cache location, the valid bit will cause a Cache MISS and a main memory doubleword read will be initiated. The Cache word will be updated and will again become valid.

2.6.7 MAIN MEMORY DATA DIRECT TO CP

Data from main memory to the $C P$, caused by a Cache miss and a doubleword read, passes through the Cache board on the way to the CP. The data word, DIRD0-31, is directed from the SBC at the same time that the doubleword from the SBC for the Cache update arrives at the Cache board. The word can also be IPC data from the BA to the CP. In that case, the word will not be used to update Cache. Any data from the Cache will not be permitted through the Cache Tri State Drivers.

2.6.8 MAIN MEMORY CONTROL

The Main Memory Control logic on the Cache board (figure 2-10) is actually an System Bus Controller function, but is located on the Cache board due to the physical limitations of the SBC board. Both the $C P$ and the Bus Adapter can request a variety of memory read and write operations, and both encode their own memory operations and requests. The BA, because it must support the I/O Processor, is permitted a 16 -bit (halfword) memory write that the $C P$ is not allowed. The $C P$ has the lowest memory priority and does not require a request line because the memory control defaults all unused memory requests to the CP. The B.A has its own request line.

The Main Memory Operation Decoder decodes the CP memory operation from a Control Memory word when no BA memory requests are present, The Main Memory Operation Decoder decodes the BA operation from bits BAC0-2.

The Main Memory Timing Generator produces all the memory control signals discussed under Main Memory Control Signals, paragraph 2.4.1. The CP MDR Select Logic allows the selection of the appropriate CP Memory data Register for memory read commands. The STOP CP signal, halting the 't' time clocks of the CP, will be present if there was a Cache MISS because the data in the Cache was invalid and must be updated; if control was busy or doing a refresh and a CP write command was issued; or, if a BA memory request was in progress and a CP write command was issued.

Main memory refresh logic is also part of the memory control. It provides refresh control and row addresses (BMAR6-13) to the main memory at 15 micro second intervals. Refresh has priority over all other requesting processors.

2.6.9 INTERPROCESSOR COMMUNICATIONS CONTROL

IPC (Interprocessor Communications) control logic (figure 2-11) is also a System Bus Controller function but is located on the Cache board due to the physical limitations on the SBC. The logic is responsible for IPC message send and receipt control. The IPC feature has two basic functions. The first function allows two processors to communicate with each other without using main memory facilities, and the second function allows the I/O Processor to interrupt the CP because the CP will not accept asynchronous messages from the IOP. The CP, Bus Adapter, and SBC are all considered processors.

The IPC data words are 32 -bit messages created by a processor. There are two types of messages (dialogs); CP initialization of the BA, and I/O initialization and interrupts. The $B A$ is used for buffering and routing the message.

The IPC receipt RAM stores IPC data bits $0-7$ in the form of a message receipt control, a sending processor number, and a destination processor number. The RAM does not store the actual message. The Message Receipt Control Logic allows acceptance or rejection of any IPC message from any processor. The MDR Load Control alerts MDR非4, the IPC memory data register for the CP, of a pending message. The Bus Adapter IPC Ready Control produces the Data Ready (DRY) signal to the Bus Adapter. DRY will be used at the BA to gate the IPC data into the B. A. IPC Data Latch.

2.7 MEMORY CONTROLLER II (MCII)

The Memory Controller II (figure 2-12) contains basically the same logic functions as the SBC, including; Error Correction, Byte and Halfword Replacement, Word and Byte Select, and the External Condition Register.

The differences between the MCII and the SBC concern the 64-bit data bus. The MCII will send only 32 bits of data (BAWDO-31) to the B. A. and 32 bits of data (MMWDO-31) to the Main Memory; whereas the SBC sends 64 bits (CAWD0-63) to the Cache and the B.A., and 64 bits (MMWDO-31 and MMWD31-63) to the Main Memory.

Refer to paragraph 2.8 for the SBC logic functions.

2.8 SYSTEM BUS CONTROLLER

The System Bus Controller (SBC) (figure 2-13) provides a 64-bit data path between the Cache Memory, main memory, and the Bus Adapter, and acts as a data "traffic cop". It directs a doubleword of data read from main memory to the Cache Memory, or to the Bus Adapter with alignment of any one of four single bytes of one word for the CP ; directs and aligns units of $1,2,4$, or 8 bytes of data to be written to memory from the $C P$ or $B A$; and directs IPC (Interprocessor Communications) data between the $C P$ and BA.

The SBC is responsible for correcting a single bit memory error for each 32 -bit word of the doubleword that is read, notifying the Control Memory or BA if multi-bit read errors occur, and generating parity for a main memory write. It logs parity errors in the BTL (Bus Transaction Log), and controls and records "external" events using the ECR (External Condition Register).

2.8.1 DATA ERROR CORRECTION

Both the $C P$ and the $B A$ are responsible for generating their own individual memory requests. When a memory read operation is initiated, a doubleword will be transferred to the S.B.C from memory and the SBC will attempt to correct a single bit error for each 32 -bit word of the doubleword. This is done by circulating the doubleword (MMRDO-63) and parity bits (RPH/LO-6) through ECC (Error Correction Code) circuitry. If a bad bit is detected by data and parity bit comparison, it will be corrected by an inversion process.

If an uncorrectable multiple bit error is detected, a Main Memory Parity Error condition will notify the Bus Adapter of the error during a BA operation, or set a trap (MMPT) in Control Memory for a CP read operation. If a CP Read Modify Write (1-byte) is in progress, the error indication will set a bit in the ECR to notify the $C P$ and prevent the memory control portion of the SBC (located on the Cache) from generating Write Pulse.

As a diagnostic feature, the ECC can be disabled by setting a bit (ECR5) in the External Condition Register. If the bit is reset, the SBC reports an error to the $C P$ only if a multiple bit error is detected. Single bit errors are corrected with no indication given to the $C P$. If the bit is set, then the $S B C$ reports both single and multiple bit errors to the $C P$ as they occur.

2.8.2 READ DATA PATH

Data that has been processed by the ECC must be directed to the $C P$ and the Cache, or to the BA. The CP requested a doubleword read because the Cache did not contain the current data. The C.P requires one word of the doubleword, but the entire doubleword will be used to update the Cache. A Bus Adapter request for a doubleword read will deliver the full doubleword of data to the BA.

As the C.P needs only one word of the doubleword of corrected data, a decision must be made as to which word the $C P$ will receive. This decision is made at the Word Selector and is software controlled by Memory Address bit $2 l$ (MA21) which was available during the read instruction. If MA2l is reset, the even word of the doubleword will be selected and if MA2l is set, the odd word will be chosen. The selected word can also be used during certain read modify memory write operations.

Following the word selection, an opportunity exists to rotate, or "swap" any one byte of the selected word into the 1 ow order byte position. The Byte Selector conveniently manipulates the byte here, otherwise the destination register of the data word (CP Memory Data Register 非2) would have to be searched for the selected byte. This feature is software controlled by Memory Address bits 22 and 23 (MA22-23), which are used for selecting bytes and halfwords. Following the word select (and byte "swap", if requested), the word is sent through the IPC Data and Bus Log Multiplexer to the Cache board, as DIRD0-31, for transfer to the CP.

At the same time the $C P$ word is being selected, the doubleword is being transferred to update the Cache. The doubleword will pass through the Cache Data Bus Selector, which can only distinguish between the doubleword or IPC data (or CP data that will update the Cache on a CP write). The SBC does not know the destination of the doubleword, CAWDO-63. It can be for either the Cache or the BA. This decision is controlled by logic on the Cache board.

A BA read request will send the corrected doubleword directly to the Cache Data Bus Selector. Again, the SBC does not know or decide the destination of the doubleword.

2.8.3 DATA TO MAIN MEMORY

Data to be written to main memory is from either the $C P$ or the Bus Adapter, or it is corrected data, via the Word Selector, to be written back to memory as a replacement byte or halfword. The S.B.C will align the data in 1, 2,4 , or 8 -byte increments, and write a word or doubleword to memory with correct parity. The word of data from the $C P$ will also be made available to the Cache because the Cache must be updated when main memory is written. Because of timing constraints, the BA does not write to Cache Memory. Interprocessor Communications (IPC) data between the $C P$ and $B A$ will also be present, but will not be written to memory.

A CP write memory request allows one word of $C P$ data to be admitted to the Byte and Halfword Replacement logic. It is up to the Byte and Hal fword logic to decide on a l-byte replacement, using read data from the CP Word Select logic, for a Read Modified Write operation, or allow an unmodified CP word write. This is also software controlled by Memory Address (MA) bits 22 and 23.

Another decision here is to permit a $C P$ word or doubleword write. If a single word is to be written, the data will be available to memory as an even word (MMWDO-31) and an odd word (MMWD31-63). The memory control, by decoding the write instruction, will generate the appropriate even or odd word Write Pulse. For a doubleword write, the first word will be latched in the SBC's main memory output drivers while the $C P$ transfers a second word. The memory control will produce both an even and odd word Write Pulse.

As the word(s) are prepared for memory, they will also be made available to the Cache Data Bus Selector to allow updating of the Cache Memory.

A Bus Adapter write memory operation is similar to the $C P$ write operation. The BA is allowed the normal byte replacement, and also a halfword replacement. The halfword is necessary because the IOP is a halfword device. The halfword or byte will be corrected memory data from the Word Selector and will be aligned by MA22-23.

The BA is also permitted a word or doubleword write. The complete BA doubleword is available to memory as MMWDO-63 and no second data transfer is needed. The memory control will again generate even and/or odd word Write Pulse(s). The word(s) will NOT be made available to the Cache Memory.

2.8.4 INTERPROCESSOR COMMUNICATIONS

Interprocessor Communications are used for generalized message passing and interrupt service between all processors (CP, BA, and SBC). Thirty two bit messages are transferred directly between processors without using main memory facilities. IPC transmission control is generated on the SBC portion of the Cache board.

If no write operations are in progress, the data word appearing at the Byte and Halfword Replacement logic will be Interprocessor Communications data, transmitted on the normal data paths, from the $C P$ or the BA. IPC data is left untouched and is sent to the Cache Data Bus Selector. The Cache Data Bus Selector will select ihe IPC data word originating at the BA and transfer it through the IPC Data and Bus Log Multiplexer, as DIRD0-3l, to the CP via the Cache board.

An IPC data word from the : P for the $B A$ will also pass through the Cache Data Bus Selector, but will be directed to the Cache board as CAWD31-63. Logic on the Cache board will determine that this IPC word will be sent to the BA.

2.8.5 EXTERNAL CONDITION REGISTER

The External Condition Register is a 24-bit register (ECRO-23) maintained by the $S B C$, and a 20 -bit register maintained on the MCII, to record or control "external" events. (Refer to Appendix A.) The register is divided into 5 groups on the SBC and 4 groups on the MCII. Events recorded include write parity errors, invalid memory addresses for write operations, Cache hits and misses, rejection of IPC data words, and Bus Adapter "Attention Needed" requests. The full ECR can be read by the Read ECR microinstruction. The 20 or 24-bit output of the ECR passes through the IPC Data and Bus Log Multiplexer and on to the low order 24 -bit positions of CP Memory Data Register 非 4 , as DIRDO-31, via the Cache board.

To control events, the groups can be written by a Write ECR microinstruction. These include initializing the $B A$, and enabling and disabling Cache or ECC.

2.8.6 BUS TRANSACTION LOG

The Bus Transaction Log (BTL) is a local RAM storage area, configured as 256 32-bit words. It is used to record all hard and soft ECC errors with the associated upper twelve main memory address bits (CMAL-12) generated by the CP or the BA. Main Memory Address bits $3-4$ will point to the main memory board while bits $5-6$ will indicate the row select. Also recorded will be Cache data and tag parity errors, with addresses, and whether the odd or even Cache word is in error. The BTL can be read with the Read BTL diagnostic microinstruction.

2.9 BUS ADAPTER

- The Bus Adapter (figure 2-14) is an intermediate processor serving as an interface between the 16-bit Input/Output Processor and the $32 / 64-b i t$ VS- 85 system bus. The VS-85 can support only one Bus Adapter. The BA supports up to eight IOPs, however, the VS-85 only contains a maximum of six IOPs. The BA has access to basic VS-85 memory and Interprocessor Communications (IPC) services, and is synchronized with the SBC/MCII. The main service the BA provides is data buffering. The IOPs use 16 -bit write and read operations, while data is transmitted to and from memory 32 or 64 bits at a time. The BA blocks data going from the IOP to memory and unblocks data from memory for the IOP, effectively using the $32 / 64$-bit high speed data bus during $1 / 0$ operations.

Because the BA must be able to use either the 32 -bit or 64 -bit bus, it must recognize whether the Cache/SBC or the MCI/MCII combination has been installed. This is done by signal $\operatorname{SBC} 32 / 64$ which basically enables either all or half of the Main Memory Data In Latch, and all or half of the odd or even word buffers.

The BA supports six words per IOP in a local RAM buffer/ register. The words are used to buffer memory or IPC data, and for holding physical addresses through which the IOP will access main memory. The BA generates a 24-bit physical main memory address from the 16 -bit word supplied by the IOP.

Four groups of commands are developed by the IOP to control internal BA events and Interprocessor Communications, and to direct main memory operations. Four types of errors, plus other IOP status information, are logged in a one byte Status Register maintained on the BA. The IOP cannot directly set the full Status Register, but it can inspect the status byte. Under direction of the $C P$, IOP interrupts can be allowed or rejected by the BA. The BA also controls the priority of devices attached to the IOPs.

2.9.1 IOP PRIORITY

The first two IOP positions on $B A$ 非 1 are always reserved for disk devices. The disk devices, because cf their high speed data transfer rates, must have memory access priority over all other I/O devices. The BA must assign priority to the first disk IOP, but still allow the second disk IOP to share every other available memory access. This is accomplished by "conflict resolution" logic. The other IOP priorities are assigned on a descending IOP position

basis. The priority assignment process is initiated when an IOP raises its memory request line.

2.9.2 IOP INSTRUCTIONS

After an IOP has requested a memory cycle and has received a memory grant from the BA in return, it can send a command, in the form of a CMBI (Control Memory Bus Interface) instruction, to the BA. The BA will decode the CMBI into one of four instruction groups; Read/Write group, Address Control group, State Control group, or Interprocessor Communications group.

Each group is sub-divided into several instructions. The instructions will be used to control data and address transfers between the IOP and main memory, or in the case of IPC instructions, between the IOP and the CP. Each command contains a number of "type codes" and "qualifier bits" to further define the instruction execution.

2.9.3 ENCODING OF BA MEMORY COMMANDS

The BA must have read and write access to main memory to support the IOPs. The $B A$ memory commands are encoded on the BA from the IOP instructions and are decoded on the main memory control portion of the SBC, located on the Cache board. The BA memory operations include Write $1,2,4$, or 8 bytes, and Read 8 bytes.

2.9.4 WRITE IOP DATA TO MAIN MEMORY

To accomplish 1, 2, 4, or, for the SBC, 8 -byte writes, the IOP will use 1 , 2 , or 4 halfword data transfers to the BA. The BA will either send a byte directly to the S.B.C/MCII for writing to main memory, or store the halfwords of data in the odd or even word buffers for the Cache, or even word buffer for the MCI, until all transfers are complete.

After the BA has granted the IOP memory request and decoded the IOP instruction, data is received from the IOP as two bytes, BMDLO-7 and BMDHO-7, at the IOP Data In Latch. A l-byte Read Modified Write will cause the high order byte (BMDHO-7) to be transferred directly to the SBC/MCII with a memory address. The byte will be sent (as the low order byte BARD56-63) through the Main Memory Data Latch Low. The other 24 bits (BARD32-55) will all be zeros. The Main Memory Data Latch Low will be enabled when the BA requests a memory cycle and the data will be transferred to the SBC/MCII when the memory control is ready. This byte replaces a byte in a full word read from memory by the SBC/MCII and the SBC/MCII is responsible for positioning the byte within the word before the word is rewritten to memory.

Because the IOP is a 16-bit device, a halfword (2-byte Read Modified) write is permitted. Only a halfword will be loaded into an odd or even word buffer.

For a 4-byte (word) write, two data transfers from the IOP are required. The first transfer will load the least significant halfword of the odd or even word buffer. The second transfer will load the most significant halfword of the odd or even word buffer.

The loading of odd and or even buffers, for both hal fword and word writes,
is controlled by Current Address Register bits 21 (buffer select) and 22 (half word select within the buffer). Address bit 20 causes a write request to be issued to the SBC/MCII using the current address. Half words and word write data passes through Main Memory Data Latch Low.

For an SBC 8-byte (doubleword) write, four transfers from the IOP are needed and four odd and even word buffers are loaded. Memory Data Latch High (BARDO-31) is used for the even word of an 8-byte write.

2.9.5 ADDRESSES TO MAIN MEMORY

Two types of addressing schemes, direct or indirect, are used by the BA to access main memory. Set Address, issued by the IOP, provides the mechanism where the IOP loads a 24 -bit direct physical address into the Current Address Register before accessing a main memory area for reading or writing. Loading the physical address requires that the IOP load the least significant byte of an IOP halfword, followed by a complete halfword, into the CAR as BMDLO-7 and BMDHO-7 via the IOP Data In Latch.

Set Address Indirect causes a packaged operation, including reading main memory, to be performed. When a Set Address Indirect is issued, the BA will use the 24 -bit Indirect Address Register as a main memory address as long as no other memory operations are in progress. A main memory doubleword, consisting of addresses, is read by the BA as BAWDO-63 through the Main Memory Data In Latch from the SBC, or a single word as BAWDO-31 from the MCII. One word from the SBC is selected by Current Address Register bit 22 while the other is discarded. Twenty four bits of the word are then placed in the CAR and the IAR is rippled plus 4. Set Address Indirect can be used by the IOP for effective access of an Indirect Address List.

The IOP (via the MMO-15 lines) can also fetch a 16-bit address (one of four halfwords) from the IAR/CAR before processing an IOP level interrupt operation. The CAR/IAR Latch/Incrementer can ripple the CAR plus 1 or plus 2 for successive memory operations, and ripple the IAR plus 4 for the next doubleword.

2.9.6 MAIN MEMORY DATA TO IOP WITH BYIE SWITCHING

The IOP read request causes the deblocking of the $32 / 64$-bit data in the BA Odd/Even Word Buffer into 16 -bit half words. When the 1 in memory read is serviced, using a memory address from the Cu:rent Address Register, a doubleword of data is read from main memory and returned as BAWDO-63 to the Main Memory Data In Latch from the SBC, or a single word as BAWDO-31 from the MCII. One odd or even buffer word is selected as detere ned by the state of Current Address Register address bit 21 (buffer select), inile CAR bit 22 selects the half word from within the buffer. CAR bit 23 tetermines if the bytes within the halfword will be switched in the lve Switch Multiplexer. This conforms to the firmware convention in the IOP.

The halfword output of the Byte Switch Multiplexer is selt to the IOP via the IOP Data Out Multiplexer as MMO-15. The CAR addrcs is incremented 1 or 2, and if CAR bit 20 changes, then the next doubleword read is performed. Bit 20 changing indicates that the buffer has been emptied.

2.9.7 INTERPROCESSOR COMMUNICATIONS

Interprocessor Communications (IPC) is used for generalized message passing and interrupt service between all processors (CP and BAs). Thirty two bit messages are transferred directly between processors without using main memory facilities. Each message must contain its own routing information. These messages are controlled by "dialogs", which are defined as a CP initiated SEND followed by a BA response. There are two classes and five types of IPC dialogs for loading and unloading registers, reading and disabling IOP interrupts, and performing diagnostic functions. The IOP is not directly involved with the dialogs. The BA maintains an IPC In register and an IPC Out register for buffering the IPC messages. The registers can be written and read on command from the IOP.

The IPC message, controlled by an IPC dialog and by the Send and Receipt logic on the Cache board, (paragraph 2.8.9, Interprocessor Communications Control) enters the BA in the form of a separate word of data (BAWD32-63 from the SBC or BAWDO-31 from the MCII) and transfers to the IPC Command and Data Latch. The message is entered into the correct IPC In register, selected by an IOP number. The register is read and the data is sent to the IOP, via the Byte Swap Multiplexer and the IOP Data Out Multiplexer, as MMO-15. An acknowledgment message is returned by the $B A$ to the $C P$ indicating that either the IPC In Register was loaded and no other message be sent, or that the IPC In Register was busy and the CP should repeat the message.

When the IOP has completed the task, (start $I / 0$, halt I / O, or control $I / 0$, etc.) it returns the IPC message through the IOP Data In Latch to the correct IPC Out register. An IOP interrupt request is activated by the $B A$ and the $C P$ will read the interrupt. The CP responds with a Give IPC Out register dialog and the data word will be sent from the register through the Main liemory Data Latch Low to the CP.

2.9.8 STATUS REGISTER.

The BA supports a status byte for each attached IOP. The status byte is held separately from the other IOP register areas. These status bytes are maintained by the BA during the servicing of IOP commands. The IOP cannot set the full status byte directly, but it can inspect the value of the status byte. Main memory command errors, IOP command rejection errors, and status bits ACT, MODE, PB, DWD, TOR, and IPCA are detected by the Status Sensing logic. (Refer to Appendix A, VS-85 Hardware Mnemonics.) The byte is stored in the Status RAM using an address developed from an IOP number. The RAM is updated by the Status Register and the status byte is sent to the IOP, through the IOP Data Output Multiplexer, as MMO-7.

CHAPTER 3

3.1 GENERAL

This chapter provides the CE with tables listing all VS-85 main frame controls and indicators, daily turn-on, and normal and emergency shut-down procedures. Included in this chapter are the procedures for using these controls and a brief statement on the purpose of each control and indicator.

3.2 CONTROLS

Table 3-1 lists the controls found on the VS-85 followed by a brief description of their purpose. Locations of the controls are shown in figures 3-1, 3-2, and 3-3. Because it is a diagnostic tool, a detailed description of the Maintenance Panel is included in Chapter 8 of this document.

Table 3-1. VS-85 Switches and Controls

CONTROL NAME AND TYPE	LOCATION	PURPOSE	$\begin{gathered} \text { NORMAL } \\ \text { POS ITION } \end{gathered}$
$\begin{aligned} & \text { AC ON/OFF } \\ & \text { (CIRCU IT BREAKER) } \end{aligned}$	Power Filter Assembly	Applies ac power to main frame	ON
$115 \mathrm{~V} / 230 \mathrm{~V}$ LINE SELECT (SWITCH)	Power Controller board	Must be set to 115 V ac position for both 115 V and $208-240 \mathrm{~V}$ systems.	$\begin{aligned} & \hline 115 \mathrm{~V} \text { ac } \\ & \text { (FOR ALL } \\ & \text { SYS TEMS) } \\ & \hline \end{aligned}$
$\begin{aligned} & +5 \mathrm{~V},-5 \mathrm{~V}, \\ & +12 \mathrm{~V},-12 \mathrm{~V} \\ & \text { (ADJUS TMENT POTS) } \end{aligned}$	Switching Power Supply front panel	Adjusts voltages up or down as needed. Refer to Chapter 5.	VARIOUS
$\begin{aligned} & \text { R135, R136 } \\ & \text { R137, R138 } \\ & \text { (ADJUSTMENT POTS) } \\ & \hline \end{aligned}$	Control Memory Board	Fast diagnostic clock Slow diagnostic clock Refer to Chapter 8.	VARIOUS
$\begin{aligned} & \text { POWER ON/OFF } \\ & \text { (SWITCH) } \end{aligned}$	Display Panel	Initializes switching power supply to apply dc power to Motherboard	ON
CM BOOT (YELLOW PUSHBUTTON)	Display Panel	Loads system/diagnostic microcode into Control Memory from mini-floppy	$\begin{aligned} & \text { NORMALLY } \\ & \text { CLOSED } \end{aligned}$
CONTROL MODE (BLUE PUSHBUTTON)	Display Panel	Forces system into Control Mode	NORMALLY CLOSED
INITIALIZE (RED PUSHBUTTON)	Display Panel	Causes system to IPL from primary disk drive. System clock reset.	$\begin{aligned} & \text { NORMALLY } \\ & \text { CLOSED } \end{aligned}$
LOAD (GREEN PUSHBUTTON)	Display Panel	Causes system to IPL from primary disk drive. System clock not reset.	$\begin{aligned} & \text { NORMALLY } \\ & \text { CLOSED } \end{aligned}$
MEMORY SIZE (DIP SWITCHES)	MC I or Cache	Sets main memory size. Refer to paragraph 3.2.8.	VAR IOUS
$\begin{aligned} & \text { IOP ADDRESS } \\ & \text { (DIP SWITCHES) } \end{aligned}$	IOP circuit boards	Sets device address for each IOP. Refer to paragraph 3.2.9.	VAR IOUS
MAINTENANCE (SWITCHES)	Maint Panel	Refer to Chapter 8.	OFF

Figure 3-1. Main Frame Switch and Indicator Locations

3.2.1 POWER FILTER ASSEMBLY

Ac power is supplied to the vS-85 main frame through the Power Filter Assembly. The input power required for the system is determined only by the type of Power Filter Assembly installed; either a 115 V assembly or a $208-240 \mathrm{~V}$ assembly. (Refer to Chapter 7, IPB, for the Power Filter Assembly part number.) The assembly is mounted in the back panel of the main frame and contains the main frame ac On/Off circuit breaker, a line filter used to smooth out transient voltage spikes and line current surges, and an auto transformer. The auto transformer, used only for 208-240 Vac input power, balances the cooling fans which operate on 115 Volts ac. (See figure 3-2.)

Turning on the circuit breaker sends ac power to the cabinet fans and the switching power supply, but not to the Power Controller board. Depressing the Display Panel Power On/Off switch to the " 1 " position applies ac power to the Power Controller board, which turns on the switching power supply. When the Power On/Off switch is on, the Display Panel Power On LED is lit indicating that the switching power supply is working. If this LED does not light, or goes on and then goes out, there is a problem with the switching power supply or Power Controller board.

Power is removed from the main frame by depressing the the Power On/Off switch to the " 0 " position and turning off the circuit breaker. If the circuit breaker is left on, the cabinet fans stay on.

Figure 3-2. Power Filter Assembly

OPERATION

3.2.2 DISPLAY PANEL CONTROL BUTTONS

Located in the top left front corner of the main frame, the control pushbuttons allow the user to load system or diagnostic microcode, initialize the system, or force it into the Control Mode. These pushbuttons are part of the Display Panel board (210-8513) and are hardwired directly to it. The four buttons are as follows: yellow CM Boot pushbutton; blue Control Mode pushbutton; green Load pushbutton; and red Initialize pushbutton. (See figure 3-3.)

Figure 3-3. Display Panel Switches and Indicators

3.2.3 BOOT PUSHBUTTON

The yellow Boot button is used whenever operational or diagnostic microcode is loaded into the system. When pressed, this button causes the CP to halt and load microcode from a diskette inserted in the mini-floppy drive. Successful loading is indicated by the Ready LED on the Front Panel being lit - a flashing Ready LED indicates the microcode did not load properly.

3.2.4 CONTROL MODE PUSHBUTTON

Pressing the blue Control Mode (CM) button sets the $C M$ bit to one, forcing the $C P$ into the Control Mode. The CP then issues an ALERT conmand to IOP 非2 Port 0 where Workstation 0 must be connected. The VS-85 Control Mode is similar in operation to the VS-60/80/100 Control Mode. Refer to Chapter 8 for details.

3.2.5 INITIALIZE PUSHBUTTON

The red Initialize pushbutton, when pressed, forces the system into the Initialized state. In this state, the status of the system is as follows:

1. Main memory, the Segment Control Registers (SCRs), and the CP Reference and Change Table are all set to zero.
2. The Page Table for Segment Zero (Operating System) is loaded into the T-Ram for access by the CP - remaining T-Ram entries are faulted.
3. The External Condition Register (ECR) is set to zero by the hardware as soon as the $C P$ begins executing microcode instructions. Because zero equals Enable in the ECR, all system features under ECR control become enabled at Initialization.
4. The BA-Inhibit bit INl is set to zero. In this case, zero equals inhibit preventing any IOP commands from accessing the BA until the CP acknowledges the BA.
5. The System Clock is zeroed and the Comparator bits are set to one. Because of this, the user must reenter the date and time whenever the system is initialized using the Initialize pushbutton.

3.2.6 SYSTEM LOAD PUSHBUTTON

The green Load pushbutton, when activated, causes the system to perform all functions as stated in paragraph 3.2.5, steps 1 through 4. Because the System Clock is not zeroed and the Comparator bits are not set to one, use of the LOAD button eliminates the need of reentering the date and time at the completion of initialization.

3.2.7 MAIN MEMORY SIZE

The following are the two types of main memory boards that can be installed in the VS-85: (Refer to table 5-1 for details.)

WLI P/N	CARD CAPACITY
$210-7803$	1 Megabytes
$210-8203$	2 Megabytes

Memory can range in size from a minimum of $1 M$ bytes (one 210-7803 board) to a maximum of 4 M bytes (two $210-8203$ boards). Memory size can increase in 1 or 2 M byte increments.

3.2.8 MAIN MEMORY SIZE SELECTION

The 210-8230 Memory Controller I or the 210-8804 Cache board has three sets of jumpers to determine the largest capacity main memory board installed in the system. The jumpers are clearly labeled $1 \mathrm{Meg}, 2 \mathrm{Meg}$, and 4 Meg . At this time, the largest capacity main memory board that can be installed in the VS-85 is 2 Megabytes. See figures 5-9 and 5-10 for the jumper locations and configurations.

An 8-position DIP switch, also located on the Memory Controller I or the Cache board, and the number of $7803 / 8203$ Main Memory boards on the CP Motherboard determine the size of main memory. Incorrect altering of switch settings, or altering of switch settings without adding the correct number of memory boards, can result in $C P$ hangups and loss of data. Adding a board without altering switch settings results in no change in apparent memory size to the CP. See figures 5-9 and 5-11 for the switch location and settings.

Switch settings on the $M C$ I or Cache board are compared with the highorder memory address bits (CMAO-3) in $L 87$ (7485 Comparator). If the switch setting is greater than or equal to the address bits, the system considers the address to be legitimate and IMA* goes High. If the switch setting is less than the address bits, IMA* goes Low (active) and the address is not processed. If the switches are set higher than the actual physical memory, however, the memory address will be accepted as legitimate and the CP will attempt to process the address. This can result in system hang-ups and possible data loss.

3.2.9 IOP SWITCHES

An eight-position DIP switch on each IOP 210-7110 Motherboard determines the location of the IOP in the CP Motherboard. On all boards, except the TC IOP, switches 1,2 , and 3 determine the Bus Adapter selected; switches 4, 5, and 6 determine the IOP slot on the Motherboard; switches 7 and 8 are not used at this time. See figure 5-18 for the switch settings for all IOPs, except the TC IOP, which is shown in figure 5-22.

3.3 INDICATORS

Table 3-2 lists the indicators found on the VS-85 followed by a brief description of their purpose. Locations of the indicators are shown in figures 3-1, 3-3, and 3-4.

Table 3-2. vs-85 Indicators

INDICATOR NAME AND TYPE	LOCATION	PURPOSE	NORMAL INDICATION
$\begin{aligned} & +5 \mathrm{~V},-5 \mathrm{~V} \\ & +12 \mathrm{~V},-12 \mathrm{~V} \\ & \text { (VOLTAGE } \\ & \text { SENSING LEDs) } \end{aligned}$	Power Controller board	Shows voltages are in limits. Four LEDs.	ON
$\begin{aligned} & \hline+5 \text { VOLT } \\ & \text { BUS LED } \end{aligned}$	Indicator board	Shows +5 Volt bus to Motherboard ok	ON
POWER LED	Display Panel	Shows power applied to CP	ON
READY LED	$\begin{aligned} & \text { Display } \\ & \text { Panel } \end{aligned}$	Shows good/bad microcode load	$\begin{aligned} & \hline \text { ON (GOOD) } \\ & \text { BLINK ING (BAD) } \end{aligned}$
CP HALT LED**	$\begin{aligned} & \hline \text { Display } \\ & \text { Panel } \\ & \hline \end{aligned}$	Shows CP is halted/running	$\begin{aligned} & \text { ON (HALTED) } \\ & \text { OFF (RUNNING) } \end{aligned}$
$\begin{aligned} & \hline \text { CP PARITY } \\ & \text { LED** } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Display } \\ & \text { Panel } \\ & \hline \end{aligned}$	Shows Control Memory error	OFF
IO PARITY ERROR LEDS	Display Panel above mini-floppy drive	Shows IOP parity error. One LED for each IOP (6).	OFF
MAINTENANCE PANEL HEX DISPLAYS	Maint. Panel	Refer to Chapter 8 for details	
$\begin{aligned} & \text { ECC IND ICATOR } \\ & \text { LEDS } \end{aligned}$	```Top edge MC II or SBC```	Shows single-bit main memory parity error detected/ corrected. Keeps continuous count. Eight LEDs.	OFF
$\begin{aligned} & \text { IOP ACTIVITY } \\ & \text { LEDS } \end{aligned}$	Top edge Bus Adapter	Shows which IOP is active. Eight Leds.	FLASHING
$\begin{aligned} & \text { DISKETTE ACTIVITY } \\ & \text { LED } \end{aligned}$	Front of mini-floppy drive	Shows drive in use (head loaded)/ not in use	ON (IN USE) OFF (NOT IN USE)

** - CP (Control Memory) Parity and CP Halt LEDs both light during a microcode load operation. Ignore these displays during the load operation. Neither indicator reflects a valid trouble condition until after the VS-85 is initialized.

3.3.1 DISPLAY PANEL

The Display Panel provides the user with pertinent information concerning the uperating condition of all I/O devices connected to the main frame as well as data concerning the CP status. The panel contains 10 LEDs arranged in one vertical column with four LEDs for CP status and one horizontal row with 6 LEDs for IOP Parity Error status. (See figure 3-3.)

3.3.2 CENTRAL PROCESSOR INDICATORS

The four indicators that make up the column of LEDs on the Display Panel provide a quick check of CP status. The top LFD (Power), when lit, indicates power has been successfully applied to the CP. The second LED (Ready), when lit, indicates that microcode has been successfully loaded. When this LED is flashing, loading was unsuccessful. The third LED (CP Halt), when lit, indicates that the CP is in the Halt state. The fourth LED (CP Parity lights whenever the CP detects any uncorrectable parity error in Control Memory.

3.3.3 IOP PARITY ERROR INDICATORS

When lit, each of the remaining six Display Panel LEDs indicate the occurrence of a parity error in the control word memory of the IOP associated with that particular LED. The row of LEDs is associated with IOP numbers zero through five. See figure 3-3 for LED assignments.

3.3.4 INTERNAL INDICATORS

Located within the $C P$ chassis (figure 3-4) are several indicators that provide the CE with important system status indications. These indicators are the ECC LEDs and the IOP Activity LEDs. A description of these LEDs follows.

3.3.5 ECC INDICATOR LEDS

Eight LEDs (LED1-8), located on the top edge of the 8231 Memory Controller II or the $210-7605$ SBC board, display the system's continuous count of all single-bit parity errors detected and corrected. When maximum count has been reached (all LEDs lit), the error counter is zeroed and counting begins again. On the MC I board, LED8 (the LSB of the counter) is toward the rear of the main frame and LED1 (the MSB) is toward the front. On the SBC board, the LEDs are reversed.

3.3.6 IOP ACTIVITY LEDS

Eight LEDS (LED1-8), located on the top edge of the 8311 Bus Adapter board, indicate which IOP is active at any given time. However, because the VS-85 contains a maximum of six IOPs (IOPO-5), only six LEDs (LED1-6) are used. Whenever an IOP request for access to the $C P$ (Memory Request In) is granted, the LED associated with that particular IOP lights and remains lit until the transaction is completed. During normal system operation, these LEDs flash briefly. LED1 (for IOPO) is toward the rear of the main frame and LED6 (for IOP5) is toward the front.

Note LED9, the single LED on the upper right corner of the BA. Even though this LED may light, it is NOT a valid error indication.

Figure 3-4. Internal Indicator Locations

3.4 SUPPORT MATERIALS

No special support materials are necessary for the VS-85 main frame.

3.5 DAILY TURN-ON PROCEDURES

After all peripherals are connected to the main frame, the daily turn-on procedure for the VS-85 system is as follows:

1. Make sure that the main frame power connector is plugged into the power source receptacle.
2. Turn on the main frame ac On/Off circuit breaker.
3. Depress the Power On/Off switch, located on the Display Panel, to the "l" position.
4. Power up the primary disk drive and Workstation 非0.
5. Make sure that the system microcode diskette is in the mini-floppy disk drive and then press the yellow CM Boot pushbutton.
6. After successfully loading the microcode, press the red Initialize button to begin loading the Operating System (OS) from the primary disk drive. (If Ready LED flashes instead of remaining steadily $O N$, system has failed to load the microcode. Reseat diskette and repeat the loading procedures. If microcode cannot be loaded, insert and load the backup diskette, if available. If this does not correct the problem, Control Memory, the drive or drive controller (210-7610) may be defective. Refer to drive maintenance procedures in Chapter j.)
7. Workstation 0 will display Control Mode "F04". Press the BACKSPACE key and type in F (for a fixed disk) or R (for a removable disk) and the Physical Device Address of the disk the system will be IPL'ing from. (Refer to paragraph 4.10 .1 for details.)
8. When System Initialization has completed, the VS Operators Console screen will appear and the system is ready for normal operation.
9. After successfully loading the $O S$, mount the disks and power up all peripherals.
10. Tf this is a new installation, perform all applicable peripheral diagnostics. Refer to Chapter 8 of this document and appropriate documents in Class 3000 for the necessary instructions. Make sure that all peripherals function correctly.

3.6 DAILY VERIFICATION PROCEDURES

Daily verification procedures are as follows:

1. Perform an IPL from the system disk.
2. Log on to a workstation and run the WSDKTES' diagnostic located in @SYSTST@ library on the system disk.
3. If there are no errors cancel the diagnostic, log off the system, and let the customer resume normal daily operations.

3.7 DAILY SHUT-DOWN PROCEDURES

The daily shut-down procedure for the VS-85 system is as follows:

CAUTION

Improperly powering down the system and/or any disk drive can result in damage to the Volume Table of Contents (VTOC) of the affected disk drive(s).

1. Make sure all operators have logged off of the system.
a) Press PF key 13 (WORKSTATIONs) on an operators console to check that the operators have logged off of the system.
b) Press PF key 7 (NON-INTERACTIVE Tasks) on an operators console to check the background tasks on the system. Look under the "User" column to identify any operator running a background task.
2. Press the blue Control Mode button. This prevents any disk I / O command in process from being halted prior to completion and prevents possible damage to any disk Volume Table of Contents (VTOC).
3. Power down all peripheral devices according to procedures in the applicable documents in Class 3000.
4. Depress the Power On/Off switch, located on the Display Panel, to the " 0 " position.
5. Turn off the main frame circuit breaker.

3.8 EMERGENCY SHUT-DOWN PROCEDURES

In case of an emergency situation when the normal daily shut-down procedure can not be used, perform the following:

1. Press the blue Control Mode button, if possible. This prevents any disk I/O command in process from being halted prior to completion and prevents possible damage to any disk VTOC.
2. Depress the Power On/Off switch to the " 0 " position.
3. Turn off the main frame circuit breaker.
4. Disconnect the main frame power connector from the power source receptacle.

3.9 OPERATOR PREVENTIVE MAINTENANCE

No operator preventive maintenance is necessary on the VS-85 main frame.

INSTALLATION

4.1 GENERAL

This chapter describes the procedures for unpacking, inspecting, and installing the VS- 85 main frame. Included in this chapter are instructions for system interconnection and initial power-up. Refer to Chapter 3, Operation; Chapter 5, Preventive and Corrective Maintenance and Removal/Replacement of this manual for more information needed to complete installation. Actual installation should not begin until the site requirements detailed in the following publications have been met.

DOCUMENT TITLE	WLI P/N
Customer Site Planning Guide	$700-5978 \mathrm{D}$
Systems Installation Guide for VS, 2200, and WP/OIS Systems	$729-0907$
VS Customer Planning and Resource Guide	$700-6727$

Plus any other pertinent documents in Class 1106.

4.2 INSTALLATION SITE CHECK

Prior to installation, the following conditions must have been met:

1. All site plans must have been approved by both the customer and a Wang Service Representative.
2. All building alterations must have been completed and inspected.
3. All electrical wiring, air conditioning, and telecommunications (TC) modifications must have been installed and tested.
4. If the installation is an upgrade only ($C P$ replacement), the salesperson will make sure that serial peripheral devices replace all parallel peripheral devices.
5. The salesperson will also make arrangements to replace all 2260 V 10 -Mbyte Drives. These drives are NOT supported on the VS-85 system.

NOTE

It is the responsibility of the salesperson to make sure that an upgrade site meets all necessary VS-85 specifications.
6. The CE will perform a preinstallation inspection two weeks prior to delivery. At this time, the $C E$ will check the site for compliance with VS site specifications. The CE will bring any unsatisfactory conditions noted to the attention of the customer for correction.

NOTE

Before installation of a VS－85 can take place， the minimum specifications as described in the previously listed publications should be met． Failure to meet these requirements can be cause for the installing $C E$ to deem a site as unsuitab－ le for the proper functioning of a VS－85 system．

4．3 TOOLS AND TEST EQUIPMENT

TOOL DESCRIPTION	WLI P／N
Standard CE Tool Kit	$726-9401$

TEST EQUIPMENT DESCRIPTION	WLI P／N
Digital Voltmeter－Fluke \＃8022A	$727-0119$

4．4 UNPACKING

Before unpacking the VS－85，check all packing slips to make sure that the proper equipment has been delivered．Refer to the serial tag information below．After checking packing slips，inspect all shipping containers for damage（crushed corners，punctures，etc．）．

4．4．1 CLAIMS INFORMATION

If damage is discovered during inspection，file an appropriate claim prom－ ptly with the carrier involved，and notify：

WLI DISTRIBUTION CENTER
Department 非90
Quality Assurance Department
Tewksbury，MA． 01876.
State the nature and extent of damage and make arrangements for replacement equipment，if necessary．Make sure to include this information：

WORK ORDER 非
CUSTOMER NAME \qquad
CUSTOMER 非 \qquad
MODEL 非
SERIAL 非 \qquad

VS－85 models without Cache Memory／SBC option：

MODEL 非	WLI P／N	MEMORY SIZE
VS－85－1	$157 / 177-7225$	1 MEGABYTE
VS－85－2	$157 / 177-7226$	2 MEGABYTE
VS－85－4	$157 / 177-7228$	4 MEGABYTE

VS－85 models with Cache Memory／SBC option：

MODEL $⿰ ⿰ 三 丨 ⿰ 丨 三 一 \mid$	WLI P／N	MEMORY SIZE
VS－85－2	$157 / 177-7226$	2 MEGABYTE
VS－85－4	$157 / 177-7228$	4 MEGABYTE

Part number prefix $157=50 \mathrm{cps} / 230$ vac systems
Part number prefix $177=60 \mathrm{cps} / 115$ vac systems

4．4．2 UNPACKING THE MAIN FRAME

1．It is suggested that some assistance be available to help unpack the main frame cabinet．
2．Cut the strapping that secures the top cover and outside tube to the cushion pallet．（If the strapping is metal，be careful that it does not spring out and away from the shipping container．）
3．Remove the top cover，corrugated／foam top cushion，and outside tube． （See figure 4－1．）
4．Remove the top and front covers from the vS－85 cabinet．（Refer to paragraphs 5．3．5．1 and 5．3．5．2）
5．Remove the four corner shipping bolts securing the vS－85 cabinet to the cushion pallet．
6．Remove the two foam and wood support blocks from under the main frame cabinet．
7．Slightly loosen the two nuts on the cushion pallet feet at the front of the pallet．
8．Remove the two nuts from the cushion pallet feet at the rear of the pallet．

WARNING
The main frame cabinet weighs approximately 250 pounds．Be careful when performing the following steps．

9．While firmly grasping the rear top of the cabinet，lift the cushion pallet up over the right cushion pallet foot bolt and partially swing the foot out away from the pallet．（See figure 4－2．）
10．Repeat the previous procedure for the left cushion pallet foot．
11．Alternate steps 9 and 10 while lowering the cushion pallet until it is resting on the floor．
12．Carefully roll the vS－85 main frame cabinet off the rear of cushion pallet．（See figure 4－3．）
13．Move the cabinet to its permanent location．
14．Turn the two front leveling pads down until they support the cabinet．
15．Adjust the leveling pads to align the unit with adjacent equipment． Make sure the cabinet is level with no detectable rocking motion，
16．Once the cabinet is in place，check the service clearances as listed below．

SERVICE CLEARANCES	INCHES	CENTIMETERS
Front	36	91.4
Rear	24	60.9
Left	0	0
Right	0	0
Top	20	50.8

4.4.3 UNPACKING THE PERIPHERALS

Before proceeding, carefully unpack all peripherals according to procedures outlined in applicable maintenance manuals in Class 3000 . As each unit is unpacked, check it for any obvious shipping damage.

Figure 4-1. VS-85 Shipping Carton

Figure 4-2. Swinging Cushion Pallet Feet

Figure 4-3. Rolling Cabinet Off Cushion Pallet

Figure 4-4. VS-85 With Top and Front Covers Removed

WARNING


```
* *
* THIS COMPUTER EQUIPMENT HAS BEEN VERIFIED AS FCC CLASS A. *
*
```


IN ORDER TO MAINTAIN COMPLIANCE WITH FCC CLASS A VERIFICATION, THE FOLLOWING CONDITIONS MUST BE ADHERED TO DURING NORMAL OPERATION OF EQUIPMENT.

- ALL COVERS MUST BE ON SYSTEM AND SECURED IN THE PROPER MANNER.
- ALL INTERNAL CABLES MUST BE ROUTED IN THE ORIGINAL MANNER WITHIN THE CABLE CLAMPS PROVIDED FOR THAT PURPOSE.
- THE MAINTENANCE PANEL DOOR MUST BE KEPT CLOSED.
- ALL EXTERNAL CABLING MUST BE SECURED AND THE PROPER CABLE USED TO ENSURE THAT CABLE SHIELDING IS PROPERLY GROUNDED TO THE CABLE CLAMPS PROVIDED.
- MAKE SURE RFI GASKET FINGER STOCK (WLI P/N 654-2139) IS IN PLACE AND UNDAMAGED. (GASKET FINGER STOCK MAY BE ORDERED AND CUT TO PROPER LENGTH).
- ALL HARDWARE MUST BE PROPERLY SECURED.

NOTE

New quality assurance procedures and tests have shown that VS CPUs arriving on the customer's premises require only visual inspection, voltage checks, software loading, and cabling. Therefore, the following new inspection and installation procedures for all VS CPU products are effective immediately.

DO NOT REMOVE PRINTED CIRCUIT BOARDS FOR INSPECTION

DO NOT CLEAN PRINTED CIRCUIT BOARD CONTACTS WITH AN ERASER

INSPECT CPU MAIN FRAME VISUALLY

REPORT INSTALLATION PROBLEMS ON THE INSTALLATION
 REPORT AND STATE SPECIFIC CAUSES OF FAILURE

1. Inspect the interior of the main frame for packing material or such shipping damage as broken connectors and loose fastening hardware.
2. Refer to the shipping list to make sure that the correct circuit boards have been shipped. Refer to paragraph 4.6 for the minimum hardware revision levels.
3. Carefully inspect the Motherboard and fans for obvious damage or loose connections.
4. Inspect the power supply assembly for damage and loose connections. At this time, make sure that all power supply connections are tight.
5. If necessary, vacuum clean the unit.
6. Do not reassemble the main frame at this time.
7. If damage is discovered at any time during the inspection, follow the reporting procedure in paragraph 4.4.1

4.5.1 PERIPHERAL INSPECTION

After inspecting the main frame, carefully inspect each peripheral according to procedures outlined in the applicable maintenance manuals in Class 3000. If damage is discovered at any time during the peripheral inspection, follow the reporting procedure in paragraph 4.4.1.
4.6 MINIMUM REQUIREMENTS

4.6.1 HARDWARE

BOARD DESCRIPTION	WLI P/N	REVISION LEVEL
+5 Volt Indicator	$210-7706$	E0
A Bus	$210-7600$	E1
B Bus	$210-7601$	E3
Bus Adapter	$210-8311$	E0
Cache Memory (optional)	$210-8804$	E0
Control Memory	$210-7602$	E1
Display Panel	$210-8513$	E0
IOP Motherboard	$210-7110-\mathrm{U}$	E5
Large Disk Adapter	$210-7114$	E11
Main Memory (l megabyte)	$210-7803$	E0
Main Memory (2 megabyte)	$210-8203$	E0
Maintenance Panel	$210-7614$	E0
Memory Controller I	$210-8230$	E0
Memory Controller II	$210-8231$	E0
Mini Diskette Control1er	$210-7610$	E0
Motherboard	$210-8508$	E0
Power Controller	$210-8250$	E0
Serial Adapter (16-port)	$210-7216-\mathrm{A}$	E4
System Bus Controller (optional)	$210-7605$	E2
TC Adapter (l-port Motherboard)	$210-7826$	E5
TC Adapter (l-port Daughterboard)	$210-7427-\mathrm{A}$	El
TC Adapter (2-port Daughterboard)	$210-7427-1 \mathrm{~A}$	E1
Tape Adapter	$210-7217-\mathrm{A}$	E6
Very Large Disk Adapter (1-port)	$210-8318$	E5
Very Large Disk Adapter (2-port)	$210-8319$	E5
Very Large Disk Adapter (3-port)	$210-8320$	E5
Very Large Disk Adapter (4-port)	$210-8321$	E5

4.6.2 SOFTWARE

SOFTWARE DESCRIPTION	VERS ION	COMMENTS	WLI P/N
VS-85 Microcode	4.57 .07		$705-0154-\mathrm{E}$
Operating System	5.00	Minimum	
Operating System	6.10	See Note	

NOTE

Control Data (CDC) 620 Megabyte disk drive needs Operating System 6.10 and above.

4.6.3 DIAGNOSTICS

MICROD IAGNOSTICS

TEST	DIAGNOS TIC NAME	VERSION	PACK. P/N	DISKETTE P/N
T0010	Microsequencer, Uncond. Branch	7130		702-8001-A
T1010	Instruction Counter	7130		702-8002-A
T2010	Branch Cond. \& Status Ops	7130		702-8003-A
T3010	Stack Data Integrity	7130		702-8004-A
T4010	Routine Stack Address	7130		702-8005-A
T4110	Register Data Integrity	7130		702-8006-A
T5000	Visual Verification	7130		702-8007-A
T6010	CM Moving Inversions (Upper)	7130		702-8008-A
T7010	CM Moving Inversions (Lower)	7130		702-8009-A
T8010	Register Data Integrity	7130		702-8010-A
T9010	Data Stack \& T-RAM	7130		702-8011-A
TA010	Add \& Subtract Group	7130		702-8012-A
TB010	Logical Instructions	7130		702-8013-A
TB110	Move Instructions	7130		702-8014-A
TC010	Shift \& Decimal Add \& Subtract	7130		702-8015-A
TD010	Condition Code \& Arith. Logical	7130		702-8016-A
TAA10	Memory Opcodes \& Multiply Group	7350	195-2638-8	
TAF10	Enhanced Next Macroinstruction	7356	195-2641-8	
TBB10	ECR, Memory Controller/IPC/DMA	7350	195-2639-8	
TDE10	Main Memory Board	7350	195-2640-8	

OTHER DIAGNOSTICS

DIAGNOSTIC NAME	VERSION	PACK. P/N	DISKETTE P/N
22V06 Local Loopback Test (TCIOPTST)	1130		$702-0132 \mathrm{~A}$
Boot Loader	$82 \mathrm{C8}$	$195-7479-3$	
Device Monitor	21 AO		$702-0175$
ELOGDISP	1.0		$702-0070$
FTU Off Line	6111		$702-0098$
FTU On-Line	6365	$195-2652-3$	
PRTEST1	2.0 .02		$702-0092$
SYSNAME	8110		$702-0107$
TPTEST	6224		$702-0187$
VOLCOPY	8181		$702-0122 \mathrm{~A}$
VS On-line Printer Monitor, Part I	2242		$702-0179 \mathrm{~A}$
VS On-line Printer Monitor, Part II	2211		$702-0178$

NOTES

1. Complete 195 package part numbers include diskette and documentation.
2. Diskette only part numbers are shown if no package part numbers are available.
4.7. MAIN FRAME POWER SOURCE CHECK

4.7.1 115VAC DOMESTIC POWER SOURCE

Before completing the main frame reassembly and peripheral equipment installation, use a Digital Voltmeter (DMV) to check the main frame power source receptacle for proper wiring and service as defined in figure 4-5 and table 4-1. Perform the following electrical checks to make sure that the receptacle meets all specified requirements before proceeding with the installation.

CAUTION

Failure to perform the following check properly can result in serious damage to main frame circuits and to connected peripherals.

NEMA Configuration Hubbel Part Number
RECEPTACLE BODY
L5-30R
2610

MATCHING CONNECTOR
L5-30P
2611

Figure 4-5. 115 Volt AC Power Source Requirements for VS-85 Main Frame

Table 4-1. DVM Voltage Measurements for the ll5VAC Receptacle

MEASURE FROM	ACCEPTABLE DMV READINGS
AC HOT to NEUTRAL	115 V AC $(+/-10 \%)$
AC HOT to GROUND	115 V AC $(+/-10 \%)$
GROUND to NEUTRAL	0 VOLTS AC (Note)

NOTE

If a difference in potential of more than 0.2 Volts ac exists between neutral and ground, notify the responsible electrician that the power source is NOT ACCEPTABLE.

4.7.2 208-240VAC DOMESTIC POWER SOURCE

GROUND LEADS MUST BE CONNECTIED TOGETHER AND TO EARTH GROUND AT THE BUILDING MAIN INPUT POWER PANEL

COMPUTER ROOM CIRCUIT BREAKER 20 AMPS

NEMA L6-20P + R
HUBBEL NO. $2321+2320$ 208-240V, 20A, 60 Hz SINGLE PHASE.

GROUND LEAD MUST BE SAME OR HEAVIER GUAGE AS HOT LEAD

RECEPTACLE BODY	
L6-20R 2320	MATCHING CONNECTOR L6-20P 2321

Figure 4-6. 208-240 Volt AC Power Source Requirements for vS-85 Main Frame

Table 4-2. DVM Voltage Measurements for the 208-240VAC Receptacle

MEASURE FROM	ACCEPTABLE DMV READINGS
AC HOT (01) to GROUND	$120 \mathrm{AC}(+1-10 \%)$
AC HOT (02) to GROUND	120 V AC $(+1-10 \%)$
AC HOT (01) to AC HOT (02)	$208-240 \mathrm{~V}(+1-10 \%)$

NOTE
AC neutral is not used with 208-240VAC VS-85 systems.

4.7.3 INITIAL MAIN FRAME POWER-UP

1. After making sure that the Power On/Off switch on the Display Panel is in the " 0 " position and the main frame. ac On/Off circuit breaker on the Power Filter Assembly (figure 3-3 and 3-2) is OFF, plug the main frame powe, ronnector into the power source receptacle.
2. Make sure the $1 i 5 / 230 \mathrm{~V}$ Line Select Switch on the 8250 Power Control1er board (figure 4-7) is in the 115 vac position for ALL systems. (Check which switching power supply is installed in the system. If it is a Powertec supply, it also has a $115 / 230 \mathrm{~V}$ Line Select Switch. Check the rear of the supply to make sure the switch is in the 115 vac position. This applies to ALL systems.)
3. Perform the following in the sequence given:
a. Turn $O N$ the main frame ac On/Off circuit breaker.
b. Make sure the main frame cooling fans force the air flow into the rear of the main frame cabinet. If the air flow is out of the rear of the cabinet, power down the main frame and physically reverse the fans. (Refer to paragraph 5.3.5.21.) Air flow in the wrong direction will cause damage to the circuit boards.

CAUTION

It is critical that only fans that supply 115 cubic feet of air per minute (CFM) are used in the VS-85 main frame cabinet. These fans should be Roton model MX2A3, WLI P/N 400-1028.
c. Depress the Power On/Off switch to the "l" position.
d. Make sure that the switching power supply fan is forcing air out of the front of the power supply. If it is not, power down the main frame and replace the supply. (Paragraph 5.3.5.15.) Air flow in the wrong direction will cause damage to the power supply.
e. Make sure that the Power On LED on the Display Panel and the +5 volt LED on the $210-7706+5$ Volt Indicator board are lit. If the LEDs go out after 2 seconds, there is a problem with the dc voltage compare circuit in the power supply.

4.7.4 DC VOLTAGE CHECKS

1. The following voltages should be checked at the 8250 Power Controller board test points (figure 4-7).
2. Adjust the voltages to the test point readings (below) using the potentiometers on the front of the switching power supply (figures 4-8 through 4-11).

Table 4-3. DC Voltage Measurements at Power Controller Board

TEST POINT VOLTS	OPERATING LIMITS		AC RIPPLE LIMITS	
+5.0	+4.9 V to +5.1 V	35 mV RMS or 50 mV Pk-to-Pk		
+12.0	+11.9 V to +12.1 V	35 mV RMS or 50 mV Pk-to-Pk		
-5.0	-4.9 V to -5.1 V	35 mV RMS or 50 mV Pk-to -Pk		
-13.6	-13.5 V to -13.7 V	35 mV RMS or 50 mV Pk-to- Pk		

3. The +5 Vdc adjustment for the $L H$ supply can be done with the system powered up. However, due to the locations of the potentiometers, the $-5,+12$, and -12 Volts $c a n ' t ~ b e ~ a d j u s t e d ~ w i t h ~ t h e ~ s y s t e m ~ p o w e r e d ~ u p . ~$ Measure the $-5,+12$, and -12 at the 8250 Power Controller board test points; power down the system and and adjust the potentiometer(s); power up the system and recheck the voltages. Continue this procedure until the voltage (s) are correct.
Figure 4－7．210－8250 Power Controller Board

Figure 4-8. Switching Power, Inc. Switching Power Supply

Figure 4-9. LH Switching Power Supply

This page left intentionally blank.

Figure 4-10. Powertec Switching Power Supply

This page left intentionally blank.

4.8. RUNNING DIAGNOSTICS

As part of the installation and PM procedures, and at any time $C P$ integrity becomes suspect, the microcode diagnostics must be loaded and run. Refer to Chapter 8 for a complete list of microcode diagnostics and to paragraph 8.3.1 for instructions on running the diagnostics.

4.9 INITIAL MICROCODE LOADING

Once the diagnostics have run successfully, load the system microcode into Control Memory as follows:

1. Power down the main frame and create a minimum system as follows: a. Attach a serial workstation to IOP 非2, Port 0 . This device will be Workstation 0 .
b. Connect a disk drive to IOP 非0, Port 0. This drive is the system disk, storing the Operating System (OS) created during SYSGEN.
c. Power up the system.
2. To load the microcode into Control Memory, insert the microcode diskette into the mini-diskette drive, close the drive door, and press the yellow CM BOOT button on the Display Panel (see figure 4-12).
3. The Diskette Activity LED on the front of the mini-diskette drive lights to show the drive is in use. When the Diskette Activity LED goes out and the Ready LED on the Display Panel lights, the microcode is loaded.

NOTE

> If the Ready LED flashes instead of remaining steadily ON, the system has failed to load the microcode. Reseat the diskette and repeat the loading procedures. If the microcode cannot be loaded, insert and load the backup diskette, if available. If this does not correct the proi ?m, Control Memory, the drive, or drive controller (210-7610) may be defective. Refer to drive maintenance procedures in Chapter 5.

Also, the CP (Control Memory) Parity LED or the CP Halt LED may light during a microcode load operation. Ignore these displays during the load operation. Neither indicator reflects a valid trouble condition until after the VS-85 is initialized.
5. Press the red Initialize pushbutton. Both the CP (Control Memory) Parity and CP Halt LEDs should go out.
4. Do the SYSGEN procedure described in paragraph 4.10.1.

Figure 4-12. VS-85 Display Panel Controls and Indicators

4.10 SYSTEM GENERATION (SYSGEN)

These paragraphs give a brief description of the System Generation (SYSGEN) processes used on the VS-85 system. Following the description is an abbreviated example of the GENEDIT utility used on the VS-85 system. For a detailed explanation of SYSGEN, refer to VS Release 5.1 SYSGEN Procedure, WLI P/N 800-8201SP-05 and VS Software Bulletin, Release 5.3, WLI P/N 800-3109.)

SYSGEN is the construction of a system configuration specifically tailored to the installation. A SYSGEN is performed by modifying, according to user demands, the basic configuration loaded into the System Generator. As with all VS systems, the VS-85 uses a dynamic SYSGEN procedure that simplifies the creation of a unique Operating System (OS). The dynamic SYSGEN, using the GENEDIT utility, allows the user to easily change system configurations. These changes can be a one-time modification of the resident Configuration (CONFIG) file, which is lost at the next system IPL; or the building of a new configuration at IPL time, which can be stored on disk for future use.

GENEDIT allows definition of a configuration file. GENEDIT is a menubased, interactive utility which prompts the user, through a series of screen displays, to select IOPs, the position of devices on the IOPs, and the type of devices on the system. GENEDIT then automatically defines the configuration file. GENEDIT is run on line through the RUN command (PF Key l) of the Command Processor at any time after the system is IPLed, while other users are on the system.

4.10.1 PERFORMING A SYSGEN

To create a new configuration under with the GENEDIT program, the user does not have to be at Workstation 0. Any workstation specified as a System Console can be used to create a working configuration. At initial power up, however, Workstation 0 is the only workstation the system will recognize. The following minimum configuration required for SYSGEN should have been created in paragraph 4.9.

1. A serial workstation attached to IOP 非2, Port 0 . This device wil. become Workstation 0.
2. A disk drive attached to a IOP 非0, Port 0 (a 22 V 28 Large or 22 V 88 Very Large Disk IOP). This disk will become the system disk for SYSGEN. Besides storing the OS software, this disk will store the configuration file created during SYSGEN. (There are four versions of the 22 V 88 Very Large Disk IOP; 1-port, 2 -port, 3 -port, and 4 -port.)

After checking the constructing of the above configuration, IPL the system and perform the SYSGEN as follows:

NOTE

The following SYSGEN procedure is based on VS Release 5.3.

1．After pressing the Initialize pushbutton，workstation 0 will display the following：

CONTROL MODE ROO

2．a．If ROO is the Physical Device Address（PDA）of the system disk （or the IPL disk），press ENTER．
b．If R00 is not the PDA，press the BACKSPACE key and enter F（for a fixed disk）or R（for a removable disk）and the correct PDA of the system disk（or the IPL disk）and press ENTER．

In this example the default address of ROO is used．If the system will be IPL＇d from another disk，however，determine the PDA as follows：

1）Determine the BA，IOP，and Port numbers of the system disk．
2）Construct an 8－bit word as follows：
Bit 0 （Left most Bit）＝Bus Adapter（BA is 0 ）．
Bits $1-3=$ IOP 非．
Bits 4－7＝Port 非．
3）Convert the 8－bit word to HEX format and enter as the PDA in the LOAD command．In the example below，if the disk is located on IOP 非，Port 4，the 8 －bit word is 00010100. Converting this to HEX gives a PDA of 14.

BIT POSITION 8－BIT WORD HEX RESUITT

BA	IOP非	PORT
0	123	4567
0	001	0100
	1	4

c．The LOAD command then reads：．CONTROL MODE R14．

3．The $O S$ from the specified disk（in this case default R00）will now be loaded into main memory and SYSGEN can be performed at Workstation 0.
4．Upon IPLing the system and after the Control Mode screen is serviced， a request for configuration file and library names is displayed．The default provided for FILE is＠CONFIG＠and for LIB is＠SYSTEM＠．
a．The default can be accepted by pressing ENTER．
b．The default c an be modified by entering in a different file name．
c．A minimum configuration file of 1 workstation and 1 disk can be requested by pressing PFl．
The configuration file must be on the volume which will be used as the system volume．Once the configuration information is entered， the system is generated．
5．After System Generation，Workstation 0 will display a request to set the date and time．Beneath the date and time entries is the memory size block which specifies the maximum memory size that can be used by the generated OS．
a．Specified values must be in multiples of 1024 K ．
b．The lowest allowable value is 1024 K
c．The maximum allowable value is 4096 K ．

The system will default to the memory size specified by the switch settings on the 210-8230 Memory Controller I board (see Chapter 5). If the memory size must be changed for any reason, enter the size of memory desired (must be lower than actual memory size). If a memory size value is specified without the necessary RAM to support it, the system will NOT run.

The Control Statement for MEMORY should appear typically as follows:

$$
\text { MEMORY SIZE }=1024 \mathrm{~K}
$$

6. After the date, time, and memory size have been entered, press ENTER and the system will begin the initialization. When complete, the Operators Console screen will appear (if this is Workstation 0). Press PFl and the following will appear on the workstation:

Hello New User

Please Identify Yourself by Supplying the Following Information:

```
                    Your USERID =
                    Your PASSWORD =
                    and Press (ENTER) to Logon
or Press (11) to Enter Operator Mode Immediately
```

7. Log on the workstation with a known user ID. Press PFl and run the GENEDIT program.
8. The first screen displayed allows you to edit an existing configuration file or create a new one.
a. To edit a file type the file, library, and volume name in the indicated lines.
b. To create a new file leave the lines blank.
c. Type " 4 " in the space provided next to the " $\mathrm{CP}=$ " for configuring a VS-85 and press ENTER. The General Configuration menu should appear.
9. a. For a new file, the General Configuration menu of the system will be displayed as all zeros. Enter in the user configuration with a minimum of one workstation and one disk drive. (Menus for existing files will already be filled in except for Noninteractive Tasks.)

9 b．Press PF30 to access modifiable parameters on the System Menu and make necessary changes．Make sure that devices per serial IOP is changed from 16 to a maximum of 32 to accommodate the Archiving Workstation（vs－85）．Press ENTER to continue．
10．The next screen that appears allows setting the segment 2 Stack size for Noninteractive Tasks．The default value is $5!1 \mathrm{~K}$ ．
11．Press ENTER to display IOP device assignments on the Motherboard．At this point the assignment of IOPs to specific slots is done．

NOTE
Two software conventions must be adhered to dur－ ing this operation；a 22 V 28 Large or 22 V 88 Very Large Disk IOP must be assigned to IOP 非；and a 22V27 Serial IOP must be assigned to IOP 非2．

12．After completing step 11 ，press ENTER to display the devices assigned to IOP 非2．This IOP must be a serial IOP．Make sure that a serial workstation（Workstation 0 ）is assigned to Port 0 of this IOP．
a．Press PF1 to display devices and highlighted Paging file Sizes． Use this menu to change individual Segment 2 lengths for IOP 非2．
b．After making the desired changes，press the ENTER key to contin－ ue．This display is the same as in step 12a，except that the 3－digit Paging File Device Number is now highlighted．This is the device（drive）that the workstations on IOP 非2 will page from．This parameter must be manually defaulted to zero，it is not done automatically by the system．

NOTE
If Paging Device File Number is wrong，workstat－ ions will NOT operate．
c．After completing changes，press ENTER key to display the WP func－ tion assignment for printers assigned to the IOP．This is a yes／no function．After making selection，press ENTER to continue．
13．Press ENTER again and display the devices assigned to IOP \＃0．This IOP must be a LARGE or VERY LARGE DISK IOP．（Refer to first note．）
14．At this point，the assignment of all remaining peripherals devices to individual IOPs begins．The assigning of these devices is based on where on the Motherboard the individual IOPs are installed．If nece－ ssary，refer to VS Release 5.1 SYSGEN Procedure，WLI P／N 800－8201SP－05 for a more detailed description of the SYSGEN procedure using Release 5．3．
15．After all devices have been assigned，the workstation will display a request to create or replace the configuration．Type in the file， library，and volume name and press ENTER（or press PFl6 to exit with－ out change）．
16．GENEDIT will respond with the message＂File Creation In Progress＂and when the file is successfully created／replaced，will return to the first screen of the program（step 8）．
17. At this point either create additional configuration files, edit other files, or press PFl6 to return to the Command Processor Menu.
18. To use this newly created or edited configuration, reIPL the system.

4.11 SYSTEM INTERCONNECTION

After the microcode is loaded and SYSGEN has been run, power down the main frame and connect all peripheral devices according to the configuration created during SYSGEN. See figures 4-13 through 4-19, the following paragraphs, and appropriate documents in Class 3000 for cabling procedures.

To be supplied

Figure 4-13. System Interconnection Diagram

Figure 4-14. VS-85 Rear Panel Connector Plate Locations

4.11.1 CONNECTOR PLATE-TO-IOP CABLING

Before installing cables in the connector plates at the rear of the main frame, check all cables between the plates and associated IOPs. Make sure that the cable from the connector plate containing workstation 0 connects to Jl of the Serial IOP assembly in IOP slot 2. Make sure that the "B" cable of the system disk is attached to the extreme left connector of the disk connector plate in rear panel for IOP slot 0 . The "B" cable from this connector plate must be connecred to $J 2$ of the Disk IOP assembly in IOP slot 0 .

4.11.2 BNC/TNC CONNECTORS

Serial $I / 0$ devices (workstations, printers, etc.) connect to the main frame by means of standard BNC/TNC connectors mounted on 16-connector plates (WLI P/N 452-2618). Maximum cable length for these devices is 2000 feet. Workstation 0 MUST be attached to Port 0 on IOP 非2. The connectors for Workstation 0 are located in the upper left corner of the top connector plate on the rear of the main frame. See figure 4-15.

Figure 4-15. BNC/TNC Connector Plates

4.11.3 DISK CABLE CONNECTORS

Two sizes of disk cable connectors and clamps are located on the disk connector plates (WLI P/N 452-2393). The left four (narrow) connectors contain 26-pin sockets for the "B" cable connections; the right (wide) connector contains a 60-pin socket for the " A " cable connection. Both types connect the disk cable to the main frame in the same manner.

Before connecting an external disk cable, prepare it as follows, if necessary:

1. Remove 6 inches of plastic sheathing from one end of the cable.
2. Fold the copper shield back exposing the disk cable.

Connect the disk cables to the main frame as follows: (See figure 4-16.)

1. Disassemble the cable clamp by removing the Phillips screws on either side of the clamp.
2. Lay the copper shielded section of the external disk cable against the piece of the clamp still attached to the main frame.
3. Reassemble the cable clamp by installing the two Phillips screws removed in step 1. Make sure that pin 1 of the cable is oriented properly and tighten the clamp screws until solid contact with the copper shield is made. DO NOT overtighten, as this could damage the disk cable.
4. Plug the cable into the cable connector on the disk connector plate. The left connector attaches to Port 0 of the associated Disk IOP, the second left connector attaches to Port 1 , and so forth. The four left connectors of each disk connector plate attach the "B" cable of each drive; the right connector on the plate attaches the " A " cable daisy-chained through each drive to the VS-85 main frame.

NOTE

Sector switch settings for the VS-85 on the $2265 \mathrm{~V}-1 / \mathrm{V}-2$ disk drives are the sane as the VS-60/80/100. Refer to the VS Reference Summary (WLI P/N 729-0716) for switch settings.

Figure 4-16. "B" and "A" Cable Connections

4.11.4 TELECOMMUNICATION CONNECTORS

If the $T C$ option is to be installed, the $T C$ cables must be attached to a an RS-232 connector plate (WLI P / N 452-2392) at the rear of the main frame. This plate supports as many as three TC connections, providing plugs for both the modem and Automatic Calling Unit (ACU) cables for each installation. This connector plate then attaches to a 22 V 26 -series TC IOP. As in the disk connector plate, the left connectors (modem and ACU cables) on this plate attach to Port 0 , the middle connectors attach to Port 1 , and the right connectors attach to Port 3. (See figure 4-17.)

Figure 4-17. Telecommunications Connector Plate

4.11.5 TAPE CABLE CONNECTORS

The tape connector plate (WLI P/N 452-2390) is used when one or more Magnetic Tape Drives are attached to the main frame. Two 50-pin sockets are located on the plate for attachment to the drives. The left socket receives the tape control cable; the right socket receives the data cable. Note the position of the cable plug when inserting it into the $50-\mathrm{pin}$ socket. See figure 4-18 for further explanation.

Figure 4-18. Tape Cable Connections

4.11.6 INSTALLING THE ARCHIVING WORKSTATION

All VS-85 systems are equipped with an Archiving Workstation (VS-AWS) as standard equipment. The VS-AWS, which consists of an Archiver Terminal and an Archiver Master Unit, provides the user with remote batch storage facilities that allow the archiving of WP documents (when used with suitable software and a "C"-type keyboard), the storing and processing of VS/DP files, and the usage of IBM compatible diskettes.

The vS-AWS connects to the VS-85 through a WLI P/N 120-2300 paired coax signal cable assembly of up to 2000 feet in length, connecting to one port of a 22V27 Serial IOP assembly (see figure 4-19). The only restriction when connecting a VS-AWS is that the two devices making up the Archiver must be assigned to consecutive device numbers on a common port with the Archiver Terminal ("S" or "C" workstation) assigned to the first number and the Disk Unit assigned to the second number. Refer to Chapter 5 for IOP switch settings on the VS-85. Refer to Class 3403 for more detailed information concerning the AWS-1.

NOTE
If the AWS-1 is used as W / S, the WP function cannot be used.

Figure 4-19. Connecting the Archiving Workstation

At this point, all peripherals should be installed and attached to their respective IOPs. Before proceeding, perform the following checkout procedure:

1. Visually inspect all main frame circuit boards for the proper cabling configuration. (Table 5-2.)
2. Visually inspect all peripheral devices to make sure that I / O cabling is correctly installed, all switch settings are correct, and all covers and panels are in place.
3. Make sure that all devices are powered off.

4.13 ON-LINE CHECKOUT

Begin the on-line checkout procedure by first confirming that the system configuration is correct according to the work request, with all peripherals connected to their respective IOPs. Once this is done, the checkout procedure continues by successively powering up and verifying the functional integrity of different elements of the system, and then running all applicable diagnostic test programs to verify the operation of each element. If results do not occur as described during performance of any step, perform appropriate systemlevel troubleshooting procedures.

1. To make sure that the addition of peripheral equipment has not affected operation of the CP, execute the CP4 Microcode diagnostics.
2. After successfully completing these diagnostics, load the system microcode into Control Memory and IPL the system.
3. At the System Console, run PRTEST from the library @SYSTEST@. Running this test successfully indicates that normal communications are taking place between the CP and the printer. (Refer to paragraph 4.13.2.)
4. Turn on all workstations.
5. Clear workstations by pressing the green LOAD button on the VS-85.

4.13.1 DISK DRIVE CHECKOUT

After completing the previous procedure, power up all remaining peripherals, including all disk drives.

1. Mount the $C E$ OS pack on a selected disk drive.
2. Mount a scratch pack on any other drive, if installed. Bring drive(s) up to a ready state and IPL the system from the CE OS pack.
3. Workstation 0 will display a prompt menu requesting the date, time, and the size of main memory. Type in the requested information and then press these ENTER key.
4. Make sure that the generated $O S$ matches the actual system hardware configuration.
5. Perform initialize and compatibility checks on systems with a single 75/288 megabyte disk drive attached as follows:
a. Using the stand-alone VERIFY option of the INITDISK program from a diskette mounted in the Archiving Workstation, verify the CE OS pack. The VERIFY sequence should complete with no errors.
b. Next, mount a CE scratch pack and use the INITIALIZE option of the INITDISK program to initialize the scratch pack. Following completion of the initialization process, run VERIFY on the pack.

The system should complete both of these functions without error．
c）Mount a CE OS pack and IPL．
6．Perform initialize and compatibility checks on multiple disk systems as follows：

NOTE
No I／O failures should be reported in the system Error Log list during performance of the follow－ ing steps．
a．Execute the DISKINIT program and use its INITIALIZE option to initialize the scratch pack mounted on the additional drive．
b．Following completion of the initialization process，verify the scratch pack using the VERIFY option of DISKINIT．
c．Dismount the scratch pack，mount it on the next drive to be checked，and repeat steps（a）and（b）．Repeat this procedure until the INITIALIZE and VERIFY functions have been performed on all disk drives in the system．
d．Following initialization and verification of all disk drives， mount the scratch pack on one drive and mount a CE OS pack on another drive．
e．IPL from the second drive containing the CE OS，execute the DISK－ INIT program and use its VERIFY option to verify the CE scratch pack．
f．Following successful completion of the VERIFY function，perform both INITIALIZE and VERIFY operations on the drive containing the scratch pack．
g．Execute the BACKUP program to copy the active volume from the drive containing the scratch pack to the drive containing the $C E$ OS．Following program completion， IPL from the CE OS drive by pressing the LOAD button on the front panel of the VS－85 main frame，and the ENTER key on the System Console．
h．Perform a VERIFY operation on the drive containing the CE OS．
i．Following completion of the VERIFY operation，dismount the system pack from this drive and successively mount and verify that pack on each drive in the system．This will check compatibility be－ tween all disk drives．

4．13．2 PRINTER CHECKOUT

Check out all printers attached to the system as follows：

1．At the System Console，release all printers from the System Spooler
as follows：
a．Select the CONTROL PRINTERS display（PF3）．
b．Move the cursor to the desired printer and press PF6．The system should respond with a prompt menu designating the following opt－ ions for the selected printer：
（1）Return to Main Status Display
（7）IDLE
（9）Release Printer
（11）Change Form ⿰⿰三丨⿰丨三一

c. Press PF9 to release the printer.

2. After the printer is released, execute the PRTEST diagnostic from the @SYSTEST@ library. (PRETEST will not run on a printer that is registered as being in use by the System Spooler.)
a. Press PFl to print the character set "ripple one character at a time".
b. After several pages have printed, terminate the PRTEST program and acquire the printer by pressing PF10.
c. Check print quality on the resulting printout.
d. Repeat the PRTEST sequence for all printers attached to the system.

4.13.3 TAPE DRIVE CHECKOUT

Check out all tape drives attached to the system as follows:

NOTE

No I/O failures should be reported in the system Error Log list during performance of the following steps.

1. Mount a $C E$ scratch tape on a tape drive.
2. Run the TPTEST diagnostic from the @SYSTEST@ library. Perform the Miscellaneous Tests routine (PF5) a minimum of 20 times.
3. Following completion of the test passes, dismount the $C E$ tape and mount it on another tape drive, if installed.
4. Repeat steps 1 and 2 , continuing until the operational integrity of all tape drives in the system has been confirmed.
4.13.4 WORKSTATION CHECKOUT

Check out all workstations attached to the system as follows:

NOTE

In order to check out all attached workstations simultaneously, the $O S$ must be provided with valid User ID assignments for each terminal. If sufficient user IDs are not available, run the SECURITY program and add enough user IDs for every attached workstation (including any 2246R Remote Stand-alone Workstations but excluding the System Console).

1. Log onto the system at any data entry workstation.
2. Run WSTEST from the @SYSTEST@ library and test each alphameric key on the keyboard in the various operating modes. In addition, check the display for proper focus and character display in the following modes:
Low intensity mode
Numeric only mode
Upper case mode

Blank mode
Nondisplay mode
Lower case mode

3. Using the ERASE, INSERT and DELETE keys, test the operation of all al phameric workstation keys (expect for PF keys). To test lower case PF keys, access different functions from the Command Processor.
4. After testing all applicable keys at a given workstation, press the ENTER Key on that same workstation to allow the WSTEST program to continue automatically.
5. Repeat steps 1 through 4 on all other attached workstations. Continue testing until all keys on each workstation have been checked, and WSTEST has run error-free on all workstations.

4.13.5 FINAL CHECKS

1. If not done during preinstallation procedure, attach a line analyzer (WLI P/N 727-0135) to the VS-85 main frame power source to monitor ac power for transients, sags, surges, and dropouts.
2. Mount scratch packs on all additional disk drives attached to the system. Make sure that the CE OS pack is mounted on a disk drive.
3. WSTEST diagnostic program must be terminated at three or more data entry workstations in order to execute the following diagnostic programs and routines:

- Perform COPY program(s) to exercise each disk.
- PRTEST (maximum of two continuous hours for any one printer)
- WSTEST (on remainder of workstations)

4. Run COPY program and make sure that the COPY program exercises all additional volumes on any multi-volume disk drive in the system. Finally, make sure that TPTEST can be run on all tape drives at the same time other programs are operating.
5. Except for PRTEST, which should never be run continuously on any one printer for more than two hours, allow the system to run with all diagnostic programs operating simultaneously on different peripherals for a period of at least eight hours.
6. If all of these tests are completed error-free, prepare the system for turnover to the customer. If any error indications have been discovered during the checkout sequence, isolate the failure condition through these of the diagnostic programs and normal troubleshooting procedures, repair that fault, and recheck the system.

4.14 CLOSE UP MAIN FRAME

1. Make sure that all cables connected to CPU and IOP boards are securely attached.
2. Reinstall the top and front covers on the vs-85 cabinet. (Refer to paragraphs 5.3.5.1 and 5.3.5.2)

4.15 DAILY SYSTEM POWER-UP/POWER-DOWN PROCEDURES

After all peripherals are connected to the main frame, the power-up from a cold start and power-down procedures for the VS-85 system are as follows:

1. POWER-UP
a. Make sure that the main frame power connector is plugged into the power source receptacle.
b. Turn on the main frame ac On/Off circuit breaker.
c. Depress the Power On/Off switch, located on the Display Panel, to the " 1 " position.

e. Make sure that the system microcode diskette is in the minidiskette drive, and press the yellow CM Boot button.
f. After successfully loading microcode, press the red Initialize button to begin loading the Operating System.
g. Workstation 0 will display Control Mode FO4. Press the BACKSPACE key and type in F (or R) and the Physical Device Address of the disk the system will be IPL'ing from.
h. After successfully loading the $O S$, mount the disks and power up all peripherals.
i. If this is a new installation, perform all applicable peripheral diagnostics. Refer to Chapter 8 of this document, the VS Service Program Guide, the vs Central Processor Microdiagnostic Test manual, and appropriate documents in Class 3000 for the necessary instructions. Make sure that all peripherals function correctly.
2. POWER-DOWN
a. Make sure all operators have logged off of the system.
1) Press PF key 13 (WORKSTATIONs) on an operators console to check that the operators have logged off of the system.
2) Press PF key 7 (NONINTERACTIVE Tasks) on an operators console to check the background tasks on the system. Look under the "User" column to identify any operator running a background task.
b. Press the blue Control Mode button. This prevents any disk I/O command in process from being halted prior to completion and prevents possible damage to any disk Volume Table of Contents (VTOC).
c. Power down all peripheral devices according to procedures in the applicable documents in Class 3000.
d. Depress the Power On/Off switch to the " 0 " position.
e. Turn off the main frame circuit breaker.

4.16 SYSTEM TURNOVER

1. Remove any scratch or Customer Engineering OS disk packs from the system disk drives.
2. Mount the customer's OS pack and perform an IPL from this pack.
3. Log on to a Workstation and use the Command Processor display functions to display the files in the @SYSTEM@ library on the customer's Operating System pack. Check through the listed files to make sure the presence of all customer-purchased options. If the BASIC compiler was purchased by the customer, for example, the following files should be present in the @SYSTEM@ library:
a) BASIC
b) WB1PASS 1
c) WB2PASS2

If the COBOL compiler was purchased, conversely, the following files should be present:
a) COBOL
b) WC1PASS 1
c) WC.1PASS2

If the RPG compiler was purchased, only the following file should be present:
a) RPGII
4. Delete any of the above compilers not purchased by the customer from the related files using the Command Processor SCRATCH function.
5. Mount customer scratch packs on all additional disk drives. (The customer determines which packs will be scratch packs.) Perform a disk initialization procedure on each of the customer's scratch packs.

CAUTION

Make sure that the customer's scratch packs have no files on them before performing the initialize procedure. Also, demonstrate to the customer or to the responsible computer operator how the disk initialization procedure is performed. Include in the demonstration a description of disk drive operations - including loading and unloading of disk packs, emergency power-down of the disk drive, and disk drive fault recovery.
6. Perform the following Evening Shut-down Procedure and explain each step to applicable customer personnel:
a. Make sure all workstations have been logged off.
b. Press the blue Control Mode button on the VS-85 front panel.
c. Place all drives in the Load Mode condition (heads unloaded).
d. Power down all workstations.
e. Power down all printers.
f. Unload and power down all tape drives.
7. Perform the following Daily Start-up Procedure and explain each step to applicable customer personnel:
a. Bring all disk drives up to the ready condition.
b. On Workstation 非0, press the "X" key and then the ENTER key.
c. Power on all other workstations and press the HELP key at each workstation (a LOG-ON screen should be displayed on each CRT).
d. Power on all printers.
e. Power on all tape drives.
8. Allow the customer to test the system using his programs. If the customer is satisfied with the operation of the system, officially turn the system over to the customer. (As of this printing, there is no official form to sign which effects turnover, nor has one been proposed. This should be merely a verbal notification given by the CE performing installation.)

$$
\begin{gathered}
\text { CHAPTER } \\
5 \\
\text { PREVENTIVE AND } \\
\text { CORRECTIVE } \\
\text { MAINTENANCE }
\end{gathered}
$$

PREVENTIVE AND CORRECTIVE MAINTENANCE

5.1 GENERAL

This chapter consists of preventive maintenance requirements, adjustments, and removal and replacement procedures for field-replaceable components in the VS-85 main frame.

5.2 PREVENTIVE MAINTENANCE

Periodic maintenance is essential to the proper operation of the VS-85 main frame and associated peripherals. Because of its design, the main frame requires a minimum amount of maintenance to ensure continued efficient operation.

5.2.1 TOOLS

TOOL DESCRIPTION	
Standard CE Tool Kit	$726-9401$
Alcohol Pads for R/W head cleaning	$660-0130$

5.2.2 TEST EQUIPMENT

TEST EQUIPMENT DESCRIPTION	WLI P/N
Digital Voltmeter - Fluke \#18022A	727-0119
Oscilloscope - Tektronix 465B	727-0001

5.2.3 MATERIALS

No special materials are necessary to perform main frame preventive maintenance.

5.2.4 PREVENTIVE MAINTENANCE SCHEDULE

Scheduled maintenance for the main frame will be performed quarterly, and is as follows:

PROCEDURE	ITEM	NOTES
Inspect/clean	Main frame filters	If necessary
Inspect	Main frame interior	Look for dust \& loose hardware. Clean.
Inspect/clean	Mini-diskette read/ write heads	Clean if oxide buildup seen. Paragraph 5.2.5
Inspect	Main Erame fans	Replace damaged fans. Paragraph 5.3.5.22
Check/adjust	Main frame voltages.	Paragraph 5.2.6.1
Run diagnostics	 peripherals	Refer to Chapter 8 \& Class 3000

5.2.5. CLEANING THE MINI-FLOPPY DRIVE HEADS

As part of the normal maintenance routine, the mini-diskette drive heads will be inspected for dirt or damage. If an oxide build up is seen during this inspection, the heads must be cleaned to ensure continued proper operation of the drive. Clean the heads as follows:

CAUTION

Cleaning methods and materials other than those specified below can permanently damage the head and must be avoided.

1. Remove the top and front covers. (Paragraphs 5.3.5.1 and 5.3.5.2.)
2. Remove the mini-diskette drive as described in paragraph 5.3.5.14.
3. Lift the load arm off the head, but do not to touch the load button.
4. With an alcohol pad (WLI P/N 660-0130), lightly wipe the head.
5. After the alcohol has evaporated, lightly polish the head with a clean, lint-free tissue.
6. Gently lower the load arm onto the head. DO NOT let the load arm snap back into place as this could permanently damage the drive head.

5.2.6 ELECTRICAL ADJUSTMENTS

5.2.6.1 Main Frame Voltage Adjustments

1. The following voltages should be checked at the 8250 Power Controller board test points (figure 4-6).
2. Adjust the voltages to the test point readings (below) using the potentiometers on the front of the switching power supply (figures 4-7 through 4-10).
3. The +5 Vdc adjustment for the LH supply can be done with the system powered up. However, due to the locations of the potentiometers, the $-5,+12$, and -12 Volts can't be adjusted with the system powered up. Measure the $-5,+12$, and -12 at the 8250 Power Controller board test points; power down the system and and adjust the potentiometer(s); power up the system and recheck the voltages. Continue this procedure until the voltage(s) are correct.

TEST POINT VOLTS	OPERATING LIMITS		AC RIPPLE LIMITS	
+5.0	+4.9 V to +5.1 V	35 mV RMS or 50 mV Pk-to-Pk		
+12.0	+11.9 V to +12.1 V	35 mV RMS or 50 mV Pk-to-Pk		
-5.0	-4.9 V to -5.1 V	35 mV RMS or 50 mV Pk-to-Pk		
-13.6	-13.5 V to -13.7 V	35 mV RMS or 50 mV Pk-to-Pk		

5.2.7 PERIPHERAL PREVENTIVE MAINTENANCE

Refer to the appropriate documents in Class 3000 for $P M$ procedures for all VS-85 associated peripherals.

5.3 CORRECTIVE MAINTENANCE

5.3.1 TOOLS

TOOL DESCRIPTION	WLI P/N
Standard CE Tool Kit	$726-9401$
8-inch clip lead	

5.3.2 TEST EQUIPMENT

TEST EQUIPMENT DESCRIPTION	WLI P/N
Digital Voltmeter - Fluke 非8022A	$727-0119$
Oscilloscope - Tektronix 非465B	$727-0001$

5.3.3 MATERIALS

MATERIAL DESCRIPTION	WLI P/N
System Microcode Diskette	Any version

5.3.4 ALIGNMENTS

5.3.4.1 Mini-floppy Drive Data Separator Adjustments

Because data and clock signals enter the Mini-diskette Drive Controller board combined in one signal called READ DATA*, the clock pulses must be separated from the data. This is done in the Data Separator circuit. The two separator pulses are outputs of a Voltage Controlled Oscillator (VCO), and must be in sync with READ DATA* for the Data Separator to work correctly. This procedure details the steps required to align the separator pulses with READ DATA*.

5.3.4.2 Preliminary Mini-floppy Drive Adjustment Procedures

Before adjusting the separator pulses, do the following:

1. Depress the Power On/Off switch to the " 0 " position.
2. Turn off the main frame ac On/Off circuit breaker.
3. Remove the top and front covers from the main frame. (Paragraph 5.3.5.1 and 5.3.5.2)
4. Insert the System Microcode diskette.
5. If a dual trace oscilloscope is being used, set it up as follows:
a. Power up the oscilloscope.
b. Set Volts/Division to 2 Volts.
c. Set Time/Division to 1 microsecond.
d. Set Slope negative.
e. Set Source to Channel one.
f. Set Coupling to DC.
G. Set AC-GND-DC to DC.
h. Set Vert. Mode to CHOP.
i. Make sure that probes are grounded.
j. Connect the clip lead from $\mathrm{TP}_{3}(\mathrm{~L} 19-6)$ to ground.
k. Connect probe 1 to TP_{1} (L6-7). (Figure 5-1.)
6. Connect probe 2 to TP_{2} (L6-9). (Figure 5-1.)

Figure 5-1. 210-7610 Mini-diskette Drive Controller Testpoint Locations

5.3.4.3 Performing the Adjustment

Adjust the Clock Separator pulse as follows:

1. The display obtained from TP_{1} is the Clock Separator signal. The total waveform period must be 8 microseconds from the trailing edge of the first pulse to the trailing edge of the second pulse.
2. Adjust potentiometer $R 2$ on the Mini-diskette Drive Controller board until the negative portion of the waveform is exactly six microseconds long. The positive-going portion of the waveform must be two microseconds long.
3. If an 8 microsecond pulse cannot be obtained, either the diskette is defective or the drive itself is bad. Try the adjustment procedure using a new mini-diskette. If no change in waveform occurs, replace the drive.

Adjust the Data Separator pulse as follows:

1. The display obtained from $T P_{2}$ is the inverse of the actual Data Separator pulse. The total waveform period of this pulse must be 8 microseconds from trailing edge to trailing edge.
2. Adjust potentiometer $R 1$ on the Mini-diskette Drive Controller board until the negative portion of the waveform is exactly five microseconds long. This portion is the window that allows the data bits to be gated through the NAND gate. The positive-going waveform must be three microseconds long. It prevents Clock signals from passing through the NAND gate.
3. If an 8 microsecond pulse cannot be obtained, either the diskette is defective or the drive itself is bad. Attempt the adjustment procedure using a new mini-diskette. If no change in waveform occurs, replace the drive.

If a single trace oscilloscope is used, the procedures remain essentially the same. The oscilloscope settings must be changed, however, when going from $T P_{1}$ to TP_{2}. Refer to the settings given in paragraph 5.3.4.2.

WARNING

*
* THIS COMPUTER EQUIPMENT HAS BEEN VERIFIED AS FCC CLASS A. *
*

IN ORDER TO MAINTAIN COMPLIANCE WITH FCC CLASS A VERIFICATION, THE FOLLOWING CONDITIONS MUST BE ADHERED TO DURING NORMAL OPERATION OF EQUIPMENT.

- ALL COVERS MUST BE ON SYSTEM AND SECURED IN THE PROPER MANNER.
- ALL INTERNAL CABLES MUST BE ROUTED IN THE ORIGINAL MANNER WITHIN THE CABLE CLAMPS PROVIDED FOR THAT PURPOSE.
- THE MAINTENANCE PANEL DOOR MUST BE KEPT CLOSED.
- ALL EXTERNAL CABLING MUST BE SECURED AND THE PROPER CABLE USED TO ENSURE THAT CABLE SHIELDING IS PROPERLY GROUNDED TO THE CABLE CLAMPS PROVIDED.
- MAKE SURE RFI GASKET FINGER STOCK (WLI P/N 654-2139) IS IN PLACE AND UNDAMAGED. (GASKET FINGER STOCK MAY BE ORDERED AND CUT TO PROPER LENGTH).
- ALL HARDWARE MUST BE PROPERLY SECURED.

MAINTANANCE

Figure 5-3. Front Cover Removal

Figure 5-3a. Front Cover Removal

5.3.5 REMOVAL AND REPLACEMENT

These paragraphs describe the steps involved in removing and replacing or reinstalling all major field-replaceable components in the VS-85 main frame.

5.3.5.1 Top Cover Removal

Remove the top cover as follows: (See figures 5-2 and 5-2a.)

1. At the rear of the cabinet, two slot-head fasteners secure the top cover to the back panel. Using a wide-blade screwdriver, disengage the fasteners by turning them $1 / 2$-turn counterclockwise.
2. With the fasteners free, slide the top cover 2-3 inches to the front to disengage the top cover from the front cover catch. This frees the top cover from the main cabinet.
3. At the front of the cabinet, firmly grasp the top cover on each side and lift up and away from the cabinet.

Reinstall the top cover by reversing this procedure.

5.3.5.2 Front Cover Removal

Remove the front cover as follows: (See figures 5-3 and 5-3a.)

1. Remove the top cover as described above.
2. The front cover is attached to the upper and lower part of the cabinet by metal tabs inserted into slots on the cabinet. Firmly grasp the top of the front cover and lift up and out of the cabinet.

Reinstall the front cover by reversing this procedure.

5.3.5.3 CP Circuit Board Removal and Replacement

There are seven different $C P$ boards found in the VS-85. The removal and replacement procedures for the different boards are given in the order in which they are found on the Motherboard. (Figure 5-4.)

CAUTION
Be careful when replacing the large, flexible VS-85 boards. Make sure that all boards are seated properly in the correct Motherboard sockets. Do not damage the sockets when inserting the boards. Make sure all boards have their component sides facing left when viewed from the chassis front.

5.3.5.3.1 210-7602 Control Memory Removal and Replacement

1. Depress the Power On/Off switch to the " 0 " position and turn off the main frame ac On/Off circuit breaker.

Figure 5-4. Motherboard With Circuit Boards
2. With a $1 / 4^{\prime \prime}$ nut-driver, remove the two screws securing the top of the Display/Maintenance panel assembly to the top chassis rail.
3. Tilt the top of the Display/Maintenance panel assembly down for access to the Control Memory board cables.
4. Lower the fan assembly as described in paragraph 5.3.5.22. Remove the two Phillips screws securing the hinged cover over the fan safety screen inside the cabinet. Raise the cover, remove the screen, and turn the vertical air flow baffle (figure 5-39) to the right. This allows access to the connectors on the rear of the circuit boards.
5. Disconnect the 60-pin connectors from J1 and J2 and the 16 -pin ribbon cable from location SWl of the Control Memory board (figure 5-5).
6. Once the cables are disconnected, remove the board by grasping the top corners and gently rocking it from side-to-side while exerting a steady upward pressure. Once the board is free of the slot, ease it up and out of the main frame.
7. Install the new Control Memory board.
8. Reconnect the $60-$ pin connectors and the 16 -pin ribbon cable.

Figure 5-5. 210-7602 Control Memory Board

5.3.5.3.2 210-7600 A Bus Removal and Replacement

1. Remove the A Bus board (figure 5-6) from Motherboard slot 非2 in the manner described in 5.3.5.3.1. (There are no cables connected to the A Bus.)
2. Install the new A Bus board.

Figure 5-6. 210-7600 A Bus Board

5.3.5.3.3 210-7600 B Bus Removal and Replacement

1. Before removing the B Bus board (figure 5-7) from Motherboa:d slot \#3, lower the fan assembly as described in paragraph 5.3.5.22. Remove the two Phillips screws securing the hinged cover over the fan safety screen inside the cabinet. Raise the cover, remove the screen, and turn the vertically mounted air flow baffle to the right. This allows access to the connectors on the rear of the circuit boards.
2. Disconnect the 60 -pin connectors from from J 1 and J 2 of the board.
3. Remove the board in the manner described in 5.3.5.3.1.
4. Install the new B Bus board.
5. Reconnect the $60-\mathrm{pin}$ connectors.

Figure 5-7. 210-7601 B Bus Board

MAINTANANCE

5.3.5.3.4 210-8230 Memory Controller I Removal and Replacement

1. If the system has a Memory Controller I board (figure 5-8) in Motherboard slot 非, disconnect the 64 -pin connectors from J3 and J4 on the front of the board.
2. Remove the board in the manner described in 5.3.5.3.1.
3. After checking the main memory board size selection jumpers and the memory size switch settings on the Memory Controller I board as shown in figures 5-9 and 5-10, install the new board. Remember to install the jumpers for the largest capacity memory board, not for total memory capacity.
4. Reconnect the 64-pin connectors.

Figure 5-8. 210-8230 Memory Controller I Board

LARGEST CAPACITY BOARD	INSTALL JUMPERS AT
1 MEG	$\mathrm{J} 1-\mathrm{J} 2$
2 MEG	$\mathrm{J} 7-\mathrm{J} 8$
4 MEG*	$\mathrm{J} 9-\mathrm{J} 6$

Jumpers are horizontal

* - Not supported.

Figure 5-9. Main Memory Board Size Selection Jumpers

Figure 5-10. Main Memory Size Selection

1. If the system has a Cache Memory board (figure 5-11) in Motherboard slot 非4, disconnect the 64-pin connectors from J1 and J2 on the top of the board, and from J3 and J4 on the front of the board.
2. Disconnect the 16 -pin cable from L46 (J5).
3. Remove the board in the manner described in 5.3.5.3.1.
4. After checking the main memory board size selection jumpers and the memory size switch settings on the Cache Memory board as shown in figures 5-12 and 5-13, install the new board. Remember to install the jumpers for the largest capacity memory board, not for total memory capacity.
5. Reconnect the 64-pin connectors and the 16-pin cable.

Figure 5-11. 210-8804 Cache Memory Board

LARGEST CAPACITY BOARD	INSTALL JUMPERS J6 - J7
1 MEG	1
2 MEG	2
4 MEG*	4

Jumpers are vertical

* - Not supported.

Figure 5-12. Main Memory Board Size Selection Jumpers

OFF = ACTIVE

Figure 5-13. Main Memory Size Selection

5.3.5.3.6 210-8231 Memory Controller II Removal and Replacement

1. If the system has a Memory Controller II board (figure 5-14) in Motherboard slot 非5, lower the fan assembly as described in paragraph 5.3.5.22. Remove the two Phillips screws securing the hinged cover over the fan safety screen inside the cabinet. Raise the cover, remove the screen, and turn the vertically mounted air flow baffle to the right. This allows access to the connectors on the rear of the circuit boards.
2. Disconnect the $64-\mathrm{pin}$ connectors from J1, J3, J4, J5, and J6 of the board.
3. Remove the board in the manner described in 5.3.5.3.1.
4. Install the new Memory Controller II board.
5. Reconnect the 64-pin connectors.

Figure 5-14. 210-8231 Memory Controller II Board

1. If the system has a System Bus Controller board (figure 5-15) in Motherboard slot 非, lower the fan assembly as described in paragraph 5.3.5.22. Remove the two Phillips screws securing the hinged cover over the fan safety screen inside the cabinet. Raise the cover, remove the screen, and turn the vertically mounted air flow baffle to the right. This allows access to the connectors on the rear of the circuit boards.
2. Disconnect the 64 -pin connectors from J1, J2, J3, and J4 of the board.
3. Disconnect the 16 -pin cable from L83 (J5).
4. Remove the board in the manner described in step 5.3.5.3.1.
5. Install the new System Bus Controller board.
6. Reconnect the 64 -pin connectors and the 16 -pin cable.

Figure 5-15. 210-7605 System Bus Controller Board

5．3．5．3．8 210－7803／8203 Main Memory Removal and Replacement

1．Remove the Main Memory boards（ifigures 5－16 and 5－17）from Mother－ board slot（s）非 6 and／or 7 as described in step 5．3．5．3．1．
2．Refer to table $5-1$ and install the new Main Memory board（s）．If installing a new board means the main memory capacity will change， see figures 5－8，5－9，and 5－10，or 5－11，5－12，and 5－13．

Table 5－1．Main Memory Size

MEMORY CAPACITY	SLOT ⿰⿰三丨⿰丨三一灬	WLI P／N
1 Megabytes	6	210－7803
2 Megabytes＊	6	210－7803
	7	210－7803
4 Megabytes	6	210－8203
	7	210－8203

＊－Minimum main memory size for a VS－85 with optional Cache Memory／SBC．

Figure 5－16．210－7803 Main Memory Board

5.3.5.3.9 210-8311 Bus Adapter Removal and Replacement

1. Before removing the Bus Adapter (BA) board (figure 5-18) from Motherboard slot 非, lower the fan assembly as described in paragraph 5.3.5.22. Remove the two Phillips screws securing the hinged cover over the fan safety screen insidc the cabinet. Raise the cover, remove the screen, and turn the vertically mounted air flow baffle to the right. This allows access to the connectors on the rear of the circuit boards.
2. Disconnect the 64-pin connectors from Jl, (and J2 if Cache is installed), J3, and J4 of the board.
3. Due two space constrictions, it may be necessary to remove any 2nd memory board from Motherboard slot 7 before removing the BA board.
4. Remove the BA board in the manner described in step 5.3.5.3.1.
5. Install the new BA board.
6. Reconnect the $64-\mathrm{pin}$ connectors and return the fan assembly to normal.

Figure 5-18. 210-8311 Bus Adapter Board

5.3.5.3.10 Internal Cable Connections

Once the $C P$ circuit board (s) has been replaced, make sure that all internal interconnection cables have been reconnected according to table 5-2. Make sure that all board cables are secured in place. See figure 5-19 for the 210-7614 Maintenance Panel and figure 5-20 for proper cable configurations for the 210-8513 Display Panel.

Table 5-2. VS-85 Internal Signal Cable Connections

PC BOARD	CONNECTOR	T0	CONNECTOR	PC BOARD
$\begin{gathered} \hline \text { 210-7602 } \\ " \\ " \\ \hline \end{gathered}$	SW1	16-pin connector	J7	$\begin{gathered} 210-7614 \\ " \\ " 1 \end{gathered}$
	J1	60-pin connector	J5	
	J2	$60-$ pin connector	J6	
$\begin{gathered} 210-7601 \\ 11 \end{gathered}$	J1	60-pin connector	J3	$210-7614$ "
	J2	$60-$ pin connector	J2	
$\begin{gathered} 210-8230 \\ " \end{gathered}$	J3	64-pin connector	J3	$\begin{gathered} 210-8231 \\ n \end{gathered}$
	J4	64-pin connector	J4	
210-8804(OptionalCacheMemory)$\quad 11$	J1	64-pin connector	J3	$\begin{gathered} 210-8311 \\ \text { " } \\ 210-7605 \\ " 1 \\ " \end{gathered}$
	J2	64-pin connector	J4	
	J3	64-pin connector	J3	
	J4	64-pin connector	J4	
	J5	16-pin connector	J5	
$\begin{gathered} \hline 210-8231 \\ " 1 \\ " \\ \hline \end{gathered}$	J1	64-pin connector	J1	$\begin{gathered} \text { 210-8311 } \\ " \\ : " \end{gathered}$
	J5	64-pin connector	J3	
	J6	64-pin connector	J4	
$210-7605$ (Optional SBC) " "	J1	64-pin connector	J1	$\begin{gathered} 210-8311 \\ " \\ 210-8804 \\ " \\ " \end{gathered}$
	J2	64-pin connector	J2	
	J3	64-pin connector	J3	
	J4	64-pin connector	J4	
	J5	16-pin connector	J5	
$\begin{gathered} 210-7614 \\ \hline 1 \end{gathered}$	J12	16-pin connector	J2	210-8513
	J4	34 -pin connector	J6	210-7610
210-8513	J1	26-pin connector	J49	210-8508
210-7610	J1	34-pin connector	J1	Mini Diskette Drive

Figure 5-19. 210-7614 Maintenance Panel Board

MAINTENANCE

5.3.5.4 IOP Circuit Board Removal and Replacement

There are four different IOP assemblies used in the VS-85. The removal and replacement procedures for the different assemblies are given in the order in which they are found in the Motherboard. (Figure 5-4.)

See figure 5-21 and the appropriate documents in class 6200 for information pertaining to IOP switch settings (except TC IOPs, figure 5-28). Make sure that the device address for each IOP is unique to that assembly.

IOPs are assigned to the Motherboard slots on a priority basis, as follows:

NOTE

In the VS-85, the Operating System (OS) requires that IOP slot 非0 be reserved for a 22 V 28 Large or 22V88 Very Large Disk Drive IOP.

Table 5-3. VS-85 IOP Priority List

IOP TYPE	WLI PART NUMBER	MOTHERBOARD PRIOR ITY	PHYSICAL MOTHERBOARD IOP SLOT NUMBER
22V28 Large Disk	212-3023	1	0 (4-port IOP)
22V88 Very Large Disk	212-3050	1	0 (l-port IOP)
22V88 Very Large Disk	212-3049	1	0 (2-port IOP)
22V88 Very Large Disk	212-3048	1	0 (3-port IOP)
22V88 Very Large Disk	212-3047	1	0 (4-port IOP)
22V15-2 Tape Drive	212-3030	2	1
22V25-2 Tape Drive	212-3017	2	1
22V27-2 16-Port Serial	212-3022	3	2 (lst l6-port IOP)
Workstation/Printer		4	3 (2nd 16-port IOP)
22V26-1 TC	212-3018	5	4 or 5
22V26-2 TC	212-3019	5	4 or 5
22V26-3 TC	212-3020	5	4 or 5

Figure 5-21. IOP Switch Settings (Except TC)

1. Depress the Power Ort fff switch to the " 0 " position and turn off the main frame ac On/Off circuit breaker.
2. Remove all connectors from the top of the 22 V 28 Large or 22 V 88 Very Large Disk IOP assembly (figures 5-22 (. 5-23) in IOP slot 非O of the Motherboard. Note all the connector pusitions for later reassembly. (Also note that there are four versions of the 22 V 88 Very Large Disk IOP; 1-port, 2-port, 3-port, and 4-port. Refer to table 5-3.)
3. Once the cables are disconnected, remove the IOP assembly by grasping the ton corners and gently rocking it from side-to-side while exerting a steady upward pressure. Once the assembly is free of the slot, ease it up and out of the main frame.

Figure 5-22. 22V28 Large Disk Drive IOP

Figure 5-23. 22V88 Very Large Disk Drive IOP (3-Port Version)
4. Check the device type switches (figure 5-22 and 5-24, and table 5-4) for the type of drives connected to a 22 V 28 IOP. (Refer to step 9 for the 22 V 88 IOP device type switches.)
5. The two 8-position disk device type switches, SW1 and SW2, define the type of drive connected to the 22 V 28 IOP, Ports $0-3$. Set the switches for the type of drive(s) connected to the IOP.
6. Check the IOP device address switch (figure 5-21)
7. Install the new 22 V 28 IOP assembly.
8. Reconnect all cables.

Figure 5-24. 22V28 Large Disk Drive Disk Device Type Switch Settings.

Table 5-4. 22V28 Disk Drive Types.

DRIVE TYPE	L0	L1	L2
75MEG SMD	ON	ON	ON
288MEG SMD	ON	ON	OFF
30MEG CMD	OFF	ON	OFF
60MEG CMD	OFF	OFF	ON
9OMEG CMD	OFF	OFF	OFF
NO DRIVE	ON	ON	ON

9．Check the device type switches（figure 5－23 and 5－25，and table 5－5） for the type of drives connected to a 22 V 88 IOP．
10．The two 8－position disk device type switches，SW1 and SW2，define the type of drive connected to the 22 V 88 IOP，Ports $0-3$ ．Set the switch－ es for the type of drive（s）connected to the IOP．On the 非212－3042 （1－port）IOP，SW2 may be a half switch and SW1 may not be installed； on the 非212－3043（2－port）IOP，SW1 may not be installed；and on the非212－3044（3－port）IOP，SW1 may be a half switch．
11．Check the IOP device address switch（figure 5－21）
12．Install the new 22 V 88 IOP assembly．
13．Reconnect all cables．

Figure 5－25． 22 V 88 Very Large Disk Drive Disk Device Type Switch Settings．

Table 5－5．22V88 Disk Drive Types．

DRIVE TYPE	B IT 3	B IT 2	BIT 1	BIT 0
75MEG SMD	OPEN	OPEN	OPEN	OPEN
288MEG SMD	OPEr：	OPEN	OPEN	CLOSED
30MEG CMD	OPEN	CLOSED	OPEN	OPEN
60MEG CMD	OPEN	CLOSED	OPEN	CLOSED
90MEG CMD	OPEN	CLOSED	CLOSED	OPEN
620MEG FMD	CLOSED	OPEN	CLOSED	CLOSED
NO DRIVE	CLOSED	CLOSED	CLOSED	CLOSED

1．Remove all connectors from the top of the 22V27－2 16－Port Serial Device IOP assembly（figure 5－26）in IOP slot 非2 of the Motherboard （for the first 16 serial devices）or IOP slot 非3（for the 2nd 16 serial devices）．Note the position of all connectors for later re－ assembly．（Workstation 0 must be connected to Port 非0 of IOP slot非2．This is a microcode convention and MUST be adhered to．）
2．Remove the assembly in the manner described in 5．3．5．4．1．
3．Install the new 22V27－2 IOP assembly．
4．Reconnect all cables．

Figure 5－26．22V27－2 16－Port Serial IOP
5. Remove and replace any other IOPs in the manner previously described, making sure of the switch settings and the position according to the Priority Table 5-3.

Figure 5-27. 22V25-2 Tape Drive IOP
6. Before installing the $22 \mathrm{~V} 26-1 / 2 / 3 \mathrm{TC}$ IOP, check the $T C$ IOP switch settings as shown in figures 5-28 and 5-29.
7. After the IOP is installed and the system has been powered on, the -12 Volt supply on the $210-7826$ TC Motherboard must be checked as follows:
a. Connect the negative lead of a digital voltmeter to the -12 Volt test point and the positive lead to the $+/-0$ Volt bus. (Figure 5-29.)
b. Adjust the trimpot (figure $5-29$) until the meter reads -12 Volts, $+/-0.5$ Volts.

Figure 5-28. TC IOP Switch Settings

Figure 5-29. 22V26-3 TC IOP

5.3.5.5 Motherboard Removal and Replacement

Removal of the Motherboard should be done only if it has been determined conclusively that the fault is in the Motherboard. The following paragraphs describe the procedures involved in removing the VS-85 Motherboard.

CAUTION

When reinstalling the Motherboard, make sure that no conductive (metal) parts of the Motherboard come in contact with the main frame chassis. This could cause a short to ground on the Motherboard resulting in serious damage to CP boards or IOP assemblies.

5.3.5.5.1 Motherboard Removal

Remove the 210-8508 Motherboard as follows: (See figure 5-30.)

1. Depress the Power On/Off switch to the " 0 " position and turn off the main frame ac On/Off circuit breaker.
2. Remove the top and front covers.
3. Remove all CP and IOP circuit boards from the Motherboard. Note the position of all cables for later reassembly. (Table 5-2.)
4. Disconnect the 4 -pin power connector from J 50 and the 26 -pin signal connector from J 49 , both on the Motherboard.
5. Remove the $3 / 8^{\prime \prime}$ bolt and the $7 / 16^{\prime \prime}$ inch locknut securing the black \#1/0 cable and the green wire to the $+/-0$ Volt bus at the front of the Motherboard assembly.
6. With a Phillips screwdriver, loosen the screw securing the black wire to the $+/-0$ Volt bus at the front of the Motherboard assembly. Remove the black wire.
7. With a $1 / 4^{\prime \prime}$ nut-driver, remove the two screws securing the top of the Display/Maintenance panel assembly to the top chassis rail. Let the top of the panel assembly tilt out and away from the main frame.
8. With a $5 / 16^{\prime \prime}$ nut-driver, remove the two front bolts holding the Motherboard and chassis assembly to the main frame.
9. Lower the fan assembly as described in paragraph 5.3.5.22. Remove the two Phillips screws securing the hinged cover over the fan safety screen inside the cabinet. Raise the cover, remove the screen, and turn the vertically mounted air flow baffle to the right. This allows access to the cables on the rear of the chassis assembly.
10. The rear of the Motherboard and chassis assembly is attached to the main frame by two tabs. Pull the assembly forward about 1 " to clear the tabs and allow access to the +5 Volt dc bus on the rear of the assembly.
11. Remove the $3 / 8^{\prime \prime}$ bolt and the $7 / 16^{\prime \prime}$ inch locknut securing the black非 $1 / 0+5$ Volt dc cable to the +5 Volt $d c$ bus at the rear of the Motherboard assembly.
12. With a Phillips screwdriver, loosen the screws securing the red wire and the red/white striped wire to the +5 Volt $d c$ bus at the rear of the Motherboard assembly. Remove the wires.
13. Lift the Motherboard and chassis assembly straight up and out of the main frame and place it on the floor.

Figure 5-30. Motherboard Removal

14．With a Phillips screwdriver，remove the 24 screws located on the outer edges and between the the card slots of the Motherboard．（Note that the screw located between J23，J24，and J27 has a nylon insulat－ ing washer．）
15．Separate the Motherboard from the rest of the assembly．

5．3．5．5．2 Motherboard Replacement

1．To reinstall the Motherboard，reverse the removal procedure．
2．Make sure that all screws and nuts are reinstalled in their proper locations．Do not overtighten the 24 phillips screws or they will strip the nylon stand－offs on the Motherboard assembly．Remember that the screw located between $\mathrm{J} 23, \mathrm{~J} 24$ ，and J 27 has a nylon insulat－ ing washer．
3．Make sure that all wires，cables，and connectors are installed cor－ rectly．
4．Make sure that the black $⿰ ⿰ 三 丨 ⿰ 丨 三 一 1 / 0+5$ Volt dc cable on the rear of the Motherboard assembly does not touch the main frame chassis．
5．Make sure that no metal part of the Motherboard touches the main frame chassis（see CAUTION in paragraph 5．3．5．5）．
6．Carefully reinstall all circuit boards according to figure 5－4 and make sure that all board cabling is installed correctly．

5．3．5．6 Display／Maintena：nce Panel Assembly Removal

The top of the Display／Maintenance panel assembly in the VS－85 is attached to the top chassis rail of the main frame by two screws and a chain cable． The bottom of the assembly rests in a slot that allows the top of the assembly to tilt out and away from the main frame．Remove the Panel Assembly as fol－ lows：（See figure 5－31，5－32，5－33，and 5－34．）

1．Depress the Power On／Off switch to the＂ 0 ＂position and turn off the main frame ac On／Off circuit breaker．
2．Remove the top and front covers．
3．With a $1 / 4^{\prime \prime}$ nut－driver，remove the two screws securing the top of the Display／Maintenance panel assembly to the top chassis rail．Let the top of the panel assembly tilt out and away from the main frame．
4．Disconnect the chain cable．
5．Disconnect the $3-$ pin power connector from $J 3$ and the $26-$ pin signal connector from Jl，both on the 210－8513 Display Panel board．
6．Disconnect the $2-p i n$ powsr connector from $J l$ and the $26-p i n$ signal connectors from J2 and J3：all on the 210－7614 Maintenance Panel board．
7．Disconnect the 16－pin connector at location SW1 of the 210－7602 Con－ trol Memory board．（Figure 5－5．）
8．Disconnect the 60－pin connectors from Jl and J2 of the 210－7602 Con－ trol Memory board．（Figure 5－5．）
9．Disconnect the 6 －pin power connector from $J 3$ and the $2-$ pin power connector from J4，both on the 210－7610 Mini－diskette Drive Controll－ er board．

Figure 5-31. Rear View of Display/Maintenance Panel Assembly
10. Disconnect the two wires from the Display Panel Power On/Off switch. 11. Being careful of the cables still attached, lift the entire Display/Maintenance panel assembly up and out of the main frame. Lay the assembly face down on the floor on a piece of padded material.

5.3.5.7 Display/Maintenance Panel Assembly Replacement

1. To reinstall the Display/Maintenance Panel Assembly, reverse the removal procedure. Secure the assembly, before reconnecting the cables, by reinstalling the chain cable as soon as the assembly is put back into the main frame.
2. Make sure that all wires and connectors are installed correctly.

5.3.5.8 Display Panel Board Removal

Remove the 210-8513 Display Panel board as follows: (Figure 5-32)

1. Depress the Power On/Off switch to the " 0 " position and turn off the main frame ac On/Off circuit breaker.
2. Remove the top and front covers.
3. With a $1 / 4^{\prime \prime}$ nut-driver, remove the two screws securing the top of the Display/Maintenance panel assembly to the top chassis rail. Allow the top of the panel assembly to tilt out and away from the main frame.
4. Disconnect the $3-$ pin power connector from $J 3$ of the $210-8513$ Display Panel board.
5. Disconnect the $16-$ pin connector from $J 2$ and the $26-p i n$ connector from Jl, both on the board.
6. Remove the five Phillips screws from the stand-offs on the board.
7. Remove the board.

Figure 5-32. Display Panel Board Removal

5.3.5.9 Display Panel Board Replacement

1. To reinstall the Display Panel board, reverse the removal procedure.
2. Make sure that all connectors are installed correctly.
5.3.5.10 Maintenance Panel Board Removal

Remove the 210-7614 Maintenance Panel board as follows: (See figure 5-33.)

1. Depress the Power On/Off switch to the " 0 " position and turn off the main frame ac On/Off circuit breaker.
2. Remove the top and front covers.
3. Remove the complete Display/Maintenance panel assembly as described in paragraph 5.3.5.6.
4. With the Display/Maintenance panel assembly out on the floor, unscrew the black Step pushbutton cap from the front of the Maintenance Panel board.
5. Remove the 210-7610 Mini-diskette Drive Controller board (paragraph 5.3.5.12).
6. Remove the six Phillips screws from the 210-7614 Maintenance Panel board stand-offs and carefully lift off the board with the cables still connected.
7. Disconnect the $16-$ pin connectors from $J 7$ and $J 12$ of the board.
8. Disconnect the 34 -pin connectors from J4, J5, and J6 of the board.
9. Remove the board.

Figure 5-33. Maintenance Panel Board Removal

5.3.5.11 Maintenance Panel Board Replacement

1. To reinstall the Maintenance Panel board, reverse the removal procedure.
2. Reinstall the 210-7610 Mini-diskette Drive Controller board.
3. Reinstall the Display/Maintenance panel assembly.
4. Make sure that all wires and connectors are installed correctly.

5.3.5.12 Mini-floppy Drive Controller Board Removal

Remove the 210-7610 Mini-diskette Drive Controller board as follows: (See figure 5-34.)

1. Depress the Power On/Off switch to the " 0 " position and turn off the main frame ac On/Off circuit breaker.
2. Remove the top and front covers.
3. Remove the complete Display/Maintenance panel assembly as described in paragraph 5.3.5.6.
4. Disconnect the 4 -pin power connector from J2 of the 210-7610 Minidiskette Drive Controller board.
5. Disconnect the 34 -pin connector from $J l$ on the top of the board and the 34 -pin connector from $J 6$ on the left side of the board.
6. Remove the four Phillips screws from the board. (Note that the screw located above 49 has a nylon insulating washer.)
7. Remove the boird.

Figure 5-34. Mini-diskette Drive Controller Board Removal

5.3.5.13 Mini-floppy Drive Controller Board Replacement

1. To reinstall the Controller board, reverse the removal procedure.
2. Remember the screw located above L 9 has a nylon insulating washer.
3. Reinstall the Display/Maintenance panel assembly.
4. Make sure that all wires and connectors are installed correctly.
5.3.5.14 Mini-floppy Drive Removal

Remove the Mini-diskette Drive as follows: (See figure 5-35.)

1. Depress the Power On/Off switch to the " 0 " position and turn off the main frame ac On/Off circuit breaker.
2. Remove the top and front covers.
3. Remove the complete Display/Maintenance panel assembly as described in paragraph 5.3.5.6.
4. Remove the 210-7610 Mini-diskette Drive Controller board as described in paragraph 5.3.5.12.
5. Disconnect the $4-\mathrm{pin}$ power connector from J 2 and the $34-\mathrm{pin}$ signal connector from Jl, both on the mini-diskette Drive.
6. Loosen the four Phillips screws securing the drive to the bracket.
7. Slide the whole drive assembly up enough to allow the screws to clear the screw slots.
8. Remove the drive.

Figure 5-35. Mini-diskette Drive Removal

5.3.5.15 Mini-floppy Drive Replacement

1. To reinstall the Mini-diskette Drive, reverse the removal procedure.
2. Reinstall the Mini-diskette Drive Controller board.
3. Reinstall the Display/Maintenance panel assembly.
4. Make sure that all wires and connectors are installed correctly.
5.3.5.16 Switching Power Supply Removal

Remove the power supply as follows: (Figures 5-30, 5-36, and 5-37.)

WARN ING

$* ~$	
$*$	
$*$	DO NOT OPEN THE SWITCHING POWER SUPPLY UNDER ANY

1. After depress the Power On/Off switch to the " 0 " position and turning off the main frame ac On/Off circuit breaker, remove the top and front covers.
2. With a $5 / 16^{\prime \prime}$ open end wrench, remove the two bolts securing the front of the power supply assembly to the base of the main frame cabinet. These are bolt and locknut combinations. Hold the locknuts underneath the cabinet while removing the bolts.
3. The rear of the assembly is attached to the main frame by two tabs. Pull the assembly forward about $l^{\prime \prime}$ to clear the tabs and then turn it to the left to allow access to the $1 / 0+/-0$ vdc cable, the $1 / 01 / 0+5$ Volt dc cable, and the cables on the 210-8250 Power Controller board.
4. Remove the $3 / 8^{\prime \prime}$ bolts and the $7 / 16^{\prime \prime}$ inch locknuts securing the black非 $1 / 0+/-0$ Volt cable and the black 非 $1 / 0+5$ Volt dc cable to the "antler" assembly on the front of the power supply.
5. Disconnect the 4-pin power connector from J50 of the Motherboard.
6. Disconnect the $12-\mathrm{pin}$ connector from J 2 of the Power Filter Assembly.
7. Note the orientation of the 6 -pin connector at J6 of the 210-8250 Power Controller board and then remove the connector from J6.
8. Disconnect the 3-pin connector from J2, the 9-pin connector from J4, and the 2-pin connector from J5, all on the Power Controller board.
9. Remove the power supply assembly.
10. Disconnect the 15-pin connector from Jl of the Power Controller board.
11. Tip the power supply assembly on it's side.
12. With a $1 / 4^{\prime \prime}$ nut-driver, remove the four screws from the bottom of the power supply.
13. Remove the power supply.

Figure 5-36. Power Supply Removal

5.3.5.17 Switching Power Supply Replacement

1. To reinstall the Switching Power Supply, reverse the removal procedure.
2. Note which vendor's switching power supply is the replacement supply. If it is a Powertec supply, it has a lly/230V Line Select Switch. Check the switch at the rear of the supply to make sure it is set to the 115 Vac position. This applies to ALL systems.
3. Make sure that the $6-\mathrm{pin}$ connector at J 6 of the Power Controller board is reinstalled in the correct orientation. This connector can be forced on upside down. (Even though connectors J6 through J9 are common connectors, use J6.)
4. Make sure that all other wires and connectors are installed correctly. (Even though connectors J3 and J4 of the Power Controller board are common connectors, use J4 '
5. Power up the system and check and adjust, if necessary, the power supply voltages as described in paragraph 5.2.6.1

5.3.5.18 Power Controller Board Removal

Remove the 210-8250 Power Controller board as follows:

1. Depress the Power On/Off switch to the " 0 " position and turn off the main frame ac On/Off circuit breaker.
2. Remove the top and front covers.
3. Remove the power supply assembly as described in paragraph 5.3.5.16. There is no need to do steps 11 through 13 of the power supply removal procedure.
4. Remove the six Phillips screws from the stand-offs on the Power Controller board.
5. Remove the board.

5.3.5.19 Power Controller Board Replacement

1. To reinstall the Power Controller board, reverse the removal procedure.
2. Set the $115 / 230 \mathrm{~V}$ Line Select Switch on the Power Controller boird to the 115 Vac position. This applies to ALL systems.
3. Make sure that the $6-\mathrm{pin}$ connector at $J 6$ of the Power Controller board (figure 5-36) is reinstalled in the correct orientation. This connector can be forced on upside down. (Even though connectors J6 through J9 are common connectors, use J6.)
4. Make sure that all other wires and connectors are installed correctly. (Even though connectors J3 and J4 of the Power Controller board are common connectors, use J4.)
5. Reinstall the power supply assembly.
6. Power up the system and check and adjust, if nesessary, the power supply voltages as described in paragraph 5.2.6.1

5.3.5.20 Power Filter Assembly Removal

The Power Filter Assembly is mounted in the back panel of the main frame. Remove the Power Filter Assembly as follows: (See figure 5-37.)

WARNING

Because of the high operating voltages passing through the Power Filter Assembly, power down the main frame and disconnect the main frame power connector from the power source receptacle before performing the following removal/replacement procedures.

1. After powering down the main frame and disconnecting the main frame power connector from the power source receptacle, remove the twenty Phillips screws securing the Power Filter Assembly to the rear of the main frame cabinet.
2. Pull the assembly out far enough to the rear to access the cables connected to the front of the assembly.
3. Remove the 3 -pin connector from J1 and the 12 -pin connector from J2, both on the assembly.
4. Remove the assembly.
5.3.5.21 Power Filter Assembly Replacement
5. To reinstall the Power Filter Assembly, reverse the removal procedure.

Figure 5-37. Power Filter Assembly Removal

5.3.5.22 Fan Removal

WARNING

Because of the high current passing through the fans at the rear of the chassis, power down the main frame and place the circuit breaker in the OFF position before performing the following procedures.

The six cooling fans used in the VS-85 are mounted on a hinged panel assembly. Before an individual fan can be removed, the panel assembly must be lowered. The following paragraphs describe the procedures involved in lowering the panel and removing a fan.

Remove a damaged or defective miffin fan as follows:

1. Depress the Power On/Off switch to the " 0 " position and turn off the main frame ac On/Off circuit breaker.
2. Remove the four Phillips screws securing the fan filter assembly to the back panel. (Figure 5-38.) Remove the filter assembly.
3. Grasp the catch inside the top of the panel and pull the top out. Lower the panel down to the horizontal position. (Figure 5-39.)
4. Disconnect the plug on the lower right corner of the fan to be removed.
5. Remove the four Phillips screws securing the fan to the fan pariel.
6. Remove the fan.
5.3.5.23 Fan Replacement
7. To install a fan, reverse the above procedure.
8. Power up the system and check that ail the fans are operating properly.

Figure 5-38. Fan Filter Assembly

Figure 5-39. Lowering Fan Assembly

CHAPTER 6

SCHEMATICS

Schematics are not provided as part of this Standard Manual. The schematics will appear in the VS-100 Computer System Schematics Manual, WLI P/N 729-0872-A.

> SECTION 7
> ILLUSTRATED PARTS BREAKDOWN

CHAPTER 7

ILLUSTRATED PARTS BREAKDOWN

7.1 SCOPE

This chapter contains the illustrated parts breakdown for the VS-85 Computer System. Use this breakdown for part number identification when ordering field-replaceable components.

CABLE, FILTER BOX TO:
SPS P/S-220-1994
L + H P/S-220-2033

* $=$ RSL ITEM

* $=$ RSL ITEM

VS-85 Cable Part Numbers

PART NUMBER	DESCRIPTION
220-0346	Ac power cable with Hubbel plug, 115 V and 230 V
220-1362	Wire and lug, 12 gauge, braid 2, \#\# ring lugs, $10^{\prime \prime}$
220-1994	Power Filter Assembly to SPI Switching P/S cable
220-1995	210-8250 Power Controller board to Motherboard cable
220-1996	SPI Switching P/S to 210-8250 Power Controller board cable
220-1999	115 V ac Power Filter Assembly cable
220-2000	230 V ac Power Filter Assembly cable
220-2005	14 gauge, 非 8 ring fastener, $5^{\prime \prime}$ wire and lug assembly
220-2006	Mini-floppy power cable, $14^{\prime \prime}$
220-2031	AC power cable
220-2032	Power Filter Assembly to L\&H Switching P/S cable
220-2033	L\&H Switching P/S to 210-8250 Power Controller board cable
220-2058	5 Volt power cable, 34'
220-3115	64 position socket-socket, 1.5'
220-3274	16 pin DIP to DIP, 20.5"
220-3283	34 position socket-edge, 12"
220-3284	34 position socket-socket, 24"
220-3285	34 position socket-60 position socket pin 34-60, 28'
2.20-3286	64 position socket-socket, 4.5'
220-3287	34 position socket-60 position socket pin 1-1, 13"
220-3288	26 position socket-60 position socket pin $26-60,26^{\prime \prime}$
220-3289	26 position socket-60 position socket pin 1-1, 12"
220-3290	26 position socket-socket, 50'
220-3302	16 pin DIP to DIP, $24^{\prime \prime}$
270-3305	Main power harness
270-3312	230V Power Filter Assembly transformer harness

CHAPTER

8.1 GENERAL

Two types of diagnostics are available to the VS-85: inner-level CP microcode diagnostics, and outer-level memory and peripheral diagnostics. With these diagnostics, the $C E$ is able to locate and repair most problems that occur in the system. All available diagnostics should be run as a check for system integrity before turning the system over to the customer.

8.2 VS-85 MICROCODE DIAGNOSTICS

An important diagnostic tool for testing the VS-85 CP is a series of microcode diagnostics available on mini-diskettes which are loaded by means of the mini-diskette drive built into the main frame. Used in conjunction with the Maintenance Panel (paragraph 8.3 and figure 8-1), these diagnostics enable the $C E$ to test all major CP functions.

When a fault (or successful completion) is detected by the microcode diagnostics, the results are displayed as a HEX code halt on the IC (Instruction Counter) Register display. The known good IC halts are shown in table 8-1. Table 8-1 also shows the most likely failing PCBs if an unknown halt occurs. It is aiso possible that the unknown halt was caused because an ECO has not been installed.

Once the $C E$ has identified the failing board and recorded the error code, the board is sent to a repair depot. At the depot, repair personnel will run the same diagnostics to verify the observations of the CE. This duplicating of trouble conditions results in fast turn-around time in the ultimate repair of the board.

The microcode diagnostics consist of five different testing levels. The five levels and the CP functions tested by each are as follows:

1. LEVEL 1--Tests opcodes needed for higher test levels.

OPERATION/COMPONENT TESTED	TEST \#
Microsequencer, Branch Unconditional	T0010
Instruction Counter	T1010
Branch Cond. \& Status Opcodes	T2010
Stack Data Integrity	T3010
Routine Stack Address	T4010
Register Data Integrity	T4110

2. LEVEL 2--Tests additional opcode levels.

OPERATION/COMPONENT TESTED	TEST 非
Visual Verification	T5000

3. LEVEL 3--Tests process and Control Memory (CM) opcodes. From this point on all diagnostics are supported by the Monitor program.

OPERATION／COMPONENT TESTED	
CM Moving Inversions（Upper）	TEST 非
CM Moving Inversions（Lower）	T7010
Register Data Integrity	T8010
Data Stack \＆T－RAM	T9010

4．LEVEL 4－－Completes process and opcode tests．

OPERATION／COMPONENT TESTED	TEST \＃
Add \＆Subtract Group	TA010
Logical Instructions	TB010
Move Instructions	TB110
Shift \＆Decimal Add \＆Subtract	TC010
Conditional Code \＆Arith．Logical Group	TD010

5．LEVEL 5－－Tests outer level of CP．

OPERATION／COMPONENT TESTED	TEST $⿰ ⿰ 三 丨 ⿰ 丨 三 一 \mid$
Memory Opcodes and Multiply Group	TAA10
Enhanced Branch Next Macro－instruct．	TAF10
ECR，Memory Controller，IPC，and DMA	TBB10
Main Memory Board	TDE10

Table 8－1．VS－85 Microdiagnostic Packages

$\begin{gathered} \hline \text { DIAGNOSTIC } \\ \text { NUMBER } \end{gathered}$	$\begin{aligned} & \hline \text { DIAGNOSTIC } \\ & \text { NAME } \end{aligned}$	KNOWN GOOD IC HALTS	$\begin{gathered} \text { MOST LIKELY } \\ \text { BAD PCB } \end{gathered}$
T0010	Microsequencer，Uncond．Branch	0000－－1FFF	Control Memory
T1010	Instruction Counter	1 FFF	Control Memory
T2010	Branch Cond．\＆Status Ops	1 FFF	Control Memory
T3010	Stack Data Integrity	1 FFF	Control Memory
T4010	Register Data Integrity	1FFF	Control Memory
T4110	Register Integrity	1FFF	A Bus，B Bus
T5000	Visual Verification	0020－－006F	A Bus，B Bus
T6010	CM Moving Inversions（upper）	001F，OFFF	Control Memory
T7010	CM Moving Inversions（lower）	101F，1FFF	Control Memory
T8010	Register Data Integrity	001F，1FFF	A Bus，B Bus
T9010	Data Stack and T－RAM	001F，1FFF	B Bus，A Bus
TA010	Add and Subtract Group	001F，1FFF	B Bus，A Bus
TB010	Logical Instructions	001F，1 FFF	B Bus，A Bus
TB110	Move Instructions	001F，1FFF	B Bus，A Bus
TC010	Shift \＆Decimal Add \＆Subtract	001F，1FFF	B Bus，A Bus
TD010	Condition Code \＆Arith Logic Group	001F，1 FFF	B Bus，A Bus
TAA10	Memory Opcodes \＆Multiply Group	001F，1FFF	MM，MCII，A Bus， or B Bus
TAF10	Enhanced Next Macroinstruction	001E，1FFF	CM，B Bus，A Bus
TBB10	ECR，Memory Controller，IPC，\＆DMA	001F，1FFF	MCI，MCII，BA， or IOPO
TDE10	Main Memory Board	001F，1FFF	MM

Figure 8-1. Maintenance Panel

8.3 THE MAINTENANCE PANEL

The Maintenance Panel, located directly below the mini-diskette drive, is used by the CE in conjunction with the microcode diagnostics for troubleshooting the vS-85 main frame. The Maintenance Panel contains the following controls and indicators:

Table 8-2. VS-85 Maintenance Panel Controls

CONTROL NAME AND TYPE	PURPOSE	NORMAL POSITION
MONITOR DIAGNOSTIC SW. (8-POS ITION DIP)	Refer to paragraph 8.3.?	ON
STEP SWITCH (BLACK PUSHBUTTON)	Controls t-time clocks on CM/A Bus/B Bus for single-stepping diagnostics	RELEASED (NC)
STEP/RUN (TOGGLE SW.)	STEP - enables single stepping RUN - disables single stepping	
COMPARE/NO	Allows comparison of contents (location) of COMPARE (TOGGLE SW.)	Instruction Counter with ADDRESS COMPARE SWI'TCHES for diagnostic halts
ADDRESS COMPARE	Sets up addresses for COMPARE/ (l4 TOGGLE SWs)	NO COMPARE SWITCH

Table 8-3. VS-85 Maintenance Panel Indicators

IND ICATOR NAME AND TYPE	PURPOSE	NORMAL INDICATION
INSTRUCTION COUNTER DISPLAY $(4$ HEX LEDS $)$	Displays contents (location) of Instruct ion Counter	VARIES
B-BUS DISPLAY $(8$ HEX LEDS $)$	Displays contents of B Bus	VARIES

8.3.1 RUNNING MICROCODE DIAGNOSTICS

Load the microcode diagnostics into Control Memory as follows:

1. Insert the first microcode diagnostic diskette (WLI P/N 702-8001A) into the mini-diskette drive and press the yellow CM Boot button on the Display Panel. (See Figure 3-3). The Diskette Activity LED on the front of the diskette drive lights to show that the microcode is being loaded into Control Memory.
2. When the microcode is loaded, the Ready LED on the Front Panel will light and the Diskette Activity LED will go out.

NOTE

If Ready LED flashes instead of remaining steadily $O N$, system has failed to load the microcode. Reseat diskette and repeat the loading procedures. If microcode cannot be loaded, insert and load another diagnostic diskette. If this does not correct the problem, Control Memory (2107602), the drive, or the drive controller (2107610) may be defective. Refer to drive maintenance procedures in Chapter 5.
3. Set switch SWl on the Maintenance Panel Monitor Diagnostic switch (figure 8-2) to the OFF position, all other switches ON.
4. Press and hold the red Initialize button.
5. Set the Step/Run switch to the Step position.
6. Release the Initialize button.
7. Place the Step/Run switch to Run position and press the Step button. This causes the diagnostic program to begin executing. The program will halt at Instruction Counter (IC) location XXXX (halt may not be consistent). There are some exceptions, such as TEST5000-Visual Verification Test - which stops at location 0020. Refer to table 8-1 for known good IC halts.
8. After the diagnostic has completed successfully, insert the next diskette and repeat steps 4 through 6.
9. Any unknown IC halts are error conditions (or an ECO has not been installed.) Repeat the test with a backup diskette. If an unknown halt still occurs, refer to table $8-1$ to determine the most likely bad PCB.
10. Refer to paragraph 8.3.2 for an explanation of the 8-position Monitor Diagnostic DIP switch. The switch is used in conjunction with the microdiagnostics which support the Monitor program.

8.3.2 MONITOR DIAGNOSTIC SWITCH

Table 8-4 describes the switch settings for the Monitor Diagnostic switch located on the Maintenance Panel. (OFF is ACTIVE.)

NOTE

This switch is used with Level 3 and above micro.diagnostics only. Even though Levels 1 and 2 of the microcode diagnostics are not supported by the Monitor Program, all known error halts are documented. Levels 3 and 4 are supported by the Monitor Program. Level 5 is also supported by the Monitor Program, except in situations where the system can't recover from an error condition caused by the hardware failing to respond to the CP.

Figure 8-2. Diagnostic Monitor Switch

Table 8-4. Diagnostic Switch Settings

SWITCH \#	NAME	FUNCTION
1	HALT ON ERROR	If error occurs, test halts and ERROR CODE appears on B Bus display.
2	DATA DISPLAY	Displays expected/received results of opera- tions whenever error has been detected. Used with Halt On Error to display contents of
File Register (FR) specified by switches five		
through eight.		

Table 8-5. File Register Contents

FILE REGISTER	CONTENTS
FR00	Test number
FR01	Error code
FR02	Expected data
FR03	Received data
FR04 through FR11	Error data
FR12	Save area for
FR13	WK1, WK2, and
FR14	MDR4
FR15 through FR31	Unused

NOTE
Table 8-5 is an example. It is not applicable to all tests.

8.3.3 USING THE MONITOR DIAGNOSTIC SWITCH

The following steps outline basic procedures of how the Monitor Diagnostic switch is used in actual practice.

1. While a Level 3 or higher diagnostic test is halted at Location 0000 , set switches 5 and 6 (figure 8-2) to regulate the System Clock for either slow, fast, or normal cycle time. If an intermittent CPU problem exists, the Slow/Fast diagnostic clocks may be used for troubleshooting. However, the Slow/Fast clocks must not be used to enhance system performance.
2. Press the black Step pushbutton on the maintenance panel and the test will halt at Location 001F.
3. Reset all switches to the $O N$ position and place those switches that pertain to the desired Monitor function to OFF. For example, placing switch 1 in the OFF position causes the test being run to halt if an error occurs (Halt On Error) during test execution.
4. If an error occurs while using the Halt On Error function, the test will halt and an error code will appear on the B Bus display.
5. Consult the program listings for an explanation of the cause of the fault and what area of the $C P$ in which the trouble occurred.

8.3.3.1 Diagnostic Clock Adjustment

To help diagnose intermittent $C P U$ problems, the Slow/Fast diagnostic clocks may be used for troubleshooting. The following describes the adjustments to make sure that the clocks are accurate.

1. Insert the diskette (WLI $P / N \quad 732-8008 \mathrm{~A}$) containing microcode diagnostic T6010 (CM Moving Inversions - Upper, version 7130) into the diskette drive.
2. Load the diagnostic with the yellow CM Boot pushbutton.
3. When the diagnostic has successfully loaded, set Monitor Diagnostic switch 非5 OFF to enable the slow clock.
4. Press the red Initialize pushbutton. (The system must be initialized
to set the clock to a new speed．）The diagnostic should halt at IC （Instruction Counter）location 001F．
5．Set up the oscilloscope as follows：
a．Power up the oscilloscope．
b．Set Vert．Mode to CH1．
c．Set Volts／Division to 2 Volts．
d．Set AC－GND－DC to DC．
e．Set Time／Division to 0.05 microseconds．
f．Set Horiz Display to A．
g．Set Trig Mode to Auto．
h．Set Slope positive．
i．Set Source to Channel one．
j．Set Coupling to AC．
k．Make sure that probe is grounded．
1．Connect channel one probe to L107，pin 2 on the $210-7602$ Control Memory board．
6．Adjust R138（slow clock coarse adjustment）and R137（slow clock fine adjustment）on the 210－7602 board（figure 8－3）until the leading edge－to－leading edge time of the slow clock pulse is 176 nanoseconds．
7．Set Monitor Diagnostic switch 非5 ON and switch 非6 OFF to enable the fast clock．
8．Press the red Initialize pushbutton again．The diagnostic should halt at IC location 001F．
10．Adjust R136（fast clock coarse adjustment）and R135（fast clock fine adjustment）until the leading edge－to－leading edge time of the fast clock is 144 nanoseconds．
11．Set Monitor Diagnostic switch 非6 ON．
12．Press the red Initialize pushbutton again to return the clock to the normal speed．

Figure 8－3．Diagnostic Clock Adjustment Pots

8.3.4 USING THE DATA DISPLAY

The Data Display routine is used to display expected and received results of operations whenever an error has been detected. It is run in combination with the Halt On Error function. To use the Data Display:

1. Once a test has halted with an error code shown on the B Bus LEDs, set switch 2 to the OFF position to display data.
2. The configuration of switches 5 through 8 determine which File Register contents will be displayed on the B Bus LEDs.
3. For example, switches $1,2,7$ and 8 in the OFF position (C3) displays the contents of File Register 3 (FR3), which is the expected data from the execution of a certain opcode. By leaving switches 1 and 2 OFF, resetting switches 7 and $80 N$, and setting switch 6 OFF (representing a $C 4$ configuration) the contents of File Register 4 will be displayed. This is the received data from the execution of a certain opcode.

8.3.5 USING THE LOOP ON ERROR

Once an error has been detected and the test halted, the Loop On Error function can be run. To use Loop On Error:

1. Place switch 3 in the OFF position and switch 1 to the $O N$ position. This prevents the test from halting when an error occurs and puts the system in a very tight loop using only those instructions necessary to generate the fault condition.
2. With this function an oscilloscope can be used to locate the problem. The Loop On Error function is useful when troubleshooting defective boards down to the chip level.

8.3.6 USING THE LOOP ON TEST

If an intermittent error occurs, the Loop On Test function is used. To use the Loop On Test:

1. Place switch 4 in the OFF position. This causes the specified subtest to cycle repeatedly from beginning to end until the error reoccurs.
2. Resetting switch 4 to the $0 N$ position causes the routine to proceed to the next subtest.
3. The Loop On Test function can be used in conjunction with the Loop On Error function or the Halt On Error function for fault isolation routines.

8.4 VS-85 MEMORY AND PERIPHERAL DIAGNOSTICS

Memory and peripheral diagnostics available to the VS-85 are divided into three categories: On Line, Stand-alone, and Control Mode. The following paragraphs provide a brief description of these diagnostics.

8.4.1 ON LINE DIAGNOSTICS

With On Line diagnostics (located in library @DIAGS@), the CE logs on to the system through a workstation and executes a specific test routine, which
runs under control of the Operating System (while customer is running). All currently available VS-60/80/100 on line test routines will be available on the VS-85. Diagnostic programs currently available for individual peripherals are as follows:

Table 8-6. On Line Diagnostics

DIAGNOSTIC NAME	WLI P/N	VERSION	FUNCTION
ELOGDISP	702-0070	1.0	Utility used to interrogate and display VS I/O Error Log.
TPTEST	702-0187	6224	Magnetic tape diagnostic for Kennedy and Telex tape drives. Requires $0 S$ version 5.01 .51 or later.
FTU On-line	195-2652-3	6365	On-line version of FTU simulator. Supports all current VS disk drives including soft-sector. Allows CE to do most disk read, write, and control functions. CE can do most disk alignment procedures without removing disk drive from system. Requires OS version 5.0 or later.
Device Monitor	702-0175	21A0	Tests for all serial WSs, AWSs, AWS Hard or Soft-sectored controller boards, TCB1, TC Black Box, and 280 typesetter.
PRTEST1	702-0092	2.0.02	Provides full character set ripples on all 132 print positions, character broadsides, printing specific characters in specific columns, and test of spacing and format functions. Will attempt things unique to printer under test (i.e., variable pitch, loadable forms control, etc.).
VS On-line Printer Part I Monitor	702-0179A	2242	Low speed serial printers including 5521,5531, 5535, 5581WD, 6581WC and DW20.
$\begin{aligned} & \text { VS On-line } \\ & \text { Printer Part II } \\ & \text { Monitor } \end{aligned}$	702-0178	2211	High speed serial printers, including 5570/71, 5573/74, 5575, and 5531W6.
22V06 Local Loopback (TCIOPTST)	702-0132A	1130	Tests VS TC IOP \& associated memory. Requires loop-back connector, WLI P/N 420-1040.
SYSNAME	702-0107	8110	Utility for renaming of an Operating System's start-up file (@SYSOOO@).

8.4.2 STAND-ALONE DIAGNOSTICS

Using the stand-alone diagnostic routines (located in library (@DIAGS@), the CE creates a mini-operating system with a menu display of all currently available stand-alone test routines. The $C E$ then selects and executes the desired test. The customer cannot access the system while these tests are being performed. Currently available diagnostics are as follows:

Table 8-7. Stand-alone Diagnostics

DIAGNOSTIC NAME	WLI P/N	VERSION	FUNCTION
Boot Loader	$195-7479-3$	82 C 8	Displays diagnostic menu on W/S 0. @SYSOOO@ first loads the microcode file @MC2246S into the WS, then displays the diagnostic menu.
FTU	$702-0098$	6111	Allows exercising disk units still connected to the system. Permits verifying, reading and writing, init- ializing, positioning heads, and alternate seeks.
VOLCOPY	$702-0122 \mathrm{~A}$	8181	Performs same functions as On-1ine version of the COPY program.

8.4.3 CONTROL MODE

Control Mode is a state in which normal CP programming activities are suspended and certain other facilities (mainly diagnostic and initialization) are made available to the user. These facilities are divided into two groups of commands as follows:

1. Load Group -- contains commands for initializing the OS, loading a stand-alone program, loading a diagnostic program, or restarting a program from an initialized state.
2. Debug Group -- contains commands for displaying or modifying main memory, general registers, control registers, or the PCW. Also included in this group are commands for single step program execution, hard copy dump of memory and registers, and virtual address translation.

Control Mode uses Workstation 0 for communi tions between the operator and the system. To enter Control Mode, Workstarion 0 must be powered on. Control Mode uses only the top line (line l) of the CRT display. The contents of the line are saved on entry and restored at exit. Control Mode is transparent to any program that may be using Workstation 0. For a detailed discussion of Control Mode commands, refer to Chapter 8 of the VS Principles of Operation manual (800-1100PO). All standard VS-60/80/100 Control Mode functions are available on the VS-85.

Table 8-8. Operating System Error Codes
IPL Errors

PCW DISPLAY	
00000001 FFFFFF00	CAUSE
00000002 FFFFFF00	IPL I/O error
00000003 FFFFFF00	No system file on volume
00000004 FFFFFF00	Bad VTOC on IPL volume
00000005	FFFFFF00

Table 8-8. Operatirig System Error Codes (cont'd)
Resident SYSINIT Errors

PCW DISPLAY	
00000011 FFFFFF00	CAUSE
00000012 FFFFFF00	Not enough memory for resident system
00000013 FFFFFF00	SYSINIT program check
00000014 FFFFFF00	IPL device not included in SYSGEN

Machine Check Errors

PCW D ISPLAY	
00000021	FFFFFF00

Nonresident SYSINIT Errors

PCW DISPLAY	
00000031 FFFFFF00	OS file (@SYSSVC@) not found
00000032 FFFFFF00	Caniot create/scratch paging file, task 0
00000033 FFFFFF00	Link to SYSGEN module failed (for dynamic SYSGEN only)

Miscellaneous Errors

PCW DISPLAY	CAUSE
OOFFFFFF FFFFFF00	Wrong machine (VS-80 OS on VS-85 or vice versa)

Notes:

1. Status portion of PCW is always FFFFFF00
2. First 3 bytes of PCW are always 000000
3. First 4 bits of 4 th byte identifies error source:
$0=$ IPLTEXT
$1=$ Resident SYSINIT
2 = Machine check handler
3 = Nonresident SYSINIT
4. Second 4 bits of 4 th byte identifies the error number from a particular source

Table 8-9. Machine Check Error Codes

MACHINE CHECK CODE	CAUSE
001	ECC Error on Main Memory Read by CPU
003	ECC Error on Main Memory One Byte Write by CPU
017	Bus Transaction Log Overflow
018	IPC Data Word Rejected (Sender $=$ CP or BA)
019	Machine Checks 017 and 018
020	IPC Data Word Rejected (Sender $=$ CP)
021	Machine Checks 017 and 020
022	Machine Checks 018 and 020
023	Machine Checks 017, 018, and 020

8．5 CONTROL MODE DUMP

This procedure allows the user to dump the contents of certain areas of main memory to a specified disk drive or tape for later analysis．

NOTE

This dump procedure is for 5.0 Operating Systems． For Operating System 6．0，refer to VS Software Release Bulletin 6．0，WLI P／N 800－3111－01，which consolidates dump procedures for all VS systems．

CAUTION

Control Mode dump will destroy the Volume Table of Contents（VTOC）on the pack being dumped to；it will NOT destroy the label．

To begin a Control Mode dump，do the following：
1．Press the blue Control Mode（CM）button．
2．Record the current Program Control Word（PCW）as displayed on W／S 0 ．
3．Key in：P 000070 （ENTER）－－Where＂P＂is the Physical Memory Add－ ress．This displays the Master Control Block（MCB）pointer，as fol－ lows：

AhAAxxxx xxxxxxxx
Where AAAA is address of the MCB and $x=$＂don＇t care＂．
4．Key in：P OOAAAA（ENTER）－－Where AAAA is address of MCB from step 3．This displays the first 8 bytes of the MCB，as follows：
xxxxxxxx $x x x x D D D$
Where DDD is the address of the dump program in main memory and x $=$＂don＇t care＂．
5．Key in：W（ENTER）
This will display the present PCW．
6．Key in：M 0000DDDD 00000000 （ENTER）－－Where DDDD is the address of the dump program from step 非4．All other places must be zero－filled．
7．Key in：P OODDD（D－2）（ENTER）－－Where $D D D(D-2)$ is the dump program address from step 非 minus two．This will display a portion of mem－ ory as follows：

QQQQxxxx xxxxxxxx
Where $Q Q Q Q$ is the Physical Device Address（PDA）of the device receiving the memory dump．Construct $Q Q Q Q$ as follows：
BBBI IIPP PPPP PPPP
Where：BBB＝BA 非；III＝IOP 非；PP PPPP PPPPP＝Port 非
Example： $0401=B A, I O P$ 非l，Port 非1．

BIT POSITION
HEX RESULT

BBBI	I IPP	PPPP	PPPP
0000	0100	0000	0001
0	4	0	1

8．Make sure that the device being dumped to is not ready．
9．Key in：W（ENTER）．
10. Key in: X (ENTER). At this point the DUMP program assumes control and forces the CP back into Control Mode.
11. Remove the Control Mode bit from the PCW as follows:
xxxxxxxy $Z x x x x x x$ is the $P C W$ where Z is the digit containing the Control Mode bit -- bit 3 of the digit. Remove the bit by typing M, spacing to the Control Mode digit, and modifying it to turn off (set to zero) the Control Mode bit. Make sure that only the Control Mode bit is changed -- i.e., If digit $=4$ change it to 0 ; if digit $=$ C change it to 8.
12. Key in: X (ENTER). This will start the dump waiting for pack or tape mount on drive. The dump will go to that drive upon unsolicited interrupt, and the system will fall into the Control Mode with:

PCW = xxxxxxxx C000C000
This completes a memory dump.

8.6 FILING A MEMORY DUMP

In order to obtain a hard copy of an Operating System 5.0 memory dump, or to allow the dump to be backed up onto tape, diskette, or another disk, the data obtained from a dump must be filed from the disk receiving the original dump to another disk. This converts the dump data into a form usable by the system. To create a disk file from a memory dump, do the following:

1. Mount the dump disk pack on a previously IPL'd system as an SL (Standard Label) pack.
2. Execute the FLOPYDUP program.
3. Using option " C " OF FLOPYDUP program, copy the dump onto the previously mounted pack (make sure pack has a VTOC on it).
4. When output file is requested, change number of records to 1026.
5. The FLOPYDUP program will reply with a reverify query to make sure that change is wanted. Confirm this.
6. This file can now be backed up on an individual basis (or as part of regular backups) to tape or other disk packs.

VS 85 OPERATOR LEVEL TROUBLESHOOTING FLOW CHART

Figure 8-4. Operator Troubleshooting Flowchart (1 of 3)

Figure 8-4. Operator Troubleshooting Flowchart (2 of 3)

Figure 8-4. Operator Troubleshooting Flowchart (3 of 3)

VS 85 CUSTOMER ENGINEERING LEVEL TROUBLESHOOTING FLOW CHART

Figure 8-4. CE Troubleshooting Flowchart (1 of 5)

Figure 8-4. CE Troubleshooting Flowchart (2 of 5)

Figure 8-4. CE Troubleshooting Flowchart (3 of 5)

Figure 8-4. CE Troubleshooting Flowchart (4 of 5)

APPENDIX A

MNEMONICS, WORDS/PHRASES, MICROINSTRUCTIONS', \& MISCELLANEOUS HARDWARE RELATED FUNCTIONS

VS-85 MNEMONIC LISTS

MNEMONIC	HARDWARE ORIENTATED DEFINITION
ACT	B.A. Active status bit. Accept/reject IOP memory commands
ADMX	Memory Address Multiplexer
ALU	Arithmetic Logic Unit
AMX	A Bus Multiplexer
ATMO	Alignment Trap Memory Address Register 0
ATR1-2	Alignment Trap 1 \& 2 Read
ATW	Alignment Trap Write
BA	Bus Adapter
BAAR	Bus Adapter Address Register
BALU	Binary Arithmetic Logic Unit
BAM	Bus Adapter Multiplexer
BAMAL	Bus Adapter Memory Address Latch
BARDLA	Bus Adapter Read Data Latch 'A'
BARDLH	Bus Adapter Read Data Latch High
BARDLL	Bus Adapter Read Data Latch Low
BARDM	Bus Adapter Read Data Multiplexer
BAWDL	Bus Adapter Write Data Latch
BEN	Bus Enable
BMDL	Bus Adapter Memory Data Latch
BMX	B Bus Multiplexer
BRMX	Branch Multiplexer
BS	Buffer Word Select
BSM	Byte Swap Multiplexer
BTA-2	BA Timing Pulses
CABF	Control Memory Address Buffer
CAIN	Carry In
CAR	Current Address Register
CAR/IAR	Current/Indirect Address Register
CAR/IAR L/I	Current/Indirect Address Register Latch/Incrementor
CAS	Column Address Strobe
CBL	C Bus Latch
CBMMX	C Bus/Main Memory Data Multiplexer
CCB1-2	Control Command Bits 1 \& 2
CCPMAL	Current CP Memory Address Latch
CDIBF	Control Memory Data Input Buffer
CDOBF	Control Memory Data Output Buffer
CDOMX	Control Memory Data Output Multiplexer
CEN	Column Enable
CH	Current Hal fword
CHBF	Current Halfword Buffer
CM	Control Memory
CMAL	Control Memory Address Latch
CMB F	Control Memory Buffer
CMB I	Control Memory Bus Interface. IOP memory control micro inst.
CMPE	Control Memory Parity Error
CMR	Control Memory Register
CMX	C Bus Multiplexer
CMnn	Control Memory bits CMO through CM47
COB	Carry Out Bit
CP / BADM	CP/Bus Adapter Data Multiplexer
CPDL	CP Data Latch

MNEMON IC	HARDWARE ORIENTATED DEFINITION
CPLD	CP Load
CPMAL	CP Memory Address Latch
CPWDR	CP Write Data Latch
CPWSM	CP Word Swap Multiplexer
DALU	Decimal Arithmetic Logic Unit
DCA	CP Decimal Carry status bit
DCAIN	Decimal Carry In
DEC	CP Invalid Decimal Digit status bit
DRY	Data Ready
DTBF	Data Buffer，to Main Memory
ECC	Error Correction Circuitry
ECR	External Condition Register
F	Fault
FA／BSM	FA（Signal FAnn）／Byte Swap Multiplexer
FAM	FA（Signal FAnn）Multiplexer
GT 1	Gate Time 1
GT2	Gate Time 2
HS	Hal fword Select
IAR	Indirect Address Register
IC	Instruction Counter
ICLD	Instruction Counter Load
IMA	Invalid Memory Address
INIT	Initialize
INVE	Invalid Even
INVO	Invalid Odd
IREG	Indirect Register
IREG COUNTER	Indirect Register Counter
IREG MUX	Indirect Register Multiplexer
IRL	Indirect Register Load
IRM	Interrupt Request Mask
LD	Load
LD	Load
LDOK	Load Disk OK
LDRY	Load Data Ready
LEN1－4	Instruction Length 1－4
M	Monitor（status flag bit）
M4BF	Memory Register 4 Buffer
MAL	Memory Address Latch
MAMX	Memory Address Mux
MAR0	Memory Address Register 非0
MAR1	Memory Address Register 非1
MAR2	Memory Address Register 非2
MBS 1	Multiplier Buffer Storage 1
MBS 2	Multiplier Buffer Storage 2
MCOS	Memory Complete Out Strobe
MD0－4L	Memory Data Register 0，1，\＆ 4 Load
MD0－4R	Memory Data Register 0－4 Read
MDR0	Memory Data Register 非
MDR1	Memory Data Register 非
MDR2	Memory Data Register \＃2
MDR3	Memory Data Register 非3
MDR4	Memory Data Register 非4
MDR4B	MDR4，Buffered
MLPY	Multiplier Unit

MNEMONIC	HARDWARE ORIENTATED DEFINITION
MMAM	Main Memory Address Multiplexer
MMDL	Main Memory Data Latch
MMOSD	Main Memory Output Selector／Driver
MMP	Main Memory Parity
MMPT	Main Memory Parity Trap
MMRD	Main Memory Read
MODE	B．A．Mode status bit．Allow IOP Write／Read to main memory
MRBAn	Memory Request BA ⿰⿰三丨⿰丨三一灬
MRC	Message Receipt Control
MRI	Memory Request In
MS 1－4	（Memory）Module Select 1－4
NAMX	Next Address Multiplexer
NZE	Non Zero
0／EWDM	Odd／Even Word Data Multiplexer
OE／BSM	Odd／Even Byte Swap Multiplexer
OVF	CP Overflow status bit
PB	B．A．Pagebreak status bit．Terminate／continue thru PB
PCBCS	PCB Control Out Strobe
PCBGS	PCB Grant Strobe
PCBRI	PCB Request In
PCBS I	PCB Strobe In
PDA	Physical Device Address
PMR	Program Mask Register
PMX	PMR Multiplexer
PR	Purge Buffer
Q	Qualifier
R	Ripple
R／B	Ready／Busy
R／RMW	Read／Read Modify Write
R／W	Read／Write
RABF	Control Memory Address Buffer
RAS	Row Address Strobe
RBS	Ready／Busy Status IOP bit
RBYT	Read Byte
RCM	Read Control Memory（Deliver byte to PMR）
RCT	Reference \＆Change Table
RDBF	Control Memory Data Buffer
RDSTR	Read Strobe
REF	Refresh
REQ	Request
RMUX	Rotating Multiplexer
RWMP	Reset Memory Write Pulse
SAMX	Subroutine Address Multiplexer
SCR	Segment Control Register
SR	Shift Register
SSTK	Subroutine Address Stack
STCP	Stop CP
STKMX	Stack Address Multiplexer
SW	Byte Switch
Snn（0－31）	CP Status bits
T	Termination
T－RAM	Translation Random Access Memory
TAL．	T－RAM Address Latch
TC	Type Code

MNEMONIC	HARDWARE ORIENTATED DEFINITION	
TCAM	Tag Compare Address Multiplexer	
TDL	Tag Data Latch	
TINT	Tester Interface	
TOR	B.A. 'To Be Written Out' status bit. Allow a write to be	
	completed.	
TP	Tag Parity	
TRMUX	T-RAM Multiplexer	
TT	Translation Trap	
VMAR	Virtual Memory Address Register	
VML	Virtual Memory Address Register load	
WA	Write Address Error	
WCM	Write Control Memory (Set CM byte from PMR)	
WK1	Work Register 非1	
WK1-A	Work Register 1--A Bus	
WK2	Work Register 非2	
WK2-A	Work Register 2--A Bus	
WMX1	WK1 Multiplexer	
WMX2	WK2 Multiplexer	
WP	Write Pulse	

MNEMONIC	SOFTWARE ORIENTATED DEFINITION
ARS	Activate Read State
ATR	Word Alignment, Read
ATW	Word Alignment, Write
AWS	Activate Write State
BOP	Branch field of CP micro instruction
CC	Condition Code
CMD	Command
DCT	Device Configuration table
FA	Fetch Address
FLUB	File Length and User Block
IEM	Interrupt Enable Mask
INVA	Invalid Address
IO	Input/Output
IOCA	I/O Command Address
IOCW	I/O Control Word
IOSW	I/O Status Word
LRA	Load Real Address
LRU	Least Recently Used
M	Monitor bit
MMPFT	Main Memory Page Frame Table
MOP	Memory Operation field of CP micro instruction
NOP	No Operation
OS	Operating System
OVF	Overflow
PA	Physical Address
PCW	Program Control Word
PF	Page Frame
PFN	Page Frame Number
POP	Process field of CP micro instruction
PT	Page Table
PTA	Page Table Address
PTE	Page Table Entry
R/C	Reference and Change status bits
RP	Read Protect
RS	Reset State
SA	Set Address
SAI	Set Address Indirect
S IO	Start I/O
SQB	Status Qualifier Byte
VA	Virtual Address
WP	Write Protect

WORD / PHRASE
Background Processing

Base Address
Byte Index

Command Processor
Concatenated
Current PCW
Data Base Management System

Demand Paging

Displacement
Distributed Processing

Dynamic Access Mode

File
Indexed Filing

Interactive

Linking

Locality Of Reference

DEFINITION
The automatic execution of batched lower priority programs by the Operating System whenever no higher priority programs are being handled.

Starting address of a page frame.
A value, when added to a base address, that \because results in the true physical address of a byte in main memory.

A special program used to call up all system functions.

Linked together in a series.
The active or controlling PCW--the one that pertains to the instruction that is currently being executed.

Process (program) that allows multiple users to access common data files.

A memory management feature where portions of a program are called into memory as they are needed.

See Byte Index.
Technique of sharing a Central Processor among more than one user.

A technique which lets a program switch back and forth between sequential access and random access in the same data file.

A logical unit of data records.
A technique which stores data records in the order of specified key values.

Process to allow users to communicate directly with a system (eg; from a workstation).

Connecting or tying together.
Quality of a program prepared for maximum execution speed by means of remaining on one page frame as long as possible before branching elsewhere.

WORD/PHRASE
Macro

Macro (Inner-layer type)

Macro (Outer-layer type)

Macroassembler

Macroinstruction

Menu

Multiprogramming

Outboard Side
Page

Page Fault

Page Fault Exception

Page Frame

Page In
Page Out

DEFINITION
A named routine that is called up for processing whenever the corresponding name is specified as part of a high level instruction.

A series of microinstructions which, when executed, accomplish the purpose of the Macro ... equivalent to a machine instruction, IBM instruction, or Assembler instruction).

An instruction which, when executed, calls up a sequence of instructions (a subroutine) for execution, and then branches back to the original program.

A computer having the capability to process defined macros.

The name of a routine, prepared in Assembler language, that gets called up for execution whenever the name is used as part of a high level instruction.

Generally, a list of available options displayed on the CRT when the system is turned on or after an operation has been completed. The term menu should be used to define the presence (existing or desired) of a list of two or more program branching possibilities OR parameter identification inputs that the system must solicit from the operator.

Quality of a computer to process more than one program simultaneously.

External to (away from) the CP.
A block of 2,048 contiguous one-byte virtual memory locations that begin at an address of zero, 2048 , or some multiple of 2048.

An indication that a particular page is not in main memory.

An error condition indicating that a page is invalid.

2 K blocks of contiguous one-byte physical memory locations that begin at a physical (main) memory address of zero, 2048 , or some multiple of 2048.

Read from disk into main memory.
Write to disk from main memory.

WORD / PHRASE
Page Table
Paging Task
Print File

Print Queue
Print Spooling
Procedure (Language)

Program Interrupt

Prompt

Relocatability

Segment

Segment Control Register

Sequential Filing

Stack

Swapped Into

A entry into Translation RAM containing the starting address of a physical page boundary.

That portion of the operating system that controls paging.

A disk file that is to be printed by a specific printer at the convenience of the Operating System and/or the System Console operator.

A collection of print file records pertaining to one or more printers (also, the sequence list identifying those records and the order in which they are to be printed).

Temporarily storing print jobs on disk until a printer is available.

A language used to create special text functions to perform operations normally executed interactively at a workstation.

A break in the normal sequence of instruction execution because of an error or request for assistance. The supervisory system seizes control to take action.

The name of a message (usually a one-liner) directing the operator to perform some action.

Capability of a program to be initiated at any page frame and to randomly occupy any number of additional page frames as a consequence of a linkage of its subsequent parts by an address pointer.

A block of contiguous one-byte virtual memory locations, with the block beginning on a decimal value virtual address of zero, $1,048,576$, or some multiple of that value.

A CP register containing the page table virtual address and the page table length.

A technique which stores data records in the order in which they are written or entered.

Local RAM area used for temporary storage by the CP.

When an entire program is brought into main memory and allowed to run for a certain amount of time.

WORD/PHRASE
Swapped Out
System Console

Thrashing

Type 1 Dialog

Type 0 Dialog

Virtual Address

DEFINITION
When an entire program is replaced in main memory by another program which is allowed to run for a certain amount of time.

The workstation that additionally or alternatively controls special functions not available to other, regular workstations of the system.

The phenomenon of excessively moving pages back and forth between memory and secondary storage (particularly because of removing a page from memory and then immediately needing it again due to a page fault referencing that page).

Interprocessor Communications dialog used by the VS-85 to support $1 / 0$ initiation and interrupts.

Interprocessor Communications dialog used by the VS-85 to support Bus Adapter injtialization and diagnostics.

A disk address containing the location of a page. The disk address will be translated to a physical main memory address by the CP so the page will be read into the correct main memory location for a particular user.

STATUS	BIT
BITS	NAME
S0	$\overline{\text { ALU }}$
Sl	CA
S2	PAGE 1
S3	PAGE2
S4	PAGEOV
S5	EXEC
S6	M2H
S 7	M2B
S8	SGN
S9	DEC
	OVF
S10	DCA
S11	PCA
	SPX
S12	ALUS
S13	X2
S14	R10DD
S15	FLT
	RR Case RX Case
S16	CS2
S17	STATE
S18	MS1
S19	STK
S20	BNK
S21	PAGEO
S22	MOF
S 23	M1F
S24	DEBUG
S 25	IOMASK
S26	CS4
S27	ISET
S28	CS1
S29	CS3
S30	EXT
S31	103

MNEMONIC	MICRO-INSTRUCTION ORIENTATED DEFINITION
A	Add
AC	Add with Carry
ACO	Add with Carry (CA in $=1$) $^{\text {a }}$
ACP	Add for Pagespan Check
ACT	Add with Carry (Overflow Trap option)
ACV	Add with Carry (Overflow bit set)
ACZ	Add with Carry (CA in $^{\text {a }} 0$)
AND	Logical AND
ANDI	Logical AND Immediate
ANDS	Logical AND (with SGN bit set)
ASH	Add/Subtract High
ASL	Add/Subtract Low
AZH	Add High with Zeros
AZL	Add Low with Zeros
BD	Generate Base Displacement Address
CAR	Compare Arithmetic and set CC
CCK	Clear Courter (Program Clock support)
CCSO	Set Joogical CC (1-2 on SPX)
CCS1	Set Arithmetic CC (0-2 on ALU + SGN)
CCS2	Set Full Logical CC (0-3 on CA / ALU)
CCSET	Set Explicit CC Value (0-3)
CKECC	Check ECC (Read or Write control)
CL	Compare Logical and set CC
CMC	Clock Margin Control (Reset)
CMCF	Clock Margin Control Fast
CMCS	Clock Margin Control Slow
COMP	Compare Arithmetic
DAC	Decimal Add with Carry
DACZ	Decimal Add with Carry (dCA $^{\text {in }}=0$)
DSC	Decimal Subtract with Carry
DSCO	Decimal Subtract with Carry (DCA in = 1)
HALT	Halt Microprogram Execution
IN IT	Initialize an IOP
LCOMP	Load Comparator (Program Clock support)
LTRAM	Load a T-RAM entry
MCA	Move and set Arithmetic CC
MCH	Move Current Halfword
MCHX	Move Current Hal fword and Extend
$\begin{aligned} & \text { MCL } \\ & \text { MDEC } \end{aligned}$	Move and set Logical CC Move and Decrement IREG
MINC	Move and Increment IREG
mNum	Move Numeric
MV	Move
MVA	Move Address ((igh byte $=0$)
MVH	Move Halfword
MVN	Move (without setting ALU or C Bus Latch)
mVs	Move (with sgn bit set)
MVX	Move (with nonstandard B Bus)
OR	Logical OR
ORI	Logical OR Immediate
RBCL	Read a BCL entry (hi-part) (also RBCLL - low part)

MNEMON IC	MICRO-INSTRUCTION ORIENTATED DEFINITION
RBTL	Read a BTL entry (hi-part) (also RBTLL - low part)
RCM	Read Control Memory
RECR	Read ECR
RIPC	Read IPC Data
RRCT	Reset an RCT entry
RSW	Read Switches
S	Subtract
SG	Subtract with Carry
SCO	Subtract with Carry ($\mathrm{CA} \mathrm{in}^{\text {a }} 1$)
SCOMP	Store Comparator (Program Clock support)
SCT	Subtract with Carry (Overflow Trap option)
SCV	Subtract with Carry (Overflow bit set)
SCZ	Subtract with Carry (${ }^{\text {a }}$ (in $=0$) ;
SEND	Send IPC data to another Processor
SHL4	Shift Left 4 bits
SHLO4	Shift Left 4 bits (4 bits in = 1111)
SHLZ 2	Shift Left 4 bits (4 bits in $=0000$)
SHR	Shift Right 1 bit
SHR4	Shift Right 4 bits
SHRO	Shift Right 1 bit (SCA in = 1)
SHRO4	Shift Right 4 bits (4 bits in $=1111$)
SHRZ	Shift Right 1 bit (SCA in $=0$)
SHRZ 4	Shift Right 4 bits (4 bits in $=0000$)
STAT	Move IREG to Status bits (IREG 4-7 to S12-S15)
STCK	Store Counter (Program Clock support)
SW16	Move and Switch
TRCT	Test an RCT. entry (set M2H, M2B)
WCM	Write Control Memory
WECR	Write ECR (5-bit unit)
WIPC	Write IPC Data
XOR	Logical Exclusive OR
XORI	Logical Exclusive OR Immediate

S IGNAL	DEFINITION	SOURCE	DESTINATION	DESCRIPTION
AB0-AB31	A Bus	A Bus	B Bus	Data for Binary \& Decimal ALUs
BA0-23	Bus Adapter Memory Address	BA	MCI	Bus Adapter main memory addresses via MCI
BACO-2	Bus Adapter Command	BA	MCI	Bus Adapter command bits
BARDO-31	Bus Adapter Read Data	BA	MCI I	One word of data from BA to be written to main memory
BAWDO-31	Bus Adapter Write Data	MCI I	BA	One word of data from main memory to BA
BCH0-7	Byte Of Current Hal fword	B Bus	CM	Address or index for Branch to Next macroinstruction
BMA3-6	Bus-Main Memory Address	IOP	BA	IOP command bits for the BA
BMAR0-21	Buffered Memory Address	MCI	Main Memory	Main Memory addresses from either CP or the BA
BMDH0-7	Bus-Memory Data High	IOP	BA	One byte of IOP data for BA
BMDLO-7	Bus-Memory Data Low	IOP	BA	One byte of IOP data for BA
CB0-CB31	C Bus	B Bus	A Bus	C Bus output data
CM0-47	Control Memory Data Bits	CM	A Bus B Bus MCI MCII	Micro Instruction $\begin{aligned} & \text { (Uses CMO-26) } \\ & (1 " l) \end{aligned}$
DAB0-7	Device Address Bits	BA	IOP	Device Address for IOP
DIRD0-31		MCI I	MCI	One word of main memory data for CP
INITO-7	Initialize	BA	IOP	Initialize (each) IOP
IR0-7	Indirect Register Counter	B Bus	A Bus	Indirect Stack addressing
LICO-13		Mini- Disk Contro	CM \& Maint Panel	Addresses for writing CM RAM during microcode load

S IGNAL	DEFINITION
LWDO-7	
MA0-23	Memory Address
MGS0-7	Memory Grant Strobe
MMO-15	Main Memory
MMO-31	Main Memory
MMCB1-2	Main Memory Bits Control
MMRDO-31	Main Memory Read Data
MMWDO-31	Main Memory Write Data
MRIO-7	Memory Request In Strobe
MS 1-2	Module Select
PCBGS0-7	Processor Communications Bus Grant Strobe
PCBRI0-7	Processor Communications Bus Request In
RA0-13	RAM Addresses
RD0-7	RAM Data
WDO-31	Write Data
WP0-6	Write Parity
XLO-6	Read Parity

SOURCE \quad DESTINATION

Mini-
Disk
Control

MCI

IOP

BA IOP

MCI A Bus
B Bus

BA

Main MCII
Memory

MCII • Main Memory

BA

Main Memory

IOP
BA

IOP
BA
A

CM

CM

A Bus MCII

MCII Main Memory

Main MCII

Data for writing CM RAM during microcode load

CP memory addresses for main memory

IOP (each) is granted main memory access

Data or status returned to IOP along with IAR/CAR addresses

Word of data from main memory for CP

IOP command bits for the BA

One word of memory read data

One word of data to be written to main memory

IOP (each) is requesting main memory access

Main memory board select from either CP or the BA

IOP (each) has been granted a CP interrupt

IOP (each) is requesting a CP interrupt

Addresses for Control Memory write

Data for Control Memory write
CP write data to main memory
Parity bits for word of write data

Parity bits for word of read data

48 BIT MICRO-INSTRUCTION (CONTROL MEMORY BITS)			
PROCESS FIELD (POP)	MEMORY FIELD (MOP)	BRANCH FIELD (BOP)	
CMO	CM22	CM30	

Process field (CMO-CM2l)

1. Microopcode field
2. A Bus operand field
3. B Bus operand field (restricted operands)
4. C Bus operand field

PROCESS FIELD FORMAT			
MICRO-	A BUS	B BUS	C BUS
OPCODE	OPERAND	OPERAND	OPERAND
CMO	CM7	CM13	CM16

Memory field (CM22-CM29)

1. Memory Address Register (MAR) select
2. Memory operation
3. Translation and MAR ripple

MEMORY FIELD FORMAT			
MAR	MEMORY	TRANSLATION AND	
SELECT	OPERATION	MAR RIPPLE	

MEMORY ADDRESS REGISTER (MAR) SELECT FIELD			
CM22	CM23	MAR REGISTER SELECTED	
0	0	MAR0	
0	1	MAR1	
1	0	MAR2	
1	1	MAR2X	

MEMORY OPERATIONS FIELD				
CM24	CM25	CM26	MEMORY OPERATION	MAR SELECTION
0	0	0	NO OPERATION (NOP)	ANY MAR SELECTION
0	0	1	MULTIPLY	ANY MAR SELECTION
0	1	0	WRITE BYTE	MAR2 ONLY
0	1	1	WRITE WORD	MAR2 ONLY
0	1	1		
1	0	0	READ BYTE	MAR1 OR MAR2
1	0	1		
1	0	1		MAR1, MAR2, OR MAR2X
1	1	0	READ WORD	
1	1	0		
1	1	1		

MEMORY TRANSLATION AND MAR RIPPLE FIELD			
CM27	CM28	CM29	TRANS LATION AND RIPPLE
0	0	0	NO TRANSLATION OR RIPPLE
0	0	1	READ TRANSLATION (USE ART1)
0	1	0	READ TRANSLATION (USE ATR2)
0	1	1	WRITE TRANSLATION
1	0	0	RIPPLE +1
1	0	1	RIPPLE -1
1	1	0	RIPPLE +4
1	1	1	RIPPLE -4

[^0]Branch field (CM30-CM47)

1. Branch operation field
2. Microaddress (or other operands)

BRANCH OPCODE	MICROADDRESS	(14 BITS)	

REGISTER LOCATION	32 BITS WIDE	
0		BANK '0'
15	GENERAL REGISTERS	
16		
31	F-P REGISTER	
32		
63	FILE REGISTER ($0-31$)	------
64		BANK '1'
79	AUXILIARY CP REGISTER	
80		
95	CONSTANTS	
96		
127	CONTROL REGISTER (0-31)	- - - - - -
128		
	////////////////////////	
	T-RAM MONITORING	
	////////////////////////	
256	///////////////////////	

VS－85 EXTERNAL CONDITION REGISTER STATUS BITS（MCII）

STATUS BIT	BIT NAME	DEFINITION
ECR0	IN1	Initialize／enable B．A．非．
ECR1	IN2	Initialize／enable B．A．非．
ECR2	IN3	Initialize／enable B．A．非3．
ECR 3	EXT HDWR	VS hardware present（always on）
ECR4	MON	Monitor System Code．
ECR5	ECC E／D	Enable／disable ECC．
ECR6	Reserved	
ECR 7	Reserved	
ECR8	Cache	Enable／disable Cache（ $C \bar{E} / \mathrm{D}$ ）
ECR9	Reserved	
ECR10	WP	C．P．write parity error（preset by MMP and $\overline{\mathrm{CP} 8 \mathrm{~W}}$ ）．
ECR11	WA	Incorrect C．P．write address（preset by UNVA and CPW）．
ECR12	RJ	Reject IPC data from C．P．（preset by RJ and $C P$ ）．
ECR13	Inter lock	CPU to BA communications．
ECR14	Reserved	
ECR15	Reserved	
ECR16	Reserved	
ECR17	Reserved	
ECR18	Reserved	
ECR19	CM	Control mode button（preset by CM）．

STATUS BIT	BIT NAME	DEFINITION
ECR0	IN1	Initialize／enable B．A．非．
ECR1	IN2	Initialize／enable B．A．非2．
ECR2	IN3	Initialize／enable B．A．非．
ECR3	IN4	Initialize／enable B．A．非4．
ECR4	MON	Monitor System Code．
ECR5	ECC E／D	Enable／disable ECC．
ECR6	BTL	Enable／disable BTL．
ECR7	BCL	Enable／disable BCL．
ECR8	Cache	Enable／disable Cache（ $C E / D$ ）
ECR9	Reserved	
ECR10	WP	C．P．write parity error（preset by MMP and $\overline{\mathrm{CP} 8 \mathrm{~W}}$ ）．
ECR11	WA	Incorrect C．P．write address（preset by UNVA and CPW）．
ECR12	RJ	Reject IPC data from C．P．（preset by RJ and $C P$ ）．
ECR13	Reserved	
ECR14	HM	Cache hit（preset by MISS high．
ECR15	CAM	Cache miss（preset by MISS low．
F．CR16	RJO	Reject IPC data sent from any processor （preset by RJ and CP）．
ECR17	BTLA	bTL active，stored error entry．
ECR18	BTL0	BTL overflowed．
ECR19	CM	Control mode button（preset by CM）．
ECR20	BA1	B．A．⿰⿰三丨⿰丨三一1 requested attention（REQ1）．
ECR21	BA2	B．A．非2 requested attention（ $\overline{\mathrm{REQ2}}$ ）．
ECR22	BA3	B．A．⿰⿰三丨⿰丨三一3 3 requested attention（ $\overline{\mathrm{REQ3}}$ ）．
ECR23	BA4	B．A．非4 requested attention（ $\overline{\mathrm{REQ}}$ ）．

TRAP NAME	CONDITION	TRAP ADDRESS
POWERON	CP4 Initial Power-on trap	0000
LOAD	CP4 Initialize trap	0001
INVA	Invalid (physical) Memory Address	0002
TTO	MARO Translation trap	0003
TT1	MAR1/MAR2 Translation trap	0004
TT 2	Protection trap (any MAR)	0005
ATR1	Word Alignment trap (CM27-29 = 001)	0006
ATR2	Word Alignment trap (${ }^{\text {a }}$ ($27-29=010$)	0007
ATW	Word Alignment trap (write)	0008
ATM0	Alignment trap MARO (hal fword)	0009
OVFT	Overflow Trap (ACT or SCT instructions)	000A
MMPT	Main Memory Parity trap	000B
BEX	Execute Target trap (EXEC = 1)	000C
PAR	CP Control Memory Parity trap	000D
BX	External Event trap (EXT = 1)	0011
BDEBUG	Software trap (${ }^{\text {a }}$ (${ }^{\text {a }}$ (1)	0012
BCLKM	Clock Maintenance trap (CS1 $^{\text {a }}$ 1)	0013
BCLKI	Clock Interrupt (CS $3=1 ; ~ C S 4 ~=~ 1) ~_{\text {l }}$ ()	0014
BIO	IO Interrupt ($\quad(03=1 ; ~ I O M A S K=1)$	0015
BPAGE	Pagebreak trap (PAGEOV $=0$)	0016
BENTRY	Entry Pagebreak (new PAGEOV = 0) and not re case)	0017

Note: - Trap BEX and traps 0011-0017 are Branch to Next Macro-related traps.

CP REQUEST FOR MEMORY OPERATIONS			
CM24	CM25	CM26	CP OPERATION
0	0	0	NO OPERATION
0	0	1	MPLY
0	1	0	WRITE 8
0	1	1	WRITE 32
1	0	0	READ 8
1	0	1	
1	1	0	READ 32
1	1	1	

CP commands decoded into following memory instructions

1. NOP - No memory operation
2. MPLY - Multiply operation
3. Write 8 - Write byte. Write the low order byte of MDR4 to memory
4. Write 32 - Write word. Write the MDR4 word to memory
5. Read 8 - Read byte into MDR2 or MDR4
6. Read 32 - Read word into MDR2 or MDR4

VS-85 CP MEMORY OPERATIONS DECODING (MEMORY CONTROL)

BUS ADAPTER REQUEST FOR MEMORY OPERATIONS			
BACO	BAC1	BAC2	BUS ADAPTER OPERATION
0	0	0	NO OPERATION
0	0	1	IPCB
0	1	0	WRITE 8
0	1	1	WRITE 16
1	0	0	
1	0	1	READ 32
1	1	0	WRITE 32
1	1	1	

BA commands decoded into following memory instructions

1. NOP

- No memory operation

2. IPCB - Interprocessor Communications
3. Write 8 B - Write byte. (Read Modified Write-1). Direct nonbuffered IOP write
4. Write 16B - Write halfword. (Read Modified Write-2). Standard buffered halfword IOP write
5. Write 32B - Write word. Buffered IOP word write
6. Read 32B - Read word

APPENDIX

APPENDIX B
VS-85 TO VS-100 CONVERSION

INTRODUCTION

Customers who have either VS-85-2 or VS-85-4 model CPUs (with Cache Memory/SBC combination), and who have outgrown their VS-85 system, now have the option of converting the VS-85 CPU to a VS-100 CPU.

Basically the procedure involves bringing in a new VS-100 chassis with power supplies and an extended IOP Motherboard; removing the CPU and IOP circuit boards, and the $I / 0$ panels from the VS-85; and instalıing them in the VS-100 chassis.

The procedure will not be detailed in this PUB. Instead, references to paragraphs and figures in the documentation listed below will be made. These documents contain all the necessary removal, installation, and verification procedures for both the VS-85 and the VS-100. These documents should be on hand during the conversion.

1. Related Documents

DOCUMENT TITLE	WLI PART NUMBER
VS-85 Product Maintenance Manual	$729-1224-\mathrm{A}$
VS-100 Product Maintenance Manual	$729-0871-\mathrm{A}$
VS-100 Service Handbook	$729-1098$
VS-85/90/100 Microdiagnostics Handbook	$729-1309$
VS Diagnostics Handbook, Volume 2	$729-1257$
VS Software Bulletin - Release 5.3	$800-3109$
VS Software Bulletin - Release 5.3 Addendum	$800-3109.01$
VS Software Bulletin - Release 5.3 Addendum	$800-3109.02$
VS Software Bulletin - Release 6.0	$800-3111-01$
VS Software Bulletin - Release 6.20	$800-3114-01$

2. Hardware Requirements
a. First option:

DESCRIPTION	PART NUMBER	COMMENTS
VS-85-2 CPU $($ With Cache $)$	$157 / 177-7226$	Must have Cache Memory/SBC and 2 megabytes of main memory
VS-100 CPU	UJ-4001	Chassis with power supplies

b. Second option:

DESCRIPTION	PART NUMBER	COMMENTS
VS-85-4 CPU (With Cache)	$157 / 177-7228$	Must have Cache Memory/SBC and 4 megabytes of main memory. (Two 2-megabyte main memory boards.)
VS-100 CPU	UJ-4002	Same as UJ-4001, except contains four 1-megabyte main memory boards to replace two 2-megabyte main memory boards.

NOTES
a. Part number prefix $157=47-63 \mathrm{cps} / 230$ Vac systems.
b. Part number prefix $177=47-63 \mathrm{cps} / 115 \mathrm{Vac}$ systems.

3. Software Requirements

DESCRIPTION	
Microdiagnostic Package (VS-100)	WLI P/N
Operating System 5.03 .90 or above	

PROCEDURE

1. Unpack the VS-100 main frame cabinet (paragraph 3.4, VS-100 Product Maintenance Manual).
2. Check the source power supplied for the VS-100 (paragraph 3.7, VS-100 Product Maintenance Manual).
3. Power up the unloaded VS-100 cabinet and check the dc voltages at the power supplies (paragraph 6.4, VS-100 Product Maintenance Manual, or VS-100 Service Handbook). Make any necessary adjustments.
4. Power off the VS-100.
5. Power down the peripherals and power off VS-85 main frame (paragraph 3.7, VS-85 Product Maintenance Manual).
6. Remove the top and front covers from VS-85 (paragraphs 5.3.5.1 and 5.3.5.2, VS-85 Product Maintenance Manual).
7. Remove the card rails from VS-85.
8. Remove the IOP to I/O panel cables from the VS-85 IOPs (paragraph 5.3.5.4, VS-85 Product Maintenance Manual).
9. Remove the $I / 0$ panels from the VS-85 (figure 4-14, VS-85 Product Maintenance manual) and install them in the proper locations on the VS-100 (figure 3-19, VS-100 Product Maintenance Manual).
10. Remove all cables from the VS-85 boards (paragraphs 5.3.5.3 and 5.3.5.4, VS-85 Product Maintenance manual), except the three Cache to System Bus Controller (SBC) cables. Save any interboard cables.
11. Remove the Control Memory board from the VS-85 (paragraph 5.3.5.3, VS-85 Product Maintenance Manual) and install it in the proper location in the VS-100 CPU Motherboard (paragraph 3.6.1, VS-100 Product Maintenance Manual). Connect the cables to the Control Memory board (paragraph 3.6.3, VS-100 Product Maintenance Manual).

NOTE

As the boards are removed from the VS-85, the edge connectors may be cleaned with an alcohol pad, WLI P / N 660-0130. Do not clean the edge connectors with an eraser.
12. Continue removing the boards from the VS-85, installing them in the VS-100, and connecting the cables. Do this one board at a time and install them in the correct order. The Cache and SBC boards can be removed and installed as a pair.

13．If the VS－85 has any 2 Megabyte Main Memory boards（WLI P／N 210－8203），they must be replaced with 1 Megabyte Main Memory boards （WLI P／N 210－7803）．Install two 1 Megabyte boards for each 2 Mega－ byte board removed．（Memory size switches on the Cache Memory board should remain the same unless Main Memory size will increase or de－ crease．Refer to VS－100 Service Handbook．）
14．The Bus Adapter must be installed in the last slot of the CPU Mother－ board as BA非1．

NOTE

210－7911 and 210－8311 Bus Adapters are compatible and interchangeable only in the VS－100 configuration．

15．The four Cache／SBC to BA jumper cables removed from the VS－85 can＇t be used in the VS－100 because they are too short to bridge the space over the Main Memory board slots．Replace these cables with four VS－100 Cache／SBC to BA cables，WLI $\mathrm{P} / \mathrm{N} 220-3116$ ，included in the upgrade kit．
16．Make sure that the $B A$ number and I / O slot selection switches on the IOP conform to the IOP position in the IOP Motherboard．（See figure $3-7$ and refer to paragraph 3.6 .2 of the VS－100 Product Maintenance Manual，or to the VS－100 Service Handbook，for the proper locations of the IOP＇s．）
17．Connect the I／O panel cables to the proper IOPs（paragraph 5．3．5．4， VS－85 Product Maintenance Manual）．
18．Power up the VS－100（paragraph 3．7．2，VS－100 Product Maintenance Manual）and check the dc voltages again．
19．Run the VS－100 microdiagnostics（VS85／90／100 Microdiagnostics Hand－ book）．
21．Create a minimum system by connecting a serial workstation to IOP ⿰⿰三丨⿰丨三一2， Port 0，BA非，and the system disk drive to IOP 非0，Port 0，BA非．
22．Load the system microcode and IPL the system（paragraph 3．7．3，VS－100 Product Maintenance Manual）．
23．Run SYSGEN to reconfigure the system，if necessary．
24．Connect the rest of the peripherals（figure 3－19 and paragraph 3．8．1， VS－100 Product Maintenance Manual）and run on－1ine peripheral diag－ nostics（VS Diagnostics Handbook，Volume 2）．
25．Send the VS－85 chassis back to＂Return Products＂．

LABORATORIES. INC
ONE INDUSTRIAL AVENUE. LOWELL. MASSACHUSETTS 01951. TEL (617) 450.5000. TWX 710 343.6769. TELEX 94.7421

[^0]: NOTE: ATR1 = Address Translation Trap 1 ATR2 $=$ Address Translation Trap 2

