
LINC Dbcument No. 37

COMPUTER SYSTEMS LABORATORY
WASHINGTON UNIVERSITY
ST. LOUIS, MO. 63110

Introduction to Binary Numbers and Binary Arithmetic

Irving H. Thomae

Abstract

The introduction includes number base conversion
procedures, ones' complement arithmetic, binary
addition, multiplication, and division.

April 1965

The Computer Systems Laboratory is supported in part by the Advanced Research
Projects Agency of the Department of Defense under contract SD-302, and in part
by the Division of Research Facilities and Resources of the National Institutes
of Health under grant FR-00396.

l.b-l.

AN INTRODUCTION TO BINARY NUMBERS AND BINARY ARITHMETIC

,I. '

'From a pragmatic viewpoint, "any numerical notation "or number system is

merely a code for representing "quantitie"s - statements about "how" manyo " In

other words, a number system is a language in 'vhich topics like counting and

arithmetic can be discussed conveniently. We may not expect that such a

language will be ul?-ique. There may be, and in fact there is, a whole family

of number systems, and the particular number system used by a particular

digital computer is, in this sense, that computer's "language," While 've do

arithmetic in the decimal system, LINC and many other computers use the

binary number systemo Before explaining binary, let us recall what is meant

by a ndecimal" sy~tem.

Everyone learns in gra1e schoo~ that a decimal number such as 7,432
represents '"'two ones,- three tens, four hundreds, and seven "thousands 0 "

Reading from right to left, in other words, the successive columns are

ascending powers of ten: 100(=1), 101, 102, 103, etc. The system is based
)

on ten, as the name implies, and there are ten different symbols used,

o througlt 9.

But there is nothing to prevent us from using some other number as a

base, or radix. The addition tables, etco, 'vould have to be rewritten, since

the same quantities would be differently encoded, but t,vo plus two, by any

name, must st ill be four, even though we may 'vri te "f3 + f3 = 0", II or

"10 + 10 = lOa." In this paper, we will use spelled-out names of numbers to

refer to the quantities they represent, independent of particular number

systems. Thus, "t'vo" is an invariant. It always means the" number of dots in

this circle: CD". The mark "2,"" however, is undefined in some number sys

teqts, including binary; and the mark 1110" has a different meaning in each

different number system.

The binary system is based on the radix t,vo. This means that there need

be only t,vo symbols, conventionally taken as a and 1. This is why computers

use it, since an on-off, or two-state, device is much simpler than a ten

state device.

16-1 .

Reading·from the right end of a binary number, successive columns are

ones, t,.,os, fours, eights, etc., - 2°(=1), 2
1

, 22, 23, etc. - ascending

p01.,ers of two. Thus, the number 11001 re-presents, reading from right, "one

one plus no t,.,os plus no fours plus one eight plus one sixteen, It or t,.,enty

five. It must.be admitted that binary numbers are.less compact than decimal,

but for computer use, we will see that this disadvantage is far out,.,eighed

by the advantages.

,.

, ,

3

..
Compare the following. numbers:

DECIMAL BINARY

(JJ (JJ

H 0
~ ~

(JJ 0 .p (JJ

ro ct-l I s:l
Q) I ?:, Q) (JJ

H ?:, .p Q) :b (JJ

ro (JJ (JJ

~ H ~ H (JJ (JJ

s:l s:l Q) or! bO ~ 0 Q)
~ Q) s:l or! .c or! or! 0 ;:: s:l .c .p 0 (JJ .p (JJ Q) ct-l .p 0

0 0 1 0 0 0 0 '0 0 1

0- 0 2 0 0 0 o· 0 1 0

0 0 3 0 0 0 0 ·0 1 1

0 0 4. 0 0 0 0 1 0 0

0 a 5 0 0 0 0 1 0 1

0 0 6 0 0 0 0 1 1 0

D 0 7 0 0 0 O. 1 1 1

0 0 8 0 0 0 1 0 0 0

0 0 9 0 0 0 1 0 0 1

0 1 ,0 0 0 0 1 0 1 0

0 1 1 ,0 0 0 1 0 1 1

0 1 2 0 0 0 1 1 0 0

0 1 3 0 0 0 1 1 0 1

0 1 4 0 0 0 1 1 1 0

0 1 5 0 0 0 1 1 1 1

0 2 0 0 0 1 0 1 0 0

0 2 6 0 0 1 1 0 1 0

0 6 3 0 1 1 1 1 1 1

0 6 4 1 0 0 0 0 0 0

1 1 7 1 1 1 0 1 0 1

4 16-1

Fractions' are, represented in the same ''lay. Colurrins to the: right of a

decimal point represe'nt increasingly negative pO'vers of ten (tenths, hun

dredths, thousandth~, or 10-1, 10-2, 10-3, etc.). Similarly, to the right
-1-2 -3 '

of the binary point we have halves, quarters, eighths--2, 2 ,2 ,etc.

Any.fraction (!an be represe~ted, in this form. For instance, .1011 is III half

plus no fourths plus 1 eighth plus 1 sixteenth," or eleven sixte~nths, .6875.
Similarly, 101.011 is 5 3/8, or 5.375.

The tables of powers 'of two attached, especially the positive powers,

should be at one's mental finger tips.

We wEI:.l often refer to the columns of a binary number as "bits."

Strictly speaking, 'a IIbit" is any item of yes-or-no information, but i1.1 prac

tice this distinction 'vill usually be unimportant 0 We also frequently name

a bit in a number by the power" of two represented. Thus, the "O-bitll is the
o right-most bit, representing 2 or 1; IIbit 4" is the fifth from the right,

'to 24 . t represen lng or SlX een.

The numbers listed on t.b-: preceding page illustrate two important points

about numqer systems. Consider first the co~nting process with respect to one

column of a decimal number. As, lIs are added, the column "fills up" until

9 is reaahed. This is the, max~mum capacity, so when the next 1 is added ''Ie

must return our column:to 0 and carry 1 to the next higher column.

In the binary system, however, a given column's value may only be 0 or 1,

so ~very second time a bit receives a 1 it must clear and carry to the next.

For a given bit, then,couhting is a process of alternating, or "flipping,1I

between ItO" and 111,11 originating (sending out) a carry every time it reverts

from "111 to 1I0.1f

In either system, 'vhen all columns are filled to capacity, the next "1"

added' will require ariew colu~n. In decimal, we see this ha'ppen in going

from 9 to 10, :or 99 to'lOO; in binary this happens, for example, between

seven and eight, fifteen and sixteen, or sixty-three and sixty-four.

Notice also that it is al'vays extremely easy to multiply by a power of

the radix.. In decimal', 'v~, may multiply by ten by shifting the entire number

left one place, or by 10n by shifting left n places. Correspondingly, in

16-1

binary we can multiply by two ,by shifting left one place', or by 2n by shift

ing left n places. Compare three, six, and twelve in binary with three, '

thirty" and three hundred in decimalj ,or thirteen and twenty-six in binary

with thirteen and: one hundred-thirty in decimal:

Binary

three;times(t1vo)l:

shift left one.

three, times(two)2:

shift left two.

thirteen, times (two) l:

shift left one. '

Decimal

three, times(ten)l:

shift left one.

three, times(ten)2:

shift left two.

thirteen, times(ten)l:

shift left one.

Figure 1. Multiplication by the radix as a shifting process.

The process of "translating,"- or reconverting from binary to' decimal

is obvious; it might be helpful to describe decimal-to-binary conversion'

explicitly. Starting with the large.st possible pOlver of two, lye a:ttempt

to subtract successively smaller ·powers of tlVO from the current remainder

and get a positive result. For each successful subtraction a 1 is recorded,

other,vise, a o. Thus the decimal number 685 converts as f'ollo,vs:

685
-512
+173

(-256)
-128
+ 45

. '(-64)
-32
+13

(-16)
- 8
+·5

- 4
--+ 1

(- 2)
.- 1

o

[=29]

[=28]
[=27]

V ---,.----!---:---,

[=26] X-
[=25]

2 [=2]

vI--------------~

16-1 7

ADDrrION

Binary addition is very simple. The basic table has only four entries,

compared to one hundred in decimal:

Decimal: + 0 1 2 3 o •• Binary: + 0 1

0 0 1 2 3 0 0 1

1 1 2 3 4 1 1 10

2 2 3 4 5
etc.

Notice that for.§. ,E.§.rticular bit, 1+1 gives 0 with .§. carry. This we have just

seen in considering the counting process. Indeed, from the viewpoint of a

particular bit, addition is always basically a counting process.

We may illustrate ''lith an example.

column sums
primary carries
first carry sum

~econdary carries
secondary carry sum

tertiary carries
result

1 1 0 1 0
1 0 1 1 0
o 1 100

1 1
1 0 1 0 0 0

1
1 0 0 000

1
11000 0

Of course, in doing the sum one would normally add.in the carries as they.

appeared, but this form shows what is going on more clearly.

, .".:

MULTIPLICATION

, l?inary multi'Plication' is, ,if anything, 'even .. simpler than additiono

The basic table is:

o I,.

o~
1\0 1

'16-1

. 1 times 1 is 1, and anything else is o. It is easy enough to combine this

1vith the standard methods. Compare decimal and binary multiplication:

, a.

b. A
x B

,C

356,
708

,2848
0000

2492
252048

Decimal: 29
21 '

- 29
58

. 609

Binary: 11101
10101
11101

00000
, 11101
00000

11101
1001100001

Of course we normally omit the rows of zeros. But notice that in

"binary, multiplication by each multiplier digit is reduced to the decision

'vhether or not to copy the shifted multiplicand. So, in this example, ,.,e

take (1)'[(20)(A)] + (0)·[(21)(A)] + (1)·[(22)(A)] + (0)·[(23)(A)] + (I)·

[(24) (A)], or in all, twenty-one times A, or B times A, which is exactly what

we ,.,ant.

B~ no,v it should be quite cl:ear that binary arithmetic is both simple

and . cumbersome . There i's available a very convenient ,yay to avoid the a1vk

ward chains of ones and zeros. \Ile introduce ~othe!: l'~un:ber cyRtem,. £ct'~~l,

which is based on eight. This system has 8 characters~ for which we

. 16-1

. ·~use the ·Arabic numerals 0 through" 7~ .,' Interconversion between· binary and

. octal can be done by sight, since a group: of' three binary.: digits is com~·

pletely equivalent to ~ o~tal digit. This, 0f'co~r~e, is so because

8 = 23,. So we have this equivalence:
~. '.:' .. \ :.

• - . ~.. I.

BINARY

r--~----~ 25 = 4 x gl:

." --~ 24 81
,-, -.--;?"" '=.2 x "

I > 23 = 1 x 81

I J .
1 0 1 0 1 1

I.
L-

BINARY

000

001

01G.

011

100

101

110

111

=

See also the tables of pow'ers of t1vO.-

J
5 3

.~

OCTAL

.0

1

2

3
4

.....

. 5
6

7

, ..

OCTAL

9

- 10 16-1

A .binary· number grouped.· in sets of 3. bits each· canthus be read off in

octa:li a· far more. convenient· notation.

Compare these numbers:
.. " !"':

• ; J ~. ,.t· . - ...
DECThiAL BINARY OCTAL

5 101 ·_·5

8 1·000 10

9 1 001 11

12 1100 i4 .

15 1 III 17

16 10 000 20
\- -

29 11 101 35

32 100·000 40

40 101 000 ·50

54 110 110 .- 66

100 1 100 100 144

3739 III 010 011 011 7233

One can clearly also do arithmetic in octal, and although LINC actually

operates in binary, it is customary and proper to use octal almost exclus~vely

1vhen programming and operating the computer.

The addition and multiplication tables are perfectly straightfor,vard,

except th~t the digits Sand 9 are missing. For convenience they have .been

appended. A brief glance at them will indicate that the same counting

processes hold as in any other system: when the capacity of a particular

column is exceeded, clear it and carry.

One pitfall to be avoided carefully is that octal numbers look, super

ficiallyat least, much like ordinary numbers. The complete absence of S's

and 9's may not be immediately evident, and much confusion can resulto

Therefore, ,vherever ambiguity seems possible, numbers 1vill be ,vritten 1vith

the subscript "stt or "lOtt to indicate "octal" or "decimal."

16-1 11

COMPLEMENT ARITHMETIC

Up to this point we have assumed that we could represent any"number, no

matter h01v large. In a digital computer, each digit is represented by some

kind of physical hard1vare, such as a wire, a "flip-flop, II or a light-bulb.,

The computer thus necessarily h~s ,a finite range of numbers, determined by

the number of bits availablee For instance, the LINC has t1velve bits, so the

largest possible number 1vhich could normally be represented is 409510 (77778).

If we add 1 to this number, we ought to gei;; '1 000 000 000 000
2

(100008), but

only the rightmost t1velve ~its are represented, so the next number in sequence

is o. More simply, but in exactly the same way, if 1-:e had three bits avail

able the biggest number possible would be 111 (78)' followed again by Oc In

that close"d system 1, 9, and 17 are completely equivalent. They are said to

be equal Hmo~ulo 8"; in other ",vords, they all give the same remainder when

divided by 8.

Suppos~ now we arrange things so that', in our simple closed system, the

'extra carry generated when 1ve add 1 to 7 is brought around the end -as an

" end-carry" - and added in at the O-bit. When this occurs, the result is

001 - as if w~ had added l·tb P instead of to 7:

3-bit closed system:

end-around carry

12-bit
closed

111
+ 1

~~
001

system: 1 1 1 1 1 1 1 1 1 ' 1 1 1
+ 1

"~OQO 000 000 000
end,carry _~-----------------------?>l

00000 a 000 001

000 : 0 0 0
+
000 000

000

000

000
1

001

,In fact, in end-carry n-digit binary arithmetic,th:e number composed of

n 11 s behaves exactly like o. It is cust.omarily referred to as "minus zero ll

to distinguish it .. from the more familiar form which is then referred to as

""plus zer.o. II

,12, '16-1 .

Continuing in our 3-digit end-carry system, we cop.sider the follolling

arr~~geme~t of numbers:

"010

Oil 601

,100 000 U+OU
,,'

fOl 111

'uXil 110 Ii -0"
",

": .:" , .
These are, of course, al'l'the poss,ible numbers we may hEfve.

Define p'ositive rotati?n counter clock,vise (5). Counting around the

,vheel, the .position 1IX" is then plus five. However, if we start at it_Oil and

count clockwise, it becomes minus tlvoo Try adding this "-2" to +3, using

;e~d-around ca~ry .. (6o~nt a:r~u?dthe ,vheel treating +0 and -0 as one point.)

The result is +1.

It will be found that the, following deSignations can be assigned:

"+3"
011

.: ~'. ,., " ' ..
t'+l1i:

001,

"-311 '" 100 -'-'-----~~------ 000

101
11-2"

110

11_1"·

111
. 11-0"

These definitions permit subtraction, if Ive limit ourselves to a system of

just the numbers 0,1,2,3.
i '

'In effect IV~ have made the leftmost bit represent

the sign of the number. 'If it is a lilli, ·the number is' pre~umed to. be negative,

and is counted dO,vn from minus zero (111), instead of ~ from plus' zero (000).

16-1 13

"

Notice in the diagram that -2" (101), has l's where +2, (010), has O's,

and vice versa. The 'Proce,ss of re'Placing l's "lith 0' sand 0' s with l's is

called complementing, and in a 3-bit system, ,101 is the complement of 010.

So, to encode a negative number, we complement the corresponding positive

binary number.

Returning now to the LINC's 12-bit numbers, we restrict ourselves to

numerical use of 11 bits. To code a negative number, we complement ito Here,

to?, complementing turns out to ~e equivalent to counting do\vn from -0.

Since the binary magnitude of numbers will have a zero in the leftmost bit,

comp~ementing ~ender~ bit 11 a ~. This bit is therefore a sign indicator,

and the LINC can "find ()ut" whether a number is positive or ~egative simply

by testing it. If the,ll-bit is 0, the number is 'positive; if 1, it is

negative. Furthermore, if we never try to give numerical significance to the

sign bit, 'He can subtract numbers by adding their complement s, ", us ing end

around carry.

Example:

Decimal Binary Octal

1978 011 110 111 010 3672
-1568 -011 000 100 010 -3042

410 "

all 110 111 010" 3672
Add complement of 100 111 011 101 ' 4735

subtrahend:
~OOO 110 010 111 ~7 End-around carry: '~l ---1

000 110 011 000 0630

Notice that in octal, \Ve may form a complement by subtracting each digit

of the number to be complemented from 10 Then, by using end-around carry, \Ve

get -the same result as \Ve did in binary.

, ' Counting no\V is rather odd'if one exceeds the allowed eleven numerical

bits. For, the next number after all 111 111 111, (37778), the largest

positive number, is 100 000 000 qoo, the biggest (in magnitude) negative

number (40008,' = -377(8),

14 Ib-l

DIVISION

The last and 'perhaps mostconfu8ing operation is long division.

Division is thepro"cess of finding out' how many times the divisor is

contained in the dividend., At, bottom, 'therefore, it is an elaborate method

of subtracting and counting, although the familiar procedures tend to

obscure this.

For example, in the slmple division2~ we all know the quotient is
, '

4 and the remainder is' 1.' But if "\.,re didn't know that, we could find out by

subtracting 2 repeatedly, counting the number of times "\.,re were successful.

When, after such a series, the result turns up negative, "\.,re know we 'have

subtracted once too often. The correct remainder is then recovered by

adding back the divisor once, and the correct quotient is one less than the

'total number of subtractions we have executed.

Let us illustrate this with another very simple example, 3/14:

Operations

14
---1
11

- 3
8"

, -~
5

---1
2

-3
- 1

+-3.
2

Count

1

2

3

4

5

,5-1'= 4

Negative result, so add back the
divisor.

Quotient 4, remainder 2

16-1

This obviously is impractical for large quotients, and so the familiar

. long division uses a very important shortcut.

Consider this example: 142
28/3979

28
117
112

59
56
3

"':1' ."

15

In the first step, we actually divide not by 28, but by 2800. To obtain

. the right answer for this problem, that result is automatically multiplied by

100 when it is p~t in the third column from right in the answer. That is,

the "1" in the quotient represents (2§9~9100) x 1000

The remainder obtained is really 1179. In the second set of steps 1179

is divided by 28 'x 101 , and the result, 4, is multiplied by 101 when it is

put in the second quotient column. Finally, .59 is divided by 28 x 10~, and

the result, 2, is multiplied by 1 and placed in the right-most column to

give the anSHer 142.

16 16-1

The same 11 short cut tI of taking out the divi.sor II a hundred ~:t. :.~)~,imell can

oe used in the subtraction method, too, as follo",vs:

Operation

28/3979

3979
-2800
1179

-2800
-1621
+2800

1179
- 280

899
280
619

- 280·
339

- 280
59

- 280
- 221
+ 280

59

28
'31
28

3
28
25

+ 28
+ 3

Comments :., .

Divide by 28 x 100.

Negative, so add back
the· divisor.

No ",v use 2.8. x 10 as
divisor.

Positive remainder,
so keep going.

Negative, so add back
the divisor again.
This count is the 10's
digit of the ~uotient.
Now use 28 ·x 1 as divisor.

Positive, so keep going.

Negative - back up.

Count Quotient

1

2·
2-1 = 1 1 x 100

1

2

3·

4

5

5-1 = 4 4 x 10

1

2

3

3-1 = 2 2 x 1

The final ~uotient is 100 + 40 + 2 = 142, and the final remainder is 3.

Of course, the process of multiplying the divisor by various po\Vers of

ten ~s customarily accomplished purely by shifting it along beneath the

dividend, and the zeros have been filled in here purely for clarity.

Notice that, if we wished, we could shift the dividend left instead of

shifting the divisor right. Their positions relative to each other will be

unchanged and .if \ve don 1 t get our ~uotient score-keeping mixed up) the result

·Hill be exactly the same. This is convenient in a finite number system like the

J.b-J.

LINe's, ,,,here shifting a number'may mean discarding digits 0 It is. then

clearly better to discard higher-order current remainder bits, '''hich are

o anyway ,,,hen they fall due for shifting "off into space 0"

.L(

We ,.,ill not attempt to' do binary division with complemented numbers g

If either the divisor or the dividend is negative, we will re-complement it

before dividing, and remember the sign.

As an illustration, let us find the quotient of two 6-bit binary

fractions. As usual, the left-most bit is the sign; and ,.,e assume also that

the binary point lies directly to its right. With the binary points of both

divisor and dividend in the same place, this is completely equivalent to

dividing a pair of integers. However, use of the left-most bit as sign-bit

requires that the divisor be greate,r than the dividend. For, if the quotient

came out equal to or greater than 1, it would then be interpreted as a

negative number, and this clearly would be wrong, since as we have already

said, both the divisor and the dividend will always be positive~

18

Example: 1.10001
0.10100

16 ... 1

= ?

First, we note that the numerator is negative, so "He must complement it,.

and remember to complement the quotient we get when we are all done.

So ,,,e have .a 0 10~00/0. 0~110

F.irst subtraction:
(by adding comple
ment of divisor)

add back:

Shift 'remainder
"left 'one: " .

Subtract:

Shift remainder
left one:

Subtract:

001110
101011
111001

+010100
001110

011100
101011
001000

010000
101011
111011

Negative: Record Q in quotient, ----,
add back divisor 0 (This "Has I
expected, since the first quo-
tient digit is a sign bit.) I

I
I

Posit"ive
continue.

record 1 in quotient, ----I--.

Negative - add back divisor,

I
I
~

Shift:
Subtract:

100000
101011
001100

record ° in quotient '-- __ -OJrl
Positive record 1 in quotient, ." I
continue.

Shift: I
Subtract:

011000
101011 ---000100 Positive - record 1, continue. -------------~ I

Shift:
I
I Subtract:

001000
101011
110011
010100
001000

Negative - record Q, add back. --- - - - - ~

etco "Quotient: 0010110

The first 6 bits of the quotient are therefore 0010110. Complementing,

the final result is" 1.10001 = 1.01001
0010100 .

The reader may verify tha~ in decimal this would read -04375 _ -.700,
.6250

and that the binary equivalent of .700 is 0~10110011 .•• o.0.

16-1 19

No,v, there is one possible II shortcut " peculiar to binary •. We hav~. seen

that ,,,hen subtraction of the divisor gives a negative result, the divisor must

be added back before shifting and subtracting again. In binary, upon getting.

a negative result, ,,,e can shift· first and then add the divisor. * Ho'veyer,

when we shift before. restoring, we are 'vorking ''lith a complement, and cannot

discard bits shifted lIoff the left end. 1f In order to. make the end-around

carry come out right, it is necessary to bring the shifted bits around to the

right and fill them in there. In the LINe, this is called rotation to

distinguish it from ordinary ~~al!gg ..

* We are shifting the remainder left, which multiplies it by twoo So, if
R is the number from 'vhich 've just subtracted, and D is the divisor, the
negative result is (R-D). It is obvious that 2[(R-D) + DJ -D == 2(R~D) + D.

20 . 16-1

Here is the same example; using the 11 short cut 11 :

0.10100/0.01110

Subtract:

rotate:
add:

rotate:
subtract:

rotate:
add:

rotate:
subtract:

rotate:
subtract:

rotate:
add:

001110
. 101011
111001

110011
010100
001000

010000
101011
111011

110111
010100
001100

011000
101011
000100

001000
101011
110011

100111
010100
111011

etc.

Negative: Record 0 in quotient,
rotate left one place. ---,

I
I

Positive:
continue.

record 1 in quotient, -----~:--.
I

(Notice that rotating a positive number I
left one place is indistinguishable t
from s caling. it· left one place) - -- -- .
Negative: so record Q, rotate, addo ~

0010110

Positive:
~~t

record 1, continue 0 ------- I

Positive: record 1, continue 0

Negative: . record Q, continue.

Quotient: 0.10110

I
I
I
I
I

------~

·16-1 cJ.

. '.' POWERS OF TWO AND EIGHT - .

Positive Decimal.
. Powers Equivalents

2° 8° 1

21 2 ·x 8 0 2

22 4 x e? .4

23 81 8
·4 2 2 x 81 16

25 4 x 81 32

26 82 64

27 2 x 82 128

.28 4 x 82 256

29 83 512
. 10 . 2 2 x 83 1,024

211 4 x 83 2,048

212 84 4,096

213 2 x 84 8,192

214 4 x 84 16,384

215 85 32,768

22 .1.U-.1.

. pm-lERS OF THO 'AND EIGHT

Negative Decimal
Po\Vers Equivalents

20 80 1.0

2 -1 4 x 8-1 .5

,2 -2 2 x 8-1 .25

2 -3 8'-1 .125

2 -4 .4 x 8-2 .0625

2 -5 2 x 8-2 .03125

2 -6 8-2 .015625

2 -7 4 x 8 -3 .0078125

2 -8 '2 x 8-3 .00390625

2 -9 8-3 .001953125

'2 -10 4 x 8-4 .0009765625
-11 2 . 2 x 8-4 .00048828125

'2 -12 8-4 .000244140625

2 -13 4 x 8-5 .0001220703125

2 -14 2 x 8-5 .00006103515625

2 -15 8-5 .000030517578125

· .
OCTAL ADDrI'ION

0 1 2 3 4 5 6 .7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 10

2 2· 3 4 5 6 7 10 11

3 3 4 5 6 '·7 10 11 12

4· 4 5 6 7 10 '11 12 13

5 5 6 7 10 11 12 13 14

6 6 7 10 11 12 13 14 15

7 7 10 11 12 13. 14 15 16

OCTAL MULTIPLICATION

o· ·1 2 3 4 5 6 7

0 0. 0 0 0 0 0 0 0

1 0 .1 2 3 4 5 6 7

2 0 2 4 6 10 12 14 16

3 0 3 6 11 14 17 22 25

4 0 4 10 14 20 24 30 34

5 o· 5 12 17 24 31 36 43

6 0 6 14 ·22 30 36 44 52

7 0 T 16 25 34 43 52 61

