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AN INTRODUCTION TO BINARY NUMBERS AND BINARY ARITHMETIC 

,I. ' 

'From a pragmatic viewpoint, "any numerical notation "or number system is 

merely a code for representing "quantitie"s - statements about "how" manyo " In 

other words, a number system is a language in 'vhich topics like counting and 

arithmetic can be discussed conveniently. We may not expect that such a 

language will be ul?-ique. There may be, and in fact there is, a whole family 

of number systems, and the particular number system used by a particular 

digital computer is, in this sense, that computer's "language," While 've do 

arithmetic in the decimal system, LINC and many other computers use the 

binary number systemo Before explaining binary, let us recall what is meant 

by a ndecimal" sy~tem. 

Everyone learns in gra1e schoo~ that a decimal number such as 7,432 
represents '"'two ones,- three tens, four hundreds, and seven "thousands 0 " 

Reading from right to left, in other words, the successive columns are 

ascending powers of ten: 100(=1), 101, 102, 103, etc. The system is based 
) 

on ten, as the name implies, and there are ten different symbols used, 

o througlt 9. 

But there is nothing to prevent us from using some other number as a 

base, or radix. The addition tables, etco, 'vould have to be rewritten, since 

the same quantities would be differently encoded, but t,vo plus two, by any 

name, must st ill be four, even though we may 'vri te "f3 + f3 = 0", II or 

"10 + 10 = lOa." In this paper, we will use spelled-out names of numbers to 

refer to the quantities they represent, independent of particular number 

systems. Thus, "t'vo" is an invariant. It always means the" number of dots in 

this circle: CD". The mark "2,"" however, is undefined in some number sys

teqts, including binary; and the mark 1110" has a different meaning in each 

different number system. 

The binary system is based on the radix t,vo. This means that there need 

be only t,vo symbols, conventionally taken as a and 1. This is why computers 

use it, since an on-off, or two-state, device is much simpler than a ten

state device. 
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Reading·from the right end of a binary number, successive columns are 

ones, t,.,os, fours, eights, etc., - 2°(=1), 2
1

, 22, 23, etc. - ascending 

p01.,ers of two. Thus, the number 11001 re-presents, reading from right, "one 

one plus no t,.,os plus no fours plus one eight plus one sixteen, It or t,.,enty

five. It must.be admitted that binary numbers are.less compact than decimal, 

but for computer use, we will see that this disadvantage is far out,.,eighed 

by the advantages. 

,. 
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Compare the following. numbers: 

DECIMAL BINARY 

(JJ (JJ 

H 0 
~ ~ 

(JJ 0 .p (JJ 

ro ct-l I s:l 
Q) I ?:, Q) (JJ 

H ?:, .p Q) :b (JJ 

ro (JJ (JJ 

~ H ~ H (JJ (JJ 

s:l s:l Q) or! bO ~ 0 Q) 
~ Q) s:l or! .c or! or! 0 ;:: s:l .c .p 0 (JJ .p (JJ Q) ct-l .p 0 

0 0 1 0 0 0 0 '0 0 1 

0- 0 2 0 0 0 o· 0 1 0 

0 0 3 0 0 0 0 ·0 1 1 

0 0 4. 0 0 0 0 1 0 0 

0 a 5 0 0 0 0 1 0 1 

0 0 6 0 0 0 0 1 1 0 

D 0 7 0 0 0 O. 1 1 1 

0 0 8 0 0 0 1 0 0 0 

0 0 9 0 0 0 1 0 0 1 

0 1 ,0 0 0 0 1 0 1 0 

0 1 1 ,0 0 0 1 0 1 1 

0 1 2 0 0 0 1 1 0 0 

0 1 3 0 0 0 1 1 0 1 

0 1 4 0 0 0 1 1 1 0 

0 1 5 0 0 0 1 1 1 1 

0 2 0 0 0 1 0 1 0 0 

0 2 6 0 0 1 1 0 1 0 

0 6 3 0 1 1 1 1 1 1 

0 6 4 1 0 0 0 0 0 0 

1 1 7 1 1 1 0 1 0 1 
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Fractions' are, represented in the same ''lay. Colurrins to the: right of a 

decimal point represe'nt increasingly negative pO'vers of ten (tenths, hun

dredths, thousandth~, or 10-1, 10-2, 10-3, etc.). Similarly, to the right 
-1-2 -3 ' 

of the binary point we have halves, quarters, eighths--2, 2 ,2 ,etc. 

Any.fraction (!an be represe~ted, in this form. For instance, .1011 is III half 

plus no fourths plus 1 eighth plus 1 sixteenth," or eleven sixte~nths, .6875. 
Similarly, 101.011 is 5 3/8, or 5.375. 

The tables of powers 'of two attached, especially the positive powers, 

should be at one's mental finger tips. 

We wEI:.l often refer to the columns of a binary number as "bits." 

Strictly speaking, 'a IIbit" is any item of yes-or-no information, but i1.1 prac

tice this distinction 'vill usually be unimportant 0 We also frequently name 

a bit in a number by the power" of two represented. Thus, the "O-bitll is the 
o right-most bit, representing 2 or 1; IIbit 4" is the fifth from the right, 

'to 24 . t represen lng or SlX een. 

The numbers listed on t.b-: preceding page illustrate two important points 

about numqer systems. Consider first the co~nting process with respect to one 

column of a decimal number. As, lIs are added, the column "fills up" until 

9 is reaahed. This is the, max~mum capacity, so when the next 1 is added ''Ie 

must return our column:to 0 and carry 1 to the next higher column. 

In the binary system, however, a given column's value may only be 0 or 1, 

so ~very second time a bit receives a 1 it must clear and carry to the next. 

For a given bit, then,couhting is a process of alternating, or "flipping,1I 

between ItO" and 111,11 originating (sending out) a carry every time it reverts 

from "111 to 1I0.1f 

In either system, 'vhen all columns are filled to capacity, the next "1" 

added' will require ariew colu~n. In decimal, we see this ha'ppen in going 

from 9 to 10, :or 99 to'lOO; in binary this happens, for example, between 

seven and eight, fifteen and sixteen, or sixty-three and sixty-four. 

Notice also that it is al'vays extremely easy to multiply by a power of 

the radix.. In decimal', 'v~, may multiply by ten by shifting the entire number 

left one place, or by 10n by shifting left n places. Correspondingly, in 



16-1 

binary we can multiply by two ,by shifting left one place', or by 2n by shift

ing left n places. Compare three, six, and twelve in binary with three, ' 

thirty" and three hundred in decimalj ,or thirteen and twenty-six in binary 

with thirteen and: one hundred-thirty in decimal: 

Binary 

three;times(t1vo)l: 

shift left one. 

three, times(two)2: 

shift left two. 

thirteen, times (two) l: 

shift left one. ' 

Decimal 

three, times(ten)l: 

shift left one. 

three, times(ten)2: 

shift left two. 

thirteen, times(ten)l: 

shift left one. 

Figure 1. Multiplication by the radix as a shifting process. 



The process of "translating,"- or reconverting from binary to' decimal 

is obvious; it might be helpful to describe decimal-to-binary conversion' 

explicitly. Starting with the large.st possible pOlver of two, lye a:ttempt 

to subtract successively smaller ·powers of tlVO from the current remainder 

and get a positive result. For each successful subtraction a 1 is recorded, 

other,vise, a o. Thus the decimal number 685 converts as f'ollo,vs: 

685 
-512 
+173 

(-256) 
-128 
+ 45 

. '( -64) 
-32 
+13 

(-16) 
- 8 
+·5 

- 4 
--+ 1 

(- 2) 
.- 1 

o 

[=29 ] 

[=28] 
[=27] 

V ---,.----!---:---, 

[=26 ] X-
[=25 ] 

2 [=2 ] 

vI--------------~ 
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ADDrrION 

Binary addition is very simple. The basic table has only four entries, 

compared to one hundred in decimal: 

Decimal: + 0 1 2 3 o •• Binary: + 0 1 

0 0 1 2 3 0 0 1 

1 1 2 3 4 1 1 10 

2 2 3 4 5 
etc. 

Notice that for.§. ,E.§.rticular bit, 1+1 gives 0 with .§. carry. This we have just 

seen in considering the counting process. Indeed, from the viewpoint of a 

particular bit, addition is always basically a counting process. 

We may illustrate ''lith an example. 

column sums 
primary carries 
first carry sum 

~econdary carries 
secondary carry sum 

tertiary carries 
result 

1 1 0 1 0 
1 0 1 1 0 
o 1 100 

1 1 
1 0 1 0 0 0 

1 
1 0 0 000 

1 
11000 0 

Of course, in doing the sum one would normally add.in the carries as they. 

appeared, but this form shows what is going on more clearly. 
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MULTIPLICATION 

, l?inary multi'Plication' is, ,if anything, 'even .. simpler than additiono 

The basic table is: 

o I,. 

o~ 
1\0 1 

'16-1 

. 1 times 1 is 1, and anything else is o. It is easy enough to combine this 

1vith the standard methods. Compare decimal and binary multiplication: 

, a. 

b. A 
x B 

,C 

356, 
708 

,2848 
0000 

2492 
252048 

Decimal: 29 
21 ' 

- 29 
58 

. 609 

Binary: 11101 
10101 
11101 

00000 
, 11101 
00000 

11101 
1001100001 

Of course we normally omit the rows of zeros. But notice that in 

"binary, multiplication by each multiplier digit is reduced to the decision 

'vhether or not to copy the shifted multiplicand. So, in this example, ,.,e 

take (1)'[(20 )(A)] + (0)·[(21 )(A)] + (1)·[(22)(A)] + (0)·[(23)(A)] + (I)· 

[(24) (A) ], or in all, twenty-one times A, or B times A, which is exactly what 

we ,.,ant. 

B~ no,v it should be quite cl:ear that binary arithmetic is both simple 

and . cumbersome . There i's available a very convenient ,yay to avoid the a1vk

ward chains of ones and zeros. \Ile introduce ~othe!: l'~un:ber cyRtem,. £ct'~~l, 

which is based on eight. This system has 8 characters~ for which we 



. 16-1 

. ·~use the ·Arabic numerals 0 through" 7~ .,' Interconversion between· binary and 

. octal can be done by sight, since a group: of' three binary.: digits is com~· 

pletely equivalent to ~ o~tal digit. This, 0f'co~r~e, is so because 

8 = 23,. So we have this equivalence: 
~. '.:' .. \ :. 

• - . ~.. I. 

BINARY 

r--~----~ 25 = 4 x gl: 

." --~ 24 81 
,-, -.--;?"" '=.2 x " 

I > 23 = 1 x 81 

I J . 
1 0 1 0 1 1 

I. 
L-

BINARY 

000 

001 

01G. 

011 

100 

101 

110 

111 

= 

See also the tables of pow'ers of t1vO.-

J 
5 3 

.~ 

OCTAL 

.0 

1 

2 

3 
4 

..... 

. 5 
6 

7 

, .. 

OCTAL 

9 
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A .binary· number grouped.· in sets of 3. bits each· canthus be read off in 

octa:li a· far more. convenient· notation. 

Compare these numbers: 
.. " !"': 

• ; J ~. ,.t· . - ... 
DECThiAL BINARY OCTAL 

5 101 ....... ·_·5 

8 1·000 10 

9 1 001 11 

12 1100 i4 . 

15 1 III 17 

16 10 000 20 
\- ........ . -

29 11 101 35 

32 100·000 40 

40 101 000 ·50 

54 110 110 .- 66 

100 1 100 100 144 

3739 III 010 011 011 7233 

One can clearly also do arithmetic in octal, and although LINC actually 

operates in binary, it is customary and proper to use octal almost exclus~vely 

1vhen programming and operating the computer. 

The addition and multiplication tables are perfectly straightfor,vard, 

except th~t the digits Sand 9 are missing. For convenience they have .been 

appended. A brief glance at them will indicate that the same counting 

processes hold as in any other system: when the capacity of a particular 

column is exceeded, clear it and carry. 

One pitfall to be avoided carefully is that octal numbers look, super

ficiallyat least, much like ordinary numbers. The complete absence of S's 

and 9's may not be immediately evident, and much confusion can resulto 

Therefore, ,vherever ambiguity seems possible, numbers 1vill be ,vritten 1vith 

the subscript "stt or "lOtt to indicate "octal" or "decimal." 
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COMPLEMENT ARITHMETIC 

Up to this point we have assumed that we could represent any"number, no 

matter h01v large. In a digital computer, each digit is represented by some 

kind of physical hard1vare, such as a wire, a "flip-flop, II or a light-bulb., 

The computer thus necessarily h~s ,a finite range of numbers, determined by 

the number of bits availablee For instance, the LINC has t1velve bits, so the 

largest possible number 1vhich could normally be represented is 409510 (77778). 

If we add 1 to this number, we ought to gei;; '1 000 000 000 000
2 

(100008), but 

only the rightmost t1velve ~its are represented, so the next number in sequence 

is o. More simply, but in exactly the same way, if 1-:e had three bits avail

able the biggest number possible would be 111 (78)' followed again by Oc In 

that close"d system 1, 9, and 17 are completely equivalent. They are said to 

be equal Hmo~ulo 8"; in other ",vords, they all give the same remainder when 

divided by 8. 

Suppos~ now we arrange things so that', in our simple closed system, the 

'extra carry generated when 1ve add 1 to 7 is brought around the end -as an 

" end-carry" - and added in at the O-bit. When this occurs, the result is 

001 - as if w~ had added l·tb P instead of to 7: 

3-bit closed system: 

end-around carry 

12-bit 
closed 

111 
+ 1 

~~ 
001 

system: 1 1 1 1 1 1 1 1 1 ' 1 1 1 
+ 1 

"~OQO 000 000 000 
end,carry _~-----------------------?>l 

00000 a 000 001 

000 : 0 0 0 
+ 
000 000 

000 

000 

000 
1 

001 

,In fact, in end-carry n-digit binary arithmetic,th:e number composed of 

n 11 s behaves exactly like o. It is cust.omarily referred to as "minus zero ll 

to distinguish it .. from the more familiar form which is then referred to as 

""plus zer.o. II 
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Continuing in our 3-digit end-carry system, we cop.sider the follolling 

arr~~geme~t of numbers: 

"010 

Oil 601 

,100 000 U+OU 
,,' 

fOl 111 

'uXil 110 Ii -0" 
", 

": .:" , . 
These are, of course, al'l'the poss,ible numbers we may hEfve. 

Define p'ositive rotati?n counter clock,vise (5). Counting around the 

,vheel, the .position 1IX" is then plus five. However, if we start at it_Oil and 

count clockwise, it becomes minus tlvoo Try adding this "-2" to +3, using 

;e~d-around ca~ry .. (6o~nt a:r~u?dthe ,vheel treating +0 and -0 as one point.) 

The result is +1. 

It will be found that the, following deSignations can be assigned: 

"+3" 
011 

.: ~'. ,., " ' .. 
t'+l1i: 

001, 

"-311 '" 100 -'-'-----~~------ 000 

101 
11-2" 

110 

11_1"· 

111 
. 11-0" 

These definitions permit subtraction, if Ive limit ourselves to a system of 

just the numbers 0,1,2,3. 
i ' 

'In effect IV~ have made the leftmost bit represent 

the sign of the number. 'If it is a lilli, ·the number is' pre~umed to. be negative, 

and is counted dO,vn from minus zero (111), instead of ~ from plus' zero (000). 
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" 

Notice in the diagram that -2" (101), has l's where +2, (010), has O's, 

and vice versa. The 'Proce,ss of re'Placing l's "lith 0' sand 0' s with l's is 

called complementing, and in a 3-bit system, ,101 is the complement of 010. 

So, to encode a negative number, we complement the corresponding positive 

binary number. 

Returning now to the LINC's 12-bit numbers, we restrict ourselves to 

numerical use of 11 bits. To code a negative number, we complement ito Here, 

to?, complementing turns out to ~e equivalent to counting do\vn from -0. 

Since the binary magnitude of numbers will have a zero in the leftmost bit, 

comp~ementing ~ender~ bit 11 a ~. This bit is therefore a sign indicator, 

and the LINC can "find ()ut" whether a number is positive or ~egative simply 

by testing it. If the,ll-bit is 0, the number is 'positive; if 1, it is 

negative. Furthermore, if we never try to give numerical significance to the 

sign bit, 'He can subtract numbers by adding their complement s, ", us ing end

around carry. 

Example: 

Decimal Binary Octal 

1978 011 110 111 010 3672 
-1568 -011 000 100 010 -3042 

410 " 

all 110 111 010" 3672 
Add complement of 100 111 011 101 ' 4735 

subtrahend: 
~OOO 110 010 111 ~7 End-around carry: '~l ---1 

000 110 011 000 0630 

Notice that in octal, \Ve may form a complement by subtracting each digit 

of the number to be complemented from 10 Then, by using end-around carry, \Ve 

get -the same result as \Ve did in binary. 

, ' Counting no\V is rather odd'if one exceeds the allowed eleven numerical 

bits. For, the next number after all 111 111 111, (37778 ), the largest 

positive number, is 100 000 000 qoo, the biggest (in magnitude) negative 

number (40008,' = -377(8), 
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DIVISION 

The last and 'perhaps mostconfu8ing operation is long division. 

Division is thepro"cess of finding out' how many times the divisor is 

contained in the dividend., At, bottom, 'therefore, it is an elaborate method 

of subtracting and counting, although the familiar procedures tend to 

obscure this. 

For example, in the slmple division2~ we all know the quotient is 
, ' 

4 and the remainder is' 1.' But if "\.,re didn't know that, we could find out by 

subtracting 2 repeatedly, counting the number of times "\.,re were successful. 

When, after such a series, the result turns up negative, "\.,re know we 'have 

subtracted once too often. The correct remainder is then recovered by 

adding back the divisor once, and the correct quotient is one less than the 

'total number of subtractions we have executed. 

Let us illustrate this with another very simple example, 3/14: 

Operations 

14 
---1 
11 

- 3 
8" 

, -~ 
5 

---1 
2 

-3 
- 1 

+-3. 
2 

Count 

1 

2 

3 

4 

5 

,5-1'= 4 

Negative result, so add back the 
divisor. 

Quotient 4, remainder 2 
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This obviously is impractical for large quotients, and so the familiar 

. long division uses a very important shortcut. 

Consider this example: 142 
28/3979 

28 
117 
112 

59 
56 
3 

"':1' ." 

15 

In the first step, we actually divide not by 28, but by 2800. To obtain 

. the right answer for this problem, that result is automatically multiplied by 

100 when it is p~t in the third column from right in the answer. That is, 

the "1" in the quotient represents ( 2§9~9100 ) x 1000 

The remainder obtained is really 1179. In the second set of steps 1179 

is divided by 28 'x 101 , and the result, 4, is multiplied by 101 when it is 

put in the second quotient column. Finally, .59 is divided by 28 x 10~, and 

the result, 2, is multiplied by 1 and placed in the right-most column to 

give the anSHer 142. 
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The same 11 short cut tI of taking out the divi.sor II a hundred ~:t. :.~ )~,imell can 

oe used in the subtraction method, too, as follo",vs: 

Operation 

28/3979 

3979 
-2800 
1179 

-2800 
-1621 
+2800 

1179 
- 280 

899 
280 
619 

- 280· 
339 

- 280 
59 

- 280 
- 221 
+ 280 

59 

28 
'31 
28 

3 
28 
25 

+ 28 
+ 3 

Comments :., . 

Divide by 28 x 100. 

Negative, so add back 
the· divisor. 

No ",v use 2.8. x 10 as 
divisor. 

Positive remainder, 
so keep going. 

Negative, so add back 
the divisor again. 
This count is the 10's 
digit of the ~uotient. 
Now use 28 ·x 1 as divisor. 

Positive, so keep going. 

Negative - back up. 

Count Quotient 

1 

2· 
2-1 = 1 1 x 100 

1 

2 

3· 

4 

5 

5-1 = 4 4 x 10 

1 

2 

3 

3-1 = 2 2 x 1 

The final ~uotient is 100 + 40 + 2 = 142, and the final remainder is 3. 

Of course, the process of multiplying the divisor by various po\Vers of 

ten ~s customarily accomplished purely by shifting it along beneath the 

dividend, and the zeros have been filled in here purely for clarity. 

Notice that, if we wished, we could shift the dividend left instead of 

shifting the divisor right. Their positions relative to each other will be 

unchanged and .if \ve don 1 t get our ~uotient score-keeping mixed up) the result 

·Hill be exactly the same. This is convenient in a finite number system like the 
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LINe's, ,,,here shifting a number'may mean discarding digits 0 It is. then 

clearly better to discard higher-order current remainder bits, '''hich are 

o anyway ,,,hen they fall due for shifting "off into space 0" 

.L( 

We ,.,ill not attempt to' do binary division with complemented numbers g 

If either the divisor or the dividend is negative, we will re-complement it 

before dividing, and remember the sign. 

As an illustration, let us find the quotient of two 6-bit binary 

fractions. As usual, the left-most bit is the sign; and ,.,e assume also that 

the binary point lies directly to its right. With the binary points of both 

divisor and dividend in the same place, this is completely equivalent to 

dividing a pair of integers. However, use of the left-most bit as sign-bit 

requires that the divisor be greate,r than the dividend. For, if the quotient 

came out equal to or greater than 1, it would then be interpreted as a 

negative number, and this clearly would be wrong, since as we have already 

said, both the divisor and the dividend will always be positive~ 
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Example: 1.10001 
0.10100 

16 ... 1 

= ? 

First, we note that the numerator is negative, so "He must complement it,. 

and remember to complement the quotient we get when we are all done. 

So ,,,e have .a 0 10~00/0. 0~110 

F.irst subtraction: 
(by adding comple
ment of divisor) 

add back: 

Shift 'remainder 
"left 'one: " . 

Subtract: 

Shift remainder 
left one: 

Subtract: 

001110 
101011 
111001 

+010100 
001110 

011100 
101011 
001000 

010000 
101011 
111011 

Negative: Record Q in quotient, ----, 
add back divisor 0 (This "Has I 
expected, since the first quo-
tient digit is a sign bit.) I 

I 
I 

Posit"ive 
continue. 

record 1 in quotient, ----I--. 

Negative - add back divisor, 

I 
I 
~ 

Shift: 
Subtract: 

100000 
101011 
001100 

record ° in quotient ........... '-- __ -OJrl 
Positive record 1 in quotient, ." I 
continue. 

Shift: I 
Subtract: 

011000 
101011 ---000100 Positive - record 1, continue. -------------~ I 

Shift: 
I 
I Subtract: 

001000 
101011 
110011 
010100 
001000 

Negative - record Q, add back. --- - - - - ~ 

etco "Quotient: 0010110 

The first 6 bits of the quotient are therefore 0010110. Complementing, 

the final result is" 1.10001 = 1.01001 
0010100 . 

The reader may verify tha~ in decimal this would read -04375 _ -.700, 
.6250 

and that the binary equivalent of .700 is 0~10110011 .•• o.0. 
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No,v, there is one possible II shortcut " peculiar to binary •. We hav~. seen 

that ,,,hen subtraction of the divisor gives a negative result, the divisor must 

be added back before shifting and subtracting again. In binary, upon getting. 

a negative result, ,,,e can shift· first and then add the divisor. * Ho'veyer, 

when we shift before. restoring, we are 'vorking ''lith a complement, and cannot 

discard bits shifted lIoff the left end. 1f In order to. make the end-around 

carry come out right, it is necessary to bring the shifted bits around to the 

right and fill them in there. In the LINe, this is called rotation to 

distinguish it from ordinary ~~al!gg .. 

* We are shifting the remainder left, which multiplies it by twoo So, if 
R is the number from 'vhich 've just subtracted, and D is the divisor, the 
negative result is (R-D). It is obvious that 2[(R-D) + DJ -D == 2(R~D) + D. 
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Here is the same example; using the 11 short cut 11 : 

0.10100/0.01110 

Subtract: 

rotate: 
add: 

rotate: 
subtract: 

rotate: 
add: 

rotate: 
subtract: 

rotate: 
subtract: 

rotate: 
add: 

001110 
. 101011 
111001 

110011 
010100 
001000 

010000 
101011 
111011 

110111 
010100 
001100 

011000 
101011 
000100 

001000 
101011 
110011 

100111 
010100 
111011 

etc. 

Negative: Record 0 in quotient, 
rotate left one place. ---, 

I 
I 

Positive: 
continue. 

record 1 in quotient, -----~:--. 
I 

(Notice that rotating a positive number I 
left one place is indistinguishable t 
from s caling. it· left one place) - -- -- . 
Negative: so record Q, rotate, addo ~ 

0010110 

Positive: 
~~t 

record 1, continue 0 ------- I 

Positive: record 1, continue 0 

Negative: . record Q, continue. 

Quotient: 0.10110 

I 
I 
I 
I 
I 

------~ 
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. '.' POWERS OF TWO AND EIGHT - . 

Positive Decimal. 
. Powers Equivalents 

2° 8° 1 

21 2 ·x 8 0 2 

22 4 x e? .4 

23 81 8 
·4 2 2 x 81 16 

25 4 x 81 32 

26 82 64 

27 2 x 82 128 

.28 4 x 82 256 

29 83 512 
. 10 . 2 2 x 83 1,024 

211 4 x 83 2,048 

212 84 4,096 

213 2 x 84 8,192 

214 4 x 84 16,384 

215 85 32,768 
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. pm-lERS OF THO 'AND EIGHT 

Negative Decimal 
Po\Vers Equivalents 

20 80 1.0 

2 -1 4 x 8-1 .5 

,2 -2 2 x 8-1 .25 

2 -3 8'-1 .125 

2 -4 .4 x 8-2 .0625 

2 -5 2 x 8-2 .03125 

2 -6 8-2 .015625 

2 -7 4 x 8 -3 .0078125 

2 -8 '2 x 8-3 .00390625 

2 -9 8-3 .001953125 

'2 -10 4 x 8-4 .0009765625 
-11 2 . 2 x 8-4 .00048828125 

'2 -12 8-4 .000244140625 

2 -13 4 x 8-5 .0001220703125 

2 -14 2 x 8-5 .00006103515625 

2 -15 8-5 .000030517578125 



· . 
OCTAL ADDrI'ION 

0 1 2 3 4 5 6 .7 

0 0 1 2 3 4 5 6 7 

1 1 2 3 4 5 6 7 10 

2 2· 3 4 5 6 7 10 11 

3 3 4 5 6 '·7 10 11 12 

4· 4 5 6 7 10 '11 12 13 

5 5 6 7 10 11 12 13 14 

6 6 7 10 11 12 13 14 15 

7 7 10 11 12 13. 14 15 16 

OCTAL MULTIPLICATION 

o· ·1 2 3 4 5 6 7 

0 0. 0 0 0 0 0 0 0 

1 0 .1 2 3 4 5 6 7 

2 0 2 4 6 10 12 14 16 

3 0 3 6 11 14 17 22 25 

4 0 4 10 14 20 24 30 34 

5 o· 5 12 17 24 31 36 43 

6 0 6 14 ·22 30 36 44 52 

7 0 T 16 25 34 43 52 61 


