LINC Volume 16

Programming and Use I

Section 2

PROGRAMMING THE ILINC

Mary Allen Wilkes and Wesley A. Clark

Computer Research Laboratory
Washington University
St. Louis, Missouri

June, 1965

ERRATA SHEET

Bumber 1
VOLUME 16, SECTION 2 .
WM 16, 0 July 26, 1965
Programuing the LINC
Fage 373 Programming Sxample 12. The program does nob behave exactly as
described in the texbt. Perbaps the reader can find the error,
Page W& Programming EBzample 15, The 5 8D instruccions should be coded:
100 SEPR i 3 0063
KRy SER i b 0064
ihok sEp i 5 0055
1h05 SEP L6 0066

1hion SEY L7 0067

Page S2: Infexing exsmple, bobtom of page:s

harr Original €(3) = 13377
5000 Index h{3)
Q:?STT
~~&]. End-around carry
Oi0G Wew ©{3)} = 03;L00

Pege 57; Iliuvstration:

(0,+377) (T, +377)

Square array, 3" by 3",
of 1000 x 1000 {octal)
poinbs,

(0,0) grromes ‘ ¢(T77,0}

(0,-377) ' {777,=377)

Errata Sheet Number 1, Progremming the LINC

Page 2

Page 58:

IL-gs

Ii-12:

Page UT3

Page 903

Diagram, top of page:

ACC

unused ete.

(04

h=bit unused

Table, top of page:

- B LTH
p+ 1§ ¥

KBD i.

KEYBOARD, If a key has been struck and is locked down, clear
the Accumulator, release the key, and read its 6-bit code
number inbto the right half of the Accumulator. IFf no key has
been struck and i = 1, pause until a key is struck and coubtinue
as above. J[If no key has been struck and i = O; clear the
Accumuletor and go on to the next iustruction.

Second table:

Menory
Address Memory Contente
P MU i} 1260

Example 29. Cocding should bes

106 we | o700

o
] ° ©

For whom the gong perhaps chimes

16-2

1.

Con XL
2.

3.
ki,

I

10.

11.
12.
130

1k,
15.
16.
17.
18.

PROGRAMMING THE LINC

Contents

Introduction .ceeveocccocvaccsaocnn
L et £€. ,

Number Systems sccocoocooossscoocososs
Simple Instructions cosoeococcoseos

P
Shifting cccoccoccosccoocoossssososs

LINC Memory and Memory Reference Instructions

o000 0

°

°

°

The STORE-CLEAR Instruction eccocescocsoocns

The ADD Instruction and Binary Addition

The Instruction Location Register c..co..
The JUMP Instruction csccecocccsoeccccass

Address Modification and Program "Loops"

Index Class Instructions I ..cccoee
Indirect Addressing .ococeooccoos
Index Registers and Indexing ...
Logic Instructions cocoocecoocosse

Special Index Register Instructions
The INDEX AND SKIP Instruction .
The SET Instruction socecsocscsss

Index Class Instructions IT .c.ccs.o
Double Register Forms ocoovecccos
Multiple Length Arithmetic
Multiplication ccococococccsssoccos

Half-Word Class Instructions .c.cc.s
The KEYBOARD Instruction cececoccoos

The LINC Scopes and the Display Instructions

o

90000

o

o

Character Display cccocsoccoscceosesssosson

Analog Input and the SAMPLE TInstruction

The Skip Class Instructions cecocooosococscsococs

The Data Terminal Module and the OPERATE Instruction

Subroutine Techniques ecooscoccocooos

Magnetic Tape Instructions ccooccos
Block Transfers and Checking ...
Group Transfers cooccococsaccosn

Tape Motion and the MOVE TOWARD BLOCK Instruction

°

°

o

°

°

°

°

°

600060060000 0008 o

© 0006000000000 0

© 0000006600008 0 0

©0 0060060000000

o

°

°

°

°

°

Tape Format cccooccooccsosooscscccosooossoosososss
Tape Motion Timing ceceoovoscosccsosossssocsoosossso

o

16-2

CQntents

Chart I. Classes of LINC Instructions .ccececccoscocsossoasoscsscsssss 105
Chart II. KeyboaTd COGE «oeeoenooscanooosnnsosocancosnnnooaaannoasanss 106
AChaft IIi; Pattern Words for Character Display ..oo.ooooeooo,oooooo;.oo 107
Chart IV. InstTUCtion COAE s osocooeonoesonceosossonssosasaseanseaaaas 108
Appendix I: Double Memory Programming k | ‘
Appendix II: LINC Order Code Summary

16-2

]__l

o . ° °

°

°

O OGO 31 O \J & W

[
@]

11.
12.
13.
1L,
15.
16.
17,
18,
19.
20.
21.
22,
23,
ok,
25.
26.
27.
28,
29.
30.
31.
32.
33.
3k,

Index of Programming Examples

Simple Sequence of Instructions cecceocoocescccosososososoosocooocsonsso
Simple Sequence Using the JUMP Instruction cccooococsoscoscsscooscovos

Summing a Set of Numbers Using Address Modification ceeeecosocoooonsns

Packing a Set of Numbers occoooscoocooosoacosooossoocooooosasooooaoosso
Indirect AAATeSSINg «oooocooooaososoooosaossosssoaosasossosssss season
Indexing to Clear a Set of Registers soscesesosocoscsa ceesececoan sooe

Memory Scanning o coeooeooocosoossosoasososssssssssosocsseoscossssssso
Summing Sets of Numbers Term by Term coecosoccsocsossssacooccoooosoan
Index Registers Used as Counters cocoocoscososooccoonossosoocsosoonosocs
Indexing and Counting to Clear a Set of Registers .c.coccooooccoccaoon
Setting Initial Index Register Values cc.cooosocsococoscoooccscasooona
Scanning for Values Exceeding a Threshold .ccecssoscocscscocooaanccso
Summing Sets of Double Length Numbers Term by Term ccccoocccooscccocs
Multiplying a Set of Fractions by a Constant cc.coiocsooocosnccoacossos

Multiplication Retaining 22-bit Products cccocccososcocooocosscoooas

Filling Half-Word Table from the Keyboard socoocsocoocooacooacscoocooocssa

Selective Filling of Half-Word Table from the Keyboard sceocoosososcos
Horizontal Line Scope Display cococococosococcccoossossosooossocsoooossossosos

Curve Display of a Table of Numbers ocoscoooscssccsccossoasososscoososoo

Character Display of the Letter A (ccccevocoooccas cossssnscocoocoonn oo
Character Display of the Letter A Using DSC ...cs.o csvocesoanoscsans
Displaying a Row of Characters ccssesoeccoosossoocsssosacsesocoacs seono

Simple Sample and Display coccscococcscecsososcoosooossoossossooosoosasns
Moving Window Display Under Knob Control .eeceoccscocococos covosacoca
Histogram Display of Sampled Data .cooccoocoosccoss eccocosccn cooeenn
Counting Samples Exceeding a Threshold Seseveasaiecececrossacanrese
kSimple Sample and Digplay’ with Keyboard COMETOL v vvneonooccooocannns
Simple Check of an Entire Tape coccooocossccooocscoccossoasscscanscns
Dividing Large Programs Between Tape and Memory ..cccoocococoosaooaccs
Collecting Data and Storing on Tape ccccososssccscssccosocsocososconnos
Tape and Memory Exchange with Group Transfer .coocesccocccosoosoosoocso
Block Search Subroutine ceoccococsoccsososcosssssscscoososcososcoooososcocs

Write and Check with Fewest Reversals coocecsococsoccosococooocscscnocss

Indexing Across Memory Boundaries ccoceccocossonssoossooss Appendix I:

13
15
18
20
23
25
26
27
30
30
33
37
L

48
k9
55
56
58
59
62
64
65
68
69
71
Th
™
88
90
91
oL

100
103

3

16-2

Page Index of LINC Instructions

ADA ...eann e eencono 21, II-5 . "MUL eveevocncaccons 45, I1-6

ADD veeernrenncnnans 11, II-3 © NOP PR . II-1
ATM .ouevnns ceeneoe 26, II-6 OPR cevnvnn seeeesos 76, II-12
APO vevvienecaneans 73, II-4 RCG coovovanne coees 92, II-1h
ATR vuvnnnns eeennn 6, II-1 RDC «vvenen. veveve. 86, II-13
AZE o vernenno coeees 17, II-k ' RIE c.ooecocconnns . 83, IT-1k4
BCL vovneernonnnnen 26, II-7 ROL «eevnoennnecnns 8, II-2
BCO trvevnvnonciens 28, II-T ROR ovvoovanns ceve. 8, II-2
BSE ©ouvnrnncncnons 28, II-T7 RSW vvevenons ceives 6, II-12
CHK vvvvvvnvococnns 87, II-15 RTA ovnivennneonnes 6, II-1
61 S 5, II-1 SAE tiiiiiiniinnn. 25, II-T
COM vuennnnn veves. 6, TI-1 SAM oivvninnnnnn. 66, II-10
DIS tovoococnnansan 57, II=11 © SCR seveeonanen coen 8, II-2
DSC vernononneens 63, II-8 SET vvvvvevvvennnss 31, II-10
HIT vovvnennenon .e. 13, II-1 | SHD Ceeenan 52, II-9
TBZ evonvnrenonoons 98, II-k SKP vvirennnnnnns . 72, II-h
IMP ceevnnns coacoen 14, II-3 SNS teooessosssaoas T3, II=L
e 5k, TI-12 ©USRO eenenenreananas 61, II-T7
KST wovvnnnns e Th, II-k4 STA tevveiennnnnns 23, II-5
TAM vevvvnevnnonnns 39, II-6 STC vevnnnenns ceevs 10, II-3
IDA cvevensn. e 23, II-5 | STH vuvenen. e . 51, II-9
IDH cvcovonana seoss 50, II-9 SXL coveoscocnocncon . T2, II-k
LSW ovvronnn eneeneeees II-12 WEG v erenennononens 92, II-15
LZE oevevevnonoenes 73, II-k WRC tveevnnnennnnns 89, II-15
MSC 13 sveeeecoosnnaeas II-1 WRT vvvenns ceeess. 85, II-15
MTB ouvvnrnneonns . 96, TI-14 XK PR . 29, II-11

16-2

PROGRAMMING THE LINC

1. Introduction

The LINC (Laboratory Instrument Computer) is a stored-program binary-
coded digital computer designed to operate in the laboratory environment as
a research tool. The following description is intended to serve as a general
introduction to basic programming concepts and techniques, and specifically

as an introduction to LINC programming.

Like most digital computers, the LINC operates by manipulating binary
numbers held in various registers (storage devices for numbers), under the

control of a program of instructions which are themselves coded as binary

numbers and stored in other registers. LINC instructions generally fall into
types or classes, the instructions of a class having certain similarities.

In this description, however, instructions are introduced as they are relevant
to the discussion; reference to Chart I is therefore recommended when class
characteristics are described. Furthermore, not all LINC instructions are
described here in detail; therefore this document should be read in conjunc-

tion with the LINC Order Code Summary, Appendix IT.

INETRYCTION -

LCLEAR | . MARK

16-2

The best way to begin is to consider only a few of the registers and
switches which are shown on the LINC Control Console: the ACCUMULATOR (ACC)
which is a register of 12 lights, the LINK BIT (L), the LEFT and RIGHT
SWITCHES, which are rows of 12 toggle switches each, and one lever switch
labeled "DO." The number systems and operation of several of the instruc-

tions can be understood in terms of these few elements.

16-2

2. Number Systems

The elements (bits) of each register or row of toggle switches are to

be thought of as numbered from right to left starting with zero.

serve to identify the elements and to relate them to the numerical value of

This will

the binary: integer held in the register. We shall use "C(ACC)" to denote

"the contents of the Accumulator register," etc. If the Accumulator is’

illuminated thus

! ‘ ACCUMULATOR — %
%
7 A /// ///
11 10 9 8 7 6 5 4 3 2 1 0

then the binary number stored in the Accumulator is
Cc(ACC) "= 010 011 100 101 (binary)
which has the decimal value

210 + 27 + 26 + 25 + 22 + 20

c(Acc)

1024 + 128 + 64 + 32 + b+ 1

]

I

1253 - (decimal)

Light Off

Light On

We can also view this as. an octal number by considering each group of three

bits in turn. In this example, grouping and factoring proceed as follows:

o(Acc) (219 & (2T2®) & (D) 4 (22420

(21)'29 + (21+2O)~26 + (22)o23 + (22+20)~2O’

1l

(2)-8%+ (3)-8 + (w8 + (5)8°

il

2345 - (octal)

Number Systems o 16-2

To put this more simply, each octal digit can be treated as an independent

3-bit blnary number ‘whose value, (o, 1, coey 7), can be obtained from the

weights 2 B 2}, and 20

ACCUMULATOR

— H
72 O] 777 n7ZZh
oA o4 o | L2 | Y
2 1 0 2 1 0 2 1 0 2 1 0
%)\ﬁr }Lw)
2 -3 L 5 = 2345 (octal)

This ease of repfeéentationp(the eight possible combinations within a group
are easily perceived and remeﬁbéred) is the principal reason for using octal
numbers; The octal system can be viewed simply as a convenient notational
system for representing binary numbers. Of course, octal numbers can also

be manipulated arithmetically.

The translation from one system to the other is easily accomplished in

either direction. Here are some examples:

/15 7&3\ /Ofg 6&\. /7\4{\ S
001 000 111 011 000 010 110 101 111 010 100 110 (binary)

Sometimes it is useful to view the contents of a register as a signed
number. :One . of the bits must be reserved for the sign of the number. The
left-most bit is therefore identified as the SIGN BIT (O for +, 1 for -).

To change the sign of a binary number, we complement the number (replace all
ZEROS by ONES and vice-versa).* Examples:

000 000 000 011l = +3°
111 111 111 100" = =3

1

0llL 111 111 111 = +3777 i} The largest positive and negative

_ octal integers in the 12-bit
100000 000 000 = -3777 signed-number system.

¥ See Volume 16, Section 1, "An Introduction to Binary Numbers and Binary
Arithmetic," Irving H. Thomae.

16-2

Simple Instructiomns

We say that the pair of binary numbers 101111110011 and - 010000001100 are.
complements of each other, (in octal these are 5763 and 2014), and will

denote the complement of the number N by N, Note that the sum of each binary
digit and its complement is the number 1, and that the sum of each octal
digit and its complement is the number 7. Note also that there are two

representations of the number zero:

&

000 000 000 000
111 111 111 111

i
i
o

Note finally that the sum of any binary number and its complement is always

a zero of the second kind, "minus zero,” in this system.

: 3. Simple Ingtructions

The LINC instructions themselves are encoded as binary numbers and held
in various registers. The simplest of these instructions, namely those
which operate only on the Accumulator, will be described first with reference

to the Left Switches.

Reising the DO lever (DO means "do toggle instruction") causes the LINC
to execute the instruction whose binary code number is held in the Left '
Switches. The LINC will then halt. For example, if we set the Left Switches
to the code number for the:instruction "CLEAR," which happens to be
0011 (octal), and then momentarily raise the DO lever, the Accumulator lights
will all go out and so will the Link Bit light, so that C(ACC) = 0, and

C¢(L) = 0. 1In setting a switch, "up" corresponds to "one."

s | LEFT SWITCHES i
\ 42 é? iefgoiyi%chisliet
' o v -to octa
/, % % % % % % % % % the code number)
sTop | v for "CLEAR."

0 ‘ o : 1 ' 1

CcoM
TR

il
- O\

RSW

- Simple Instructions

Tersely: ' If .C(Left Switches) = 0011 (cctal), then DO has the effect
0 - C(ACC) and 0 < C(L). (Read “zero replaces the .contents of the Accum~ -
ulator,” ®te.). E‘ ” ‘

CLEAR (or CIR) is an 1nstructlon of the class known as Miscellaneous

instructions. A second Mlscellaneouq Class 1nstructlon, COMPLEMENT (or COM),

with the code number 0017 (octal), directs the LINC to complement the con-
tents of the Accumulator and therefore has the effect c(Aacc) - c(Acc).
(Read: 'the complement of the contents of the Accumulator replaces the

contents of the Accumulator.”)

Two other instructions of this class transfer information between the :
Accumulator and the Relay Register. The Relay Register, displayed on the
upper right corner of the Control Console, operates 6 relays which can be
used to control or run external equipment. An instruction with the code
0014 (octal), called ACCUMULATOR TO RELAY, ATR, directs the LINC to copy the
contents of the right Qgéildf‘thé“Aécumulator, i.e., the right-most 6 bits,
into the Relay Register. The Accumulator itself is not changed when-the
instruction is executed. ‘Another instruction, called RELAY TO -ACCUMULATOR,
RTA, with the octal code 0015, causes the LINC to:clear the Accumulator and:
then copy the contents of the Relay Register into the right half of the
Accumulato;‘J In this case the Relay Register is not changed and the left.

~half of the Accumulator is left cleared (i.e., containing zeros).

Another instruction :called. RIGHT SWITCHES, RSW, with the code number -
0516 (octal), directs the LINC to copy the contents. of the Right Switches

Anto .the Accumulator. By setting the Left Switches to 0516, the Right

Switches to whatever value. we want.to put in the Accumulator, and . then
momentarily raising the DO lever, we can change the contents of the Accum~ -
ulator to any new value we like. The drawing shows how the sWitches should

be set to put the number 6451 (octal) into the Accumulator:

\DO‘_:§1 F——*——~ LEFT. SWITCHES if b RIGAT SVTICHES }ﬁ ;_
STOP Code nuagér for RSW 6451 — C(ACC) hen

instruction = 0516 DO lever is raised

T 1o=2

16-2

Shifting

After a number has been put into the Accumulator 1t can be repos1t10ned

or "shifted," to the right or left.

There are two ways of shlftlng

rotation, in which the end-elements of the Accumulator are connected tbgéther

so as to form a closed ring, and scaling, in which the end-elements are not

so connected.

L 11 0
<> < |
Rotation
L 11 0
- -> ’ = | >
Scaling
Examples of shifts of one place:
Effect of rotating Effect of scaling
right 1 place right 1 place
before 000 000 011 001 000 000 OLL 00L = +25 (decimal)
after 100 000 001l 100 000 000 001 100 = <12
before 111 111 100 110 111 111 100 110 = =25 (decimal)
after 011 111 110 011 111 111 110 011 = -12
Note that, in scaling, bits are lost to the right, which amounts to an error

of "rounding off";

theﬂqriginal sign is preserved in the Sign Bit and

replicated in the bit positiOns.to the right of the Sign Bit. This has the

effect of redu01ng the 81ze of the number by powers of two (analogous to

moving the dec1mal p01nt in dec1mal calculatlons)

ROR
ROL
SCR

Shifting C16-2

The LINC has three instructions, called the Shift Class instructions,
whlch shlft the contents of the Accumulator; these are: ROTATE RIGHT,
ROTATE LEFT, and SCALE RIGHT Unlike the.31mple 1n°tructlons we have con=
s1dered 80 far, the code number for a Shift Class 1nstruct10n 1ncludes a
varlable element which spe01f1es the number of places to shlft For example,

11

we write "ROL n," which means "rotate the contents of the Accumulator n

places to the left," where mcan be any number from O through 17 (octal)o

As e_further variation of the Shift Class instructions, the Link Bit can
be adjoined to the Accumulator during rotation to form a 13-bit ring as shown
below, or to bit O of the Accumulator during scalinig to preserve the low order

bit scaled out of the Accumulator:

«—| | | |« > &>

Rotation with Link Bit

~> - S

Scaling with Link Bit

The code number of a Shift Class 1nstructlon, e.g., ROTATE LEFT,
fore includes the number of places to shift and an indication of whether or

not to include the Link Bit. We use the full expression ROL i n, which has

[
s

‘ROL i'n -~ 0240 + 201 + n -

the octal coding: .
“ACC only
1: Link € ACC

]
O

‘number of places to shift
(Tl"—‘O, l; o0 ;; 17) .

. 80 that - for example, ROTATE ACC LEFT 3 PLACES has the code number 0243, and

ROTATE ACC WITH LINK LEFT 7 PLACES has the code number 0267 ‘Note the

16-2 LINC Memory and Memory Reference Instructions

correspondence between the code terms and bit-positions of the binary-coded

instruction as it appears, for example, in the Left Switches: - . - o

the "i-bit"
@ @ . (ch ROL 1 7
\% @ % (@ @) @\@ (gi Code number = 0267 A.
V" . -
ROL n

Similar coding is used with ROTATE RIGHT ROR 1 n, 3OO + 201 + n, and SCALE
RIGHT, SCR i n, 3&0 + 20i + n.

5. LINC Memory and Memory Reference Instructions

Before we can proceed to other instructions it is necessary,to introduce
the LINC Memory. This Memory is to be regarded asva set of 1024 (decimal)
registers¥ each holding 1l2=bit binary numbers_in the manner of the Accumulator.
These memofy registers are numbered 0, 1, ..., 1023 (decimal), or O, 1, ooy

1777 (octal), and we shall speak of "the contents of register 3," ¢(3), "the

contents of reglster X," ¢(X), etc., referring to "3" and "X“ as Memory
Addresses. ' '

The Memory actually.consisté of a remotely—located array of mégneti¢
storage elements with related electronics, but for introductory purposes we
can view it in terms of two registers of lights, némely the MEMORY ADDRESS
register and the MEMORY CONTENTS registe;:

L f———— ACCUMULATOR ————

O OO O O O

—— MEMORY ADDRESS —— | = |—— MEMORY CONIENIS o |
(OO0 00 00 OO0 O™ O
Left 8w1t§hea :;;—;;——-4' B F———————- nght Sw1tche< —

f@%@ T8¢ QT t8Q (\W‘\S RN 3]}

*See Appendix I for a discussion of the LINC as a "double memory" machine.

10
STC

- The STORE=-CLEAR Instruction = -~ ° 162

By using these two registers in conjunction with the Left- Switches it

1s pos51ble to find out what values the memory registers contain. If, for:

’pexample, we are interested in the contents of register 3, we may set the Left

Switches to the memory address 0003 and then push the button labeled EXAM,

We will see 0003 in the Memory Addressrregister, and the contents of

register 3 will appearvin the Memory Contentsrregistergf By settingﬂthe Left
Switches to a memory address and pushing EXAM, we cao'examine’the contents of

any register in the LINC Memory.

The contents of any selected memory register may be changed by using both
the Left and'Right Swifches and>the‘pushbutton marked FILL. If, for»eXample,
we want the memory register whose address is TOO to contain ~lﬁ(iee°, 7776
octal) we again set the memory address, 0700, in the Left Switehes° We set
the Right Switches to the value 7776 and push the FILL button. A 0700 will
appear in the Memory.Address reglster and 7776 w1ll appear in the Memory Con-

tents reglster, 1ndlcat1ng that the contents of register 700 are now 7776

Whatever value reglster 700 may have contained before FILL was' pushed is lost,
and the new value has taken its place, Tn this way any register“ln‘the'LINC

Memory can be filled with a”heW'numberq

None of the LINC instructions makes expllclt reference to the Memory
Address reglster or Memory Contents reglster, rather, in referrlng to memory
register X, an instruction may direct the LINC implicitly to put the address X
into the Memory Address register and the contents of reglcter X, C(X), into

the Memory Contents reglstero‘

The -STORE~CLEAR Instruction

Now we can describe the first of the memory reference instructions,
STORE-CLEAR X, STC X, which has the code:number 4000 + X, where

0 <X <1777 (octal). (From now on we will use only octal numbers for

addresses.) Execution of STC.X has two effects: 1) the contents of the
Accumulator ‘are copied into memory register X, C(ACC) - C(X), and 2) -the

‘Accumulator is then cleared, 0 — C(ACC). '(The Link Bit is not cleared.)
Thus, for‘example,‘if_c(ACC);£;Q503 and C(671) = 2345, and we set the code

e
Y

162

The "ADD-Instruction and Binary Addition C 11
ADD

number for STC 671, i.e., 4671, in the Left Switches, then raising the DO
lever will put O into the Accumulator and 0503 into register 671: The. -

original contents of register 671 are lost.

If will be clear, now, that the Memory can be filled with new numbers
at any time either b& using the FILL pushbutton and the switches, or by
loading the Accumﬁlator from the Right Switches with‘fheyRSW‘iﬁstrﬁction and
the DO lever and then stbring the Accumulator‘contenﬁs with the STC X instruc-

tion and the DO lever.

The ADD Instruction and Binary Addition

STC is one of three Full Address Class instructions. Another instruc-
tion in this class, ADD X, has the code number 2000 + X where 0 < X < 1777.
Execution of ADD X has the effect of adding the contents of memory register X
to the contents of the Accumulator, i.e., c(x) + C(ACC) ~>C(ACC), 'If the;
Accumulator is first cleared, ADD X will, of course, have the effeqt Qf‘merely
copying into the Accumulstor the contents of memory register X, ioe;,‘”
C(X) — C(ACC). TIn any case, the conmtents of memory register X are unaffected

by the instruction.

- The addition itself teakes place in the binary system,* within the
limitations of the 12-bit registers. The basic rules for binary addition are
simple: O+ 0 =0; 1+ 0=1; 1+1=10 (i.e., "zero, with one to carry").
A carry arising from the left-most column ("end-carry") is brought around and
added into the right-most column ("end-aroufd carry"). Some,exahples,(bggin

at the right-most column ag in decimal additipn):

001 111 010 001 111 100 010 011
000 010 111 001 001 010 010 000

11 111 1 1 (Carries) 1 11 1 (Carries)
010 010 001 010 (Sum) ; (:~ 000 110 100 011 -

> 1 (End-around carry)

11 (Carries)
000 110 100 100 (Sum)

The reader should try some examples of his own, and incidentally verify the

fact that adding a number to itself with end-around carry is equivalent to

* See Volume 16, Section 1, "An Introduction to Binary Numbers and Binary
Arithmetic," Irving H. Thomae.

12

*. "The Instruction Location Register

rotating left one place... With signed-integer interpretation, some.other .

examples are:

000 000 000 101 = +5 111 111 111 010 = =57
©111 111 111 100 = -3 111 111 111 100 = =3
1.111 111 111 - . - ~1 111 111 11 .
<:_ 000 000 000 001 <:— 111 111 110 110
' e >
1
000 000 000 010 = +2 111 111 110 111 = -8 (decimal)

It can be seen that subtraction of the number N is accomplished by addition
of the complement of N, N. of courée, if either the sum or difference is too
large for the Accumulator to hold, the result of the addition may not be
qui£e~the number we would like to have. For example; adding 1 to the largest
pbsitive integer in.thié‘system (+3777, octal) results in the iargest nega=
tive integer (-3777, octal). This is sometimes called "overflowing the

capacity of the Accumulator."

6. The Instruction Location Register

Tt isyclear that the code numbers of a series of different instructions

can be stored in consecutive memory registers. The LINC is designed to

‘execute such a "stored program" of instructions by fetching and carrying

out each instruction in sequence, using a special 10~bit register ‘called

the INSTRUCTION LOCATION register, (IL), to hold the address of the next

instruction to be executed. Using the FILL pushbutton and the Left and

16=2

The Instruction Location Register 13

Right Switches already discussed, we can, for example, put the code numbers
for a series of instructions into memory registers 20-24 which will divide
by 8 the number held in memory register 30 and store‘the fesult\in memory

register 31l:

Memory ‘
Address|] Memory Contents Effect
Start B
—> 20 CLR , 001l | Clear the Accumulator.
21 ADD 30 | 2030 | Add the contents of register 30 to
the Accumulator. ’ h
o2 SCR 3 ' 0343 | Scale C(ACC) right 3 places to
divide by 8.
23 STC 31 4031 | Store in register 31.
2k HLT 0000 | Halt the computer.
30 - N N Number to be divided by 8.
31 S>N/8 N/8 | Result. '

Example 1. Simple Sequence of Instructions,

We can use the FILL pushbutton and the. Left and Right Switches to put the code
numbers for the instructions into memory registers 20 = 24 and the-nﬁmber to
be divided into register 30. Pushing the console button labeled START 20
directs the LINC to begin executing instructions at memory register 20. That
is, the value 20 replaces the‘cOntents of the Instruction Location register.
As each instruction of the stored program is executed, the Tnstruction Loca-
tion register is increased by 1, C(IL) + 1 - C(IL). When the Instruction
Location register contains 24, the computer encounters the»instruction 1T,
code 0000, which halts thé machinéo vTo run the program again we merely push
the START 20 pushbutton. (The code numbers for the instructions will stay

in‘memory registers 20 - 2L unless they are deliberately changed.)

1k

S 16=2

The JUMP Instruction

~ The last Full Address 1nstructlon, JUMP to X, JMP X w1th £he code"
number 6000 + X has the effect of settlng the Instructlon Locatlon reglster
to the value X; X - C(IL). That is, the LINC, instead of 1ncrea51ng the

"contents of the Instruction Location register by one and executing the next

instruction in sequence, is. directed by the JMP instruction éo éét itsvnext
instruction from memory reglster X In the above example haV1ng ‘a JUMP to
20 1nstructlon, code 6020, in memory register 2k (in place of HLT) would ”
cause the computer to, repeat the program endlesslyo If the program were
started with the START’ 20 pushbutton, the Instruction Location register
would hold the succession of values° 20, 21, ‘22 23, 24, 20, 21 etc,
(Later we will introduce instructions whlch increase C(IL) by extra amounts,

causing it to "skip.")

JMP X has one further effect: if JMP 20, 6020, is held in memory
register 24, then its execution causes the code for "JMP 25" to replace the
contents of register 0; 1i.e., 6025 — C(0). More generally, if JMP X is in
19 i

any memory register "p,

0 <p <1777, then its execution causes
"IMP p+1" - C(0). ‘

. ;Memory | o T N T
~ Address Memory Contents Effect
S0 | JMP ptL | 6000 + p+l
- p 6000 + X | X = C(IL), and "IMP p+l"-— c(0).
T - c , o
X J‘VQ:k | Next instiuction;

This ”JMP p+1" code replaces the contents of reglster 0 every tlme a JMP X

instruction is executed unless X = 0, in whlch case the contents of 0 are

unchanged. The use of memory register O in this way is relevant to a pro-

gramming technique involving "subroutines" which will be described later.

16-2 The JUMP Instruction | 15

The following programming example illustrates many of the features
described so far. It finds one-fourth of the difference between two numbers
Nl and Né, which are located in registers 201 and 202, ‘and leaves the result
in register 203 and in the Accumulator. After filling consecutlve memory
registers 175 through 210 with the appropriate code and data numbers, the
program must be started at memory register 175. Since there is no "START 175"
button on the console, this is done by setting the Right Switchee to 0175

and pushing the console button labeled START RS (Start Right Switches).

Memory |) S
Address Memory Contents Effect
Starte 105 CLR 0011 0 - c(ACC).
176 ADD 201 2201 N, - c(acc).
177 cOoM 0017 Forms =Nl.
200 JMP 20k 6204 Jumps around data; 204 — C(IL),
and JMP 201 — C(0).
201 N,
202 l\I2 1\T‘2 Data and result.
203 (W -y)/ (szNl)/u :
20k ADD 202 2202 (Ng—Nl) - c(Ace).
205 SCR 2 1 o3ke Divides by L.
206 STC 203 4203 Stores result in 203; C(ACC)-e
S : c(203); 0 — c(Acc).
207 . ADD 203 v 2203 Recovers result in ACC.
210 - HIT , | 0000 Halts the LINC.

Example 2, Simple Sequence Using the JUMP Instruction,

In execut1ng this program, the Instructlon Location register holds the

succession of numbers: 175, 176 177, 200, 204, 205, 206, 207, 210.

“po' the Tmp s stored in cegriter w4
s

—+ ImP done with
_//1/,9:&&-7

© 16-2

'70 Address Modification and Program "Loops"

Frequently a program of 1nstructions must deal with a large set of
numbers rather than Just one or two° Suppose, for example, that we want to
add together 100 (octal) sumbers and that the numbers are stored in the
memory in registers 1000 through 1077 We want to put the sum in memory ‘
register llOO,' We could of course, write out all the instructions neces-

sary to do this,

Memory
Address Memory Contents Effect
> 20 | cr 0011 0 = C(ACC); 0 — C(L).

21 ADD 1000 l 3000 Add 1lst number.

22 ADD 1001 | 3001 | Add 2nd number.

23 ADD 1002 | 3002 Add 3rd number.

rgh o ADD 1003 ' 3003 Add bth number.
o ete, ' etc. ete.

but it is easy to see that the program will be more than 100 (octal)
registers long. A more complex, ‘but considerably shorter, program4can be
written using a programming technique known as "addressmodification,n
Instead of writing lOO_(octal) ADD X dnstructions, we write only-one ADD X
instruction;~which we repeat 100 (octal) times, modifying the X part of the
ADD X instruction each time it is repeated. In this case the computer first
executes an ADD 1000 1nstruction;- the program then adds one to the ADD in-
struction_itselj and restores it, so that it is now ADD 100l. The program
then jumps back to the location containing the ADD instruction and the
computer‘repeats;the,entire'process}_this time executing an ADD lOOl‘
instruction. . In short, the;program is Written/so that it changes itsvowng

instructions while it is running.

- 16-2 Address Modification and Program "Loops" : 17
‘ AZE

The process might be diagrammed:

Start 3 ADD X |

v

Add 1 to the
ADD X instruction

Have 100 (octal)
numbers been
- summed?
no yes

Halt

aThié technique introduces fhe,additional problem of deciding when all
100 numbers have been summed and hélting thé computer;bllh'this context we
introduce a new instruction ACCUMULATOR ZERO,.AZE,‘code‘Oh50,' This is one
of a éléss of instructions kﬁowﬁ as the Skip instr@ctions; iﬁ directs the
LINC to skip the instruction in the next memory régister when c(ace) =
either positive or megative zero (0000 or 7777, octal). If C(ACC) # O,
the computer does not skip. For example, if C(ACC) = 7777, and ﬁe write:

“Memory ‘ :
Address Memory Contents
- p AZE 0l50

1
P2 v =-é—._i"! -
'i

the computer will take the next insfruction from p+2. That is, when the
AZE instruction in register p is executed, p+2 will replace tﬁe céntents of
the Instruction Location register, and fhe.computer will skip(tﬁ¢ instruc=
tion at p+l. IFf C(ACC) # O, then‘p+l=+ C(IL) and the computer executes the

next instruction in sequence as usual.

- 18

Addréss Modification and Program "Loops"”

162

The following example sums the numbers in memory registers 1000 through

1077 and puts the sum into memory register 1100, using address modification

and the AZE instruction to decideiwhen*tb‘halththelcomputer,

(Square brackets

indicate registers whose contents éﬁéngevwhilebtheaprogram is running.)

Memory TR f
Address Memory Contents Effect
10 ADD 1000 [3000" |}
11 1. 'nQOOI : -Cbnstants used by program.
10 -(ADD 1100) | L4677
Start 5 5 CLR 0011 ; (
Code for ADD 1000 — C(25).
21 ADD 10 2010 0 5 c(acc).
22 STC 25 Loes
»23 1 STC llOQl - 5100 0 - C(llOO), for accumulating sum.
ol B 0oLl :}Clear ACC and add C(X) to C(ACC),
25 [ADD X] [aooo+x]
26 ATD 1100 3100 | Sum so far + C(ACC) —>C(ACC)
o7 STC 1100 | 5100 | Sum so far — C(llOO)
30 ADD 25 2025 “ADD X instruction in reglster 25
- : e — C(ACC). Add 1 to C(ACC)
311- ;ADD ll_ ?Q}l and replace in register 25.
32 STC 25 4025
33 ADD 25 0025 a(25) + ¢(12) - c(ace). 1f ¢(25)
= n 1 = .
- wp 12 | poe ADD 1100," then C(ACC) = 7777
35 ggg;__;jj - 0k50 Skip to reglster 37 if c(ACC) = 7777.
36 JMP 2H‘l ;6024 If not, return and add next number.
» 37 Hlﬂ‘é—-;-J © 0000 When C(ACC) = 7777, all numbers have
o ‘been gummed. Halt the computer.
e o . o)) ‘.»,
1000 - | N :lez\
1001 o, N,
PR R S S | Numbers tovbe” summed.
o ; } . -
1076 N N__
T 7 7
1077 Y100 Moo |
1100 [Sum] [Sum]
Example 3. Summing a Set of Numbers Using Address Modification,

16=2

Address Modification and Program "Loops" :

The instructions at locations 20 - 22 initially set the contents of mem0ry .
register 25 to the code for ADD 1000. At the end of the program, register 25
will contain 3100, the code for ADD 1100. Adding (in registers 33 and 34)
¢(25) to ¢(12), which contains the complement of the code for ADD 1100, re-
sults in the sum 7777 only when the program has finished summing all 100
(octal) numbers. This repeating sequence of instructions is called a "loop,"
and instructions such as AZE can be used to control the number of times a

loop is repeated. In this example the instructions in locations 24 through 36

will be executed lQO (octal) times before the computer halts.

The following program écans the contents of memory registers 400
through 450 looking for registers which do not contain zero. Any non=-zero
entry is moved to a new tablé beginning at location 500; this has the effect
of "packing" the numbers so that no registers in the new table contain
zero. When the program halts, the Accumulator contains the number of non-

zero entries.

19

20

. Address Modification and Program "Loops™ » o 16-2

Memory .
- Address Memory Contents.. Effect
! ~ADD 400 2hoo |
5 SLC 200 k500 - || o L -
6 . 1 - 0001 > Constants used by,thelprqgram@
7| -(aDD b51) 5326 -
10 -(8TC 500) 377 |
Starty g CIR oor |
101 ADD k4 200k Code for ADD 400 — C(106).
102 STC 106 L1o6 |,
103 ADD 5 2005 } Code for STC 500 — C(112). "
10k SIC 112 M jJ |
105 ~—> CLR 0011
106 [ADD 400] [2000+x] c(x) > c(ace)..
107 AZE - ok50 If C(ACC) = zero, skip to
B location 111.
110 ap 112 |, 611e C(ACC) # 0, therefore JMP
| to location 112,
111 JMP 116 & - 6116 c(ACC) = 0, therefore JMP
to location 116.
112 > [STC 500] [4000+X] Store non-zero entry in new table.
113 ADD 6 2006 % '
114 ADD 112 0110 mAddﬂl t0~§he STC instruction -
in register 112.
115 STC 112 4112
116 —>ADD 6 2006
117 ADD 106 5106 Add'l to ?he ADD instruction
in register 106.
120 STC 106 L1o6 |
121 ADD 106 2106 } C(106) + c(7) - c(ACC). If
' - ¢(106) = ADD 451, then
100 ADD 200 ’
! [c(acc) = 7777
123 AZE 0450 If C(ACC) = 7777, skip to
« 1 location 125,
12k JMP 105 | 6105 If not, return to examine next
| number.
125 ADD 112 & - 0112 If C(ACC) = 7777, then number
106 ATD 10 5010 of non-zero entries — C(ACC)
and computer halts.
127 HLT 0000

Example 4. Packing a Set of Numbers,

C16-2 Index Class Instructions I - 21
ADA

At the end of the program, register 106 will contain the code for ADD 451,
and all numbers in the table will have been examined. If, eay, 6 entries
wvere found to be non-zero, registers 500 - 505 will contain the nenwzero
entries, and register 112 will contain the code for STC 506. ' Therefore by
adding C(112) to the complement of the code for STC 500 (in registers 125 -
126 above), the Accumulator is left containing 6, the number of non-zero

entries.

8. Index Class Instructions I

Indirect Addressing

The largest class of LINC instructions, the Index Class, addresses the
memory in a somewhat involved manner. The instructions ADD X, STC X, and
JMP X are called Full Address instructions because the 10-bit address X,
0 <X <1777, can address directly any register in the 2000 (ocﬁal) register
memory. The Index Class instructions, however, have only 4 bits reserved for
an address, and can therefore address only memory reglsters 1 through 17
(octal) The 1nstruct10n ADD TO ACCUMULATOR ADA 1 B, octal code llOO + 201 + B,
is typical of the Index Class

i=0o0rl

ADA i B 1100 + 26% + B

4\
ADA

tD—9

17

Memory register B should be thought of as containing a memory address, X,

in the right-most 10 bits,

11 10 9 0

~
X

and we speak of X(B), meaning the right 10-bit address part of register B.

The left-most bit can have any value whatever, and, for the present, bit 10

must be zero.* In addressing memory register B, an Index Class instruction

¥ See Appendix I.

22 R Indirect'Addre§Siﬁg“

tells the computer where to flnd the memory address to be used in execut-'

ing the 1nstructlonn ThlS 1s sometlmes called 1nd1rect" address1ng

For example, if we. want to add the value 35 to the contents of, the
Accumulator, and 35 is held in memoryvreglster 270, we can use the‘ADA;;Z,,;

instruction in the following mauner:

Memory :
Address Memory Contents ~ Effect
.._- __ 0270 Address of register containing 35.

AN ,/ o fou . , - , .

o AN L/ ° °

e x o o

R
og70¥ |\ 0035 0035
N\
° N\ ° °
\ e 3 .

. . \Ne - °
S : ADA' 1100 + g | c(270) + C(ACC) - Cc(ACC).

Note that the:ADA instruction does not tell the computer directly where to

find the nnmber 35; 1t tells the computer 1nstead where to flnd the address

of the memory reglster which contalns 35 ' By u51ng memory reglsters 1
through 17 in this way, the Index Class instructions can refer to any

register in the memory°

©16-2

16-2 Indirect Addressing 23
(LDA]
(st |

Two other Index Class instructions, LOAD ACCUMULATOR, LDA i B, and
STORE ACCUMULATOR, STA i B, are used in the following program which adds the
contents of memory register 100 to the contents of register 101 énd stores
the result in 102. The LDA i B instruction, code 1000 + 20i +'B,vclears the
Accumulator and copies into it the contents of the specified membfy register.
STA 1 B, code 1040 + 201 + B, stores the contents of the Accumulafor in the
specified memory register; it does hot, however, clear the Accumulator.

Addition with ADA uses 12-bit end-around carry arithmetic.

Memory
Address Memory Contents Effect
10 X1 0100 Address of Nl'
11 X2 0101 Address of Néo
12 -‘X3 | 0102 Address of (N1+Né).
. B : | : .
Starts 4 LDA 10 1010 N, i.e., C(100), - C(ACC).
31 ADA 11 1111 N, i.e.,C(101), + c(AcC) — c(Acc).
32 STA 12 1052 N, N, - c(1o2).
33 | HIT 0000
100 \ Ny | -
101 -
10 | N,
102 § [Neré] (-]

Example 5. Indirect Addressing.

24

16=2

Index Registers and Indexing

When "i" is used with an Index Class instruction, that is, when i = 1,
thevcomputér is directed’to add 1 to the X part of memory register B beforg
1% is‘used'td‘address the mémory, This process is called "indexing," and
régistérs’l through 17 are frequently referred to as Indéx Registefso In
the example below, =6 is loaded into the Accumulator after Index Regiéter B

is indexed from 1432 to 1433 by the LDA 1 8 instruction.

Memory J
Address Memory Contents Effect
B [x] [1432] Address minus 1 of register
. ' 4 containing T771.
- P IDA i B 1020 + B | X + 1, i.e., 1433, - C(B), and
. . . c(1433) — c(Ace).
1432 - , -
1433 -6 7L
o ,

When the LDA i B instruction is executed, the value X(B) + 1 replaces the
address part of register B (the left-most 2 bits of register B are unaffected).
This new wvalue, 1433, is now used to address the memory. Note that if the

LDA instruction at p were repeated, it would deal with the contents of
register 1434, then 1435, etc. The utility of Index Registers in scanning

tables of numbers should be obvious.

Indexing involves only 10-bit numbers, and does not involve end-around

carry. Therefore the address "following" 1777 is 0000. (The same kind of
indexing takes place in the Instruction Location register, which "counts”
from 1777 to 0000.)

16-2

Index Registers and Indexing 25

The following example using indexing introduces another Index Class
instruction, SKIP IF ACCUMULATOR EQUALS, SAE i B, code 1440 + 20i + B. This
instruction causes the LINC to skip one register in the sequence:of pro-
grammed instructions when the contents of the Accumulator exactly match the
contents of the specified memory register. If there is no match, the com-
puter goes to the next instruction in sequence as usual. The program example
clears (stores 0000 in) the set of memory registers 1400 through 1777; the
SAE instruction is used to decide whether the last 0000 has been stored.

Memory : ‘
Address Memory Contents Effect
3 [x] (13771 Initial Address minus 1 for the
' STA instruction. ’
L 356 0356 Address of test number.
Start « o5 [P CLR 0011 Clear the Accumulator.
351 STA i 3 1063 Index the contents of register 3;
' store C(ACC) in the memory
register whose address = X(3).
352 ADD 3 2003 c(3) - c(Aace).
353 | SAE _}hj 1hhh Skip to 0355 if C(ACC) = C(356).
354 JMP 350 | 6350 If not, return to store 0000 in
next register. ' '
355 | HLT &— - 0000 Halt the computer.
e

Example 6. Iﬁdexing to Clear a Set of Registers.

When the program halts at registér/355, register 3 will contain 1777. The
SAE instruction is used here (as the AZE instruction was used in earlier
examples) to decidé when ﬁo stop the computer; The instruétions in regis-
ters 350 through 354, the "loop," will be executed 400 (octal) times before

the program halts. Zero is first stored in register 1400, next in 1401, etec.

26
[BcL]

"run endlessly.

- Index Registers and Indexing

- Another program scans the memory to see if a particular number, Q,

appears in any memory register O through 1777.

Switches,.and the address of any register containing Q is to be left . .in the

Effect

Q is to be’set in the Right

Address of register whose contents
are to be compared with Right

C(RS) - C(ACC).

Index register 17, and compare
c(ace) with ¢(X).

clear ACC, copy address
of register containing Q into
ACC, and halt.

Accumulator,
Memory - . o
Address Memory Contents
SLT [x] [-]
Switches.
Starts oo RSW - 0516
2Ll $»SAE i 17 7T
. N
22 JMP 21§ | 6021
23 | aré—- [oo
3 If equal,
2k ADD 17 2017
25 - HIT l 0000
Examplev7; Memory Scanning.

If no memory register O through 1777 contains the number Q, tﬁe prcgram will

The location of the first reglster to be tected depends on

the initial contents of Index Reglqter 17.

An Index Class instruction, ADD’TOvMEMORY, ADM 1 B, code 1140 + 201 + B

adds the contents of the specified memory register to C(AéC), using 12-bit

end-around carry arithmetic (as ADD or ADA).

The result is left, however,

not only in the Accumulator but in the specified memory reglster as well.

The BIT CLEAR 1nstruct10n, BCL 1 6, code 1540 + 201 + B, is one of three

Index Class 1nstructlons which performs a so- called loglcal

BCL 1s uqed to clear selected blts of the Accumulatore

operatlono

Qpec1f1ed memory reglster Wthh contalns l “the correspondlng blt of the

Accumulator is set to 0.

If not equal, return for next test.

For every bit of the

16=2

16=2

Index Registers and Indexing 27

In the following program two sets of numbers are summed term by term.

The . first set of numbers, each 6 bits long, is in registers 500 - 577,

bits O through 53

bits 6 through 11 contain unwanted 1nformat10n,"The,

second set of numbers is 1n registers 6OO - 677, and the sums replace the

contents of registers 600 - 677,

Memory
Address Memory Contents Effect
3 [Xl] [ok77] Initial address minus 1 of first set.
i 0k10 ok10 Address of BCL pattern.
5 [Xé] [o577) ‘Ihifial:address minus 1 of second
set. '
6 oh11 oh11 Address of test number for halting.
Start P : , . o
222225400 ~> LDA i 3 1023 Index X(3) and load number from
. v first set into ACC.
ko1 BCL L 154 Clear the left 6 bits of the ACC.
402 ADM 1 5 “1165 Tndex X(5); Add number from
. ‘ second set to C(ACC), and
replace in memory.
Lo3 CLR 0011 L , .
Lol ADD 3 2003 Check to see if finished.
105 SAE 6 | 1uk6 o | |
Lo6 JMP L4oo), 6400 c(3) £ ¢(h11), i.e., # 0577,
Lo7 HLT &~—- | ‘0000 ¢(3) = 0577; 'halt the program.
410 7700' 7700 BCL patterhffor clearing left
half of ACC.
b1 0577 ’_”0577‘(Test number for halting.
Example 8. Summing Sets of Numbers Term by Term,

28

BCO

Logichnstructions o

16-2

The three loglc instructions, 'BCL 1 B, BSE i B, and BCO i B, ‘are best

understood by studylng the follow1ng examples.

only the Accumulator,

' These 1nctruct10ns affect

the memory reglster M contalnlng the bit pattern is

unchanged.
BCL 1 B BIT CLEAR code: 1540 + 201 + B
Clear corresponding bits of the Accumulator:
If ¢(M) = 010 101 0L0 101
and C(ACC) = 111 111 000 000
~ then C(ACC) = 101 010 000 000
BSE i B BIT SET code: 1600 + 201+ B
Set_to ONE correspondlng bits of the Accumulator:
15 (M) = 010 101 010, 101
 end C(ACC) = 111 111 000000
then c(acc) =111 111 010 101
BIT COMPLEMENT code: 1640 +20i + B

BCO i B

Complement corresponding bits of

I c(M)
and C(ACC)

then C(ACC)

i

]

i

010
111

101 010
111 000

the Accumulator:

101
000

101

010 * 010

101

These instructions haVe‘a'Vafie%y of applicétions, some of which will be

demonstrated later.

XSK

9. Specidl Index Register Instructions

Before continuing with the Index Class,‘twe“special iheffuctiOhs which
facilitate programming with the Index Class instructions Willvbe iﬁffeéueed,
These instructions do not use the Index Registers to hold memory addresses;
rather they deal directly with the Index Reglsters and are used to change or

examine the contents of an Index Reglster

The INDEX AND SKIP Instruction

The INDEX AND‘SKIP instruction, XSK i o, code 200 + 20i + @, refers to
registers O through 17 (O < a»5,17),* It tests to see whether the address
part of register O has its maximum Value, i.e., 1777, and directs the LINC
to skip the next reglster in the instruction sequence if 1777 is found. It
will also, when i = 1, index the ‘address part (X) of reglster o by 1. Like
the Index Class 1nstructlons, XSK indexes reglster a before examining it, and
it indexes from 1777 to 0000 without affecting the left-most 2 bits. We can
therefore give these 2 bits any value whatever In particular, we can set
them both to the value ‘1 and then ‘say that XSK i a has the effect’ of sklpplng
the next instruction when it finds the number 7777, (=0), in register o.

Now we can easily see how to execute any glven sequence of instructions

exactly n times, where n < 1777 (octal):

~-n - }aqrstofed in register a.
Start : . , . . ‘
———{ Given Sequence of Given sequence held in register X, X + 1, etc.
Instructions -~ | | -
j/ e B
LK 1 a L
Tndex ¢ and test. After 1st pass C(a)
'f} After n passes C(Q@) = -n + n = -0 so

T
IMP X | = -n + 1, after 2nd pass C(Q) = -n + 2.
: SR
| skip over the JMP X ingtruction and halt.
-

*eof. B, 1 <B <17, which does not refer to register O.

30 The INDEX AND SKIP Instruction

Suppose, for example, that we want to. store the contents of the Accum~

ulator in reglsters 350 through 357 ~ Using register 6 to "count,” we can

wrlte the short program

Me@bfy S , . B C
Address |7 Memory Contents : Effect -
5 [x] | To3u7] Initial sddress minus 1 for STA
. instruction.
6 [-10] (77671 -n, where n = number of times to
store C(ACC). ’
Start _ \ : . ’ S
—*———9200 1065 Index register 5 and store C(ACC).
201 0226 Index register 6 and test for
o x(6) = 1777. : :
202 6200 X(6) # 1777, return.
203 0000 X(6) = 1777, halt.

Example 9. Index Registers Used as Counters,

7, U31ng the XSK 1n"truct10n with 1 = O, whlch tests X(OO w1thout 1ndex='

‘ing, \Example 6, P 253 whlch stores zero in memory reglsters l%OO throughv

17773 can be more effchently wrltten

Memory .
Address Memory Contents ‘ Effect
3 [x]- ~ [1377]° | ‘Initial address minus 1 for STA
in“struction°
Starty oo, cck | ooir ‘()-;C(ACC) G

351 STA i 3 1063 Index register 3 and store Zero.
352 XK 13 0203 Test for X(3) = 1777
353 JMP 351 | 6351 X(3) # 1777, return.
354 | HLT & — !v;oooo. | x(3) = 1777, halt.

Example 10. Index1ng and Countlng to Clear a Set of Rengters

Here register 3 is indexed by the STA instruction; the XSK then merely tests
to see whether X(3) = 1777, without indexing X{3). The reader should see that

Example 8 on pege 27 can also be more efficiently programmed using XSK.

16-2

16-2

SET

The SET Instruction

The second special instruction which is often.used with the IndeX C1éss
instructions is SET i @, code 40 + 201 + &, where a~again refers directly to
the first 20 (octal) memory registers, O <a < 17. In some of the examples
presented earlier, the contents of Index Registers are changed, either as
counter values or as memory addresses, while the program is running.
Therefore, in order to run the program over again the Index Registers must

be reset to their initial values.

The SET instruction directs the LINC to set register o to the value
contained in whatever memory register we specify. It is uniquely different
from the instructions so far presented in that the instruction itself always

occuples 2 consecutive memory registers, say p and p + 1:

 Memory :

~Address’ Memory Contents
P SET i | Lo+ 20i+a

P+ 1 e : ¢

SEEEES I =S ERTDE R -

The computer automatically skips over the second register.of the_péir,;
p + 1; that is the contents of p + 1 are not interpreted as the next

instruction. The next instruction after SET is always takén from p + 2.

The inbit in the SET ingtruction does:not control indexing.

Instead, it tells the LINC how to interpret the contents of register p + 1.

32

The SET Instruction

When i = 0, the LINC is directed to interpret C(p + 1) as the memory

addreSQ for locatlng the value whlch w1ll replace C(a) .

p + l 1s thought of as contalnlng X

That is, register

“Memory - S Do .
Address Memory Contents. Effect
10 [N] [-]
- p SET 10 0050 c(x), i.e., N, —» c(10).
p+1 X X
X N N

and the contents of register X replace the contents of 10, C(X);ﬁHC(lO), In

this case X is the right-most 10 bits, the address part, of'register p + 1;

the left-most bit of C(p + 1) may have any value and, for the present, bit 10

. must be zero.¥

In the second case, when i = i, the LINC is directed to interpret
C(p + 1) as the value which will replace C(y). Thus, below, C(p + 1) — C(5):

Memory '
Address. Memory Contents - Effect
s -1
- SET 1 5 0065 | Clp + 1), i.e., N, » C(5).
P+l N o N o

¥ See Appendix

H

. 162

16=2

The SET Instruction 33

The following program scans 100 (octal) memory registers looking for

a value which matches C(ACC).

It halts with the location of the matching

register in the Accumulabtor if a match is found, or with -0 in the Accum-

ulator if a match is not found. The numbers to be scanned are in

registers 1000 - 1077,

Memozry ,
Address Memory Contents Effect
3 [-100] [7677] -(number of registers to scan).
4 [x] (07771 Scanning address.
Start . . , . .
—~—3100 0063 c(ko1), i.e., -100, — C(3).
Lol 7677
ko2 006k c(4o03), i.e., T77, — C(L).
403 oTTT7 » v
Lok 146k Index X(4) and compare C(X)
~ with C(ACC).
405 6411 c(ace) £ ¢(X), jump to 411,
koo 00LL c(acc) = ¢(X), copy location of
Lot 2004 matching register into ACC
410 0000 and halt.
411 0223 Index register 3 and test for
X(3) = 1777.
L12 640k X(3) £ 1777, return.
413 0011 (
X(3) = 1777; all numbers have been
MLk 00L7 scanned so -0 — C(ACC) and halt.
L15 HLT 0000

~Example 11. Setting‘lnitial Index Register Values:

The two SET instructions are executed once every time the program is

started at

400; initially registers 3 and 4 may contain any values whatever,

since the program itself will set them to the correct values.

Index Class Instructions II C16-2

-Suppose we had wanted to SET two Index registers to the same value,

say =100, - We could write either: :

Memory . Coeee S T TR ‘ - s

Address Memory Contents Effect
11 [-100] (76771
12 [-100] [7677]

520 | SET i 11 0071 c(21), i.e., =100, - C(11).
21 -100 17677
22 SET 12 0052 c¢(e1), i.e., =100, - C(12).
23 21 10021

or:

- 20 SET i 11 0071 c(21), i.e., =100, - C(11).
21 - -100 L T6TT ')
02 SET 12 | 0052 c(11), i.e., =100, - C(12).
23 | 11 . o011 | o

We could also, of course, have written SET i 12 in register 22 with -100

in register 23, but there are appliéations appropriate to each form.

~ 10, Imdex_Clésg Insﬁructions 1T

Double Register Forms

The Index Class instructions have been thought of as addressing an
Index Register B, 1 < B < 17, which contains a memory address X to be used
by the inéthéinh. They have been pféSenﬁed as single fégister instruc-
tions (unlike SET). However, when an Index Class instruction is written
vith B = 0, it becomes a SOﬁble fegister instruction like SET, whose operand

address depends on 1 and p + 1. These two interpretations are shown for STA.

Double Register Forms

Memory .
- Address Memory Contents Effect
450 STA I 1040 + 20(0) + © c(Acc) — ¢(330).

451 330 0330
| | |
When i = 0, the LINC is directed to use C(p + 1), i.e., C(451) as the

memory address at which to store C(ACC). The left-most bit of C(p + 1) may

have any value, and, for the present, bit 10 must be zero.*

Cagse: 1 =1, p=0

Memory ' :

Address Memory Contents ! Effect

50 STA i 1060 C(ACC) — C(L451).
s | [-] | (-]

When i = 1, the LINC is directed to use p + 1, i.e., 451, directly as the
memory address, and the contents of the Accumulator are stored in L451. Note
that when B = O in an Index Class instruction, we are not referring to
memory register O. In fact, when B = 0, no reference whatsoever is neces=-
sarily made to the Index Registers. As with SET, the computer automatically

takes the next instruction from register p + 2.

* See Appendix I.

35

~ Double Register Forms 16-2

We may now thlnk of the Index Class 1nstruct10ns as having four
alternatlve ways of addre831ng the memory, whlch depend on i and B, and

which are summarlzed below

Index Class Address Variations
Case ‘1, .8 .} Example | . Form. - : Comments:
1 1i=0 ~LDA-. B | Single . Register B holds operand address.
B % 0 Register
5 i=1 IDA i B | Single First, index register B by 1.
B # 0 Register Then, register p holds operand address.
3 i=20 LDA Double Second register holds operand address.
B =20 X Register : - » P
I i=1 LDA i | 'Double o Second register holds‘operand°
B =20 N Register ‘

The next programming example scans memory registers 1350 through 1LL7,
counfing the mmber of instances in which register contents are found to
exceed some "threshold”‘valﬁe, T. 1In other words if C(X) > T, X = 1350,
1351, ..., 1447, then C(CTR) + 1 — C(CTR), where CTR is a memory register
used as a counter, initially set to zero. The count, N, is to appear in

the Accumulator upon program completion.

16-2

Double Register Forms R 37

Memory
Address Memory Contents Effect
14 [x] (-] Address of register to be tested.
15 [-n]] ~(number of registers to test).
Start_ > : ’ . s
——330 SET i 14 0074 Set Index Register 14 to initial
31 1347 1347 address minus lo
32 SET 1 15 0075 Set Index Register 15 to =100.
33 -100 1677
3k CLR Q011 Clear CTR; 0 — c(51).
35 STC 51 Lo51
36 ——3 LDA 1 1020 ¢(37), i.e., =T, - C(ACC).
37 -T =T
4o ADA i 1k 1134 Index the address in register 1k
, and form C(X)-T in ACC.
1 BCL i 1560 Clear all but the sign bit in ACC;
: : . C¢(L2) = the bit pattern for
k2 o777 o177 clearing. Then if C(X) > T,
C(ACC) = 0000, but if C(X) < T,
, c(ACC) = 4000.
43 SAE i 1460 Does C(ACC) = C(Lh4)? If so,
il 0000 0000 skip to 46,
— == - |
L5 JMP 52 | 6052 If not, C(X) < T. Jump to 52.
L6 IDA i& —-1 1020 If so, C(X) >T; 1 - Cc(ACC).
L7 1 0001
50 ADM i 1160 c(Acc) + ¢(s51), i.e., N, — C(51)
52 ~—>§§¥_§_%2 0235 Index register 15 and test for T7777.
53 JMP 36 6036 c(15) # T777. Return to check
' l next register.
5k HLT & — — 0000 C(15) = 7777, therefore halt. C(CIR),
i.e., C(51), left in ACC.

Example 12,

Scanning for Values Exceeding a Threshold.

Note that since the SAE instruction in locations 43 and Lk is written as

a double register instruction, the LINC will skip to location 46 (not 45)

when the skip condition is satisfied.

in this case, at location 45.

The next instruction "in sequence" is,

38

Double Register Forms

Note also that if a double register instruction is written following a
skip instruction such as XSK, the LINC will try to inferpret the second

register as an instruction:

Memory :
Address Memory Contents : Effect
P X8K i B
p + LDA i ' ‘Go to p + 1 when X(B) # 1777
+ 3¢—- Go to p + 2 when X(B) = 1777.

Since the XSK instruction sometimes directs the LINC to skip to p + 2, care
must be taken to make sure that the LINC does not skip or Jjump to the second

register of a double register instruction.

It is interesting to cdmpare the above statement of the program made
in what might be called "detailed machine language" with the following
compact but entirely adequate restatement:

1) 0 — C(CTR). ' |
2) If ¢(X) > T then C(CTR) + 1 — C(CTR), for X = 1350, 1351, ..., Lhk47.
3) ¢(CTR) — c(acc). | |

L) HALT

16-2

16=2

39

Multiple Length Arithmetic

An Tndex Class instruction, LINK ADD TO MEMORY, LM i B, with the octal
code 1200 + 201 + B, mekes arithmetic possiblé WithAnumbers which are more
than 12 bits long. Using'LAM, one can Wdrk with éh-bit numbers for'examplé,
using 2 memory registers to hold right'and left halves. It should be |
remembered that addition with ADD, ADA, or AIM, always involves end-around
carry. With LAM, however, a carry from bit 11 of the Accumulator during
addition is saved in the Link Bit; it is not added to bit 0 of the Accum-
ulator. This carry, then, could be added to the low order bit of another
number, providing a carry linkage between right and left halves of a 2U-bit
number. For simplicity, the illustration uses 3 bit registers; the prin-

ciples are the same for 12 bits:

Link ACC

<'| 0|<€ | 11111
! |

next end-carry

addition with LAM

If, for example, the number in this 3=bit Accumulator is 7T (all ones) and
C(L) = 0, and we add 1 with LAM, the Link Bit and Accumulator will then
look like:

L - ; ACC
1|16&—(olofo]

Furthermore, LAM is an add-to-memory instruction, so that the memory

register to which the LAM instruction refers will now contain zero (as the

. Accumulator).

4o

Multiple Lehgth Arithmetic

In addition to saving the carry in the Link Bit the LAM instruction
also adds the contents of the Link Bit to the low order bit of the Accum-
ulator. That is, if, when the LAM instruction is executed C(L) = 1, then
1 is added to»C(ACC); Using the rééultbpictured above, let us add 2, where

2 is the contents of some memoryrregister M:
L ACC M
Given: i 000 - = 010

Using LAM, the LINC is directed first to add C(L) to C(ACC), giving:

ACC M
001 010

There 1s no end-carry from this operation, so the Link Bit is cleared. The

LINC then adds C(ACC) to C(M), giving:

AcC M
011 011

which replaces both C(ACC) and C(M). Again there is no end-carry so the
Link Bit is left unchanged. o
The operation éf LAM méy be sﬁmmarized:r
1. c(L) + c(Acc)-a‘o(Acc),
2. End-carry —» C(L). If no end-carry, O - C(L).
3. C(ACC) + C(M) — C(ACC), and - C(M).

k, End-carry — C(L). If no end-carry, the Link Bit is left unchanged.

16-2.

16-2 ’ Multiple Length Arithmetic

As an example of double length arithmetic let us postulate 2 numbers,

Nl and N2, each 6 bits long, which occupy a total of 4 of our 3-bit memory -’

registers, Ml through Mh:

Moo M
000 111 Ni = +7
My, M3
101 001 Né = =26

The sum, octal, of +7 and -26 is -17. Using the LAM instruction to get this

we must
1. Clear the Link Bit.

2. Add C(Ml) to C(M) with LAM, saving any carry in the Link Bit.

3
- This sums.the right halves of Nl and N2°

3. Add C(ME),to C(MM) with LAM, which also adds in any carry from

step 2. This sums the left halves of Nl and N2. Any new

carry will again replace C(L).

000 111 _ Nl
101 001 Né
@ |
: 110 | 000 Nl + N2 = =17
| .
2nd LAM l-—1st LAM
No end=-carry End-carry

We see upon inspection that only the first LAM produced an end-carry.

L

Multiple Length Arithmetic 16~2

To complete the illustration we must alsoc consider the case in which a final

carry appears in the Link Bit, as in the addition of +12 and -2,

001 010 T 412
111 101 -2
1 1o
’}\ 000 ’:\ 111 + 7
| | :
ond LAM . L1gt 1AM
End-carry No end-carry

whose sum, in ones' complement notation is 001 000, or +10 (octal), but which
with LAM results in +7 and an end-carry in the Link Bit. Since ones' com~-
plement representation depends on end-around carry, we must do some eitra
programming/to restore our result to a true ones' complement number. This
is, of course, the equivalent of adding 1 to our 2~fegiéter'result, Assuming
that the result is in M, and M, '

L My

1 000 111

we can again use the LAM instruction. We must first clear the Accumulator

without clearing the Link Bit (this can be done with an STC instruction).

We then execute LAM with C(Ml) which gives

L - ACC ,.M1

1 000 000
producing a new end-carry in the Link Bit., We again clear the Accumulator
(but not the Link Bit) and execute LAM with C(Mé) which gives

ACC 'R

2
0 001 001
The result in Mé and Ml now looks like:
Mé Ml
001 000 = +10 (octal)

-

It should be clear to the reader that adding in a final end~carry as an end-

around carry cannot itself give rise to a new final end-carry.

16=2

Multiple Length Arithmetic 43

The following program illustrates the technique of double length
arithmetic with tables of numbers; similar techniques would be used for
other multiples of 12. Assume that 100 (octal) 2k-bit numbers, NO’ Ni,
cesy N77, are to be added term by term to 100 (octal) numbers, RO’ Rl’ ceay
R77, such that NO + RO = SO’ 1\Tl + Rl = Sl’ etc. All numbers occupy
2 registers: the left halves of Nb, Nl’ coey N?7 are in registers 100 - 177,
the right halves in 200 - 277. The left halves of RO’ Rl’ csey R77 are in
1000 - 1077, the right halves in 1100 - 1177. The left halves of the sums,
SO’ Sl’ coos 877, will replace the contents of 1000 - 1077,‘the right halves

will replace the contents of 1100 - 1177.

Ay

Multiple Length Arithmetic

16=2

Memoxry
Address Memory Contents Effect
10 Il [-]
11 [XQ],. [=]
1o ~[X3] [-]
13 [,X)_l_] -]
1k - [=n] [-]
37T [-T [-1
Btart § 150 | sET 1 10 |oo70
Lol 77 0077
Lop SET i 11 0071 :
Set index registers to initial
403 L oL7T addresses minus 1 for the
Lok SET i 12 0072 4 tables.
Lo5 v oT7TT
4o6 SET i 13 0073
LoT7 1077 1077
410 SET i 1k 0074 Set index register 14 as a counter
b1 -100 7677 for 100 loop repetitions.
hio —> CLR 0011 0 - C(ACC); 0 — c(L).
413 ILDA i 11 1031 Right half of N, - c(Ace).
Lk LAM i 13 1233 Right half of N + right half of
R, — c(ACC), and - right half of
R;. End-carry - c(L).
415 LDA i 10 1030 Left half of N - c(acae).
h16 LAM i 12 1232 c(L) + c(acc) + left half of R, —
c(Acc), and — left half of R
End-carry — c(L).
h17 STC 377 4377 Clear Accumulator by storing in
377. Do not clear Link Bit.
420 LAM 13 1213 ¢(L) + right half of S; = C(ACC),
and — right half of S End-
carry — C(L). .
ko1 STC 377 L4377 Clear Accumulator.
Lop LAM 12 1212 C¢(L) + left half of 8; = c(Ace),
and — left half of Si°
423 XSK i 1_L+_| 0234 Index 14 and test for 7777
hol JMP L12 | 6412 c(14) # 7777, return to form next sum.
425 HLT & — - | 0000 C(14) = 7777, so halt.
Example 13. Summing Sets of Double Length Numbers Term by Term.

16-2

Multiplication 45

The instructions in locations 412 - 416 produce an initial 24-bit sum
leaving any final carry in the Link Bit. The instructions in locations

417 - 422 then complete the sum by adding in the final end-carry. The Link
Bit will always contain O after the computer executes the last LAM in
location 422. Register 377 is used simply as a “garbage" register so that

we can clear the Accumulator without clearing the Link Bit.

Multiplication

Another Index Class instruction which needs special explanation is
MUBIIPLY{ MUL i B, code 1240 + 20i + B. This instruction directs the LINC
to multiply C(ACC) by the contents of the specified'memory register, and to
leave the result in the Accumulator. The multiplier and multiplicand are
treated as signed 11l-bit pnesg complement numbers, and the sign of the product

is left in both the Accumulator (bit 11) and the Link Bit.

The LINC may be directed to treat both numbers either as integers or
fractions; 1t may not, howevér, be directed to mix a fraction with an
integer. The left-most bit (bit 11) of register B is used to specify the

form of the numbers.

When bit 11 of register f contains zero, the numbg;ﬁnggwyyggged as

integers; ©that is, the binary points are assumed to be tokthe right of
bit zero of the Accumulator and the specified memory register. Given
c(Acc) = -10, C(B) = %00 (bit 11 of register B = 0), and C(L00) = +2, then
the instruction MUL B will leave ~20 in the Accumulator, and 1 in the Link
Bit. Overflow’is, of course, possible when the product exceeds 13777.
Multiplyihg +3777 by +2, for exampie, produces +3776 in the Accumulator;
note that the sign of the product is correct, and that the overflow effec-

tively occurred from bit 10, not from bit 11.

When bit 11 of register B contains 1, the LINC treats the numbers as

fractions; that is, the binary point is assumed to be to the right of the

sign bit (between bit 11 and bit 10) of the Accumulator and the specified
memory register. Given C(ACC) = +.2, C(B) = 5120 (bit 11 of register p = 1),
and C(1120) = +.32, then execution of MUL B will leave +.064 in the Accum-
ulator and O in the Link Bit.

L6

Multiplication ‘ 16-2

When the LINC multiplies two 1ll-bit signed numbers, a 22-bit product
is formed. For integers the right‘hoét, orbéggéiysignificant 11 bits of
this product are left with the proper s1gn in the Accumulator, and for
fractlons the most s1gn1f1cant 11 bits of the product are left with the

proper sign in the Accumulator. If, for example,

C(ACC) = 001100000000, ,
and ?ina§y pi%nts-——j T—?lnarytp01nts
or racctlions ——q, or 1mn egers
¢(M) = oooomoooooo‘r

then C(ACC) can be thought of as either +.3 (octal) or +1L00 (octal), and
C(M) can be thought of as either +.04 (octal) or +200 (octal). The 22-bit
product of these numbers looks like

.000 001 100 00 00 000 000 000.

\. J N\ J
Y A

.01k 0.

and if bit 11 of reglster B contains 1, the most 81gn1flcant 11 bits with
the proper sign, will be left in the Accumulator:

il

0,000 001 100 00
Sving gt NS
+ 0 1 L

c(Ace)
(+.3)x(+.0k)

1i

Had bit 11 of register B contained zero, the Accumulator would be left with
40 as the result of multiplying (1400)x(200). It is the programmer's
responsibility to avoid integer overflow by programming checks on his data

an&/or’by scaling the values to a workable size.

The use of bit 11 of register p is new to our concept of Index Regis=-
ters and should be noted in cohnection with the four memory addressing

alternatives which the Index Class'instructioﬁs eMploy.v When B % O then

16-2 Multiplication Do T T g

bit 11 of C(B), that is, bit 11 of the register which contains the memory

address, is used. The same is true when 1 =0 and B = 0, as in:

Memory
Address Memory Contents
)Y MUL ‘ 1240
P+l h,X l 4000h + X

That is, bit 11 of C(p + 1), the register containing the memory address, is
used. We sometimes call this bit the h-bit, whether in an Index Register

or in register p + 1. When, however, i = 1 and B = 0, it will be recalled

that p + 1 1s itself the memory address:

Memozry
Address Memory Contents
3 MUL i 1240
p+1 N I N

There is no memory register which actually contains the memory address,

and therefore there is no h-bit. The computer always assumes in this case

that h = 0, and the operands are treated as integers.

In the following program, registers lEOO - 1377 contain a table of
fractions whosé values are in the range iOOlYG, that is, whose most sig-
nificant five bits after the sign (bits 6-10) dﬁplicate the‘sign. Fach
number is to be multiplied by a constant, =-.62, and the products stored at

locations 1000 - 11770 To retain significance the values are first shifted

left 5 places.

L8

Multiplication 162

Memory R
Address Memory Contents Effect
6 [Xl] [-]
T [x,] [-]
10 [-n] [-]
§E§£E€>506 SET ; 6 OO%6 Initial address minus 1 of table
501 1177 1177 of fractions — C(6).
502 SET i T 0067 Tnitial address minus 1 for STA
503 777 0777 instruction — C(7).
50k SET i 10 0070 -n = C(10).
505 =200 T
506 SIDA i 6 1026 | Fraction - C(ACC).
507 ROL 5 0245 C(ACC)°25 - C(AcCC).
510 MUL 1240 Multiply, as fractions, C(ACC)
511 4000+516 14516 by C(516).
512 STA i 7 1067 Store product.
513 XSK 1 10 ., 0230 .
51l P 506f1 6506 If not finished,ureturn,
515 HLT & —— | 0000 If finished, halt.
516 -.62 LETT
Example 1h4.

Multiplying a Set of Fractions by a Constant.

The ROL instruction at location 507 rotates zeros or onee, depending on the

sign, into the low order 5 bits of the Accumulator. Since this amounts to a

"scale left" operation, it thereby introduces no new information which might

1nfluence the product

remain unchanged at locatlons 1200 - 1377

The reader should also note that the orlglnal values

: Another‘example demonstrates the technlque:ofvsaving both halves of

the product.

be multiplied by a constant, +1633.

- Fifty (octal) numbers, stored at locations 1000 - 1047, are to
The left halves of the products (the

most significant halves) are to be saved at locations 1100 - 1147; the right
halves (the least significant halves) at locations 1200 - 1247,

16-2

- Multiplication
Memory
Address Memory Contents Effect
3 [Xi] [1077] j}Addresses of products.
L [x,] [1177]
> [MOOO+X3} (4777] :}Addresses'of multiplier as fraction
6 [X3] [o777] and integer.
i [-n] [7727] Counter.
- 1400 SET 4 3 0573
1401 1077 1077 Set addresses for storing products.
1ho2 SET i L4 00Tk
1403 1177 1177
1404 SET 1 5 0075 Set 5 to address multiplier as fraction.
1L05 LOOO+T7TT W
1406 SET i 6 0076 Set 6 to address multiplier as integer.
kot 77 o7t
1410 SET i 7 0077
1411 =50 72T
1412 —> LDA i 1020 1 o
1413 1633 1633 JfFOZSCi;igazii? oF product; in
141k MUL i 5 1265 -
1415 SCR i 1 0361 C(pit 0 of ACC) — C(L).
1416 STA 1 3 1063 Store left half of product,.
1417 STC 1434 5434 0 — c(Ace).
1420 ROR i 1 0321 C(L) - ¢(pit 11 of ACC),
1421 STC 1h27 5LOT 4000 or 0000 — C(1L27).
1h22 ADD 1113 3413 .LFofm right half of product, in
1423 MUL i 6 1266 j Accumulator. *
1ok BCL i 1560 Clear bit 11 of right half.
1425 4000 4000
1&26 BSE i 1620 C(pit O of left half) — C(bit 11 of
ko7 (-] (-] right half).
1430 STA i L4 1064 Store right half of product,.
1431 BLL T | =T }Return if not finished.
1432 JMP 1412 Th12
1433 HIT &— - | o000
1434 [-] ' [-]

Example 15.

Multiplication Retaining 22-bit Products.

49

| LDH

Half-Word Class Instructions ‘ 16=2

The instructions at locations 1415, 1h20-1k2l, and 142L-1427 have the effect of
meking the two halves of the product,cdntiguoUs; the sign bit value. of the
right half is replaced by the low order bit value of the left half, so that

the product may be subsequently treated as a true "double length' number.

There are two remaining Index Class instructions, SKIP ROTATE, SRO i B,
and DISPLAY CHARACTER, DSC i B, which will be discussed later in connection

with programming the oscilloscope display.

11. Half-Word Class Instructions

The LINC has 3 instructions which deal with 6-bit numbers or "half-
words" ("word" is another term for "contents of a register"). These
instructions use the Index Registers and have the same four addressing
variations as the Index Class, but specify in addition either the left
half or right half of the contents of memory register X as the operand.

We gspeak of LH(X), meaning the contents of the left 6 bits of register X,
and RH(X), meaning the contents of the right 6 bits. We can then think of
¢(X) = LH|RH, or C(X) = LOOLI+RH.

Half-word instrucfions always use the right half of the Accumulator.
The LOAD HALF instruction, LDH i B, code 1300 + 201 + B, clears the Accum-
ulator and copies the specified half-word into the right half of the
Accumulator; which half of C(X) to use is specified by bit 11, the h-bif,

of register B.

16=2 - Half-Word Class Instructions 51
STH

When h = 0, LH(X) — RH(ACC). When h = 1, RH(X) — RH(ACC):

Memory

Address Memory Contents Effect
B h;X L000On+X h=1.
P IDH B 1300+8 RH(X) — RH(ACC) and 0 — LH(ACC).
X LH|RH 100LH+RH C(X) unchanged.

The same interpretation of the h-bit applies when 1 = 0 and B = O,

i.e., when the instruction occupies two registers:

Memory

Address Memory Contents Effect
40 LDH 1300 Since h = 1, RH(500), i.e., 76,
h1 - 13500 1500 - RH(ACC). 0O — LH(ACC).
500 32]76 3276

If register 41 contained 500, i.e., h = 0, then LH(500), or 32, would
replace RH(ACC).

The STORE HALF instruction, STH i B, code 1340 + 20i + B, stores the
right half of C(ACC) in the specified half of memory register X. C(ACC) and
the other half of memory register X are unaffected. To illustrate thé case

of 1 =1 and B = 0, we can write:

Memory

Address Memory Contents Effect
1000 STH i l 1360 RH(ACC) — LH(1001).
1001 6015 | 6015 ‘

This cagse, it will be remembéredg uses p + 1 itself as the memory address.

‘Since there is no h-bit, the computer assumes that h = 0, and therefore the
left half of C(1001) is affected. If, for example, C(ACC) = 5017, then 17

replaces LH(1001), and the contents of register 1001 become 1T15.

L e e Half-Word. Class Instructions

SKIP IF HALF DIFFERS, SHD. i B, code 1400 + 20i + B, causes the LINC to
skip one memory register in the program sequence when the right half of the
Accumulator does not match the specified half of memory‘register’XQ When it
does match, the computer goes to the next memory register in Sequénce for

the next instruction. Neither C(ACC) nor C(X) is affected by the instruction.
If C(ACC) = 4371, and we write:

Memory
Address Memory Contents Effect
376 7152 152
- 377 SHD 1400 Skip to 402 if RH(376) ¥ RH(ACC).
400 . L376 4376
Lol - -1 -
Lo2 - ¢« Lo

then the computer will skip because RH(376), i.e., 52, ¥ RH(ACC), or T7l. Had
we written 376 in location 400, that is, h = O, then RH(ACC) would equal
LH(376) and the computer would not Skip°

When B % 0, and when 1 = l,‘the Half-Word Class instructions cause the
LINC to index the contents of memory register B, but in a more compléx way
than that used by the Index Class instructions. In order to have half-word
indexing refer to consecutive half-words, the computer adds 4000 to C(p) with
end~around carry. This has the effect of complementing h(B) every time
register B is indexed, and stepping X(B) every other time. Suppose, for
example, that our instruction is’LDHti 3, and that register 3 initially con-
tains 4377, that is, it ”pointsﬁAtdythe right half of register 377,v‘The com-~
puter will first add 4000 to C(3): | :

4377 Original C(3) = 1,377
4000 Index H(3)

0377 _
- 1. End-around carry
0k00 New C(3) = 0,400

which leaves h = 0 and X = 400; C(3) now "points" to the left half of regis-

ter 400. The computer therefore loads the Accumulator from LH(400). Repeat-
ing the instruction, C(3) will be indexed to 4400 and the Accumulator will be

16—2

16-2 “Half-Word Class Instructions

loaded from RH(400). Continuing then, register 3 would contain the following

succession of values or half-word references:

—

41400 : RH(L400)
okol : LH(LO1)
4ho1 : RH(4OL)
okoz : LH(Lk02)
Loz : RH(LO2)
0403 : LH(L403)

etc. etc.

Since half-word indexing occurs before the contente of register B are

used to address the memory, we may describe the memory address, when i = 1, as
h 5 X+h

where h represents the indexed value of h, and X+h represents the indexed
value of X. The succession of values which will appear in register B can

then be written:

rf
e
o
j=x

13%4+0
03 X+1
13X+l
03X+2
13X+2

ete.

54

. TheKEYBOARD: Instruction

in the following table.

‘The four address variations for Half-Word Class instructions are summarized

Half-Word Class

‘Address Variations

Case i, B Example Form Comments
1 i=20 LDH B Single N Registér B holds half-word operand
B # 0] Register | address.
i=1 ILDH i B Single First, index register g by 4000 with
2 Register énd=-around carry.
B % 0 Then, register p holds half-word
- operand address.
3 i =0 LDH Double Second register holds half-word
B =0 h3 X Register operand address.
I i=1 LDH i Double Left half of second register holds
B =0 LH|RH half-word operand.

Register

For h =1O, the operand is held in the left half of the specified memory

register. For h = 1, the operand is held in the right half of the specified

memory register.

KEYBOARD instruction, KBD i, code 515 + 20i, is introduced.

a simple, externally-connected keyboard for coded input.

12.

The KEYBOARD Instruction

Before continuing with Half-Word Class programming examples, the

The LINC uses
Each key has a

6-bit code'ﬁumber, 0-55 (octal), (See Chart II), which can be transferred

into the Accumulator by the KBD i instruction when a key is struck.

KBD 1

directs the LINC to clear the Accumulator, copy into the right half of the

Accumulator the code number of the struck key, and release the key.

The

i=bit is used here in a special way to synchronize the keyboard with the com-

puter.

When i

= 1, 1f a key has not been struck, the computer will wait for

a key to be struck before trying to read a key code into the Accumulator.

When i = O, the computer does not wait, and the programmer must insure that a

key has been struck before the computer tries to execute the XKBD instruction.

16-2

The KEYBOARD Instruction

This use of the i-bit to cause the computer to pause is unique to a class

of instructions known as the Operate Instructions, of which KBD is a member.

As a class they are used to control or operate external equipment.

The following program reads in key code numbers as keys are struck on

the keyboard, and stores them at consecutive half-word locations, LH(lOO),

RH(iOO), LH(lOl), ..., until the Z, code number 55 (octal), is struck, which

stops the program.

Memory
Address Memory Contents Effect
7 [n;x] (-] Half-word index register.
— 20 SET 1 7 0067 Set index register 7 to one half-word
o1 1,77 %077 location less than initial location.
22 - ~» KBD 1 0535 Read code number of struck key into
RH(ACC), and release the key.
23 SHD 1 1ho0 Skip to location 26 if code number
ok 5500 5500 # 55
25 HLT : 0000 Code = 55, so halt.
26 STH i 7 ¢ 1367 Half-word index register 7, store
o7 JMP_ 22 6020 code number, and return to read

next key.

Example 16. Filling Half-Word Table from the Keyboard.

55

#
The KEYBOARD'Instiuction 16-2

Another example reads key code numbers and stores at consecutive half-

word locations only those code numbers which represent the letters A through-

7, codes 24 - 55 (octal). Othér‘keyVCOdes are discarded, and the program

stops - when 100 (octal) letters have been stored.

‘Mémbr&'
Address Memory Contents -Effect |
5 [h;X] [-]
6 [-n] [-]
- 100 ~ SET i 6 0066 Set 6 to count 100 times.
101 -100 7677
102 SET 1 5 0065 Set 5 for storing letters beginning
103 077 4077 at LH(100).
10k —>KBD i 0535 | Read keyboard.
105 STA i 1060 c(AcC) — ¢(106); store key
107 ADA 1 1120 | c(Acc)-23 — C(ACC).
110 -23 TSN | ‘
111 BCL i 1560 | Clear all but the sign bit in ACC.
112 3777 3777 o . o
113 AZE - 0450 | If c(ACC) = 0, skip to location 115.
11k JMP 104—1 | 610k c(ACC) # 0, so key code was less
‘ o o than 24. Return to read next key.
115 IDH ¢ — — | 1300 | Key code > 23 represents a letter.
116 1,106 1106 Therefore RH(lO§)=e RH(ACC).
117 STH i 5 1365 | Half-word index register 5 and
store code for letter.
120 XSK i 6 0226 Index register 6 and return if
i 100 letters have not been struck.
121 JMP 104 | 6104
122 HLT ¢ — -4 | 0000

Example 17. Selective Filling of Half-Woird Table from the Keyboard.

13.- The LINC Scopes and the Display Instructions

The LINC has two cathode ray tube display devices called Display
Scopeg, each of which is capable of presenting a square array of 512 by
512 (decimal) spots (1000 by 1000, octal). A special instruction, DISPLAY,
DIS 1 @, code 140 + 20i + O, momentarily produces a bright spot at one
point in this array. The horizontal (H) and vertical (V) coordinates are
gspecified in the Accumulator and in . The vertical coordinate,

-377 < V'S +377 (octalL is held in the Accumulator during a DIS i «.
instruction; the horizontal coordinate, 0 < H < 777 (octal), is held in

register @, 0 <& < 17. The spot in the lower left corner of the array has

the coordinates (0, -377):

(0, +377) , (777, +377)
€ o .

Square array, 3" x 3",
(0, 0)@————e£ 1000 % 1000 (octal) o (777, 0)

points.

< —>

(H, V)

SINNN g

(0, -377) (777, =377)

58

The LINC Scopes apfdjfthe Display Instructions

The coordinates are held in the rightJmOStﬂ9;bitsyof register O and the

Accumulator, - ; s

ACC

unused : k‘*‘*-f (=377 <V < +377) "——*——-—**4 :

b

%

. \ A . . P ¢ . . .
\h-bit:T unused - k——"*“f———— (0 <H<TTT) —

so that if C(ACC) = 641, i.e., =136, and C(5) = 430, then DIS 5 will cause
a spot to be intensified at (h30, -136) on the scope(s).

Both scopes are positiocned at the same time. The production of a
bright spot on either scope depends upon the state of the left-most bit
(the h~bit) of register @ and an external channel selector located on the
face of each Display Scope. If h = 0O, then the spot is produced via Display
Channel #0; if h = 1, then the spot is produced via Display Channel #l.
Bither Display Scope may be manually set to intensify Channel #O,
Channel #1, or both.. | |

The i-bit in DIS i a,is used. in the ﬁsual way to‘specify whether to
index the right 10 bits of register & before brightening the spot. This in-
dexing, of course, also increases the horizontal coordinate by one. To illus-
trate, the‘following program will display a continuous horizontal line through
the middle (V=0) of the scope(s) via Display Channel #0:

Memory ,
Address ~Memory Contents Effect
5 fO;H] [-] Horizontal coordinate and channel
. selection.
- 20 SET 1.5 0065 Set 5 to Channel #0 and horizontal
o1 0 0000 coordinate = 0.
22 CLR 001l Vertical coordinate = 0 — C(ACC).
23 DIS 1 5 0165 Index H (actually index entire
, ! right-most 10 bits) and display.
2k JMP %§ 6023 Repeat endlessly.

Example 18. Horizontal Line Scope Display.

16-2 Character DiSplay

Another example displays as a curve -the values found in a set of con-
secutive registers, 1400 through 1777. The vertical coordinates are the
most significant 9 bits of each value. Since we have only 400 (octal)
points to display, the curve will be positioned in the middle of the

scope. Channel #l is used.

Memory
Addresgs |- Memory Contents Effect
10 [x] -1 Address of vertical coordinates.
11 - [1;H] [4000+H] | Channel select and horizontal
. . . . coordinate.
— 300 —>SET i 10 0070 Set 10 to beginning address minus 1.
301 1377 1377
302 SET i 11 0071 | Set 11 to select Channel #1 and
303 15177 B177 : tQ begin cgrve at O = 200.
30k —>LDA i 10 - 1030 Load ACC with value and scale
right 3 places to position it
305 SCR 3 , 0343 as vertical coordinate.
306 DIS i 11 0171 Index the H coordinate and display.
307 XK 10 0210 Check to see if X(10) = 1777.
310 JMP 30k ’| 6304 If 400, points have not been dis-
played, return to get next point.
311 avp 300 | 6300 Tr X(10) = 1777, return to repeat
l entire display.

Example 19. Curve Display of a Table of Numbers,

Character Display

The Display Scopes are frequently used to display characters, for
example keyboard characters, as well as data curves. Character display is
somewhat more complicated since the point pattern must be carefully worked out

in conjunction with the vertical and horizontal coordinates for each point.

Character Display

If, for example, we want to dlsplay the letter A, the array on the scope
might look like:

T 778 B ~ 2 DU
A & , 5(1117(23
i . 14]10]16 |22
7 /// : 3]9]15/21
| 75 2/8114|20]
)7 4 1703119
A
o 1 o|6{i2]i8
K It | \
fig. a ‘ : : . fig. b

where the shaded areas’of fig. a represent points which are intensified,
and the white areas points not intensified; the total area represented is
6 vertical positions-by'h horizoﬁtal pritions. If, for example, the lower
left point has the coordlnates (400, 0), then the upper rlght point has the
coordinates (h05, 5).

We could, of course, store the H and V coordinates for every inten-
sified point of the character 1n a table in the memory, but the letter A

alone, for 1nstance, would requlre 32 (dec1mal) registers to hold both

coordinates for all the points Wthh are intensified. Instead we arbitrarily

decide upon a scope format, say 4 x 6, and meke up a pattern word in which
ones represent points to be intensified and zeros points which are not

intensified. To specify a 4 x 6 pattern of 24 bits we need 2 memory regis-
ters. We also decide, for efficiency of programming, to display the points

in the order shown numerically in fig. b, that is, from lower left to upper

16-2

16-2

Character Display 61
SRO

right, column by column. If we examine bit O of the pattern word first,
bit 1 next, bit 2, etc., then the pattern word for the left half of the
letter A (the left two columns) will look like:

11 10 9 8 7 6

First ;
pattern word L1010 110 Q 1

U1

==

W
o

where the bit positions of the pattern word correspond to the numbered
scope positions O - 11 of fig. Db. The pattern word for the right half of
the letter will then look like:

Second
pattern word JLU A 11141 17010 11040

with bits O - 11 corresponding to scope positions 12 - 23 respectively.

An Index Class instruction, SKIP ROTATE, SRO 1 B, code 1500 + 20i + B,
facilitates character display with the kinds of pattern words described
above. SRO 1 B directs the LINC to skip the next register in the instruc-
tion sequence when bit O of the specified memory register contains 0. If

bit O contains 1, the computer does not skip. In either case, however,

after examining bit O, the contents of the specified memory register are

rotated 1 place to the right. Therefore, repeating the SRO instruction
(with reference to the same memory register) has the effect of examining
first bit 0, then bit 1, bit 2, etec. Executing the SRO instruction 12 times,

of course, restores the memory word to its original configuration.

The following example repeatedly displays the lefter A in the middle of
The scope, using register 7 to hold the address of the first pattern word and
régister 6 to hoid”the H coordinate. Since L x 6 contiguous points on the
scope érray define an area too.small to be reédable;'a delta of L is used
to space the points, so that if the first'point is intensified at coord-
inates (370, O) the second point will be at (370, M), the Tth point at
(374, 0), ete. (This produces characters approximately 0.5 cm. high.)

Character Display 16-2

Memory , _
Address| = Memory Contents - -~ =7 " Effect
6 lo;H] C[-1 Channel selection and H coordinate.
7 [x] [-] Address of pattern word.
— 60 ——> SET i 6 0066 Set H coordinate = 370 for lower
61 03370 0370 left point. Select Channel #0.
62 SET i 7 0067 Set 7 to address of first half of
63 , 110~ | 0110 pattern.
6L —> LDA i 1020 Initial V coordinate = =10 — C(ACC).
65 i ~10 7767 |
66 —»S8RO T 1507 Skip to location 70 if bit O of
~ pattern word is zero. Rotate the
' ' pattern word 1 place to right.
67 pis 6 | 0146 If bit O of pattern word was one,
‘ SR ‘ | : display one point.
70 ADD 75 64 2075 Add 4 to V coordinate in ACC,
71 SRO i 1520 Skip to location 74 when 6 bits of
‘ o ‘ : ; pattern word have been examined.
72 _;§j§3__u7 31317 Rotate C(72) 1 place to right.
73 JMP 66 | 6066 © Return to examine next bit of pattern
word when bit O of C(72) = 1.
e IDA i 4——J 1 1020 D
75 L - oook {When bit 0 of C(72) = 0, 6 points
: ' have been examined.. Increase H
76 ADM ' 1150 J’ coordinate by 4 to do next column.
7 6 0006 :
100 SRO i - ~ 1520 Check to see if 2 columns have been
101 e , 0505 Slsp%ayede Rotate C(101) 1 place
—==—7 o right. ‘
102 JMP 6k | 606k Two columns have not been displayed;
' BN return to do next column.
103 XSK 1 7<—J - o227 "Two columns have been displayed;

_ - ' : index address of the pattern word.

104 ‘ SRO 1 1520 A”$kip to 107 if both halves of pattern
105- o505 " 2525 ' have been displayed.
v LT T T T ey O RV : : ' ’
106 JMP 6L | 6064 Return to display 2nd half of pattern.
107 JMP 60 ! 6060 ‘Entire pattern has been displayed

’ . R R . once. Return and repeat.

110 ’ kT | BT | L Pattern words for letter A.
L T (. I TTRE B T f : :

‘Example 20. Character Display of the Letter A.

16-2

Character Display 63
DSC

The SRO instructions at locations Tl, 100, and 104 determine when 1 column,

2 columns, and 4 columns have been displayed. After each column the H coor-
dinate is increased by 4 and the V coordinate reset to -10. After 2 columns
the address of the pattern word is indexed by one, and after 4 columns the

entire process is repeated.

DISPLAY CHARACTER; DSC i B, code 1740 + 20i + B, is the last of the
Index Class instructions; it directs the LINC to display the contents of
one pattern ﬁord, or 2 columns of points. Register B holds the address of
the pattern word and the i-bit is used in the usual way'to index X(B). The
points are displayed in the format described above, ieee, 2 columns of
6 points each with a delta ofih between points° The pattern word is examined
from right tq_left beginning with bif 0 and points are plotted from lower

left to upper right,’as above. . When executing a DSC instruction the computer

always takes the H coordinate and channel selection from register 1. The

delta of b is automatically added to X(1) every time a new column is begun;
furthermore this indeXing’is.done before the first column is displayed, so
that if register 1 initially contains 036k, the first column will be displayed
at H = 370, the second at H = 374, and register 1 will eontain 0374 at the

end of the instruction.

The vertical coordinate is, as usual, taken from the Accumulator, and

againb+4 is automatically added to C(ACC) between points. The right-most

5 bits (bits O - 4) of the Accumulator are alvays cleared at the beginning of

a DSC 1nstruct10n, S0 that if 1n1t1ally C(ACC) = +273, the first point will be

dlsplayed at V'ﬂ 240 the second at V = 244, etc. Characters can therefore
be displayed u51ng the DSC 1nstructlon only‘at vertical spacings of 40 on the

scope} Coey at 1n1t1al vertlcal coordlnates equal to =77, =37, O +hO +100,

ete. Furthermore, “the right- most 5 blts of the Accumulator always contain

30 (octal) at the end of a DSC 1nstructlon, so that if the initial C(ACC) = 4273,
the initial V will equal +240 and C(ACC) will equal +270 at the end of the

instruction.

6k

:Character)Display

To display a character defined by a 4 x 6 pattern two DSC. instructions

are needed.

. The following example repeatedly displays the letter A in the

middle of the scope, just as the program on p. 62 (Example 20) does, but with

greater efficiency using the DSC instruction.

. Since we cannot have an initial

V = =10 with DSC, the program uses V =
Memory
Address Memory Contents Effect
1 [o;H] [-] Channel selection and H coordinate.
7 [X] [-] Address of pattern word.
- 60 CLR 0011 | Initial V = 0 - C(ACC).
61 —> SET i 1 0061 Set 1 to initial H coordinate minus
60 03364 0364 4, and select Channel #O.
63 SET i 7 0067 Set 7 to address of flrst half of
6l 110 = 0110 pattern.
65 DsSc 7 1Ly Display, using lst pattern word, the
' - left 2 columns of the letter A,
_ . _ at initial coordinates of (370, 0).
66 DSC i 7 " 1767 | Index address of pattern word, X(7),
’ : : and display right 2 columns of
the letter A at initial coordi-
, nates of (400, 0).
67 JMP 61 © 6061 Return and repeat.
110 WhTT AT Pattern words for letter A.
111 TTLL Tk ' .
|
Example 21. CharactertDisplay of the Letter A USing DsC.

After the first DSC instruction (at locatlon 65), C
After the second DSC instruction, C(l) = 0404 C(7)
'0(110) and C(111) are unchanged

= 037&‘and c(Aoo)‘—
0111, and c(acc) =

<'>

By addlng more pattern words at locations

112 and follow1ng locatlons, and repeating the DSC i 7 1nstructlon, we could,

of course, dlsplay an entlre row of characters°

16-2

16=2

Character Display

The following program repeatedly displays a row of 6 digits. The

pattern words for the characters O - 9 are located in a table beginning

at 1000;

for the character 1 at 1002 and 1003, etc.

i.e., the pattern words for the character O are at 1000 and 1001,

The keyboard codes for the

characters to be displayed are located in a half-word table from 1400

through 1402;

etc.

i.e., the first code value is LH(lhOO), the second RH(IMOO),

The program computes the address of the first pattern word for each

character as it is retrieved from the table at 1400.

Memoxry
Address Memory Contents Effect
1 [1;H] [-] Channel selection and H coordinate.
2 [-n] [-] Counter for number of charucters.
3 (n;x] (-] Address of keyboard code values.
L [x] [-] Address of pattern word.
- 20 —>SET 1 2 0062 Set 2 to count number of charac-
o1 ‘—6 el ters displayed.
22 SET i 3 0063 Set 3 for loading code values begin-
ning at LH(1400).
23 131377 5377 & (1400) |
oL SET i 1 0061 Set 1 to initial H coordinate minus
o5 1530 43l 4, and select Channel #1.
26 —LDH 1 3 1323 Half-word index register 3 and put
code value into Accumulator.
27 ROL . 1 0241 Compute address of pattern word by
. multiplying code value by 2 and
30 ADA .1 1120 adding beginning address of
31 , 1000 1000 pattern table.
32 sTC 4 Look Address of pattern word — C(L);
0 - C(AcCC).
33 DSC- . b 17hk Display character at initial V = O,
34 DSC 1 k4 1764 and initial H = C(1) + k.
35 LDA i 1020 |
36 4 0004 Increase H by 4 to provide space
s .
37 ATM 11140 between characters
Lo 1 0001 |J
L1 _‘ggg;g__] 0222 |] Index X(2) and check to see whether 6
characters have been displayed. If
ke JMP 26 | 6026 (not, return to get next character.
43 JMP 20 ¢ 6020 If so, return to repeat entire

Example 22,

display.

Displaying a Row of Characters.

65

66

Analog Input and the SAMPLE Instruction

Suppose, for example, that ‘one of the 6 code values is 07. The pattern. words
for the character 7 are at loc¢ations 1016 and 1017. Multiplying the code
value O7 by 2 (7 x 2 = 16 0ctal) and adding the beginning address of the
pattern table (16 + 1000 = 1016) gives us the address of the first pattern.
word for the character 7. It should be clear that we could add pattern
words Tor all the keyboard characters to our pattern table; " if we organize
the pattern table to correspond to the ordering of the keyboard code values,
the same technique of "table look-up" using the code values to locate the

pattern could be used to display any characters on the keyboard *

14, Analog Inpnt and the SAMPLE Instruction

The SAMPLE instruction, SAM i n, refers to the LINC's miscellaneous
inputs. The LINC has 16 input lines (numbered O - 17 octal) through which
external analog signals may be received. The SAMPLE instruction samples the
voltage on any one of these lines, and supplies the computer with instan-
taneous digitalized "looks" at analog information. Input lines O through 7
are slow speed inputs built to receive signals in the range ~1 to -7 volts
at a maximum frequency of 200 cycles per second. These eight lines are
equipped with potentiometers, appearing on the Display panel as numbered black
knobs, whose voltage is variedfby turning the knobs. Lines 10 through 17,
located at the Data Terminal module, are for high frequency signals which may

range from =1 to +1 volts at a maximum of ca. 20,000 cycles per second.

The number n in the SAMPLE instruction specifies which line to sample.
Built into the LINC are analog—to-digital nonversion circuits which receive
the signal and convert it to a signed 1l-bit binary number in the range _177,
leaving the result in the Accumulator. Thus, for example, a voltage of zero
on one of the high frequency lines will be converted to O when sampled with
a SAM 1nstructlon, and the humber O w1ll be left in the Accumulator Voltages

on the high frequency llnes greater than or’ equal to +1V w1ll when sampled,

* See Chart ITT.

16-2

Analog Input and the SAMPLE Instruction

cause +177 (octal) to be left in the Accumulator. ' Voltages less than or
equal to ~1V will cause =177 to be left in the Accumulator.

Memory v _
"Address Memory Contents ’ ' Effect
- D SAM i n ' 100 + 201 + n Conversion of voltage on
- | | line n - C(ACC).

The value of this facility, which mekes it possible to evaluate data while
they are being generated, can easily be seen. The SAMPLE instruction is fre-

quently used with the DISPLAY instruction in this context.

The i-bit in the SAMPLE instruction can be used to shorten the length of
time the instruction feqﬁires, occaéionally with some sacrifice of precision.
When i = 0, the SAMPLE instruction lasts 24 usec.¥* and the conversion is com-
pleted for all bits of the Accumulator (through bit 0). When i = 1, however,
the computer proceeds to the next insﬁruétion in sequence after only 8 usec,
and before ﬁheicbnveréiOn process 1s finished. The conversion is ndt, how-
ever, termina;ced° Tt will continue in the Accumulator for 14 more usec. while
the computer executes succeeding instructions° If the Accumulator is not dis-
turbed during this time, the correct converted value will be accessible after
1k psec., If the Accumulator is disturbed, however, the converted value in

the Accumulator after 14 usec. will'be incorrect.

During the 14 psec. one bit is converted every 2 usec., beginning with
the most significant conversion bit (bit 6) of the Accumulator:
<S;gn"rir, ;~Converted value

4 N f

000 00

000 000 C(Accumulator)

o

Y68 - 1012 ﬂ{/ usec.

v

»
D —> O

#‘usecc.for eonversion

¥ See Appendix IT: LINC Order Code Summary, for insﬁruction execution times.

67

68

Analog Input and the SAMPLE Instruction

Suppose that the ‘instruction following a:SAM i n when 1 = 1 is STC, Store=
Clear. During execution of an STC . instruction the contents of the Accumulator
are stored in the memory 10 usec. after the SIC instruction is initiated.

The low order 3 bits (bits 2, 1, and 0, converted after 10, 12, and 1L usec.)
will not be cohverted by this time,“and should‘thefefore be disregarded.
Furthermoré} the STC instruétion may not leave the Accumulatoybclear, because
the conversion process will continue for 4 usec. after the clear time of the
STCvinstructiono‘fIn general, examination of the TInstruction Timing Diagrams*

will show when it is feasible to use SAM with i = 1.

To illustrate the use of this instruction, we look first at a simple:
example of a sample and display program. The following sequence of instruc-
tions samples the voltage on input line #10, and displays continuously a plot
of the cdrrespondiﬁg digital valﬁeso It provides the viewer with a continuous
picture of the analog signal on"bhat,‘line° The sample values left in the“
Accumulator are used directly as“the vertical coordinates. Iﬁ this example,
input #10 1s sampled every 56 uséco (This is determined by adding the execu-
tion times for SAM i, 8 usec.; - DIS, 32 usec°;> and JMP 1002;. 16 usécn) ;

Memory
- Address © Memory .Contents ‘ v Effect, .

17 [osH] 1 [-] For channel selection and H coor=
dinate.

- 1000 : SET i 17 0077 - Set register 17 to begin H coor-
1001 1777 1 1777 dinate at H:= 03 Channel #Oﬁ
SAM i 10 0130 Sample input #10, leaving its value

~ t in the ACC as the V coordinate.
DIS i 17 |, OL77T .| Index the H coordinate and display.

JMP 1002

" 7002 | Return and repeat endlessly.

Example 23. Simple Sample andtDisplayu

Note that since here we want a‘continuous dispiay, it is not necessary to

reset register 17 to any specific horizontal coordinate.

* LINC, Volume 12, Instruction Timing Diagrams.

16=2

16-2

Analog Input and the SAMPLE Instruction

A second example illustrates one of the uses of the potentiometers.
This program plots the contents of a 512 (decimsl) word segmént of memory
registers O through 1777. The location of the segment is'selected by
rotating Knob #5; whose value is used to determine the address at which to
begin the display. As the viewer rotates the knob, the display effectively

moves back and forth across the memory.

Memory
-~ Address . Memory Contents - ‘ - Effect
12 | x1 | -] |
13 -~ [13H] [-] For chamnel selection, H coordi-
:) nate, and counter.

- 20 ——> SET 1 13 0073 Set register 13 to select Chan-
o1 WTTT w777 Zilﬂ#i gnd to begin displaying
22 SAM > 0105 Sample Knob #5, add 200 to make
23 ADA 1 1120 the value positive, rotate left
ol 500 0200) 2 pla?es to produce gn gddress

for display, and store in
25 ROL 2 o242 register 12.
26 SIC 12 hol2)
27 — LDA 1 12 1032 Y Index the address of the vertical
coordinate, and put the coordi-
30 Sk 3 0343 | r Late into the ACC. Position it
31 DIS 1 13 0173 J Tfor display, index the H coordi-
nate and display.
32 XK 13 0213 Check to see whether 512 (decimal)
1 points have been displayed.
I (x(13) = 17772).
33 L JMP 27 | 6027 If not, return to display next point.
3k JMP 20 éJ 6020 If so, return to reset counter and
get new address from Knob #5.

Example 24. Moving Window Display Under Knob Control.

At locations 23 = 25 a memory address is computed for the first vertical
coofdinate by adding 200 to the sample value. This leaves the value in the
range +1 to +377; it is then rotated left 2 places to produce an initial
address in the range 4 through 1774 for the display. |

69

70

 Analog Input and the SAMPLE Instruction 16-2

A final example. illustrates the techniquetof,accumulating a—frequency
distribution of sampled signal amplitudes appearing on line.#lQ, and dis-
playing it simultaneously.as a histogz_'am° The distribution is compiled in
a table at locations 1401 - 1777, and the,sample“values themselves areiused‘
to form the addresses for table entry. .Registérs lhOl - 1777 are_initially_
set to =377 so that the histogram will be from the bottom of the scbpe.

Note, at locations 104 and 105, that since we.are using memofy‘regiétérs
1401 - 1777, the same index regisféf (register 2) may be interpreted both as
address (location 104) and counter (location 105). We do not need a sep-
arate counter because thé final‘éddress (1777) will serve also as the basis
of the skip decision for the XSK instructiona The same is true at loca-

tions 123 and 133.

16=2

Analog Input and the SAMPLE Instruction . 71
Memory
Address Memory Contents Effect
2 [x] [-] | Address of vertical coordinates.
-3 [0;H] [-]1 | Channel selection and H coordinate.
- 100 SET i 2 0062
101 1400 1400
102 JLDA 1 1020 Initial routine to set registers
103 377 o0 | 1401 - 1777 to =-377.
104 STA 1 2 1062
105 LE_2 0202
106 6104)
107 ——> SET i 2¢- 0062 | Set register 2 to initial address
110 1400 1400 minus one of vertical coordinates.
111 SET i 3 0063 | Set register 3 to select Channel #0
110 | 200 0200 and begin display at H = 201.
113 —>SAM - 12 0112 | Sample input line #12.
PN) -~ .
11k ADA 1 1120 11 agd 14004200 to the sample value
115 1600 1600 |7 to form an address for recording
116 gTC 199 y1po J the event and store.
LT LDA 1 1020 Add 1 to the contents of the regis-
120 1 0001 ter just located by the sample
RS .
101 ATM 1140 value to record the event.
122 [-] (-1
123 IDA 1 2 1022 Index register 2 and put a histogram
value in the Accumulator.
124 DIS i 3 0163 | Index the H coordinate and display.
125 —>DIS 3 0143 | Display without indexing.
126 ADA 1 1120} Fill in the bar by decreasing the
127 -1 7776 vertical coordinate by 1 and contin-~
uing the display until a point is
130 SAE 1 1460 displayed at V = =377,
131 . zhoo__ 1377 |
132 JMP 125 6125 |
133 XK 2. 0202 | When bar is finished, check to see
’ whether 377 values have been dis-
S ‘ played.” (X(2) = 17772).
134 JMP 113 6113 | If not, return to get next sample.
135 JMP lOT’éJ 6107 | If so, return to reset vertical coor-

dinate address, H coordinate, and
repeat.

Example 25. Histogram Display of Sampled Data.

15, The Skip Class Instructions

Insfruétions beldngiﬁg.to tﬁe Skip Classftest various conditions of the
Accumulator, the Keyboard, the Tapes, and the External Level lines of the
Data Terminal module. The coding for these 1nstruct10ns 1ncludes the condl--=
tion or 1evel line to be checked and an option to sklp or not skip when the

condltlon is met or the external level 1s negatlve°

condition
SKP 0<cg13
SKP i c: Lho + 201 + ¢ ‘
' a : ‘ {1 =0: Skip only if condition c is met
B ' or level n is negative.
or -
i = 1: 8kip only if condition ¢ is not
met or level n is not negative.
SXL i n: - 400 + 201 + n
0 0
SXL 0<n< 13
: Jlevel 1

ine number

In these instructions the i-bit can be used to invert the skip decision.

When 1 = £ '0 the computer sklps the next register in the 1nstructlon sequence
when the condition is met or external level is negatlveo However, when i = 1,
the computer skips when the condition is not met or the exfernal ievel is not
negative. Otherwise the computer always goes ‘to the next register in the

sequence., . . - - ; T CL . .

The four situations which may arise are summbrized in the following

table. The Skip Class instruction is assumed to be in register p.

‘Branching in Skip Class Instructlons

i Condition met or level negative?. Locatlon of next 1nstructlon
0 ves | . p+2 (Skip)
o o a1
1 yes] p + 1
1

no o ; . pt2 (Skip)

16-2

16=2 The Skip Class Instructions 73

The SKP i c instructions test 10 conditions, which, because of their
variety, we choose to describe with different 3-letter expressions. Thus the
AZE i instruction already presented is the same ag SKP i 10. Another instruc=-
tion, APO i, synonymous with SKP i 11, checks to see whether the ACCUMULATOR
is POSITIVE (bit 11 = 0): | h

Case: 1 =0

Memory ' .
Address Memory Contents Effect
P APO kho + 11 If C(bit 11 of ACC) = 0, go %o

_1 : . . A
p+ 1 L é——1 P + 2 ?or the next instruction; -
if C(bit 11 of ACC) = 1, go to p + L.

p+2 - ¢

Case: 1 =1

Memory
Address | . Memory Contents e ' Effect
T APO 1 ’ Lho + 20 + 11 If C(bit 11 of ACC) = 1, go to
——1 ’f:j ‘ S p + 2 for the next instruction;
P < ‘ ~ if ¢(bit 11 of ACC) = O, go to
p+2 - - »+ L
o i o

Other SKP variations check whether C(L) = 0, (IZE i, code k5 + 201,
which is synonymous with SKP i 12) or whether one of the 6.Seﬁse Switches on
the console is up (SNS i 0, SNS i 1, ..., SNS i 5, synonymouéjwi%h SKP i 0,
SKP i1, ..., SKP 1 5). - (The ‘Sense Switches”are:ﬁﬁmbeféd from right to left,
0 throﬁgh'5o),k R : o) - i - .

The SXL, 1 n instruction, SKIP ON NEGATIVE EXTERNAL LEVEL, checks for fhe
presence of'a,-3,volt level on External LeVel line;n,'o.s n.< 13, at the
Data Terminal module. Ifyis often used with the OPERATE instruction, dis-
cussed in the next section, to help synchronize the LINC with external

equipﬁent,

16-2

Th ‘ .~ The Skip.Class Instructions
KST
The‘Skip’instruction.KEY”STRUCK,'KSTVi;'code»415-+120i; checks. whether
a keyboard key has been struck (and not yet released). KST i is- synonymous .
with SXL 1 15. ' ! :
Cme iiidstréte'ﬁhéjﬁsé-dfnfheée'ihstfucﬁiéﬁé tﬁe“foliowiﬁg’programﬁcounﬁs
the signal peaks above a certain threshold, 100 (octal), for a set of =
1000 (octal) samples appearing on input line #13. The number of peaks
exceeding the threshold will be left in the Accumulator.)
Memory
Address Memory Contents . Effect
7 ‘_ f-n] _ [;] ’Couﬁter'%ofAldOb sgmplés: ’
10 |- + [nl - [-] . Counter for numberwaboVe lOQ (octal).
— 1500 SET i 7 0067 Set regisfer 7 to counf 1000 samples.
1501 =1000 6777 i A
1502 SET i 10 0070 Ciear register 10 to count peaké;‘
1503 0 0000
POb | et 13] OM3 | sanple dnput line #13 and subtract
- 1505 ADA i ") 1160 100 from the sample value.
106 || -0 |e77T {J
. 1507 APO i 0471 Is the Accumﬁl'a:tor positive?
1510 XK i 10_1 | OéSO ' If so, the vélue was above 100; add
| .1 to.the cou?tert If no?, skip
o : . v the instruction in location 1510.
1511 | | XK i j_eJ 0227 | Index register 7 and test.
1512 || awp 15ou'_: 1 750k | If 1000 samples havé not been takem;
i v - s .. return. .. . Do e
l5139u : LIA“fifff% 1000 .;.tff;lQOO samples have been taken, -
1514 10 0010 put the number of those above
1515 HLT 0000 100 into the Accumulator and halt.

Example 26. Counting Samples Exceeding a Threshold.

16-2 The Skip Class Instructions A 5]

Another program samples and displays continuously the input fmom
line #14 until a letter, i.e., a key whose code value is higher than 23 (octal),

is struck on the keyboard.

Memory
Address Memory Contents Effect
1 [1;H] [-] Channel selection and H coordinate.
- 100 SET 1 1 0061 Set register 1 to select Channel #1
101 4000 4000 and begin dlsplay‘at H=1.
102 —> SAM 14 011k Sample line #14 and display its
103 DIS i 1 0161 value.
10k KsT ok15 Has a key been struck?
105 | JMP 102 | 6102 If not, return and continue sampling
N and displaying.
106 - KBD ¢~ — 0515 If so, read the key code into the
107 ADA 1 1120 Accumulator and subtract 23
110 23 775k (octal) from its code value.
111 ‘ QEQ*___”_] oks1 Is ACC positive?
112 JMP 102 | 6102 If not, the value was less than 23
' | (octal). Return and continue
sampling.
113 HIE?é—-——J 0000 If so, the value was 24 or greater;
l halt.

Example 27. Simple Sample and Display with Keyboard Control.

Note that the KBD instruction at location 106 will be executed only when a
key has already been struck (because of KST at location 104) and therefore

does not need to direct the computer to. pause.

76

' 16. The Data Terminsl Module and the OPERATE Instruction

We have already mentioned the OPERATE instruction (p. 55) in connection
with KBD 1. In general, OPERATE, OPR i n, code 500 + 20i + n, provides
operating and synchronizihg signals for external equipment. The number n,
0<n<gl13 (octal) reféfs to one of twelve Operéﬁe_LéVelilines”Sent‘to%the
Data Terminal Module; as well as to one offtheftwelve¢Externa1 Level lines

(mentioned under SXL).

Durlng the executlon of an OPR 1nstructlon a negatlve output level
is supplied on Operate Level line n k usec after the beglnnlng‘of the
1nstruct10n, 5:1t remains for the duration of the instruction. The i-bit
is used to direct the LINC to pause. If 1 = 0, there is no pauseam Iri=1,
the LINC pauses 4 usec. after the beginning of the instruction and sends a
"Beginning of Operate Pause" pulse, BEOP, 0.l psec. duration, to the Data
Terminal module to 31gnal ‘that the pause has begun. The computer then waits
in thls state until & negatlve input signal is sent back.on External Level

line n. This signal automatlcally restarts the computer.

For example, execution of the instruction OPR i 6, code 526 provides
an output s1gna1 on Operate Level line #6 and directs the LINC to pause,
vermitting an external device ass001ated with llne #6 to be synchronlzed

with computer operation. Then when the external ‘device is ready or has

‘completed its operation, it in turn éupplies a negative signal on External

Level line #6, which restarts the computer. :

In addition to the possible BEOP pulse, two other 0.4 usec. pulses

are sent to the Data Terminal module regardless of whether the computer has

pauééd‘or'not; Thé“first ’called OPR2. l, occurs 6 lsec. after the beglnnlng‘

of the instruction if there is no pause.' "If the computer has ‘paused, the

OPR2.1 pulse, which indicates that the computer is now running, will appear
not less than 2 usec. and not more than k4 uséc. after the restart'signal is
delivered by the external equipment over line n. The second pulse, OPR2.2,

occurs 2 usec. after OPR2.1.

AN

* See Instruction Timing Diagrams, LINC, Volume 12.

16=2

162

' Subroutine Techniques

The OPR instruction may be used in a variety of ways depending on need
and the type of external equipment involved.” It can be .used simply to.sense
the occurrence of an event (such as an external clock puISe),,oriit*canjbe
used to control the transfer of digital information between the LINC and
external equipment (such as a tape recorder). In this context the user has
the option of transferring‘a single word (12 bits) either in or out'of the
LINC Accumulator or Memory Contents register, or he can choose to transfer
a group of words directly into or out of the LINC memory. Various'enabling
levels supplied by the user at the Data Terminél'module'definé the path and

type of information transfer.

The Keyboard is a good example of a simple external device which is
controlled by an Operate instruction, OPR 1 15, synonymous with KBD i. The
number 15 designates special external level and operate level lines, with

which the Keyboard is permanently associated.

ENE Subroutine Techniques

2z

Before describing the remaining instructions, some mention should be
made of the technique of writing subroutines. Frequently a program has
to execute the same set of instructions at several different places in the
program séquence. In this case it is an inefficient use of memory registers
to write out the same set of instructions each time it is needed. It is
more desirable to write the insfructions'once as a separate, or "sub,"
routine to which the program can Jump Whenevér these instructions are to

be executed. Once the instructions in the subroutine have been executed,

the subroutine should return control (jﬁmpyback) to the main program.

7

78

Subroutine Techniques

For example, suppose that in two different places in a program we must

execute the same set of arithmetic operations. We can picture the general .

‘structure of such a program as follows:

Main Program

MemOry Contents

Memory

Address

StartE 100
. .

150

151

200

201

Main

Program

JInstructions

JMP 1000 —> Jump out to subroutine
Continue €——— Return from subroutine
Main

'| Program

W Instructions
JMP 1000 ——> Jump out to subroutine

Continue e—ff—4Return from subroutine

Subroutine ' R ' .
:Memory v
Address Memory Contents
Enter
Subroutine — 1000 Subroutine
. Instructions Arithmetic
. ¢ Operations
1020 JMP MP —> Return to Main Program

16-2

16-2

Subroutine Techniques 79

It appears from this example that Jjumping to the subroutine from the
main program (at locations 150 and 200) is straightforward. The subroutine
must be able to return control to the main program, however, reentering it
at a different place each time the subroutine is finished. That is, we
must be able to change the JMP instruction at locatioﬁ 1020 so that the
first time the subroutine is used it will return to the main program with

a "JMP 151" and the second time with a "JMP 201."

It will be remembered that every time the computer executes a JMP
instruction (other than JMP 0) at any location "p," the instruction
"JMP p + 1" replaces the contents of register zero. (See page 14.) Thus,
when the "JMP 1000" is executed at location 150, a "JMP 151" is automatic-
ally stored in register 0,. thereby saving the return point for the subroutine.

The subroutine might retrieve this information in the following way:

Subroutine:

Memory
Address Memory Contents Effect
Enter _
Subroutine — 1000 LDA , ¢(0) - c(Aace);
3 . . 1 + 141 .
1001 o i.e., "IMP p + 1" > c(Ace)
1002 | STC 102 ~ c(Acc) - ¢(1020).
. . Execute arithmetic operations.
1020 [P p + 1] " Return to main program.

Clearly, a simple "JMP 0" in location 1020 will suffice when the subroutine
does not, during'its 6xecutioh, destroy the contents of register zero. In

this case, the instructions in locations 1000 - 1002 would be unnecessary.

A problem arises in the above example when the subroutine ‘is not free

to use the Accumulator to retrieve the return point. Another method,

80

Magnetic -Tape Instructions 16-2

using the SET instruction, is possible wheh there is- an available .

B register:

Memory . S ST ; A
Address Memory Contents o ~ Effect
Enter ' _ ! . . , o .
Subroutine — 1000 SET 10 ‘ ¢(o) »¢(10); i.e., "JMP p + 1"
1001 0 is:saved in a free B register.
. o . ’ - Execute arithmetic operations; the
. . ' Accumulator has not been disturbed.
1020

JMP 10 ‘Return to main program by jumping
: : to register 10. - o

18. 'Magnetic Tape Instructions

The last class of instructions, Magnetic Tape, requires some discussion

of the LINC Tape Units and tape format. The LINC uses small reel (3-3/L"

diameter) magnetic tapes.for storing programs and data. There are two tape

units on a single panel, on which tapes are mounted: .

LINC MAGNETIC TAPES

[Tape heads

Tape Unit #0 - Tape Unit #1

Any Magnetic Tape instruction may refer to either the tape on Unit #0 or

the tape on Unit

#l; which unit to use is specified by the instruction

itself; only one unit, however, 1s ever used at one time.

16-2

Magnetic Tape Instructions

A LINCFtape can hold 131,072 12-bit words ‘of information, or the
equivalent of 128 (decimal) full LINC memories. It is, however, divided
into 512 (decimal) smaller segments known as blocks, each of which contains
256 (decimal) 12-bit words, a size equal.to one-quarter of a LINC memory.

Blocks are identified on any tape by block numbers, O through 777 (octal);

Magnetic Tape instructions specify which block to use by referring to its
block number. A block number (BN) on the tape permanently occupies a

12-bit space preceding the 256 words of the block itself:

Block ‘ o : | v o
é_ Number R ... Block , %,
\ J \\ J
' g ~
1 word 256 words .

There are other special words on the tape, serving other functions, which
complete the tape format. Before describing these, however, we may look

more specifically at one of the Magnetic Tape instructions, READ TAPE,
RIE i u. -

81

82

16-2

Block: Transfers and Checking -

READ TAPE is one of six Magnetic Tape instructions which ‘copy information
either from the tape into the LINC Memory (called READING), or from the
memory onto the tape (called WRITING). These are generally called block -

transfer instructions because they transfer one or ‘more blocks of informa-

tion between the tape and the memory:

LINC Tape

256 word |.. |py| 256 word 256 word ‘| .. :
BN “Brock BV “grock B TBrocx - |

/

' READ ’ ~ LINC Memory

Tape READ 256
e to 1 Memoxry
Memory Registers

256

WRITE : SR ' " iy : . . Memory
Registers

‘Memory - WRITE 256
to Memory
Tape ; Registers

256
Memory
Registers

16-2

Block Transfers and Checking 83
RDE

All of the Magnetic Tape instructions are double register instructions.

RDE, typical of a block transfer instruction, is written:

Memory
Address Memory Contents
P RDE i u T02 + 201 + 10u
p+1 QN| BN | 1oooaN + BN

The first register of the instruction has two special bits. The u-bit

(bit 3) selects the tape unit: when u = O, the tape on Unit #0 is used;

when u = 1, the tape on Unit #1 is used. Magnetic Tape instructions require

that the tape on the selected unit move at a speed of approximately 60 inches per
second. Therefore, 1f the tape is not moving when the computer encounters

a Magnetic Tape instruction, tape motion is started automatically and the
computer waits until the tape has reached the required speed before contin-

uing with the instruction.

The i-bit (bit 4) specifies the motion of the tape after the instruc-
tion is executed. If i1 = O, the tape will stop; if i = 1, it will continue
to move at 60 ips. It is sometimes more efficient to let the tape continue
to move, as, perhaps, when we want to execute several Magnetic Tape instruc-
tions in succession. If we let it stop we will have to wait for it to start
again at the beginning of the next tape instruction. Examplés of this will

be given later.

In the second register of the RIE instruction, the right-most 9;bits
hold the requested block number, BN; that is, they tell the computer which
block on the tape to read into the memory. The left 3 bits hold the guarter

ﬁﬁﬁber, QN, which refers to the memory. QN specifies which quarter of

8l

memory to use in the transfer.

Block Transfers and Checking 16-2

The quarters of the LINC Memory are numbered

O through 7,%¥ and refer to the memory registers as follows (numbers are

octal):

Quarter . ;

Number Memory Registers
0 0 - 377,
1 hoo - 777
2 1000 - 1377
3 1400 - 1777
4 2000 - 2377
5 2400 = 2777
6 30007 - 3377
7 3400 - 3777

Suppose, for example, we want to transfer data stored on tépe'into memory

registers 1000 - 1377.° The data are in, say, block 267 and the tape is

mounted on Unit #1:

Memory .
Address Memory Contents Effect
- 200 RDE u l 0712 Select Unit #1; ,
201 | 2|e67 !, 1000x2 + 267 C(block 267)’—>C(quarter’2),

This instruction will start to move the tape on Unit #1 if it is not already

moving. It will then READ block 267 on that tape into quarter 2 of memory

and stop the tape when the transfer is completed. The computer will go to

locétion 202 for the next instruction.

After the transfer the information

in block 267 is still on the tape; only memory registers 1000 - 1377 and

the Accumulator are affected.

Conversely, writing affects only the tape and

the Accumulator; the memory is left unchanged.

* See Appendix I.

Block Transfers and Checking 85

Another special word on the tape, located immediately following the

block, is called the check sum, CS:

{A BN Block CS

M.VJ 3 ~ lk—v—l
1 word 256 words 1 word

The check sum, a feature common to.many tape systems, is used to check the
accuracy of the transfer of information to and from the tape. On a LINC

tape the check sum is the complement of the sum of the 256 words in the block.
Such a number is formed during the execution of another block transfer
instruction, WRITE TAPE, WRI i u. This instruction writes the contents of

the specified memory quarter in the specified block of the selected tape:

Me@ory
Address Memory Contents
D WRI 1 u | 706 + 20i + 10u

p+ 1 QN|BN | 1000QN + BN

During the transfer the words being written on the tape are added together
without end-around carry in the Accumulator. This sum is then complemented
and written in the CS space following the block on the tape. After the opera=-
tion the check sum is left in the Accumulator and the computer goes to p + 2

for the next instruction. QN, BN, i, and u are all interpreted as for RIE.

One means of checking the accuracy of the transfer is to form a new sum
and compare it to the check sum on the tape. This happens during RDE: the
256 words from the block on the tape are added together without end-around
carry in the Accumulator while they are being transferred to the memory.
This uncompiemented sum is called the data sum. The check sum from the tape
is then added to this data sum and the result,vcalled the transfer check, is
left in the Accumulator. Clearly;‘if the information has been transferred

correctly, the data sum will be the complement of the check sum, and the

86
RDC

Block Transfers and Checking 16=2

transfer check will equal -0 (7777). We say that the block “checks." Thus,
by examining the Accumulator after an RDE instruction, we can tell whether
the block was transferred correctly. The following sequence of instructions

does this and reads block 500 again if it does not check:

Memory ,
Address Memory Contents : Effect
— 300 | PRIE 0702 Read block 500, Unit #0, into quarter 3.
Leave the transfer check in the Accum~
301 3I5OO 3500 ulator and stop the tape.
302 SAE 1 1460 Skip to location 305 if C(ACC) = 7777,
i.e., if the block checks. If
303 ___:Cfﬁl.j et C(ACC) # 7777, return to read the
304 JMP 300 | 6300 block again. '
305 -¢—-] -

The remaining block transfer instructions check transfers automatically.
READ AND CHECK, RDC i u, does in one instruction exactiy what the above
sequence of instructions does. That is, it reads the specified block of the
selected tape into the specified quarter of memory and forms the transfer
check in the Accumulator. If the transfer check does not equal 7777, the
instruction is repeated (the block is reread, etc.). When the block is
read correctly, 7777 is left in the Accumulator and the computer goes on to

the next instruction at p + 2. The RDC instruction is written:

Memory :

Address Memory Contents B
p RDC i u I 700 + 201 + 10u

D+ 1 QN | BN | 1000QN + BN

One of the most frequent uses of instructions which read the tape is
to put LINC programs stored on tape into the memory. Suppose we are given

a tape, for example, which has in block 300 a program we want to run. We.

16-2

Block Transfers and Checking 87

are told that the program is 100 (octal) registers long starting in regis-
ter 1250. We can mount the tape on either unit and then set and execute
either RDE or RDC in the Left and Right Switches. If we use RDE, we should
look at the Accumulator lights after the transfer to make sure the transfer
check = T777. When double register instructions are set.in the toggle .
switches, the first word is set in the Left Switches, and the second in the
Right Switches. If we mount the tape on Unit #1 and want to use RDC, the

toggle switches should be set as follows:

Console
Location ‘ Contents
Left Switches | RDC u O7lO

Right Switches | 21300 '| 2300

QN = 2 because the progfam~in block 300 must be stored'iﬁ memory regis-
ters 1250 - 1347, which are “located in Quarter 2. Raising the DO lever
wili éausé fhe iINC to read the block into the proper quarter and check it.
We then start at 1250 from the console, using the Right Switches.

The remaining block transfer instructions will be described later.

A non-transfer instruction, called CHECK TAPE, CHK i u, makes it
possible to check a block without destroying information in the memory. This
instruction does exactly what RDE does, except that the information is not

transferred into the memory; that is, it reads the specified block into the

- Accumulator only, forms the data sum, adds it to the check sum from the tape,

and leaves the result, the transfer check, in the Accumulator. Since this is
a non-transfer instruction, QN is ignored by the computer. Otherwise this

instruction is written as the other instructions:

Memory
Address - Memory Contents
ol CHK i u 707 + 201 + 10u
D+ 1 BN ‘ BN

88

Unit

The following program checks sequentially all the blocks on the tape on

#0. The program starts at location 200. If a block does not check,

Bloék'Transfers and Checking

the program puts its block number .into the Accumulator and halts at

location 221.
The program will halt at location 216 when it has checked the entire tape. -

To continue checking, reenter the program at location 207.

Memory
Address Memory Countents ‘ Effect
Start . . .
— 200 CLR 0011 Store zero in register 203 as first
o01 STC 203' 1203 block number.
202 — CHK i 0727 | Check the block specified in regis-
ter 203; transfer check — C(ACC);
203 = -] the tape continues to move.
20k SAE 1 1460 | If the transfer check = -0, skip to
location 207.
205 T | T T
206 JMP 217 | 6217 | If the block does not check, jump to
, ' location 217.
Reenter, ,oy oA i ¢ | 1020
Add 1 to the block number in regis-
210 1 - 0001 F ter 203, and leave the sum in the
211 ATM 11L0 Accumulator.
212 203 0203 |
213 SAE i 1460 |)
\ S e If all the blocks have been checked,
21k -;QQQ-—] 1000 \ skip to location 216. Otherwise
215 - JMP 202 | 6202 return to check next block.
216 HLT & —- | 0000 |
' 27 LA lOQO_‘ Load the block number of the block
220 203 10203 |y which failed into the Accumulator,
001 HLT and halt.

Example 28,

0000

‘Simple Check of an Entire Tape.

16~2

16=2

- Block Transfers and Checking 89

A block transfer instruction WRITE AND CHECK, WRC i u, combines the
operations of the instructions WRI and CHK, and, like READ AND CHECK, repeats
the entire process if the check fails. That is, WRC writes the contents of
the specified memory quarter in the specified block, forms the check sum in
the Accumulator and writes the check sum on the tape. It then checks the
block just written. If the resulting transfer check does not equal -C, th

block is rewritten and rechecked. . When the block checks, 7777 1s left in

o
=

the Accumulator and the computer goes on to the next instruction at p + 2.

WRC is written:

Memory
Address Memory Contents
D WRC i u ' 704 + 201 + 10u
p+1 | au|y | 1000QN + BN

This process of WRITE AND CHECK may be diagrammed:

WRT

Start WRC MEMORY — TAPE
Form and Write
CHECK SUM

CHK

TAPE — ACCUMULATOR
Form TRANSFER CHECK
- in Accumulator

TRANSFER CHECK # -0 TRANSFER CHECK = -0

Get next
instruction

90

The following sequence illustrates the use of some of the block transfer

instructions

divided into sections which will fit into tape blocks, and the séctions’ read

into the memory as they aré needéd. This éxample saves (writes) the contents

°

Block Transfers .and Checking

" Since thé‘LINC‘Mémory is small, a program must frequently be

of quarter 2 of memory (registers 1000 - 1377) on the tape. It then reads a

program section from the tape into quarters 1, 2, and 3 (registers 400 = 1777)

and jumps to location 400 to begin the new section of the program.’ Assume

that the tape is on Unit #0. Memory quarter 2 will be saved in block 50; the

program to be read from the tape is in blocks 201 - 203:

Memory

Address Memory Contents - Effect

- 100 WRC 1 072k C(quarter 2) = C(block 50); ‘transfer
101 2‘50 2050 is checked, and the tape continues

0 move.
102 RDcll 0720 |1 ¢(block 201) — C(quarter 1), and
103 1]201 1201 C(block 202) — C(quarter 2); trans-
10k RDC i '0720 fgrg are checked and the tape con-
tinues to move.

105 2]202 2202
106 RDC 0720 C(block 203) - C(quarter 3); trans-
107 3203 3203 vfer 1s‘che§k§d and the tape stops.
110 JMP 400 6400 Jump to the new section.
400 —> [-] (-]

Example 29. Dividipg,Large,Programs,Between Tape and Memory.

At the end of the above sequence the~contents bf'memdry registers 400 - 1777

and tape block 50 have been altered; qﬁarter O of memory, in which the

sequence itself is held, is unaffected.

16=2

16~2

Block Transfers and . Checking

Another program repeatedly fills quarter 3 with samples from input

line #14 and writes the data in consecutive blocks on tape beginning at

block 200.
by the setting of the Right Switches.

The number of blocks of data to collect and save is specified

When the requested number has been

written, the program saves itself in block 177 and halts. The tape is on

Unit #1.
Memory :
Address Memory Contents Effect
10 [x] (-] Mémory address for stbring'samples.
11 [=n] [-] Counter. '
— 1000 ReW 0516 11 o(Rignt Switches) - C(ACC). Comple-
1001 COM 0017 ment the number and store in
1002 stc 11 4011 reglster L.
1003 — SET i 10 0070 Set register 10 to store samples
100k 1377 1377 beginning at 1400.
1005 SAM 1k ‘ 011k
1006 STA i 10 1070 | | Sample input line #lk4, store value
1007 %K 10 0010 and repeat until 400 (octal)
—— - ' ‘samples have been taken.
1010 JMP 1005 | 7005 ‘
1011 WRC u & 071k When quarter 3 is full, write it on
1012 [3‘200] [-] tape and check the transfer. The
. tape stops. -
1013 LDA i 1020
101k - 0001 Add 1 to the BN in register 1012.
1015 ATM 11Lko
1016 1012 1012
1017 XSK i 11 0231 | Index the counter and skip if the
requested number has been collected.
- 1020 JMP 1003 | 7003 If not, return.
1021 WRC - w (—J 071k If so, write this program in block 177,
1002 21177 2177 check,the transfer, and stop.the tape.
1023 HLT 0000

‘Halt the éomputer°

Example 30. Collecting Data and Storing on Tape.

Since the program'saves itself when finishéd; the user can continue to collect

data at a later time by reading block 177 into quarter 2, and starting at 1000.

ol

92
RCG
WCG

Group Transfers = - 16-2

Since the BN in location 1012 will have been saved, the data will continue

to be stored in consecutive blocks.

Group Transfers .

Two other block transfer instructions;, similar to RDC and WRC, pefmit
a program to transfer as many as 8 blocks of information with one instruc-

tion. These are called the group transfer instructions; they transfer infor-

mation between consecutive quarters of the memory and a group of consecutive
blocks on the tape. Suppose, for example, that we want to fead 3 blocks from
the tape into memdry quartefs l; 2, and 3. The 3 tape bloéks are 51, 52,

and 53. Using the instruction READ AND CHECK GROUP, RCG i u, we write:

- Memory S
Address - Memory Contents
p RCG i u | 701 +20i + 10u
p+1 | 2|51 | ~ 2051

The first register specifies the instruction; the tape unit, and the tape
motion as usual. The second register, however, is interpreted somewhat
differently. It uses BN to select the first block of the group. In addi-
tion, the right-most 3 bits of BN specify also the first memory quarter of
the group. That is, block 51 will be read into memory quarter 1, (block 127
would be read into memory quarter 7, etc.). The left-most 3 bits (usually Q)
are used to specify the number of additional blocks to transfér. In the above
example then, block 51 is read‘intO»quafter‘l, and 2 additional blocks are

\also transferred: block 52 into quarter 2 and block 53 into quarter 3.

The format for WCG i u, WRITE ANb CHECK GROUP, is. exactly the same as
for RCG: ' o

Memory ,
Address Memory Contents
D WCG i u | 705 + 201 + 10u
p+1 31300 | 3300

The computer interprets the above ‘example as: write and check quarter O in

block 300, and make 3 additional consecutive transfers, quarter 1 into

16-2 , a‘l, Group Transfers .

block 301, quarter 2 into block 302, and quarter 3 into block 303. When the
left-most 3 bits are zero, that is zero additional transfers, the WCG

instruction is like the WRC instruction in that only 1 block is transferred.

The second word of a group transfer instruction may be diagramed:

Initial Memory Quarter

, ‘ M
1110 9 8 76 5 4 3 2 10
p+1
\ / \ v J
of additional Tnitial Block Number

transfers

RCG and WCG always operate on consecutive memory gquarters and tape
blocks. Specifying 3 additional transfers when the initial block is, say,
336, will transfer information between tape blocks 336, 337, 3#02 341 and
memory quarters 6, T, 0, and 1, that is, quarter O succeeds quarter 7.¥*
The transfers are always checked; when a transfer does not check, the
instruction is repeated starting with the block that failed. With WCG,
all the blocks and théir éheck sums are first written, and then all are
checked. If any block fails to check, the blocks are rewritten beginning
with the block that failed, and then all blocks are checked again. As with
RDC and WRC, the group transfer instructions leave —O in the Accumulator

and go to p + 2 for the next instruction.

* See Appendix I.

oL Tape Motion and the MOVE TOWARD BLOCK Instruction

Using RCG instead of RDC, the program example on p. 90 can be more .

efficiently written:

Memory | . . c e
i Address Memory Contents . o ‘Effect
— 100 WRC 1 o072k C(quarter 2) - C(block 50); transfer
101 2]50‘ 2050 is checked and tape continues to move.
102 RCG 0701 | Read blocks 201 - 203 into quarters 1 -
103 | 2!201] 2001 g;pecheck thevtransfers and stop the
S 10k | JMP koo :'u 6400 Jump to the new section.

Example 31, Tape and Memory Exchange with Group Transfer.

Tape Motion and the MOVE TOWARD BLOCK Instruction

" When the computer is searching the tape for a required block, it looks
at each block number in turn until it finds the correct one. Since the tape
may be ?ositioned anywhere when the search is begun, it must be able to move

either forward or backward to find the block.

By forvard is meant moving from the low block numbers to the high

numbers; physically'the tape moves onto the lefthand reel.

Forward , o BackWard

By backward is meant from the high numbers to the low; +the tape moves onto

the righthand reel.

16-2

16=2

Tape Motion and the MOVE TOWARD BLOCK Instruction

When searching for a requested block the computer decides whether the
tape must move forward or backward by subtracting each block number it finds
from the requested number, and using the sign of the result to determine the
direction of motion. If the difference is positive the search continues in
the forward direction; 1if negative, 1t continues in the backward direction.
This may, of course, mean that the tape has to reverse direction iun order

to find the required block.

Suppose, for example that the computer is instructed to read block 50,
and that the tape 1s presently moving forward and just below block 75. The
next block number found will be T75. The result of subtracting 75 from 50
is =25, which indicates not only that the tape is 25 blocks away from
block 50, but also that block 50 is below the present tape position. The

tape will reverse its direction and go backward.

To facilitate searching in the backward direction a special word called

e—
a backward block number, BN, follows the check sum for each blocks:

‘ , «)
BN BLOCK Cs BN
—

1 word

When searching in the forwérd direction the.computer looks at forward block
numbers, BN; when searching in the backward direction it looks at backward
block numbers, %No In either direction, each block number found is sub-
tracted in turn from the requested number, and the direction reverses as
necessary, until the result of the subtraction is -0 in the forward direction.

Transfers and checks are made only in the forward direction.

Thus, in the abové example, thektape will continué to move in the back-
ward direction until the result‘of'thevsubtraction is positive, i.e., until
the Eﬁ‘for block 49 is found'and subtrécted fromv50, indiéating that the
tape is now below,bloék 50. The direction Will be reversed; the computer
will find 50 as the next forward block‘ﬁumber; BN, and the transfer will,bé
made because -0 is the result of the subtraction and the tape is movingk

forward.

95

96

[rB]

Tape Motion and the:MOVE TOWARD BLOCK Instruction

For all Magnetic Tape instructions, if the tape is. not moving when the
instruction is encountered, the computer starts the tape in the forward -
direction and waits until it is moving at the required speed before reading
a forward block number, BN, and reversing direction if necessary. . If the. .
tape is in motion, however, (including coasting to a stop), the computer
does not change the: direction of motion until the block number comparison

requires it.

For all tape transfer or check instructions with i = 1, the tape con=-

tinues to move forward after the instruction is executed.

For all Magnetic Tape instructions all stops are made in the backward
direction@ For transfer or check instructions this means that the tape always
reverses before stopping. Furthermore, the tape then stops pelgw the last
block involved in the instruction, so that when the tape is restarted, this -
block will be the first one found.. This reduces the delay in programs which

made repeated references to the same block.

The last Magnetic’Tape lnstfnetion illnstrates some of theﬁtape‘motiOn
characteristics. MOVE TOWARD BLOCK, MIB i u, is written:

Memory
Address Memory Contents
D MIB i u l 703 + 20i + 10u
p+1 BN I BN ‘

As in the other Magnetic Tape instructions, the u-bit selects the tape unit.
The tape motion bit (the i-bit) and the second register, however, are 1nter-
preted somewhat differently. MIB directs the LINC to subtract the next block
number it finds on the tape from the number spe01f1ed in the second word of
the 1nstruct10n, and leave the result in the Accumulator. QN is 1gnored
during execution of MIB. For example, if the block number in the second“
register of the 1nstructlon is zero,vand the tape is just below block 20

and moving forward, then —20, or’7757, will be left in the Accumulator. The
MIB instruction can thus be used to find ont where the tape is at any partic-

ular time.

16-2

16-2

Tape Motion and the MOVE TOWARD BLOCK Instruction

When 1 = O the tape is stopped as usual after the instruction is
exécuted° When i = 1, however, the tape is left moving toward the specified
block. The result of the subtraction is left in the Accumulator, and the
tape direction is reversed if necessary as the computer goes on tovthe nexf
instruction. MIB i does not actually find the block; it merely orients the

tape motion toward it.

The initial direction of motion and possible reversal are determined
for MIB just as they are for all other Magnetic Tape instructions, as

described above. Note, however, that since MIB i makes no further correc--

~tions to the direction of motion, the specified block may eventually be passed.

The MOVE TOWARD BLOCK instruction serves not only to identify tapé
position, but also can be used to save time. If, for example, a program
must read block 700, and then, at some later time, write in block 50, it is
efficient to haVe'the tape move toward block 50:in the interim while the

program continues to run:

Memory
Address Memory Contents Effect
- 100 RDC i 0720 C(block T00) — C(quarter 3); tape
101 31700 3700 moves forward.
102 MTB i 0723 C(103)-next BN — C(ACC); tape
reverses and moves backward
103 20 1 0050 toward block 50,
. <L l Tape continues to move backward
. : while program continues. oo
300 WRI 0706 | C(quarter 0) — C(block 50); tape stops.
301 .50 - 0050

In this example it would be inefficient to stop the tape (1 = 0) with the RDC
instruction:at location 100 or to let it continue .to move forward until
block 50 is called for. Although we may not be interested in the number

left in the Accumulator after executing ﬁhe MIB at location 102, the MIB

does serve to reverse the tape. Then, when block 50 is called for, the delay

in finding it will not be so long.

Tape Format

Certain other facts4about the taﬁe format'éhbuld be mentioned. Other

special words on the tape are shown:

512 BLOCK ZONES

r - N
208 1
/// \\\
//./ ‘ \\\\
-~
/// \\\
= ~,
o | INTER-
BN| G| - BLOCK - cs|c|c| e|By|BLOCK
ZONE
I N N N N N N N
11 256 words 1 111 1 5

At each endAofbthe tape is an area called end zone which provides physical
protection fér,thefrest ofvthe tape. Whén a tape which has been left moving
as ‘the result of executing a tape instruction with i = 1 reaches an end zone,
the tape stops automatically. (This prefents the tape'from being pulled off
the reel.) Words marked C and G sbove do not generally concern the programmer
‘except insofar as they affect tape timing. ‘Words marked C are used by the
computer to insure that the tape writers are turned off following a vrite
instruction. Words marked G, called guard words, protect the forward and

backward block numbers when the write current is turned on and off.

Inter Block Zones are spaces between block areas which can be sensed by
the Skip Class instruction, IBZ i, when either tape is moving either forward

or backward. The purpose of such sensing is to make programmed block searching

16=2

- Tape Format

more efficient. For example, suppose that somewhere in a program we must
read block 500 into quarter 2; assume it does not matter when we read it in
as long as we do so before the program gets to the instructions beginning at
location 650, The following illustration uses a subroutine to. check the
position of the tape and execute the read instruction if the tape is within
2 blocks of block 500. If the tape is not in an inter block zone, the main
program will then continuevwithout'having to wait for a block number to
appéar. For purposes of simplicity let us assume that the tape (on Unit #O)
is moving. The program begins at location 400 and the subroutine at

location 20.

Note that the following example will work only if the tape is stopped
by the RDC instruction in régister 32. If we do not stop the tape here,

subsequent jumps to the subroutine may continue to find the tape at an inter:

block zone (locations 20 - 22) and block 500 may be read repeatedly. The test

with the APO instruction at location 646, which tells us whether the trans-
fer has been made‘dr'not, is necessaryito guarantee that the transfer will

be made before we get to locafidﬁ’65o. At this point, if the transfer has

not been made, the "JMP 32" at location 647 will be executed.

99

100

- Tape’ Format 16-2

Memory - cn o
Address Memory Contents Effect
20 CIBZ - 0453 Enter subroutine and sense tape position.
21 {. ., JdMP . O . 6000 ‘Return if tape is not at an inter block
< » | zone. v - '
22 - MTB i &« 0723 | If it is, subtract BN or BN from
; : - 500, Tape continues to move toward
23 200 0500 block 500.
ok ggg_____j' - 0k51 Is result positive?
25 coM N 0017 If negative, complement it.
26 ADA i ¢ - 1120 Add -2 to see if tape is within 2
blocks of block 500.
27 -2 7775 g
30 ‘égg_l;__q okT1 Is result positive?
31 ¢ JMP 0 6000 If result is positive, return to main
. l v program.
32 RDC ¢ — — 0700 | If negative, tape is within 2 blocks of
v | : block 500. Make the transfer and
33 2500 2500 stop the tape. '
3k STC 645 4645 Store the transfer check = -0 in loca-
\ _ tion 645 to indicate transfer has
35 {_jEQE___Q 6000. been made, and return. o
- 400 CLR 0011 }’Store positive zero in location 645
Lol STC 645 6L to indicate transfer has not
been made.
ho2 JMP 20 6020
’ 1: v
Jump to subroutine at these points;
200 HMP 20 6020 > return to p + 1 and continue with
main progran.
A4
600 JMP 20 6020
’ 1: v J ,
nn LDA i 1020 Put test number (either 0000 or 7777)
. i A .
6L5 [-] [-] into Accumulator
646 APO i ohkT1 Skip to location 650 if the transfer
1 has been made; (C(ACC) = 7777)-
647 JMP 32 | 6032 If not, jump to subroutine to make
transfer, and return to location 650.
650 & —

Example 32,

Block Search Subroutine.

162

Tape Motion Timing

When a ﬁape is moving at a rate of 60 ips, it takes approximately
AB msec. to move from one forWard bldck'number to the next, or 160 usec.

per word. The following table summarizes some of the timing factors:

LINC TAPE MOTION TIME

START (from no motion to 60 ips) approx. 0.1 sec.

STOP. (from 60 ips to no motion " 0.3 sec.

REVERSE DIRECTION (from 60 ips to
60 ips in opposite direction) " 0.1 sec.

CHANGE UNIT (from no motion to

© 60 ips on new unit) : ‘ " 0.1 sec.
BN to BN (at 60 ips) ‘ " 43 msec.
END ZONE to END ZONE (at 60 ips) = |- " 23 sec.

Some methods ofbusing the tapevihétructions efficiently become obvious from
the above table. Generally speaking, tape instructions should be organized
around a minimum number of stops and a minimum amount of tape travel time.
When dealing with only one tape unit, it is usually efficient to use con-
secutive or nearly consecutive blocks in order to reduce the travel time

between blocks.

It is also efficient to request lower-numbered blocks before higher-
numbered blocks, avoiding unnecessary reversals. The WRITE AND CHECK

instruction, requiring two reversals, is costl§ in this respect. It first

101

102 Tape Motion Timing 16=2

must find and write in the block in the forward direction, then the tape
must reverse and go backward until it is below the block, then reverse a

second time and go forward to find and check the block:

« | INTER
BN BLOCK BN G . BLOCK CS
. ZONE . ,
L -~ J
Requested Block
Forward : lfindl

Reverse
pd

'flnd - S . : » ‘ /
&— pd
N N B ;

///’— . L o : Backward. -

AN
Reverqe
;> innd |)l

N

N

- CHECK

v

Forward 1 BN'I‘

Because of these reversals it is sometimes more efficient to use two tape
instructions, WRI followed by CHK, than to use WRC. This is true, for

example, when more than one block must be written and checked. Suppose we

16-2 ’ '~ Tape Motion Timing 103

want to write quarters 1, 2, and 3 in blocks 100, 101, and 102, and check
the transfers. Using WRC, this would take a minimum of six reversals.

The following sequence requires a minimum of two reversals:

Memory)
Addresser Memory Contents Effect
- 20 —> LDA 1000
| Put the BN of the first block to
2L 2k 002k be checked in register 32.
22 STC 32 Lo32 |
23 WRI i 0726 |
2k lIlOO 1100 Write 3 consecutive blocks on the
25 WRI i 0726 [tape on Unit #0 and leave the
o6 2[101 5101 tape moving forward after each
_ » transfer.
27 WRT i 0726
30 3|102 3102 |
31 > CHK i o727 Check the blocks, beginning with
33 SAE i 1460 |
LIf a block does not check, repeat
3h —_ZZFZ_—W et entire process.
35 JMP_ 20 | 6020 |
36 DA i< - | 1020 |
37 1 0001
4o ATM 1140 Add 1 to the BN ;n Tegister 32,
If the result 11103, not all
41 32 0032 have been checked. Return and
Lo SAE i 1460 check the next block.
k3 1|103 1103
— T .
Lh JMP_ 31 | 6031 |
—d h
45 MIB & 0703 When all have checked, execute
L6 0 0000 MOVE TOWARD BLOCK to stop the
W7 HIT 0000 tape, and halt.
l

Example 33. Write and Check with Fewest Reversals.

In this example the two reversals will occur the first time the CHK instruc-

tion at location 31 is executed. Clearly, other reversals may be necessary

10k

Tape Motion Timing

when the computer initially searches for block 100, and when a block does
not check, but careful handling of the tape instructions can reduce some of
these delays. It should be noted that there are 9 words on the tape between
any CS and the next BN in the forward direction. When the tape is moving at
speed, it takes 1,440 usec. to move over these 9 words. Thus the program
has time to execute several inmstructions between consecutive blocks, i.e.,
before the next BN appears. In the above example, then, there is no danger
that the next block will be passed while the.instructions at locations 33 =

Ll are being executed.

16=-2

16=2

Chart I. Classes of LINC Instructions

Miscellaneous

HLT
CLR
MSC 13
ATR
RTA

" NOP

COM

Skip

Shift

SXL i n
KST 1

agp 3

SNS 1 n
AZE 1
APO 1
LZE 1
IBZ 1

B3
3

ROL i n
ROR i n
SCR i n

Operate

Full Address

ADD X
STC X
JMP X

OPR i n
KBD i
RSW
Low

Magnetic Tape

Index

LDA i
STA 1
ADA i
ADM i
TAM i
MUL 1
SAE 1
SRO i
BCL i
BSE 1
BCO i
DSC i

W’ T’ ™ T T m® T’ ™ ™ ™™

RDC 1
RCG 1
RDE 1
MIB i

s £ € g ¢ ¢ <

SET 1 o

SAM 1 n

Half=Word

LDH i B
STH 1 B
SHD 1 B

DIs 1 o

XK 1 o

Chart II. Keyboard Code

T ,, ™
 ELOLOLOROEOE

LG I EI G B Ll
‘ S)l)
L) L e Lo G Ll L (e) e

r - i
o | /

The Keyboard Code era lg\T‘Llemerigal Order

v
00 0 ¢y 20| ./ + yo| M
01 1 ¢5 21| g/ | | ow
02 o (¢ 22 | [/ # - b2l 0
03 3 (7 23 |_CASE , L3 P
ok 4 no 2i [A | oq
05 5. Al 25k B 51 R
6| 6 1. 26 k ¢ w6 | s
o7 7 73 27 {» D b T
10 8 14 30 [] E 50| U
1| 9 T¢ 31k F 51| v
12 | META/EOL ¢ 32 |2 G 50 W
13 delete 33 i) 53 X
(O 14 PArace 3k T sh| oy
G 15]=/1 35 J 55| 2
6> 161u/0p ' 36 K
(3 7|,/ - 37| L

A

chS el

C16=2

Chart III. Pattern Words for Character Display

A table of 2L4-bit patterns for 4 x 6 display, using the DSC

instruction, of all characters on the LINC Keyboard.

The table is

ordered numerically as the characters are coded on the Keyboard.

Table entries for non-displayable characters are zero.

CASE

4136
3641
2101
oLTT
4523
2151
L1op
2651
oLl
obT7
5172
0651
1506
hoos
IR
6050
5126
2651
5120
3651
0000
0000
0000
0000
0000
0000
0101
0126

3700

< 3kok

oLok
oLkolh
oLkok

o0Lk37

0000

00T

361k

1436
0000
0000

b7
77U
5177
2651
4136
2241
Y177
3641
4577
NP
W7
oLk
4136
2645
1077
7710
TT4L
0041
Likp
ko6
1077
4324
oLT7T
0301
3077
7730
3077
7706
L17T7
TThL
Ul
3044
ho76
0376
W77

346

5121
651
Loko
Lot

U 0177
. 7701
V0176
7402
W 0677
7701
X 1hk63
631h
Y 0770
7007
Z . h5h3
6151
= 1212
1212
u 0107
0107
s, 0500
0006
0001
0000

=T

7745
[by
0000

107

108

¢ o

Chart IV.

Alphabetical

13 MTP | 700
ADA | 1100 MUL | 1240
ADD | 2000 NOP 16
ADM | 11kO OPR 500
APO 451 .RCG 701
ATR 1h RDC 700
AZE | 450 ROE | 702
BCL | 1540 ROL 2Lo
BCO | 1640 ROR 300
BSE | 1600 RSW 516
CHK | 707 " RTA 15
CLR 11 SAE | 1440
coM 17 SAM 100
DIS 140 SCR 340
DSC | 1740 SET 40
HLT 0 SHD | 1400
IBZ 453 SKP Lo
JMP | 6000 SNS Lo
KBD | 515 SRO | 1500
KST L1s5 STA | 1040
LAM | 1200 STC | Looo
LDA | 1000 STH | 1340
LDH | 1300 . SXL 400
LW 517 WCG 705
LZE | lLsp WRC y(on
MSC 0 WRI 706
MTB 703 XsK 200

Instruction Code

Numerical
HLT MIP | 700
MSC RDC 700
CLR 11 RCG 701

13 RDE 702
ATR 1k MTB 703
RTA 15 WRC 7oL
NOP 16 Wea 705
COM 17 WRI 706
SET Lo CHK 707
SAM 100 ILDA | 1000
DIS 140 STA | 10k0
XSK 200 ADA | 1100
ROL 240 ATM | 1140
ROR 300 LAM | 1200
SCR 340 MUL | 1240
SXL 400 LDH | 1300
KST 415 STH | 13Lo
SKP Lo SHD | 1400
sws | bho SAE | 1lko
AZE 450 SRO | 1500
APO 451 BCL | 1540
LZE 4s5p BSE | 1600
IBZ 453 BCO | 1640
OPR | 500 DSC | 1740
KBD 515 ADD | 2000
RSW 516 STC | 4000
LSW 517 JMP | 6000

16-2

16-2

‘Appendix I

Appendix I: Double Memory Programming

The LINC has been presented as having a single 12-bit, 102k (decimal)
word memory. A second memory can be added to the computer to provide

2048 (decimal)7 or 4000 (octal) 12-bit words. This second memory is

P ot aaS Ay
v

A 1
i1 Irevyrievas; prh

[W]

addressable for data storage however, be used

to hold running programs.

4

Bit 10 of a register containing a memory address, e.g., a B register,
is designated as the Memory Select bit. When this bit is 1, the second

memory is addressed:

B 010 000 000 000
. - J

Memory Select Bit ——;T X

The addresses for the second memory may then be thought of as 2000 + X,
where O < X < 1777, as usual.

More simply perhaps, we speak of memory registers 2000 through
3777 (octal)e While this scheme makes the memory addresses of the two
memories continuous, they can not always be treated as such by the program-
mer. The Instruction Location register, having only 10 bits, prohibits

using the second memory to hold running programs; the next "sequential”

instruction location after 1777 1s always O. Moreover, the Full Address

Class instructions can address only registers O through 1777.

All other memory referenceviﬁstructions have available a Memory Select

bit, and can address either memory. The instruction

P LDA
p+ 1 2133

will load the Accumulator withbthe contents of register 2133, i.e.,

register 133 of the second memory. It must be remembered, however, that all

instructions which index the first 16 registers (Index Class, Half-Word

I-1

Appendix T

Class, XSK, and DIS) index 10 bits only, and thus index from 1777 to O
without affecting the Memory Select bit. Therefore, by setting bit 10, we

can index through either memory we choose, but we cannot index from one

memory to the other. E.g.:

Memory

Address | Memory Contents
3 [2000 + X] [-]

— 40 SET 1 3 0063
L1 3777 3777
ho LDA i 3 1023
L3 l JMP Lp 6042

In this example register 3 will contain the succession of values:

3777, 2000, 2001, «.., 3777, 2000, etc., repeatedly scanning the second
memory. In order for the first execution of the LDA instruction at
location 42 to index register 3 to 2000, register 3 must be set initially

to 3777, i.e., X(3) = 1777 and Memory Select bit = 1.

For many purposes this indexing scheme presents no disadvantages.
Often, however, one would like to use both memories, for example to collect

a large number of data samples. The following program fills memory

16=2

16=2

Appendix I

registers 400 through 3777 with sample values of the signal on input line 10.

The sample-and~-store part of the program is written as a subroutine (loca-

tions 31 - 40), and the sample rate is controlled by an OPR i n instruction:

Memory
Address Memory Contents Effect
i [-] [-] For memory address.
10 —> [JMP X] (-] For return point.
. .)
- 20 SET i 7 0067
. Set 7 to initial address minus 1
21 3T 0371 (and jump to subroutine.
22 JMP 31 6031 |
23 SET 1 7 0067 |)Return from subroutine; set 7 to
{ initial address minus 1 for
ak 3Tt 37T second memory, and jump to
25 JMP 31 6031 |J subroutine.
26 weG 0705 Return from subroutine; write
27 6131 6031 | ¢ memory quarters 1 through 7 in
30 HILT 0000 |J blocks 31 through 37 and halt.
31 > SET 10 0050 Enter subroutine and save return
30 0 0000 point in register 10.
33 —O0PR i 1 0521 Pause until restart signal appears
' on External Level line 1.
34 SAM 10 0110 Sample input on line 10 and store.
35 STA i 7 1067
36 XK 7 0207 1f X(7) # 1777, return to
37 MP 33 _1 6033 get next sample.
e} JMP 10 ¢ 6010 When X(7) = 1777, return to main

program via register 10.

Example 34. Indexing Across Memory Boundaries.

I-3

a

AN

GLOSSARY OF SYMBOLS
4

Repisters
Symbol

T L T To W s TS

- Other Symbols

B Symbol
A,

J
Al

i

XI(B)
X(p +1)

h(p)
- hip+1)

Function Console Name
L s

Accumulator Accumulator
Memory Buffer Memory Contents
Control instruciion

Link Bit - L

Program Counter Instruction Location

. Output of Relays Relays

Memory Address Memory Address
0Odd Jobs - Not indicated on Console :- -

Definition
Bit "'j'" of register A,
Bits "j" through "k", inclusive, of A, -

Bit 4 of the instruction word or of the contents of

c
" Bit 3 of the instruction word or of the contents of C.

Bits 0 through 3 of the instruction word, when these
bits are not used to refer to one of the first sixteen
memory locations as index registers,

Bits 0 through 3 of the instruction word, in those -
instructions which may use these bits to specify
the address of an index register,

The address of the memory location from which the
first word of the current instruction was obtained,

Bits 0 through 9 of a twelve bit word,
Bits 0 through 9 of the contents of index register §.

Bits 0 through 9 of the contents of the memory
location whose address is p+1, :

A bit which is used to specify which half of 'che operand
word is used by a HALF WORD instruction,

Bit 11 of the contents of index register B.

Bit 11 of the contents of the memory location whose
address is p+1 '

page 20

‘page 21

.

GLOSSARY ({continued)

Symbol Definiti
X(B)ndx . 1 +X(B), using ten bit twos' complement addition,
X(B)hndx X(B)hndx =X(B) if h(f) =0

X(Blypax =X(B), g5 1 R(B) =1
Y ' The address of the operand of an instruction, 11

bits in length,

Y(p+1) Bits 0 through 10 of the contents of the menﬁory
' location whose address is p+1,

-.Y(B) Bits 0 through 10 of the contents of indéx register B,

16-2 e IT-1

Appendix IT

Order. Code Summary

Miscellaneous Class

HLT 0000 . ' HLT

HALT., Hall lhe computer. The Rup light on the console is turned off.
Perhaps the gong chimes. The computer can be restarted only from the

console.

CLR : 0011 S 8 usec. CIR
CLEAR. Clear the Accumulator and the Link Bit.

MSC 13 0013 | 8 usec. -

Turn on the write-gate for marking tapes if and only if the computer has
been placed in the MARK mode by pressing the MARK button on the console.

Warning: This instruction is to be used only for marking tapes.

ATR 0014 o ; 8 usec. ATR
ACCUMULATOR TO RELAY. Copy the contents of the right half of the Accum~
ulator (bits O - 5) into the Relay register. The contents of the

Accumulator are not changed.

RTA 0015 ‘ 8 usec. RTA
RELAY TO ACCUMULATOR. Copy the contents of the Relay register into the
right half of the Accumulator (bits O - 5) and clear the left half of the

Accumulator. The contents of the Relay register are not changed.

NOP 0016 ' ' 8 usec. NOP

NO OPERATION. This instruction provides a delay of 8 usec. before pro-

ceeding to the next instruction. It does nothing.

coM ' 0017 1 8 usec. COM
COMPLEMENT. Complement the contents of the Accumulator.

II-2

Appendix 1T

16-2

Shift Class

* Execution Times
n (octal) : ’ ,
0 <n <17 0,1,2,3 4,5,6,7 10,11,12,13 14,15,16,17
time
(docimal) l6xuseco 2L usec. 32 usec. 40‘gsec°
ROL i n 240 + 201 + n * ' ROL

ROTATE LEFT. Shift.the contents of the Accumulator n places to the left,

with or without the Link Bit. The i=bit specifies one of two variations:

i=20 ‘ 1=1

L(o_—" " AcC 0y (L T ACC 0)
0

|RORin = 300 + 20i ¥ n * ~° ROR

ROTATE RIGHT. Shift the contents of the Accumulator n places to the right,

with or without the Link Bit. The i-bit specifies one of two variations:

i = 0 . i l
L (1 ACC 0
OJ
SCR 1 n 340 + 201 + n x | SCR

SCALE RIGHT. Shift the contents of the Accumulator, with or without the
Link Bit, n places to the right without changing the sign bit, replicating

the sign in n bits to the right of the sign bit. The i-bit specifies one

of two variations:

i =0 . . . ,‘ Lo i =1 -

}L. S : ACC E (;{])
O Bl Fﬂ | | Pﬂ,J LreLJ_i_}~> EHEIZF#ZIZ[]

16-2

Appendix. IT

Full Address Class

0 <X <1777

ADD X 2000 + X 16 usec. ADD

ADD. Add the contents of register X to the contents of the Accumulator
and leave the sum in the Accumulator, using 12-bit binary addition with

end-around carry. The contents of register X are not changed.

STC X 4000 + X 16 usec. STC

STORE AND CLEAR. - Copy the contents of the Accumulator into register X and

then clear the Accumulator.

JMP X 6000 + X * , JMP

JUMP. Set the Instruction Location register to X, i.e., take the next
instruction from register X. If X # 0, and if JMP X is executed at

location p, then the code number for JMP p + 1 is stored in register O.

* When X = 0, execution time is 8 usec; when X #£ 0, 16 usec.

II~-3

Appendix IT

- Skip Cldss

Skip the next register in the instruction sequence if:
i =0 and the specified condition is met
i =1 and the specified condition is not met.

Otherwise, go on to the next instruction in sequence.

SXL i n Loo + 201 +n 8 usec.

SXL

SKIP ON'EXTERNAi LEVEL NEGATIVE. W Condition: The signal on external level

line n is =3 volts (as opposed to O volts). 0<n<13.

KST i 415 + 201 8 usec.

. KST
KEY STRUCK. Condition: A key has been struck and is locked down.
SNS i n ko + 201 + n 8 usec. SNS
SENSE SWITCH. Condition: Sense Switch n is up. O <n<5. '
AZE i ’ 450 + 20i i 8 usec. AZE

ACCUMULATOR ZERO. Condition: Accumulator contains either 0000 or T7777.

APO i 451 + 201 8 usec.

APO

ACCUMULATOR POSITIVE. Condition: The sign bit of the Accumulator is O.

LZE i k5o + 201 8 usec.

L7ZE
LINK ZERO. Condition: The Link bit is O.
IBZ i : 453 + 201 8 usec. IBZ

INTERBLOCK ZONE. Condition: Either tape unit is up to speed and at an

interblock zone.

/

/

i
pering

16-2

Appendix IT

II-5

Index Class

Operand Location, Y, in Index Class Instructions

1<p <17 6 =0
i=20 i=1 1=0) i=1
B Y g [y-1]% . . : .
. . . . - P LDA —p LDA i
»p LDA B >p ILDAip |p+1 Y Y OPERAND
Y OPERAND Y OPERAND Y OPERAND
t = 16 usec, Lt o= 8 usec.
Y=p+1
0 <Y <3777 0 <Y <777

* Indexing: The contents of the right-most 10 bits of register

3 are first indexed by 1, using 10-bit binary addition without

is indexed to 0000; to 20003} 5777, to L000; and 7777,
el
to 6000.

ILDA i B 1000 + 20i + B (t + 8) usec. LDA

LOAD ACCUMULATOR. Copy the contents of register Y into the Accumulator.

The contents of register Y are not changed. {C 1 oL

STA 1B 1040 + 201 + B (¢t + 8) usec. STA

STORE ACCUMULATOR. Copy the contents of the Accumulator into register Y.

The contents of the Accumulator are not changed.

ADA i B 1100 + 20i + B (t + 8) usec. ADA

ADD TO ACCUMULATOR. Add the contents of register Y to the contents of the
Accumulator and leave the sum in the Accumulator, using 12-bit binary
addition with end-around carry. The contents of register Y are not

changed.

I11-6

Appendix IT

16=2

Index Class (continued)

ADM i B 1140 # 201 4+ B - (t + 16) usec. ADM

ADD TO MEMORY. "Add the contents of register Y to the contents of the
Accumulator and leave the sum in register Y and the Accumulator, using

12=bit binary addition with end-around carry..

LAM i B 1200 + 201 + B (t + 16) usec. LAM

LINK ADD TO MEMORY . First, add the contents of the Link Bit (the integer O
or l) to the contents of the Accumulator and leave the sum in the Accum-
ulator, using 12-bit binary addition with the end carry, if any, replacing
the contents of the Link Bit; if there is no endycarry, clear the Link
Bit. 'Next, add the contents of register Y to the contents of the Accum-
ulator using 12-bit binary addition with the end carry, 1f any, replacing
the contents of the Link Bit (if no end'cérry arises, the contents of the
Link Bit are not changed). The sum is left in the Accumulator and in

register Y.

MUL i B 1240 + 201 + B (t + 104) usec. MUL

MULTIPLY. Multiply the contents of the Accumulator by the contents of
register ¥ and leave half of the product in the Accumulator. The contents
of the Accumulator and register Y are treated as signed 1l-bit ones' com-
plement numbers and their full product as a signed 22-bit number. The

"h-bit," i.e., bit 11 of the register holding the address Y, specifies:

h =0 o _ h =1
Integer Multiplication v Fraction Multiplication
The least significant 11 bits The most significant 11 bits
of the product with proper sign of the product with proper
are left in the Accumulator. sign are left in the Accum-
ulator.

The sign of the product is algo left in the Link Bit. The contents of
register Y are not:changed. '

If i = 1 and B = 0, use integer multiplication.

16-2

Appendix II

II-7

Index Class (continued)

SAE 1 g 1440 + 201 + B ~ (t +8) usec. SAE,

SKTIP IF ACCUMULATOR FEQUALS. If the contents of the Accumulator match the
contents of register Y, -skip the next register in the instruction
sequence; otherwise, go on to the next instruction in sequence. The

contents of the Accumulator and of register Y are not changed.

(See also the section on marking tapes.)

SRO 1 B 1500 + 20i + B (t + 8) usec. SRO

SKIP AND ROTATE. If the right-most bit of the contents of register Y
is 0, skip the next register of the instruction sequence; otherwise, go
on to the next instruction in sequence. In either case, rotate the con-
tents of register Y one place to the right and replace in register Y.

The contents of the Accumulator are not changed.

BCL i B 1540 + 201 + B (t +8) usec. - BCL

BIT CLEAR. For each bit of register Y which contains 1, clear the corres-
ponding bit of the Accumulator. The contents of register Y and all other

bits of the Accumulator are not changed.’

BSE 1 B 1600 + 201 + B (t + 8) usec. BSE

BIT SET. For each bit of register Y which contains 1, set the correspond-

ing bit of the Accumulator to 1. The contents of register Y and all other

‘bits of the Accumulator are not changed.

BCOip - 16k0 + 201 +B (t + 8) usec. BCO

BIT COMPLEMENT. For each bit of register Y 'which containg 1, complement

the corresponding bit of the Accumulator. The contents of register Y and

all other bits of the Accumulator are not changed.

Ii-8

Appendix II

Index Class (continued)

DSC i B 17O + 201 + B (t + 112) usec. DSC

DISPLAY CHARACTER, Intensify points in a 2 x 6 pattern on the Display
Scope. Register Y holds the pattern word, which is examined from right to
left beginning with bit 0; for each bit found to be 1 a point is inten-

sified. Numbered points below correspond to bit positions of the pattern

word: = V + 30—
N_/
Olo)
:
Rolo
(@6 Y,

I
H
|

I
— —
Q

The H-coordinate is held in register 1, and bit 11 of register 1 selects

the display channel. The initial contents of register 1, plus 4, is the

Hecoordinate of point , The V-coordinate is held in the Accumulator.
’_‘The initial contents. of the Accumulator with the right-most 5 bits

(ACCONH) automatically cleared by the computer, is the V=coordinate of
point <:>g Spacing between points is +4 in both horizontal and vertical

directions. At the end of the instruction the value in register 1 has

been augmented by 10 (octal) and bits O - & of the Accumulator contain

30 (octal); The contents of bits 5 = 11 of the Accumulator and the con-

tents of register Y are not changed.

16=2

16«2

Appendix II

II-9

Half-Word Class

Operand Location, Y, in Half-Word Class Instructions

1<B<1T B =0
i = i =1 1 =0 i=1
B hsY B h3(¥-h)* o : :
. . . . - P LDH —»p LDH i
—»p LDHB >p LDHip p+1 h,Y Y OPERAND
Y OPERAND Y OPERAND 4 ~ OPERAND
t = 16 usec. 0<Y <3777 t = 8 usec.
JEREN : Y =p+1
nyy IO T _LH(Y) if h=0 | 0 < ¥ < ATIT .
; %‘ v 5 OPERAND RH(Y) if h = 1 || OPERAND = LH(Y)

¥ Indexing: h is value before indexing. The contents of register B
are first indexed by L000. Any end carry is added to the right-most
10 bits only; bit 10 is not changed. Thus: O0;1777 is indexed

to 131777; 131777 to 030000; 030000 to 1300003 130000 to 030001,
033777 is indexed to 1;3777; 133777 to 032000; 032000 to 13;2000;
152000 to 032001. The Relay lights are probably not affected.

LDH i 8 1300 + 201 + B (t + 8) usec. LDH

LOAD HALF. Copy the contents of the designated half of register Y into
the right half of the Accumulator. Clear the left half of the Accumulator.

The contents of ‘register Y are not changed.

STH 1 B 1340 + 20i + B (t + 8) usec. - : STH

STORE HALF. Copy the contents of the right half of the Accumulator into
the designated half of register Y. The contents of the Accumulator and of

the other half of register Y dre not changed.

SHD i B : 1400 + 20i "+ B ~ (t + 8) usec. : SHD

SKIP IF HALF DIFFERS. If the contents of the right half of the Accumula-
tor do not match the contents of the designated half of register Y, skip
the next register in the.instruction sequence; otherwise, go on to the
next instruction in sequence. The contents of the Accumulator and of

register Y are not changed.

II-10 Appendix II - 16-2

Operand Location, Y, in the SET Instruction

i=0 i=1

o [-] Q [-]
- P SET o —-p SET i«
D+l Y Y OPERAND.

Y OPERAND

t = 8 usec, . | t = 0 usec.

OS_YSE777 - Y=p+1

| 0 < ¥ <fTTT]

SET i o Lo + 20i + o (t + 24) usec. SET
SET. Copy the contents of register Y into register a. (0 <@ < 17).

Teke the next instruction from register p + 2. The contents of register Y

~are not changed.

SAM i n 100 + 201 + q % SAM
SAMPLE, Sample the signal. on 1nput line n (o <n< 17) and leave its

~numerical value, seven bits plus sign, in the right-most 8 bits of the
Accymulator, replicating the sign in the left-most 4 bits of the Accum-
ulator. Lines O through 7 are used by eight potentiometers located at
the Display Scope. Lines 10 through 17 are used by analog inputs at the
Data Terminalimodule; on these lines +1 volt corresponds to +177, and

c=1 volt corresponds to -177

#* Timing: If i = O, the instruction requires 24 usec. for execution. If
i =1, the computer goes on to the next instruction after 8 usec., even
though the conversion process will continue in the Accumulator for

l& more usec. If, therefore, the instruction is used with i = 1, care

must be takeh not to dlsturb.the Accumulator during_the-lh usec,

following the instruction.

16-2

~ Appendix II

Il-11

DIS i a 140 + 20i + & 32 usec. ' DIS

DISPLAY. Display on the séope a poinﬁ'whosevvértiéal‘cdordinate is
speéified by the right?most 9.bits_of thé Adéumulator and”whose‘horizon—_
tal coordinate is specified by the right-most 9 bits of register O

(0 <a<1T). _Thé left-most bit of register & specifies one of two
display channels (further selected by a switch on the Display Scope).

The left-most horizontal coordinate is 000; the right-most, 777. The
lowest vertical coordinate is -377; the highest +377. The contents of
bits 9 through 11 of the Accumulator and of reglster ¢ do not affect the
posltlon of the p01nt '

If 1 =1, the contents of the right-most 10 bits of register‘a-are first

indexed by 1, using lO-biﬁ binary addition without end carry.

S XSK 1 o S 200 + 201 + @ 16 usec. . XK

INDEX AND SKIP. If the address part (the contents of the right-most
10 bits) of register o {0 < @ < 17) equals 1777, skip the next register

in the instruction sequence; otherwise, go on to the next instruction in

sequence. If i = 1, the address part of reglqter A is first indexed by l

using 10=bit blnary addltlon w1thout end carry. The left-most two bits

‘are not changed. - Thus, 1777 -is indexed to 0000; 3777, to 2000; 57717,
“to 4000; and 7777, to 6000. o : o

T1-12

P . Appendix II

- lo-2

Operate Class

OFR i n C 500 + 20i +n 16 usec. minimum - OPR

OPERATE CHANNEL n. Generate a negative signal on output level line n
(0<n<13). If i=1, pausé until a restart signal appears on external
level line n. Send other control signals to, and sense other signals
from, equipment at the Data Terminal module; transfer data into or out of

the memory or Accumulator as specified by these control signals.

KBD i : 515 + 201 : " 16 usec. minimum KBD

KEYBOARD. Clear the Accumulator. If a key has been struck and is locked
down, release»the key and read its 6 bit code number into the right half
of the Accumulator. If no key has been struck and i = l; pause until a
key is struck and cdntinue as abdve.‘ if no key has been struck and |

i =0, go on to the next instruction.

RSW 5 516 - 16 usec.: BSW
RIGHT SWITCHES° Copy‘the'contents of the Right Switches into the :
Accumulatorf |

LW 517 | 16 usec. - Isw

LEFT‘S_WITCHES° Copy the coﬁténts'df the Left Switches into the

Accumulator.

16-2 Appendix IT

IT-13

Magnetic Tape Class

MIP i u 700 + 201 + 10u
QN{BN - ~ 1000 QN + BN. .
i: Motion Control

EES) m
L=V L

i=1 Tape is left in motion after instruction execution.
us Unit Selection

u =0 Tape Unit #0.

u =1 Tape Unit #1.

QN: Quarter Number 0 <QN <7

QN | Memory Registers QN | Memory Registers
0 0 - 377 i 2000 - 2377
1 Loo - 777 1 5 2L00 - 2777
2 | 1000 - 1377 - | 6 | 3000 - 3377
3| 1%00 - 1777 7 3400 = 3777

BN: Block Number,‘ 000 < BN < 777 (ocﬁal)
1 Tapé = 512 (decimal) blocks.
1 Block = 256 (decimal) words.
1 Word = 12 (decimal) bits.

Data sum = sum without end-around carry of 256 words in block.
Check sum = complement of data sum.

Transfer check = data sum + check sum.

Il

=0 if block is transferred correctly.

-0 if block is transferred incorrectly.

RDC 1 u 700 + 20i & 10u " RIDC

READ AND CHECK. Copy block BN into memory quarter QN and check the trans-
fer. If the block is transferred correctly, leave ~O in the Accumulator
and go on to the next instruction; otherwise, repeat the instruction.

The information on tape is not changed.

II-1k

Appendix II

16-2

Magnetic Tape Clas5~(gontinued)

RCG i u 701 + 20i.+ 10u ; -~ RCG

READ AND CHECK GROUP. Copy block BN into the:memory quarter whose number
corresponds to the right-most 3 bits of BN (block 773 into gquarter 3,
etc.) and copy the following consecutive QN blocks into thevfollowing con-
secutive memory quartersv(block'OOO folloﬁs bloék 777, quarter O follows
quarter‘Y)o Check each block transfef and repeat if necessary until all
blocks have transferred correctly, then leave -0 in the Accumulator and

go on to the next instruction. The information on tape is not changed.

RDE i u 702 + 201 + 10u , RDE

READ TAPE. Copy block BN into memory quartér QN and leave the transfer

check in the Accumulator. The information on fape is not changed.

MTB 1 u 703 + 20i + 10u , . MTB

MOVE TOWARD BLOCK. Subtract the next block number encounteréd‘from BN,
leaving the difference in the Accumulator. When 1 = l; leave the tape
moving forward if the difference is positive and backward if the differ-

ence is negative or =0.

16-2

Appendix II

II-15

Magnetic Tape Class'(continued)

WRC i u 704 + 201 + 10u WRC

WRITE AND CHECK. Copy the contents of memory quarter QN into block BN and
check the transfer. If the memory contents are transferred correctly,
leave -0 in the Accumulator and go on to the next instruction; otherwise,

repeat the instruction. The contents of memory are not changed.

WCG 1 u 705 + 201 + 10u WCG

WRITE AND CHECK GROUP. Copy the -contents of the memory quarter whose
number corresponds to the right-most 3 bits of BN into block BN (quarter 5
into block 665, etc.) and copy the contents of the following consecutive
QN quarters into the following consecutive blocks (quarter O follows
quarter 7, block 000 follows block T777). Check each transfer and repeat
if necessary until all blocks have been written correctly, then leave -0
in the Accumulator and go on to the next instruction. The contents of

memory are not changed.

"WRI i u 706 + 20i + 10u WRI

WRITE TAPE. Copy the contents of memory quarter QN into block BN and
leave the check sum in the Accumulator. The contents of memory are not

changed.

CHK 1 u 707 + 201 + 10u CHK

CHECK TAPE. TFind block BN, form its transfer check and leave it in the

Accumulator. The information on tape and the contents of memory are not

changed.

