
June, 1965

LINC Volume 16

Programming and Use I

Section 2

PROGRAMMING THE LINC

Mary Allen Wilkes and Wesley A. Clark

Computer Research Laboratory
Washington University
St. Louis, Missouri

v --~

Number 1

VOUJ'lvIE 16 J SECTION 2

Page 51';

Programming l~xamIJle 12 ..
described in the teict~o

The :prog:rnw. does IlcrG behave e:Kactly as
J?erha:ps t,h(~ reader can find the error 'J

P:cogramm:i.ng I~:F.arr(p l<~ 150

11~O
14D2
Jli!(t1~
11~6
ll~10

SNJ~ i
SIm~ :t
S~~ i
S:E'r i
SE::;[! i

3
Ll·

5
6
7

0063
0064
0065
0066
006'-(

Origtnal 0(3) ~ 1;37'(
Index h(3}

End·"around carry
NevI c(3) ~ 0; ~.()O

(0,+317) ('7'"'(r, +3'1'7)
fi""'''~-'''~''''''-'~''''''=''''''''---"'--~~=-=' -."""~--~'M~l

~
Square a.rra.y, 3 n by 3 H , ~
of 1000 x 1000 {oct.alY

pOints ..

I
(0 , 0) ,.-><~~, ~-"''''""-''-.. . -· .. ···-~-"--·-----r-----i (777 • 0)

~ H - _j(H,V) I

L-----, ~w-. .-....-~~-~--l
{, 0, - 3',(7;' { ~(77 $ =,31"'7)1

El--rata Sheet Number 1, Programming the LINe
Page 2

Page 58~

I1=]2 :

Page 90g

Diagram" top of page:

Ace Cf I']
~.----'

unused

Table 3 top of page~

____ -:f3~. ~ 0

i .. O 1==
I

-;jo P LDlI

p ,l,e, 1 h;Y

ICBD i ~

etc ..

ICf!:YBOARD" If a key has been struck. and. is locked d01m» clear
the Accumulator,y release the key» and read its 6=bit code
number into the right half of the Accumulator.. If no key has
been s·t;ruck and i ~ 1, pause until a kt1Y is struck and cont:i.nue
as above. If no key has been struck and i ~ 03 clear the
Accumulator and go, on to the next iustructiono

Second table:

Example 290

" 106
o
Q

Memory
Address 1I'~mory Cont.en.ts

p

p+1
NUL i I

N t

Coding should be:

I
rux I Or-rOO ..

" I ~

1260

For whom the gong perhaps chimes

16-2

PR.OGRAMMING THE LINC

Contents

10 IntJ;od'uct ion 0 •• 0 0 • 0 •• 0 0 0 •• 0 0 •••••••••••••••••••••••••••••••••• 0 • • • •• 1

C(/~,:tCL-,L (~(."/t-.;,~ CC, '
2. N'umber Systems 0 II 0 0 0 0 0 e 0 GOO 0 0 0 0 0 e 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 G 3

30 Simple Instructions 0 0 0 0 0 0 0 0 •• 0 •••••• 0 0 0 ••• 0 0 ••• 0 0 0 •• 0 0 0 • 0 • 0 •••• 0 0 0 0 0 5

, 4 0 S hi ft i ng 0... 0 0 0 • 0 • • • 0 0 0 0 0 0 • • • 0 • 0 0 • • • • 0 • • • • 0 • • 0 • 0 0 0 0 • 0 0 0.0 0 0 • 0 0 • 0 0 0 0 •• 7

5. LINC Memory and Memory Reference Instructions 00 •• 0000000 •• 0 ••• 00.000 9

The STORE-CLEAR Instruction .. 0 • ' •• 0 ••••• 0 ••••• 0 ••••••••• 0 ~ ••• '. 0 o. 10

The ADD Instruction and Binary Addition•.......... 00 •• 11

60 The Instruction Location Register . 0 0 •••• 0 • 0 0 0 • 0 0 0 ••• 0 • 000 • '0 •• 0 0 •••• 12

The JlJMP Instruction . 0 • 0 • 0 • 0 • 0 •••••••• 0 •••• 0 • 0 ••• 0 • 0 • 0 • 0 0 •• 0 • • •• 14

70 Address Modification and Program uLoopsii ..• , .. 0. 0 ••• 0 •••• 0 0 •• 0 0 •••• 16

8. Index Class Instructions I 0.00000 •••••••••••••• 0 ••••• 0000 ••• 0.00000 21

Indirect Addressing 0 0 000 • 0 0 0 0 0 • 0 0 .0. 0 •• 0. 0 • 0 0 •• 0 • 0 0 • 000 00 • 0 • 0 • o. 21

Index Registers and Indexing 0 0 0 • • 00 •••• 0 • 0 ••••• 00. 0 000 •• " 0 0 • 0 0 o. 24

Logic Inst'ructions 0 l') • & 0 CI 0 0 0 0 0 0 Q 0 (I 0 0 0 0 0 0 0 (;) 0 28

9. Special Index Register Instructions 0 0 0 • 0 ••• 0 " 0 " •• 0 ••••• 0 •• 0 0 0 • 0 • 0 0" 29

The INDEX AND SKIP Instruction . 0 •• 0 ••• 0 • 0 • 0 0 0 • 0 0 0 •• 0 • 0 0 0 0 • 0 0 0 •• 0 29

The SET Instructi,on '" 0 0 0 0 0 0 • 0 0 •• 0 0 • 0 0 ••••• 0 0 • 0 •• 0 0 0 • 0 • 0 0 0 0 0 •• 0 0 o. 31

100 Index Class Instructions II .. 00 •• 0 •••••••••••••• 0 ••••• 00 •• 0 ••• 00 ••• 34

Double Register Forms o. 0 0 •• 0 0 •• 0 0 ••• 0 0 0 ••• '" • 0 ••••• 0 •••• 0 • 0 •• 0 0 •• 34

Multiple Length Arithmeti.c .. 0.0.00 ••••••••••• 000 ••• 0 •• 00000.00.0 39

M'ultiplication o. 0 0 0 0 0 0 0 0 •• 0 0 0 0 0 0 0 0 •• 0 •••• 0 •• 0 0 0 •• 0 0 • 0 • 0 • 0 0 •• 0 0 0 0 45

11. Half-Word Class Instructions 0.0000 ••• 00 •••••••• 0.0 •• 0000.0.00000000 50

12. The IillYBOARD Instruction. 0 0.0000 •• 00 ••••••• 0 ••••• 000 •••• 0. 0 0.0 •• 00. 54

13. The LINC Scopes and the Display Instructions .•••.• 0 •• 0 •• 0 •••••• 0000 57

Character Display . 0 0 0 0 0 0 0 0 0 • 0 ••••• 0 • 0 0 ••••• 0 •• e 0 0 0 0 • 0 0 0 0 0 • 0 0 eo.. 59 l'

14. Analog Input and the SAMPLE Instruction 0000.00000.0000000.000000000 66

15. The Skip Class Instructions 00000000.00 •• 00.0 •• 0 •• 000.0.0.00.0'00000 72

16. The Data Terminal Module and the OPERATE Instruction .00.0000.00.000 76

17. Subro'utine Techniques' • 0 0 • 0 0 • 0 0 0 0 0 0 ••••••••••• 0 0 ••• 0 •• 0 0 • 0 0 0 •• 0 e 0 0 • 0 77

18. Magnetic Tape Instructions 0.0000.0 •• 000 ••••••• 0.00 •••• 0 •• 000.000000 80

Block Transfers and Checking ...••• 00 ••••• 00 •• 0 ••• 00.00000.0.0000 82

Group Transfers . 0 0 0 0 0 0 0 0 ••• 0 0 • 0 ••• 0 0 e 0 0 ••• 0 0 • 0 0 • 0 • 0 •• 0 0 0 • 0 0 0 0 0 • 0 92
Tape Motion and the MOVE TOWARD BLOCK Instruction •.. 00.,0 •• 00 •• 0 94

Tape Format o. 0 0 0 0 0 0 0 0 0 •• 0 • 0 •• 0 0 0 0 0 •• 0 ... 0 ••• 0 0 0 0 •••• 0 0 0 • 0 0 0 0 0 0 0 • 0 98

Tape Mot ion Timing • 0 • 0 0 0 0 0 0 0 •• 0 • 0 0 ••• 0 • 0 0 •••• 0 •• 0 ••• 0 0 0 ••• 0 0 • 0 0 101

Chart 10

Chart II.

Contents

Classes of LINC Instructions 00000000000000000000000000000.0 105

Keyboard Code 0 0 e 0 0 0 e 0 0 0 0 0 0 0 0 C) • 0 81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ·8 0 0 0 0 • 0 () 106

Chart 1110 Pattern Words for Character Display .. 0000000000000000000000 107

Chart IV. Instruction Code 0 0 0 0 • 0 0 0 0 0 0 0 0 • 0 .. 0 0 •• 0 0 .. 0 0 0 0 0 000 0 0 • 0 0 0 0 0 0 0 0 0 108

Appendix I: Double Memory Programming

Appenqi~ II: LINC Order Code Sum~ary

16-2

16-2

Index of Programming Examples

10 Simple Sequence of Instruct ions 0 0 0 0 0 0 0 0 0 •. 0 0 0 0 0 • 0 0 0 0 0 0 0 • 0 0 • 0 0 •• 0 . 0 0 13

20 Simple Sequence Using the JUMP Instruction 0.0000 ••• 0.00000000000000 15

3. Summing a Set of Numbers Using Address Modification 00000000,.00 •.. 0 18

4. Packing a Set of N'umbers 0000000000000 •••• 00000.0.0 •••• 0 •• 00 ... 00 •.. 20

5. Indirect Addressing 0 0 000 .0. 0 0 ... 0 . 0 00. 0 0 0 0 0 •• 0 0 0 •• 0 •• 0 0 0 . 0 0 • 0 00' .0. 23

60 Indexing to Clear a Set of Registers .0000 .•. 00 ••• 00.0 •. 0 •..•• 0.00.0 25

7 0 Me mo ry S can n i ng 0 0 0 0 0 0 • 0 0 0 . 0 0 0 0 0 0 0 0 0 0 • 0 • 0 • • • • • • • 0 • 0 . 0 0 0 0 • 0 0 0 • • 0 0 0 0 • 0 26

80 Summing Sets of Numbers Term by Term 0.'00 .• 00000000000.00000000.000 27

9. Index Registers Used as Counters 00.00.0 ••.. 000 .• 000.00 .. 0.000000000 30

10. Indexing and Counting to Clear a Set of Registers 0000000000.00 •. 000 30

110 Setting Initial Index Register Values. 0 •• 0 •• 0'.0000.0,0000 •• 0000000. 33

120 Scanning for Values Exceeding a Threshold .0.000 •• 000000000000000000 37

13. Summing Sets of Double Length Numbers Term by Term 00000000000000000 44

140 Multiplying a Set of Fractions by a Constant 000000000.000'000000"0 48

150 Multiplication Retaining 22=bit Products 0.'0.0000"0.0000000,00000. 49

160 Filling Half-Word Table from the Keyboard 00 •• 00.0000,0000060000000" 55

170 Selective Filling of Half=Word Table from the Keyboard 6000000000000 56

180 Horizontal Line Scope Display 00000000000.000 .. 00.00000000000000.0000 58

190 Curve Display of a Table of Numbers 0 0 . 0 0 0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 59

200 Character Di splay of the Letter A 0 0 0 • 0 0 0 0 0 0 0 0 0 • 0 0 0 0 • 0 0 0 0 0 •• 0 0 0 0 0 0 • 0 62

210 Character Display of the Letter A Using DSC 00000000000.000.0000000064,

220 Displaying a Row of Characters 0 0 • 0 .• 0 .•• 0 0 0 0 0 • 0 •.. 0 0 • 0 0 • '0 0 0 0 0 0 0 0 . 0 0 65

230 Simple Sample and Display 0 0,0 0 0 0 0 0 0 . 0 0 .• 0 0 0 •. 0 0 0 •• 0 •• 0 • 0 0 • 0 0 0 0 0 0 0 • 0 0 68

240 Moving Windo'\v Display Under Knob Control 00' .• 0. 0 0 • 0 0 • 0 • a • 0 • 0 .. 0 000. 69

250 Histogram Display of Sampled Data o. 0 0 •• 0 .; ••.• 0 0 • 0 .•• 0 0 .•• 0 0 •• 0 0 •.. 0 71

26. Counting Samples Exceeding a Threshold o •••• oo •• ~ •• o •• o.ooo.oooo •• oo 74

27. Simple Sample and Display with Keyboard Control .•• 0 0 0 0 0 0 o. o. " • 0 •• o. 75

28. Simple Check of an Entire Tape ..•• 0 •••• 0 ••••• 0 •• 0000 •• 0 •••• 0000 •• 0. 88

290 Dividing Large Programs Between Tape and Memory •.• 0.00.00'00000.000 90

300 Collecting Data and Storing on Tape ,0.0.000.0.0 •• 000 •• 00.0.00000 •. 0 91

310 Tape and Memory Exchange -with Group Transfer 000 •• 00 •• 00000,.000 •• 00 94

320 Block Search Subroutine 00000000000.00.00 .••• 000.0 •• 00.0000.0.0 ••• 0 100

33. Write and Check with Fewest Reversals 0.0.00,00 .•••••• 0.000 •• 000.00 103

340 Indexing Across Memory Boundaries .0000 ••. 0 •.••••• 00.0.0 Appendix I~ 3

16-2

Page Index of LINC Instructions

ADA 000000000800000 21, 11-5 MUL 00008.01000000QO 45, Il-6

ADD 0OOO00OOOOOOO~. 11, 11-3 NOP o ••••• o.ee.O.OGOOO(J 11-1

ADM oooo.oOQoeOOOOco 26, 11-6 OPR oo ••••• oo.oeooo 76, 11-12

APO 0000013,000000000 73, 11-4 RCG 000 ••• 00.800008 92, 11-14

ATR 0000000130000000 6, 11-1 RDC 41"ooeoooooeeooo. 86, II~13

AZE OIlGGoooeoooeOQO 17, 11-4 RDE 0000000&00081100 83, 11-14

BCL 000000000000000 26, 11-7 ROL 000000800\l)008eO 8, 11-2

BCO oeeooooooeeOOOQ 28, 11-7 ROR 00000000111000000 8, 11-2

BSE 000000000000000 28, 11-7 RSW 00.000000000000 6, 11-12

CHK 0001000(\)00000000 87, 11-15 RTA ooooooooooooooc 6, 11-1

CLR ooo~eoooooooooo 5, 11-1 SAE 0&0000000000000 25, II~7

COM ooooooooeOooo'oo 6, 11-1 SAM ooooooooooooeoe 66, 11-10

DIS 0013000000000(900 57, 11-11 SCR 00000000000000. 8, 11-2

DSC eOGOOGoeooooooo 63, 11-8 SET 00000 •• 08000(100 31, II-10

HLT 0001300009000000 13, 11-1 SHD •• 000.0000800000 52, 11-9

IBZ OOoooooeooooooo 98, 11-4 SKP o /it • G III 0 0 o. " • I) 0 0 0 0 72, 11-4

JMP 00100000000110000 14, 11-3 SNS "OOOOGOO00eOOOQ 73, II-4

KBD ooeOGGlO(llOClOOOGO 54, 11-12 SRO 1')000001609000000 61, II-7

KST ocooceoeOOOOOGO 74, 11-4 STA ooeooeoooC!)o~ooo 23, 11-5

LAM 000100$0000018000 39, II-6 STC 00 •• 000001300000 10, 11-3

LDA eeeOOC!llooeOflOoco 23, 11-5 STH eoeeooooC/lOoooaoo 51, 11-9

LDH coooooooeoeeooo 50, II-9 SXL ooeeooooeOOO()00 72, 11-4

LSW 00000001300000000000 11-12 WCG 000000000000000 92, 11-15

LZE OOOOGeoooooooeo 73, 11-4 WRC o 0 ·0 • 0 0 0 0 0 €I (I 0 e 0 0 89, 11-15

MSC 13 00(100&000000&000 11-1 WRI 8.0000000000000 85, 11-15

MTB ooeoooooooooooo 96, 11-14 XSK 00000000060000. 29, II-11

16-2

PROGRAMMING THE LINC

Ie Introduction

The LINC (Laboratory Instrument Computer) is a stored-program binary=

coded digital computer designed to operate in the laboratory environment as

a research tool. The following description is intended to serve as a general

introduction to basic programming concepts and techniques, and specifically

as an introduction to LINC programming.

Like most digital computers, the LINC operates by manipulating binary

n'umbers held in various registers (storage devices for numbers), under the

control of a program of instructions which are themselves coded as binary

numbers and stored in other registers. LINC instructions generally fall into

types or classes, the instructions of a class having certain similarities.

In this description, however, instructions are introduced as they are relevant

to the discussion; reference to Chart I is therefore recommended when class

characteristics are described. Furthermore, not all LINC instructions are

described here in detail; therefore this document should be read in conjunc­

tion with the LINC Order Code Summary, Appendix II.

2

The best way to begin is to consider only a few of the registers and

switches which are shown on the LINC Control Console: the ACCtMULATOR (ACC)

which is a register of 12 lights, the LINK BIT (L), the LEFT and RIGHT

SWITCHES, which are rows of 12 toggle switches each, and one lever switch

labeled liDO. II The number systems and operation of several of the instruc­

tions can be understood in terms of these few elements.

16-2

16-2 3

2. Number Systems

The elements (bits) of each register or row of toggle switches are to

be thought of as numbered from right to left starting with zero. This will

serve to identify the elements and to relate them to the numerical value of

the binary" integer held in the register. We shall use liC(ACC) Ii to denote

lithe contents of the Accumulator register,1I etc. If the Accumulator is

il.luminated thus

ACCUMULATOR ~ Light Off

~ ~ ~. I I ~ .' I ~ I D Light On
11 10 9 8 7 6 5 4 3 2 1 °

then the binary number stored in the Accumulator is

C(ACC) == 010 011 100 101 (binary)

which has the decimal value

C(ACC) 210 + 27 + 26 + 25 + 22 + 20

== 1024 + 128 + 64 + 32 + 4 + 1

::::: 1253 (decimal)

We can also view this as an octal number by considering each group of three

bits in turn. In this example, grouping and factoring proceed as follows:

C(ACC) ::::: (210) + (27+2
6) + (25) + (22+2°)

== (21)029 + (21+2°) 026 + (22) 023 + (22+2°) 02°

= (2) .83 + (3) · 8
2 + (4)081

+ (5)08°

= 2 3 4 5

::::: 2345 (octal)

4 Number Systems

To put this more simply, each octal digit can be treated as an independent

3-bit binary number ,1"hose value, (0, 1, .. 0, (7), can be obtained from the
2 10

weights 2 , 2,., ,. and 2 :

I ACCUMULATOR

~ lfla ~, ~~
210 210 210 210
~ "--v----' ~ ~

2 ,·3 4 5 = 2345 (octal)

This ease of representation" (the eight possible combinations within a group

are easily perceived and reme~bered) is the principal reason for using octal

numbers 0 The octal system can be viewed simply as a convenient notational

system for representing binary numbers. Of course, octal numbers can also

be manipulated arithmetically.

The translation from one system to the other is easily accomplished in

either direction. Here are some examples:

1 0 '7 3 o 2 6 5 '7 2 4 6 (0 ct a 1)

/t\~ 11\~ /t\~
001 000 111 011 000 010 110 101 111 010 100 110 (binary)

Sometimes it is useful to view the contents of a register as a signed

number. One of the .bits must be reserved for the sign of the number. The

left-most bit is therefore identified as the SIGN BIT (0 for +, 1 for -)"

To change the sign of a binary number, we complement the number (replace all

ZEROS by ONES and vice-versa).* Examples:

000 000 000 011 = +3

111 111 111 100' = -3

011 111 111 111 = +3'7'7'7 } The largest positive and negative

100 000 000 000 -3'7'7'7
octal integers in the 12-bit

= signed-number system.

* See Volume 16, Section 1, !IAn Introduction to Binary Numbers and Binary
Arithmetic,," Irving H. Thomaeo

16 ... 2

16-2 Simple ,Instructions

We say that the pair of binary numbers 101111110011 and 010000001100 are

complements of each other, (in octal these are 5763 and 2014), and will

denote the complement of the number N by No Note that the sum of each binary

digit and its complement is the number 1, and that the sum of each ()ctal

digit and its complement is the number 7. Note also that there are two

representations of the number zero:

000 000 000 000 = +0

111 111 111 111 = -0

Note finally that the sum of any binary number and its complement is always

a zero of the second kind, "minus zero,iI in this system.

3. Simple Instructions

The LINC instructions themselves are encoded as binary numbers and held

in various registers. The Simplest of these instructions, namely those

Ivhich operate only on the AccumUlator, Ivill be described first Ivith reference

to the Left Slvi tches 0

Raising the DO lever (DO means lido toggle instruction tl
) causes the LINC

to execute the instruction whose binary code number is held in the Left

Switches. The LINC will then halt 0 For example, if we set the Left S'ivitches

to the code number for the· instruction IiCLEAR,iI which happens to be

0011 (octal), and then momentarily raise the DO lever, the Accumulator lights

will all go out and so will the Link Bit. light -' so that C(ACC) = 0, and

C(L) = o. In setting a switch, "up" corresponds to Itoneolt

DO LEFT SWITCHES
\\ Left Switches set

(@) \

tt~ ~ / ~ ~(~ ~.~ .. <t ~~
to 0011 (octal) ,
the code number

. STOP ~ ~ '--:---y---J ~' for "CLEAR. II

'0 0 1 1

6

I COM I
IATR I
[RTA-'

IRSW I

Simple:' Instructions

Tersely: If· ·C(LeftSI"i tches) ='0011 (octal), then DO has the effect

0-7 C(ACC) and O··~ C(L)o (Read II zero replaces the .contents; of the Accum­

ulator ,11 ·~t c.) 0

CLEAR (or CLR)' is an instructi6n of the class knolvn as Miscell~ti~ous

instructions. A second Miscellaneous Class instruction, COMPLEMENT (or COM),

Ivi th the code number 0017 (octal), direct s the LINC to complement the con­

tents of the Accumulator and therefore has the effect C(ACC) -7 C(ACC) 0

(Read~ "the complement of the contents of the Accumulator replaces the

contents of the Accumulatoro Ii)

Two other instructions of this class transfer information between the

Accumulator and the Relay Register. The Relay Register, displayed on the

upper right corner of the Control Console, operates 6 relays which can be

used to control or run external equipment. An instruction with the code

0014 (octal), called ACCUMULATOR TO RELAY, ATR, directs the LINC to copy the

contents of the right half of the Accumulator, i.e., the right=most 6 bits,

into' the Relay Register. The Accumulator itself is not changed when the

instruction is executed. Another instruction, called RELAY TO ACCUMULATOR,

RTA, Iviththe octal code 0015, causes the LINC to clear the AccumUlator and

then copy the contents of the Relay Register into the right half of the

Accumulator. In this case the Relay Register is not changed and the left.

half oJ the Accumulator is J,.eft cleared (i.e., containing zeros)o

Another instruction called RIGHT SWITCHES, RSW, with the code number

0516 (octal), direc,ts theLINC to copy the contents of the Right SwitcheB

.intothe Aocumulator. By setting the Left Slvitches to 0516, the Right

Switches to whatever value·we wauttoputin the Accumulator, and then

momentarily raising the DO lever, we can change the contents of the Accum~

ulator to any new value we like. The drawing shows how the switches should

be set to put the number 6451 (octal) into the Accumulator:

DO
~

~
\
I ~~ .. ~

STOP \

LEFT SWITCHES I

!J~{j , ~~£ '1JJ1~
v

Code number for RSW
instruction = 0516

,;

J--­

lJ&~

RIGHT SWITCHES

~~&
'~ _____________ ~~ _____________ J

6451 -7 C(ACC) when
DO lever is raised

··16-2

4. Shifting

After a number has been put into the Accumulator it can be reppsitioned
to--

or Ii shifted, Ii to the' right o'r left. There are two Ivays of shifting ~

rotation, in Ivhich the end=elements of the Accumulator are connected together

so as to form a closed ring, and scaling, in which the end-elements are not

so connected.

L ~11 o~ D I.HI I~I I~I I I
Rotation

L 11 0

D 1-71 1-71 1-71 I I I~
Scaling

Examples of shifts of one place:

rotating Effect of scaling
ri lace ri ht 1 lace

before 000 000 011 001 000 000 011 001 = +25 (decimal)

after 100 000 001 100 000 000 001 100 = +12

before 111 111 100 110 111 111 100 110 = ~25 (decimal)

after 011 111 110 011 111 111 110 011 = =12

Note that, in scaling, bits are lost to the right, which amounts to an error

of ilrounding offu
; the original sign is preserved in the Sign Bit and

replicated in the bit positions to the right of the Sign Bit. This has the

effect of reducing the size of the number by powers of two (analogous to

moving the decimaL point in decimal calculations).

Shifting

The LINC has three instructions, called the Shift Class instructions,

which shift the contents of the Accumulator; these are~ ROTATE RIGHT,

ROTATE LEFT, and SCALE RIq-HT. Unlike the.simple instructions we have con~ .
sidered so far, the code number for a Shift Class instruction includes a

variable element which specifies the number of places to shift. For examp'le,

we write "ROL n,1I which means tlrotate the contents of the Accumulator n

places to the left, Ii wherell'~' can be any number from 0 through 17 (octal) 0

As a further variation of the Shift Class instructions, the Link Bit 'can

be adjoined to the Accumulator during rotation to form a l3-bit ring as shown

below, or to bit 0 of the .Accumulator during scali

bit scaled out of the Accumulator~

to preserve the lo'\v order

Rotation with Link Bit

Scaling with Link Bit

The code number ofa Shift Class instruction, eog" ROTATE LEFT, therc~

fore includes the number of places to shift and an indication of whether or

not to include the Link Bit. We use the full expression ROL i n,which has

the octal coding:

-ROL i n

fi
[li

0240 + 20i +n

t

::;

::;

O~

l~

ACC only

Link ~ ACC

number of places to shift
(n:::;Q, 1, ... -, 17)

~ so that; for example, RoiiTE AGC LEFT 3 PLACES has the code number 0243, and

ROTATE ACC WITH LINK LEFT 7 PLACES' has the code number 0267. Note the

16-2 LINC Memory and Memory Reference Instructions

correspondence between the code terms and bit-positions of the binary-coded

instruction as it appears, for example, in the Lett Switches ~ .

\~ ~ ~ ~ &~
V"

ROL n

ROL i 7

Code number

Similar coding is used wi'th ROTATE RIGHT, ROR. i n, 300 + 20i + n, and SCALE
. .

RIGHT, SCR i n, 340 + 20i + no

'-.. LINC Memory and Memory Reference Instructions

Before we can proceed to other instructions it is necessary to introduce

the LINC Memory. This Memory is to be regarded as a set of 1024· (decimal)

registers* e.ach holding 12=bit binary numbers in the manner of the Accumulator.

These memory registers are numbered 0, 1, o. 0 J 1023 (decimal) ,? or 0, 1,9 ~ 0 0,

1777 (octal), and we shall speak of lithe contents of register 3, ii c(3), Withe

contents of register X,.!! c(x) J etc OJ referring to 1i3ii a~d "XiV as Merp.6ry

Addresses.

The Memory actually consists of a remotely-located array of magnetic

storage elements with related electronics, but for introductory purposes we

can view it in terms of two registers of lights, namely the MEMOR.Y ADDRESS

register and the MEMORY CONTENTS register~
e

L ACCUMULATOR

D
MEMORY ADDRESS MEMORY CONTENT S

IT] II /' I I I
I Left Switches Right Switches I

~~~ ~~~ ~~~ ~~~ ~~~ ~~~ 

*See Appendix I for a discussion of the LINC as a "double memory" machine 0 

9 



10 

I STC I 
The, STORE..;CLEAR Instruction 

By using, these two re;g~'8tersin conjunction with the Left Switches :i~ ", 

is possibl~ ito find out what values the memory registers contain. If, for, 

example, we are interested in the contents of register 3, we may set the Left 

Switches to the memory address 0003 and then 'push the button labeled EXAM. 

We will see 0003 in the Memory Ad~ress register, and the contents of 

register 3 will appear in the MemOry Gontent's,register. ' By setting>the Left 

Switches' to a memory address and pushing EXAM, we can examine the contents' of 

any register in the LINC Memory. 

The contents of any selected memory register may be changed by using both 

the Left and Right Switches and the pushbutton marked FILL. If, for eXB-mple, 

we want the memory register whose address is 700 to contain -1 (ioeo, 71'76 

octal) we again set the memory address, 0700, in the Left Switcheso We set 

the Right Switches to the value 7.776 and push the FILL button. A 0700 will 

appear in the Memory Address register and 7776 will appear in the Memory C01J.= 

tents register, indicating th~t the cbntents of register 700 are now 7776. 

Whatever'value register 700 may have contained before FILL was pushed is lost:; 

and the new value has taken its place., In this way any register in 'the LINC 

Memory c~n be filled with a new number. 

None of the LINC instructions makes explicit reference to the Memory 

Address register or Memory Contents register; rather, in referring to memory 

register X, an instruction may direct the LINC implicitly to put the address X 

into the Memory Address register and the ,contents of register X;' C(X), into 

the Memory Contents register. 

The STORE-CLEAR Instruction 

Now we can describe the first of the memory reference instructions, 

STORE-CLEAR X, STC X, which "has the code' number 4000 + X, where 

o :s X :S1177 ( octal). (From YioW on we "will use only octal numbers for 

addresses.} Execution of ,STCXhas t-wo effects~ 1) the contents of the 

Accumulator 'are copied into memory register X, C(ACC) ,-"4C(X) ,and 2,) the 

Accumulator is then cleared, a -) C(ACC). (The Link Bit' is not cleared.) 

Thus" for example, ifC(ACC)=:";,Q503 and'C(67l) =: 234" and we set the code 



16-2 The ADD Instruction and' Binary Addition 

number for STe 671, i.e., 4671, ih the Left Switches, then:raising the,DO 

lever ivil.l put 0 into the Accumulator and 0503 into register 67L; The. 

original contents. of register 671 are lost. 

It will be clear, .now, th~t the Memory can be filled'with new nurnbers 

at any time either by using the FILL pushbutton and the switches, or by 

loading the Accumulator from the Right Switches with the RSW instruction and 

the DO lever and then storing the Accumulator contents with the STC X instruc­

tion and the DO lever. 

The ADD Instruction and Binary Addition 

STC is one of three Full Address Class instructions. Another instruc­

tion in this class, ADD X, has the code number 2000 +X where 0 ~ X ~ 177.7. 

Execution of ADD X has the effect of adding the contents of memory register X 

to the contents of the Accumulator, i.e., e(x) + e(ACC) -:-7 e(ACC) . If the 

Accumulator is first cleared, ADD X will, of course, have the effect .of mere ly 

copying into the Accumulator the contents of memory register X, i.e., 

e(x) ~ C(ACC)~ In any case, the contents of memory register X are unaffected 

by the instruction. 

The addition itself takes place in the binary system,* withi.n the 

limitations of the 12-bit regist~rsG The basic rules for binary addition are 

simple~ 0 + 0 =: 0; 1 + 0 =: 1; 1 + 1 =: 10 (i.e .. , "zero, with one to. carryii). 

A carry arising from the left=most column (lierid_carryii) is brought around and 

added into the ri,ght-most column (iiend-arouhd carry"). Some examples (b~gin 

at the right-most column as in decimal additi,on): 

001 111 010 001 111 100 010 011 

000 010 111 001 001 010 010 000 

11 111 1 1 (Carries) 11 1 (Carries) 
010 010 001 010 (Sum) 000 110 100 011 

11 

I ADD I 

(1 
) 1 (End=around carry) 

11 (Carries) 
000 110 100 100 (Sum) 

The reader should try some examples of his own, and incidentally verify the 

fact that adding a number to itself with end=around carry is equivalent to 

* See Volume 16, Section 1, "An Introduction to Binary Numbers and Binary 
ArithmetiG,1I Irving H. Thomae. 



12 The Instruction Location Registe:r 

rot.ating left, one place 0'. :. With signed-,.integer interpretation, some . other 

examples are~ 

000 000 000 101 = +5 

,111 ,111 111 100 = -3 

III 
000 

111 
000 

111 
000 001 

) 1 

1 
000 000 000 010 = +2 

(1 

111 111' 111 010 = ... 5~· 

111 111 111 100 = -3 
111 
111 

111 
111 

11 
110 110 

) 1 

111 111 110 111 = -8 (decim&l) 

It can be seen that subtraction of the number N is accomplished by addition 

of the complement of N, N. Of course J if either the sum or difference is too 

large for the Accumulator to hold, the result of the addition may not be 

quite the number we would like to have. For example, adding 1 to the largest 

positive integer in this system (+3777, octal) results in the largest nega= 

tive integer (-3777, octal). This is sometimes called "overflowing the 

capacity of the Accumulator. 1I 

6e The Instruction Location Register 

It is clear that the code numbers of a series of different instructions 

can be stored in consecutive memory registers. The LINC is designed to' 

execute such a Hstored program!! of instructions by fetching and carrying 

out each instruction in sequence, using a special 10-bit register called 

the 'INSTRUCTION LOCATION register, (IL),to hold'the address of the next 

instruction to be executed. Using the FILL pushbutton and the Left and' 

16-2 



16-2 The Instruction Location Register 

Right Switches already discussed, we can, for example, put the code numbers 

for a series of instructions into memory registers 20-24 which will divide 

by 8 the number held in memory register 30 and store the result in memory 

register 31: 

Memory 
Address Memory· Contents Effect 

Start 
)20 CLR 0011 Clear the Accumulator. 

21 ADD 30 

I 
2030 Add the contents of register 30 to 

the Accumulator. 
22 SCR 3 0343 Scale C(ACC) right 3 places to 

I 
divide by 8. 

23 STC 31 4031 Store in register 310 

24 HLT 

I 
0000 Halt the computer 0 

30 N, I N Number to be divided by 8. 

31 N/8 
I 

N/8 Result. 

Example 10 Simple Sequence of Instructionso 

We can use the FILL pushbutton and the Left and Right Switches to put the code 

numbers for the instructions into memory registers 20 = 24 and the number to 

be divided into register 300 Pushing the console button labeled START 20 

directs the LINC to begin executing instructions at memory register 20. That 

is, the value 20 replaces the contents of the Instruction Location registero 

As each instruction of the stored program is executed, the Instruction Loca= 

tion register is increased by 1, C(IL) + l.~ C(IL). When the Instruction 

Location register contains 24, the computer encounters the instruction HLT, 

code 0000, which halts the machine. To run the program again we merely push 

the START 20 pushbutton. (The code numbers for the instructions will stay 

in memory registers 20 - 24 unless they are deliberately changed.) 

13 
I HLT\ 



The JUMP Instruct~ion 

The last Full Address instruction, JUMP to X, JMp X,with the code 

number 6000+ X, has the effect of setting the Instruction Locat:ronregister 
';. ".,,-: 

to the value X; X-7C(IL). That is, the LINC, instead of incre~sih~ the 

contents of the Instruction Location register by one and executing the next 

instruction in sequence, is, directed by the JMP instruction, tog~t its next 

instruction from memory register X. In the above example having' a JUMP to 

20 ins~ruction, code 6020, in memory register 24 (in place of HLT) would 

cause the computer to ,':rep~at the'program endlesslyo If the program were 

started with the START 20 pushbutton, the Instruction Location. register 

'would hold the succession of values~ 20, 21, 22, 23, 24, 20, 21, etc. 

(Later we will introduce instructions which increase C(IL) by extra amounts, 

causing it to ii skipo1¥) 

JMP X has one further effect~ if JMP 20, 6020, is held in memory 

register 24, then its' execution causes the code for iiJMP 25 ii to' replace the 

contents of register 0; i.e., 6025 -7 C(O). More generally, if JMP X is in 

any memory register H p , Ii 0 :S p :S 1777, then its execution causes 

iiJMp p+liS -7 C(O). 

,Memory 
Address Memory Contents 

o 

-7 P 

p+l 

X 

JMPp+l 6000 + p+l 

6000 + X 

, . 

Effect 

X -7 C( IL), and II JMP p+l ii,'-'7C( 0) 0 

Next instruction. 

This iiJMP p+lu code replaces the contents of register 0 every t'ime a JMP X 

instruction is executed unless X = b ,'in which case the contents of 0 are 

unchanged. The use of memory register 0 in this way is relevant to a pro= 

gramming technique involving IIsubroutines ii which will be described latero' 



16-2 The JUMP Instruction 

The following programm~.ng example illustrates many of the features 

described so far. It finds one-fourth of the difference between two numbers 

Nl and N
2

, which are located in registers 201 and 202, and leaves the result 

in register 203 and in the Accumulator. A~ter filling consecutive memory 

registers 175 through 210 with the appropriate code and data numbers, the 

program must be started at memory register 175. Since there is no R'START 17511 

button on the console, this is done by setting the Right Switches to 0175 

and pushing the console button labeled START RS (Start Right Switches). 

Memory 
Address 

Start> 175 

176 

177 

200 

201 

202 

203 

204 

205 

206 

207 

210 

Memory Contents 

CLR 

ADD 201 

COM 

JMP 204 

Nl 

N2 

(N2-Nl )/4 
ADD 202 

SCR 2 

STC 203 

ADD 203 

HLT 

0011 

2201 

0017 

6204 

2202 

0342 

4203 

2203 

0000 

Effect 

o -7 C(ACC) 0 

Nl ~ C(ACC). 

Forms ~Nl' 

Jumps around data; 204 -7 C(IL), 
and JMP 201·~ C(O)o 

}Data and result. 

(N2-Nl ) -7 C(ACC). 

Divides by 40 

Stores result in 203; C(ACC)-7 
C(203); 0 -7 C(ACC). 

Recovers result in ACC. 

Halts the LINC. 

Example 20 Simple Sequence Using the JUMP Instruction e 

In executi.ng this program, the Instruction Location register holds the 

succession of numbers~ 175, 176, 177, 200, 204, 205, 206, 207, 210. 

::z: f j mf JOi/l(' {jv ~ tit 
(1, ~ r0:-_o..lJ,ei) 

\ \ II 00 
J 

15 



16 16-2 

70 Address Modification and, Program i!LoopsU 

Frequently a program of instructions must deal with a large setbf 
, '< 

numbers ra.ther'than just one or two. Suppose, -for example, that we want to 

add together 10'0 (octal) riumberso and 'that the llumbers are stored in the 

memory in registers 1000 through 1077. We want to put the' sum in memory 

register 11000 We could, of course, 1vrite out all the instructions neces~ 

sary to do th1.s, 

Memory 
Address Memory Contents Effect 

-'-7 ' 20 CLR 0011 o -7 C(ACC); o -7 C(L) 0 

21 ADD 1000 3000 Add 1st number. 

22 ADD,lOOl 3001 Add 2nd number. 

23 ADD 1002 3002 Add 3rd number. 

24 ADD 1003 3003 Add 4th number. 

etc. etc. etc. 

but it is easy to see that the program 1vill be more than 100 (octal) 

registers long. A more complex,but considerably shorter, program can be 

written using a programming technique known as lIaddress modification. Ii 

Instea,d of writing 100 (octal) ADD X -instructions" we write only~ ADD X 

instruction,which lYe repeat 100 (octal) times, modifying the X part of the 

ADD X instruction'each time it is repeated .. In this case the computer first 

executes an ADD 1000 instruction;' the program then adds one to the ADD in= 

struction itself and re.stores it, so that it is now ADD 1001. The program 

then jumps back to the location containing the ADD instruction and the 

computer repeats the entire process, this tim,e executing an .ADD 1001 

instructiono In short, the,1?rogram is writt~n so that _ it, changes its own 

instructions while it is running. 



16-2 Address Modifi9ation and Program i:LpopSH 

The process might be diagrammed~ 

Start 

Add 1 to the 
ADD X instruction 

Have 100 (octal) 
numbers been 

summed? 
no 

This technique introduces the additional problem of deciding when all 

100 numbers have been summed and halting the computer. In this context we 

introduce a new instruction ACCUMuLATOR ZERO, AZE, code 0450. This is one 

of a class of instructions known as the Skip instructions; it directs the 

LINC to skip the instruction in the next memory register when C(ACC) = 
either pOBitive or negative zero (0000 or 7777, octal). If C(ACC) f 0, 

the computer does not skip. For example, if C(ACC) = 7777, and we write: 

. Memory 
Address Memory Contents 

-7 P 

p+l 

p+2 

0450 

the computer will take the next instruction from p+2·. That is, when the 

AZE instruction in register'p is executed, p+2 will replace the contents of 

the Instruction Loc:ation register, and the computer will skip the instruc~ 

tion at p+l. If C(ACC) f 0, thenp+l -7C(IL) and the computer executes the 

next instruction in sequence as usual. 

17 
lAZE I 



18 Address Modification· and Program HLo'ops Ui 

The following example sums the numbers in 'memory registers '1000. through 

1077 and puts the sum into memory register 1100, using address modification 

and the AZE instruct ion to decide when-!to halt ,the computer 0 (Square bracket s 

indicate registers whose contents ~h~ngewhile the'program is running.) 

Start 

Memory 
Address 

~ 

10 

11 

12 

20 

21 

22 

23 

24 

25 

26 

27 

30 

31 

32 

33 

34 

35 

36 

37 

1000 

1001 

. 
1076 

1077 

1100 

Example 

Memory Contents Effect 

ADD 1000, 

1 

-(ADD 1100 

CLR 

ADD 10 

STC 25 

STC 1100 

CLR 

[ADD X] 

ADD 1100 

STC 1100 

ADD 25 

ADD 11 

STC 25 

ADD 25 

ADD 12 

AZE 
-- --,rl 
JMP 24 I 
HLT f-~...J 

Nl 

N2 

N77 
N100 

[Sum] 

3. Summing a 

3000-' } , ' 

0001 . Constants used by program. 

4677 

0 

0011 

2010 } Code for ADD 1000 --> C(25). 
o ~ C(ACC). 

4025 

5100 o ~ C(1100), for accumulating sum. 

,. 0011 

[2000+X] 
}clear ACC and actd~(X) to C(~CC). 

I 3100 Sum so far + C(ACC) -7 C(ACC). 

5100 Sum so far -7 C( 1100) " 
, 2025 J'ADD X instruction in register25" 

I 
2011 

~ C(ACC). Add 1 to C(ACC) .' , 
and replace. in register.25,. " 

4025 

I 
2025 } C(25) + C(12) --> C(ACC). If C(25) 

2PJ.2 
= tiADDII00,iI then C(ACC) = 77770 

I 0450 Skip to register 37 if C(ACC) = 7777. 

I 
6024 If not, return and add next number. 

0000 When C(ACC) = 7777, all numbers have 

I 
been summed 0 Halt the computer. 

I 
N " 1. 
N2 

I Numbers to'··be summed . 

I N77 

I 
N100 

[Sum] 

Set of Numbers Using Address Modification. 

, 16 ... 2 



16-2 Address Modificatian and Program ULaapsH 

The instructians at lacations 20 - 22 initially set the cantents af memory 

register 25 to. the cade far ADD 1000. At the end af thepragram, register 25 

will cantain 3100, the cade far ADD 1100. Adding (in registers 33 and 34) 

C(25) to. C(12), which cantains the camplement af the cade far ADD 1100, re­

sults in the sum 7777 anly when thepragram has finished summing all 100 

(actal) numbers. This repeating sequence af instructians is called a Hlaap,!! 
and instructians such as AZE can be used to. cantral the number aftimes a 

10.0.1' is repeatedo In this example the instructians in locations 24 through 36 

·",ill be executed 100 (octal) times befare the camputer halts 0 

The follawing pragram scans the cantents af memary registers 400 

thraugh 450 loaking for registers which do. not cantain zero.. Any nan=zero 

entry is moved to. a new table beginning at location 500; this has the effect 

of "packing tl the numbers so. that no registers in the new table contain 

zero.. When the pragram halts, the Accumulator cantains the number of nan= 

zero entries 0 

19 



20 

Memory 
. AddresS' 

4 

5 
6 

7. 
10 

Start)lOO 

101 

102 

103 

104 

105 

106 

107 

110 

III 

112 

113 

114 

115 

116 

117 

120 

121 

122 

123 

124 

125 

126 

127 

,Address Modification and Prog:t;'am vfLoopSH 

Memory Contents 

ADD 400 

S1!C 500 

1 
;~ ~ 

-(ADD 4~~) 

-(STC, 500) 

CLR 

,,ADD 4 

STC 106 

ADD 5' 

STC 112 

-~ CLR 

[ADD 400] 

AZE ----I 
JMP 112 I , 
JMP 116~-1 

[STC 500] 

ADD 6 

ADD 112 

STC 112 

ADD 6 

ADD 106 

STC 106 

ADD 106 
., 

ADD 7 

AZE ----I 
JMP 105 I 

I 
ADD 112~-' 

ADD 10 

HLT 

I 

1 

1 

I 
1 

1 

2400 

4500 

0001, 

5326 

3277. 

0011 

2004 

4106 

2005 

4112 

'I 0011 
[2000+X] 

1 0450 

I 
6112 

6116 

1 [4000+x] 

I 
2006 

2112 

1 

4112 

2006 

I 2106 

1 

4106 

2106 

1 

2007 

0450 

1 6105 

1 

2112 

2010 

I 0000 

Effect 

Constants used b,y ,th~ prqgramo 

} Code for ADD 400--> c(106). 

'1 

:} Code for STC 500--> C(1l2). 

c(x) ~. C(ACC). 

If C(ACC) = zero,skip t.o 
location 1110 

C(ACC) f 0, therefore JMP 
to location 1120 

C(ACC) = 0" therefore'JMP 
to location 116. 

Store non-zero entry in new table. 

j'.' A~d i ~ ;~g~ ~~ e ~T~l~ ~st ruct ion 

'} Add 1 to the ADD instruction 
. in register 106. 

} c(106) + C(7) ~ C(ACC). If 
c(106) = ADD 451, then 
C(ACC) = 7777. 

If C(ACC) = 7777, skip to 
location 125. 

If not, return to examine next 
number 0 

If C(ACC) = 7777, then number 
of non-zero entries ~ C(ACC) 
and computer halts. 

Example 40 Packing a Set of Numbers. 

16",,2 



Index Cls"ss Instructions I 

At the end of the program, register 106 will contain the code for ADD 451, 

and all numbers in the table will have been examined. If, say, 6 entries 

were found to be non-zero~ registers 500 - 505 Ivill contain the non-zero 

entries, and register 112 will contain the code for STC 506. Therefore by 

adding C(112) to the complement of the code for STC 500 (in registers 125-

126 above), the Accumulator is left containing 6, the number of non- zero 

entries 0 

8. Index Class Instructions I 

Indirect Addressing 

The largest class of LINC instructions, the Index Class, addresses the 

memory in a somewhat involved manner. Th~ instructions ADD X, $TC X, and 

JMP X are called Full Address instructions because the 10-bit address X, 

o < X < 1777, can address directly any register in the 2000 (octal) register 

memory. The Index Class instructions, however, have only 4 bits reserved for 

an address, and can therefore address only memory registers 1 through 17 .--
(octal). The instruction ADD TO ACCUMULATOR, ADA i ~, octal code 1100 + 20i + ~, 

is typical of the Index Class: 

i = 0 or 1 
~ 

ADA i ~ 1100 + 20i + f?> 

l' l' 
ADA 1 .:S f?> .:S 17 

Memory register ~ should be thought of as containing a memory address, X, 

in the right-most 10 bits, 

11 10 9 0 

I I I I I I I I I [ I 
J 

V 
X 

and ''Ie speak of X(~), meaning the right 10~bit address part of register ~o 

The left-most bit can have any value whatever, and, for the present, bit 10 

must be zero.* In addressing memory register ~, an Index Class instruction 

* See Appendix Ie 

21 

(ADiI 



22 Indire ct" Adare~s-iirg' 

tells the computer where to find the 'memory a"ddress to be used in execut ... 

ing the instruction. This is so'metimes called"indirect lt addressing. 

For example, if ,'vewant",~Qad,d the value .35 to. the contents of, the, 

Accumulator, and 35 is held in memorY,re&ister 270, we can use the ADA 

instruction in the following manner: 

Memory 
Address Memory Contents Effect 

~-- --€V 0270 Address of register containing 35. 
/ 

e 
, 

,/ 

I 
, 

X 
,/ 

0270 k , 0035 0035 \. 

I "\ , .. 
\. ,". .. " , . 

I ~'p ADA® 1100 + f3 C(270) + C(ACC) ~ C(ACC). 

I 
Note that the' ADA instruction does not tell the computer directly where to 

find the number 35; it tells the computer instead where to find the address 

of the memory register which contains 35. By using memory registers 1 

through 17 in this way, the Index Class instructions can refer to any 

register in the memory. 

; 16-2 



Indirect Addressing 

Two other Index Class instructions, LOAD ACCUMULATOR, LDA i t3, and 

STORE ACCUMULATOR, STA i t3, are used in the follo\ving program \vhich adds the 

contents of memory register 100 to the contents of register 101 and stores 

the result in 1020 The LDA i t3 instruction, code 1000 + 20i + t3, clears the 

Accumulator and copies into it the contents of the specified memory register. 

STA i t3, code 1040 + 20i + t3, stores the contents of the Accumulator in the 

specified memory register; it does not, ho\vever, clear the Accumulator. 

Addition \vith ADA uses 12-bit end-around carry arithmetic. 

Memory 
Address 

10 

Memory Contents ~ Effect 
- Xl --I-·~-~o~·-· Ad~ress of Nlo . ------.-.. ---.. ~ ..... ~ ... -.-

11 
I 

12 I 
X2 I 0101 Address of N

2
0 

X3 I 0102 Address of (Nl +N2 ). 

I 
Start.> 30 I 

31 
I 

I 32 ! 
33 

t 
i 

LDA 10 1010 Nl , i.e., C(lOO), -7 C(ACC). 

ADA 11 1111 N
2

, i. e ., C (101) , + C(ACC) -7 C(ACC). 

STA 12 1052 Nl +N2 -7 C( 102) . 

HLT 0000 
j . 
1 
\ 

100 

101 

102 

Example 5. Indirect Addressing. 

23 

L~~~l 
r~i] 



24 

Index Registers and Indexing 

When U i U is used Ivi th an Index Class instruction, that is, Ivhen i = 1, 

the computer is directed to ~ to the X part of memory register f3 beforE( 

it is used to address the memory. This process is called uindexing,l!i and 

registers 1 through 17 are frequently referred to as Index Registers. In 

the example below, -6 is loaded into the Accumulator after Index Register f3 

is indexed from 1432 to 1433 by the LDA i f3 instruction. 

Memory 
Address 

1432 

1433 

Memory Contents 

[X] 

LDA i f3 1020 + f3 

-6 7771 

Ii Effect 

tAd~-minus 1· of register 
~ containing 7771. 

I l X + 1, i.e.,1433, ~ C(f3), and 
! c(1433) ~ C(ACC). 

When the LDA i f3 instruction is executed, the value X(f3) + 1 replaces the 

address part of register f3 (the left-most 2 bits of register f3 are unaffected). 

This new value, 1433, is nOlV used to address the memory. Note that if the 

LDA instruction at p were repeated, it Ivould deal Ivi th the con:tents of 

register 1434, then 1435, etc. The utility of Index Registers in scanning 

tables of numbers should be obvious. 

Indexing involves only 10-bit numbers, and does not involve end-around 

carry. Therefore the address ilfo11owingll 1777 is 0000. (The same kind of 

indexing takes place in the Instruction Location register, which Hcounts ti 

from 1777 to 0000.) 

16 ... 2 



16-2 Index Registers and. Indexing 

The following example using indexing introduces another Index Class 

instruction, SKIP IF ACCUMULATOR EQUALS, SAE i t3, code 1440 + 20i + t3. This 

instruction causes the LINC to skip one register in the sequence of pro­

grammed instructions when the contents of the Accumulator exactly match the 

contents of the specified memory register. If there is no match, the com­

puter goes to the next instruction in sequence as usual. The program example 

clears (stores 0000 in) the set of memory registers 1400 through 1777; the 

SAE instruction is used to decide Ivhether the last 0000 has been stored. 

Memory 
Address 

3 

4 

Start 7350 

351 

352 

353 

354 

355 

356 

Memory Contents 

[x] 

356 

CLR 

STA i 3 

ADD 3 

SAE 4 

;;-3-;°l 
HLT ~-J 

1777 

0011 

1063 

2003 

1444 

6350 

0000 

1777 

Effect 

Initial Address minus 1 fOT the 
STA instruction. 

Address of test number 0 

Clear the Accumulat or 0 

Index the contents of register 3; 
store C(ACC) in the memory 
register Ivhose addres s == x( 3) . 

C(3) -7 C(ACC) 0 

Skip to 0355 if C(ACC) == C(356). 

If not, return to store 0000 in 
next register. 

Halt the computer. 

Example 6. Indexing to Clear a Set of Registers. 

When the program halts at register: 355, register 3 will contain 17770 The 

SAE instruction is used here (as the AZE instruction was used in earlier 

examples) to decide when to stop the computer. The instructions in regis­

ters 350 through 354, the iiloop, II will be executed 400 (octal) times before 

the program halts. Zero is first stored in register 1400, next in 1401, etc. 

25 

ISM I 



Index Registers and Indexing 

Another program scans the memory to see if a particular number, Q, 

appears in any memory register 0 through 1777. Q is to be'set in the Right 

SwitchE":;s, and the address of any register containing Qis to be left in the 

Accumulator. 

Memory· 
Address 

------

17 

Start ~ 20 

21 

22 

23 

24 

25 

Memory Contents ---.: -l----·-
[X] [-J 

RSW I 0516 

CSAEi 17 I I 
1477 

JMP 21 I 

I 
6021 

CLR ~_--1 0011 

ADD 17 

I 
2017 

HLT 0000 

Effect 

Address of register whose contents 
are to be compared with Right 
Slvitches. 

C( RS) ~ C(ACC) . 

Index register 17~ and compare 
C(ACC) with C(X). 

If not equal, return for next test. 

}

'"'. If equal, cle.ar ACC, copy address 
of register containing Q into 
ACC, and halt. 

Example 7. Memory Scanning. 

If no memory register 0 through 1777 contains the number Q, t4e program will 

. run endlessly. The location of the first register to be tested depends on 

the initial contents of Index Register 17. 

An Index Class instruction, ADD TO MEMORY, ADM i f3, code 1140 + 20i + f3, 

adds the contents of the specified memory register to C(ACC), using 12=bit 

end-around carry arithmetic (as ADD or ADA). The result is left, however, 

not only in the Accumulat~r but in the specified memory register as well. 

The BIT CLEAR instruction, BCL i f3, code 1540 + 20i + f3, is one of three 

Index Class instructions which performs a so-called IIlogicalH operation. 

BCL is used to clear selected bits of the Accumulator. For every bit of the 

specified memory register which contains 1, the corresponding bit of the 

Accumulator is set to o. 

16-2 



16 .... 2 Index Registers and Indexing 

In the following program two sets of numbers are summed-term by term. 

The.first set of numbers, each 6 bits long, is in registers 500- 577, 

bitpO through 5; bits 6 through 11 contain unwanted information. The 

second set of numbers is in registers 600 - 677, and the sums ~eplace the 

contents of registers 600 - 677. 

Memory 
Address 

3 

4 

5 

6 

Start)400 

401 

402 

403 

404 

405 

406 

407 

410 

4,11 

Memory Contents 

[Xl] 

0410 

[X
2 

] 

0411 

~ LDA i .3 

BCL 4 
ADM i 5 

CLR 

ADD 3 

SAE 6 ----l 
JMP 400 I 
HLT ~_-1 

7700 

0577 

[0477] 

I 
0410 

[0577J 

1 

0411 

I 1023 

I· 1'544 

1 

I 
I 
1 

I 
r 

1165 -

0011 

2003 

1446 

6400 

0000 

7700 

O~77 ' 

} 

Effect 

Initial address minus 1 of first set. 

Address of BCL pattern. 

Initial address minus 1 of second 
set. 

Address of test number for halting. 

Index X(3) and load number from 
first set into ACCo 

Clear the left 6 bits of the ACC. 

Index x( 5) ; Add number from 
second-set to C(ACC), and 
replace in memory. 

Check to see if finished. 

C(3) # ~(411), i.e., ~ 0577. 

C(3) = 0577; halt the program. 

BeL pattern for clearing left 
half of ACC. 

Tes;t ,number for halting. 

Example 8. Summing Sets of Numbers Term by Term,. 

27 



Logic Instructions 

The three logic instructions, BCL i ~, BSE i~, and BCO i~, at~b~st 

understood by studying the foll'owing examples" These instructions affedt 

,only theA'ccumulator; the memory register M containing the bit pattetn-;is 

unchanged. 

BCL i ~ BIT CLEAR code: 1540 + 201 + ~ 

Clear corresponding bits of the Accumulator: 

If C(M) = 010 101 010 101 

and-C(ACC) = III III 000 000 

then C(ACC) = 101 010 000 000· 

BSE i ~ BIT SET code: 1600 + 20i + ~ 

Set to ONE corresponding bits of the Accumulator: 

If C(}J1) ~ 010 101 ala; 101 
i;;,I 

and C(ACG) = III III 000 000 

then C(ACC) -, III III 010 101 

BCO i ~ BIT COMPLEMENT code: 1640 + 20i + ~ 

Com}21eme nt corresponding bits of the Accumulator: 

If G(M) = 010 101 010 101, 

and C(.ACC) = 111 III 000 000 

then C(AGG) == 101 010 010 101 

These instructions' have a variety of applications, some of which will be 

demonstrated later. 

16-2 



"16-2 29 ' 

9. Special'Index Register' Instructions 

Before continuing with the Index Class, two special instructions which 

facilitate programming with the Index Class instructions will be intr'oduced. 

These instructions do not use the Index Registers to hold memory addresses; 

rather they deal directly \vith the Index Registers and are used' to 'change or 

examine the contents of an Index Register. 

The INDEX AND'SKIP Instruction 

The INDEX AND SKIP instruction, XSK i a, code 200 + 20i + cx, refers to 

registers 0 through 17 (0;; a;; 17)0* It tests to see whether the address 

part of register a has its maximum value, i~eo, 1777, and directs the LINC 

to skip the next register in the instruction seCluence if 1777 is found 0 It 

will also, when i =: l,index the address part (X) of register aby 10 Like 

the Index Class instructions, XSK indexes register a before examining it, and 

it indexes from 1777 to 0000 without affecting, the left-most 2 bitso We can 

therefore give these 2 bits any value whatever. ~n particular, we can set 

them both to the value 1 and then say that XSK i a has the effect of skipping 

the next instruction \vhen it finds the number 7777, (-0), in register a. 

Now we can easily see how to execute any given sequence of instructions 

exactly n times, where n < 1777 (octal) ~ 

-n 

------~ Given Sequence of 
Instructions 

XSK i a 
- - -,-,~ 1" 

JMPX I 
I 
I 

HLT~~-J 

} -n'stored in register'; a. 

} Given sequence held in register X, X + 1, e,tc. 

:Index ex and test. After '1st ;pass 'c(a) 
:= -n + 1, after 2nd pass c(a) =-n + 2. 
After n pass:esC(CX) ::::;' -n + n :=\ -0 so 
skip over the JMP X instruction and halt. 

* cf. t), 1::; t)::; 17, which does not refer to register o. 

I XSK I 



30 The INDEX AND SKIP Instruction 

Suppose, for exarrrple., th~t He, want to store the contents of the Accum­

ulator in registers 350 through 357. Using register 6 to "count," He can 

Hrite the short program: 

Memory 
Address 

5 

6 

Start ') 200 

201 

202 

203 

Memory Contents 

[xJ 

[-lOJ 

STA i 5 

XSK i 6 ----l 
JMP 200 I 
HLT f--=- -.l 

1065 

0226 

6200 

0000 

Effect 

Initial address minus 1 for STA 
instruction. 

-n,where n ::: number of times to 
store C(ACC). 

Index register 5 and store~(ACC}. 

Index register 6 and test for 
x(6) ::: 1777. 

x(6) ~ 1777, return. 

x(6) = 1777, halt. 

Example 9. Index Registers Used as Counters~ 

,Usj,ng the XSK instruction "lvith i ::: 0, which tests X(cx) without index­

ing, Example 6, p. 25, which stores zero in memory registers 1400 through 

1777, can be more efficiently written: 

Memory 
Address Memory Contents Effect 

3 [x] [1377] Initial address minus 1 for STA 
J.n"struction. 

Start) 350 CLR 0011 o '~ c(Acd). 

351 [STA i. 3 1063 Index register 3 and store zero. 

352 XSK 3 0203 Test for X(3) ::: 1777· --r-i--j 

6351 X(3) ·d return. 353 JMP 351 I T 1777, 

354 HLT,~ -,.J 0000 X(3) ::: 1777, halt. 

Example 10. Indexing and C~:lUnting to Clear aSetbf Registers. 

Here register 3 is indexed by the STA instruction; the XSKthen merely tests 

to see whether X( 3) ::: 1 777, "lvi thout i ndexi ng x( 3) . The re ader should see that 

Example 8 on page 27 can also be more 'efficiently programmed using XSK. 

16-2 



16-2 

The SET Instruction 

The second special inst'ruction which is often used with the Index Class 

instructions is SET i'a, code 40 + 20i + a, where a again refers directly to 

the first 20 (octal) memory registers, 0 ~ a ~ 17. In some of the examples 

presented earlier, the contents of Index Registers are changed, either as 

counter values or as memory addresses, while the program is running. 

Therefore, in order to run the program over again the Index Registers must 

be reset to their initial values. 

The SET instruction directs the LINC to set register a to the value 

contained in ,vhatever memory register we specify. It is uniq,uely different 

from the instructions so far presented in that the instruction itself always 

occupies 2 consecutive memory registers, say p and p + 1: 

Memory 
Address 

p 

p + 1 

P + 2 

Memory Contents 

SET i a 

c 

I 
I 

40 + 20i + a 
c 

The computer automatically skips over the second register of the pair" . 

p + 1; that is the contents ofp + 1 are not, interpreted, as the next 

instruction. The next instruction after SET is always taken from 11 + 2& 

The i-bit in the SET instruction does not control indexing. 

Instead, it tells the LINC how to interpret the contents of register p + l~ 

31 
I SET I 



32 The SET Instruction 

Wben i :::: 0, the LINe is directed to interpret C(p + 1) as the mem0r'Y 

address for locating the value which will replace C(a). That is, register 
. ,; . .. 

p + 1 is thought of as containing X, 

. Memory 
Address 

.-') p 

p + 1 

X 

M~mory 

[N] 

SET 10 

X 
. 

N 

Contents 

[-J 

I 0050 

X 

N 

Effect 

C(X) , i.e., N, -) C( 10) & 

and the content;:; of register X replace the content s of 10, c( xL ~ C( 10) . In 

this case X is the right-most l~ bi~s, the, address part, .of register: p + 1; 

the left-most bit of C(p + 1) .may have any value and, for the present, bit 10 

must be zero. * 
In the second case, when i :::: 1, the LINC is directed to interpret 

C(p + 1) as the valu~ which 'Hill replace C(a). Thus, belo'iv, C(p + 1) -) C(5): 

Memory 
Address 

5 

Memory 

[N] 

-)p SET i 5 
P +'1 N 

'* See Appendix I. 

I 
I 

0065' ' 

It 

Effect' 

16 ... 2 



16-2 The SET Instruction 

The following program scans 100 (octal) memory registers looking for 

a value which matches C(ACC). It halts with the location of the matching 

register in the Accumulator if a match is found, or with -0 in the Accum­

ulator if a match _,is not found. The numbers to be scanned are in 

registers 1000 - 1077. 

Memory 
Address Memory Contents Effect 

3 [-100] I [7677] -(number of registers to scan). 

4 [x] 

I 
[0777] Scanning address. 

. 

. . 
Sta rt) 400 SET i 3 I 

0063 C( 401) , i.e., -100, ~ C(3). 
401 -100 

I 
7677 

402 SET i 4 0064 c(403), i.e., 777, ~ c(4). 
403 777 

I 
0777 

404 ~SAE i 4 1464 Index x(4) and compare C(X) ---I 

I 
with C(ACC). 

405 JMP 411 I 6411 C(ACC) i C(X), jump to 4110 

406 CLR~-.J 

I 
0011 

} C(ACC) == C(X), copy location of 
407 ADD 4 2004 matching register into ACC 
410 HLT 

I 
0000 and halt. 

411 4XSK i 3 0223 Index register 3 and test for ---I 

I 
X(3) == 1777-

412 JMP 404 I 6404 X(3) f 1777, return. 

413 CLR ~--J 

I 
0011 

414 COM 0017 }X(3) = 1777; all numbers have be 
scanned so -0 ~ C(ACC) and ha 

415 HLT I 0000 

Example 11. Setting Initial Index Register Valueso 

The t'\vO SET instructions are executed once every time the program is 

en 
It. 

started at 400; initially registers 3 and 4 may contain any values whatev~r, 

since the program itself will set them to the correct values. 

33 



Index Class Instructions II 

Suppose we had wanted to SET two Index registers to the same value, 

say ~lOO. We could \\Trite either~ 

Memory 
Address Memory Contents Effect 

11 

12 

-7 20 

21 

22 

23 

-7 20 

21 

22 

23 

or: 

SET i 11 

-100 

SET 12 

21 

SET i 11 

-100 

SET 12 

11 

I 
I 
I 
I 

I 
I 

0071 

7677 

0052 

0021 

0071 

7677 

0052 

0011 

C(21), i.e., -100, -7 C(ll). 

C(21), i.e., -100, -7 C(12). 

C(21), i.e., -100, -7 C(ll). 

C(ll), i.e., -100, -7.C(12). 

We could also, of course, have written SET 2:,12 in register 22 wi.th -100 

in register 23, but there are applications appropriate to each form. 

10~ 
: \ 

Index Class' Instructions II 

Double Register Forms 

The Index Class i"nstructibns have been thought of as addressing an 

Index Register f3, 1::; f3 ::; 17, which contains a memory address X to be used 

by the instruction. They have been presented as single register instruc­

tions (unlike SET).' HO,vever, when an Index Class instruction is written 

with f3 = 0, it becomes a dOuble register instruction like SET, whose operand 

address depends on i and p + 10 These two interpretations are shown for STA. 

16-2 



16-2 

Case: i = 0, ~ - 0 

Memory 
Address 

Double Register -Forms 

450 

451 

Memory Contents Effect 
81;-;-·,104-0-+ -2-0-(-o-)-+-O---l-C-(A-C-C-)-~-C-( 3-3-0 ) . 

330 I 0330 

When i = 0, the LINC is directed to use C(p + 1), i.e., c(451) as the 

memory address at Ivhich to store C(ACC). The left-most bit of C(p + 1) may 

have any value, and, for the present, bit 10 must be zero.* 

Case: i = 1, ~ = 0 

Memory I . 
Address ~ry Contents Effect 

--450-- STA il--l~6o C(ACC) -> C( 451). 

451 [-J I [-J 

When i = 1, the LINC is directed to use p + 1, i. e., 451, directly as the 

memory address, and the contents of the Accumulator are stored in 451. Note 

that when ~ = 0 in an Index Class instruction, we are not referring to 

memory register O. In fact, Ivhen ~ = 0, no reference Ivhatsoever is neces-

sarily made to the Index Registers. As with SET, the computer automatically 

takes the next instruction from register p + 2. 

* See Appendix I. 

35 



We may n01v think of the Index Class instructions as having four 

alte~native ways of addres,s1ng the memory, which depend on i and f3, and 

which are summarized below~ 

~_w~, . 

Index Class Address Variations 

Case i, .t3 Example Form' Comments 

" 

1 i := 0 LDA f3 Single Register t3 holds operand address. 
t3 1= 0 Register 

I i := 1 LDA i f3 Single First, index register f3 by I. 
2 

f3 1= 0 Register Then, register f3 holds operand address. 

3 
i := 0 LDA Double Second register holds operand address. 
f3 := 0 X Register 

4 i := 1 LDA i Double Second register holds operand. 
f3 := 0 N Register 

The next programming example scans mem~ry registers 1350 through 1447, 

counting the Llnrnber of instances in1vhich register contents are found to 

exceed some ttthreshold li value, To In other words if C(X) >T, X := 1350, 

1351, ... , 1447, then C(CTR) + 1 ~ C(CTR), where CTRis a memory register 

used as a counter, initially set to zero. The count, N, is to appear in 

the Accumulator upon program completion. 

16 ... 2 



16-2 

Memory 
Address 

14 

15 

Start>3~ 

31 

32 

33 

34 

35 

36 

37 

40 

43 

44 

45 

46 

47 

50 

51 

52 

53 

54 

Double Register Forms , j./, rJ/ ( 

Memory Contents 

SET i 14 

1347 

SET i 15 

-100 

CLR 

STC 51 

I
~ LDA i 

-T 

ADA i 14 
r 

BCL i 

6777 

SAE i 

0000 ----, 
JMP 52 I 
LDA i(-~·"I 

1 

ADM i 

[N] 

XSK i. 15 
JMP--36 1 

I 
HLT ~_.-J 

I 
I 

0074 

1.347 

I 
I 
I 
I 

I 

I 

I 

I 

I 

I 

I 
I 
I 

0075 

7677 

0011 

4051 

1020 

1560 

6777 

1460 

0000 

6052 

1020 

0001 

1160 

0235 

6036 

0000 

Effect 

Address of register to be tested. 

~(number of registers to test). 

Set Index Register 14 to initial 
address minus 1. 

Set Index Register 15 to =100. 

} Clear CTR; 0 ~ C(5l). 

C(37), i.eo, ~T, ~ C(ACC). 

Index the address in register 14 
and form C(X)-T in ACCo 

Clear all but the sign bit in ACC; 
C(42) = the bit pattern for 
clearing. Then if C(X) > T, 
C(ACC) = 0000, but if C(X) < T, 
C(ACC) := 4000. 

Does C(ACC) = c(44)? If so, 
skip to 46. 

If not, C(X) < T. 

If so, C(X) > T; 

Jump to 52. 

1 ~ C(ACC). 

C(ACC) + C(51), -i.eo, N, -7 C(51) 
and -7 C(ACC) 0 

Index register 15 and test for 77770 

C(15) f 7777. Return to check 
next register. 

C(15) := 7777, therefore halt. C(CTR), 
i.e., C(51), left in ACC. 

Example 12. Scanning for Values Exceeding a Threshold. 

Note that since the SAE instruction in locations 43 and 4·4 is written as 

a double register instruction, the LINC l'1ill skip to location 46 (not 45) 

when the skip condition is satisfied. The next instruction nin sequence U is, 

in this case, at location 45. 

37 



Double Register Forms 

Note also that if a double register instruction is written following a 

skip instruction such as XSK, the LINC I"ill try to interpret the second 

register as an instruction: 

Memory 
Address 

p 

p + 1 

P + 2 

Memory Contents 

. 
. ~ 

XSK i t3 -----, 
LDA i I 

3~-...J 

Effect 

Go to p + 1 when X(t3) :f 1777. 
Go to p + 2 when X(t3) = 1777. 

Since the XSK instruction sometimes directs the LINC to skip to p + 2, care 

must be taken to make sure that the LINC does not skip or jump to the second 

register of a double register instruction. 

It is interesting to compare the above statement of the program made 

in what might be called I'detailed machine language" with the following 

compact but entirely adequate restatement: 

1) ° ~ C( CTR). 

2) If C(X) > T then C(CTR) + 1 ~ C(CTR), for X = 1350, 1351, ... , 1447. 

3) c( CTR) ~ C(ACC). 

4) HALT 

16-2 



16 ... 2 

Multiple"Length Arithmetic 

An Index Class instruction, LINK ADD TO MEMORY, LAM i ~, with the octal 

code 1200 + 20i + ~, makes arithmetic possible with numbers which are more 

than 12 bits long. Using LAM, one can work with 24-bit numbers for example, 

using 2 memory registers to hold right and left halves. It should be 

remembered that addition with ADD, ADA, or ADM, always involves end-around 

carry. With LAM, however, a carry from bit 11 of the Accumulator during 

addition is saved in the Link Bit; it is not added to bit .0 of the Accum­

ulator. This carry, then, could be added to the low order bit of another 

number, providing a carry linkage between right and left halves of a 24-bit 

number. For simplicity, the illustration uses 3 bit registers; the prin­

ciples are the same for 12 bits~ 

Link ACC 

0~< -1111 11 1 
next 
addition 

end~carry 

Ivith LAM 

If, for example, the number in this 3-bit Accumulator is 7 (all ones) and 

C(L) :=: 0, and we add 1 with LAM, the Link Bit and Accumulator will then 

look like: 

L ACC 

[IJ~< -

Furthermore, LAM is an add-to-memory instruction, so that the memory 

register to which the LAM instruction refers will now contain zero (as the 

Accumulator) . 

39 

ILAM I 



40 Multiple Length Arithmetic 

In addition to saving the carry in the Link Bit the LAM instruction 

also adds the contents of the Link Bit to the low order bit of the Accum­

ulator. That is, if, when the LAM instruction is executed C(L) = 1, then 

1 is added to C(ACC). Using the result pictured above, let us add 2, where 

2 is the contents of some memory register M: 

Given: 

L 

1 

ACC 

000 

M 

010 

Using LAM, the LINC is directed first to add C(L) to C(ACC), giving: 

L 

o 
ACC 

001 

M 

010 

There is no end-carry from this operation, so the Link Bit is cleared. The 

LINC then adds C(ACC) to C(M), giving: 

L 

o 
ACC 

011 

M 

011 

\vhich replaces both C(ACC) and C(M). Again there is no end-carry so the 

Link Bit is left unchanged. 

The operation of LAM may be summarized: 

1. C(L) + C(ACC) ~ C(ACC). 

2. End-carry ~ C(L)o If no end-carry, 0 ~ C(L). 

3. C(ACC) + C(M) ~C{ACC), and ~ C(M). 

4. End-carry ~ C(L)o If no end-carry, the Link Bit is left unchanged. 

16-2_ 



16-2 Multiple Length Arithmetic 

As an example of double length arithmetic let us postulate 2 numbers, 

Nl and N
2

, each 6 bits long, which occupy a total of 4 of our 3-bit memory I 

registers, Ml through M4= 

Ml 

III Nl = +7 

M3 
001 N2 = -26 

The sum, octal, of +7 and -26 is -17. Using the LAM instruction to get this 

we must 

1. Clear the Link Bit. 

2. Add C(Ml ) to C(M
3

) with LAM, saving any carry in the Link Bit. 

This sums the right halves of Nl and N
2

" 

3. Add C(M
2

) to C(M4 ) with LAM, which also adds in any carry from 

step 2. This sums the left halves of Nl and N2 " Any new 

carry will again replace C(L). 

000 III Nl 
101 001 N2 

~ ~ 
I 110 I 000 Nl + N2 = -17 

I I 
2nd LAM L-lst LAM 
No end-carry End-carry 

We see upon inspection that only the first LAM produced an end-carry. 

41 



42 Multiple Length Arithme~ic 

To complete the illustration we must aJsoconsider"the ease .. in which a final 

carry appears in the Link Bit, as in the addition of +12 and -2, 

001 010 +12 

111 101 - 2 

~ 000 ~ 111 + 7 
I I 
I I 

2nd LAM Llst LAM 
End-carry No end-carry 

whose sum, in ones' complement notation is 001 000, or +10 (octal), but which 

with LAM results in +7 and an end-carry in the Link Bit. Since ones' com­

plement representation depends on end-around carry, we must do some extra 

programming to restore our result to a true ones I complement ·number. This 

is, of course, the equivalent of adding 1 to our 2-registerresult. Assuming 

that. the result is in Ml and M2 

L 

1 

we can again use the LAM instruction. We must first clear the Accumulator 

\vithout clearing the Link Bit (this can be done with an STC instruction). 

We then execute LAM with C(Ml ) which gives 

L 

1 

ACC 

000 

producing a new end-carry in the Li.nk Bit. We again clear the Accumulator 

(but not the Link Bit) and execute LAM with C(M
2

) which gives 

L 

o 
ACC 

001 

The result in M2 and Ml no\v looks like ~ 

M2 Ml 
001 000 = +10 (octal) 

It should be clear to the reader that adding in a final end-carry as an end­

around carry cannot itself give rise to a new final end-carry. 

16 .... 2 



16-2 Multiple Length Arithmetic 

The following program illustrates the technique of double length 

arithmetic with tables of numbers; similar techniques would be used for 

other multiples of 12. Assume that 100 (octal) 24-bit numbers, NO' Nl , 

•• &, N
77

, are to be added term by term to 100 (octal) numbers, EO' El , 0 0 • , 

E
77

, such that NO + EO = 80 , Nl + Rl = 81, etc. All numbers occupy 

2 registers: the left halves of NO' Nl , ... , N77 are in registers 100 - 177, 

the right halves in 200 - 277. The left halves of RO' Rl , •.• , R77 are in 

1000 - 1077, the right halves in 1100 - 1177. The left halves of the sums, 

80, 81 , .~., 8
77

, will replace the contents of 1000 - 1077, the right halves 

will replace the contents of 1100 - 11770 

43 



44 

Memory 
Address 

10 

11 

12 

13 

14 

377 
Start) 400 

401 

402 

403 

404 

405 

406 

407 

410 

411 

412 

413 

414 

415 

416 

421 

422 

423 

424 

425 

Mu1t iple Length Arithmetic 16-2 

Memory Contents Effect 

[Xl 1 
[X

2
] 

.. [X J 
3 

[X4J 

[-nJ 

e . . 

SET i 10 

77 

SET i 11 

177 

SET i 12 

777 

SET i 13 

1077 

SET i 14 

-100 

CLR 

LDA i 11 

LAM i 13 

LDA i 10 

LAM i 12 

STC 377 

LAM 13 

STC 377 

LAM 12 

XSK i 14 ----I 
JMP 412 I 
HLT ~-~ 

I 
. [-.] .. 
[-J 

I 
[- ] 
[-J 

I 
[-J 

0070· 

0077 

0071 

0177 

0072 

0777 

0073 

1077 

0074 

7677 

0011 

1031 

1233 

1030 

1232 

4377 

1213 

4377 

1212 

0234 

6412 

0000 

Set index registers to initial 
addresses minus 1 for the 
4 tables. 

Set index register 14 as a counter 
for 100 loop repetitions 0 

o ~ C(ACC); 0 ~ C(L)o 

Right half of N. ~ C(ACC). 
1 

Right half of N. + right half of 
R. ~ C(ACC),land ~ right half of 
R~. End-carry ~ C(L)o 

Leftlhalf of N. ~ C(ACC). 
1 

C(L) + C(ACC) + left half of R. ~ 
C(ACC), and ~ left half of lR.o 
End-carry ~ C(L)" 1 

Clear Accumulator by storing in 
377. Do not clear Link Bito 

C(L) + right half of 8. ~ C(ACC), 
and ~ right half oflS.c End-
carry ~ C(L). 1 

Clear Accumulator. 

C(L) + left half of S. ~ C(ACC), 
and ~ left half lof 8.0 

Index 14 and test for 7777: 

c(14) ~ 7777, return to form next sume 

c(14) = 7777, so halt. 

Example 13. Summing Sets of Double Length Numbers Term by Term. 



16 ... 2 Multiplication 

The instructions in locations 412 - 416 produce an initial 24-bit sum 

leaving any final carry in the Link Bit. The instructions in locations 

417 - 422 then complete the sum by addi,ng in the final end-carry. The Link 

Bit '\;7ill always contain 0 after the computer executes the last LAM in 

location 422. Register 377 is used simply as a ligarbage ll register so that 

we can clear the Accumulator Ivithout clearing the Link Bito 

Multiplication 

Another Index Class instruction Ivhich needs special explanation is 

MULTIPLY" MUL i ~, code 1240 + 20i +~. This instruction directs the LINC 

to multiply C(ACC) by the contents of the specified memory register, and to 

leave the result in the Accumulator. The multiplier and multiplicand are 

treated as signed Il-bit ?nes w complement numbers, and the sign of the product 

is left in both the Accumulator (bit 11) and the Link Bit. 

The LINC may be directed to treat both numbers either as integers or 

fractions; it may not, however, be directed to mix a fraction with an 

integer. The left-most bit (bit 11) of register ~ is used to specify the 

form of the numbers. 

When bit 11 of register ~ contains zero, the numbers are treated as ____________ ----.--'~'.'-.-'''O.---... ·'""''' ..... -''''' .. '·'' ..... -.. ,._ .. --_._._ .. _ .. "._", .. ,,-' "'"",,,,, " ., ..... " ..... , .... " .... "',',, .... ",,' ,-. .. " 
integ~rs; that is, the binary points are assumed to be to the right of 

bit zero of the Accumulator and the specified memory register. Given 

C(ACC) = -10, C(~) = 400 (bit 11 of register ~ = 0), and c(400) = +2, then 

the instruction MUL ~ will leave ~20 in the Accumulator, and 1 in the Link 

Bito Overflow is, of course, possible when the product exceeds ±3777. 

Multiplying +3777 by +2, for example, produces +3776 i,n the Accumulator; 

note that the sign of the product is correct, and that the overflow effec­

tively occurred from bit 10, not from bit 110 

When bit 11 of r~gister-1?_.£2ntai ns _~~:t::.~_.~ .. ~.~g_j~£~s:t.§... .. ".tJle"'."~"~~~.~E~_ .. ~~ 
... !E~,,~~.1..Q}}E .. ;,. that is, the binary point is assumed to be to the right of the 

sign bit (between bit 11 and bit 10) of the Accumulator and the specified 

memory register~ Given C(ACC) = +.2, C(~) = 5120 (bit 11 of register ~ = 1), 

and C(1120) = +.32, then execution of MUL ~ will leave +0064 in the Accum­

ulator and 0 in the Link Bit. 



46 Multiplication 

When the LINC multiplies t1vO Il-bit signed numbers, a 22-bit product 

is formed. For integers the right-most, or least significant, 11 bits of 

this product are left with the proper sign in the Accumulator, and for 

fractions the most significant 11 bits of the product are left with the 

proper sign in the Accumulator. If, for example J 

C(ACC) := 

and 

C(M) := 

. 001100000000· . 
binary points --1' 1- binary points 
for fractions ~ ~ for integers 

000010000000 

then C(ACC) can be thought of as either +03 (octal) or +1400 (octal), and 

C(M) can be thought of as either +004 (octal) or +200 (octal). The 22-bit 

product of these numbers looks like 

.000 001 100 00 00 000 000 OOOe 
\~ ______ ~y ____ ~J ~-------v~-----

.014 00 

and if bit 11 of register ~ contains 1, the most significant 11 bits with 

the proper sign; will be left in the Accumulator: 

C.(ACC) 

(+o3)x(+~04) 

= 00000 001 100 00 
'-v-' "-y-J ~ 

:= +" 0 1 4 

Had bit 11 of register ~ contained zero, the Accumulator would be left 1vith 

+0 as the result of multiplying (1400 )x(200) 0 It is the programmer's 

responsibility to avoid integer overflow by programming checks on his data 

and/or by scaling the values to a Horkable size. 

The use of bit 11 of register ~ is new to our concept of Index Regis­

tersand should be noted in connection with the four memory addressing 

alternatives which the Index Class instructions employ. When ~ f 0 then 

16..,2 



16-2 Multiplication 

bit 11 of C(~), that is, bit 11 of the register which contains the memory 

address, is used. The same is true when i =0 and i3 ::: 0, as in~ 

Memory 
Address Memory Contents 

p MUL 1240 

p + 1 h,X 4000h + X 

That is) bi,t 11 of C(p + 1), the register containing the memory address, is 

used. 'We sometimes call this bit the h-bit, whether in an Index Register 

or in register p + 10 When, however, i ::: 1 and ~ ::: 0, it will be recalled 

that p + 1 is itself the memory address~ 

Memory 
Address 

p 

p + 1 

Memory Contents 

MUL i 

N 

1240 

N 

There is no memory register which actually contains the ~emory address, 

and therefore there is no h=bi to The compute::r. __ E.!1}i2y§ .... J!§f?:u.,r:n~$. In t11is case 

that h :=: 0, and the operands are treated as .,~"I:'l~~g~;rs~. ------...::,,-_ .. _._ •.... , ................. _ .. _ .•... , ..... , ....... " ....... . 

In the followi.ng program, registers 1200 - 131'7 contain a table of 

fractions whose values are in the range ±o0176, that is, whose most sig~ 

nificant five bits after the sign (bits 6-10) duplicate the sign. Each 

number is to be multiplied by a constant, =062, and the products stored at 

locations 1000 ~ 11770 To retain significance the values are first shifted 

left 5 places. 

47 



48 

Memory 
Address 

6 

7 
10 

Start) 50; 

501 

502 

503 

504 

505 

506 

507 

510 

511 

512 

513 

:514 

515 

516 

Multiplication 

Memory Contents 

SET i 6 

1177 

SET i '7 

777 
SET i 10 

-200 

LDA i 6 

ROL 5 

MUL 

4000+516 

STA i 7 

XSK i 10 ----I 
JMP 506 I 
HLT ~. --1 

-.62 

0066 

1177 

0067 

0777 

0070 

7577 

1026 

0245 

1240 

4516 

1067 

0230 

6506 

0000 

4677 

Effect 

Initial address minus 1 of table 
of fractions ~ c(6). 

Initial address minus 1 forSTA 
instruction ~ C(7)o 

~n ~ C(lO) 0 

Fraction ~ C(ACC). 

C(ACC)'25 ~ C(ACC). 

Multiply, as fractions, C(ACC) 
by C( 516) 0 

Store product. 

If not finished, return 0 

If finished, halt. 

Example 14. Multiplying a Set of Fractions by a Constant. 

The ROL instruction at location 507 rotates zeros or ones, depending on the 

sign, into the low order 5 bits of the Accumulator 0 Since this amounts to a 

U scale left Ii operation, it thereby introduces no new information which might 

influence the product. The reader should also note that the original values 

remain unchanged at locations 1200 - 13770 

Another example demonstrates the technique .ofsaving both halves of 

the product 0 Fifty (octal) numbers, stored at locations 1000 - 1047, are to 

be multiplied by a constant, +1633. The left halves of the products (the 

most significant halves) are to be saved at locations 1100 - 1147; the right 

halves (the least significant halves) at locations 1200 = 1247. 

16-2 



16-2 

Memory 
Address 

3 

4 

5 
6 

7 

. 
,-7 1400 

1401 

1402 

1403 
1404 

1405 
1406 

1407 

1410 

1411 

1412 

1413 

1414 

1415 
1416 

1417 
1420 

1421 

1422 

1423 
1424 

1425 
1426 

1427 

1430 

1431 

1432 

1433 
1434 

Multiplication 

Memory Content s 

[X1 J 

[X
2 

] 

[4000+X
3

] 
[X

3
] 

[-n] 

SET i 3 

1077 
SET i. 4 

1177 
SET i 5 

4000+777 
SET i 6 

777 
SET i 7 

-50 
LDA i 

1633 
MUL i 5 

SCR i 1 

STA i 3 

STC 143L~ 

ROR i 1 

SEliC 1427 

ADD 1413 

MU1 i 6 

BCL i 

4000 
BSE i 

[- ] 

STA i 4 
XSK i 7 ----I 
JMP 1412 I 

HLT ~_..J 

[-J 

[1077J 

[1177J 

[4777J 

[0777J 

[7727] 

0073 

1077 
0074 

1177 
0075 

4777 
0076 

0777 
0077 

7727 
1020 

1633 
1265 
0361 

1063 
543L~ 

0321 

27 

3413 
1266 

1560 

4000 

1620 
[~J 

1064 

0227 

7412 
0000 

[- ] 

Effect 

}Addresses of products. 

}
Addresses of multiplier as fraction 

and integer. 

Counter. 

Set addresses for storing products. 

Set 5 to address multiplier as fraction. 

Set 6 to address multiplier as integer. 

J
l Form left half of product

i 
in 

Accumulator. 

C(bit 0 of ACC) -7 CeL). 

Store left half of product .. 
l 

o -7 C(ACC) 0 

C(L) -7 C(bit 11 of ACC). 

4000 or 0000 -7 C(1427). 

1Form right half of product i in 
J Accumulator. 

Clear bit 11 of right half. 

C(bit 0 of left half) -7 C(bit 11 of 
right half). 

Store right half of product .. 
l 

}Return if not finished. 

Example 15. Multiplication Retaining 22-bit Products. 

49 



50 
I LDHI 

Half=Word Class Inst'ructions 16-2 

The instructions at locations 1415, 1420-1421, and 1424-1427 have the effect of 

making the two halves of the product contiguous; the sign bit value of the 

right half is replaced by the low order bit value of the left half, so that 

the product may be subsequently treated as a true i!double length i
! number. 

There are two remaining Index Class instructions, SKIP ROTATE, SRO i ~, 

and DISPLAY CHARACTER, DSC i ~, which will be discussed later in connection 

with programming the oscilloscope display. 

110 Half=Word Class Instructions 

The LINe has 3 instructions which deal with 6-bit numbers or iihalf­

words" (!iword li is another term for "contents of a register"). These 

instructions use the Index Registers and have the same four addressing 

variations as the Index Class, but specify in addition either the left 

half or right half of the contents of memory register X as the operand. 

We speak of LH(X), meaning the contents of the left 6 bits of register X, 

and RH(X), meaning the contents of the right 6 bits. We can then think of 

C(X) = LHIRH, or C(X) = 100LH+RH. 

Half-word instructions always use the right half of the Accumulator. 

The LOAD HALF instruction,LDH i ~, code 1300 + 20i + ~, clears the Accum­

ulator and copies the specified half=word into the right half of the 

Accumulator; which half of C(X) to use is specified by bit 11, the h=bE, 

sr. regist~~"2: 



Half-Word Class Instructi.ons 

When h = 0, LH(X) ~ RH(ACC). When h = 1, RH(X) ~ RH(ACC): 

Memory 
Address 

p 

x 

Memory Contents 

h;X 4000h+X 

LDH t3 

LHIRH 100LH+RH 

Effect 

h = 1. 

RH(X) ~ RH(ACC) and 0 ~ LH(ACC). 

C(X) unchanged. 

The same interpretation of the h-bit applies when i = 0 and t3 - OJ 

i.e., when the instruction occupies two registers: 

Memory 
Address Memory Content s Effect 

------4-o---+--L-D-H----- ~-0-0----r--S-i-n-c-e-h--=--1-J--R-H-(-50-0--),--i-.-e-o-,--7-6-J --
41 1;500 I 4500 ~ RH(ACC). 0 ~ LH(ACC). 

500 32176 I 3276 

If register 41 contained 500, i.e., h = 0, then LH(500), or 32, would 

replace RH(ACC) ~ 

The STORE HALF instruction, STH i t3, code 1340 + 20;i + t3, stores the 

right half of C(ACC) in the specified half of memory register X. C(ACC) and 

the other half of memory register X are unaffected. To illust:r:ate the case 

of i = 1 and t3 = 0, we can write~ 

Memory 
Address Memory Contents 

-----+--
1000 

1001 

8TH i 

6015 

1360 

60i5 

Effect 

RH(ACC) ~ LH( 1001) 0 

This case, it will be remembered, uses p + 1 itself as the memory address. 

Since there is no h-bit, the computer assumes that h = 0, and therefore the 

left half of C(lOOl) is affected. If, for example, C(ACC) = 5017, then 17 

replaces LH(lOOl), and the contents of register 1001 become 17150 

51 

[8TH I 



52 

I SHDI 

Half-Word .. Class Instructions 

SKIP IF HALF DIFFERS, SHD it3, code 1400 + 20i + t3, causes the LINC to 

skip one memory register in the program sequence when the right half of the 

Accumulator does not match the specified half of memory register X. When it 

does match, the computer goes to the next memory register in sequence for 

the next instruction. Neither C(ACC) nor C(X) is affected by the instruction. 

If C(ACC) = 4371, and we write: 

Memory 
Address 

376 

-7 377 

400 

401 

402 

Memory Contents 

7152 

SHD 

4376 ---, 
- I 
_~-.J 

7152 

1400 

4376 

Effect 

Skip to 402 if RH(376) $ RH(ACC). 

then the computer \vill skip because RH( 376), i 0 eo, 52, $ RH(ACC), or 71. Had 

we written 376 in location 400, that is, h = 0, then RH(ACC) would equal 

LH( 376) and the computer \vould not skip 0 

When t3 I 0, and when i = 1, the Half-Word Class instructions cause the 

LINC to index the contents of memory register t3, but in a more complex \vay 

than that used by the Index Class instructions 0 In order to have half-word 

indexing refer to consecutive half-\Vords, the computer adds 4000 to C(t3) with 

end-around carry. This has the effect of complementing h(t3) every time 

register t3 is indexed, and stepping X(t3) every other time. Suppose, for 

example, that our instruction is LDH .i 3, and that register 3 initially con­

tains 4377, that is, it !ipoints1i to' the right half of register 377. The com­

puter \vill first add 4000 to C (3) ~ 

4377 
4000 

~7i 
0400 

Original C(3) = 1,377 
Index H(3) 

End~around carry 
New C(3) = 0,400 

';vhich leaves h = 0 and X= 400; c( 3) no';v IIpoint si! to the left half of regis­

ter400. The computer therefore loads the Accumulator fr'om LH(40o)0 Repeat­

ing the instruction,C( 3) will be indexed to 4400 and the Accumulator "Hill be 
" 

16-2 



16 ... 2 Half-Word Class Instructions 

loaded from RH(400). Continuing then, register 3 would contain the following 

succession of values or half-word references: 

4400 RH(400) 

0401 LH(401) 

4401 RH(401) 

0402 LH(402) 

4402 RH(402) 

0403 LH(403) 

etco etco 

Since half-Ivord indexing occurs before the contents of register t3 are 

used to address the memory, Ive may describe the memory address, when i = 1, as 

h;X+h 

Ivhere h represents the indexed value of h, and X+h represents the indexed 

value of X. The succession of values which will appear in register t3 can 

then be written: 

h;X+h 

l;X+O 

O;X+l 

l;X+l 

0;X+2 

1;X+2 

etc. 

53 



',The': KEYBOARD, Instruc.u1on '" 

The 'four a'ddress variations for' Half";W6rd Class instructions are summarized 

in the following table. 

Half-Word Class Address Variations 

Case i, f3 Example Form Comments 

I i := 0 LDH f3 Single Register f3 holds half=word operand 
f3 ~ 0 Register address 0 

i - 1 LDH i f3 Single First, index register f3 by 4,000 with 
2 Register end~around carry. 

f3 ~ 0 Then" register f3 holds half-word 
operand address. 

i =: 0 LDH I Double Second register holds half-word ij 

3 
f3 := 0 h;X ! Register operand address 0 

l -
I i 1 LDH i, ~ Double Left half of second register holds 4 -

I I f3 -, 0 LHIRH Register half-word operando 

For h =0, the operand is held in the left half of the specified memory 

register. For h := 1, the operand is held in the right half of the specified 

memory register. 

12. The KEYBOARD Instruction 

Before continuing with Half-Word Class programming examples, the 

KEYBOARD instruction, KBD i" code 515 + 20i, is introduced 0 The LINC uses 

a simple, exyernally~connected keyboard for coded input 0 Each key has a 

6-bit code~umber, 0-55 (octal), (See Chart II), which can be transferred 

into the Accumulator by the KBD i i,nstruction when a key is struck. KBD i 

directs the LINC to clear the Accumulator, copy into the right half of the 

Accumulator the code number .of the struck key, and release the keyv The 

i-bit is used here in a special way to synchronize the keyboard with the com~ 

puter. When i = 1, if a key has not been struckJ the computer will Ivait for 

a key to be struck before trying to read a key code into the Accumulatoro 

When i = 0, the computer does 'not wait, and the programmer must insure that a 

key has been struck before the computer tries to execute the KBD instruction. 

16..;2 



16-2 The KEYBOARD Instruction 

This use of the i-bit to cause the computer to pause is unique to a class 

of instructions kno'ivn as the Operate Instructions" of which KBD is a member. 

As a class they are used to control or operate external equipment. 

The following program reads in key code numbers as keys are struck on 

the keyboard, and stores them at consecutive half-,vord locations, LH( 100) , 

RH( 100), LH( 101), .•. , unt il the Z, code number 55 (octal), is struck, which 

stops the program. 

-~~~~~S-~:::~~~i·_c~n:_er~-[~;--- --~al;-"~-~d E:::::_ reg~ste~-----
: I : I: 

-'? 20 ! SET i 7 0067 

21 I 1,77 4077· 

22 I 
23 I 
24 

1 

25 

27 

rKBD i 

I SHD i 

l 5500 
I 
1 HLT 
I 
i STH i 
I 

0535 

1420 

5500 
0000 

1367 
6022 

Set index register 7 to one half-word 
location less than initial location. 

Read code number of struck key into 
RH(ACC), and release the key. 

Skip to location 26 if code number 
f= 55· 

Code = 55, so halt. 

Half-word index register 7, store 
code number, and return to read 
next key. 

Example 16. Filling Half-Word Table from the Keyboard. 

55 



,of 

·The KEYBOA~D; Inst'fuctfdn 

Another example reads keY,:code numbers and stores at consecutive half­

\Vord locations only those code numbe:t-s which represent the letters A through 

Z, codes 24 - 55 (octal). Other key codes are discarded, and the program 

stops when 100 (octal) letters ,have been stored. 

'M~mory 
Address 

5 
6 

~ 100 

101 

102 

103 

104 

105 

106 

107 
110 

111 

112 

113 

114 

115 
116 

117 

120 

121 

122 

Memory Contents 

[h,;X] 

[-n] 

SET i 6 

~100 

SET i 5 

1,077 
(-7KBD i 

STA i 

[ ,:,. J 

ADA i 

-23 

BCL i 

I 

I 

I 

1 

[-J 

0066 

7677 
0065 

4077 
0535 

I' .1060 
[- ] 

1 

I 

1120 

7754 
1560 

I· 

3777 'I' 
AZE -----, 
JMP 104 I I 

~DH(---~ I 
~~~~ II 

1300

4106

1365

1:;106

8TH i 5 I
XS~~~1 I
JMP 104 I
HLT ~-.J I

0226

6104

0000

·Effect

Set 6 to count 100 times 0

Set 5 for storing letters beginning
at LH(100).

Read keyboard.

C(ACC) ~ c(106); store key
code in 106.

C(ACC)-23 ~ C(ACC).

Clear all but the sign bit in ACC.

If C(ACC) = 0, skip to location 115.

C(ACC) ~. 0, so key code \Vas less
than 24. Return to read next key.

Key code> 23 represents a letter.
Therefore RH(106) ~ RH(ACC).

Half-'\vord index r~~ister 5 and
store code for lettero

Index register 6 and return if
100 letters have not been struck.

Example 17. Selective Filling of Half-Word Table from the Keyboardo

16-2 57

13. The LINe Scopes and the Display Instructions

The LINe has tlVO cathode ray tube display devices called Display

Scopes, each of which is capable of presenting a square array of 512 by

512 (decimal) s'pots (1000 by 1000, octal). A special instruction, DISPLAY.,

DIS i ex, code 140 + 20i + a, momentarily produces a bright spot at one

point in this array. The horizontal (H) and vertical (V) coordinates are

specified in the Accumulator and in a. The vertical coordinate,

-377 :$ V :S +377 (octal), is held in the Accumulator during a DIS i a

instruction; the horizontal coordinate, 0 ~ H ~ 777 (octal), is held in

register a, 0 < a < 17. The spot in the lower left corner of the array has

the coordinates (0, -377):

(0, +377) (777, +377)
0----------- ---------- ----0-

I

Square array, 3 11 x 311
,

! points.

i
l Y
j .it
l\}" ,
j/ H 7.(H, V)

I~ j[
(0) -!T;/)----... ----.----.--.. ~-.-------------" (77~, -37'7)-

1J?1S I

The LINC Scopes a'ft!dfthe Display Instructions

The coordinates are held in the ri'ght-mos.t 9 hits. of register ex and the

Accumulator,

teo ACC I I I II I I I
'---y---J k ~ unused (-377 '$V S +377)

(/...J

h-bit) JunL) I I I I I
k (O;SHS; 777) ~

so that if C(ACC) = 641, i.e., -136, and C(5) = 430, then DIS 5 will cause

a s~ot to be intensified at (430, ~136) on the scope(s).

Both scopes are positioned at the same time. The production of a

bright spot on either scope depends upon the state of the left-most bit

(the h-bit) of register ex and an external channel selector located on the

face of each Display Scopeo If h = 0, then the spot is produced via Display

Channel #0; if h = 1, then the spot is produced via Display Channel #1.
Either Display Scope may be manually set to intensify Channel #0,
Channel #1, or both.

The i-bit in DIS i ex is used in the usual way to specify whether to

index the right 10 bits of register ex before brightening the spot. This'in­

dexing) of course, also increases the horizontal coordinate by one. To illus­

trate, the following program will display a continuous horizontal line through

the middle (V=O) of the scope(sY via Display Channel #o.~

Memory
Address

5

-7 20

21

22

23
24

~"Memory Contents Effect
[OjH] ~o'-J--+--H-~o-r-i-z-o-n--t-a-l-c-o'ordinate and channel

I -0 selection.

SET i·5 I 0065
o

CLR I

0000

0011

~DIS i 5 I 0165

~ I 6023

Set 5 to Channel #0 and horizontal
coordinate =:: ,0.

Vertical coordinate = 0 ~ C(ACC).

Index H (actually index entire
right-most 10 bits) and display.
Repeat endlesslyo

Example 180 Horizontal Line Scope Display.

Character Display

Another example displays as a curve ·the values found in a set of con­

secutive registers, 1400 through 11'770 The vertical coordinates are the

most significant 9 bits of each value. Since we have only 400 (octal)

points to display, the curve will be positioned in the middle of the

scope" Channel #1 is used.

Memory
Address Memory Contents

10 [xJ [-J

11 [l;HJ I [40~0+Hl

--7 300 rSET i lO I 0070

301 1377 ! 1377

302 1 SET i 11 0071
I

303
!

1;177 4177

.304 LDA i 10 10.30

.305 SCE .3 0343

.306 DIS i 11 0171

307 XSK 10 0210

.310 ~-;04l 6304

.311 JMP .3ooJ 6300

Effect

Address of vertical coordinates.

Channel select and horizontal
coordinate.

Set 10 to beginning address minus 1.

Set 11 to select Channel #1 and
to begin curve at H = 200.

Load ACC with value and scale
right .3 places to position it
as vertical coordinate .

Index the H coordinate and display.

Check to see if X(lO) = 1777.

If 4008 points have not been dis­
played, return to get next point .

If X(lO) = 1777, return to repeat
entire display.

Example 19. Curve Display of a Table of Numbers.

Character Display

The Display Scopes are frequently used to display characters, for

example keyboard characters, as well as data curves. Character display is

somewhat more complicated since the point pattern must be carefully worked out

in conjunction with the vertical and horizontal coordinates for each point.

59

60 Character Display

If, for example, we want to display the lette.r A, the array on the scope

might look like:

-
5 II 17 23
4 10 16 22
3 9 15 21
2 a 14 20
1 7 13 19

0 6 12 18

6

1
fig. a figa b

'iv-here the shaded areas of fig. a represent points which are intensified,

and the. white areas points not intensified; the total area represented is

6 vertical positions by 4 horizontal positions. If, for example, the lower

left point has the coordinates (400, 0), then the upper right point has the

coordinates (405, 5).

We could, of course, store the H and V coordina~es for every inten­

sified point of the character in a table in the memory, but the letter A

alone, for instance, would require 32 (decimal) registers to hold both

coordinates for all the points which are intensified. Instead we arbitrarily

decide upon a scope format, say 4 x 6, and make up a pattern word in which

~ represent points to be intensified and zeros points which are not

intensified. To specify a 4 x 6 pattern of 24 bits we need 2 memory regis­

ters. We also decide, for efficiency of programming, to display the points

in the order shown numerically in fig. b, that is, from lower left to upper

16-2

Character Display

right, column by column. If \Ve examine bit 0 of the pattern word first,

bit 1 next, bit 2, etc., then the pattern word for the left half of the

letter A (the left t\Vo columns) will look like:

First
pattern \vord

11 10 9

11 1 0 1 0 I

[) 7 6

11 1
0 I 0 I

5 4 3 210

/-1 11 11 1
1

1
1 I1J

where the bit positions of the pattern word correspond to the numbered

scope positions 0 - 11 of fig. b. The pattern word for the right half of

the letter will then look like:

Second
pattern word

11 10 9

r 1 11 11 I
8 7 6

11 11 11 I

5 4 3 2 1 0

11loIOl

with bits 0 - 11 corresponding to scope positions 12 - 23 respectively.

An Index Class instruction, SKIP ROTATE, SRO i ~, code 1500 + 20i + ~,

facilitates character display with the kinds of pattern words described

above. SRO i f3 directs the LINC to sktp the next register in the instruc­

tion sequence when bit 0 of the specified memory register contains O. If

bit 0 contai.ns 1, the computer does not skip. In either case, however,

after examining bit 0, the contents of the specified memory register are

rotated 1 place to the right. Therefore, repeating the SRO instruction

(with reference to the same memory register) has the effect of examining

first bit 0, then bit 1, bit 2, etc. Executing the SRO instruction 12 times,

of course, restores the memory \vord to its original configuration.

The following example repeatedly displays the letter A in the middle of

the scope, using register 7 to hold the address of the first pattern word and

register 6 to hold the H coordinate. Since 4 x 6 contiguous points on the

scope array define an area too small to be readable, a delta of 4 is used

to space the points, so that if the first point is intensified at coord­

inates (370, 0) the second point \vi.ll be at (370, 4), the 7th point at

(374, 0), etc. (This produces characters approximately 0.5 cm. high,)

62 Gl.1aracter Display

Me~~~~C'1
Ad~6' ss ___ ,.!-1e[-Omo;HryJ-c_o_ntrts [,.'-"-J-+---'------'----' Effect

Channel selection and H coordinate.

7 [~l . I tIl Address of pattern word.

-7 60

61

62

63

64

65

66

70

71

72

73

74

75

76

77

100

101

102

103

104

105

106

107

110

111.

I

r SET i 6

0;370
I SET i 7

110

i---)LDA i
i
i ·-10
l
I r~RO _.'L,
1 i I

: I DIS 6 I

I I

I I

II ADD 75 ~
II SRO i

I I · 3737_ 1
j JMP, 66 I

LDA i (---.I II
I 1
i !

I "
I I
I 1

i I
I i
! I
I '
i
!
!

i
I

I

4

ADM

6

SRO i

2525 ----I
JMP 64 I

XSKi7~

SRO i

2525 ---,-,
JMP 64 I
JMP 66 ~l

. ,4477

7744

I

0066

0370

I 0067

I
0110

1020

I
7767

1507

I 0146

I 2075

I

1520

3737

I 6066

. _I 1020
0004

I

1140

0006

I

I

1520

2525

6064

I 0227

I

'"

1520

2525

6064

6060

I lj.477

I 7744

"

Set H coordinate = 370 for lower
left point. Select Channel #0.

Set 7 to address of first ha1.f of
pattern.

Initial V coordinate = -10 -7 C(ACC)~

Skip tp location 70 if bit 0 of
pattern word is zero. Rotate the
pattern word 1 place to right.

If bit 0 of pattern word was one,
display one point.

Add 4 to V coordinate in ACC.

Skip to location 74 when 6 bits of
pattern word have been examined.
Rotate C(72) 1 place to right.

Return to examine next bit of pattern
1vord when bit 0 of C(72) = 1.

I When bit 0 of C(72) = 0, 6 points·

J
> have been examined. Increase H

coordinate by 4 to do next column.

Check to see
displayed.
to right.

Two columns
return to

if2 columns have been
Rotate C(1.01.) 1. place

have not been displayed;
do next column.

'Two columns have been displayed;
index address of the pattern word.

Skip to 107 if both halves of pattern
have been displayedo

I-I Return to display 2nd half of pattern.

i Entire pattern has been displayed
I , once 0 Return and repeat . . J Pattern words for letterA.

Example 20. Character Display of the Letter Ao

16-2 Character Display

.The SR.O instructions at .locations 71, 100, and 104 determine when 1 column,

2 columns, and 4 columns have been displayedo After each column the H coor­

dinate is increased by 4 and the V coordinate reset to -10. After 2 columns

the address of the pattern \\ford is indexed by one, and after 4 columns the

entire process is repeated.

DISPLAY CHAHACTER., DSC i ~, code 1740 + 20i + ~, is the last of the

Index Class instructions; it directs the LINC to display the contents of

one pattern \\ford, or 2 columns of points. Register ~ holds the address of

the pattern word and the i-bit is used in the usual way to index X(~). The

points are displayed in the format described above, i.eo, 2 columns of

6 points each with a delta of 4 bet\\feen pointso The pattern word is examined

from right to left beginning with bit ° and points are plotted from lower

left to upper right, as above. When executing a DSC instruction the computer

always takes the H coordinate and channel selection from register 1. The

delta of 4 is automatically added to X(l) every time a new column is begD:n;

furthermore this indexing is. done before the first column is displayed, so

that if register 1 initially contains 0364, the first column will be displayed

at H = 370, the second at H = 374, and register 1 \\fill contain 0374 at the

end of the instruction.

The vertical coordinate is, as usual,taken from the Accumulator, and

again +4 is automatically added to C(ACC) between pointso The right-most

5 bits (bits ° - 4) of the Accumulator are always cleared at the beginning of

a DSC instruction, so that if initially. C(ACC) = +273, the first point will be

displayed at V = 240, the second at V = 244, etc. Characters can therefore

be displayed using the DSC instructi.on only at vertical spacings of 40 on the

scope, e~g." at 'initial vertical coordinates equal to -77, -37, 0, +40, +100,

etc. Furthermore, the right-most 5 bits of the Accumulator always contain

30 (octal) at'the end of a DSC instruction, so that if the initial C(ACC) ~ +273,

the initial V will equal +240 and C(ACC) will equal +270 at the end of the

instructiono

64 Character ,DispJay

To display a charact~r defined by a 4 .x6 patt:ern twq DSC, instructions

are needed. The following example re.peatedly displays the letter A in the

middle of the scope, just as.the program on p. 62 (Example 20) does, but with

greater.effici,ency using the DSG inst;ruction. Since we cannot have an initial

V =: -10 'ivith DSC, the program uses V = o.

Memory
Address

1

7

-7 60

61

62

63

64

65

66

110

111

Memory

[OjHJ

[x]

CLR

SET i 1

0;364

SET i 7

110

DSC 7

DSC i 7

JMP 61

4477

7744

Contents

I

I

I

I

[-]

[-]

0011

0061

0364

0067

0110

1747

1767

6061

4477

7744

Effect

Channel selection and H coordinate.

Address of pattern wordo

Initial V=:O -7 C(ACC).

Set 1 to initial H coordinate minus
4, and select Channel #0.

Set 7 to address of first half of
pattern.

Display, using 1st pattern word, the
left 2 columns of the letter A,
at initial coordinates of (370, 0).

Index address of patt~rn word, X(7),
and display right 2 columns of
the letter A at initial coordi­
nates of (400, 0).

Return and repeat.

}pattern "ords for letter A.

Example 21. Character Display of the Letter A Using DSC.

After the first DSC instruction (at location 65), C(l) =: 0374 and C(ACC) = 30.

After the second DSC instruction} C(l) =: 0404, C(7) =: 0111, and C(ACC) =: 30.

C(llO) and C(lll) are unchanged. By adding more pattern words at locations

112 and follo'iving locations, and repeating the DSC i 7 instruction, we could,

of course, display an entire row of characters.

16-2

16-2 Character Display

The following program repeatedly displays a row of 6 digits. The

pattern words for the characters 0 - 9 are located in a table beginning

at 1000; i.e., the pattern words for the character 0 are at 1000 and 1001,

for the character 1 at ,1002 and 1003, etc. The keyboard codes for the

characters to be displayed are located in a half-,vord table from 1400

through 1402; i.e., the first code value ,is LH(1400), the second RH(1400),

etc. The program computes the address of the first pattern word for each

character as it is retrieved from the table at 14000

Memory
Address

1

2

3

4

-7 20

21

22

23

24

25

26

27

30

31

32

33

34

35

36

37

4,0

41

42

43

Memory Contents

I
!

I
1
I

I

[l;HJ

[-nJ

[h;XJ

[x]

SET i 2

-6

SET i 3

1;1377

SET i 1

1;344

LDH i 3

ROL 1

ADA i

1000

STC 4

DSC 4

I DSC i 4 I I LDA i

I ADM 4

I I 1

I I XSK i 2
l ----l
I~I
~~

[-J

[-J

[- J

[-J

0062

7771

0063

5377

0061

4344

1323

0241

1120

1000

4004

1744

1764

1020

0004

1140

0001

0222

6026

6020

Effect

Channel selection and H coordinate.

Counter for number of ChcH':.:ccters.

Address of keyboard code values.

Address of pattern word.

Set 2 to count number of charac­
ters displayed.

Set 3 for loading code values begin­
ning at LH(1400).

Set 1 to initial H coordinate minus
4, and select Channel #10

Half-word index register 3 and put
code value into Accumulator.

}

compute address of pattern IVa. rd by
multiplying code value by 2 and
adding beginning address of
pattern table.

Address of pattern word -7 c(4);
o .-7C(ACC).

}
Display character at initial V = 0,

and initial H = C(l) + 4.

Increase H by 4 to provide space
between characters.

}

Index X(2) and check to see whether 6
characters have been displayed. If
not, return to get next character.
If so, return to repeat entire
display.

Example 22. Displaying a Row of Characters.

66

I SAM I
Analog Input 'and the 'SAMPLE Instruction

Suppose, for example, that one of the 6 code' valUes, is 07'0 The' pattern, words

for the character 7 are at locations 1016 and 10170 Multiplying the code

value 07 by 2 (7 x 2 ::.::: 16'octal) and adding the beginning address of the

pattern table (16 + 1000 '= 1016) give's us:'the address of' the first pattern

word for the character 70 It should be clear that we could add pattern

words for all the keyboard characters to our pattern tablej if we organize

the pattern table to correspond to the ordering of the keyboard code values,

the same technique of iita1?le look-up 81 using the code values to locate the

pattern could be used to display any characters on the keyboard ~*

14. Analog Input and the SAMPLE Instruction

The SAMPLE instruction, SAM i n, refers to the LINC's miscellaneous

inputs. The LINC has 16 input lines (numbered ° ~ 17 octal) through which

external analog signals may be received. The SAMPLE instruction samples the

v81tage on anyone of these lines, and supplies the computer with instan­

taneous digitalized "looks" at analog information. Input lines ° through 7

are slow speed inputs built to receive signals in the range -1 to -7 volts

at a maximum frequency of 200 cycles per secondo These eight lines are

equipped with potentiometers, appearing on the Display panel as numbered black

knobs, whose voltage is varied by turning the knobs. Lines 10 through 17,

located at the Data Terminal module, are for high frequency signals which may

range from ~l to +1 volts at a maximum of ca. 20,000 cycles per secondo

The number n in the SAMPLE instruction specifies which line to sample.

Built into the LINC are analog-to-digital conversion circuits which receive

the signal and convert it to a signed Il-bit binary number in the range ~177,

leaving the result in the Accumulator. Th'lis, for example, a voltage of zero

on one of the high frequency lines wfll be converted to ° when sampled with

a SAM instruction, and ,the number ° 'will be left in the Accumulator. Voltages
. '. '

on the high frequency lines greater than or equal to +lV will, when sampled,

* See Chart :fIt.

16-2

Analog Input and the SAMPLE Instruction

cause +177 (octal) to be left in the Accumulatoro Voltages less than or

equal to ~lV will cause -177 to be left in the Accumulator 0

Memory
Address

-7p

Memory Contents

SAM i n 100 + 20i + n

Effect

Conversion of voltage on
line n -7 C(ACC) .

The value of this facility, which makes it possible to evaluate data while

they are being generated, can easily be seeno The SAMPLE instruction is fre~

quently used with the DISPLAY instruction in this context 0

The i-bit in the SAMPLE instruction can be used to shorten the length of

time the instruction requires, occasionally with some sacrifice of precision.

When i = 0" the SAMPLE instruction lasts 24 f-Lsec 0 * and the conversion is com­

pleted for all bits of the Accumulator (through bit 0)0 When i = 1, however,

the computer proceeds to the next instruction in sequence after only 8 f-Lseco

and before the conversion process is finished. The conversion is not, how"",

ever, terminated. It will continue in the Accumulator for 14 more f-Lseco while

the computer executes succeeding instructions. If the Accumulator is not dis­

turbed during this time, the correct converted value will be accessible after

14 f-Lsec. If the Accumulator is disturbed, however, the converted value in

the Accumulator after 14 f-Lseco will be incorrect 0

During the 14 f-Lsec. one bit is converted every 2 f-Lseco, beginning wi.th

the most significant conversion bit (bit 6) of the Accumulator~

Sign Converted value
(, , A ,
0 0 0 0 o 0 000 -0 o 0 C(Accumulator)

T iii i ij
.... 2 468 1012 14

v J
f-Lseco

#f-Lsecc for conversion

* See Appendix II~ LINC Order Code Summary, for instruction execution times.

68 Analog Input and the SAMPLE Instruction

Suppose that the instruction following a SAM i nwhen i := 1 is STC, Store=

Clearo During execution of an STC instruction the contents of the Accumulator

are stored in the memory 10 j.Lsec. after the STC instruction is initiatedo

The 10\\7 order 3 bits (bits 2, 1, and 0, converted after 10, 12, and 14 j.1seco)

will not be converted by this time ,arid should therefore be disregarded 0

Furthermore, the STC instruction may not leave the Accumulator clear, because

the conversion process will continue for 4· J.1,seco after the clear time of the

STC instructiono In general, examination of the Instruction Timing Diagrams*

will show when it is feasible to use SAM with i = 10

To illustrate the use of this instruction, we look first at a simple

example of a sample and display programo The following sequence of instruc<=

tions samples the voltage on input line #10, and displays continuously a plot

of the corresponding digital vaJ,.ueso It provides the viewer with a continuous

picture of the analog signal on that .line. The sample values. left in the

Accumulator are used directly as the vertical coordinates. In this example,

input #10 is sampled every 56 J.1,seco (This is determined by adding the execu=

tion times for SAM i, 8 J.1,sec 0 ; DIS, 32 J.1,seco; and JMP 1002; 16 J.1,seco)

Memory
Address Memory Contents Effect

-) 1000

1001

1002

1003

1004

[O;H]

SET i 17

1777
SAM i 10

DIS i 17

JMP 1002

1

1

0077
1777
0130

I. 0177

I 1002

For channel selection and H coor=
dinate.

Set register 17 to begin H coor­
dinate at H = 0; Channel #00

Sample input #10, leaving its value
in the ACC as the V coordinate.

Index the H coordinate and displayo

Return and repeat endlesslyo

Example 230 Simple Sample and Display.

Note that since here we 1"ant a continuous displ:ay, it is not necessary to

reset register 17 to any specific horizontal coordinate 0

* LINC, Volume 12, Instruction Timing Diagrams.

16 2

16-2 Ana1qg Inp-utandthe S.AMP~: Instru~tion

A second example illustrates one of the uses of the potentiometerso

This program plots the contents of a 512 (decima'l) 'Word segment of memory

registers 0 through 17770 The' location' of, the segment is' selected by

rotating Knob #5,' 1~hose value is used to determi,ne the address at which to

begin the displayo As the viewer rotates the knob, the display effectively

moves back and forth across the memory 0

Memory
Address Memory Contents Effect

12 [X] J [-]

13 [l~H]

I
[-J For channel selection, H coordi=

nate, and countero

~ 20 ~SET i 13 I 0073 Set register 13 to select Chan=

4777 4777
nel #1 and to begin displaying

21

i
at H :::: 00

1--
22 SAM 5 0105 Sample Knob #5, add 200 to make
23 ADA i

i
1120 the value positive, rotate left

24 200 0200 ~
2 places to produce an address

i
for display, and store in

2.5 ROL 2 0242 register 120

26 STC 12 4012

I
I ~

27 ~LDA i 12 1032 }Illdex the address of the ve~ical

30 SCR 3

I
0343

coordinate, and put the coordi=
nate into the ACCo Position it

31 DIS i 13 0173 for display, index the H coordi=

I
nate and displayo

32 XSK 13 0213 Check to see whether 512 (decimal) ----, points have been displayedo
I

I
(X(13) := 1777?) 0

33 JMP 27 I 6027 If not, return to display next point 0

34 JMP 20~
I

6020 If so, return to reset counter and
get new address from Knob #50

Example 240 Moving Window Display Under Knob Controlo

At locations 23 = 25 a memory address is computed for the first vertical

coordinate by adding 200 to the sample value. This leaves the value in the

range +1 to +377; it is then rotated left 2 places to produce an initial

address in the range 4 through 1774 for the disp1ayo

69

70 Analog Input and the SAMPLE lnst.ruction

A final example illustrates the technique of accumulating a frequency

distribution of sampled signal amplitudes appearing on line #12, and dis­

playing it simultaneously. as a histogram. The distribution is compiled in

a table at locations 1401 - 1777, and the. sample values themselves are. used

to form the addresses for table entry. Registers 1401 - 1777 are ini.tially

set to -377 so that the histogram will be from the bottom of the scope.

Note, at locations 104 and 105, that since we are using memory registers

1401 - 1777, the same index r~gist'e'r (register 2) may be int'erpreted both as

address (location 104 r and counter (location 105). We do not need a sep­

arate counter because the final address (1777) will serve also as the basis

of the skip decision for the XSK instruction. The same is true at loca~

tions 123' and 133.

16-2

16-2

Memory
Address

2

. ' 3

~ 100

101

102

103

104

105

106

107

110

111

112

113

114

115

116

117

120

121

122

123

124

125

126

127

130

131

132

133

134

135

Analog Input and the SAMPLE .Instruction

Memory Contents

[x]

[O;H]

SET i 2

1400

LDA i

-377

-7STA i 2

XSK 2 ----,
JMP 104 I

.----+> SET i 2 ~j

1400

[-]

[-]
- .

0 .
0062

.

1400

1020

7400

1062

0202

6104 ~

0062

1400

0063

0200

0112

>

Effect

Address of vertical coordinates.

Channel selection and H coordinate .

Initial routine to set registers
1401 - 1777 to -377.

Set register 2 to initial address
minus one of vertical coordinates.

Set register 3 to select Channel #0
and begin display at H = 2010

Sample input line #12.

SET i 3

200

~SAM 12

ADA'i

1600

STC 122

LDA i

1120

1600

4122

} Add 1400+200 to the sample value
to form an address for recording
the event and store.

AIM

[-]

1

LDA i 2

DIS i 3

~DIS 3

ADA i

-1

SAE i

-400 ----,
JMP 125 .. I
XSK 2 ~ ----,

I
JMP 113 I
JMP 107 ~

1020

0001

1140

[-]

I
1022

0163

0143

1120

1460

7377

I ...

,.. I

I

I
I
I
I
I

6125 I"

0202

6113

6107

Add 1 to the content s of the regis­
ter just located by the sample

> value to record the event.

Index register 2 and put a histogram
value in the Accumulator.

Index the H coordinate and display.

Display without indexing.

Fill in the bar by decreasing the
vertical coordinate by 1 and contin­
uing the display until a point is
displayed atV = -377.

When bar is finished, check to see
whether 377 values have been dis~
played. (X(2) = 1777?).

If not, return to get next sample.

It so, retu~n-to reset vertical coor­
dinate address, H coordinate, and
repeat.

Example 25. Histogram Display of Sampled Data.

71

72 16-2

I SKPI

I SXL I

15. The Skip Class Instructions

Instructions belonging to the Skip Class test various conditions of the

Accumulator, the Keyboard, the Tapes, and the External Level lines of the
. .

Data Terminal module. The coding for these ibstructions includes th~ condi~
tion or level line to be checked and an option to skip or not skip when the

condition is met or the external level is negative.

SKP i c~

or

SXL i n:

SKP
~
440 +

SXL 0 ~n ~ 13
level line number

Skip only if condition,c is met
or level n is negative 0

Skip only if condition c is not
met or level n is not negative.

In these instructions the i-bit can be used to invert the skip decision.

When i = 0 the computer skips the next register in the instruction sequence

when the condition is met or external level i.s negative 0 However J ,{heni == 1,

the computer skips when the condition is not met or the external level is not

negative. Otherwise the computer always goes "to the next register in the

sequence.

The four 8i tuations' which may arise are summ~.rized in the following

table. The Skip Class instruction is assumed ,to be in register,p"

'Branching in Skip Class Inst ruct ions

i Condition met or level negative? Location of next instruction

0 yes p + 2 . (Skip)

0 I no P + 1
"

1 1 yes p +
'.

1 no p + 2 (Skip)

16-2 The Skil? Class Instructions

The SKP i c instructions test 10 conditions, "\vhich, because of their

variety, "\ve choose to describe "\vith different 3-letter expressions. Thus the

AZE i instruction already presented is the same as SKP i 10. Another instruc~

tion, APO i, synonymous with SKP ill, checks to see whether the ACCUMULATOR

is POSITIVE (bit 11 = 0):

Case: i·- 0

Memory
Address

p

p + 1

P + 2

Case: i = 1

Memory
Address

p

-p + 1

P + 2

Memory Contents

APO ---,
-(--I
_~...J

440 + 11

Memory Contents

APO i ---,
=~-i
_ ~J

440 + 20 + 11

Effect

If C(bit 11 of ACC) = 0, go to
p + 2 for the next instruction;
if C(bit 11 of ACC) = 1, go to p + 1.

Effect

If C(bit 11 of ACC) = 1, go to
p + 2 for the next instruction;
if C(bit 11 of ACC) = 0, go to
p + 1.

Other SKP variations check whether C(L) = 0, (LZE i, code 452 + 20i,

which is synonymous with SKP i 12) or i"\vhether one of the 6 Sense Switches on

the console is up (SNS i 0, SNS i 1, 000, SNS i 5, synonymous "\vith SKP i 0,

SKP i 1, .00, SKP i 5).; (The Sense S"\vitches are numbered from right to left,

o through 5 c)

The SXL i n instruction, SKIP ON NEGATIVE EXTERNAL LEVEL, checks for the

presence of a -3 .volt level on External Level linen, 0 .:s ns 13, at the

Data Terminal module. It is often us~d with the OPERATE instruction, dis=

cussed in the next section, to help synchronize the LINC with external

equipment.

The Skip,Class Instructions

The Skip instruction KEY STRUCK, KST' i;' code 415 +20i~ checks. whether

a keyboard key has been struck (and ,not 'yet released) 0 KSTi is, synonymo:l,ls

with SXL i15. '

To illustrate the use of 'these instructions the fol10wi.iig program' counts

the signal peaks above a certain threshold, 100 (octal), for a set of

1000 (octal) samples appearing on input line #13. The number of peaks

exceeding the threshold will be left in the Accumulator.

Memory
Address

7
10

-7 1500

1501

1502

1503

1504

1505

1506

1507

1510

1511

1512

1513

1514

1515

Memory Contents

[... n] [-]

En] [-]
e

I
SET i 7 I

0067

~1000 6777

SET i 10 I 0070

0 0000

I "SAM 13 0113

ADA i

I
1160

-100 7677

APO i

I
0471

XSK ~ 101 0230

I I XSK i ' 7~ 0227

JMP-1504 1 I 7504

LDA f--..J I 1000

10 0010

HLT I 0000

Effect

Counter for 1000 s?mples.

Counter for number above 100 (octal).

Set register 7 to count 1000 samples.

Clear register 10 to count peaks.

}sa~~~ef~~~u~h~i~:m~i; ~~~u!~btract

Is the Accumulator posi.tive?

If so, the value was above 100; add
1 to the counter. If not, skip

, the instruction in location 1510.
Ibdex re~ist~r'7 a?~ t~st.

If 1000 samples have hot been takeh;
'" return., ," 'i

. '} ... Ifp~~o~h~a~~~~r h~;\~~:~ ;~~~'
100 into the Accumulator add halt.

Exampie 26. Counting Samples Exceeding a Threshold.

16=2 The Skip Class Instructions

Another program samples and displays continuously the input fnom

line #14 until a letter, i.e., a key whose code value is higher than 23 (octal),

is struck on the keyboard.

Memory
Address

1

~ 100

101

102

103

104

105

106

107

110

111

112

113

Memory Contents

SET i 1

4000

> SAM 14

DIS i 1

KST ----l
JMP 102 I

KBD~-.J

ADA i

-23

APO , ----·l
JMP 102 I

I
HLT ~_J

I
I
I

I
I

I
I
I
I

0061

4000

0114

0161

0415

6102

0515

1120

7754
0451

6102

0000

Effect

Channel selection and H coordinate.

Set register 1 to select Channel #1
and begin display at H = 1.

Sample line #14 and display its
value.

Has a key been struck?

If not, return and continue sampling
and displaying.

}

If so, read the key code into the
Accumulator and subtract 23
(octal) from its code value.

Is ACC positive?

If not, the value was less than 23
(octal). Return and continue
sampling.

If so, the value was 24 or greater;
halt 0

Example 27. Simple Sample and Display with Keyboard Controlo

Note that the KBD instruction at location 106 will be executed only when a

key has already been struck (because of KST at location 104) and therefore

does not need to direct the computer to pause 0

75

76 16m2

IOPR I

16. The Data Terminal Module and the' OPERATE Instruction

We have already mentioned the OPERATE instru~tion (po <55) in. .connection

with KBD i. In general, OPERATE, OPR i n, code 500 + 20i + n, provides

operating and synchronizing signals for externaL equipmente The number n,

o :::; n .:s; 13 (octal) refers to one of twelve Opetat~ Level lin,es ·sent· to the

Data T,erminal Module; as well as to one of the twelve ;External Level lines

(mentioned under SXL).

During the execution of 'an .OPR instruction a negative 'Output .. level

is supplied on Operate Level line n 4 j1sec. after the beginning of the

instruction; *': it remains for the duration of the instruction. The i-bit

is used to direct the LINe to pause 0 If i = 0, there is no pause 0 If i ,- 1,

the LINe pauses 4 fJ,sec. after the beginning of the instruction and sends a

IiBeginning of Operate Pause" pulse, BEOP, 0.4 j1sec. duration, to the Data

Terminal,module to signal that the pause has begun. The,computer then waits

in this state until 'a negative.input signal is sent back on External Level

line ,no This signal automatically restarts the computer.

For example, execution'of the instruction OPRi 6, code 526, provides

an output signal on Operate Level line #6 and directs the .LINe to pause,

permitting an external device associated with line #6 to be synchronized

with computer operatione Then when the external device is ready or has

completed its operation, it in turn supplies a negative signal on External

Level line #6, \"hich restarts the computer ..

In addition to the possible BEOP pulse, two other 0.4 j1sece pulses

are sent to the Data Terminal module regardless of whether the computer has

paused or not. The first ,called OPR2 G 1, occurs 6 J1sec 0 afte.r the beg'inning

of the instruction if there is no pause. 'If the computer has 'paused,the

OPR2.1 pulse, \"hich indicates that the' computer is now running, \~ill appear

not less than 2 j1sec. and not more than 4 j1sec. after the restart signal is

delivered by the external equipment over line no The second pulse, OPR2.2,

occurs 2 j1sec. after OPR2.1.

'-* See Instruction Timing Diagrams, LINe, Volume 12.

Subroutine Techniques

The OPR instruction may be used in a variety of I,vays depending on need

and the type of external equipment involved.· It can be used simply'to sense

the occurrence of an event (such as an external clock pulse), Dr'it can,be

used to control the transfer of digital information between the LINe and

external equipment (such as a tape recorder). In this context the user has

the option of transferring a single 'word (12 bits) either in or out o-f the

LINe Accumulator or Memory Contents register, or he can choose to transfer

a group of words directly into or out of the LINe memory., Various ~nabling

levels supplied by the user at the Data Terminal module define the path and

type of information transfer.

The Keyboard is a good example of a simple external device which is

controlled by an Operate instruction, OPR i 15, synonymous with KBD i. The

~mber 15 designates special external level ,and, operate level lines, with

which the Keyboard is permanently associated.

17. Subroutine Techniques

Before describing the remaining instructions, some mention should be

made of the technique of writing subroutines. Frequently a program has

to execute the same set of instructions at several different places in the

program sequence. In this case it is an inefficient use of memory registers

to write out the same set of instructions each time it is neededo It is

more desirable to write the instructions once as a separate, or ilsub, IY

routine to which the program can jump whenever these instructions are to

be executed. Once the instructions in the subroutine have been executed,

the subroutine should return control (jump back) to the main program.

77

Sub:i:'outine Techniques

For example , suppose that in two different places in a Program i,\fe must

execute the same set of arithmetic operations. We can picture the general,·

structure of such a program as follows:

Main Program

Memory
Address

Start) 100

150

151

200

201

Memory Contents

l
Main

Program

. , Instructions

JMP 1000 ---~) Jump out to subroutine

Continue +(-- Return from subroutine

Main

Program

Instructions

JMP 1000 ------7) Jump out to subroutine 1 Continue (Return from subroutine

Enter

Subroutine

Memory
Address

Subroutine ~ 1000

1020

Memory Contents

Subroutine }
Instructions Arithmetic

.,t:' Operations

JMP MP ~ Return to Main Program

16-2

16-2 Subroutine Techniques

It appears from this example that jumping to the subroutine from the

main program (at locations 150 and 200) is straightforHard. The subroutine

must be able to return control to the main program, however, reentering it

at a different place each time the subroutine is finished. That is, '.ve

must be able to change the JMP instruction at location 1020 so that the

first time the subroutine is used it '.vill return to the main program '.vith

a uJMP 151" and the second time with a IIJMP 201."

It 'vill be remembered that every time the computer executes a JMP

instruction (other than JMP 0) at any location lip, II the instruction

!tJMP p + 1" replaces the contents of register zero. (See page 14.) Thus,

"Hhen the IiJMP 1000" is executed at location 150, a "JMP 151" is automatic­

ally stored in register 0,. thereby saving the return point for the subroutine.

The subroutine might retrieve this information in the follo'.ving '.vay:

Subroutine:

Enter

Memory
Address

Subroutine ~ 1000

1001

1002

1020

Memory Contents

.LDA

o
STC 1020

[JMP P + 1]

Effect

C(o) --7 C(ACC);
i.eo, "JMP p + 1!1 ~ C(ACC).

C(ACC) ~ C(1020)0

} Execute arithmetic operations.

" Return to main program.

Clearly, a simple IIJMP 0" in location .1020 will suffice '.vhen the subroutine

does not, during its execution, destroy the contents' of register: zero. In

this case, the instructions in locations 1000 - 1002 would be unnecessary.

A problem arises in the above example when the subroutine 'is not free

to use the Accumulator to retrieve the return point. Another method,

79

80 M?gneticTa,:g€ Instructions

using the SET instruction, is possible when there is an available

f3 register:

Enter

Memory
Address

Subroutine ~ 1000

1001

1020

Memory Contents

SET 10

o

JMP 10

Effect

C(o) ~ C(10); i. e., ilJMp p + l!l
is saved in a free'f3 register.

}
, Execute arithmetic operations; the

Accumulator has not been disturbed.

Return to main program by jumping
to register 100

180 'Magnetic Tape Instructions

The last class of instructions, Magnetic Tape, requires some discussion

of the LINC Tape Units and tape format 0 The LINC uses small reel (3-3/4 11

diameter) magnetic tapes.for storing programs and datao There are two tape

units on a single panel, -on Ivhich tapes are mounted:

LINC MAGNETIC TAPES

Tape heads

Tape Unit #0 Tape Unit #1

Any Magnetic Tape instruction may refer to either the tape on Unit #0 or

the tape on Unit #1; Ivhich unit to use is specified by ,the instruction

itself; only ~ unit, however, is ever used at one time.

16-2

16-2 Magnetic Tape Instructions'

A LING tape can hold 131,072 12-bit words of information, or the
,,'

equivalent of 128 (decimal) full LING memories. It is, however, divided

into 512 (decimal) smaller segments known as blocks, each of which contains

256 (decimal) 12-bit I{ords, a size equal to one-quarter of a LING memory.

Blocks are identified on any tape by block numbers, ° through 777 (octal);

Magnetic Tape instructions specify which block to use by referring to its

block number. A block number (BN) on the tape permanently occupies a

12-bit space preceding the' 256 words of the block itself~

{ I Block
Number

I I

Block

"---.r---J \. v
Ilmrd 256 words

There are other special words on the tape, serving other functions, which

complete the tape format. Before describing these, however, I{e may look

more specifically at one of the Magnetic Tape instructions, READ TAPE,

RDE i u.

81

82

f

Block Transfers and. Checking

READ TAPE is one of six Magnetic Tape instructions which copy information

either from the tape into the LING 'Memory (called READING), ' or from the

memory onto the tape (called WRITING)'. These are' generally called block.

transfer instructions because they transfer one or more blocks of informa-

t ion bet'veen the tape and the memory:

LINC Tape

BN 256 'vord .. BN 256 word . . BN BLOCK BLOCK
1\

READ

Tape
to

Memory

WRITE

'Memory

256 word
BLOCK

. ..

READ
"-,

WRITE

LINC Memory

256
Memory

Registers

256
,.Memory
Begisters

256
Memory

Registers

256
Memory

Registers

~

16-2

16--2 Block Transfers and Checking

All of the Magnetic Tape instructions are double register instructions.

RDE, typical of a block transfer instruction, is written:

Memory
Address

p

p + 1

Memory Content s

RDE i u

QNIBN

702 + 20i + lOu

1000QN + BN

The first register of the instruction has t,vo special bits Q The u-bi t

(bit 3) selects the tape unit: when u = 0, the tape on Unit #0 is used;

'vhen u = 1, the tape on Unit #1 is used. Magnetic Tape instructions require

that the tape on the selected unit move -at a speed of approximately 60 inches per

second. Therefore, if the tape is not moving \vhen the computer encounters

a Magnetic Tape instruction, tape motion is started automatically and the

computer waits until the tape has reached the required speed before contin-

uing with the instruction.

The i-bit (bit 4) specifies the motion of the tape after the instruc­

tion is executed. If i = 0, the tape will stop; if i = 1, it will continue

to move at 60 ips. It is sometimes more efficient to let the tape continue

to move, as, perhaps, when we want to execute several Magnetic Tape instruc­

tions in succession. If we let it stop \Ve will have to wait for it to start

again at the beginning of the next tape instruction. Examples of this will

be given later.

In the second register of the RDE instruction, the right-most 9 bits

hold the reqllested block number, BN; that is) they tell the computer which

block on the tape to read into the memory. The left 3 bits hold the suarter

number, QN, which refers to the memory. QN specifies which quarter of

84 Block Tl'ansfers an¢! Checking

memory to use in the transfer. The quarters of the LINC Memory are numbered

o through 7,* and refer to the memory registers as follows (numbers are

octal) ~

Quarter,
Number Memory Registers

0 0 - 377,

1 400 - 777

2 1000 - 1377

3 1400 - 1777

4 2000 - 2377

5 2400 - 2777

6 3000 - 3377

7 3400 - 3777

Suppose, for example, we \Vant to transfer data stored on tap~'into memory

registers 1000'- 1377.' The data are in, say, block 267 and the tape is

mounted on Unit #1:

Memory
Address Memory Contents Effect

-7 200 RDE u 0712 Select Unit #1;

201 2/267 1000x2 + 267
C(block 267) -7 C(quarter 2).

This instruction will start to move the, tape on Unit #1 if it is not already

moving. It will then READ block 267 on that tape into quarter 2 of memory

and stop the tape when the transfer is completed 0 The computer will go to

location 202 for the next instruction. After the transfer the information

in block 267 is still on the tape; only memory registers 1000 - 1377 and

the Accumulator are affectedo Conversely, writing affects only the tape and

the Accumulator; the memory is left unchanged.

* See Appendix 10

16-2

Block Transfers and Checking

Another special ,,,ord on the tape, located immediately following the

block, i,s called the check E~, CS ~

\ I EN I I Block I cs I ~
'-v-' V J'-y-J

1 ,,,ord 256 words 1 word

The check sum, a feature common to many tape systems, is used to check the

accuracy of the transfer of information to and from the tapeo On a LINC

tape the check sum is the complement of the sum of the 256 words in the blocko

Such a number is formed during the execution of another block transfer

instruction, WRITE TAPE, WEI i Uo This instruction writes the contents of

the specified memory quarter in the specified block of the selected tape~

Memory
Address

p

p + 1

Memory Contents

WRI i u

QN'IBN

706 + 20i + lOu

1000QN + BN

During the transfer the words being written on the tape are added together

,,,ithout end-around carry in the Accumulator a This sum is then complemented

and written in the CS space following the block on the tapeo After the opera­

tion the check sum is left in the Accumulator and the computer goes to p + 2

for the next instructionQ QN, BN, i, and u are all interpreted as for RDE.

One means of checking the accuracy of the transfer is to form a new sum

and compare it to the check sum on the tapeo This happens during RDE: the

256 ,,,ords from the block on the tape are added together without end-around

carry in the Accumulator while they are being transferred to the memory 0

This uncomplemented sum is called the data sumo The check sum from the tape

is then added to this data sum and the result, called the transfer check, is

left in the Accumulator. Clearly, if the information has been transferred

correctly, the data sum '''ill be the complement of the check sum, and the

86

I RDCI

Block Transfers and Checking

transfer check will equal -0 (7777). We say that the block "checks. u Thus,

by examining the Accumulator after an RDE instruction, we can tell whether

the block was transferred correctly. The following sequence of instructions

does this and reads block 500 again if it does not check~

Memory
Address

-7 300

301

302

303

304

305

Memory Contents

RDE 0702

3/500 3500

SAE i 1460

7777 7777

jMp 30Z l 6300
_ ~_-l

Effect

Read block 500, Unit #0, into quarter 3.
Leave the transfer check in the Accum­
ulator and stop the tape.

Skip to location 305 if C(ACC) = 7777,
i.e., if the block checks. If
C(ACC) f 7777, return to read the
block again.

The remaining block transfer instructions check transfers automatically.

READ AND CHECK, RDC i u, does in one instruction exactly what the above

sequence of instructions does. That is, it reads the specified block. of the

selected tape into the specified quarter of memory and forms the transfer

check in the Accumulator. If the transfer check does not equal 7777, the

instruction is repeated (the block is reread, etc.). When the block is

read correctly, 7777 is left in the Accumulator and the computer goes on to

the next instruction at p + 2. The RDC instruction is written ~

Memory
Address

p

p + 1

Memory Contents

RDC i u

QN/BN

700 + 20i + lOu

1000QN + BN

One of the most frequent uses of instructions which read the tape is

to put LINC programs stored dn tape into the memory. Suppose we are given

a tape, for example, which has in block 300 a program we want to run. We

16-2

16-2 Block Transfers and Checking

are told that the program is 100 (octal) registers long starting in regis­

ter 1250e We can mount the tape on either unit and then set and execute

either RDE or RDC in the Left and Right Switches. If we use RDE, we should

look at the Accumulator lights after the transfer to make sure the transfer

check = 7777. When double register instructions are set in the toggle

switches, the first word is set in the Left Switches, and the second in the

Right S,vi tches. If we mount the tape on Unit #1 and want to use RDC, the

toggle switches should be set as follows:

Console
Location

Left S,vi tches

Right Switches

Contents

RDC u

21300

0710

2300

QN = 2 because the program in block 300 must be stored 'in memory regis­

ters 1250 - 1347, ,vhich are ·'located in quarter 2. Eaising the DO lever

will cause the LINC to read the block into the proper quarter and check it.

We then start at 1250 from the console, using the Right Switches.

The remaining block transfer instructions will be described later.

A non-transfer instruction, called CHECK TAPE, CHK i u, makes it

possible to check a block ,vithout destroying information in the memory. This

instruction does exactly what RDE does, except that the information is not

transferred into the memory; that is, it reads the specified block into the

Accumulator only, forms the data sum, adds it to the check sum from the tape,

and leaves the result, the transfer check, in the Accumulator. Since this is

a non-transfer instruction, QN is ignored by the computer. Other,vise this

instruction is written as the other instructions:

Memory
Address

p

p + 1

Memory Contents

CHK i u

BN

707 + 20i + lOu

BN

88 Block Transfers and Checking

The following program checks sequentially all the blocks on the tape on

Unit #0. The program starts at location 200. If a block do,es not check,

the program puts its block number into the Accumulator and halts at

location 221. To ,continue checking, reenter the program at lo,cation 2070

The program will halt at location 216 when it has checked the entire tapeo

Memory
Address

Start) 200

201

202

203

204

205

206

Reenter} 207

210

211

212

213

214

215

216

'217

220

221

Memory Contents Effect

CLR

STC 203

~
[BN] ~

SAE i

7777 ----l
JMP 217 I

LDA i ~J

1

ADM

203

SAE i

1000 ---I
JMP 202 "

HLT (-_J

LDA

203

HLT

0011

1

4203

0727

'I [-]
1460

17777
6217

1 1020

1

1

1

1

0001

1140

0203

1460

1000

6202

0000

}

store zero in register 203 as first
block number 0

Check the block specified in regis­
ter 203; transfer check ~ C(ACC);
the tape continues to move.

If the transfer check = -0, skip to
location 207.

If the block does not check, jump to
location 217.

Add 1 to the block number in regis­
ter 203, and leave the sum in the
Accumulator.

If all the blocks have been checked,
skip to location 2160 Otherwise
return to check next block.

1
1000 } Load, ~,he" block number of the block

, 0203 which failed into the Accumulator, I 0000 ' and halt.

Example 28~ Simple Check of an Entire Tape.

16-2

16-2 Block'Transfers 'and Checking

A block transfer instruction WRITE AND ,CRECK, WRC i u, combines the

operations of the instructions WRI and CHK, and, like READ AND CRECK, repeats

the entire process if the check fails. That is, WRC writes the contents of

the specified memory quarter in the specified block, forms the check sum in

the Accumulator and writes the check sum on the tape. It then checks the

block just written. If the retlult.ing tl~an8feT check does

block is rewritten and rechecked. When the block checks, 7777 is left in

the Accumulator and the computer goes on to the next instruction at p + 2.

WRC is written:

Memory
Address

p

p + 1

Memory Contents

WRC i u

QNIBN

704 + 20i + lOu

1000QN + BN

This process of WErrE AND CHECK may be diagrammed:

WRI

Start WRC , MEMORY -7 TAPE
------------------~ ~ Form and Write

i--------------~, CHECK SUM

CHK

TAPE -7 ACCUMULATOR
Form TRANSFER CHECK

in Accumulator

TRANSFER CHECK ~ -0 TRANSFER CHECK = -0
"II

Get next
instruction

90 Block Tran.sfers,and.Checking

- , .'

The following sequence illustrates the use of some of the block transfer

instructions. Since the LINe Memory is small" a program must freql1entlyhe

divided into sections which will fit into tape blocks" and the sections read

into the memory as they are needed. This example saves (writes) the contents

of quarter 2 of memory (registers 1000 - 1377) on t'he tape. It then reads a

program section from the tape into quarters 1" 2" and 3 (registers 400- 11'77)

and jumps to location 400 to'begin the new section of the program.' Assume

that the tape is 'on Unit #00 Memory quarter 2 will be saved in block 50; the

program to be read from the tape is in blocks 201 - 203~

Memory
Address Memory Contents Effect

-7 100 WEC i 0724 C(quarter 2) -7 C(block 50); transfer

101 2150

I
2050

is checked" and the tape continues
to move.

102 RDC i 0720 C(block 201) -7 C(quarter 1)" and
103 1'/201

I
1201 C(block 202) -7 C(quarter 2); trans-

104 RDC i 0720
fers ~re checked arid the tape 'con-
tinues to move 0

105 2'/202
I

2202

106 RDC 0720 C(block 203) -7 C(quarter 3) ; trans-

107 31203 I 3203
fer is checked and the tape stops.

110 JMP 400

I
6400 Jump to the new section.

C 400 I [-J

Example 290 Dividipg L'argePrograms Between Tape and Memoryo

At the end of the above sequence the contents of memory registers 400 - 1777

and tape block 50 have been altered; quarter 0 of memory" in which the

sequence itself is held" is' unaffectedo

16-2

16-2 Block Transfers ano. Checking

Another program repeatedly fills quarter 3 'with samples from input

line If14 and \vri tes the data in consecutive blocks on tape beginning at

block 200. The number of blocks of data to collect and save is specified

by the setting of the Right S\vitches. When the requested number ,has been

written, the program saves itself in block 177 and haltso The tape is on
-- _, 11-

Uni t ffl...

Memory
Address

10

11

-7 1000

1001

1002

1003

1004

1005

1006

1007

1010

1011

1012

1013

1014

1015

1016

1017

1020

1021

1022

1023

Memory Contents Effect

[X]

[=n]

RSW

COM

STC 11

SET i 10

1377

SAM 14

STA i 10

XSK 10 -'----,
JMP 1005 I
WEC u '~

[31200]

LDA i

1

ADM

1012

XSK i 11 ----I
JMP 1003 I
WRC u~

211177

HLT

Example 300

[- J

[-]

0516

0017

4011

0070

1377

0114

1070 '

0210

7005

0714

[-]

1020

0001

1140

1012

0231

7003

0714

2177'

0000

Memory address for storing samples.

Counter.

}

C(Right Switches) -7 C(ACC) 0 Comple~
ment the number and store in
register 110

Set register 10 to store samples
beginning at 14000

Sample input line #14, store value
and repeat until 400 (octal)
samples have been taken.

When quarter 3 is full, write it on
tape and check the transfer. The
tape stops.

Add 1 to the BN in register 1012.

Index the counter and skip if the
requested number has been collectedo

If not J return.

If so, write this program in block 177,
check the transfer, and stop ,the tape.

Halt the computer 0

Collecting Data and Storing on Tapeo

_Since the program saves itself when finished, the user can continue to collect

data at a later time by reading block 177 into quarter 2, and starting at 1000.

91

Group Transfers

Since the BN in location 1012 will have been saved, the data will continue

to be stored in consecutive blocks.

Group Transfers

Two other block transfer instructions, similar to RDC and WRC, permit

a program to transfer as many as 8 blocks of information with one instruc­

tiono These are called the group transfer instructions; they transfer infor­

mation between consecutive <luarters of the memory and a group of consecutive

blocks on the tape. Suppose, for example, that we want to read 3 blocks from

the tape into memory quarters 1, 2, and 30 The 3 tape blocks are 5~, 52,

and 53. Using the instruction READ AND CHECK GROUP, RCG i u, we write:

Memory
Address

p

p + 1

Memory Contents

RCG i u

2/51

701 + 20i + lOu

2051

The first register specifies the instruction, the tape unit, and the tape

motion as usual. The second register, however, is interpreted somewhat

differently~ It uses BN to select the first block of the group. In addi­

tion, the right-most 3 bits of BN specify also the first memory quarter of

the group. That is, block 51 will be read into memory quarter 1, (block 127

would be read into memory <luarter 7, etc.). The left-most 3 bits (usually QN)

are used to specify the number of additional blocks to transfer. In the above

example then, block 51 is read into <luarter 1, and 2 additional blocks are

lalso transferred: block 52 into quarter 2 and block 53 into quarter 3.

The format for WCG i u, WRITE AND CHECK GROUP, is exactly the same as

for RCG:

Memory
Address

p

p + 1

.Memory Contents

WCG i u

3'/300

705 + 20i + lOu

3300

The computer interprets the above example as: write and check <luarter 0 in

block 300, and make 3 additional consecutive transfers, <luarter 1 into

16-2

16-,2 Group Transfers

block 301, quarter 2 into block 302, and quarter 3 into block 303. When the

left-most 3 bits are zero, that is zero additional transfers, the WCG

instruction is like the WRC instruction in that only 1 block is transferred.

The second ,\Tord of a group transfer instruct ion may be diagramed:

p + 1

11 10 9 8 7 6 5 4

I I
~ ~~------------------V

of additional
transfers

Initial Block

3

Initial Memory Quarter

~

2 1 0

/

Number

RCG and WCG al'i\Tays operate on consecutive memory quarters and tape

blocks. Specifying 3 additional transfers '\Then the initial block is, say,

336, 'i\Till transfer information between tape blocks 336, 337, 340, 341 and

memory quarters 6, 7, 0, and 1, that is, quarter ° succeeds quarter 7.*
The transfers are al'\Tays checked; '\Then a transfer does not check, the

instruction is repeated starting with the block that failed. With WCG,

all the blocks and their check sums are first written, and then all are

checked. If any block fails to check, the blocks are rewritten beginning

with the block that failed, and then all blocks are checked again. As with

RDC and WRC, the group transfer instructions leave -0 in the Accumulator

and go top + 2 for the next instruction ..

* See Appendix I.

93

Tape Motion and the MOVE TOWARD BLOCK Instruction

Using RCG instead of RDC, the program. example onp. 90 can be more

efficiently written~

Mem.o:ry
Address Memory Contents Effect

-7 100 WEC i 0724 C(quarter 2) -7 C(block 50) ; transfer

101 2'/50 2050
is checked and tape continues to move.

102 RCG 0701 Read blocks 201 - 203 into quarters 1 -

103 21201 2201 3; check the transfers and stop the
tapeo

104 JMP 400 6400 Jump to the new section.·

Example 310 Tape and Memory Exchange with Group Transfer.

Tape Motion and the MOVE TOWARD BLOCK Instruction

When the computer is searching the tape for a required block, it looks

at each block number in turn until it finds the correct oneo Since the tape

may be positioned anywhere when the search is begun, it must be able to move

either forward or back-vvard to· find the block 0

By forward is meant moving from the low block q.umbers to the high

numbers; physically the tape moves onto the lefthand reelo

Forlvard Backward

By backward is meant from the high numbers to the low; the tape moves onto

the righthand reel.

16-2

16-2 Tape Motion and the MOVE TOWARD BLOCK Instruction

When searching for a requested block the computer decides whether the

tape must move for-Hard or backward by subtracting each block number it finds

from the requested number, and using the sign of the result to determine the

direction of motiono If the difference is positive the search continues in

the for"Hard directionj if negative, it continues in the backward directiono

This may, of course, mean that the tape has to reverse direcLi.on in Olcdel""'

to find the required block.

Suppose,for example that the computer is instructed to read block 50,
and that the tape is presently moving forward and just below block 75. The

next block number found will be 75. The result of subtracting 75 from 50
is -25, which indicates not only that the tape is 25 blocks away from

block 50, but also that block 50 is below the present tape position. The

tape will reverse its direction and go backward.

To facilitate searching in the backward direction a special word called
~

a backward block number, BN, follo,vs the check sum for each block~

BLOCK 1
'--y-J

1 word

When searching in the forward direction the computer looks at forward block

numbers, BNj when searching in the backward direction it looks at backward
~

block numbers, BN. In either direction, each block number found is sub-

tracted in turn from the requested number, and the direction reverses as

necessary, until the result of the subtraction is -0 in the forward direction.

Transfers and checks are made only in the for'vard direction.

Thus, in the above example, the tape will continue to move in the back­

ward direction until the result of the subtraction is positive, ioe., until
~

the BN for block 49 is found and subtracted from 50, indicating that the

tape is no,,, belo,,, block 50. The direction will be reversedj the computer

will find 50 as the next for,,,ard block number, BN, and the transfer will be

made because -0 is the result of the subtraction and the tape is moving

forward.

95

Tape Motion and the· MOVE TOWARD BLOCK Instruction

For all Magnetic Tape instructions, if the tape is not moving '''hen the

instruction is encountered, the computer starts the tape in the forward

direction and waits until it is moving at the required speed before reading

a forward block number, BN, and reversing direction if necessary. ·.If the.

tape ~sin motion, however, (inclu.ding coasting to a stop), the computer

does not change the direction of motion until. the block number comparison

requires it.

For all tape transfer or check instructions with i =: 1, the tape con­

tinues to move for,,,ard after the instruction is .executed.

For all Magnetic Tape instructions all stops are made in the backward

direction~ For transfer or check instructions this means that the tapeab"ays

reverses before stoppings Furthermore, the tape then stops below the last

block involved in the instruction, so that '''hen the tape is restarted, this

block will be the first one found. This reduces the delay in programs which

made repeated references to the same block.

The last Magnetic Tape instruction illustrates some of the tape motion

characteristics. MOVE TOWARD BLOCK, MTBi u, is written:

Memory
Address

p

p + 1

Memory Contents

MrB i u

BN

703 + 20i + lOu

BN

As in the other Magnetic Tape instructions, theu-bit selects the tape unit.

The tape motion bit (the i=bit) and the second register, however, are inter­

preted somewhat differently. MTB directs the LINC to subtract the next block

number it finds on the tape from the number specified in the second ,,,ord of

the instruction, and leave the result in the Accumuiator. QN is ignored

during execution of MTB. For example, if the biock number in the second

register of the instruction is zero, and the tape is just below block 20

and moving forward, then -20, or 7757, will be left in the Accumulator. The

MTB instruction can thus be used to find out ,,,here the tape is at any partic­

ular time.

16-2

16-2 Tape Motion and the MOVE TOWARD BLOCK Instruction

When i ~ 0 the tape is stopped as usual after the instruction is

executedo When i = 1, however, the tape is left moving toward the specified

blocko The result of the subtraction is left in the Accumulator, and the

tape direction is reversed if necessary as the computer goes on to the next

instruction. NTB i does not actually find the block; it merely orients the

tape mot ion to,·mrd it.

The initial direction of motion and possible reversal are determined

for NTB just as they are for all other Magnetic Tape instructions, as

described above. Note, however, that since MTB i makes no further correc­

tions to the direction of motion, the specified block may eventually be passedo

The MOVE TOWARD BLOCK instruction serves not only to identify tape

position, but also can be used to save timeo If, for example, a program

must read block 700, and then, at some later time, write in block 50, it is

efficient to have the tape move toward block 50 in the interim while the

program continues to run~

Memory
Address

-7 100

101

102

103

300

301

Memory

RDC i

3'1700

MTBi

50

1
WRI

50

Contents

0720

3700

I 0723

I
0050

1
I 0706

I 0050

Effect

C(block 700) -7 C(quarter 3) ; tape
moves for,,,ard.

C(103)~next BN -7 C(ACC); tape
reverses and moves backward

} toward block 500
Tape continues to move backward

while program continues 0

c(quarter 0) .-7 C(block 50); tape stops 0

In this example i t,,,ould be inefficient to stop the tape (i = 0) with the RDC

instruction at location 100 .or to let it continue to move forward until

block 50 is called foro Although we may not be interested in the number

left in the Accumulator after executing the NT] at location 102, the MrB

does serve to reverse the tape 0 Then, '''hen block 50 is called for, the delay

in finding it will not be so long.

97

Tape Format

Certain other facts about the tape format should be mentioned. Other

special words on the tape are shown~

512 BLOCK ZONES

.. >

[I 11 1 ..
\. I .."...-

V-
about 5 feet . ..-

........---- -

~ I:NI GI BLOCK I CS lei c I GI~N I ~~J~I I
'-v-' "-v-" y. ~"--y-J'--y-J'-y-J'--v--I'--y-J~

1 1 256 words 1 1 1 1 1 5

At each end of the tape is an area called end ~ which provides physical

protection for .the rest of the tape. When a tape which has been left moving

as the' result· of executing a tape instruction with i = 1 reaches an end zone,

the tape stops automatically. (This prevents the tape from being pulled off

the reel.) Words marked C and G above do not generally concern the programmer

exce'pt insofar as they affect tape timing.' Words marked C are used by t.he

computer to insure that the tape writers are turned off following a write

instruction. Words marked G, called guard words, protect the forward and

backward block numbers when the write current is turned on and offo

16-2

Inter Block Zones are spaces between block areas-which can be sensed by

the Skip Class instruction, IBZ i, when either tape is moving either forward

or backward. The purpose of such sensing is to make programmed block searching

Tape Format

more efficient. For example, suppose that somewhere in a program we must

read block 500 into quarter 2j assume it does not matter when "'life read i tin

as long as we do so before the program gets to the instructions beginning at

location 650. The follo,1ing illustration uses a subroutine to check the

position of the tape and execute the read instruction if the tape is within

2 blocks of block 500. If the tape is not in an inter block zone, the main

progFam will then continue without having to wait for a block number to

app~ar. For purposes of simplicity let us assume that the tape (on Unit #0)
is moving. The program begins at location 400 and the subroutine at

location 20.

Note that the following example will work only if the tape is stopped

by the RDC instruction in register 32. If we do not stop the tape here,

subsequent jumps to the subroutine may continue to find the tape at an inter

block zone (locations 20 - 22) and block 500 may be read repeatedly. The test

with the APO instruction at location 646, ,lfhich tells us whether the trans­

fer has been made or not, is necessary to guarantee that the transfer will

be made before we get to location 650. At this point, if the transfer has

not been made, the ifJMP 32" at location 647 will be executed.

99

100

Memory
Address

20

21

22

23

24

25

26

27

30

31

32

33

34

35

-7 400

401

402

500

600

644

645

646

647

650

Tape~F<Drmat

Memory Contents

IBZ ----I
(JMP .,0,,'

'MTB i f--1

500

APO ----I
COM' I
ADA i f--1

-2

APO i ----,
< JMP 0 I

RDC ~ _-1

2'/500

STC 645

(JMP o

CLR

STC 645

.0453

I
6000

0723 I 0500

0451

·1· 0017

I
1120

7775

I
, 0471

6000

I 0700

1

2500

4645

1 6000.

I 0011

1 4645

T 1

6

T
O

il6020

I 610 T
LDA i

APO i ----,
JMP 32) I

t(-J

I 1020

[-]

I 0471

I 6032

I

Effect

Enter subroutine and sense tape position.

Return if tape is not at an inter., block
zone. ~

If it is~ subtractBN or BNfrom
500. .Tape continues to move toward
block 500.

Is resultpositi~e?

If negative, complement ito

Add -2 to see if tape is within 2
blocks of block 500.

Is result positive?

If result is positive, return to main
program.

If negative, tape is within 2 blocks of
block 500. Make, the transfer and
stop the tape.

}
St,ore the transfer check ~ -0 in l,Dca­

tion,645 ~o indicate transfer has
been made, and return. .

}
Store positive zero in location 645

to indicate transfer has not
been made.

Jump to subroutine at these points;
return to p + 1 and continue with
main program.

Put test number (either 0000 or 7777)
into Accumulator.

Skip to location 650 if the transfer
has been made; (C(ACC) = 7777).

If not, jump to subroutine to make
transfer, and return to location 650.

Example 32.. Block Search Subroutine.

Tape Motion Timing

When a tape is moving at a rate of 60 ips, it takes approximately

43 mseco to move from one forward block number to the next, or 160 j.1Seco

per wordo The follo'iving table summarizes some of the timing factors:

LINC TAPE MOTION TIME
.--- -~

START (from no motion to 60 ips) approx. 0.1 sec.

STOP (from 60 ips to no motion Ii 003 seco

REVERSE DIRECTION (from 60 ips to
60 ips in opposite direction) ~i 001 seco

CHANGE UNIT (from no motion to
60 ips on new unit) l! 001 sece

BN to BN (at 60 ips) 11 43 msec.
"'.==_._·=M'_·~

END ZONE to END ZONE (at 60 ips) !i 23 sec.

Some methods of using the tape instructions efficiently become obvious from

the above tableo Generally speaking, tape instructions should be organized

around a minimum number of stops and a minimum amount of tape travel timeo

When dealing with only one tape unit, it is usually efficient to use con­

secutive or nearly consecutive blocks in order to reduce the travel time

between blocks e

It is also efficient to· request lower-numbered blocks before higher~

numbered blocks, avoiding unnecessary reversals. The WRITE AND CHECK

instruction, requiring two reversals, is costly in this respecto It first

101

102 Tape Motion Timing

must find and write in the block in the forward direction, then the tape

must reverse and go backward until it is below the block, then reverse a

second time and go forward to find and check the block:

Forward

INTER
BLOCK
ZONE

/find I) BN

Requested Block

>1
WRITE

16",,2

\ ,
Reverse

(1f~;d~ ((< ((~
Back1vard

Reverse

~ ~ 1f~~d I 1 CHECK 1 Forward

Because of these reversals it is sometimes more efficient to use two tape

instructions, WRI followed by CHK, than to'use WHC. This is true, for

example, when more than one block must be written and checked. Suppose we

~

16-2
<_'~._ .. __ .u··_

Tape Motion Timing

want to 'ii'rite quarters 1, 2, and 3 in blocks 100, 101, and 102, and check

the transfers. Using WRC, this would'take a minimum of six reversals.

The following sequence requires a minimum of t'ii'O reversals ~

Memory 1
Address

-7 20

21

22

23

24

25
26

27

30

31

32

33

34

35

36

37

40

41

42

43

44

45

4·6

47

Memory Contents

LDA

24

STC 32

WRI i.

11100

WR.I i

21101

WRI i

31102

CHK i

[BN]

SAE i

7777
JMP-;-; l
LDA i ~-1

1

ADM

32

SAE i

11103
---I
JMP 31 I
MTB f-_l

o
liLT

1000

0024

4032

0726

1100

0726

2101

0726

3102

0727
[~]

1460

7777

6020

1020

0001

1140

0032

1460

1103

6031

0703

0000

0000

Effect

}

put the BN of the first block to
be checked in register 32.

Write 3 consecutive blocks on the
tape on Unit #0 and leave the
tape moving forward after each
transfer.

Check the blocks, beginning Ivith
block 100.

}

If a block does not check, repeat
entire process.

Add 1 to the BN in register 32.
If the result f 11103, not all
have been checked. Return and
check the next block.

}

When all have checked, execute
MOVE TOWARD BLOCK to stop the
tape, and halt 0

Example 33. Write and Check 'ii'ith Fe'ivest Reversals.

In this example the two reversals will occur the first time the CHK instruc­

tion at location 31 is executedo Clearly, other reversals may be necessary

103

104 Tape Motion Timing

Hhen the computer initially searches for block 100, and \vhen a block does

not check, but careful handling of the tape instructions can reduce some of

these delays 0 It should be noted that there are 9 words on the tape between

any CS and the next BN in the forward direction. When the tape is moving at

speed, it takes 1,440 j1sec. to move over these 9 words. Thus the program

has time to execute several instructions bet\veen consecut i ve blocks, i. e. ,

before the next BN appears. In the above example, then, there is no danger

that the next block \vill be passed while the instructions at locations 33 -

44 are being executed.

16-2

Chart I. Classes of LINC Instructions

Miscellaneous

HLT

CLE

NSC 13
ATE

RTA

NOP

COM

Shift

ROL i n

ROE i. n

SeR i n

Full Address

ADD X

STC X

JMP X

Index

LDA i 13
STA i. 13
ADA i 13
ADM i 13
LAM i 13
MUL i 13
SAE i 13
SRO i 13
BCL i 13
ESE i 13
ECO i 13
DSC i f3

Half=Word

LDH i 13
STH i 13
SHD i 13

Skip

SXL i. n

KS11 i

SKP i !l

SNS i n

AZE i

APO :1.

LZE i

IBZ i

Operate

OPE i. n

KED i

RSW

:LSW

Magnetic Tape

RDC i u

RCG i u

EDE i u

MTB i u

WR.C i u

WCG i u

WRI i u

CRK i u

SET i ex

SAM :1. n

DIS i ex

XSK i ex

106 16-2

Chart IIo Keyboard Code

[SPACE

The Keyboard Code :lln Numerical Order l$E? .

00 0 'Lf 20 / + 40 M

01 1 ,,. 21 8/ I 41 N

02 2

"
22 [/,# 42 0

03 3 " 23 CASE 43 P

04 4· ~o 24· It A 44· Q

05 .5
" I

25 \I B R

06 6 1l.. 26 < c 4·6 s
07 7 '73 27 ::> D 47 T

10 8 'l « 30] E 50 U

11 9 .,~ 31 F 51 V

12 META/EOL ,." 32 • G 52 W •
13 delete 33 H 53 X

(.0 14 ~PACE 34 I 54 y

<. \ 15 :::: I i 35 J 55 z
,~ 16 u I p 36 K

'3 17 J / = 37 L

l'
c,,,,Sl.

16-2

\

Chart 1110 Pattern Words for Character Display

A table of 24-bit patterns for 4 x 6 display, using the DSC
instruction, of all characters on the LINC Keyboard. The table is
ordered numerically as the characters are coded on the Keyboard.
Table entries for non-displayable characters are zero.

0 4136 A 4477 u 0177
3641 7744 7701

1 2101 B 5177 V 0176
0177 2651 7402

2 4523 C 4136 W 0677
2151 2241 7701

3 4122 D 4177 X 1463
2651 3641 6314

4 2414 E 4577 y 0770
0477 4145 7007

5 5172 F 4477 z 4543
0651 4044 6151

6 1506 G 4136 =: 1212
4225 2645 1212

7 4443 H 1077 u 0107
6050 7710 0107

8 5126 I 7741 , 0500
2651 0041 0006

9 5120 J 4142 0001
3651 4076 0000

EOL 0000 K 1077 B 4577
0000 4324 7745

del 0000 L 0177 4177
0000 0301 0000

SPACE 0000 M 3077
0000 7730

i 0101 N 3077
0126 7706

p 3700 0 4177
"'·3424 7741

0404 P 4477
0404 3044

+ 0404 Q 4276
0437 0376
0000 R 4477
0077 3146

3614 S 5121
1436 4651

CASE 0000 T 4040
0000 4077

107

108 16-2

Chart IVo Instruction Code

Alphabetical Numerical

13 MTP 700 HLT 0 MTP 700

ADA 1100 MUL 1240 MSC 0 RDC 700

ADD 2000 NOP 16 CLR 11 RCG 701

ADM ·1140 OPR 500 13 RDE 702

APO 451 \RCG 701 ATR 14 MTB 703

NrR 14 RDC 700 RTA 15 WEC 704

AZE

I
450

BCL 1540

Beo I 1640

BSE I 1600

CHK I 707 I
CLR 11

RDE 702 NOP 16 WCG 705

ROL 240 COM 17 WEI 706

ROE 300 SET 40 CHK 707
RSW 516 SAM 100 LDA 1000

I·· RTA 15 / DIS 140 STA 1040 (f'P

SAE 1440 XSK 200 ADA 1100

COM 17 SAM 100 ROL 240 ADM 1140

DIS I 140 SCR 340 ROE 300 LAM 1200

DSC

I
1740

HLT 0

SET 40 SCE 340 MUL 1240

SHD 1400 SXL 400 LDH 1300

IBZ 453 SKP 440 KST 415 STH 1340

JMP 6000 SNS 440 SKP 440 SHD 1400

KBD 515 SRO 1500 SNS 440 SAE 1440

KST I 4·15 I STA 1040 AZE 450 SRO 1500

LAM
I

1200

LDA I 1000

STC 4000 APO 451 BCL 1540

STH 1340 LZE 452 BSE 1600

LDH
I
I 1300 . !
!

LSW I 517
LZE ! 452

i
MSC I 0

I

MTB I 703

SXL 400 IBZ 453 BCO
I

1640

WCG 705 OPE 500 DSC 1740 I

WEC , 704 KBD 515 ADD I 2000

WEI 706 RSW 516 STC I 4000
XSK 200 LSW 517 JM1> I 6000

'Appendix I

Appendix I~ Double Memory Programming

The LINC has been presented as having a single l2-bit J 1024 (decimal)

word memory ° A second memory can be added to the computer to provide

204.8 (decimal)} or 4000 (octal) 12-bit words. This second memory is

addressable for d8La btorage it can be used

to hold running programso

Bit 10 of a register containing a memory address J eogo, a ~'regist'er,

is designated as the Memory Select bito When this bit is 1, the second

memory is addressed;

~ 010 000 000 000
~~"'----:"~.-__ --"I

Memory Select Bit

The addresses for the second memory may then be thought of as 2000 + X,

"\vhere 0 ~ X ~ 11'77, as usual.

More si.mply perhapsjl we speak of memory registers 2000 through

3777 (octal). While this scheme makes the memory addresses of the two

memories continuous,' they can not abvays be treated as such by the program­

mer. The Instruction Location register, having only 10 bitsjl prohibits

using the second memory to hold running programs; the next ilsequential ll

instruction location after 1777 is always O. Moreover} the Full Address

Class instrIJ£~ons ,..:an ~_~~~~,~,"~.~,ygE1z"_!,_~g,11§~,~E~".g_!,g!'.?llgJ: 1777·

All other memory reference instructions have available a Memory Sele,ct

bit, and can address either memory. The instruction

p

p + 1

LDA

2133

"\vill load the Accumulator "\vith the contents of register 2133, io eo:;

register 133 of the second memory ° It must be remembered, howeverjl that all

instructions which index the first 16 registers (Index Class, Half-Word

I-l

1-2 Appendix I

Class, XSK, and DIS) index 10 bits only, and thus index from 1777 to 0

without affecting the Memory Select bit. Therefore, by setting bit 10, we

can index through either memory we choose, bu,t we cannot index from one

memory to the othero E.g.:

Memory
Address· Memory Contents

3 [2000 + X]

--7 40 SET i 3 0063

41 3777 3777

42 CLDA
i 3

1023

43 6042 JMP 42

In this example register 3 will contain the succession of values:

3777,2000,2001, 0.0, 3777,2000, etc., repeatedly scanning the second

memory. In order for the first execution of the LDA instruction at

location l~2 to index register 3 to 2000, register 3 must be set initially

to 3777, i.eo, X(3) := 1777 and Memory Select bit = 1.

For many purposes this indexing scheme presents no disadvantages.

Often, however, one Ivould like to use both memories, for example to collect

a large number of data samples. The following program fills memory

Appendix I

registers 400 through 3777 '-lith sample values of the signal on input line 10.

The sample-and-store part of the program is written as a subroutine (loca­

tions 31 - 40), and the sample rate is controlled by an OPR i n instruction~

~:~~~~_I
Huurebb

7

10

~ 20

21

22

23
24

25
26

27
30

31

32

33

34

35
36

37
40

[-]

-7 [JMP xJ

SET i 7

377
JMP 31

SET i '7

3777
JMP 31
WCG

6131
HLT

4SET 10

o
r70PR i 1

SAM 10

STA i 7

XSK 7 ----,
JMP 33 I
JMP 10 ~

I

0067

0377
6031

0067

3777
6031

0705
6031
0000

0050
0000

0521

0110

1067

0207

6033
6010

Effect.

For memory address.

For return pointo

}

set 7 to initial address minus 1
and jump to subroutine.

}

R.eturn from subroutine; set 7 to
initial address minus 1 for
second memorYJ and jump to
subroutine.

}

R.eturn from subroutine; write
memory quarters 1 through 7 in
blocks 31 through 37 and halto

Enter subroutine and save return
point in register 10.

Pause until restart signal appears
on External Level line 10

}samPle input on line 10 and store.

If X(7) f 1777, return to
get next sample.

When X(7) =- 1777, return to main
program via register 10.

Example 34. Indexing Across Memory Boundarieso

I-3

GLOSSARY OF SYMBOLS

Re~isters

Symbol

A

B

C

b
.P
~

.§

~

Othe r Symbol s

Symbol

A.
J

A. k J-
i

u

n

p

h

h(~) .

h(p + 1)

Function Console Name
•

Accumulator Accumulator

Memory Buffer Memory Contents

Control Instruction

Link Bit L

Progra:m Counter Instruction Location

Output of Relays Relays

Memory Address Memory Address

Odd Jobs Not indicated on C onsole ~-

Definition

Bit "j" of register A.

Bits "j" through "k", inclusive, 'of A.--

Bit 4 of the instruction word or of the contents of ~.

Bit :f of the instruction word or of the contents of ~.

Bits 0 through 3 of the instruction word, when these
bits are not used to refer to one of the first sixteen
memory locations as index registers.

Bits 0 through 3 of the instruction word, in those
instructions which may use these bits to specify:
the address of an index register.

The address of the memory location from which the
first word of the current instruction was obtained.

Bits 0 through 9 of a twelve bit word.

Bits 0 through 9 of the contents of index register' ~.

Bits 0 through 9 of the contents of the melTIOry'
location whose address is p + 1 •.

A bit which is used to specify which half of the operand
word is used by a HALF WORD instruction.

Bit 11 of the contents of index register~. ,
Bit 11 of the contents of the memory location whQ5?e
address. is p + 1.

page 20

GLOSSARY (continued)

S~mbQl

X(B)ndx .

X(~)hndx

y

Y(p +1)

Y(B)

Definition

1 +X (~), using ten bit twos' complement addition.

X(~)hndx ::X(~) if h(~) :: 0 ,

X(~)hndx ::X(~) ndx if h(~) :: 1

The address of the operand of an in struction, 11
bits in length.

Bits 0 through 10 of the contents, of the memory
location whose address is p + 1.

Bits 0 through 10 of the contents of index register ~.

page 21

16-2

lILT 0000

Appendix II

Order Code Summary

Misce'llaneous Class

HALT 0 HalL Lhe computer. The Run light on. the console is tU!'Ded OTT.

Perhaps the gong chimes. The computer can be restarted only from the

console.

CLR 0011 8 jlsec.

CLEAR.. Clear the Accumulator and the Link Bit.

l\ffiC 13 0013 8 J.1,seco

HLT

CLR

Turn on the write~gate for marking tapes if and only if the computer has

been placed in the MARK mode by pressing the MARK button on the console 0

Warning: Thi.s instruction is' to be used only for marking tapes 0

ATR 0014 8 J.1,seco ATR

ACCUMULATOR TO RELAY. Copy the contents of the right half of the Accum­

ulator (bits 0 ~ 5) into the Relay register. The contents of the

Accumulator are not changed 0

RTA 0015 8 J.1,sec 0 RTA

RELAY TO ACCUMULATOR 0 Copy the contents of the Relay register into the

right half of the Accumulator (bits 0 = 5) and clear the left half of the

Accumulator. The contents of the Relay register are not changed 0

NOP 0016 8 I-LSec 0

NO OPERATION. This instruction provides a delay of 8 J.1,seco before pro=

ceeding to the next instruction. It does no~hingo

COM 0017 8 J.1,sec.

COMPLEMENT. Complement the contents of the 'Accumulator.

NOP

COM

II-l

11-2 Appendix II

Shift Class

*. Execution Times

n (octal)
o ::5 n ::;17 0,1,2,3 4,5,6,7 10,11,12,13 14,15,16,17

time 16 I1seco 24 /.lsec 0 32 I1seco 40 I.wec.
(decimal)

ROL i n 240 + 20i + n * ROL

ROTATE LEFT. Shift. the contents of the Accumulator n places to the left,

with or without the Link Bito The i~bit specifies one of two variations~

i ::::; 0 i :::: 1

L~.O o .

ROB i n 300 + 20i + n * ROR

ROTATE RIGHT 0 Shift the contents of the Accumulator n places to the right,

with or without the Link Bit. The i-bit specifies one of two variations.~

i '~ 0 i 'c:' 1

L~ o ..

SCR i n 340 + 20i + n * SCR

SCALE RIGHT. Shift the contents of the Accumulator, with or without the

Link Bit, n places to the right wi.thout changing the sign bit, replicating

the sign in n bits to the right of the sign bito Thei~bit specifies one

of two variations:

i := 0 i ::;;; 1

1.6-2 Appendix. II

Full Address Class

I I
'--------'- j 0~X~17T7

[ADD X 2000 + X 16 J,1sec. ADD

ADD. Add the contents of register X to the contents of the Accumulator

and leave the sum in the Accumulator, using 12-bit binary addition with

end~around carry. The contents of register X are not changed.

STC X 4000 + X 16 j..Lsec. STC

STORE AND CLEAR. COFY the contents of the Accumulator into register X and

then clear the Accumulator.

JMP X 6000 + X *
JUMP. Set the Instruction Location register to X, i.e., take the next

instruction from register X. If X f 0, and if JMP X is executed at

location p, then the code number for JMP p + 1 is stored in register O .

. *. When X == 0, execution time is 8 j.1sec; when X -f 0, 16 j.1sec.

JMP

II-3

Appendix .11

Skip the next regis"ter "in 'the instruction sequence if:

i := 0 and the specified condition is met

or if:

i := 1 and the specified condition is not met.

Otherwise, go on to the next instruction in sequence.

SXL i n 400 + 20i + n SXL

SKIP ON EXTERNAL LEVEL NEGATIVE. Condition~

line n is -3 volts (as opposed to 0 volts) 0

The signal on external level

o ~ n ~ 13.

KST i 415 + 20i 8 j1seco KST

KEY STRUCK. Condition: A key has been struck and is locked down.

SNS 1. n 440 + 20i + ri 8 j1sec. SNS

SENSE SWITCH 0 Condition: Sense Switch n is up. 0 ~ n ~ 5.

AZE i. 450 + 20i, 8 j1sec. AZE

ACCUMULATOR ZERO. Condition~ Accumulator contains either 0000 or 77770

APO i 451 + 20i 8 j1sece APO

ACCUMULATOR POSITIVE. Condition: The sign bit of the Accumulator is o.

LZE i 452 + 201. 8 j1sec. LZE

LINK ZERO. Condition: The Link bit is o.

IBZ 1. 4,53 + 201 8 j1sec. IBZ

INTERBLOCK ZONE. Condition: Either tape unit is up to speed and at an

interblock zone.
/

(

16-2

.f/

16-2 Appendix II

Index Class

Operand Location, Y, in Index Class Instructions

1 ':;(3;5; 17 (3 ::;: 0

i -, 0 I i ::;: 1 i ::;: 0 i = 1
~--

(3 y (3 [Y~l]* · 0 · a e · ~

· 0 0 ~ · · e . 0 ..-:tp LDA ..-:tp LDA i · · .
,~ P LDA (3 ..-:tp LDA i (3 P + 1 Y y OPERAND

. 0 0 . 0

· 0 · · . · · · 0 · 0 · 0 · y OPERAND Y OPERAND Y OPERAND

t -, 16 J.1seco t := 8 J,lsec.
(

y - p + 1
0 <y < 3777 0 <y < 1777 - -

?t' Indexing: The contents of the right-most 10 bits of register

iJ are first indexed by 1, using 10~bit binary addition without

end carry. The left=most two bits are not changed. Thus, 1777

is indexed to 0000; \3'77'7;-'to""20~ 5777, to 4000; and 71'J7,

to 6000~

LDA i (3 1000 + 20i + (3 LDA

LOAD ACCUMULATORc Copy the contents of register Y into the Accumulator.

The contents of register Yare not changed.
!: ~.,.'.

STA i (3 1040 + 20i + (3 (t + 8) J.1sec. STA

STORE ACCUMULATOR. Copy the contents of the Accumulator into register Y.

The contents ;of the Accumulator are'not changed.

ADA i (3 1100 + 20i + (3 (t + 8) I.wec. ADA

ADD TO AQCUMULATOR. Add the contents of register Y to the contents of the

Accumulator and leave the sum in the Accumulator, using 12-bit binary

addi ti,on 'vi th end-around carry. The contents of register Yare not

changed.

11-5

Appendix II

Index Class.{continued)

ADM ADM i f3 1140 +20i .+ f3 (t + 16) fJ,sec.
--- ----------------------~
ADD TO MEMORY . Add thecontents6f register Y to the contents of the

Accumulator and leave the sum in register Y and the Accumulator, using

12~bit binary addition with end-around carry.

LAM LAM i f3 1200 + 20i, + f3 (t + 16) fJ,sec 0

~---------------------------~~--------------------------------------~
LINK ADD TO :MEMORYe First, add the contents of the Link Bit (the integer 0

or 1) to the contents of the Accumulator and leave the sum in the Accum­

ulator, using 12-bit binary addition with the end carry, i,f any, replacing

the contents of the Link Bit; if there is no end carry, clear the Link

Bit. Next, add the contents of register Y to the contents of the Accum~

ulator using 12-bit binary addition with the end carry, if any, replacing

the contents of the Link Bit (if no end carry arises, the contents of the

Link Bi,t are not changed) 0 The sum is left in the Accumulator and in

regi.ster y-

MUL i f3 1240 + 20i + t3 (t + 104) fJ,seco MUL

MULTIPLY. Multiply the contents of the Accumulator by the contents of

register Y and leave half of the product in the Accumulator. The contents

of the Accumulator and register Yare treated as signed Il-bit ones! com­

plement numbers and their full product as a signed 22-bit number 0 The

!lh~bit,1i i.e., bit 11 of the register holding the address Y J specifies~

h :0:.; 0

Integer Multiplication

The least significant 11 bits
of the product 'vi th proper sign
are left in the Accumulator.

Fraction Multiplication

The most significant 11 bits
of the product with proper
sign are left in the Accum-
ulator.

The sign of the product is also left in the Link Bit. The contents of

register Yare not changed 0

If i :;:: 1 and t3 ::;; 0, use integer multiplicatione

16-2 Appendix II

Index Class (continued)

SAE i ~ 1440 + 20i + ~ (t + 8) /-Lsec. SAE

SKIP IF ACCUMULATOR EQUALS. If the contents of the Accumulator match the

contents of register Y, skip the next register in the instruction

sequence; otherwise, go on to the next instruction in sequence. The

contents of the Accumulator and of register Yare not changed.

(See also the section on marking tapeso)

SRO i ~ 1500 + 20i '';' ~ (t + 8) /-Lsec. SRO

SKIP AND HOTATE o If the right-most bit of the contents of register Y

is 0.:1 skip the next register of the instruction sequence; other"\-li,se, go

on to the next instruction in sequence~ In either case, rotate the con~

tents of register 'Y one place to the right and replace in register Yo

The contents of the Accumulator are not changed.

BCL i ~ 1540 + 20i + ~ BCL

BIT CLEAH~ For each bit of register Ywhich contains 1, clear the corres­

ponding bit of the Accumulator. The contents of register Y and all other

bits of the Accumulator are not changed.

BSE i ~ 1600+ 201 + ~ (t + 8) /-Lsec. BSE

BIT SET. For each bit of register Y which contains 1, set the correspond­

ing bit of the Accumulator to 1. The contents of register Y and all other

bits of the Accumulator are not changed.

BCO i ~ 1640 + 20i + ~ (t + 8) j1sec. BeO

BIT COMPLEMENT. For each bit of register Y"\vhich contains 1, complement

the corresponding bit of the Accumulator. The contents of register Y and

all other bits of th~ Accumula,tor are not changed.

I1-8 Appendix II

Index Class (continued)

DSC i f3 1740 + 20i, + f3 (t + 112) jlsec. DSC

DISPLAY CHARACTER. Intensify points in a 2 x 6 pattern on the Display

Scope. Register Y holds the pattern word, which is examined from right to

left beginning with bit OJ for each bit found to be 1 a point is inten-

sifiedo

1'lord ~

Numbered points below correspond to bit positions of the pattern

r-:--, --V + 30-­
\ I

The H-coordinate is held in register 1, and bit 11 of register 1 selects

the display chan.nel. The initial contents of register 1, plus 4, is the

H~coordinate of point @. The V-coordinate is held'in the Accumulator.

The initial contents of the Accumulator with the right-most 5 bits

(ACCO=4) automatically cleared by the computer, is the V-coordinate of

point @. Spacing between points is +4 in both horizontal and vertical

directions 0 At the end of the instruction the value in register 1 has

been augmented by 10 (octal) and bits 0 = 4 of the Accumulator contain

30 (octal). The contents of bits 5 - 11 of the Accumulator and the con­

tents of register Yare not changed 0

Ib-2

Appendix II

Half-Word Class

Operand Location> Y, in Half-Word Class Instructions

1. .:Sf3~ 17 f3 = 0

i --. 0 i := 1 i :;:: 0 i := 1

f3 hjY f3 hj (Y=h)* 0 0 0 . 0 0 . 0 0 ~ .
0 c ~ 0 LDH LDH i 0 0 0 0 --7 P .-) P

~p LDH f3 ~p LDH i (3 P + 1 h,Y Y OPERAND
0 ~ 0 0 0 0

0 0 0 0 0 0 0

0 0 0 a .
y OPERAND 'y OPERAND Y OPERAND

t = 16 j1sec. O<Y< 37'T7 t -> 8 j1sec.
~ ~

, y .- p + 1

h;Y I I I I II I I I I I I I OPERAND :=
LH(Y) if h = 0 o < Y < 1771 -r'OPEAAND RH(Y) LHey}) f • !I if h 1 .. ::::: -

}1 V

-
* Indexing: h is value before indexing 0 The contents of register f3
are first indexed by 40000 Any end carry is added to the right=most
10 bits only; bit 10 is not changed. Thus~ Oj1777 i.s indexed
to 1.; 1777; 1;1777 to 0;0000; 0;0000 to 1;0000; 1;0000 to OjOO01.
0;3777 is indexed to 1.;3777; 1;3777 to 0·2000· ")

0;2000 to lj 2.000;
lj2000 to 0;20010 The Relay lights are probably not affectedo

LDH i (3 1300 + 20i + f3 (t+ 8) j1sec. LDH

LOAD HALF. Copy the contents of the desi.gnatedhalf of register Y into

the right half of the Accumulator. Clear the left half of the Accumulator 0

The contents of register Yare not changed.

STH i f3 1340 + 20i + f3 (t + 8) j1S e c;. - STH

STORE HALFe Copy the contents of the right half of the Accumulator into

the designated half of register Yo The contents of the Accumulator and of

the other half of register Yare not changed 0

SHD i (3 1400 + 20i + f3 (t + 8) j1sec. SHD

SKIP IF HALF DIFFERS. If'the contents of the right half of the Accumula,.;,

tor do not match the contents of the designated half of register Y, skip

the next register in the.instruction sequence; otherwise, go on to the

next instruction i.n sequence 0 The contents of the Accumulator and of

register Yare not changed.

II~lO Appendix II

Operand Location, Y, in the SET Instruction

i =: 0 i :=: 1

ex [-] ex [-]

· . 0 . 0 e 0

0 · 0 .
~p SET ex ~p SET i ex
p + 1 Y Y OPERAND ..

. · e 0

0 0 0 0

0 0 0 0

y OPERAND

t = 8l!!J!] t =: 0 Ilsec.
o ~ Y.~ 777 y =: p + 1

o < Y <\I777 f

SET i ex 40 + 20i + ex (t + 24) Ilsece SET

SET. Copy the contents of register Y into register exo (0 ~ ex ~ 17).

Take the next instruction from register p + 2, The contents of register Y

are not changed ..

SAM i n 100 + 20i + ex SAM

SAMPLE. Sample the signal on input line n (0 ~ n ~ 17) and leave its

numerical. value, seven bits plus sign, in the right-most 8 bits of the

Acc~mulator, replicating the sign in the left-most 4 bits of the Accum­

ulator. Lines 0 through 7 are used by eight potentiometers located at

the Display Scope. Lines 10 through 17 are used by analog i.nputs at the

Data Terminal module; on these lines +1 volt corresponds to +177, and

~l volt corresponds to -177.

* Timing: If i =: 0, the instruction requires 24 Ilsec. for execution. If

i := 1" the computer goes on to the next instruction after 8 Ilsec., even

though the conversion process will continue in the Accumulator for

14 more f..wec. If J therefore, the instruction is used with i :=: 1, care

must be taken not to disturb the Accumulator during the 14 Ilsec.

following the instruction.

16-2

16-2, Appendix II

DIS i ex 140 + 20i + ex 32 /lsec. DIS

DISPLAY. Display on the, scope a point whose vertical coordinate i,s

specified by the J,:'ight-most 9 bits, of the Accumulator and whose horizon­

tal coordinate is, specified by the right-most 9 bits of register ex

(0 .::; ex ,s; 17). . The left-most bit of register ex specifies one of two

display channels (further selected by a sw:i.tch on the Display Scope).

The left-most horizontal coordinate is 000; the right-most, 7770 The

lowest vertical. coordinate is -377; the highest, +377. The contents of

bits 9 through 110f the Accumulator and of register ex do not affect the

position of the point.

If i = 1; the contents of the right-most 10 bits of register ex are first

indexed by 1, using 10-bit binary addition without' end carry.

XSKi ex 200 + 20i + ex 16 /lsec. XSK

INDEX AND SKIP~ If the address part (the contents of the right-most

10 bits) of register CX---.(D :S ex :5 17) equals 1777, skip the next register

in the instruction sequence; otherwise, go onto the next instruction in

sequencee If i == l,the address part of register ex is first indexed by 1,

using lO-bit. binary addition without end carry. The left-most two bits

are not changed~Thus, 1777 -is indexed to 0000; 3777, to 2000; 5777,

, to 4000; and 7777, to 6000 ~

11-11

11-12 Appendix II

Operate Class

OPR i n 500 + 20i +'n 16 jlsee. minimum OPR

OPERATE CHANNEL n. Generate a negative signal on output level line n

(0 :s n ~ 13). If i = 1, pause until a restart signal appears on external

level line no 'Send other' control signals to, and sense other signals

trom, equipment at the Data Terminal module; transfer data into or out of

the memory or Accumulator as specified by these control signals.

KBD i 515 + 20i 16 jlsec. minimum KBD

KEYBOARD 0 Clear the Accumulator. If a key has been struck and is locked

down, release the key and read its 6 bit code number into the right half

of the Accumulator. If no key has been struck and i = 1, pause until a

key is struck and continue as above. If no key has been struck and

i = 0, go on to the next instruction.

RSW 516 16 jlsec. RSW

RIGHT SWITCHES 0 Copy the contents of the Right Switches into the

Accumulator 0

LSW 517 16 jlseco LSW

LEFT SWITCHES. Copy the contents of the Left Switches into the

Accumulator.
,

16=2

16-2

i ~ Motion Control

l - 0

Appendix II

Magnetic Tape Class

700 + 20i + lOu

1000 QN.+ BN.

f:=l Tape is left in motion after instruction executiono

u~ Unit Selection

QN~

BN~

U := 0

U .~ 1

Quarter

Tape Unit #D 0

Tape Unit #10

Number 0 .s QN .s 7

QN Memory Registers QN

0 o = 377 4

1 400 - 777 5

2 1000 - 1377 6

3 1400 = 1777 7

Block Number 000 .sBN::5: 777

1 Tape

1 Block

1 Word :=

512 (decimal) blocks.

256 (decimal) words 0

12 (decimal) bitso

Memory Registers

2000 - 2377

2400 ~ 2777

3000 - 3377

3400 - 3777

(octal)

Data sum = sum without end-around carry of 256 words in block.

Check sum = complement of data sum.

Transfer check .- data sum + check sumo

:= =0 if block is transferred correctlyo

f -0 if block is transferred incorrectly.

RDC i u 700 + 20i ~ lOu RDC

READ AND CHECK. Copy block BN into memory quarter QN and check the trans=

fero If the block is transferred correctly, leave -0 in the Accumulator

and go on to the next instruction; otherwise, repeat the instruction.

The information on tape is not changed.

11=13

11-14 Appendlx II

Magnetic Tape Class (continued)

RCG i u 701 + 20i. + lOu RCG

READ AND CHECK GROUP 0 Copy block BN into the· memory quarter whose number

corresponds to the right-most' 3 bits of BN (block 773 into quarter 3,

etco) and copy the following consecutive QN blocks into the following con~

secutive memory quarters (block 000 follows block 777, quarter 0 follows

quarter 7)0 Check each block transfer and repeat if necessary until all

blocks have transferred correctly, then leave -0 in the Accumulator and

go on to the next instructiono The information on tape is not changed .
..

RDE i u 702 + 20i + lOu

READ TAPEe Copy blockBN into memory quarter QN and leave the transfer

check in the Accumulator. The information on tape is not changed.

RDE

MTB i u 703 + 20i + lOu MrB

MOVE TOWARD BLOCIC Subtract the next block number encQuntered from BN,

leaving the difference in the Accumulator. When i := 1, leave the tape

moving forward if the difference is positive and backward if the differ~

ence is negative or -0.

16-2

Appendix II

Magnetic Tape Class (continued)

WEC i u 704 + 20i + lOu WRC

WRITE AND CHECK. Copy the contents of memory quarter QN into block BN and

check the transfer. If the memory contents are transferred correctly,

leave -0 in the Accumulator and go on to the next instructi.on; otherwi.se,

repeat the instructiono The contents of memory are not changed 0

WCG i u 705 + 20i + lOu WCG

WRITE AND CHECK GROUP. Copy the ·contents of the memory quarter whose

number corresponds to the right~most 3 bits of BN into block BN (quarter 5

into block 665, etc.) and copy the contents of the fol.lowing consecutive

QN quarters into the following consecutive blocks (quarter 0 fol.lows

quarter 7, block 000 follows block 777). Check each transfer and repeat

if necessary until all bl.ocks have been written correctly, then leave -0

in the Accumuiator and go on to the next instruction. The contents of

memory are not changed.

WRI i u 706 + 20i + lOu

WRITE TAPE. Copy the contents of memory quarter QN into block BN and

leave the check sum in the Accumulator 0 The contents of memory are not

changed.

CHK i u 707 + 20i + lOu

WRI

CHK

CHECK TAPE. Fi.nd block BN, form its transfer check and leave it in the

Accumulator. The information on· tape and the contents of memory are not

changed.

11-15

