THIS INFORMATION IS CONFIDENTIAL AND PHOPRILTARY TO WDC AND SHALL NOT BE REPLODUCED OR FURTHER DISCLOSED TO ANYONE OTHER THAN WDC EMPLOYEES WITHOUT WRITTEN AUTHORIZATION FROM WESTERN DIGITAL CORPORATION.

Rev. 11-25-75 Rev. 2-25-74 Ð Rev. 4-10-74 \mathbb{C} Rev. 6-3-74 D Rev. 10-2-74 Ε Roy 11-14-74 Rev. 11-20-74 Rev. 12-11-74 Rev. 12-16-74 Rev. 1-30-75 J Rev. 3-26-75 K Rev. 5-2-75 Rev. 12-15-75

PRELIMINARY

CP1631B

512 X 22 MICROPROGRAM ROM

(MICROM)

PRELIMINARY

PREPARED BY		WESTERN	O DIGITAL	TITLE CP1631B	
CHECK BY	Alto.	WESTERN & DIGITAL		512 X 22 MICROPROGRAM ROM (MICROM)	
APPD R & D		ISSUE DATE	SHEET	NUMBER	REV
APPD ENG			1 of 14	500281	М
APPD OP'S			•		

INTRODUCTION

The WDC CP1631B (MICROM) is a 512 word by 22-bit N-channel silicon gate ROM. The ROM coding is programmed on the diffusion mask level (1N). The primary application for the ROM is for microprogram storage in the WDC microprocessor system. It is designed to interface directly with the CP1611B and CP1621B microprocessor chip set. The chip is packaged in a 40-lead plastic cavity dual-in-line package.

FEATURES

- . Organization 512 X 22
- . Access Time < 200 nsec
- Bi-Directional, Common Address and Data Bus Directly Compatible With WDC Microprocessor Microinstruction Bus
- Low Power Dissipation Typically 150 mW
- . Four High Voltage Clocks

OPERATION

The basic operation of the microinstruction Control ROM (MICROM) is to receive addresses sent on the Microinstruction Bus (MIB) from the location counter of the CP1621B Control Chip, decode the address, access the ROM, and then output a 22-bit wide microinstruction to the Microinstruction Bus. The microinstruction address is transferred to the MICROM during $\emptyset 2$. It is decoded during $\emptyset 3$ and the ROM is accessed during $\emptyset 4$. The microinstruction is transferred to the MIB bus at $\emptyset 1$. Address and data on the MIB is active low (Logic "1" = Low). The MIB bus is precharged high by all MICROMs on the bus as described by the following definitions of pin functions.

PREPARED BY		WERTERN	O DIGITAL	TITLE CP1631B	
CHECK BY	WE.	WEBTERN DOGITAL		512 X 22 MTCROPROGRAM (MTCROM)	ROM
APPD R & D		ISSUE DATE	SHEET	NUMBER	REV
APPD ENG			2	500281	١
APPD OP'S					М

- 1. MIBØØ MIBIØ; The address is transferred into the MICROM on these lines at Ø2 from the CP1621B. They are unconditionally precharged high at Ø4 by all the MICROMs on the MIB. MIBØØ is the least significant address (AØ) and MIBIØ is the most significant address (AIØ). The microinstruction data is placed on these lines at Ø1 by conditional discharge. MIBØØ is the LSB of the microinstruction. Chip selection is performed by MIBØ9, MIBIØ, and Chip Select. These signals are programmable.
- 2. MIB11 MIB14; These lines are microinstruction outputs only. They are unconditionally precharged high at Ø4 and conditionally discharged at Ø1 by the ROM microinstruction data.
- 3. MIB15; This line functions like MIB11 MIB14 except that it is precharged high during Ø3 by the MICROM.
- 4. MIB16; This is a MICROM input and output line. It is unconditionally precharged high at both Ø2 and Ø4. Microinstruction data is transferred out at Ø1 as with the other MICROM outputs. This output will enable the loading of the Return Register (RR) on the Control Chip when it is low at Ø1 (LRR). At Ø3 it performs as an Output Enable for the MICROM. If this line is discharged low by the Control Chip at Ø3 then MICROM lines MIBØØ to MIB15 and MIB18 MIB21 will not be discharged at the next Ø1.
- 5. MIB17; This MICROM output functions like MIB11 to MIB14. It is used on the Control Chip to enable the "Read Next Instruction" translation while over-riding any other translation. Discharging MIB17 to a low at Ø1 activates

PREPARED BY		WESTERN (Dogwa	CP1631B	
CHECK BY	1/18	2 4 4 2		512 X 22 MICROPROGRAM ROM (MICROM)	1
APPD R & D		ISSUE DATE	SHEET	NUMBER	REV
APPD ENG			3	500281	М
APPD OP'S					, ,

the translation.

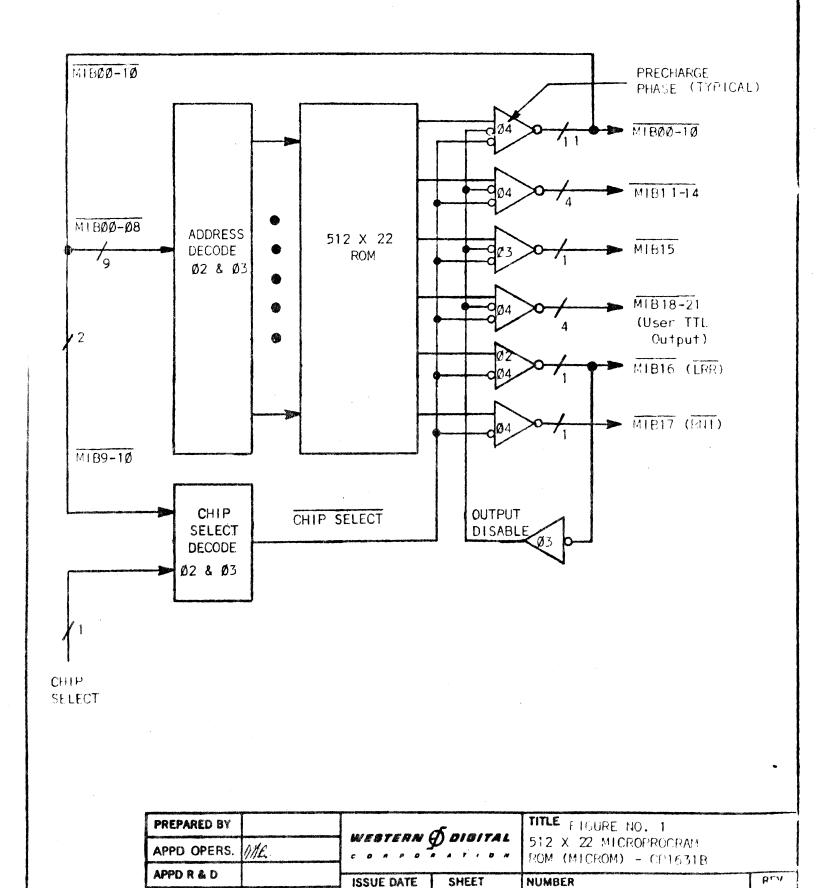
- 6. MIB18 MIB21; These four lines are extra TTL compatible outputs which can be used for external control functions. They are not used by the Control or Data chips. These outputs have wired-OR capability.
- 7. CHIP SELECT (CS); This is an MOS level input that will select (Enable) the MICROM with a high input level. This input is sampled like an address input at Ø2.

NOTE: A transistor programmed in the Memory Matrix will read as a high level on the MicroInstruction Bus when it is accessed.

Chip Select and Output Disable functions are performed by two additional rows in the ROM Matrix and therefore are programmable to affect any or all of the outputs.

NOTE: The MICROM is responsible for precharging the MIB lines unconditionally.

MIBØØ-MIB14 and MIB17-MIB21 are precharged high during Ø4. MIB15 is

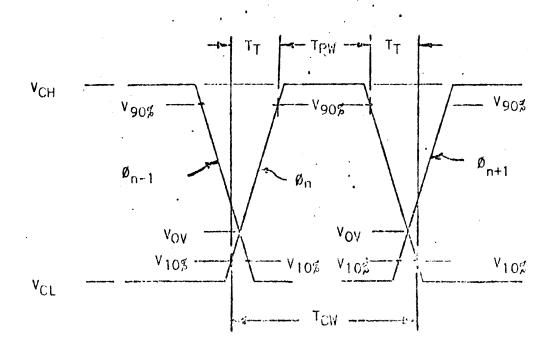

precharged high during Ø3 and MIB16 is precharged high during Ø2 and Ø4.

(The MIB lines are precharged also when the chip is disabled.)

PREPARED BY			Rowers	TITLE CP1631B	
CHECK BY	17.16	WESTERN		512 X 22 MICROPROGRAM	
APPD R & D		ISSUE DATE	SHEET	ROM (MICROM) NUMBER	REV
APPD ENG			4	500281	
APPD OP'S		1		200201	M

APPD ENG

CP1631B - 11K (MICROM)

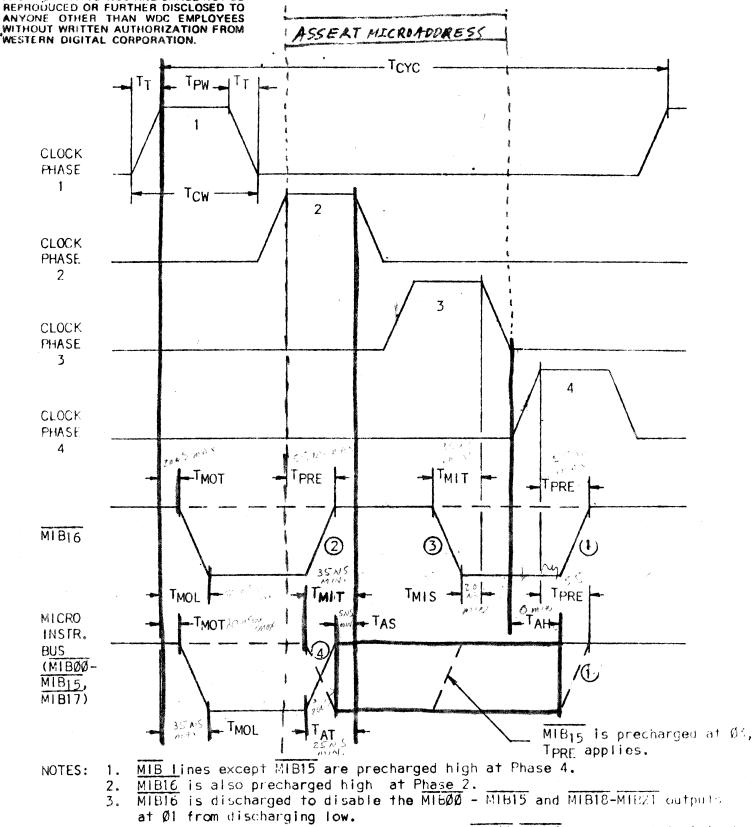

5

500281

1-1

THIS INFORMATION IS CONFIDENTIAL AND PROPRIETARY TO VICE AND SHALL HOT SE EXPROSUCED OR FUNCTION DISCLOSED TO ANYONE OTHER THAN WOO EMPLOYEES WITHOUT VALITA AUTHORIZATION FROM WESTERN DIGITAL CORPORATION.

CLOCK DIAGRAM

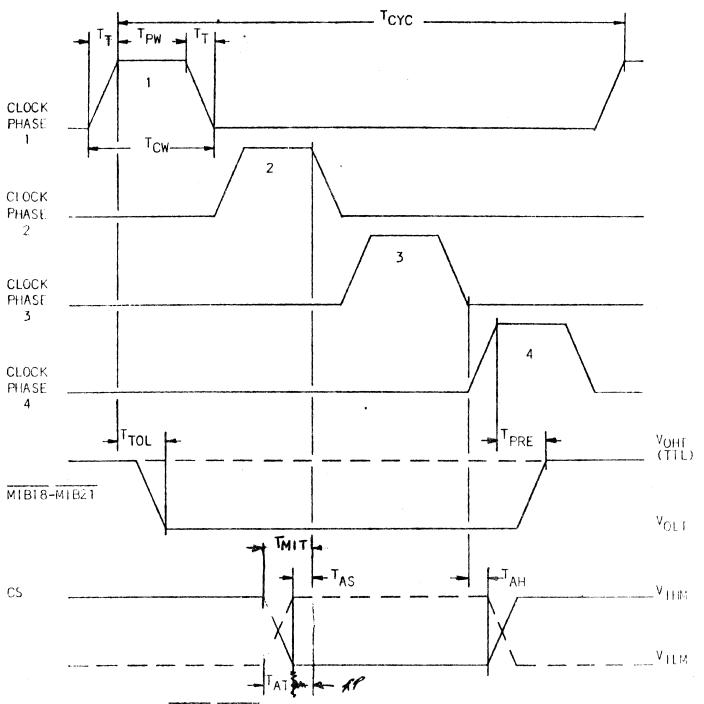


DEFINITION OF 10% AND 90% VOLTAGE POINTS FOR CLOCK, INPUTS AND OUTPUTS

$$V_{90\%} = V_{LOW(max.)} + .9 \left[V_{HIGH(min.)} - V_{LOW(max.)}\right]$$

This definition applies to clock, input and output pins.

1	PREPARED BY APPO OPERS.	n's	recoveres (5) asciral	CP1631B 512 X 22 MICROPROGRAM ROM (MICROM)	1 ,
	ASSPAD	napanan i renam kamanan ulker sinta ulkera a	ROOSE MARKET OF LE	100.05 tc 500281)


PROPRIETARY TO WOC AND SHALL NOT BE

4. Address input transistions occur only on MIBON-MIBIN lines and Chip Select.

5. Switching times are measured at 10% and 90% of specified levels.

PREPARED BY	WESTERN (Knierza	TITLE FIGURE NO. 2	
APPD OPERS.		ATTO	MICROM TIMING DIAGRAM	
APPD R & D	ISSUE DATE	SHEET	NUMBER CP16.41P	REV
APPD ENG		1	500281	11

PROPRIETARY TO WDC AND SHALL NOT BE REPRODUCED OR FURTHER DISCLOSED TO ANYONE OTHER THAN WDC EMPLOYEES WITHOUT WRITTEN AUTHORIZATION FROM WESTERN DIGITAL CORPORATION.

NOTE: TIL outputs (MIB18-MIB21) are unconditionally driven high at Ø4 and conditionally driven low at Ø1. This conditional low will be valid until the next Ø4.

PREPARED BY		WESTERN (To mercar	TITLE FIGURE NO. 3	
APPD OPERS.		COMPO		TTL OUTPUT TIMING	
APPD R & D	·	ISSUE DATE	SHEET	CP1631B NUMBER	REV
APPD ENG			8	509281	

THIS INFORMATION IS CONFIDENTIAL AND PHOPRIETARY TO WOC AND SHALL NOT BE HEPHODUCED OR FURTHER DISCLOSED TO ANYONE OTHER THAN WOC EMPLOYEES WITHOUT WRITTEN AUTHORIZATION FROM WESTERN DIGITAL CORPORATION.

ABSOLUTE MAXIMUM RATINGS OVER FREE AIR TEMPERATURE RANGE (Unless Otherwise Noted)*

Supply Voltage V _{DD} (See NOTE)	-0.5V to 15V
Supply Voltage VCC (see NOTE)	-0.5V to 15V
Supply Voltage V _{BB} (see NOTE)	-10V to 1.0V
All Other Pin Voltages (see NOTE)	-1.0V to 15V
Clock Voltage (see NOTE)**	-1.0V to 15V
Operating Free Air Temperature Range	0°C to 125°C
Storage Temperature Range	-55°C to 125°C

NOTE: These voltage values are with respect to V_{SS} Supply Voltage. If V_{BB} is more positive than any other voltage, then I_{BB} must be limited to I_{Oma} .

- * Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum-rating conditions for extended periods may affect device reliability.
- ** The other three clock voltages must be between 0.5V and -0.6V except for switching overlaps. Not more than one clock may be high at any one time.

Applying power to the part may be any sequence of conditions that do not violate the maximum ratings specified on this sheet.

PREPARED BY			Пописан	TITLE CP1631B		
CHECK BY	MR.	WESTERN	- I I I I I	512 X 22 MICROPROGRAM (MICROM)		
APPD R & D	**	ISSUE DATE	SHEET	NUMBER	REV	
APPD ENG			9	500281	м	
APPO OP'S				and the second s	1.3	

PROPRIETARY TO WDC AND SHALL NOT BE REPRODUCED OR FURTHER DISCLOSED TO ANYONE OTHER THAN WDC EMPLOYEES WITHOUT WRITTEN AUTHORIZATION FROM WESTERN DIGITAL CORPORATION.

OPERATING CHARACTERISTICS

 T_{CASE} = \emptyset °C to 70°C, V_{DD} = +12.0V \pm .6V, V_{BB} = -3.9 \pm .25V, V_{SS} = \emptyset V, V_{CC} = +5V \pm .25V

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	COMMENTS AND CONDITIONS
TÉ .	Leaka ge Curre nt For Any Pin Other Than Clock Or Power			±10	μΑ	V _{IN} = 5.25V/ØV
1 _{BB}	V _{BB} Supply Current			-500	μА	VBB = -5.25V
LC	Clock Leakage Current			±100	μΑ	V _{CLOCK} = 13.7V/ØV
CCAVE	Average VCC Operating Current*		10.0	20.0	mA	T _{CYC} = 300 nsec C _L = 25 pf
IDDAVE	Average Vpp Operating Current		10.0	20.0	mA	T _{CYC} = 300 nsec C _L = 50 pf
VIHM	Input High Voltage (All Inputs)	4.0		VCC	٧	
VILM	Input Low Voltage (All Inputs)	0.0.		0.8	٧	
V _{OHM}	Output High Voltage (MOS)	4.35		VCC	٧	1 ₀ = -30 μA
VOHT	Output High Voltage (TTL)	2.4		VCC	٧	l _O = -50 μA
VOLM	Output Low Voltage (MOS)	VSS		0.4	· V	10 = 100 μA
VOLT	Output Low Voltage (TTL)	0.0		0.4	V	1 ₀ = 1.8 ma
V _O V	Overlap Voltage Of Any Two Adjacent Clock Phases	0.0		3.0	٧	
V _{CH}	Clock High Voltage (SEE NOTE)	11.8 12.0		13.0 13.7	V	$V_{DD} = 11.4 V_{DD} = 12.6$
VCL	Clock Low Voltage (SEE NOTE)	-0.6		0.5	٧	

NOTE: Linear interpolation applies for V_{CH} when V_{DD} is between 11.4V and 12.6V. No overshoot or undershoot allowable.

*Note: The majority of this current is used to precharge the output capacitance, CL; and therefore, is proportional to the CL precharged by the MICROM and the frequency of discharge.

CHECK BY APPD R & D	WESTERN & DIGITAL		CP1631B 512 X 22 MICROPROGRAM ROM (MICROM)		
APPD ENG	ISSUE DATE	SHEET 10	NUMBER 500281	REV.	
APPD OP'S		, ,	500201		

AC CHARACTERISTICS

 T_{CASE} = $\emptyset^{o}C$ to $70^{o}C$, V_{DD} = +12V ± .6V, V_{BB} = -3.9V ± .25V, V_{SS} = $\emptyset^{o}V$, V_{CC} = +5. $\emptyset^{o}V$ ±0.25V

SYMBOL.	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
1 _{PW}	Clock Width High (All Phases)	55		240	nsec	
¹c₩	Clock Width Low (All Phases)	75		300	nsec	
τ_{T}	Clock Transition Time (All Phases)	5			nsec	
TCYC	Clock Period (Ali Phases)	300		1000	nsec	
TMOL	Output Propagation Delay From Ø1 Clock			35	nsec	C _L = 50 pf
TPRE	Time To Precharge Outputs High			5 5	nsec	C _L = 25 pf
TMIS	Input Set-Up Time on MIB16 At Phase 3	20		,	nsec	
TTOL	TTL Out Switching Low			55	nsec	Figure 5
TAS	Address Set-Up Time	5			nsec	
TAH	Address Hold Time	Ø			nsec	·
TMOT	Output Transition Start Delay Time			20	nsec	C _L = 50 pf
TMIT	Input Transition Start Set-Up Time	35			nsec	
TAT	Address Transition Start Set-Up Time	25			nsec	

PREPARED BY CHECK BY		WESTERN (DIGITAL	CP1631B 512 X 22 MICROPROGRAM ROM (MICROM)		MC
APPORAD		ISSUE DATE	SHEET	NUMBER		REV.
AMO ENG			11	- 500281		М
APPO OF'S				L		ــــــــــــــــــــــــــــــــــــــ

HIS INFORMATION IS CONFIDENTIAL AND ROPRIETARY TO WDC AND SHALL NOT BE PHODUCED OR FURTHER DISCLOSED TO TYONE OTHER THAN WDC EMPLOYEES ITHOUT WRITTEN AUTHORIZATION FROM ESTERN DIGITAL CORPORATION.

CAPACITANCE

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
Cø1	Clock Phase 1 Capacitance		20	50	pf	
C _{Ø2}	Clock Phase 2 Capacitance	٠	40	60	pf	V _{IN} = ØV,
CØ3	Clock Phase 3 Capacitance		20	50	pf.	VIN = ØV, V _{SS} = ØV,
C _{Ø4}	Clock Phase 4 Capacitance		50	100	pf	$v_{DD} = \emptyset v$, $v_{BB} = -3.9 V$
c_D	Data Input/Output Pin Capacitance		5.0	8.0	pf	f = 1 MHz
$c_{\mathbb{C}}$	Clock To Clock Capacitance		3.0	6.0	pf	

PREPARED BY			Ø	TITLE CP1631B	
CHECK BY	11/1/	WESTERN	J BIBITAL	512 X 22 MICROPROGRAM ROM (MICROM)	
APPD R & D		ISSUE DATE	SHEET	NUMBER	REV
APPD ENG			12	500281	М
APPD OP'S			12	300261	

HIS INFORMATION IS CONFIDENTIAL AND HOPRIETARY TO WDC AND SHALL NOT BE FPHODUCED OR FURTHER DISCLOSED TO MYONE OTHER THAN WDC EMPLOYEES VITHOUT WRITTEN AUTHORIZATION FROM JESTERN DIGITAL CORPORATION.

FIGURE 4

PIN ASSIGNMENT CP1631B

		,	
PIN NO.	SIGNAL	PIN' NO.	SIGNAL
1	Ø3	. 21	Ø2
2	VBB	22	VCC
3	NC*	23	CHIP SELECT
4	NC	24	NC
5	NC	25	NC
6	NC	26	MIBII
7	MIB15	27	MIB1Ø
8	MIB14	28	MIBØ9
9 .	MIB13	29	MIBØ8
1Ø	MIB12	3Ø	MIBØ7
11	MIB16	31	MIBØ6
12	MIB17	32	MIBØ5
13	MIB18	33	MIBØ4
14	MIB19	34	MIBØ3
15	MIB2Ø	35	MIBØ2
16	MIB21	36	NC
17 .	NC	37	MIBØ1
18	NC	38	MIBØØ
19	VSS	39	VDD
2Ø	Ø4	40	Ø1

* NOTE: NC means No Connection.

PREPARED BY		WESTERN (5 minisar	CP1631B	
CHECK BY	WILE .		DIGITAL	512 X 22 MICROPROGRAM	
APPD R & D		ISSUE DATE	SHEET	ROM (MICROM) NUMBER	REV
APPD ENG			13	500281	M
APPD OP'S			_		

C P 1 6 1 1 B

NEW REVISIONS

REVISION	DATE	PAGES	CHANGES
G	3-25-75	1 6	New Title Page with new revision Old: The address remains on the bus for one complete clock cycle. The data is
			New: The address is valid on the bus during Phases 2, 3, and 4. The data is
		9	CE changes to CS
	•	10	New Clock Diagram
		11	Output delay times measured from 10% voltages of the clocks.
		12 13	Delete Supply Voltage V _{CC} . New
		14	New
		15	$V_{IN} = \emptyset V$ added, and 12V changed to $\emptyset V$ for V_{DD} .
		17	New TTL Output Test Load.
(G)	4-8-75 NOIE: Page 15	10 _becomes_Page_1	Added "For Clock Inputs and Outputs"
		•	
H	5-2-75	10	New Revision added to Title Page. Comment added: "This definition applies
		13	to clock, input and output pins." IL Condition line: V_{1N} - changed to V_{1N} =. V_{OLM} Condition line: I = changed to I_0 =.
		14	V_{CH} and V_{CL} line has same Condition comment. T_{DOV} and T_{DOT} line Condition statements changed to read: Fig. 5.
		17	Title added: Figure 5, and 50 pf added, from DUT line.
the fair the tips over one say the tips op to	NOTE: All page	s contain curre	nt revision letter (H).
l	11-10-75	11	Redrawn with output delays measured from 90% of clocks, TMOT and TMIT times added
		13	TA changed to T_{CASE} V_{BB} =-5.0 changed to V_{BB} = -3.9V I_{L} MAX ±5 changed to ±10 I_{BB} MAX 100 changed to -500 I_{LC} MAX ±30 changed to ±100
			IDDAVE TYP 10 changed to 20.0 IDDAVE MAX 20 changed to 35.0 VIHM MIN 4.0 changed to 4.25 VCH MIN 11.4 changed to 11.8 VCH MAX 12.6 changed to VDD + 1.1V VCL MIN 0.0 changed to -0.6 VIHT MIN 2.4 changed to 3.0 1.0V Overshoot and Undershoot Allowable changed
			to No Overshoot or Undershoot Allowable

CP1611B

NEW REVISIONS Contt

REVISION	DATE	PAGE	CHANGES
•	11-10-75	14	TA changed to TCASE VBB = -5.0V changed to VBB = -3.9V TPW MIN 40 changed to 55 TCW MIN 70 changed to 75 TT MAX dropped TMIH MIN 0 changed to 5 TMOL MAX 40 changed to 35 TJOL MAX 40 changed to 35 TDIS MIN 0 changed to 15 TDIH MIN 0 changed to 10 TWLS MIN 0 changed to 10 TWLS MIN 0 changed to 10 TMIT and TMOT added "NOTE: THESE TIMES, ETC." dropped
NOTE: All pages (current re Letter (1)		15	Cg1 TYP 30 changed to 40 Cg1 MAX 50 changed to 60 Cg2 TYP 30 changed to 40 Cg2 MAX 50 changed to 60 Cg3 TYP 30 changed to 40 Cg3 TYP 30 changed to 60 Cg3 MAX 50 changed to 60 Cg4 TYP 30 changed to 40 Cg4 MAX 50 changed to 60 Cg4 MAX 50 changed to 60 CD MAX 8.0 changed to 15.0 VBB = -5V changed to VBB = -3.9V
(1)	11-14-75	11	Twhen measured from 10% \emptyset_4 changed to 10% of \emptyset_1
acapted pople	spi 1/6/16	12	V _{BB} 0.5V changed to 1.0V Pin Voltages -0.5V changed to -1.0V Clock Voltages -0.5V changed to -1.0V Operating Temp. Range 70°C changed to 125°C (If V _{BB} is more, etc.) added to NOTE ** -0.5V changed to -0.6V
David K. M. 16/76	and and	13	ILC CONDITION 12.6V changed to 13.7V V _{IHM} MIN 4.25 changed to 4.1 V _{CH} MAX V _{DD} + 1.1V changed to 13.0 for V _{DD} = 11.4V, 13.7 for V _{DD} = 12.6 V _{CH} MIN 11.8 changed to 12.0 for V _{DD} = 12.7 NOTE added V _{IHT} MIN 3.0 changed to 2.4
()' \v	()	14	TDOV MAX 75 changed to 70 TDOT MAX 60 changed to 55 TWHS MIN 15 changed to 20 TWLS MIN 10 changed to 20

15