
5.5
P R O G R A M M E R ’ S G U I D E

VxWorks
®

Copyright 2002 Wind River Systems, Inc.

ALL RIGHTS RESERVED. No part of this publication may be copied in any form, by photocopy,
microfilm, retrieval system, or by any other means now known or hereafter invented without the prior
written permission of Wind River Systems, Inc.

AutoCode, Embedded Internet, Epilogue, ESp, FastJ, IxWorks, MATRIXX, pRISM, pRISM+, pSOS,
RouterWare, Tornado, VxWorks, wind, WindNavigator, Wind River Systems, WinRouter, and Xmath are
registered trademarks or service marks of Wind River Systems, Inc.

Attaché Plus, BetterState, Doctor Design, Embedded Desktop, Emissary, Envoy, How Smart Things Think,
HTMLWorks, MotorWorks, OSEKWorks, Personal JWorks, pSOS+, pSOSim, pSOSystem, SingleStep,
SNiFF+, VxDCOM, VxFusion, VxMP, VxSim, VxVMI, Wind Foundation Classes, WindC++, WindManage,
WindNet, Wind River, WindSurf, and WindView are trademarks or service marks of Wind River Systems,
Inc. This is a partial list. For a complete list of Wind River trademarks and service marks, see the following
URL:

http://www.windriver.com/corporate/html/trademark.html

Use of the above marks without the express written permission of Wind River Systems, Inc. is prohibited.
All other trademarks mentioned herein are the property of their respective owners.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.

toll free (U.S.): 800/545-WIND
telephone: 510/748-4100
facsimile: 510/749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

VxWorks Programmer’s Guide, 5.5

23 Jul 02
Part #: DOC-14617-ZD-00

1 Introduction ... 1

2 Basic OS .. 7

3 POSIX Standard Interfaces .. 73

4 I/O System ... 107

5 Local File Systems ... 193

6 Target Tools ... 241

7 C++ Development ... 275

8 Flash Memory Block Device Driver ... 295

9 VxDCOM Applications .. 345

10 Distributed Message Queues .. 395

11 Shared-Memory Objects .. 431

12 Virtual Memory Interface .. 465
iii

iv

Contents
1 Introduction .. 1

1.1 Overview ... 1

1.2 Related Documentation Resources .. 2

1.3 VxWorks Configuration and Build .. 2

1.4 Wind River Coding Conventions ... 3

1.5 Documentation Conventions .. 3

2 Basic OS .. 7

2.1 Introduction .. 7

2.2 VxWorks Tasks .. 8

2.2.1 Multitasking .. 8

2.2.2 Task State Transition .. 9

2.2.3 Wind Task Scheduling ... 10

Preemptive Priority Scheduling ... 11
Round-Robin Scheduling .. 12
Preemption Locks .. 13
A Comparison of taskLock() and intLock() 13
Driver Support Task Priority .. 14
v

VxWorks 5.5
Programmer’s Guide
2.2.4 Task Control .. 14

Task Creation and Activation .. 14
Task Stack .. 15
Task Names and IDs .. 15
Task Options ... 16
Task Information .. 17
Task Deletion and Deletion Safety .. 18
Task Control .. 19

2.2.5 Tasking Extensions .. 21

2.2.6 Task Error Status: errno .. 22

Layered Definitions of errno .. 22
A Separate errno Value for Each Task .. 23
Error Return Convention .. 23
Assignment of Error Status Values ... 24

2.2.7 Task Exception Handling ... 24

2.2.8 Shared Code and Reentrancy ... 25

Dynamic Stack Variables .. 27
Guarded Global and Static Variables .. 27
Task Variables ... 28
Multiple Tasks with the Same Main Routine 29

2.2.9 VxWorks System Tasks ... 30

2.3 Intertask Communications ... 32

2.3.1 Shared Data Structures ... 32

2.3.2 Mutual Exclusion ... 33

Interrupt Locks and Latency .. 33
Preemptive Locks and Latency .. 34

2.3.3 Semaphores .. 34

Semaphore Control .. 35
Binary Semaphores .. 36
Mutual-Exclusion Semaphores .. 40
Counting Semaphores ... 43
Special Semaphore Options ... 44
Semaphores and VxWorks Events .. 45
vi

2.3.4 Message Queues ... 47

Wind Message Queues .. 48
Displaying Message Queue Attributes ... 50
Servers and Clients with Message Queues 50
Message Queues and VxWorks Events ... 51

2.3.5 Pipes ... 53

2.3.6 Network Intertask Communication .. 53

Sockets ... 53
Remote Procedure Calls (RPC) .. 54

2.3.7 Signals .. 55

Basic Signal Routines ... 55
Signal Configuration ... 56

2.4 VxWorks Events .. 57

2.4.1 pSOS Events .. 58

Sending and Receiving Events ... 58
Waiting for Events .. 58
Registering for Events ... 59
Freeing Resources .. 59
pSOS Events API .. 59

2.4.2 VxWorks Events ... 60

Free Resource Definition ... 60
VxWorks Enhancements to pSOS Events 61
Task Events Register .. 62
VxWorks Events API ... 62
Show Routines .. 62

2.4.3 API Comparison ... 63

2.5 Watchdog Timers .. 64

2.6 Interrupt Service Code: ISRs ... 65

2.6.1 Connecting Routines to Interrupts .. 66

2.6.2 Interrupt Stack .. 67

2.6.3 Writing and Debugging ISRs .. 67
vii

VxWorks 5.5
Programmer’s Guide
2.6.4 Special Limitations of ISRs ... 68

2.6.5 Exceptions at Interrupt Level ... 69

2.6.6 Reserving High Interrupt Levels ... 70

2.6.7 Additional Restrictions for ISRs at High Interrupt Levels 70

2.6.8 Interrupt-to-Task Communication .. 71

3 POSIX Standard Interfaces .. 73

3.1 Introduction .. 73

3.2 POSIX Clocks and Timers ... 73

3.3 POSIX Memory-Locking Interface .. 74

3.4 POSIX Threads ... 75

3.4.1 POSIX Thread Attributes .. 76

Stack Size .. 76
Stack Address ... 76
Detach State .. 76
Contention Scope ... 77
Inherit Scheduling ... 77
Scheduling Policy .. 78
Scheduling Parameters ... 78
Specifying Attributes when Creating pThreads 79

3.4.2 Thread Private Data .. 80

3.4.3 Thread Cancellation .. 80

3.5 POSIX Scheduling Interface ... 81

3.5.1 Comparison of POSIX and Wind Scheduling 82

3.5.2 Getting and Setting POSIX Task Priorities 82

3.5.3 Getting and Displaying the Current Scheduling Policy 84

3.5.4 Getting Scheduling Parameters: Priority Limits and Time Slice 84

3.6 POSIX Semaphores .. 85

3.6.1 Comparison of POSIX and Wind Semaphores 86
viii

3.6.2 Using Unnamed Semaphores ... 87

3.6.3 Using Named Semaphores ... 89

3.7 POSIX Mutexes and Condition Variables ... 92

3.8 POSIX Message Queues .. 94

3.8.1 Comparison of POSIX and Wind Message Queues 94

3.8.2 POSIX Message Queue Attributes ... 95

3.8.3 Displaying Message Queue Attributes ... 97

3.8.4 Communicating Through a Message Queue 98

3.8.5 Notifying a Task that a Message is Waiting 100

3.9 POSIX Queued Signals .. 105

4 I/O System ... 107

4.1 Introduction .. 107

4.2 Files, Devices, and Drivers .. 109

4.2.1 Filenames and the Default Device ... 109

4.3 Basic I/O .. 111

4.3.1 File Descriptors ... 111

4.3.2 Standard Input, Standard Output, and Standard Error 112

Global Redirection ... 112
Task-Specific Redirection .. 112

4.3.3 Open and Close .. 113

4.3.4 Create and Delete ... 114

4.3.5 Read and Write ... 115

4.3.6 File Truncation .. 116

4.3.7 I/O Control ... 116

4.3.8 Pending on Multiple File Descriptors: The Select Facility 117
ix

VxWorks 5.5
Programmer’s Guide
4.4 Buffered I/O: stdio .. 120

4.4.1 Using stdio .. 120

4.4.2 Standard Input, Standard Output, and Standard Error 121

4.5 Other Formatted I/O ... 122

4.5.1 Special Cases: printf(), sprintf(), and sscanf() 122

4.5.2 Additional Routines: printErr() and fdprintf() 122

4.5.3 Message Logging ... 122

4.6 Asynchronous Input/Output .. 123

4.6.1 The POSIX AIO Routines ... 123

4.6.2 AIO Control Block ... 125

4.6.3 Using AIO ... 126

AIO with Periodic Checks for Completion 126
Alternatives for Testing AIO Completion 128

4.7 Devices in VxWorks ... 131

4.7.1 Serial I/O Devices (Terminal and Pseudo-Terminal Devices) 132

tty Options .. 132
Raw Mode and Line Mode ... 133
Tty Special Characters ... 133
I/O Control Functions .. 135

4.7.2 Pipe Devices ... 136

Creating Pipes .. 136
Writing to Pipes from ISRs ... 136
I/O Control Functions .. 136

4.7.3 Pseudo Memory Devices .. 137

Installing the Memory Driver .. 137
I/O Control Functions .. 137

4.7.4 Network File System (NFS) Devices ... 138

Mounting a Remote NFS File System from VxWorks 138
I/O Control Functions for NFS Clients .. 139

4.7.5 Non-NFS Network Devices .. 139
x

Creating Network Devices ... 140
I/O Control Functions ... 140

4.7.6 CBIO Interface .. 141

CBIO Disk Cache .. 141
CBIO Disk Partition Handler ... 143
CBIO RAM Disk ... 144
I/O Control Functions for CBIO Devices 144

4.7.7 Block Devices .. 145

Block Device File Systems ... 145
Block Device RAM Disk Drivers ... 145
SCSI Drivers .. 146

4.7.8 Sockets ... 156

4.8 Differences Between VxWorks and Host System I/O 156

4.9 Internal Structure .. 157

4.9.1 Drivers ... 160

The Driver Table and Installing Drivers ... 161
Example of Installing a Driver ... 162

4.9.2 Devices ... 162

The Device List and Adding Devices .. 162
Example of Adding Devices ... 163

4.9.3 File Descriptors ... 163

The Fd Table .. 164
Example of Opening a File ... 165
Example of Reading Data from the File .. 168
Example of Closing a File ... 168
Implementing select() ... 168
Cache Coherency .. 172

4.9.4 Block Devices .. 176

General Implementation ... 176
Low-Level Driver Initialization Routine .. 178
Device Creation Routine ... 178
Read Routine (Direct-Access Devices) .. 181
Read Routine (Sequential Devices) ... 182
xi

VxWorks 5.5
Programmer’s Guide
Write Routine (Direct-Access Devices) ... 182
Write Routine (Sequential Devices) .. 183
I/O Control Routine .. 183
Device-Reset Routine .. 184
Status-Check Routine .. 185
Write-Protected Media .. 186
Change in Ready Status .. 186
Write-File-Marks Routine (Sequential Devices) 186
Rewind Routine (Sequential Devices) .. 187
Reserve Routine (Sequential Devices) .. 187
Release Routine (Sequential Devices) ... 188
Read-Block-Limits Routine (Sequential Devices) 188
Load/Unload Routine (Sequential Devices) 189
Space Routine (Sequential Devices) .. 189
Erase Routine (Sequential Devices) .. 190

4.9.5 Driver Support Libraries .. 190

4.10 PCMCIA .. 191

4.11 Peripheral Component Interconnect: PCI .. 192

5 Local File Systems ... 193

5.1 Introduction .. 193

5.2 MS-DOS-Compatible File System: dosFs ... 194

5.2.1 Creating a dosFs File System ... 194

5.2.2 Configuring Your System ... 197

5.2.3 Initializing the dosFs File System .. 198

5.2.4 Creating a Block Device .. 198

5.2.5 Creating a Disk Cache ... 198

5.2.6 Creating and Using Partitions ... 198

5.2.7 Creating a dosFs Device ... 201

5.2.8 Formatting the Volume ... 201

File Allocation Table (FAT) Formats ... 202
Directory Formats .. 202
xii

5.2.9 Mounting Volumes .. 203

5.2.10 Demonstrating with Examples .. 203

5.2.11 Working with Volumes and Disks ... 210

Announcing Disk Changes with Ready-Change 211
Accessing Volume Configuration Information 211
Synchronizing Volumes .. 211

5.2.12 Working with Directories .. 211

Creating Subdirectories ... 211
Removing Subdirectories .. 212
Reading Directory Entries .. 212

5.2.13 Working with Files ... 213

File I/O .. 213
File Attributes ... 213

5.2.14 Disk Space Allocation Options .. 215

Choosing an Allocation Method .. 216
Using Cluster Group Allocation .. 216
Using Absolutely Contiguous Allocation 217

5.2.15 Crash Recovery and Volume Consistency 219

5.2.16 I/O Control Functions Supported by dosFsLib 219

5.3 Booting from a Local dosFs File System Using SCSI 221

5.4 Raw File System: rawFs ... 223

5.4.1 Disk Organization .. 223

5.4.2 Initializing the rawFs File System ... 223

5.4.3 Initializing a Device for Use With rawFs .. 224

5.4.4 Mounting Volumes .. 225

5.4.5 File I/O .. 225

5.4.6 Changing Disks .. 225

Un-mounting Volumes .. 225
Announcing Disk Changes with Ready-Change 226
Synchronizing Volumes .. 227
xiii

VxWorks 5.5
Programmer’s Guide
5.4.7 I/O Control Functions Supported by rawFsLib 227

5.5 Tape File System: tapeFs ... 228

5.5.1 Tape Organization ... 229

5.5.2 Initializing the tapeFs File System .. 229

Initializing a Device for Use With tapeFs 229
Systems with Fixed Block and Variable Block Devices 230

5.5.3 Mounting Volumes .. 231

5.5.4 File I/O .. 232

5.5.5 Changing Tapes ... 232

5.5.6 I/O Control Functions Supported by tapeFsLib 232

5.6 CD-ROM File System: cdromFs ... 234

5.7 The Target Server File System: TSFS ... 237

Socket Support ... 238
Error Handling ... 239
TSFS Configuration ... 239
Security Considerations .. 239

6 Target Tools ... 241

6.1 Introduction .. 241

6.2 Target-Resident Shell ... 242

6.2.1 Summarizing the Target and Host Shell Differences 242

6.2.2 Configuring VxWorks With the Target Shell 244

6.2.3 Using Target Shell Help and Control Characters 245

6.2.4 Loading and Unloading Object Modules from the Target Shell . 245

6.2.5 Debugging with the Target Shell ... 246

6.2.6 Aborting Routines Executing from the Target Shell 246

6.2.7 Using a Remote Login to the Target Shell 248

Remote Login From Host: telnet and rlogin 248
Remote Login Security .. 248
xiv

6.2.8 Distributing the Demangler ... 249

6.3 Target-Resident Loader ... 250

6.3.1 Configuring VxWorks with the Loader .. 251

6.3.2 Target-Loader API .. 252

6.3.3 Summary List of Loader Options .. 253

6.3.4 Loading C++ Modules .. 254

6.3.5 Specifying Memory Locations for Loading Objects 255

6.3.6 Constraints Affecting Loader Behavior .. 256

Relocatable Object Files ... 256
Object Module Formats ... 257
Linking and Reference Resolution .. 258
The Sequential Nature of Loading .. 259
Resolving Common Symbols ... 260

6.4 Target-Resident Symbol Tables .. 261

Symbol Entries .. 261
Symbol Updates ... 262
Searching the Symbol Library .. 262

6.4.1 Configuring VxWorks with Symbol Tables 262

Basic Configuration ... 262
System Symbol Table Configuration ... 263

6.4.2 Creating a Built-In System Symbol Table 264

Generating the Symbol Information ... 264
Compiling and Linking the Symbol File .. 264
Advantages of Using a Built-in System Symbol Table 265

6.4.3 Creating a Loadable System Symbol Table 265

Creating the .sym File .. 265
Loading the .sym File .. 266
Advantages of Using the Loadable System Symbol Table 266

6.4.4 Using the VxWorks System Symbol Table 266

6.4.5 Synchronizing Host and Target-Resident Symbol Tables 268

6.4.6 Creating User Symbol Tables ... 268
xv

VxWorks 5.5
Programmer’s Guide
6.5 Show Routines .. 268

6.6 Common Problems .. 270

Target Shell Debugging Never Hits a Breakpoint 270
Insufficient Memory .. 271
“Relocation Does Not Fit” Error Message 272
Missing Symbols .. 272
Loader is Using Too Much Memory ... 273
Symbol Table Unavailable .. 273

7 C++ Development ... 275

7.1 Introduction .. 275

7.2 Working with C++ under VxWorks .. 275

7.2.1 Making C++ Accessible to C Code ... 276

7.2.2 Adding Support Components ... 276

Basic Support Components .. 276
C++ Library Components .. 276

7.2.3 The C++ Demangler .. 278

7.3 Initializing and Finalizing Static Objects .. 278

7.3.1 Munching C++ Application Modules .. 278

Using GNU ... 279
Using Diab .. 279
Using a Generic Rule ... 280

7.3.2 Calling Static Constructors and Destructors Interactively 280

7.4 Programming with GNU C++ ... 281

7.4.1 Template Instantiation .. 281

-fimplicit-templates ... 282
-fmerge-templates .. 282
-fno-implicit-templates ... 282
-frepo ... 282

7.4.2 Exception Handling .. 284

Using the Pre-Exception Model ... 285
xvi

Exception Handling Overhead .. 285
Unhandled Exceptions .. 286

7.4.3 Run-Time Type Information ... 286

7.4.4 Namespaces .. 286

7.5 Programming with Diab C++ ... 288

7.5.1 Template Instantiation ... 288

-Ximplicit-templates .. 289
-Ximplicit-templates-off .. 289
-Xcomdat ... 289
-Xcomdat-off ... 289

7.5.2 Exception Handling ... 290

7.5.3 Run-Time Type Information ... 290

7.6 Using C++ Libraries ... 290

String and Complex Number Classes ... 290
iostreams Library ... 290
Standard Template Library (STL) .. 291

7.7 Running the Example Demo ... 292

8 Flash Memory Block Device Driver .. 295

8.1 Introduction .. 295

8.1.1 Choosing TrueFFS as a Medium .. 295

8.1.2 TrueFFS Layers ... 296

8.2 Building Systems with TrueFFS ... 298

8.3 Selecting an MTD Component ... 299

8.4 Identifying the Socket Driver ... 300

8.5 Configuring and Building the Project ... 300

8.5.1 Including File System Components .. 301

8.5.2 Including the Core Component ... 302
xvii

VxWorks 5.5
Programmer’s Guide
8.5.3 Including Utility Components ... 303

8.5.4 Including the MTD Component .. 303

8.5.5 Including the Translation Layer .. 304

8.5.6 Adding the Socket Driver ... 305

8.5.7 Building the System Project ... 305

8.6 Formatting the Device ... 306

8.6.1 Specifying the Drive Number .. 307

8.6.2 Formatting the Device ... 307

8.7 Creating a Region for Writing a Boot Image .. 309

8.7.1 Write Protecting Flash ... 309

8.7.2 Creating the Boot Image Region .. 309

Formatting at an Offset ... 310
Using a BSP Helper Routine .. 310

8.7.3 Writing the Boot Image to Flash .. 311

8.8 Mounting the Drive ... 312

8.9 Running the Shell Commands with Examples .. 313

8.10 Writing Socket Drivers .. 314

8.10.1 Porting the Socket Driver Stub File ... 315

Call the Socket Register Routines .. 316
Implement the Socket Structure Member Functions 316

8.10.2 Understanding Socket Driver Functionality 319

Socket Registration .. 320
Socket Member Functions .. 320
Socket Windowing and Address Mapping 322

8.11 Using the MTD-Supported Flash Devices .. 323

8.11.1 Supporting the Common Flash Interface (CFI) 323

Common Functionality ... 323
CFI/SCS Flash Support .. 324
xviii

AMD/Fujitsu CFI Flash Support ... 325

8.11.2 Supporting Other MTDs ... 325

Intel 28F016 Flash Support ... 325
Intel 28F008 Flash Support ... 326
AMD/Fujitsu Flash Support .. 326

8.11.3 Obtaining Disk On Chip Support .. 327

8.12 Writing MTD Components ... 327

8.12.1 Writing the MTD Identification Routine .. 328

Initializing the FLFLash Structure Members 329
Call Sequence .. 332

8.12.2 Writing the MTD Map Function .. 332

8.12.3 Writing the MTD Read, Write, and Erase Functions 333

Read Routine .. 333
Write Routine .. 334
Erase Routine .. 335

8.12.4 Defining Your MTD as a Component ... 335

Adding Your MTD to the Project Facility 336
Defining the MTD in the Socket Driver File 336

8.12.5 Registering the Identification Routine .. 336

8.13 Flash Memory Functionality ... 338

8.13.1 Block Allocation and Data Clusters .. 338

Block Allocation Algorithm .. 338
Benefits of Clustering .. 338

8.13.2 Read and Write Operations .. 339

Reading from Blocks .. 339
Writing to Previously Unwritten Blocks ... 339
Writing to Previously Written Blocks .. 340

8.13.3 Erase Cycles and Garbage Collection ... 340

Erasing Units .. 340
Reclaiming Erased Blocks ... 340
Over-Programming .. 341
xix

VxWorks 5.5
Programmer’s Guide
8.13.4 Optimization Methods .. 341

Wear Leveling .. 341
Garbage Collection .. 342

8.13.5 Fault Recovery in TrueFFS ... 343

Recovering During a Write Operation .. 343
Recovering Mapping Information .. 344
Recovering During Garbage Collection ... 344
Recovering During Formatting ... 344

9 VxDCOM Applications .. 345

9.1 Introduction .. 345

9.2 An Overview of COM Technology .. 346

9.2.1 COM Components and Software Reusability 346

COM Interfaces .. 347
CoClasses .. 347
Interface Pointers ... 348
VxDCOM Tools .. 348

9.2.2 VxDCOM and Real-time Distributed Technology 349

9.3 Using the Wind Object Template Library ... 350

9.3.1 WOTL Template Class Categories .. 350

9.3.2 True CoClass Template Classes ... 351

CComObjectRoot – IUnknown Implementation Support Class . 351
CComCoClass – CoClass Class Template 352

9.3.3 Lightweight Object Class Template .. 353

9.3.4 Single Instance Class Macro ... 354

9.4 Reading WOTL-Generated Code .. 354

9.4.1 WOTL CoClass Definitions .. 354

9.4.2 Macro Definitions Used in Generated Files 355

Mapping IDL Definitions to Interface Header Prototypes 356
Mapping Interface Prototypes to CoClass Method Definitions .. 356
Defining CoClass Methods in Implementation Files 357
xx

9.4.3 Interface Maps .. 357

9.5 Configuring DCOM Properties’ Parameters .. 358

9.6 Using the Wind IDL Compiler ... 360

9.6.1 Command-Line Syntax ... 360

9.6.2 Generated Code .. 361

9.6.3 Data Types ... 362

Automation Data Types .. 362
Non-Automation Data Types ... 363
SAFEARRAY with VARIANTS .. 364
HRESULT Return Values .. 365

9.7 Reading IDL Files ... 366

9.7.1 IDL File Structure ... 366

The import Directive ... 368
The Interface Definition .. 369
Library and CoClass Definitions ... 369

9.7.2 Definition Attributes ... 370

IDL File Attributes ... 370
Attribute Restrictions for VxDCOM ... 372
Directional Attributes for Interface Method Parameters 373

9.8 Adding Real-Time Extensions .. 374

9.8.1 Using Priority Schemes on VxWorks .. 374

Second Parameter Priority Scheme ... 374
Third Parameter Priority Level .. 375

9.8.2 Configuring Client Priority Propagation on Windows 375

9.8.3 Using Threadpools ... 376

9.9 Using OPC Interfaces ... 376

9.10 Writing VxDCOM Servers and Client Applications 377

9.10.1 Programming Issues .. 377
xxi

VxWorks 5.5
Programmer’s Guide
9.10.2 Writing a Server Program ... 378

Server Interfaces .. 378
Client Interaction ... 380

9.10.3 Writing Client Code .. 380

Determining the Client Type .. 380
Creating and Initializing the Client .. 381

9.10.4 Querying the Server .. 383

9.10.5 Executing the Client Code .. 385

9.11 Comparing VxDCOM and ATL Implementations. 385

9.11.1 CComObjectRoot ... 386

9.11.2 CComClassFactory .. 386

9.11.3 CComCoClass .. 387

9.11.4 CComObject ... 388

9.11.5 CComPtr ... 389

9.11.6 CComBSTR ... 390

9.11.7 VxComBSTR ... 391

9.11.8 CComVariant .. 393

10 Distributed Message Queues .. 395

10.1 Introduction .. 395

10.2 Configuring VxWorks with VxFusion .. 396

10.3 Using VxFusion .. 397

10.3.1 VxFusion System Architecture .. 397

10.3.2 VxFusion Initialization ... 400

10.3.3 Configuring VxFusion .. 401

10.3.4 Working with the Distributed Name Database 404

10.3.5 Working with Distributed Message Queues 408

10.3.6 Working with Group Message Queues .. 414
xxii

10.3.7 Working with Adapters .. 417

10.4 System Limitations ... 418

10.5 Node Startup ... 418

10.6 Telegrams and Messages ... 421

10.6.1 Telegrams Versus Messages .. 421

10.6.2 Telegram Buffers .. 422

10.7 Designing Adapters ... 423

10.7.1 Designing the Network Header ... 424

10.7.2 Writing an Initialization Routine ... 425

Using the DIST_IF Structure .. 426

10.7.3 Writing a Startup Routine ... 428

10.7.4 Writing a Send Routine ... 428

10.7.5 Writing an Input Routine .. 429

10.7.6 Writing an I/O Control Routine .. 430

11 Shared-Memory Objects .. 431

11.1 Introduction .. 431

11.2 Using Shared-Memory Objects .. 432

11.2.1 Name Database .. 433

11.2.2 Shared Semaphores .. 435

11.2.3 Shared Message Queues ... 439

11.2.4 Shared-Memory Allocator .. 444

Shared-Memory System Partition ... 444
User-Created Partitions ... 445
Using the Shared-Memory System Partition 445
Using User-Created Partitions ... 449
Side Effects of Shared-Memory Partition Options 451
xxiii

VxWorks 5.5
Programmer’s Guide
11.3 Internal Considerations ... 452

11.3.1 System Requirements .. 452

11.3.2 Spin-lock Mechanism .. 452

11.3.3 Interrupt Latency ... 453

11.3.4 Restrictions ... 453

11.3.5 Cache Coherency ... 454

11.4 Configuration ... 454

11.4.1 Shared-Memory Objects and Shared-Memory Network Driver 454

11.4.2 Shared-Memory Region .. 455

11.4.3 Initializing the Shared-Memory Objects Package 456

11.4.4 Configuration Example ... 459

11.4.5 Initialization Steps ... 461

11.5 Troubleshooting .. 461

11.5.1 Configuration Problems ... 461

11.5.2 Troubleshooting Techniques .. 462

12 Virtual Memory Interface ... 465

12.1 Introduction ... 465

12.2 Basic Virtual Memory Support .. 466

12.3 Virtual Memory Configuration .. 466

12.4 General Use ... 468

12.5 Using the MMU Programmatically ... 469

12.5.1 Virtual Memory Contexts ... 469

Global Virtual Memory ... 469
Initialization ... 470
Page States .. 470

12.5.2 Private Virtual Memory .. 471
xxiv

12.5.3 Noncacheable Memory ... 478

12.5.4 Nonwritable Memory .. 479

12.5.5 Troubleshooting ... 482

12.5.6 Precautions .. 483

Index .. 485
xxv

VxWorks 5.5
Programmer’s Guide
xxvi

1

Introduction
1.1 Overview

This manual describes the VxWorks real-time operating system, and how to use
VxWorks facilities in the development of real-time applications. This manual
covers the following topics, focusing first on basic product functionality and
facilities, then on optional products and technologies:

� basic operating system functionality

� POSIX standard interfaces

� I/O system

� local file systems, including dosFs

� target tools, such as the shell, target-based loader, and target symbol table

� C++ development using GNU and Diab toolchains

� flash memory device interface (TrueFFS)

� COM and DCOM (VxDCOM)

� distributed message queues (VxFusion)

� shared memory objects (VxMP)

� virtual memory interface (VxVMI)

This chapter describes where to find related documentation about VxWorks and
the Tornado development environment. In addition, it describes Wind River
customer services, and the document conventions followed in this manual.
1

VxWorks 5.5
Programmer’s Guide
1.2 Related Documentation Resources

Detailed information about VxWorks libraries and routines is provided in the
VxWorks API Reference. Information specific to target architectures is provided in
VxWorks architecture supplements,1 and in the online VxWorks BSP Reference.

The VxWorks networking facilities are documented in the VxWorks Network
Programmer’s Guide.

For information about migrating applications, BSPs, drivers, and Tornado projects
from previous versions of VxWorks and Tornado, see the Tornado Migration Guide.

See the following documents for information on installing and using the Tornado
development environment:

� The Tornado Getting Started Guide provides information about installing the
Tornado development environment and associated optional products.

� The Tornado User’s Guide provides procedural information about setting up the
development environment, and about using Tornado tools to develop
VxWorks applications. It includes information on configuring VxWorks
systems with the various components described in this guide, and on building
and running those systems.

For a complete description of Tornado documentation, see the Tornado Getting
Started Guide: Documentation Guide.

1.3 VxWorks Configuration and Build

This document describes VxWorks features and configuration options; it does not
discuss the mechanisms by which VxWorks-based systems are configured and
built. The tools and procedures used for configuring and building those
applications are described in the Tornado User’s Guide and the Tornado User’s
Reference.Tornado provides both GUI and command-line tools for configuration
and build.

1. For example, VxWorks for PowerPC Architecture Supplement, VxWorks for Pentium Architecture
Supplement, VxWorks for MIPS Architecture Supplement, and VxWorks for ARM Architecture
Supplement.
2

1

1
Introduction
1.4 Wind River Coding Conventions

Wind River has its own coding conventions, which can be seen in the examples in
the Tornado and VxWorks documentation. These conventions provide the basis for
generating the online Tornado and VxWorks API reference documentation from
source code. Following these conventions allows you to use the tools shipped with
Tornado to generate your own API documentation in HTML format. For more
information, see the Tornado User’s Guide: Coding Conventions.

1.5 Documentation Conventions

This section describes the documentation conventions used in this manual.

Typographical Conventions

VxWorks documentation uses the conventions shown in Table 1-1 to differentiate
various elements. Parentheses are always included to indicate a subroutine name,
as in printf().

NOTE: In this book, as well as in the VxWorks API Reference, VxWorks components
are identified by the name used in system configuration files, in the form of
INCLUDE_FOO. Similarly, configuration parameters are identified by their
configuration parameter names, such as NUM_FOO_FILES.

Component names can be used directly to identify components and configure
VxWorks if you work with the command-line configuration tool and the associated
configuration files. The same is true for configuration parameters.

If you use the GUI configuration mechanisms in the Tornado IDE, a simple search
facility allows you to locate a component in the GUI based on its component name.
Once you have located the component, you can also access the component’s
parameters through the GUI.
3

VxWorks 5.5
Programmer’s Guide
Cross-References

The cross-references that appear in this guide for subroutines, libraries, or tools
refer to entries in the VxWorks API Reference (for target routines or libraries) or in
the in the Tornado User’s Guide (for host tools). Cross-references to other books are
made at the chapter level, and take the form Book Title: Chapter Name; for example,
Tornado User’s Guide: Workspace.

For information about how to access online documentation, see the Tornado Getting
Started Guide: Documentation Guide.

Directory Pathnames

All VxWorks files reside in the target directory (and its subdirectories), directly
below the base Tornado installation directory. Because the installation directory is
determined by the user, the following format is used for pathnames:
installDir/target.

Table 1-1 Typographical Conventions

Term Example

files, pathnames /etc/hosts

libraries, drivers memLib, nfsDrv

host tools more, chkdsk

subroutines semTake()

boot commands p

code display main ();

keyboard input make CPU=MC68040 ...

display output value = 0

user-supplied parameters name

components and parameters INCLUDE_NFS

C keywords, cpp directives #define

named key on keyboard RETURN

control characters CTRL+C

lower-case acronyms fd
4

1

1
Introduction
For example, if you install Tornado in /home/tornado on a UNIX host, or in
C:\tornado on a Windows host, the full pathname for the file identified as
installDir/target/h/vxWorks.h in this guide would be /home/tornado/target/h/
vxworks.h or C:\tornado\target\h\vxWorks.h, respectively.

For UNIX users, installDir is equivalent to the Tornado environment variable
WIND_BASE.

NOTE: In this manual, forward slashes are used as pathname delimiters for both
UNIX and Windows filenames since this is the default for VxWorks.
5

VxWorks 5.5
Programmer’s Guide
6

2

Basic OS
2.1 Introduction

Modern real-time systems are based on the complementary concepts of
multitasking and intertask communications. A multitasking environment allows a
real-time application to be constructed as a set of independent tasks, each with its
own thread of execution and set of system resources. The intertask communication
facilities allow these tasks to synchronize and communicate in order to coordinate
their activity. In VxWorks, the intertask communication facilities range from fast
semaphores to message queues and from pipes to network-transparent sockets.

Another key facility in real-time systems is hardware interrupt handling, because
interrupts are the usual mechanism to inform a system of external events. To get
the fastest possible response to interrupts, interrupt service routines (ISRs) in
VxWorks run in a special context of their own, outside any task’s context.

This chapter discusses the tasking facilities, intertask communication, and the
interrupt handling facilities that are at the heart of the VxWorks run-time
environment. You can also use POSIX real-time extensions with VxWorks. For
more information, see 3. POSIX Standard Interfaces.
7

VxWorks 5.5
Programmer’s Guide
2.2 VxWorks Tasks

It is often essential to organize applications into independent, though cooperating,
programs. Each of these programs, while executing, is called a task. In VxWorks,
tasks have immediate, shared access to most system resources, while also
maintaining enough separate context to maintain individual threads of control.

2.2.1 Multitasking

Multitasking provides the fundamental mechanism for an application to control
and react to multiple, discrete real-world events. The VxWorks real-time kernel,
wind, provides the basic multitasking environment. Multitasking creates the
appearance of many threads of execution running concurrently when, in fact, the
kernel interleaves their execution on the basis of a scheduling algorithm. Each task
has its own context, which is the CPU environment and system resources that the
task sees each time it is scheduled to run by the kernel. On a context switch, a task’s
context is saved in the task control block (TCB).

A task’s context includes:

– a thread of execution; that is, the task’s program counter
– the CPU registers and (optionally) floating-point registers
– a stack for dynamic variables and function calls
– I/O assignments for standard input, output, and error
– a delay timer
– a time-slice timer
– kernel control structures
– signal handlers
– debugging and performance monitoring values

In VxWorks, one important resource that is not part of a task’s context is memory
address space: all code executes in a single common address space. Giving each
task its own memory space requires virtual-to-physical memory mapping, which
is available only with the optional product VxVMI; for more information, see
12. Virtual Memory Interface.

NOTE: The POSIX standard includes the concept of a thread, which is similar to a
task, but with some additional features. For details, see 3.4 POSIX Threads, p.75.
8

2

2
Basic OS
2.2.2 Task State Transition

The kernel maintains the current state of each task in the system. A task changes
from one state to another as a result of kernel function calls made by the
application. When created, tasks enter the suspended state. Activation is necessary
for a created task to enter the ready state. The activation phase is extremely fast,
enabling applications to pre-create tasks and activate them in a timely manner. An
alternative is the spawning primitive, which allows a task to be created and
activated with a single function. Tasks can be deleted from any state.

Table 2-1 describes the state symbols that you see when working with Tornado
development tools. Figure 2-1 shows the corresponding state diagram of the wind
kernel states.

Table 2-1 Task State Symbols

State Symbol Description

READY The state of a task that is not waiting for any resource other than the CPU.

PEND The state of a task that is blocked due to the unavailability of some
resource.

DELAY The state of a task that is asleep for some duration.

SUSPEND The state of a task that is unavailable for execution. This state is used
primarily for debugging. Suspension does not inhibit state transition,
only task execution. Thus, pended-suspended tasks can still unblock and
delayed-suspended tasks can still awaken.

DELAY + S The state of a task that is both delayed and suspended.

PEND + S The state of a task that is both pended and suspended.

PEND + T The state of a task that is pended with a timeout value.

PEND + S + T The state of a task that is both pended with a timeout value and
suspended.

state + I The state of task specified by state, plus an inherited priority.
9

VxWorks 5.5
Programmer’s Guide
2.2.3 Wind Task Scheduling

Multitasking requires a scheduling algorithm to allocate the CPU to ready tasks.
The default algorithm in wind is priority-based preemptive scheduling. You can
also select to use round-robin scheduling for your applications. Both algorithms
rely on the task’s priority. The wind kernel has 256 priority levels, numbered 0
through 255. Priority 0 is the highest and priority 255 is the lowest. Tasks are
assigned a priority when created. You can also change a task’s priority level while
it is executing by calling taskPrioritySet(). The ability to change task priorities
dynamically allows applications to track precedence changes in the real world.

The routines that control task scheduling are listed in Table 2-2. .

POSIX also provides a scheduling interface. For more information, see 3.5 POSIX
Scheduling Interface, p.81.

Figure 2-1 Task State Transitions

suspended

pended

taskInit()

The highest-priority ready task is executing.

ready delayed

ready pended
ready delayed
ready suspended

pended ready
pended suspended
delayed ready
delayed suspended

suspended ready
suspended pended
suspended delayed

semTake() / msgQReceive()
taskDelay()
taskSuspend()
semGive() / msgQSend()
taskSuspend()
expired delay
taskSuspend()
taskResume() / taskActivate()
taskResume()
taskResume()
10

2

2
Basic OS
Preemptive Priority Scheduling

A preemptive priority-based scheduler preempts the CPU when a task has a higher
priority than the current task running. Thus, the kernel ensures that the CPU is
always allocated to the highest priority task that is ready to run. This means that if
a task– with a higher priority than that of the current task– becomes ready to run,
the kernel immediately saves the current task’s context, and switches to the context
of the higher priority task. For example, in Figure 2-2, task t1 is preempted by
higher-priority task t2, which in turn is preempted by t3. When t3 completes, t2
continues executing. When t2 completes execution, t1 continues executing.

The disadvantage of this scheduling algorithm is that, when multiple tasks of
equal priority must share the processor, if a single task is never blocked, it can
usurp the processor. Thus, other equal-priority tasks are never given a chance to
run. Round-robin scheduling solves this problem.

Table 2-2 Task Scheduler Control Routines

Call Description

kernelTimeSlice() Controls round-robin scheduling.

taskPrioritySet() Changes the priority of a task.

taskLock() Disables task rescheduling.

taskUnlock() Enables task rescheduling.

Figure 2-2 Priority Preemption

t1

KEY: = preemption

time

HIGH

LOW

pr
io

rit
y

t3

t2

= task completion

t1

t2
11

VxWorks 5.5
Programmer’s Guide
Round-Robin Scheduling

A round-robin scheduling algorithm attempts to share the CPU fairly among all
ready tasks of the same priority. Round-robin scheduling uses time slicing to achieve
fair allocation of the CPU to all tasks with the same priority. Each task, in a group
of tasks with the same priority, executes for a defined interval or time slice.

Round-robin scheduling is enabled by calling kernelTimeSlice(), which takes a
parameter for a time slice, or interval. This interval is the amount of time each task
is allowed to run before relinquishing the processor to another equal-priority task.
Thus, the tasks rotate, each executing for an equal interval of time. No task gets a
second slice of time before all other tasks in the priority group have been allowed
to run.

In most systems, it is not necessary to enable round-robin scheduling, the
exception being when multiple copies of the same code are to be run, such as in a
user interface task.

If round-robin scheduling is enabled, and preemption is enabled for the executing
task, the system tick handler increments the task’s time-slice count. When the
specified time-slice interval is completed, the system tick handler clears the
counter and the task is placed at the tail of the list of tasks at its priority level. New
tasks joining a given priority group are placed at the tail of the group with their
run-time counter initialized to zero.

Enabling round-robin scheduling does not affect the performance of task context
switches, nor is additional memory allocated.

If a task blocks or is preempted by a higher priority task during its interval, its
time-slice count is saved and then restored when the task becomes eligible for
execution. In the case of preemption, the task will resume execution once the
higher priority task completes, assuming that no other task of a higher priority is
ready to run. In the case where the task blocks, it is placed at the tail of the list of
tasks at its priority level. If preemption is disabled during round-robin scheduling,
the time-slice count of the executing task is not incremented.

Time-slice counts are accrued by the task that is executing when a system tick
occurs, regardless of whether or not the task has executed for the entire tick
interval. Due to preemption by higher priority tasks or ISRs stealing CPU time
from the task, it is possible for a task to effectively execute for either more or less
total CPU time than its allotted time slice.

Figure 2-3 shows round-robin scheduling for three tasks of the same priority: t1, t2,
and t3. Task t2 is preempted by a higher priority task t4 but resumes at the count
where it left off when t4 is finished.
12

2

2
Basic OS
Preemption Locks

The wind scheduler can be explicitly disabled and enabled on a per-task basis with
the routines taskLock() and taskUnlock(). When a task disables the scheduler by
calling taskLock(), no priority-based preemption can take place while that task is
running.

However, if the task explicitly blocks or suspends, the scheduler selects the next
highest-priority eligible task to execute. When the preemption-locked task
unblocks and begins running again, preemption is again disabled.

Note that preemption locks prevent task context switching, but do not lock out
interrupt handling.

Preemption locks can be used to achieve mutual exclusion; however, keep the
duration of preemption locking to a minimum. For more information, see
2.3.2 Mutual Exclusion, p.33.

A Comparison of taskLock() and intLock()

When using taskLock(), consider that it will not achieve mutual exclusion.
Generally, if interrupted by hardware, the system will eventually return to your
task. However, if you block, you lose task lockout. Thus, before you return from
the routine, taskUnlock() should be called.

Figure 2-3 Round-Robin Scheduling

t1

KEY: = preemption

time

HIGH

LOW

pr
io

rit
y

t2 t3 t1

t4

t2 t2

= task completion

time slice

t3
13

VxWorks 5.5
Programmer’s Guide
When a task is accessing a variable or data structure that is also accessed by an ISR,
you can use intLock() to achieve mutual exclusion. Using intLock() makes the
operation “atomic” in a single processor environment. It is best if the operation is
kept minimal, meaning a few lines of code and no function calls. If the call is too
long, it can directly impact interrupt latency and cause the system to become far
less deterministic.

Driver Support Task Priority

All application tasks should be priority 100 - 250. However, driver “support” tasks
(tasks associated with an ISR) can be in the range of 51-99. These tasks are crucial;
for example, if a support task fails while copying data from a chip, the device loses
that data.1 The system netTask() is at priority 50, so user tasks should not be
assigned priorities below that task; if they are, the network connection could die
and prevent debugging capabilities with Tornado.

2.2.4 Task Control

The following sections give an overview of the basic VxWorks task routines, which
are found in the VxWorks library taskLib. These routines provide the means for
task creation and control, as well as for retrieving information about tasks. See the
VxWorks API Reference entry for taskLib for further information.

For interactive use, you can control VxWorks tasks from the host or target shell; see
the Tornado User’s Guide: Shell and 6. Target Tools in this manual.

Task Creation and Activation

The routines listed in Table 2-3 are used to create tasks.

The arguments to taskSpawn() are the new task’s name (an ASCII string), the
task’s priority, an “options” word, the stack size, the main routine address, and 10
arguments to be passed to the main routine as startup parameters:

id = taskSpawn (name, priority, options, stacksize, main, arg1, …arg10);

The taskSpawn() routine creates the new task context, which includes allocating
the stack and setting up the task environment to call the main routine (an ordinary

1. For example, a network interface, an HDLC, and so on.
14

2

2
Basic OS
subroutine) with the specified arguments. The new task begins execution at the
entry to the specified routine.

The taskSpawn() routine embodies the lower-level steps of allocation,
initialization, and activation. The initialization and activation functions are
provided by the routines taskInit() and taskActivate(); however, we recommend
you use these routines only when you need greater control over allocation or
activation.

Task Stack

It is hard to know exactly how much stack space to allocate, without reverse-
engineering the system configuration. To help avoid a stack overflow, and task
stack corruption, you can take the following approach. When initially allocating
the stack, make it much larger than anticipated; for example, from 20KB to up to
100KB, depending upon the type of application. Then, periodically monitor the
stack with checkStack(), and if it is safe to make them smaller, modify the size.

Task Names and IDs

When a task is spawned, you can specify an ASCII string of any length to be the
task name. VxWorks returns a task ID, which is a 4-byte handle to the task’s data
structures. Most VxWorks task routines take a task ID as the argument specifying
a task. VxWorks uses a convention that a task ID of 0 (zero) always implies the
calling task.

VxWorks does not require that task names be unique, but it is recommended that
unique names be used in order to avoid confusing the user. Furthermore, to use the
Tornado development tools to their best advantage, task names should not conflict
with globally visible routine or variable names. To avoid name conflicts, VxWorks

Table 2-3 Task Creation Routines

Call Description

taskSpawn() Spawns (creates and activates) a new task.

taskInit() Initializes a new task.

taskActivate() Activates an initialized task.
15

VxWorks 5.5
Programmer’s Guide
uses a convention of prefixing all task names started from the target with the
character t and task names started from the host with the character u.

You may not want to name some or all of your application’s tasks. If a NULL
pointer is supplied for the name argument of taskSpawn(), then VxWorks assigns
a unique name. The name is of the form tN, where N is a decimal integer that is
incremented by one for each unnamed task that is spawned.

The taskLib routines listed in Table 2-4 manage task IDs and names.

Task Options

When a task is spawned, you can pass in one or more option parameters, which are
listed in Table 2-5. The result is determined by performing a logical OR operation
on the specified options.

Table 2-4 Task Name and ID Routines

Call Description

taskName() Gets the task name associated with a task ID.

taskNameToId() Looks up the task ID associated with a task name.

taskIdSelf() Gets the calling task’s ID.

taskIdVerify() Verifies the existence of a specified task.

Table 2-5 Task Options

Name Hex Value Description

VX_FP_TASK 0x0008 Executes with the floating-point coprocessor.

VX_NO_STACK_FILL 0x0100 Does not fill the stack with 0xee.

VX_PRIVATE_ENV 0x0080 Executes a task with a private environment.

VX_UNBREAKABLE 0x0002 Disables breakpoints for the task.

VX_DSP_TASK 0x0200 1 = DSP coprocessor support.

VX_ALTIVEC_TASK 0x0400 1 = ALTIVEC coprocessor support.
16

2

2
Basic OS
You must include the VX_FP_TASK option when creating a task that:

� Performs floating-point operations.

� Calls any function that returns a floating-point value.

� Calls any function that takes a floating-point value as an argument.

For example:

tid = taskSpawn ("tMyTask", 90, VX_FP_TASK, 20000, myFunc, 2387, 0, 0,
0, 0, 0, 0, 0, 0, 0);

Some routines perform floating-point operations internally. The VxWorks
documentation for each of these routines clearly states the need to use the
VX_FP_TASK option.

After a task is spawned, you can examine or alter task options by using the
routines listed in Table 2-6. Currently, only the VX_UNBREAKABLE option can be
altered.

Task Information

The routines listed in Table 2-7 get information about a task by taking a snapshot
of a task’s context when the routine is called. Because the task state is dynamic, the
information may not be current unless the task is known to be dormant (that is,
suspended).

Table 2-6 Task Option Routines

Call Description

taskOptionsGet() Examines task options.

taskOptionsSet() Sets task options.

Table 2-7 Task Information Routines

Call Description

taskIdListGet() Fills an array with the IDs of all active tasks.

taskInfoGet() Gets information about a task.

taskPriorityGet() Examines the priority of a task.

taskRegsGet() Examines a task’s registers (cannot be used with the current task).
17

VxWorks 5.5
Programmer’s Guide
Task Deletion and Deletion Safety

Tasks can be dynamically deleted from the system. VxWorks includes the routines
listed in Table 2-8 to delete tasks and to protect tasks from unexpected deletion.

Tasks implicitly call exit() if the entry routine specified during task creation
returns. A task can kill another task or itself by calling taskDelete().

When a task is deleted, no other task is notified of this deletion. The routines
taskSafe() and taskUnsafe() address problems that stem from unexpected
deletion of tasks. The routine taskSafe() protects a task from deletion by other
tasks. This protection is often needed when a task executes in a critical region or
engages a critical resource.

taskRegsSet() Sets a task’s registers (cannot be used with the current task).

taskIsSuspended() Checks whether a task is suspended.

taskIsReady() Checks whether a task is ready to run.

taskTcb() Gets a pointer to a task’s control block.

Table 2-8 Task-Deletion Routines

Call Description

exit() Terminates the calling task and frees memory
(task stacks and task control blocks only).*

* Memory that is allocated by the task during its execution is not freed when the task
is terminated.

taskDelete() Terminates a specified task and frees memory
(task stacks and task control blocks only).*

taskSafe() Protects the calling task from deletion.

taskUnsafe() Undoes a taskSafe() (makes the calling task available for deletion).

! WARNING: Make sure that tasks are not deleted at inappropriate times. Before an
application deletes a task, the task should release all shared resources that it holds.

Table 2-7 Task Information Routines

Call Description
18

2

2
Basic OS
For example, a task might take a semaphore for exclusive access to some data
structure. While executing inside the critical region, the task might be deleted by
another task. Because the task is unable to complete the critical region, the data
structure might be left in a corrupt or inconsistent state. Furthermore, because the
semaphore can never be released by the task, the critical resource is now
unavailable for use by any other task and is essentially frozen.

Using taskSafe() to protect the task that took the semaphore prevents such an
outcome. Any task that tries to delete a task protected with taskSafe() is blocked.
When finished with its critical resource, the protected task can make itself available
for deletion by calling taskUnsafe(), which readies any deleting task. To support
nested deletion-safe regions, a count is kept of the number of times taskSafe() and
taskUnsafe() are called. Deletion is allowed only when the count is zero, that is,
there are as many “unsafes” as “safes.” Only the calling task is protected. A task
cannot make another task safe or unsafe from deletion.

The following code fragment shows how to use taskSafe() and taskUnsafe() to
protect a critical region of code:

taskSafe ();
semTake (semId, WAIT_FOREVER); /* Block until semaphore available */
.
. /* critical region code */
.
semGive (semId); /* Release semaphore */
taskUnsafe ();

Deletion safety is often coupled closely with mutual exclusion, as in this example.
For convenience and efficiency, a special kind of semaphore, the mutual-exclusion
semaphore, offers an option for deletion safety. For more information, see Mutual-
Exclusion Semaphores, p.40.

Task Control

The routines listed in Table 2-9 provide direct control over a task’s execution.

VxWorks debugging facilities require routines for suspending and resuming a
task. They are used to freeze a task’s state for examination.

NOTE: You can use VxWorks events to send an event when a task finishes
executing. For more information, see 2.4 VxWorks Events, p.57.
19

VxWorks 5.5
Programmer’s Guide
Tasks may require restarting during execution in response to some catastrophic
error. The restart mechanism, taskRestart(), recreates a task with the original
creation arguments.

Delay operations provide a simple mechanism for a task to sleep for a fixed
duration. Task delays are often used for polling applications. For example, to delay
a task for half a second without making assumptions about the clock rate, call:

taskDelay (sysClkRateGet () / 2);

The routine sysClkRateGet() returns the speed of the system clock in ticks per
second. Instead of taskDelay(), you can use the POSIX routine nanosleep() to
specify a delay directly in time units. Only the units are different; the resolution of
both delay routines is the same, and depends on the system clock. For details, see
3.2 POSIX Clocks and Timers, p.73.

As a side effect, taskDelay() moves the calling task to the end of the ready queue
for tasks of the same priority. In particular, you can yield the CPU to any other
tasks of the same priority by “delaying” for zero clock ticks:

taskDelay (NO_WAIT); /* allow other tasks of same priority to run */

A “delay” of zero duration is only possible with taskDelay(); nanosleep()
considers it an error.

System clock resolution is typically 60Hz (60 times per second). This is a relatively
long time for one clock tick, and would be even at 100Hz or 120Hz. Thus, since
periodic delaying is effectively polling, you may want to consider using event-
driven techniques as an alternative.

Table 2-9 Task Control Routines

Call Description

taskSuspend() Suspends a task.

taskResume() Resumes a task.

taskRestart() Restarts a task.

taskDelay() Delays a task; delay units are ticks, resolution in ticks.

nanosleep() Delays a task; delay units are nanoseconds, resolution in ticks.

NOTE: ANSI and POSIX APIs are similar.
20

2

2
Basic OS
2.2.5 Tasking Extensions

To allow additional task-related facilities to be added to the system, VxWorks
provides hook routines that allow additional routines to be invoked whenever a
task is created, a task context switch occurs, or a task is deleted. There are spare
fields in the task control block (TCB) available for application extension of a task’s
context

These hook routines are listed in Table 2-10; for more information, see the reference
entry for taskHookLib. .

When using hook routines, be aware of the following restrictions:

� Task switch hook routines must not assume any VM context is current other
than the kernel context (as with ISRs).

� Task switch and swap hooks must not rely on knowledge of the current task or
invoke any function that relies on this information; for example, taskIdSelf().

� A switch or swap hook must not rely on the taskIdVerify(pOldTcb)
mechanism to determine if the delete hook, if any, has already executed for the
self-destructing task case. Instead, some other state information needs to be
changed; for example, using a NULL pointer in the delete hook to be detected
by the switch hook.

The taskCreateAction hook routines execute in the context of the creator task, and
any new objects are owned by the creator task’s home protection domain, or the
creator task itself. It may, therefore, be necessary to assign the ownership of new
objects to the task that is created in order to prevent undesirable object reclamation
in the event that the creator task terminates.

Table 2-10 Task Create, Switch, and Delete Hooks

Call Description

taskCreateHookAdd() Adds a routine to be called at every task create.

taskCreateHookDelete() Deletes a previously added task create routine.

taskSwitchHookAdd() Adds a routine to be called at every task switch.

taskSwitchHookDelete() Deletes a previously added task switch routine.

taskDeleteHookAdd() Adds a routine to be called at every task delete.

taskDeleteHookDelete() Deletes a previously added task delete routine.
21

VxWorks 5.5
Programmer’s Guide
User-installed switch hooks are called within the kernel context and therefore do
not have access to all VxWorks facilities. Table 2-11 summarizes the routines that
can be called from a task switch hook; in general, any routine that does not involve
the kernel can be called.

2.2.6 Task Error Status: errno

By convention, C library functions set a single global integer variable errno to an
appropriate error number whenever the function encounters an error. This
convention is specified as part of the ANSI C standard.

Layered Definitions of errno

In VxWorks, errno is simultaneously defined in two different ways. There is, as in
ANSI C, an underlying global variable called errno, which you can display by
name using Tornado development tools; see the Tornado User’s Guide. However,
errno is also defined as a macro in errno.h; this is the definition visible to all of
VxWorks except for one function. The macro is defined as a call to a function

Table 2-11 Routines that Can Be Called by Task Switch Hooks

Library Routines

bLib All routines

fppArchLib fppSave(), fppRestore()

intLib intContext(), intCount(), intVecSet(), intVecGet(), intLock(),
intUnlock()

lstLib All routines except lstFree()

mathALib All are callable if fppSave()/fppRestore() are used

rngLib All routines except rngCreate() and roundlet()

taskLib taskIdVerify(), taskIdDefault(), taskIsReady(), taskIsSuspended(),
taskTcb()

vxLib vxTas()

NOTE: For information about POSIX extensions, see 3. POSIX Standard Interfaces.
22

2

2
Basic OS
__errno()that returns the address of the global variable, errno (as you might
guess, this is the single function that does not itself use the macro definition for
errno). This subterfuge yields a useful feature: because __errno()is a function, you
can place breakpoints on it while debugging, to determine where a particular error
occurs.

Nevertheless, because the result of the macro errno is the address of the global
variable errno, C programs can set the value of errno in the standard way:

errno = someErrorNumber;

As with any other errno implementation, take care not to have a local variable of
the same name.

A Separate errno Value for Each Task

In VxWorks, the underlying global errno is a single predefined global variable that
can be referenced directly by application code that is linked with VxWorks (either
statically on the host or dynamically at load time). However, for errno to be useful
in the multitasking environment of VxWorks, each task must see its own version
of errno. Therefore errno is saved and restored by the kernel as part of each task’s
context every time a context switch occurs. Similarly, interrupt service routines (ISRs)
see their own versions of errno.

This is accomplished by saving and restoring errno on the interrupt stack as part
of the interrupt enter and exit code provided automatically by the kernel (see
2.6.1 Connecting Routines to Interrupts, p.66). Thus, regardless of the VxWorks
context, an error code can be stored or consulted with direct manipulation of the
global variable errno.

Error Return Convention

Almost all VxWorks functions follow a convention that indicates simple success or
failure of their operation by the actual return value of the function. Many functions
return only the status values OK (0) or ERROR (-1). Some functions that normally
return a nonnegative number (for example, open() returns a file descriptor) also
return ERROR to indicate an error. Functions that return a pointer usually return
NULL (0) to indicate an error. In most cases, a function returning such an error
indication also sets errno to the specific error code.

The global variable errno is never cleared by VxWorks routines. Thus, its value
always indicates the last error status set. When a VxWorks subroutine gets an error
23

VxWorks 5.5
Programmer’s Guide
indication from a call to another routine, it usually returns its own error indication
without modifying errno. Thus, the value of errno that is set in the lower-level
routine remains available as the indication of error type.

For example, the VxWorks routine intConnect(), which connects a user routine to
a hardware interrupt, allocates memory by calling malloc() and builds the
interrupt driver in this allocated memory. If malloc() fails because insufficient
memory remains in the pool, it sets errno to a code indicating an insufficient-
memory error was encountered in the memory allocation library, memLib. The
malloc() routine then returns NULL to indicate the failure. The intConnect()
routine, receiving the NULL from malloc(), then returns its own error indication of
ERROR. However, it does not alter errno leaving it at the “insufficient memory”
code set by malloc(). For example:

if ((pNew = malloc (CHUNK_SIZE)) == NULL)
return (ERROR);

It is recommended that you use this mechanism in your own subroutines, setting
and examining errno as a debugging technique. A string constant associated with
errno can be displayed using printErrno() if the errno value has a corresponding
string entered in the error-status symbol table, statSymTbl. See the reference entry
errnoLib for details on error-status values and building statSymTbl.

Assignment of Error Status Values

VxWorks errno values encode the module that issues the error, in the most
significant two bytes, and uses the least significant two bytes for individual error
numbers. All VxWorks module numbers are in the range 1–500; errno values with
a “module” number of zero are used for source compatibility.

All other errno values (that is, positive values greater than or equal to 501<<16,
and all negative values) are available for application use.

See the reference entry on errnoLib for more information about defining and
decoding errno values with this convention.

2.2.7 Task Exception Handling

Errors in program code or data can cause hardware exception conditions such as
illegal instructions, bus or address errors, divide by zero, and so forth. The
VxWorks exception handling package takes care of all such exceptions. The default
exception handler suspends the task that caused the exception, and saves the state
24

2

2
Basic OS
of the task at the point of the exception. The kernel and other tasks continue
uninterrupted. A description of the exception is transmitted to the Tornado
development tools, which can be used to examine the suspended task; see the
Tornado User’s Guide: Shell for details.

Tasks can also attach their own handlers for certain hardware exceptions through
the signal facility. If a task has supplied a signal handler for an exception, the
default exception handling described above is not performed. A user-defined
signal handler is useful for recovering from catastrophic events. Typically,
setjmp() is called to define the point in the program where control will be restored,
and longjmp() is called in the signal handler to restore that context. Note that
longjmp() restores the state of the task’s signal mask.

Signals are also used for signaling software exceptions as well as hardware
exceptions. They are described in more detail in 2.3.7 Signals, p.55 and in the
reference entry for sigLib.

2.2.8 Shared Code and Reentrancy

In VxWorks, it is common for a single copy of a subroutine or subroutine library to
be invoked by many different tasks. For example, many tasks may call printf(),
but there is only a single copy of the subroutine in the system. A single copy of
code executed by multiple tasks is called shared code. VxWorks dynamic linking
facilities make this especially easy. Shared code makes a system more efficient and
easier to maintain; see Figure 2-4.

Shared code must be reentrant. A subroutine is reentrant if a single copy of the
routine can be called from several task contexts simultaneously without conflict.
Such conflict typically occurs when a subroutine modifies global or static
variables, because there is only a single copy of the data and code. A routine’s
references to such variables can overlap and interfere in invocations from different
task contexts.

Most routines in VxWorks are reentrant. However, you should assume that any
routine someName() is not reentrant if there is a corresponding routine named
someName_r() — the latter is provided as a reentrant version of the routine. For
example, because ldiv() has a corresponding routine ldiv_r(), you can assume
that ldiv() is not reentrant.

VxWorks I/O and driver routines are reentrant, but require careful application
design. For buffered I/O, we recommend using file-pointer buffers on a per-task
basis. At the driver level, it is possible to load buffers with streams from different
tasks, due to the global file descriptor table in VxWorks.
25

VxWorks 5.5
Programmer’s Guide
This may or may not be desirable, depending on the nature of the application. For
example, a packet driver can mix streams from different tasks because the packet
header identifies the destination of each packet.

The majority of VxWorks routines use the following reentrancy techniques:

– dynamic stack variables

– global and static variables guarded by semaphores

– task variables

We recommend applying these same techniques when writing application code
that can be called from several task contexts simultaneously.

Figure 2-4 Shared Code

NOTE: In some cases reentrant code is not preferable. A critical section should use
a binary semaphore to guard it, or use intLock() or intUnlock() if called from by
an ISR.

NOTE: Init() functions should be callable multiple times, even if logically they
should only be called once. As a rule, functions should avoid static variables that
keep state information. Init() functions are one exception, where using a static
variable that returns the success or failure of the original Init() is appropriate.

TASKS SHARED CODE

...

taskTwo (void)
{
myFunc();

...
}

myFunc();

taskOne (void)
{
...

...
}

}

myFunc (void)
{
...
26

2

2
Basic OS
Dynamic Stack Variables

Many subroutines are pure code, having no data of their own except dynamic stack
variables. They work exclusively on data provided by the caller as parameters. The
linked-list library, lstLib, is a good example of this. Its routines operate on lists and
nodes provided by the caller in each subroutine call.

Subroutines of this kind are inherently reentrant. Multiple tasks can use such
routines simultaneously, without interfering with each other, because each task
does indeed have its own stack. See Figure 2-5.

Guarded Global and Static Variables

Some libraries encapsulate access to common data. This kind of library requires
some caution because the routines are not inherently reentrant. Multiple tasks
simultaneously invoking the routines in the library might interfere with access to
common variables. Such libraries must be made explicitly reentrant by providing
a mutual-exclusion mechanism to prohibit tasks from simultaneously executing
critical sections of code. The usual mutual-exclusion mechanism is the mutex
semaphore facility provided by semMLib and described in Mutual-Exclusion
Semaphores, p.40.

Figure 2-5 Stack Variables and Shared Code

TASKS COMMON SUBROUTINETASK STACKS

...
var = 1
...

...
var = 2
...

comFunc(1);

taskOne ()
{
...

...
}

comFunc(2);

taskTwo ()
{
...

...
}

}

comFunc (arg)
{
int var = arg;
27

VxWorks 5.5
Programmer’s Guide
Task Variables

Some routines that can be called by multiple tasks simultaneously may require
global or static variables with a distinct value for each calling task. For example,
several tasks may reference a private buffer of memory and yet refer to it with the
same global variable.

To accommodate this, VxWorks provides a facility called task variables that allows
4-byte variables to be added to a task’s context, so that the value of such a variable
is switched every time a task switch occurs to or from its owner task. Typically,
several tasks declare the same variable (4-byte memory location) as a task variable.
Each of those tasks can then treat that single memory location as its own private
variable; see Figure 2-6. This facility is provided by the routines taskVarAdd(),
taskVarDelete(), taskVarSet(), and taskVarGet(), which are described in the
reference entry for taskVarLib.

Use this mechanism sparingly. Each task variable adds a few microseconds to the
context switching time for its task, because the value of the variable must be saved
and restored as part of the task’s context. Consider collecting all of a module’s task
variables into a single dynamically allocated structure, and then making all
accesses to that structure indirectly through a single pointer. This pointer can then
be the task variable for all tasks using that module.

Figure 2-6 Task Variables and Context Switches

OLD TCB

pTaskVar globDat

NEW TCB

pTaskVar

value saved
in old

task’s TCB

value restored
from new

task’s TCB

current value of
globDat

globDat
28

2

2
Basic OS
Multiple Tasks with the Same Main Routine

With VxWorks, it is possible to spawn several tasks with the same main routine.
Each spawn creates a new task with its own stack and context. Each spawn can also
pass the main routine different parameters to the new task. In this case, the same
rules of reentrancy described in Task Variables, p.28 apply to the entire task.

This is useful when the same function needs to be performed concurrently with
different sets of parameters. For example, a routine that monitors a particular kind
of equipment might be spawned several times to monitor several different pieces
of that equipment. The arguments to the main routine could indicate which
particular piece of equipment the task is to monitor.

In Figure 2-7, multiple joints of the mechanical arm use the same code. The tasks
manipulating the joints invoke joint(). The joint number (jointNum) is used to
indicate which joint on the arm to manipulate.

Figure 2-7 Multiple Tasks Utilizing Same Code

joint_1

joint_2

joint_3

joint
(
int jointNum
)
{
/* joint code here */
}

29

VxWorks 5.5
Programmer’s Guide
2.2.9 VxWorks System Tasks

Depending on its configuration, VxWorks may include a variety of system tasks.
These are described below.

Root Task: tUsrRoot

The root task is the first task executed by the kernel. The entry point of the root task
is usrRoot()in installDir/target/config/all/usrConfig.c and initializes most
VxWorks facilities. It spawns such tasks as the logging task, the exception task, the
network task, and the tRlogind daemon. Normally, the root task terminates and is
deleted after all initialization has occurred.

Logging Task: tLogTask

The log task, tLogTask, is used by VxWorks modules to log system messages
without having to perform I/O in the current task context. For more information,
see 4.5.3 Message Logging, p.122 and the reference entry for logLib.

Exception Task: tExcTask

The exception task, tExcTask, supports the VxWorks exception handling package
by performing functions that cannot occur at interrupt level. It is also used for
actions that cannot be performed in the current task’s context, such as task suicide.
It must have the highest priority in the system. Do not suspend, delete, or change
the priority of this task. For more information, see the reference entry for excLib.

Network Task: tNetTask

The tNetTask daemon handles the task-level functions required by the VxWorks
network. Configure VxWorks with the INCLUDE_NET_LIB component to spawn
the tNetTask task.

Target Agent Task: tWdbTask

The target agent task, tWdbTask, is created if the target agent is set to run in task
mode. It services requests from the Tornado target server; for information about
this server, see the Tornado User’s Guide: Overview. Configure VxWorks with the
INCLUDE_WDB component to include the target agent.

Tasks for Optional Components

The following VxWorks system tasks are created if their associated configuration
constants are defined; for more information, see the Tornado User’s Guide:
Configuration and Build.
30

2

2
Basic OS
tShell
If you have included the target shell in the VxWorks configuration, it is
spawned as this task. Any routine or task that is invoked from the target shell,
rather than spawned, runs in the tShell context. For more information, see
6. Target Tools. Configure VxWorks with the INCLUDE_SHELL component to
include the target shell.

tRlogind
If you have included the target shell and the rlogin facility in the VxWorks
configuration, this daemon allows remote users to log in to VxWorks. It
accepts a remote login request from another VxWorks or host system and
spawns tRlogInTask and tRlogOutTask. These tasks exist as long as the
remote user is logged on. During the remote session, the shell’s (and any other
task’s) input and output are redirected to the remote user. A tty-like interface
is provided to the remote user through the use of the VxWorks pseudo-
terminal driver, ptyDrv. For more information, see 4.7.1 Serial I/O Devices
(Terminal and Pseudo-Terminal Devices), p.132 and the reference entry for
ptyDrv. Configure VxWorks with the INCLUDE_RLOGIN component to
include the rlogin facility.

tTelnetd
If you have included the target shell and the telnet facility in the VxWorks
configuration, this daemon allows remote users to log in to VxWorks with
telnet. It accepts a remote login request from another VxWorks or host system
and spawns the input task tTelnetInTask and output task tTelnetOutTask.
These tasks exist as long as the remote user is logged on. During the remote
session, the shell’s (and any other task’s) input and output are redirected to the
remote user. A tty-like interface is provided to the remote user through the use
of the VxWorks pseudo-terminal driver, ptyDrv. See 4.7.1 Serial I/O Devices
(Terminal and Pseudo-Terminal Devices), p.132 and the reference entry for
ptyDrv for further explanation. Configure VxWorks with the
INCLUDE_TELNET component to include the telnet facility.

tPortmapd
If you have included the RPC facility in the VxWorks configuration, this
daemon is an RPC server that acts as a central registrar for RPC servers
running on the same machine. RPC clients query the tPortmapd daemon to
find out how to contact the various servers. Configure VxWorks with the
INCLUDE_RPC component to include the portmap facility.
31

VxWorks 5.5
Programmer’s Guide
2.3 Intertask Communications

The complement to the multitasking routines described in 2.2 VxWorks Tasks, p.8 is
the intertask communication facilities. These facilities permit independent tasks to
coordinate their actions.

VxWorks supplies a rich set of intertask communication mechanisms, including:

� Shared memory, for simple sharing of data.
� Semaphores, for basic mutual exclusion and synchronization.
� Mutexes and condition variables for mutual exclusion and synchronization using

POSIX interfaces.
� Message queues and pipes, for intertask message passing within a CPU.
� Sockets and remote procedure calls, for network-transparent intertask

communication.
� Signals, for exception handling.

The optional products VxMP and VxFusion provide for intertask communication
between multiple CPUs. See 11. Shared-Memory Objects and 10. Distributed Message
Queues.

2.3.1 Shared Data Structures

The most obvious way for tasks to communicate is by accessing shared data
structures. Because all tasks in VxWorks exist in a single linear address space,
sharing data structures between tasks is trivial; see Figure 2-8. Global variables,
linear buffers, ring buffers, linked lists, and pointers can be referenced directly by
code running in different contexts.

Figure 2-8 Shared Data Structures

TASKS MEMORY

task 1

task 2

task 3

access
sharedData

access
sharedData

access
sharedData

sharedData
32

2

2
Basic OS
2.3.2 Mutual Exclusion

While a shared address space simplifies exchange of data, interlocking access to
memory is crucial to avoid contention. Many methods exist for obtaining exclusive
access to resources, and vary only in the scope of the exclusion. Such methods
include disabling interrupts, disabling preemption, and resource locking with
semaphores.

For information about POSIX mutexes, see 3.7 POSIX Mutexes and Condition
Variables, p.92.

Interrupt Locks and Latency

The most powerful method available for mutual exclusion is the disabling of
interrupts. Such a lock guarantees exclusive access to the CPU:

funcA ()
{
int lock = intLock();
.
. /* critical region of code that cannot be interrupted */
.
intUnlock (lock);
}

While this solves problems involving mutual exclusion with ISRs, it is
inappropriate as a general-purpose mutual-exclusion method for most real-time
systems, because it prevents the system from responding to external events for the
duration of these locks. Interrupt latency is unacceptable whenever an immediate
response to an external event is required. However, interrupt locking can
sometimes be necessary where mutual exclusion involves ISRs. In any situation,
keep the duration of interrupt lockouts short.

! WARNING: Do not call VxWorks system routines with interrupts locked. Violating
this rule may re-enable interrupts unpredictably.
33

VxWorks 5.5
Programmer’s Guide
Preemptive Locks and Latency

Disabling preemption offers a somewhat less restrictive form of mutual exclusion.
While no other task is allowed to preempt the current executing task, ISRs are able
to execute:

funcA ()
{
taskLock ();
.
. /* critical region of code that cannot be interrupted */
.
taskUnlock ();
}

However, this method can lead to unacceptable real-time response. Tasks of higher
priority are unable to execute until the locking task leaves the critical region, even
though the higher-priority task is not itself involved with the critical region. While
this kind of mutual exclusion is simple, if you use it, make sure to keep the
duration short. A better mechanism is provided by semaphores, discussed in
2.3.3 Semaphores, p.34.

2.3.3 Semaphores

VxWorks semaphores are highly optimized and provide the fastest intertask
communication mechanism in VxWorks. Semaphores are the primary means for
addressing the requirements of both mutual exclusion and task synchronization,
as described below:

� For mutual exclusion semaphores interlock access to shared resources. They
provide mutual exclusion with finer granularity than either interrupt
disabling or preemptive locks, discussed in 2.3.2 Mutual Exclusion, p.33.

� For synchronization semaphores coordinate a task’s execution with external
events.

There are three types of Wind semaphores, optimized to address different classes
of problems:

binary
The fastest, most general-purpose semaphore. Optimized for
synchronization or mutual exclusion.

! WARNING: The critical region code should not block. If it does, preemption could
be re-enabled.
34

2

2
Basic OS
mutual exclusion
A special binary semaphore optimized for problems inherent in mutual
exclusion: priority inheritance, deletion safety, and recursion.

counting
Like the binary semaphore, but keeps track of the number of times a
semaphore is given. Optimized for guarding multiple instances of a
resource.

VxWorks provides not only the Wind semaphores, designed expressly for
VxWorks, but also POSIX semaphores, designed for portability. An alternate
semaphore library provides the POSIX-compatible semaphore interface; see
3.6 POSIX Semaphores, p.85.

The semaphores described here are for use on a single CPU. The optional product
VxMP provides semaphores that can be used across processors; see 11. Shared-
Memory Objects.

Semaphore Control

Instead of defining a full set of semaphore control routines for each type of
semaphore, the Wind semaphores provide a single uniform interface for
semaphore control. Only the creation routines are specific to the semaphore type.
Table 2-12 lists the semaphore control routines.

The semBCreate(), semMCreate(), and semCCreate() routines return a
semaphore ID that serves as a handle on the semaphore during subsequent use by

Table 2-12 Semaphore Control Routines

Call Description

semBCreate() Allocates and initializes a binary semaphore.

semMCreate() Allocates and initializes a mutual-exclusion semaphore.

semCCreate() Allocates and initializes a counting semaphore.

semDelete() Terminates and frees a semaphore.

semTake() Takes a semaphore.

semGive() Gives a semaphore.

semFlush() Unblocks all tasks that are waiting for a semaphore.
35

VxWorks 5.5
Programmer’s Guide
the other semaphore-control routines. When a semaphore is created, the queue
type is specified. Tasks pending on a semaphore can be queued in priority order
(SEM_Q_PRIORITY) or in first-in first-out order (SEM_Q_FIFO).

Binary Semaphores

The general-purpose binary semaphore is capable of addressing the requirements
of both forms of task coordination: mutual exclusion and synchronization. The
binary semaphore has the least overhead associated with it, making it particularly
applicable to high-performance requirements. The mutual-exclusion semaphore
described in Mutual-Exclusion Semaphores, p.40 is also a binary semaphore, but it
has been optimized to address problems inherent to mutual exclusion.
Alternatively, the binary semaphore can be used for mutual exclusion if the
advanced features of the mutual-exclusion semaphore are deemed unnecessary.

A binary semaphore can be viewed as a flag that is available (full) or unavailable
(empty). When a task takes a binary semaphore, with semTake(), the outcome
depends on whether the semaphore is available (full) or unavailable (empty) at the
time of the call; see Figure 2-9. If the semaphore is available (full), the semaphore
becomes unavailable (empty) and the task continues executing immediately. If the
semaphore is unavailable (empty), the task is put on a queue of blocked tasks and
enters a state of pending on the availability of the semaphore.

When a task gives a binary semaphore, using semGive(), the outcome also
depends on whether the semaphore is available (full) or unavailable (empty) at the
time of the call; see Figure 2-10. If the semaphore is already available (full), giving
the semaphore has no effect at all. If the semaphore is unavailable (empty) and no
task is waiting to take it, then the semaphore becomes available (full). If the
semaphore is unavailable (empty) and one or more tasks are pending on its
availability, then the first task in the queue of blocked tasks is unblocked, and the
semaphore is left unavailable (empty).

! WARNING: The semDelete() call terminates a semaphore and deallocates all
associated memory. Take care when deleting semaphores, particularly those used
for mutual exclusion, to avoid deleting a semaphore that another task still requires.
Do not delete a semaphore unless the same task first succeeds in taking it.
36

2

2
Basic OS
Mutual Exclusion

Binary semaphores interlock access to a shared resource efficiently. Unlike
disabling interrupts or preemptive locks, binary semaphores limit the scope of the
mutual exclusion to only the associated resource. In this technique, a semaphore is
created to guard the resource. Initially the semaphore is available (full).

/* includes */
#include "vxWorks.h"
#include "semLib.h"

SEM_ID semMutex;

Figure 2-9 Taking a Semaphore

Figure 2-10 Giving a Semaphore

no no
semaphore
available?

timeout =
NO_WAIT

yes yes

task continues;
semaphore

not taken

task continues;
semaphore

taken

task is
pended for

timeout
value

no no
semaphore
available?

yes yes

task continues;
semaphore

remains
unchanged

tasks
pended?

task continues,
semaphore

made available

task at front of
queue made ready;
semaphore remains

unavailable
37

VxWorks 5.5
Programmer’s Guide
/* Create a binary semaphore that is initially full. Tasks *
* blocked on semaphore wait in priority order. */

semMutex = semBCreate (SEM_Q_PRIORITY, SEM_FULL);

When a task wants to access the resource, it must first take that semaphore. As long
as the task keeps the semaphore, all other tasks seeking access to the resource are
blocked from execution. When the task is finished with the resource, it gives back
the semaphore, allowing another task to use the resource.

Thus, all accesses to a resource requiring mutual exclusion are bracketed with
semTake() and semGive() pairs:

semTake (semMutex, WAIT_FOREVER);
.
. /* critical region, only accessible by a single task at a time */
.
semGive (semMutex);

Synchronization

When used for task synchronization, a semaphore can represent a condition or
event that a task is waiting for. Initially, the semaphore is unavailable (empty). A
task or ISR signals the occurrence of the event by giving the semaphore (see
2.6 Interrupt Service Code: ISRs, p.65 for a complete discussion of ISRs). Another
task waits for the semaphore by calling semTake(). The waiting task blocks until
the event occurs and the semaphore is given.

Note the difference in sequence between semaphores used for mutual exclusion
and those used for synchronization. For mutual exclusion, the semaphore is
initially full, and each task first takes, then gives back the semaphore. For
synchronization, the semaphore is initially empty, and one task waits to take the
semaphore given by another task.

In Example 2-1, the init() routine creates the binary semaphore, attaches an ISR to
an event, and spawns a task to process the event. The routine task1() runs until it
calls semTake(). It remains blocked at that point until an event causes the ISR to
call semGive(). When the ISR completes, task1() executes to process the event.
There is an advantage of handling event processing within the context of a
dedicated task: less processing takes place at interrupt level, thereby reducing
interrupt latency. This model of event processing is recommended for real-time
applications.
38

2

2
Basic OS
Example 2-1 Using Semaphores for Task Synchronization

/* This example shows the use of semaphores for task synchronization. */

/* includes */
#include "vxWorks.h"
#include "semLib.h"
#include "arch/arch/ivarch.h" /* replace arch with architecture type */

SEM_ID syncSem; /* ID of sync semaphore */

init (
int someIntNum
)
{
/* connect interrupt service routine */
intConnect (INUM_TO_IVEC (someIntNum), eventInterruptSvcRout, 0);

/* create semaphore */
syncSem = semBCreate (SEM_Q_FIFO, SEM_EMPTY);

/* spawn task used for synchronization. */
taskSpawn ("sample", 100, 0, 20000, task1, 0,0,0,0,0,0,0,0,0,0);
}

task1 (void)
{
...
semTake (syncSem, WAIT_FOREVER); /* wait for event to occur */
printf ("task 1 got the semaphore\n");
... /* process event */
}

eventInterruptSvcRout (void)
{
...
semGive (syncSem); /* let task 1 process event */
...
}

Broadcast synchronization allows all processes that are blocked on the same
semaphore to be unblocked atomically. Correct application behavior often requires
a set of tasks to process an event before any task of the set has the opportunity to
process further events. The routine semFlush() addresses this class of
synchronization problem by unblocking all tasks pended on a semaphore.
39

VxWorks 5.5
Programmer’s Guide
Mutual-Exclusion Semaphores

The mutual-exclusion semaphore is a specialized binary semaphore designed to
address issues inherent in mutual exclusion, including priority inversion, deletion
safety, and recursive access to resources.

The fundamental behavior of the mutual-exclusion semaphore is identical to the
binary semaphore, with the following exceptions:

� It can be used only for mutual exclusion.
� It can be given only by the task that took it.
� It cannot be given from an ISR.
� The semFlush() operation is illegal.

Priority Inversion

Figure 2-11 illustrates a situation called priority inversion.

Priority inversion arises when a higher-priority task is forced to wait an indefinite
period of time for a lower-priority task to complete. Consider the scenario in
Figure 2-11: t1, t2, and t3 are tasks of high, medium, and low priority, respectively.
t3 has acquired some resource by taking its associated binary guard semaphore.
When t1 preempts t3 and contends for the resource by taking the same semaphore,
it becomes blocked. If we could be assured that t1 would be blocked no longer than

Figure 2-11 Priority Inversion

t3

t1

t3

t2

HIGH

LOW

KEY: = preemption= take semaphore

= give semaphore

= own semaphore

pr
io

rit
y

= priority inheritance/release

= block

time

t1

t3
40

2

2
Basic OS
the time it normally takes t3 to finish with the resource, there would be no problem
because the resource cannot be preempted. However, the low-priority task is
vulnerable to preemption by medium-priority tasks (like t2), which could inhibit
t3 from relinquishing the resource. This condition could persist, blocking t1 for an
indefinite period of time.

The mutual-exclusion semaphore has the option SEM_INVERSION_SAFE, which
enables a priority-inheritance algorithm. The priority-inheritance protocol assures
that a task that holds a resource executes at the priority of the highest-priority task
blocked on that resource. Once the task priority has been elevated, it remains at the
higher level until all mutual-exclusion semaphores that the task holds are released;
then the task returns to its normal, or standard, priority. Hence, the “inheriting”
task is protected from preemption by any intermediate-priority tasks. This option
must be used in conjunction with a priority queue (SEM_Q_PRIORITY).

In Figure 2-12, priority inheritance solves the problem of priority inversion by
elevating the priority of t3 to the priority of t1 during the time t1 is blocked on the
semaphore. This protects t3, and indirectly t1, from preemption by t2.

Figure 2-12 Priority Inheritance

t3

t1 t3 t1

t2

HIGH

LOW

pr
io

rit
y

time

KEY: = preemption= take semaphore

= give semaphore

= own semaphore

= priority inheritance/release

= block
41

VxWorks 5.5
Programmer’s Guide
The following example creates a mutual-exclusion semaphore that uses the
priority inheritance algorithm:

semId = semMCreate (SEM_Q_PRIORITY | SEM_INVERSION_SAFE);

Deletion Safety

Another problem of mutual exclusion involves task deletion. Within a critical
region guarded by semaphores, it is often desirable to protect the executing task
from unexpected deletion. Deleting a task executing in a critical region can be
catastrophic. The resource might be left in a corrupted state and the semaphore
guarding the resource left unavailable, effectively preventing all access to the
resource.

The primitives taskSafe() and taskUnsafe() provide one solution to task deletion.
However, the mutual-exclusion semaphore offers the option SEM_DELETE_SAFE,
which enables an implicit taskSafe() with each semTake(), and a taskUnsafe()
with each semGive(). In this way, a task can be protected from deletion while it
has the semaphore. This option is more efficient than the primitives taskSafe()
and taskUnsafe(), as the resulting code requires fewer entrances to the kernel.

semId = semMCreate (SEM_Q_FIFO | SEM_DELETE_SAFE);

Recursive Resource Access

Mutual-exclusion semaphores can be taken recursively. This means that the
semaphore can be taken more than once by the task that holds it before finally
being released. Recursion is useful for a set of routines that must call each other but
that also require mutually exclusive access to a resource. This is possible because
the system keeps track of which task currently holds the mutual-exclusion
semaphore.

Before being released, a mutual-exclusion semaphore taken recursively must be
given the same number of times it is taken. This is tracked by a count that
increments with each semTake() and decrements with each semGive().

Example 2-2 Recursive Use of a Mutual-Exclusion Semaphore

/* Function A requires access to a resource which it acquires by taking
* mySem;
* Function A may also need to call function B, which also requires mySem:
*/

/* includes */
#include "vxWorks.h"
#include "semLib.h"
SEM_ID mySem;
42

2

2
Basic OS
/* Create a mutual-exclusion semaphore. */
init ()

{
mySem = semMCreate (SEM_Q_PRIORITY);
}

funcA ()
{
semTake (mySem, WAIT_FOREVER);
printf ("funcA: Got mutual-exclusion semaphore\n");
...
funcB ();
...

semGive (mySem);
printf ("funcA: Released mutual-exclusion semaphore\n");
}

funcB ()
{
semTake (mySem, WAIT_FOREVER);
printf ("funcB: Got mutual-exclusion semaphore\n");
...
semGive (mySem);
printf ("funcB: Releases mutual-exclusion semaphore\n");
}

Counting Semaphores

Counting semaphores are another means to implement task synchronization and
mutual exclusion. The counting semaphore works like the binary semaphore
except that it keeps track of the number of times a semaphore is given. Every time
a semaphore is given, the count is incremented; every time a semaphore is taken,
the count is decremented. When the count reaches zero, a task that tries to take the
semaphore is blocked. As with the binary semaphore, if a semaphore is given and
a task is blocked, it becomes unblocked. However, unlike the binary semaphore, if
a semaphore is given and no tasks are blocked, then the count is incremented. This
means that a semaphore that is given twice can be taken twice without blocking.
Table 2-13 shows an example time sequence of tasks taking and giving a counting
semaphore that was initialized to a count of 3.

Table 2-13 Counting Semaphore Example

Semaphore Call Count after Call Resulting Behavior

semCCreate() 3 Semaphore initialized with an initial count of 3.

semTake() 2 Semaphore taken.
43

VxWorks 5.5
Programmer’s Guide
Counting semaphores are useful for guarding multiple copies of resources. For
example, the use of five tape drives might be coordinated using a counting
semaphore with an initial count of 5, or a ring buffer with 256 entries might be
implemented using a counting semaphore with an initial count of 256. The initial
count is specified as an argument to the semCCreate() routine.

Special Semaphore Options

The uniform Wind semaphore interface includes two special options. These
options are not available for the POSIX-compatible semaphores described in
3.6 POSIX Semaphores, p.85.

Timeouts

As an alternative to blocking until a semaphore becomes available, semaphore take
operations can be restricted to a specified period of time. If the semaphore is not
taken within that period, the take operation fails.

This behavior is controlled by a parameter to semTake() that specifies the amount
of time in ticks that the task is willing to wait in the pended state. If the task
succeeds in taking the semaphore within the allotted time, semTake() returns OK.
The errno set when a semTake() returns ERROR due to timing out before
successfully taking the semaphore depends upon the timeout value passed.

A semTake() with NO_WAIT (0), which means do not wait at all, sets errno to
S_objLib_OBJ_UNAVAILABLE. A semTake() with a positive timeout value returns
S_objLib_OBJ_TIMEOUT. A timeout value of WAIT_FOREVER (-1) means wait
indefinitely.

semTake() 1 Semaphore taken.

semTake() 0 Semaphore taken.

semTake() 0 Task blocks waiting for semaphore to be available.

semGive() 0 Task waiting is given semaphore.

semGive() 1 No task waiting for semaphore; count incremented.

Table 2-13 Counting Semaphore Example

Semaphore Call Count after Call Resulting Behavior
44

2

2
Basic OS
Queues

Wind semaphores include the ability to select the queuing mechanism employed
for tasks blocked on a semaphore. They can be queued based on either of two
criteria: first-in first-out (FIFO) order, or priority order; see Figure 2-13.

Priority ordering better preserves the intended priority structure of the system at
the expense of some overhead in semTake() in sorting the tasks by priority. A FIFO
queue requires no priority sorting overhead and leads to constant-time
performance. The selection of queue type is specified during semaphore creation
with semBCreate(), semMCreate(), or semCCreate(). Semaphores using the
priority inheritance option (SEM_INVERSION_SAFE) must select priority-order
queuing.

Semaphores and VxWorks Events

This section describes using VxWorks events with semaphores. You can also use
VxWorks events with other VxWorks objects. For more information, see
2.4 VxWorks Events, p.57.

Figure 2-13 Task Queue Types

TCB

110

TCB

200

PRIORITY QUEUE FIFO QUEUE

priority

TCB

120 TCB

80

TCB

110

TCB

90
TCB

100
TCB

140
45

VxWorks 5.5
Programmer’s Guide
Using Events

A semaphore can send events to a task, if it is requested to do so by the task. To
request that a semaphore send events, a task must register with the semaphore
using semEvStart(). From that point on, every time the semaphore is released with
semGive(), and as long as no other tasks are pending on it, the semaphore sends
events to the registered task. To request that the semaphore stop sending events,
the registered task calls semEvStop().

Only one task can be registered with a semaphore at any given time. The events a
semaphore sends to a task can be retrieved by the task using routines in eventLib.
Details on when semaphores send events are documented in the reference entry for
semEvStart().

In some applications, the creator of a semaphore may wish to know when a
semaphore failed to send events. Such a scenario can occur if a task registers with
a semaphore, and is subsequently deleted before having time to unregister. In this
situation, a given operation could cause the semaphore to attempt to send events
to the deleted task. Such an attempt would obviously fail. If the semaphore is
created with the SEM_EVENTSEND_ERROR_NOTIFY option, the given operation
returns an error. Otherwise, VxWorks handles the error quietly.

Using eventReceive(), a task may pend on events meant to be sent by a
semaphore. If the semaphore is deleted, the task pending on events is returned to
the ready state, just like the tasks that may be pending on the semaphore itself.

Existing VxWorks API

The VxWorks events implementation does not propose to keep track of all the
resources a task is currently registered with. Therefore, a resource can attempt to
send events to a task that no longer exists. For example, a task may be deleted or
may self-destruct while still registered with a resource to receive events. This error
is detected only when the resource becomes free, and is reported by having
semGive() return ERROR. However, in this case the error does not mean the
semaphore was not given or that the message was not properly delivered. It simply
means the resource could not send events to the registered task. This is a different
behavior from the one presently in place under VxWorks, however it is the same
behavior that exists for pSOS message queues and semaphores.

Performance Impact

When a task is pending for the semaphore, there is no performance impact on
semGive(). However, if this is not the case (for example, if the semaphore is free),
the call to semGive() takes longer to complete since events may have to be sent to
46

2

2
Basic OS
a task. Furthermore, the call may unpend a task waiting for events, which means
the caller may be preempted, even if no task is waiting for the semaphore.

The semDestroy() routine performance is impacted in cases where a task is
waiting for events from the semaphore, since the task has to be awakened. Also
note that, in this case, events need not be sent.

2.3.4 Message Queues

Modern real-time applications are constructed as a set of independent but
cooperating tasks. While semaphores provide a high-speed mechanism for the
synchronization and interlocking of tasks, often a higher-level mechanism is
necessary to allow cooperating tasks to communicate with each other. In VxWorks,
the primary intertask communication mechanism within a single CPU is message
queues. (The VxWorks distributed message queue component provides for sharing
message queues between processors across any transport media; see 10. Distributed
Message Queues).

Message queues allow a variable number of messages, each of variable length, to
be queued. Tasks and ISRs can send messages to a message queue, and tasks can
receive messages from a message queue.

Multiple tasks can send to and receive from the same message queue. Full-duplex
communication between two tasks generally requires two message queues, one for
each direction; see Figure 2-14.

Figure 2-14 Full Duplex Communication Using Message Queues

task 2task 1

message queue 1

message queue 2

message

message
47

VxWorks 5.5
Programmer’s Guide
There are two message-queue subroutine libraries in VxWorks. The first of these,
msgQLib, provides Wind message queues, designed expressly for VxWorks; the
second, mqPxLib, is compatible with the POSIX standard (1003.1b) for real-time
extensions. See 3.5.1 Comparison of POSIX and Wind Scheduling, p.82 for a
discussion of the differences between the two message-queue designs.

Wind Message Queues

Wind message queues are created, used, and deleted with the routines shown in
Table 2-14. This library provides messages that are queued in FIFO order, with a
single exception: there are two priority levels, and messages marked as high
priority are attached to the head of the queue.

A message queue is created with msgQCreate(). Its parameters specify the
maximum number of messages that can be queued in the message queue and the
maximum length in bytes of each message. Enough buffer space is allocated for the
specified number and length of messages.

A task or ISR sends a message to a message queue with msgQSend(). If no tasks
are waiting for messages on that queue, the message is added to the queue’s buffer
of messages. If any tasks are already waiting for a message from that message
queue, the message is immediately delivered to the first waiting task.

A task receives a message from a message queue with msgQReceive(). If
messages are already available in the message queue’s buffer, the first message is
immediately dequeued and returned to the caller. If no messages are available,
then the calling task blocks and is added to a queue of tasks waiting for messages.
This queue of waiting tasks can be ordered either by task priority or FIFO, as
specified in an option parameter when the queue is created.

Table 2-14 Wind Message Queue Control

Call Description

msgQCreate() Allocates and initializes a message queue.

msgQDelete() Terminates and frees a message queue.

msgQSend() Sends a message to a message queue.

msgQReceive() Receives a message from a message queue.
48

2

2
Basic OS
Timeouts

Both msgQSend() and msgQReceive() take timeout parameters. When sending a
message, the timeout specifies how many ticks to wait for buffer space to become
available, if no space is available to queue the message. When receiving a message,
the timeout specifies how many ticks to wait for a message to become available, if
no message is immediately available. As with semaphores, the value of the timeout
parameter can have the special values of NO_WAIT (0), meaning always return
immediately, or WAIT_FOREVER (-1), meaning never time out the routine.

Urgent Messages

The msgQSend() function allows specification of the priority of the message as
either normal (MSG_PRI_NORMAL) or urgent (MSG_PRI_URGENT). Normal
priority messages are added to the tail of the list of queued messages, while urgent
priority messages are added to the head of the list.

Example 2-3 Wind Message Queues

/* In this example, task t1 creates the message queue and sends a message
* to task t2. Task t2 receives the message from the queue and simply
* displays the message.
*/

/* includes */
#include "vxWorks.h"
#include "msgQLib.h"

/* defines */
#define MAX_MSGS (10)
#define MAX_MSG_LEN (100)

MSG_Q_ID myMsgQId;

task2 (void)
{
char msgBuf[MAX_MSG_LEN];

/* get message from queue; if necessary wait until msg is available */
if (msgQReceive(myMsgQId, msgBuf, MAX_MSG_LEN, WAIT_FOREVER) == ERROR)

return (ERROR);

/* display message */
printf ("Message from task 1:\n%s\n", msgBuf);
}

#define MESSAGE "Greetings from Task 1"
task1 (void)

{
/* create message queue */
if ((myMsgQId = msgQCreate (MAX_MSGS, MAX_MSG_LEN, MSG_Q_PRIORITY))
49

VxWorks 5.5
Programmer’s Guide
== NULL)
return (ERROR);

/* send a normal priority message, blocking if queue is full */
if (msgQSend (myMsgQId, MESSAGE, sizeof (MESSAGE), WAIT_FOREVER,

MSG_PRI_NORMAL) == ERROR)
return (ERROR);

}

Displaying Message Queue Attributes

The VxWorks show() command produces a display of the key message queue
attributes, for either kind of message queue. For example, if myMsgQId is a Wind
message queue, the output is sent to the standard output device, and looks like the
following:

-> show myMsgQId
Message Queue Id : 0x3adaf0
Task Queuing : FIFO
Message Byte Len : 4
Messages Max : 30
Messages Queued : 14
Receivers Blocked : 0
Send timeouts : 0
Receive timeouts : 0

Servers and Clients with Message Queues

Real-time systems are often structured using a client-server model of tasks. In this
model, server tasks accept requests from client tasks to perform some service, and
usually return a reply. The requests and replies are usually made in the form of
intertask messages. In VxWorks, message queues or pipes (see 2.3.5 Pipes, p.53) are
a natural way to implement this.

For example, client-server communications might be implemented as shown in
Figure 2-15. Each server task creates a message queue to receive request messages
from clients. Each client task creates a message queue to receive reply messages
from servers. Each request message includes a field containing the msgQId of the
client’s reply message queue. A server task’s “main loop” consists of reading
request messages from its request message queue, performing the request, and
sending a reply to the client’s reply message queue.
50

2

2
Basic OS
The same architecture can be achieved with pipes instead of message queues, or by
other means that are tailored to the needs of the particular application.

Message Queues and VxWorks Events

This section describes using VxWorks events with message queues. You can also
use VxWorks events with other VxWorks objects. For more information, see
2.4 VxWorks Events, p.57.

Using Events

A message queue can send events to a task, if it is requested to do so by the task.
To request that a message queue send events, a task must register with the message
queue using msgQEvStart(). From that point on, every time the message queue
receives a message and there are no tasks pending on it, the message queue sends
events to the registered task. To request that the message queue stop sending
events, the registered task calls msgQEvStop().

Figure 2-15 Client-Server Communications Using Message Queues

reply queue 1

reply queue 2

server task

request queue

message

message

message

client 2

client 1
51

VxWorks 5.5
Programmer’s Guide
Only one task can be registered with a message queue at any given time. The
events a message queue sends to a task can be retrieved by the task using routines
in eventLib. Details on when message queues send events are documented in the
reference entry for msgQEvStart().

In some applications, the creator of a message queue may wish to know when a
message queue failed to send events. Such a scenario can occur if a task registers
with a message queue, and is subsequently deleted before having time to
unregister. In this situation, a send operation could cause the message queue to
attempt to send events to the deleted task. Such an attempt would obviously fail.
If the message queue is created with the SG_Q_EVENTSEND_ERROR_NOTIFY
option, the send operation returns an error. Otherwise, VxWorks handles the error
quietly.

Using eventReceive(), a task may pend on events meant to be sent by a message
queue. If the message queue is deleted, the task pending on events is returned to
the ready state, just like the tasks that may be pending on the message queue itself.

Existing VxWorks API

The VxWorks events implementation does not propose to keep track of all the
resources a task is currently registered with. Therefore, a resource can attempt to
send events to a task that no longer exists. For example, a task may be deleted or
may self-destruct while still registered with a resource to receive events. This error
is detected only when the resource becomes free, and is reported by having
msgQSend() return ERROR. However, in this case the error does not mean the
semaphore was not given or that the message was not properly delivered. It simply
means the resource could not send events to the registered task. This is a different
behavior than the one presently in place under VxWorks, however it is the same
behavior that exists for pSOS message queues.

Performance Impact

There is no performance impact on msgQSend() when a task is pending for the
message queue. However, when this is not the case, the call to msgQSend() takes
longer to complete, since events may have to be sent to a task. Furthermore, the call
may unpend a task waiting for events, which means the caller may be preempted,
even if no task is waiting for the message.

The msgQDestroy() routine performance is impacted in cases where a task is
waiting for events from the message queue, since the task has to be awakened.
Also note that, in this case, events need not be sent.
52

2

2
Basic OS
2.3.5 Pipes

Pipes provide an alternative interface to the message queue facility that goes
through the VxWorks I/O system. Pipes are virtual I/O devices managed by the
driver pipeDrv. The routine pipeDevCreate() creates a pipe device and the
underlying message queue associated with that pipe. The call specifies the name
of the created pipe, the maximum number of messages that can be queued to it,
and the maximum length of each message:

status = pipeDevCreate ("/pipe/name", max_msgs, max_length);

The created pipe is a normally named I/O device. Tasks can use the standard I/O
routines to open, read, and write pipes, and invoke ioctl routines. As they do with
other I/O devices, tasks block when they read from an empty pipe until data is
available, and block when they write to a full pipe until there is space available.
Like message queues, ISRs can write to a pipe, but cannot read from a pipe.

As I/O devices, pipes provide one important feature that message queues
cannot—the ability to be used with select(). This routine allows a task to wait for
data to be available on any of a set of I/O devices. The select() routine also works
with other asynchronous I/O devices including network sockets and serial
devices. Thus, by using select(), a task can wait for data on a combination of
several pipes, sockets, and serial devices; see 4.3.8 Pending on Multiple File
Descriptors: The Select Facility, p.117.

Pipes allow you to implement a client-server model of intertask communications;
see Servers and Clients with Message Queues, p.50.

2.3.6 Network Intertask Communication

Sockets

In VxWorks, the basis of intertask communications across the network is sockets. A
socket is an endpoint for communications between tasks; data is sent from one
socket to another. When you create a socket, you specify the Internet
communications protocol that is to transmit the data. VxWorks supports the
Internet protocols TCP and UDP. VxWorks socket facilities are source compatible
with BSD 4.4 UNIX.

TCP provides reliable, guaranteed, two-way transmission of data with stream
sockets. In a stream-socket communication, two sockets are “connected,” allowing
53

VxWorks 5.5
Programmer’s Guide
a reliable byte-stream to flow between them in each direction as in a circuit. For this
reason, TCP is often referred to as a virtual circuit protocol.

UDP provides a simpler but less robust form of communication. In UDP
communications, data is sent between sockets in separate, unconnected,
individually addressed packets called datagrams. A process creates a datagram
socket and binds it to a particular port. There is no notion of a UDP “connection.”
Any UDP socket, on any host in the network, can send messages to any other UDP
socket by specifying its Internet address and port number.

One of the biggest advantages of socket communications is that it is
“homogeneous.” Socket communications among processes are exactly the same
regardless of the location of the processes in the network, or the operating system
under which they are running. Processes can communicate within a single CPU,
across a backplane, across an Ethernet, or across any connected combination of
networks. Socket communications can occur between VxWorks tasks and host
system processes in any combination. In all cases, the communications look
identical to the application, except, of course, for their speed.

For more information, see VxWorks Network Programmer’s Guide: Networking APIs
and the reference entry for sockLib.

Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC) is a facility that allows a process on one machine to
call a procedure that is executed by another process on either the same machine or
a remote machine. Internally, RPC uses sockets as the underlying communication
mechanism. Thus with RPC, VxWorks tasks and host system processes can invoke
routines that execute on other VxWorks or host machines, in any combination.

As discussed in the previous sections on message queues and pipes, many real-
time systems are structured with a client-server model of tasks. In this model,
client tasks request services of server tasks, and then wait for their reply. RPC
formalizes this model and provides a standard protocol for passing requests and
returning replies. Also, RPC includes tools to help generate the client interface
routines and the server skeleton.

For more information about RPC, see VxWorks Network Programmer’s Guide: RPC,
Remote Procedure Calls.
54

2

2
Basic OS
2.3.7 Signals

VxWorks supports a software signal facility. Signals asynchronously alter the
control flow of a task. Any task or ISR can raise a signal for a particular task. The
task being signaled immediately suspends its current thread of execution and
executes the task-specified signal handler routine the next time it is scheduled to
run. The signal handler executes in the receiving task’s context and makes use of
that task’s stack. The signal handler is invoked even if the task is blocked.

Signals are more appropriate for error and exception handling than as a general-
purpose intertask communication mechanism. In general, signal handlers should
be treated like ISRs; no routine should be called from a signal handler that might
cause the handler to block. Because signals are asynchronous, it is difficult to
predict which resources might be unavailable when a particular signal is raised. To
be perfectly safe, call only those routines that can safely be called from an ISR (see
Table 2-21). Deviate from this practice only when you are sure your signal handler
cannot create a deadlock situation.

The wind kernel supports two types of signal interface: UNIX BSD-style signals
and POSIX-compatible signals. The POSIX-compatible signal interface, in turn,
includes both the fundamental signaling interface specified in the POSIX standard
1003.1, and the queued-signals extension from POSIX 1003.1b. For more
information, see 3.9 POSIX Queued Signals, p.105. For the sake of simplicity, we
recommend that you use only one interface type in a given application, rather than
mixing routines from different interfaces.

For more information about signals, see the reference entry for sigLib.

Basic Signal Routines

By default, VxWorks uses the basic signal facility component INCLUDE_SIGNALS.
This component automatically initializes signals with sigInit(). Table 2-15 shows
the basic signal routines.

The colorful name kill()harks back to the origin of these interfaces in UNIX BSD.
Although the interfaces vary, the functionality of BSD-style signals and basic
POSIX signals is similar.

NOTE: The VxWorks implementation of sigLib does not impose any special
restrictions on operations on SIGKILL, SIGCONT, and SIGSTOP signals such as
those imposed by UNIX. For example, the UNIX implementation of signal()
cannot be called on SIGKILL and SIGSTOP.
55

VxWorks 5.5
Programmer’s Guide
In many ways, signals are analogous to hardware interrupts. The basic signal
facility provides a set of 31 distinct signals. A signal handler binds to a particular
signal with sigvec() or sigaction() in much the same way that an ISR is connected
to an interrupt vector with intConnect(). A signal can be asserted by calling kill().
This is analogous to the occurrence of an interrupt. The routines sigsetmask() and
sigblock() or sigprocmask() let signals be selectively inhibited.

Certain signals are associated with hardware exceptions. For example, bus errors,
illegal instructions, and floating-point exceptions raise specific signals.

Signal Configuration

The basic signal facility is included in VxWorks by default with
INCLUDE_SIGNALS component.

Table 2-15 Basic Signal Calls (BSD and POSIX 1003.1b)

POSIX 1003.1b
Compatible
Call

UNIX BSD
Compatible
Call

Description

signal() signal() Specifies the handler associated with a signal.

kill() kill() Sends a signal to a task.

raise() N/A Sends a signal to yourself.

sigaction() sigvec() Examines or sets the signal handler for a signal.

sigsuspend() pause() Suspends a task until a signal is delivered.

sigpending() N/A Retrieves a set of pending signals blocked from delivery.

sigemptyset()
sigfillset()
sigaddset()
sigdelset()
sigismember()

sigsetmask() Manipulates a signal mask.

sigprocmask() sigsetmask() Sets the mask of blocked signals.

sigprocmask() sigblock() Adds to a set of blocked signals.
56

2

2
Basic OS
2.4 VxWorks Events

VxWorks events introduce functionality similar to pSOS events into VxWorks 5.5.
VxWorks events are included in the standard VxWorks facilities and are used to
port pSOS events functionality to VxWorks. This section provides a brief summary
of VxWorks events; then it describes pSOS events and VxWorks events in detail,
comparing them and their APIs.

VxWorks events are a means of communication between tasks and interrupt
routines (ISRs), between tasks and other tasks, or between tasks and VxWorks
objects. In the context of VxWorks events, these objects are referred to as resources,
and they include semaphores and message queues. Only tasks can receive events;
whereas tasks, ISRs, or resources can send them.

In order for a task to receive events from a resource, the task must register with the
resource. In order for the resource to send events, the resource must be free. The
communication between tasks and resources is peer-to-peer, meaning that only the
registered task can receive events from the resource. In this respect, events are like
signals, in that they are directed at one task. A task, however, can wait on events
from multiple resources; thus, it can be waiting for a semaphore to become free and
for a message to arrive in a message queue.

Events are synchronous in nature (unlike signals), meaning that a receiving task
must block or pend while waiting for the events to occur. When the desired events
are received, the pending task continues its execution, as it would after a call to
msgQReceive() or semTake(), for example. Thus, unlike signals, events do not
require a handler.

Tasks can also wait on events that are not linked to resources. These are events that
are sent from another task or from an ISR. A task does not register to receive these
events; the sending task or ISR simply has to know of the task’s interest in
receiving the events. As an example, this scenario is similar to having an ISR give
a binary semaphore, knowing there is a task interested in obtaining that
semaphore.

The meaning of each event differs for each task. For example, when an event,
eventX, is received, it can be interpreted differently by each task that receives it.
Also, once an event is received by a task, the event is ignored if it is sent again to
the same task. Consequently, it is not possible to track the number of times each
event has been sent to a task.

NOTE: This section uses the term events to describe pSOS and VxWorks events.
These references are not to be confused with WindView events.
57

VxWorks 5.5
Programmer’s Guide
2.4.1 pSOS Events

This section describes the functionality of pSOS events. This functionality provides
the basis of VxWorks events, but does not fully describe their behavior. For details,
see VxWorks Enhancements to pSOS Events, p.61.

Sending and Receiving Events

In the pSOS operating system, events can be sent from a resource to a task, from an
ISR to a task, or directly between two tasks. Tasks, ISRs, and resources all use the
same ev_send() API to send events.

For a task to receive events from a resource, the task must register with that
resource and request it to send a specific set of events when it becomes free. The
resource is either a semaphore or a message queue. When the resource becomes
free, it sends the set of events to the registered task. This task may, or may not be,
waiting for the events.

As mentioned above, a task can also receive events from another task. For example,
if two tasks agree to send events between them, taskA could send taskB a specific
events set when it (taskA) finishes executing, to let taskB know that this has
occurred. As with events sent from a resource, the receiving task may, or may not
be, waiting for the events.

Waiting for Events

A task can wait for multiple events from one or more sources. Each source can send
multiple events, and a task can also wait to receive only one event, or all events.
For example, a task may be waiting for events 1 to 10, where 1 to 4 come from a
semaphore, 5 to 6 come from a message queue, and 7 to 10 come from another task.

A task can also specify a timeout when waiting for events.

! WARNING: Because events are not, and cannot be, reserved, two independent
applications can attempt to use the same events on the same task. As a precaution,
middleware applications using VxWorks events should always publish a list of the
events they are using.
58

2

2
Basic OS
Registering for Events

Only one task can register itself to receive events from a resource. If another task
subsequently registers with the same resource, the previously registered task is
automatically unregistered, without its knowledge. This behavior differs in
VxWorks events. For details, see VxWorks Enhancements to pSOS Events, p.61.

When a task registers with a resource, events are not sent immediately, even if the
resource is free at the time of registration. The events are sent the next time the
resource becomes free. For example, a semaphore will send events the next time it
is given, as long as no task is waiting for it. (Being given does not always mean that
a resource is free; see Freeing Resources, p.59). This behavior is configurable for
VxWorks events. For details, see VxWorks Enhancements to pSOS Events, p.61.

Freeing Resources

When a resource sends events to a task to indicate that it is free, it does not mean
that resource is reserved. Therefore, a task waiting for events from a resource will
unpend when the resource becomes free, however the resource may be taken in the
meantime. There are no guarantees that the resource will still be available, if the
task subsequently attempts to take ownership of it.

As mentioned above, a resource only sends events when it becomes free. This is not
synonymous with being released. To clarify, if a semaphore is given, it is actually
being released. However, it is not considered free if another task is waiting for it at
the time it is released. Therefore, in cases where two or more tasks are constantly
exchanging ownership of a resource, that resource never becomes free; thus, it may
never send events.

pSOS Events API

The pSOS events API routines are listed in Table 2-16:

Table 2-16 pSOS Events API

Routine Meaning

ev_send() Sends events to a task.

ev_receive() Waits for events.

sm_notify() Registers a task to be notified of semaphore availability.
59

VxWorks 5.5
Programmer’s Guide
2.4.2 VxWorks Events

The implementation of VxWorks events is based on the way pSOS events work.
This section first clarifies some of the crucial terms used to discuss VxWorks
events. Then it describes VxWorks events in more detail, comparing their
functionality to that of pSOS events.

Free Resource Definition

A key concept in understanding events sent by resources, is that resources send
events when they become free. Thus, it is crucial to define what it means for a
resource to be free for VxWorks events.

Mutex Semaphore
A mutex semaphore is considered free when it no longer has an owner and no
one is pending on it. For example, following a call to semGive(), the
semaphore will not send events if another task is pending on a semTake() for
the same semaphore.

Binary Semaphore
A binary semaphore is considered free when no task owns it and no one is
waiting for it.

Counting Semaphore
A counting semaphore is considered free when its count is nonzero and no one
is pending on it. Thus, events cannot be used as a mechanism to compute the
number of times a semaphore is released or given.

Message Queue
A message queue is considered free when a message is present in the queue
and no one is pending for the arrival of a message in that queue. Thus, events
cannot be used as a mechanism to compute the number of messages sent to a
message queue.

q_notify() Registers a task to be notified of message arrival on a message queue.

q_vnotify() Registers a task to be notified of message arrival on a variable-length
message queue.

Table 2-16 pSOS Events API

Routine Meaning
60

2

2
Basic OS
VxWorks Enhancements to pSOS Events

When VxWorks events were implemented, some enhancements were made to the
basic pSOS functionality. This section describes those enhancements and
configuration options, and compares the resulting behavior of VxWorks events
with pSOS events.

� SIngle Task Resource Registration. As mentioned in 2.4.1 pSOS Events, p.58,
under pSOS, when a task registers with a resource to send pSOS events, it can
inadvertently deregister another task that had previously registered with the
resource. This prevents the first task from receiving events from the resource
with which it registered. Consequently, the task that first registered with the
resource could stay in a pend state indefinitely.

In order to solve this problem, VxWorks events provide an option whereby the
second task is not allowed to register with the resource, if another task is
already registered with it. If a second task tries to register with the resource, an
error is returned. In VxWorks, you can configure the registration mechanism
to use either the VxWorks or the pSOS behavior.

� Option for Immediate Send. As mentioned in Registering for Events, p.59, when
a pSOS task registers with a resource, the resource does not send events to the
task immediately, even if it is free at the time of registration. For VxWorks
events, the default behavior is the same. However, VxWorks events provide an
option that allows a task, at the time of registration, to request that the resource
send the events immediately, if the resource is free at the time of registration.

� Option for Automatic Unregister. There are situations in which a task may want
to receive events from a resource only once, and then unregister. The pSOS
implementation requires a task to explicitly unregister after having received
events from the resource. The VxWorks implementation provides an option
whereby a registering task can tell the resource to only send events once, and
automatically unregister the task when this occurs.

� Automatic Unpend upon Resource Deletion. When a resource (a semaphore or
message queue) is deleted, the semDelete() and msgQDelete()
implementation unpends any task. This prevents the task from pending
indefinitely, while waiting for events from the resource being deleted. The
pending task then resumes execution, and receives an ERROR return value
from the eventReceive() call that caused the task to pend. See also, Existing
VxWorks API, p.46 and Existing VxWorks API, p.52.
61

VxWorks 5.5
Programmer’s Guide
Task Events Register

Each task has its own events field or container, referred to as the task events register.
The task events register is a per task 32-bit field used to store the events that a task
receives from resources, ISRs, and other tasks.

You do not access the task events register directly. Tasks, ISRs, and resources fill the
events register of a particular task by sending events to that task. A task can also
send itself events, thereby filling its own events register. Events 25 to 32 (VXEV25
or 0x01000000 to VXEV32 or 0x80000000) are reserved for system use only, and are
not available to VxWorks users. Table 2-17 describes the routines that affect the
contents of the events register.

VxWorks Events API

For details on the API for VxWorks events, see the reference entries for eventLib,
semEvLib, and msgQEvLib.

Show Routines

For the purpose of debugging systems that make use of events, the taskShow,
semShow, and msgQShow libraries display event information.

Table 2-17 Event Register Routines

Routine Effects

eventReceive() Clears or leaves the contents of the event register intact, depending
on the options selected.

eventClear() Clears the contents of the event register

eventSend() Copies events into the event register.

semGive() Copies events into the event register, if a task is registered with the
semaphore.

msgQSend() Copies events into the event register, if a task is registered with the
message queue.
62

2

2
Basic OS
The taskShow library displays the following information:

� the contents of the event register
� the desired events
� the options specified when eventReceive() was called

The semShow() and msgQShow() libraries display the following information:

� the task registered to receive events
� the events the resource is meant to send to that task
� the options passed to semEvStart() or msgQEvStart()

2.4.3 API Comparison

The VxWorks events API has made modifications to the pSOS events API for the
purpose of better describing the action of the routines. The pSOS API uses a family
of notify routines for registering and unregistering from a resource. However, these
names do not correctly reflect the action of resources, which is to either send, or not
send, events. Thus, the VxWorks API more precisely describes the request for a
resource to start sending events and to stop sending events to a task. This
implementation uses the semEvStart() and msgQEvStart() routines to tell
resources to start sending events, and the semEvStop() and msgQEvStop()
routines to tell a resource to stop sending events.

Table 2-18 compares the similarities and differences between the VxWorks and
pSOS events API:

Table 2-18 Comparison of Events

VxWorks Routine pSOS Routine Comments

eventSend ev_send Direct port

eventReceive ev_receive Direct port

eventClear New functionality in VxWorks.

semEvStart sm_notify semEvStart is equivalent to calling sm_notify
with a nonzero events argument.

semEvStop sm_notify semEvStop is equivalent to calling sm_notify
with an events argument equal to 0.

msgQEvStart q_vnotify msgQEvStart is equivalent to calling q_notify
with a nonzero events argument.
63

VxWorks 5.5
Programmer’s Guide
2.5 Watchdog Timers

VxWorks includes a watchdog-timer mechanism that allows any C function to be
connected to a specified time delay. Watchdog timers are maintained as part of the
system clock ISR. For information about POSIX timers, see 3.2 POSIX Clocks and
Timers, p.73.

Functions invoked by watchdog timers execute as interrupt service code at the
interrupt level of the system clock. However, if the kernel is unable to execute the
function immediately for any reason (such as a previous interrupt or kernel state),
the function is placed on the tExcTask work queue. Functions on the tExcTask
work queue execute at the priority level of the tExcTask (usually 0).

Restrictions on ISRs apply to routines connected to watchdog timers. The functions
in Table 2-19 are provided by the wdLib library.

A watchdog timer is first created by calling wdCreate(). Then the timer can be
started by calling wdStart(), which takes as arguments the number of ticks to
delay, the C function to call, and an argument to be passed to that function. After

msgQEvStop q_vnotify msgQEvStop is equivalent to calling q_notify
with an events argument equal to 0.

q_notify VxWorks does not have a fixed-length
message queue mechanism.

Table 2-19 Watchdog Timer Calls

Call Description

wdCreate() Allocates and initializes a watchdog timer.

wdDelete() Terminates and deallocates a watchdog timer.

wdStart() Starts a watchdog timer.

wdCancel() Cancels a currently counting watchdog timer.

Table 2-18 Comparison of Events

VxWorks Routine pSOS Routine Comments
64

2

2
Basic OS
the specified number of ticks have elapsed, the function is called with the specified
argument. The watchdog timer can be canceled any time before the delay has
elapsed by calling wdCancel().

Example 2-4 Watchdog Timers

/* Creates a watchdog timer and sets it to go off in 3 seconds.*/

/* includes */
#include "vxWorks.h"
#include "logLib.h"
#include "wdLib.h"

/* defines */
#define SECONDS (3)

WDOG_ID myWatchDogId;
task (void)

{
/* Create watchdog */
if ((myWatchDogId = wdCreate()) == NULL)

return (ERROR);

/* Set timer to go off in SECONDS - printing a message to stdout */
if (wdStart (myWatchDogId, sysClkRateGet() * SECONDS, logMsg,

"Watchdog timer just expired\n") == ERROR)
return (ERROR);

/* ... */
}

2.6 Interrupt Service Code: ISRs

Hardware interrupt handling is of key significance in real-time systems, because it
is usually through interrupts that the system is informed of external events. For the
fastest possible response to interrupts, VxWorks runs interrupt service routines
(ISRs) in a special context outside of any task’s context. Thus, interrupt handling
involves no task context switch. Table 2-20 lists the interrupt routines provided in
intLib and intArchLib.
65

VxWorks 5.5
Programmer’s Guide
For boards with an MMU, the optional product VxVMI provides write protection
for the interrupt vector table; see 12. Virtual Memory Interface.

2.6.1 Connecting Routines to Interrupts

You can use system hardware interrupts other than those used by VxWorks.
VxWorks provides the routine intConnect(), which allows C functions to be
connected to any interrupt. The arguments to this routine are the byte offset of the
interrupt vector to connect to, the address of the C function to be connected, and
an argument to pass to the function. When an interrupt occurs with a vector
established in this way, the connected C function is called at interrupt level with
the specified argument. When the interrupt handling is finished, the connected
function returns. A routine connected to an interrupt in this way is called an
interrupt service routine (ISR).

Interrupts cannot actually vector directly to C functions. Instead, intConnect()
builds a small amount of code that saves the necessary registers, sets up a stack
entry (either on a special interrupt stack, or on the current task’s stack) with the
argument to be passed, and calls the connected function. On return from the
function it restores the registers and stack, and exits the interrupt; see Figure 2-16.

Table 2-20 Interrupt Routines

Call Description

intConnect() Connects a C routine to an interrupt vector.

intContext() Returns TRUE if called from interrupt level.

intCount() Gets the current interrupt nesting depth.

intLevelSet() Sets the processor interrupt mask level.

intLock() Disables interrupts.

intUnlock() Re-enables interrupts.

intVecBaseSet() Sets the vector base address.

intVecBaseGet() Gets the vector base address.

intVecSet() Sets an exception vector.

intVecGet() Gets an exception vector.
66

2

2
Basic OS
For target boards with VME backplanes, the BSP provides two standard routines
for controlling VME bus interrupts, sysIntEnable() and sysIntDisable().

2.6.2 Interrupt Stack

All ISRs use the same interrupt stack. This stack is allocated and initialized by the
system at start-up according to specified configuration parameters. It must be
large enough to handle the worst possible combination of nested interrupts.

Some architectures, however, do not permit using a separate interrupt stack. On
such architectures, ISRs use the stack of the interrupted task. If you have such an
architecture, you must create tasks with enough stack space to handle the worst
possible combination of nested interrupts and the worst possible combination of
ordinary nested calls. See the reference entry for your BSP to determine whether
your architecture supports a separate interrupt stack.

Use the checkStack() facility during development to see how close your tasks and
ISRs have come to exhausting the available stack space.

2.6.3 Writing and Debugging ISRs

There are some restrictions on the routines you can call from an ISR. For example,
you cannot use routines like printf(), malloc(), and semTake() in your ISR. You
can, however, use semGive(), logMsg(), msgQSend(), and bcopy(). For more
information, see 2.6.4 Special Limitations of ISRs, p.68.

Figure 2-16 Routine Built by intConnect()

Wrapper built by intConnect() Interrupt Service Routine

intConnect (INUM_TO_IVEC (someIntNum), myISR, someVal);

save registers

set up stack

invoke routine

restore registers and stack

exit

myISR
(
int val;
)
(
/* deal with hardware*/

...
)

67

VxWorks 5.5
Programmer’s Guide
2.6.4 Special Limitations of ISRs

Many VxWorks facilities are available to ISRs, but there are some important
limitations. These limitations stem from the fact that an ISR does not run in a
regular task context and has no task control block, so all ISRs share a single stack.

Table 2-21 Routines that Can Be Called by Interrupt Service Routines

Library Routines

bLib All routines

errnoLib errnoGet(), errnoSet()

fppArchLib fppSave(), fppRestore()

intLib intContext(), intCount(), intVecSet(), intVecGet()

intArchLib intLock(), intUnlock()

logLib logMsg()

lstLib All routines except lstFree()

mathALib All routines, if fppSave()/fppRestore() are used

msgQLib msgQSend()

pipeDrv write()

rngLib All routines except rngCreate() and rngDelete()

selectLib selWakeup(), selWakeupAll()

semLib semGive() except mutual-exclusion semaphores, semFlush()

sigLib kill()

taskLib taskSuspend(), taskResume(), taskPrioritySet(), taskPriorityGet(),
taskIdVerify(), taskIdDefault(), taskIsReady(), taskIsSuspended(),
taskTcb()

tickLib tickAnnounce(), tickSet(), tickGet()

tyLib tyIRd(), tyITx()

vxLib vxTas(), vxMemProbe()

wdLib wdStart(), wdCancel()
68

2

2
Basic OS
For this reason, the basic restriction on ISRs is that they must not invoke routines
that might cause the caller to block. For example, they must not try to take a
semaphore, because if the semaphore is unavailable, the kernel tries to switch the
caller to the pended state. However, ISRs can give semaphores, releasing any tasks
waiting on them.

Because the memory facilities malloc() and free() take a semaphore, they cannot
be called by ISRs, and neither can routines that make calls to malloc() and free().
For example, ISRs cannot call any creation or deletion routines.

ISRs also must not perform I/O through VxWorks drivers. Although there are no
inherent restrictions in the I/O system, most device drivers require a task context
because they might block the caller to wait for the device. An important exception
is the VxWorks pipe driver, which is designed to permit writes by ISRs.

VxWorks supplies a logging facility, in which a logging task prints text messages
to the system console. This mechanism was specifically designed for ISR use, and
is the most common way to print messages from ISRs. For more information, see
the reference entry for logLib.

An ISR also must not call routines that use a floating-point coprocessor. In
VxWorks, the interrupt driver code created by intConnect() does not save and
restore floating-point registers; thus, ISRs must not include floating-point
instructions. If an ISR requires floating-point instructions, it must explicitly save
and restore the registers of the floating-point coprocessor using routines in
fppArchLib.

All VxWorks utility libraries, such as the linked-list and ring-buffer libraries, can
be used by ISRs. As discussed earlier (2.2.6 Task Error Status: errno, p.22), the global
variable errno is saved and restored as a part of the interrupt enter and exit code
generated by the intConnect() facility. Thus, errno can be referenced and modified
by ISRs as in any other code. Table 2-21 lists routines that can be called from ISRs.

2.6.5 Exceptions at Interrupt Level

When a task causes a hardware exception such as an illegal instruction or bus error,
the task is suspended and the rest of the system continues uninterrupted.
However, when an ISR causes such an exception, there is no safe recourse for the
system to handle the exception. The ISR has no context that can be suspended.
Instead, VxWorks stores the description of the exception in a special location in low
memory and executes a system restart.

The VxWorks boot programs test for the presence of the exception description in
low memory and if it is detected, display it on the system console. The e command
69

VxWorks 5.5
Programmer’s Guide
in the boot ROMs re-displays the exception description; see Tornado User’s Guide:
Setup and Startup.

One example of such an exception is the following message:

workQPanic: Kernel work queue overflow.

This exception usually occurs when kernel calls are made from interrupt level at a
very high rate. It generally indicates a problem with clearing the interrupt signal
or a similar driver problem.

2.6.6 Reserving High Interrupt Levels

The VxWorks interrupt support described earlier in this section is acceptable for
most applications. However, on occasion, low-level control is required for events
such as critical motion control or system failure response. In such cases it is
desirable to reserve the highest interrupt levels to ensure zero-latency response to
these events. To achieve zero-latency response, VxWorks provides the routine
intLockLevelSet(), which sets the system-wide interrupt-lockout level to the
specified level. If you do not specify a level, the default is the highest level
supported by the processor architecture. For information about architecture-
specific implementations of intLockLevelSet(), see the appropriate VxWorks
architecture supplement.

2.6.7 Additional Restrictions for ISRs at High Interrupt Levels

ISRs connected to interrupt levels that are not locked out (either an interrupt level
higher than that set by intLockLevelSet(), or an interrupt level defined in
hardware as non-maskable) have special restrictions:

� The ISR can be connected only with intVecSet().

� The ISR cannot use any VxWorks operating system facilities that depend on
interrupt locks for correct operation. The effective result is that the ISR cannot
safely make any call to any VxWorks function, except reboot.

For more information, see the VxWorks architecture supplement document for the
architecture in question.

! CAUTION: Some hardware prevents masking certain interrupt levels; check the
hardware manufacturer’s documentation.
70

2

2
Basic OS
2.6.8 Interrupt-to-Task Communication

While it is important that VxWorks support direct connection of ISRs that run at
interrupt level, interrupt events usually propagate to task-level code. Many
VxWorks facilities are not available to interrupt-level code, including I/O to any
device other than pipes. The following techniques can be used to communicate
from ISRs to task-level code:

� Shared Memory and Ring Buffers. ISRs can share variables, buffers, and ring
buffers with task-level code.

� Semaphores. ISRs can give semaphores (except for mutual-exclusion
semaphores and VxMP shared semaphores) that tasks can take and wait for.

� Message Queues. ISRs can send messages to message queues for tasks to
receive (except for shared message queues using VxMP). If the queue is full,
the message is discarded.

� Pipes. ISRs can write messages to pipes that tasks can read. Tasks and ISRs can
write to the same pipes. However, if the pipe is full, the message written is
discarded because the ISR cannot block. ISRs must not invoke any I/O routine
on pipes other than write().

� Signals. ISRs can “signal” tasks, causing asynchronous scheduling of their
signal handlers.

! WARNING: The use of NMI with any VxWorks functionality, other than reboot, is
not recommended. Routines marked as “interrupt safe” do not imply they are NMI
safe and, in fact, are usually the very ones that NMI routines must not call (because
they typically use intLock() to achieve the interrupt safe condition).
71

VxWorks 5.5
Programmer’s Guide
72

3

POSIX Standard Interfaces
3.1 Introduction

The POSIX standard for real-time extensions (1003.1b) specifies a set of interfaces
to kernel facilities. To improve application portability, the VxWorks kernel, wind,
includes both POSIX interfaces and interfaces designed specifically for VxWorks.

This chapter uses the qualifier “Wind” to identify facilities designed expressly for
use with the VxWorks wind kernel. For example, you can find a discussion of Wind
semaphores contrasted to POSIX semaphores in 3.6.1 Comparison of POSIX and
Wind Semaphores, p.86.

POSIX asynchronous Input/Output (AIO) routines are available in the aioPxLib
library. The VxWorks AIO implementation meets the specification in the POSIX
1003.1b standard. For more information, see 4.6 Asynchronous Input/Output, p.123.

3.2 POSIX Clocks and Timers

A clock is a software construct (struct timespec, defined in time.h) that keeps time
in seconds and nanoseconds. The software clock is updated by system-clock ticks.
VxWorks provides a POSIX 1003.1b standard clock and timer interface.

The POSIX standard provides a means of identifying multiple virtual clocks, but
only one clock is required—the system-wide real-time clock. No virtual clocks are
supported in VxWorks.
73

VxWorks 5.5
Programmer’s Guide
The system-wide real-time clock is identified in the clock and timer routines as
CLOCK_REALTIME, and is defined in time.h. VxWorks provides routines to access
the system-wide real-time clock. For more information, see the reference entry for
clockLib.

The POSIX timer facility provides routines for tasks to signal themselves at some
time in the future. Routines are provided to create, set, and delete a timer. For more
information, see the reference entry for timerLib. When a timer goes off, the
default signal, SIGALRM, is sent to the task. To install a signal handler that
executes when the timer expires, use the sigaction() routine (see 2.3.7 Signals,
p.55).

Example 3-1 POSIX Timers

/* This example creates a new timer and stores it in timerid. */

/* includes */
#include "vxWorks.h"
#include "time.h"

int createTimer (void)
{
timer_t timerid;

/* create timer */
if (timer_create (CLOCK_REALTIME, NULL, &timerid) == ERROR)

{
printf ("create FAILED\n");
return (ERROR);
}

return (OK);
}

An additional POSIX function, nanosleep(), provides specification of sleep or
delay time in units of seconds and nanoseconds, in contrast to the ticks used by the
Wind taskDelay() function. Nevertheless, the precision of both is the same, and is
determined by the system clock rate. Only the units differ.

3.3 POSIX Memory-Locking Interface

Many operating systems perform memory paging and swapping, which copy blocks
of memory out to disk and back. These techniques allow you to use more virtual
memory than there is physical memory on a system. However, because they
74

3

3
POSIX Standard Interfaces
impose severe and unpredictable delays in execution time, paging and swapping
are undesirable in real-time systems. Consequently, the wind kernel never uses
them.

However, the POSIX 1003.1b standard for real-time extensions is also used with
operating systems that do perform paging and swapping. On such systems,
applications that attempt real-time performance can use the POSIX page-locking
facilities to protect certain blocks of memory from paging and swapping.

To facilitate porting programs between other POSIX-conforming systems and
VxWorks, VxWorks includes the POSIX page-locking routines. The routines have
no adverse affect in VxWorks systems, because all memory is essentially always
locked.

The POSIX page-locking routines are part of the memory management library,
mmanPxLib, and are listed in Table 3-1. When used in VxWorks, these routines do
nothing except return a value of OK (0), since all pages are always kept in memory.

To include the mmanPxLib library, configure VxWorks with the
INCLUDE_POSIX_MEM component.

3.4 POSIX Threads

POSIX threads are similar to tasks, but with some additional characteristics,
including a thread ID that differs from its task ID.

Table 3-1 POSIX Memory Management Calls

Call Purpose on Systems with Paging or Swapping

mlockall() Locks into memory all pages used by a task.

munlockall() Unlocks all pages used by a task.

mlock() Locks a specified page.

munlock() Unlocks a specified page.
75

VxWorks 5.5
Programmer’s Guide
3.4.1 POSIX Thread Attributes

POSIX characteristics are called attributes. Each attribute contains a set of values,
and a set of access functions to retrieve and set those values. You can specify all
thread attributes in an attributes object, pthread_attr_t, at thread creation. In a few
cases, you can dynamically modify the attribute values in a running thread.

The POSIX attributes and their corresponding access functions are described
below.

Stack Size

The stacksize attribute specifies the size of the stack to be used. This value can be
rounded up to a page boundary.

� Attribute Name: stacksize

� Default Value: Uses the default stack size set for taskLib.

� Access Functions: pthread_attr_getstacksize() and
pthread_attr_setstacksize()

Stack Address

The stackaddr attribute specifies the base of a region of user allocated memory to
be used as a stack region for the created thread. Because the default value is NULL,
the system should allocate a stack for the thread when it is created.

� Attribute Name: stackaddr

� Default Value: NULL

� Access Functions: pthread_attr_getstackaddr() and
pthread_attr_setstackaddr()

Detach State

The detachstate attribute describes the state of a thread. With POSIX threads, the
creator of a thread can block until the thread exits (see the entries for
pthread_exit() and pthread_join() in the VxWorks API Reference). In this case, the
thread is a joinable thread. Otherwise, it is a detached thread. A thread that was
76

3

3
POSIX Standard Interfaces
created as a joinable thread can dynamically make itself a detached thread by
calling pthread_detach().

� Attribute Name: detachstate

� Possible Values: PTHREAD_CREATE_DETACHED and
PTHREAD_CREATE_JOINABLE

� Default Value: PTHREAD_CREATE_JOINABLE

� Access Functions: pthread_attr_getdetachstate() and
pthread_attr_setdetachstate()

� Dynamic Access Function: pthread_detach()

Contention Scope

The contentionscope attribute describes how threads compete for resources,
namely the CPU. Under VxWorks, all tasks compete for the CPU, so the
competition is system-wide. Although POSIX allows two values, only
PTHREAD_SCOPE_SYSTEM is implemented for VxWorks.

� Attribute Name: contentionscope

� Possible Values: PTHREAD_SCOPE_SYSTEM only
(PTHREAD_SCOPE_PROCESS not implemented for VxWorks)

� Default Value: PTHREAD_SCOPE_SYSTEM

� Access Functions: pthread_attr_getscope() and pthread_attr_setscope()

Inherit Scheduling

The inheritsched attribute determines whether the thread is created with
scheduling parameters inherited from its parent thread, or with parameters that
are explicitly specified.

� Attribute Name: inheritsched

� Possible Values: PTHREAD_EXPLICIT_SCHED or PTHREAD_INHERIT_SCHED

� Default Value: PTHREAD_INHERIT_SCHED

� Access Functions: pthread_attr_getinheritsched() and
pthread_attr_setinheritsched()
77

VxWorks 5.5
Programmer’s Guide
Scheduling Policy

The schedpolicy attribute describes the scheduling policy for the thread, and is
valid only if the value of the inheritsched attribute is
PTHREAD_EXPLICIT_SCHED.

� Attribute Name: schedpolicy

� Possible Values: SCHED_FIFO (preemptive priority scheduling) and
SCHED_RR (round-robin scheduling by priority)

� Default Value: SCHED_RR

� Access Functions:pthread_attr_getschedpolicy() and
pthread_attr_setschedpolicy()

Note that because the default value for the inheritsched attribute is
PTHREAD_INHERIT_SCHED, the schedpolicy attribute is not used by default. For
more information, see 3.5.3 Getting and Displaying the Current Scheduling Policy,
p.84.

Scheduling Parameters

The schedparam attribute describes the scheduling parameters for the thread, and
is valid only if the value of the inheritsched attribute is
PTHREAD_EXPLICIT_SCHED.

� Attribute Name: schedparam

� Range of Values: 0-255

� Default Value: Uses default task priority set for taskLib.

� Access Functions: pthread_attr_getschedparam() and
pthread_attr_setschedparam()

� Dynamic Access Functions: pthread_getschedparam() and
pthread_setschedparam() using thread ID, or sched_getparam() and
sched_setparam() using task ID

Note that because the default value the inheritsched attribute is
PTHREAD_INHERIT_SCHED, the schedparam attribute is not used by default. For
more information, see 3.5.2 Getting and Setting POSIX Task Priorities, p.82.
78

3

3
POSIX Standard Interfaces
Specifying Attributes when Creating pThreads

Following are examples of creating a thread using the default attributes and using
explicit attributes.

Example 3-2 Creating a pThread Using Explicit Scheduing Attributes

pthread_t tid;
pthread_attr_t attr;
int ret;
pthread_attr_init(&attr);

/* set the inheritsched attribute to explicit */
pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);

/* set the schedpolicy attribute to SCHED_FIFO */
pthread_attr_setschedpolicy(&attr, SCHED_FIFO);

/* create the pthread */
ret = pthread_create(&tid, &attr, entryFunction, entryArg);

Example 3-3 Creating a pThread Using Default Attributes

pthread_t tid;
int ret;

/* create the pthread with NULL attributes to designate default values */
ret = pthread_create(&tid, NULL, entryFunction, entryArg);

Example 3-4 Designating Your Own Stack for a pThread

pthread_attr_init(&attr);

/* allocate memory for a stack region for the thread */
stackbase = malloc(2 * 4096);

if (stackbase == NULL)
{
printf("FAILED: mystack: malloc failed\n");
exit(-1);
}

/* set the stack pointer to the base address */
stackptr = (void *)((int)stackbase);

/* explicitly set the stackaddr attribute */
pthread_attr_setstackaddr(&attr, stackptr);

/* set the stacksize attribute to 4096 */
pthread_attr_setstacksize(&attr, (4096));
79

VxWorks 5.5
Programmer’s Guide
/* set the schedpolicy attribute to SCHED_FIFO */
pthread_attr_setschedpolicy(&attr, SCHED_FIFO);

/* create the pthread */
ret = pthread_create(&tid, &attr, mystack_thread, 0);

3.4.2 Thread Private Data

When a thread needs access to private data, POSIX uses a key to access that data. A
location is created by calling to pthread_key_create() and released by calling
pthread_key_delete(). The location is then accessed by calling
pthread_getspecific() and pthread_setspecific(). The pthread_key_create()
routine has an option for a destructor function, which is called when the creating
thread exits, if the value associated with the key is non-NULL.

3.4.3 Thread Cancellation

POSIX provides a mechanism, called cancellation, to terminate a thread gracefully.
There are two types of cancellation, synchronous and asynchronous. Synchronous
cancellation causes the thread to explicitly check to see if it was cancelled or to call
a function that contains a cancellation point. Asynchronous cancellation causes the
execution of the thread to be interrupted and a handler to be called, much like a
signal.1

Routines that can be used with cancellation are listed in Table 3-2.

1. Asynchronous cancellation is actually implemented with a special signal, SIGCANCEL,
which users should be careful to not block or ignore.

Table 3-2 Thread Cancellation Routines

Routine Meaning

pthread_setcancelstate() Enables or disables cancellation.

pthread_setcanceltype() Selects synchronous or asynchronous cancellation.

pthread_cleanup_push() Registers a function to be called when the thread is
cancelled.

pthread_cleanup_pop() Unregisters a function to be called when a thread is
cancelled, and then calls the function.
80

3

3
POSIX Standard Interfaces
A thread can register and unregister functions to be called when it is cancelled by
pthread_cleanup_push() and pthread_cleanup_pop(). The
pthread_cleanup_pop() routine can optionally call the function when
unregistering it.

3.5 POSIX Scheduling Interface

The POSIX 1003.1b scheduling routines, provided by schedPxLib, are shown in
Table 3-3. These routines let you use a portable interface to get and set task priority,
get the scheduling policy, get the maximum and minimum priority for tasks, and
if round-robin scheduling is in effect, get the length of a time slice. This section
describes how to use these routines, beginning with a list of the minor differences
between the POSIX and Wind methods of scheduling.

To include the schedPxLib library of POSIX scheduling routines, configure
VxWorks with the INCLUDE_POSIX_SCHED component.

Table 3-3 POSIX Scheduling Calls

Call Description

sched_setparam() Sets a task’s priority.

sched_getparam() Gets the scheduling parameters for a specified task.

sched_setscheduler() Sets the scheduling policy and parameters for a task.

sched_yield() Relinquishes the CPU.

sched_getscheduler() Gets the current scheduling policy.

sched_get_priority_max() Gets the maximum priority.

sched_get_priority_min() Gets the minimum priority.

sched_rr_get_interval() If round-robin scheduling, gets the time slice length.
81

VxWorks 5.5
Programmer’s Guide
3.5.1 Comparison of POSIX and Wind Scheduling

POSIX and Wind scheduling routines differ in the following ways:

� POSIX scheduling is based on processes. Wind scheduling is based on tasks.

� The POSIX standard uses the term FIFO scheduling. VxWorks documentation
uses the term preemptive priority scheduling. Only the terms differ; both
describe the same priority-based policy.

� POSIX applies scheduling algorithms on a process-by-process basis. Wind
applies scheduling algorithms on a system-wide basis—meaning that all tasks
use either a round-robin scheme or a preemptive priority scheme.

� The POSIX priority numbering scheme is the inverse of the Wind scheme. In
POSIX, the higher the number, the higher the priority; in the Wind scheme, the
lower the number, the higher the priority, where 0 is the highest priority.
Accordingly, the priority numbers used with the POSIX scheduling library,
schedPxLib, do not match those used and reported by all other components of
VxWorks. You can override this default by setting the global variable
posixPriorityNumbering to FALSE. If you do this, schedPxLib uses the Wind
numbering scheme (smaller number = higher priority) and its priority
numbers match those used by the other components of VxWorks.

3.5.2 Getting and Setting POSIX Task Priorities

The routines sched_setparam() and sched_getparam() set and get a task’s
priority, respectively. Both routines take a task ID and a sched_param structure
(defined in installDir/target/h/sched.h). A task ID of 0 sets or gets the priority for
the calling task.

When sched_setparam() is called, the sched_priority member of the
sched_param structure specifies the new task priority. The sched_getparam()
routine fills in the sched_priority with the specified task’s current priority.

Example 3-5 Getting and Setting POSIX Task Priorities

/* This example sets the calling task’s priority to 150, then verifies
* that priority. To run from the shell, spawn as a task: -> sp priorityTest
*/

/* includes */
#include "vxWorks.h"
#include "sched.h"

/* defines */
82

3

3
POSIX Standard Interfaces
#define PX_NEW_PRIORITY 150

STATUS priorityTest (void)
{
struct sched_param myParam;

/* initialize param structure to desired priority */

myParam.sched_priority = PX_NEW_PRIORITY;
if (sched_setparam (0, &myParam) == ERROR)

{
printf ("error setting priority\n");
return (ERROR);
}

/* demonstrate getting a task priority as a sanity check; ensure it
* is the same value that we just set.
*/

if (sched_getparam (0, &myParam) == ERROR)
{
printf ("error getting priority\n");
return (ERROR);
}

if (myParam.sched_priority != PX_NEW_PRIORITY)
{
printf ("error - priorities do not match\n");
return (ERROR);
}

else
printf ("task priority = %d\n", myParam.sched_priority);

return (OK);
}

The routine sched_setscheduler() is designed to set both scheduling policy and
priority for a single POSIX process, which corresponds in most other cases to a
single Wind task. In the VxWorks kernel, sched_setscheduler() controls only task
priority, because the kernel does not allow tasks to have scheduling policies that
differ from one another. If its policy specification matches the current system-wide
scheduling policy, sched_setscheduler() sets only the priority, thus acting like
sched_setparam(). If its policy specification does not match the current one,
sched_setscheduler() returns an error.

The only way to change the scheduling policy is to change it for all tasks; there is
no POSIX routine for this purpose. To set a system-wide scheduling policy, use the
Wind function kernelTimeSlice() described in Round-Robin Scheduling, p.12.
83

VxWorks 5.5
Programmer’s Guide
3.5.3 Getting and Displaying the Current Scheduling Policy

The POSIX routine sched_getscheduler() returns the current scheduling policy.
There are two valid scheduling policies in VxWorks: preemptive priority
scheduling (in POSIX terms, SCHED_FIFO) and round-robin scheduling by
priority (SCHED_RR). For more information, see Scheduling Policy, p.78.

Example 3-6 Getting POSIX Scheduling Policy

/* This example gets the scheduling policy and displays it. */

/* includes */

#include "vxWorks.h"
#include "sched.h"

STATUS schedulerTest (void)
{
int policy;

if ((policy = sched_getscheduler (0)) == ERROR)
{
printf ("getting scheduler failed\n");
return (ERROR);
}

/* sched_getscheduler returns either SCHED_FIFO or SCHED_RR */

if (policy == SCHED_FIFO)
printf ("current scheduling policy is FIFO\n");

else
printf ("current scheduling policy is round robin\n");

return (OK);
}

3.5.4 Getting Scheduling Parameters: Priority Limits and Time Slice

The routines sched_get_priority_max() and sched_get_priority_min() return the
maximum and minimum possible POSIX priority, respectively.

If round-robin scheduling is enabled, you can use sched_rr_get_interval() to
determine the length of the current time-slice interval. This routine takes as an
argument a pointer to a timespec structure (defined in time.h), and writes the
number of seconds and nanoseconds per time slice to the appropriate elements of
that structure.
84

3

3
POSIX Standard Interfaces
Example 3-7 Getting the POSIX Round-Robin Time Slice

/* The following example checks that round-robin scheduling is enabled,
* gets the length of the time slice, and then displays the time slice.
*/

/* includes */

#include "vxWorks.h"
#include "sched.h"

STATUS rrgetintervalTest (void)
{
struct timespec slice;

/* turn on round robin */

kernelTimeSlice (30);

if (sched_rr_get_interval (0, &slice) == ERROR)
{
printf ("get-interval test failed\n");
return (ERROR);
}

printf ("time slice is %l seconds and %l nanoseconds\n",
slice.tv_sec, slice.tv_nsec);

return (OK);
}

3.6 POSIX Semaphores

POSIX defines both named and unnamed semaphores, which have the same
properties, but use slightly different interfaces. The POSIX semaphore library
provides routines for creating, opening, and destroying both named and unnamed
semaphores. When opening a named semaphore, you assign a symbolic name,2

which the other named-semaphore routines accept as an argument. The POSIX
semaphore routines provided by semPxLib are shown in Table 3-4.

2. Some host operating systems, such as UNIX, require symbolic names for objects that are to
be shared among processes. This is because processes do not normally share memory in
such operating systems. In VxWorks, there is no requirement for named semaphores,
because all kernel objects have unique identifiers. However, using named semaphores of the
POSIX variety provides a convenient way of determining the object’s ID.
85

VxWorks 5.5
Programmer’s Guide
To include the POSIX semPxLib library semaphore routines, configure VxWorks
with the INCLUDE_POSIX_SEM component. The initialization routine
semPxLibInit() is called by default when POSIX semaphores have been included
in VxWorks.

3.6.1 Comparison of POSIX and Wind Semaphores

POSIX semaphores are counting semaphores; that is, they keep track of the number
of times they are given. The Wind semaphore mechanism is similar to that
specified by POSIX, except that Wind semaphores offer additional features listed
below. When these features are important, Wind semaphores are preferable.

� priority inheritance

� task-deletion safety

� the ability for a single task to take a semaphore multiple times

� ownership of mutual-exclusion semaphores

� semaphore timeouts

� the choice of queuing mechanism

Table 3-4 POSIX Semaphore Routines

Call Description

semPxLibInit() Initializes the POSIX semaphore library (non-POSIX).

sem_init() Initializes an unnamed semaphore.

sem_destroy() Destroys an unnamed semaphore.

sem_open() Initializes/opens a named semaphore.

sem_close() Closes a named semaphore.

sem_unlink() Removes a named semaphore.

sem_wait() Lock a semaphore.

sem_trywait() Lock a semaphore only if it is not already locked.

sem_post() Unlock a semaphore.

sem_getvalue() Get the value of a semaphore.
86

3

3
POSIX Standard Interfaces
The POSIX terms wait (or lock) and post (or unlock) correspond to the VxWorks
terms take and give, respectively. The POSIX routines for locking, unlocking, and
getting the value of semaphores are used for both named and unnamed
semaphores.

The routines sem_init() and sem_destroy() are used for initializing and
destroying unnamed semaphores only. The sem_destroy() call terminates an
unnamed semaphore and deallocates all associated memory.

The routines sem_open(), sem_unlink(), and sem_close() are for opening and
closing (destroying) named semaphores only. The combination of sem_close() and
sem_unlink() has the same effect for named semaphores as sem_destroy() does
for unnamed semaphores. That is, it terminates the semaphore and deallocates the
associated memory.

3.6.2 Using Unnamed Semaphores

When using unnamed semaphores, typically one task allocates memory for the
semaphore and initializes it. A semaphore is represented with the data structure
sem_t, defined in semaphore.h. The semaphore initialization routine, sem_init(),
lets you specify the initial value.

Once the semaphore is initialized, any task can use the semaphore by locking it
with sem_wait() (blocking) or sem_trywait() (non-blocking), and unlocking it
with sem_post().

Semaphores can be used for both synchronization and exclusion. Thus, when a
semaphore is used for synchronization, it is typically initialized to zero (locked).
The task waiting to be synchronized blocks on a sem_wait(). The task doing the
synchronizing unlocks the semaphore using sem_post(). If the task blocked on the
semaphore is the only one waiting for that semaphore, the task unblocks and
becomes ready to run. If other tasks are blocked on the semaphore, the task with
the highest priority is unblocked.

! WARNING: When deleting semaphores, particularly mutual-exclusion
semaphores, avoid deleting a semaphore still required by another task. Do not
delete a semaphore unless the deleting task first succeeds in locking that
semaphore. Similarly for named semaphores, close semaphores only from the
same task that opens them.
87

VxWorks 5.5
Programmer’s Guide
When a semaphore is used for mutual exclusion, it is typically initialized to a value
greater than zero, meaning that the resource is available. Therefore, the first task to
lock the semaphore does so without blocking; subsequent tasks block if the
semaphore value was initialized to 1.

Example 3-8 POSIX Unnamed Semaphores

/* This example uses unnamed semaphores to synchronize an action between the
* calling task and a task that it spawns (tSyncTask). To run from the shell,
* spawn as a task:
* -> sp unnameSem
*/

/* includes */

#include "vxWorks.h"
#include "semaphore.h"

/* forward declarations */
void syncTask (sem_t * pSem);

void unnameSem (void)
{
sem_t * pSem;

/* reserve memory for semaphore */
pSem = (sem_t *) malloc (sizeof (sem_t));

/* initialize semaphore to unavailable */
if (sem_init (pSem, 0, 0) == -1)

{
printf ("unnameSem: sem_init failed\n");
free ((char *) pSem);
return;
}

/* create sync task */
printf ("unnameSem: spawning task...\n");
taskSpawn ("tSyncTask", 90, 0, 2000, syncTask, pSem);

/* do something useful to synchronize with syncTask */

/* unlock sem */
printf ("unnameSem: posting semaphore - synchronizing action\n");
if (sem_post (pSem) == -1)

{
printf ("unnameSem: posting semaphore failed\n");
sem_destroy (pSem);
free ((char *) pSem);
return;
}

88

3

3
POSIX Standard Interfaces
/* all done - destroy semaphore */
if (sem_destroy (pSem) == -1)
{
printf ("unnameSem: sem_destroy failed\n");
return;
}

free ((char *) pSem);
}

void syncTask
(
sem_t * pSem
)
{
/* wait for synchronization from unnameSem */
if (sem_wait (pSem) == -1)

{
printf ("syncTask: sem_wait failed \n");
return;
}

else
printf ("syncTask:sem locked; doing sync’ed action...\n");

/* do something useful here */
}

3.6.3 Using Named Semaphores

The sem_open() routine either opens a named semaphore that already exists or, as
an option, creates a new semaphore. You can specify which of these possibilities
you want by combining the following flag values:

O_CREAT Create the semaphore if it does not already exist (if it exists, either fail
or open the semaphore, depending on whether O_EXCL is specified).

O_EXCL Open the semaphore only if newly created; fail if the semaphore exists.

The results, based on the flags and whether the semaphore accessed already exists,
are shown in Table 3-5. There is no entry for O_EXCL alone, because using that flag
alone is not meaningful.

Table 3-5 Possible Outcomes of Calling sem_open()

Flag Settings If Semaphore Exists If Semaphore Does Not Exist

None Semaphore is opened. Routine fails.

O_CREAT Semaphore is opened. Semaphore is created.

O_CREAT and O_EXCL Routine fails. Semaphore is created.
89

VxWorks 5.5
Programmer’s Guide
A POSIX named semaphore, once initialized, remains usable until explicitly
destroyed. Tasks can explicitly mark a semaphore for destruction at any time, but
the semaphore remains in the system until no task has the semaphore open.

If VxWorks is configured with INCLUDE_POSIX_SEM_SHOW, you can use show()
from the shell to display information about a POSIX semaphore:3

-> show semId
value = 0 = 0x0

The output is sent to the standard output device, and provides information about
the POSIX semaphore mySem with two tasks blocked waiting for it:

Semaphore name :mySem
sem_open() count :3
Semaphore value :0
No. of blocked tasks :2

For a group of collaborating tasks to use a named semaphore, one of the tasks first
creates and initializes the semaphore, by calling sem_open() with the O_CREAT
flag. Any task that needs to use the semaphore thereafter, opens it by calling
sem_open() with the same name (but without setting O_CREAT). Any task that
has opened the semaphore can use it by locking it with sem_wait() (blocking) or
sem_trywait() (non-blocking) and unlocking it with sem_post().

To remove a semaphore, all tasks using it must first close it with sem_close(), and
one of the tasks must also unlink it. Unlinking a semaphore with sem_unlink()
removes the semaphore name from the name table. After the name is removed
from the name table, tasks that currently have the semaphore open can still use it,
but no new tasks can open this semaphore. The next time a task tries to open the
semaphore without the O_CREAT flag, the operation fails. The semaphore vanishes
when the last task closes it.

Example 3-9 POSIX Named Semaphores

/*
* In this example, nameSem() creates a task for synchronization. The
* new task, tSyncSemTask, blocks on the semaphore created in nameSem().
* Once the synchronization takes place, both tasks close the semaphore,
* and nameSem() unlinks it. To run this task from the shell, spawn
* nameSem as a task:
* -> sp nameSem, "myTest"
*/

3. This is not a POSIX routine, nor is it designed for use from programs; use it from the
Tornado shell (see the Tornado User’s Guide: Shell for details).
90

3

3
POSIX Standard Interfaces
/* includes */
#include "vxWorks.h"
#include "semaphore.h"
#include "fcntl.h"

/* forward declaration */
int syncSemTask (char * name);

int nameSem
(
char * name
)
{
sem_t * semId;

/* create a named semaphore, initialize to 0*/
printf ("nameSem: creating semaphore\n");
if ((semId = sem_open (name, O_CREAT, 0, 0)) == (sem_t *) -1)

{
printf ("nameSem: sem_open failed\n");
return;
}

printf ("nameSem: spawning sync task\n");
taskSpawn ("tSyncSemTask", 90, 0, 2000, syncSemTask, name);

/* do something useful to synchronize with syncSemTask */

/* give semaphore */
printf ("nameSem: posting semaphore - synchronizing action\n");
if (sem_post (semId) == -1)

{
printf ("nameSem: sem_post failed\n");
return;
}

/* all done */
if (sem_close (semId) == -1)

{
printf ("nameSem: sem_close failed\n");
return;
}

if (sem_unlink (name) == -1)
{
printf ("nameSem: sem_unlink failed\n");
return;
}

printf ("nameSem: closed and unlinked semaphore\n");
}

91

VxWorks 5.5
Programmer’s Guide
int syncSemTask
(
char * name
)
{
sem_t * semId;

/* open semaphore */
printf ("syncSemTask: opening semaphore\n");
if ((semId = sem_open (name, 0)) == (sem_t *) -1)

{
printf ("syncSemTask: sem_open failed\n");
return;
}

/* block waiting for synchronization from nameSem */
printf ("syncSemTask: attempting to take semaphore...\n");
if (sem_wait (semId) == -1)

{
printf ("syncSemTask: taking sem failed\n");
return;
}

printf ("syncSemTask: has semaphore, doing sync’ed action ...\n");

/* do something useful here */

if (sem_close (semId) == -1)
{
printf ("syncSemTask: sem_close failed\n");
return;
}

}

3.7 POSIX Mutexes and Condition Variables

Mutexes and condition variables provide compatibility with the POSIX standard
(1003.1c). They perform essentially the same role as mutual exclusion and binary
semaphores (and are in fact implemented using them). They are available with
pthreadLib. Like POSIX threads, mutexes and condition variables have attributes
associated with them.

Mutex attributes are held in a data type called pthread_mutexattr_t, which
contains two attributes, protocol and prioceiling.
92

3

3
POSIX Standard Interfaces
Protocol

The protocol mutex attribute describes how the mutex deals with the priority
inversion problem described in the section for mutual-exclusion semaphores
(Mutual-Exclusion Semaphores, p.40).

� Attribute Name: protocol

� Possible Values: PTHREAD_PRIO_INHERIT and PTHREAD_PRIO_PROTECT

� Access Routines: pthread_mutexattr_getprotocol() and
pthread_mutexattr_setprotocol()

To create a mutual-exclusion semaphore with priority inheritance, use the
SEM_Q_PRIORITY and SEM_PRIO_INHERIT options to semMCreate(). Mutual-
exclusion semaphores created with the priority protection value use the notion of a
priority ceiling, which is the other mutex attribute.

Priority Ceiling

The prioceiling attribute is the POSIX priority ceiling for a mutex created with the
protocol attribute set to PTHREAD_PRIO_PROTECT.

� Attribute Name: prioceiling

� Possible Values: any valid (POSIX) priority value

� Access Routines: pthread_mutexattr_getprioceiling() and
pthread_mutexattr_setprioceiling()

� Dynamic Access Routines: pthread_mutex_getprioceiling() and
pthread_mutex_setprioceiling()

Note that the POSIX priority numbering scheme is the inverse of the Wind scheme.
See 3.5.1 Comparison of POSIX and Wind Scheduling, p.82.

A priority ceiling is defined by the following conditions:

– Any thread attempting to acquire a mutex, whose priority is higher than the
ceiling, cannot acquire the mutex.

– Any thread whose priority is lower than the ceiling value has its priority
elevated to the ceiling value for the duration that the mutex is held.

– The thread’s priority is restored to its previous value when the mutex is
released.
93

VxWorks 5.5
Programmer’s Guide
3.8 POSIX Message Queues

The POSIX message queue routines, provided by mqPxLib, are shown in Table 3-6.

To configure VxWorks to include the POSIX message queue routine, include the
INCLUDE_POSIX_MQ component. The initialization routine mqPxLibInit()
makes the POSIX message queue routines available, and is called automatically
when the INCLUDE_POSIX_MQ component is included in the system.

3.8.1 Comparison of POSIX and Wind Message Queues

The POSIX message queues are similar to Wind message queues, except that
POSIX message queues provide messages with a range of priorities. The
differences between the POSIX and Wind message queues are summarized in
Table 3-7.

Table 3-6 POSIX Message Queue Routines

Call Description

mqPxLibInit() Initializes the POSIX message queue library (non-POSIX).

mq_open() Opens a message queue.

mq_close() Closes a message queue.

mq_unlink() Removes a message queue.

mq_send() Sends a message to a queue.

mq_receive() Gets a message from a queue.

mq_notify() Signals a task that a message is waiting on a queue.

mq_setattr() Sets a queue attribute.

mq_getattr() Gets a queue attribute.

Table 3-7 Message Queue Feature Comparison

Feature Wind Message Queues POSIX Message Queues

Message Priority Levels 1 32

Blocked Task Queues FIFO or priority-based Priority-based
94

3

3
POSIX Standard Interfaces
POSIX message queues are also portable, if you are migrating to VxWorks from
another 1003.1b-compliant system. This means that you can use POSIX message
queues without having to change the code, thereby reducing the porting effort.

3.8.2 POSIX Message Queue Attributes

A POSIX message queue has the following attributes:

– an optional O_NONBLOCK flag
– the maximum number of messages in the message queue
– the maximum message size
– the number of messages currently on the queue

Tasks can set or clear the O_NONBLOCK flag (but not the other attributes) using
mq_setattr(), and get the values of all the attributes using mq_getattr().

Example 3-10 Setting and Getting Message Queue Attributes

/*
* This example sets the O_NONBLOCK flag and examines message queue
* attributes.
*/

/* includes */
#include "vxWorks.h"
#include "mqueue.h"
#include "fcntl.h"
#include "errno.h"

/* defines */
#define MSG_SIZE 16

int attrEx
(
char * name
)
{
mqd_t mqPXId; /* mq descriptor */

Receive with Timeout Optional Not available

Task Notification Not available Optional (one task)

Close/Unlink Semantics No Yes

Table 3-7 Message Queue Feature Comparison

Feature Wind Message Queues POSIX Message Queues
95

VxWorks 5.5
Programmer’s Guide
struct mq_attr attr; /* queue attribute structure */
struct mq_attr oldAttr; /* old queue attributes */
char buffer[MSG_SIZE];
int prio;

/* create read write queue that is blocking */
attr.mq_flags = 0;
attr.mq_maxmsg = 1;
attr.mq_msgsize = 16;
if ((mqPXId = mq_open (name, O_CREAT | O_RDWR , 0, &attr))

== (mqd_t) -1)
return (ERROR);

else
printf ("mq_open with non-block succeeded\n");

/* change attributes on queue - turn on non-blocking */
attr.mq_flags = O_NONBLOCK;
if (mq_setattr (mqPXId, &attr, &oldAttr) == -1)

return (ERROR);
else

{
/* paranoia check - oldAttr should not include non-blocking. */
if (oldAttr.mq_flags & O_NONBLOCK)

return (ERROR);
else

printf ("mq_setattr turning on non-blocking succeeded\n");
}

/* try receiving - there are no messages but this shouldn't block */
if (mq_receive (mqPXId, buffer, MSG_SIZE, &prio) == -1)

{
if (errno != EAGAIN)

return (ERROR);
else

printf ("mq_receive with non-blocking didn’t block on empty queue\n");
}

else
return (ERROR);

/* use mq_getattr to verify success */
if (mq_getattr (mqPXId, &oldAttr) == -1)

return (ERROR);
else

{
/* test that we got the values we think we should */
if (!(oldAttr.mq_flags & O_NONBLOCK) || (oldAttr.mq_curmsgs != 0))

return (ERROR);
else

printf ("queue attributes are:\n\tblocking is %s\n\t
message size is: %d\n\t
max messages in queue: %d\n\t
no. of current msgs in queue: %d\n",
oldAttr.mq_flags & O_NONBLOCK ? "on" : "off",
oldAttr.mq_msgsize, oldAttr.mq_maxmsg,
oldAttr.mq_curmsgs);

}

96

3

3
POSIX Standard Interfaces
/* clean up - close and unlink mq */
if (mq_unlink (name) == -1)

return (ERROR);
if (mq_close (mqPXId) == -1)

return (ERROR);
return (OK);
}

3.8.3 Displaying Message Queue Attributes

The VxWorks show() command produces a display of the key message queue
attributes, for either POSIX or Wind message queues. To get information on POSIX
message queues, configure VxWorks to include the INCLUDE_POSIX_MQ_SHOW
component.

For example, if mqPXId is a POSIX message queue:

-> show mqPXId
value = 0 = 0x0

The output is sent to the standard output device, and looks like the following:

Message queue name : MyQueue
No. of messages in queue : 1
Maximum no. of messages : 16
Maximum message size : 16

Compare this to the output when myMsgQId is a Wind message queue:

-> show myMsgQId
Message Queue Id : 0x3adaf0
Task Queuing : FIFO
Message Byte Len : 4
Messages Max : 30
Messages Queued : 14
Receivers Blocked : 0
Send timeouts : 0
Receive timeouts : 0

NOTE: The built-in show() routine handles Wind message queues; see the Tornado
User’s Guide: Shell for information on built-in routines. You can also use the
Tornado browser to get information on Wind message queues; see the Tornado
User’s Guide: Browser for details.
97

VxWorks 5.5
Programmer’s Guide
3.8.4 Communicating Through a Message Queue

Before a set of tasks can communicate through a POSIX message queue, one of the
tasks must create the message queue by calling mq_open() with the O_CREAT flag
set. Once a message queue is created, other tasks can open that queue by name to
send and receive messages on it. Only the first task opens the queue with the
O_CREAT flag; subsequent tasks can open the queue for receiving only
(O_RDONLY), sending only (O_WRONLY), or both sending and receiving
(O_RDWR).

To put messages on a queue, use mq_send(). If a task attempts to put a message
on the queue when the queue is full, the task blocks until some other task reads a
message from the queue, making space available. To avoid blocking on
mq_send(), set O_NONBLOCK when you open the message queue. In that case,
when the queue is full, mq_send() returns -1 and sets errno to EAGAIN instead
of pending, allowing you to try again or take other action as appropriate.

One of the arguments to mq_send() specifies a message priority. Priorities range
from 0 (lowest priority) to 31 (highest priority); see 3.5.1 Comparison of POSIX and
Wind Scheduling, p.82.

When a task receives a message using mq_receive(), the task receives the highest-
priority message currently on the queue. Among multiple messages with the same
priority, the first message placed on the queue is the first received (FIFO order). If
the queue is empty, the task blocks until a message is placed on the queue.

To avoid pending on mq_receive(), open the message queue with O_NONBLOCK;
in that case, when a task attempts to read from an empty queue, mq_receive()
returns -1 and sets errno to EAGAIN.

To close a message queue, call mq_close(). Closing the queue does not destroy it,
but only asserts that your task is no longer using the queue. To request that the
queue be destroyed, call mq_unlink(). Unlinking a message queue does not
destroy the queue immediately, but it does prevent any further tasks from opening
that queue, by removing the queue name from the name table. Tasks that currently
have the queue open can continue to use it. When the last task closes an unlinked
queue, the queue is destroyed.

Example 3-11 POSIX Message Queues

/* In this example, the mqExInit() routine spawns two tasks that
* communicate using the message queue.
*/

/* mqEx.h - message example header */
98

3

3
POSIX Standard Interfaces
/* defines */
#define MQ_NAME "exampleMessageQueue"

/* forward declarations */
void receiveTask (void);
void sendTask (void);

/* testMQ.c - example using POSIX message queues */

/* includes */
#include "vxWorks.h"
#include "mqueue.h"
#include "fcntl.h"
#include "errno.h"
#include "mqEx.h"

/* defines */
#define HI_PRIO 31
#define MSG_SIZE 16

int mqExInit (void)
{
/* create two tasks */
if (taskSpawn ("tRcvTask", 95, 0, 4000, receiveTask, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0) == ERROR)
{
printf ("taskSpawn of tRcvTask failed\n");
return (ERROR);
}

if (taskSpawn ("tSndTask", 100, 0, 4000, sendTask, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0) == ERROR)

{
printf ("taskSpawn of tSendTask failed\n");
return (ERROR);
}

}

void receiveTask (void)
{
mqd_t mqPXId; /* msg queue descriptor */
char msg[MSG_SIZE]; /* msg buffer */
int prio; /* priority of message */

/* open message queue using default attributes */
if ((mqPXId = mq_open (MQ_NAME, O_RDWR | O_CREAT, 0, NULL))

== (mqd_t) -1)
{
printf ("receiveTask: mq_open failed\n");
return;
}

/* try reading from queue */
if (mq_receive (mqPXId, msg, MSG_SIZE, &prio) == -1)

{
printf ("receiveTask: mq_receive failed\n");
99

VxWorks 5.5
Programmer’s Guide
return;
}

else
{
printf ("receiveTask: Msg of priority %d received:\n\t\t%s\n",

prio, msg);
}

}

/* sendTask.c - mq sending example */

/* includes */
#include "vxWorks.h"
#include "mqueue.h"
#include "fcntl.h"
#include "mqEx.h"

/* defines */
#define MSG "greetings"
#define HI_PRIO 30

void sendTask (void)
{
mqd_t mqPXId; /* msg queue descriptor */\

/* open msg queue; should already exist with default attributes */

if ((mqPXId = mq_open (MQ_NAME, O_RDWR, 0, NULL)) == (mqd_t) -1)
{
printf ("sendTask: mq_open failed\n");
return;
}

/* try writing to queue */
if (mq_send (mqPXId, MSG, sizeof (MSG), HI_PRIO) == -1)

{
printf ("sendTask: mq_send failed\n");
return;
}

else
printf ("sendTask: mq_send succeeded\n");

}

3.8.5 Notifying a Task that a Message is Waiting

A task can use the mq_notify() routine to request notification when a message for
it arrives at an empty queue. The advantage of this is that a task can avoid blocking
or polling to wait for a message.

The mq_notify() call specifies a signal to be sent to the task when a message is
placed on an empty queue. This mechanism uses the POSIX data-carrying
100

3

3
POSIX Standard Interfaces
extension to signaling, which allows you, for example, to carry a queue identifier
with the signal (see 3.9 POSIX Queued Signals, p.105).

The mq_notify() mechanism is designed to alert the task only for new messages
that are actually available. If the message queue already contains messages, no
notification is sent when more messages arrive. If there is another task that is
blocked on the queue with mq_receive(), that other task unblocks, and no
notification is sent to the task registered with mq_notify().

Notification is exclusive to a single task: each queue can register only one task for
notification at a time. Once a queue has a task to notify, no attempts to register with
mq_notify() can succeed until the notification request is satisfied or cancelled.

Once a queue sends notification to a task, the notification request is satisfied, and
the queue has no further special relationship with that particular task; that is, the
queue sends a notification signal only once per mq_notify() request. To arrange
for one particular task to continue receiving notification signals, the best approach
is to call mq_notify() from the same signal handler that receives the notification
signals. This reinstalls the notification request as soon as possible.

To cancel a notification request, specify NULL instead of a notification signal. Only
the currently registered task can cancel its notification request.

Example 3-12 Notifying a Task that a Message Queue is Waiting

/*
*In this example, a task uses mq_notify() to discover when a message
* is waiting for it on a previously empty queue.
*/

/* includes */
#include "vxWorks.h"
#include "signal.h"
#include "mqueue.h"
#include "fcntl.h"
#include "errno.h"

/* defines */
#define QNAM "PxQ1"
#define MSG_SIZE 64 /* limit on message sizes */

/* forward declarations */
static void exNotificationHandle (int, siginfo_t *, void *);
static void exMqRead (mqd_t);

/*
* exMqNotify - example of how to use mq_notify()
*
* This routine illustrates the use of mq_notify() to request notification
101

VxWorks 5.5
Programmer’s Guide
* via signal of new messages in a queue. To simplify the example, a
* single task both sends and receives a message.
*/

int exMqNotify
(
char * pMess /* text for message to self */
)

{
struct mq_attr attr; /* queue attribute structure */
struct sigevent sigNotify; /* to attach notification */
struct sigaction mySigAction; /* to attach signal handler */
mqd_t exMqId /* id of message queue */

/* Minor sanity check; avoid exceeding msg buffer */
if (MSG_SIZE <= strlen (pMess))

{
printf ("exMqNotify: message too long\n");
return (-1);
}

/*
* Install signal handler for the notify signal and fill in
* a sigaction structure and pass it to sigaction(). Because the handler
* needs the siginfo structure as an argument, the SA_SIGINFO flag is
* set in sa_flags.
*/

mySigAction.sa_sigaction = exNotificationHandle;
mySigAction.sa_flags = SA_SIGINFO;
sigemptyset (&mySigAction.sa_mask);

if (sigaction (SIGUSR1, &mySigAction, NULL) == -1)
{
printf ("sigaction failed\n");
return (-1);
}

/*
* Create a message queue - fill in a mq_attr structure with the
 * size and no. of messages required, and pass it to mq_open().
 */

attr.mq_flags = O_NONBLOCK; /* make nonblocking */
attr.mq_maxmsg = 2;
attr.mq_msgsize = MSG_SIZE;

if ((exMqId = mq_open (QNAM, O_CREAT | O_RDWR, 0, &attr)) ==
 (mqd_t) - 1)
{
printf ("mq_open failed\n");
return (-1);
}

102

3

3
POSIX Standard Interfaces
/*
* Set up notification: fill in a sigevent structure and pass it
 * to mq_notify(). The queue ID is passed as an argument to the
 * signal handler.
 */

sigNotify.sigev_signo = SIGUSR1;
sigNotify.sigev_notify = SIGEV_SIGNAL;
sigNotify.sigev_value.sival_int = (int) exMqId;

if (mq_notify (exMqId, &sigNotify) == -1)
{
printf ("mq_notify failed\n");
return (-1);
}

/*
* We just created the message queue, but it may not be empty;
 * a higher-priority task may have placed a message there while
 * we were requesting notification. mq_notify() does nothing if
 * messages are already in the queue; therefore we try to
 * retrieve any messages already in the queue.
 */

exMqRead (exMqId);

/*
* Now we know the queue is empty, so we will receive a signal
 * the next time a message arrives.
 *
 * We send a message, which causes the notify handler to be invoked.
* It is a little silly to have the task that gets the notification
* be the one that puts the messages on the queue, but we do it here
* to simplify the example. A real application would do other work
* instead at this point.
*/

if (mq_send (exMqId, pMess, 1 + strlen (pMess), 0) == -1)
{
printf ("mq_send failed\n");
return (-1);
}

/* Cleanup */
if (mq_close (exMqId) == -1)

{
printf ("mq_close failed\n");
return (-1);
}

/* More cleanup */
if (mq_unlink (QNAM) == -1)

{
printf ("mq_unlink failed\n");
return (-1);
}

103

VxWorks 5.5
Programmer’s Guide
return (0);
}

/*
* exNotificationHandle - handler to read in messages
*
* This routine is a signal handler; it reads in messages from a
* message queue.
*/

static void exNotificationHandle
(
int sig, /* signal number */
siginfo_t * pInfo, /* signal information */
void * pSigContext /* unused (required by posix) */
)
{
struct sigevent sigNotify;
mqd_t exMqId;

/* Get the ID of the message queue out of the siginfo structure. */
exMqId = (mqd_t) pInfo->si_value.sival_int;

/*
* Request notification again; it resets each time
 * a notification signal goes out.
 */

sigNotify.sigev_signo = pInfo->si_signo;
sigNotify.sigev_value = pInfo->si_value;
sigNotify.sigev_notify = SIGEV_SIGNAL;

if (mq_notify (exMqId, &sigNotify) == -1)
{
printf ("mq_notify failed\n");
return;
}

/* Read in the messages */
exMqRead (exMqId);
}

/*
* exMqRead - read in messages
*
* This small utility routine receives and displays all messages
* currently in a POSIX message queue; assumes queue has O_NONBLOCK.
*/

static void exMqRead
(
mqd_t exMqId
)

104

3

3
POSIX Standard Interfaces
{
char msg[MSG_SIZE];
int prio;

/*
* Read in the messages - uses a loop to read in the messages
 * because a notification is sent ONLY when a message is sent on
 * an EMPTY message queue. There could be multiple msgs if, for
 * example, a higher-priority task was sending them. Because the
 * message queue was opened with the O_NONBLOCK flag, eventually
 * this loop exits with errno set to EAGAIN (meaning we did an
 * mq_receive() on an empty message queue).
 */

while (mq_receive (exMqId, msg, MSG_SIZE, &prio) != -1)
{
printf ("exMqRead: received message: %s\n",msg);
}

if (errno != EAGAIN)
{
printf ("mq_receive: errno = %d\n", errno);
}

}

3.9 POSIX Queued Signals

The sigqueue() routine provides an alternative to kill() for sending signals to a
task. The important differences between the two are:

� sigqueue() includes an application-specified value that is sent as part of the
signal. You can use this value to supply whatever context your signal handler
finds useful. This value is of type sigval (defined in signal.h); the signal
handler finds it in the si_value field of one of its arguments, a structure
siginfo_t. An extension to the POSIX sigaction() routine allows you to register
signal handlers that accept this additional argument.

� sigqueue() enables the queueing of multiple signals for any task. The kill()
routine, by contrast, delivers only a single signal, even if multiple signals
arrive before the handler runs.

VxWorks includes seven signals reserved for application use, numbered
consecutively from SIGRTMIN. The presence of these reserved signals is required
by POSIX 1003.1b, but the specific signal values are not; for portability, specify
these signals as offsets from SIGRTMIN (for example, write SIGRTMIN+2 to refer
105

VxWorks 5.5
Programmer’s Guide
to the third reserved signal number). All signals delivered with sigqueue() are
queued by numeric order, with lower-numbered signals queuing ahead of higher-
numbered signals.

POSIX 1003.1b also introduced an alternative means of receiving signals. The
routine sigwaitinfo() differs from sigsuspend() or pause() in that it allows your
application to respond to a signal without going through the mechanism of a
registered signal handler: when a signal is available, sigwaitinfo() returns the
value of that signal as a result, and does not invoke a signal handler even if one is
registered. The routine sigtimedwait() is similar, except that it can time out.

For detailed information on signals, see the reference entry for sigLib.

To configure VxWorks with POSIX queued signals, use the
INCLUDE_POSIX_SIGNALS component. This component automatically initializes
POSIX queued signals with sigqueueInit(). The sigqueueInit() routine allocates
buffers for use by sigqueue(). which requires a buffer for each currently queued
signal. A call to sigqueue() fails if no buffer is available.

Table 3-8 POSIX 1003.1b Queued Signal Calls

Call Description

sigqueue() Sends a queued signal.

sigwaitinfo() Waits for a signal.

sigtimedwait() Waits for a signal with a timeout.
106

4

I/O System
4.1 Introduction

The VxWorks I/O system is designed to present a simple, uniform,
device-independent interface to any kind of device, including:

– character-oriented devices such as terminals or communications lines
– random-access block devices such as disks
– virtual devices such as intertask pipes and sockets
– monitor and control devices such as digital and analog I/O devices
– network devices that give access to remote devices

The VxWorks I/O system provides standard C libraries for both basic and buffered
I/O. The basic I/O libraries are UNIX-compatible; the buffered I/O libraries are
ANSI C-compatible. Internally, the VxWorks I/O system has a unique design that
makes it faster and more flexible than most other I/O systems. These are important
attributes in a real-time system.

This chapter first describes the nature of files and devices, and the user view of basic
and buffered I/O. The next section discusses the details of some specific devices.
The third section is a detailed discussion of the internal structure of the VxWorks
I/O system. The final sections describe PCMCIA and PCI support.

The diagram in Figure 4-1 illustrates the relationships between the different
elements of the VxWorks I/O system. All of these elements are discussed in this
chapter, except for file system routines (which are dealt with in 5. Local File
Systems), and the network elements (which are covered in the VxWorks Network
Programmer’s Guide).
107

VxWorks 5.5
Programmer’s Guide
Figure 4-1 Overview of the VxWorks I/O System

NOTE: In Figure 4-1, the dotted arrow line indicates that the CBIO block device is
an optional path between File System Routines and Driver Routines.

fioLib
fioRead()
printf()

sprintf()

Driver Routines

xxRead()
xxWrite()

Basic I/O Routines
(device independent)

write()
read()

Hardware Devices

Buffered I/O: stdio

fread()
fwrite()

Library Routines

tyLib
Network

Disk Drive
Serial Device

File System Routines

xxRead()
xxWrite()

Network Sockets

send()
recv()

Interface

Application

CBIO Routines

xxRead()
xxWrite()

NetWork Stack

bsdSend()
bsdReceive()

Routines
108

4

4
I/O System
4.2 Files, Devices, and Drivers

In VxWorks, applications access I/O devices by opening named files. A file can
refer to one of two things:

� An unstructured “raw” device such as a serial communications channel or an
intertask pipe.

� A logical file on a structured, random-access device containing a file system.

Consider the following named files:

The first refers to a file called myfile, on a disk device called /usr. The second is a
named pipe (by convention, pipe names begin with /pipe). The third refers to a
physical serial channel. However, I/O can be done to or from any of these in the
same way. Within VxWorks, they are all called files, even though they refer to very
different physical objects.

Devices are handled by program modules called drivers. In general, using the I/O
system does not require any further understanding of the implementation of
devices and drivers. Note, however, that the VxWorks I/O system gives drivers
considerable flexibility in the way they handle each specific device. Drivers
conform to the conventional user view presented here, but can differ in the
specifics. See 4.7 Devices in VxWorks, p.131.

Although all I/O is directed at named files, it can be done at two different levels:
basic and buffered. The two differ in the way data is buffered and in the types of calls
that can be made. These two levels are discussed in later sections.

4.2.1 Filenames and the Default Device

A filename is specified as a character string. An unstructured device is specified
with the device name. In the case of file system devices, the device name is
followed by a filename. Thus, the name /tyCo/0 might name a particular serial I/O
channel, and the name DEV1:/file1 probably indicates the file file1 on the DEV1:
device.

When a filename is specified in an I/O call, the I/O system searches for a device
with a name that matches at least an initial substring of the filename. The I/O
function is then directed at this device.

/usr/myfile
/pipe/mypipe
/tyCo/0
109

VxWorks 5.5
Programmer’s Guide
If a matching device name cannot be found, then the I/O function is directed at a
default device. You can set this default device to be any device in the system,
including no device at all, in which case failure to match a device name returns an
error. You can obtain the current default path by using ioDefPathGet(). You can
set the default path by using ioDefPathSet().

Non-block devices are named when they are added to the I/O system, usually at
system initialization time. Block devices are named when they are initialized for
use with a specific file system. The VxWorks I/O system imposes no restrictions on
the names given to devices. The I/O system does not interpret device or filenames
in any way, other than during the search for matching device and filenames.

It is useful to adopt some naming conventions for device and filenames: most
device names begin with a slash (/), except non-NFS network devices and
VxWorks DOS devices (dosFs).

By convention, NFS-based network devices are mounted with names that begin
with a slash. For example:

/usr

Non-NFS network devices are named with the remote machine name followed by
a colon. For example:

host:

The remainder of the name is the filename in the remote directory on the remote
system.

File system devices using dosFs are often named with uppercase letters and/or
digits followed by a colon. For example:

DEV1:

NOTE: Filenames and directory names on dosFs devices are often separated by
backslashes (\). These can be used interchangeably with forward slashes (/).

! CAUTION: Because device names are recognized by the I/O system using simple
substring matching, a slash (/) should not be used alone as a device name.
110

4

4
I/O System
4.3 Basic I/O

Basic I/O is the lowest level of I/O in VxWorks. The basic I/O interface is
source-compatible with the I/O primitives in the standard C library. There are
seven basic I/O calls, shown in Table 4-1.

4.3.1 File Descriptors

At the basic I/O level, files are referred to by a file descriptor, or fd. An fd is a small
integer returned by a call to open() or creat(). The other basic I/O calls take an fd
as a parameter to specify the intended file.

A file descriptor is global to a system. For example, a task, A, that performs a
write() on fd 7 will write to the same file (and device) as a task, B, that performs a
write() on fd 7.

When a file is opened, an fd is allocated and returned. When the file is closed, the
fd is deallocated. There are a finite number of fds available in VxWorks. To avoid
exceeding the system limit, it is important to close fds that are no longer in use. The
number of available fds is specified in the initialization of the I/O system.

By default, file descriptors are reclaimed only when the file is closed.

Table 4-1 Basic I/O Routines

Call Description

creat() Creates a file.

delete() Deletes a file.

open() Opens a file. (Optionally, creates a file.)

close() Closes a file.

read() Reads a previously created or opened file.

write() Writes to a previously created or opened file.

ioctl() Performs special control functions on files.
111

VxWorks 5.5
Programmer’s Guide
4.3.2 Standard Input, Standard Output, and Standard Error

Three file descriptors are reserved and have special meanings:

0 = standard input
1 = standard output
2 = standard error output

These fds are never returned as the result of an open() or creat(), but serve rather
as indirect references that can be redirected to any other open fd.

These standard fds are used to make tasks and modules independent of their actual
I/O assignments. If a module sends its output to standard output (fd = 1), then its
output can be redirected to any file or device, without altering the module.

VxWorks allows two levels of redirection. First, there is a global assignment of the
three standard fds. Second, individual tasks can override the global assignment of
these fds with their own assignments that apply only to that task.

Global Redirection

When VxWorks is initialized, the global assignments of the standard fds are
directed, by default, to the system console. When tasks are spawned, they initially
have no task-specific fd assignments; instead, they use the global assignments.

The global assignments can be redirected using ioGlobalStdSet(). The parameters
to this routine are the global standard fd to be redirected, and the fd to direct it to.

For example, the following call sets global standard output (fd = 1) to be the open
file with a file descriptor of fileFd:

ioGlobalStdSet (1, fileFd);

All tasks in the system that do not have their own task-specific redirection write
standard output to that file thereafter. For example, the task tRlogind calls
ioGlobalStdSet() to redirect I/O across the network during an rlogin session.

Task-Specific Redirection

The assignments for a specific task can be redirected using the routine
ioTaskStdSet(). The parameters to this routine are the task ID (0 = self) of the task
with the assignments to be redirected, the standard fd to be redirected, and the fd
112

4

4
I/O System
to direct it to. For example, a task can make the following call to write standard
output to fileFd:

ioTaskStdSet (0, 1, fileFd);

All other tasks are unaffected by this redirection, and subsequent global
redirections of standard output do not affect this task.

4.3.3 Open and Close

Before I/O can be performed to a device, an fd must be opened to that device by
invoking the open() routine (or creat(), as discussed in the next section). The
arguments to open() are the filename, the type of access, and, when necessary, the
mode:

fd = open ("name", flags, mode);

The possible access flags are shown in Table 4-2.

Table 4-2 File Access Flags

Flag Hex Value Description

O_RDONLY 0 Opens for reading only.

O_WRONLY 1 Opens for writing only.

O_RDWR 2 Opens for reading and writing.

O_CREAT 200 Creates a new file.

O_TRUNC 400 Truncates the file.

! WARNING: While the third parameter to open() is usually optional for other
operating systems, it is required for the VxWorks implementation of open(). When
the third parameter is not appropriate for any given call, it should be set to zero.
Note that this can be an issue when porting software from UNIX to VxWorks.
113

VxWorks 5.5
Programmer’s Guide
The mode parameter is used in the following special cases to specify the mode
(permission bits) of a file or to create subdirectories:

� In general, you can open only preexisting devices and files with open().
However, with NFS network and dosFs devices, you can also create files with
open() by OR’ing O_CREAT with one of the access flags. For NFS devices,
open() requires the third parameter specifying the mode of the file:

fd = open ("name", O_CREAT | O_RDWR, 0644);

� With both dosFs and NFS devices, you can use the O_CREAT option to create
a subdirectory by setting mode to FSTAT_DIR. Other uses of the mode
parameter with dosFs devices are ignored.

The open() routine, if successful, returns a file descriptor (fd). This fd is then used
in subsequent I/O calls to specify that file. The fd is a global identifier that is not task
specific. One task can open a file, and then any other tasks can use the resulting fd
(for example, pipes). The fd remains valid until close() is invoked with that fd:

close (fd);

At that point, I/O to the file is flushed (completely written out) and the fd can no
longer be used by any task. However, the same fd number can again be assigned
by the I/O system in any subsequent open().

When a task exits or is deleted, the files opened by that task are not automatically
closed unless the task owns the files, because fds are not task-specific by default.
Thus, it is recommended that tasks explicitly close all files when they are no longer
required. As stated previously, there is a limit to the number of files that can be
open at one time.

4.3.4 Create and Delete

File-oriented devices must be able to create and delete files as well as open existing
files.

The creat() routine directs a file-oriented device to make a new file on the device
and return a file descriptor for it. The arguments to creat() are similar to those of
open() except that the filename specifies the name of the new file rather than an
existing one; the creat() routine returns an fd identifying the new file.

fd = creat ("name", flag);
114

4

4
I/O System
The delete() routine deletes a named file on a file-oriented device:

delete ("name");

Do not delete files while they are open.

With non-file-system oriented device names, creat() acts exactly like open();
however, delete() has no effect.

4.3.5 Read and Write

After an fd is obtained by invoking open() or creat(), tasks can read bytes from a
file with read() and write bytes to a file with write(). The arguments to read() are
the fd, the address of the buffer to receive input, and the maximum number of bytes
to read:

nBytes = read (fd, &buffer, maxBytes);

The read() routine waits for input to be available from the specified file, and
returns the number of bytes actually read. For file-system devices, if the number of
bytes read is less than the number requested, a subsequent read() returns 0 (zero),
indicating end-of-file. For non-file-system devices, the number of bytes read can be
less than the number requested even if more bytes are available; a subsequent
read() may or may not return 0. In the case of serial devices and TCP sockets,
repeated calls to read() are sometimes necessary to read a specific number of bytes.
(See the reference entry for fioRead() in fioLib). A return value of ERROR (-1)
indicates an unsuccessful read.

The arguments to write() are the fd, the address of the buffer that contains the data
to be output, and the number of bytes to be written:

actualBytes = write (fd, &buffer, nBytes);

The write() routine ensures that all specified data is at least queued for output
before returning to the caller, though the data may not yet have been written to the
device (this is driver dependent). write() returns the number of bytes written; if
the number returned is not equal to the number requested, an error has occurred.
115

VxWorks 5.5
Programmer’s Guide
4.3.6 File Truncation

It is sometimes convenient to discard part of the data in a file. After a file is open
for writing, you can use the ftruncate() routine to truncate a file to a specified size.
Its arguments are an fd and the desired length of the file:

status = ftruncate (fd, length);

If it succeeds in truncating the file, ftruncate() returns OK. If the size specified is
larger than the actual size of the file, or if the fd refers to a device that cannot be
truncated, ftruncate() returns ERROR, and sets errno to EINVAL.

The ftruncate() routine is part of the POSIX 1003.1b standard, but this
implementation is only partially POSIX-compliant: creation and modification
times may not be updated. This call is supported only by dosFsLib, the
DOS-compatible file system library. The routine is provided by the
INCLUDE_POSIX_FTRUNCATE component.

4.3.7 I/O Control

The ioctl() routine is an open-ended mechanism for performing any I/O functions
that do not fit the other basic I/O calls. Examples include determining how many
bytes are currently available for input, setting device-specific options, obtaining
information about a file system, and positioning random-access files to specific
byte positions. The arguments to the ioctl() routine are the fd, a code that identifies
the control function requested, and an optional function-dependent argument:

result = ioctl (fd, function, arg);

For example, the following call uses the FIOBAUDRATE function to set the baud
rate of a tty device to 9600:

status = ioctl (fd, FIOBAUDRATE, 9600);

The discussion of specific devices in 4.7 Devices in VxWorks, p.131 summarizes the
ioctl() functions available for each device. The ioctl() control codes are defined in
ioLib.h. For more information, see the reference entries for specific device drivers
or file systems.
116

4

4
I/O System
4.3.8 Pending on Multiple File Descriptors: The Select Facility

The VxWorks select facility provides a UNIX- and Windows-compatible method
for pending on multiple file descriptors. The library selectLib provides both
task-level support, allowing tasks to wait for multiple devices to become active,
and device driver support, giving drivers the ability to detect tasks that are pended
while waiting for I/O on the device. To use this facility, the header file selectLib.h
must be included in your application code.

Task-level support not only gives tasks the ability to simultaneously wait for I/O
on multiple devices, but it also allows tasks to specify the maximum time to wait
for I/O to become available. An example of using the select facility to pend on
multiple file descriptors is a client-server model, in which the server is servicing
both local and remote clients. The server task uses a pipe to communicate with
local clients and a socket to communicate with remote clients. The server task must
respond to clients as quickly as possible. If the server blocks waiting for a request
on only one of the communication streams, it cannot service requests that come in
on the other stream until it gets a request on the first stream. For example, if the
server blocks waiting for a request to arrive in the socket, it cannot service requests
that arrive in the pipe until a request arrives in the socket to unblock it. This can
delay local tasks waiting to get their requests serviced. The select facility solves this
problem by giving the server task the ability to monitor both the socket and the
pipe and service requests as they come in, regardless of the communication stream
used.

Tasks can block until data becomes available or the device is ready for writing. The
select() routine returns when one or more file descriptors are ready or a timeout
has occurred. Using the select() routine, a task specifies the file descriptors on
which to wait for activity. Bit fields are used in the select() call to specify the read
and write file descriptors of interest. When select() returns, the bit fields are
modified to reflect the file descriptors that have become available. The macros for
building and manipulating these bit fields are listed in Table 4-3.

Table 4-3 Select Macros

Macro Function

FD_ZERO Zeroes all bits.

FD_SET Sets the bit corresponding to a specified file descriptor.

FD_CLR Clears a specified bit.

FD_ISSET Returns 1 if the specified bit is set; otherwise returns 0.
117

VxWorks 5.5
Programmer’s Guide
Applications can use select() with any character I/O devices that provide support
for this facility (for example, pipes, serial devices, and sockets). For information on
writing a device driver that supports select(), see Implementing select(), p.168.

Example 4-1 The Select Facility

/* selServer.c - select example
* In this example, a server task uses two pipes: one for normal-priority
* requests, the other for high-priority requests. The server opens both
* pipes and blocks while waiting for data to be available in at least one
* of the pipes.
*/

#include "vxWorks.h"
#include "selectLib.h"
#include "fcntl.h"

#define MAX_FDS 2
#define MAX_DATA 1024
#define PIPEHI "/pipe/highPriority"
#define PIPENORM "/pipe/normalPriority"

/**
* selServer - reads data as it becomes available from two different pipes
*
* Opens two pipe fds, reading from whichever becomes available. The
* server code assumes the pipes have been created from either another
* task or the shell. To test this code from the shell do the following:
* -> ld < selServer.o
* -> pipeDevCreate ("/pipe/highPriority", 5, 1024)
* -> pipeDevCreate ("/pipe/normalPriority", 5, 1024)
* -> fdHi = open ("/pipe/highPriority", 1, 0)
* -> fdNorm = open ("/pipe/normalPriority", 1, 0)
* -> iosFdShow
* -> sp selServer
* -> i

* At this point you should see selServer’s state as pended. You can now
* write to either pipe to make the selServer display your message.
* -> write fdNorm, "Howdy", 6
* -> write fdHi, "Urgent", 7
*/

STATUS selServer (void)
{
struct fd_set readFds; /* bit mask of fds to read from */
int fds[MAX_FDS]; /* array of fds on which to pend */
int width; /* number of fds on which to pend */
int i; /* index for fd array */
char buffer[MAX_DATA]; /* buffer for data that is read */
118

4

4
I/O System
/* open file descriptors */
if ((fds[0] = open (PIPEHI, O_RDONLY, 0)) == ERROR)

{
close (fds[0]);
return (ERROR);
}

if ((fds[1] = open (PIPENORM, O_RDONLY, 0)) == ERROR)
{
close (fds[0]);
close (fds[1]);
return (ERROR);
}

/* loop forever reading data and servicing clients */
FOREVER

{
/* clear bits in read bit mask */
FD_ZERO (&readFds);

/* initialize bit mask */
FD_SET (fds[0], &readFds);
FD_SET (fds[1], &readFds);
width = (fds[0] > fds[1]) ? fds[0] : fds[1];
width++;

/* pend, waiting for one or more fds to become ready */
if (select (width, &readFds, NULL, NULL, NULL) == ERROR)

{
close (fds[0]);
close (fds[1]);
return (ERROR);
}

/* step through array and read from fds that are ready */
for (i=0; i< MAX_FDS; i++)

{
/* check if this fd has data to read */
if (FD_ISSET (fds[i], &readFds))

{
/* typically read from fd now that it is ready */
read (fds[i], buffer, MAX_DATA);
/* normally service request, for this example print it */
printf ("SELSERVER Reading from %s: %s\n",

(i == 0) ? PIPEHI : PIPENORM, buffer);
}

}
}
}

119

VxWorks 5.5
Programmer’s Guide
4.4 Buffered I/O: stdio

The VxWorks I/O library provides a buffered I/O package that is compatible with
the UNIX and Windows stdio package, and provides full ANSI C support.
Configure VxWorks with the ANSI Standard component bundle to provide
buffered I/O support.

4.4.1 Using stdio

Although the VxWorks I/O system is efficient, some overhead is associated with
each low-level call. First, the I/O system must dispatch from the
device-independent user call (read(), write(), and so on) to the driver-specific
routine for that function. Second, most drivers invoke a mutual exclusion or
queuing mechanism to prevent simultaneous requests by multiple users from
interfering with each other.

This overhead is quite small because the VxWorks primitives are fast. However, an
application processing a single character at a time from a file incurs that overhead
for each character if it reads each character with a separate read() call:

n = read (fd, &char, 1);

To make this type of I/O more efficient and flexible, the stdio package implements
a buffering scheme in which data is read and written in large chunks and buffered
privately. This buffering is transparent to the application; it is handled
automatically by the stdio routines and macros. To access a file with stdio, a file is
opened with fopen() instead of open() (many stdio calls begin with the letter f):

fp = fopen ("/usr/foo", "r");

NOTE: The implementation of printf(), sprintf(), and sscanf(), traditionally
considered part of the stdio package, is part of a different package in VxWorks.
These routines are discussed in 4.5 Other Formatted I/O, p.122.
120

4

4
I/O System
The returned value, a file pointer (or fp) is a handle for the opened file and its
associated buffers and pointers. An fp is actually a pointer to the associated data
structure of type FILE (that is, it is declared as FILE *). By contrast, the low-level I/O
routines identify a file with a file descriptor (fd), which is a small integer. In fact, the
FILE structure pointed to by the fp contains the underlying fd of the open file.

An already open fd can be associated belatedly with a FILE buffer by calling
fdopen():

fp = fdopen (fd, "r");

After a file is opened with fopen(), data can be read with fread(), or a character at
a time with getc(), and data can be written with fwrite(), or a character at a time
with putc().

The routines and macros to get data into or out of a file are extremely efficient. They
access the buffer with direct pointers that are incremented as data is read or written
by the user. They pause to call the low-level read or write routines only when a
read buffer is empty or a write buffer is full.

The FILE buffer is deallocated when fclose() is called.

4.4.2 Standard Input, Standard Output, and Standard Error

As discussed in 4.3 Basic I/O, p.111, there are three special file descriptors (0, 1, and
2) reserved for standard input, standard output, and standard error. Three
corresponding stdio FILE buffers are automatically created when a task uses the
standard file descriptors, stdin, stdout, and stderr, to do buffered I/O to the standard
fds. Each task using the standard I/O fds has its own stdio FILE buffers. The FILE
buffers are deallocated when the task exits.

! WARNING: The stdio buffers and pointers are private to a particular task. They are
not interlocked with semaphores or any other mutual exclusion mechanism,
because this defeats the point of an efficient private buffering scheme. Therefore,
multiple tasks must not perform I/O to the same stdio FILE pointer at the same
time.
121

VxWorks 5.5
Programmer’s Guide
4.5 Other Formatted I/O

This section describes additional formatting routines and facilites.

4.5.1 Special Cases: printf(), sprintf(), and sscanf()

The routines printf(), sprintf(), and sscanf() are generally considered to be part
of the standard stdio package. However, the VxWorks implementation of these
routines, while functionally the same, does not use the stdio package. Instead, it
uses a self-contained, formatted, non-buffered interface to the I/O system in the
library fioLib. Note that these routines provide the functionality specified by
ANSI; however, printf() is not buffered.

Because these routines are implemented in this way, the full stdio package, which
is optional, can be omitted from a VxWorks configuration without sacrificing their
availability. Applications requiring printf-style output that is buffered can still
accomplish this by calling fprintf() explicitly to stdout.

While sscanf() is implemented in fioLib and can be used even if stdio is omitted,
the same is not true of scanf(), which is implemented in the usual way in stdio.

4.5.2 Additional Routines: printErr() and fdprintf()

Additional routines in fioLib provide formatted but unbuffered output. The
routine printErr() is analogous to printf() but outputs formatted strings to the
standard error fd (2). The routine fdprintf() outputs formatted strings to a
specified fd.

4.5.3 Message Logging

Another higher-level I/O facility is provided by the library logLib, which allows
formatted messages to be logged without having to do I/O in the current task’s
context, or when there is no task context. The message format and parameters are
sent on a message queue to a logging task, which then formats and outputs the
message. This is useful when messages must be logged from interrupt level, or
when it is desirable not to delay the current task for I/O or use the current task’s
stack for message formatting (which can take up significant stack space). The
message is displayed on the console unless otherwise redirected at system startup
using logInit() or dynamically using logFdSet().
122

4

4
I/O System
4.6 Asynchronous Input/Output

Asynchronous Input/Output (AIO) is the ability to perform input and output
operations concurrently with ordinary internal processing. AIO enables you to
de-couple I/O operations from the activities of a particular task when these are
logically independent.

The benefit of AIO is greater processing efficiency: it permits I/O operations to
take place whenever resources are available, rather than making them await
arbitrary events such as the completion of independent operations. AIO eliminates
some of the unnecessary blocking of tasks that is caused by ordinary synchronous
I/O; this decreases contention for resources between input/output and internal
processing, and expedites throughput.

The VxWorks AIO implementation meets the specification in the POSIX 1003.1b
standard. Include AIO in your VxWorks configuration with the
INCLUDE_POSIX_AIO and INCLUDE_POSIX_AIO_SYSDRV components. The
second configuration constant enables the auxiliary AIO system driver, required
for asynchronous I/O on all current VxWorks devices.

4.6.1 The POSIX AIO Routines

The VxWorks library aioPxLib provides POSIX AIO routines. To access a file
asynchronously, open it with the open() routine, like any other file. Thereafter, use
the file descriptor returned by open() in calls to the AIO routines. The POSIX AIO
routines (and two associated non-POSIX routines) are listed in Table 4-4.

The default VxWorks initialization code calls aioPxLibInit() automatically when
the POSIX AIO component is included in VxWorks with INCLUDE_POSIX_AIO.

The aioPxLibInit() routine takes one parameter, the maximum number of
lio_listio() calls that can be outstanding at one time. By default this parameter is
MAX_LIO_CALLS. When the parameter is 0 (the default), the value is taken from
AIO_CLUST_MAX (defined in installDir/target/h/private/aioPxLibP.h).

The AIO system driver, aioSysDrv, is initialized by default with the routine
aioSysInit() when both INCLUDE_POSIX_AIO and
INCLUDE_POSIX_AIO_SYSDRV are included in VxWorks. The purpose of
aioSysDrv is to provide request queues independent of any particular device
driver, so that you can use any VxWorks device driver with AIO.
123

VxWorks 5.5
Programmer’s Guide
The routine aioSysInit() takes three parameters: the number of AIO system tasks
to spawn, and the priority and stack size for these system tasks. The number of
AIO system tasks spawned equals the number of AIO requests that can be handled
in parallel. The default initialization call uses three constants:
MAX_AIO_SYS_TASKS, AIO_TASK_PRIORITY, and AIO_TASK_STACK_SIZE.

When any of the parameters passed to aioSysInit() is 0, the corresponding value
is taken from AIO_IO_TASKS_DFLT, AIO_IO_PRIO_DFLT, and
AIO_IO_STACK_DFLT (all defined in installDir/target/h/aioSysDrv.h).

Table 4-5 lists the names of the constants, and shows the constants used within
initialization routines when the parameters are left at their default values of 0, and
where these constants are defined.

Table 4-4 Asynchronous Input/Output Routines

Function Description

aioPxLibInit() Initializes the AIO library (non-POSIX).

aioShow() Displays the outstanding AIO requests (non-POSIX).*

aio_read() Initiates an asynchronous read operation.

aio_write() Initiates an asynchronous write operation.

aio_listio() Initiates a list of up to LIO_MAX asynchronous I/O requests.

aio_error() Retrieves the error status of an AIO operation.

aio_return() Retrieves the return status of a completed AIO operation.

aio_cancel() Cancels a previously submitted AIO operation.

aio_suspend() Waits until an AIO operation is done, interrupted, or timed out.

* This function is not built into the Tornado shell. To use it from the Tornado shell,
VxWorks must be configured with the INCLUDE_POSIX_AIO_SHOW
component. When you invoke the function, its output is sent to the standard
output device.

Table 4-5 AIO Initialization Functions and Related Constants

Initialization
Function

Configuration Parameter
Def.

Value
Header File Constant
used when arg = 0

Def.
Value

Header File
(all in installDir/target

aioPxLibInit() MAX_LIO_CALLS 0 AIO_CLUST_MAX 100 h/private/aioPxLibP.h

aioSysInit() MAX_AIO_SYS_TASKS 0 AIO_IO_TASKS_DFLT 2 h/aioSysDrv.h

AIO_TASK_PRIORITY 0 AIO_IO_PRIO_DFLT 50 h/aioSysDrv.h
124

4

4
I/O System
4.6.2 AIO Control Block

Each of the AIO calls takes an AIO control block (aiocb) as an argument to describe
the AIO operation. The calling routine must allocate space for the control block,
which is associated with a single AIO operation. No two concurrent AIO
operations can use the same control block; an attempt to do so yields undefined
results.

The aiocb and the data buffers it references are used by the system while
performing the associated request. Therefore, after you request an AIO operation,
you must not modify the corresponding aiocb before calling aio_return(); this
function frees the aiocb for modification or reuse.

The aiocb structure is defined in aio.h. It contains the following fields:

aio_fildes
The file descriptor for I/O.

aio_offset
The offset from the beginning of the file.

aio_buf
The address of the buffer from/to which AIO is requested.

aio_nbytes
The number of bytes to read or write.

aio_reqprio
The priority reduction for this AIO request.

aio_sigevent
The signal to return on completion of an operation (optional).

aio_lio_opcode
An operation to be performed by a lio_listio() call.

aio_sys_p
The address of VxWorks-specific data (non-POSIX).

AIO_TASK_STACK_SIZE 0 AIO_IO_STACK_DFLT 0x7000 h/aioSysDrv.h

Table 4-5 AIO Initialization Functions and Related Constants (Continued)

Initialization
Function

Configuration Parameter
Def.

Value
Header File Constant
used when arg = 0

Def.
Value

Header File
(all in installDir/target
125

VxWorks 5.5
Programmer’s Guide
For full definitions and important additional information, see the reference entry
for aioPxLib.

4.6.3 Using AIO

The routines aio_read(), aio_write(), or lio_listio() initiate AIO operations. The
last of these, lio_listio(), allows you to submit a number of asynchronous requests
(read and/or write) at one time. In general, the actual I/O (reads and writes)
initiated by these routines does not happen immediately after the AIO request. For
this reason, their return values do not reflect the outcome of the actual I/O
operation, but only whether a request is successful—that is, whether the AIO
routine is able to put the operation on a queue for eventual execution.

After the I/O operations themselves execute, they also generate return values that
reflect the success or failure of the I/O. There are two routines that you can use to
get information about the success or failure of the I/O operation: aio_error() and
aio_return(). You can use aio_error() to get the status of an AIO operation
(success, failure, or in progress), and aio_return() to obtain the return values from
the individual I/O operations. Until an AIO operation completes, its error status
is EINPROGRESS. To cancel an AIO operation, call aio_cancel().

AIO with Periodic Checks for Completion

The following code uses a pipe for the asynchronous I/O operations. The example
creates the pipe, submits an AIO read request, verifies that the read request is still
in progress, and submits an AIO write request. Under normal circumstances, a
synchronous read to an empty pipe blocks and the task does not execute the write,
but in the case of AIO, we initiate the read request and continue. After the write
request is submitted, the example task loops, checking the status of the AIO
requests periodically until both the read and write complete. Because the AIO
control blocks are on the stack, we must call aio_return() before returning from
aioExample().

! CAUTION: If a routine allocates stack space for the aiocb, that routine must call
aio_return() to free the aiocb before returning.
126

4

4
I/O System
Example 4-2 Asynchronous I/O

/* aioEx.c - example code for using asynchronous I/O */

/* includes */

#include "vxWorks.h"
#include "aio.h"
#include "errno.h"

/* defines */

#define BUFFER_SIZE 200

/**
* aioExample - use AIO library
* This example shows the basic functions of the AIO library.
* RETURNS: OK if successful, otherwise ERROR.
*/

STATUS aioExample (void)
{
int fd;
static char exFile [] = "/pipe/1stPipe";
struct aiocb aiocb_read; /* read aiocb */
struct aiocb aiocb_write; /* write aiocb */
static char * test_string = "testing 1 2 3";
char buffer [BUFFER_SIZE]; /* buffer for read aiocb */

pipeDevCreate (exFile, 50, 100);

if ((fd = open (exFile, O_CREAT | O_TRUNC | O_RDWR, 0666)) ==
ERROR)
{
printf ("aioExample: cannot open %s errno 0x%x\n", exFile, errno);
return (ERROR);
}

printf ("aioExample: Example file = %s\tFile descriptor = %d\n",
exFile, fd);

/* initialize read and write aiocbs */
bzero ((char *) &aiocb_read, sizeof (struct aiocb));
bzero ((char *) buffer, sizeof (buffer));

aiocb_read.aio_fildes = fd;
aiocb_read.aio_buf = buffer;
aiocb_read.aio_nbytes = BUFFER_SIZE;
aiocb_read.aio_reqprio = 0;

bzero ((char *) &aiocb_write, sizeof (struct aiocb));
aiocb_write.aio_fildes = fd;
aiocb_write.aio_buf = test_string;
aiocb_write.aio_nbytes = strlen (test_string);
aiocb_write.aio_reqprio = 0;
127

VxWorks 5.5
Programmer’s Guide
/* initiate the read */
if (aio_read (&aiocb_read) == -1)

printf ("aioExample: aio_read failed\n");

/* verify that it is in progress */
if (aio_error (&aiocb_read) == EINPROGRESS)

printf ("aioExample: read is still in progress\n");

/* write to pipe - the read should be able to complete */
printf ("aioExample: getting ready to initiate the write\n");
if (aio_write (&aiocb_write) == -1)

printf ("aioExample: aio_write failed\n");

/* wait til both read and write are complete */
while ((aio_error (&aiocb_read) == EINPROGRESS) ||

(aio_error (&aiocb_write) == EINPROGRESS))
taskDelay (1);

/* print out what was read */
printf ("aioExample: message = %s\n", buffer);

/* clean up */
if (aio_return (&aiocb_read) == -1)

printf ("aioExample: aio_return for aiocb_read failed\n");
if (aio_return (&aiocb_write) == -1)

printf ("aioExample: aio_return for aiocb_write failed\n");

close (fd);
return (OK);
}

Alternatives for Testing AIO Completion

A task can determine whether an AIO request is complete in any of the following
ways:

� Check the result of aio_error() periodically, as in the previous example, until
the status of an AIO request is no longer EINPROGRESS.

� Use aio_suspend() to suspend the task until the AIO request is complete.

� Use signals to be informed when the AIO request is complete.

The following example is similar to the preceding aioExample(), except that it
uses signals for notification that the write operation has finished. If you test this
from the shell, spawn the routine to run at a lower priority than the AIO system
tasks to assure that the test routine does not block completion of the AIO request.
128

4

4
I/O System
Example 4-3 Asynchronous I/O with Signals

/* aioExSig.c - example code for using signals with asynchronous I/O */

/* includes */

#include "vxWorks.h"
#include "aio.h"
#include "errno.h"

/* defines */

#define BUFFER_SIZE 200
#define LIST_SIZE 1
#define EXAMPLE_SIG_NO 25 /* signal number */

/* forward declarations */

void mySigHandler (int sig, struct siginfo * info, void * pContext);

/**
* aioExampleSig - use AIO library.
*
* This example shows the basic functions of the AIO library.
* Note if this is run from the shell it must be spawned. Use:
* -> sp aioExampleSig
*
* RETURNS: OK if successful, otherwise ERROR.
*/

STATUS aioExampleSig (void)
{
int fd;
static char exFile [] = "/pipe/1stPipe";
struct aiocb aiocb_read; /* read aiocb */
static struct aiocb aiocb_write; /* write aiocb */
struct sigaction action; /* signal info */
static char * test_string = "testing 1 2 3";
char buffer [BUFFER_SIZE]; /* aiocb read buffer */

pipeDevCreate (exFile, 50, 100);

if ((fd = open (exFile, O_CREAT | O_TRUNC| O_RDWR, 0666)) == ERROR)
{
printf ("aioExample: cannot open %s errno 0x%x\n", exFile, errno);
return (ERROR);
}

printf ("aioExampleSig: Example file = %s\tFile descriptor = %d\n",
exFile, fd);

/* set up signal handler for EXAMPLE_SIG_NO */
129

VxWorks 5.5
Programmer’s Guide
action.sa_sigaction = mySigHandler;
action.sa_flags = SA_SIGINFO;
sigemptyset (&action.sa_mask);
sigaction (EXAMPLE_SIG_NO, &action, NULL);

/* initialize read and write aiocbs */

bzero ((char *) &aiocb_read, sizeof (struct aiocb));
bzero ((char *) buffer, sizeof (buffer));
aiocb_read.aio_fildes = fd;
aiocb_read.aio_buf = buffer;
aiocb_read.aio_nbytes = BUFFER_SIZE;
aiocb_read.aio_reqprio = 0;

bzero ((char *) &aiocb_write, sizeof (struct aiocb));
aiocb_write.aio_fildes = fd;
aiocb_write.aio_buf = test_string;
aiocb_write.aio_nbytes = strlen (test_string);
aiocb_write.aio_reqprio = 0;

/* set up signal info */

aiocb_write.aio_sigevent.sigev_signo = EXAMPLE_SIG_NO;
aiocb_write.aio_sigevent.sigev_notify = SIGEV_SIGNAL;
aiocb_write.aio_sigevent.sigev_value.sival_ptr =

(void *) &aiocb_write;

/* initiate the read */

if (aio_read (&aiocb_read) == -1)
printf ("aioExampleSig: aio_read failed\n");

/* verify that it is in progress */

if (aio_error (&aiocb_read) == EINPROGRESS)
printf ("aioExampleSig: read is still in progress\n");

/* write to pipe - the read should be able to complete */

printf ("aioExampleSig: getting ready to initiate the write\n");
if (aio_write (&aiocb_write) == -1)

printf ("aioExampleSig: aio_write failed\n");

/* clean up */

if (aio_return (&aiocb_read) == -1)
printf ("aioExampleSig: aio_return for aiocb_read failed\n");

else
printf ("aioExampleSig: aio read message = %s\n",

aiocb_read.aio_buf);

close (fd);
return (OK);
}

130

4

4
I/O System
void mySigHandler
(
int sig,
struct siginfo * info,
void * pContext
)

{
/* print out what was read */
printf ("mySigHandler: Got signal for aio write\n");

/* write is complete so let’s do cleanup for it here */
if (aio_return (info->si_value.sival_ptr) == -1)

{
printf ("mySigHandler: aio_return for aiocb_write failed\n");
printErrno (0);
}

}

4.7 Devices in VxWorks

The VxWorks I/O system is flexible, allowing specific device drivers to handle the
seven I/O functions. All VxWorks device drivers follow the basic conventions
outlined previously, but differ in specifics; this section describes those specifics.

Table 4-6 Drivers Provided with VxWorks

Module Driver Description

ttyDrv Terminal driver

ptyDrv Pseudo-terminal driver

pipeDrv Pipe driver

memDrv Pseudo memory device driver

nfsDrv NFS client driver

netDrv Network driver for remote file access

ramDrv RAM driver for creating a RAM disk

scsiLib SCSI interface library

– Other hardware-specific drivers
131

VxWorks 5.5
Programmer’s Guide
4.7.1 Serial I/O Devices (Terminal and Pseudo-Terminal Devices)

VxWorks provides terminal and pseudo-terminal device drivers (tty and pty
drivers). The tty driver is for actual terminals; the pty driver is for processes that
simulate terminals. These pseudo terminals are useful in applications such as
remote login facilities.

VxWorks serial I/O devices are buffered serial byte streams. Each device has a ring
buffer (circular buffer) for both input and output. Reading from a tty device
extracts bytes from the input ring. Writing to a tty device adds bytes to the output
ring. The size of each ring buffer is specified when the device is created during
system initialization.

tty Options

The tty devices have a full range of options that affect the behavior of the device.
These options are selected by setting bits in the device option word using the
ioctl() routine with the FIOSETOPTIONS function (see I/O Control Functions,
p.135). For example, to set all the tty options except OPT_MON_TRAP:

status = ioctl (fd, FIOSETOPTIONS, OPT_TERMINAL & ~OPT_MON_TRAP);

Table 4-7 is a summary of the available options. The listed names are defined in the
header file ioLib.h. For more detailed information, see the reference entry for
tyLib.

NOTE: For the remainder of this section, the term tty is used to indicate both tty
and pty devices

Table 4-7 Tty Options

Library Description

OPT_LINE Selects line mode. (See Raw Mode and Line Mode, p.133.)

OPT_ECHO Echoes input characters to the output of the same channel.

OPT_CRMOD Translates input RETURN characters into NEWLINE (\n); translates
output NEWLINE into RETURN-LINEFEED.

OPT_TANDEM Responds software flow control characters CTRL+Q and CTRL+S
(XON and XOFF).

OPT_7_BIT Strips the most significant bit from all input bytes.
132

4

4
I/O System
Raw Mode and Line Mode

A tty device operates in one of two modes: raw mode (unbuffered) or line mode. Raw
mode is the default. Line mode is selected by the OPT_LINE bit of the device option
word (see tty Options, p.132).

In raw mode, each input character is available to readers as soon as it is input from
the device. Reading from a tty device in raw mode causes as many characters as
possible to be extracted from the input ring, up to the limit of the user’s read buffer.
Input cannot be modified except as directed by other tty option bits.

In line mode, all input characters are saved until a NEWLINE character is input; then
the entire line of characters, including the NEWLINE, is made available in the ring
at one time. Reading from a tty device in line mode causes characters up to the end
of the next line to be extracted from the input ring, up to the limit of the user’s read
buffer. Input can be modified by the special characters CTRL+H (backspace),
CTRL+U (line-delete), and CTRL+D (end-of-file), which are discussed in Tty Special
Characters, p.133.

Tty Special Characters

The following special characters are enabled if the tty device operates in line mode,
that is, with the OPT_LINE bit set:

� The backspace character, by default CTRL+H, causes successive previous
characters to be deleted from the current line, up to the start of the line. It does
this by echoing a backspace followed by a space, and then another backspace.

� The line-delete character, by default CTRL+U, deletes all the characters of the
current line.

OPT_MON_TRAP Enables the special ROM monitor trap character, CTRL+X by default.

OPT_ABORT Enables the special target shell abort character, CTRL+C by default.
(Only useful if the target shell is configured into the system; see
6. Target Tools in this manual for details.)

OPT_TERMINAL Sets all of the above option bits.

OPT_RAW Sets none of the above option bits.

Table 4-7 Tty Options (Continued)

Library Description
133

VxWorks 5.5
Programmer’s Guide
� The end-of-file (EOF) character, by default CTRL+D, causes the current line to
become available in the input ring without a NEWLINE and without entering
the EOF character itself. Thus if the EOF character is the first character typed
on a line, reading that line returns a zero byte count, which is the usual
indication of end-of-file.

The following characters have special effects if the tty device is operating with the
corresponding option bit set:

� The software flow control characters CTRL+Q and CTRL+S (XON and XOFF).
Receipt of a CTRL+S input character suspends output to that channel.
Subsequent receipt of a CTRL+Q resumes the output. Conversely, when the
VxWorks input buffer is almost full, a CTRL+S is output to signal the other side
to suspend transmission. When the input buffer is empty enough, a CTRL+Q
is output to signal the other side to resume transmission. The software flow
control characters are enabled by OPT_TANDEM.

� The ROM monitor trap character, by default CTRL+X. This character traps to the
ROM-resident monitor program. Note that this is drastic. All normal VxWorks
functioning is suspended, and the computer system is controlled entirely by
the monitor. Depending on the particular monitor, it may or may not be
possible to restart VxWorks from the point of interruption.1 The monitor trap
character is enabled by OPT_MON_TRAP.

� The special target shell abort character, by default CTRL+C. This character
restarts the target shell if it gets stuck in an unfriendly routine, such as one that
has taken an unavailable semaphore or is caught in an infinite loop. The target
shell abort character is enabled by OPT_ABORT.

The characters for most of these functions can be changed using the tyLib routines
shown in Table 4-8.

1. It will not be possible to restart VxWorks if un-handled external interrupts occur during the
boot countdown.

Table 4-8 Tty Special Characters

Character Description Modifier

CTRL+H backspace (character delete) tyBackspaceSet()

CTRL+U line delete tyDeleteLineSet()

CTRL+D EOF (end of file) tyEOFSet()

CTRL+C target shell abort tyAbortSet()
134

4

4
I/O System
I/O Control Functions

The tty devices respond to the ioctl() functions in Table 4-9, defined in ioLib.h. For
more information, see the reference entries for tyLib, ttyDrv, and ioctl().

CTRL+X trap to boot ROMs tyMonitorTrapSet()

CTRL+S output suspend N/A

CTRL+Q output resume N/A

Table 4-9 I/O Control Functions Supported by tyLib

Function Description

FIOBAUDRATE Sets the baud rate to the specified argument.

FIOCANCEL Cancels a read or write.

FIOFLUSH Discards all bytes in the input and output buffers.

FIOGETNAME Gets the filename of the fd.

FIOGETOPTIONS Returns the current device option word.

FIONREAD Gets the number of unread bytes in the input buffer.

FIONWRITE Gets the number of bytes in the output buffer.

FIOSETOPTIONS Sets the device option word.

! CAUTION: To change the driver’s hardware options (for example, the number of
stop bits or parity bits), use the ioctl() function SIO_HW_OPTS_SET. Because this
command is not implemented in most drivers, you may need to add it to your BSP
serial driver, which resides in installDir/target/src/drv/sio. The details of how to
implement this command depend on your board’s serial chip. The constants
defined in the header file installDir/target/h/sioLib.h provide the POSIX
definitions for setting the hardware options.

Table 4-8 Tty Special Characters (Continued)

Character Description Modifier
135

VxWorks 5.5
Programmer’s Guide
4.7.2 Pipe Devices

Pipes are virtual devices by which tasks communicate with each other through the
I/O system. Tasks write messages to pipes; these messages can then be read by
other tasks. Pipe devices are managed by pipeDrv and use the kernel message
queue facility to bear the actual message traffic.

Creating Pipes

Pipes are created by calling the pipe create routine:

status = pipeDevCreate ("/pipe/name", maxMsgs, maxLength);

The new pipe can have at most maxMsgs messages queued at a time. Tasks that
write to a pipe that already has the maximum number of messages queued are
blocked until a message is dequeued. Each message in the pipe can be at most
maxLength bytes long; attempts to write longer messages result in an error.

Writing to Pipes from ISRs

VxWorks pipes are designed to allow ISRs to write to pipes in the same way as
task-level code. Many VxWorks facilities cannot be used from ISRs, including
output to devices other than pipes. However, ISRs can use pipes to communicate
with tasks, which can then invoke such facilities. ISRs write to a pipe using the
write() call. Tasks and ISRs can write to the same pipes. However, if the pipe is full,
the message is discarded because the ISRs cannot pend. ISRs must not invoke any
I/O function on pipes other than write(). For more informationon ISRs, see
2.6 Interrupt Service Code: ISRs, p.65.

I/O Control Functions

Pipe devices respond to the ioctl() functions summarized in Table 4-10. The
functions listed are defined in the header file ioLib.h. For more information, see
the reference entries for pipeDrv and for ioctl() in ioLib.

Table 4-10 I/O Control Functions Supported by pipeDrv

Function Description

FIOFLUSH Discards all messages in the pipe.
136

4

4
I/O System
4.7.3 Pseudo Memory Devices

The memDrv driver allows the I/O system to access memory directly as a
pseudo-I/O device. Memory location and size are specified when the device is
created. This feature is useful when data must be preserved between boots of
VxWorks or when sharing data between CPUs. This driver does not implement a
file system, unlike ramDrv. The ramDrv driver must be given memory over which
it has absolute control; whereas memDrv provides a high-level method of reading
and writing bytes in absolute memory locations through I/O calls.

Installing the Memory Driver

The driver is initialized automatically by the system with memDrv() when the
INCLUDE_USR_MEMDRV component is included in the VxWorks kernel domain.
The call for device creation must be made from the kernel domain:

STATUS memDevCreate
(char * name, char * base, int length)

Memory for the device is an absolute memory location beginning at base. The
length parameter indicates the size of the memory. For additional information on
the memory driver, see the entries for memDrv(), memDevCreate(), and
memDev CreateDir() in the VxWorks API Reference, as well as the entry for the
host tool memdrvbuild in the Tornado Tools section of the online Tornado Tools
Reference.

I/O Control Functions

The memory driver responds to the ioctl() functions summarized in Table 4-11.
The functions listed are defined in the header file ioLib.h.

FIOGETNAME Gets the pipe name of the fd.

FIONMSGS Gets the number of messages remaining in the pipe.

FIONREAD Gets the size in bytes of the first message in the pipe.

Table 4-10 I/O Control Functions Supported by pipeDrv (Continued)

Function Description
137

VxWorks 5.5
Programmer’s Guide
For more information, see the reference entries for memDrv and for ioctl() in
ioLib.

4.7.4 Network File System (NFS) Devices

Network File System (NFS) devices allow files on remote hosts to be accessed with
the NFS protocol. The NFS protocol specifies both client software, to read files from
remote machines, and server software, to export files to remote machines.

The driver nfsDrv acts as a VxWorks NFS client to access files on any NFS server
on the network. VxWorks also allows you to run an NFS server to export files to
other systems; see VxWorks Network Programmer’s Guide: File Access Applications.

Using NFS devices, you can create, open, and access remote files exactly as though
they were on a file system on a local disk. This is called network transparency.

Mounting a Remote NFS File System from VxWorks

Access to a remote NFS file system is established by mounting that file system
locally and creating an I/O device for it using nfsMount(). Its arguments are
(1) the host name of the NFS server, (2) the name of the host file system, and (3) the
local name for the file system.

For example, the following call mounts /usr of the host mars as /vxusr locally:

nfsMount ("mars", "/usr", "/vxusr");

This creates a VxWorks I/O device with the specified local name (/vxusr, in this
example). If the local name is specified as NULL, the local name is the same as the
remote name.

After a remote file system is mounted, the files are accessed as though the file
system were local. Thus, after the previous example, opening the file /vxusr/foo
opens the file /usr/foo on the host mars.

Table 4-11 I/O Control Functions Supported by memDrv

Function Description

FIOSEEK Sets the current byte offset in the file.

FIOWHERE Returns the current byte position in the file.
138

4

4
I/O System
The remote file system must be exported by the system on which it actually resides.
However, NFS servers can export only local file systems. Use the appropriate
command on the server to see which file systems are local. NFS requires
authentication parameters to identify the user making the remote access. To set
these parameters, use the routines nfsAuthUnixSet() and nfsAuthUnixPrompt().

To include NFS client support, use the INCLUDE_NFS component.

The subject of exporting and mounting NFS file systems and authenticating access
permissions is discussed in more detail in VxWorks Network Programmer’s Guide:
File Access Applications. See also the reference entries nfsLib and nfsDrv, and the
NFS documentation from Sun Microsystems.

I/O Control Functions for NFS Clients

NFS client devices respond to the ioctl() functions summarized in Table 4-12. The
functions listed are defined in ioLib.h. For more information, see the reference
entries for nfsDrv and for ioctl() in ioLib.

4.7.5 Non-NFS Network Devices

VxWorks also supports network access to files on a remote host through the
Remote Shell protocol (RSH) or the File Transfer Protocol (FTP). These
implementations of network devices use the driver netDrv. When a remote file is
opened using RSH or FTP, the entire file is copied into local memory. As a result,
the largest file that can be opened is restricted by the available memory. Read and

Table 4-12 I/O Control Functions Supported by nfsDrv

Function Description

FIOFSTATGET Gets file status information (directory entry data).

FIOGETNAME Gets the filename of the fd.

FIONREAD Gets the number of unread bytes in the file.

FIOREADDIR Reads the next directory entry.

FIOSEEK Sets the current byte offset in the file.

FIOSYNC Flushes data to a remote NFS file.

FIOWHERE Returns the current byte position in the file.
139

VxWorks 5.5
Programmer’s Guide
write operations are performed on the memory-resident copy of the file. When
closed, the file is copied back to the original remote file if it was modified.

In general, NFS devices are preferable to RSH and FTP devices for performance
and flexibility, because NFS does not copy the entire file into local memory.
However, NFS is not supported by all host systems.

Creating Network Devices

To access files on a remote host using either RSH or FTP, a network device must
first be created by calling the routine netDevCreate(). The arguments to
netDevCreate() are (1) the name of the device, (2) the name of the host the device
accesses, and (3) which protocol to use: 0 (RSH) or 1 (FTP).

For example, the following call creates an RSH device called mars: that accesses the
host mars. By convention, the name for a network device is the remote machine’s
name followed by a colon (:).

netDevCreate ("mars:", "mars", 0);

Files on a network device can be created, opened, and manipulated as if on a local
disk. Thus, opening the file mars:/usr/foo actually opens /usr/foo on host mars.

Note that creating a network device allows access to any file or device on the
remote system, while mounting an NFS file system allows access only to a
specified file system.

For the files of a remote host to be accessible with RSH or FTP, permissions and
user identification must be established on both the remote and local systems.
Creating and configuring network devices is discussed in detail in VxWorks
Network Programmer’s Guide: File Access Applications and in the reference entry for
netDrv.

I/O Control Functions

RSH and FTP devices respond to the same ioctl() functions as NFS devices except
for FIOSYNC and FIOREADDIR. The functions are defined in the header file
ioLib.h. For more information, see the reference entries for netDrv and ioctl().
140

4

4
I/O System
4.7.6 CBIO Interface

The core cached block I/O (CBIO) component, INCLUDE_CBIO_MAIN, provides an
interface for file systems such as dosFs and rawFs. It is required for implementing
these file systems.

The core CBIO component also provides generic services for other CBIO
components that provide optional functionality. The optional CBIO components
are:

INCLUDE_CBIO_DCACHE
Provides a disk cache.

INCLUDE_CBIO_DPART
Provides for partitioning volumes.

INCLUDE_CBIO_RAMDISK
Provides for RAM disks.

These components are discussed in the following sections as well as in the cbioLib,
dcacheCbio, dpartCbio, and ramDiskCbio entries in the VxWorks API Reference.

CBIO Disk Cache

The CBIO disk cache is designed to make rotational media disk I/O more efficient,
as well as to automatically detect changes in disks.

Disk I/O Efficiency

The disk cache reduces the number of disk accesses and accelerates disk read and
write operations by means of the following techniques:

� Most Recently Used (MRU) disk blocks are stored in RAM, which results in the
most frequently accessed data being retrieved from memory rather than from
disk.

� Reading data from disk is performed in large units, relying on the read-ahead
feature, one of the disk cache’s tunable parameters.

� Write operations are optimized because they occur to memory first. Then,
updating the disk happens in an orderly manner, by delayed write, another
tunable parameter.

Overall, the main performance advantage arises from a dramatic reduction in the
amount of time spent seeking by the disk drive, thus maximizing the time
141

VxWorks 5.5
Programmer’s Guide
available for the disk to read and write actual data. In other words, you get efficient
use of the disk drive’s available throughput.

The disk cache offers a number of operational parameters that can be tuned by the
user to suit a particular file system workload pattern, for example, delayed write,
read ahead, and bypass threshold.

The technique of delaying writes to disk means that if the system is turned off
unexpectedly, updates that have not yet been written to the disk are lost. To
minimize the effect of a possible crash, the disk cache periodically updates the
disk. Modified blocks of data are not kept in memory more than a specified period
of time.

By specifying a small update period, the possible worst-case loss of data from a
crash is the sum of changes possible during that specified period. For example, it
is assumed that an update period of two seconds is sufficiently large to effectively
optimize disk writes, yet small enough to make the potential loss of data a
reasonably minor concern. It is possible to set the update period to zero, in which
case, all updates are flushed to disk immediately.

The disk cache allows you to negotiate between disk performance and memory
consumption: The more memory allocated to the disk cache, the higher the “hit
ratio” observed, which means increasingly better performance of file system
operations.

Bypass Threshold

Another tunable parameter is the bypass threshold, which defines how much data
constitutes a request large enough to justify bypassing the disk cache.

When significantly large read or write requests are made by the application, the
disk cache is circumvented and there is a direct transfer of data between the disk
controller and the user data buffer. The use of bypassing, in conjunction with
support for contiguous file allocation and access (the FIOCONTIG ioctl()
command and the DOS_O_CONTIG open() flag), should provide performance
equivalent to that offered by the raw file system — rawFs.

For details on all of the tunable parameters associated with the disk cache, see the
entry for dcacheDevTune() in the VxWorks API Reference. For complete details on
the disk cache, see the entry for dcacheCbio.

Detection of Disk Changes

The disk cache component also provides for automatic detection of disk changes.
The detection process is based on two assumptions: one about the uniqueness of a
disk, and a second about the time required to change a disk.
142

4

4
I/O System
The first assumption is that the first block—that is, the boot block of each cartridge
or diskette—is unique. This is typically the case because most media is
pre-formatted during manufacturing, and the boot block contains a 32-bit volume
serial ID that is set by the manufacturer as unique. The formatting utility in dosFs
preserves the volume ID when one exists on the volume being formatted; when no
valid ID is found on the disk it creates a new one based on the time that the
formatting takes place.

The second assumption is that it takes at least two seconds to physically replace a
disk. If a disk has been inactive for two seconds or longer, its boot block is verified
against a previously stored boot block signature. If they do not match, the file
system module is notified of the change, and in turn un-mounts the volume,
marking all previously open file descriptors as obsolete. A new volume is then
mounted, if a disk is in the drive. This can trigger an optional automatic
consistency check that detects any structural inconsistencies resulting from a
previous disk removal in the midst of a disk update (see the entry for
dosFsDevCreate() in the VxWorks API Reference).

CBIO Disk Partition Handler

It has become commonplace to share fixed disks and removable cartridges
between VxWorks target systems and PCs running Windows. Therefore, dosFs
provides support for PC-style disk partitioning.

Two modules provide partition management mechanisms:

dpartCbioLib
This library implements a “generic” partition handling mechanism that is
independent of any particular partition table format.

usrFdiskPartLib
This library decodes the partition tables found on most PCs (typically created
with the FDISK utility). It is delivered in source form so as to enable
customization of the partition table format. It also has a routine to create
PC-style partitions (similar to FDISK). This release supports the creation of up
to four partitions.

The dpartCbioLib module handles partitions on both fixed and removable drives,
by calling the user-supplied partition table decode routine. The routine is called
whenever removable media has been changed. When initializing the system, you
must define the maximum number of partitions you expect to exist on a particular

! CAUTION: The disk cache is designed to benefit rotational media devices and
should not be used with RAM disks and TrueFFS disks.
143

VxWorks 5.5
Programmer’s Guide
drive, and then associate a logical device name with each partition. If you insert
removable media having fewer partitions than the maximum number defined,
then only the number of partitions configured on the removable media are
accessible. Additional partitions previously defined and named cannot be
accessed.

CBIO RAM Disk

In some applications it is desirable to use a file system to organize and access data
although no disk or other traditional media is present. The CBIO RAM disk facility
allows the use of a file system to access data stored in RAM memory. RAM disks
can be created using volatile as well a non-volatile RAM.

For more information, see the ramDiskCbio entries in the VxWorks API Reference.

I/O Control Functions for CBIO Devices

CBIO devices respond to the ioctl() functions summarized in Table 4-13.

NOTE: The ramDiskCbio library implements a RAM disk using the CBIO
interface; the ramDrv library implements a RAM disk using the BLK_DEV
interface.

Table 4-13 I/O Control Functions Supported by CBIO Devices

Function Description

CBIO_RESET Resets the device.

CBIO_STATUS_CHK Checks the device status.

CBIO_DEVICE_LOCK Prevents disk removal.

CBIO_DEVICE_UNLOCK Allows disk removal.

CBIO_DEVICE_EJECT Dismounts the device.

CBIO_CACHE_FLUSH Flushes dirty caches.

CBIO_CACHE_INVAL Flushes and invalidates all.

CBIO_CACHE_NEWBLK Allocates a scratch block.
144

4

4
I/O System
4.7.7 Block Devices

A block device is a device that is organized as a sequence of individually accessible
blocks of data. The most common type of block device is a disk. In VxWorks, the
term block refers to the smallest addressable unit on the device. For most disk
devices, a VxWorks block corresponds to a sector, although terminology varies.

Block devices in VxWorks have a slightly different interface than other I/O
devices. Rather than interacting directly with the I/O system, block device support
consists of low-level drivers that interact with a file system. The file system, in turn,
interacts with the I/O system. This arrangement allows a single low-level driver to
be used with various different file systems and reduces the number of I/O
functions that must be supported in the driver. The internal implementation of
low-level drivers for block devices is discussed in 4.9.4 Block Devices, p.176.

Block Device File Systems

For use with block devices, VxWorks is supplied with file system libraries
compatible with the MS-DOS file systems. There are also libraries for a simple raw
disk file system, for SCSI tape devices, for CD-ROM devices, and for flash memory
devices. Use of these file systems is discussed in 5. Local File Systems in this manual
(which discusses the Target Server File System as well). Also see the entries for
dosFsLib, rawFsLib, tapeFsLib, cdromFsLib, and tffsDrv in the VxWorks API
Reference.

Block Device RAM Disk Drivers

RAM drivers, as implemented in ramDrv, emulate disk devices but actually keep
all data in memory. Memory location and “disk” size are specified when a RAM
device is created by calling ramDevCreate(). This routine can be called repeatedly
to create multiple RAM disks.

Memory for the RAM disk can be pre-allocated and the address passed to
ramDevCreate(), or memory can be automatically allocated from the system
memory pool using malloc().

After the device is created, a name and file system (for example, dosFs or rawFs)
must be associated with it using the file system’s device creation routine and
format routine; for example, dosFsDevCreate() and dosFsVolFormat().
Information describing the device is passed to the file system in a BLK_DEV
structure. A pointer to this structure is returned by the RAM disk creation routine.
145

VxWorks 5.5
Programmer’s Guide
In the following example, a 200 KB RAM disk is created with automatically
allocated memory, 512-byte sections, a single track, and no sector offset. The device
is assigned the name DEV1: and initialized for use with dosFs.

BLK_DEV *pBlkDev;
DOS_VOL_DESC *pVolDesc;
pBlkDev = ramDevCreate (0, 512, 400, 400, 0);
if (dosFsDevCreate ("DEV1:", pBlkDev, 20, NULL) == ERROR)
{

printErrno();
};

/* if you want to format then do the following */
if (dosFsVolFormat ("DEV1:", 2, NULL) == ERROR)
{

printErrno();
}

If the RAM disk memory already contains a disk image, the first argument to
ramDevCreate() is the address in memory, and the formatting arguments must be
identical to those used when the image was created. For example:

pBlkDev = ramDevCreate (0xc0000, 512, 400, 400, 0);
if (dosFsDevCreate ("DEV1:", pBlkDev, 20, NULL) == ERROR)
{

printErrno();
}

In this case, only dosFsDevCreate() must be used, because the file system already
exists on the disk and does not require re-formatting. This procedure is useful if a
RAM disk is to be created at the same address used in a previous boot of VxWorks.
The contents of the RAM disk are then preserved.

For more information on RAM disk drivers, see the reference entry for ramDrv. For
more information on file systems, see 5. Local File Systems.

SCSI Drivers

SCSI is a standard peripheral interface that allows connection with a wide variety
of hard disks, optical disks, floppy disks, tape drives, and CD-ROM devices. SCSI
block drivers are compatible with the dosFs libraries, and offer several advantages
for target configurations. They provide:

NOTE: The ramDiskCbio library implements a RAM disk using the CBIO
interface; the ramDrv library implements a RAM disk using the BLK_DEV
interface.
146

4

4
I/O System
– local mass storage in non-networked environments
– faster I/O throughput than Ethernet networks

The SCSI-2 support in VxWorks supersedes previous SCSI support, although it
offers the option of configuring the original SCSI functionality, now known as
SCSI-1. With SCSI-2 enabled, the VxWorks environment can still handle SCSI-1
applications, such as file systems created under SCSI-1. However, applications that
directly used SCSI-1 data structures defined in scsiLib.h may require
modifications and recompilation for SCSI-2 compatibility.

The VxWorks SCSI implementation consists of two modules, one for the
device-independent SCSI interface and one to support a specific SCSI controller.
The scsiLib library provides routines that support the device-independent
interface; device-specific libraries provide configuration routines that support
specific controllers. There are also additional support routines for individual
targets in sysLib.c.

Configuring SCSI Drivers

Components associated with SCSI drivers are listed in Table 4-14.

To include SCSI-1 functionality in VxWorks, use the INCLUDE_SCSI component.
To include SCSI-2 functionality, you must use INCLUDE_SCSI2 in addition to
INCLUDE_SCSI.

Table 4-14 SCSI and Related Components

Component Description

INCLUDE_SCSI Includes SCSI interface.

INCLUDE_SCSI2 Includes SCSI-2 extensions.

INCLUDE_SCSI_DMA Enables DMA for SCSI.

INCLUDE_SCSI_BOOT Allows booting from a SCSI device.

SCSI_AUTO_CONFIG Auto-configures and locates all targets on a SCSI bus.

INCLUDE_DOSFS Includes the DOS file system.

INCLUDE_TAPEFS Includes the tape file system.

INCLUDE_CDROMFS Includes CD-ROM file system support.
147

VxWorks 5.5
Programmer’s Guide
Auto-configuration, DMA, and booting from a SCSI device are defined
appropriately for each BSP. If you need to change these settings, see the reference
for sysScsiConfig() and the source file installDir/target/src/config/usrScsi.c.

Configuring the SCSI Bus ID

Each board in a SCSI-2 environment must define a unique SCSI bus ID for the SCSI
initiator. SCSI-1 drivers, which support only a single initiator at a time, assume an
initiator SCSI bus ID of 7. However, SCSI-2 supports multiple initiators, up to eight
initiators and targets at one time. Therefore, to ensure a unique ID, choose a value
in the range 0-7 to be passed as a parameter to the driver’s initialization routine
(for example, ncr710CtrlInitScsi2()) by the sysScsiInit() routine in sysScsi.c. For
more information, see the reference entry for the relevant driver initialization
routine. If there are multiple boards on one SCSI bus, and all of these boards use
the same BSP, then different versions of the BSP must be compiled for each board
by assigning unique SCSI bus IDs.

ROM Size Adjustment for SCSI Boot

If the INCLUDE_SCSI_BOOT component is included, larger ROMs may be required
for some boards.

Structure of the SCSI Subsystem

The SCSI subsystem supports libraries and drivers for both SCSI-1 and SCSI-2. It
consists of the following six libraries which are independent of any SCSI controller:

scsiLib
routines that provide the mechanism for switching SCSI requests to either
the SCSI-1 library (scsi1Lib) or the SCSI-2 library (scsi2Lib), as configured
by the board support package (BSP).

scsi1Lib
SCSI-1 library routines and interface, used when only INCLUDE_SCSI is
used (see Configuring SCSI Drivers, p.147).

scsi2Lib
SCSI-2 library routines and all physical device creation and deletion
routines.

! CAUTION: Including SCSI-2 in your VxWorks image can significantly increase the
image size.
148

4

4
I/O System
scsiCommonLib
commands common to all types of SCSI devices.

scsiDirectLib
routines and commands for direct access devices (disks).

scsiSeqLib
routines and commands for sequential access block devices (tapes).

Controller-independent support for the SCSI-2 functionality is divided into
scsi2Lib, scsiCommonLib, scsiDirectLib, and scsiSeqLib. The interface to any of
these SCSI-2 libraries can be accessed directly. However, scsiSeqLib is designed to
be used in conjunction with tapeFs, while scsiDirectLib works with dosFs and
rawFs. Applications written for SCSI-1 can be used with SCSI-2; however, SCSI-1
device drivers cannot.

VxWorks targets using SCSI interface controllers require a controller-specific
device driver. These device drivers work in conjunction with the
controller-independent SCSI libraries, and they provide controller configuration
and initialization routines contained in controller-specific libraries. For example,
the Western Digital WD33C93 SCSI controller is supported by the device driver
libraries wd33c93Lib, wd33c93Lib1, and wd33c93Lib2. Routines tied to SCSI-1
(such as wd33c93CtrlCreate()) and SCSI-2 (such as wd33c93CtrlCreateScsi2())
are segregated into separate libraries to simplify configuration. There are also
additional support routines for individual targets in sysLib.c.

Booting and Initialization

After VxWorks is built with SCSI support, the system startup code initializes the
SCSI interface by executing sysScsiInit() and usrScsiConfig() when
INCLUDE_SCSI is included in VxWorks. The call to sysScsiInit() initializes the
SCSI controller and sets up interrupt handling. The physical device configuration
is specified in usrScsiConfig(), which is in installDir/target/src/config/usrScsi.c.
The routine contains an example of the calling sequence to declare a hypothetical
configuration, including:

– definition of physical devices with scsiPhysDevCreate()
– creation of logical partitions with scsiBlkDevCreate()
– specification of a file system with dosFsDevCreate().

If you are not using SCSI_AUTO_CONFIG, modify usrScsiConfig() to reflect your
actual configuration. For more information on the calls used in this routine, see the
reference entries for scsiPhysDevCreate(), scsiBlkDevCreate(),
dosFsDevCreate(), and dosFsVolFormat().
149

VxWorks 5.5
Programmer’s Guide
Device-Specific Configuration Options

The SCSI libraries have the following default behaviors enabled:

– SCSI messages
– disconnects
– minimum period and maximum REQ/ACK offset
– tagged command queuing
– wide data transfer

Device-specific options do not need to be set if the device shares this default
behavior. However, if you need to configure a device that diverges from these
default characteristics, use scsiTargetOptionsSet() to modify option values. These
options are fields in the SCSI_OPTIONS structure, shown below. SCSI_OPTIONS is
declared in scsi2Lib.h. You can choose to set some or all of these option values to
suit your particular SCSI device and application.

typedef struct /* SCSI_OPTIONS - programmable options */
{
UINT selTimeOut; /* device selection time-out (us) */
BOOL messages; /* FALSE => do not use SCSI messages */
BOOL disconnect; /* FALSE => do not use disconnect */
UINT8 maxOffset; /* max sync xfer offset (0 => async.) */
UINT8 minPeriod; /* min sync xfer period (x 4 ns) */
SCSI_TAG_TYPE tagType; /* default tag type */
UINT maxTags; /* max cmd tags available (0 => untag */
UINT8 xferWidth; /* wide data trnsfr width in SCSI units */
} SCSI_OPTIONS;

There are numerous types of SCSI devices, each supporting its own mix of SCSI-2
features. To set device-specific options, define a SCSI_OPTIONS structure and
assign the desired values to the structure’s fields. After setting the appropriate
fields, call scsiTargetOptionsSet() to effect your selections. Example 4-5 illustrates
one possible device configuration using SCSI_OPTIONS.

Call scsiTargetOptionsSet() after initializing the SCSI subsystem, but before
initializing the SCSI physical device. For more information about setting and
implementing options, see the reference entry for scsiTargetOptionsSet().

The SCSI subsystem performs each SCSI command request as a SCSI transaction.
This requires the SCSI subsystem to select a device. Different SCSI devices require
different amounts of time to respond to a selection; in some cases, the selTimeOut
field may need to be altered from the default.

! WARNING: Calling scsiTargetOptionsSet() after the physical device has been
initialized may lead to undefined behavior.
150

4

4
I/O System
If a device does not support SCSI messages, the boolean field messages can be set
to FALSE. Similarly, if a device does not support disconnect/reconnect, the
boolean field disconnect can be set to FALSE.

The SCSI subsystem automatically tries to negotiate synchronous data transfer
parameters. However, if a SCSI device does not support synchronous data transfer,
set the maxOffset field to 0. By default, the SCSI subsystem tries to negotiate the
maximum possible REQ/ACK offset and the minimum possible data transfer
period supported by the SCSI controller on the VxWorks target. This is done to
maximize the speed of transfers between two devices. However, speed depends
upon electrical characteristics, like cable length, cable quality, and device
termination; therefore, it may be necessary to reduce the values of maxOffset or
minPeriod for fast transfers.

The tagType field defines the type of tagged command queuing desired, using one
of the following macros:

– SCSI_TAG_UNTAGGED
– SCSI_TAG_SIMPLE
– SCSI_TAG_ORDERED
– SCSI_TAG_HEAD_OF_QUEUE

For more information about the types of tagged command queuing available, see
the ANSI X3T9-I/O Interface Specification Small Computer System Interface
(SCSI-2).

The maxTags field sets the maximum number of command tags available for a
particular SCSI device.

Wide data transfers with a SCSI target device are automatically negotiated upon
initialization by the SCSI subsystem. Wide data transfer parameters are always
negotiated before synchronous data transfer parameters, as specified by the SCSI
ANSI specification, because a wide negotiation resets any prior negotiation of
synchronous parameters. However, if a SCSI device does not support wide
parameters and there are problems initializing that device, you must set the
xferWidth field to 0. By default, the SCSI subsystem tries to negotiate the
maximum possible transfer width supported by the SCSI controller on the
VxWorks target in order to maximize the default transfer speed between the two
devices. For more information on the actual routine call, see the reference entry for
scsiTargetOptionsSet().

SCSI Configuration Examples

The following examples show some possible configurations for different SCSI
devices. Example 4-4 is a simple block device configuration setup. Example 4-5
151

VxWorks 5.5
Programmer’s Guide
involves selecting special options and demonstrates the use of
scsiTargetOptionsSet(). Example 4-6 configures a tape device and a tape file
system. Example 4-7 configures a SCSI device for synchronous data transfer.
Example 4-8 shows how to configure the SCSI bus ID. These examples can be
embedded either in the usrScsiConfig() routine or in a user-defined SCSI
configuration function.

Example 4-4 Configuring SCSI Drivers

In the following example, usrScsiConfig() was modified to reflect a new system
configuration. The new configuration has a SCSI disk with a bus ID of 4 and a
Logical Unit Number (LUN) of 0 (zero). The disk is configured with a dosFs file
system (with a total size of 0x20000 blocks) and a rawFs file system (spanning the
remainder of the disk). The following usrScsiConfig() code reflects this
modification.

/* configure Winchester at busId = 4, LUN = 0 */

if ((pSpd40 = scsiPhysDevCreate (pSysScsiCtrl, 4, 0, 0, NONE, 0, 0, 0))
== (SCSI_PHYS_DEV *) NULL)

{
SCSI_DEBUG_MSG ("usrScsiConfig: scsiPhysDevCreate failed.\n");
}

else
{
/* create block devices - one for dosFs and one for rawFs */

if (((pSbd0 = scsiBlkDevCreate (pSpd40, 0x20000, 0)) == NULL) ||
((pSbd1 = scsiBlkDevCreate (pSpd40, 0, 0x20000)) == NULL))
{
return (ERROR);
}

/* initialize both dosFs and rawFs file systems */

if ((dosFsDevInit ("/sd0/", pSbd0, NULL) == NULL) ||
(rawFsDevInit ("/sd1/", pSbd1) == NULL))
{
return (ERROR);
}

}

If problems with your configuration occur, insert the following lines at the
beginning of usrScsiConfig() to obtain further information on SCSI bus activity.

#if FALSE
scsiDebug = TRUE;
scsiIntsDebug = TRUE;
#endif
152

4

4
I/O System
Do not declare the global variables scsiDebug and scsiIntsDebug locally. They can
be set or reset from the shell; see the Tornado User’s Reference: Shell for details.

Example 4-5 Configuring a SCSI Disk Drive with Asynchronous Data Transfer and No Tagged Command

Queuing

In this example, a SCSI disk device is configured without support for synchronous
data transfer and tagged command queuing. The scsiTargetOptionsSet() routine
is used to turn off these features. The SCSI ID of this disk device is 2, and the LUN
is 0:

int which;
SCSI_OPTIONS option;
int devBusId;

devBusId = 2;
which = SCSI_SET_OPT_XFER_PARAMS | SCSI_SET_OPT_TAG_PARAMS;
option.maxOffset = SCSI_SYNC_XFER_ASYNC_OFFSET;

/* => 0 defined in scsi2Lib.h */
option.minPeriod = SCSI_SYNC_XFER_MIN_PERIOD; /* defined in scsi2Lib.h */
option.tagType = SCSI_TAG_UNTAGGED; /* defined in scsi2Lib.h */
option.maxTag = SCSI_MAX_TAGS;

if (scsiTargetOptionsSet (pSysScsiCtrl, devBusId, &option, which) == ERROR)
{
SCSI_DEBUG_MSG ("usrScsiConfig: could not set options\n", 0, 0, 0, 0,

0, 0);
return (ERROR);
}

/* configure SCSI disk drive at busId = devBusId, LUN = 0 */

if ((pSpd20 = scsiPhysDevCreate (pSysScsiCtrl, devBusId, 0, 0, NONE, 0, 0,
0)) == (SCSI_PHYS_DEV *) NULL)

{
SCSI_DEBUG_MSG ("usrScsiConfig: scsiPhysDevCreate failed.\n");
return (ERROR);
}

Example 4-6 Working with Tape Devices

SCSI tape devices can be controlled using common commands from
scsiCommonLib and sequential commands from scsiSeqLib. These commands
use a pointer to a SCSI sequential device structure, SEQ_DEV, defined in seqIo.h.
For more information on controlling SCSI tape devices, see the reference entries for
these libraries.

This example configures a SCSI tape device whose bus ID is 5 and whose LUN is
0. It includes commands to create a physical device pointer, set up a sequential
device, and initialize a tapeFs device.
153

VxWorks 5.5
Programmer’s Guide
/* configure Exabyte 8mm tape drive at busId = 5, LUN = 0 */
if ((pSpd50 = scsiPhysDevCreate (pSysScsiCtrl, 5, 0, 0, NONE, 0, 0, 0))

== (SCSI_PHYS_DEV *) NULL)
{
SCSI_DEBUG_MSG ("usrScsiConfig: scsiPhysDevCreate failed.\n");
return (ERROR);
}

/* configure the sequential device for this physical device */
if ((pSd0 = scsiSeqDevCreate (pSpd50)) == (SEQ_DEV *) NULL)

{
SCSI_DEBUG_MSG ("usrScsiConfig: scsiSeqDevCreate failed.\n");

return (ERROR);
}

/* setup the tape device configuration */
pTapeConfig = (TAPE_CONFIG *) calloc (sizeof (TAPE_CONFIG), 1);
pTapeConfig->rewind = TRUE; /* this is a rewind device */
pTapeConfig->blkSize = 512; /* uses 512 byte fixed blocks */

/* initialize a tapeFs device */
if (tapeFsDevInit ("/tape1", pSd0, pTapeConfig) == NULL)

{
return (ERROR);
}

/* rewind the physical device using scsiSeqLib interface directly*/
if (scsiRewind (pSd0) == ERROR)

{
return (ERROR);
}

Example 4-7 Configuring a SCSI Disk for Synchronous Data Transfer with Non-Default Offset and Period

Values

In this example, a SCSI disk drive is configured with support for synchronous data
transfer. The offset and period values are user-defined and differ from the driver
default values. The chosen period is 25, defined in SCSI units of 4 ns. Thus, the
period is actually 4 * 25 = 100 ns. The synchronous offset is chosen to be 2. Note that
you may need to adjust the values depending on your hardware environment.

int which;
SCSI_OPTIONS option;
int devBusId;

devBusId = 2;

which = SCSI_SET_IPT_XFER_PARAMS;
option.maxOffset = 2;
option.minPeriod = 25;

if (scsiTargetOptionsSet (pSysScsiCtrl, devBusId &option, which) ==
ERROR)
154

4

4
I/O System
{
SCSI_DEBUG_MSG ("usrScsiConfig: could not set options\n",

0, 0, 0, 0, 0, 0)
return (ERROR);
}

/* configure SCSI disk drive at busId = devBusId, LUN = 0 */

if ((pSpd20 = scsiPhysDevCreate (pSysScsiCtrl, devBusId, 0, 0, NONE,
0, 0, 0)) == (SCSI_PHYS_DEV *) NULL)

{
SCSI_DEBUG_MSG ("usrScsiConfig: scsiPhysDevCreate failed.\n")
return (ERROR);
}

Example 4-8 Changing the Bus ID of the SCSI Controller

To change the bus ID of the SCSI controller, modify sysScsiInit() in sysScsi.c. Set
the SCSI bus ID to a value between 0 and 7 in the call to xxxCtrlInitScsi2(), where
xxx is the controller name. The default bus ID for the SCSI controller is 7.

Troubleshooting

� Incompatibilities Between SCSI-1 and SCSI-2

Applications written for SCSI-1 may not execute for SCSI-2 because data
structures in scsi2Lib.h, such as SCSI_TRANSACTION and SCSI_PHYS_DEV,
have changed. This applies only if the application used these structures
directly.

If this is the case, you can choose to configure only the SCSI-1 level of support,
or you can modify your application according to the data structures in
scsi2Lib.h. In order to set new fields in the modified structure, some
applications may simply need to be recompiled, and some applications will
have to be modified and then recompiled.

� SCSI Bus Failure

If your SCSI bus hangs, it could be for a variety of reasons. Some of the more
common are:

– Your cable has a defect. This is the most common cause of failure.

– The cable exceeds the cumulative maximum length of 6 meters specified
in the SCSI-2 standard, thus changing the electrical characteristics of the
SCSI signals.

– The bus is not terminated correctly. Consider providing termination
power at both ends of the cable, as defined in the SCSI-2 ANSI
specification.
155

VxWorks 5.5
Programmer’s Guide
– The minimum transfer period is insufficient or the REQ/ACK offset is too
great. Use scsiTargetOptionsSet() to set appropriate values for these
options.

– The driver is trying to negotiate wide data transfers on a device that does
not support them. In rejecting wide transfers, the device-specific driver
cannot handle this phase mismatch. Use scsiTargetOptionsSet() to set the
appropriate value for the xferWidth field for that particular SCSI device.

4.7.8 Sockets

In VxWorks, the underlying basis of network communications is sockets. A socket
is an endpoint for communication between tasks; data is sent from one socket to
another. Sockets are not created or opened using the standard I/O functions.
Instead, they are created by calling socket(), and connected and accessed using
other routines in sockLib. However, after a stream socket (using TCP) is created
and connected, it can be accessed as a standard I/O device, using read(), write(),
ioctl(), and close(). The value returned by socket() as the socket handle is in fact
an I/O system file descriptor (fd).

VxWorks socket routines are source-compatible with the BSD 4.4 UNIX socket
functions and the Windows Sockets (Winsock 1.1) networking standard. Use of
these routines is discussed in VxWorks Network Programmer’s Guide: Networking
APIs.

4.8 Differences Between VxWorks and Host System I/O

Most commonplace uses of I/O in VxWorks are completely source-compatible
with I/O in UNIX and Windows. However, note the following differences:

� Device Configuration. In VxWorks, device drivers can be installed and
removed dynamically.

� File Descriptors. In UNIX and Windows, fds are unique to each process. In
VxWorks, fds are global entities, accessible by any task, except for standard
input, standard output, and standard error (0, 1, and 2), which can be task
specific.
156

4

4
I/O System
� I/O Control. The specific parameters passed to ioctl() functions can differ
between UNIX and VxWorks.

� Driver Routines. In UNIX, device drivers execute in system mode and cannot
be preempted. In VxWorks, driver routines can be preempted because they
execute within the context of the task that invoked them.

4.9 Internal Structure

The VxWorks I/O system differs from most I/O systems in the way that the work
of performing user I/O requests is distributed between the device-independent
I/O system and the device drivers themselves.

In many systems, the device driver supplies a few routines to perform low-level
I/O functions such as reading a sequence of bytes from, or writing them to,
character-oriented devices. The higher-level protocols, such as communications
protocols on character-oriented devices, are implemented in the
device-independent part of the I/O system. The user requests are heavily
processed by the I/O system before the driver routines get control.

While this approach is designed to make it easy to implement drivers and to
ensure that devices behave as much alike as possible, it has several drawbacks. The
driver writer is often seriously hampered in implementing alternative protocols
that are not provided by the existing I/O system. In a real-time system, it is
sometimes desirable to bypass the standard protocols altogether for certain
devices where throughput is critical, or where the device does not fit the standard
model.

In the VxWorks I/O system, minimal processing is done on user I/O requests
before control is given to the device driver. The VxWorks I/O system acts as a
switch to route user requests to appropriate driver-supplied routines. Each driver
can then process the raw user requests as appropriate to its devices. In addition,
however, several high-level subroutine libraries are available to driver writers that
implement standard protocols for both character- and block-oriented devices.
Thu,s the VxWorks I/O system provides the best of both worlds: while it is easy to
write a standard driver for most devices with only a few pages of device-specific
code, driver writers are free to execute the user requests in nonstandard ways
where appropriate.
157

VxWorks 5.5
Programmer’s Guide
There are two fundamental types of device: block and character (or non-block; see
Figure 4-8). Block devices are used for storing file systems. They are random access
devices where data is transferred in blocks. Examples of block devices include
hard and floppy disks. Character devices are any device that does not fall in the
block category. Examples of character devices include serial and graphical input
devices, for example, terminals and graphics tablets.

As discussed in earlier sections, the three main elements of the VxWorks I/O
system are drivers, devices, and files. The following sections describe these
elements in detail. The discussion focuses on character drivers; however, much of
it is applicable for block devices. Because block drivers must interact with
VxWorks file systems, they use a slightly different organization; see 4.9.4 Block
Devices, p.176.

Example 4-9 shows the abbreviated code for a hypothetical driver that is used as
an example throughout the following discussions. This example driver is typical
of drivers for character-oriented devices.

In VxWorks, each driver has a short, unique abbreviation, such as net or tty, which
is used as a prefix for each of its routines. The abbreviation for the example driver
is xx.

Example 4-9 Hypothetical Driver

/*
* xxDrv - driver initialization routine
* xxDrv() init’s the driver. It installs the driver via iosDrvInstall.
* It may allocate data structures, connect ISRs, and initialize hardware
*/

STATUS xxDrv ()
{
xxDrvNum = iosDrvInstall (xxCreat, 0, xxOpen, 0, xxRead, xxWrite, xxIoctl)

;
(void) intConnect (intvec, xxInterrupt, ...);
...
}

/**
* xxDevCreate - device creation routine
*
* Called to add a device called <name> to be svced by this driver. Other
* driver-dependent arguments may include buffer sizes, device addresses.

NOTE: This discussion is designed to clarify the structure of VxWorks I/O facilities
and to highlight some considerations relevant to writing I/O drivers for VxWorks.
It is not a complete text on writing a device driver. For detailed information on this
subject, see the VxWorks BSP Developer’s Guide.
158

4

4
I/O System
* The routine adds the device to the I/O system by calling iosDevAdd.
* It may also allocate and initialize data structures for the device,
* initialize semaphores, initialize device hardware, and so on.
*/

STATUS xxDevCreate (name, ...)
char * name;
...
{
status = iosDevAdd (xxDev, name, xxDrvNum);
...
}

/*
*
* The following routines implement the basic I/O functions.
* The xxOpen() return value is meaningful only to this driver,
* and is passed back as an argument to the other I/O routines.
*/

int xxOpen (xxDev, remainder, mode)
XXDEV * xxDev;
char * remainder;
int mode;
{
/* serial devices should have no file name part */

if (remainder[0] != 0)
return (ERROR);

else
return ((int) xxDev);

}

int xxRead (xxDev, buffer, nBytes)
XXDEV * xxDev;
char * buffer;
int nBytes;
...

int xxWrite (xxDev, buffer, nBytes)
...

int xxIoctl (xxDev, requestCode, arg)
...

/*
* xxInterrupt - interrupt service routine
*
* Most drivers have routines that handle interrupts from the devices
* serviced by the driver. These routines are connected to the interrupts
* by calling intConnect (usually in xxDrv above). They can receive a
* single argument, specified in the call to intConnect (see intLib).
*/

VOID xxInterrupt (arg)
...
159

VxWorks 5.5
Programmer’s Guide
4.9.1 Drivers

A driver for a non-block device implements the seven basic I/O functions—
creat(), delete(), open(), close(), read(), write(), and ioctl()—for a particular
kind of device. In general, this type of driver has routines that implement each of
these functions, although some of the routines can be omitted if the functions are
not operative with that device.

Drivers can optionally allow tasks to wait for activity on multiple file descriptors.
This is implemented using the driver’s ioctl() routine; see Implementing select(),
p.168.

A driver for a block device interfaces with a file system, rather than directly with
the I/O system. The file system in turn implements most I/O functions. The driver
need only supply routines to read and write blocks, reset the device, perform I/O
control, and check device status. Drivers for block devices have a number of
special requirements that are discussed in 4.9.4 Block Devices, p.176.

When the user invokes one of the basic I/O functions, the I/O system routes the
request to the appropriate routine of a specific driver, as detailed in the following
sections. The driver’s routine runs in the calling task’s context, as though it were
called directly from the application. Thus, the driver is free to use any facilities
normally available to tasks, including I/O to other devices. This means that most
drivers have to use some mechanism to provide mutual exclusion to critical
regions of code. The usual mechanism is the semaphore facility provided in
semLib.

In addition to the routines that implement the seven basic I/O functions, drivers
also have three other routines:

� An initialization routine that installs the driver in the I/O system, connects to
any interrupts used by the devices serviced by the driver, and performs any
necessary hardware initialization. This routine is typically named xxDrv().

� A routine to add devices that are to be serviced by the driver to the I/O system.
This routine is typically named xxDevCreate().

� Interrupt-level routines that are connected to the interrupts of the devices
serviced by the driver.
160

4

4
I/O System
The Driver Table and Installing Drivers

The function of the I/O system is to route user I/O requests to the appropriate
routine of the appropriate driver. The I/O system does this by maintaining a table
that contains the address of each routine for each driver. Drivers are installed
dynamically by calling the I/O system internal routine iosDrvInstall(). The
arguments to this routine are the addresses of the seven I/O routines for the new
driver. The iosDrvInstall() routine enters these addresses in a free slot in the
driver table and returns the index of this slot. This index is known as the driver
number and is used subsequently to associate particular devices with the driver.

Null (0) addresses can be specified for some of the seven routines. This indicates
that the driver does not process those functions. For non-file-system drivers,
close() and delete() often do nothing as far as the driver is concerned.

VxWorks file systems (such as dosFsLib) contain their own entries in the driver
table, which are created when the file system library is initialized.

Figure 4-2 Example – Driver Initialization for Non-Block Devices

I/O system enters driver
routines in driver table.

DRIVER TABLE:

DRIVER CALL:

drvnum = iosDrvInstall (xxCreat, 0, xxOpen, 0, xxRead, xxWrite, xxIoctl);

xxCreat 0 xxOpen 0 xxReadxxWrite xxIoctl

open

0
1
2
3
4

create close read write ioctl

I/O system returns
driver number
(drvnum = 2).

routines for seven I/O functions.

I/O system locates next
available slot in driver table.

Driver’s install routine specifies driver[1]

[2]

[3]

[4]

delete
161

VxWorks 5.5
Programmer’s Guide
Example of Installing a Driver

Figure 4-2 shows the actions taken by the example driver and by the I/O system
when the initialization routine xxDrv() runs.

The driver calls iosDrvInstall(), specifying the addresses of the driver’s routines
for the seven basic I/O functions. Then, the I/O system:

1. Locates the next available slot in the driver table, in this case slot 2.

2. Enters the addresses of the driver routines in the driver table.

3. Returns the slot number as the driver number of the newly installed driver.

4.9.2 Devices

Some drivers are capable of servicing many instances of a particular kind of device.
For example, a single driver for a serial communications device can often handle
many separate channels that differ only in a few parameters, such as device
address.

In the VxWorks I/O system, devices are defined by a data structure called a device
header (DEV_HDR). This data structure contains the device name string and the
driver number for the driver that services this device. The device headers for all
the devices in the system are kept in a memory-resident linked list called the device
list. The device header is the initial part of a larger structure determined by the
individual drivers. This larger structure, called a device descriptor, contains
additional device-specific data such as device addresses, buffers, and semaphores.

The Device List and Adding Devices

Non-block devices are added to the I/O system dynamically by calling the internal
I/O routine iosDevAdd(). The arguments to iosDevAdd() are the address of the
device descriptor for the new device, the device’s name, and the driver number of
the driver that services the device. The device descriptor specified by the driver
can contain any necessary device-dependent information, as long as it begins with
a device header. The driver does not need to fill in the device header, only the
device-dependent information. The iosDevAdd() routine enters the specified
device name and the driver number in the device header and adds it to the system
device list.
162

4

4
I/O System
To add a block device to the I/O system, call the device initialization routine for
the file system required on that device (dosFsDevCreate() or rawFsDevInit()).
The device initialization routine then calls iosDevAdd() automatically.

The routine iosDevFind() can be used to locate the device structure (by obtaining
a pointer to the DEV_HDR, which is the first member of that structure) and to verify
that a device name exists in the table. Following is an example using
iosDevFind():

char * pTail; /* pointer to tail of devName */
char devName[6] = “DEV1:”; /* name of device */
DOS_VOLUME_DESC * pDosVolDesc; /* first member is DEV_HDR */

...
pDosVolDesc = iosDevFind(devName, (char**)&pTail);
if (NULL == pDosVolDesc)

{
/* ERROR: device name does not exist and no default device */
}

else
{
/*
* pDosVolDesc is a valid DEV_HDR pointer
* and pTail points to beginning of devName.
* Check devName against pTail to determine if it is
* the default name or the specified devName.
*/
}

Example of Adding Devices

In Figure 4-3, the example driver’s device creation routine xxDevCreate() adds
devices to the I/O system by calling iosDevAdd().

4.9.3 File Descriptors

Several fds can be open to a single device at one time. A device driver can maintain
additional information associated with an fd beyond the I/O system’s device
information. In particular, devices on which multiple files can be open at one time
have file-specific information (for example, file offset) associated with each fd. You
can also have several fds open to a non-block device, such as a tty; typically there
is no additional information, and thus writing on any of the fds produces identical
results.
163

VxWorks 5.5
Programmer’s Guide
The Fd Table

Files are opened with open() (or creat()). The I/O system searches the device list
for a device name that matches the filename (or an initial substring) specified by
the caller. If a match is found, the I/O system uses the driver number contained in
the corresponding device header to locate and call the driver’s open routine in the
driver table.

The I/O system must establish an association between the file descriptor used by
the caller in subsequent I/O calls, and the driver that services it. Additionally, the
driver must associate some data structure per descriptor. In the case of non-block
devices, this is usually the device descriptor that was located by the I/O system.

Figure 4-3 Example – Addition of Devices to I/O System

DRIVER CALLS: status = iosDevAdd (dev0, "/xx0", drvnum);

status = iosDevAdd (dev1, "/xx1", drvnum);

DEVICE LIST:

DRIVER TABLE:

I/O system adds device descriptors
to device list. Each descriptor contains
device name and driver number (in this
case 2) and any device-specific data.

open

0
1
2
3
4

create delete close read write ioctl

"/dk0/"
1

"/xx0"
2

"/xx1"
2

device-
dependent

data

device-
dependent

data
164

4

4
I/O System
The I/O system maintains these associations in a table called the fd table. This table
contains the driver number and an additional driver-determined 4-byte value. The
driver value is the internal descriptor returned by the driver’s open routine, and
can be any nonnegative value the driver requires to identify the file. In subsequent
calls to the driver’s other I/O functions (read(), write(), ioctl(), and close()), this
value is supplied to the driver in place of the fd in the application-level I/O call.

Example of Opening a File

In Figure 4-4 and Figure 4-5, a user calls open() to open the file /xx0. The I/O
system takes the following series of actions:

1. It searches the device list for a device name that matches the specified filename
(or an initial substring). In this case, a complete device name matches.

2. It reserves a slot in the fd table and creates a new file descriptor object, which
is used if the open is successful.

3. It then looks up the address of the driver’s open routine, xxOpen(), and calls
that routine. Note that the arguments to xxOpen() are transformed by the I/O
system from the user’s original arguments to open(). The first argument to
xxOpen() is a pointer to the device descriptor the I/O system located in the
full filename search. The next parameter is the remainder of the filename
specified by the user, after removing the initial substring that matched the
device name. In this case, because the device name matched the entire
filename, the remainder passed to the driver is a null string. The driver is free
to interpret this remainder in any way it wants. In the case of block devices,
this remainder is the name of a file on the device. In the case of non-block
devices like this one, it is usually an error for the remainder to be anything but
the null string. The third parameter is the file access flag, in this case
O_RDONLY; that is, the file is opened for reading only. The last parameter is the
mode, as passed to the original open() routine.

4. It executes xxOpen(), which returns a value that subsequently identifies the
newly opened file. In this case, the value is the pointer to the device descriptor.
This value is supplied to the driver in subsequent I/O calls that refer to the file
being opened. Note that if the driver returns only the device descriptor, the
driver cannot distinguish multiple files opened to the same device. In the case
of non-block device drivers, this is usually appropriate.

5. The I/O system then enters the driver number and the value returned by
xxOpen() in the new file descriptor object. .
165

VxWorks 5.5
Programmer’s Guide
Again, the value entered in the fd object has meaning only for the driver, and
is arbitrary as far as the I/O system is concerned.

6. Finally, it returns to the user the index of the slot in the fd table, in this case 3.

Figure 4-4 Example: Call to I/O Routine open() [Part 1]

fd = open ("/xx0", O_RDONLY, 0);

DEVICE LIST:

DRIVER TABLE:

USER CALL: DRIVER CALL:

xxdev = xxOpen (xxdev, "", O_RDONLY, 0);

FD TABLE:

I/O system reserves
a slot in the fd table.

xxOpen

open

0
1
2
3
4

create delete close read write ioctl

"/dk0/"
1

"/xx0"
2

"/xx1"
2

I/O system calls
driver’s open routine
with pointer to
device descriptor.

device-
dependent

data

0
1
2
3

pDevHdr value

4

I/O system finds
name in device list.

[1] [2] [3]
166

4

4
I/O System
Figure 4-5 Example: Call to I/O Routine open() [Part 2]

fd = open ("/xx0", O_RDONLY, 0);

"/dk0/"
1

"/xx0"
2

"/xx1"
2

DEVICE LIST:

DRIVER TABLE:

USER CALL: DRIVER CALL:

xxdev = xxOpen (xxdev, "", O_RDONLY, 0);

FD TABLE:

I/O system returns
index in fd table of
new open file (fd = 3).

I/O system enters
driver number and
identifying value in
reserved fd table slot.

Driver returns any
identifying value, in
this case the pointer to
the device descriptor.

0
1
2
3

drvnum value

xxdev2

device-
dependent

data

open

0
1
2
3
4

create delete close read write ioctl

4

[6] [5] [4]
167

VxWorks 5.5
Programmer’s Guide
Example of Reading Data from the File

In Figure 4-6, the user calls read() to obtain input data from the file. The specified
fd is the index into the fd table for this file. The I/O system uses the driver number
contained in the table to locate the driver’s read routine, xxRead(). The I/O system
calls xxRead(), passing it the identifying value in the fd table that was returned by
the driver’s open routine, xxOpen(). Again, in this case the value is the pointer to
the device descriptor. The driver’s read routine then does whatever is necessary to
read data from the device. The process for user calls to write() and ioctl() follow
the same procedure.

Example of Closing a File

The user terminates the use of a file by calling close(). As in the case of read(), the
I/O system uses the driver number contained in the fd table to locate the driver’s
close routine. In the example driver, no close routine is specified; thus no driver
routines are called. Instead, the I/O system marks the slot in the fd table as being
available. Any subsequent references to that fd cause an error. However,
subsequent calls to open() can reuse that slot.

Implementing select()

Supporting select() in your driver allows tasks to wait for input from multiple
devices or to specify a maximum time to wait for the device to become ready for
I/O. Writing a driver that supports select() is simple, because most of the
functionality is provided in selectLib. You might want your driver to support
select() if any of the following is appropriate for the device:

� The tasks want to specify a timeout to wait for I/O from the device. For
example, a task might want to time out on a UDP socket if the packet never
arrives.

� The driver supports multiple devices, and the tasks want to wait
simultaneously for any number of them. For example, multiple pipes might be
used for different data priorities.

� The tasks want to wait for I/O from the device while also waiting for I/O from
another device. For example, a server task might use both pipes and sockets.

To implement select(), the driver must keep a list of tasks waiting for device
activity. When the device becomes ready, the driver unblocks all the tasks waiting
on the device.
168

4

4
I/O System
For a device driver to support select(), it must declare a SEL_WAKEUP_LIST
structure (typically declared as part of the device descriptor structure) and
initialize it by calling selWakeupListInit(). This is done in the driver’s

Figure 4-6 Example: Call to I/O Routine read()

n = read (fd, buf, len);

"/dk0/"
1

"/xx0"
2

"/xx1"
2

DEVICE LIST:

DRIVER TABLE:

USER CALL: DRIVER CALL:

n = xxRead (xxdev, buf, len);

FD TABLE:

xxRead

open

0
1
2
3
4

create remove close read write ioctl

0
1
2
3

drvnum value

xxdev2
4

device-
dependent

data

I/O system transforms the user’s I/O
routine calls into driver routine calls
replacing the fd with the value returned
by the driver’s open routine, xxOpen().
169

VxWorks 5.5
Programmer’s Guide
xxDevCreate() routine. When a task calls select(), selectLib calls the driver’s
ioctl() routine with the function FIOSELECT or FIOUNSELECT. If ioctl() is called
with FIOSELECT, the driver must do the following:

1. Add the SEL_WAKEUP_NODE (provided as the third argument of ioctl()) to
the SEL_WAKEUP_LIST by calling selNodeAdd().

2. Use the routine selWakeupType() to check whether the task is waiting for
data to read from the device (SELREAD) or if the device is ready to be written
(SELWRITE).

3. If the device is ready (for reading or writing as determined by
selWakeupType()), the driver calls the routine selWakeup() to make sure that
the select() call in the task does not pend. This avoids the situation where the
task is blocked but the device is ready.

If ioctl() is called with FIOUNSELECT, the driver calls selNodeDelete() to remove
the provided SEL_WAKEUP_NODE from the wakeup list.

When the device becomes available, selWakeupAll() is used to unblock all the
tasks waiting on this device. Although this typically occurs in the driver’s ISR, it
can also occur elsewhere. For example, a pipe driver might call selWakeupAll()
from its xxRead() routine to unblock all the tasks waiting to write, now that there
is room in the pipe to store the data. Similarly the pipe’s xxWrite() routine might
call selWakeupAll() to unblock all the tasks waiting to read, now that there is data
in the pipe.

Example 4-10 Driver Code Using the Select Facility

/* This code fragment shows how a driver might support select(). In this
* example, the driver unblocks tasks waiting for the device to become ready
* in its interrupt service routine.
*/

/* myDrvLib.h - header file for driver */

typedef struct /* MY_DEV */
{
DEV_HDR devHdr; /* device header */
BOOL myDrvDataAvailable; /* data is available to read */
BOOL myDrvRdyForWriting; /* device is ready to write */
SEL_WAKEUP_LIST selWakeupList; /* list of tasks pended in select */
} MY_DEV;
170

4

4
I/O System
/* myDrv.c - code fragments for supporting select() in a driver */

#include "vxWorks.h"
#include "selectLib.h"

/* First create and initialize the device */

STATUS myDrvDevCreate
(
char * name, /* name of device to create */
)
{
MY_DEV * pMyDrvDev; /* pointer to device descriptor*/
... additional driver code ...

/* allocate memory for MY_DEV */
pMyDrvDev = (MY_DEV *) malloc (sizeof MY_DEV);
... additional driver code ...

/* initialize MY_DEV */
pMyDrvDev->myDrvDataAvailable=FALSE
pMyDrvDev->myDrvRdyForWriting=FALSE

/* initialize wakeup list */
selWakeupListInit (&pMyDrvDev->selWakeupList);
... additional driver code ...
}

/* ioctl function to request reading or writing */

STATUS myDrvIoctl
(
MY_DEV * pMyDrvDev, /* pointer to device descriptor */
int request, /* ioctl function */
int arg /* where to send answer */
)
{
... additional driver code ...

switch (request)
{
... additional driver code ...

case FIOSELECT:

/* add node to wakeup list */

selNodeAdd (&pMyDrvDev->selWakeupList, (SEL_WAKEUP_NODE *) arg);

if (selWakeupType ((SEL_WAKEUP_NODE *) arg) == SELREAD
&& pMyDrvDev->myDrvDataAvailable)
{
/* data available, make sure task does not pend */
selWakeup ((SEL_WAKEUP_NODE *) arg);
}

if (selWakeupType ((SEL_WAKEUP_NODE *) arg) == SELWRITE
171

VxWorks 5.5
Programmer’s Guide
&& pMyDrvDev->myDrvRdyForWriting)
{
/* device ready for writing, make sure task does not pend */
selWakeup ((SEL_WAKEUP_NODE *) arg);
}

break;

case FIOUNSELECT:

/* delete node from wakeup list */
selNodeDelete (&pMyDrvDev->selWakeupList, (SEL_WAKEUP_NODE *) arg);
break;

... additional driver code ...
}

}

/* code that actually uses the select() function to read or write */

void myDrvIsr
(
MY_DEV * pMyDrvDev;
)
{
... additional driver code ...

/* if there is data available to read, wake up all pending tasks */

if (pMyDrvDev->myDrvDataAvailable)
selWakeupAll (&pMyDrvDev->selWakeupList, SELREAD);

/* if the device is ready to write, wake up all pending tasks */

if (pMyDrvDev->myDrvRdyForWriting)
selWakeupAll (&pMyDrvDev->selWakeupList, SELWRITE);

}

Cache Coherency

Drivers written for boards with caches must guarantee cache coherency. Cache
coherency means data in the cache must be in sync, or coherent, with data in RAM.
The data cache and RAM can get out of sync any time there is asynchronous access
to RAM (for example, DMA device access or VMEbus access). Data caches are used
to increase performance by reducing the number of memory accesses. Figure 4-7
shows the relationships between the CPU, data cache, RAM, and a DMA device.

Data caches can operate in one of two modes: writethrough and copyback.
Write-through mode writes data to both the cache and RAM; this guarantees cache
coherency on output but not input. Copyback mode writes the data only to the
cache; this makes cache coherency an issue for both input and output of data.
172

4

4
I/O System
If a CPU writes data to RAM that is destined for a DMA device, the data can first
be written to the data cache. When the DMA device transfers the data from RAM,
there is no guarantee that the data in RAM was updated with the data in the cache.
Thus, the data output to the device may not be the most recent—the new data may
still be sitting in the cache. This data incoherence can be solved by making sure the
data cache is flushed to RAM before the data is transferred to the DMA device.

If a CPU reads data from RAM that originated from a DMA device, the data read
can be from the cache buffer (if the cache buffer for this data is not marked invalid)
and not the data just transferred from the device to RAM. The solution to this data
incoherence is to make sure that the cache buffer is marked invalid so that the data
is read from RAM and not from the cache.

Drivers can solve the cache coherency problem either by allocating cache-safe
buffers (buffers that are marked non-cacheable) or flushing and invalidating cache
entries any time the data is written to or read from the device. Allocating
cache-safe buffers is useful for static buffers; however, this typically requires MMU
support. Non-cacheable buffers that are allocated and freed frequently (dynamic
buffers) can result in large amounts of memory being marked non-cacheable. An
alternative to using non-cacheable buffers is to flush and invalidate cache entries
manually; this allows dynamic buffers to be kept coherent.

The routines cacheFlush() and cacheInvalidate() are used to manually flush and
invalidate cache buffers. Before a device reads the data, flush the data from the
cache to RAM using cacheFlush() to ensure the device reads current data. After
the device has written the data into RAM, invalidate the cache entry with
cacheInvalidate(). This guarantees that when the data is read by the CPU, the
cache is updated with the new data in RAM.

Figure 4-7 Cache Coherency

CPU

Data Cache

RAM
DMA

Device
173

VxWorks 5.5
Programmer’s Guide
Example 4-11 DMA Transfer Routine

/* This a sample DMA transfer routine. Before programming the device
* to output the data to the device, it flushes the cache by calling
* cacheFlush(). On a read, after the device has transferred the data,
* the cache entry must be invalidated using cacheInvalidate().
*/

#include "vxWorks.h"
#include "cacheLib.h"
#include "fcntl.h"
#include "example.h"
void exampleDmaTransfer /* 1 = READ, 0 = WRITE */

(
UINT8 *pExampleBuf,
int exampleBufLen,
int xferDirection
)
{
if (xferDirection == 1)

{
myDevToBuf (pExampleBuf);
cacheInvalidate (DATA_CACHE, pExampleBuf, exampleBufLen);
}

else
{
cacheFlush (DATA_CACHE, pExampleBuf, exampleBufLen);
myBufToDev (pExampleBuf);
}

}

It is possible to make a driver more efficient by combining cache-safe buffer
allocation and cache-entry flushing or invalidation. The idea is to flush or
invalidate a cache entry only when absolutely necessary. To address issues of cache
coherency for static buffers, use cacheDmaMalloc(). This routine initializes a
CACHE_FUNCS structure (defined in cacheLib.h) to point to flush and invalidate
routines that can be used to keep the cache coherent.

The macros CACHE_DMA_FLUSH and CACHE_DMA_INVALIDATE use this
structure to optimize the calling of the flush and invalidate routines. If the
corresponding function pointer in the CACHE_FUNCS structure is NULL, no
unnecessary flush/invalidate routines are called because it is assumed that the
buffer is cache coherent (hence it is not necessary to flush/invalidate the cache
entry manually).

The driver code uses a virtual address and the device uses a physical address.
Whenever a device is given an address, it must be a physical address. Whenever
the driver accesses the memory, it must use the virtual address.

The device driver should use CACHE_DMA_VIRT_TO_PHYS to translate a virtual
address to a physical address before passing it to the device. It may also use
174

4

4
I/O System
CACHE_DMA_PHYS_TO_VIRT to translate a physical address to a virtual one, but
this process is time-consuming and non-deterministic, and should be avoided
whenever possible.

Example 4-12 Address-Translation Driver

/* The following code is an example of a driver that performs address
* translations. It attempts to allocate a cache-safe buffer, fill it, and
* then write it out to the device. It uses CACHE_DMA_FLUSH to make sure
* the data is current. The driver then reads in new data and uses
* CACHE_DMA_INVALIDATE to guarantee cache coherency.
*/

#include "vxWorks.h"
#include "cacheLib.h"
#include "myExample.h"
STATUS myDmaExample (void)

{
void * pMyBuf;
void * pPhysAddr;

/* allocate cache safe buffers if possible */
if ((pMyBuf = cacheDmaMalloc (MY_BUF_SIZE)) == NULL)
return (ERROR);

… fill buffer with useful information …

/* flush cache entry before data is written to device */
CACHE_DMA_FLUSH (pMyBuf, MY_BUF_SIZE);

/* convert virtual address to physical */
pPhysAddr = CACHE_DMA_VIRT_TO_PHYS (pMyBuf);

/* program device to read data from RAM */
myBufToDev (pPhysAddr);
… wait for DMA to complete …
… ready to read new data …

/* program device to write data to RAM */
myDevToBuf (pPhysAddr);
… wait for transfer to complete …

/* convert physical to virtual address */
pMyBuf = CACHE_DMA_PHYS_TO_VIRT (pPhysAddr);

/* invalidate buffer */
CACHE_DMA_INVALIDATE (pMyBuf, MY_BUF_SIZE);
… use data …

/* when done free memory */
if (cacheDmaFree (pMyBuf) == ERROR)

return (ERROR);
return (OK);
}

175

VxWorks 5.5
Programmer’s Guide
4.9.4 Block Devices

General Implementation

In VxWorks, block devices have a slightly different interface than other I/O
devices. Rather than interacting directly with the I/O system, block device drivers
interact with a file system. The file system, in turn, interacts with the I/O system.
Direct access block devices have been supported since SCSI-1 and are used
compatibly with dosFs and rawFs. In addition, VxWorks supports SCSI-2
sequential devices, which are organized so individual blocks of data are read and
written sequentially. When data blocks are written, they are added sequentially at
the end of the written medium; that is, data blocks cannot be replaced in the
middle of the medium. However, data blocks can be accessed individually for
reading throughout the medium. This process of accessing data on a sequential
medium differs from that of other block devices.

Figure 4-8 shows a layered model of I/O for both block and non-block (character)
devices. This layered arrangement allows the same block device driver to be used
with different file systems, and reduces the number of I/O functions that must be
supported in the driver.

A device driver for a block device must provide a means for creating a logical block
device structure, a BLK_DEV for direct access block devices or a SEQ_DEV for
sequential block devices. The BLK_DEV/SEQ_DEV structure describes the device
in a generic fashion, specifying only those common characteristics that must be
known to a file system being used with the device. Fields within the structures
specify various physical configuration variables for the device—for example, block
size, or total number of blocks. Other fields in the structures specify routines
within the device driver that are to be used for manipulating the device (reading
blocks, writing blocks, doing I/O control functions, resetting the device, and
checking device status). The BLK_DEV/SEQ_DEV structures also contain fields
used by the driver to indicate certain conditions (for example, a disk change) to the
file system.

When the driver creates the block device, the device has no name or file system
associated with it. These are assigned during the device initialization routine for
the chosen file system (for example, dosFsDevInit() or tapeFsDevInit()).

The low-level device driver for a block device is not installed in the I/O system
driver table, unlike non-block device drivers. Instead, each file system in the
VxWorks system is installed in the driver table as a “driver.” Each file system has
only one entry in the table, even though several different low-level device drivers
can have devices served by that file system.
176

4

4
I/O System
After a device is initialized for use with a particular file system, all I/O operations
for the device are routed through that file system. To perform specific device
operations, the file system in turn calls the routines in the specified BLK_DEV or
SEQ_DEV structure.

A driver for a block device must provide the interface between the device and
VxWorks. There is a specific set of functions required by VxWorks; individual
devices vary based on what additional functions must be provided. The user
manual for the device being used, as well as any other drivers for the device, is
invaluable in creating the VxWorks driver.

Figure 4-8 Non-Block Devices vs. Block Devices

I/O System

driver table

Device(s) Device(s)

File System
dosFs, rawFs,

Block
Device Driver

Non-Block
Device Driver

Application

or tapeFs
177

VxWorks 5.5
Programmer’s Guide
The following sections describe the components necessary to build low-level block
device drivers that adhere to the standard interface for VxWorks file systems.

Low-Level Driver Initialization Routine

The driver normally requires a general initialization routine. This routine performs
all operations that are done one time only, as opposed to operations that must be
performed for each device served by the driver. As a general guideline, the
operations in the initialization routine affect the whole device controller, while
later operations affect only specific devices.

Common operations in block device driver initialization routines include:

– initializing hardware
– allocating and initializing data structures
– creating semaphores
– initializing interrupt vectors
– enabling interrupts

The operations performed in the initialization routine are entirely specific to the
device (controller) being used; VxWorks has no requirements for a driver
initialization routine.

Unlike non-block device drivers, the driver initialization routine does not call
iosDrvInstall() to install the driver in the I/O system driver table. Instead, the file
system installs itself as a “driver” and routes calls to the actual driver using the
routine addresses placed in the block device structure, BLK_DEV or SEQ_DEV (see
Device Creation Routine, p.178).

Device Creation Routine

The driver must provide a routine to create (define) a logical disk or sequential
device. A logical disk device may be only a portion of a larger physical device. If
this is the case, the device driver must keep track of any block offset values or other
means of identifying the physical area corresponding to the logical device.
VxWorks file systems always use block numbers beginning with zero for the start
of a device. A sequential access device can be either of variable block size or fixed
block size. Most applications use devices of fixed block size.

The device creation routine generally allocates a device descriptor structure that
the driver uses to manage the device. The first item in this device descriptor must
be a VxWorks block device structure (BLK_DEV or SEQ_DEV). It must appear first
178

4

4
I/O System
because its address is passed by the file system during calls to the driver; having
the BLK_DEV or SEQ_DEV as the first item permits also using this address to
identify the device descriptor.

The device creation routine must initialize the fields within the BLK_DEV or
SEQ_DEV structure. The BLK_DEV fields and their initialization values are shown
in Table 4-15.

The SEQ_DEV fields and their initialization values are shown in Table 4-16.

The device creation routine returns the address of the BLK_DEV or SEQ_DEV
structure. This address is then passed during the file system device initialization
call to identify the device.

Table 4-15 Fields in the BLK_DEV Structure

Field Value

bd_blkRd Address of the driver routine that reads blocks from the device.

bd_blkWrt Address of the driver routine that writes blocks to the device.

bd_ioctl Address of the driver routine that performs device I/O control.

bd_reset Address of the driver routine that resets the device (NULL if none).

bd_statusChk Address of the driver routine that checks disk status (NULL if
none).

bd_removable Value specifying whether or not the device is removable. TRUE if
the device is removable (for example, a floppy disk); otherwise
FALSE.

bd_nBlocks Total number of blocks on the device.

bd_bytesPerBlk Number of bytes per block on the device.

bd_blksPerTrack Number of blocks per track on the device.

bd_nHeads Number of heads (surfaces).

bd_retry Number of times to retry failed reads or writes.

bd_mode Device mode (write-protect status); generally set to O_RDWR.

bd_readyChanged Value specifying whether or not the device ready status has
changed. TRUE if the status has changed; initialize to TRUE to cause
the disk to be mounted.
179

VxWorks 5.5
Programmer’s Guide
Table 4-16 Fields in the SEQ_DEV Structure

Field Value

sd_seqRd Address of the driver routine that reads blocks from the device.

sd_seqWrt Address of the driver routine that writes blocks to the device.

sd_ioctl Address of the driver routine that performs device I/O control.

sd_seqWrtFileMarks Address of the driver routine that writes file marks to the device.

sd_rewind Address of the driver routine that rewinds the sequential device.

sd_reserve Address of the driver routine that reserves a sequential device.

sd_release Address of the driver routine that releases a sequential device.

sd_readBlkLim Address of the driver routine that reads the data block limits from
the sequential device.

sd_load Address of the driver routine that either loads or unloads a
sequential device.

sd_space Address of the driver routine that moves (spaces) the medium
forward or backward to end-of-file or end-of-record markers.

sd_erase Address of the driver routine that erases a sequential device.

sd_reset Address of the driver routine that resets the device (NULL if
none).

sd_statusChk Address of the driver routine that checks sequential device status
(NULL if none).

sd_blkSize Block size of sequential blocks for the device. A block size of 0
means that variable block sizes are used.

sd_mode Device mode (write protect status).

sd_readyChanged Value for specifying whether or not the device ready status has
changed. TRUE if the status has changed; initialize to TRUE to
cause the sequential device to be mounted.

sd_maxVarBlockLimit Maximum block size for a variable block.

sd_density Density of sequential access media.
180

4

4
I/O System
Unlike non-block device drivers, the device creation routine for a block device
does not call iosDevAdd() to install the device in the I/O system device table.
Instead, this is done by the file system’s device initialization routine.

Read Routine (Direct-Access Devices)

The driver must supply a routine to read one or more blocks from the device. For
a direct access device, the read-blocks routine must have the following arguments
and result:

STATUS xxBlkRd
(
DEVICE * pDev, /* pointer to device descriptor */
int startBlk, /* starting block to read */
int numBlks, /* number of blocks to read */
char * pBuf /* pointer to buffer to receive data */
)

pDev a pointer to the driver’s device descriptor structure, represented here
by the symbolic name DEVICE. (Actually, the file system passes the
address of the corresponding BLK_DEV structure; these are
equivalent, because the BLK_DEV is the first item in the device
descriptor.) This identifies the device.

startBlk the starting block number to be read from the device. The file system
always uses block numbers beginning with zero for the start of the
device. Any offset value used for this logical device must be added in
by the driver.

numBlks the number of blocks to be read. If the underlying device hardware
does not support multiple-block reads, the driver routine must do the
necessary looping to emulate this ability.

pBuf the address where data read from the disk is to be copied.

The read routine returns OK if the transfer is successful, or ERROR if a problem
occurs.

NOTE: In this and following examples, the routine names begin with xx. These
names are for illustration only, and do not have to be used by your device driver.
VxWorks references the routines by address only; the name can be anything.
181

VxWorks 5.5
Programmer’s Guide
Read Routine (Sequential Devices)

The driver must supply a routine to read a specified number of bytes from the
device. The bytes being read are always assumed to be read from the current
location of the read/write head on the media. The read routine must have the
following arguments and result:

STATUS xxSeqRd
(
DEVICE * pDev, /* pointer to device descriptor */
int numBytes, /* number of bytes to read */
char * buffer, /* pointer to buffer to receive data */
BOOL fixed /* TRUE => fixed block size */
)

pDev a pointer to the driver’s device descriptor structure, represented here
by the symbolic name DEVICE. (Actually, the file system passes the
address of the corresponding SEQ_DEV structure; these are
equivalent, because the SEQ_DEV structure is the first item in the
device descriptor.) This identifies the device.

numBytes the number of bytes to be read.

buffer the buffer into which numBytes of data are read.

fixed specifies whether the read routine reads fixed-size blocks from the
sequential device or variable-sized blocks, as specified by the file
system. If fixed is TRUE, fixed-size blocks are used.

The read routine returns OK if the transfer is completed successfully, or ERROR if
a problem occurs.

Write Routine (Direct-Access Devices)

The driver must supply a routine to write one or more blocks to the device. The
definition of this routine closely parallels that of the read routine. For direct-access
devices, the write routine is as follows:

STATUS xxBlkWrt
(
DEVICE * pDev, /* pointer to device descriptor */
int startBlk, /* starting block for write */
int numBlks, /* number of blocks to write */
char * pBuf /* ptr to buffer of data to write */
)

182

4

4
I/O System
pDev a pointer to the driver’s device descriptor structure.

startBlk the starting block number to be written to the device.

numBlks the number of blocks to be written. If the underlying device hardware
does not support multiple-block writes, the driver routine must do the
necessary looping to emulate this ability.

pBuf the address of the data to be written to the disk.

The write routine returns OK if the transfer is successful, or ERROR if a problem
occurs.

Write Routine (Sequential Devices)

The driver must supply a routine to write a specified number of bytes to the device.
The bytes being written are always assumed to be written to the current location
of the read/write head on the media. For sequential devices, the write routine is as
follows:

STATUS xxWrtTape
(
DEVICE * pDev, /* ptr to SCSI sequential device info */
int numBytes, /* total bytes or blocks to be written */
char * buffer, /* ptr to input data buffer */
BOOL fixed /* TRUE => fixed block size */
)

pDev a pointer to the driver’s device descriptor structure.

numBytes the number of bytes to be written.

buffer the buffer from which numBytes of data are written.

fixed specifies whether the write routine reads fixed-size blocks from the
sequential device or variable-sized blocks, as specified by the file
system. If fixed is TRUE, fixed-size blocks are used.

The write routine returns OK if the transfer is successful, or ERROR if a problem
occurs.

I/O Control Routine

The driver must provide a routine that can handle I/O control requests. In
VxWorks, most I/O operations beyond basic file handling are implemented
through ioctl() functions. The majority of these are handled directly by the file
183

VxWorks 5.5
Programmer’s Guide
system. However, if the file system does not recognize a request, that request is
passed to the driver’s I/O control routine.

Define the driver’s I/O control routine as follows:

STATUS xxIoctl
(
DEVICE * pDev, /* pointer to device descriptor */
int funcCode, /* ioctl() function code */
int arg /* function-specific argument */
)

pDev a pointer to the driver’s device descriptor structure.

funcCode the requested ioctl() function. Standard VxWorks I/O control
functions are defined in the include file ioLib.h. Other user-defined
function code values can be used as required by your device driver.
The I/O control functions supported by dosFs, rawFs, and tapeFs are
summarized in 5. Local File Systems in this manual.

arg specific to the particular ioctl() function requested. Not all ioctl()
functions use this argument.

The driver’s I/O control routine typically takes the form of a multi-way switch
statement, based on the function code. The driver’s I/O control routine must
supply a default case for function code requests it does not recognize. For such
requests, the I/O control routine sets errno to S_ioLib_UNKNOWN_REQUEST and
returns ERROR.

The driver’s I/O control routine returns OK if it handled the request successfully;
otherwise, it returns ERROR.

Device-Reset Routine

The driver usually supplies a routine to reset a specific device, but it is not
required. This routine is called when a VxWorks file system first mounts a disk or
tape, and again during retry operations when a read or write fails.

Declare the driver’s device-reset routine as follows:

STATUS xxReset
(
DEVICE * pDev /* pointer to driver’s device descriptor structure */
)

184

4

4
I/O System
When called, this routine resets the device and controller. Do not reset other
devices, if it can be avoided. The routine returns OK if the driver succeeded in
resetting the device; otherwise, it returns ERROR.

If no reset operation is required for the device, this routine can be omitted. In this
case, the device-creation routine sets the xx_reset field in the BLK_DEV or
SEQ_DEV structure to NULL.

Status-Check Routine

If the driver provides a routine to check device status or perform other preliminary
operations, the file system calls this routine at the beginning of each open() or
creat() on the device.

Define the status-check routine as follows:

STATUS xxStatusChk
(
DEVICE * pDev /* pointer to driver’s device descriptor structure */
)

The routine returns OK if the open or create operation can continue. If it detects a
problem with the device, it sets errno to some value indicating the problem, and
returns ERROR. If ERROR is returned, the file system does not continue the
operation.

A primary use of the status-check routine is to check for a disk change on devices
that do not detect the change until after a new disk is inserted. If the routine
determines that a new disk is present, it sets the bd_readyChanged field in the
BLK_DEV structure to TRUE and returns OK so that the open or create operation
can continue. The new disk is then mounted automatically by the file system. (See
Change in Ready Status, p.186.)

Similarly, the status check routine can be used to check for a tape change. This
routine determines whether a new tape has been inserted. If a new tape is present,
the routine sets the sd_readyChanged field in the SEQ_DEV structure to TRUE and
returns OK so that the open or create operation can continue. The device driver
should not be able to unload a tape, nor should a tape be physically ejected, while
a file descriptor is open on the tape device.

NOTE: In this and following examples, the names of fields in the BLK_DEV and
SEQ_DEV structures are parallel except for the initial letters bd_ or sd_. In these
cases, the initial letters are represented by xx_, as in the xx_reset field to represent
both the bd_reset field and the sd_reset field.
185

VxWorks 5.5
Programmer’s Guide
If the device driver requires no status-check routine, the device-creation routine
sets the xx_statusChk field in the BLK_DEV or SEQ_DEV structure to NULL.

Write-Protected Media

The device driver may detect that the disk or tape in place is write-protected. If this
is the case, the driver sets the xx_mode field in the BLK_DEV or SEQ_DEV structure
to O_RDONLY. This can be done at any time (even after the device is initialized for
use with the file system). The file system respects the xx_mode field setting and
does not allow writes to the device until the xx_mode field is changed to O_RDWR
or O_WRONLY.

Change in Ready Status

The driver informs the file system whenever a change in the device’s ready status
is recognized. This can be the changing of a floppy disk, changing of the tape
medium, or any other situation that makes it advisable for the file system to
remount the disk.

To announce a change in ready status, the driver sets the xx_readyChanged field
in the BLK_DEV or SEQ_DEV structure to TRUE. This is recognized by the file
system, which remounts the disk during the next I/O initiated on the disk. The file
system then sets the xx_readyChanged field to FALSE. The xx_readyChanged
field is never cleared by the device driver.

Setting xx_readyChanged to TRUE has the same effect as calling the file system’s
ready-change routine (for example, calling ioctl() with the FIODISKCHANGE
function code).

An optional status-check routine (see Status-Check Routine, p.185) can provide a
convenient mechanism for asserting a ready-change, particularly for devices that
cannot detect a disk change until after the new disk is inserted. If the status-check
routine detects that a new disk is present, it sets xx_readyChanged to TRUE. This
routine is called by the file system at the beginning of each open or create
operation.

Write-File-Marks Routine (Sequential Devices)

The sequential driver must provide a routine that can write file marks onto the tape
device. The write file marks routine must have the following arguments:
186

4

4
I/O System
STATUS xxWrtFileMarks
(
DEVICE * pDev, /* pointer to device descriptor */
int numMarks, /* number of file marks to write */
BOOL shortMark /* short or long file marks */
)

pDev a pointer to the driver’s device descriptor structure.

numMarks the number of file marks to be written sequentially.

shortMark the type of file mark (short or long). If shortMark is TRUE, short marks
are written.

The write file marks routine returns OK if the file marks are written correctly on
the tape device; otherwise, it returns ERROR.

Rewind Routine (Sequential Devices)

The sequential driver must provide a rewind routine in order to rewind tapes in
the tape device. The rewind routine is defined as follows:

STATUS xxRewind
(
DEVICE * pDev /* pointer to driver’s device descriptor structure */
)

When called, this routine rewinds the tape in the tape device. The routine returns
OK if completion is successful; otherwise, it returns ERROR.

Reserve Routine (Sequential Devices)

The sequential driver can provide a reserve routine that reserves the physical tape
device for exclusive access by the host that is executing the reserve routine. The
tape device remains reserved until it is released by that host, using a release
routine, or by some external stimulus.

The reserve routine is defined as follows:

STATUS xxReserve
(
DEVICE * pDev /* pointer to driver’s device descriptor structure */
)

If a tape device is reserved successfully, the reserve routine returns OK. However,
if the tape device cannot be reserved or an error occurs, it returns ERROR.
187

VxWorks 5.5
Programmer’s Guide
Release Routine (Sequential Devices)

This routine releases the exclusive access that a host has on a tape device. The tape
device is then free to be reserved again by the same host or some other host. This
routine is the opposite of the reserve routine and must be provided by the driver if
the reserve routine is provided.

The release routine is defined as follows:

STATUS xxReset
(
DEVICE * pDev /* pointer to driver’s device descriptor structure */
)

If the tape device is released successfully, this routine returns OK. However, if the
tape device cannot be released or an error occurs, this routine returns ERROR.

Read-Block-Limits Routine (Sequential Devices)

The read-block-limits routine can poll a tape device for its physical block limits.
These block limits are then passed back to the file system so the file system can
decide the range of block sizes to be provided to a user.

The read-block-limits routine is defined as follows:

STATUS xxReadBlkLim
(
DEVICE * pDev, /* pointer to device descriptor */
int *maxBlkLimit, /* maximum block size for device */
int *minBlkLimit /* minimum block size for device */
)

pDev a pointer to the driver’s device descriptor structure.

maxBlkLimit
returns the maximum block size that the tape device can handle to the
calling tape file system.

minBlkLimit
returns the minimum block size that the tape device can handle.

The routine returns OK if no error occurred while acquiring the block limits;
otherwise, it returns ERROR.
188

4

4
I/O System
Load/Unload Routine (Sequential Devices)

The sequential device driver must provide a load or unload routine in order to
mount or unmount tape volumes from a physical tape device. Loading means that
a volume is being mounted by the file system. This is usually done with an open()
or a creat() call. However, a device should be unloaded or unmounted only when
the file system wants to eject the tape volume from the tape device.

The load/unload routine is defined as follows:

STATUS xxLoad
(
DEVICE * pDev, /* pointer to device descriptor */
BOOL load /* load or unload device */
)

pDev a pointer to the driver’s device descriptor structure.

load a boolean variable that determines if the tape is loaded or unloaded. If
load is TRUE, the tape is loaded. If load is FALSE, the tape is unloaded.

The load/unload routine returns OK if the load or unload operation ends
successfully; otherwise, it returns ERROR.

Space Routine (Sequential Devices)

The sequential device driver must provide a space routine that moves, or spaces,
the tape medium forward or backward. The amount of distance that the tape
spaces depends on the kind of search that must be performed. In general, tapes can
be searched by end-of-record marks, end-of-file marks, or other types of
device-specific markers.

The basic definition of the space routine is as follows; however, other arguments
can be added to the definition:

STATUS xxSpace
(
DEVICE * pDev, /* pointer to device descriptor */
int count, /* number of spaces */
int spaceCode /* type of space */
)

189

VxWorks 5.5
Programmer’s Guide
pDev a pointer to the driver’s device descriptor structure.

count specifies the direction of search. A positive count value represents
forward movement of the tape device from its current location
(forward space); a negative count value represents a reverse
movement (back space).

spaceCode defines the type of space mark that the tape device searches for on the
tape medium. The basic types of space marks are end-of-record and
end-of-file. However, different tape devices may support more
sophisticated kinds of space marks designed for more efficient
maneuvering of the medium by the tape device.

If the device is able to space in the specified direction by the specified count and
space code, the routine returns OK; if these conditions cannot be met, it returns
ERROR.

Erase Routine (Sequential Devices)

The sequential driver must provide a routine that allows a tape to be erased. The
erase routine is defined as follows:

STATUS xxErase
(
DEVICE * pDev /* pointer to driver’s device descriptor structure */
)

The routine returns OK if the tape is erased; otherwise, it returns ERROR.

4.9.5 Driver Support Libraries

The subroutine libraries in Table 4-17 may assist in the writing of device drivers.
Using these libraries, drivers for most devices that follow standard protocols can
be written with only a few pages of device-dependent code. See the reference entry
for each library for details.
190

4

4
I/O System
4.10 PCMCIA

A PCMCIA card can be plugged into notebook computers to connect devices such
as modems and external hard drives.2 VxWorks provides PCMCIA facilities for
pcPentium, pcPentium2, pcPentium3 and BSPs and PCMCIA drivers that allow
VxWorks running on these targets to support PCMCIA hardware.

PCMCIA support is at the PCMCIA Release 2.1 level. It does not include socket
services or card services, which are not required by VxWorks. It does include chip
drivers and libraries. The PCMCIA libraries and drivers are also available in
source code form for VxWorks systems based on CPU architectures other than Intel
Pentium.

To include PCMCIA support in your system, add the INCLUDE_PCMCIA
component to the VxWorks kernel protection domain. For information about
PCMCIA facilities, see the entries for pcmciaLib and pcmciaShow in the VxWorks
API Reference.

Table 4-17 VxWorks Driver Support Routines

Library Description

errnoLib Error status library

ftpLib ARPA File Transfer Protocol library

ioLib I/O interface library

iosLib I/O system library

intLib Interrupt support subroutine library

remLib Remote command library

rngLib Ring buffer subroutine library

ttyDrv Terminal driver

wdLib Watchdog timer subroutine library

2. PCMCIA stands for Personal Computer Memory Card International Association, and refers
to both the association and the standards that it has developed.
191

VxWorks 5.5
Programmer’s Guide
4.11 Peripheral Component Interconnect: PCI

Peripheral Component Interconnect (PCI) is a bus standard for connecting
peripherals to a PC, and is used in Pentium systems, among others. PCI includes
buffers that de-couple the CPU from relatively slow peripherals, allowing them to
operate asynchronously.

For information about PCI facilities, see the entries for pciAutoConfigLib,
pciConfigLib, pciInitLib, and pciConfigShow in the VxWorks API Reference.
192

5

Local File Systems
5.1 Introduction

VxWorks uses a standard I/O interface between the file system and the device
driver. This allows multiple file systems, of the same or different types, to operate
within a single VxWorks system. By following these standard interfaces, you can
write your own file system for VxWorks, and freely mix file systems and device
drivers.

This chapter discusses the VxWorks file systems, listed below, describing how they
are organized, configured, and used.

� dosFs. Designed for real-time use of block devices (disks) and compatible
with the MS-DOS file system.

� rawFS. Provides a simple raw file system that essentially treats an entire disk as
a single large file.

� tapeFs. Designed for tape devices that do not use a standard file or directory
structure on tape. Essentially treats the tape volume as a raw device in which
the entire volume is a large file.

� cdromFs. Allows applications to read data from CD-ROMs formatted
according to the ISO 9660 standard file system.

� TSFS (Target Server File System) . Uses the Tornado target server to provide
the target with access to files on the host system.

VxWorks also provides support for flash memory devices through the optional
product TrueFFS. For more information, see 8. Flash Memory Block Device Driver.
193

VxWorks 5.5
Programmer’s Guide
5.2 MS-DOS-Compatible File System: dosFs

The dosFs file system is an MS-DOS-compatible file system that offers
considerable flexibility appropriate to the multiple demands of real-time
applications. The primary features are:

� Hierarchical files and directories, allowing efficient organization and an
arbitrary number of files to be created on a volume.

� A choice of contiguous or non-contiguous files on a per-file basis.

� Compatibility with widely available storage and retrieval media (diskettes,
hard drives, and so on).

� The ability to boot VxWorks from a dosFs file system.

� Support for VFAT (Microsoft VFAT long file names) and VXLONGS (VxWorks
long file names) directory formats.

� Support for FAT12, FAT16, and FAT32 file allocation table types.

For API reference information about dosFs, see the entries for dosFsLib and
dosFsFmtLib, as well as the cbioLib, dcacheCbio, and dpartCbio entries, in the
VxWorks API Reference.

For information about the MS-DOS file system, please see the Microsoft
documentation.

5.2.1 Creating a dosFs File System

This section summarizes the process of creating a dosFs file system, outlining the
steps involved and diagramming where this process fits into the VxWorks system.

The process described in these steps corresponds to building the layers of VxWorks
components between the hardware (such as a SCSI disk) and the I/O system, as
illustrated in the sections within the dotted line in Figure 5-1.

NOTE: The discussion in this chapter of the dosFs file system uses the term sector
to refer to the minimum addressable unit on a disk. This definition of the term
follows most MS-DOS documentation. However, in VxWorks, these units on the
disk are normally referred to as blocks, and a disk device is called a block device.
194

5

5
Local File Systems
Step 1: Configure the Kernel

Configure your kernel with the dosFs, CBIO, and block device components. This
step is described in 5.2.2 Configuring Your System, p.197.

Step 2: Initialize the dosFs File System

This step is done automatically if you have included the required components in
your project. This step is described in 5.2.3 Initializing the dosFs File System, p.198

Step 3: Create the Block Device

Create either a block device or a CBIO driver device (ramDiskCbio). This step is
described in 5.2.4 Creating a Block Device, p.198.

Step 4: Create a Disk Cache

Creating a disk cache is optional. Disk cache is intended only for rotational media.
This step is described in 5.2.5 Creating a Disk Cache, p.198.

Step 5: Create the Partition for Use

Creating and mounting partitions is optional. This step is described in
5.2.6 Creating and Using Partitions, p.198.

Step 6: Create a dosFs Device

Create the dosFs device. You can safely create the device whether or not you are
using a pre-formatted disk. This step is described in 5.2.7 Creating a dosFs Device,
p.201.

Step 7: Format the Volume

If you are not using pre-formatted disks, format the volumes. This step is described
in 5.2.8 Formatting the Volume, p.201.

Step 8: Check the Disk Volume Integrity

Optionally, check the disk for volume integrity using dosFsChkDsk(). Disk
checking large disks can be time-consuming. The parameters you pass to
dosFsDevCreate() determine whether disk checking happens automatically. For
details, see the entry for dosFsDevCreate() in the VxWorks Reference Manual.

Step 9: Mount the Disk

A disk volume is mounted automatically, generally during the first open() or
creat() operation for a file or directory on the disk. This step is described in
5.2.9 Mounting Volumes, p.203.
195

VxWorks 5.5
Programmer’s Guide
Figure 5-1 Configuring a VxWorks System with dosFs

Application

I/O System

File System (dosFs)

CBIO Interface

Block Device

Physical Device

Hardware

CBIO Disk Partitions and/or CBIO Disk Cache

SCSI, ATA, RAM disk, Floppy, TrueFFS, and so on
196

5

5
Local File Systems
5.2.2 Configuring Your System

To include dosFs in your VxWorks-based system, configure the kernel with the
appropriate components for the dosFs file system.

Required Components

The following components are required:

� INCLUDE_DOSFS_MAIN. dosFsLib (2)

� INCLUDE_DOSFS_FAT. dosFs FAT12/16/32 FAT handler

� INCLUDE_CBIO. CBIO API module

And, either one or both of the following components are required:

� INCLUDE_DOSFS_DIR_VFAT. Microsoft VFAT direct handler

� INCLUDE_DOSFS_DIR_FIXED. Strict 8.3 & VxLongNames directory handler

In addition, you need to include the appropriate component for your block device;
for example, INCLUDE_SCSI or INCLUDE_ATA. Finally, add any related
components that are required for your particular system.

Optional dosFs Components

Optional dosFs components are:

� INCLUDE_DOSFS. usrDosFsOld.c wrapper layer

� INCLUDE_DOSFS_FMT. dosFs2 file system formatting module

� INCLUDE_DOSFS_CHKDSK. file system integrity checking

� INCLUDE_DISK_UTIL. standard file system operations, such as ls, cd, mkdir,
xcopy, and so on

� INCLUDE_TAR. the tar utility

Optional CBIO Components

Optional CBIO components are:

� INCLUDE_DISK_CACHE. CBIO API disk caching layer

� INCLUDE_DISK_PART. disk partition handling code

� INCLUDE_RAM_DISK. CBIO API RAM disk driver
197

VxWorks 5.5
Programmer’s Guide
5.2.3 Initializing the dosFs File System

Before any other operations can be performed, the dosFs file system library,
dosFsLib, must be initialized. This happens automatically, triggered by the
required dosFs components that were included in the system.

Initializing the file system invokes iosDrvInstall(), which adds the driver to the
I/O system driver table. The driver number assigned to the dosFs file system is
recorded in a global variable, dosFsDrvNum. The table specifies the entry points
for the dosFs file operations that are accessed by the devices using dosFs.

5.2.4 Creating a Block Device

Next, create one or more block devices. To create the device, call the routine
appropriate for that device driver. The format for this routine is xxxDevCreate()
where xxx represents the device driver type; for example, scsiBlkDevCreate() or
ataDevCreate().

The driver routine returns a pointer to a block device descriptor structure,
BLK_DEV. This structure describes the physical attributes of the device and
specifies the routines that the device driver provides to a file system. For more
information on block devices, see 4.9.4 Block Devices, p.176.

5.2.5 Creating a Disk Cache

If you have included the INCLUDE_DISK_CACHE component in your system, you
can use dcacheDevCreate() to create a disk cache for each block device. Disk cache
is intended to reduce the impact of seek times on rotational media, and is not used
for RAM disks or TrueFFS devices. Example 5-1 creates a disk cache.

5.2.6 Creating and Using Partitions

If you have included the INCLUDE_DISK_PART component in your system, you
can create partitions on a disk and mount volumes atop the partitions. Use the
usrFdiskPartCreate() and dpartDevCreate() routines to do this.

The following two examples create and use partitions. The first example creates,
partitions, and formats a disk. The second example uses the partitioned disk, from
the first example, to create the partition handler.
198

5

5
Local File Systems
Example 5-1 Creating and Partitioning a Disk and Creating Volumes

This example takes a pointer to a block device, creates three partitions, creates the
partition handler for these partitions, and creates the dosFs device handler for
them. Then, it formats the partitions using dosFsVolFormat(), which is discussed
in the next section.

STATUS usrPartDiskFsInit
(
void * blkDevId /* CBIO_DEV_ID or BLK_DEV* */
)
{
const char * devNames[] = { "/sd0a", "/sd0b", "/sd0c" };
int dcacheSize = 0x30000 ;
CBIO_DEV_ID cbio, cbio1 ;
/* create disk cache */

if((cbio = dcacheDevCreate(blkDevId, NULL, dcacheSize, "/sd0"))
== NULL)
return ERROR ;

/* create partitions */

if((usrFdiskPartCreate (cbio,3,50,45)) == ERROR)
return ERROR;

/* create partition manager with FDISK style decoder, up to 3 parts */

if((cbio1 = dpartDevCreate(cbio, 3, usrFdiskPartRead)) == NULL)
return ERROR;

/* create the 1st file system, 8 simult. open files, with CHKDSK */

if(dosFsDevCreate(devNames[0], dpartPartGet(cbio1,0), 8, 0) == ERROR)
return ERROR;

/* create the 2nd file system, 6 simult. open files, with CHKDSK */

if(dosFsDevCreate(devNames[1], dpartPartGet(cbio1,1), 6, 0) == ERROR)
return ERROR;

/* create the 3rd file system, 4 simultaneously open files, no CHKDSK */

if(dosFsDevCreate(devNames[2], dpartPartGet(cbio1,2), 4, NONE)
== ERROR)
return ERROR;

/* Formatting the first partition */

if(dosFsVolFormat (devNames[0], 2,0) == ERROR)
return ERROR;

/* Formatting the second partition */
199

VxWorks 5.5
Programmer’s Guide
if(dosFsVolFormat (devNames[1], 2,0) == ERROR)
return ERROR;

/* Formatting the third partition */

if(dosFsVolFormat (devNames[2], 2,0) == ERROR)
return ERROR;

return OK;
}

Example 5-2 Accessing a Partitioned Disk

The following example configures a partitioned disk with three already existing
partitions. Note that the ATA hard disk component allows for auto-mounting as
many partitions as are referenced within its name parameter.

STATUS usrPartDiskFsInit
(
void * blkDevId /* CBIO_DEV_ID or BLK_DEV*/
)
{
const char * devNames[] = { "/sd0a", "/sd0b", "/sd0c" };
int dcacheSize = 0x30000 ;
CBIO_DEV_ID cbio, cbio1 ;

/* create disk cache */

if((cbio = dcacheDevCreate(blkDevId, NULL, dcacheSize, "/sd0"))
== NULL)
return ERROR ;

/* create partition manager with FDISK style decoder, up to 3 parts */

if((cbio1 = dpartDevCreate(cbio, 3, usrFdiskPartRead)) == NULL)
return ERROR;

/* create the 1st file system, 8 simultaneously open files
 * with CHKDSK
*/

if(dosFsDevCreate(devNames[0], dpartPartGet(cbio1,0), 8, 0)
== ERROR)
return ERROR;

/* create the 2nd file sys, 6 simultaneously open files, with CHKDSK */

if(dosFsDevCreate(devNames[1], dpartPartGet(cbio1,1), 6, 0) == ERROR)
return ERROR;

/* create the 3rd file system, 4 simultaneously open files, no CHKDSK */

if(dosFsDevCreate(devNames[2], dpartPartGet(cbio1,2), 4, 0)
==ERROR)
200

5

5
Local File Systems
return ERROR;

return OK;
}

5.2.7 Creating a dosFs Device

Create a dosFs device using dosFsDevCreate(), which calls iosDrvAdd()
internally. This step simply adds the device to the I/O system; however, it does not
invoke any I/O operations and, therefore, does not mount the disk.

This disk is not mounted until the first I/O operation occurs. For more
information, see 5.4.4 Mounting Volumes, p.225.

5.2.8 Formatting the Volume

If you are using an unformatted disk, format the volume in either of two ways:

� By calling dosFsVolFormat() directly, specifying options for both the format
of the FAT and the directory format (described below).

� By issuing the ioctl() FIODISKINIT command, which invokes the formatting
routine with dosFsLib. This method uses the default volume format and
parameters.

For more details, see the VxWorks API Reference entries for dosFsVolFormat() and
ioctl().

The MS-DOS and dosFs file systems provide options for the format of the File
Allocation Table (FAT) and the format of the directory. These options, described
below, are completely independent.

! CAUTION: If you are using a disk that is already initialized with an MS-DOS boot
sector, FAT, and root directory—for example, by using the FORMAT utility in
MS-DOS—you can use dosFsDevCreate() to create a dosFs device. However, do
not call dosFsVolFormat() or the file system data structures will be re-initialized
(reformatted).
201

VxWorks 5.5
Programmer’s Guide
File Allocation Table (FAT) Formats

A volume FAT format is set during disk formatting, according to either the volume
size (by default), or the per-user defined settings passed to dosFsVolFormat(). FAT
options are summarized in Table 5-1:

Directory Formats

There are three options for the directory format. These are:

� MSFT Long Names (VFAT) Uses case-insensitive long filenames, with up to 254
characters. This format accepts disks created with short names. MSFT Long
Names1 is the default directory format.

� Short Names (8.3) Case-insensitive MS-DOS-style filenames (8.3), with eight
uppercase characters for the name itself and three for the extension.

� VxWorks Long Names (VxLong) Wind River’s proprietary VxWorks long name
support, introduced prior to MSFT Long Names and used for backward
compatibility with old dosFs VxLong disks. Allows case-sensitive filenames of up
to 40 characters (consisting of any ASCII characters). The dot character (.), which
indicates a file-name extension in MS-DOS, has no special significance in dosFs
VxLong.

Table 5-1 FAT Formats

Format FAT Table Entry SIze Usage Size

FAT12 12 bits per cluster
number

Appropriate for very small devices
with up to 4,084 KB clusters.

Typically, each cluster is two
sectors large.

FAT16 16 bits per cluster
number

Appropriate for small disks of up
to 65,524 KB clusters.

Typically, used for volumes up to 2
GB; can support up to 8 GB.

FAT32 32 bits (only 28 used)
per cluster number

Appropriate for medium and
larger disk drives.

By convention, used for volumes
larger than 2 GB.

1. The MSFT Long Names (VFAT) format supports 32-bit file size fields, limiting the file size
to a 4 GB maximum.

NOTE: The VxWorks long names format supports 40-bit file size fields, allowing
the file size to be larger than 4 GB.
202

5

5
Local File Systems
5.2.9 Mounting Volumes

A disk volume is mounted automatically, generally during the first open() or
creat() operation for a file or directory on the disk. Certain ioctl() calls also cause
the disk to be mounted.

5.2.10 Demonstrating with Examples

This section provides examples of the steps discussed in the sections above. These
examples use a variety of configurations and device types. They are meant to be
relatively generic and applicable to most block devices.

The first example uses an ATA disk, and includes detailed descriptions of the
commands run from the shell, displaying both user input and command-line
output. The second example lists the required steps to create and format a RAM
disk volume. The last example demonstrates how to initialize a pre-formatted SCSI
disk.

Example 5-3 Initializing an ATA Disk with dosFs2

This example demonstrates how to initialize an ATA disk with dosFs2. This
example displays the commands and output from the VxWorks shell. While these
steps use an ATA block device type, they are applicable to other block devices.

! WARNING: If you use VxWorks Long Names, the disk will not be MS-DOS
compatible. Use this long name support only for storing data local to VxWorks, on
a disk that is initialized on a VxWorks system.

NOTE: The dosFs initialization procedure succeeds even if a volume is
unformatted or a removable diskette is not inserted in the drive at the time the
system boots. A system can boot successfully and initialize all its devices even if a
drive has no removable media in it and the media’s configuration and parameters
are unknown.

! CAUTION: Because device names are recognized by the I/O system using simple
substring matching, file systems should not use a slash (/) alone as a name;
unexpected results may occur.
203

VxWorks 5.5
Programmer’s Guide
Step 1: Create the Block Device

Create a block device (BLK_DEV) that controls the master ATA hard disk (drive
zero) on the primary ATA controller (controller zero). This block device uses the
entire disk.

-> pAta = ataDevCreate (0,0,0,0)
new symbol "pAta" added to symbol table.
pAta = 0x3fff334: value = 67105604 = 0x3fff344 = pAta + 0x10

Above, pAta is now a block device pointer (BLK_DEV *). The routine
ataDevCreate() returns a valid value. A return value of NULL (0x0) indicates an
error in ataDevCreate(). Such an error usually indicates a BSP configuration or
hardware configuration error.

This step is appropriate for any BLK_DEV device; for example, flash, SCSI, and so
on. For related information, see the reference entry for ataDevCreate().

Step 2: Create a Disk Cache

Next, create an (optional) disk data cache CBIO layer atop this disc:

-> pCbioCache = dcacheDevCreate (pAta,0,0,"ATA Hard Disk Cache")
new symbol "pCbioCache" added to symbol table.
pCbioCache = 0x3ffdbd0: value = 67105240 = 0x3fff1d8

Above, pCbioCache is a CBIO_DEV_ID, which is the handle for controlling the
CBIO disk cache layer. For more information, see the reference entry for
dcacheDevCreate().

Step 3: Create Partitions

Then, create two partitions on this disk device, specifying 50% of the disk space for
the second partition, leaving 50% for the first partition. This step should only be
performed once, when the disk is first initialized. If partitions are already written
to the disk, this step should not be performed since it destroys data:

-> usrFdiskPartCreate (pCbioCache, 2, 50, 0, 0)
value = 0 = 0x0

For more information, see the entry for usrFdiskPartLibCbio() in the VxWorks
Reference Manual.

In this step, the block device pointer pAta could have been passed instead of
pCbioCache. Doing so would cause usrFdiskPartCreate() to use the BLK_DEV
routines via a wrapper internally created by cbioWrapBlkDev().
204

5

5
Local File Systems
Step 4: Display Partitions

Now, you can optionally display the partitions created with usrFdiskPartShow():

-> usrFdiskPartShow (pAta)

Master Boot Record - Partition Table

Partition Entry number 00 Partition Entry offset 0x1be
Status field = 0x80 Primary (bootable) Partition
Type 0x06: MSDOS 16-bit FAT >=32M Partition
Partition start LCHS: Cylinder 0000, Head 001, Sector 01
Partition end LCHS: Cylinder 0245, Head 017, Sector 39
Sectors offset from MBR partition 0x00000027
Number of sectors in partition 0x00262c17
Sectors offset from start of disk 0x00000027

Master Boot Record - Partition Table

Partition Entry number 01 Partition Entry offset 0x1ce
Status field = 0x00 Non-bootable Partition
Type 0x06: MSDOS 16-bit FAT >=32M Partition
Partition start LCHS: Cylinder 0000, Head 018, Sector 01
Partition end LCHS: Cylinder 0233, Head 067, Sector 39
Sectors offset from MBR partition 0x00262c3e
Number of sectors in partition 0x00261d9e
Sectors offset from start of disk 0x00262c3e

Master Boot Record - Partition Table

Partition Entry number 02 Partition Entry offset 0x1de
Status field = 0x00 Non-bootable Partition
Type 0x00: Empty (NULL) Partition

Master Boot Record - Partition Table

Partition Entry number 03 Partition Entry offset 0x1ee
Status field = 0x00 Non-bootable Partition
Type 0x00: Empty (NULL) Partition

value = 0 = 0x0
->

Note above that two partitions have been created upon the disc, and the remaining
two partition table entries are blank.

NOTE: The CBIO device ID pCbioCache could have been passed to
usrFdiskPartShow(), instead of the block device pointer pAta. Doing so would
cause usrFdiskPartShow() to use the CBIO disk cache routines to access the
device.
205

VxWorks 5.5
Programmer’s Guide
Step 5: Create a Partition Handler

Next, create a partition handler/mounter upon this disk. When using a disk cache
layer, the partition handler code should always be instantiated after the disk cache
layer:

-> pCbioParts = dpartDevCreate (pCbioCache,2, usrFdiskPartRead)
new symbol "pCbioParts" added to symbol table.
pCbioParts = 0x3ffd92c: value = 67099276 = 0x3ffda8c = pCbioParts + 0x160
->

The call to dpartDevCreate() informs the partition layer to expect two partitions
on the disk (24 is the maximum number of partitions the mounter can handle.) We
have also instructed the partition manager (dpartCbio) to use the FDISK style
partition mounter code usrFdiskPartRead().

For more information, see the reference entry for dpartDevCreate().

Step 6: Create the dosFs2 File System

Create dosFs2 file systems atop each partition. The last argument specifies the
integrated chkdsk configuration.

-> dosFsDevCreate ("/DOSA", dpartPartGet (pCbioParts,0), 16, 0)
value = 0 = 0x0
-> dosFsDevCreate ("/DOSB", dpartPartGet (pCbioParts,1), 16, -1)
value = 0 = 0x0
->

-> devs
drv name
0 /null
1 /tyCo/0
1 /tyCo/1
6 ahostname:
3 /DOSA <---- First Partition
3 /DOSB <---- Second Partition
value = 25 = 0x19
->

This step defines the volume parameters and adds them to the IO system; it does
not format the volumes. No disk I/O is performed during this step. The volumes
are not mounted at this stage.

For more information, see the entry for dosFsLib in the VxWorks Reference Manual.
206

5

5
Local File Systems
Step 7: Format the DOS Volumes

Next, format the DOS volumes. This step need only be done once, when the
volumes are first initialized. If the DOS volumes have already been initialized
(formatted), then omit this step. The example formats the file system volumes with
default options:

-> dosFsVolFormat ("/DOSA",0,0)
Retrieved old volume params with %100 confidence:
Volume Parameters: FAT type: FAT16, sectors per cluster 32
2 FAT copies, 0 clusters, 153 sectors per FAT
Sectors reserved 1, hidden 39, FAT sectors 306
Root dir entries 512, sysId (null) , serial number 8120000
Label:" " ...
Disk with 2501655 sectors of 512 bytes will be formatted with:
Volume Parameters: FAT type: FAT16, sectors per cluster 64
2 FAT copies, 39082 clusters, 153 sectors per FAT
Sectors reserved 1, hidden 39, FAT sectors 306
Root dir entries 512, sysId VXDOS16 , serial number 8120000
Label:" " ...
value = 0 = 0x0

-> dosFsVolFormat ("/DOSB",0,0)
Retrieved old volume params with %100 confidence:
Volume Parameters: FAT type: FAT16, sectors per cluster 32
2 FAT copies, 0 clusters, 153 sectors per FAT
Sectors reserved 1, hidden 39, FAT sectors 306
Root dir entries 512, sysId (null) , serial number 9560000
Label:" " ...

Disk with 2497950 sectors of 512 bytes will be formatted with:
Volume Parameters: FAT type: FAT16, sectors per cluster 64
2 FAT copies, 39024 clusters, 153 sectors per FAT
Sectors reserved 1, hidden 39, FAT sectors 306
Root dir entries 512, sysId VXDOS16 , serial number 9560000
Label:" " ...
value = 0 = 0x0
->

For more information, see the entry for dosFsFmtLib in the VxWorks Reference
Manual.

Step 8: Access the Volumes

Now, the dosFs volumes are ready to access. Note that /DOSA will start a default
chkdsk code and that /DOSB will not. Autochk is set via the fourth argument to
dosFsDevCreate().

-> ll "/DOSA"
/DOSA/ - disk check in progress ...
/DOSA/ - Volume is OK
207

VxWorks 5.5
Programmer’s Guide
total # of clusters: 39,085
of free clusters: 39,083
of bad clusters: 0
total free space: 1,221 Mb
max contiguous free space: 1,280,671,744 bytes
of files: 0
of folders: 0
total bytes in files: 0
of lost chains: 0
total bytes in lost chains: 0

Listing Directory /DOSA:
value = 0 = 0x0

-> ll "/DOSB"

Listing Directory /DOSB:
value = 0 = 0x0
->

-> dosFsShow "/DOSB"

volume descriptor ptr (pVolDesc): 0x3f367c0
cache block I/O descriptor ptr (cbio): 0x3f37be0
auto disk check on mount: NOT ENABLED
max # of simultaneously open files: 18
file descriptors in use: 0
of different files in use: 0
of descriptors for deleted files: 0
of obsolete descriptors: 0

current volume configuration:
- volume label: NO LABEL ; (in boot sector:)
- volume Id: 0x9560000
- total number of sectors: 2,497,950
- bytes per sector: 512
- # of sectors per cluster: 64
- # of reserved sectors: 1
- FAT entry size: FAT16
- # of sectors per FAT copy: 153
- # of FAT table copies: 2
- # of hidden sectors: 39
- first cluster is in sector # 339
- Update last access date for open-read-close = FALSE
- directory structure: VFAT
- root dir start sector: 307
- # of sectors per root: 32
- max # of entries in root: 512

FAT handler information:

- allocation group size: 4 clusters
- free space on volume: 1,278,771,200 bytes
value = 0 = 0x0
->
208

5

5
Local File Systems
Above, we can see the Volume parameters for the /DOSB volume. The file system
volumes are now mounted and ready to be exercised.

If you are working with an ATA hard disk or a CD-ROM file system from an ATAPI
CD-ROM drive, you can, alternatively, use usrAtaConfig(). This routine processes
several steps at once. For more information, see the reference entry.

Example 5-4 Creating and Formatting a RAM Disk Volume

The following example creates a RAM disk of a certain size, and formats it for use
with the dosFs file system. This example uses the ramDiskCbio module, which is
intended for direct use with dosFsLib:

STATUS usrRamDiskInit
(
void /* no argument */
)
{
int ramDiskSize = 128 * 1024 ; /* 128KB, 128 bytes per sector */
char *ramDiskDevName = "/ram0" ;
CBIO_DEV_ID cbio ;

/* 128 bytes/sec, 17 secs/track, auto-allocate */

cbio = ramDiskDevCreate(NULL, 128, 17, ramDiskSize/128, 0) ;

if(cbio == NULL)
return ERROR ;

/* create the file system, 4 simultaneously open files, no CHKDSK */

dosFsDevCreate(ramDiskDevName, cbio, 4, NONE);

/* format the RAM disk, ignore memory contents */

dosFsVolFormat(cbio, DOS_OPT_BLANK | DOS_OPT_QUIET, NULL);

return OK;
}

Example 5-5 Initializing a SCSI Disk Drive

This example initializes a SCSI disk as a single file system volume (and assumes
that the disk is already formatted).

STATUS usrScsiDiskInit
(
int scsiId /* SCSI id */
)
{

209

VxWorks 5.5
Programmer’s Guide
int dcacheSize = 128 * 1024 ; /* 128KB disk cache */
char *diskDevName = "/sd0" ; /* disk device name */
CBIO_DEV_ID cbio; /* pointer to a CBIO_DEV */
BLK_DEV *pBlk; /* pointer to a BLK_DEV */
SCSI_PHYS_DEV *pPhys ; /* pointer to a SCSI physical device */

/* Create the SCSI physical device */

if ((pPhys = scsiPhysDevCreate
(pSysScsiCtrl, scsiId, 0, 0, NONE, 0,0, 0))== NULL)
{
printErr ("usrScsiDiskInit: scsiPhysDevCreate SCSI ID %d failed.\n",

scsiId, 0, 0, 0, 0, 0);
return ERROR;
}

/* Create the block device */

if((pblk = scsiBlkDevCreate(pPhys, 0, NONE)) == NULL)
return ERROR;

/*
* works for ids less than 10
 * append SCSI id to make the device name unique
 */

diskDevName[strlen(diskDevName)-1] += scsiId ;

/* create disk cache */

if((cbio = dcacheDevCreate(pblk, NULL, dcacheSize, diskDevName))
== NULL)
return ERROR ;

/* create the file system, 10 simultaneously open files, with CHKDSK */

dosFsDevCreate(diskDevName, cbio, 10, 0);

return OK;
}

5.2.11 Working with Volumes and Disks

This section discusses issues related to disks and volumes.

For more information about ioctl() support functions, see 5.2.16 I/O Control
Functions Supported by dosFsLib, p.219.
210

5

5
Local File Systems
Announcing Disk Changes with Ready-Change

You can inform dosFsLib that a disk change is taking place by using the
ready-change mechanism. A change in the disk’s ready-status is interpreted by
dosFsLib as indicating that the disk must be remounted before the next I/O
operation. To announce a ready-change, use any of the following methods:

� Call ioctl() with the FIODISKCHANGE function.

� Have the device driver set the bd_readyChanged field in the BLK_DEV
structure to TRUE; this has the same effect as notifying dosFsLib directly.

� Use cbioRdyChgdSet() to set the ready-changed bit in the CBIO layer.

Accessing Volume Configuration Information

The dosFsShow() routine can be used to display volume configuration
information. The dosFsVolDescGet() routine will programmatically obtain or
verify a pointer to the DOS_VOLUME_DESC structure. For more information, see
the reference entries.

Synchronizing Volumes

When a disk is synchronized, all modified buffered data is physically written to the
disk, so that the disk is up to date. This includes data written to files, updated
directory information, and the FAT. To avoid loss of data, a disk should be
synchronized before it is removed. For more information, see the entries for
close() and dosFsVolUnmount() in the VxWorks Reference Manual.

5.2.12 Working with Directories

This section discusses issues related to directories.

Creating Subdirectories

For FAT32, subdirectories can be created in any directory at any time. For FAT12
and FAT16, subdirectories can be created in any directory at any time, except in the
root directory once it reaches its maximum entry count. Subdirectories can be
created in the following ways:
211

VxWorks 5.5
Programmer’s Guide
1. Using ioctl() with the FIOMKDIR function: The name of the directory to be
created is passed as a parameter to ioctl().

2. Using open(): To create a directory, the O_CREAT option must be set in the
flags parameter to open, and the FSTAT_DIR option must be set in the mode
parameter. The open() call returns a file descriptor that describes the new
directory. Use this file descriptor for reading only and close it when it is no
longer needed.

3. Use mkdir(), usrFsLib.

When creating a directory using any of the above methods, the new directory name
must be specified. This name can be either a full pathname or a pathname relative
to the current working directory.

Removing Subdirectories

A directory that is to be deleted must be empty (except for the “.” and “..” entries).
The root directory can never be deleted. Subdirectories can be removed in the
following ways:

1. Using ioctl() with the FIORMDIR function, specifying the name of the
directory. Again, the file descriptor used can refer to any file or directory on the
volume, or to the entire volume itself.

2. Using the remove() function, specifying the name of the directory.

3. Use rmdir(), usrFsLib.

Reading Directory Entries

You can programmatically search directories on dosFs volumes using the
opendir(), readdir(), rewinddir(), and closedir() routines.

To obtain more detailed information about a specific file, use the fstat() or stat()
routine. Along with standard file information, the structure used by these routines
also returns the file-attribute byte from a directory entry.

For more information, see the entry for dirLib in the VxWorks API Reference.
212

5

5
Local File Systems
5.2.13 Working with Files

This section discusses issues related to files.

File I/O

Files on a dosFs file system device are created, deleted, written, and read using the
standard VxWorks I/O routines: creat(), remove(), write(), and read(). For more
information, see 4.3 Basic I/O, p.111, and the ioLib entries in the VxWorks API
Reference.

File Attributes

The file-attribute byte in a dosFs directory entry consists of a set of flag bits, each
indicating a particular file characteristic. The characteristics described by the
file-attribute byte are shown in Table 5-2.

DOS_ATTR_RDONLY
If this flag is set, files accessed with open() cannot be written to. If the
O_WRONLY or O_RDWR flags are set, open() returns ERROR, setting errno to
S_dosFsLib_READ_ONLY.

DOS_ATTR_HIDDEN
This flag is ignored by dosFsLib and produces no special handling. For
example, entries with this flag are reported when searching directories.

Table 5-2 Flags in the File-Attribute Byte

VxWorks Flag Name Hex Value Description

DOS_ATTR_RDONLY 0x01 read-only file

DOS_ATTR_HIDDEN 0x02 hidden file

DOS_ATTR_SYSTEM 0x04 system file

DOS_ATTR_VOL_LABEL 0x08 volume label

DOS_ATTR_DIRECTORY 0x10 subdirectory

DOS_ATTR_ARCHIVE 0x20 file is subject to archiving
213

VxWorks 5.5
Programmer’s Guide
DOS_ATTR_SYSTEM
This flag is ignored by dosFsLib and produces no special handling. For
example, entries with this flag are reported when searching directories.

DOS_ATTR_VOL_LABEL
This is a volume label flag, which indicates that a directory entry contains the
dosFs volume label for the disk. A label is not required. If used, there can be
only one volume label entry per volume, in the root directory. The volume
label entry is not reported when reading the contents of a directory (using
readdir()). It can only be determined using the ioctl() function FIOLABELGET.
The volume label can be set (or reset) to any string of 11 or fewer characters,
using the ioctl() function FIOLABELSET. Any file descriptor open to the
volume can be used during these ioctl() calls.

DOS_ATTR_DIRECTORY
This is a directory flag, which indicates that this entry is a subdirectory, and not
a regular file.

DOS_ATTR_ARCHIVE
This is an archive flag, which is set when a file is created or modified. This flag
is intended for use by other programs that search a volume for modified files
and selectively archive them. Such a program must clear the archive flag, since
VxWorks does not.

All the flags in the attribute byte, except the directory and volume label flags, can
be set or cleared using the ioctl() function FIOATTRIBSET. This function is called
after the opening of the specific file with the attributes to be changed. The
attribute-byte value specified in the FIOATTRIBSET call is copied directly; to
preserve existing flag settings, determine the current attributes using stat() or
fstat(), then change them using bitwise AND and OR operations.

Example 5-6 Setting DosFs File Attributes

This example makes a dosFs file read-only, and leaves other attributes intact.

STATUS changeAttributes
(
void
)
{
int fd;
struct stat statStruct;

/* open file */

if ((fd = open ("file", O_RDONLY, 0)) == ERROR)
return (ERROR);
214

5

5
Local File Systems
/* get directory entry data */

if (fstat (fd, &statStruct) == ERROR)
return (ERROR);

/* set read-only flag on file */

if (ioctl (fd, FIOATTRIBSET, (statStruct.st_attrib | DOS_ATTR_RDONLY))
== ERROR)
return (ERROR);

/* close file */

close (fd);
return (OK);
}

5.2.14 Disk Space Allocation Options

The dosFs file system allocates disk space using one of the following methods. The
first two methods are selected based upon the size of the write operation. The last
method must be manually specified.

� single cluster allocation. Single cluster allocation uses a single cluster, which is
the minimum allocation unit. This method is automatically used when the
write operation is smaller than the size of a single cluster.

� cluster group allocation (nearly contiguous). Cluster group allocation uses
adjacent (contiguous) groups of clusters, called extents. Cluster group
allocation is nearly contiguous allocation and is the default method used when
files are written in units larger than the size of a disk’s cluster.

� absolutely contiguous allocation . Absolutely contiguous allocation uses only
absolutely contiguous clusters. Because this type of allocation is dependent
upon the existence of such space, it is specified under only two conditions:
immediately after a new file is created and when reading from a file assumed
to have been allocated to a contiguous space. Using this method risks disk
fragmentation.

For any allocation method, you can deallocate unused reserved bytes by using the
POSIX-compatible routine ftruncate() or the ioctl() function FIOTRUNC.

NOTE: You can also use the attrib() routine to change file attributes. For more
information, see the entry in usrFsLib.
215

VxWorks 5.5
Programmer’s Guide
Choosing an Allocation Method

Under most circumstances, cluster group allocation is preferred to absolutely
contiguous file access. Because it is nearly contiguous file access, it achieves a
nearly optimal access speed. Cluster group allocation also significantly minimizes
the risk of fragmentation posed by absolutely contiguous allocation.

Absolutely contiguous allocation attains raw disk throughput levels, however this
speed is only slightly faster than nearly contiguous file access. Moreover,
fragmentation is likely to occur over time. This is because after a disk has been in
use for some period of time, it becomes impossible to allocate contiguous space.
Thus, there is no guarantee that new data, appended to a file created or opened
with absolutely continuous allocation, will be contiguous to the initially written
data segment.

It is recommended that for a performance-sensitive operation, the application
regulate disk space utilization, limiting it to 90% of the total disk space.
Fragmentation is unavoidable when filling in the last free space on a disk, which
has a serious impact on performance.

Using Cluster Group Allocation

The dosFs file system defines the size of a cluster group based on the media’s
physical characteristics. That size is fixed for each particular media. Since seek
operations are an overhead that reduces performance, it is desirable to arrange files
so that sequential portions of a file are located in physically contiguous disk
clusters. Cluster group allocation occurs when the cluster group size is considered
sufficiently large so that the seek time is negligible compared to the read/write
time. This technique is sometimes referred to as “nearly contiguous” file access
because seek time between consecutive cluster groups is significantly reduced.

Because all large files on a volume are expected to have been written as a group of
extents, removing them frees a number of extents to be used for new files
subsequently created. Therefore, as long as free space is available for subsequent
file storage, there are always extents available for use. Thus, cluster group
allocation effectively prevents fragmentation (where a file is allocated in small units
spread across distant locations on the disk). Access to fragmented files can be
extremely slow, depending upon the degree of fragmentation.
216

5

5
Local File Systems
Using Absolutely Contiguous Allocation

A contiguous file is made up of a series of consecutive disk sectors. Absolutely
contiguous allocation is intended to allocate contiguous space to a specified file (or
directory) and, by so doing, optimize access to that file. You can specify absolutely
contiguous allocation either when creating a file, or when opening a file previously
created in this manner.

For more information on the ioctl() functions, see 5.2.16 I/O Control Functions
Supported by dosFsLib, p.219.

Allocating Contiguous Space for a File

To allocate a contiguous area to a newly created file, follow these steps:

1. First, create the file in the normal fashion using open() or creat().

2. Then, call ioctl(). Use the file descriptor returned from open() or creat() as the
file descriptor argument. Specify FIOCONTIG as the function code argument
and the size of the requested contiguous area, in bytes, as the third argument.

The FAT is then searched for a suitable section of the disk. If found, this space is
assigned to the new file. The file can then be closed, or it can be used for further
I/O operations. The file descriptor used for calling ioctl() should be the only
descriptor open to the file. Always perform the ioctl() FIOCONTIG operation
before writing any data to the file.

To request the largest available contiguous space, use CONTIG_MAX for the size of
the contiguous area. For example:

status = ioctl (fd, FIOCONTIG, CONTIG_MAX);

Allocating Space for Subdirectories

Subdirectories can also be allocated a contiguous disk area in the same manner:

� If the directory is created using the ioctl() function FIOMKDIR, it must be
subsequently opened to obtain a file descriptor to it.

� If the directory is created using options to open(), the returned file descriptor
from that call can be used.

A directory must be empty (except for the “.” and “..” entries) when it has
contiguous space allocated to it.
217

VxWorks 5.5
Programmer’s Guide
Opening and Using a Contiguous File

Fragmented files require following cluster chains in the FAT. However, if a file is
recognized as contiguous, the system can use an enhanced method that improves
performance. This applies to all contiguous files, whether or not they were
explicitly created using FIOCONTIG. Whenever a file is opened, it is checked for
contiguity. If it is found to be contiguous, the file system registers the necessary
information about that file to avoid the need for subsequent access to the FAT table.
This enhances performance when working with the file by eliminating seek
operations.

When you are opening a contiguous file, you can explicitly indicate that the file is
contiguous by specifying the DOS_O_CONTIG_CHK flag with open(). This
prompts the file system to retrieve the section of contiguous space, allocated for
this file, from the FAT table.

Demonstrating with an Example

To find the maximum contiguous area on a device, you can use the ioctl() function
FIONCONTIG. This information can also be displayed by dosFsConfigShow().

Example 5-7 Finding the Maximum Contiguous Area on a DosFs Device

In this example, the size (in bytes) of the largest contiguous area is copied to the
integer pointed to by the third parameter to ioctl() (count).

STATUS contigTest
(
void /* no argument */
)
{
int count; /* size of maximum contiguous area in bytes */
int fd; /* file descriptor */

/* open device in raw mode */

if ((fd = open ("/DEV1/", O_RDONLY, 0)) == ERROR)
return (ERROR);

/* find max contiguous area */

ioctl (fd, FIONCONTIG, &count);

/* close device and display size of largest contiguous area */

close (fd);
printf ("largest contiguous area = %d\n", count);
return (OK);
}

218

5

5
Local File Systems
5.2.15 Crash Recovery and Volume Consistency

The DOS file system is inherently susceptible to data structure inconsistencies that
result from interruptions during certain types of disk updates. These types of
interruptions include power failures, inadvertent system crashes for fixed disks,
and the manual removal of a disk.

The inconsistencies occur because the file system data for a single file is stored in
three separate regions of the disk. The data stored in these regions are:

� The file chain in the File Allocation Table (FAT), located in a region near the
beginning of the disk.

� The directory entry, located in a region anywhere on the disk.

� File clusters containing file data, located anywhere on the disk.

Since all three regions cannot be always updated before an interruption, dosFs
includes an optional integrated consistency-checking mechanism to detect and
recover from inconsistencies. For example, if a disk is removed when a file is being
deleted, a consistency check completes the file deletion operation. Or, if a file is
being created when an interruption occurs, then the file is un-created. In other
words, the consistency checker either rolls forward or rolls back the operation that
has the inconsistency, making whichever correction is possible.

To use consistency checking, specify the autoChkLevel parameter to
dosFsDevCreate(), invoke it manually, or call the chkdsk() utility. If configured,
consistency checking is invoked under the following conditions:

� When a new volume is mounted.

� Once at system initialization time for fixed disks.

� Every time a new cartridge is inserted for removable disks.

5.2.16 I/O Control Functions Supported by dosFsLib

The dosFs file system supports the ioctl() functions. These functions are defined
in the header file ioLib.h along with their associated constants.

NOTE: The DOS file system is not considered a fault-tolerant file system.

NOTE: Consistency checking slows a system down, particularly when a a disk is
first accessed.
219

VxWorks 5.5
Programmer’s Guide
For more information, see the manual entries for dosFsLib and for ioctl() in ioLib.

Table 5-3 I/O Control Functions Supported by dosFsLib

Function
Decimal

Value
Description

FIOATTRIBSET 35 Sets the file-attribute byte in the dosFs directory entry.

FIOCONTIG 36 Allocates contiguous disk space for a file or directory.

FIODISKCHANGE 13 Announces a media change.

FIODISKFORMAT 5 Formats the disk (device driver function).

FIODISKINIT 6 Initializes a dosFs file system on a disk volume.

FIOFLUSH 2 Flushes the file output buffer.

FIOFSTATGET 38 Gets file status information (directory entry data).

FIOGETNAME 18 Gets the filename of the fd.

FIOLABELGET 33 Gets the volume label.

FIOLABELSET 34 Sets the volume label.

FIOMKDIR 31 Creates a new directory.

FIOMOVE 47 Moves a file (does not rename the file).

FIONCONTIG 41 Gets the size of the maximum contiguous area on a device.

FIONFREE 30 Gets the number of free bytes on the volume.

FIONREAD 1 Gets the number of unread bytes in a file.

FIOREADDIR 37 Reads the next directory entry.

FIORENAME 10 Renames a file or directory.

FIORMDIR 32 Removes a directory.

FIOSEEK 7 Sets the current byte offset in a file.

FIOSYNC 21 Same as FIOFLUSH, but also re-reads buffered file data.

FIOTRUNC 42 Truncates a file to a specified length.

FIOUNMOUNT 39 Un-mounts a disk volume.

FIOWHERE 8 Returns the current byte position in a file.
220

5

5
Local File Systems
5.3 Booting from a Local dosFs File System Using SCSI

VxWorks can be booted from a local SCSI device. Before you can boot from SCSI,
you must make a new boot application ROM that contains the SCSI library. Include
INCLUDE_SCSI, INCLUDE_SCSI_BOOT, and SYS_SCSI_CONFIG in your boot
application project.

After burning the SCSI boot application ROM, you can prepare the dosFs file
system for use as a boot device. The simplest way to do this is to partition the SCSI
device so that a dosFs file system starts at block 0. You can then make the new
system image, place it on your SCSI boot device, and boot the new VxWorks
system. These steps are shown in more detail below.

Step 1: Create the SCSI Device

Create the SCSI device using scsiPhysDevCreate() (see SCSI Drivers, p.146), and
initialize the disk with a dosFs file system (see 5.2.3 Initializing the dosFs File System,
p.198). Modify the file installDir/target/bspName/sysScsi.c to reflect your SCSI
configuration.

Step 2: Rebuild Your System

Rebuild your system.

Step 3: Copy the VxWorks Runtime Image

Copy the file vxWorks to the drive. Below, a VxWorks task spawns the copy()
routine, passing it two arguments.

The first argument is the source file for the copy() command. The source file is the
VxWorks runtime image, vxWorks. The source host name is tiamat:, the source
filename is C:/vxWorks. These are passed to copy() in concatenated form, as the
string “tiamat:C:/vxWorks.”

The second argument is the destination file for the copy() command. The dosFs
file system, on the local target SCSI disk device, is named /sd0, and the target file
name is vxWorks. These are, similarly, passed to copy() in concatenated form, as
the string “/sd0/vxWorks.” When booting the target from the SCSI device, the
bootrom image should specify the runtime file as “/sd0/vxWorks”.

! WARNING: For use as a boot device, the directory name for the dosFs file system
must begin and end with slashes (as with /sd0/ used in the following example).
This is an exception to the usual naming convention for dosFs file systems and is
incompatible with the NFS requirement that device names not end in a slash.
221

VxWorks 5.5
Programmer’s Guide
-> sp (copy, "tiamat:c:/vxWorks","/sd0/vxWorks")
task spawned: id = 0x3f2a200, name = t2
value = 66232832 = 0x3f2a200

Copy OK: 1065570 bytes copied

Step 4: Copy the System Symbol Table

Depending upon image configuration, the vxWorks.sym file for the system
symbol table may also be needed. Therefore, in similar fashion, copy the
vxWorks.sym file. The runtime image, vxWorks, downloads the vxWorks.sym file
from the same location.

-> sp (copy, "tiamat:c:/vxWorks.sym","/sd0/vxWorks.sym")
task spawned: id = 0x3f2a1bc, name = t3
value = 66232764 = 0x3f2a1bc

Copy OK: 147698 bytes copied

Step 5: Test the Copying

Now, list the files to ensure that the files were correctly copied.

-> sp (ll, "/sd0")
task spawned: id = 0x3f2a1a8, name = t4
value = 66232744 = 0x3f2a1a8
->

Listing Directory /sd0:
-rwxrwxrwx 1 0 0 1065570 Oct 26 2001 vxWorks
-rwxrwxrwx 1 0 0 147698 Oct 26 2001 vxWorks.sym

Step 6: Reboot and Change Parameters

Reboot the system, and then change the boot parameters. Boot device parameters
for SCSI devices follow this format:

scsi=id,lun

where id is the SCSI ID of the boot device, and lun is its Logical Unit Number
(LUN). To enable use of the network, include the on-board Ethernet device (for
example, ln for LANCE) in the other field.

The following example boots from a SCSI device with a SCSI ID of 2 and a LUN of
0.

boot device : scsi=2,0
processor number : 0
host name : host
file name : /sd0/vxWorks
inet on ethernet (e) : 147.11.1.222:ffffff00
host inet (h) : 147.11.1.3
222

5

5
Local File Systems
user (u) : jane
flags (f) : 0x0
target name (tn) : t222
other : ln

5.4 Raw File System: rawFs

VxWorks provides a minimal “file system,” rawFs, for use in systems that require
only the most basic disk I/O functions. The rawFs file system, implemented in
rawFsLib, treats the entire disk volume much like a single large file.

Although the dosFs file system provides this ability to varying degrees, the rawFs
file system offers advantages in size and performance if more complex functions
are not required.

To use the rawFs file system in a VxWorks-based system, include the
INCLUDE_RAWFS component in the kernel, and set the NUM_RAWFS_FILES
parameter to the desired maximum open file descriptor count.

5.4.1 Disk Organization

The rawFs file system imposes no organization of the data on the disk. It maintains
no directory information; thus there is no division of the disk area into specific
files. All open() operations on rawFs devices specify only the device name; no
additional filenames are possible.

The entire disk area is treated as a single file and is available to any file descriptor
that is open for the device. All read and write operations to the disk use a
byte-offset relative to the start of the first block on the disk.

5.4.2 Initializing the rawFs File System

Before any other operations can be performed, the rawFs library, rawFsLib, must
be initialized by calling rawFsInit(). This routine takes a single parameter, the
maximum number of rawFs file descriptors that can be open at one time. This
count is used to allocate a set of descriptors; a descriptor is used each time a rawFs
device is opened.
223

VxWorks 5.5
Programmer’s Guide
The rawFsInit() routine also makes an entry for the rawFs file system in the I/O
system driver table (with iosDrvInstall()). This entry specifies the entry points for
rawFs file operations, for all devices that use the rawFs file system. The driver
number assigned to the rawFs file system is placed in a global variable,
rawFsDrvNum.

The rawFsInit() routine is normally called by the usrRoot() task after starting the
VxWorks system.

5.4.3 Initializing a Device for Use With rawFs

After the rawFs file system is initialized, the next step is to create one or more
devices. Devices are created by the device driver’s device creation routine
(xxDevCreate()). The driver routine returns a pointer to a block device descriptor
structure (BLK_DEV). The BLK_DEV structure describes the physical aspects of the
device and specifies the routines in the device driver that a file system can call. For
more information on block devices, see 4.9.4 Block Devices, p.176.

Immediately after its creation, the block device has neither a name nor a file system
associated with it. To initialize a block device for use with rawFs, the
already-created block device must be associated with rawFs and a name must be
assigned to it. This is done with the rawFsDevInit() routine. Its parameters are the
name to be used to identify the device and a pointer to the block device descriptor
structure (BLK_DEV):

RAW_VOL_DESC *pVolDesc;
BLK_DEV *pBlkDev;
pVolDesc = rawFsDevInit ("DEV1:", pBlkDev);

The rawFsDevInit() call assigns the specified name to the device and enters the
device in the I/O system device table (with iosDevAdd()). It also allocates and
initializes the file system’s volume descriptor for the device. It returns a pointer to
the volume descriptor to the caller; this pointer is used to identify the volume
during certain file system calls.

Note that initializing the device for use with rawFs does not format the disk. That
is done using an ioctl() call with the FIODISKFORMAT function.

NOTE: No disk initialization (FIODISKINIT) is required, because there are no file
system structures on the disk. Note, however, that rawFs accepts that ioctl()
function code for compatibility with other file systems; in such cases, it performs
no action and always returns OK.
224

5

5
Local File Systems
5.4.4 Mounting Volumes

A disk volume is mounted automatically, generally during the first open() or
creat() operation. (Certain ioctl() functions also cause the disk to be mounted.)
The volume is again mounted automatically on the first disk access following a
ready-change operation (see 5.4.6 Changing Disks, p.225).

5.4.5 File I/O

To begin I/O operations upon a rawFs device, first open the device using the
standard open() function. (The creat() function can be used instead, although
nothing is actually “created.”) Data on the rawFs device is written and read using
the standard I/O routines write() and read(). For more information, see 4.3 Basic
I/O, p.111.

The character pointer associated with a file descriptor (that is, the byte offset where
the read and write operations take place) can be set by using ioctl() with the
FIOSEEK function.

Multiple file descriptors can be open simultaneously for a single device. These
must be carefully managed to avoid modifying data that is also being used by
another file descriptor. In most cases, such multiple open descriptors use FIOSEEK
to set their character pointers to separate disk areas.

5.4.6 Changing Disks

The rawFs file system must be notified when removable disks are changed (for
example, when floppies are swapped). Two different notification methods are
provided: (1) rawFsVolUnmount() and (2) the ready-change mechanism.

Un-mounting Volumes

The first method of announcing a disk change is to call rawFsVolUnmount() prior
to removing the disk. This call flushes all modified file descriptor buffers if
possible (see Synchronizing Volumes, p.227) and also marks any open file

! CAUTION: Because device names are recognized by the I/O system using simple
substring matching, file systems should not use a slash (/) alone as a name;
unexpected results may occur.
225

VxWorks 5.5
Programmer’s Guide
descriptors as obsolete. The next I/O operation remounts the disk. Calling ioctl()
with FIOUNMOUNT is equivalent to using rawFsVolUnmount(). Any open file
descriptor to the device can be used in the ioctl() call.

Attempts to use obsolete file descriptors for further I/O operations produce an
S_rawFsLib_FD_OBSOLETE error. To free an obsolete descriptor, use close(), as
usual. This frees the descriptor even though it produces the same error.

ISRs must not call rawFsVolUnmount() directly, because the call can pend while
the device becomes available. The ISR can instead give a semaphore that prompts
a task to un-mount the volume. (Note that rawFsReadyChange() can be called
directly from ISRs; see Announcing Disk Changes with Ready-Change, p.226.)

When rawFsVolUnmount() is called, it attempts to write buffered data out to the
disk. Its use is therefore inappropriate for situations where the disk-change
notification does not occur until a new disk is inserted, because the old buffered
data would be written to the new disk. In this case, use rawFsReadyChange(), as
described in Announcing Disk Changes with Ready-Change, p.226.

If rawFsVolUnmount() is called after the disk is physically removed, the data
flushing portion of its operation fails. However, the file descriptors are still marked
as obsolete, and the disk is marked as requiring remounting. An error is not
returned by rawFsVolUnmount(); to avoid lost data in this situation, explicitly
synchronize the disk before removing it (see Synchronizing Volumes, p.227).

Announcing Disk Changes with Ready-Change

The second method of announcing that a disk change is taking place is with the
ready-change mechanism. A change in the disk’s ready-status is interpreted by
rawFsLib to indicate that the disk must be remounted during the next I/O call.

There are three ways to announce a ready-change:

� By calling rawFsReadyChange() directly.

� By calling ioctl() with FIODISKCHANGE.

� By having the device driver set the bd_readyChanged field in the BLK_DEV
structure to TRUE; this has the same effect as notifying rawFsLib directly.

The ready-change announcement does not cause buffered data to be flushed to the
disk. It merely marks the volume as needing remounting. As a result, data written
to files can be lost. This can be avoided by synchronizing the disk before asserting
ready-change. The combination of synchronizing and asserting ready-change
226

5

5
Local File Systems
provides all the functionality of rawFsVolUnmount() except for marking file
descriptors as obsolete.

Ready-change can be called from an ISR, because it does not attempt to flush data
or perform other operations that could cause delay.

The block device driver status-check routine (identified by the bd_statusChk field
in the BLK_DEV structure) is useful for asserting ready-change for devices that
only detect a disk change after the new disk is inserted. This routine is called at the
beginning of each open() or creat(), before the file system checks for
ready-change.

If it is not possible for a ready-change to be announced each time the disk is
changed, close all file descriptors for the volume before changing the disk.

Synchronizing Volumes

When a disk is synchronized, all buffered data that is modified is written to the
physical device so that the disk is up to date. For the rawFs file system, the only
such data is that contained in open file descriptor buffers.

To avoid loss of data, synchronize a disk before removing it. You may need to
explicitly synchronize a disk, depending on when (or if) the rawFsVolUnmount()
call is issued.

When rawFsVolUnmount() is called, an attempt is made to synchronize the
device before un-mounting. If this disk is still present and writable at the time of
the call, synchronization takes place automatically; there is no need to synchronize
the disk explicitly.

However, if the rawFsVolUnmount() call is made after a disk is removed, it is
obviously too late to synchronize, and rawFsVolUnmount() discards the buffered
data. Therefore, make a separate ioctl() call with the FIOSYNC function before
removing the disk. (For example, this could be done in response to an operator
command.) Any open file descriptor to the device can be used during the ioctl()
call. This call writes all modified file descriptor buffers for the device out to the
disk.

5.4.7 I/O Control Functions Supported by rawFsLib

The rawFs file system supports the ioctl() functions shown in Table 5-4. The
functions listed are defined in the header file ioLib.h. For more information, see
the manual entries for rawFsLib and for ioctl() in ioLib.
227

VxWorks 5.5
Programmer’s Guide
5.5 Tape File System: tapeFs

The tapeFs library, tapeFsLib, provides basic services for tape devices that do not
use a standard file or directory structure on tape. The tape volume is treated much
like a raw device where the entire volume is a large file. Any data organization on
this large file is the responsibility of a higher-level layer.

To configure VxWorks with tapeFs, include the INCLUDE_TAPEFS component in
the kernel.

Table 5-4 I/O Control Functions Supported by rawFsLib

Function
Decimal

Value
Description

FIODISKCHANGE 13 Announces a media change.

FIODISKFORMAT 5 Formats the disk (device driver function).

FIODISKINIT 6 Initializes the rawFs file system on a disk volume (optional).

FIOFLUSH 2 Same as FIOSYNC.

FIOGETNAME 18 Gets the device name of the fd.

FIONREAD 1 Gets the number of unread bytes on the device.

FIOSEEK 7 Sets the current byte offset on the device.

FIOSYNC 21 Writes out all modified file descriptor buffers.

FIOUNMOUNT 39 Un-mounts a disk volume.

FIOWHERE 8 Returns the current byte position on the device.

NOTE: The tape file system must be configured with SCSI-2 enabled. See SCSI
Drivers, p.146 for configuration details.
228

5

5
Local File Systems
5.5.1 Tape Organization

The tapeFs file system imposes no organization of the data on the tape volume. It
maintains no directory information; there is no division of the tape area into
specific files; and no filenames are used. An open() operation on the tapeFs device
specifies only the device name; no additional filenames are allowed.

The entire tape area is available to any file descriptor open for the device. All read
and write operations to the tape use a location offset relative to the current location
of the tape head. When a file is configured as a rewind device and first opened,
tape operations begin at the beginning-of-medium (BOM); see Initializing a Device
for Use With tapeFs, p.229. Thereafter, all operations occur relative to where the tape
head is located at that instant of time. No location information, as such, is
maintained by tapeFs.

5.5.2 Initializing the tapeFs File System

The tapeFs file system must be initialized, and a tape device created, in order to
make the physical tape device available to the tape file system. At this point,
normal I/O system operations can be performed.

The tapeFs library, tapeFsLib, is initialized by calling tapeFsInit(). Each tape file
system can handle multiple tape devices. However, each tape device is allowed
only one file descriptor. Thus, you cannot open two files on the same tape device.

The tapeFsInit() routine also makes an entry for the tapeFs file system in the I/O
system driver table (with iosDrvInstall()). This entry specifies function pointers
to carry out tapeFs file operations on devices that use the tapeFs file system. The
driver number assigned to the tapeFs file system is placed in a global variable,
tapeFsDrvNum.

When initializing a tape device, tapeFsInit() is called automatically if
tapeFsDevInit() is called; thus, the tape file system does not require explicit
initialization.

Initializing a Device for Use With tapeFs

Once the tapeFs file system has been initialized, the next step is to create one or
more devices that can be used with it. This is done using the sequential device
creation routine, scsiSeqDevCreate(). The driver routine returns a pointer to a
sequential device descriptor structure, SEQ_DEV. The SEQ_DEV structure
describes the physical aspects of the device and specifies the routines in the device
229

VxWorks 5.5
Programmer’s Guide
driver that tapeFs can call. For more information on sequential devices, see the
manual entry for scsiSeqDevCreate(), Configuring SCSI Drivers, p.147 and
4.9.4 Block Devices, p.176.

Immediately after its creation, the sequential device has neither a name nor a file
system associated with it. To initialize a sequential device for use with tapeFs, call
tapeFsDevInit() to assign a name and declare a file system. Its parameters are the
volume name—for identifying the device; a pointer to SEQ_DEV—the sequential
device descriptor structure; and a pointer to an initialized tape configuration
structure TAPE_CONFIG. This structure has the following form:

typedef struct /* TAPE_CONFIG tape device config structure */
{
int blkSize; /* block size; 0 => var. block size */
BOOL rewind; /* TRUE => a rewind device; FALSE => no rewind */
int numFileMarks; /* not used */
int density; /* not used */
} TAPE_CONFIG;

In the preceding definition of TAPE_CONFIG, only two fields, blkSize and rewind,
are currently in use. If rewind is TRUE, then a tape device is rewound to the
beginning-of-medium (BOM) upon closing a file with close(). However, if rewind
is FALSE, then closing a file has no effect on the position of the read/write head on
the tape medium.

The blkSize field specifies the block size of the physical tape device. Having set the
block size, each read or write operation has a transfer unit of blkSize. Tape devices
can perform fixed or variable block transfers, a distinction also captured in the
blkSize field.

For more information on initializing a tapeFs device, see the VxWorks API Reference
entry for tapeFsDevInit().

Systems with Fixed Block and Variable Block Devices

A tape file system can be created for fixed block size transfers or variable block size
transfers, depending on the capabilities of the underlying physical device. The
type of data transfer (fixed block or variable block) is usually decided when the
tape device is being created in the file system, that is, before the call to
tapeFsDevInit(). A block size of zero represents variable block size data transfers.

Once the block size has been set for a particular tape device, it is usually not
modified. To modify the block size, use the ioctl() functions FIOBLKSIZESET and
FIOBLKSIZEGET to set and get the block size on the physical device.
230

5

5
Local File Systems
Note that for fixed block transfers, the tape file system buffers a block of data. If the
block size of the physical device is changed after a file is opened, the file should
first be closed and then re-opened in order for the new block size to take effect.

Example 5-8 Tape Device Configuration

There are many ways to configure a tape device. In this code example, a tape
device is configured with a block size of 512 bytes and the option to rewind the
device at the end of operations.

/* global variables assigned elsewhere */

SCSI_PHYS_DEV * pScsiPhysDev;

/* local variable declarations */

TAPE_VOL_DESC * pTapeVol;
SEQ_DEV * pSeqDev;
TAPE_CONFIG tapeConfig;

/* initialization code */

tapeConfig.blkSize = 512;
tapeConfig.rewind = TRUE;
pSeqDev = scsiSeqDevCreate (pScsiPhysDev);
pTapeVol = tapeFsDevInit ("/tape1", pSeqDev, tapeConfig);

The tapeFsDevInit() call assigns the specified name to the device and enters the
device in the I/O system device table (with iosDevAdd()). The return value of this
routine is a pointer to a volume descriptor structure that contains volume-specific
configuration and state information.

5.5.3 Mounting Volumes

A tape volume is mounted automatically during the open() operation. There is no
specific mount operation, that is, the mount is implicit in the open() operation.

The tapeFs tape volumes can be operated in only one of two modes: read-only
(O_RDONLY) or write-only (O_WRONLY). There is no read-write mode. The mode
of operation is defined when the file is opened using open().

! CAUTION: Because device names are recognized by the I/O system using simple
substring matching, file systems should not use a slash (/) alone as a name;
unexpected results may occur.
231

VxWorks 5.5
Programmer’s Guide
5.5.4 File I/O

To begin I/O to a tapeFs device, the device is first opened using open(). Data on
the tapeFs device is written and read using the standard I/O routines write() and
read(). For more information, see 4.7.7 Block Devices, p.145.

End-of-file markers can be written using ioctl() with the MTWEOF function. For
more information, see 5.5.6 I/O Control Functions Supported by tapeFsLib, p.232.

5.5.5 Changing Tapes

The tapeFs file system should be notified when removable media are changed (for
example, when tapes are swapped). The tapeFsVolUnmount() routine controls
the mechanism to un-mount a tape volume.

A tape should be un-mounted before it is removed. Prior to un-mounting a tape
volume, an open file descriptor must be closed. Closing an open file flushes any
buffered data to the tape, thus synchronizing the file system with the data on the
tape. To flush or synchronize data before closing the file, call ioctl() with the
FIOFLUSH or FIOSYNC functions.

After closing any open file, call tapeFsVolUnmount() before removing the tape.
Once a tape has been un-mounted, the next I/O operation must remount the tape
using open().

Interrupt handlers must not call tapeFsVolUnmount() directly, because it is
possible for the call to pend while the device becomes available. The interrupt
handler can instead give a semaphore that prompts a task to un-mount the volume.

5.5.6 I/O Control Functions Supported by tapeFsLib

The tapeFs file system supports the ioctl() functions shown in Table 5-5. The
functions listed are defined in the header files ioLib.h, seqIo.h, and tapeFsLib.h.
For more information, see the VxWorks API Reference entries for tapeFsLib, ioLib,
and ioctl().
232

5

5
Local File Systems
The MTIOCTOP operation is compatible with the UNIX MTIOCTOP operation. The
argument passed to ioctl() with MTIOCTOP is a pointer to an MTOP structure that
contains the following two fields:

typedef struct mtop
{
short mt_op; /* operation */
int mt_count; /* number of operations */
} MTOP;

The mt_op field contains the type of MTIOCTOP operation to perform. These
operations are defined in Table 5-6. The mt_count field contains the number of
times the operation defined in mt_op should be performed.

Table 5-5 I/O Control Functions Supported by tapeFsLib

Function Decimal Value Description

FIOFLUSH 2 Writes out all modified file descriptor buffers.

FIOSYNC 21 Same as FIOFLUSH.

FIOBLKSIZEGET 1001 Gets the actual block size of the tape device by issuing a
driver command to it. Check this value with that set in
the SEQ_DEV data structure.

FIOBLKSIZESET 1000 Sets the block size of the tape device on the device and in
the SEQ_DEV data structure.

MTIOCTOP 1005 Performs a UNIX-like MTIO operation to the tape
device. The type of operation and operation count is set
in an MTIO structure passed to the ioctl() routine. The
MTIO operations are defined in Table 5-6.

Table 5-6 MTIOCTOP Operations

Function Value Meaning

MTWEOF 0 Writes an end-of-file record or “file mark.”

MTFSF 1 Forward-spaces over a file mark.

MTBSF 2 Backward-spaces over a file mark.

MTFSR 3 Forward-spaces over a data block.

MTBSR 4 Backward space over a data block.

MTREW 5 Rewinds the tape device to the beginning-of-medium.
233

VxWorks 5.5
Programmer’s Guide
5.6 CD-ROM File System: cdromFs

The cdromFs library, cdromFsLib, lets applications read any CD-ROM that is
formatted in accordance with ISO 9660 file system standards. To configure
VxWorks with cdromFs, add the INCLUDE_CDROMFS component to the kernel.

After initializing cdromFs and mounting it on a CD-ROM block device, you can
access data on that device using the standard POSIX I/O calls: open(), close(),
read(), ioctl(), readdir(), and stat(). The write() call always returns an error.

The cdromFs utility supports multiple drives, multiple open files, and concurrent
file access. When you specify a pathname, cdromFS accepts both “/” and “\”.
However, the backslash is not recommended because it might not be supported in
future releases.

CdromFs provides access to CD-ROM file systems using any standard BLK_DEV
structure. The basic initialization sequence is similar to installing a dosFs file
system on a SCSI device.

For information on using cdromFs(), see the VxWorks API Reference entry for
cdromFsLib.

MTOFFL 6 Rewinds and puts the drive offline.

MTNOP 7 No operation; sets status in the SEQ_DEV structure only.

MTRETEN 8 Re-tensions the tape (cartridge tape only).

MTERASE 9 Erases the entire tape.

MTEOM 10 Positions the tape to end-of-media.

MTNBSF 11 Backward-spaces file to the beginning-of-medium.

Table 5-6 MTIOCTOP Operations (Continued)

Function Value Meaning
234

5

5
Local File Systems
Example 5-9 Creating and Using a CD-ROM Block Device

The example below describes the steps for creating a block device for the CD-ROM,
creating a cdromFsLib device, mounting the filesystem, and accessing the media
in the device.

Step 1: Configure Your Environment for the CD-ROM Device

Add the component INCLUDE_CDROMFS in your project. Add other required
components (like SCSI/ATA depending on the type of device). For more
information, see 5.2.2 Configuring Your System, p.197.

If you are using an ATAPI device, make appropriate modifications to the ataDrv,
ataResources[] structure array (if needed). This must be configured appropriately
for your hardware platform.

Step 2: Create a Block Device

Based on the type of device, use the appropriate create routine and create a block
device. Following is an example for an ATAPI master device upon the secondary
ATA controller:

-> pBlkd = ataDevCreate(1, 0, 0, 0)
new symbol "pBlkd" added to symbol table.
pBlkd = 0x3fff334: value = 67105604 = 0x3fff344 = pBlkd + 0x10

Step 3: Create an Instance of a CD-ROM Device in the I/O System

A block device must already have been created. Call cdromFsDevCreate(), which
calls iosDrvInstall() internally. This enters the appropriate driver routines in the
I/O driver table.

-> cdromFsDevCreate("/cd", pBlkd)
value = 67105456 = 0x3fff2b0

-> devs
drv name
0 /null
1 /tyCo/0
1 /tyCo/1
5 ala-petrient:
6 /vio
7 /cd
value = 25 = 0x19

-> cd "/cd"
value = 0 = 0x0

The cd command changes the current working directory, without performing I/O,
and, therefore, can be called before the media is mounted.
235

VxWorks 5.5
Programmer’s Guide
Step 4: Mount the Device

Now, run cdromFsVolConfigShow() to indicate whether the device (created
above) is mounted. Executing this command shows that the device is not mounted.

-> cdromFsVolConfigShow "/cd"

device config structure ptr 0x3fff2b0
device name /cd
bytes per blkDevDrv sector 2048
no volume mounted
value = 18 = 0x12

Mount the device in order to access it. Because cdromFs is mounted during the first
open() operation, a call to open() or any function that uses open() will mount the
device. The ls command below both mounts the device and lists its contents.

-> ls "/cd"
/cd/.
/cd/..
/cd/INDEX.HTML;1
/cd/INSTRUCT.HTML;1
/cd/MPF
/cd/README.TXT;1
value = 0 = 0x0

Step 5: Check the Configuration

You can check the CD-ROM configuration using cdromFsVolConfigShow():

-> cdromFsVolConfigShow "/cd"

device config structure ptr 0x3fff2b0
device name /cd
bytes per blkDevDrv sector 2048

Primary directory hierarchy:

standard ID :CD001
volume descriptor version :1
system ID :LINUX
volume ID :MPF_CD
volume size :611622912 = 583 MB
number of logical blocks :298644 = 0x48e94
volume set size :1
volume sequence number :1
logical block size :2048
path table size (bytes) :3476
path table entries :238
volume set ID :
236

5

5
Local File Systems
volume publisher ID :WorldWide Technolgies

volume data preparer ID :Kelly Corday

volume application ID :mkisofs v1.04

copyright file name :mkisofs v1.04
abstract file name :mkisofs v1.04
bibliographic file name :mkisofs v1.04
creation date :13.11.1998 14:36:49:00
modification date :13.11.1998 14:36:49:00
expiration date :00.00.0000 00:00:00:00
effective date :13.11.1998 14:36:49:00
value = 0 = 0x0

5.7 The Target Server File System: TSFS

The Target Server File System (TSFS) is designed for development and diagnostic
purposes. It is a full-featured VxWorks file system, but the files are actually located
on the host system.

The TSFS provides all of the I/O features of the network driver for remote file
access (netDrv), without requiring any target resources (except those required for
communication between the target system and the target server on the host). The
TSFS uses a WDB driver to transfer requests from the VxWorks I/O system to the
target server. The target server reads the request and executes it using the host file
system. When you open a file with TSFS, the file being opened is actually on the
host. Subsequent read() and write() calls on the file descriptor obtained from the
open() call read from and write to the opened host file.

The TSFS VIO driver is oriented toward file I/O rather than toward console
operations as is the Tornado 1.0 VIO driver. TSFS provides all the I/O features that
netDrv provides, without requiring any target resource beyond what is already
configured to support communication between target and target server. It is
possible to access host files randomly without copying the entire file to the target,
to load an object module from a virtual file source, and to supply the filename to
routines such as moduleLoad() and copy().

Each I/O request, including open(), is synchronous; the calling target task is
blocked until the operation is complete. This provides flow control not available in
the console VIO implementation. In addition, there is no need for WTX protocol
237

VxWorks 5.5
Programmer’s Guide
requests to be issued to associate the VIO channel with a particular host file; the
information is contained in the name of the file.

Consider a read() call. The driver transmits the ID of the file (previously
established by an open() call), the address of the buffer to receive the file data, and
the desired length of the read to the target server. The target server responds by
issuing the equivalent read() call on the host and transfers the data read to the
target program. The return value of read() and any errno that might arise are also
relayed to the target, so that the file appears to be local in every way.

For detailed information, see the VxWorks API Reference entry for wdbTsfsDrv.

Socket Support

TSFS sockets are operated on in a similar way to other TSFS files, using open(),
close(), read(), write(), and ioctl(). To open a TSFS socket, use one of the
following forms of filename:

"TCP:hostIP:port"
"TCP:hostname:port"

The flags and permissions arguments are ignored. The following examples show
how to use these filenames:

fd = open("/tgtsvr/TCP:phobos:6164"0,0) /* open socket and connect */
/* to server phobos */

fd = open("/tgtsvr/TCP:150.50.50.50:6164",0,0) /* open socket and */
/*connect to server */
/* 150.50.50.50 */

The result of this open() call is to open a TCP socket on the host and connect it to
the target server socket at hostname or hostIP awaiting connections on port. The
resultant socket is non-blocking. Use read() and write() to read and write to the
TSFS socket. Because the socket is non-blocking, the read() call returns
immediately with an error and the appropriate errno if there is no data available
to read from the socket. The ioctl() usage specific to TSFS sockets is discussed in
the VxWorks API Reference entry for wdbTsfsDrv. This socket configuration allows
VxWorks to use the socket facility without requiring sockLib and the networking
modules on the target.
238

5

5
Local File Systems
Error Handling

Errors can arise at various points within TSFS and are reported back to the original
caller on the target, along with an appropriate error code. The error code returned
is the VxWorks errno which most closely matches the error experienced on the
host. If a WDB error is encountered, a WDB error message is returned rather than
a VxWorks errno.

TSFS Configuration

To use the TSFS, your VxWorks-based system must be configured with the
INCLUDE_WDB_TSFS component in the kernel. This creates the /tgtsvr file system.

The target server on the host system must also be configured for TSFS. This
involves assigning a root directory on your host to TSFS (see the discussion of the
target server -R option in Security Considerations, p.239). For example, on a PC host
you could set the TSFS root to c:\myTarget\logs.

Having done so, opening the file /tgtsvr/logFoo on the target causes
c:\myTarget\logs\logFoo to be opened on the host by the target server. A new file
descriptor representing that file is returned to the caller on the target.

Security Considerations

While TSFS has much in common with netDrv, the security considerations are
different. With TSFS, the host file operations are done on behalf of the user that
launched the target server. The user name given to the target as a boot parameter
has no effect. In fact, none of the boot parameters have any effect on the access
privileges of TSFS.

In this environment, it is less clear to the user what the privilege restrictions to
TSFS actually are, since the user ID and host machine that start the target server
may vary from invocation to invocation. By default, any Tornado tool that connects
to a target server which is supporting TSFS has access to any file with the same
authorizations as the user that started that target server. However, the target server
can be locked (with the -L option) to restrict access to the TSFS.

The options which have been added to the target server startup routine to control
target access to host files using TSFS include:
239

VxWorks 5.5
Programmer’s Guide
-L Lock the target server.
This option restricts access to the server to processes running under the same
user ID for UNIX, or the same WIND_UID for Windows.

-R Set the root of TSFS.
For example, specifying -R /tftpboot prepends this string to all TSFS filenames
received by the target server, so that /tgtsvr/etc/passwd maps to
/tftpboot/etc/passwd. If -R is not specified, TSFS is not activated and no TSFS
requests from the target will succeed. Restarting the target server without
specifying -R disables TSFS.

-RW Make TSFS read-write.
The target server interprets this option to mean that modifying operations
(including file create and delete or write) are authorized. If -RW is not
specified, the default is read only and no file modifications are allowed.

NOTE: For more information about the target server and the TSFS, see the tgtsvr
entry in the online Tornado Tools Reference. For information about specifying target
server options from the Tornado IDE, see the Tornado User’s Reference: Target
Manager.
240

6

Target Tools
6.1 Introduction

The Tornado development system provides a full suite of development tools that
resides and executes on the host machine; this approach conserves target memory
and resources. However, there are many situations in which it is desirable to have
a target-resident shell, a target-resident dynamic object loader, simple
target-resident debug facilities, or a target-resident system symbol table. This
chapter discusses the target-resident facilities in detail.

Some situations in which the target based tools may be particularly useful are:

� When debugging a deployed system over a simple serial connection.

� When developing and debugging network protocols, where it is useful to see
the target's view of a network.

� To create dynamically configurable systems that can load modules from a
target disk or over the network.

The target based tools are partially independent so, for instance, the target shell
may be used without the target loader, and vice versa. However, for any of the
other individual tools to be completely functional, the system symbol table is
required.

In some situations, it may also be useful to use both the host-resident development
tools and the target-resident tools at the same time. In this case, additional facilities
are required so that both environments maintain consistent views of the system.
For more information, see 6.4.4 Using the VxWorks System Symbol Table, p.266.

This chapter briefly describes these target-resident facilities, as well as providing
an overview of the most commonly used VxWorks show routines.
241

VxWorks 5.5
Programmer’s Guide
For the most part, the target-resident facilities work the same as their Tornado host
counterparts. For more information, see the appropriate chapters of the Tornado
User’s Guide.

6.2 Target-Resident Shell

For the most part, the target-resident shell works the same as the host shell (also
known as WindSh or the Tornado shell). For detailed information about the host
shell, as well as the differences between the host and target shell, see the Tornado
User’s Guide: Shell. Also see the VxWorks API Reference entries for dbgLib, shellLib,
and usrLib.

6.2.1 Summarizing the Target and Host Shell Differences

The major differences between the target and host shells are:

� The Tornado host shell provides additional commands.

� Both shells include a C interpreter; the host shell also provides a Tcl interpreter.
Both shells provide an editing mode.

� You can have multiple host shells active for any given target; only one target
shell can be active for a target at any one time.

� The host shell allows virtual I/O; the target shell does not.

� The host shell is always ready to execute provided that the WDB target agent
is included in the system. The target shell, as well as its associated
target-resident symbol tables and module loader, must be configured into the
VxWorks image by including the appropriate components.

� The target shell’s input and output are directed at the same window by
default, usually a console connected to the board’s serial port.1 For the host
shell, these standard I/O streams are not necessarily directed to the same
window as the host shell.

1. Provided that suitable hardware is available, standard input and output can be redirected
once the shell is running with ioGlobalStdSet().
242

6

6
Target Tools
� The host shell can perform many control and information functions entirely on
the host, without consuming target resources.

� The host shell uses host resources for most functions so that it remains
segregated from the target. This means that the host shell can operate on the
target from the outside. The target shell, however, must act on itself, which
means that there are limitations to what it can do. For example, to make
breakable calls in the target shell, sp() must be used. In addition, conflicts in
task priority may occur while using the target shell.

� The target shell correctly interprets the tilde operator in pathnames, whereas
the host shell cannot. For example, the following command executed from the
target shell by user panloki would correctly locate /home/panloki/foo.o on
the host system:

-> ld < ~/foo.o

� When the target shell encounters a string literal (“...”) in an expression, it
allocates space for the string, including the null-byte string terminator, plus
some additional overhead.2 The value of the literal is the address of the string
in the newly allocated storage. For example, the following expression allocates
12-plus bytes from the target memory pool, enters the string in that memory
(including the null terminator), and assigns the address of the string to x:

-> x = "hello there"

The following expression can be used to return the memory to the target
memory pool (see the memLib reference entry for information on memory
management):

-> free (x)

Furthermore, even when a string literal is not assigned to a symbol, memory
is still permanently allocated for it. For example, the following expression uses
memory that is never freed:

-> printf ("hello there")

! WARNING: Shell commands must be used in conformance with the routine
prototype, or they may cause the system to hang (as for example, using ld()
without an argument does).

2. The amount of memory allocated is rounded up to the minimum allocation unit for the
architecture in question, plus the amount for the header for that block of memory.
243

VxWorks 5.5
Programmer’s Guide
This is because if strings were only temporarily allocated, and a string literal
were passed to a routine being spawned as a task, by the time the task executed
and attempted to access the string, the target shell would have already
released (and possibly even reused) the temporary storage where the string
was held.

After extended development sessions with the target shell, the cumulative
memory used for strings may be noticeable. If this becomes a problem, you
must reboot your target.

The host shell also allocates memory on the target if the string is to be used
there. However, it does not allocate memory on the target for commands that
can be performed at the host level (such as lkup(), ld(), and so on).

6.2.2 Configuring VxWorks With the Target Shell

To create the target shell, you must configure VxWorks to include the
INCLUDE_SHELL component.

You must also configure VxWorks with components for symbol table support (see
6.4.1 Configuring VxWorks with Symbol Tables, p.262). Additional shell components
include facilities for the following:

INCLUDE_SHELL_BANNER
Display the shell banner.

INCLUDE_DEBUG
Include shell debug facilities.

INCLUDE_DISK_UTIL
Include file utilities, such as ls and cd.

INCLUDE_SYM_TBL_SHOW
Include Symbol Table Show Routines, such as lkup.

You may also find it useful to include components for the module loader and
unloader (see 6.3.1 Configuring VxWorks with the Loader, p.251).These components
are required for the usrLib commands that load and unload modules (see
6.2.4 Loading and Unloading Object Modules from the Target Shell, p.245).

The shell task (tShell) is created with the VX_UNBREAKABLE option; therefore,
breakpoints cannot be set in this task, because a breakpoint in the shell would
make it impossible for the user to interact with the system. Any routine or task that
is invoked from the target shell, rather than spawned, runs in the tShell context.

Only one target shell can run on a VxWorks system at a time; the target shell parser
is not reentrant, because it is implemented using the UNIX tool yacc.
244

6

6
Target Tools
6.2.3 Using Target Shell Help and Control Characters

You can type the following command to display help on the shell:

-> help

Use dbgHelp for commands related to debugging.

The following target shell command lists all the available help routines:

-> lkup "Help"

The target shell has its own set of terminal-control characters, unlike the host shell,
which inherits its setting from the host window from which it was invoked.
Table 6-1 lists the target shell’s terminal-control characters. The first four of these
are defaults that can be mapped to different keys using routines in tyLib (see also
Tty Special Characters, p.133).

The shell line-editing commands are the same as they are for the host shell.

6.2.4 Loading and Unloading Object Modules from the Target Shell

Object modules can be dynamically loaded into a running VxWorks system with
the module loader. The following is a typical load command from the shell, in
which the user downloads appl.o to the appBucket domain:

[appBucket] -> ld < /home/panloki/appl.o

Table 6-1 Target Shell Terminal Control Characters

Command Description

CTRL+C Aborts and restarts the shell.

CTRL+H Deletes a character (backspace).

CTRL+Q Resumes output.

CTRL+S Temporarily suspends output.

CTRL+U Deletes an entire line.

CTRL+X Reboots (trap to the ROM monitor).

ESC Toggles between input mode and edit mode (vi mode only).
245

VxWorks 5.5
Programmer’s Guide
The ld() command loads an object module from a file, or from standard input, into
a specified protection domain. External references in the module are resolved
during loading.

Once an application module is loaded into target memory, subroutines in the
module can be invoked directly from the shell, spawned as tasks, connected to an
interrupt, and so on. What can be done with a routine depends on the flags used
to download the object module (visibility of global symbols or visibility of all
symbols). For more information about ld, see the VxWorks API Reference entry for
usrLib.

Modules can be reloaded with reld(), which unloads the previously loaded
module of the same name before loading the new version. For more information
about reld, see the VxWorks API Reference entry for unldLib.

Undefined symbols can be avoided by loading the modules in the appropriate
order. Linking independent files before download can be used to avoid unresolved
references if there are circular references between them, or if the number of
modules is unwieldy. The static linker ldarch can be used to link interdependent
files, so that they can only be loaded and unloaded as a unit.

Unloading a code module removes its symbols from the target’s symbol table,
removes the code module descriptor and section descriptor(s) from the module
list, and removes its section(s) from the memory partition(s) that held them.

For information about features of the target loader and unloader, see
6.3 Target-Resident Loader, p.250.

6.2.5 Debugging with the Target Shell

The target shell includes the same task level debugging utilities as the host shell if
VxWorks has been configured with the INCLUDE_DEBUG component. For details
on the debugging commands available, see the Tornado User’s Guide: Shell and the
VxWorks API Reference entry for dbgLib.

You are not permitted to use system mode debug utilities with the target shell.

6.2.6 Aborting Routines Executing from the Target Shell

Occasionally it is desirable to abort the shell’s evaluation of a statement. For
example, an invoked routine can loop excessively, suspend, or wait on a
semaphore. This can happen because of errors in the arguments specified in the
invocation, errors in the implementation of the routine, or oversight regarding the
246

6

6
Target Tools
consequences of calling the routine. In such cases it is usually possible to abort and
restart the target shell task. This is done by pressing the special target-shell abort
character on the keyboard, CTRL+C by default. This causes the target shell task to
restart execution at its original entry point. Note that the abort key can be changed
to a character other than CTRL+C by calling tyAbortSet().

When restarted, the target shell automatically reassigns the system standard input
and output streams to the original assignments they had when the target shell was
first spawned. Thus any target shell redirections are canceled, and any executing
shell scripts are aborted.

The abort facility works only if the following are true:

� dbgInit() has been called (see 6.2.5 Debugging with the Target Shell, p.246).

� excTask() is running (see the Tornado User’s Guide: Configuration and Build).

� The driver for the particular keyboard device supports it (all
VxWorks-supplied drivers do).

� The device’s abort option is enabled. This is done with an ioctl() call, usually
in the root task in usrConfig.c. For information on enabling the target shell
abort character, see tty Options, p.132.

Also, you may occasionally enter an expression that causes the target shell to incur
a fatal error such as a bus/address error or a privilege violation. Such errors
normally result in the suspension of the offending task, which allows further
debugging.

However, when such an error is incurred by the target shell task, VxWorks
automatically restarts the target shell, because further debugging is impossible
without it. Note that for this reason, as well as to allow the use of breakpoints and
single-stepping, it is often useful when debugging to spawn a routine as a task
instead of just calling it directly from the target shell.

When the target shell is aborted for any reason, either because of a fatal error or
because it is aborted from the terminal, a task trace is displayed automatically. This
trace shows where the target shell was executing when it died.

Note that an offending routine can leave portions of the system in a state that may
not be cleared when the target shell is aborted. For instance, the target shell might
have taken a semaphore, which cannot be given automatically as part of the abort.
247

VxWorks 5.5
Programmer’s Guide
6.2.7 Using a Remote Login to the Target Shell

Remote Login From Host: telnet and rlogin

When VxWorks is first booted, the target shell’s terminal is normally the system
console. You can use telnet to access the target shell from a host over the network
if you select INCLUDE_TELNET for inclusion in the project facility VxWorks view
(see Tornado User’s Guide: Projects). Defining INCLUDE_TELNET creates the
tTelnetd task. To access the target shell over the network, enter the following
command from the host (targetname is the name of the target VxWorks system):

% telnet "targetname"

UNIX host systems also use rlogin to provide access to the target shell from the
host. Select INCLUDE_RLOGIN for inclusion in the project facility VxWorks view
to create the tRlogind task. However, note that VxWorks does not support telnet
or rlogin access from the VxWorks system to the host.

A message is printed on the system console indicating that the target shell is being
accessed via telnet or rlogin, and that it is no longer available from its console.

If the target shell is being accessed remotely, typing at the system console has no
effect. The target shell is a single-user system—it allows access either from the
system console or from a single remote login session, but not both simultaneously.
To prevent someone from remotely logging in while you are at the console, use the
routine shellLock() as follows:

-> shellLock 1

To make the target shell available again to remote login, enter the following:

-> shellLock 0

To end a remote-login target shell session, call logout() from the target shell. To
end an rlogin session, type TILDE and DOT as the only characters on a line:

-> ~.

Remote Login Security

You can be prompted to enter a login user name and password when accessing
VxWorks remotely:
248

6

6
Target Tools
VxWorks login: user_name
Password: password

The remote-login security feature is enabled by selecting INCLUDE_SECURITY for
inclusion in the project facility VxWorks view. The default login user name and
password provided with the supplied system image is target and password. You can
change the user name and password with the loginUserAdd() routine, as follows:

-> loginUserAdd "fred", "encrypted_password"

To obtain encrypted_password, use the tool vxencrypt on the host system. This tool
prompts you to enter your password, and then displays the encrypted version.

To define a group of login names, include a list of loginUserAdd() commands in
a startup script and run the script after the system has been booted. Or include the
list of loginUserAdd() commands to the file usrConfig.c, then rebuild VxWorks.

The remote-login security feature can be disabled at boot time by specifying the
flag bit 0x20 (SYSFLAG_NO_SECURITY) in the flags parameter on the boot line (see
Tornado Getting Started). This feature can also be disabled by deselecting
INCLUDE_SECURITY in the project facility VxWorks view.

6.2.8 Distributing the Demangler

The Wind River Target Shell provided as part of the suite of VxWorks development
tools includes an unlinked copy of the demangler library. This library is licensed
under the GNU Library General Public License Version 2, June 1991 - a copy of
which can be found at www.gnu.org or by downloading sources to your GNU
toolchain from the WindSurf site. Under this license the demangler library can be
used without restriction during development, but VxWorks developers should be
aware of the restrictions provided within the Library General Public License
should the library be linked with application code as a derivative work and
distributed to third parties.

If VxWorks developers wish to distribute the Wind River Target Shell while
avoiding the Library General Public License restrictions, then the demangler
library should be excluded from the project.

NOTE: The values for the user name and password apply only to remote login into
the VxWorks system. They do not affect network access from VxWorks to a remote
system; See VxWorks Network Programmer’s Guide: rlogin and telnet, Host Access
Applications.
249

VxWorks 5.5
Programmer’s Guide
To remove the demangler from a kernel built with the Tornado project facility
simply remove the “C++ symbol demangler” component.

To remove the demangler from a kernel built from a BSP (command line build)
define the macro INCLUDE_NO_CPLUS_DEMANGLER in config.h.

Excluding this library will not affect the operation of the Wind River Target Shell
but will reduce the human readability of C++ identifiers and symbols.

6.3 Target-Resident Loader

VxWorks lets you add code to a target system at run-time. This operation, called
loading, or downloading, allows you to install target applications or to extend the
operating system itself.

The downloaded code can be a set of functions, meant to be used by some other
code (the equivalent of a library in other operating systems), or it can be an
application, meant to be executed by a task or a set of tasks. The units of code that
can be downloaded are referred to as object modules.

The ability to load individual object modules brings significant flexibility to the
development process, in several different ways. The primary use of this facility
during development is to unload, recompile, and reload object modules under
development. The alternative is to link the developed code into the VxWorks
image, to rebuild this image, and to reboot the target, every time the development
code must be recompiled.

The loader also enables you to dynamically extend the operating system, since
once code is loaded, there is no distinction between that code and the code that was
compiled into the image that booted.

Finally, you can configure the loader to optionally handle memory allocation, on a
per-load basis, for modules that are downloaded. This allows flexible use of the
target's memory. The loader can either dynamically allocate memory for
downloaded code, and free that memory when the module is unloaded; or, the
caller can specify the addresses of memory that has already been allocated. This
allows the user more control over the layout of code in memory. For more
information, see 6.3.5 Specifying Memory Locations for Loading Objects, p.255.

The VxWorks target loader functionality is provided by two components: the
loader proper, which installs the contents of object modules in the target system's
250

6

6
Target Tools
memory; and the unloader, which uninstalls object modules. In addition, the
loader relies on information provided by the system symbol table.

6.3.1 Configuring VxWorks with the Loader

By default, the loader is not included in the VxWorks image. To use the target
loader, you must configure VxWorks with the INCLUDE_LOADER component. The
INCLUDE_LOADER component is discussed further in subsequent sections and in
the loadLib entry in the VxWorks API Reference. Adding this component
automatically includes several other components that, together, provide complete
loader functionality:

INCLUDE_MODULE_MANAGER
Provides facilities for managing loaded modules and obtaining information
about them. For more information, see the entry for moduleLib in the VxWorks
Reference Manual.

INCLUDE_SYM_TBL
Provides facilities for storing and retrieving symbols. For more information,
see 6.4 Target-Resident Symbol Tables, p.261 and the entry for symLib in the
VxWorks Reference Manual. For information about configuration of the symbol
table, see the 6.4.1 Configuring VxWorks with Symbol Tables, p.262.

INCLUDE_SYM_TBL_INIT
Specifies a method for initializing the system symbol table.

Including the loader does not automatically include the unloader. To add the
unloader to your system, include the following component:

INCLUDE_UNLOADER
Provides facilities for unloading modules. For additional information on
unloading, see unldLib entry in the VxWorks API Reference.

INCLUDE_SYM_TBL_SYNC
Provides host-target symbol table and module synchronization.

NOTE: The target-resident loader is often confused with the bootloader, which is
used to install the kernel image in memory. Although these two tools perform
similar functions, and share some support code, they are separate entities. The
bootloader loads only complete images, and does not perform relocations.
251

VxWorks 5.5
Programmer’s Guide
6.3.2 Target-Loader API

Table 6-2 and Table 6-3 list the API routines and shell commands available for
module loading and unloading.

Note that all of the loader routines can be called directly from the shell or from
code. The shell commands, however, are intended to be used only from the shell, not
from within programs.3 In general, shell commands handle auxiliary operations,
such as opening and closing a file; they also print their results and any error
messages to the console.

The use of some of these routines and commands is discussed in the following
sections.

! CAUTION: If you want to use the target-resident symbol tables and loader in
addition to the Tornado host tools, you must configure VxWorks with the
INCLUDE_SYM_TBL_SYNC component to provide host-target symbol table and
module synchronization. For more information, see 6.4.4 Using the VxWorks System
Symbol Table, p.266.

Table 6-2 Routines for Loading and Unloading Object Modules

Routine Description

loadModule() Loads an object module.

loadModuleAt() Loads an object module into a specific memory location.

unldByModuleId() Unloads an object module by specifying a module ID.

unldByNameAndPath() Unloads an object module by specifying a name and path.

3. In future releases, calling shell commands programmatically may not be supported.

Table 6-3 Shell Command for Loading and Unloading Object Modules

Command Description

ld() Loads an object module.

reld() Unloads and reloads an object module by specifying a filename or module ID.

unld() Unloads an object module by specifying a filename or module ID.
252

6

6
Target Tools
For detailed information, see the loadLib, unldLib, and usrLib entries in the
VxWorks API Reference, as well as 6.3.3 Summary List of Loader Options, p.253.

6.3.3 Summary List of Loader Options

The loader's behavior can be controlled using load flags passed to loadLib and
unldLib routines. These flags can be combined (using an OR operation), although
some are mutually exclusive. Table 6-4, Table 6-5, and Table 6-5 group these
options by category.

Table 6-4 Loader Options for Symbol Registration

Option Hex Value Description

LOAD_NO_SYMBOLS 0x2 No symbols from the module are registered in the system's symbol
table. Consequently, linkage against the code module is not possible.
This option is useful for deployed systems, when the module is not
supposed to be used in subsequent link operations.

LOAD_LOCAL_SYMBOLS 0x4 Only local (private) symbols from the module are registered in the
system's symbol table. No linkage is possible against this code
module92s public symbols. This option is not very useful by it self, but
is one of the base options for LOAD_ALL_SYMBOLS.

LOAD_GLOBAL_SYMBOLS 0x8 Only global (public) symbols from the module are registered in the
system's symbol table. No linkage is possible against this code
module's private symbols. This is the loader's default when the
loadFlags parameter is left as NULL.

LOAD_ALL_SYMBOLS 0xC Local and global symbols from the module are registered in the
system's symbol table. This option is useful for debugging.

Table 6-5 Loader Option for Code Module Visibility

Option Hex Value Description

HIDDEN_MODULE 0x10 The code module is not visible from the moduleShow() routine or the
Tornado tools. This is useful on deployed systems when an automatically
loaded module should not be detectable by the user.
253

VxWorks 5.5
Programmer’s Guide
If several matching symbols exist for options LOAD_COMMON_MATCH_USER
and LOAD_COMMON_MATCH_ALL, the order of precedence is: symbols in the bss
segment, then symbols in the data segment. If several matching symbols exist
within a single segment type, the symbol most recently added to the target server
symbol table is used.

6.3.4 Loading C++ Modules

The files produced by the toolchains are not sufficiently processed for the loader to
handle them properly. For instructions on preparing a C++ file for download, see
section 7.3.1 Munching C++ Application Modules, p.278.

C++ modules may include code that must be executed automatically when they
are loaded and unloaded. This code consists of constructors and destructors for
static instances of classes.

Table 6-6 Loader Options for Resolving Common Symbols

Option Hex Value Description

LOAD_COMMON_MATCH_NONE 0x100 Keeps common symbols isolated, visible from the object
module only. This option prevents any matching with
already-existing symbols. Common symbols are added to
the symbol table unless LOAD_NO_SYMBOLS is set.
This is the default option.

LOAD_COMMON_MATCH_USER 0x200 Seeks a matching symbol in the system symbol table, but
considers only symbols in user modules, not symbols that
were in the original booted image. If no matching symbol
exists, this option behaves like
LOAD_COMMON_MATCH_NONE.

LOAD_COMMON_MATCH_ALL 0x400 Seeks a matching symbol in the system symbol table,
considering all symbols. If no matching symbol exists,
this option behaves like
LOAD_COMMON_MATCH_NONE.

Table 6-7 Unloader Option for Breakpoints and Hooks

Option Hex Value Description

UNLD_KEEP_BREAKPOINTS 0x1 T he breakpoints are left in place when the code module is unloaded.
This is useful for debugging, as all breakpoints are otherwise
removed from the system when a module is unloaded.
254

6

6
Target Tools
Constructors must be executed before any other code in the code module is
executed. Similarly, destructors must be executed after the code module is no
longer to be used, but before the module is unloaded. In general, executing
constructors at load time and destructors at unload time is the simplest way to
handle them. However, for debugging purposes, a user may want to decouple the
execution of constructors and destructors from the load and unload steps.

For this reason, the behavior of the loader and unloader regarding constructors
and destructors is configurable. When the C++ strategy is set to AUTOMATIC (1),
the constructors and destructors are executed at load and unload time. When the
C++ strategy is set to MANUAL (0), constructors and destructors are not executed
by the loader or unloader. When the C++ strategy is MANUAL, the functions
cplusCtors() and cplusDtors() can be used to execute the constructors or
destructors for a particular code module.

The function cplusXtorSet() is available to change the C++ strategy at runtime.
The default setting is AUTOMATIC.

For more information, see the cplusLib and loadLib entries in the VxWorks API
Reference.

6.3.5 Specifying Memory Locations for Loading Objects

By default, the loader allocates the memory necessary to hold a code module. It is
also possible to specify where in memory any or all of the text, data, and bss
segments of an object module should be installed using the loadModuleAt()
command. If an address is specified for a segment, then the caller must allocate
sufficient space for the segment at that address before calling the load routine. If
no addresses are specified, the loader allocates one contiguous area of memory for
all three of the segments.

For any segment that does not have an address specified, the loader allocates the
memory (using memPartAlloc() or, for aligned memory, using memalign()). The
base address can also be set to the value LOAD_NO_ADDRESS, in which case the
loader replaces the LOAD_NO_ADDRESS value with the actual base address of the
segment once the segment is installed in memory.

When working with architectures that use the ELF object module format, an
additional complication arises. The basic unit of information in a relocatable ELF
object file is a section. In order to minimize memory fragmentation, the loader
gathers sections so that they form the logical equivalent of an ELF segment. For
simplicity, these groups of sections are also referred to as segments. For more
information, see ELF object module format, p.257).
255

VxWorks 5.5
Programmer’s Guide
The VxWorks loader creates three segments: text, data, and bss. When gathering
sections together to form segments, the sections are placed into the segments in the
same order in which they occur in the ELF file. It is sometimes necessary to add
extra space between sections to satisfy the alignment requirements of all of the
sections. When allocating space for one or more segments, care must be taken to
ensure that there is enough space to permit all of the sections to be aligned
properly. (The alignment requirement of a section is given as part of the section
description in the ELF format. The binary utilities readelfarch and objdumparch
can be used to obtain the alignment information.)

In addition, the amount of padding required between sections depends on the
alignment of the base address. To ensure that there will be enough space without
knowing the base address in advance, allocate the block of memory so that it is
aligned to the maximum alignment requirement of any section in the segment. So,
for instance, if the data segment contains sections requiring 128 and 264 byte
alignment, in that order, allocate memory aligned on 264 bytes.

The other object module formats used in VxWorks (a.out and PECOFF) have basic
units of information that correspond more closely to the VxWorks model of a
single unit each of text, data and bss. Therefore when working with architectures
that use either the a.out or PECOFF file formats, this problem of allocating extra
space between sections does not arise.

The unloader can remove the sections wherever they have been installed, so no
special instructions are required to unload modules that were initially loaded at
specific addresses. However, if the base address was specified in the call to the
loader, then, as part of the unload, unloader does not free the memory area used to
hold the segment. This allocation was performed by the caller, and the
de-allocation must be as well.

6.3.6 Constraints Affecting Loader Behavior

The following sections describe the criteria used to load modules.

Relocatable Object Files

A relocatable file is an object file for which text and data sections are in a transitory
form, meaning that some addresses are not yet known. An executable file is one
which is fully linked and ready to run at a specified address. In many operating
systems, relocatable object modules are an intermediate step between source (.c, .s,
.cpp) files and executable files, and only executable files may be loaded and run.
256

6

6
Target Tools
The relocatable files produced by the toolchains are labeled with a .o extension.

However, in VxWorks, relocatable (.o) files are used for application code, for the
following reason. To construct an executable image for download, the program’s
execution address and the addresses of externally defined symbols, such as library
routines, must be known. Since the layout of the VxWorks image and downloaded
code in memory are so flexible, these items of information are not available to a
compiler running on a host machine. Therefore, the code handled by the
target-resident loader must be in relocatable form, rather than an executable.

Once installed in the system's memory, the entity composed of the object module's
code, data, and symbols is called a code module. For information about installed
code modules, see the individual routine entries under moduleLib in the VxWorks
API Reference.

Object Module Formats

There are several standard formats for both relocatable and executable object files.
In the Tornado development environment, there is a single preferred object
module format for each supported target architecture. For most architectures, the
preferred format is now Executable and Linkable Format (ELF). Exceptions are the
68K toolchain, which produces a.out object files, and the NT simulator toolchain,
which produces pecoff object files.

The VxWorks loader can handle most object files generated by the supported
toolchains.

ELF object module format

An relocatable ELF object file is essentially composed of two categories of
elements: the headers and the sections. The headers describe the sections, and the
sections contain the actual text and data to be installed.

An executable ELF file is a collection of segments, which are aggregations of
sections. The VxWorks loader performs an aggregation step on the relocatable
object files that is similar to the process carried out by toolchains when producing
an executable ELF file. The resulting image consists of one text segment, one data
segment, and one bss segment. (A general ELF executable file may have more than
one segment of each type, but the VxWorks loader uses the simpler model of at

NOTE: Not all possible relocation operations that are supported by an architecture
are necessarily supported by the loader. This will usually only affect users writing
assembly code.
257

VxWorks 5.5
Programmer’s Guide
most one segment of each type.) The loader installs the following categories of
sections in the system's memory:

� text sections that hold the application's instructions

� data sections that hold the application's initialized data

� bss sections that hold the application's un-initialized data

� read-only data sections that hold the application's constant data

Read-only data sections are placed in the text segment by the loader.

a.out Object Module Format

Object files in the a.out file format are fairly simple, and are already very close to
the VxWorks abstraction of code modules. Similarly to ELF files, they contain both
headers and sections. In other literature on file formats, the 'sections' of an a.out file
are sometimes referred to as sections and sometimes as segments, even within the
same work, depending on the context. Since only one text section, one data section,
and one bss section are permitted in an a.out file, a.out sections are essentially
equivalent segments, for our purposes.

The text, data, and bss sections of the a.out object module become the text, data
and bss segments of the loaded code module.

PECOFF Object Module Format

The PECOFF object module format is only used in VxWorks for the Windows
simulator architecture.

The basic unit of information in a PECOFF object module is also called a section.
The allowed size a section is limited by the PECOFF file format. Therefore, it is
possible, although not common, to have more than one text or data section in a
PECOFF file.

The VxWorks target loader only handles PECOFF object files that have at most one
text section, one data section, and one bss section. These sections become the text,
data, and bss segments of VxWorks code module.

Linking and Reference Resolution

The VxWorks loader performs some of the same tasks as a traditional linker in that
it prepares the code and data of an object module for the execution environment.
This includes the linkage of the module's code and data to other code and data.
258

6

6
Target Tools
The loader is unlike a traditional linker in that it does this work directly in the
target system's memory, and not in producing an output file.

In addition, the loader uses routines and variables that already exist in the
VxWorks system, rather than library files, to relocate the object module that it
loads. The system symbol table (see 6.4.4 Using the VxWorks System Symbol Table,
p.266) is used to store the names and addresses of functions and variables already
installed in the system.This has the side effect that once symbols are installed in the
system symbol table, they are available for future linking by any module that is
loaded. Moreover, when attempting to resolve undefined symbols in a module, the
loader uses all global symbols compiled into the target image, as well as all global
symbols of previously loaded modules. As part of the normal load process, all of
the global symbols provided by a module are registered in the system symbol
table. You can override this behavior by using the LOAD_NO_SYMBOLS load flag
(see Table 6-4).

The system symbol table allows name clashes to occur. For example, suppose a
symbol named func exists in the system. A second symbol named func is added to
the system symbol table as part of a load. From this point on, all links to func are
to the most recently loaded symbol. See also, 6.4.1 Configuring VxWorks with Symbol
Tables, p.262.

The Sequential Nature of Loading

The VxWorks loader loads code modules in a sequential manner. That is, a separate
load is required for each separate code module. Suppose a user has two code
modules named A_module and B_module, and A_module references symbols
that are contained in B_module. The user may either use the host-resident linker
to combine A_module and B_module into a single module, or may load
B_module first, and then load A_module.

When code modules are loaded, they are irreversibly linked to the existing
environment; meaning that, once a link from a module to an external symbol is
created, that link cannot be changed without unloading and reloading the module.

Therefore dependencies between modules must be taken into account when
modules are loaded to ensure that references can be resolved for each new module,
using either code compiled into the VxWorks image or modules that have already
been loaded into the system.

Failure to do so results in incompletely resolved code, which retains references to
undefined symbols at the end of the load process. For diagnostic purposes, the
loader prints a list of missing symbols to the console. This code should not be
259

VxWorks 5.5
Programmer’s Guide
executed, since the behavior when attempting to execute an improperly relocated
instruction is not predictable.

Normally, if a load fails, the partially installed code is removed. However, if the
only failure is that some symbols are unresolved, the code is not automatically
unloaded. This allows the user to examine the result of the failed load, and even to
execute portions of the code that are known to be completely resolved. Therefore,
code modules that have unresolved symbols must be removed by a separate
unload command, unld().

Note that the sequential nature of the VxWorks loader means that unloading a
code module which has been used to resolve another code module may leave
references to code or data which are no longer available. Execution of code holding
such dangling references may have unexpected results.

Resolving Common Symbols

Common symbols provide a challenge for the VxWorks loader that is not
confronted by a traditional linker. Consider the following example:

#include <stdio.h>

int willBeCommon;

void main (void) {}
{
...
}

The symbol willBeCommon is uninitialized, so it is technically an undefined
symbol. Many compilers will generate a 'common' symbol in this case.

ANSI C allows multiple object modules to define uninitialized global symbols of
the same name. The linker is expected to consistently resolve the various modules
references to these symbols by linking them against a unique instance of the
symbol. If the different references specify different sizes, the linker should define
a single symbol with the size of the largest one and link all references against it.

This is not a difficult task when all of the modules are present at the time linkage
takes place. However, because VxWorks modules are loaded sequentially, in
independent load operations, the loader cannot know what modules will be
loaded or what sets of common symbols might be encountered in the future.

Therefore, the VxWorks target loader has an option that allows control over how
common symbols are linked. The default behavior for the loadLib API functions
is to treat common symbols as if there were no previous matching reference
260

6

6
Target Tools
(LOAD_COMMON_MATCH_NONE). The result is that every loaded module has its
own copy of the symbol. The other possible behaviors are to permit common
symbols to be identified either with any matching symbol in the symbol table
(LOAD_COMMON_MATCH_ALL), or with any matching symbol that was not in
the original booted image (LOAD_COMMON_MATCH_USER).

The option to specify matching of common symbols may be set in each call using
the loadLib API. Extreme care should be used when mixing the different possible
common matching behaviors for the loader. It is much safer to pick a single
matching behavior and to use it for all loads. For detailed descriptions of the
matching behavior under each option, see Table 6-6.

6.4 Target-Resident Symbol Tables

A symbol table is a data structure that stores information that describes the
routines, variables, and constants in all modules, and any variables created from
the shell. There is a symbol table library, which can be used to manipulate the two
different types of symbol tables: a user system table and a system symbol table,
which is the most commonly used.

Symbol Entries

Each symbol in the table comprises three items:

name
The name is a character string derived from the name in the source code.

value
The value is usually the address of the element that the symbol refers to: either
the address of a routine, or the address of a variable (that is, the address of the
contents of the variable).

NOTE: Note that the shell load command, ld, has a different mechanism for
controlling how common symbols are handled and different default behavior. For
details, see the reference entry for usrLib.
261

VxWorks 5.5
Programmer’s Guide
type
The type is provides additional information about the symbol. For symbols in
the system symbol table, it is one of the types defined in
installDir/target/h/symbol.h; for example, SYM_UNDF, SYM_TEXT, and so on.
For user symbol tables, this field can be user-defined.

Symbol Updates

The symbol table is updated whenever modules are loaded into, or unloaded from,
the target. You can control the precise information stored in the symbol table by
using the loader options listed in Table 6-4.

Searching the Symbol Library

You can easily search all symbol tables for specific symbols. To search from the
shell, use lkup(). For details, see the lkup() reference entry. To search
programmatically, use the symbol library API's, which can be used to search the
symbol table by address, by name, and by type, and a function that may be used
to apply a user-supplied function to every symbol in the symbol table. For details,
see the symLib reference entry.

6.4.1 Configuring VxWorks with Symbol Tables

The basic configuration is required for all symbol tables. This configuration
provides the symbol table library, and is sufficient for a user symbol table.
However, it is not sufficient for creating a system symbol table. This section
describes both the basic configuration, and the additional configuration necessary
to create a system symbol table.

For information about user symbol tables, see 6.4.6 Creating User Symbol Tables,
p.268. For information about the system symbol table, see 6.4.4 Using the VxWorks
System Symbol Table, p.266.

Basic Configuration

The most basic configuration for a symbol table is to include the component,
INCLUDE_SYM_TBL. This provides the basic symbol table library, symLib, (which
is not equivalent to the system symbol table) and sufficient configuration for
262

6

6
Target Tools
creating user symbol tables. The symbol table library component includes
configuration options, which allow you to modify the symbol table width and
control whether name clashes are permitted.

� Hash Table Width

The INCLUDE_SYM_TBL component includes a configuration parameter that
allows the user to change the default symbol table “width”. The parameter
SYM_TBL_HASH_SIZE_LOG2 defines the “width” of the symbol table’s hash
table. It takes a positive value that is interpreted as a power of two. The default
value for SYM_TBL_HASH_SIZE_LOG2 is 8; thus, the default “width” of the
symbol table is 256. Using smaller values requires less memory, but degrades
lookup performance, so the search takes longer on average. For information
about changing this parameter, see the Tornado User’s Guide: Configuration and
Build.

� Name Clash Handling

The system symbol table, sysSymTbl, can be configured to allow or disallow
name clashes. The flags used to call symTblCreate() determine whether or not
duplicate names are permitted in a symbol table. If set to FALSE, only one
occurrence of a given symbol name is permitted. When name clashes are
permitted, the most recently added symbol of several with the same name is
the one that is returned when searching the symbol table by name.

System Symbol Table Configuration

To include information about the symbols present in the kernel—and therefore to
enable the shell, loader, and debugging facilities to function properly—a system
symbol table must be created and initialized. You create a system symbol table at
initialization time by including one of the following components:

� INCLUDE_STANDALONE_SYM_TBL . Creates a built-in system symbol table,
in which both the system symbol table and the VxWorks image are contained in
the same module. This type of symbol table is described in 6.4.2 Creating a Built-In
System Symbol Table, p.264.

� INCLUDE_NET_SYM_TBL . Creates an separate system symbol table as a .sym
file that is downloaded to the VxWorks system. This type of symbol table is
described in 6.4.3 Creating a Loadable System Symbol Table, p.265.
263

VxWorks 5.5
Programmer’s Guide
When the system symbol table is first created at system initialization time, it
contains no symbols. Symbols must be added to the table at run-time. Each of these
components handles the process of adding symbols differently.

6.4.2 Creating a Built-In System Symbol Table

A built-in system symbol table copies information into wrapper code, which is
then compiled and linked into the kernel when the system is built.

Generating the Symbol Information

A built-in system symbol table relies on the makeSymTbl utility to obtain the
symbol information. This utility uses the gnu utility nmarch to generate
information about the symbols contained in the image. Then it processes this
information into the file symTbl.c that contains an array, standTbl, of type
SYMBOL described in Symbol Entries, p.261. Each entry in the array has the symbol
name and type fields set. The address (value) field is not filled in by makeSymTbl.

Compiling and Linking the Symbol File

The symTbl.c file is treated as a normal .c file, and is compiled and linked with the
rest of the VxWorks image. As part of the normal linking process, the toolchain
linker fills in the correct address for each global symbol in the array. When the
build completes, the symbol information is available in the image as a global array
of VxWorks SYMBOL's. After the kernel image is loaded into target memory at
system initialization, the information from the global SYMBOL array is used to
construct the system symbol table.

The definition of the standTbl array can be found in the following files (only after
a build). These files are generated as part of the build of the VxWorks image:

NOTE: When building in a BSP directory, rather than using the project facility,
including the component INCLUDE_STANDALONE_SYM_TBL is not sufficient.
Instead, build the make target “vxWorks.st.” This configuration is for a
“standalone” image, and does not initialize the network facilities on the target. To
use both the standalone symbol table and the target network facilities, configure
your image using the project facility. For details, see the Tornado User’s Guide:
Projects.
264

6

6
Target Tools
installDir/target/config/BSPname/symTbl.c
for images build directly from a BSP directory

installDir/target/proj/projDir/buildDir/symTbl.c
for images using the project facility

Advantages of Using a Built-in System Symbol Table

Although this method creates a resulting VxWorks image (module file) that is
larger than it would be without symbols, the built-in symbol table has advantages,
some of which are useful when the download link is slow. These advantages are:

� It saves memory if you are not otherwise using the target loader, because it
does not require the target loader (and associated components) to be
configured into the system.

� It does not require the target to have access to a host (unlike the downloadable
system symbol table).

� It is faster than loading two files (the image and .sym files) because network
operations4 on a file take longer than the data transfer to memory.

� It is useful in deployed ROM-based systems that have no network
connectivity, but require the shell as user interface.

6.4.3 Creating a Loadable System Symbol Table

A loadable symbol table is built into a separate object module file (vxWorks.sym
file). This file is downloaded to the system separately from the system image, at
which time the information is copied into the symbol table.

Creating the .sym File

The loadable system symbol table uses a vxWorks.sym file, rather than the
symTbl.c file. The vxWorks.sym file is created by using the objcopy utility to strip
all sections, except the symbol information, from the final VxWorks image. The
resulting symbol information is placed into a file named vxWorks.sym.

For architectures using the ELF object module format for the VxWorks image, the
vxWorks.sym file is also in the ELF format, and contains only a SYMTAB section

4. That use open(), seek(), read(), and close().
265

VxWorks 5.5
Programmer’s Guide
and a STRTAB section. In general, the file vxWorks.sym is in the same object format
as other object files compiled for the target by the installed toolchain.

Loading the .sym File

During boot and initialization, the vxWorks.sym file is downloaded using the
loader, which directly calls loadModuleAt(). To download the vxWorks.sym file,
the loader uses the current default device, which is described in 4.2.1 Filenames and
the Default Device, p.109.

To download the VxWorks image, the loader also uses the default device, as is
current at the time of that download. Therefore, the default device used to
download the vxWorks.sym file may, or may not, be the same device. This is
because the default device can be set, or reset, by other initialization code that runs.
This modification can happen after the VxWorks image is downloaded, but before
the symbol table is downloaded.

Nevertheless, in standard VxWorks configurations, that do not include customized
system initialization code, the default device at the time of the download of the
vxWorks.sym, is usually set to one of the network devices, and using either rsh or
ftp as the protocol.

Advantages of Using the Loadable System Symbol Table

Using a downloadable symbol table requires that the loader component be
present. Therefore, the system must have sufficient memory for the loader and its
associated components. A summary of the advantages of using the loadable
system symbol table are:

� It is convenient, if the loader is required for other purposes as well.

� It is slightly faster to build than a built-in system symbol table.

6.4.4 Using the VxWorks System Symbol Table

Once it is initialized, the VxWorks system symbol table includes a complete list of
the names and addresses of all global symbols in the compiled image that is
booted. This information is needed on the target to enable the full functionality of
the 'target tools' libraries. For example:

The target tools maintain the system symbol table so that it contains up to date
266

6

6
Target Tools
name and address information for all of the code statically compiled into the
system or dynamically downloaded. (You can use the LOAD_NO_SYMBOLS
option to hide loaded modules, so that their symbols do not appear in the system
symbol table; see Table 6-5).

If the facilities provided by the symbol table library are needed for non-operating
system code, another symbol table may be created and manipulated using the
symbol library.

Symbols are dynamically added to, and removed from, the system symbol table
each time any of the following occurs:

� as modules are loaded and unloaded

� as variables are dynamically created using the shell

� by the wdb agent when synchronizing symbol information with the host

The exact dependencies between the system symbol table and the other target tools
are as follows:

Loader. The loader requires the system symbol table. The system symbol table
does not require the presence of the loader. The target-based loader and code
module management requires the system symbol table when loading code that
must be linked against code already on the target.

Debugging Tools. The target-based symbolic debugging, facilities and user
commands such as i and tt, rely on the system symbol table to provide information
about entry points of tasks, symbolic contents of call stacks, and so on. Without the
system symbol table, they can still be used but, their usefulness is greatly reduced.

Target Shell. The target shell does not strictly require the system symbol table, but
its functionality is greatly limited without it. The target shell requires the system
symbol table to provide the ability to run functions using their symbolic names.
The target-based shell uses the system symbol table to execute shell commands, to
call system routines, and to edit global variables. The target shell also includes the
library usrLib, which contains the commands i, ti, sp, period, and bootChange.

wdb Agent. The wdb agent adds symbols to the system symbol table as part of the
symbol synchronization with the host.
267

VxWorks 5.5
Programmer’s Guide
6.4.5 Synchronizing Host and Target-Resident Symbol Tables

There is another symbol table, the target server symbol table, which resides on the
host and is used and maintained by the host tools. This symbol table is referred to
in this chapter as the host symbol table. The host symbol table can exist even if
there is no system symbol table on the target. There is an optional mechanism that
relies on the wdb agent, which is used to synchronize the host and target symbol
tables information (INCLUDE_SYM_TBL_SYNC). To enable this mechanism on the
host, the target server must be started with the -s option. For more information on
setting this option for the target server, see the Tornado User’s Guide.

6.4.6 Creating User Symbol Tables

Although it is possible for a user application to manipulate symbols in the system’s
symbol table, this is not a recommended practice. Addition and removal of
symbols to and from the symbol table is designed to be carried out only by
operating system libraries. Any other use of the system symbol table may interfere
with the proper operation of the operating system; and even simply introducing
additional symbols could have an adverse and unpredictable effect on linking any
modules that are subsequently downloaded.

Therefore, user-defined symbols should not be added programmatically to the
system symbol table. Instead, when an application requires a symbol table for its
own purposes, a user symbol table should be created. For more information, see
the symLib entry in the VxWorks API Reference.

6.5 Show Routines

VxWorks includes system information routines which print pertinent system
status on the specified object or service; however, they show only a snapshot of the

NOTE: If you choose to use both the host-resident and target-resident tools at the
same time, use the synchronization method to ensure that both the host and target
resident tools share the same list of symbols. The synchronization applies only to
symbols and modules, not to other information such as breakpoints.
268

6

6
Target Tools
system service at the time of the call and may not reflect the current state of the
system. To use these routines, you must define the associated configuration macro
(see the Tornado User’s Guide: Projects). When you invoke them, their output is sent
to the standard output device. Table 6-8 lists common system show routines:

An alternative method of viewing system information is the Tornado browser,
which can be configured to update system information periodically. For
information on this tool, see the Tornado User’s Guide: Browser.

VxWorks also includes network information show routines, which are described in
the VxWorks Network Programmer's Guide. These routines are initialized by defining
INCLUDE_NET_SHOW in your VxWorks configuration; see the Tornado User’s
Guide: Configuration and Build. Table 6-9 lists commonly called network show
routines:

Table 6-8 Show Routines

Call Description Configuration Macro

envShow() Displays the environment for a given
task on stdout.

INCLUDE_TASK_SHOW

memPartShow() Shows the partition blocks and statistics. INCLUDE_MEM_SHOW

memShow() System memory show routine. INCLUDE_MEM_SHOW

moduleShow() Shows statistics for all loaded modules. INCLUDE_MODULE_MANAGER

msgQShow() Message queue show utility (both
POSIX and wind).

INCLUDE_POSIX_MQ_SHOW
INCLUDE_MSG_Q_SHOW

semShow() Semaphore show utility (both POSIX
and wind).

INCLUDE_SEM_SHOW,
INCLUDE_POSIX_SEM_SHOW

show() Generic object show utility.

stdioShow() Standard I/O file pointer show utility. INCLUDE_STDIO_SHOW

taskSwitchHookShow() Shows the list of task switch routines. INCLUDE_TASK_HOOKS_SHOW

taskCreateHookShow() Shows the list of task create routines. INCLUDE_TASK_HOOKS_SHOW

taskDeleteHookShow() Shows the list of task delete routines. INCLUDE_TASK_HOOKS_SHOW

taskShow() Displays the contents of a task control
block.

INCLUDE_TASK_SHOW

wdShow() Watchdog show utility. INCLUDE_WATCHDOGS_SHOW
269

VxWorks 5.5
Programmer’s Guide
6.6 Common Problems

This section lists frequently encountered problems that can occur when using the
target tools.

Target Shell Debugging Never Hits a Breakpoint

I set a breakpoint on a function I called from the target shell, but the breakpoint is
not being hit. Why not?

Table 6-9 Network Show Routines

Call Description

ifShow() Display the attached network interfaces.

inetstatShow() Display all active connections for Internet protocol sockets.

ipstatShow() Display IP statistics.

netPoolShow() Show pool statistics.

netStackDataPoolShow() Show network stack data pool statistics.

netStackSysPoolShow() Show network stack system pool statistics.

mbufShow() Report mbuf statistics.

netShowInit() Initialize network show routines.

arpShow() Display entries in the system ARP table.

arptabShow() Display the known ARP entries.

routestatShow() Display routing statistics.

routeShow() Display host and network routing tables.

hostShow() Display the host table.

mRouteShow() Print the entries of the routing table.
270

6

6
Target Tools
� Solution

Instead of running the function directly, use taskSpawn() with the function as the
entry point.

� Explanation

The target shell task runs with the VX_UNBREAKABLE option. Functions that are
called directly from the target shell command prompt, are executed within the
context of the target shell task. Therefore, breakpoints set within the directly called
function will not be hit.

Insufficient Memory

The loader reports insufficient memory to load a module; however, checking
available memory indicates the amount of available memory to be sufficient. What
is happening and how do I fix it?

� Solution

Download the file using a different device. Loading an object module from a host
file system mounted through NFS only requires enough memory for one copy of
the file (plus a small amount of overhead).

� Explanation

The target-resident loader calls the device drivers through a VxWorks’ transparent
mechanism for file management, which makes calls to open, close, and ioctl. If you
use the target-resident loader to load a module over the network (as opposed to
loading from a target-system disk), the amount of memory required to load an
object module depends on what kind of access is available to the remote file system
over the network. This is because, depending on the device that is actually being
used for the load, the calls initiate very different operations.

For some devices, the I/O library makes a copy of the file in target memory.
Loading a file that is mounted over a device using such a driver requires enough
memory to hold two copies of the file simultaneously. First, the entire file is copied
to a buffer in local memory when opened. Second, the file resides in memory when
it is linked to VxWorks. This copy is then used to carry out various seek and read
operations. Therefore, using these drivers requires sufficient memory available to
hold two copies of the file to be downloaded, as well as a small amount of memory
for the overhead required or the load operation.
271

VxWorks 5.5
Programmer’s Guide
“Relocation Does Not Fit” Error Message

When downloading, the following types of error messages occur:

"Relocation does not fit in 26 bits."

The actual number received in the error message varies (26, or 23, or ...) depending
on the architecture. What does this error mean and what should I do?

� Solution

Recompile the object file using -Xcode-absolute-far for the Diab compilers, and for
GNU compilers, the appropriate “long call” option, -mlongCallOption.

� Explanation

Some architectures have instructions that use less than 32 bits to reference a nearby
position in memory. Using these instructions can be more efficient than always
using 32 bits to refer to nearby places in memory.

The problem arises when the compiler has produced such a reference to something
that lies farther away in memory than the range that can be accessed with the
reduced number of bits. For instance, if a call to printf is encoded with one of these
instructions, the load may succeed if the object code is loaded near the kernel code,
but fail if the object code is loaded farther away from the kernel image.

Missing Symbols

Symbols in code modules downloaded from the host do not appear from the target
shell, and vice versa. Symbols created from the host shell are not visible from the
target shell, or symbols created from the target shell are not visible from the host
shell. Why is this happening, and how can I get them to appear?

� Solution

Check to see if the symbol synchronization is enabled for the target server as well
as compiled into the image. For more information, see 6.4.5 Synchronizing Host and
Target-Resident Symbol Tables, p.268.

� Explanation

The symbol synchronization mechanism must be enabled separately on the host
and and target.
272

6

6
Target Tools
Loader is Using Too Much Memory

Including the target loader causes the amount of available memory to be much
smaller. How can I get more memory?

� Solution

Use the host tools (windsh, host loader, and so on) rather than the target tools and
remove all target tools from your VxWorks image. For details, see the Tornado
User’s Guide.

� Explanation

Including the target loader causes the system symbol table to be included. This
symbol table contains the name, address, and type of every global symbol in the
compiled VxWorks image.

Using the target-resident loader takes additional memory away from your
application—most significantly for the target-resident symbol table required by
the target-resident loader.

Symbol Table Unavailable

The system symbol table failed to download onto my target. How can I use the
target shell to debug the problem, since I cannot call functions by name?

� Solution

Use addresses of functions and data, rather than using the symbolic names. The
addresses can be obtained from the VxWorks image on the host, using the nmarch
utility.

The following is an example from a Unix host:

> nmarch vxWorks | grep memShow
0018b1e8 T memShow
0018b1ac T memShowInit
273

VxWorks 5.5
Programmer’s Guide
Use this information to call the function by address from the target shell. (The
parentheses are mandatory when calling by address.)

-> 0x0018b1e8 ()

status bytes blocks avg block max block
------ --------- -------- ---------- ----------
current
free 14973336 20 748666 12658120
alloc 14201864 16163 878 -

cumulative
alloc 21197888 142523 148 -
value = 0 = 0x0
274

7

C++ Development
7.1 Introduction

This chapter provides information about C++ development for VxWorks using the
Wind River GNU and Diab toolchains.

For documentation on using C++ with the Tornado tools, see the chapters (either
in the this manual or in the Tornado User’s Guide) that are specific to the tool.

7.2 Working with C++ under VxWorks

! WARNING: GNU C++ and Diab C++ binary files are not compatible.

! WARNING: Any VxWorks task that uses C++ must be spawned with the
VX_FP_TASK option. Failure to use the VX_FP_TASK option can result in hard-to-
debug, unpredictable floating-point register corruption at run-time. By default,
tasks spawned from Tornado tools like the Wind Shell, Debugger and so on,
automatically have VX_FP_TASK enabled.
275

VxWorks 5.5
Programmer’s Guide
7.2.1 Making C++ Accessible to C Code

If you want to reference a (non-overloaded, global) C++ symbol from your C code
you must give it C linkage by prototyping it using extern “C”:

#ifdef __cplusplus
extern "C" void myEntryPoint ();
#else
void myEntryPoint ();
#endif

You can also use this syntax to make C symbols accessible to C++ code. VxWorks
C symbols are automatically available to C++ because the VxWorks header files
use this mechanism for declarations.

7.2.2 Adding Support Components

By default, VxWorks kernels contain only minimal C++ support. You can add C++
functionality by including any or all of the following components:

Basic Support Components

INCLUDE_CTORS_DTORS
(included in default kernels)
Ensures that compiler-generated initialization functions, including initializers
for C++ static objects, are called at kernel start up time.

INCLUDE_CPLUS
Includes basic support for C++ applications. Typically this is used in
conjunction with INCLUDE_CPLUS_LANG.

INCLUDE_CPLUS_LANG
Includes support for C++ language features such as new, delete, and exception
handling.

C++ Library Components

Several C++ library components are also available.
276

7

7
C++ Development
GNU-Specific Library Support Components

For the GNU compiler, these are:

INCLUDE_CPLUS
Includes all basic C++ run-time support in VxWorks. This enables you to
download and run compiled and munched C++ modules.

INCLUDE_CPLUS_STL
Includes support for the standard template library.

INCLUDE_CPLUS_STRING
Includes the basic components of the string type library.

INCLUDE_CPLUS_IOSTREAMS
Includes the basic components of the iostream library.

INCLUDE_CPLUS_COMPLEX
Includes the basic components of the complex type library.

INCLUDE_CPLUS_IOSTREAMS_FULL
Includes the full iostream library; this component requires and automatically
includes INCLUDE_CPLUS_IOSTREAMS.

INCLUDE_CPLUS_STRING_IO
Includes string I/O functions; this component requires and automatically
includes INCLUDE_CPLUS_STRING and INCLUDE_CPLUS_IOSTREAMS.

INCLUDE_CPLUS_COMPLEX_IO
Includes I/O for complex number objects; this component requires and
automatically includes INCLUDE_CPLUS_IOSTREAMS and
INCLUDE_CPLUS_COMPLEX.

Diab-Specific Library Support Components

For the Diab compiler, all C++ library functionality is encapsulated in a single
component:

INCLUDE_CPLUS_IOSTREAMS
Includes all library functionality.

For more information on configuring VxWorks to include or exclude these
components, see the Tornado User’s Guide: Projects.
277

VxWorks 5.5
Programmer’s Guide
7.2.3 The C++ Demangler

If you are using the target shell loader, you may want to include the
INCLUDE_CPLUS_DEMANGLER component. Adding the demangler allows target
shell symbol table queries to return human readable (demangled) forms of C++
symbol names. The demangler does not have to be included if you are using the
host-based Tornado tools. For information about distributing the demangler, see
6.2.8 Distributing the Demangler, p.249.

7.3 Initializing and Finalizing Static Objects

This section covers issues when programming with static C++ objects. These topics
include an additional host processing step, and special strategies for calling static
constructors and destructors.

7.3.1 Munching C++ Application Modules

Before a C++ module can be downloaded to a VxWorks target, it must undergo an
additional host processing step, which by convention, is called munching.
Munching performs the following tasks:

� Initializes support for static objects.

� Ensures that the C++ run-time support calls the correct constructors and
destructors in the correct order for all static objects.

� (For GNU/ELF/DWARF only) Collapses any “linkonce” sections generated
by -fmerge-templates into text or data (see -fmerge-templates, p.282).

Munching is performed after compilation and before download.

NOTE: If you want to use the target shell and C++, but do not want to include the
demangler, you can exclude it from command-line-based BSP builds by defining
INCLUDE_NO_CPLUS_DEMANGLER in config.h. For project builds, you simply
need to remove the “C++ symbol demangler” component from your project
configuration.
278

7

7
C++ Development
For each toolchain, the following examples compile a C++ application source file,
hello.cpp, run munch on the .o, compile the generated ctdt.c file, and link the
application with ctdt.o to generate a downloadable module, hello.out.

Using GNU

The following code includes comments and the commands to perform these steps
on hello.cpp using the GNU toolchain:

Compile
ccppc -mcpu=604 -mstrict-align -O2 -fno-builtin -IinstallDir/target/h \

-DCPU=PPC604 -DTOOL_FAMILY=gnu -DTOOL=gnu -c hello.cpp

Run munch
nmppc hello.o | wtxtcl installDir/host/src/hutils/munch.tcl \

-c ppc > ctdt.c

Compile ctdt.c file generated by munch
ccppc -mcpu=604 -mstrict-align -fdollars-in-identifiers -O2 \
-fno-builtin -IinstallDir/target/h \

-DCPU=PPC604 -DTOOL_FAMILY=gnu -DTOOL=gnu -c ctdt.c

Link hello.o with ctdt.o to give a downloadable module (hello.out)
ccppc -r -nostdlib -Wl,-X -T installDir/target/h/tool/gnu/ldscripts/link.OUT \
-o hello.out hello.o ctdt.o

Using Diab

The following code includes comments and the commands to perform these steps
on hello.cpp using the Diab toolchain:

Compile
dcc -tMCF5307FS:vxworks55 -W:c:,-Xmismatch-warning=2 \
-ew1554,1551,1552,1086,1047,1547 -Xclib-optim-off -Xansi \
-Xstrings-in-text=0 -Wa,-Xsemi-is-newline -ei1516,1643,1604 \
-Xlocal-data-area-static-only -ew1554 -XO -Xsize-opt -IinstallDir/target/h \

-DCPU=MCF5200 -DTOOL_FAMILY=diab -DTOOL=diab -c hello.cpp

Run munch
nmcf hello.o | wtxtcl <italic>installDir</italic>/host/src/hutils/munch.tcl \
-c cf > ctdt.c

NOTE: The -T .../link.OUT option collapses any linkonce sections contained in the
input files (for details, see -fmerge-templates, p.282). It should not be used on 68k,
VxSim Solaris, or VxSim PC. Instead, you can use, for example:
cc68k -r -nostdlib -Wl,-X -o hello.out hello.o ctdt.o
279

VxWorks 5.5
Programmer’s Guide
Compile ctdt.c file generated by munch
dcc -tMCF5307FS:vxworks55 -Xdollar-in-ident -XO -Xsize-opt -Xlint \
-I<italic>installDir</italic>/target/h \

-DCPU=MCF5200 -DTOOL_FAMILY=diab -DTOOL=diab -c ctdt.c

Link hello.o with ctdt.o to give a downloadable module (hello.out)
dld -tMCF5307FS:vxworks55 -X -r -r4 -o hello.out hello.o ctdt.o

Using a Generic Rule

If you use the VxWorks Makefile definitions, you can write a simple munching rule
which (with appropriate definitions of CPU and TOOL) works across all
architectures for both GNU and Diab toolchains.

CPU = PPC604
TOOL = gnu

TGT_DIR = $(WIND_BASE)/target

include $(TGT_DIR)/h/make/defs.bsp

default : hello.out

%.o : %.cpp
$(CXX) $(C++FLAGS) -c $<

%.out : %.o
$(NM) $*.o | $(MUNCH) > ctdt.c
$(CC) $(CFLAGS) $(OPTION_DOLLAR_SYMBOLS) -c ctdt.c
$(LD_PARTIAL) $(LD_PARTIAL_LAST_FLAGS) -o $@ $*.o ctdt.o

After munching, downloading, and linking, the static constructors and destructors
are called. This step is described next.

7.3.2 Calling Static Constructors and Destructors Interactively

VxWorks provides two strategies for calling static constructors and destructors.
These are described as follows:

automatic invocation
This is the default strategy. Static constructors are executed just after the
module is downloaded to the target and before the module loader returns to
its caller. Static destructors are executed just prior to unloading the module.
280

7

7
C++ Development
manual invocation
Requires the user to call static constructors manually, after downloading the
module, but before running the application. Requires the user to call static
destructors manually, after the task finishes running, but before unloading the
module. Static constructors are called by invoking cplusCtors(). Static
destructors are called by invoking cplusDtors(). These routines take a module
as an argument; thus, static constructors and destructors are called explicitly
on a module-by-module basis. However, you can also invoke all currently-
loaded static constructors or destructors by calling these routines with no
argument.

You can change the strategy for calling static constructors and destructors by using
cplusXtorSet(). To report on the current strategy, call cplusStratShow().

For more information on the routines mentioned in this section, see the API entries
in the online reference manuals.

7.4 Programming with GNU C++

The GNU compilers provided with the Tornado IDE support most of the language
features described in the ANSI C++ Standard. In particular, they provide support
for template instantiation, exception handling, run-time type information, and
namespaces. Details regarding these features, as supported by the GNU toolchain,
are discussed in the following sections.

For complete documentation on the GNU compiler and on the associated tools, see
the GNU ToolKit User’s Guide.

7.4.1 Template Instantiation

The GNU C++ toolchain supports three distinct template instantiation strategies.
These are described below.

! CAUTION: When using the manual invocation method, constructors for each
module must only be run once.
281

VxWorks 5.5
Programmer’s Guide
-fimplicit-templates

This is the option for implicit instantiation. Using this strategy, the code for each
template gets emitted in every module that needs it. For this to work the body of a
template must be available in each module that uses it. Typically this is done by
including template function bodies along with their declarations in a header file.
The advantage of implicit instantiation is that it is simple and it is used by default
in VxWorks makefiles. The disadvantage is that it may lead to code duplication
and larger application size.

-fmerge-templates

This is like -fimplicit-templates option, except that template instantiations and
out-of-line copies of inline functions are put into special “linkonce” sections.
Duplicate sections are merged by the linker, so that each instantiated template
appears only once in the output file. Thus -fmerge-templates avoids the code bloat
associated with -fimplicit-templates.

-fno-implicit-templates

This is the option for explicit instantiation. Using this strategy explicitly
instantiates any templates that you require. The advantage of explicit instantiation
is that it allows you the most control over where templates get instantiated and
avoids code bloat. This disadvantage is that you need to explicitly instantiate each
template.

-frepo

This is the option for the third approach. This strategy works by manipulating a
database of template instances for each module. The compiler generates a .rpo file,

NOTE: This flag is only supported on ELF/DWARF targets; it is accepted, but
ignored by the 68k and simulator compilers (cc68k, ccsimso, and ccsimpc).

! CAUTION: The VxWorks dynamic loader does not support “linkonce” sections
directly. Instead, the linkonce sections must be merged and collapsed into standard
text and data sections before loading. This is done with a special link step
described in 7.3.1 Munching C++ Application Modules, p.278.
282

7

7
C++ Development
for each corresponding object file, which lists all template instantiations that are
used, and could be instantiated, in that object file. The link wrapper, collect2, then
updates the .rpo files to tell the compiler where to place those instantiations, and
rebuilds any affected object files. The link-time overhead is negligible after the first
pass, as the compiler continues to place the instantiations in the same files. The
advantage of this approach is that it combines the simplicity of implicit
instantiation with the smaller footprint obtained by instantiating templates by
hand.

Procedure

The header file for a template must contain the template body. If template bodies
are currently stored in .cpp files, the line #include theTemplate.cpp must be added
to theTemplate.h.

A complete build with the -frepo option is required to create the .rpo files that tell
the compiler which templates to instantiate. The link step should be invoked using
ccarch rather than ldarch.

Subsequently, individual modules can be compiled as usual (but with the -frepo
option and no other template flags).

When a new template instance is required, the relevant part of the project must be
rebuilt to update the .rpo files.

Loading Order

The Tornado tools’ dynamic linking requires the module containing a symbol
definition to be downloaded before a module that references it. When using the -
frepo option, it may not be clear which module contains the definition. Thus, you
should also prelink them and download the linked object.

Example

This example uses a standard VxWorks BSP makefile; for concreteness, it uses a
68K target.

Example 7-1 Sample Makefile

make PairA.o PairB.o ADDED_C++FLAGS=-frepo

/* dummy link step to instantiate templates */
cc68k -r -o Pair PairA.o PairB.o

//Pair.h

template <class T> class Pair
283

VxWorks 5.5
Programmer’s Guide
{
public:

Pair (T _x, T _y);
T Sum ();

protected:
T x, y;

};

template <class T>
Pair<T>::Pair (T _x, T _y) : x (_x), y(_y)
{
}

template <class T>
T Pair<T>::Sum ()
{

return x + y;
}

// PairA.cpp
#include "Pair.h"

int Add (int x, int y)
{

Pair <int> Two (x, y);
return Two.Sum ();

}

// PairB.cpp
#include "Pair.h"

int Double (int x)
{

Pair <int> Two (x, x);
return Two.Sum ();

}

7.4.2 Exception Handling

The GNU C++ compiler supports multi-thread safe exception handling by default.
To turn off support for exception handling, use the -fno-exceptions compiler flag.

The following topics regarding exception handling are discussed throughout this
section:

� the affect on code written for the pre-exception model
� the overhead for using exception handling
� how to install your own termination handler
284

7

7
C++ Development
Using the Pre-Exception Model

You can still write code according to the pre-exception model of C++ compilation.
For example, your calls to new can check the returned pointer for a failure value
of zero. However, if you are concerned that the exception handling enhancements
in this release will not compile your code correctly, follow these simple rules:

� Use new (nothrow).

� Do not explicitly turn on exceptions in your iostreams objects.

� Do not use string objects or wrap them in “try { } catch (...) { }” blocks.

These rules derive from the following observations:

� GNU iostreams does not throw unless IO_THROW is defined when the library
is built, and exceptions are explicitly enabled for the particular iostreams
object in use. The default is no exceptions. Exceptions have to be explicitly
turned on for each iostate flag that wants to throw.

� The Standard Template library (STL) does not throw except in some methods
in the basic_string class (of which “string” is a specialization).

Exception Handling Overhead

Exception handling creates a high overhead. To support the destruction of
automatic objects during stack-unwinding, for example, the compiler must insert
additional code for any function that creates an automatic (stack based) object with
a destructor.

As an example of this additional code, the following demonstrates using exception
handling on a PowerPC 604 target (mv2604 BSP). The counts are measured in
executed instructions. The instructions listed below are those that need to be
added for exception handling.

� In order to execute a “throw 1“ and the associated “catch (...)”, 1235
instructions are executed.

� In order to register and de-register automatic variables and temporary objects
with destructors, 14 instructions are executed.

� For each non-inlined function that uses exception handling, 29 instructions are
executed to perform the exception-handling setup.

� Upon encountering the first exception-handling construct (try, catch, throw, or
registration of an auto variable or temporary), 947 instructions are executed.
285

VxWorks 5.5
Programmer’s Guide
The example code follows:

first time normal case
void test() { // 3+29 3+29

throw 1; // 1235 1235 total time to printf
}

void doit() { // 3+29+947 3+29
try { // 22 22
test(); // 1 1
} catch (...) {
printf("Hi\n");
}

}

struct A { ~A() { } };

void local_var () { // 3+29
A a; // 14

} // 4

You can turn off exception handling by using the -fno-exceptions option. Doing so
removes all exception handling overhead.

Unhandled Exceptions

As required by the ANSI C++ Standard, an unhandled exception ultimately calls
terminate(). The default behavior of this routine is to suspend the offending task
and to send a warning message to the console. You can install your own
termination handler by calling set_terminate(), which is defined in the header file
exception.

7.4.3 Run-Time Type Information

The GNU C++ compiler supports the Run-time Type Information (RTTI) feature.
This feature is turned on by default and adds a small overhead to any C++
program containing classes with virtual functions. If you do not need this feature,
you can turn it off using -fno-rtti.

7.4.4 Namespaces

The GNU C++ compiler supports namespaces. You can use namespaces for your
own code, according to the C++ standard.
286

7

7
C++ Development
The final version of the C++ standard also defines names from system header files
in a “namespace” called std. The standard requires that you specify which names
in a standard header file you will be using. For the std namespace, the GNU C++
compiler accepts the new format, but does not require it. This is because GNU C++
puts the std namespace into the global namespace.

This means that the current GNU C++ compiler is transitional, compiling both
legacy code and new code written according to the standard. However, remember
when coding under the new syntax that identifiers in the std namespace will be
global; and therefore, they must be unique for the global namespace.

As an example, the following code is technically invalid under the latest standard,
but will compile under the current GNU C++ compiler:

#include <iostream.h>
int main()

{
cout << "Hello, world!" << endl;
}

The following three examples show how the C++ standard would now represent
this code. These examples will also compile under the current GNU C++ compiler:

// Example 1
#include <iostream>
int main()
{

std::cout << "Hello, world!" << std::endl;
}

// Example 2
#include <iostream>
using std::cout;
using std::endl;
int main()
{

cout << "Hello, world!" << endl;
}

// Example 3
#include <iostream>
using namespace std;
int main()
{

cout << "Hello, world!" << endl;
}

Note that the using directives is accepted, but not required by GNU C++.
287

VxWorks 5.5
Programmer’s Guide
The same applies to standard C code. For example, both of these code examples
will compile:

#include <stdio.h>

void main()
{
int i = 10;
printf("%d", &i");
}

or

#include <cstdio>

void main()
{
int i = 10;
std::printf("%d", &i");
}

7.5 Programming with Diab C++

The Diab C++ compilers provided with the Tornado IDE use the Edison Design
Group (EDG) C++ front end. The Diab C++ compiler fully supports the ANSI C++
Standard, except for the limitations mentioned in 7.5.1 Template Instantiation, p.288.

The following sections briefly describe template instantiation, exception handling,
and run-time type information as supported by the Diab compiler. For complete
documentation on the Diab compiler and associated tools, see the Diab C/C++
Compiler User's Guide.

7.5.1 Template Instantiation

Function and class templates are implemented according to the standard, except
that:

� The export keyword is not implemented for templates.

� A partial specialization of a class member template cannot be added outside of
the class definition.
288

7

7
C++ Development
There are two ways to control instantiation of templates. By default, templates are
instantiated implicitly--that is, they are instantiated by the compiler whenever a
template is used. For greater control of template instantiation, the -Ximplicit-
templates-off option tells the compiler to instantiate templates only where
explicitly called for in source code; for example:

template class A<int>; // Instantiate A<int> and all member functions.
template int f1(int); // Instantiate function int f1{int).

The Diab C++ options summarized below control multiple instantiation of
templates. For more information about these options, see the Diab C/C++ Compiler
User's Guide.

-Ximplicit-templates

Instantiate each template wherever used. This is the default.

-Ximplicit-templates-off

Instantiate templates only when explicitly instantiated in code.

-Xcomdat

When templates are instantiated implicitly, mark each generated code or data
section as comdat. The linker collapses identical instances marked as such, into a
single instance in memory.

VxWorks cannot load object files that contain comdats, however, you can use
-Xcomdat-on with the Diab linker, and load the resulting executable.

-Xcomdat-off

Generate template instantiations and inline functions as static entities in the
resulting object file. Can result in multiple instances of static member-function or
class variables.This option is the default.
289

VxWorks 5.5
Programmer’s Guide
7.5.2 Exception Handling

The Diab C++ compiler supports thread safe exception handling by default. To
turn off support for exception handling, use the -Xexceptions-off compiler flag.

The Diab exception handling model is table driven and requires little run-time
overhead if a given exception is not thrown. Exception handling does, however,
involve a size increase.

7.5.3 Run-Time Type Information

The Diab C++ compiler supports C++ Run-time Type Information (RTTI). This
language feature is enabled by default and can be disabled with the -Xrtti-off
compiler flag.

7.6 Using C++ Libraries

The iostream libraries, and the string and complex number classes, are provided in
VxWorks components and are configurable with either toolchain. These libraries
are described below.

String and Complex Number Classes

These classes are part of the new Standard C++ library. For the Diab toolchain these
classes are provided entirely in header files. For the GNU toolchain they can be
configured into a VxWorks system with INCLUDE_CPLUS_STRING and
INCLUDE_CPLUS_COMPLEX. You may optionally include I/O facilities for these
classes with INCLUDE_CPLUS_STRING_IO and INCLUDE_CPLUS_COMPLEX_IO.

iostreams Library

This library is configured into your VxWorks system with the
INCLUDE_CPLUS_IOSTREAMS component.
290

7

7
C++ Development
For the GNU toolchain, the iostreams library header files reside in
installDir/host/hostType/include/g++-3 directory. For the Diab toolchain, the
iostreams library header files reside in the installDir/host/diab/include/cpp
directory.

To use this library, include one or more of the header files after the vxWorks.h
header in the appropriate modules of your application. The most frequently used
header file is iostream.h, but others are available; see a C++ reference such as
Stroustrup for information.

The standard iostreams objects (cin, cout, cerr, and clog) are global; that is, they are
not private to any given task. They are correctly initialized regardless of the
number of tasks or modules that reference them and they can safely be used across
multiple tasks that have the same definitions of stdin, stdout, and stderr. However
they cannot safely be used when different tasks have different standard I/O file
descriptors; in such cases, the responsibility for mutual exclusion rests with the
application.

The effect of private standard iostreams objects can be simulated by creating a new
iostreams object of the same class as the standard iostreams object (for example, cin
is an istream_withassign), and assigning to it a new filebuf object tied to the
appropriate file descriptor. The new filebuf and iostreams objects are private to the
calling task, ensuring that no other task can accidentally corrupt them.

ostream my_out (new filebuf (1)); /* 1 == STDOUT */
istream my_in (new filebuf (0), &my_out); /* 0 == STDIN;

* TIE to my_out */

For complete details on the iostreams library, see the GNU ToolKit User’s Guide.

Standard Template Library (STL)

For both toolchains, the Standard Template library consists entirely of a set of
header files. There is no special run-time component that must be included in a
VxWorks system.

! WARNING: Each compiler automatically includes the directories containing the
header files for these libraries. You should never explicitly add those directories to
your compiler include path. If you get warnings about missing headers, it
probably means you are using the -nostdinc flag. This flag should never be used
with this release of Tornado.
291

VxWorks 5.5
Programmer’s Guide
STL for GNU

The GNU STL port for VxWorks is thread safe at the class level. This means that
the client has to provide explicit locking, if two tasks want to use the same
container object (a semaphore can be used to do so; see 2.3.3 Semaphores, p.34).
However, two different objects of the same STL container class can be accessed
concurrently.

The C++ Standard Template Library can be used in client code compiled with
exception handling turned off. In our implementation this has the following
semantics:

(1) For all checks that could reasonably be made by the caller, such as bounds
checking, no action is taken where an exception would have been thrown.
With optimization on, this is equivalent to removing the check.

(2) For memory exhaustion where bad_alloc would have been thrown, now the
following message is logged (if logging is included):

"STL Memory allocation failed and exceptions disabled -calling terminate"

and the task calls terminate. This behavior applies only to the default
allocators; you are free to define custom allocators with a different behavior.

STL for Diab

The Diab C++ library is fully compliant with the ANSI C++ Standard with the
following minor exception: it does not have full wchar support. The Diab STL
component is thread safe.

7.7 Running the Example Demo

The factory demo example demonstrates various C++ features, including the
Standard Template Library, user-defined templates, run-time type information,
and exception handling. This demo is located in
installDir/target/src/demo/cplusplus/factory.

To create, compile, build, and run this demo program you can use either the
Tornado project tool, documented in the Tornado User’s Guide: Projects, or the
command-line, as shown below.
292

7

7
C++ Development
For the factory demo, your kernel must include the following components:

� INCLUDE_CPLUS

� INCLUDE_CPLUS_LANG

� INCLUDE_CPLUS_IOSTREAMS

In addition, for GNU only, include the following components:

� INCLUDE_CPLUS_STRING

� INCLUDE_CPLUS_STRING_IO

To add components from the Tornado IDE, see the Tornado User’s Guide: Projects.

To build factory from the command line, simply copy the factory sources to the
BSP directory, as shown below:

cd installDir/target/config/bspDir
cp installDir/target/src/demo/cplusplus/factory/factory.* .

Then, to build a bootable image containing the factory example, run make as
shown below:

make ADDED_MODULES=factory.o

and boot the target.

To build a downloadable image containing the factory example, run make as
shown below:

make factory.out

Then, from the WindSh, load the factory module, as shown below:

ld < factory.out

Finally, to run the factory demo example, type at the shell:

-> testFactory

Full documentation on what you should expect to see is provided in the source
code comments for the demo program.
293

VxWorks 5.5
Programmer’s Guide
294

8

Flash Memory Block

Device Driver
Optional Component TrueFFS
8.1 Introduction

TrueFFS for Tornado is an optional product that provides a block device interface
to a wide variety of flash memory devices. TrueFFS is a VxWorks-compatible
implementation of M-Systems FLite, version 2.0. This system is reentrant,
thread-safe, and supported on all CPU architectures that host VxWorks.

This chapter begins with a brief introduction to flash memory, followed by a
step-by-step outline of the procedure for building a system with TrueFFS. Then,
the main part of the chapter describes these steps in detail, including sections
devoted to writing your own socket driver and MTD components. The chapter
ends with a description of the functionality of flash memory block devices.

8.1.1 Choosing TrueFFS as a Medium

TrueFFS applications can read and write from flash memory just as they would
from an MS-DOS file system resident on a magnetic-medium mechanical disk
drive. However, the underlying storage media are radically different. While these
differences are completely transparent to the high-level developer, it is critical that
you be aware of them when designing an embedded system.

NOTE: This version of the TrueFFS product is a block device driver to VxWorks
that, although intended to be file system neutral, is guaranteed to work only with
the MS-DOS compatible file system offered with this product.
295

VxWorks 5.5
Programmer’s Guide
Flash memory stores data indefinitely, even while unpowered. The physical
components of flash memory are solid-state devices1 that consume little energy
and leave a small foot print. Thus, flash memory is ideal for mobile devices, for
hand-held devices, and for embedded systems that require reliable, non-volatile
environments that are too harsh for mechanical disks.

However, flash does have a limited life, due to the finite number of erase cycles;
and, TrueFFS only supports flash devices that are symmetrically blocked. In
addition, some features common to block device drivers for magnetic media are
not available with flash memory. Unequal read and write time is a typical
characteristic of flash memory, in which reads are always faster than writes. For
more information, see 8.13 Flash Memory Functionality, p.338. Also, TrueFFS does
not support ioctl.

The unique qualities that distinguish flash memory from magnetic-media disk
drives make it an ideal choice for some types of applications, yet impractical for
others.

8.1.2 TrueFFS Layers

TrueFFS is comprised of a core layer and three functional layers–the translation
layer, the Memory Technology Driver (MTD) layer, and the socket layer–as
illustrated in Figure 8-1. The three functional layers are provided in source code
form or in binary form, or in both, as noted below. For more detailed information
about the functionality of these layers, see 8.13 Flash Memory Functionality, p.338.

1. Meaning that they have no moving parts.

NOTE: Although you can write in any size chunks of memory, ranging from bytes
to words and double words, you can only erase in blocks. The best approach to
extending the life of the flash is to ensure that all blocks wear evenly. For more
information, see 8.13 Flash Memory Functionality, p.338.

NOTE: The TrueFFS optional product does have not support for partition tables.

! CAUTION: VxWorks favors task priorities over I/O sequence when servicing I/O
requests. Thus, if a low priority task and a high priority task request an I/O service
while the resource is busy, the high priority task gets the resource when it becomes
available—even if the low priority got its request in before the high priority task.
To VxWorks, a flash device is just another resource.
296

8

8
Flash Memory Block Device Driver
� Core Layer This layer connects other layers to each other. It also channels work to
the other layers and handles global issues, such as “backgrounding”, garbage
collection, timers, and other system resources. The core layer is provided in binary
form only.

� Translation Layer This layer maintains the map that associates the file system’s
view of the storage medium with the erase blocks in flash. The Block Allocation
Map is the basic building block for implementing wear leveling and error recovery.
The translation layer is media specific (NOR or SSFDC). The translation layer is
provided in binary form only.

� MTD Layer The MTD implements the low-level programming (map, read, write,
and erase) of flash medium. MTDs are provided in both source and binary form.

� Socket Layer The socket layer provides the interface between TrueFFS and the
board hardware, providing board-specific hardware access routines. It is
responsible for power management, card detection, window management, and
socket registration. The socket drivers are provided in source code only.

Figure 8-1 TrueFFS is a Layered Product

dosFs

Translation Layer

MTDs

Socket Layer Flash Memory

TrueFFSCore Layer
297

VxWorks 5.5
Programmer’s Guide
8.2 Building Systems with TrueFFS

This section presents a high-level overview of the development process, outlining
the steps required to configure and build a VxWorks system that supports TrueFFS.
This process applies to VxWorks systems that can be used with either bootable or
downloadable applications.

Step 1: Select an MTD Component

Choose an MTD, appropriate to your hardware, from those provided with the
TrueFFS product. You may prefer to (or, in rare cases, need to) write your own. For
details, see 8.3 Selecting an MTD Component, p.299.

Step 2: Identify the Socket Driver

Ensure that you have a working socket driver. The socket driver is a source code
component, implemented in the file sysTffs.c. For some BSPs, the socket driver is
fully defined and located in the BSP directory. If it is not, you can port a generic file
containing skeleton code to your hardware. For details, see 8.4 Identifying the Socket
Driver, p.300.

Step 3: Configure the System

Configure your system for TrueFFS by adding the appropriate components.
Minimum support requires components for dosFs and the four TrueFFS layers. For
details, see 8.5 Configuring and Building the Project, p.300.

Step 4: Build the Project

Before you build the system, the binaries for the MTDs need to be up to date and
the socket driver file located in the BSP directory must be a working version. For
details, see 8.5.7 Building the System Project, p.305.

Step 5: Boot the Target and Format the Drives

Next, boot the target. Then, from the shell, format the drives. For details, see
8.6 Formatting the Device, p.306.

NOTE: Component descriptions use the abbreviation TFFS, rather than TRUEFFS,
as might be expected.

NOTE: To preserve a region of flash for boot code, see 8.7 Creating a Region for
Writing a Boot Image, p.309.
298

8

8
Flash Memory Block Device Driver
Step 6: Mount the Drive

Mount the VxWorks DOS file system on a TrueFFS flash drive. For details, see
8.8 Mounting the Drive, p.312.

Step 7: Test the Drive

Test your drive(s).

One way to do this is to perform a quick sanity check by copying a text file from
the host (or from another type of storage medium) to the flash file system on the
target; then copy the file to the console or to a temporary file for comparison, and
verify the content. The following example is run from the shell as a sanity check:

%->@copy "host:/home/panloki/.cshrc" "/flashDrive0/myCshrc"
Copy Ok: 4266 bytes copied
Value = 0 = 0x0
%->@copy "/flashDrive0/myCshrc"
...
...
...
Copy Ok: 4266 bytes copied
Value = 0 = 0x0

8.3 Selecting an MTD Component

The directory installDir/target/src/drv/tffs contains the source code for the
following types of MTD components:

� MTDs that work with several of the devices provided by Intel, AMD, Fujitsu,
and Sharp.

� Two generic MTDs that can be used for devices complying with CFI.

To better support the out-of-box experience, these MTDs attempt to cover the
widest possible range of devices (in their class) and of bus architectures.
Consequently, the drivers are bulky and slow in comparison to drivers written
specifically to address the runtime environment that you want to target. If the
performance and size of the drivers provided do not match your requirements,
you can modify them to better suit your needs. The section 8.12 Writing MTD
Components, p.327 has been provided exclusively to address this issue.

NOTE: The copy command requires the appropriate configuration of dosFs
support components. For details, see Optional dosFs Components, p.197.
299

VxWorks 5.5
Programmer’s Guide
For a complete list of these MTDs, see 8.11 Using the MTD-Supported Flash Devices,
p.323. In addition, section 8.11.1 Supporting the Common Flash Interface (CFI), p.323
describes the CFI MTDs in detail. Evaluate whether any of these drivers support
the device that you intend to use for TrueFFS. Devices are usually identified by
their JEDEC IDs. If you find an MTD appropriate to your flash device, you can use
that MTD. These drivers are also provided in binary form; so you do not need to
compile the MTD source code unless you have modified it.

8.4 Identifying the Socket Driver

The socket driver that you include in your system must be appropriate for your
BSP. Some BSPs include socket drivers, others do not. The socket driver file is
sysTffs.c and, if it exists, it is located in your BSP directory. If your BSP provides a
socket driver, you can use it.

If your BSP does not provide this file, follow the procedure described in
8.10 Writing Socket Drivers, p.314, which explains how to port a stub version to
your hardware.

In either case, the build process requires that a working socket driver (sysTffs.c)
be located in the BSP directory. For more information, see 8.5.6 Adding the Socket
Driver, p.305.

8.5 Configuring and Building the Project

VxWorks systems configured with TrueFFS include:

� configuration to fully support the dosFs file system

� a core TrueFFS component, INCLUDE_TFFS

� at least one software module from each of the three TrueFFS layers

NOTE: For a list of the MTD components and details about adding the MTD
component to your system project, see 8.5.4 Including the MTD Component, p.303.
300

8

8
Flash Memory Block Device Driver
You can configure and build your system either from the command line or by using
the Tornado IDE project facility. When choosing a method for configuring and
building systems with TrueFFS, consider the following criteria:

– Configuring and building from the command line involves editing text files
that contain component listings and parameters for initialization, and calling
the make utility to build a system image for you. This process, while possibly
faster than using the project facility, requires that you provide the list of
dependent components accurately.

– Configuring and building through the Tornado project facility provides an
easy and accurate method of adding needed components, while the build
process can take longer than when using the command line.

For both configuration and build methods, special consideration must be given to
cases where either the socket driver or the MTD, or both, are not provided. The
drivers need to be registered and MTDs need appropriate component descriptions.
For more information, see 8.10 Writing Socket Drivers, p.314, and 8.12.4 Defining
Your MTD as a Component, p.335.

For general information on configuration procedures, see the Tornado User’s Guide:
Configuration and Build and the Tornado User’s Guide: Projects.

8.5.1 Including File System Components

A system configuration with TrueFFS is essentially meaningless without the
VxWorks compatible file system, MS-DOS. Therefore, both dosFs support, and all
components that it depends upon, need to be included in your TrueFFS system. For
information on this file system and support components, see 5.2.2 Configuring Your
System, p.197.

In addition, there are other file system components that are not required, but which
may be useful. These components add support for the basic functionality that one
needs to use a file system, such as the commands ls, cd, copy, and so.

NOTE: Included with TrueFFS for Tornado are sources for several MTDs and
socket drivers. The MTDs are in target/src/drv/tffs. The socket drivers are defined
in the sysTffs.c files provided in the target/config/bspname directory for each BSP
that supports TrueFFS.
301

VxWorks 5.5
Programmer’s Guide
8.5.2 Including the Core Component

All systems must include the TrueFFS core component, INCLUDE_TFFS.

Figure 8-2 Adding TrueFFS Components from the Project Facility
302

8

8
Flash Memory Block Device Driver
Defining this component triggers the correct sequence of events, at boot time, for
initializing this product. It also ensures that the socket driver is included in your
project (see 8.5.6 Adding the Socket Driver, p.305).

You can include this component using the project facility, as shown in Figure 8-2,
or by defining INCLUDE_TFFS in config.h.

8.5.3 Including Utility Components

This section describes TrueFFS utility components, their purpose, and their default
configuration options. You do not need to modify the default configuration for
these components in order to create a functioning TrueFFS system.

INCLUDE_TFFS_SHOW
Including this component adds two TrueFFS configuration display utilities,
tffsShow() and tffsShowAll(). The tffsShow() routine prints device
information for a specified socket interface. It is particularly useful when
trying to determine the number of erase units required to write a boot image.
The tffsShowAll() routine provides the same information for all socket
interfaces registered with VxWorks. The tffsShowAll() routine can be used
from the shell to list the drives in the system. The drives are listed in the order
in which they were registered. This component is not included by default. You
can include it from the project facility or by defining INCLUDE_TFFS_SHOW in
config.h.

8.5.4 Including the MTD Component

Add the MTD component appropriate to your flash device (8.3 Selecting an MTD
Component, p.299) to your system project. If you have written your own MTD, see
8.12.4 Defining Your MTD as a Component, p.335 to ensure that it is defined correctly
for inclusion. You can add the MTD component either through the project facility
or, for a command-line build, by defining it in the socket driver file (see
8.5.7 Building the System Project, p.305). Whichever method is used, it must be the
same for configuring the MTD component and building the project.

NOTE: INCLUDE_TFFS_BOOT_IMAGE is defined by default in the socket driver,
sysTffs.c. It is used for configuring flash-resident boot images. Defining this
constant automatically includes tffsBootImagePut() in your sysTffs.o. This
routine is used to write the boot image to flash memory (see 8.7.3 Writing the Boot
Image to Flash, p.311).
303

VxWorks 5.5
Programmer’s Guide
The MTD components provided by TrueFFS, for flash devices from Intel, AMD,
Fujitsu, and Sharp, are listed below:

INCLUDE_MTD_CFISCS
CFI/SCS device; for details, see CFI/SCS Flash Support, p.324.

INCLUDE_MTD_CFIAMD
CFI-compliant AMD and Fujitsu devices; for details, see AMD/Fujitsu CFI
Flash Support, p.325.

INCLUDE_MTD_I28F016
Intel 28f016; for details, see Intel 28F016 Flash Support, p.325.

INCLUDE_MTD_I28F008
Intel 28f008; for details, see Intel 28F008 Flash Support, p.326.

INCLUDE_MTD_AMD
AMD, Fujitsu: 29F0{40,80,16} 8-bit devices; for details, see AMD/Fujitsu Flash
Support, p.326.

INCLUDE_MTD_WAMD
AMD, Fujitsu 29F0{40,80,16} 16-bit devices.

INCLUDE_MTD_I28F008_BAJA
Intel 28f008 on the Heurikon Baja 4000.

MTDs defined in the component descriptor file (that is, included through the
project facility) usually make it explicit to require the translation layer. However, if
you are building from the command-line, or writing your own MTD, you may
need to explicitly include the translation layer.

8.5.5 Including the Translation Layer

The translation layer is selected according to the technology used by your flash
medium. The two types of flash are NOR and NAND. This product only supports
NAND devices that conform to the SSFDC specification. For more information, see
8.11.3 Obtaining Disk On Chip Support, p.327.

The translation layer is provided in binary form only. The translation layer
components that are provided are listed below.

NOTE: Although components can also be defined in config.h, this is not
recommended for the MTD component because it can conflict with the project
facility configurations.
304

8

8
Flash Memory Block Device Driver
INCLUDE_TL_FTL
The translation layer for NOR flash devices. If you can execute code in flash,
your device uses NOR logic.

INCLUDE_TL_SSFDC
The translation layer for devices that conform to Toshiba’s Solid State Floppy
Disk Controller Specifications. TrueFFS supports NAND devices that only
comply with the SSFDC specification.

The component descriptor files (for the project facility) specify the dependency
between the translation layers and the MTDs; therefore, when configuring through
the project facility, you do not need to explicitly select a translation layer. The build
process handles it for you.

If you are not using the project facility, you are responsible for selecting the correct
translation layer. As with the MTD, when configuring and building from the
command line, you define the translation layer in sysTffs.c within the conditional
clause #ifndef PROJECT_BUILD. For details, see nConditional Compilation, p.305.

For more information, see 8.12.4 Defining Your MTD as a Component, p.335.

8.5.6 Adding the Socket Driver

To include the socket driver in your project, a working version of the socket driver,
sysTffs.c, must be located in you BSP directory.

Inclusion of the socket driver is relatively automatic. By including the core TrueFFS
component, INCLUDE_TFFS, into your project, the build process checks for a
socket driver file, sysTffs.c, in the BSP directory and includes that file in the system
project.

If your BSP does not provide a socket driver, follow the procedure described in
8.10 Writing Socket Drivers, p.314.

8.5.7 Building the System Project

Build the system project, from either the command line or the Tornado IDE. When
building the system project, consider the following two issues.

� Conditional Compilation The file sysTffs.c defines constants within a conditional
clause #ifndef PROJECT_BUILD. By default, these constants include definitions for
all the MTD components provided with the TrueFFS product. This
PROJECT_BUILD clause conditionally includes all of these constants for a
305

VxWorks 5.5
Programmer’s Guide
command-line build (adds them to sysTffs.o), and excludes them for a project
facility build (because you include them from the GUI). Therefore, the same
method must be used to both configure the MTD and the translation layer
components, and to build the project.

If you are building from the command line, and want to save on memory space,
you can undefine the constants for any MTDs that your hardware does not
support.

� Up-to-Date Components Before you build the project, the binaries for the MTDs
must be up to date, and the sysTffs.c that is present in the BSP directory must be a
working version.

MTDs are provided in source and binary form. When writing your own MTD,
rebuilding the directory is the recommended way to transform the source to
binary. This way the binary is placed in the right location and added to the
appropriate library. If any files in the group installDir/target/src/drv/tffs/*.c are
newer than corresponding files in the library
installDir/target/lib/archFamily/arch/common/libtffs.a, then rebuild them before
building the project.

8.6 Formatting the Device

Boot the system. After the system boots and registers the socket driver(s), bring up
the shell. From the shell, run tffsDevFormat() to format the flash memory for use
with TrueFFS. This routine, as defined in tffsDrv.h, takes two arguments, a drive
number and a format argument:

tffsDevFormat (int tffsDriveNo, int formatArg);

NOTE: You can format the flash medium even though there is not yet a block
device driver associated with the flash.

! CAUTION: Running tffsDevFormat() on a device that is sharing boot code with
the file system will leave the board without boot code at the end of it. The board
then becomes unusable until some alternative method is provided for reflashing
the lost image. Once you do that, the file system that you created by formatting is
destroyed.
306

8

8
Flash Memory Block Device Driver
8.6.1 Specifying the Drive Number

The first argument, tffsDriveNo, is the drive number (socket driver number). The
drive number identifies the flash medium to be formatted and is determined by the
order in which the socket drivers were registered. Most common systems have a
single flash drive, but TrueFFS supports up to five. Drive numbers are assigned to
the flash devices on your target hardware by the order in which the socket drivers
are registered in sysTffsInit() during boot. The first to be registered is drive 0, the
second is drive 1, and so on up to 4. Therefore, the socket registration process
determines the drive number. (Details of this process are described in Socket
Registration, p.320.) You use this number to specify the drive when you format it.

8.6.2 Formatting the Device

The second argument, formatArg, is a pointer to a tffsDevFormatParams structure
(cast to an int). This structure describes how the volume should be formatted. The
tffsDevFormatParams structure is defined in installDir\target\h\tffs\tffsDrv.h
as:

typedef struct
{
 tffsFormatParams formatParams;
unsigned formatFlags;
}tffsDevFormatParams;

The first member, formatParams, is of type tffsFormatParams. The second
member, formatFlags, is an unsigned int.

TFFS_STD_FORMAT_PARAMS Macro

To facilitate calling tffsDevFormat() from a target shell, you can simply pass zero
(or a NULL pointer) for the second argument, formatArg. Doing so will use a
macro, which defines default values for the tffsDevFormatParams structure. The
macro, TFFS_STD_FORMAT_PARAMS, defines the default values used in
formatting a flash disk device. This macro, TFFS_STD_FORMAT_PARAMS, is
defined in tffsDrv.h as:

#define TFFS_STD_FORMAT_PARAMS {{0, 99, 1, 0x10000l, NULL, {0,0,0,0},
NULL, 2, 0, NULL}, FTL_FORMAT_IF_NEEDED}

If the second argument, formatArg, is zero, tffsDevFormat() uses the default
values from this macro.
307

VxWorks 5.5
Programmer’s Guide
The macro passes values for both the first and second members of the
tffsDevFormatParams structure. These are:

formatParams = {0, 99, 1, 0x10000l, NULL, {0,0,0,0}, NULL, 2, 0, NULL}
formatFlags = FTL_FORMAT_IF_NEEDED

The meaning of these default values, and other possible arguments for the
members of this structure, are described below.

formatParams Member

The formatParams member is of the type tffsFormatParams. Both this structure,
and the default values used by the TFFS_STD_FORMAT_PARAMS macro, are
defined in installDir\target\h\tffs\tffsDrv.h.

If you use the TFFS_STD_FORMAT_PARAMS macro, the default values will format
the entire flash medium for use with TrueFFS. The most common reason for
changing formatParams is to support a boot region. If you want to create a boot
image region that excludes TrueFFS, you need to modify these default values by
changing only the first member of the tffsFormatParams structure,
bootImageLen. For details, see 8.7 Creating a Region for Writing a Boot Image, p.309.

formatFlags Member

The second member of the tffsDevFormatParams structure, formatFlags,
determines the option used to format the drive. There are several possible values
for formatFlags, which are listed in Table 8-1.

The default macro TFFS_STD_FORMAT_PARAMS passes
FTL_FORMAT_IF_NEEDED as the value for this argument.

Table 8-1 Option for formatFlags

Macro Value Meaning

FTL_FORMAT 1 FAT and FTL formatting

FTL_FORMAT_IF_NEEDED 2 FAT formatting, FTL formatting if needed

NO_FTL_FORMAT 0 FAT formatting only
308

8

8
Flash Memory Block Device Driver
8.7 Creating a Region for Writing a Boot Image

Although the translation services of TrueFFS provide many advantages for
managing the data associated with a file system, those same services also
complicate the use of flash memory as a boot device. The only practical solution to
first create a boot image region that excludes TrueFFS, and then write the boot
image to that region. This section describes, first, the technical details of the
situation, then, how to create the region, and finally, how to write the boot image
to it.

8.7.1 Write Protecting Flash

TrueFFS requires that all flash devices that interact with the file system, including
boot image regions and NVRAM regions, not be write protected via the MMU.
This is because it is essential to the proper working of the product that all
commands being issued to the device reach it. Write-protecting the device would
impact this behavior, since it would also prevent commands being issued, that are
not write-oriented, from reaching the device. For related information, see
rfaWriteProtected, p.319.

You can, however, reserve a fallow region that is not tampered with by the file
system. TrueFFS supports boot code by allowing the user to specify a fallow area
when formatting the device. Fallow areas are always reserved at the start of the
flash. There have been a few instances where architecture ports have required the
fallow area to be at the end of flash. This was accomplished by faking the size of
the identification process in the MTD (that is, by telling the MTD that it has less
memory than is actually available). The format call is then told that no fallow area
is required. TrueFFS does not care how the fallow area is managed, nor is it affected
by any faking.

8.7.2 Creating the Boot Image Region

To create the boot image region, format the flash memory so that the TrueFFS
segment starts at an offset. This creates a fallow area within flash that is not
formatted for TrueFFS. This preserves a boot image region. If you want to update
the boot image, you can write a boot image into this fallow area, as described in
8.7.3 Writing the Boot Image to Flash, p.311.
309

VxWorks 5.5
Programmer’s Guide
Formatting at an Offset

To format the flash at an offset, you need to initialize the tffsFormatParams
structure to values that leave a space on the flash device for a boot image. You do
this by specifying a value for the bootImageLen member (of the structure) that is
at least as large as the boot image. The bootImageLen member specifies the offset
after which to format the flash medium for use with TrueFFS. For details on
bootImageLen and other members of the structure, see the comments in the
header file installDir\target\h\tffs\tffsDrv.h.

The area below the offset determined by bootImageLen is excluded from TrueFFS.
This special region is necessary for boot images because the normal translation and
wear-leveling services of TrueFFS are incompatible with the needs of the boot
program and the boot image it relies upon. When tffsDevFormat() formats flash,
it notes the offset, then erases and formats all erase units with starting addresses
higher than the offset. The erase unit containing the offset address (and all
previous erase units) are left completely untouched. This preserves any data stored
before the offset address.

For more information on wear leveling, see 8.13 Flash Memory Functionality, p.338.

Using a BSP Helper Routine

Some BSPs provide an optional, BSP-specific, helper routine, sysTffsFormat(),
which can be called externally to create or preserve the boot image region. This
routine first sets up a pointer to a tffsFormatParams structure that has been
initialized with a value for bootImageLen that formats at an offset, creating the
boot image region; then it calls tffsDevFormat().

Several BSPs, among them the ads860 BSP, include a sysTffsFormat() routine that
reserves 0.5 MB for the boot image. Following is an example:

STATUS sysTffsFormat (void)
{
STATUS status;
tffsDevFormatParams params =

{
#define HALF_FORMAT
/* lower 0.5MB for bootimage, upper 1.5MB for TFFS */

#ifdef HALF_FORMAT
{0x80000l, 99, 1, 0x10000l, NULL, {0,0,0,0}, NULL, 2, 0, NULL},

#else
{0x000000l, 99, 1, 0x10000l, NULL, {0,0,0,0}, NULL, 2, 0, NULL},

#endif /* HALF_FORMAT */
310

8

8
Flash Memory Block Device Driver
FTL_FORMAT_IF_NEEDED
};

/* we assume that the drive number 0 is SIMM */

status = tffsDevFormat (0, (int)¶ms);
return (status);
}

For examples of sysTffsFormat() usage, see the socket drivers in
installDir/target/src/drv/tffs/sockets. If your BSP does not provide a
sysTffsFormat() routine, then either create a similar routine, or pass the
appropriate argument to tffsDevFormat().

8.7.3 Writing the Boot Image to Flash

If you have created a boot image region, write the boot image to the flash device.
To do this you use tffsBootImagePut(), which bypasses TrueFFS (and its
translation layer) and writes directly into any location in flash memory. However,
because tffsBootImagePut() relies on a call to tffsRawio(), you cannot use this
routine once the TrueFFS volume is mounted.

The tffsBootImagePut() routine is defined in
installDir/target/src/drv/tffs/tffsConfig.c as:

STATUS tffsBootImagePut
(
int driveNo, /* TFFS drive number */
int offset, /* offset in the flash chip/card */
char * filename /* binary format of the bootimage */
)

This routine takes as arguments:

� The driveNo parameter is the same drive number as the one used as input to
the format routine.

� The offset parameter is the actual offset from the start of flash at which the
image is written (most often specified as zero).

� The filename parameter is a pointer to the boot image (bootApp or boot ROM
image).

! WARNING: Because tffsBootImagePut() lets you write directly to any area of
flash, it is possible to accidentally overwrite and corrupt the TrueFFS-managed
area of flash. For more information about how to carefully use this utility, see the
reference entry for tffsBootImagePut() in the VxWorks API Reference.
311

VxWorks 5.5
Programmer’s Guide
8.8 Mounting the Drive

Next, use the usrTffsConfig() routine to mount the VxWorks DOS file system on
a TrueFFS flash drive. This routine is defined in
installDir/target/config/comps/src/usrTffs.c as:

STATUS usrTffsConfig
(
int drive, /* drive number of TFFS */
int removable, /* 0 for nonremovable flash media */
char * fileName /* mount point */
)

This routine takes three arguments:

� The drive parameter specifies the drive number of the TFFS flash drive; valid
values are 0 through the number of socket interfaces in BSP.

� The removable parameter specifies whether the media is removable. Use 0 for
non-removable, 1 for removable.

� The fileName parameter specifies the mount point, for example, '/tffs0/'.

The following example runs usrTffsConfig() to attach a drive to dosFs, and then
runs devs to list all drivers:

% usrTffsConfig 0,0,"/flashDrive0/"

% devs
drv name
0 /null
1 /tyCo/0
1 /tyCo/1
5 host:
6 /vio
2 /flashDrive0/

Internally, usrTffsConfig() calls other routines, passing the parameters you input.

Among these routines is tffsDevCreate(), which creates a TrueFFS block device on
top of the socket driver. This routine takes, as input, a number (0 through 4,

NOTE: For a detailed description of the bootImagePut() routine, see the
comments in installDir/target/src/drv/tffs/tffsConfig.c.
312

8

8
Flash Memory Block Device Driver
inclusive) that identifies the socket driver on top of which to construct the TrueFFS
block device. The tffsDevCreate() call uses this number as an index into the array
of FLSocket structures. This number is visible later to dosFs as the driver number.

After the TrueFFS block device is created, dcacheDevCreate() and then
dosFsDevCreate() are called. This routine mounts dosFs onto the device. After
mounting dosFs, you can read and write from flash memory just as you would
from a standard disk drive.

8.9 Running the Shell Commands with Examples

Each of these examples assumes that you have built VxWorks and booted the
target.

assabet with a Board-Resident Flash Array and a Boot Image

This example uses sysTffsFormat() to format board-resident flash, preserving the
boot image region. It does not update the boot image, so no call is made to
tffsBootImagePut(). Then, it mounts the non-removable RFA medium as drive
number 0.

At the target shell prompt, enter the following commands:

-> sysTffsFormat
-> usrTffsConfig 0,0,"/RFA/"

ads860 with a Board-Resident Flash Array and a PCMCIA Slot

This example formats RFA and PCMCIA flash for two drives.

The first lines of this example format the board-resident flash by calling the helper
routine, sysTffsFormat(), which preserves the boot image region. This example
does not update the boot image. It then mounts the drive, numbering it as 0 and
passing 0 as the second argument to usrTffsConfig(). Zero is used because RFA is
non-removable.

The last lines of the example format PCMCIA flash, passing default format values
to tffsDevFormat() for formatting the entire drive. Then, it mounts that drive.
Because PCMCIA is removable flash, it passes 1 as the second argument to
usrTffsConfig(). (See 8.8 Mounting the Drive, p.312 for details on the arguments to
usrTffsConfig().)
313

VxWorks 5.5
Programmer’s Guide
Insert a flash card in the PCMCIA socket. At the target shell prompt, enter the
following commands:

-> sysTffsFormat
-> usrTffsConfig 0,0,"/RFA/"
-> tffsDevFormat 1,0
-> usrTffsConfig 1,1,"/PCMCIA1/"

mv177 with a Board-Resident Flash Array and No Boot Image Region Created

This example formats board-resident flash using the default parameters to
tffsDevFormat(), as described in 8.6 Formatting the Device, p.306. Then, it mounts
the drive, passing 0 as the drive number and indicating that the flash is
non-removable.

At the target shell prompt, enter the following commands:

-> tffsDevFormat 0,0
-> usrTffsConfig 0,0,"/RFA/"

x86 with Two PCMCIA Slots Using INCLUDE_PCMCIA

This example formats PCMCIA flash for two drives. Neither format call preserves
a boot image region. Then, it mounts the drives, the first is numbered 0, and the
second is numbered 1. PCMCIA is a removable medium.

Insert a flash card in each PCMCIA socket. At the target shell prompt, enter the
following commands:

-> tffsDevFormat 0,0
-> usrTffsConfig 0,1,"/PCMCIA1/"
-> tffsDevFormat 1,0
-> usrTffsConfig 1,1,"/PCMCIA2/"

8.10 Writing Socket Drivers

The socket driver is implemented in the file sysTffs.c. TrueFFS provides a stub
version of the socket driver file for BSPs that do not include one. As a writer of the
socket driver, your primary focus is on the following key contents of the socket
driver file:
314

8

8
Flash Memory Block Device Driver
� The sysTffsInit() routine, which is the main routine. This routine calls the
socket registration routine.

� The xxxRegister() routine, which is the socket registration routine. This
routine is responsible for assigning routines to the member functions of the
socket structure.

� The routines assigned by the registration routine.

� The macro values that should reflect your hardware.

In this stub file, all of the required routines are declared. Most of these routines are
defined completely, although some use generic or fictional macro values that you
may need to modify.

The socket register routine in the stub file is written for RFA (Resident Flash Array)
sockets only. There is no stub version of the registration routine for PCMCIA socket
drivers. If you are writing a socket driver for RFA, you can use this stub file and
follow the steps described in 8.10.1 Porting the Socket Driver Stub File, p.315. If you
are writing a PCMCIA socket driver, see the example in
installDir/target/src/drv/tffs/sockets/pc386-sysTffs.c and the general information
in 8.10.2 Understanding Socket Driver Functionality, p.319.

8.10.1 Porting the Socket Driver Stub File

If you are writing your own socket driver, it is assumed that your BSP does not
provide one. When you run the build, a stub version of the socket driver, sysTffs.c,
is copied from installDir/target/config/comps /src to your BSP directory.
Alternatively, you can copy this version manually to your BSP directory before you
run a build. In either case, edit only the file copied to the BSP directory; do not
modify the original stub file.

This stub version is the starting point for you, to help you port the socket driver to
your BSP. As such, it contains incomplete code and does not compile. The
modifications you need to make are listed below. They are not extensive and all are
noted by /* TODO */ clauses.

1. Replace “fictional” macro values, such as FLASH_BASE_ADRS, with correct
values that reflect your hardware. Then, remove the following line:

#error “sysTffs: Verify system macros and function before first use”

NOTE: Examples of other RFA socket drivers are in
installDir/target/src/drv/tffs/sockets.
315

VxWorks 5.5
Programmer’s Guide
2. Add calls to the registration routine for each additional device (beyond one)
that your BSP supports. Therefore, if you have only one device, you do not
need to do anything for this step. For details, see Call the Socket Register
Routines, p.316.

3. Review the implementation for the two routines marked /* TODO */. You may
or may not need to add code for them. For details, see Implement the Socket
Structure Member Functions, p.316.

Call the Socket Register Routines

The main routine in sysTffs.c is sysTffsInit(), which is automatically called at
boot time. The last lines of this routine call the socket register routines for each
device supported by your system. The stub sysTffs.c file specifically calls the
socket register routine rfaRegister().

If your BSP supports only one (RFA) flash device, you do not need to edit this
section. However, if your BSP supports several flash devices, you are to edit the
stub file to add calls for each socket’s register routine. The place to do this is
indicated by the /* TODO */ comments in the sysTffsInit() routine.

If you have several socket drivers, you can encapsulate each xxxRegister() call in
pre-processor conditional statements, as in the following example:

#ifdef INCLUDE_SOCKET_PCIC0
(void) pcRegister (0, PC_BASE_ADRS_0); /* flash card on socket 0 */

#endif /* INCLUDE_SOCKET_PCIC0 */

#ifdef INCLUDE_SOCKET_PCIC1
(void) pcRegister (1, PC_BASE_ADRS_1); /* flash card on socket 1 */

#endif /* INCLUDE_SOCKET_PCIC1 */

Define the constants in the BSP’s sysTffs.c. Then, you can use them to selectively
control which calls are included in sysTffsInit() at compile time.

Implement the Socket Structure Member Functions

The stub socket driver file also contains the implementation for the rfaRegister()
routine, which assigns routines to the member functions of the FLSocket structure,
vol. TrueFFS uses this structure to store the data and function pointers that handle

! CAUTION: Do not edit the original copy of the stub version of sysTffs.c in
installDir/target/config/comps /src, since you may need it for future ports.
316

8

8
Flash Memory Block Device Driver
the hardware (socket) interface to the flash device. For the most part, you need not
be concerned with the FLSocket structure, only with the routines assigned to it.
Once these routines are implemented, you never call them directly; they are called
automatically by TrueFFS.

All of the routines assigned to the socket structure member functions by the
registration routine are defined in the stub socket driver module. However, only
the rfaSocketInit() and rfaSetWindow() routines are incomplete. When you are
editing the stub file, note the #error and /* TODO */ comments in the code. These
indicate where and how you modify the code.

Following is a list of all of the routines assigned by the registration routine, along
with a description of how each was implemented in the stub file. The two routines
that require your attention are listed with descriptions of how they are to be
implemented.

rfaCardDetected

This routine always returns TRUE in RFA environments, since the device is not
removable. Implementation is complete in the stub file.

rfaVccOn

Vcc must be known to be good on exit. It is assumed to be ON constantly in RFA
environments. This routine is simply a wrapper. While the implementation is
complete in the stub file, you may want to add code as described below.

When switching Vcc on, the VccOn() routine must not return until Vcc has
stabilized at the proper operating voltage. If necessary, your function should delay
execution with an idle loop, or with a call to the flDelayMsec() routine, until the
Vcc has stabilized.

rfaVccOff

Vcc is assumed to be ON constantly in RFA environments. This routine is simply a
wrapper and is complete in the stub file.

rfaVppOn

Vpp must be known to be good on exit and is assumed to be ON constantly in RFA
environments. This routine is not optional, and must always be implemented.

NOTE: More detailed information on the functionality of each routine is provided
in 8.10.2 Understanding Socket Driver Functionality, p.319. However, this
information is not necessary for you to port the socket driver.
317

VxWorks 5.5
Programmer’s Guide
Therefore, do not delete this routine. While the implementation in the stub file is
complete, you may want to add code, as described below.

While When switching Vpp on, the VppOn() function must not return until Vpp
has stabilized at the proper voltage. If necessary, your VppOn() function should
delay execution with an idle loop or with a call to the flDelayMsec() routine, until
the Vpp has stabilized.

rfaVppOff

Vpp is assumed to be ON constantly in RFA environments. This routine is
complete in the stub file; however, it is not optional, and must always be
implemented. Therefore, do not delete this routine.

rfaSocketInit

Contains a /* TODO */ clause.

This routine is called each time TrueFFS is initialized (the drive is accessed). It is
responsible for ensuring that the flash is in a usable state (that is, board-level
initialization). If, for any reason, there is something that must be done prior to such
an access, this is the routine in which you perform that action. For more
information, see nrfaSocketInit, p.321.

rfaSetWindow

Contains a /* TODO */ clause.

This routine uses the FLASH_BASE_ADRS and FLASH_SIZE values that you set in
the stub file. As long as those values are correct, the implementation for this
routine in the stub file is complete.

TrueFFS calls this routine to initialize key members of the window structure,
which is a member of the FLSocket structure. For most hardware, the setWindow
function does the following, which is already implemented in the stub file:

� Sets the window.baseAddress to the base address in terms of 4 KB pages.

� Calls flSetWindowSize(), specifying the window size in 4 KB units
(window.baseAddress). Internally, the call to flSetWindowSize() sets
window.size, window.base, and window.currentPage for you.

This routine sets current window hardware attributes: base address, size, speed
and bus width. The requested settings are given in the vol.window structure. If it
is not possible to set the window size requested in vol.window.size, the window
size should be set to a larger value, if possible. In any case, vol.window.size should
contain the actual window size (in 4 KB units) on exit.
318

8

8
Flash Memory Block Device Driver
For more information, see nrfaSetWindow, p.321 and Socket Windowing and Address
Mapping, p.322.

rfaSetMappingContext

TrueFFS calls this routine to set the window mapping register. Because
board-resident flash arrays usually map the entire flash in memory, they do not
need this function. In the stub file it is a wrapper, thus implementation is complete.

rfaGetAndClearChangeIndicator

Always return FALSE in RFA environments, since the device is not removable.
This routine is complete in the stub file.

rfaWriteProtected

This routine always returns FALSE for RFA environments. It is completely
implemented in the stub file.

8.10.2 Understanding Socket Driver Functionality

Socket drivers in TrueFFS are modeled after the PCMCIA socket services. As such,
they must provide the following:

� services that control power to the socket (be it PCMCIA, RFA, or any other
type)

� criteria for setting up the memory windowing environment

� support for card change detection

� a socket initialization routine

This section describes details about socket registration, socket member functions,
and the windowing and address mapping set by those functions. This information
is not necessary to port the stub RFA file; however, it may be useful for writers of
PCMCIA socket drivers.

! CAUTION: On systems with multiple socket drivers (to handle multiple flash
devices), make sure that the window base address is different for each socket. In
addition, the window size must be taken into account to verify that the windows
do not overlap.
319

VxWorks 5.5
Programmer’s Guide
Socket Registration

The first task the registration routine performs is to assign drive numbers to the
socket structures. This is fully implemented in the stub file. You only need to be
aware of the drive number when formatting the drives (8.6.1 Specifying the Drive
Number, p.307).

The drive numbers are index numbers into a pre-allocated array of FLSocket
structures. The registration sequence dictates the drive number associated with a
drive, as indicated in the first line of code from the rfaRegister() routine:

FLSocket vol = flSockeOf (noOfDrives);

Here, noOfDrives is the running count of drives attached to the system. The
function flSocketOf() returns a pointer to socket structure, which is used as the
volume description and is incremented by each socket registration routine called
by the system. Thus, the TrueFFS core in the socket structures are allocated each of
the (up to) 5 drives supported for the system.2 When TrueFFS invokes the routines
that you implement to handle its hardware interface needs, it uses the drive
number as an index into the array to access the socket hardware for a particular
flash device.

Socket Member Functions

� rfaCardDetected This routine reports whether there is a flash memory card in the
PCMCIA slot associated with this device. For non-removable media, this routine
should always return TRUE. Internally, TrueFFS for Tornado calls this function
every 100 milliseconds to check that flash media is still there. If this function
returns FALSE, TrueFFS sets cardChanged to TRUE.

� rfaVccOn TrueFFS can call this routine to turn on Vcc, which is the operating
voltage. For the flash memory hardware, Vcc is usually either 5 or 3.3 Volts. When
the media is idle, TrueFFS conserves power by turning Vcc off at the completion of
an operation. Prior to making a call that accesses flash memory, TrueFFS uses this
function to turn the power back on again.

However, when socket polling is active, a delayed Vcc-off mechanism is used, in
which Vcc is turned off only after at least one interval has passed. If several
flash-accessing operations are executed in rapid sequence, Vcc remains on during
the sequence, and is turned off only when TrueFFS goes into a relatively idle state.

2. TrueFFS only supports a maximum of 5 drives.
320

8

8
Flash Memory Block Device Driver
� rfaVccOff TrueFFS can call this routine to turn off the operating voltage for the
flash memory hardware. When the media is idle, TrueFFS conserves power by
turning Vcc off. However, when socket polling is active, Vcc is turned off only after
a delay. Thus, if several flags accessing operations are executed in rapid sequence,
Vcc is left on during the sequence. Vcc is turned off only when TrueFFS goes into
a relatively idle state. Vcc is assumed to be ON constantly in RFA environments.

� rfaVppOn This routine is not optional, and must always be implemented. TrueFFS
calls this routine to apply Vpp, which is the programming voltage. Vpp is usually
12 Volts to the flash chip. Because not all flash chips require this voltage, the
member is included only if SOCKET_12_VOLTS is defined.

Vpp must be known to be good on exit and is assumed to be ON constantly in RFA
environments.

� rfaVppOff TrueFFS calls this routine to turn off a programming voltage (Vpp,
usually 12 Volts) to the flash chip. Because not all flash chips require this voltage,
the member is included only if SOCKET_12_VOLTS is defined. This routine is not
optional, and must always be implemented. Vpp is assumed to be ON constantly
in RFA environments.

� rfaSocketInit TrueFFS calls this function before it tries to access the socket. TrueFFS
uses this function to handle any initialization that is necessary before accessing the
socket, especially if that initialization was not possible at socket registration time.
For example, if you did no hardware detection at socket registration time, or if the
flash memory medium is removable, this function should detect the flash memory
medium and respond appropriately, including setting cardDetected to FALSE if it
is missing.

� rfaSetWindow TrueFFS uses window.base to store the base address of the memory
window on the flash memory, and window.size to store the size of the memory
window. TrueFFS assumes that it has exclusive access to the window. That is, after
it sets one of these window characteristics, it does not expect your application to
directly change any of them, and could crash if you do. An exception to this is the
mapping register. Because TrueFFS always reestablishes this register when it
accesses flash memory, your application may map the window for purposes other
than TrueFFS. However, do not do this from an interrupt routine.

NOTE: The macro SOCKET_12_VOLTS is only alterable by users that have source
to the TrueFFS core.
321

VxWorks 5.5
Programmer’s Guide
� rfaSetMappingContext TrueFFS calls this routine to set the window mapping
register. This routine performs the sliding action by setting the mapping register to
an appropriate value. Therefore, this routine is meaningful only in environments
such as PCMCIA, that use the sliding window mechanism to view flash memory.
Flash cards in the PCMCIA slot use this function to access/set a mapping register
that moves the effective flash address into the host’s memory window. The
mapping process takes a “card address”, an offset in flash, and produces real
address from it. It also wraps the address around to the start of flash if the offset
exceeds flash length. The latter is the only reason why the flash size is a required
entity in the socket driver. On entry to setMappingContext,
vol.window.currentPage is the page already mapped into the window (meaning
that it was mapped in by the last call to setMappingContext).

� rfaGetAndClearChangeIndicator This routine reads the hardware card-change
indication and clears it. It serves as a basis for detecting media-change events. If
you have no such hardware capability, return FALSE for this routine (set this
function pointer to NULL).

� rfaWriteProtected TrueFFS can call this routine to get the current state of the
media’s write-protect switch (if available). This routine returns the write-protect
state of the media, if available, and always returns FALSE for RFA environments.
For more information, see 8.7.1 Write Protecting Flash, p.309.

Socket Windowing and Address Mapping

The FLSocket structure (defined in installDir/target/h/tffs/flsocket.h) contains an
internal window state structure. If you are porting the socket driver, the following
background information about this window structure may be useful when
implementing the xxxSetWindow() and xxxSetMappingContext() routines.

The concept of windowing derives from the PCMCIA world, which formulated
the idea of a Host Bus Adapter. The host could allow one of the following
situations to exist:

� The PCMCIA bus could be entirely visible in the host’s address range.

� Only a segment of the PCMCIA address range could be visible in the host’s
address space.

� Only a segment of the host’s address space could be visible to the PCMCIA.

To support these concepts, PCMCIA specified the use of a “window base register”
that may be altered to adjust the view from the window. In typical RFA scenarios,
322

8

8
Flash Memory Block Device Driver
where the device logic is NOR, the window size is that of the amount of flash on
the board. In the PCMCIA situation, the window size is implementation-specific.
The book PCMCIA Systems Architecture by Don Anderson provides an good
explanation of this concept, with illustrations.

8.11 Using the MTD-Supported Flash Devices

This section lists the flash devices that are supported by the MTDs that are
provided with the product.

8.11.1 Supporting the Common Flash Interface (CFI)

TrueFFS supports devices that use the Scalable Command Set (SCS) from Intel, and
devices that use the AMD command set. Both of these command sets conform to
the Common Flash Interface (CFI). System that requires support for both command
sets are rare. Therefore, to facilitate code readability, support for each command set
is provided in a separate MTD. To support both command sets, simply configure
your system to include both MTDs (see 8.5.4 Including the MTD Component, p.303).
The command sets are described below.

� Intel/Sharp Command Set . This is the CFI specification listing for the SCS
command set. The driver file for this MTD is installDir/target/src/drv/tffs/cfiscs.c.
The support for the Intel/Sharp command set was largely derived from the
Application Note 646, available at the Intel web site.

� AMD/Fujitsu Command Set . This is the Embedded Program Algorithm and
flexible sector architecture listing for the SCS command set. The driver file is
installDir/target/src/drv/tffs/cfiamd.c. Details about support for this MTD are
described in AMD/Fujitsu CFI Flash Support, p.325.

Common Functionality

Both drivers support 8 and 16 bit devices, and 8- and 16-bit wide interleaves.
Configuration macros (described in the code) are used to control these and other
configuration issues, and must be defined specifically for your system. If
modifications are made to the code, it must be rebuilt. Noteworthy are the
following macros:
323

VxWorks 5.5
Programmer’s Guide
INTERLEAVED_MODE_REQUIRES_32BIT_WRITES
Must be defined for systems that have 16-bit interleaves and require support
for the “Write to Buffer” command.

SAVE_NVRAM_REGION
Excludes the last erase block on each flash device in the system that is used by
TrueFFS; this is so that the region can be used for Non-Volatile Storage of boot
parameters.

CFI_DEBUG
Makes the driver verbose by using the I/O routine defined by DEBUG_PRINT.

BUFFER_WRITE_BROKEN
Introduced to support systems that registered a buffer size greater than 1, yet
could not support writing more than a byte or word at a time. When defined,
it forces the buffer size to 1.

DEBUG_PRINT
If defined, makes the driver verbose by using its value.

CFI/SCS Flash Support

The MTD defined in cfiscs.c supports flash components that follow the CFI/SCS
specification. CFI stands for Common Flash Interface. SCS stands for Scalable
Command Set. CFI is a standard method for querying flash components for their
characteristics. SCS is a second layer built on the CFI specification. This lets a single
MTD handle all CFI/SCS flash technology in a common manner.

The joint CFI/SCS specification is currently adopted by Intel Corporation and
Sharp Corporation for all new flash components starting in 1997.

The CFI document can be downloaded from:

http://www.intel.com/design/flcomp/applnots/292204.htm

or can be found by searching for CFI at:

http://www.intel.com/design

Define INCLUDE_MTD_CFISCS in your BSP’s sysTffs.c file to include this MTD in
TrueFFS for Tornado.

NOTE: These macros are only configurable by defining them in the source file, not
through the IDE project tool.
324

8

8
Flash Memory Block Device Driver
In some of the more recent target boards we have observed that non-volatile RAM
circuitry does not exist, and that the BSP developers have opted to use the high end
of flash for this purpose. The last erase block of each flash part is used to make up
this region. The CFISCS MTD supports this concept by providing the compiler
constant SAVE_NVRAM_REGION. If this is defined, the driver reduces the device’s
size by the erase block size times the number of devices; this results in the NVRAM
region being preserved and never over-written. The ARM BSPs, in particular, use
flash for NVRAM and for the boot image.

AMD/Fujitsu CFI Flash Support

In AMD and Fujitsu devices, the flexible sector architecture, also called boot block
devices, is only supported when erasing blocks. However, the TrueFFS core and
translation layers have no knowledge of the subdivision within the boot block
because the MTD presents this division transparently. According to the data sheet
for the 29LV160 device, it is comprised of 35 sectors. However, the 4 boot block
sectors appear to the core and translation layer as yet another, single (64 KB) sector.
Thus, the TrueFFS core detects only 32 sectors. Consequently, the code that
supports boot images also has no knowledge of the boot block, and cannot provide
direct support for it.

The AMD and Fujitsu devices include the concept of Top and Bottom boot devices.
However, the CFI interrogation process does not provide a facility for
distinguishing between the two. Thus, in order to determine the boot block type
the driver embeds the JEDEC device IDs in it. This limits the number of supported
devices to the ones that are registered in it, requiring verification that the device in
use is listed in the registry.

8.11.2 Supporting Other MTDs

If you are not using a CFI-compliant MTD, the following MTDs are also provided.

Intel 28F016 Flash Support

The MTD defined in i28f016.c supports Intel 28F016SA and Intel 28F008SV flash
components. Any flash array or card based on these chips is recognized and
supported by this MTD. This MTD also supports interleaving factors of 2 and 4 for
BYTE-mode 28F016 component access.
325

VxWorks 5.5
Programmer’s Guide
For WORD-mode component access, only non-interleaved (interleave 1) mode is
supported. The list of supported flash media includes the following:

� Intel Series-2+ PC Cards
� M-Systems Series-2+ PC Cards

Define INCLUDE_MTD_I28F016 in your BSP’s sysTffs.c file to include this MTD in
TrueFFS for Tornado.

Intel 28F008 Flash Support

The MTD defined in I28F008.c supports the Intel 28F008SA, Intel 28F008SC, and
Intel 28F016SA/SV (in 8-mbit compatibility mode) flash components. Any flash
array or card based on these chips is recognized and supported by this MTD.
However, the WORD-mode of 28F016SA/SV is not supported (BYTE-mode only).
This MTD also supports all interleaving factors (1, 2, 4, ...). Interleaving of more
than 4 is recognized, although the MTD does not access more than 4 flash parts
simultaneously. The list of supported flash media includes the following:

� M-Systems D-Series PC Cards
� M-Systems S-Series PC Cards
� Intel Series-2 (8-mbit family) PC Cards
� Intel Series-2+ (16-mbit family) PC Cards
� Intel Value Series 100 PC Cards
� Intel Miniature cards
� M-Systems PC-FD, PC-104-FD, Tiny-FD flash disks

Define INCLUDE_MTD_I28F008 in your BSP’s sysTffs.c file to include this MTD in
TrueFFS for Tornado.

AMD/Fujitsu Flash Support

The MTD defined in amdmtd.c (8-bit) supports AMD flash components of the
AMD Series-C and Series-D flash technology family, as well as the equivalent
Fujitsu flash components. The flash types supported are:

� Am29F040 (JEDEC IDs 01a4h, 04a4h)
� Am29F080 (JEDEC IDs 01d5h, 04d5h)
� Am29LV080 (JEDEC IDs 0138h, 0438h)
� Am29LV008 (JEDEC IDs 0137h, 0437h)
� Am29F016 (JEDEC IDs 01adh, 04adh)
� Am29F016C (JEDEC IDs 013dh, 043dh)
326

8

8
Flash Memory Block Device Driver
Any flash array or card based on these chips is recognized and supported by this
MTD. The MTD supports interleaving factors of 1, 2, and 4. The list of supported
flash media includes the following:

� AMD and Fujitsu Series-C PC cards
� AMD and Fujitsu Series-D PC cards
� AMD and Fujitsu miniature cards

Define INCLUDE_MTD_AMD in your BSP’s sysTffs.c file to include the 8-bit MTD
in TrueFFS for Tornado.

8.11.3 Obtaining Disk On Chip Support

The previous demand for NAND devices has been in one of two forms: SSFDC/
Smart Media devices and Disk On Chip from M-Systems. Each of these is
supported by a separate translation layer. To provide M-Systems the capability of
adding Disk On Chip specific optimizations within the product that do not effect
other supported devices, support for M-Systems devices must now be obtained
directly from M-Systems and is no longer distributed with the Tornado product.
This version of Tornado only supports NAND devices that conform to the SSFDC
specification. 8.5.5 Including the Translation Layer, p.304.

8.12 Writing MTD Components

An MTD is a software module that provides TrueFFS with data, and with pointers
to the routines that it uses to program the flash memory. All MTDs must provide
the following three routines: a write routine, an erase routine, and an identification
routine. The MTD module uses an identification routine to evaluate whether the
type of the flash device is appropriate for the MTD. If you are writing your own
MTD, you need to define it as a component and register the identification routine.

For source code examples of MTDs, see the installDir/target/src/drv/tffs directory.
327

VxWorks 5.5
Programmer’s Guide
8.12.1 Writing the MTD Identification Routine

TrueFFS provides a flash structure in which information about each flash part is
maintained. The identification process is responsible for setting up the flash
structure correctly.

In the process of creating a logical block device for a flash memory array, TrueFFS
tries to match an MTD to the flash device. To do this, TrueFFS calls the
identification routine from each MTD until one reports a match. The first reported
match is the one taken. If no MTD reports a match, TrueFFS falls back on a default
read-only MTD that reads from the flash device by copying from the socket
window.

The MTD identification routine is guaranteed to be called prior to any other
routine in the MTD. An MTD identification routine is of the following format:

FLStatus xxxIdentify(FLFlash vol)

Within an MTD identify routine, you must probe the device to determine its type.
How you do this depends on the hardware. If the type is not appropriate to this
MTD, return failure. Otherwise, set the members of the FLFlash structure listed
below.

The identification routine for every MTD must be registered in the mtdTable[]
defined in installDir/target/src/drv/tffs/tffsConfig.c. Each time a volume is
mounted, the list of identification routines is traversed to find the MTD suitable for
the volume. This provides better service for hot-swap devices; no assumption is
made about a previously identified device being the only device that will work for
a given volume.

Device identification can be done in a variety of ways. If your device conforms to
Joint Electronic Device Engineering Council (JEDEC) or Common Flash Interface
(CFI) standards, you can use their identification process. You might want your
MTD to identify many versions of the device, or just simply one.

NOTE: Many of the MTDs previously developed by M-Systems or Wind River are
provided in source form as examples of how one might write an MTD (in
installDir/target/src/drv/tffs). This section provides additional information about
writing them.
328

8

8
Flash Memory Block Device Driver
Initializing the FLFLash Structure Members

At the end of the identification process, the ID routine needs to set all data
elements in the FlFlash structure, except the socket member. The socket member
is set by functions internal to TrueFFS. The FLFlash structure is defined in
installDir/h/tffs/flflash.h. Members of this structure are described as follows:

type

The JEDEC ID for the flash memory hardware. This member is set by the MTD’s
identification routine.

erasableBlockSize

The size, in bytes, of an erase block for the attached flash memory hardware. This
value takes interleaving into account. Thus, when setting this value in an MTD, the
code is often of the following form:

vol.erasableBlockSize = aValue * vol.interleaving;

Where aValue is the erasable block size of a flash chip that is not interleaved with
another.

chipSize

The size (storage capacity), in bytes, of one of the flash memory chips used to
construct the flash memory array. This value is set by the MTD, using your
flFitInSocketWindow() global routine.

noOfChips

The number of flash memory chips used to construct the flash memory array.

interleaving

The interleaving factor of the flash memory array. This is the number of devices
that span the data bus. For example, on a 32-bit bus we can have four 8-bit devices
or two 16-bit devices.

flags

Bits 0-7 are reserved for the use of TrueFFS (it uses these flags to track things such
as the volume mount state). Bits 8-15 are reserved for the use of the MTDs.
329

VxWorks 5.5
Programmer’s Guide
mtdVars

This field, if used by the MTD, is initialized by the MTD identification routine to
point to a private storage area. These are instance-specific. For example, suppose
you have an Intel RFA based on the I28F016 flash part; suppose you also have a
PCMCIA socket into which you decide to plug a card that has the same flash part.
The same MTD is used for both devices, and the mtdVars are used for the variables
that are instance-specific, so that an MTD may be used more than once in a system.

socket

This member is a pointer to the FLSocket structure for your hardware device. This
structure contains data and pointers to the socket layer functions that TrueFFS
needs to manage the board interface for the flash memory hardware. The functions
referenced in this structure are installed when you register your socket driver (see
8.10 Writing Socket Drivers, p.314). Further, because TrueFFS uses these socket
driver functions to access the flash memory hardware, you must register your
socket driver before you try to run the MTD identify routine that initializes the bulk
of this structure.

map

A pointer to the flash memory map function, the function that maps flash into an
area of memory. Internally, TrueFFS initializes this member to point to a default
map function appropriate for all NOR (linear) flash memory types. This default
routine maps flash memory through simple socket mapping. Flash should replace
this pointer to the default routine with a reference to a routine that uses
map-through-copy emulation.

read

A pointer to the flash memory read function. On entry to the MTD identification
routine, this member has already been initialized to point to a default read function
that is appropriate for all NOR (linear) flash memory types. This routine reads
from flash memory by copying from a mapped window. If this is appropriate for
your flash device, leave read unchanged. Otherwise, the MTD identify routine
should update this member to point to a more appropriate function.
330

8

8
Flash Memory Block Device Driver
write

A pointer to the flash memory write function. Because of the dangers associated
with an inappropriate write function, the default routine for this member returns
a write-protect error. The MTD identification routine must supply an appropriate
function pointer for this member.

erase

A pointer to the flash memory erase function. Because of the dangers associated
with an inappropriate erase function, the default routine for this member returns
a write-protect error. The MTD identification routine must supply an appropriate
function pointer for this member.

setPowerOnCallback

A pointer to the function TrueFFS should execute after the flash hardware device
powers up. TrueFFS calls this routine when it tries to mount a flash device. Do not
confuse this member of FLFlash with the powerOnCallback member of the
FLSocket structure. For many flash memory devices, no such function is necessary.
However, this member is used by the MTD defined in
installDir/target/src/drv/tffs/nfdc2048.c.

Return Value

The identification routine must return flOK or an appropriate error code defined in
flbase.h. The stub provided is:

FLStatus myMTDIdentification
(
FLFlash vol
)
{
/* Do what is needed for identification */

/* If identification fails return appropriate error */

return flOK;
}

After setting the members listed above, this function should return flOK.
331

VxWorks 5.5
Programmer’s Guide
Call Sequence

Upon success, the identification routine updates the FLFlash structure, which also
completes the initialization of the FLSocket structure referenced within this
FLFlash structure.

8.12.2 Writing the MTD Map Function

MTDs need to provide a map function only when a RAM buffer is required for
windowing. No MTDs are provided for devices of this kind in this release. If the
device you are using requires such support, you need to add a map function to
your MTD and assign a pointer to it in FLFlash.map. The function takes three
arguments, a pointer to the volume structure, a “card address”, and a length field,
and returns a void pointer.

static void FAR0 * Map
(FLFlash vol,
 CardAddress address,
int length
)

Figure 8-3 Identifying an MTD for the Flash Technology

aaaIdentify()
bbbIdentify()
cccIdentify()
...

tffsDevCreate()

flMountVolume()

flMount()

flIdentifyFlash()
332

8

8
Flash Memory Block Device Driver
{
/* implement function */
}

8.12.3 Writing the MTD Read, Write, and Erase Functions

Typically, your read, write, and erase functions should be as generic as possible.
This means that they should:

� Read, write, or erase only a character, a word, or a long word at a time.

� Be able to handle an unaligned read or write.

� Be able to handle a read, write, or erase that crosses chip boundaries.

When writing these functions, you probably want to use the MTD helper functions
flNeedVpp(), flDontNeedVpp(), and flWriteProtected(). The interfaces for these
routines are as follows:

FLStatus flNeedVpp(FLSocket vol)
void flDontNeedVpp(FLSocket vol)
FLBoolean flWriteProtected(FLSocket vol)

Use flNeedVpp() if you need to turn on the Vpp (programming voltage) for the
chip. Internally, flNeedVpp() bumps a counter, FLSocket.VppUsers, and then
calls the function referenced in FLSocket.VppOn. After calling flNeedVpp(),
check its return status to verify that it succeeded in turning on Vpp.

When done with the write or erase that required Vpp, call flDontNeedVpp() to
decrement the FLSocket.VppUsers counter. This FLSocket.VppUsers counter is
part of a delayed-off system. While the chip is busy, TrueFFS keeps the chip
continuously powered. When the chip is idle, TrueFFS turns off the voltage to
conserve power. 3

Use flWriteProtected() to test that the flash device is not write protected. The MTD
write and erase routines must not do any flash programming before checking that
writing to the card is allowed. The boolean function flWriteProtected() returns
TRUE if the card is write-protected and FALSE otherwise.

Read Routine

If the flash device can be mapped directly into flash memory, it is generally a
simple matter to read from it. TrueFFS supplies a default function that performs a

3. An MTD does not need to touch Vcc. TrueFFS turns Vcc on before calling an MTD function.
333

VxWorks 5.5
Programmer’s Guide
remap, and simple memory copy, to retrieve the data from the specified area.
However, if the mapping is done through a buffer, you must provide your own
read routine.

Write Routine

The write routine must write a given block at a specified address in flash. Its
arguments are a pointer to the flash device, the address in flash to write to, a
pointer to the buffer that must be written, and the buffer length. The last parameter
is boolean, and if set to TRUE implies that the destination has not been erased prior
to the write request. The routine is declared as static since it is only called from the
volume descriptor. The stub provided is:

static FLStatus myMTDWrite
(
FLFlash vol,
CardAddress address,
const void FAR1 *buffer,
int length,
FLBoolean overwrite
)
{
/* Write routine */
return flOK;
}

The write routine must do the following:

� Check to see if the device is write protected.

� Turn on Vpp by calling flNeedVpp().

� Always “map” the “card address” provided to a flashPtr before you write.

When implementing the write routine, iterate through the buffer in a way that is
appropriate for your environment. If writes are permitted only on word or double
word boundaries, check to see whether the buffer address and the card address are
so aligned. Return an error if they are not.

The correct algorithms usually follow a sequence in which you:

� Issue a “write setup” command at the card address.

� Copy the data to that address.

� Loop on the status register until either the status turns OK or you time out.

Device data sheets usually provide flow charts for this type of algorithm. AMD
devices require an unlock sequence to be performed as well.
334

8

8
Flash Memory Block Device Driver
The write routine is responsible for verifying that what was written matches the
content of the buffer from which you are writing. The file flsystem.h has
prototypes of compare functions that can be used for this purpose.

Erase Routine

The erase routine must erase one or more contiguous blocks of a specified size.
This routine is given a flash volume pointer, the block number of the first erasable
block and the number of erasable blocks. The stub provided is:

Static FLStatus myMTDErase
(
FLFlash vol,
int firstBlock,
int numOfBlocks
)
{
volatile UINT32 * flashPtr;
int iBlock;

if (flWriteProtected(vol.socket))
return flWriteProtected;

for (iBlock = firstBlock; iBlock < iBlock + numOfBlocks; Iblock++)
{
flashPtr = vol.map (&vol, iBlock * vol.erasableBlockSize, 0);

/* Perform erase operation here */

/* Verify if erase succeeded */

/* return flWriteFault if failed*/
}

return flOK;
}

As input, the erase can expect a block number. Use the value of the
erasableBlockSize member of the FLFlash structure to translate this block number
to the offset within the flash array.

8.12.4 Defining Your MTD as a Component

Once you have completed the MTD, you need to add it as a component to your
system project. By convention, MTD components are named
INCLUDE_MTD_someName; for example, INCLUDE_MTD_USR. You can include
the MTD component either through the project facility or, for a command-line
configuration and build, by defining it in the socket driver file, sysTffs.c.
335

VxWorks 5.5
Programmer’s Guide
Adding Your MTD to the Project Facility

In order to have the MTD recognized by the project facility, a component
description of the MTD is required. To add your own MTD component to your
system by using the project facility, edit the
installDir\target\config\comps\vxworks\00tffs.cdf file to include it. MTD
components are defined in that file using the following format:

Component INCLUDE_MTD_type {
NAME name
SYNOPSIS type devices
MODULES filename.o
HDR_FILES tffs/flflash.h tffs/backdrnd.h
REQUIRES INCLUDE_TFFS \

INCLUDE_TL_type
}

Once you define your MTD component in the 00tffs.cdf file, it appears in the
project facility the next time you run Tornado.

Defining the MTD in the Socket Driver File

For a command-line configuration and build, you can include the MTD component
simply by defining it in the socket driver file, sysTffs.c, as follows:

#define INCLUDE_MTD_USR

Add your MTD definition to the list of those defined between the conditional
clause, as described in nConditional Compilation, p.305. Then, define the correct
translation layer for your MTD. If both translation layers are defined in the socket
driver file, undefine the one you are not using. If both are undefined, define the
correct one. For other examples, see the type-sysTffs.c files in
installDir\target\src\drv\tffs\sockets.

8.12.5 Registering the Identification Routine

The identification routine for every MTD must be registered in the mtdTable[].
Each time a volume is mounted, TrueFFS searches this list to find an MTD suitable
for the volume (flash device). For each component that has been defined for your
system, TrueFFS executes the identification routine referenced in mtdTable[], until

! CAUTION: Be sure that you have the correct sysTffs.c file before changing the
defines. For more information, see 8.10.1 Porting the Socket Driver Stub File, p.315.
336

8

8
Flash Memory Block Device Driver
it finds a match to the flash device. The current mtdTable[] as defined in
installDir/target/src/drv/tffs/tffsConfig.c is:

MTDidentifyRoutine mtdTable[] = /* MTD tables */
{

#ifdef INCLUDE_MTD_I28F016
i28f016Identify,

#endif /* INCLUDE_MTD_I28F016 */

#ifdef INCLUDE_MTD_I28F008
i28f008Identify,

#endif /* INCLUDE_MTD_I28F008 */

#ifdef INCLUDE_MTD_AMD
amdMTDIdentify,

#endif /* INCLUDE_MTD_AMD */

#ifdef INCLUDE_MTD_CDSN
cdsnIdentify,

#endif /* INCLUDE_MTD_CDSN */

#ifdef INCLUDE_MTD_DOC2
doc2Identify,

#endif /* INCLUDE_MTD_DOC2 */

#ifdef INCLUDE_MTD_CFISCS
cfiscsIdentify,

#endif /* INCLUDE_MTD_CFISCS */
};

If you write a new MTD, list its identification routine in mtdTable[]. For example:

#ifdef INCLUDE_MTD_USR
usrMTDIdenitfy,

#endif /* INCLUDE_MTD_USR */

It is recommended that you surround the component name with conditional
include statements, as shown above. The symbolic constants that control these
conditional includes are defined in the BSP config.h file. Using these constants,
your end users can conditionally include specific MTDs.

When you add your MTDs identification routine to this table, you should also add
a new constant to the BSP’s config.h.
337

VxWorks 5.5
Programmer’s Guide
8.13 Flash Memory Functionality

This section discusses flash memory functionality, and the ways in which it
protects data integrity, extends the lifetime of the medium, and supports fault
recovery.

8.13.1 Block Allocation and Data Clusters

As is required of a block device driver, TrueFFS maps flash memory into an
apparently contiguous array of storage blocks, upon which a file system can read
and write data. These blocks are numbered from zero to one less than the total
number of blocks. Currently, the only supported file system is dosFs (see
5.2 MS-DOS-Compatible File System: dosFs, p.194).

Block Allocation Algorithm

To promote more efficient data retrieval, TrueFFS uses a flexible allocation strategy,
which clusters related data into a contiguous area in a single erase unit. These
clusters might be, for example, the blocks that comprise the sectors of a file.
TrueFFS follows a prioritized procedure for attempting to cluster the related data.
In this order:

(1) First, it tries to maintain a pool of physically consecutive free blocks that
are resident in the same erase unit.

(2) If that fails, it then tries to assure that all the blocks in the pool reside in the
same erase unit.

(3) If that fails, it finally tries to allocate a pool of blocks in the erase unit that
has the most space available.

Benefits of Clustering

Clustering related data in this manner has several benefits, listed and described
below.

� Allows Faster Retrieval Times. For situations that require TrueFFS to access
flash through a small memory window, clustering related data minimizes the
number of calls needed to map physical blocks into the window. This allow faster
retrieval times for files accessed sequentially.
338

8

8
Flash Memory Block Device Driver
� Minimizes Fragmentation. Clustering related data cuts down on
fragmentation because deleting a file tends to free up complete blocks that can be
easily reclaimed.

� Speeds Garbage Collection. Minimizing fragmentation means that garbage
collection is faster.

� Localizes Static File Blocks. Localizing blocks that belong to static files
significantly facilitates transferring these blocks when the wear-leveling algorithm
decides to move static areas.

8.13.2 Read and Write Operations

One of the characteristics of flash memory that differs considerably from the more
common magnetic-medium mechanical disks is the way in which it writes new
data to the medium. When using traditional magnetic storage media, writing new
data to a previously written storage area simply overwrites the existing data,
essentially obliterating it; whereas flash does not. This section describes how flash
reads from, and writes to, memory.

Reading from Blocks

Reading the data from a block is straightforward. The file system requests the
contents of a particular block. In response, TrueFFS translates the block number
into flash memory coordinates, retrieves the data at those coordinates, and returns
the data to the file system.

Writing to Previously Unwritten Blocks

Writing data to a block is straightforward, if the target block is previously
unwritten. TrueFFS translates the block number into flash memory coordinates
and writes to the location. However, if the write request seeks to modify the
contents of a previously written block, the situation is more complex.

If any write operation fails, TrueFFS attempts a second write. For more
information, see Recovering During a Write Operation, p.343.

NOTE: Storing data in flash memory requires the use of a manufacturer-supplied
programming algorithm, which is defined in the MTD. Consequently, writing to
flash is often referred to as programming flash.
339

VxWorks 5.5
Programmer’s Guide
Writing to Previously Written Blocks

If the write request is to an area of flash that already contains data, TrueFFS finds
a different, writable area of flash instead—one that is already erased and ready to
receive data. TrueFFS then writes the new data to that free area. After the data is
safely written, TrueFFS updates its block-to-flash mapping structures, so that the
block now maps to the area of flash that contains the modified data. This mapping
information is protected, even during a fault. For more information on fault
recovery and mapping information, see Recovering Mapping Information, p.344.

8.13.3 Erase Cycles and Garbage Collection

The write operation is intrinsically linked to the erase operation, since data cannot
be “over-written.” Data must be erased, and then those erased units must be
reclaimed before they are made available to a write operation. This section
describes that process, as well as the consequences of over-erasing sections of flash.

Erasing Units

Once data is written to an area of flash memory, modifying blocks leaves behind
block-sized regions of flash memory that no longer contain valid data. These
regions are also unwritable until erased. However, the erase cycle does not operate
on individual bytes or even blocks. Erasure is limited to much larger regions called
erase units. The size of these erase units depends on the specific flash technology,
but a typical size is 64 KB.

Reclaiming Erased Blocks

To reclaim (erase) blocks that no longer contain valid data, TrueFFS uses a
mechanism called garbage collection. This mechanism copies all the valid data
blocks, from a source erase unit, into another erase unit known as a transfer unit.
TrueFFS then updates the block-to-flash map and afterward erases the old (erase)
unit. The virtual block presented to the outside world still appears to contain the
same data even though that data now resides in a different part of flash.

For details on the algorithm used to trigger garbage collection, see Garbage
Collection, p.342. For information about garbage collection and fault recovery, see
Recovering During Garbage Collection, p.344.
340

8

8
Flash Memory Block Device Driver
Over-Programming

As a region of flash is constantly erased and rewritten, it enters an over-programmed
state, in which it responds only very slowly to write requests. With rest, this
condition eventually fixes itself, but the life of the flash memory is shortened.
Eventually the flash begins to suffer from sporadic erase failures, which become
more and more frequent until the medium is no longer erasable and, thus, no
longer writable.4 Consequently, flash limits how often you can erase and rewrite
the same area. This number, known as the cycling limit, depends on the specific
flash technology, but it ranges from a hundred thousand to a million times per
block.5

8.13.4 Optimization Methods

As mentioned, flash memory is not an infinitely reusable storage medium. The
number of erase cycles per erase unit of flash memory is large but limited.
Eventually, flash degrades to a read-only state. To delay this as long as possible,
TrueFFS uses a garbage collection algorithm that works in conjunction with a
technique called wear leveling.

Wear Leveling

One way to alleviate over-programming is to balance usage over the entire
medium, so that the flash is evenly worn and no one part is over-used. This
technique is known as wear leveling and it can extend the lifetime of the flash
significantly. To implement wear leveling, TrueFFS uses a block-to-flash
translation system that is based on a dynamically maintained map. This map is
adjusted as blocks are modified, moved, or garbage collected.

Static-File Locking

By remapping modified blocks to new flash memory coordinates, a certain degree
of wear leveling occurs. However, some of the data stored in flash may be
essentially static, which means that if wear leveling only occurs during
modifications, the areas of flash that store static data are not cycled at all. This
situation, known as static file locking, exacerbates the wear on other areas of flash,

4. The data already resident is still readable.
5. This number is merely statistical in nature and should not be taken as an exact figure.
341

VxWorks 5.5
Programmer’s Guide
which must be recycled more frequently as a consequence. If not countered, this
situation can significantly lowers the medium’s life-expectancy.

TrueFFS overcomes static file locking by forcing transfers of static areas. Because
the block-to-flash map is dynamic, TrueFFS can manage these wear-leveling
transfers in a way that is invisible to the file system.

Algorithm

Implementing absolute wear leveling can have a negative impact on performance
because of all the required data moves. To avoid this performance hit, TrueFFS
implements a wear-leveling algorithm that is not quite absolute. This algorithm
provides an approximately equal number of erase cycles per unit. In the long run,
you can expect the same number of erase cycles per erase unit without a
degradation of performance. Given the large number of allowed erase cycles, this
less than absolute approach to wear leveling is good enough.

Dead Locks

Finally, the TrueFFS wear-leveling algorithm is further enhanced to break a failure
mode known as dead locks. Some simple wear-leveling algorithms have been
shown to “flip-flop” transfers between only two or more units for very long
periods, neglecting all other units. The wear-leveling mechanism used by TrueFFS
makes sure that such loops are curbed. For optimal wear-leveling performance,
TrueFFS requires at least 12 erase units.

Garbage Collection

Garbage collection, described in Reclaiming Erased Blocks, p.340, is used by the
erase cycle to reclaim erased blocks. However, if garbage collection is done too
frequently, it defeats the wear-leveling algorithm and degrades the overall
performance of the flash disk. Thus, garbage collection uses an algorithm that
relies on the block allocation algorithm (Block Allocation Algorithm, p.338), and is
triggered only as needed.

The block allocation algorithm maintains a pool of free consecutive blocks that are
resident in the same erase unit. When this pool becomes too small, the block
allocation algorithm launches the garbage collection algorithm, which then finds
and reclaims an erase unit that best matches the following criteria:

� the largest number of garbage blocks
� the least number of erase cycles
� the most static areas
342

8

8
Flash Memory Block Device Driver
In addition to these measurable criteria, the garbage collection algorithm also
factors in a random selection process. This helps guarantee that the reclamation
process covers the entire medium evenly and is not biased due to the way
applications use data.

8.13.5 Fault Recovery in TrueFFS

A fault can occur whenever data is written to flash; thus, for example, a fault can
occur:

� In response to a write request from the file system.
� During garbage collection.
� During erase operations.
� During formatting.

TrueFFS can recover from the fault in all cases except when new data is being
written to flash for the first time. This new data will be lost. However, once data is
safely written to flash, it is essentially immune to power failures. All data already
resident in flash is recoverable, and the file and directory structures of the disk are
retained. In fact, the negative consequence of a power interruption or fault is the
need to restart any incomplete garbage collection operation. This section describes
fault occurrence and fault recovery in TrueFFS.

Recovering During a Write Operation

A write or erase operation can fail because of a hardware problem or a power
failure. As mentioned in above, TrueFFS uses an “erase after write” algorithm, in
which the previous data is not erased until after the update operation has
successfully completed. To prevent the possible loss of data, TrueFFS monitors and
verifies the success of each write operation, using a register in which the actual
written data is read back and compared to the user data. Therefore, a data sector
cannot be in a partially written state. If the operation completes, the new sector is
valid; if the update fails, the old data is not lost or in any way corrupted.

TrueFFS verifies each write operation, and automatically attempts a second write
to a different area of flash after any failure. This ensures the integrity of the data by
making failure recovery automatic. This write-error recovery mechanism is
especially valuable as the flash medium approaches its cycling limit (end-of-life).
At that time, flash write/erase failures become more frequent, but the only
user-observed effect is a gradual decline in performance (because of the need for
write retries).
343

VxWorks 5.5
Programmer’s Guide
Recovering Mapping Information

TrueFFS stores critical mapping information in flash-resident memory, thus it is
not lost during an interruption such as a power loss or the removal of the flash
medium. TrueFFS does, however, use a RAM-resident mapping table to track the
contents of flash memory. When power is restored or the medium reconnected, the
the RAM-resident version of the flash mapping table is reconstructed (or verified)
from flash-resident information.

Recovering During Garbage Collection

After a fault, any garbage collection in process at the time of the failure must be
restarted. Garbage area is space that is occupied by sections that have been deleted
by the host. TrueFFS reclaims garbage space by first moving data from one transfer
unit to another, and then erasing the original unit.

If consistent flash failures prevent the necessary write operations to move data, or
if it is not possible to erase the old unit, the garbage collection operation fails. To
minimize a failure of the write part of the transfer, TrueFFS formats the flash
medium to contain more than one transfer unit. Thus, if the write to one transfer
unit fails, TrueFFS retries the write using a different transfer unit. If all transfer
units fail, the medium no longer accepts new data and becomes a read-only device.
This does not, however, have a direct effect on the user data, all of which is already
safely stored.

Recovering During Formatting

In some cases, sections of the flash medium are found to be unusable when flash is
first formatted. Typically, this occurs because those sections are not erasable. As
long as the number of bad units does not exceed the number of transfer units, the
medium is considered usable as a whole and can be formatted. The only noticeable
adverse effect is the reduced capacity of the formatted flash medium.

NOTE: Mapping information can reside anywhere on the medium.However, each
erase unit in flash memory maintains header information at a predictable location.
By carefully cross-checking the header information in each erase unit, TrueFFS is
able to rebuild or verify a RAM copy of the flash mapping table.
344

9

VxDCOM Applications

COM Support and Optional Component VxDCOM
9.1 Introduction

VxDCOM is the technology that implements COM and distributed COM (DCOM)
on VxWorks. The name VxDCOM refers both to this technology and to the optional
product. The VxDCOM optional product adds DCOM capabilities to the basic
COM support that is included in the standard VxWorks facilities.

COM stands for the Component Object Model, which is a binary specification for
component-based object communication. The Wind River VxDCOM technology
was designed to significantly facilitate the creation of both COM and DCOM
components, by automating much of the boiler-plate code. Thus, VxDCOM
enables users to easily write distributed object applications for use in real-time
embedded systems software.

The VxDCOM documentation assumes working knowledge of the COM
technology, and focuses on the VxDCOM facilities that are used to create server
applications for execution on VxWorks. The documentation comprises both this
chapter and the Tornado User’s Guide: Building COM and DCOM Applications. The
latter includes a step-by-step overview of how to create and build a VxDCOM
application. It covers procedural information for running the VxDCOM wizard,
descriptions of the generated output, and the process of building and deploying
VxDCOM applications.

This chapter covers the following topics, which are primarily reference material
and programming issues:

– a brief overview of the VxDCOM technology

– the Wind Object Template Library (WOTL) classes
345

VxWorks 5.5
Programmer’s Guide
– the auto-generated WOTL skeleton code

– the Wind IDL compiler and command-line options

– the structure and meaning of IDL definitions in the auto-generated files

– the configuration parameters for DCOM support in VxWorks

– real-time extensions and OPC interfaces

– tips and examples for writing implementation code

– an implementation comparison of VxDCOM and ATL

The demo example used in this chapter is a DCOM server application that includes
both a Visual Basic and a C++ client. Source for this demo is located in the
installDir/host/src/vxdcom/demo/MathDemo directory.

9.2 An Overview of COM Technology

COM is a specification for a communication protocol between objects, which are
called COM components. COM components are the basic building blocks of COM
client/server applications. The COM component is the server that provides
services to a client application by means of the functionality it advertises as its
COM interfaces. COM interfaces are sets of method prototypes that, viewed as a
whole, describe a coherent, well-defined functionality or service that is offered to
COM clients.

9.2.1 COM Components and Software Reusability

COM components are instantiated from classes called CoClasses. The CoClass
definitions include (single or multiple) inheritance from COM interfaces. The
CoClass is then required to implement the methods of the interfaces from which it
is derived. While the interface itself strictly defines the service it provides, the
implementation details are completely hidden from the client in the CoClass
implementation code. Clients are essentially unaware of COM components and
interact only with COM interfaces. This is one of the strengths of the COM
technology design; and it enables software developers to both update and reuse
components without impacting the client applications.
346

9

9
VxDCOM Applications
The following sections describe these fundamental elements of COM in more
detail.

COM Interfaces

An interface is a named set of pure method prototypes. The interface name
typically reflects the functionality of its methods and, by convention, begins with
the capital letter I. Thus, IMalloc might represent an interface that allocates, frees,
and manages memory. Similarly, ISem might be an interface that encapsulates the
functionality of a semaphore.

As part of the COM technology, basic interface services are defined in the COM
library. The COM and DCOM libraries that ship with VxDCOM are
implementations of the basic interfaces that are required for the aspects of COM
technology that VxDCOM supports.

As a developer, you typically define your own custom interfaces. Interface
definitions must conform to the COM specification, including descriptive
attributes and specifications for the interface, its methods, the method parameters,
and the return type (see The Interface Definition, p.369). By strictly adhering to this
specification, the COM interface becomes a contractual agreement between client
and server, and enables the communication protocol to function properly.

The contract between client and server is to provide a service; but it is not (and
need not be) a guarantee how that service is implemented. The implementation
details are hidden in the CoClass.

CoClasses

CoClasses are the classes that declare the interfaces and implement the interface
methods. The CoClass definition includes a declaration of all the interfaces that it

NOTE: These COM and DCOM libraries are used by the C++ template class library
(WOTL) and are shipped with VxDCOM. For the API definitions, see comLib.h
and dcomLib.h.

NOTE: Interface definitions are pure prototypes, similar to abstract C++ classes
that contain only pure virtual methods. In fact, the Wind Object Template Library
(WOTL), which you use to write VxDCOM applications, implements interfaces in
exactly this manner.
347

VxWorks 5.5
Programmer’s Guide
agrees to support. The CoClass implementation code must implement all of the
methods of all of the interfaces declared by that CoClass. When the CoClass is
instantiated, it becomes a COM component, or server. Client applications query for
interfaces services they need, and if your server supports those interfaces, then it
communicates with the client application through those interfaces.

Interface Pointers

In the COM model, the communication protocol between COM clients and servers
in handled using pointers to the COM interfaces. The interface pointers are used
to pass data between COM clients and COM servers. The client application uses
COM interface pointers to query COM servers for specific interfaces, to obtain
access to those interfaces, and to invoke the methods of the interfaces. Because the
COM specification and communication protocol is based on these pointers, it is
considered to be a binary standard.

Because COM technology uses a binary standard, it is theoretically possible for
COM components to be written in any language, and to run on any operating
system, while still being able to communicate. In this way, COM technology offers
great flexibility and component reusability to software developers, especially
those wanting to port applications to different operating systems.

VxDCOM Tools

Correctly defining interfaces and CoClasses, according to the COM specification,
can be detailed and tedious. However, because the specification follows standard
rules, the VxDCOM tools are able to facilitate this process by automatically
generating much of the code for you. For example, using the VxDCOM wizard,
you simply name your interface, and then select method parameter types and
attributes from predefined lists. The wizard automatically generates the correct
method return type for you, as well as your interface and CoClass definitions.

When building the application, the Wind IDL (Interface Definition Language)
compiler, widl, generates additional code used for server registration and
marshaling. Thus, you only need to use the tools, write your client and server
implementation code, and build your project, in order to develop COM
applications.

NOTE: Currently, the only languages supported for COM servers under VxDCOM
are C and C++; for DCOM servers, only C++ is currently supported.
348

9

9
VxDCOM Applications
9.2.2 VxDCOM and Real-time Distributed Technology

COM provides a common framework for describing the behavior and accessibility
of software components. Extending the basic COM technology across process and
machine boundaries into the realm of distributed objects requires a network RPC
protocol. For this, DCOM uses Object RPC (ORPC), a Microsoft extension of the
DCE-RPC specification. ORPC uses the marshaled interface pointer as the protocol
for communication between COM components, specifying the way references to
the component’s interfaces are represented, communicated, and maintained. COM
provides this functionality in its primary interfaces as defined in the standard
COM libraries.

The VxDCOM technology supports the basic COM interfaces as part of the
standard VxWorks facilities, and the DCOM network protocol as part of the
VxDCOM optional product. These implementations are documented in the
VxDCOM COM and DCOM libraries, which contain sets of COM and
DCOM-related interfaces targeted for embedded systems development, as well as
support for ORPC.

VxDCOM supports both in-process and remote server models. You can write a
server on a VxWorks target that provides services to client applications running on
other VxWorks targets or on PCs running Windows NT. Using the DCOM protocol
for embedded intelligent systems (such as telecommunications devices, industrial
controllers, and office peripherals) allows developers to extend the COM
programming environment out into the local area network, or even into the
Internet, without concern for networking issues.

NOTE: For details on these interfaces, see the appropriate .idl files, such as
vxidl.idl. For the API documentation, see comLib.h and dcomLib.h.

NOTE: VxDCOM does not support VxWorks to Windows NT when starting the
connection up on a VxWorks target. A callback from NT to VxWorks can be used
instead. VxDCOM does support VxWorks to NT connections, if all NT security is
disabled. For details, see the Tornado User’s Guide: Authenticate the Server and the
Tornado User’s Guide: Registering, Deploying, and Running Your Application.
349

VxWorks 5.5
Programmer’s Guide
9.3 Using the Wind Object Template Library

The Wind Object Template Library (WOTL) is a C++ template class library
designed for writing VxDCOM clients and servers. It is source-compatible with a
subset of ATL (the Microsoft COM template class library), on which it was
modeled. WOTL is the framework you use to write your client and server code.

You run the VxDCOM wizard to create your COM components. This wizard
generates output files. Among these output files are headers and implementation
source files that contain skeleton code in WOTL. Using this skeleton code, you
complete the implementation details for your server, and for any optional client
applications.

The Tornado User’s Guide: Building COM and DCOM Applications describes which
files to use to write implementation code appropriate to your type of application.
Further details are discussed in 9.10 Writing VxDCOM Servers and Client
Applications, p.377 and 9.10.3 Writing Client Code, p.380. Code snippets in this
chapter are from the CoMathDemo demo, located in the
installDir/host/src/VxDCOM/demo/MathDemo directory.

9.3.1 WOTL Template Class Categories

There are three VxDCOM template classes that you can define using WOTL. These
types are distinguished by whether or not the class uses a CLSID, and whether or
not there can be only one instantiation of the class at any one time. A CLSID is a
unique identification value for a class, and allows the class to be externally
instantiated via a class factory.

The three WOTL template classes are categorized as follows:

� True CoClasses: These are true COM classes, meaning that they have registered
CLSIDs and are instantiated through class factories. The CComCoClass template
class is used to declare these classes. This is the template class that the VxDCOM
wizard uses to generates skeleton code for the CoClass definitions for your COM
components.

� Singleton classes: These are also true CoClasses, but for which there is only one
instance. Thus, every invocation of IClassFactory::CreateInstance() returns the
same instance. To declare such a class, use the macro
DECLARE_CLASSFACTORY_SINGLETON in your class definition.

NOTE: Class factories are objects that instantiate CoClasses based on CLSIDs.
350

9

9
VxDCOM Applications
� Lightweight classes: These are simple classes that are not technically true COM
classes. The template class has no associated CLSID (class identification value) and
thus, instantiates objects by using a default class-factory creation mechanism.
These can never be DCOM classes. To declare such a class, use the CComObject
class. You typically use these classes to create internal objects that enhance the
object-oriented functionality of your code.

The WOTL classes and class templates are described below, with details on how to
use them. WOTL classes are declared in the header
installDir/target/h/comObjLib.h. Some additional helper classes, such as
VxComBSTR, are defined in installDir/target/h/comObjLibExt.h. For more
information, see 9.11 Comparing VxDCOM and ATL Implementations., p.385.

9.3.2 True CoClass Template Classes

The VxDCOM wizard automatically generates the template class definitions for
your CoClass, including proper derivation from base classes and from interfaces
you want to implement in your CoClass. The following sections explain this code.

CComObjectRoot – IUnknown Implementation Support Class

CComObjectRoot is the base class for all VxDCOM classes and provides task-safe
IUnknown implementation, plus support for aggregatable object. To declare a
class that provides concrete implementations for one or more COM interfaces, the
class must inherit from both CComObjectRoot and the interfaces it implements.
The following example declares a class, CExample, that supports the interface
IExample and will implement its methods:

class CExample: public CComObjectRoot, public IExample
{

// Private instance data
public:

// Implementation, including IExample methods...
};

As the implementation class for IUnknown, all WOTL implementation classes
that you declare should include CComObjectRoot as an intimate base class.
351

VxWorks 5.5
Programmer’s Guide
CComCoClass – CoClass Class Template

CComCoClass is the template class that provides the CoClass implementation;
that is, it includes a publicly-known CLSID for the class, and one or more publicly
known interfaces. Objects created from this class are considered to be true COM
objects because they can be 'externally' instantiated using the CLSID and calling
the COM or DCOM API creation functions CoCreateInstance() and
CoCreateInstanceEx().

CComCoClass wraps the functionality required by the class factory class and the
registration mechanism, so that classes derived from it inherit that functionality.
CComClassFactory is the class factory class template that implements the
standard IClassFactory COM interface. This interface allows objects to be created
at run-time using CLSIDs. The declaration for this class follows the standard
WOTL format, inheriting from CComObjectRoot and the interface being
implemented.

CoClass Definitions

The definition for CoClasses is automatically generated by the wizard. These
CoClasses are derived from all of the following:

� the ultimate WOTL base class, CComObjectRoot
� the WOTL base class template for all CoClasses, CComCoClass
� the primary interface, which is implemented by the CoClass
� all additional interfaces implemented by the CoClass

Example Definition

The example below shows this inheritance in the definition of the server CoClass
in the CoMathDemoImpl.h header file:

class CoMathDemoImpl
: public CComObjectRoot,
public CComCoClass<CoMathDemoImpl, &CLSID_CoMathDemo>
,public IMathDemo
,public IEvalDemo

{
// body of definition

};

The generated server implementation header for your application will include a
declaration for your CoClass that is similarly derived from CComObjectRoot,
from CComCoClass, your primary interface, and from any additional interfaces.
Note that WOTL supports multiple inheritance, which includes inheritance from
multiple interfaces; so your CoClass definition derives from each of the interfaces
it implements.
352

9

9
VxDCOM Applications
Using CLSID Instantiation

The CComCoClass class template creates its class instantiation based upon the
name of the CoClass and the CLSID. The &CLSID_CoMathDemo parameter, in
the CoMathDemo example code above, represents the GUID (globally unique
identifier) that identifies the CoClass. The CLSID for your CoClass is
CLSID_basename, and can be found in the basename_i.c file, generated by the widl
compilation. The parameter you would use is thus &CLSID_basename.

9.3.3 Lightweight Object Class Template

Lightweight classes create COM objects without a CLSID; and because of this, they
are not considered to be true CoClasses. Lightweight classes are typically used
internally to optimize the object-oriented design of an application through the use
of interfaces.

CComObject is the lightweight object class template for WOTL. CComObject is a
wrapper template class used to create classes for lightweight objects. The actual
implementation class used as an argument to the templatized class CComObject
derives from CComObjectRoot in order to inherit IUnknown interface support.

In the following CComObject template class instantiation, CExample is the class
defined in the example above. It derives from CComObjectRoot and implements
the IExample interface:

CComObject<CExample>

Lightweight classes do not have a CLSID and, thus, cannot be externally
instantiated using the normal class-factory method. For this reason, CComObject
provides default class-factory implementation. These classes are instantiated by
calling the function CComObject<CExample>::CreateInstance(), rather than by
using CoCreateInstance(). This function takes the same arguments as
IClassFactory::CreateInstance().

The VxDCOM wizard does not generate definitions for this template class. To
create a lightweight class object, simply add the definition and implementation
code to your header and source files.

NOTE: The CLSID_basename (class ID) is declared as a const, and represents the
GUID generated for the CoClass from the compilation of the .idl file.
CLSID_basename is used in the server header and implementation files, and also in
the client implementation file. Use this const when referencing the CLSID (class
ID) for your CoClass.
353

VxWorks 5.5
Programmer’s Guide
9.3.4 Single Instance Class Macro

To define a class as a singleton, that is, a class for which there is only one instance,
you include a DECLARE_CLASSFACTORY_SINGLETON statement in your class
definition.

class CExample
: public CComObjectRoot,
public CComCoClass<CExample, &CLSID_Example>,
public IExample

{
// Private instance data

public:
DECLARE_CLASSFACTORY_SINGLETON();
// Implementation, including IExample methods...

};

When you declare a class using this macro, every call to
IClassFactory::CreateInstance() returns the same instance. The VxDCOM wizard
does not generate definitions for this template class. To create a single instance
class object, simply add the definition and implementation code to your header
and source files.

9.4 Reading WOTL-Generated Code

The purpose of this section is to familiarize you with the code appearing in the
wizard-generated output files. For the most part, you will not need to modify this
code to implement your server or client. However, WOTL includes many helper
macros, which have been defined for convenience and readability. This section
discusses these macro definitions to enable users to more easily read the generated
WOTL code and, over time, better understand how VxDCOM implements the
COM technology. This section also summarizes the generated interface and
CoClass definitions and the files they appear in.

9.4.1 WOTL CoClass Definitions

The definition for your server CoClass is generated by the wizard in the
implementation header, basenameImpl.h. This header includes two basic header
files:
354

9

9
VxDCOM Applications
� the WOTL header file, installDir/target/h/comObjLib.h

� the widl-generated interface method prototype header, basename.h.

You can include other header files as necessary, depending upon your
implementation code. For example, the CoMathDemoImpl.h header file looks like
this:

/* CoMathDemoImpl.h -- auto-generated COM class header */

#include "comObjLib.h" // COM-object template lib
#include "CoMathDemo.h" // IDL-output interface defs
#include <string>

The widl-generated interface prototype header, basename.h (mentioned above),
declares your interfaces as abstract C++ classes with only pure virtual functions.
Those methods are then re-defined, in the CoClass that implements them, as
virtual STDCALL functions that return an HRESULT. Essentially, the CoClass is
defined as implementing the virtual methods of its purely abstract base class,
which is the interface.

9.4.2 Macro Definitions Used in Generated Files

There are three automatically generated WOTL files that use macros in their
definitions. These files are:

� the interface prototype header, basename.h, generated by widl

� the server CoClass header, basenameImpl.h, generated by the wizard

� the server implementation file, basenameImpl.cpp, generated by the wizard

The macros used in these files are defined in the header
installDir\target\h\comLib.h file. The five definitions are as follows:

#define STDMETHODCALLTYPE STDCALL
#define STDMETHODIMP HRESULT STDMETHODCALLTYPE
#define STDMETHODIMP_(type) type STDMETHODCALLTYPE
#define STDMETHOD(method) virtual HRESULT STDMETHODCALLTYPE method
#define STDMETHOD_(type,method) virtual type STDMETHODCALLTYPE method

These macros are used when mapping interface method definitions across .idl
files, header files, and implementation files. The details of this process are
described in the sections that follow. Table 9-1 provides a quick reference summary
of these mappings when reading the files.
355

VxWorks 5.5
Programmer’s Guide
Mapping IDL Definitions to Interface Header Prototypes

Using these macros, the interface method prototypes are mapped so that each
interface method definition, found in the .idl file, is defined as a virtual STDCALL
method that returns an HRESULT in the generated interface header file, basename.h.
Thus, the following definition syntax in the .idl file:

HRESULT routine_name (parameters);

becomes:

virtual HRESULT STDMETHODCALLTYPE routine_name(parameters) = 0;

in the basename.h header file.

Mapping Interface Prototypes to CoClass Method Definitions

Further, the macro STDMETHODCALLTYPE is defined in comBase.h as
STDMETHOD:

#define STDMETHOD(method) virtual HRESULT STDMETHODCALLTYPE method

So, for each interface method you define in the wizard, the final prototype in your
basenameImpl.h file is:

STDMETHOD(method) (parameters);

Table 9-1 Interface Method Definition Mappings Across Files

File Meaning
Tool Used for

Code Generation
Method Prototype Syntax

basename.idl IDL interface
definitions

wizard HRESULT routine_name (parameters);

basename.h C++ interface
method prototypes

widl virtual HRESULT STDMETHODCALLTYPE
routine_name(parameters) = 0;

basenameImpl.h C++ CoClass
method prototypes

wizard STDMETHOD(method) (parameters);

basenameImpl.cpp C++ CoClass
method definitions

wizard STDMETHODIMP coclass :: routine_name
(params) { // implementation code }
356

9

9
VxDCOM Applications
Defining CoClass Methods in Implementation Files

The server implementation file uses the macro STDMETHODIMP to represent a
STDCALL method that returns an HRESULT. Therefore, the method definitions in
your generated implementation files, as in the CoMathDemoImpl.cpp file, are of
the following form:

STDMETHODIMP coclass :: routine_name (params) { // implementation code }

9.4.3 Interface Maps

WOTL uses the COM_MAP style of interface mapping within the class definition.
These macros are similar to those used in ATL and are part of the implementation
of the IUnknown method, QueryInterface(). The WOTL library definitions of
COM_MAP macros are found in the WOTL header file, comObjLib.h.

The COM_MAP macros define a function called _qi_impl(), which does run-time
casts to obtain the requested interface pointer. Other than that, the layout of the
COM_MAP in your CoClass is identical to that of an ATL map; however, only the
entries for COM_INTERFACE_ENTRY and COM_INTERFACE_ENTRY_IID are
supported.

The CoMathDemoImpl.h header includes an interface map at the end of the
public definition of methods. Both interfaces implemented by the CoClass are
defined in the interface map:

// COM Interface map
BEGIN_COM_MAP(CoMathDemoImpl)

COM_INTERFACE_ENTRY(IMathDemo)
COM_INTERFACE_ENTRY(IEvalDemo)

END_COM_MAP()

The header files generated for your CoClass will have similar interface map
definitions for your CoClass interfaces.1

NOTE: If you edit the C++ header, basenameImpl.h, by hand, use the CoMathDemo
files or other wizard generated files as examples.

1. The default IUnknown is always the first COM_INTERFACE_ENTRY in the table. There-
fore, by definition, this entry must be derived from IUnknown or the static_cast() will fail.
357

VxWorks 5.5
Programmer’s Guide
9.5 Configuring DCOM Properties’ Parameters

If you add DCOM support, you can also configure the DCOM properties’
parameters. The meaning and purpose of these parameters are described below,
along with the range of possible values and the default setting for each.

For a description of how to change these parameters, see the Tornado User’s Guide:
Building COM and DCOM Client and Server Applications.

� VXDCOM_AUTHN_LEVEL Specifies the level of authentication required by the
application.

Values
0 = default, no authentication required

1 = no authentication required

2 = RPC_CN_AUTHN_LEVEL_CONNECT, which means that the
application must create a userId and password combination (using the
vxdcomUserAdd() API) so that incoming connections can be
authenticated.

Default
0

� VXDCOM_BSTR_POLICY Sets configuration for marshaling of BSTRs.

Values
TRUE = BSTRs are marshaled as counted strings (byte-arrays), in which
the first byte specifies the length of the string and the remaining bytes are
represented as ASCII characters.

FALSE = BSTRs are marshaled as BSTRs, that is as wide-character strings,
which are two-byte unicode character strings.

Default
FALSE

� VXDCOM_CLIENT_PRIORITY_PROPAGATION Adds priority schemes and
real-time extension priority configuration to basic DCOM functionality.

Values
TRUE = propagates the client priority, enabling the server to run at the
same priority as the client.

FALSE = server runs at its own priority, independent of the client priority.
358

9

9
VxDCOM Applications
Default
TRUE

For more information, see 9.8.2 Configuring Client Priority Propagation on Windows,
p.375 .

� VXDCOM_DYNAMIC_THREADS Specifies the number of additional threads that
can be allocated at peak times.

Values
Range is 0..32

Default
30

� VXDCOM_OBJECT_EXPORTER_PORT_NUMBER Sets the configuration for
validating the ObjectExporter port number after a system reboot. If this parameter
is set to zero, the port number is assigned dynamically.

Values
Range is 1025..65535 (short int values)

Default
65000

� VXDCOM_SCM_STACK_SIZE Specifies the stack size, at build time, of the Service
Control Manager (SCM) task.This parameter is mainly used to configure PPC60x
target architectures, which can create a larger stack frame than other standard
architectures.

On most architectures, the default value can be used.

Default
30K

If a stack exception or data exception is seen in the tSCM task, use the browser to
check whether the stack has been exhausted. If it has, then increase this value.

� VXDCOM_STACK_SIZE Specifies the stack size of threads in the server
threadpool.

Values
Recommended range is 16K...128K

Default
16K
359

VxWorks 5.5
Programmer’s Guide
If data exceptions or stack exceptions are seen in tCOM tasks, use the browser to
check whether stack exhaustion is the cause. If it is, increase this value.

� VXDCOM_STATIC_THREADS Specifies the number of threads to preallocate in the
server threadpool.

Values
Range is 1..32

Default
5

VxDCOM starts up a number of initialized threads to speed up CoClass startup
times. Set this value to the average number of CoClasses running within the
system in order to speed up CoClass initialization.

� VXDCOM_THREAD_PRIORITY Specifies the default priority of threads in the
server threadpool. For more information, see 9.8.3 Using Threadpools, p.376.

Values
Same range as that of the VxWorks task priority.

Default
150

9.6 Using the Wind IDL Compiler

The Wind IDL Compiler, widl, is a command-line tool that is integrated into the
build process in the Tornado IDE. Thus, when you build a D/COM project, widl
is run automatically.

9.6.1 Command-Line Syntax

You can run widl from the command line; however, doing so becomes redundant
once the .idl file is part of the project. The command-line syntax for running widl
is:

widl [-IincDir] [-noh] [-nops] [-dep] [-o outPutDir] idlFile[.idl]
360

9

9
VxDCOM Applications
The idlFile must be specified, with or without the .idl extension, which is assumed.
The other command-line switches are optional and are described below:

-I incDir
Add specified include directory to the header search path.

-noh
Do not generate header file.

-nops
Do not generate proxy/stub file.

-dep
Generate GNU-style dependency file.

-o outputDir
Write output from widl to the specified output directory.

9.6.2 Generated Code

When widl compiles the wizard-generated .idl file, additional code is generated
that is added to these three files which were created by the wizard with empty
contents: basename_i.c, basename.h, and basename_ps.cpp.

basename.tlb (DCOM only)
Type library used to register the server in the Windows Registry (generated by
MIDL when the nmakefile is run to build the Windows DCOM client
program, and required for DCOM projects only).

basename_ps.cpp (DCOM only)
Proxy/stub code required for marshalling interface method parameters
between the client and the server.

basename.h
Interface prototypes based on the interface definitions in the .idl file output
from the VxDCOM wizard.

basename_i.c
Associations of GUIDs (unique identification numbers) with the elements of
the .idl file (for example, each interface has an associated IID or interface
identifier, each CoClass has a unique CLSID or class identifier, and so on).
361

VxWorks 5.5
Programmer’s Guide
9.6.3 Data Types

The widl tool compiles both automation data types and non-automation data
types. The specific individual types from these two groups that widl compiles with
this version of VxDCOM are listed below.

Automation Data Types

Automation data types are simple types, interface pointers, VARIANTs, and
BSTRs as described below.

long, long *, int, int *, short, short *, char, char *, float, float *, double, double *
Integral values must be explicitly declared as one of the above or a pointer type
of one of the above.

IUnknown *, IUnknown **
Includes interface pointer types.

BSTR, BSTR *
BSTRs are wide-characters, which are 16-bit unsigned integers, used to create
character strings. Because COM APIs take wide-character strings as
parameters, strings are passed as BSTRs. You can modify the method of
reading and passing BSTRs in the configuration options parameters for
DCOM.

If you need to convert between the standard 8-bit ASCII type and the
wide-character strings, you can use the following routines:

comWideToAscii()
Convert a wide-string to ASCII.

comAsciiToWide()
Convert an ASCII string to a wide-string.

! WARNING: The widl tool only generates proxy/stub code for the interfaces
defined in the IDL file being compiled, and not for interfaces defined in imported
IDL files. To generate the proxy/stub code for those interfaces, you must
separately compile each IDL file that defines each of the required interfaces. The
exception to this rule is the IDL file, installDir\target\h\vxidl.idl, whose
proxy/stub code routines are supplied in DCOM support components.
362

9

9
VxDCOM Applications
VARIANT, VARIANT *
Includes all values of the VARTYPE enumeration that are valid and supported
by VxDCOM in a VARIANT, including SAFEARRAY. For details on
SAFEARRAY support, see SAFEARRAY with VARIANTS, p.364.

Non-Automation Data Types

The non-automation types that widl can correctly compile are:

simple array
an array with a fixed, compile-time constant size

fixed-size structure
a structure whose members are all either automation-types, simple arrays, or
other fixed-size structures

conformant array
an array whose size is determined at run time by another parameter, structure
field, or expression, using the size_is attribute

conformant structure
a structure of variable size, whose final member is a conformant array, of size
determined by another structure member

string
a pointer to a valid character type (single or double-byte type) with the [string]
attribute

If you use a non-automated type, then you will need to build a proxy DLL. You can
use midl to generate the DLL for you, and then you need to build it. For details on
registering proxy DLLs, see the Tornado User’s Guide: Register Proxy DLLs on
Windows.

If you are using non-automation data types because you are using OPC interfaces,
then you need to also add the DCOM_OPC support component to your system, and

NOTE: VxDCOM also supports the ATL macros, OLE2T and T2OLE. However,
these macros call alloca(), which uses memory from the current stack, meaning the
macros could consume an entire stack space if used inside a loop. It is
recommended that you use the VxComBSTR class, defined in comObjLibExt.h, as
an alternative. For details, see 9.11.7 VxComBSTR, p.391.

! CAUTION: widl does not support the type union.
363

VxWorks 5.5
Programmer’s Guide
install the OPC Proxy DLL on windows. For more information, see the Tornado
User’s Guide: OPC Program Support.

SAFEARRAY with VARIANTS

VxDCOM support for SAFEARRAYs is only available when marshaling within a
VARIANT, it cannot be marshaled otherwise. VxDCOM implementation of
SAFEARRAY supports both the use of COM based SAFEARRAYs and also
marshalling SAFEARRAYs from DCOM server to DCOM client. When using
SAFEARRAYs in your application, note the following documented sections on
specific support and restrictions for both COM and DCOM application.

COM Support

When using SAFEARRAYs under COM, the following is a list of supported
features.

� Support for Multi Dimension SAFEARRAYs of the following types:

VT_UI1
VT_I2
VT_I4
VT_R4
VT_R8
VT_ERROR
VT_CY
VT_DATE
VT_BOOL
VT_UNKNOWN
VT_VARIANT
VT_BSTR

� Support for SAFEARRAYs of VARIANTs in which the VARIANTs can contain
SAFEARRAYs.

� Support for a minimal SAFEARRAY API.

! CAUTION: The memory structure returned by SafeArrayAccessData() is not
guaranteed to be the same layout as that returned by the Microsoft API.
364

9

9
VxDCOM Applications
DCOM Support

When using SAFEARRAYs under DCOM, the following is a list of supported
features and restrictions.

� Support for Single Dimension SAFEARRAYs of the following types:

VT_UI1
VT_I2
VT_I4
VT_R4
VT_R8
VT_ERROR
VT_CY
VT_DATE
VT_BOOL
VT_BSTR

� VxDCOM only supports SAFEARRAYs less than 16Kb in size.

� Because Microsoft DCOM fragments packets that are over 4 KB in length, you
should only send SAFEARRAYs of 4 KB or less in size when sending a
SAFEARRAY from a Microsoft platform.

HRESULT Return Values

All interface methods require an HRESULT return type. HRESULTs are the 32-bit
return value from all ORPC methods and are used to handle RPC exceptions. By
using ORPC and HRESULT return types the COM technology can provide a
virtually transparent process of object communication from the developer’s
perspective. This is because, as long as client code returns an HRESULT, the client
application can access all objects, whether in-process or remote, in a uniform
transparent fashion. In fact, in-process servers communicate with client
applications by using C++ virtual method calls; whereas remote servers
communicate with client applications by using proxy/stub code and by invoking
local RPC services. However, this process is all transparent to the programmer,
because it happens automatically within the COM mechanism. The only difference
is that making a remote procedure call requires more overhead.2

The VxDCOM wizard automatically generates an HRESULT return type for all
methods you define. When writing your implementation code, you can refer to the

2. As there is no need to support cross-process (and local RPC) server models, VxDCOM
supports only the in-process and remote server models.
365

VxWorks 5.5
Programmer’s Guide
header file installDir\target\h\comErr.h for a comprehensive list of HRESULT
error constants. Table 9-2 lists the most commonly used HRESULT values.

9.7 Reading IDL Files

IDL (Interface Definition Language) is a specification used by COM for defining its
elements (interfaces, methods, type libraries, CoClasses, and so on). The file
containing these definitions is written in IDL and, by convention, is identified by
an .idl extension. VxDCOM assumes this extension for the tools to work properly.
Therefore, the wizard generated interface definition file has this extension.

9.7.1 IDL File Structure

The .idl file structure includes the interface, CoClass, and type-library definitions,
each of which contains a header and a body. The CoClass definition is itself part of
the library body. This structure is fairly standard, although you may encounter
some .idl files that diverge slightly from it.

Below is an example of the typical syntax for a .idl file with multiple interface
definitions, where the library definition contains the CoClass definition in its body;
and the CoClass definition contains the interfaces it implements in its body.

Table 9-2 Common HRESULT Values

Value Meaning

S_OK Success. (0x00000000)

E_OUTOFMEMORY Insufficient memory to complete the call. (0x80000002)

E_INVALIDARG One or more arguments are invalid. (0x80000003)

E_NOINTERFACE No such interface supported. (0x80000004)

E_ACCESSDENIED A secured operation has failed due to inadequate security privileges.
(0x80070005)

E_UNEXPECTED Unknown, but relatively catastrophic error. (0x8000FFFF)

S_FALSE False. (0x00000001)
366

9

9
VxDCOM Applications
//import directives, typedefs, constant declarations, other definitions

[attributes] interface interfacename: base-interface {definitions};
[attributes] interface interfacename: base-interface {definitions};

//additional interface definitions as required...

[attributes] library libname {definitions};

The sample .idl file below is from the CoMathDemo demo program found in the
installDir/host/src/VxDCOM/MathDemo directory. It demonstrates the structure
of an .idl file that defines two interfaces, IMathDemo and IEvalDemo, a type
library, CoMathDemoLib, and a CoClass, CoMathDemo, that implements both
interfaces.

#ifdef _WIN32
import "unknwn.idl";
#else
import "vxidl.idl";
#endif

[
object,
oleautomation,
uuid(A972BFBE-B4A9-11D3-80B6-00C04FA12C4A),
pointer_default(unique)

]
interface IMathDemo:IUnknown

{
HRESULT pi([out,retval]double* value);
HRESULT acos ([in]double x, [out,retval]double* value);
HRESULT asin ([in]double x, [out,retval]double* value);
HRESULT atan([in]double x, [out,retval]double* value);
HRESULT cos([in]double x, [out,retval]double* value);
HRESULT cosh([in]double x, [out,retval]double* value);
HRESULT exp([in]double x, [out,retval]double* value);
HRESULT fabs([in]double x, [out,retval]double* value);
HRESULT floor ([in]double x, [out,retval]double* value);
HRESULT fmod([in]double x,[in]double y,[out,retval]double* value);
HRESULT log ([in]double x, [out,retval]double* value);
HRESULT log10 ([in]double x, [out,retval]double* value);
HRESULT pow ([in]double x,[in]double y,[out,retval]double* value);
HRESULT sin ([in]double x, [out,retval]double* value);
HRESULT sincos ([in]double x,

[out]double* sinValue,
[out]double* cosValue);

HRESULT sinh ([in]double x, [out,retval]double* value);
HRESULT sqrt ([in]double x, [out,retval]double* value);
HRESULT tan ([in]double x, [out,retval]double* value);
HRESULT tanh ([in]double x, [out,retval]double* value);
};
367

VxWorks 5.5
Programmer’s Guide
[
object,
oleautomation,
uuid(4866C2E0-B6E0-11D3-80B7-00C04FA12C4A),
pointer_default(unique)

]
interface IEvalDemo:IUnknown

{
HRESULT eval ([in]BSTR str, [out,retval]double* value);
HRESULT evalSubst ([in]BSTR str,

[in]double x,
[out,retval] double* value);

};

[
uuid(A972BFC0-B4A9-11D3-80B6-00C04FA12C4A),
version(1.0),
helpstring("CoMathDemo Type Library")

]

library CoMathDemoLib
{
importlib("stdole32.tlb");
importlib("stdole2.tlb");

[
uuid(A972BFBF-B4A9-11D3-80B6-00C04FA12C4A),
helpstring("CoMathDemo Class")

]
coclass CoMathDemo

{
[default] interface IEvalDemo;
interface IMathDemo;
};

};

The following sections describe the syntax for the parts of an .idl file.

The import Directive

The import directive precedes the interface definition and specifies another .idl or
header file. These imported files contain definitions - such as typedefs, constant
declarations, and interface definitions - that can be referenced in the importing IDL
file. All interfaces inherit from the IUnknown interface; therefore all interface
definitions will conditionally include either the WIN32 header, unknwn.idl, or
vxidl.idl, which implements IUnknown under VxDCOM when running on a
target.
368

9

9
VxDCOM Applications
The Interface Definition

The interface definition in the .idl file specifies the actual contract between the client
application and server object. It describes the characteristics of each interface in an
interface header and an interface body. The syntax for an interface definition is:

[attributes] interface interfacename: base-interface {definitions};

Interface Header

The interface header is the section at the beginning of the interface definition. The
interface header comprises both the information that is enclosed in square
brackets, along with the keyword interface, followed by the interface name. The
information within the brackets is an attribute list describing characteristics that
apply to the interface as a whole. This information is global to the entire interface
(in contrast to attributes applied to interface methods.) The attributes describing
the interface - [object], [oleautomation], [uuid], and [pointer-default] - are the
standard generated attributes for VxDCOM interface definitions and are discussed
in 9.7.2 Definition Attributes, p.370.

Interface Body

The interface body is the section of the interface definition that is enclosed in C-style
braces ({ }). This section contains remote data types and method prototypes for the
interface. It can optionally include zero or more import lists, pragmas, constant
declarations, general declarations, and function declarators.

Library and CoClass Definitions

The type library and CoClass definitions follow the same syntax pattern as that of
an interface definition. The library definition syntax is:

[attributes] library libname {definitions};

The library name is preceded by descriptive attributes and followed by a body of
definitions that are enclosed in C-style braces ({ }). The library keyword indicates
that the compiler should generate a type library. The type library includes
definitions for every element inside of the library block, plus definitions for any
elements that are defined outside, and referenced from within, the library block.
The CoClass definition lies within the {definitions} or body section of the library
block, and has its own header and body sections.
369

VxWorks 5.5
Programmer’s Guide
The [version] attribute identifies a particular version among multiple versions of
the interface. The [version] attribute ensures that only compatible versions of
client and server software will be connected.

The [helpstring] attribute specifies a zero-terminated string of characters
containing help text that is used to describe the element to which it applies, in this
example, the type library. The [helpstring] attribute can be used with—a type
library, an import library, an interface, a module—or with a CoClass statement,
typedefs, properties, and methods.

The CoClass statement is used to define the CoClass and the interfaces that it
supports. The CoClass definition is similar to the interface definition. It is
comprised of a set of attributes, which requires the [uuid] attribute (representing
the CLSID), the CoClass keyword, the CoClass name, and a body of definitions.
All of the interfaces the CoClass implements are listed in the CoClass body; thus,
you must add any additional interfaces that your CoClass implements to that list.3

You will also need to add those interfaces to the CoClass definition in the server
implementation header file, as described in 9.10 Writing VxDCOM Servers and
Client Applications, p.377.

9.7.2 Definition Attributes

Interface attributes are annotations that specify certain qualities of your interface.
Interface attributes are grouped together in a comma-delimited list, surrounded by
brackets. The attribute list always precedes whatever object the attributes in the list
are describing. Attributes can also be applied to the libraries and CoClasses.
However, some attributes, or combinations of attributes, are valid for one
definition type and not another (see Attribute Restrictions for VxDCOM, p.372 and
Library and CoClass Definitions, p.369). For comprehensive information on
attributes, see the Microsoft COM specification.

IDL File Attributes

When you run the D/COM Application Wizard, the generated interface definition
contains the following attributes as defaults. If you intend to modify any of them,
you must follow the language restrictions. (see Attribute Restrictions for VxDCOM,
p.372.)

3. This list specifies the full set of interfaces that the CoClass implements, both incoming and
outgoing.
370

9

9
VxDCOM Applications
[object]

The [object] attribute is an IDL extension that specifies the interface as a COM
interface (rather than an RPC interface). This attribute tells the IDL compiler to
generate all of the proxy/stub code specifically for a COM interface, and to
generate a type library for each library block defined within the .idl file (see Library
and CoClass Definitions, p.369). All VxDCOM interface definitions should specify
this attribute in the definition.

[oleautomation]

The [oleautomation] attribute indicates that the interface is compatible with
Automation. VxDCOM interfaces definitions generated by the wizard are declared
with this attribute, which specifies that the parameters and return types are
automation types.

[pointer_default]

The [pointer_default] attribute specifies the default pointer attribute for all
pointers except pointers that appear as top-level parameters, such as individual
pointers used as function parameters; these automatically default to ref pointers.
The syntax for the [pointer_default] attribute is:

pointer_default (ptr | ref | unique)

where ptr, ref, or unique can be specified:

ptr
Designates a pointer as a full pointer, with all the capabilities of a C-language
pointer, including aliasing.

ref
Designates a reference pointer, one that simply provides the address of data.
Reference pointers can never be NULL.

unique
Allows a pointer to be NULL, but does not support aliasing.

The [pointer_default] attribute can apply to pointers returned by functions. For
pointers that appear as top-level parameters, such as individual pointers used as
function parameters, you must supply the appropriate pointer attribute. For
example:

HRESULT InterfaceMethod([unique] VXTYPE* ptrVXTYPE);

In this case, the pointer attribute will override the default [pointer_default]
attribute that appears in the interface header. The [pointer_default] attribute is
371

VxWorks 5.5
Programmer’s Guide
optional in the .idl file, and is required only when a function returns an undefined
pointer type or when a function contains a parameter with more than one asterisk
(*).

[uuid]

The [uuid] interface attribute designates a universally unique identifier (UUID)
that is assigned to the interface and that distinguishes it from other interfaces.
COM technology relies upon these unique values as a means of identifying
components and interfaces, as well as sub-objects within the COM system such as
interface pointers and type libraries. As part of the .idl file, the wizard generates a
UUID value for each interface, for the type library, and for the CoClass definition.
For a COM interface—that is, for an interface identified by the [object] interface
attribute—the [uuid] attribute is required to determine whether the client can bind
to the server. It is used to differentiate versions of public interfaces, so that different
vendors can introduce distinct new features without risking compatibility
conflicts.

Attribute Restrictions for VxDCOM

The only interface attributes auto-generated for VxDCOM interface definitions are
[object], [oleautomation], [pointer-default], and [uuid]. Restrictions on using
interface attributes with VxDCOM are summarized as follows:

� VxDCOM does not support all interface types; thus, any attributes that are
defined for non-supported interface types would not be applicable. For
example, because VxDCOM does not support IDispatch, the [dual] attribute
cannot be used.

� Some combinations of attributes are inherently prohibited; for example, the
[version] attribute cannot be used for a COM interface. The [version] attribute,
identifies a particular version among multiple versions of an RPC interface.
The MIDL compiler does not support multiple versions of a COM interface, so
the [object] attribute (which specifies the interface as a COM interface) cannot
also include a [version] attribute.

For a complete list of interface attributes, their meanings, and valid combinations,
see the Microsoft documentation.

NOTE: A UUID designates a 128-bit value that is guaranteed to be unique. The
actual value may represent a GUID, a CLSID, or an IID.
372

9

9
VxDCOM Applications
Directional Attributes for Interface Method Parameters

Directional attributes on interface method parameters indicate the direction that
data values are passed between methods. The two primary directional attributes
are [in] and [out]. These are the four combinations available for a parameter
attribute:

[in]
The [in] attribute specifies that the parameter is being passed from caller to
callee; that is, the data is being sent only by the caller, for example, the client
(caller) to the server (callee).

[out]
The [out] attribute specifies that the parameter is being passed from the callee
back to the caller, in this case from the server to the client. Because data is
passed back through [out] parameters, they must always be pointers.

[in,out]
The [in,out] attribute lets you apply both [in] and [out] to a single parameter.
Using both directional attributes on one parameter specifies that the parameter
is copied in both directions. Such data, that is sent to be modified and passed
back to the caller, is passed in a pointer to the resulting data location. When a
parameter is defined with this combination of attributes, it increases the
overhead of the call.

[out,retval]
The [retval] attribute combined with the [out] attribute identifies the
parameter value as the return value from the function. This attribute is a
necessary option because the return type for all COM interface methods must
be an HRESULT. As a consequence, for some language applications, such as
Visual Basic, you need to provide an additional return value. For more
information on HRESULT return values, see HRESULT Return Values, p.365.

NOTE: To create a new version of an existing COM interface, use interface
inheritance. A derived COM interface has a different UUID but inherits the
interface member functions, status codes, and interface attributes of the base
interface.
373

VxWorks 5.5
Programmer’s Guide
9.8 Adding Real-Time Extensions

For DCOM server applications, VxDCOM offers real-time extensions that can
improve the performance of your application. Real-time extensions are priority
schemes and threadpooling, and they are described in the following sections.

9.8.1 Using Priority Schemes on VxWorks

Priority schemes are used to control the scheduling of server objects running on a
VxWorks target. You can specify the priority scheme to use at class registration
time in the parameters to the AUTOREGISTER_COCLASS macro. The second and
third arguments to this macro specify priority scheme details. An example of the
AUTOREGISTER_COCLASS macro, that is auto-generated by the wizard for the
MathDemo is:

AUTOREGISTER_COCLASS (CoMathDemoImpl, PS_DEFAULT, 0);

The generated definition in your server implementation file would look similar
with the first argument reflecting your server name.

Second Parameter Priority Scheme

The second argument to AUTOREGISTER_COCLASS specifies the priority scheme
to be used. The three possible values for this argument are:

PS_SVR_ASSIGNED
This value indicates that the server will always run at a given priority. This
priority is assigned on a per object basis at object registration time, for
example, as a parameter to the AUTOREGISTER_COCLASS macro.

PS_CLNT_PROPAGATED
This value indicates that the worker thread serving the remote invocation
should run at the priority of client issuing the request. This effectively
provides similar semantics to invoking an operation on the same thread on the
same node.

PS_DEFAULT
This value indicates that a default priority can be specified that will be applied
to worker threads when the incoming request does not contain a propagated
priority. In the PS_CLNT_PROPAGATED case a value of -1 indicates that the
default server priority (configured in project facility) should be used when the
VXDCOM_ORPC_EXTENT is not present).
374

9

9
VxDCOM Applications
Third Parameter Priority Level

The third argument specifies the actual priority level to assign to either the server,
in the case of a PS_SVR_ASSIGNED scheme, or to the client, in the case of a
PS_CLNT_PROPAGATED scheme. In addition, it specifies when the
VXDCOM_ORPC_EXTENT (which contains the priority) is not present in the
request.

If the client is a VxWorks target, the client's priority is conveyed with the RPC
invocation to the server, using an ORPC extension mechanism specified in the
DCOM protocol definition. This causes the server to execute the method at the
same priority as the client task that invoked it.

9.8.2 Configuring Client Priority Propagation on Windows

When configuring VxDCOM projects, the client priority is automatically and
transparently transmitted. The client priority propagation can be turned off (see
9.5 Configuring DCOM Properties’ Parameters, p.358), thereby saving a few bytes per
request.

Using Windows, you must create a channel hook IChannelHook interface to
propagate the priority, that is, to add a priority (in the form of an ORPC_EVENT) to
an outgoing request. It is still the user’s responsibility to convert the priority value
from the other operating system to an appropriate VxWorks priority. Only the
ClientGetSize() and ClientFillBuffer() functions must be implemented. The
other IChannelHook interface methods, ClientNotify(), ServerNotify(),
ServerGetSize(), and ServerFillBuffer() can be empty functions. The following
example code implements the ClientGetSize() and ClientFillBuffer() methods:

void CChannelHook::ClientGetSize
(REFGUID uExtent, REFIID riid, ULONG* pDataSize)
{
if(uExtent == GUID_VXDCOM_EXTENT)

*pDataSize = sizeof(VXDCOMEXTENT);
}

void CChannelHook::ClientFillBuffer
(REFGUID uExtent, REFIID riid, ULONG* pDataSize, void* pDataBuffer)
{
if(uExtent == GUID_VXDCOM_EXTENT)

{
VXDCOMEXTENT *data = (VXDCOMEXTENT*)pDataBuffer;
getLocalPriority ((int *) &(data->priority));
*pDataSize = sizeof(VXDCOMEXTENT);
}

}

375

VxWorks 5.5
Programmer’s Guide
GUID_VXDCOM_EXTENT and VXDCOMEXTENT are defined in
installDir\target\h\dcomLib.h. Windows programmers wishing to do priority
propagation should #include this file. Once a channel hook is implemented, it must
be registered with the Windows COM run-time using the
CoRegisterChannelHook() function.

9.8.3 Using Threadpools

A threadpool is a group of tasks owned by the VxWorks run-time libraries,
dedicated to servicing DCOM requests for object method execution. Since a small
number of tasks can handle a large number of requests, threadpools optimize
performance and increase the scalability of the system.4

If all of the tasks in the pool are busy, new tasks can be dynamically added to the
pool to handle the increased activity. These tasks are reclaimed by the system when
the load drops again.

If all of the static tasks in the thread pool are busy and the maximum number of
dynamic tasks has been allocated, then a queue can store the unserviced requests.
As tasks become free, they will service the requests in this queue. If the queue
becomes full, a warning message is returned to the calling task.

Since threadpools are part of the kernel, threadpool parameters are configurable.

9.9 Using OPC Interfaces

VxDCOM supports the OPC interfaces defined in the files listed below and
identified by their corresponding categorical group name:

4. This is similar to a call center where a fixed number of operators service incoming calls. In
fact, there are Erlang calculators that can optimize the ideal number of operators given the
average call frequency and length.

installDir\target\h\opccomn.idl Common Interfaces
nstallDir\target\h\opcda.idl Data Access
installDir\target\h\opc_ae.idl Alarms and Events
376

9

9
VxDCOM Applications
Some of the OPC interface services use array and anonymous structure data types.
In order to support these types as per the OPC specification, these files are shipped
with some slight modifications in the form of conditional tags.

If you use OPC interfaces in your application, you may need to use
non-automation data types that require additional editing in the .idl file. For
details, see the Tornado User’s Guide: Building COM and DCOM Applications.

The VxDCOM version of the OPC files import the installDir\target\h\vxidl.idl
file. This file defines interfaces required by an OPC application. For each of the
interfaces that are required from the OPC protocol, a proxy/stub interface is
required for VxDCOM to be able to remotely access an interface. In order to use
this proxy/stub code, you must add the DCOM_OPC support component, as
described in the Tornado User’s Guide: Building COM and DCOM Applications.

9.10 Writing VxDCOM Servers and Client Applications

This section discusses programming issues and provides example code for writing
VxDCOM servers and client applications.

9.10.1 Programming Issues

When writing VxDCOM applications, there are several programming issues of
which you need to be aware. These are described below.

Using the VX_FP_TASK Option

The main program for all COM threads should be created using the VX_FP_TASK
option.

Avoiding Virtual Base Classes

Each implementation of an interface must have its own copy of the vtable,
including sections for the IUnknown method pointers. Using virtual inheritance
alters this layout and interferes with the COM interface mapping.

NOTE: Because COM is single-threaded, any COM objects that are spawned by the
main program will run within the main program thread.
377

VxWorks 5.5
Programmer’s Guide
Therefore, when defining your COM and DCOM classes, do not use virtual
inheritance. For example, do not use this type of definition:

class CoServer : public virtual IFoo,
public virtual IBar

{
// class impl...
};

Distinguishing the COM and DCOM APIs

VxDCOM supports both in-process and remote servers. When you write the
servers, note that the main distinction between COM and DCOM components is
the version of COM API routines used. The DCOM version of a COM routine is
often appended with an Ex. In particular, you must use the CoCreateInstanceEx()
version of the COM CoCreateInstance() routine for DCOM applications. For
details, see the COM and DCOM libraries as part of the Microsoft COM
documentation.

9.10.2 Writing a Server Program

This remainder of this section describes the server code for the CoMathDemo,
focusing the methods that provide services to the client. These methods are the
interface between client and server. The code used in this section is taken from the
following files:

� the CoMath.idl interface definition file
� the CoMathDemoImpl.h header file
� the CoMathDemoImpl.cpp implementation file

For the implementation details, see the CoMathDemo source files, which are well
commented.

Server Interfaces

The CoMathDemo server component implements two interfaces, IMathDemo
and IEvalDemo, both of which are derived directly from IUknown.

The IMathDemo interface defines 19 common math methods listed below in the
interface definition:
378

9

9
VxDCOM Applications
interface IMathDemo : IUnknown
{
HRESULT pi ([out,retval]double* value);
HRESULT acos ([in]double x, [out,retval]double* value);
HRESULT asin ([in]double x, [out,retval]double* value);
HRESULT atan ([in]double x, [out,retval]double* value);
HRESULT cos ([in]double x, [out,retval]double* value);
HRESULT cosh ([in]double x, [out,retval]double* value);
HRESULT exp ([in]double x, [out,retval]double* value);
HRESULT fabs ([in]double x, [out,retval]double* value);
HRESULT floor ([in]double x, [out,retval]double* value);
HRESULT fmod ([in]double x, [in]double y, [out,retval]double* value);
HRESULT log ([in]double x, [out,retval]double* value);
HRESULT log10 ([in]double x, [out,retval]double* value);
HRESULT pow ([in]double x, [in]double y, [out,retval]double* value);
HRESULT sin ([in]double x, [out,retval]double* value);
HRESULT sincos ([in]double x, [out]double* sinValue,

[out]double* cosValue);
HRESULT sinh ([in]double x, [out,retval]double* value);
HRESULT sqrt ([in]double x, [out,retval]double* value);
HRESULT tan ([in]double x, [out,retval]double* value);
HRESULT tanh ([in]double x, [out,retval]double* value);
};

The IEvalDemo defines two methods, eval() and evalSubst():

interface IEvalDemo : IUnknown
{
HRESULT eval ([in]BSTR str, [out,retval]double* value);
HRESULT evalSubst ([in]BSTR str,

[in]double x,
[out,retval]double* value);

};

The eval() method takes a BSTR, which contains a algebraic expression, str, and
returns the value as a double, value. Note that the variable that the eval() method
receives for evaluation is defined by the [in] parameter attribute and the value that
is returned is defined by both the [out] and [retval] parameter attributes. The
[retval] attribute allows this method to be used by languages that require a return
value. For more information on parameter attributes, see the Tornado User’s
Reference: COM Tools.

This evalSubst() method similarly takes a BSTR containing an algebraic
expression and returns the value as a double. In addition, evalSubst() will also
substitute the variable x with a supplied value.

The implementation code indicates that both eval() and evalSubst() return an
HRESULT of S_OK when successful or E_FAIL when an error occurs in decoding the
expression.
379

VxWorks 5.5
Programmer’s Guide
Client Interaction

The CoMathDemoClient is created with arguments that include an expression to
evaluate. The client first queries the server for the IEvalDemo interface and then
for the IMathDemo interface by invoking the QueryInterface() method of
IUknown. The client code then calls the eval() method of IEvalDemo, passing it
the expression to evaluate, str, and a reference for the return value, &result. Then
the client code is written specifically to call the pi(), sin(), and cos() methods of
the IMathDemo interface. (see 9.10.4 Querying the Server, p.383).

9.10.3 Writing Client Code

Because DCOM is transparent across architectures, it minimizes the need for
special code to be written in the client application that differentiates between
in-process and remote procedure calls to an object. You can write code that uses the
services of a COM interface, without concern for the network location of the object
that implements that interface. The MathDemo program, described below, uses
the same user client code. Only the ifdef statements generated by the VxDCOM
wizard determine the whether the client is a COM or DCOM client and, for DCOM
clients, whether it is for use on VxWorks or Windows NT.

This program demonstrates how to write a simple COM or DCOM client. The
MathDemo program creates a COM object and uses that object to perform simple
arithmetic calculations.

Determining the Client Type

The first section of the client code contain #define and #include directives that are
mostly auto-generated by the VxDCOM wizard. The #include directives for the
alt*.* files for _WIN32 and the comOjbLib.h file were added manually because this
program uses CComBSTR. Similarly, you would add any necessary header files
for code that your program requires.

/* includes */

#ifdef _WIN32

#define _WIN32_WINNT 0x0400
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include "CoMathDemo.w32.h"
#include <atlbase.h>
#include <atlimpl.cpp>
380

9

9
VxDCOM Applications
#else

#include "comLib.h"
#include "CoMathDemo.h"
#include "comObjLib.h"
#define mbstowcs comAsciiToWide

#endif

#include <stdio.h>
#include <iostream.h>
#include <math.h>

#ifdef _DCOM_CLIENT
#ifndef _WIN32
#include "dcomLib.h"
#endif
#endif

Creating and Initializing the Client

This section of the code creates the COM or DCOM object (component) by calling
the appropriate COM or DCOM routines, CoCreateInstance() or
CoCreateInstanceEx(). The DCOM client requires additional initialization code
for security purposes. This creation and initialization code is auto-generated by the
wizard.

#define MAX_X 79
#define MAX_Y 25

int CoMathDemoClient (const char* serverName, const char* expression)
{
HRESULT hr = S_OK;
double result;
int x;
int y;
IUnknown * pItf;
IEvalDemo * pEvalDemo;
IMathDemo * pMathDemo;

If the client is a COM client, this code is used:

#ifndef _DCOM_CLIENT
// This section creates the COM object.
hr = CoCreateInstance (CLSID_CoMathDemo,

0,
CLSCTX_INPROC_SERVER,
IID_IEvalDemo,
(void **)&pItf);

#else
381

VxWorks 5.5
Programmer’s Guide
If the client is DCOM client, this code is used. This section of code initializes
DCOM for this thread and creates the DCOM object on the target:

OLECHAR wszServerName [128];

// Convert the server name to a wide string.
mbstowcs (wszServerName, serverName, strlen (serverName) + 1);

// Initialize DCOM for this thread.
hr = CoInitializeEx (0, COINIT_MULTITHREADED);
if (FAILED (hr))

{
cout << "Failed to initialize DCOM\n";
return hr;
}

// This initizlizes security to none.
hr = CoInitializeSecurity (0, -1, 0, 0,

RPC_C_AUTHN_LEVEL_NONE,
RPC_C_IMP_LEVEL_IDENTIFY,
0, EOAC_NONE, 0);

if (FAILED (hr))
{
cout << "Failed to initialize security\n";
return hr;
}

The code following creates an MQI structure, which is used to query the COM
server object for the IID_IMathDemo interface. This is one of the two interfaces
defined by the CoMathDemo CoClass that is instantiated as the DCOM server.

When writing a typical DCOM client program with multiple interfaces you
include all your interface requests into the MQI and query them as one operation
(thus saving bandwidth). However, for the purposes of this demo we want to keep
the main body of the code the same; therefore, we only want the IUnknown for the
DCOM object at this point so that we can treat it the same way as a COM object
lower down:

MULTI_QI mqi [] = { {&IID_IEvalDemo, 0, S_OK} };
COSERVERINFO serverInfo = { 0, wszServerName, 0, 0 };

hr = CoCreateInstanceEx (CLSID_CoMathDemo,
0,
CLSCTX_REMOTE_SERVER,
&serverInfo,
1,

mqi);

if (SUCCEEDED (hr) && SUCCEEDED (mqi [0].hr))
{
cout << "Created CoMathDemo OK\n";
pItf = mqi [0].pItf;
382

9

9
VxDCOM Applications
}

else

{
cout << "Failed to create CoMathDemo, HRESULT=" <<

hex << cout.width (8) << mqi [0].hr << "\n";
return E_FAIL;
}

#endif

9.10.4 Querying the Server

Query the IUnknown interface of the COM object to get an interface pointer to the
IEvalDemo interface:

if (FAILED (hr = pItf->QueryInterface (IID_IEvalDemo,
(void**)&pEvalDemo)))

{
cout << "Failed to create IEvalDemo interface pointer,

HRESULT=" << hex << cout.width (8) << hr << "\n";
pItf->Release ();
return hr;
}

Query the IUnknown interface of the COM object to get an interface pointer to the
IMathDemo interface:

if (FAILED (pItf->QueryInterface (IID_IMathDemo, void**)&pMathDemo)))
{
cout << "Failed to create IMathDemo interface pointer, HRESULT="

 << hex << cout.width (8) << hr << "\n";
pEvalDemo->Release();
pItf->Release ();
return hr;
}

pItf->Release ();

This code calls the eval() method of the IEvalDemo interface, querying for it to
evaluate the given expression, which is passed to the client program from the
command line:5

cout << "Querying IEvalDemo interface\n";
CComBSTR str;

5. The expression is passed in as an array of char, but it is converted to a BSTR for marshaling
across to the COM server.
383

VxWorks 5.5
Programmer’s Guide
str = expression;

hr = pEvalDemo->eval(str, &result);
if (SUCCEEDED (hr))

{
cout << expression << "=" << result;
}
else
{
cout << "eval failed (" << hr << "," << result << ")\n";
}

pEvalDemo->Release ();

This code queries the IMathDemo interface to draw the sine and cosine graphs.
Note that it calls the pi(), sin(), and cos() methods of that interface:

printf("Querying IMathDemo interface\n");

double sinResult;
double cosResult;
double pi;

hr = pMathDemo->pi(&pi);
if (FAILED (hr))

return hr;

double step_x = (pi * 2.0) / ((double)MAX_X);
double scale_y = ((double)MAX_Y) / 2.0;

for (y = MAX_Y; y >= 0; y--)
{
for (x = 0; x < MAX_X; x++)

{
hr = pMathDemo->sin((double)x * step_x , &sinResult);
if (FAILED (hr))

return hr;
hr = pMathDemo->cos((double)x * step_x , &cosResult);
if (FAILED (hr))

return hr;
if ((int)((double)((sinResult + 1.0) * scale_y)) == y)

{
putchar('*');
}

else if ((int)((double)((cosResult + 1.0) * scale_y)) == y)
{
putchar('+');
}

else
{
putchar(' ');
}

}
putchar('\n');
}

pMathDemo->Release ();
384

9

9
VxDCOM Applications
#ifdef _DCOM_CLIENT
CoUninitialize ();

#endif
return hr;
}

9.10.5 Executing the Client Code

This section of code is for a DCOM C++ client running on a Windows NT operating
system. This code was generated by the wizard except for the addition of one
argument, exp, which bumps the number of arguments to check for up to 3:

#ifdef _WIN32
int main (int argc, char* argv [])

{
if (argc != 3)
{
puts ("usage: CoMathDemoClient <server> <exp>");
exit (1);
}

return CoMathDemoClient (argv [1], argv[2]);
}

This section of the code was added by the programmer for situations in which you
do not want C++ name mangling:

#else
extern "C"

{
int ComTest (char * server, char * exp)

{
return CoMathDemoClient (server, exp);
}

}
#endif

9.11 Comparing VxDCOM and ATL Implementations.

This section is a reference summary of the noteworthy differences between the
VxDCOM and Microsoft ATL implementations of COM interfaces. It also includes
the VxDCOM implementation synopsis for VARIANTs.
385

VxWorks 5.5
Programmer’s Guide
9.11.1 CComObjectRoot

VxDCOM implements CComObjectRoot directly, whereas ATL implements it as
a typedef of CComObjectRootEx.

CComObjectRoot always implements the aggregation pointer even if it is not
used.

Constructor

Constructor for the class. Initializes the ref count to 0 and provides a storage for the
aggregating outer interface, if required.

CComObjectRoot
(
IUnknown * punk = 0 // aggregating outer
)

InternalAddRef

Increments the ref count by one and returns the resultant ref count.

ULONG InternalAddRef ()

InternalRelease

Decrements the ref count by one and returns the resultant ref count.

ULONG InternalRelease ()

9.11.2 CComClassFactory

Derived from IClassFactory and CComObjectRoot.

Constructor

Constructor for class.

CComClassFactory ()

AddRef

Increments the ref count by one and returns the resultant ref count. This is handled
by a call to InternalAddRef() in CComObjectRoot.

ULONG STDMETHODCALLTYPE AddRef ()
386

9

9
VxDCOM Applications
Release

Decrements the ref count by one and returns the resultant ref count. This is
handled by a call to InternalRelease() in CComObjectRoot.

ULONG STDMETHODCALLTYPE Release ()

QueryInterface

Provides the QueryInterface mechanism to provide the IID_IUnknown and
IID_IClassFactory interface to IClassFactory.

HRESULT STDMETHODCALLTYPE QueryInterface
(
REFIID riid, // The GUID of the interface being requested
void ** ppv // A pointer to the interface riid
)

CreateInstance

Creates a new instance of the requested object; calls
CComObjectRoot::CreateInstance. Therefore, unlike ATL, the object created for
WOTL is initialized.

HRESULT STDMETHODCALLTYPE CreateInstance
(
IUnknown * pUnkOuter, // aggregated outer
REFIID riid, // The GUID of the interface being created
void ** ppv // A pointer to the interface riid
)

LockServer

This is a stub function, which always returns S_OK and is provided for
compatibility only.

HRESULT STDMETHODCALLTYPE LockServer
(
BOOL Lock
)

9.11.3 CComCoClass

VxDCOM does not implement the macros DECLARE_CLASSFACTORY or
DECLARE_AGGREGATABLE. The functionality is implicitly built into the class.
387

VxWorks 5.5
Programmer’s Guide
GetObjectCLSID

Returns the CLSID of the object.

static const CLSID& GetObjectCLSID()

9.11.4 CComObject

Derived from the given interface class.

CreateInstance

There are two versions of CreateInstance. For details about when each is used and
how it is invoked, see the Microsoft COM documentation.

CreateInstance as defined below creates a single instance with no aggregation and
no specific COM interface.

static HRESULT CreateInstance
(
CComObject** pp // object that is created
)

The version of CreateInstance below creates an instance of the class and searches
for the requested interface on it.

static HRESULT CreateInstance
(
IUnknown* punkOuter, // aggretable interface
REFIID riid, // GUID of the interface
void** ppv // resultant object
)

AddRef

Does an AddRef on either the punkOuter or the CComObjectRoot depending on
the type of the object.

ULONG STDMETHODCALLTYPE AddRef ()

Release

Does a Release on either the punkOuter or the CComObjectRoot::AddRef
depending on the type of object.

ULONG STDMETHODCALLTYPE Release ()
388

9

9
VxDCOM Applications
QueryInterface

Queries either the punkOuter or the object for an interface.

HRESULT STDMETHODCALLTYPE QueryInterface
(
REFIID riid, // GUID to query for
void ** ppv // resultant interface
)

9.11.5 CComPtr

Template class that takes a COM interface specifying the type of pointer to be
stored.

Constructors

Supported constructors.

CComPtr ()
CComPtr (Itf* p)
CComPtr (const CComPtr& sp)

Release

Release an instance of the object.

void Release ()

Operators

Supported operators.

operator Itf* () const
Itf** operator& ()
Itf* operator-> ()
const Itf* operator-> () const
Itf* operator= (Itf* p)
Itf* operator= (const CComPtr& sp)
bool operator! () const

Attach

Attach an object to the pointer without incrementing its ref count.

void Attach
(
Itf * p2 // object to attach to pointer
)

389

VxWorks 5.5
Programmer’s Guide
Detach

Detach an object from the pointer without decrementing its ref count.

Itf *Detach()

CopyTo

Copy an object to the pointer and increment its ref count.

HRESULT CopyTo
(
Itf ** ppT // object to copy to pointer
)

9.11.6 CComBSTR

Class wrapper for the BSTR type. CComBSTR provides methods for the safe
creation, assignment, conversion and destruction of a BSTR.

Constructors

Supported constructors.

CComBSTR ()
explicit CComBSTR (int nSize, LPCOLESTR sz = 0)
explicit CComBSTR (LPCOLESTR psz)
explicit CComBSTR (const CComBSTR& src)

Operators

Supported operators.

CComBSTR& operator= (const CComBSTR& cbs)
CComBSTR& operator= (LPCOLESTR pSrc)
operator BSTR () const
BSTR * operator& ()
bool operator! () const
CComBSTR& operator+= (const CComBSTR& cbs)

Length

Get the length of the BSTR.

unsigned int Length () const
390

9

9
VxDCOM Applications
Copy

Make a copy of the BSTR within the wrapper class and return it.

BSTR Copy() const

Append

Append to the BSTR.

void Append (const CComBSTR& cbs)
void Append (LPCOLESTR lpsz)
void AppendBSTR (BSTR bs)
void Append (LPCOLESTR lpsz, int nLen)

Empty

Delete any existing BSTR from the wrapper class.

void Empty ()

Attach

Attach a BSTR to the wrapper class.

void Attach (BSTR src)

Detach

Detach the BSTR from the wrapper class and return it.

BSTR Detach ()

9.11.7 VxComBSTR

The comObjLibExt file provides VxWorks specific extensions to the existing
ATL-like classes defined in comObjLib.h. VxComBSTR is derived from
CComBSTR and extends it.

Constructors

Constructors for this class are derived from the CComBSTR constructors.

VxComBSTR ()
explicit VxComBSTR (int nSize, LPCOLESTR sz = 0)
explicit VxComBSTR (const char * pstr)
explicit VxComBSTR (LPCOLESTR psz)
391

VxWorks 5.5
Programmer’s Guide
explicit VxComBSTR (const CComBSTR& src)
explicit VxComBSTR (DWORD src)
explicit VxComBSTR (DOUBLE src)

Operators

Supported operators are described below, followed by the declaration.

Convert the BSTR into an array of char and return a pointer to a temporary copy.
This copy is guaranteed to be valid until another call is made on the VxComBSTR
object. It can be used in place of the OLE2T macro:

operator char * ()

Return the decimal numeric value stored in the BSTR as a DWORD value. This
method follows the same string rules as the standard library function atoi:

operator DWORD ()

Convert a DWORD value into its decimal string representation and store it as a
BSTR:

VxComBSTR& operator = (const DWORD& src)

Convert a DOUBLE value into it's decimal string representation and stores it as a
BSTR:

VxComBSTR& operator = (const DOUBLE& src)

Convert an array of char into a BSTR format. It can be used instead of T2OLE:

VxComBSTR& operator = (const char * src)

Return TRUE if the given VxComBSTR value is equal to the stored BSTR, FALSE
otherwise:

bool const operator == (const VxComBSTR& src)

Return TRUE if the given VxComBSTR value is not equal to the stored BSTR,
FALSE otherwise:

bool const operator != (const VxComBSTR& src)

SetHex

Convert a DWORD value into its hexadecimal string representation and stored it
as a BSTR.

void SetHex (const DWORD src)
392

9

9
VxDCOM Applications
9.11.8 CComVariant

Derived from tagVARIANT.

Constructors

Supported Constructors.

CComVariant()
CComVariant(const VARIANT& varSrc)
CComVariant(const CComVariant& varSrc)
CComVariant(BSTR bstrSrc)
CComVariant(LPCOLESTR lpszSrc)
CComVariant(bool bSrc)
CComVariant(int nSrc)
CComVariant(BYTE nSrc)
CComVariant(short nSrc)
CComVariant(long nSrc, VARTYPE vtSrc = VT_I4)
CComVariant(float fltSrc)
CComVariant(double dblSrc)
CComVariant(CY cySrc)
CComVariant(IUnknown* pSrc)

Operators

Supported operators.

CComVariant& operator=(const CComVariant& varSrc)
CComVariant& operator=(const VARIANT& varSrc)
CComVariant& operator=(BSTR bstrSrc)
CComVariant& operator=(LPCOLESTR lpszSrc)
CComVariant& operator=(bool bSrc)
CComVariant& operator=(int nSrc)
CComVariant& operator=(BYTE nSrc)
CComVariant& operator=(short nSrc)
CComVariant& operator=(long nSrc)
CComVariant& operator=(float fltSrc)
CComVariant& operator=(double dblSrc)
CComVariant& operator=(CY cySrc)
CComVariant& operator=(IUnknown* pSrc)
bool operator==(const VARIANT& varSrc)
bool operator!=(const VARIANT& varSrc)

Clear

Clear the VARIANT within the wrapper class.

HRESULT Clear()
393

VxWorks 5.5
Programmer’s Guide
Copy

Copy the given VARIANT into the wrapper class.

HRESULT Copy(const VARIANT* pSrc)

Attach

Attach the given VARIANT to the class without copying it.

HRESULT Attach(VARIANT* pSrc)

Detach

Detach the VARIANT from the class and return it.

HRESULT Detach(VARIANT* pDest)

ChangeType

Change the type of the VARIANT to vtNew. The types supported by this wrapper
function are the same as those of the comLib function VariantChangeType.

HRESULT ChangeType
(
VARTYPE vtNew,
const VARIANT* pSrc = NULL
)

394

10

Distributed Message Queues

Optional Component VxFusion
10.1 Introduction

VxFusion is a lightweight, media-independent mechanism, based on VxWorks
message queues, for developing distributed applications.

There are several options for distributed multiprocessing in VxWorks. The Wind
River optional product VxMP allows objects to be shared, but only across shared
memory. TCP/IP can be used to communicate across networks, but it is low level
and not intended for real-time use. Various high-level communication
mechanisms that are standard for distributed computing can be used, but they
have high overheads in terms of memory usage and computation time that are not
always acceptable for real-time systems. Numerous proprietary methods also have
been developed, but more and more often they encounter maintenance, porting,
and enhancement issues. VxFusion, however, is a standard VxWorks component
that:

� Provides a lightweight distribution mechanism based upon VxWorks message
queues.

� Provides media independence, allowing distributed systems to effectively
exchange data over any transport, eliminating custom requirements for
communications hardware.

� Provides a safeguard against a single point failure resulting from one-to-many
master slave dependencies. This is done by replicating a database of known
objects on every node in the multi-node system.
395

VxWorks 5.5
Programmer’s Guide
� Supports unicast and multicast posting of messages to objects in the system.

� Exhibits location transparency; that is, objects can be moved seamlessly within
the system without rewriting application code. Specifically, posting messages
to objects occurs without regard to their location in a multi-node system.

VxFusion is similar to the VxMP shared memory objects option. VxMP adds to the
basic VxWorks message queue functionality support for sharing message queues,
semaphores, and memory allocation over shared memory. VxFusion adds to
VxWorks support for sharing message queues over any transport, as well as
multicasting to message queue groups. Unlike the VxMP shared memory option,
VxFusion does not support distributed semaphores or distributed memory
allocation.

10.2 Configuring VxWorks with VxFusion

Configure VxWorks with the INCLUDE_VXFUSION component to provide basic
VxFusion functionality. To configure VxFusion show routines, also include the
following components in the kernel domain:

! CAUTION: When a distributed queue is created in one host, this information is
broadcast to the other host through the name database. If the host where the queue
was created crashes, there is no easy way for the other host to find out this
information. Thus, the other host might be pending on a receive forever. It is up to
the user to provide ways to detect remote nodes crashes and update the database
accordingly.

INCLUDE_VXFUSION_DIST_MSG_Q_SHOW
INCLUDE_VXFUSION_GRP_MSG_Q_SHOW
INCLUDE_VXFUSION_DIST_NAME_DB_SHOW
INCLUDE_VXFUSION_IF_SHOW

NOTE: VxFusion cannot be configured with targets that do not support Ethernet
broadcasting, such as the VxSim target simulator.
396

10

10
Distributed Message Queues
10.3 Using VxFusion

VxFusion adds two types of distributed objects to the standard VxWorks message
queue functionality:

� distributed message queues

� group message queues

Distributed message queues can be shared over any communications medium.
Group message queues are virtual message queues that receive a message, then
send it out to all message queue members of the group. VxFusion implements a set
of routines that offer fine-tuned control over the timing of distributed message
queue operations. However, many of the API calls used to manipulate standard
message queues also work with distributed objects, making the porting of your
message-queue-based application to VxFusion easy.

VxFusion also provides a distributed name database. The distributed name
database is used to share data between applications. The API for the distributed
name database is similar to the API for the shared name database of VxMP. See the
entry for distNameLib in the VxWorks API Reference.

This section discusses system architecture and initialization, configuring
VxFusion, working with the various components, and writing an adapter.

10.3.1 VxFusion System Architecture

A typical VxFusion system consists of two or more nodes connected by a
communications path, as shown in Figure 10-1. The communications path is
known as the transport, which can be communications hardware, like an Ethernet
interface card or a bus, or it can be a software interface to communications
hardware, like a driver or protocol stack. Most often the transport is a software
interface; rarely is it useful or essential to communicate directly with the
communications hardware.

There are many possible transports and, thus, many possible different APIs,
addressing schemes, and so on; therefore, VxFusion requires a piece of software,
called an adapter, to be placed between itself and the transport. The adapter
provides a uniform interface to VxFusion, regardless of the underlying transport.
In this way, an adapter is similar to a driver. And, as with drivers, a new adapter
must be written for each type of transport VxFusion supports. The VxFusion
component supplies a sample UDP adapter to be used as is or as a guide for
writing new adapters (see 10.3.7 Working with Adapters, p.417).
397

VxWorks 5.5
Programmer’s Guide
Figure 10-1 illustrates an example two-node VxFusion system. VxFusion has been
installed on each of the two nodes that are connected to the same subnet of an
Ethernet LAN. Because the two nodes are connected by Ethernet, TCP, UDP, IP,
and raw Ethernet are all possible transports for communications.

In Figure 10-1, the UDP protocol serves as the transport and the supplied UDP
adapter as the adapter.

Services and Databases

VxFusion is actually made up of a number of services and databases, as shown in
Figure 10-2. The VxFusion databases and services are listed in Table 10-1 and
Table 10-2, respectively (the term telegram is used in these tables; see 10.6 Telegrams
and Messages, p.421). Each service runs as a separate task; you see these tasks
identified whenever you list tasks on a node with VxFusion installed and
running.Note that you need not be aware of these services and databases to use
VxFusion.

Figure 10-1 Example VxFusion System

Application BApplication A

VxFusion

UDP Adapter

UDP Transport

V
xW

or
ks

 O
S

Node A

VxFusion

UDP Adapter

UDP Transport

V
xW

or
ks

 O
S

Node B

Ethernet LAN
398

10

10
Distributed Message Queues
Figure 10-2 VxFusion Components

Table 10-1 VxFusion Databases

Database Description

Distributed Name Database The distributed name database consists of name-value- type entries (see
10.3.4 Working with the Distributed Name Database, p.404). It has copies on
every node in the system, making entries available to tasks on any node.

Distributed Group Database The distributed group database maintains the list of distributed message
queue groups and their locally added members.

Distributed Node Database The distributed node database maintains the list of all other nodes in the
system along with their status.

Table 10-2 VxFusion Services

Service Description

Distributed Message Queue Service Handles distributed message queue telegrams from remote nodes.

Group Message Queue Service Handles group message queue telegrams from remote nodes.

Distributed Name Database Service Handles distributed name database telegrams from remote nodes.

Distributed Group Database Service Handles distributed message queue group database telegrams from
remote nodes.

Incorporation Service Handles incorporation messages from remote nodes. Incorporation
messages are used to signal and acknowledge the start and end of
database updates.

Group Agreement Protocol (GAP)
Service

Handles GAP messages. GAP messages are sent between nodes to
choose a unique ID for groups.

Services Databases

VxFusion
399

VxWorks 5.5
Programmer’s Guide
Libraries

VxFusion provides the following software libraries:

a distributed name database
(distNameLib, distNameShow)

distributed message queues
(msgQDistLib, msgQDistShow)

group message queues
(msgQDistGrpLib, msgQDistGrpShow)

telegram buffers
(distTBufLib)

distributed objects statistics
(distStatLib)

VxFusion adapter interface
(distIfLib, distIfShow)

VxFusion network layer
(distNetLib)

10.3.2 VxFusion Initialization

When you boot a VxWorks image that has VxFusion enabled, the
usrVxFusionInit() routine found in usrVxFusion.c calls the VxFusion
initialization routine, distInit(), to start VxFusion. The distInit() routine
initializes VxFusion on the current node. VxFusion must be installed on each node
in a system for applications on those nodes to be able to communicate. Parameters
of distInit() are set to their default values. The distInit() routine performs the
following basic operations:

– Initializes the local services and databases.

– Identifies the other VxFusion nodes in the system and determines their status.

– If there are other nodes in the system, updates the local databases using data
from one of the other nodes.

Because distInit() is called automatically when a target boots, if your VxWorks
image has VxFusion included, you should not call this routine directly from the
user application.
400

10

10
Distributed Message Queues
10.3.3 Configuring VxFusion

You can configure various aspects of VxFusion—initialization, run-time activities,
and the adapter interface—using one of the following methods:

– usrVxFusionInit() to modify features set at initialization.

– distCtl() to control run-time behavior.

– DIST_IF structures to tune adapter interfaces.

Each method for customizing is described further in this section.

Customizing with usrVxFusionInit()

This routine invokes the VxFusion initialization routine distInit(). It is
customizable and can be used to modify distInit() configuration parameters that
control initialization of your VxFusion environment. Table 10-3 describes the
numerous configurable arguments. For more information on distInit(), see the
entry in the VxWorks API Reference.

Table 10-3 Configuration Parameters Modified Within usrVxFusionInit()

Parameter/Definition Default Value Description

myNodeId

node ID

IP address of
booting
interface

Specify a unique ID for a node. Each node in a VxFusion system
must have a unique node ID. By default, the usrVxFusionInit()
code uses the IP address of the booting interface as the node ID.
The usrVxFusionInit() routine provides this as the first argument
to the distInit() routine.

ifInitRtn

adapter-specific
initialization routine

distUdpInit() Specify the initialization routine of the interface adapter to be
used. By default, the usrVxFusionInit() routine specifies the
initialization routine of the UDP adapter.

pIfInitConf

adapter-specific
configuration structure

booting
interface

Provide any additional adapter-specific configuration
information to the adapter. For example, the usrVxFusionInit()
routine provides the UDP adapter with the interface over which
the node was booted.

maxTBufsLog2

maximum number of
TBufs

9 (512 log 2) Specify the maximum number of telegram buffers to create. The
usrVxFusionInit() routine must provide this parameter in log 2
form, that is, if the maximum is 512, the parameter must be 9.
401

VxWorks 5.5
Programmer’s Guide
Customizing with distCtl()

This routine performs a distributed objects control function. Use distCtl() to
configure run-time-related parameters and hooks listed in Table 10-4. For more
information about available control functions using distCtl(), see the entry in the
VxWorks API Reference.

maxNodesLog2

maximum number of
nodes in the distributed
node database

5 (32 log 2) Specify the maximum number of nodes in the distributed node
database. The usrVxFusionInit() routine must provide this
parameter in log 2 form.

maxQueuesLog2

maximum number of
queues on node

7 (128 log 2) Specify the maximum number of distributed message queues that
can be created on a single node. The usrVxFusionInit() routine
must provide this parameter in log 2 form.

maxGroupsLog2

maximum number of
groups in the distributed
group database

6 (64 log 2) Specify the maximum number of group message queues that can
be created in the distributed group database. The
usrVxFusionInit() routine must provide this parameter in log 2
form.

maxNamesLog2

maximum number of
entries in the distributed
name database

8 (256 log 2) Specify the maximum number of entries that can be stored in the
distributed name database. The usrVxFusionInit() routine must
provide this parameter in log 2 form.

waitNTicks

maximum number of
clock ticks to wait

240* Specify the number of clock ticks to wait for responses from other
nodes at startup.

* 4*sysClkRateGet() is typically 240, but not always. The defaults are defined in vxfusion/distLib.h and
can be changed by the user, if desired.

NOTE: If distInit() fails, it returns ERROR, and VxFusion is not started on the host.

Table 10-3 Configuration Parameters Modified Within usrVxFusionInit() (Continued)

Parameter/Definition Default Value Description
402

10

10
Distributed Message Queues
Table 10-4 Configuration Parameters Modified Using distCtl()

Parameter or Hook
Default
Value

Description

DIST_CTL_LOG_HOOK NULL Set a routine to be called each time a log message is
produced. If no log hook is set, the log output is
printed to standard output.

DIST_CTL_PANIC_HOOK NULL Set a routine to be called when the system panics
due to an unrecoverable error. If no panic hook is set,
the output is printed to standard output.

DIST_CTL_RETRY_TIMEOUT 200ms Set the initial send retry timeout. Although the
default timeout is shown in milliseconds, the retry
timeout is actually set using clock ticks. Timeout
values are rounded down to the nearest 200 ms.

DIST_CTL_MAX_RETRIES 5 Set the limit for the number of retries when sending
fails.

DIST_CTL_NACK_SUPPORT TRUE Enable or disable the sending of negative
acknowledgments (NACK).

DIST_CTL_PGGYBAK_UNICST_SUPPORT FALSE Enable or disable unicast piggy-backing.

DIST_CTL_PGGYBAK_BRDCST_SUPPORT FALSE Enable or disable broadcast piggy-backing.

DIST_CTL_OPERATIONAL_HOOK NULL Add to a list of routines to be called each time a node
shifts to the operational state. Up to 8 routines can be
added.

DIST_CTL_CRASHED_HOOK NULL Add to a list of routines to be called each time a node
shifts to the crashed state. The list can hold a
maximum of 8 routines; however, one space is used
by VxFusion, leaving space for only 7 user-specified
routines to be added.

DIST_CTL_SERVICE_HOOK NULL Set a routine to be called each time a service fails on
a node, for a service invoked by a remote node.

DIST_CTL_SERVICE_CONF service-
specific

Set the task priority and network priority of the
service.

NOTE: DIST_CTL_CRASHED_HOOK should always be used with distCtl(), as it is
the only way that VxFusion can provide notification that a node has crashed.
403

VxWorks 5.5
Programmer’s Guide
Customizing with DIST_IF Structures

Table 10-5 lists configurable fields of the DIST_IF structure, which is used to pass
data about the adapter to VxFusion. It is the DIST_IF structure that gives VxFusion
transport independence. For more information on the DIST_IF structure, see
10.7.2 Writing an Initialization Routine, p.425.

10.3.4 Working with the Distributed Name Database

The distributed name database allows the association of any value to any name, such
as a distributed message queue’s ID with a unique name. The distributed name
database provides name-to-value-and-type and value-and-type-to-name translation,
allowing entries in the database to be accessed either by name or value and type.

Each node in a system has a copy of the distributed name database. Any
modifications made to a local copy of the database are immediately sent to all other
copies on all other nodes in the system.

Table 10-5 Configuration Parameters Modified Within Interface Adapters

DIST_IF Field/
Definition

Default Value Description

distIfName

interface adapter name

adapter-specific

UDP adapter: “UDP adapter”

Specifies the name of the interface adapter.

distIfMTU

MTU size

adapter-specific

UDP adapter: 1500 bytes

Specifies the MTU size of the interface adapter
protocol.

distIfHdrSize

network header size

adapter-specific

UDP adapter: size of NET_HDR

Specifies the network header size.

distIfBroadcastAddr

broadcast address

adapter-specific

UDP adapter: IP broadcast
address for subnet

Specifies the broadcast address for the
interface and transport that broadcasts are to
be sent on.

distIfRngBufSz

ring buffer size

adapter-specific

UDP adapter: 256

Specifies the number of elements to use in the
sliding window protocol.

distIfMaxFrags

maximum number of
fragments

adapter-specific

UDP adapter: 10

Specifies the maximum number of fragments
into which a message can be broken.
404

10

10
Distributed Message Queues
Typically, the task that wants to share a value adds a name-value-type entry into
the distributed name database. When adding the entry to the database, the task
associates the value with a unique, specified name. Tasks on different nodes use
this name to get the associated value.

Consider the example in Figure 10-3, which shows how two tasks on different
nodes share a common distributed message queue ID.

Task t1 on Node 1 creates a message queue. The distributed message queue ID is
returned by the creation routine. Task t1 adds the ID and its associated name,
myObj, to the distributed name database. This database entry is then broadcast to
all nodes in the system. For task t2 on Node 2 to send a message to this distributed

Figure 10-3 Using the Distributed Name Database

Node 1

t1

A

distributed

msgQDistCreate()

myObj : Q1 ID : T_DIST_MSG_Q

Node 2

t2
distNameAdd()

Node 1

t1

B

myObj : Q1 ID : T_DIST_MSG_Q

Node 2

t2

distNameFind()

myObj : Q1 ID : T_DIST_MSG_Q

t3

t3
msgQDistSend()

broadcasting
Internally
the creation
of myObj

1

2

2

1

name
database

distributed
name

database

distributed
name

database

distributed
name

database

Q1

Q1
405

VxWorks 5.5
Programmer’s Guide
message queue, it first finds the ID by looking up the name myObj in Node 2’s
local copy of the distributed name database.

However, if node 2 does not receive the broadcast—because, for example, the
network is down—the information on the two nodes does not match, and Node 2
is not aware of Q1. (This is an example of a case in which
DIST_CTL_CRASHED_HOOK could be used with distCtl() for notification; see
Table 10-4.)

Table 10-6 lists the distributed name database service routines. The distributed
name database may contain floating point values because they invoke printf() to
print them. Any task calling distNameShow() should set the VX_FP_TASK task
option set.

Additional information about adding a name to the distributed names database
and about related show routines is provided in this section. For detailed
information about all of these routines, see the entries in the VxWorks API Reference.

Adding a Name to the Distributed Name Database

Use distNameAdd() to add a name-value-type entry into the distributed name
database. The type can be user defined or pre-defined in distNameLib.h.

Table 10-6 Distributed Name Database Service Routines

Routine Functionality

distNameAdd() Adds a name to the distributed name database.

distNameFind() Finds a distributed object by name.

distNameFindByValueAndType() Finds a distributed object by value and type.

distNameRemove() Removes an object from the distributed name
database.

distNameShow() Displays the entire contents of the distributed name
database to the standard output device.

distNameFilterShow() Displays all entries in the database of a specified
type.

NOTE: The distributed name database service routines automatically convert to or
from network-byte order for the pre-defined types only. Do not call htnol() or
ntohl() explicitly for values of pre-defined types from the distributed name
database.
406

10

10
Distributed Message Queues
Table 10-7 lists the pre-defined types.

The value bound to a particular name can be updated by simply calling
distNameAdd() another time with a new value.

Displaying Distributed Name Database Information

There are two routines for displaying data from the distributed name database:
distNameShow() and distNameFilterShow().

The distNameShow() routine displays the entire contents of the distributed name
database to the standard output device. The following demonstrates use of
distNameShow(); the output is sent to the standard output device:

[VxKernel]-> distNameShow()

NAME TYPE VALUE
-------------------- -------------- -------------------------
nile T_DIST_NODE 0x930b2617 (2466981399)
columbia T_DIST_NODE 0x930b2616 (2466981398)
dmq-01 T_DIST_MSG_Q 0x3ff9fb

Table 10-7 Distributed Name Database Types

Constant Decimal Value Purpose

T_DIST_MSG_Q 0 distributed message queue identifier (also group ID)

T_DIST_NODE 16 node identifier

T_DIST_UINT8 64 8-bit unsigned integer

T_DIST_UINT16 65 16-bit unsigned integer

T_DIST_UINT32 66 32-bit unsigned integer

T_DIST_UINT64 67 64-bit unsigned integer

T_DIST_FLOAT 68 single-precision floating-point number (32-bit)

T_DIST_DOUBLE 69 double-precision floating-point number (64-bit)

user-defined types 4096
and above

user-defined types

! CAUTION: The distributed name database provided by vxFusion may contain
floating point values. The distNameShow() routine invokes printf() to print
them. Any task calling distNameShow() should set the VX_FP_TASK task option.
The target shell has this option set.
407

VxWorks 5.5
Programmer’s Guide
dmq-02 T_DIST_MSG_Q 0x3ff98b
dmq-03 T_DIST_MSG_Q 0x3ff94b
dmq-04 T_DIST_MSG_Q 0x3ff8db
dmq-05 T_DIST_MSG_Q 0x3ff89b
gData 4096 0x48 0x65 0x6c 0x6c 0x6f 0x00
gCount T_DIST_UINT32 0x2d (45)
grp1 T_DIST_MSG_Q 0x3ff9bb
grp2 T_DIST_MSG_Q 0x3ff90b
value = 0 = 0x0

The distNameFilterShow() routine displays the contents of the distributed name
database filtered by type. That is, it displays only the entries in the database that
match the specified type. The following output illustrates use of
distNameFilterShow() to display only the message queue IDs:

[VxKernel]-> distNameFilterShow(0)

NAME TYPE VALUE
-------------------- -------------- -------------------------
dmq-01 T_DIST_MSG_Q 0x3ff9fb
dmq-02 T_DIST_MSG_Q 0x3ff98b
dmq-03 T_DIST_MSG_Q 0x3ff94b
dmq-04 T_DIST_MSG_Q 0x3ff8db
dmq-05 T_DIST_MSG_Q 0x3ff89b
grp1 T_DIST_MSG_Q 0x3ff9bb
grp2 T_DIST_MSG_Q 0x3ff90b
value = 0 = 0x0

10.3.5 Working with Distributed Message Queues

Distributed message queues are message queues that can be operated on
transparently by both local and remote tasks. Table 10-8 lists the routines used to
control distributed message queues.

Table 10-8 Distributed Message Queue Routines

Routines Functionality

msgQDistCreate() Creates a distributed message queue.

msgQDistSend() Sends a message to a distributed message queue.

msgQDistReceive() Receives a message from a distributed message queue.

msgQDistNumMsgs() Gets the number of messages queued to a distributed
message queue.
408

10

10
Distributed Message Queues
A distributed message queue must be created using the msgQDistCreate()
routine. It physically resides on the node that instigated the create call.

Once created, a distributed message queue can be operated on by the standard
message queue routines provided by msgQLib, which are msgQSend(),
msgQReceive(), msgQNumMsgs(), msgQDelete(), and msgQShow(). This
newly created distributed message queue is not available to remote nodes until the
local node uses distNameAdd() to add the ID to the distributed name database.

When using the standard message queue routines on a distributed message queue,
the timeout argument specifies the amount of time to wait at the remote message
queue only—there is no mechanism for indicating transmission time between
nodes. When using the send, receive, and number-of-messages routines designed
specifically for distributed message queues (msgQDistSend(),
msgQDistReceive(), and msgQDistNumMsgs()), you can take advantage of an
additional timeout parameter, overallTimeout, that accounts for the transmission
time as well.

Figure 10-4 illustrates send and receive operations.

NOTE: For this release, you cannot delete a distributed message queue. There is no
msgQDistDelete() routine, and a call to msgQDelete() with a distributed
message queue ID always returns an error.

Figure 10-4 Sending to and Receiving from a Remote Distributed Message Queue

t2

t3

Node 1

Node 3

Node 2

t4
msgQDistReceive()

msgQDistSend() or

or msgQReceive()

msgQSend()

Q1

t1

DBs

DBs

DBs
409

VxWorks 5.5
Programmer’s Guide
However, before send and receive operations can occur, a task on Node 1 must
have created a distributed message queue. The remote message queue Q1 has been
previously created by task t1 on Node 1 with a call to msgQDistCreate(). Q1 was
then added to the distributed name database with a call to distNameAdd(). Tasks
t2 and t4 have also previously obtained the remote message queue ID for Q1 from
the distributed name database using the distNameFind() routine. With this data,
task t2 on Node 2 can send a message to Q1, using either the standard
msgQSend() routine or the VxFusion-specific msgQDistSend() routine.
Similarly, task t4 on Node 3 can receive a message from Q1 using the standard
msgQReceive() routine or the VxFusion-specific msgQDistReceive() routine.

For detailed information about distributed message queue routines, see the entries
in the VxWorks API Reference.

Sending Limitations

Local sending—that is, send actions on a single node—occurs in the same manner
for distributed message queues as for standard message queues, and, therefore, is
not discussed in greater detail in this manual. However, sending messages to
remote message queues using the msgQDistSend() routine can have different
outcomes, depending on the value specified for the timeout arguments.
Figure 10-5 presents three examples of messages being sent to a remote node.
There are two threads of execution: the local node waits for the status of the send
action, and the remote node waits to place the data in the distributed message
queue. Both threads are controlled with timeouts, if msgQDistSend() is used.

The timeout on the remote side is the msgQTimeout argument, the number of ticks
to wait at the remote message queue. The local timeout is the overallTimeout
argument, the number of ticks to wait overall, including the transmission time.

In Example A, no timeout occurs before the send action completes and the status
is returned. Thus, the local node receives the OK and knows that the message was
received. In B and C, one of the timeouts expires, the send routine returns ERROR,
and the errno variable is set to indicate a timeout.

In B, the local node is aware of the timeout; however, in C, the local node times out
before the status is received. In this case, the local node does not know whether or
not the send completed. In Example C, the message has been added to the remote
queue, even though the local operation failed, and the two nodes have different
views of the state of the system. To avoid this problem, set overallTimeout to a value
great enough that the status is always received.

Using msgQSend() prevents a situation like Example C from occurring because
msgQSend() waits forever for a response from the remote side.
410

10

10
Distributed Message Queues
For limitations on sending messages to nodes that are unavailable, see Detecting
Absent Receiving Nodes, p.418.

Figure 10-5 Sending Scenarios

SEND (data)

STATUS_OK

timeout

timeout

SEND (data)

STATUS_TIMEOUT

timeout

timeout

SEND (data)

STATUS_OK

timeout

timeout

Sender Receiver

A

B

C

status = OK
errno = 0

status = ERROR
errno = S_objLib_OBJ_UNAVAILABLE

or S_objLib_OBJ_TIMEOUT

status = ERROR
errno = S_msgQDistLib_OVERALL_TIMEOUT
411

VxWorks 5.5
Programmer’s Guide
Receiving Limitations

As is the case for local sending of messages, local receiving occurs in the same
manner for distributed message queues as for standard message queues.

Figure 10-6 Receiving Scenarios

RECV_REQ

RECV_RPL

RECV_REQ

STATUS_TIMEOUT

RECV_REQ

RECV_RPL

Tries to receive Has message queue

A

B

C

timeout

timeout

timeout

timeout

timeout

timeout

status = OK
errno = 0

status = ERROR
errno = S_objLib_OBJ_UNAVAILABLE

or S_objLib_OBJ_TIMEOUT

status = ERROR
errno = S_msgQDistLib_OVERALL_TIMEOUT
412

10

10
Distributed Message Queues
As with the scenarios in Sending Limitations, p.410, different outcomes can result
when receiving messages from remote message queues using the
msgQDistReceive() routine, depending on the value specified for the timeout
arguments. Figure 10-6 presents three examples of messages being received by a
node. There are two threads of execution: the local node waits for data to be
received, and the remote node waits for data to arrive at the distributed message
queue. Both threads are controlled with timeouts.

The timeout on the remote side is specified by the msgQTimeout argument, the
number of ticks to wait at the remote message queue. The local timeout is specified
by the overallTimeout argument, the number of ticks to wait overall, including the
transmission time.

Example A illustrates a successful receive with no timeouts. A request to receive a
message from a message queue is sent to the remote side and the result is returned
before either thread experiences a timeout.

In B, the remote side experiences a timeout, but a status response is returned to the
local node before the overall timeout expires. The receive routine returns an error
and the errno variable is set to indicate a timeout. Both sides know that the receive
failed and have the same view of the state of the remote message queue.

In C, the local node tries to receive a message from the remote node, but the
overallTimeout expires before a response arrives. The local and remote sides end up
with different views of the state of the remote message queue because, although
the message was successfully removed from the queue on the remote side, the local
side thinks the operation failed.

To avoid this problem, set the overallTimeout argument to a value great enough that
the reply from the remote side is always received; or use msgQReceive(), because
it waits forever for a response from the remote side.

Displaying the Contents of Distributed Message Queues

To display the contents of a distributed message queue, use the standard message
queue routine msgQShow().

The following example shows msgQShow() output for a local distributed
message queue:

[VxKernel]-> msgQShow 0xffe47f

Message Queue Id : 0xffe47f
Global unique Id : 0x930b267b:fe
Type : queue
Home Node : 0x930b267b
Mapped to : 0xea74d0
413

VxWorks 5.5
Programmer’s Guide
Message Queue Id : 0xea74d0
Task Queueing : FIFO
Message Byte Len : 1024
Messages Max : 100
Messages Queued : 0
Receivers Blocked : 0
Send Timeouts : 0
Receive Timeouts : 0
value = 0 = 0x0

The following example shows output for the same queue but from a different
machine:

[VxKernel]-> msgQShow 0x3ff9b7

Message Queue Id : 0x3ff9b7
Global unique Id : 0x930b267b:fe
Type : remote queue
Home Node : 0x930b267b
value = 0 = 0x0

10.3.6 Working with Group Message Queues

VxFusion uses group message queues to support the multicasting of messages to
a number of distributed message queues. A group message queue is a virtual
message queue that takes any message sent to it and sends it to all member queues.

Table 10-9 lists the routines available to handle distributed group message queues.

Group message queues are created and added to by the routine
msgQDistGrpAdd(). If a group message queue does not already exist when
msgQDistGrpAdd() is called, one is created, and the specified queue becomes the
first member of the group. If a group message queue already exists, then the
specified distributed message queue is simply added as a member. The
msgQDistGrpAdd() routine always returns the ID of the group message queue.

Table 10-9 Distributed Group Message Queue Routines

Routines Functionality

msgQDistGrpAdd() Adds a distributed message queue to a group.

msgQDistGrpDelete() Removes a message queue from a group.

msgQDistGrpShow() Displays information about a group message queue.
414

10

10
Distributed Message Queues
If you want a distributed message queue to belong to more than one group, you
must call msgQDistGrpAdd() to assert each additional membership.

Only sending to and displaying group message queues is supported. It is an error
to try to receive from a group message queue or query it for the number of
messages.

Information about all the group message queues that have been created in the
system and their locally added members is stored in the local copy of the
distributed group database. The msgQDistGrpShow() routine displays either all
of the groups in the distributed group database along with their locally added
members or a specific group and its locally added members. For more information
on using msgQDistGrpShow(), see Displaying Information About Distributed Group
Message Queues, p.416.

NOTE: Although there is a msgQDistGrpDelete() routine, a distributed message
queue cannot be deleted from a group message queue. The msgQDistGrpDelete()
command will always return ERROR.

Figure 10-7 Group Message Queue

Q1

t1
DBs

Q2

Q3

t2
DBs

Node 1

Node 3

Node 2

msgQSend() or msgQDistSend()

Node 4

Q2

Q4

Q5

t3
DBs

Q2

Q6

t5
DBs

Q2

t4
415

VxWorks 5.5
Programmer’s Guide
Consider the example in Figure 10-7. The distributed message queues Q1, Q3, Q4,
Q5, and Q6 have all been previously created by calls to msgQDistCreate(). They
have been added to the distributed name database by calls to distNameAdd().
The same tasks that created the message queues also added Q3, Q4, and Q5 to the
group message queue Q2 by calling msgQDistGrpAdd() for each new member.
Message queues Q1 and Q6 have not been added to the Q2 group. The first call to
msgQDistGrpAdd() creates Q2 as an entry in each node’s distributed group
database. (In Figure 10-7, the three databases—distributed node, name, and
group—are symbolized by three cylinders, the front one of which represents the
group database and shows the Q2 entry.)

In Figure 10-7, with group message queue Q2 established, when task t1 sends a
message to the group Q2, the message is sent to all nodes in the system. Each node
uses the distributed group database to identify group members and forwards the
message to them. In this example, the message is sent to members Q3, Q4, and Q5,
but not to non-members Q1 and Q6.

For detailed information about distributed group message queues, see the related
entries in the VxWorks API Reference.

Displaying Information About Distributed Group Message Queues

The msgQDistGrpShow() routine displays either all of the groups in the group
database along with their locally added members or a specific group and its locally
added members.

The following output demonstrates the use of msgQDistGrpShow() with no
arguments:

[VxKernel]-> msgQDistGrpShow(0)

NAME OF GROUP GROUP ID STATE MEMBER ID TYPE OF MEMBER
------------------- ---------- ------- ---------- ---------------------------
grp1 0x3ff9e3 global 0x3ff98b distributed msg queue

0x3ff9fb distributed msg queue
grp2 0x3ff933 global 0x3ff89b distributed msg queue

0x3ff8db distributed msg queue
0x3ff94b distributed msg queue

value = 0 = 0x0

NOTE: The distributed message queue members of Q2 did not have to be added
to the group by the task that created them. In fact, any task can add any distributed
message queue to a group, as long as the ID for that queue is known locally or is
available from the distributed name database.
416

10

10
Distributed Message Queues
The following call demonstrates the use of msgQDistGrpShow() with the string
“grp1” as the argument:

[VxKernel]-> msgQDistGrpShow("grp1")

NAME OF GROUP GROUP ID STATE MEMBER ID TYPE OF MEMBER
------------------- ---------- ------- ---------- ---------------------------
grp1 0x3ff9e3 global 0x3ff98b distributed msg queue

0x3ff9fb distributed msg queue
value = 0 = 0x0

10.3.7 Working with Adapters

Adapters provide a uniform interface to VxFusion, regardless of the particular
transport used. Table 10-10 presents the only API call related to adapters,
distIfShow().

For information on how to write your own VxFusion adapters, see 10.7 Designing
Adapters, p.423. For detailed information about adapters, see the related entries in
the VxWorks API Reference.

The following example demonstrates the use of distIfShow():

[VxKernel]-> distIfShow

Interface Name : "UDP adapter"
MTU : 1500
Network Header Size : 14
SWP Buffer : 32
Maximum Number of Fragments : 10
Maximum Length of Packet : 14860
Broadcast Address : 0x930b26ff
Telegrams received : 23
Telegrams received for sending : 62
Incoming Telegrams discarded : 0
Outgoing Telegrams discarded : 0

To learn how to change the installed interface adapter or to modify its values, see
10.3.3 Configuring VxFusion, p.401.

Table 10-10 Adapter Routines

Routine Functionality

distIfShow() Displays information about the installed interface adapter.
417

VxWorks 5.5
Programmer’s Guide
10.4 System Limitations

Interrupt Service Routine Restrictions

Unlike standard message queues, distributed objects cannot be used at interrupt
level. No routines that use distributed objects can be called from ISRs. An ISR is
dedicated to handle time-critical processing associated with an external event;
therefore, using distributed objects at interrupt time is not appropriate. On a
multiprocessor system, run event-related time-critical processing on the CPU
where the time-related interrupt occurred.

Detecting Absent Receiving Nodes

When a distributed message queue is created on one node, the other nodes are
informed of its creation. However, if the node on which the message queue was
created either crashes or is rebooted, there is no simple way for other nodes to
detect the loss of the message queue. The entry in the name database is not
modified, even if the system recreates the queue when it reboots. As a
consequence, the other nodes might use an invalid message queue ID and pend on
a receive notification that will never be sent. It is, therefore, the responsibility of the
application on the receiving node to set timeouts when more data is expected.

10.5 Node Startup

The VxFusion system is designed to support the addition of new nodes at
run-time, as well as to survive the failure of one or more nodes. The ability to add
new nodes at run-time is made possible by the node startup (incorporation)
process. The ability to survive the failure of one or more nodes is made possible by
replicated databases that are populated during the node startup process. This
section discusses node startup in detail.

Table 10-11 Node Startup States

State Activities

Booting Identify other nodes in the system and determine the “godfather.”

Network Update databases from the “godfather.”

Operational Notify the other nodes that the node is up and running.
418

10

10
Distributed Message Queues
Table 10-11 lists its three states, each of which is described in detail in this section.
Figure 10-8 illustrates the node startup process. (To simplify Figure 10-8, it does
not show the sending of acknowledgments.)

Figure 10-8 Starting Up the System

Node 1 Node New Node 2

BOOTSTRAP_REQ

BOOTSTRAP_ACK

BOOTSTRAP_REQ

BOOTSTRAP_ACK

timeout

INCO_REQ

GRP_DB_ADD

NAME_DB_ADD

INCO_DONE

INCO_UPNOW INCO_UPNOW

Update
VxFusion
databases
from the
godfather.

The system is

Identify other
VxFusion nodes
in the system,
if any.

Identify the
godfather.

start timer

up now.

Booting State

Network State

Operational State
419

VxWorks 5.5
Programmer’s Guide
Booting State

When VxFusion is first initialized on a node, it broadcasts a bootstrap request
message (BOOTSTRAP_REQ), which is used to locate other active VxFusion nodes
on the network. Nodes that receive the bootstrap request message respond with a
bootstrap acknowledgment message (BOOTSTRAP_ACK).

The node that sends the first bootstrap acknowledgment response received by
another node becomes the godfather for the local node. In Figure 10-8, Node 1 is the
godfather because its bootstrap acknowledgment is received first. The purpose of
the godfather is to help the local node update its databases. If no response is
received within a specified period of time, the node assumes it is the first node to
come up on the network.

As soon as a godfather is located or as soon as the assumption is made that a node
is first in the network, the node shifts from the booting state to the network state.

Network State

Once a godfather is located, the local node asks the godfather to update its
databases by sending an incorporation request message (INCO_REQ). The
godfather updates the local node's name and group databases. These updates are
indicated by the GRP_DB_ADD and NAME_DB_ADD arrows in Figure 10-8. The
godfather tells the receiving node that it is finished updating the databases by
sending an incorporation done message (INCO_DONE).

Once the database updates have completed, the node moves into the operational
state. If there is no godfather, the node moves directly from the booting state to the
operational state.

Operational State

When a node moves into the operational state, VxFusion is fully initialized and
running on it. The node broadcasts the “up now” incorporation message
(INCO_UPNOW) to tell the other nodes in the system that it is now active.
420

10

10
Distributed Message Queues
10.6 Telegrams and Messages

10.6.1 Telegrams Versus Messages

Because VxFusion is sending data over a network, the total byte size of a single
message may be too great to transmit as a single unit. It may have to be broken into
smaller segments. These VxFusion message segments are called telegrams.
Telegrams are the largest packets that can be sent between nodes.

A telegram is an atomic transmission on the transport of a certain number of bytes.
The MTU size of the transport, which is provided to VxFusion by the adapter at
initialization time, defines the size of the telegram.

When you send a message, the system segments it into one or more telegrams.
Figure 10-9 shows a telegram and its parts:

Protocol Header

The transport defines the protocol header, which it builds from values provided by
the adapter. The contents of this header vary from protocol to protocol, but may
include fields such as source address, destination address, and priority, if the
transport supports priority.

Network Header

The adapter defines and builds the network header. See 10.7.1 Designing the
Network Header, p.424 for a detailed description of the network header and its
fields.

Service Header

VxFusion defines and builds the service header. The service header is a small header
that identifies the internal service sending the message and the message type.

Figure 10-9 A Telegram

Protocol Header Network Header Service Header Service Data

MTU-10
421

VxWorks 5.5
Programmer’s Guide
Service Data

The service data is the data being sent. When sending a message to a remote
message queue or a message queue group, this data can be either the entire
message or a fragment of the message to be sent. It is a fragment of the message if
the message size exceeds the space allocated in the telegram for service data.

Because large numbers of telegrams can be necessary when working with
transports having small MTU sizes, VxFusion does not acknowledge individual
telegrams. Instead, only whole messages are acknowledged. In the event of a
transmission error or if a telegram is lost, the whole message must be
re-transmitted.

10.6.2 Telegram Buffers

When VxFusion needs to send a message to a remote node, it fragments the
message into telegram buffers allocated from a pool of pre-allocated telegram
buffers. Figure 10-10 shows a telegram buffer and its parts.

VxFusion sends one telegram buffer at a time to the adapter, which constructs a
corresponding telegram from the network header, service header, and service data
in the buffer. Finally, the adapter sends out the telegram.

On the receiving node, when the adapter receives a telegram, it is responsible for
reconstructing the telegram buffer from the telegram. After reconstructing the
telegram buffer, the adapter sends it to VxFusion.

Figure 10-10 A Telegram Buffer

DIST_TBUF struct:
.
.
.
pTBufData

Network Header

Service Header

Service Data

0

tBufSize - 1
422

10

10
Distributed Message Queues
The DIST_TBUF structure member, pTBufData, contains the address of the start of
the service header. To access the network header, subtract the size of the network
header from this address.

In order to reconstruct a telegram buffer at the remote node, some telegram buffer
fields must be copied into the network header by the adapter before sending the
telegram. For a list of the fields that must be copied into the network header, see
10.7.1 Designing the Network Header, p.424.

10.7 Designing Adapters

This section describes how to write adapters for the VxFusion component.

An adapter is a software mechanism that facilitates communication between
VxFusion nodes. An adapter sits between VxFusion and the single
communications transport, as shown in Figure 10-1. A transport can be a
high-level communications protocol, such as UDP, or a low-level communications
or bus driver, such as an Ethernet driver. When a message is sent to a remote node,
VxFusion passes a telegram buffer to the adapter, and the adapter sends data to the
remote node by way of the supported transport. Similarly, when a message is
received from a remote node, an adapter reconstructs a telegram buffer from the
incoming data and sends the buffer to VxFusion.

An adapter must provide the following:

� a network header to transmit telegram buffer fields
� an initialization function
� a startup routine
� a send function
� an input function
� an I/O control function

Each of these items is described in more detail in this section.

NOTE: In this release, VxFusion supports only one adapter and, thus, only one
transport.
423

VxWorks 5.5
Programmer’s Guide
10.7.1 Designing the Network Header

The telegram buffer itself is not passed to the remote node; it goes from the local
node only as far as the adapter. To move data from the adapter to a remote node,
VxFusion uses the adapter’s network header, a structure that stores data from
certain telegram buffer fields, data that is required to reconstruct the telegram
buffer at the remote node. It is the network header and the data pointed to by the
telegram buffer that pass from the adapter to the remote node.

Performance and message size are directly related to the size of the network
header. Because you design the network header, you can influence performance by
specifying the portion of the telegram dedicated to the network header. You trade
off throughput for message size.

For example, for a transport with a small transmission unit size, it may be desirable
to use a small network header to maximize throughput. However, reducing the
number of bits for a field, like the fragment sequence number, also reduces the size
of the message that can be sent. On the other hand, for transports having large
transmission unit sizes, the network header constitutes a smaller percentage of the
overall telegram; the adapter can use a larger fragment sequence number in the
header without affecting throughput performance significantly.

The telegram buffer structure, DIST_TBUF, is as follows:

typedef struct /* DIST_TBUF */
{
DIST_TBUF_GEN tBufGen; /* TBufGen struct */
void *pTBufData; /* pointer to the data */

/* Fields required to construct the telegram buffer on the remote side */
uint16_t tBufId; /* ID of the packet */
uint16_t tBufAck; /* ID of packet last received and */

/* ackowledged without error */
uint16_t tBufSeq; /* sequence number of the fragment */
uint16_t tBufNBytes; /* number of non-network header data

/* bytes */
uint16_t tBufType; /* type of telegram */
uint16_t tBufFlags; /* telegrams flags */
} DIST_TBUF;

You must create fields in the adapter-specific network header that correspond to
the following DIST_TBUF fields. All but the first two fields, tBufGen and pTBufData,
are required to reconstruct the telegram buffer on the remote side:

You may need to create and add fields to the network header depending on the
transport. For example, the message priority is an argument to both the
distIfXxxSend() and distNetInput() routines, but not all transports support
priority. If the transport supports priority, the priority is transmitted in the protocol
424

10

10
Distributed Message Queues
header and is available at the remote side. If the transport does not support priority
and you want it preserved, then you should add a field to the network header to
transmit the priority value to the remote node.

10.7.2 Writing an Initialization Routine

An adapter is initialized by a series of automatic calls to initialization routines. You
write some of the code that accomplishes this.

The distInit() routine, which initializes the whole of VxFusion, is called
automatically when a target is booted with a VxWorks image that has VxFusion
installed. The prototype for distInit() follows:

STATUS distInit
(
DIST_NODE_ID myNodeId, /* node ID of this node */
FUNCPTR ifInitRtn, /* interface init routine */
void *pIfInitConf, /* ptr to interface configuration */
int maxTBufsLog2, /* max number of telegram buffers */
int maxNodesLog2, /* max number of nodes in node db */
int maxQueuesLog2, /* max number of queues on this node */
int maxGroupsLog2, /* max number of groups in db */
int maxNamesLog2, /* max bindings in name db */
int waitNTicks /* wait in ticks when bootstrapping */
)
{
}

The argument ifInitRtn specifies the adapter initialization routine, distIfXxxInit(),
where Xxx is the name of the adapter specified by you.

You can base your version of distIfXxxInit() on the following prototypical code:

STATUS distIfXxxInit
(
void *pConf, /* ptr to configuration data, if any */
FUNCPTR *pStartup /* ptr to startup routine */
);

distIfXxxInit() should be invoked with the following parameters:

pConf
a pointer to interface configuration data pointed to by the pIfInitConf argument
of distInit()

NOTE: Never call distInit() or distIfXxxInit() directly.
425

VxWorks 5.5
Programmer’s Guide
pStartup
a pointer to a startup routine that is set up after the adapter initialization
routine returns

The adapter initialization routine should perform the following operations:

– set the startup routine pointer to point to the adapter startup routine

– set the fields of the DIST_IF structure

The DIST_IF structure is one of the mechanisms that provides VxFusion with its
transport independence: the structure maintains its form regardless of the adapter
being used. The DIST_IF structure is composed of configurable fields that identify
the adapter to be used and operating conditions for sending messages. For
information about using DIST_IF, see Using the DIST_IF Structure, p.426.

Although you cannot call distInit() and distIfXxxInit() directly, you can modify
the VxFusion startup code in usrVxFusion.c to change the VxFusion initialization
process.

If you need to specify additional information to initialize the adapter, you can
modify the pIfInitConf argument of distInit() to provide that information. The
pIfInitConf argument is passed as the pConf argument of distIfXxxInit(). To
preserve information pointed to by pConf, you should copy its values into a more
permanent structure within the adapter. If the adapter needs no additional
configuration information, then pConf should be ignored.

The adapter initialization routine should return OK if initialization is successful, or
ERROR if it fails.

Using the DIST_IF Structure

Use the DIST_IF structure to pass information about the adapter to VxFusion so
VxFusion can fragment messages into telegrams of appropriate size to be sent out
over the transport.

The DIST_IF structure has the following declaration:

typedef struct /* DIST_IF */
{
char *distIfName; /* name of the interface */
int distIfMTU; /* MTU size of interface's transport */
int distIfHdrSize; /* network header size */
DIST_NODE_ID distIfBroadcastAddr; /* broadcast addr for the interface */
short distIfRngBufSz; /* # bufs in sliding window protocol */
short distIfMaxFrags; /* max frags msg can be broken into */
426

10

10
Distributed Message Queues
int (*distIfIoctl) (int fnc, ...); /* adapter IOCTL function */
STATUS (*distIfSend) (DIST_NODE_ID destId, DIST_TBUF *pTBuf, int prio);

/* send function of the adapter */
} DIST_IF;

Fields for DIST_IF are defined as follows:

distIfName
This field is the name of the interface or adapter. It is displayed when
distIfShow() is called.

distIfMTU
This field specifies the MTU size of the transport.

distIfHdrSize
This field specifies the size of the adapter-specific network header. Some
adapters may use smaller headers, if their MTU size is small, to maximize the
amount of data per telegram. Adapters for transports having a large MTU size
may use a larger header to allow larger messages.

distIfBroadcastAddr
This field specifies the broadcast address for the transport. If the transport
does not support the broadcast operation, then a dummy broadcast address
must be provided and the transport must simulate the broadcast operation
whenever it receives a message destined for the dummy broadcast address.
One way of simulating the broadcast operation is to send the message to all
other nodes in the system using point-to-point addressing.

distIfRngBufSz
This field specifies the number of elements to use in the sliding window
protocol. A larger number means the greater the number of telegrams that can
be held in the ring buffer for messages awaiting acknowledgment.

distIfMaxFrags
This field specifies the maximum number of fragments into which a message
can be broken. The maximum size of a message that can be sent is:

maximum size = (number of fragments) x (MTU size - network header size -
service header size)

The size of the service header depends on the type of VxFusion message being
sent, for example, BOOTSTRAP_REQ or BOOTSTRAP_ACK.

distIfIoctl
This is the ioctl routine for the adapter interface.

distIfSend
This is the send routine for the adapter interface.
427

VxWorks 5.5
Programmer’s Guide
10.7.3 Writing a Startup Routine

The adapter startup routine should be returned to distInit() by the adapter
initialization routine. You can use the following prototype to write a startup
routine for adapter interface Xxx:

STATUS distXxxStart
(
void * pConf /* ptr to configuration data */
);

The startup routine is invoked by distInit() after the network layer of VxFusion is
initialized. The startup routine should spawn the input task, as well as any
initialization or startup that must be done to enable the transmission and reception
of telegrams over the desired transport. For example, at this time, a UDP adapter
should create the socket that it uses for communications.

The startup routine should return OK if the operation is successful, or ERROR if it
fails.

10.7.4 Writing a Send Routine

You can write a send routine, disIfXxxSend(), for adapter interface Xxx based on
the following prototypical code:

STATUS distIfXxxSend
(
DIST_NODE_ID nodeIdDest, /* destination node */
DIST_TBUF pTBuf, /* TBUF to send */
int priority /* packet priority */
);

Arguments for disIfXxxSend() should be defined as follows:

nodeIdDest
This parameter is the unique identifier of the destination node or the broadcast
node.

pTBuf
This parameter is the buffer that gets sent out.

priority
This parameter states the priority of the message. It may or not be supported
by the transport.

The purpose of the send routine is to take a telegram buffer passed from VxFusion
and send the associated telegram out over the transport.
428

10

10
Distributed Message Queues
The send routine should perform the following tasks:

– Increment the statistics (distStat.ifOutReceived++).

– Locate and fill in the pre-allocated network header with values from the
telegram buffer that is passed in as an argument. The network header fields
should be filled in using network byte order, so they can be correctly decoded
on the remote side, even if the remote node uses a different byte order. (For
information about which telegram buffer fields must be copied, see
10.7.1 Designing the Network Header, p.424.)

– Fill in any additional network header fields (such as priority) that may need to
be filled in.

– Send the telegram.

The send routine should return OK if the operation is successful, or ERROR if it
fails.

10.7.5 Writing an Input Routine

You can write an input routine, disIfXxxInputTask(), for adapter interface Xxx
based on the following prototypical code:

void distIfXxxInputTask();

The purpose of the input routine is to read a telegram and send it to VxFusion by
calling distNetInput(). For more information, see the entry for distNetInput() in
the VxWorks API Reference.

The input routine should listen or wait for an incoming telegram from the
transport. Upon receipt of the telegram, the statistics field distStat.ifInReceived
should be incremented. Then, the telegram should be tested to make sure that it is
longer than the network header. If not, the telegram is too small and should be
ignored. The distStat.ifInLength and distStat.ifInDiscarded fields should also be
incremented, in this case.

If your transport does not discard broadcast packets sent from itself, use the input
routine to filter out transport-originated broadcast packets.

After the input routine has discarded any duplicate or faulty telegram that
originates from the transport, the incoming telegram is assumed to be correct
(although there is one more check made later). A telegram buffer is allocated and
the contents of the telegram are copied into it. The non-data fields of the telegram
buffer that were not transmitted are as follows:
429

VxWorks 5.5
Programmer’s Guide
– tBufId
– tBufAck
– tBufSeq
– tBufNBytes
– tBufType
– tBufFlags

These fields are reconstructed using the network header. During the
reconstruction, these fields should be converted back to host order from network
order.

After the telegram buffer is reconstructed and the number of bytes expected in the
non-header portion of the telegram are known (from the tBufNBytes field),
telegram length is compared to tBufNBytes plus the size of the network header. If
the lengths do not match, the telegram should be discarded and the statistics
distStat.ifInLength and distStat.ifInDiscarded incremented.

If the lengths match, the telegram should be forwarded upward by calling
distNetInput().

10.7.6 Writing an I/O Control Routine

You can write an I/O control routine, distIfXxxIoctl(), for adapter interface Xxx
based on the following prototypical code:

int distIfXxxIoctl(int func, …);

You determine the control functions that must be supported by the adapter.

This routine should return the return value of the I/O control function being
performed if successful, or ERROR if the operation fails. If no control functions are
provided, the distIfXxxIoctl() routine should return ERROR.
430

11

Shared-Memory Objects

Optional Component VxMP
11.1 Introduction

VxMP is an optional VxWorks component that provides shared-memory objects
dedicated to high-speed synchronization and communication between tasks
running on separate CPUs. For information on how to install VxMP, see Tornado
Getting Started.

Shared-memory objects are a class of system objects that can be accessed by tasks
running on different processors. They are called shared-memory objects because the
object’s data structures must reside in memory accessible by all processors.
Shared-memory objects are an extension of local VxWorks objects. Local objects are
only available to tasks on a single processor. VxMP supplies three kinds of shared-
memory objects:

� shared semaphores (binary and counting)

� shared message queues

� shared-memory partitions (system- and user-created partitions)

Shared-memory objects provide the following advantages:

� A transparent interface that allows shared-memory objects to be manipulated
with the same routines that are used for manipulating local objects.

� High-speed inter-processor communication—no unnecessary packet passing
is required.

� The shared memory can reside either in dual-ported RAM or on a separate
memory board.
431

VxWorks 5.5
Programmer’s Guide
The components of VxMP consist of the following: a name database
(smNameLib), shared semaphores (semSmLib), shared message queues
(msgQSmLib), and a shared-memory allocator (smMemLib).

This chapter presents a detailed description of each shared-memory object and
internal considerations. It then describes configuration and troubleshooting.

11.2 Using Shared-Memory Objects

VxMP provides a transparent interface that makes it easy to execute code using
shared-memory objects on both a multiprocessor system and a single-processor
system. After an object is created, tasks can operate on shared objects with the
same routines used to operate on their corresponding local objects. For example,
shared semaphores, shared message queues, and shared-memory partitions have
the same syntax and interface as their local counterparts. Routines such as
semGive() , semTake(), msgQSend(), msgQReceive(), memPartAlloc() , and
memPartFree() operate on both local and shared objects. Only the create routines
are different. This allows an application to run in either a single-processor or a
multiprocessor environment with only minor changes to system configuration,
initialization, and object creation.

All shared-memory objects can be used on a single-processor system. This is useful
for testing an application before porting it to a multiprocessor configuration.
However, for objects that are used only locally, local objects always provide the
best performance.

After the shared-memory facilities are initialized (see 11.4 Configuration, p.454 for
initialization differences), all processors are treated alike. Tasks on any CPU can
create and use shared-memory objects. No processor has priority over another
from a shared-memory object’s point of view.1

Systems making use of shared memory can include a combination of supported
architectures. This enables applications to take advantage of different processor
types and still have them communicate. However, on systems where the
processors have different byte ordering, you must call the macros ntohl and htonl
to byte-swap the application’s shared data (see VxWorks Network Programmer’s
Guide: TCP/IP Under VxWorks).

1. Do not confuse this type of priority with the CPU priorities associated with VMEbus access.
432

11

11
Shared-Memory Objects
When an object is created, an object ID is returned to identify it. For tasks on
different CPUs to access shared-memory objects, they must be able to obtain this
ID. An object’s ID is the same regardless of the CPU. This allows IDs to be passed
using shared message queues, data structures in shared memory, or the name
database.

Throughout the remainder of this chapter, system objects under discussion refer to
shared objects unless otherwise indicated.

11.2.1 Name Database

The name database allows the association of any value to any name, such as a
shared-memory object’s ID with a unique name. It can communicate or advertise a
shared-memory block’s address and object type. The name database provides
name-to-value and value-to-name translation, allowing objects in the database to
be accessed either by name or by value. While other methods exist for advertising
an object’s ID, the name database is a convenient method for doing this.

Typically the task that creates an object also advertises the object’s ID by means of
the name database. By adding the new object to the database, the task associates
the object’s ID with a name. Tasks on other processors can look up the name in the
database to get the object’s ID. After the task has the ID, it can use it to access the
object. For example, task t1 on CPU 1 creates an object. The object ID is returned by
the creation routine and entered in the name database with the name myObj. For
task t2 on CPU 0 to operate on this object, it first finds the ID by looking up the
name myObj in the name database.

Table 11-1 Name Service Routines

Routine Functionality

smNameAdd() Adds a name to the name database.

smNameRemove() Removes a name from the name database.

smNameFind() Finds a shared symbol by name.

smNameFindByValue() Finds a shared symbol by value.

smNameShow() Displays the name database to the standard output device.*

* Automatically included if INCLUDE_SM_OBJ is selected.
433

VxWorks 5.5
Programmer’s Guide
This same technique can be used to advertise a shared-memory address. For
example, task t1 on CPU 0 allocates a chunk of memory and adds the address to
the database with the name mySharedMem. Task t2 on CPU 1 can find the address
of this shared memory by looking up the address in the name database using
mySharedMem.

Tasks on different processors can use an agreed-upon name to get a newly created
object’s value. See Table 11-1 for a list of name service routines. Note that retrieving
an ID from the name database need occur only one time for each task, and usually
occurs during application initialization.

The name database service routines automatically convert to or from network-byte
order; do not call htonl() or ntohl() explicitly for values from the name database.

The object types listed in Table 11-2 are defined in smNameLib.h.

The following example shows the name database as displayed by
smNameShow(), which is automatically included if INCLUDE_SM_OBJ is selected
for inclusion in the project facility VxWorks view. The parameter to
smNameShow() specifies the level of information displayed; in this case, 1
indicates that all information is shown. For additional information on
smNameShow(), see its reference entry.

-> smNameShow 1
value = 0 = 0x0

The output is sent to the standard output device, and looks like the following:

Name in Database Max : 100 Current : 5 Free : 95
Name Value Type
----------------- ------------- -------------
myMemory 0x3835a0 SM_BLOCK
myMemPart 0x3659f9 SM_PART_ID

Table 11-2 Shared-Memory Object Types

Constant Hex Value

T_SM_SEM_B 0

T_SM_SEM_C 1

T_SM_MSG_Q 2

T_SM_PART_ID 3

T_SM_BLOCK 4
434

11

11
Shared-Memory Objects
myBuff 0x383564 SM_BLOCK
mySmSemaphore 0x36431d SM_SEM_B
myMsgQ 0x365899 SM_MSG_Q

11.2.2 Shared Semaphores

Like local semaphores, shared semaphores provide synchronization by means of
atomic updates of semaphore state information. See 2. Basic OS in this manual and
the reference entry for semLib for a complete discussion of semaphores. Shared
semaphores can be given and taken by tasks executing on any CPU with access to
the shared memory. They can be used for either synchronization of tasks running
on different CPUs or mutual exclusion for shared resources.

To use a shared semaphore, a task creates the semaphore and advertises its ID. This
can be done by adding it to the name database. A task on any CPU in the system
can use the semaphore by first getting the semaphore ID (for example, from the
name database). When it has the ID, it can then take or give the semaphore.

In the case of employing shared semaphores for mutual exclusion, typically there
is a system resource that is shared between tasks on different CPUs and the
semaphore is used to prevent concurrent access. Any time a task requires exclusive
access to the resource, it takes the semaphore. When the task is finished with the
resource, it gives the semaphore.

For example, there are two tasks, t1 on CPU 0 and t2 on CPU 1. Task t1 creates the
semaphore and advertises the semaphore’s ID by adding it to the database and
assigning the name myMutexSem. Task t2 looks up the name myMutexSem in the
database to get the semaphore’s ID. Whenever a task wants to access the resource,
it first takes the semaphore by using the semaphore ID. When a task is done using
the resource, it gives the semaphore.

In the case of employing shared semaphores for synchronization, assume a task on
one CPU must notify a task on another CPU that some event has occurred. The task
being synchronized pends on the semaphore waiting for the event to occur. When
the event occurs, the task doing the synchronizing gives the semaphore.

For example, there are two tasks, t1 on CPU 0 and t2 on CPU 1. Both t1 and t2 are
monitoring robotic arms. The robotic arm that is controlled by t1 is passing a
physical object to the robotic arm controlled by t2. Task t2 moves the arm into
position but must then wait until t1 indicates that it is ready for t2 to take the object.
Task t1 creates the shared semaphore and advertises the semaphore’s ID by adding
it to the database and assigning the name objReadySem. Task t2 looks up the name
objReadySem in the database to get the semaphore’s ID. It then takes the
semaphore by using the semaphore ID. If the semaphore is unavailable, t2 pends,
435

VxWorks 5.5
Programmer’s Guide
waiting for t1 to indicate that the object is ready for t2. When t1 is ready to transfer
control of the object to t2, it gives the semaphore, readying t2 on CPU1.

There are two types of shared semaphores, binary and counting. Shared
semaphores have their own create routines and return a SEM_ID. Table 11-3 lists
the create routines. All other semaphore routines, except semDelete(), operate
transparently on the created shared semaphore.

The use of shared semaphores and local semaphores differs in several ways:

– The shared semaphore queuing order specified when the semaphore is created
must be FIFO. Figure 11-1 shows two tasks executing on different CPUs, both
trying to take the same semaphore. Task 1 executes first, and is put at the front

Table 11-3 Shared Semaphore Create Routines

Create Routine Description

semBSmCreate() Creates a shared binary semaphore.

semCSmCreate() Creates a shared counting semaphore.

Figure 11-1 Shared Semaphore Queues

SHARED MEMORY

task2

task1

Pended Queue Semaphore

EMPTY

Executes on CPU 1
before task2:

Executes on CPU 2 after
task1 is put on queue:

State

Binary Shared Semaphore

task2 ()
{
...
semTake (semSmId,t);
...
}

task1 ()
{
...
semTake (semSmId,t);
...
}

436

11

11
Shared-Memory Objects
of the queue because the semaphore is unavailable (empty). Task 2 (executing
on a different CPU) tries to take the semaphore after task 1’s attempt and is put
on the queue behind task 1.

– Shared semaphores cannot be given from interrupt level.

– Shared semaphores cannot be deleted. Attempts to delete a shared semaphore
return ERROR and set errno to S_smObjLib_NO_OBJECT_DESTROY.

Use semInfo() to get the shared task control block of tasks pended on a shared
semaphore. Use semShow(), if INCLUDE_SEM_SHOW is included in the project
facility VxWorks view, to display the status of the shared semaphore and a list of
pended tasks. The following example displays detailed information on the shared
semaphore mySmSemaphoreId as indicated by the second argument (0 =
summary, 1 = details):

-> semShow mySmSemaphoreId, 1
value = 0 = 0x0

The output is sent to the standard output device, and looks like the following:

Semaphore Id : 0x36431d
Semaphore Type : SHARED BINARY
Task Queuing : FIFO
Pended Tasks : 2
State : EMPTY
TID CPU Number Shared TCB
------------- ------------- --------------
0xd0618 1 0x364204
0x3be924 0 0x36421c

Example 11-1 Shared Semaphores

The following code example depicts two tasks executing on different CPUs and
using shared semaphores. The routine semTask1() creates the shared semaphore,
initializing the state to full. It adds the semaphore to the name database (to enable
the task on the other CPU to access it), takes the semaphore, does some processing,
and gives the semaphore. The routine semTask2() gets the semaphore ID from the
database, takes the semaphore, does some processing, and gives the semaphore.

/* semExample.h - shared semaphore example header file */

#define SEM_NAME "mySmSemaphore"

/* semTask1.c - shared semaphore example */

/* This code is executed by a task on CPU #1 */
#include "vxWorks.h"
#include "semLib.h"
#include "semSmLib.h"
437

VxWorks 5.5
Programmer’s Guide
#include "smNameLib.h"
#include "stdio.h"
#include "taskLib.h"
#include "semExample.h"

/*
* semTask1 - shared semaphore user
*/

STATUS semTask1 (void)
{
SEM_ID semSmId;

/* create shared semaphore */

if ((semSmId = semBSmCreate (SEM_Q_FIFO, SEM_FULL)) == NULL)
return (ERROR);

/* add object to name database */

if (smNameAdd (SEM_NAME, semSmId, T_SM_SEM_B) == ERROR)
return (ERROR);

/* grab shared semaphore and hold it for awhile */

semTake (semSmId, WAIT_FOREVER);

/* normally do something useful */

printf ("Task1 has the shared semaphore\n");
taskDelay (sysClkRateGet () * 5);
printf ("Task1 is releasing the shared semaphore\n");

/* release shared semaphore */

semGive (semSmId);

return (OK);
}

/* semTask2.c - shared semaphore example */

/* This code is executed by a task on CPU #2. */

#include "vxWorks.h"
#include "semLib.h"
#include "semSmLib.h"

#include "smNameLib.h"
#include "stdio.h"
#include "semExample.h"

/*
* semTask2 - shared semaphore user
*/
438

11

11
Shared-Memory Objects
STATUS semTask2 (void)
{
SEM_ID semSmId;
int objType;

/* find object in name database */

if (smNameFind (SEM_NAME, (void **) &semSmId, &objType, WAIT_FOREVER)
== ERROR)
return (ERROR);

/* take the shared semaphore */

printf ("semTask2 is now going to take the shared semaphore\n");
semTake (semSmId, WAIT_FOREVER);

/* normally do something useful */

printf ("Task2 got the shared semaphore!!\n");

/* release shared semaphore */

semGive (semSmId);

printf ("Task2 has released the shared semaphore\n");

return (OK);
}

11.2.3 Shared Message Queues

Shared message queues are FIFO queues used by tasks to send and receive variable-
length messages on any of the CPUs that have access to the shared memory. They
can be used either to synchronize tasks or to exchange data between tasks running
on different CPUs. See 2. Basic OS in this manual and the reference entry for
msgQLib for a complete discussion of message queues.

To use a shared message queue, a task creates the message queue and advertises
its ID. A task that wants to send or receive a message with this message queue first
gets the message queue’s ID. It then uses this ID to access the message queue.

For example, consider a typical server/client scenario where a server task t1 (on
CPU 1) reads requests from one message queue and replies to these requests with
a different message queue. Task t1 creates the request queue and advertises its ID
by adding it to the name database assigning the name requestQue. If task t2 (on
CPU 0) wants to send a request to t1, it first gets the message queue ID by looking
up the name requestQue in the name database. Before sending its first request,
task t2 creates a reply message queue. Instead of adding its ID to the database, it
advertises the ID by sending it as part of the request message. When t1 receives the
439

VxWorks 5.5
Programmer’s Guide
request from the client, it finds in the message the ID of the queue to use when
replying to that client. Task t1 then sends the reply to the client by using this ID.

To pass messages between tasks on different CPUs, first create the message queue
by calling msgQSmCreate(). This routine returns a MSG_Q_ID. This ID is used for
sending and receiving messages on the shared message queue.

Like their local counterparts, shared message queues can send both urgent or
normal priority messages.

The use of shared message queues and local message queues differs in several
ways:

� The shared message queue task queueing order specified when a message
queue is created must be FIFO. Figure 11-2 shows two tasks executing on
different CPUs, both trying to receive a message from the same shared
message queue. Task 1 executes first, and is put at the front of the queue
because there are no messages in the message queue. Task 2 (executing on a
different CPU) tries to receive a message from the message queue after task 1’s
attempt and is put on the queue behind task 1.

� Messages cannot be sent on a shared message queue at interrupt level. (This is
true even in NO_WAIT mode.)

Figure 11-2 Shared Message Queues

Pended Queue
Message

Executes on CPU 1 before task2:

Executes on CPU 2 after task1:

task2

task1

Queue

Shared Message Queue

SHARED MEMORY

EMPTY

task2 ()
{
...
msgQReceive (smMsgQId,...);
...
}

task1 ()
{
...
msgQReceive (smMsgQId,...);
...
}

440

11

11
Shared-Memory Objects
� Shared message queues cannot be deleted. Attempts to delete a shared
message queue return ERROR and sets errno to
S_smObjLib_NO_OBJECT_DESTROY.

To achieve optimum performance with shared message queues, align send and
receive buffers on 4-byte boundaries.

To display the status of the shared message queue as well as a list of tasks pended
on the queue, select INCLUDE_MSG_Q_SHOW for inclusion in the project facility
VxWorks view and call msgQShow(). The following example displays detailed
information on the shared message queue 0x7f8c21 as indicated by the second
argument (0 = summary display, 1 = detailed display).

-> msgQShow 0x7f8c21, 1
value = 0 = 0x0

The output is sent to the standard output device, and looks like the following:

Message Queue Id : 0x7f8c21
Task Queuing : FIFO
Message Byte Len : 128
Messages Max : 10
Messages Queued : 0
Receivers Blocked : 1
Send timeouts : 0
Receive timeouts : 0
Receivers blocked :
TID CPU Number Shared TCB
---------- -------------------- --------------
0xd0618 1 0x1364204

Example 11-2 Shared Message Queues

In the following code example, two tasks executing on different CPUs use shared
message queues to pass data to each other. The server task creates the request
message queue, adds it to the name database, and reads a message from the queue.
The client task gets the smRequestQId from the name database, creates a reply
message queue, bundles the ID of the reply queue as part of the message, and
sends the message to the server. The server gets the ID of the reply queue and uses
it to send a message back to the client. This technique requires the use of the
network byte-order conversion macros htonl() and ntohl(), because the numeric
queue ID is passed over the network in a data field.

/* msgExample.h - shared message queue example header file */

#define MAX_MSG (10)
#define MAX_MSG_LEN (100)
#define REQUEST_Q "requestQue"
441

VxWorks 5.5
Programmer’s Guide
typedef struct message
{
MSG_Q_ID replyQId;
char clientRequest[MAX_MSG_LEN];
} REQUEST_MSG;

/* server.c - shared message queue example server */

/* This file contains the code for the message queue server task. */

#include "vxWorks.h"
#include "msgQLib.h"
#include "msgQSmLib.h"
#include "stdio.h"
#include "smNameLib.h"
#include "msgExample.h"
#include "netinet/in.h"

#define REPLY_TEXT "Server received your request"

/*
* serverTask - receive and process a request from a shared message queue
*/

STATUS serverTask (void)
{
MSG_Q_ID smRequestQId; /* request shared message queue */
REQUEST_MSG request; /* request text */

/* create a shared message queue to handle requests */

if ((smRequestQId = msgQSmCreate (MAX_MSG, sizeof (REQUEST_MSG),
MSG_Q_FIFO)) == NULL)
return (ERROR);

/* add newly created request message queue to name database */

if (smNameAdd (REQUEST_Q, smRequestQId, T_SM_MSG_Q) == ERROR)
return (ERROR);

/* read messages from request queue */

FOREVER
{
if (msgQReceive (smRequestQId, (char *) &request, sizeof (REQUEST_MSG),

WAIT_FOREVER) == ERROR)
return (ERROR);

/* process request - in this case simply print it */

printf ("Server received the following message:\n%s\n",
request.clientRequest);

/* send a reply using ID specified in client’s request message */
442

11

11
Shared-Memory Objects
if (msgQSend ((MSG_Q_ID) ntohl ((int) request.replyQId),
REPLY_TEXT, sizeof (REPLY_TEXT),
WAIT_FOREVER, MSG_PRI_NORMAL) == ERROR)
return (ERROR);

}
}

/* client.c - shared message queue example client */

/* This file contains the code for the message queue client task. */

#include "vxWorks.h"
#include "msgQLib.h"
#include "msgQSmLib.h"
#include "smNameLib.h"
#include "stdio.h"
#include "msgExample.h"
#include "netinet/in.h"

/*
* clientTask - sends request to server and reads reply
*/

STATUS clientTask
(
char * pRequestToServer /* request to send to the server */

/* limited to 100 chars */
)
{
MSG_Q_ID smRequestQId; /* request message queue */
MSG_Q_ID smReplyQId; /* reply message queue */
REQUEST_MSG request; /* request text */
int objType; /* dummy variable for smNameFind */
char serverReply[MAX_MSG_LEN]; /*buffer for server’s reply */

/* get request queue ID using its name */

if (smNameFind (REQUEST_Q, (void **) &smRequestQId, &objType,
WAIT_FOREVER) == ERROR)
return (ERROR);

/* create reply queue, build request and send it to server */

if ((smReplyQId = msgQSmCreate (MAX_MSG, MAX_MSG_LEN,
MSG_Q_FIFO)) == NULL)
return (ERROR);

request.replyQId = (MSG_Q_ID) htonl ((int) smReplyQId);

strcpy (request.clientRequest, pRequestToServer);

if (msgQSend (smRequestQId, (char *) &request, sizeof (REQUEST_MSG),
WAIT_FOREVER, MSG_PRI_NORMAL) == ERROR)
return (ERROR);
443

VxWorks 5.5
Programmer’s Guide
/* read reply and print it */

if (msgQReceive (request.replyQId, serverReply, MAX_MSG_LEN,
WAIT_FOREVER) == ERROR)
return (ERROR);

printf ("Client received the following message:\n%s\n", serverReply);

return (OK);
}

11.2.4 Shared-Memory Allocator

The shared-memory allocator allows tasks on different CPUs to allocate and release
variable size chunks of memory that are accessible from all CPUs with access to the
shared-memory system. Two sets of routines are provided: low-level routines for
manipulating user-created shared-memory partitions, and high-level routines for
manipulating a shared-memory partition dedicated to the shared-memory system
pool. (This organization is similar to that used by the local-memory manager,
memPartLib.)

Shared-memory blocks can be allocated from different partitions. Both a shared-
memory system partition and user-created partitions are available. User-created
partitions can be created and used for allocating data blocks of a particular size.
Memory fragmentation is avoided when fixed-sized blocks are allocated from
user-created partitions dedicated to a particular block size.

Shared-Memory System Partition

To use the shared-memory system partition, a task allocates a shared-memory
block and advertises its address. One way of advertising the ID is to add the
address to the name database. The routine used to allocate a block from the shared-
memory system partition returns a local address. Before the address is advertised
to tasks on other CPUs, this local address must be converted to a global address.
Any task that must use the shared memory must first get the address of the
memory block and convert the global address to a local address. When the task has
the address, it can use the memory.

However, to address issues of mutual exclusion, typically a shared semaphore is
used to protect the data in the shared memory. Thus in a more common scenario,
the task that creates the shared memory (and adds it to the database) also creates a
shared semaphore. The shared semaphore ID is typically advertised by storing it
in a field in the shared data structure residing in the shared-memory block. The
444

11

11
Shared-Memory Objects
first time a task must access the shared data structure, it looks up the address of the
memory in the database and gets the semaphore ID from a field in the shared data
structure. Whenever a task must access the shared data, it must first take the
semaphore. Whenever a task is finished with the shared data, it must give the
semaphore.

For example, assume two tasks executing on two different CPUs must share data.
Task t1 executing on CPU 1 allocates a memory block from the shared-memory
system partition and converts the local address to a global address. It then adds the
global address of the shared data to the name database with the name
mySharedData. Task t1 also creates a shared semaphore and stores the ID in the
first field of the data structure residing in the shared memory. Task t2 executing on
CPU 2 looks up the name mySharedData in the name database to get the address
of the shared memory. It then converts this address to a local address. Before
accessing the data in the shared memory, t2 gets the shared semaphore ID from the
first field of the data structure residing in the shared-memory block. It then takes
the semaphore before using the data and gives the semaphore when it is done
using the data.

User-Created Partitions

To make use of user-created shared-memory partitions, a task creates a shared-
memory partition and adds it to the name database. Before a task can use the
shared-memory partition, it must first look in the name database to get the
partition ID. When the task has the partition ID, it can access the memory in the
shared-memory partition.

For example, task t1 creates a shared-memory partition and adds it to the name
database using the name myMemPartition. Task t2 executing on another CPU
wants to allocate memory from the new partition. Task t2 first looks up
myMemPartition in the name database to get the partition ID. It can then allocate
memory from it, using the ID.

Using the Shared-Memory System Partition

The shared-memory system partition is analogous to the system partition for local
memory. Table 11-4 lists routines for manipulating the shared-memory system
partition.

Routines that return a pointer to allocated memory return a local address (that is,
an address suitable for use from the local CPU). To share this memory across
445

VxWorks 5.5
Programmer’s Guide
processors, this address must be converted to a global address before it is
advertised to tasks on other CPUs. Before a task on another CPU uses the memory,
it must convert the global address to a local address. Macros and routines are
provided to convert between local addresses and global addresses; see the header
file smObjLib.h and the reference entry for smObjLib.

Example 11-3 Shared-Memory System Partition

The following code example uses memory from the shared-memory system
partition to share data between tasks on different CPUs. The first member of the
data structure is a shared semaphore that is used for mutual exclusion. The send
task creates and initializes the structure, then the receive task accesses the data and
displays it.

/* buffProtocol.h - simple buffer exchange protocol header file */

#define BUFFER_SIZE 200 /* shared data buffer size */
#define BUFF_NAME "myMemory" /* name of data buffer in database */

typedef struct shared_buff
{
SEM_ID semSmId;
char buff [BUFFER_SIZE];
} SHARED_BUFF;

Table 11-4 Shared-Memory System Partition Routines

Routine Functionality

smMemMalloc() Allocates a block of shared system memory.

smMemCalloc() Allocates a block of shared system memory for an array.

smMemRealloc() Resizes a block of shared system memory.

smMemFree() Frees a block of shared system memory.

smMemShow() Displays usage statistics of the shared-memory system
partition on the standard output device. This routine is
automatically included if INCLUDE_SM_OBJ is selected
for inclusion in the project facility VxWorks view.

smMemOptionsSet() Sets the debugging options for the shared-memory system
partition.

smMemAddToPool() Adds memory to the shared-memory system pool.

smMemFindMax() Finds the size of the largest free block in the shared-memory
system partition.
446

11

11
Shared-Memory Objects
/* buffSend.c - simple buffer exchange protocol send side */

/* This file writes to the shared memory. */

#include "vxWorks.h"
#include "semLib.h"
#include "semSmLib.h"
#include "smNameLib.h"
#include "smObjLib.h"
#include "stdio.h"
#include "buffProtocol.h"

/*
* buffSend - write to shared semaphore protected buffer
*/

STATUS buffSend (void)
{
SHARED_BUFF * pSharedBuff;
SEM_ID mySemSmId;

/* grab shared system memory */

pSharedBuff = (SHARED_BUFF *) smMemMalloc (sizeof (SHARED_BUFF));

/*
* Initialize shared buffer structure before adding to database. The
* protection semaphore is initially unavailable and the receiver blocks.
 */

if ((mySemSmId = semBSmCreate (SEM_Q_FIFO, SEM_EMPTY)) == NULL)
return (ERROR);

pSharedBuff->semSmId = (SEM_ID) htonl ((int) mySemSmId);

/*
 * Convert address of shared buffer to a global address and add to
 * database.
 */

if (smNameAdd (BUFF_NAME, (void *) smObjLocalToGlobal (pSharedBuff),
T_SM_BLOCK) == ERROR)

return (ERROR);

/* put data into shared buffer */

sprintf (pSharedBuff->buff,"Hello from sender\n");

/* allow receiver to read data by giving protection semaphore */

if (semGive (mySemSmId) != OK)
return (ERROR);

return (OK);
}

447

VxWorks 5.5
Programmer’s Guide
/* buffReceive.c - simple buffer exchange protocol receive side */

/* This file reads the shared memory. */

#include "vxWorks.h"
#include "semLib.h"
#include "semSmLib.h"
#include "smNameLib.h"
#include "smObjLib.h"
#include "stdio.h"
#include "buffProtocol.h"

/*
* buffReceive - receive shared semaphore protected buffer
*/

STATUS buffReceive (void)
{
SHARED_BUFF * pSharedBuff;
SEM_ID mySemSmId;
int objType;

/* get shared buffer address from name database */

if (smNameFind (BUFF_NAME, (void **) &pSharedBuff,
&objType, WAIT_FOREVER) == ERROR)

return (ERROR);

/* convert global address of buff to its local value */

pSharedBuff = (SHARED_BUFF *) smObjGlobalToLocal (pSharedBuff);

/* convert shared semaphore ID to host (local) byte order */

mySemSmId = (SEM_ID) ntohl ((int) pSharedBuff->semSmId);

/* take shared semaphore before reading the data buffer */

if (semTake (mySemSmId,WAIT_FOREVER) != OK)
return (ERROR);

/* read data buffer and print it */

printf ("Receiver reading from shared memory: %s\n", pSharedBuff->buff);

/* give back the data buffer semaphore */

if (semGive (mySemSmId) != OK)
return (ERROR);

return (OK);
}

448

11

11
Shared-Memory Objects
Using User-Created Partitions

Shared-memory partitions have a separate create routine, memPartSmCreate(),
that returns a MEM_PART_ID. After a user-defined shared-memory partition is
created, routines in memPartLib operate on it transparently. Note that the address
of the shared-memory area passed to memPartSmCreate() (or
memPartAddToPool()) must be the global address.

Example 11-4 User-Created Partition

This example is similar to Example 11-3, which uses the shared-memory system
partition. This example creates a user-defined partition and stores the shared data
in this new partition. A shared semaphore is used to protect the data.

/* memPartExample.h - shared memory partition example header file */

#define CHUNK_SIZE (2400)
#define MEM_PART_NAME "myMemPart"
#define PART_BUFF_NAME "myBuff"
#define BUFFER_SIZE (40)

typedef struct shared_buff
{
SEM_ID semSmId;
char buff [BUFFER_SIZE];
} SHARED_BUFF;

/* memPartSend.c - shared memory partition example send side */

/* This file writes to the user-defined shared memory partition. */

#include "vxWorks.h"
#include "memLib.h"
#include "semLib.h"
#include "semSmLib.h"
#include "smNameLib.h"
#include "smObjLib.h"
#include "smMemLib.h"
#include "stdio.h"
#include "memPartExample.h"

/*
* memPartSend - send shared memory partition buffer
*/

STATUS memPartSend (void)
{
char * pMem;
PART_ID smMemPartId;
SEM_ID mySemSmId;
SHARED_BUFF * pSharedBuff;
449

VxWorks 5.5
Programmer’s Guide
/* allocate shared system memory to use for partition */

pMem = smMemMalloc (CHUNK_SIZE);

/* Create user defined partition using the previously allocated
 * block of memory.
 * WARNING: memPartSmCreate uses the global address of a memory
 * pool as first parameter.
 */

if ((smMemPartId = memPartSmCreate (smObjLocalToGlobal (pMem), CHUNK_SIZE))
 == NULL)
return (ERROR);

/* allocate memory from partition */

pSharedBuff = (SHARED_BUFF *) memPartAlloc (smMemPartId,
sizeof (SHARED_BUFF));

if (pSharedBuff == 0)
return (ERROR);

/* initialize structure before adding to database */

if ((mySemSmId = semBSmCreate (SEM_Q_FIFO, SEM_EMPTY)) == NULL)
return (ERROR);

pSharedBuff->semSmId = (SEM_ID) htonl ((int) mySemSmId);

/* enter shared partition ID in name database */

if (smNameAdd (MEM_PART_NAME, (void *) smMemPartId, T_SM_PART_ID) == ERROR)
return (ERROR);

/* convert shared buffer address to a global address and add to database */

if (smNameAdd (PART_BUFF_NAME, (void *) smObjLocalToGlobal(pSharedBuff),
T_SM_BLOCK) == ERROR)

return (ERROR);

/* send data using shared buffer */

sprintf (pSharedBuff->buff,"Hello from sender\n");

if (semGive (mySemSmId) != OK)
return (ERROR);

return (OK);
}

/* memPartReceive.c - shared memory partition example receive side */

/* This file reads from the user-defined shared memory partition. */

#include "vxWorks.h"
#include "memLib.h"
#include "stdio.h"
#include "semLib.h"
450

11

11
Shared-Memory Objects
#include "semSmLib.h"
#include "stdio.h"
#include "memPartExample.h"

/*
* memPartReceive - receive shared memory partition buffer
*
* execute on CPU 1 - use a shared semaphore to protect shared memory
*/

STATUS memPartReceive (void)
{
SHARED_BUFF * pBuff;
SEM_ID mySemSmId;
int objType;

/* get shared buffer address from name database */

if (smNameFind (PART_BUFF_NAME, (void **) &pBuff, &objType,
WAIT_FOREVER) == ERROR)

return (ERROR);

/* convert global address of buffer to its local value */

pBuff = (SHARED_BUFF *) smObjGlobalToLocal (pBuff);

/* Grab shared semaphore before using the shared memory */

mySemSmId = (SEM_ID) ntohl ((int) pBuff->semSmId);
semTake (mySemSmId,WAIT_FOREVER);
printf ("Receiver reading from shared memory: %s\n", pBuff->buff);
semGive (mySemSmId);

return (OK);
}

Side Effects of Shared-Memory Partition Options

Like their local counterparts, shared-memory partitions (both system- and user-
created) can have different options set for error handling; see the reference entries
for memPartOptionsSet() and smMemOptionsSet().

If the MEM_BLOCK_CHECK option is used in the following situation, the system
can get into a state where the memory partition is no longer available. If a task
attempts to free a bad block and a bus error occurs, the task is suspended. Because
shared semaphores are used internally for mutual exclusion, the suspended task
still has the semaphore, and no other task has access to the memory partition. By
default, shared-memory partitions are created without the MEM_BLOCK_CHECK
option.
451

VxWorks 5.5
Programmer’s Guide
11.3 Internal Considerations

11.3.1 System Requirements

The shared-memory region used by shared-memory objects must be visible to all
CPUs in the system. Either dual-ported memory on the master CPU (CPU 0) or a
separate memory board can be used. The shared-memory objects’ anchor must be
in the same address space as the shared-memory region. Note that the memory
does not have to appear at the same local address for all CPUs.

All CPUs in the system must support indivisible read-modify-write cycle across
the (VME) bus. The indivisible RMW is used by the spin-lock mechanism to gain
exclusive access to internal shared data structures; see 11.3.2 Spin-lock Mechanism,
p.452 for details. Because all the boards must support a hardware test-and-set, the
constant SM_TAS_TYPE must be set to SM_TAS_HARD on the Parameters tab of the
project facility VxWorks view.

CPUs must be notified of any event that affects them. The preferred method is for
the CPU initiating the event to interrupt the affected CPU. The use of interrupts is
dependent on the capabilities of the hardware. If interrupts cannot be used, a
polling scheme can be employed, although this generally results in a significant
performance penalty.

The maximum number of CPUs that can use shared-memory objects is 20 (CPUs
numbered 0 through 19). The practical maximum is usually a smaller number that
depends on the CPU, bus bandwidth, and application.

11.3.2 Spin-lock Mechanism

Internal shared-memory object data structures are protected against concurrent
access by a spin-lock mechanism. The spin-lock mechanism is a loop where an
attempt is made to gain exclusive access to a resource (in this case an internal data
structure). An indivisible hardware read-modify-write cycle (hardware test-and-
set) is used for this mutual exclusion. If the first attempt to take the lock fails,
multiple attempts are made, each with a decreasing random delay between one
attempt and the next. The average time it takes between the original attempt to
take the lock and the first retry is 70 microseconds on an MC68030 at 20MHz.

! CAUTION: Boards that make use of VxMP must support hardware test-and-set
(indivisible read-modify-write cycle). PowerPC is an exception; see the current
PowerPC architecture supplement.
452

11

11
Shared-Memory Objects
Operating time for the spin-lock cycle varies greatly because it is affected by the
processor cache, access time to shared memory, and bus traffic. If the lock is not
obtained after the maximum number of tries specified by SM_OBJ_MAX_TRIES
(defined in the Params tab of the properties window for shared memory objects in
the VxWorks view), errno is set to S_smObjLib_LOCK_TIMEOUT. If this error
occurs, set the maximum number of tries to a higher value. Note that any failure
to take a spin-lock prevents proper functioning of shared-memory objects. In most
cases, this is due to problems with the shared-memory configuration; see
11.5.2 Troubleshooting Techniques, p.462.

11.3.3 Interrupt Latency

For the duration of the spin-lock, interrupts are disabled to avoid the possibility of
a task being preempted while holding the spin-lock. As a result, the interrupt
latency of each processor in the system is increased. However, the interrupt latency
added by shared-memory objects is constant for a particular CPU.

11.3.4 Restrictions

Unlike local semaphores and message queues, shared-memory objects cannot be
used at interrupt level. No routines that use shared-memory objects can be called
from ISRs. An ISR is dedicated to handle time-critical processing associated with
an external event; therefore, using shared-memory objects at interrupt time is not
appropriate. On a multiprocessor system, run event-related time-critical
processing on the CPU where the time-related interrupt occurred.

Note that shared-memory objects are allocated from dedicated shared-memory
pools, and cannot be deleted.

When using shared-memory objects, the maximum number of each object type
must be specified on the Params tab of the properties window; see 11.4.3 Initializing
the Shared-Memory Objects Package, p.456. If applications are creating more than the
specified maximum number of objects, it is possible to run out of memory. If this
happens, the shared object creation routine returns an error and errno is set to
S_memLib_NOT_ENOUGH_MEM. To solve this problem, first increase the
maximum number of shared-memory objects of corresponding type; see Table 11-5
for a list of the applicable configuration constants. This decreases the size of the
shared-memory system pool because the shared-memory pool uses the remainder
of the shared memory. If this is undesirable, increase both the number of the
corresponding shared-memory objects and the size of the overall shared-memory
453

VxWorks 5.5
Programmer’s Guide
region, SM_OBJ_MEM_SIZE. See 11.4 Configuration, p.454 for a discussion of the
constants used for configuration.

11.3.5 Cache Coherency

When dual-ported memory is used on some boards without MMU or bus
snooping mechanisms, the data cache must be disabled for the shared-memory
region on the master CPU. If you see the following error message, make sure that
the constant INCLUDE_CACHE_ENABLE is not selected for inclusion in the
VxWorks view:

usrSmObjInit - cache coherent buffer not available. Giving up.

11.4 Configuration

To include shared-memory objects in VxWorks, select INCLUDE_SM_OBJ for
inclusion in the project facility VxWorks view. Most of the configuration is already
done automatically from usrSmObjInit() in usrConfig.c. However, you may also
need to modify some values in the Params tab of the properties window to reflect
your configuration; these are described in this section.

11.4.1 Shared-Memory Objects and Shared-Memory Network Driver

Shared-memory objects and the shared-memory network2 use the same memory
region, anchor address, and interrupt mechanism. Configuring the system to use
shared-memory objects is similar to configuring the shared-memory network
driver. For a more detailed description of configuring and using the shared-
memory network, see VxWorks Network Programmer’s Guide: Data Link Layer
Network Components. If the default value for the shared-memory anchor address is
modified, the anchor must be on a 256-byte boundary.

One of the most important aspects of configuring shared-memory objects is
computing the address of the shared-memory anchor. The shared-memory anchor
is a location accessible to all CPUs on the system, and is used by both VxMP and

2. Also known as the backplane network.
454

11

11
Shared-Memory Objects
the shared-memory network driver. The anchor stores a pointer to the shared-
memory header, a pointer to the shared-memory packet header (used by the
shared-memory network driver), and a pointer to the shared-memory object
header.

The address of the anchor is defined in the Params tab of the Properties window
with the constant SM_ANCHOR_ADRS. If the processor is booted with the shared-
memory network driver, the anchor address is the same value as the boot device
(sm=anchorAddress). The shared-memory object initialization code uses the value
from the boot line instead of the constant. If the shared-memory network driver is
not used, modify the definition of SM_ANCHOR_ADRS as appropriate to reflect
your system.

Two types of interrupts are supported and defined by SM_INT_TYPE: mailbox
interrupts and bus interrupts (see VxWorks Network Programmer’s Guide: Data Link
Layer Network Components). Mailbox interrupts (SM_INT_MAILBOX) are the
preferred method, and bus interrupts (SM_INT_BUS) are the second choice. If
interrupts cannot be used, a polling scheme can be employed (SM_INT_NONE),
but this is much less efficient.

When a CPU initializes its shared-memory objects, it defines the interrupt type as
well as three interrupt arguments. These describe how the CPU is notified of
events. These values can be obtained for any attached CPU by calling
smCpuInfoGet().

The default interrupt method for a target is defined by SM_INT_TYPE,
SM_INT_ARG1, SM_INT_ARG2, and SM_INT_ARG3 on the Params tab.

11.4.2 Shared-Memory Region

Shared-memory objects rely on a shared-memory region that is visible to all
processors. This region is used to store internal shared-memory object data
structures and the shared-memory system partition.

The shared-memory region is usually in dual-ported RAM on the master, but it can
also be located on a separate memory card. The shared-memory region address is
defined when configuring the system as an offset from the shared-memory anchor
address, SM_ANCHOR_ADRS, as shown in Figure 11-3.
455

VxWorks 5.5
Programmer’s Guide
11.4.3 Initializing the Shared-Memory Objects Package

Shared-memory objects are initialized by default in the routine usrSmObjInit() in
targetsrc/config/usrSmObj.c. The configuration steps taken for the master CPU
differ slightly from those taken for the slaves.

The address for the shared-memory pool must be defined. If the memory is off-
board, the value must be calculated (see Figure 11-5).

The example configuration in Figure 11-4 uses the shared memory in the master
CPU’s dual-ported RAM.

Figure 11-3 Shared-Memory Layout

Figure 11-4 Example Configuration: Dual-Ported Memory

SHARED MEMORY
SM_ANCHOR_ADRS .

.

.

pointer to shared-memory
objects’ shared-memory region

shared-memory objects

~~ ~~

0x600 (default) Shared-Memory
Anchor

Shared-Memory
Region

CPU 0 CPU 1

RAM

0x600anchor

allocated
pool

VMEbus address of dual
ported RAM = 0x800000

Local address of
VMEbus address 0

is 0x1000000

sm=0x1800600
456

11

11
Shared-Memory Objects
On the Params tab of the properties window for the master, SM_OFF_BOARD is
FALSE and SM_ANCHOR_ADRS is 0x600. SM_OBJ_MEM_ADRS is set to NONE,
because on-board memory is used (it is malloc’ed at run-time);
SM_OBJ_MEM_SIZE is set to 0x20000. For the slave, the board maps the base of the
VME bus to the address 0x1000000. SM_OFF_BOARD is TRUE and the anchor
address is 0x1800600. This is calculated by taking the VMEbus address (0x800000)
and adding it to the anchor address (0x600). Many boards require further address
translation, depending on where the board maps VME memory. In this example,
the anchor address for the slave is 0x1800600, because the board maps the base of
the VME bus to the address 0x1000000.

In the example configuration in Figure 11-5, the shared memory is on a separate
memory board. On the Params tab for the master, SM_OFF_BOARD is TRUE,
SM_ANCHOR_ADRS is 0x3000000, SM_OBJ_MEM_ADRS is set to
SM_ANCHOR_ADRS, and SM_OBJ_MEM_SIZE is set to 0x100000. For the slave
board, SM_OFF_BOARD is TRUE and the anchor address is 0x2100000. This is
calculated by taking the VMEbus address of the memory board (0x2000000) and
adding it to the local VMEbus address (0x100000).

Some additional configuration is sometimes required to make the shared memory
non-cacheable, because the shared-memory pool is accessed by all processors on
the backplane. By default, boards with an MMU have the MMU turned on. With

Figure 11-5 Example Configuration: an External Memory Board

CPU 1

VMEbus address
of RAM on external
board = 0x2000000

Local address of
VMEbus address 0

is 0x100000

sm=0x2100000

External RAM
Board (1MB)

anchor

shared-memory
pool

anchor = 0x3000000

CPU 0

Local address of
VMEbus address 0

is 0x1000000
457

VxWorks 5.5
Programmer’s Guide
the MMU on, memory that is off-board must be made non-cacheable. This is done
using the data structure sysPhysMemDesc in sysLib.c. This data structure must
contain a virtual-to-physical mapping for the VME address space used for the
shared-memory pool, and mark the memory as non-cacheable. (Most BSPs include
this mapping by default.) See 12.3 Virtual Memory Configuration, p.466, for
additional information.

When shared-memory objects are initialized, the memory size as well as the
maximum number of each object type must be specified. The master processor
specifies the size of memory using the constant SM_OBJ_MEM_SIZE. Symbolic
constants are used to set the maximum number of different objects. These
constants are specified on the Params tab of the properties window. See Table 11-5
for a list of these constants.

If the size of the objects created exceeds the shared-memory region, an error
message is displayed on CPU 0 during initialization. After shared memory is
configured for the shared objects, the remainder of shared memory is used for the
shared-memory system partition.

! CAUTION: For the MC68K in general, if the MMU is off, data caching must be
turned off globally; see the reference entry for cacheLib.

Table 11-5 Configuration Constants for Shared-Memory Objects

Symbolic Constant
Default
Value

Description

SM_OBJ_MAX_TASK 40 Maximum number of tasks using shared-
memory objects.

SM_OBJ_MAX_SEM 30 Maximum number of shared semaphores
(counting and binary).

SM_OBJ_MAX_NAME 100 Maximum number of names in the name
database.

SM_OBJ_MAX_MSG_Q 10 Maximum number of shared message queues.

SM_OBJ_MAX_MEM_PART 4 Maximum number of user-created shared-
memory partitions.
458

11

11
Shared-Memory Objects
The routine smObjShow() displays the current number of used shared-memory
objects and other statistics, as follows:

-> smObjShow
value = 0 = 0x0

The smObjShow() routine is automatically included if INCLUDE_SM_OBJ is
selected for inclusion in the project facility VxWorks view. The output of
smObjShow() is sent to the standard output device, and looks like the following:

Shared Mem Anchor Local Addr : 0x600
Shared Mem Hdr Local Addr : 0x363ed0
Attached CPU : 2
Max Tries to Take Lock : 0
Shared Object Type Current Maximum Available
------------------ ------- ------- ---------
Tasks 1 40 39
Binary Semaphores 3 30 27
Counting Semaphores 0 30 27
Messages Queues 1 10 9
Memory Partitions 1 4 3
Names in Database 5 100 95

11.4.4 Configuration Example

The following example shows the configuration for a multiprocessor system with
three CPUs. The master is CPU 0, and shared memory is configured from its dual-
ported memory. This application has 20 tasks using shared-memory objects, and
uses 12 message queues and 20 semaphores. The maximum size of the name
database is the default value (100), and only one user-defined memory partition is
required. On CPU 0, the shared-memory pool is configured to be on-board. This
memory is allocated from the processor’s system memory. On CPU 1 and CPU 2,
the shared-memory pool is configured to be off-board. Table 11-6 shows the values
set on the Params tab of the properties window for INCLUDE_SM_OBJECTS in the
project facility.

Note that for the slave CPUs, the value of SM_OBJ_MEM_SIZE is not actually used.

! CAUTION: If the master CPU is rebooted, it is necessary to reboot all the slaves. If
a slave CPU is to be rebooted, it must not have tasks pended on a shared-memory
object.
459

VxWorks 5.5
Programmer’s Guide
Table 11-6 Configuration Settings for Three CPU System

CPU Symbolic Constant Value

Master
(CPU 0) SM_OBJ_MAX_TASK 20

SM_OBJ_MAX_SEM 20

SM_OBJ_MAX_NAME 100

SM_OBJ_MAX_MSG_Q 12

SM_OBJ_MAX_MEM_PART 1

SM_OFF_BOARD FALSE

SM_MEM_ADRS NONE

SM_MEM_SIZE 0x10000

SM_OBJ_MEM_ADRS NONE

SM_OBJ_MEM_SIZE 0x10000

Slaves
(CPU 1,
CPU 2) SM_OBJ_MAX_TASK 20

SM_OBJ_MAX_SEM 20

SM_OBJ_MAX_NAME 100

SM_OBJ_MAX_MSG_Q 12

SM_OBJ_MAX_MEM_PART 1

SM_OFF_BOARD FALSE

SM_ANCHOR_ADRS (char *) 0xfb800000

SM_MEM_ADRS SM_ANCHOR_ADRS

SM_MEM_SIZE 0x10000

SM_OBJ_MEM_ADRS NONE

SM_OBJ_MEM_SIZE 0x10000
460

11

11
Shared-Memory Objects
11.4.5 Initialization Steps

Initialization is performed by default in usrSmObjInit(), in
targetsrc/config/usrSmObj.c. On the master CPU, the initialization of shared-
memory objects consists of the following:

1. Setting up the shared-memory objects header and its pointer in the shared-
memory anchor, with smObjSetup().

2. Initializing shared-memory object parameters for this CPU, with smObjInit().

3. Attaching the CPU to the shared-memory object facility, with smObjAttach().

On slave CPUs, only steps 2 and 3 are required.

The routine smObjAttach() checks the setup of shared-memory objects. It looks
for the shared-memory heartbeat to verify that the facility is running. The shared-
memory heartbeat is an unsigned integer that is incremented once per second by
the master CPU. It indicates to the slaves that shared-memory objects are
initialized, and can be used for debugging. The heartbeat is the first field in the
shared-memory object header; see 11.5 Troubleshooting, p.461.

11.5 Troubleshooting

Problems with shared-memory objects can be due to a number of causes. This
section discusses the most common problems and a number of troubleshooting
tools. Often, you can locate the problem by rechecking your hardware and
software configurations.

11.5.1 Configuration Problems

Use the following list to confirm that your system is properly configured:

� Be sure to verify that the constant INCLUDE_SM_OBJ is selected for inclusion
in the project facility VxWorks view for each processor using VxMP.

� Be sure the anchor address specified is the address seen by the CPU. This can
be defined with the constant SM_ANCHOR_ADRS in the Params tab of the
properties window or at boot time (sm=) if the target is booted with the
shared-memory network.
461

VxWorks 5.5
Programmer’s Guide
� If there is heavy bus traffic relating to shared-memory objects, bus errors can
occur. Avoid this problem by changing the bus arbitration mode or by
changing relative CPU priorities on the bus.

� If memAddToPool(), memPartSmCreate(), or smMemAddToPool() fail,
check that any address you are passing to these routines is in fact a global
address.

11.5.2 Troubleshooting Techniques

Use the following techniques to troubleshoot any problems you encounter:

� The routine smObjTimeoutLogEnable() enables or disables the printing of an
error message indicating that the maximum number of attempts to take a spin-
lock has been reached. By default, message printing is enabled.

� The routine smObjShow() displays the status of the shared-memory objects
facility on the standard output device. It displays the maximum number of
tries a task took to get a spin-lock on a particular CPU. A high value can
indicate that an application might run into problems due to contention for
shared-memory resources.

� The shared-memory heartbeat can be checked to verify that the master CPU
has initialized shared-memory objects. The shared-memory heartbeat is in the
first 4-byte word of the shared-memory object header. The offset to the header
is in the sixth 4-byte word in the shared-memory anchor. (See VxWorks Network
Programmer’s Guide: Data Link Layer Network Components.)

Thus, if the shared-memory anchor were located at 0x800000:

[VxWorks Boot]: d 0x800000
800000: 8765 4321 0000 0001 0000 0000 0000 002c *.eC!...........,*
800010: 0000 0000 0000 0170 0000 0000 0000 0000 *...p............*
800020: 0000 0000 0000 0000 0000 0000 0000 0000 *................*

The offset to the shared-memory object header is 0x170. To view the shared-
memory object header display 0x800170:

[VxWorks Boot]: d 0x800170
800170: 0000 0050 0000 0000 0000 0bfc 0000 0350 *...P...........P*

In the preceding example, the value of the shared-memory heartbeat is 0x50.
Display this location again to ensure that the heartbeat is alive; if its value has
changed, shared-memory objects are initialized.
462

11

11
Shared-Memory Objects
� The global variable smIfVerbose, when set to 1 (TRUE), causes shared-
memory interface error messages to print to the console, along with additional
details of shared-memory operations. This variable enables you to get run-
time information from the device driver level that would be unavailable at the
debugger level. The default setting for smIfVerbose is 0 (FALSE). That can be
reset programmatically or from the shell.
463

VxWorks 5.5
Programmer’s Guide
464

12

Virtual Memory Interface

Basic Support and Optional Component VxVMI
12.1 Introduction

VxWorks provides two levels of virtual memory support. The basic level is
bundled with VxWorks and provides caching on a per-page basis. The full level is
unbundled, and requires the optional component VxVMI. VxVMI provides write
protection of text segments and the VxWorks exception vector table, and an
architecture-independent interface to the CPU’s memory management unit
(MMU). For information on how to install VxVMI, see the Tornado Getting Started
Guide.

This chapter contains the following sections:

� A description of the basic level of support.

� Configuration guidelines applicable to both levels of support.

� Two sections that apply only to the optional component VxVMI:

– One for general use, discussing the write protection implemented by
VxVMI.

– One that describes a set of routines for manipulating the MMU. VxVMI
provides low-level routines for interfacing with the MMU in an
architecture-independent manner, allowing you to implement your own
virtual memory systems.
465

VxWorks 5.5
Programmer’s Guide
12.2 Basic Virtual Memory Support

For systems with an MMU, VxWorks allows you to perform DMA and
interprocessor communication more efficiently by rendering related buffers
noncacheable. This is necessary to ensure that data is not being buffered locally
when other processors or DMA devices are accessing the same memory location.
Without the ability to make portions of memory noncacheable, caching must be
turned off globally (resulting in performance degradation) or buffers must be
flushed/invalidated manually.

Basic virtual memory support is included by selecting INCLUDE_MMU_BASIC in
the project facility VxWorks view; see 12.3 Virtual Memory Configuration, p.466. It is
also possible to allocate noncacheable buffers using cacheDmaMalloc(); see the
reference entry for cacheLib.

12.3 Virtual Memory Configuration

The following discussion of configuration applies to both bundled and unbundled
virtual memory support. In the project facility, define the constants in Table 12-1 to
reflect your system configuration.

The appropriate default page size for your processor (4 KB or 8KB) is defined by
VM_PAGE_SIZE in your BSP. If you must change this value for some reason,
redefine VM_PAGE_SIZE in config.h. (See the Tornado User’s Guide: Configuration
and Build.)

Table 12-1 MMU Configuration Constants

Constant Description

INCLUDE_MMU_BASIC Basic MMU support without VxVMI option.

INCLUDE_MMU_FULL Full MMU support with the VxVMI option.

INCLUDE_PROTECT_TEXT Text segment protection (requires full MMU
support).

INCLUDE_PROTECT_VEC_TABLE Exception vector table protection (requires full
MMU support).
466

12

12
Virtual Memory Interface
To make memory noncacheable, it must have a virtual-to-physical mapping. The
data structure PHYS_MEM_DESC in vmLib.h defines the parameters used for
mapping physical memory. Each board’s memory map is defined in sysLib.c using
sysPhysMemDesc (which is declared as an array of PHYS_MEM_DESC). In
addition to defining the initial state of the memory pages, the sysPhysMemDesc
structure defines the virtual addresses used for mapping virtual-to-physical
memory. For a discussion of page states, see Page States, p.470.

Modify the sysPhysMemDesc structure to reflect your system configuration. For
example, you may need to add the addresses of interprocessor communication
buffers not already included in the structure. Or, you may need to map and make
noncacheable the VMEbus addresses of the shared-memory data structures. Most
board support packages have a section of VME space defined in
sysPhysMemDesc; however, this may not include all the space required by your
system configuration.

I/O devices and memory not already included in the structure must also be
mapped and made noncacheable. In general, off-board memory regions are
specified as noncacheable; see VxWorks Network Programmer’s Guide: Data Link
Layer Network Components.

The following example configuration consists of multiple CPUs using the shared-
memory network. A separate memory board is used for the shared-memory pool.
Because this memory is not already mapped, it must be added to
sysPhysMemDesc for all the boards on the network. The memory starts at
0x4000000 and must be made noncacheable, as shown in the following code
excerpt:

/* shared memory */
{
(void *) 0x4000000, /* virtual address */
(void *) 0x4000000, /* physical address */
0x20000, /* length */
/* initial state mask */
VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE |VM_STATE_MASK_CACHEABLE,
/* initial state */
VM_STATE_VALID | VM_STATE_WRITABLE | VM_STATE_CACHEABLE_NOT
}

! CAUTION: The regions of memory defined in sysPhysMemDesc must be page-
aligned, and must span complete pages. In other words, the first three fields
(virtual address, physical address, and length) of a PHYS_MEM_DESC structure
must all be even multiples of VM_PAGE_SIZE. Specifying elements of
sysPhysMemDesc that are not page-aligned leads to crashes during VxWorks
initialization.
467

VxWorks 5.5
Programmer’s Guide
For MC680x0 boards, the virtual address must be the same as the physical address.
For other boards, the virtual and physical addresses are the same as a matter of
convention.

12.4 General Use

This section describes VxVMI’s general use and configuration for write-protecting
text segments and the exception vector table.

VxVMI uses the MMU to prevent portions of memory from being overwritten.
This is done by write-protecting pages of memory. Not all target hardware
supports write protection; see the architecture appendices in this manual for
further information. For most architectures, the page size is 8KB. An attempt to
write to a memory location that is write-protected causes a bus error.

When VxWorks is loaded, all text segments are write-protected; see 12.3 Virtual
Memory Configuration, p.466. The text segments of additional object modules
loaded using ld() are automatically marked as read-only. When object modules
are loaded, memory to be write-protected is allocated in page-size increments. No
additional steps are required to write-protect application code.

During system initialization, VxWorks write-protects the exception vector table.
The only way to modify the interrupt vector table is to use the routine
intConnect(), which write-enables the exception vector table for the duration of
the call.

To include write protection, select the following in the project facility VxWorks
view:

INCLUDE_MMU_FULL
INCLUDE_PROTECT_TEXT
INCLUDE_PROTECT_VEC_TABLE
468

12

12
Virtual Memory Interface
12.5 Using the MMU Programmatically

This section describes the facilities provided for manipulating the MMU
programmatically using low-level routines in vmLib. You can make data private
to a task or code segment, make portions of memory noncacheable, or write-
protect portions of memory. The fundamental structure used to implement virtual
memory is the virtual memory context (VMC).

For a summary of the VxVMI routines, see the reference entry for vmLib.

12.5.1 Virtual Memory Contexts

A virtual memory context (VM_CONTEXT, defined in vmLib) is made up of a
translation table and other information used for mapping a virtual address to a
physical address. Multiple virtual memory contexts can be created and swapped
in and out as desired.

Global Virtual Memory

Some system objects, such as text segments and semaphores, must be accessible to
all tasks in the system regardless of which virtual memory context is made current.
These objects are made accessible by means of global virtual memory. Global virtual
memory is created by mapping all the physical memory in the system (the
mapping is defined in sysPhysMemDesc) to the identical address in the virtual
memory space. In the default system configuration, this initially gives a one-to-one
relationship between physical memory and global virtual memory; for example,
virtual address 0x5000 maps to physical address 0x5000. On some architectures, it
is possible to use sysPhysMemDesc to set up virtual memory so that the mapping
of virtual-to-physical addresses is not one-to-one; see 12.3 Virtual Memory
Configuration, p.466 for additional information.

Global virtual memory is accessible from all virtual memory contexts.
Modifications made to the global mapping in one virtual memory context appear
in all virtual memory contexts. Before virtual memory contexts are created, add all
global memory with vmGlobalMap(). Global memory that is added after virtual
memory contexts are created may not be available to existing contexts.
469

VxWorks 5.5
Programmer’s Guide
Initialization

Global virtual memory is initialized by vmGlobalMapInit() in usrMmuInit(),
which is called from usrRoot(). The routine usrMmuInit() is in
installDir/target/src/config/usrMmuInit.c, and creates global virtual memory
using sysPhysMemDesc. It then creates a default virtual memory context and
makes the default context current. Optionally, it also enables the MMU.

Page States

Each virtual memory page (typically 8KB) has a state associated with it. A page can
be valid/invalid, writable/nonwritable, or cacheable/noncacheable. See
Table 12-2 for the associated constants.

Validity
A valid state indicates the virtual-to-physical translation is true. When the
translation tables are initialized, global virtual memory is marked as valid.
All other virtual memory is initialized as invalid.

Writability
Pages can be made read-only by setting the state to nonwritable. This is
used by VxWorks to write-protect all text segments.

Table 12-2 State Flags

Constant Description

VM_STATE_VALID Valid translation

VM_STATE_VALID_NOT Invalid translation

VM_STATE_WRITABLE Writable memory

VM_STATE_WRITABLE_NOT Read-only memory

VM_STATE_CACHEABLE Cacheable memory

VM_STATE_CACHEABLE_NOT Noncacheable memory
470

12

12
Virtual Memory Interface
Cacheability
The caching of memory pages can be prevented by setting the state flags
to noncacheable. This is useful for memory that is shared between
processors (including DMA devices).

Change the state of a page with the routine vmStateSet(). In addition to specifying
the state flags, a state mask must describe which flags are being changed; see
Table 12-3. Additional architecture-dependent states are specified in vmLib.h.

12.5.2 Private Virtual Memory

Private virtual memory can be created by creating a new virtual memory context.
This is useful for protecting data by making it inaccessible to other tasks or by
limiting access to specific routines. Virtual memory contexts are not automatically
created for tasks, but can be created and swapped in and out in an application-
specific manner.

At system initialization, a default context is created. All tasks use this default
context. To create private virtual memory, a task must create a new virtual memory
context using vmContextCreate(), and make it current. All virtual memory
contexts share the global mappings that are created at system initialization; see
Figure 12-1. Only the valid virtual memory in the current virtual memory context
(including global virtual memory) is accessible. Virtual memory defined in other
virtual memory contexts is not accessible. To make another memory context
current, use vmCurrentSet().

To create a new virtual-to-physical mapping, use vmMap(); both the physical and
virtual address must be determined in advance. The physical memory (which
must be page aligned) can be obtained using valloc(). The easiest way to
determine the virtual address is to use vmGlobalInfoGet() to find a virtual page
that is not a global mapping. With this scheme, if multiple mappings are required,
a task must keep track of its own private virtual memory pages to guarantee it does
not map the same non-global address twice.

Table 12-3 State Masks

Constant Description

VM_STATE_MASK_VALID Modifies valid flag.

VM_STATE_MASK_WRITABLE Modifies write flag.

VM_STATE_MASK_CACHEABLE Modifies cache flag.
471

VxWorks 5.5
Programmer’s Guide
When physical pages are mapped into new sections of the virtual space, the
physical page is accessible from two different virtual addresses (a condition
known as aliasing): the newly mapped virtual address and the virtual address
equal to the physical address in the global virtual memory. This can cause
problems for some architectures, because the cache may hold two different values
for the same underlying memory location. To avoid this, invalidate the virtual
page (using vmStateSet()) in the global virtual memory. This also ensures that the
data is accessible only when the virtual memory context containing the new
mapping is current.

Figure 12-2 depicts two private virtual memory contexts. The new context (pvmc2)
maps virtual address 0x6000000 to physical address 0x10000. To prevent access to
this address from outside of this virtual context (pvmc1), the corresponding
physical address (0x10000) must be set to invalid. If access to the memory is made
using address 0x10000, a bus error occurs because that address is now invalid.

Figure 12-1 Global Mappings of Virtual Memory

...

PRIVATE

TRANSLATION
TABLE

Private

...

GLOBAL GLOBAL

TRANSLATION
TABLE

Default
Virtual Memory Context Virtual Memory Context

MAPPING MAPPING MAPPING
472

12

12
Virtual Memory Interface
Example 12-1 Private Virtual Memory Contexts

In the following code example, private virtual memory contexts are used for
allocating memory from a task’s private memory partition. The setup routine,
contextSetup(), creates a private virtual memory context that is made current
during a context switch. The virtual memory context is stored in the field spare1 in
the task’s TCB. Switch hooks are used to save the old context and install the task’s
private context. Note that the use of switch hooks increases the context switch
time. A user-defined memory partition is created using the private virtual memory
context. The partition ID is stored in spare2 in the tasks TCB. Any task wanting a
private virtual memory context must call contextSetup(). A sample task to test the
code is included.

/* contextExample.h - header file for vm contexts used by switch hooks */

#define NUM_PAGES (3)

/* context.c - use context switch hooks to make task private context current */

#include "vxWorks.h"
#include "vmLib.h"
#include "semLib.h"

Figure 12-2 Mapping Private Virtual Memory

... ...

...

0

0x10000 0x10000

V

V

I

V
V

...

0x6000000

...

V

...

0x10000

VIRTUAL
ADDRESS

PHYSICAL
ADDRESS

STATE PHYSICAL
ADDRESS

STATEVIRTUAL
ADDRESS

invalid
mapping

valid
mapping

pvmc1 pvmc2

Global
Virtual
Memory

Private
Virtual
Memory

Private
Virtual Memory Context

New
Virtual Memory Context
473

VxWorks 5.5
Programmer’s Guide
#include "taskLib.h"
#include "taskHookLib.h"
#include "memLib.h"
#include "contextExample.h"

void privContextSwitch (WIND_TCB *pOldTask, WIND_TCB *pNewTask);

/*
* initContextSetup - install context switch hook
*/

STATUS initContextSetup ()
{
/* Install switch hook */

if (taskSwitchHookAdd ((FUNCPTR) privContextSwitch) == ERROR)
return (ERROR);

return (OK);
}

/*
* contextSetup - initialize context and create separate memory partition
*
* Call only once for each task that wants a private context.
*
* This could be made into a create-hook routine if every task on the
* system needs a private context. To use as a create hook, the code for
* installing the new virtual memory context should be replaced by simply
* saving the new context in spare1 of the task’s TCB.
*/

STATUS contextSetup (void)
{
VM_CONTEXT_ID pNewContext;
int pageSize;
int pageBlkSize;
char * pPhysAddr;
char * pVirtAddr;
UINT8 * globalPgBlkArray;
int newMemSize;
int index;
WIND_TCB * pTcb;

/* create context */

pNewContext = vmContextCreate();

/* get page and page block size */

pageSize = vmPageSizeGet ();
pageBlkSize = vmPageBlockSizeGet ();
newMemSize = pageSize * NUM_PAGES;

/* allocate physical memory that is page aligned */
474

12

12
Virtual Memory Interface
if ((pPhysAddr = (char *) valloc (newMemSize)) == NULL)
return (ERROR);

/* Select virtual address to map. For this example, since only one page
* block is used per task, simply use the first address that is not a
* global mapping. vmGlobalInfoGet() returns a boolean array where each
* element corresponds to a block of virtual memory.
 */

globalPgBlkArray = vmGlobalInfoGet();
for (index = 0; globalPgBlkArray[index] == TRUE; index++)

;
pVirtAddr = (char *) (index * pageBlkSize);

/* map physical memory to new context */

if (vmMap (pNewContext, pVirtAddr, pPhysAddr, newMemSize) == ERROR)
{
free (pPhysAddr);
return (ERROR);
}

/*
 * Set state in global virtual memory to be invalid - any access to
 * this memory must be done through new context.
 */

if (vmStateSet(pNewContext, pPhysAddr, newMemSize, VM_STATE_MASK_VALID,
VM_STATE_VALID_NOT) == ERROR)

return (ERROR);

/* get tasks TCB */

pTcb = taskTcb (taskIdSelf());

/* change virtual memory contexts */

/*
 * Stash the current vm context in the spare TCB field -- the switch
 * hook will install this when this task gets swapped out.
 */

pTcb->spare1 = (int) vmCurrentGet();

/* install new tasks context */

vmCurrentSet (pNewContext);

/* create new memory partition and store id in task’s TCB */

if ((pTcb->spare2 = (int) memPartCreate (pVirtAddr,newMemSize)) == NULL)
return (ERROR);

return (OK);
}

475

VxWorks 5.5
Programmer’s Guide
/*
* privContextSwitch - routine to be executed on a context switch
*
* If old task had private context, save it. If new task has private
* context, install it.
*/

void privContextSwitch
(
WIND_TCB *pOldTcb,
WIND_TCB *pNewTcb
)

{
VM_CONTEXT_ID pContext = NULL;

/* If previous task had private context, save it--reset previous context. */

if (pOldTcb->spare1)
{
pContext = (VM_CONTEXT_ID) pOldTcb->spare1;
pOldTcb->spare1 = (int) vmCurrentGet ();

/* restore old context */

vmCurrentSet (pContext);
}

/*
 * If next task has private context, map new context and save previous
 * context in task’s TCB.
 */

if (pNewTcb->spare1)
{
pContext = (VM_CONTEXT_ID) pNewTcb->spare1;

pNewTcb->spare1 = (int) vmCurrentGet();

/* install new tasks context */

vmCurrentSet (pContext);
}

}

/* taskExample.h - header file for testing VM contexts used by switch hook */

/* This code is used by the sample task. */

#define MAX (10000000)

typedef struct myStuff {
int stuff;
int myStuff;
} MY_DATA;
476

12

12
Virtual Memory Interface
/* testTask.c - task code to test switch hooks */

#include "vxWorks.h"
#include "memLib.h"
#include "taskLib.h"
#include "stdio.h"
#include "vmLib.h"
#include "taskExample.h"

IMPORT char *string = "test\n";

MY_DATA *pMem;

/*
* testTask - allocate private memory and use it
*
* Loop forever, modifying memory and printing out a global string. Use this
* in conjunction with testing from the shell. Since pMem points to private
* memory, the shell should generate a bus error when it tries to read it.
* For example:
* -> sp testTask
* -> d pMem
*/

STATUS testTask (void)
{
int val;
WIND_TCB *myTcb;

/* install private context */

if (contextSetup () == ERROR)
return (ERROR);

/* get TCB */

myTcb = taskTcb (taskIdSelf ());

/* allocate private memory */

if ((pMem = (MY_DATA *) memPartAlloc((PART_ID) myTcb->spare2,
 sizeof (MY_DATA))) == NULL)
return (ERROR);

/*
 * Forever, modify data in private memory and display string in
 * global memory.
 */

FOREVER
{

for (val = 0; val <= MAX; val++)
{
/* modify structure */
477

VxWorks 5.5
Programmer’s Guide
pMem->stuff = val;
pMem->myStuff = val / 2;

/* make sure can access global virtual memory */

printf (string);

taskDelay (sysClkRateGet() * 10);
}

}
return (OK);
}

/*
* testVmContextGet - return a task’s virtual memory context stored in TCB
*
* Used with vmContextShow()1 to display a task’s virtual memory context.
* For example, from the shell, type:
* -> tid = sp (testTask)
* -> vmContextShow (testVmContextGet (tid))
*/

VM_CONTEXT_ID testVmContextGet
(
UINT tid
)
{
return ((VM_CONTEXT_ID) ((taskTcb (tid))->spare1));
}

12.5.3 Noncacheable Memory

Architectures that do not support bus snooping must disable the memory caching
that is used for interprocessor communication (or by DMA devices). If multiple
processors are reading from and writing to a memory location, you must
guarantee that when the CPU accesses the data, it is using the most recent value. If
caching is used in one or more CPUs in the system, there can be a local copy of the
data in one of the CPUs’ data caches.

In the example in Figure 12-3, a system with multiple CPUs share data, and one
CPU on the system (CPU 0) caches the shared data. A task on CPU 0 reads the data
[1] and then modifies the value [2]; however, the new value may still be in the cache
and not flushed to memory when a task on another CPU (CPU 1) accesses it [3].

1. This routine is not built in to the Tornado shell. To use it from the Tornado shell, you must
define INCLUDE_MMU_FULL_SHOW in your VxWorks configuration; see the Tornado
User’s Guide: Projects. When invoked this routine’s output is sent to the standard output
device.
478

12

12
Virtual Memory Interface
Thus the value of the data used by the task on CPU 1 is the old value and does not
reflect the modifications done by the task on CPU 0; that value is still in CPU 0’s
data cache [2].

To disable caching on a page basis, use vmStateSet(); for example:

vmStateSet (pContext, pSData, len, VM_STATE_MASK_CACHEABLE, VM_STATE_CACHEABLE_NOT)

To allocate noncacheable memory, see the reference entry for cacheDmaMalloc().

12.5.4 Nonwritable Memory

Memory can be marked as nonwritable. Sections of memory can be write-
protected using vmStateSet() to prevent inadvertent access.

One use of this is to restrict modification of a data object to a particular routine. If
a data object is global but read-only, tasks can read the object but not modify it. Any
task that must modify this object must call the associated routine. Inside the

Figure 12-3 Example of Possible Problems with Data Caching

CPU 0

CPU 1

Data
Cache

Access and
modify myVal.
Cache myVal.

myVal = 100

(task executes first)

(task executes second)

Access myVal;
myVal = 25

(not the value
of 100 just

set by CPU0).

[1]
[2]

[3]

Memory

myVal25
479

VxWorks 5.5
Programmer’s Guide
routine, the data is made writable for the duration of the routine, and on exit, the
memory is set to VM_STATE_WRITABLE_NOT.

Example 12-2 Nonwritable Memory

In this code example, to modify the data structure pointed to by pData, a task must
call dataModify(). This routine makes the memory writable, modifies the data,
and sets the memory back to nonwritable. If a task tries to read the memory, it is
successful; however, if it tries to modify the data outside of dataModify(), a bus
error occurs.

/* privateCode.h - header file to make data writable from routine only */

#define MAX 1024

typedef struct myData
{
char stuff[MAX];
int moreStuff;
} MY_DATA;

/* privateCode.c - uses VM contexts to make data private to a code segment */

#include "vxWorks.h"
#include "vmLib.h"
#include "semLib.h"
#include "privateCode.h"

MY_DATA * pData;
SEM_ID dataSemId;
int pageSize;

/*
* initData - allocate memory and make it nonwritable
*
* This routine initializes data and should be called only once.
*
*/

STATUS initData (void)
{
pageSize = vmPageSizeGet();

/* create semaphore to protect data */

dataSemId = semBCreate (SEM_Q_PRIORITY, SEM_EMPTY);

/* allocate memory = to a page */

pData = (MY_DATA *) valloc (pageSize);

/* initialize data and make it read-only */
480

12

12
Virtual Memory Interface
bzero (pData, pageSize);
if (vmStateSet (NULL, pData, pageSize, VM_STATE_MASK_WRITABLE,

VM_STATE_WRITABLE_NOT) == ERROR)
{
semGive (dataSemId);
return (ERROR);
}

/* release semaphore */

semGive (dataSemId);
return (OK);
}

/*
* dataModify - modify data
*
* To modify data, tasks must call this routine, passing a pointer to
* the new data.
* To test from the shell use:
* -> initData
* -> sp dataModify
* -> d pData
* -> bfill (pdata, 1024, 'X')
*/

STATUS dataModify
(
MY_DATA * pNewData
)
{

/* take semaphore for exclusive access to data */

semTake (dataSemId, WAIT_FOREVER);

/* make memory writable */

if (vmStateSet (NULL, pData, pageSize, VM_STATE_MASK_WRITABLE,
VM_STATE_WRITABLE) == ERROR)

{
semGive (dataSemId);
return (ERROR);
}

/* update data*/

bcopy (pNewData, pData, sizeof(MY_DATA));

/* make memory not writable */

if (vmStateSet (NULL, pData, pageSize, VM_STATE_MASK_WRITABLE,
VM_STATE_WRITABLE_NOT) == ERROR)

{
semGive (dataSemId);
return (ERROR);
481

VxWorks 5.5
Programmer’s Guide
}

semGive (dataSemId);

return (OK);
}

12.5.5 Troubleshooting

If INCLUDE_MMU_FULL_SHOW is included in the project facility VxWorks view,
you can use vmContextShow() to display a virtual memory context on the
standard output device. In the following example, the current virtual memory
context is displayed. Virtual addresses between 0x0 and 0x59fff are write-
protected; 0xff800000 through 0xffbfffff are noncacheable; and 0x2000000 through
0x2005fff are private. All valid entries are listed and marked with a V+. Invalid
entries are not listed.

-> vmContextShow 0
value = 0 = 0x0

The output is sent to the standard output device, and looks like the following:

VIRTUAL ADDR BLOCK LENGTH PHYSICAL ADDR STATE
0x0 0x5a000 0x0 W- C+ V+ (global)
0x5a000 0x1f3c000 0x5a000 W+ C+ V+ (global)
0x1f9c000 0x2000 0x1f9c000 W+ C+ V+ (global)
0x1f9e000 0x2000 0x1f9e000 W- C+ V+ (global)
0x1fa0000 0x2000 0x1fa0000 W+ C+ V+ (global)
0x1fa2000 0x2000 0x1fa2000 W- C+ V+ (global)
0x1fa4000 0x6000 0x1fa4000 W+ C+ V+ (global)
0x1faa000 0x2000 0x1faa000 W- C+ V+ (global)
0x1fac000 0xa000 0x1fac000 W+ C+ V+ (global)
0x1fb6000 0x2000 0x1fb6000 W- C+ V+ (global)
0x1fb8000 0x36000 0x1fb8000 W+ C+ V+ (global)
0x1fee000 0x2000 0x1fee000 W- C+ V+ (global)
0x1ff0000 0x2000 0x1ff0000 W+ C+ V+ (global)
0x1ff2000 0x2000 0x1ff2000 W- C+ V+ (global)
0x1ff4000 0x2000 0x1ff4000 W+ C+ V+ (global)
0x1ff6000 0x2000 0x1ff6000 W- C+ V+ (global)
0x1ff8000 0x2000 0x1ff8000 W+ C+ V+ (global)
0x1ffa000 0x2000 0x1ffa000 W- C+ V+ (global)
0x1ffc000 0x4000 0x1ffc000 W+ C+ V+ (global)
0x2000000 0x6000 0x1f96000 W+ C+ V+
0xff800000 0x400000 0xff800000 W- C- V+ (global)
0xffe00000 0x20000 0xffe00000 W+ C+ V+ (global)
0xfff00000 0xf0000 0xfff00000 W+ C- V+ (global)
482

12

12
Virtual Memory Interface
12.5.6 Precautions

Memory that is marked as global cannot be remapped using vmMap(). To add to
global virtual memory, use vmGlobalMap(). For further information on adding
global virtual memory, see 12.5.2 Private Virtual Memory, p.471.

Performances of MMUs vary across architectures; in fact, some architectures may
cause the system to become non-deterministic. For additional information, see the
architecture-specific documentation for your hardware.
483

VxWorks 5.5
Programmer’s Guide
484

Index
A
abort character (target shell) (CTRL+C) 246–247

changing default 247
access routines (POSIX) 76
adapters (VxFusion) 397

see online distIfLib; distIfShow
designing 423

initialization routines 425
input routine 429
I/O control routines 430
network headers 424
send routines 428
startup routines 428

displaying information about 417
working with 417

advertising (VxMP option) 433
AIO, see asynchronous I/O
aio_cancel() 124
AIO_CLUST_MAX 123
aio_error() 126

testing completion 128
AIO_IO_PRIO_DFLT 124
AIO_IO_STACK_DFLT 124
AIO_IO_TASKS_DFLT 124
aio_read() 124
aio_return() 126

aiocb, freeing 126
aio_suspend() 124

testing completion 128
AIO_TASK_PRIORITY 124
AIO_TASK_STACK_SIZE 124
aio_write() 124
aiocb, see control block (AIO)
aioPxLib 73
aioPxLibInit() 124
aioShow() 124
aioSysDrv 123
aioSysInit() 123
ANSI C

stdio package 120
application modules, see object modules
archive file attribute (dosFs) 214
asynchronous I/O (POSIX) 123–131

see also control block (AIO)
see online aioPxLib
aioPxLib 73
cancelling operations 126
code examples 126
completion, determining 126
control block 125
driver, system 123
initializing 123

constants for 124
multiple requests, submitting 126
retrieving operation status 126
routines 123

ATL macros (DCOM) 363
485

VxWorks 5.5
Programmer’s Guide
attribute (POSIX)
prioceiling attribute 93
protocol attribute 93

attributes (POSIX) 76
contentionscope attribute 77
detachstate attribute 76
inheritsched attribute 77
schedparam attribute 78
schedpolicy attribute 78
specifying 79
stackaddr attribute 76
stacksize attribute 76

AUTOREGISTER_COCLASS
priority schemes, specifying 374

B
backplane network, see shared-memory networks
backspace character, see delete character
bd_readyChanged 226
bd_statusChk 227
binary semaphores 36–39
BLK_DEV 176

see also block devices
creating a block device 198
fields 179
ready-changes, announcing 211

blkSize 230
block devices 145–156

see also BLK_DEV; direct-access devices; disks;
SCSI devices; SEQ_DEV; sequential
devices

adding 163
code example 203
creating 198
defined 158
file systems, and 193–240
internal structure 176–190

device creation routine 178
device reset routine 184
driver support libraries 190
drivers 160
I/O control routine 183
initialization routine 178

read routine 181
ready status change 186
status check routine 185
write protection 186
write routine 182

naming 110
RAM disks 145
SCSI devices 146–156

bootImageLen 310
breakpoints

shell tasks (tShell), and 244
BSTR and BSTR * (DCOM) 362
BUFFER_WRITE_BROKEN 324
bypass threshold 142
byte order

shared-memory objects (VxMP option) 432

C
C++ development

C and C++, referencing symbols between 276
complex numbers 290
exception handling 284
iostreams 290
Run-Time Type Information (RTTI) 286
Standard Template library (STL) 291
strings 290

C++ support 275–293
see also iostreams (C++)
code examples

template instantiation 283
configuring 276

Diab compiler, for 277
GNU compiler, for 277

munching 278
static constructors 280
static destructors 280
template instantiation 281–284

cache
see also data cache
see online cacheLib
coherency 172

copyback mode 172
writethrough mode 172
486

IX

Index
CACHE_DMA_FLUSH 174
CACHE_DMA_INVALIDATE 174
CACHE_DMA_PHYS_TO_VIRT 175
CACHE_DMA_VIRT_TO_PHYS 174
CACHE_FUNCS structure 174
cacheDmaMalloc() 174
cacheFlush() 173
cacheInvalidate() 173
cancelling threads (POSIX) 80
cardDetected 321
CBIO interface 141

see online cbioLib; dcacheCbio; dpartCbio;
ramDiskCbio

disk cache 141
disk changes, detection of 142
disk I/O efficiency 141–142

disk partition handler 143
RAM disks 144

CComBSTR 390
CComClassFactory 386
CComCoClass 387
CComCoClass class (DCOM) 352
CComObject 388
CComObject class (DCOM) 353
CComObjectRoot 386
CComObjectRoot class (DCOM) 351
CComPtr 389
CComVariant 393
CD-ROM devices 234
cdromFs file systems 234

see online cdromFsLib
CFI_DEBUG 324
cfiscs.c 324
character devices 158

see also drivers
adding 162
driver internal structure 160
naming 110

characters, control (CTRL+x)
target shell 245
tty 133

checkStack() 67
client-server communications 50–52
CLOCK_REALTIME 74
clocks

see also system clock; clockLib(1)
POSIX 73–74
system 20

close() 226
example 168
non-file-system drivers 161
using 114

closedir() 212
CLSID 353
clusters

cluster groups 215
disk space, allocating (dosFs) 215

absolutely contiguous 215
methods 216
nearly contiguous 215
single cluster 215

extents 215
CoClasses (DCOM)

class template 352
CLSID 353
defined 346
lightweight 351

CComObject 353
singleton 350

DECLARE_CLASSFACTORY_
SINGLETON 354

defining 354
true 350

CComCoClass 352
CComObjectRoot 351

WOTL, defining with 350
code

interrupt service, see interrupt service routines
pure 27
shared 25
write-protecting 468

code example
device list 163

code examples
asynchronous I/O completion, determining

pipes, using 126
signals, using 128

C++
template instantiation 283

data cache coherency 174
487

VxWorks 5.5
Programmer’s Guide
address translation driver 175
DCOM applications 384
disk partitions

configuring 200
creating 199
formatting 199
initializing multiple 200

dosFs file systems
block device, initializing 203
file attributes, setting 214
maximum contiguous areas, finding 218
RAM disks, creating and formatting 209
SCSI disk drives, initializing 209

drivers 158
IDL file 367
message queues

attributes, examining (POSIX) 95–97
checking for waiting message

(POSIX) 101–105
POSIX 98–100
shared (VxMP option) 441
Wind 49

mutual exclusion 37–38
partitions

system (VxMP option) 446
user-created (VxMP option) 449

SCSI devices, configuring 151
select facility 118

driver code using 170
semaphores

binary 37–38
named 90
recursive 42
shared (VxMP option) 437
unnamed (POSIX) 88

tape devices, configuring
block size, working with 231
SCSI 153

tasks
deleting safely 19
round-robin time slice (POSIX) 85
scheduling (POSIX) 84
setting priorities (POSIX) 82–83
synchronization 38–39

threads

creating, with attributes 79–80
virtual memory (VxVMI option)

private 473
write-protecting 480

watchdog timers
creating and setting 65

COM support 345–394
see also CoClasses; DCOM; Wind Object

Template Library
distributed objects 349
interface pointers 348
interfaces 347
overview 346
Wind Object Template Library

(WOTL) 350–357
COM wizard

directional attributes 373
non-automation types 363
output files 354

COM_MAP interface mapping 357
comAsciiToWide() 362
comWideToAscii() 362
configuration

C++ support 276
shared-memory objects

(VxMP option) 454–461
signals 56
virtual memory 466–468
VxVMI option 466–468

configuration and build
components 3
tools 2

configuring
dosFs file systems 197
SCSI devices 147–155
tape devices 230
target shell, with 244
TrueFFS 300
TSFS 239
VxDCOM 358
VxFusion (distributed message queues) 401

contexts
task 8

creating 14
virtual memory (VxVMI option) 469–471
488

IX

Index
CONTIG_MAX 217
control block (AIO) 125

fields 125
control characters (CTRL+x)

target shell 245
tty 133

conventions
coding 3
device naming 109
documentation 3–5
file naming 109
task names 15

copyback mode, data cache 172
counting semaphores 43, 86
cplusCtors() 281
cplusStratShow() 281
cplusXtorSet() 281
crashes during initialization 467
creat() 114
CTRL+C (abort) 246
CTRL+C (target shell abort) 134
CTRL+D (end-of-file) 134
CTRL+H

delete character
target shell 245
tty 133

CTRL+Q (resume)
target shell 245
tty 134

CTRL+S (suspend)
target shell 245
tty 134

CTRL+U (delete line)
target shell 245
tty 133

CTRL+X (reboot)
target shell 245
tty 134

D
daemons

network tNetTask 30
remote login tRlogind 31

RPC tPortmapd 31
target agent tWdbTask 30
telnet tTelnetd 31

data cache
see also cache; cacheLib(1)
coherency 172

code examples 174
device drivers 172

copyback mode 172
disabling for interprocessor

communication 478–479
flushing 173
invalidating 173
shared-memory objects (VxMP option) 454
writethrough mode 172

data structures, shared 32
datagrams 54

see also sockets; UDP
dbgHelp command 245
dbgInit()

abort facility 247
dcacheDevCreate() 198, 313
DCOM (VxDCOM option)

see also CoClasses; COM; Wind Object
Template Library

applications, writing 377–385
client code 380
differences between COM and

DCOM APIs 378
querying the server 383
server code 378
VX_FP_TASK 377

ATL, comparison with 385–394
OPC interfaces 376
priority schemes 374

choosing 374
priority level 375
propagation, configuring 375
PS_CLNT_PROPAGATED 374
PS_DEFAULT 374
PS_SVR_ASSIGNED 374

properties parameters
VXDCOM_AUTHN_LEVEL 358
VXDCOM_BSTR_POLICY 358
489

VxWorks 5.5
Programmer’s Guide
VXDCOM_CLIENT_PRIORITY_
PROPAGATION 358

VXDCOM_DYNAMIC_THREADS 359
VXDCOM_OBJECT_EXPORTER_

PORT_NUMBER 359
VXDCOM_SCM_STACK_SIZE 359
VXDCOM_STACK_SIZE 359
VXDCOM_STATIC_THREADS 360
VXDCOM_THREAD_PRIORITY 360

properties parameters, configuring 358
threadpools, using 376
tools 348
Wind Object Template Library

(WOTL) 350–357
DCOM wizard

directional attributes 373
non-automation types 363

DEBUG_PRINT 324
debugging

error status values 22–24
target shell 246
virtual memory (VxVMI option) 482

DECLARE_CLASSFACTORY_SINGLETON
class 354

delayed tasks 9
delayed-suspended tasks 9
delete character (CTRL+H)

target shell 245
tty 133

delete() 115
delete-line character (CTRL+U)

target shell 245
tty 133

demangler
GNU Library General Public License 249

DEV_HDR 163
device descriptors 162
device header 162
device list 162
devices

see also block devices; character devices; direct-
access devices; drivers and specific
device types

accessing 109
adding 162

block 145–156
flash memory 295–344

character 158
creating

NFS 138
non-NFS 140
pipes 136
RAM 145

default 110
dosFs 110
internal structure 162
naming 109
network 138
NFS 138
non-NFS 139
pipes 136
pseudo-memory 137
RAM disk 145
SCSI 146–156
serial I/O (terminal and pseudo-terminal) 132
sockets 156
working with, in VxWorks 131–156

direct-access devices 176
see also block devices
initializing for rawFs 224
internal structure

read routine 181
write routine 182

RAM disks 145
disks

see also block devices; dosFs file systems; rawFs
file systems

changing
device drivers, and 186
dosFs file systems 210
rawFs file systems 225

disk cache (CBIO) 141
file systems, and 193–240
initialized, using (dosFs) 201
mounting volumes 225
organization (rawFs) 223
partition handler 143
RAM 145
synchronizing

dosFs file systems 211
490

IX

Index
rawFs file systems 227
unmounting volumes 225

displaying information
adapters, about 417
disk volume configuration, about 211
distributed message queues, contents of 413
distributed name database, from the 407
group message queues, about (VxFusion) 416
TrueFFS flash file systems, about 303

displaying system information 482
DIST_IF structures

customizing with 404
using 426

DIST_TBUF structures 422
adapters, designing 424

distCtl() 402
distIfShow() 417
distInit() 400

adapters, designing 425
configuration parameters of 401

distNameAdd() 406
distNameFilterShow() 407
distNameFindByValueAndType() 406
distNameRemove() 406
distNameShow() 407
distNetInput() 429
distributed message queues (VxFusion) 395–430

see also adapters; distributed name database;
distributed objects statistics; group
message queues; telegram buffers

see online msgQDistLib; msgQDistShow
absent receiving nodes, detecting 418
architecture, system 397
configuring 401
creating 409
databases 398
deleting 409
displaying contents of 413
godfathers 420
initializing 400
interrupt service routines, using with 418
node startup process 418
receiving limitations 412
sending limitations 410
services 398

standard message queue routines, and 409
telegrams, using 421
timeouts 409
working with 408

distributed name database 404
see online distNameLib; distNameShow
displaying information from 407
types 407

distributed objects 349
distributed objects statistics, see online distStatLib
distributing

demangler 249
DMA devices 466
documentation 2

API documentation, generating 3
conventions 3–5
online (on host) 4

DOS_ATTR_ARCHIVE 214
DOS_ATTR_DIRECTORY 214
DOS_ATTR_HIDDEN 213
DOS_ATTR_RDONLY 213
DOS_ATTR_SYSTEM 214
DOS_ATTR_VOL_LABEL 214
DOS_O_CONTIG 218
dosFs file systems 194–223

see also block devices; CBIO interface; clusters;
FAT tables

see online dosFsLib
blocks 194
booting from, with SCSI 221
code examples

block devices, initializing 203
file attributes, setting 214
maximum contiguous area on devices,

finding the 218
RAM disk, creating and formatting 209
SCSI disk drives, initializing 209

configuring 197
crash recovery 219
creating 194
devices, naming 110
directories, reading 212
disk cache, creating 198
disk space, allocating 215

methods 216
491

VxWorks 5.5
Programmer’s Guide
disk volume
configuration data, displaying 211
mounting 195, 203

disks, changing 210
ready-change mechanism 211

dosFs devices, creating 201
FAT tables 202
file attributes 213
inconsistencies, data structure 219
initialized disks, using 201
initializing 198
ioctl() requests, supported 219
MSFT Long Names 202
open(), creating files with 114
partitions, creating and mounting 198
sectors 194
short names format (8.3) 202
starting I/O 213
subdirectories

creating 211
removing 212

synchronizing volumes 211
TrueFFS flash file systems 300
volumes, formatting 201
VxWorks long names format 202

dosFsChkDsk() 195
dosFsDevCreate() 195, 201, 313
dosFsDevInit() 149
dosFsDrvNum global variable 198
dosFsFmtLib 194
dosFsLib 194
dosFsShow() 211
dosFsVolFormat() 201
downloading, see loading
dpartCbioLib 143
dpartDevCreate() 198
driver number 161
driver table 161
drivers 109

see also devices and specific driver types
asynchronous I/O 123
code example 158
data cache coherency 172
file systems, and 193–240
hardware options, changing 135

installing 161
internal structure 160
interrupt service routine limitations 69
libraries, support 190
memory 137
NFS 138
non-NFS network 139
pipe 136
pty (pseudo-terminal) 132
RAM disk 145
SCSI 146–156
tty (terminal) 132
VxWorks, available in 131

E
edit mode (target shell) 245
encryption

login password 249
end-of-file character (CTRL+D) 134
__errno() 23
errno 22–24, 69

and task contexts 23
example 24
return values 23–24

error status values 22–24
ESCAPE key (target shell) 245
ev_receive() 59
ev_send() 59
eventClear() 62
eventReceive() 62
events 57–63

defined 57
pSOS events 58–59

API 59
comparison with VxWorks events API 63
enhancements in VxWorks events 61
freeing resources 59
registering for 59
sending and receiving 58
waiting for 58

VxWorks events 60–63
API 62
comparison with pSOS events API 63
492

IX

Index
enhancements to pSOS events 61
freeing resources 60
show routines 62
task events register 62

eventSend() 62
exception handling 24–25

C++ 284
and interrupts 69–70
signal handlers 25
task tExcTask 30

exception vector table (VxVMI option) 468
excTask()

abort facility 247
exit() 18

F
FAT tables (dosFs)

supported formats 202
fclose() 121
fd table 164
fd, see file descriptors
FD_CLR 117
FD_ISSET 117
FD_SET 117
FD_ZERO 117
fdopen() 121
fdprintf() 122
FIFO

message queues, Wind 48
POSIX 82

file descriptors (fd) 111
see also files
see online ioLib
device drivers, and 163
fd table 164
freeing obsolete (rawFs) 226
internal structure 163
pending on multiple (select facility) 117
reclaiming 111
redirection 112
standard input/output/error 112

file pointers (fp) 121
file systems 193–240

see also dosFs file systems; rawFs file systems;
tapeFs file systems; Target Server File
System (TSFS); TrueFFS flash file
systems

block devices, and 193–240
drivers, and 193–240
RAM disks, and 145

files
attributes (dosFs) 213
closing 114

example 168
contiguous (dosFs)

absolutely 215
nearly 215

creating 114
deleting 115
exporting to remote machines 138
hidden (dosFs) 213
I/O system, and 109
naming 109
opening 113

example 165
reading from 115

example 168
remote machines, on 138

read-write (dosFs) 213
system (dosFs) 214
truncating 116
write-only (dosFs) 213
writing to 115

-fimplicit-templates compiler option 282
FIOATTRIBSET 214
FIOBAUDRATE 135
FIOBLKSIZEGET 230
FIOBLKSIZESET 230
FIOCANCEL 135
FIOCONTIG 220
FIODISKCHANGE 228

dosFs ready-change 211
rawFs ready-change 226

FIODISKFORMAT 224, 228
FIODISKINIT 201, 228
FIOFLUSH 220, 228, 232, 233

pipes, using with 136
tty devices, using with 135
493

VxWorks 5.5
Programmer’s Guide
FIOFSTATGET 220
FTP or RSH, using with 140
NFS client devices, using with 139

FIOGETNAME 220
FTP or RSH, using with 140
NFS client devices, using with 139
pipes, using with 137
tty devices, using with 135

FIOGETOPTIONS 135
FIOLABELGET 220
FIOLABELSET 220
FIOMKDIR 211
FIOMOVE 220
FIONCONTIG 220
FIONFREE 220
FIONMSGS 137
FIONREAD 220

FTP or RSH, using with 140
NFS client devices, using with 139
pipes, using with 137
tty devices, using with 135

FIONWRITE 135
FIOREADDIR 220

FTP or RSH, using with 140
NFS client devices, using with 139

FIORENAME 220
FIORMDIR 212
FIOSEEK 225

FTP or RSH, using with 140
memory drivers, using with 138
NFS client devices, using with 139

FIOSELECT 170
FIOSETOPTIONS

tty devices, using with 135
tty options, setting 132

FIOSYNC
FTP or RSH, using with 140
NFS client devices, using with 139
rawFs file systems, and 227
tapeFs file systems, and 232

FIOTRUNC 215
FIOUNMOUNT 226
FIOUNSELECT 170
FIOWHERE 220

FTP or RSH, using with 140

memory drivers, using with 138
NFS client devices, using with 139

flash file systems, see TrueFFS flash file systems
flash memory 295–344

block allocation 338
block allocation algorithm 338

data clusters 338
benefits 338

erase cycles 340
over-programming 341

fault recovery 343
formatting, during 344
garbage collection, during 344
mapping information 344
write operation, during 343

garbage collection 340
optimization 341

garbage collection 342
wear-leveling 341

overview 338–344
read and write operations 339

previously unwritten blocks 339
previously written blocks 340
reading from blocks 339

FLASH_BASE_ADRS 315, 318
FLASH_SIZE 318
flbase.h 331
flDelayMsec() 317
flDontNeedVpp() 333
FLFLash structure 329
FLFlash.map 332
flNeedVpp() 333
floating-point support

interrupt service routine limitations 69
task options 17

flow-control characters (CTRL+Q and S)
target shell 245
tty 134

flSetWindowSize() 318
FLSocket 317
flSocketOf() 320
flsystem.h 335
flWriteProtected() 333
-fno-exceptions compiler option (C++) 284, 286
-fno-implicit-templates compiler option 282
494

IX

Index
-fno-rtti compiler option (C++) 286
fopen() 120
formatArg argument 307
formatFlags 308
formatParams 308
fppArchLib 69
fprintf() 122
fread() 121
free() 69
-frepo compiler option 282
fstat() 212
FSTAT_DIR 212
FTL_FORMAT 308
FTL_FORMAT_IF_NEEDED 308
FTP (File Transfer Protocol)

ioctl functions, and 140
network devices for, creating 140

ftruncate() 116, 215
fwrite() 121

G
getc() 121
global variables 27
GNU Library General Public License

demangler 249
GPL (General Public License)

demangler 249
group message queues (VxFusion) 397

see online msgQDistGrpLib;
msgQDistGrpShow

adding members 414
creating 414
deleting 415
displaying information about 416
working with 414

H
hardware

interrupts, see interrupt service routines
heartbeat, shared-memory 461

troubleshooting, for 462
help command 245
hidden files (dosFs) 213
hooks, task

routines callable by 22
host shell (WindSh)

target shell, differences from 242
HRESULT return type 365

common values 366
htonl()

shared-memory objects (VxMP option) 434

I
I/O system

asynchronous I/O
aioPxLib 73

IChannelHook interface (DCOM) 375
IClassFactory interface (COM) 352
IDL, see Interface Definition Language
IExample interface (DCOM) 353
import directive (DCOM) 368
INCLUDE_ATA

configuring dosFs file systems 197
INCLUDE_CACHE_ENABLE 454
INCLUDE_CBIO 197
INCLUDE_CBIO_DCACHE 141
INCLUDE_CBIO_DPART 141
INCLUDE_CBIO_MAIN 141
INCLUDE_CBIO_RAMDISK 141
INCLUDE_CDROMFS 234
INCLUDE_CPLUS 276, 277
INCLUDE_CPLUS_COMPLEX 277
INCLUDE_CPLUS_COMPLEX_IO 277
INCLUDE_CPLUS_IOSTREAMS 277
INCLUDE_CPLUS_IOSTREAMS_FULL 277
INCLUDE_CPLUS_LANG 276
INCLUDE_CPLUS_STL 277
INCLUDE_CPLUS_STRING 277
INCLUDE_CPLUS_STRING_IO 277
INCLUDE_CTORS_DTORS 276
INCLUDE_DISK_CACHE 197

creating a disk cache 198
INCLUDE_DISK_PART 197
495

VxWorks 5.5
Programmer’s Guide
creating disk partitions 198
INCLUDE_DISK_UTIL 197
INCLUDE_DOSFS 194
INCLUDE_DOSFS_CHKDSK 197
INCLUDE_DOSFS_DIR_FIXED 197
INCLUDE_DOSFS_DIR_VFAT 197
INCLUDE_DOSFS_FAT 197
INCLUDE_DOSFS_FMT 197
INCLUDE_DOSFS_MAIN 197
INCLUDE_MMU_BASIC 466
INCLUDE_MMU_FULL 466
INCLUDE_MSG_Q_SHOW 441
INCLUDE_MTD 335
INCLUDE_MTD_AMD 304
INCLUDE_MTD_CFIAMD 304
INCLUDE_MTD_CFISCS 304
INCLUDE_MTD_I28F008 304
INCLUDE_MTD_I28F008_BAJA 304
INCLUDE_MTD_I28F016 304
INCLUDE_MTD_USR 335
INCLUDE_NFS 139
INCLUDE_NO_CPLUS_DEMANGLER

GPL issues 249
INCLUDE_PCMCIA 191
INCLUDE_POSIX_AIO 123
INCLUDE_POSIX_AIO_SYSDRV 123
INCLUDE_POSIX_FTRUNCATE 116
INCLUDE_POSIX_MEM 75
INCLUDE_POSIX_MQ 94
INCLUDE_POSIX_MQ_SHOW 97
INCLUDE_POSIX_SCHED 81
INCLUDE_POSIX_SEM 86
INCLUDE_POSIX_SIGNALS 106
INCLUDE_PROTECT_TEXT 466
INCLUDE_PROTECT_VEC_TABLE 466
INCLUDE_RAM_DISK 197
INCLUDE_RAWFS 223
INCLUDE_RLOGIN 248
INCLUDE_SCSI 147

booting dosFs file systems 221
configuring dosFs file systems 197

INCLUDE_SCSI_BOOT 147
booting dosFs file systems using 221
ROM size, increasing 148

INCLUDE_SCSI_DMA 147

INCLUDE_SCSI2 147
INCLUDE_SECURITY 249
INCLUDE_SEM_SHOW 437
INCLUDE_SHELL 244
INCLUDE_SHELL_BANNER 244
INCLUDE_SIGNALS 55, 56
INCLUDE_SM_OBJ 454, 459
INCLUDE_TAPEFS 228
INCLUDE_TAR 197
INCLUDE_TELNET 248
INCLUDE_TFFS 302
INCLUDE_TFFS_BOOT_IMAGE 303
INCLUDE_TFFS_SHOW 303
INCLUDE_TL_FTL 305
INCLUDE_TL_SSFDC 305
INCLUDE_USR_MEMDRV 137
INCLUDE_VXFUSION 396
INCLUDE_VXFUSION_DIST_MSG_

Q_SHOW 396
INCLUDE_VXFUSION_DIST_NAME_

DB_SHOW 396
INCLUDE_VXFUSION_GRP_MSG_

Q_SHOW 396
INCLUDE_VXFUSION_IF_SHOW 396
INCLUDE_WDB_TSFS 239
INCLUDEMTD_WAMD 304
initialization

shared-memory objects
(VxMP option) 456–459, 461

virtual memory (VxVMI option) 470
initialization routines

adapters, designing (VxFusion) 425
block devices 178

initializing
asynchronous I/O (POSIX) 123
dosFs file system 198
rawFs file systems 223
SCSI interface 149
tapeFs file systems 229
VxFusion (distributed message queues) 400

installing drivers 161
instantiation, template (C++) 281–284
intConnect() 66
intCount() 66
496

IX

Index
Interface Definition Language (IDL) 366–373
attribute restrictions (DCOM) 372
CoClass definition 370
file attributes 370
import directive 368
interface attributes 370
interface definition 369

 and WOTL-generated files 356
interface body 369
interface header 369

reading IDL files 366
type library definition 369
widl compiler 360–366

INTERLEAVED_MODE_REQUIRES_
32BIT_WRITES 324

interprocessor communication 465–483
interrupt handling

application code, connecting to 66
callable routines 66

disks, changing
ready-change mechanism 227
unmounting volumes 226

and exceptions 69–70
hardware, see interrupt service routines
pipes, using 136
stacks 67

interrupt latency 33
interrupt levels 70
interrupt masking 70
interrupt service routines (ISR) 65–71

see also interrupt handling; interrupts;
intArchLib(1); intLib(1)

distributed message queues, using with 418
limitations 68–69
logging 69

see also logLib(1)
and message queues 71
and pipes 71
routines callable from 68
and semaphores 71
shared-memory objects (VxMP option),

working with 453
and signals 56, 71

interrupt stacks 67
interrupts

locking 33
shared-memory objects (VxMP option) 455
task-level code, communicating to 71
VMEbus 67

intertask communications 32–56
network 53–54

intLevelSet() 66
intLock() 66
intLockLevelSet() 70
intUnlock() 66
intVecBaseGet() 66
intVecBaseSet() 66
intVecGet() 66
intVecSet() 66
I/O system 107–192

see also asynchronous I/O; ioctl(); USB
asynchronous I/O 123–131
basic I/O (ioLib) 111–119
buffered I/O 120
control functions (ioctl()) 116
differences between VxWorks and host

system 156
fd table 164
formatted I/O (fioLib) 122
internal structure 157–191
memory, accessing 137
message logging 122
PCI (Peripheral Component Interconnect) 192
PCMCIA 191
redirection 112
serial devices 132
stdio package (ansiStdio) 120

ioctl() 116
dosFs file system support 219
functions

FTP, using with 140
memory drivers, using with 137
NFS client devices, using with 139
pipes, using with 136
RSH, using with 140
tty devices, using with 135

non-NFS devices 140
raw file system support 227
tapeFs file system support 232
tty options, setting 132
497

VxWorks 5.5
Programmer’s Guide
ioDefPathGet() 110
ioDefPathSet() 110
ioGlobalStdSet() 112
iosDevAdd() 162
iosDevFind() 163
iosDrvInstall() 161

dosFs, and 198
iostreams (C++) 290
ioTaskStdSet() 112
ISR, see interrupt service routines
IUnknown interface (DCOM) 351

K
kernel

see also Wind facilities
and multitasking 8
POSIX and Wind features, comparison of 73

message queues 94–95
scheduling 81
semaphores 86

priority levels 10
kernelTimeSlice() 11, 12
keyboard shortcuts

target shell 245
tty characters 133

kill() 55, 56, 105
killing

target shell, see abort character
tasks 18

L
-L option (TSFS) 240
latency

interrupt locks 33
preemptive locks 34

Library General Public License
demangler restrictions 249

line editor (target shell) 245
line mode (tty devices) 133

selecting 132

lio_listio() 124
lkup()

help, getting 245
loader, target-resident 250–261
loading

object modules 245
local objects 431
locking

interrupts 33
page (POSIX) 75
semaphores 85
spin-lock mechanism (VxMP option) 452–453
target shell access 248
task preemptive locks 13, 34

logging facilities 122
and interrupt service routines 69
task tLogTask 30

login
password, encrypting 249
remote

daemon tRlogind 31
security 248–249
shell, accessing target 248

loginUserAdd() 249
longjmp() 25

M
malloc()

interrupt service routine limitations 69
MAX_AIO_SYS_TASKS 124
MAX_LIO_CALLS 123
MEM_BLOCK_CHECK 451
memory

driver (memDrv) 137
flash 295–344

advantages and limitations 295
block allocation 338
boot image in 309–312
comparison with other storage media 295
data clusters 338
erase cycles 340
fallow region 309
fault recovery 343
498

IX

Index
formatting at an offset 310
garbage collection 340
optimization 341
overview 338–344
read and write operations 339
uses 296
write protection 309
writing boot image to 311

locking (POSIX) 74–75
see also mmanPxLib(1)

NVRAM 309
paging (POSIX) 74
pool 27
pseudo-I/O devices 137
shared-memory objects

(VxMP option) 431–463
swapping (POSIX) 74
virtual 465–483
write-protecting 468, 479–482

memory management unit, see MMU
Memory Technology Driver (MTD) (TrueFFS)

call sequence 332
Common Flash Interface (CFI) 323

AMD devices 325
CFI/SCS support 324
Fujitsu devices 325

component selection 299
component, defining as 335
devices supported 323
erase routine 335
identification routine 328

registering 336
JEDEC device ID 300

using 328
map function 332
non-CFI 325

AMD 326
Fujitsu 326
Intel 28F008 326
Intel 28F016 325

options 303
read routine 333
Scalable command set (SCS) 323
translation layer 296
write routine 334

writing 327–337
component, defining as 335
identification routine 336

memPartOptionsSet() 451
memPartSmCreate() 449
message logging, see logging facilities
message queues 47–52

see also msgQLib(1)
and VxWorks events 51
client-server example 50
displaying attributes 50, 97
and interrupt service routines 71
POSIX 94–95

see also mqPxLib(1)
attributes 95–97
code examples

attributes, examining 95–97
checking for waiting

message 101–105
communicating by message

queue 98–100
notifying tasks 100–105
unlinking 98
Wind facilities, differences from 94–95

priority setting 49
shared (VxMP option) 439–444

code example 441
creating 440
local message queues, differences

from 440
Wind 48–50

code example 49
creating 48
deleting 48
queueing order 48
receiving messages 48
sending messages 48
timing out 49
waiting tasks 48

ml() 246
mlock() 75
mlockall() 75
mmanPxLib 75
499

VxWorks 5.5
Programmer’s Guide
MMU
see also virtual memory - VxVMI option;

vmLib(1)
shared-memory objects (VxMP option) 457
using programmatically 469–483

modules, see component modules; object modules
mounting volumes

dosFs file systems 195, 203
rawFs file systems 225
tapeFs file systems 231

mq_close() 94, 98
mq_getattr() 94, 95
mq_notify() 94, 100–105
mq_open() 94, 98
mq_receive() 94, 98
mq_send() 94, 98
mq_setattr() 94, 95
mq_unlink() 94, 98
mqPxLib 94
mqPxLibInit() 94
mqPxLibInit() 94
mr() 246
MS-DOS file systems, see dosFs file systems
MSFT Long Names format 202
msgQCreate() 48
msgQDelete() 48
msgQDistCreate() 409
msgQDistDelete() 409
msgQDistGrpAdd() 415
msgQDistGrpShow() 416
msgQDistReceive() 412
msgQDistSend() 410
msgQEvStart() 63
msgQEvStop() 64
msgQReceive() 48
msgQSend() 62
msgQSend() 48
msgQShow()

distributed message queues, displaying
contents of 413

msgQShow() 441
msgQSmCreate() 440
mt_count 233
mt_op 233
MTBSF 233

MTBSR 233
MTD component

adding to project facility 336
MTD, see Memory Technology Driver
mtdTable[] 336
MTEOM 234
MTERASE 234
MTFSF 233
MTFSR 233
MTIOCTOP operation 233
MTNBSF 234
MTNOP 234
MTOFFL 234
MTOP structure 233
MTRETEN 234
MTREW 233
MTWEOF 232
multitasking 8, 25

example 29
munching (C++) 278
munlock() 75
munlockall() 75
mutexes (POSIX) 92
mutual exclusion 33–34

see also semLib(1)
code example 37–38
counting semaphores 43
interrupt locks 33
preemptive locks 34
and reentrancy 27
Wind semaphores 40–43

binary 37–38
deletion safety 42
priority inheritance 41
priority inversion 40
recursive use 42

N
name database (VxMP option) 433–435

adding objects 433
displaying 434

named semaphores (POSIX) 85
using 89–92
500

IX

Index
nanosleep() 20
using 74

netDevCreate() 140
netDrv

compared with TSFS 239
netDrv driver 139
network devices

see also FTP; NFS; RSH
NFS 138
non-NFS 139

Network File System, see NFS
network task tNetTask 30
networks

intertask communications 53–54
transparency 138

NFS (Network File System)
see online nfsDrv; nfsLib
authentication parameters 139
devices 138

creating 138
naming 110
open(), creating files with 114

ioctl functions, and 139
transparency 138

nfsAuthUnixPrompt() 139
nfsAuthUnixSet() 139
nfsDrv driver 138
nfsMount() 138
NO_FTL_FORMAT 308
non-block devices, see character devices
noOfDrives 320
ntohl()

shared-memory objects (VxMP option) 434
NUM_RAWFS_FILES 223
NVRAM 309

O
O_CREAT 212
O_NONBLOCK 95
O_CREAT 89
O_EXCL 89
O_NONBLOCK 98
object ID (VxMP option) 433

object modules
see also application modules
loading dynamically 245

online documentation 4
OPC interfaces (DCOM) 376

proxy and stub files, handling 376
open() 113

access flags 113
example 165
files asynchronously, accessing 123
files with, creating 114
subdirectories, creating 211

opendir() 212
operating system 7–75
OPT_7_BIT 132
OPT_ABORT 133
OPT_CRMOD 132
OPT_ECHO 132
OPT_LINE 132
OPT_MON_TRAP 133
OPT_RAW 133
OPT_TANDEM 132
OPT_TERMINAL 133
optional components (TrueFFS)

options 303
optional VxWorks products

VxMP shared-memory objects 431–463
VxVMI virtual memory 466–483

ORPC support 349

P
page locking 75

see also mmanPxLib(1)
page states (VxVMI option) 470
paging 74
partitions, disk

code examples
configuring disk partitions 200
creating disk partitions 199
formatting disk partitions 199
initializing multiple partitions 200

password encryption
login 249
501

VxWorks 5.5
Programmer’s Guide
pause() 56
PCI (Peripheral Component Interconnect) 192

see online pciConfigLib; pciConfigShow;
pciInitLib

PCMCIA 191, 315
see online pcmciaLib; pcmciaShow

pdHelp command 245
pended tasks 9
pended-suspended tasks 9
PHYS_MEM_DESC 467
pipeDevCreate() 53
pipes 53

see online pipeDrv
interrupt service routines 71
ioctl functions, and 136
ISRs, writing from 136
select(), using with 53

polling
shared-memory objects (VxMP option) 455

POSIX
see also asynchronous I/O
asynchronous I/O 123
clocks 73–74

see also clockLib(1)
file truncation 116
and kernel 73
memory-locking interface 74–75
message queues 94–95

see also message queues; mqPxLib(1)
mutex attributes 92

prioceiling attribute 93
protocol attribute 93

page locking 75
see also mmanPxLib(1)

paging 74
priority limits, getting task 84
priority numbering 82
scheduling 81–85

see also scheduling; schedPxLib(1)
semaphores 85–92

see also semaphores; semPxLib(1)
signal functions 105–106

see also signals; sigLib(1)
routines 56

swapping 74

task priority, setting 82–83
code example 82–83

thread attributes 76–80
contentionscope attribute 77
detachstate attribute 76
inheritsched attribute 77
schedparam attribute 78
schedpolicy attribute 78
specifying 79
stackaddr attribute 76
stacksize attribute 76

threads 75
timers 73–74

see also timerLib(1)
Wind features, differences from 73

message queues 94–95
scheduling 81
semaphores 86

posixPriorityNumbering global variable 82
preemptive locks 13, 34
preemptive priority scheduling 11, 84
printErr() 122
printErrno() 24
printf() 122
prioceiling attribute 93
priority

inheritance 41
inversion 40
message queues 49
numbering 82
preemptive, scheduling 11, 84
task, setting

POSIX 82–83
Wind 10

processes (POSIX) 82
project facility

adding MTD to 336
protocol attribute 93
PS_CLNT_PROPAGATED 374
PS_DEFAULT 374
PS_SVR_ASSIGNED 374
pthread_attr_getdetachstate() 77
pthread_attr_getinheritsched() 77
pthread_attr_getschedparam() 78
pthread_attr_getscope() 77
502

IX

Index
pthread_attr_getstackaddr() 76
pthread_attr_getstacksize() 76
pthread_attr_setdetachstate() 77
pthread_attr_setinheritsched() 77
pthread_attr_setschedparam() 78
pthread_attr_setscope() 77
pthread_attr_setstackaddr() 76
pthread_attr_setstacksize() 76
pthread_attr_t 76
pthread_cleanup_pop() 80, 81
pthread_cleanup_push() 80, 81
PTHREAD_CREATE_DETACHED 77
PTHREAD_CREATE_JOINABLE 77
PTHREAD_EXPLICIT_SCHED 77
pthread_getschedparam() 78
pthread_getspecific() 80
PTHREAD_INHERIT_SCHED 77
pthread_key_create() 80
pthread_key_delete() 80
pthread_mutex_getprioceiling() 93
pthread_mutex_setprioceiling() 93
pthread_mutexattr_getprioceiling() 93
pthread_mutexattr_getprotocol() 93
pthread_mutexattr_setprioceiling() 93
pthread_mutexattr_setprotocol() 93
pthread_mutexattr_t 92
PTHREAD_PRIO_INHERIT 93
PTHREAD_PRIO_PROTECT 93
PTHREAD_SCOPE_PROCESS 77
PTHREAD_SCOPE_SYSTEM 77
pthread_setcancelstate() 80
pthread_setcanceltype() 80
pthread_setschedparam() 78
pthread_setspecific() 80
pty devices 132

see online ptyDrv
pure code 27
putc() 121

Q
q_notify() 60
q_vnotify() 60
queued signals 105–106

queues
see also message queues
ordering (FIFO vs. priority) 45–48
semaphore wait 45

R
-R option (TSFS) 240
raise() 56
RAM disks 144

see online ramDrv
code example 209
creating 145
drivers 145
naming 145

ramDevCreate() 145
raw mode (tty devices) 133
rawFs file systems 223–228

see online rawFsLib
disk changes 225

ready-change mechanism 226
unmounting volumes 225

disk organization 223
disk volume, mounting 225
fds, freeing obsolete 226
initializing 223
ioctl() requests, support for 227
starting I/O 225
synchronizing disks 227

rawFsDevInit() 224
rawFsDrvNum global variable 224
rawFsInit() 223
rawFsLib 226
rawFsReadyChange() 226
rawFsVolUnmount() 225

interrupt handling 226
read() 115

example 168
readdir() 212
ready tasks 9
ready-change mechanism

dosFs file systems 211
rawFs file systems 226
503

VxWorks 5.5
Programmer’s Guide
reboot character (CTRL+X)
target shell 245
tty 134

redirection 112
global 112
task-specific 112

reentrancy 25–29
reference pages, online 4
reloading object modules 246
remote login

daemon tRlogind 31
security 248–249
shell, accessing target 248

remove()
non-file-system drivers 161
subdirectories, removing 212

Resident Flash Array (RFA) 315
restart character (CTRL+C)

tty 134
restart character (target shell) (CTRL+C) 247

changing default 247
resume character (CTRL+Q)

target shell 245
tty 134

rewind 230
rewinddir() 212
rfaCardDetected 317
rfaCardDetected() 320
rfaGetAndClearChangeIndicator 319
rfaGetAndClearChangeIndicator() 322
rfaRegister() 316
rfaSetMappingContext 319
rfaSetMappingContext() 322
rfaSetWindow 318
rfaSetWindow() 317, 321
rfaSocketInit 318
rfaSocketInit() 317, 321
rfaVccOff 317
rfaVccOff() 321
rfaVccOn 317
rfaVccOn() 320
rfaVppOff 318
rfaVppOff() 321
rfaVppOn 317
rfaVppOn() 321

rfaWriteProtected 319
rfaWriteProtected() 322
ring buffers 69, 71
rlogin (UNIX) 248
ROM monitor trap (CTRL+X)

target shell 245
tty 134

root task tUsrRoot 30
round-robin scheduling

defined 12
using 84–85

routines
scheduling, for 81

RPC (Remote Procedure Calls) 54
daemon tPortmapd 31

RSH (Remote Shell protocol)
ioctl functions, and 140
network devices for, creating 140

Run-Time Type Information (RTTI) 286
-RW option (TSFS) 240

S
SAFEARRAY and SAFEARRAY * (DCOM) 364

supported COM features 364
supported DCOM features 365

Scalable command set (SCS) 323
scanf() 122
SCHED_FIFO 84
sched_get_priority_max() 84
sched_get_priority_max() 81
sched_get_priority_min() 84
sched_get_priority_min() 81
sched_getparam()

scheduling parameters, describing 78
sched_getparam() 81
sched_getscheduler() 81, 84
SCHED_RR 84
sched_rr_get_interval() 84
sched_rr_get_interval() 81
sched_setparam()

scheduling parameters, describing 78
sched_setparam() 81, 83
sched_setscheduler() 81, 83
504

IX

Index
sched_yield() 81
schedPxLib 81, 82
scheduling 10–14

POSIX 81–85
see also schedPxLib(1)
algorithms 82
code example 84
FIFO 82, 84
policy, displaying current 84
preemptive priority 84
priority limits 84
priority numbering 82
round-robin 84–85
routines for 81
time slicing 84
Wind facilities, differences from 81

Wind
preemptive locks 13, 34
preemptive priority 11
round-robin 12

SCSI devices 146–156
see online scsiLib
booting dosFs file systems using 221
booting from

ROM size, adjusting 148
bus failure 155
code example 209
configuring 147–155

code examples 151
options 150

initializing support 149
libraries, supporting 148
SCSI bus ID

changing 155
configuring 148

SCSI-1 vs. SCSI-2 148
tagged command queuing 151
troubleshooting 155
VxWorks image size, affecting 148
wide data transfers 151

SCSI_AUTO_CONFIG 147
SCSI_OPTIONS structure 150
SCSI_TAG_HEAD_OF_QUEUE 151
SCSI_TAG_ORDERED 151
SCSI_TAG_SIMPLE 151

SCSI_TAG_UNTAGGED 151
scsi1Lib 148
scsi2Lib 148
scsiBlkDevCreate() 149
scsiCommonLib 149
scsiDirectLib 149
scsiLib 148
scsiPhysDevCreate() 149
scsiSeqDevCreate() 229
scsiSeqLib 149
scsiTargetOptionsSet() 150

SCSI bus failure 156
security 248–249

TSFS 239
SEL_WAKEUP_LIST 169
SEL_WAKEUP_NODE 170
select facility 117

see online selectLib
code example 118

driver support of select() 170
macros 117

select() 117
implementing 168

select()
and pipes 53

selNodeAdd() 170
selNodeDelete() 170
selWakeup() 170
selWakeupAll() 170
selWakeupListInit() 169
selWakeupType() 170
sem_close() 86, 90
SEM_DELETE_SAFE 42
sem_destroy() 86
sem_getvalue() 86
sem_init() 86, 87
SEM_INVERSION_SAFE 41
sem_open() 86, 89
sem_post() 86
sem_trywait() 86
sem_unlink() 86, 90
sem_wait() 86
505

VxWorks 5.5
Programmer’s Guide
semaphores 34–92
and VxWorks events 45–47
see also semLib(1)
counting 86

example 43
deleting 36, 87
giving and taking 36–37, 85
and interrupt service routines 71, 69
locking 85
POSIX 85–92

see also semPxLib(1)
named 85, 89–92

code example 90
unnamed 85, 87, 87–89

code example 88
Wind facilities, differences from 86

posting 85
recursive 42

code example 42
shared (VxMP option) 435–439

code example 437
creating 436
displaying information about 437
local semaphores, differences from 436

synchronization 34, 43
code example 38–39

unlocking 85
waiting 85
Wind 34–47

binary 36–39
code example 37–38

control 35–36
counting 43
mutual exclusion 37–38, 40–43
queuing 45
synchronization 38–39
timing out 44

semBCreate() 35
semBSmCreate() (VxMP option) 436
semCCreate() 35
semCSmCreate() (VxMP option) 436
semDelete() 35

shared semaphores (VxMP option) 436
semEvStart() 63
semEvStop() 63

semFlush() 35, 40
semGive() 62
semGive() 35
semInfo() 437
semMCreate() 35
semPxLib 85
semPxLibInit() 86
semShow() 437
semTake() 35
SEQ_DEV 176

see also sequential devices
fields 180
tapeFs file system, using with 229

sequential devices 176
see also block devices; SEQ_DEV; tape devices;

tapeFs file systems
initializing for tapeFs 229
internal structure

load/unload routine 189
read routine 182
read-block-limits routine 188
reserve routine 187
tape erasing routine 190
tape release routine 188
tape rewind routine 187
tape spacing routine 189
write routine 183
write-file-marks routine 186

serial drivers 132
set_terminate() (C++) 286
setjmp() 25
setWindow() 318
shared code 25
shared data structures 32
shared message queues (VxMP option) 439–444

code example 441
creating 440
displaying queue status 441
local message queues, differences from 440

shared semaphores (VxMP option) 435–439
code example 437
creating 436
displaying information about 437
local semaphores, differences from 436

shared-memory allocator (VxMP option) 444–451
506

IX

Index
shared-memory anchor
shared-memory objects, configuring (VxMP

option) 454–455
shared-memory networks

shared-memory objects, working with 454
shared-memory objects (VxMP option) 431–463

advertising 433
anchor, configuring shared-memory 454–455
cacheability 454, 457
configuring 454–461

constants 458
multiprocessor system 459

displaying number of used objects 459
heartbeat 461

troubleshooting, for 462
initializing 456–459, 461
interrupt latency 453
interrupt service routines 453
interrupts

bus 455
mailbox 455

limitations 453–454
locking (spin-lock mechanism) 452–453
memory

allocating 444–451
running out of 453

memory layout 456
message queues, shared 439–444

see also shared message queues
code example 441

name database 433–435
object ID 433
partitions 444–451

routines 445
side effects 451
system 444–448

code example 446
user-created 445, 449–451

code example 449
polling 455
semaphores, shared 435–439

see also shared semaphores (VxMP option)
code example 437

shared-memory networks, working with 454
shared-memory pool 456

shared-memory region 455
single- and multiprocessors, using with 432
system requirements 452
troubleshooting 461
types 434

shared-memory pool
address, defining (VxMP option) 456

shared-memory region (VxMP option) 455
shell task (tShell) 244
shell, see host shell; target shell
shellLock() 248
show() 50, 90, 97
sigaction() 56, 105
sigaddset() 56
sigblock() 56
sigdelset() 56
sigemptyset() 56
sigfillset() 56
sigInit() 55
sigismember() 56
sigmask() 56
signal handlers 56
signal() 56
signals 55–56

see also sigLib(1)
configuring 56
and interrupt service routines 56, 71
POSIX 105–106

queued 105–106
routines 56

signal handlers 56
UNIX BSD 55

routines 56
sigpending() 56
sigprocmask() 56
sigqueue()

buffers to, allocating 106
sigqueue() 105–106
sigqueueInit() 106
sigsetmask() 56
sigsuspend() 56
sigtimedwait() 106
sigvec() 56
sigwaitinfo() 106
SIO_HW_OPTS_SET 135
507

VxWorks 5.5
Programmer’s Guide
SM_ANCHOR_ADRS 455
SM_INT_BUS 455
SM_INT_MAILBOX 455
SM_INT_NONE 455
SM_INT_TYPE 455
sm_notify() 59
SM_OBJ_MAX_MEM_PART 458
SM_OBJ_MAX_MSG_Q 458
SM_OBJ_MAX_NAME 458
SM_OBJ_MAX_SEM 458
SM_OBJ_MAX_TASK 458
SM_OBJ_MAX_TRIES 453
SM_OBJ_MEM_SIZE 458
SM_TAS_HARD 452
SM_TAS_TYPE 452
small computer system interface, see SCSI devices
smCpuInfoGet() (VxMP option) 455
smIfVerbose global variable (VxMP) 463
smMemAddToPool() (VxMP option) 446
smMemCalloc() (VxMP option) 446
smMemFindMax() (VxMP option) 446
smMemFree() (VxMP option) 446
smMemMalloc() (VxMP option) 446
smMemOptionsSet() (VxMP option) 446, 451
smMemRealloc() (VxMP option) 446
smMemShow() (VxMP option) 446
smNameAdd() (VxMP option) 433
smNameFind() (VxMP option) 433
smNameFindByValue() (VxMP option) 433
smNameRemove() (VxMP option) 433
smNameShow() (VxMP option) 433
smObjAttach() (VxMP option) 461
smObjInit() (VxMP option) 461
smObjSetup() (VxMP option) 461
smObjShow() (VxMP option) 459

troubleshooting, for 462
smObjTimeoutLogEnable() (VxMP option) 462
socket component drivers (TrueFFS)

translation layer 300
socket() 156
sockets 53–54

I/O devices, as 156
TSFS 238

spawning tasks 14–15, 29
spin-lock mechanism (VxMP option) 452–453

interrupt latency 453
sprintf() 122
sscanf() 122
stacks

interrupt 67
no fill 16

standard input/output/error
basic I/O 112
buffered I/O (ansiStdio) 121

Standard Template library (STL) 291
stat() 212
stdio package

ANSI C support 120
omitting 122
printf() 122
sprintf() 122
sscanf() 122

STDMETHODCALLTYPE 356
STDMETHODIMP 357
subdirectories (dosFs)

creating 211
file attribute 214

suspended tasks 9
swapping 74
synchronization (task) 34

code example 38–39
counting semaphores, using 43
semaphores 38–39

synchronizing media
dosFs file systems 211
rawFs file systems 227
tapeFs file systems 232

SYS_SCSI_CONFIG 221
sysIntDisable() 67
sysIntEnable() 67
sysPhysMemDesc[] 467, 469

page states 467
shared-memory objects (VxMP option) 458
virtual memory mapping 467

sysScsiConfig() 148
sysScsiInit() 149
system clock 20
system files (dosFs) 214
system information, displaying 482
system tasks 30–31
508

IX

Index
sysTffs.c 300
sysTffsFormat() 310
sysTffsInit() 307

T
T_SM_BLOCK 434
T_SM_MSG_Q 434
T_SM_PART_ID 434
T_SM_SEM_B 434
T_SM_SEM_C 434
tape devices

see also sequential devices; tapeFs file systems
changing 232
code examples

block devices, working with 231
SCSI, working with 153

configuring 230
SCSI, supporting 147
volumes

mounting 231
unmounting 232

TAPE_CONFIG 230
tapeFs file systems 228–234

code example
block size, working with 231

fixed block size transfers 230
initializing 229
ioctl() requests, and 232
mounting tape volumes 231
operating modes 231
SCSI drivers, and 147
sequential devices for, initializing 229
starting I/O 232
tape changes 232
tape organization 229
variable block size transfers 230

tapeFsDevInit() 229
tapeFsDrvNum global variable 229
tapeFsInit() 229
tapeFsLib 228
tapeFsVolUnmount() 232
target agent

task (tWdbTask) 30

Target Server File System (TSFS) 237
configuring 239
error handling 239
file access permissions 239
sockets, working with 238

target shell 242–250
see online dbgLib; dbgPdLib; shellLib; usrLib;

usrPdLib
aborting (CTRL+C) 246–247

changing default 247
tty 134

accessing from host 248
configuring VxWorks with 244
control characters (CTRL+x) 245
debugging 246
displaying shell banner 244
edit mode, specifying

toggle between input mode 245
help, getting 245
host shell, differences from 242
line editing 245
loading

object modules 245
locking access 248
reloading modules 246
remote login 248
restarting 247
task tShell 31

task control blocks (TCB) 8, 18, 21, 28, 68
taskActivate() 15
taskCreateHookAdd() 21
taskCreateHookDelete() 21
taskDelay() 20
taskDelete() 18
taskDeleteHookAdd() 21
taskDeleteHookDelete() 21
taskIdListGet() 17
taskIdSelf() 16
taskIdVerify() 16
taskInfoGet() 17
taskInit() 15
taskIsReady() 18
taskIsSuspended() 18
taskLock() 11
taskName() 16
509

VxWorks 5.5
Programmer’s Guide
taskNameToId() 16
taskOptionsGet() 17
taskOptionsSet() 17
taskPriorityGet() 17
taskPrioritySet() 10, 11
taskRegsGet() 17
taskRegsSet() 18
taskRestart() 20
taskResume() 20
tasks 8–31

blocked 13
contexts 8

creating 14
control blocks 8, 18, 21, 28, 68
creating 14–15
delayed 9
delayed-suspended 9
delaying 8, 9, 20, 64–65
deleting safely 18–19

code example 19
semaphores, using 42

displaying information about 17–18
error status values 22–24

see also errnoLib(1)
exception handling 24–25

see also signals; sigLib(1); excLib(1)
tExcTask 30

executing 19
hooks

see also taskHookLib(1)
extending with 21–22
troubleshooting 21

IDs 15
interrupt level, communicating at 71

pipes 136
logging (tLogTask) 30
names 15

automatic 16
network (tNetTask) 30
option parameters 16
pended 9
pended-suspended 9
priority, setting

driver support tasks 14
POSIX 82–83

code example 82–83
Wind 10

ready 9
remote login (tRlogind, tRlogInTask,

tRlogOutTask) 31
root (tUsrRoot) 30
RPC server (tPortmapd) 31
scheduling

POSIX 81–85
preemptive locks 13, 34
preemptive priority 11, 84
priority limits, getting 84
round-robin 12

see also round-robin scheduling
time slicing 84
Wind 10–14

shared code 25
shell (tShell) 244
and signals 25, 55–56
spawning 14–15, 29
stack allocation 15
states 9
suspended 9
suspending and resuming 20
synchronization 34

code example 38–39
counting semaphores, using 43

system 30–31
target agent (tWdbTask) 30
target shell (tShell) 31
task events register 62

API 62
telnet (tTelnetd, tTelnetInTask,

tTelnetOutTask) 31
variables 28

see also taskVarLib(1)
context switching 28

taskSafe() 18
taskSpawn() 14
taskStatusString() 17
taskSuspend() 20
taskSwitchHookAdd() 21
taskSwitchHookDelete() 21
taskTcb() 18
taskUnlock() 11
510

IX

Index
taskUnsafe() 18, 19
taskVarAdd() 28
taskVarDelete() 28
taskVarGet() 28
taskVarSet() 28
TCP (Transmission Control Protocol) 53
telegram buffers (VxFusion) 422

see online distTBufLib
telegrams (VxFusion) 421

reading 429
telnet 248

daemon tTelnetd 31
terminal characters, see control characters
terminate() (C++) 286
TFFS_STD_FORMAT_PARAMS 307
tffsBootImagePut() 303
tffsConfig.c 311
tffsDevCreate() 312
tffsDevFormat() 306
tffsDevFormatParams 307
tffsDriveNo argument 307
tffsDrv.h 306
tffsRawio() 311
tffsShow() 303
tffsShowAll() 303
threads (POSIX) 75

attributes 76–80
specifying 79

keys 80
private data, accessing 80
terminating 80

time slicing 12
determining interval length 84

timeout
message queues 49
semaphores 44

timeouts
semaphores 44

timers
see also timerLib(1)
message queues, for (Wind) 49
POSIX 73–74
semaphores, for (Wind) 44
watchdog 64–65

code examples 65

tools
configuration and build 2

tools, target-based development 241–274
translation layers (TrueFFS) 296

options 305
transports (VxFusion) 397
troubleshooting

SCSI devices 155
shared-memory objects (VxMP option) 461

TrueFFS flash file systems 295–344
boot image region 309–312

creating 309
fallow region 309
write-protecting 309
writing to 311

building
boot image region 309–312
command-line 313
conditional compilation 305
configuring 300–306
device formatting 306
drive mounting 312
examples 313
Memory Technology Driver (MTD) 299
overview 298
socket driver 300

displaying information about 303
drives

attaching to dosFs 312
formatting 307
mounting 312
numbering 307

fallow region 309
ioctl 296
layers

core layer 297
MTD layer 297
socket layer 297
translation layer 297

Memory Technology Driver (MTD)
Common Flash Interface (CFI) 323
component selection 299
devices supported 323
identification routine 328
JEDEC device ID 300
511

VxWorks 5.5
Programmer’s Guide
writing 327–337
socket driver

address mapping 322
PCMCIA 315
register routines 316
Resident Flash Array (RFA) 315
socket registration 320
socket structure 316
socket windowing 322
stub files 315
writing 314–323

translation layers 296
write protection 309
write-protecting flash

NVRAM 309
truncation of files 116
tty devices 132

see online tyLib
control characters (CTRL+x) 133
ioctl() functions, and 135
line mode 133

selecting 132
options 132

all, setting 133
none, setting 133

raw mode 133
X-on/X-off 132

tyAbortSet() 247
tyBackspaceSet() 134
tyDeleteLineSet() 134
tyEOFSet() 134
tyMonitorTrapSet() 135

U
UDP (User Datagram Protocol) 54
unnamed semaphores (POSIX) 85, 87, 87–89
usrDosFsOld.c 197
usrFdiskPartCreate() 198
usrFdiskPartLib 143
usrMmuInit() 470
usrScsiConfig() 149
usrSmObjInit() (VxMP option) 454, 456, 461
usrTffsConfig() 312

usrVxFusionInit() 400
customizing with 401

V
valloc() (VxVMI option) 471
variables

global 27
static data 27
task 28

VARIANT and VARIANT * (DCOM) 363
vector tables

exception, write-protecting 468
virtual circuit protocol, see TCP
virtual memory 465–483

configuration 466–468
mapping 467–468

aliasing 472
VxVMI option 466–483

configuration 466–468
contexts 469–471
debugging 482
global 469
initializing 470
page states 470
private 471–478

code example 473
restrictions 483
write-protecting 468, 479–482

code example 480
VM_CONTEXT 469
VM_PAGE_SIZE 466
VM_STATE_CACHEABLE constants 470
VM_STATE_MASK_CACHEABLE 471
VM_STATE_MASK_VALID 471
VM_STATE_MASK_WRITABLE 471
VM_STATE_VALID 470
VM_STATE_VALID_NOT 470
VM_STATE_WRITABLE 470
VM_STATE_WRITABLE_NOT 470
vmContextCreate() (VxVMI option) 471
vmContextShow() (VxVMI option) 482
vmCurrentSet() (VxVMI option) 471
VMEbus interrupt handling 67
512

IX

Index
vmGlobalInfoGet() (VxVMI option) 471
vmGlobalMap() (VxVMI option) 469, 483
vmGlobalMapInit() (VxVMI option) 470
vmMap() (VxVMI option) 471, 483
vmStateSet() (VxVMI option) 471, 479
volume labels (dosFs)

file attribute 214
volumes, see disks; tape devices
VX_ALTIVEC_TASK 16
VX_DSP_TASK 16
VX_FP_TASK 16, 275, 377
VX_FP_TASK option 17
VX_NO_STACK_FILL 16
VX_PRIVATE_ENV 16
VX_UNBREAKABLE 16

creating shell task (tShell) 244
VxComBSTR 391
VXDCOM_AUTHN_LEVEL 358
VXDCOM_BSTR_POLICY 358
VXDCOM_CLIENT_PRIORITY_

PROPAGATION 358
VXDCOM_DYNAMIC_THREADS 359
VXDCOM_OBJECT_EXPORTER_

PORT_NUMBER 359
VXDCOM_SCM_STACK_SIZE 359
VXDCOM_STACK_SIZE 359
VXDCOM_STATIC_THREADS 360
VXDCOM_THREAD_PRIORITY 360
vxencrypt 249
VxFusion, see distributed message queues
VxMP, see shared-memory objects (VxMP option)
VxVMI (option) 466–483

see also virtual memory - VxVMI option;
vmLib(1)

VxWorks
components 3
configuration and build 2
optional products

VxMP 431–463
VxVMI 466–483

overview 1–5
VxWorks long names (VxLong) format 202

W
WAIT_FOREVER 44
watchdog timers 64–65

code examples
creating a timer 65

wdCancel() 64, 65
wdCreate() 64
wdDelete() 64
wdStart() 64
widl compiler 360–366

command-line use 360
data types 362

automation 362
non-automation 363

generated code 361
Wind facilities 73

message queues 48–50
POSIX, differences from 73

message queues 94–95
scheduling 81
semaphores 86

scheduling 10–14
semaphores 34–47

Wind IDL compiler, see widl compiler
wind kernel, see kernel
Wind Object Template Library (WOTL) 350–357

classes 350
generated files

macros in 355
reading 354

interface mapping 357
window structure 318
workQPanic 70
write protection 468, 479–482

device drivers, and 186
write() 115

pipes and ISRs 136
writethrough mode, cache 172
513

	VxWorks Programmer's Guide
	Contents
	1 Introduction
	1.1� Overview
	1.2� Related Documentation Resources
	1.3� VxWorks Configuration and Build
	1.4� Wind River Coding Conventions
	1.5� Documentation Conventions

	2 Basic OS
	2.1� Introduction
	2.2� VxWorks Tasks
	2.2.1� Multitasking
	2.2.2� Task State Transition
	2.2.3� Wind Task Scheduling
	Preemptive Priority Scheduling
	Round-Robin Scheduling
	Preemption Locks
	A Comparison of taskLock(�) and intLock(�)
	Driver Support Task Priority

	2.2.4� Task Control
	Task Creation and Activation
	Task Stack
	Task Names and IDs
	Task Options
	Task Information
	Task Deletion and Deletion Safety
	Task Control

	2.2.5� Tasking Extensions
	2.2.6� Task Error Status: errno
	Layered Definitions of errno
	A Separate errno Value for Each Task
	Error Return Convention
	Assignment of Error Status Values

	2.2.7� Task Exception Handling
	2.2.8� Shared Code and Reentrancy
	Dynamic Stack Variables
	Guarded Global and Static Variables
	Task Variables
	Multiple Tasks with the Same Main Routine

	2.2.9� VxWorks System Tasks

	2.3� Intertask Communications
	2.3.1� Shared Data Structures
	2.3.2� Mutual Exclusion
	Interrupt Locks and Latency
	Preemptive Locks and Latency

	2.3.3� Semaphores
	Semaphore Control
	Binary Semaphores
	Mutual-Exclusion Semaphores
	Counting Semaphores
	Special Semaphore Options
	Semaphores and VxWorks Events

	2.3.4� Message Queues
	Wind Message Queues
	Displaying Message Queue Attributes
	Servers and Clients with Message Queues
	Message Queues and VxWorks Events

	2.3.5� Pipes
	2.3.6� Network Intertask Communication
	Sockets
	Remote Procedure Calls (RPC)

	2.3.7� Signals
	Basic Signal Routines
	Signal Configuration

	2.4� VxWorks Events
	2.4.1� pSOS Events
	Sending and Receiving Events
	Waiting for Events
	Registering for Events
	Freeing Resources
	pSOS Events API

	2.4.2� VxWorks Events
	Free Resource Definition
	VxWorks Enhancements to pSOS Events
	Task Events Register
	VxWorks Events API
	Show Routines

	2.4.3� API Comparison

	2.5� Watchdog Timers
	2.6� Interrupt Service Code: ISRs
	2.6.1� Connecting Routines to Interrupts
	2.6.2� Interrupt Stack
	2.6.3� Writing and Debugging ISRs
	2.6.4� Special Limitations of ISRs
	2.6.5� Exceptions at Interrupt Level
	2.6.6� Reserving High Interrupt Levels
	2.6.7� Additional Restrictions for ISRs at High Interrupt Levels
	2.6.8� Interrupt-to-Task Communication

	3 POSIX Standard Interfaces
	3.1� Introduction
	3.2� POSIX Clocks and Timers
	3.3� POSIX Memory-Locking Interface
	3.4� POSIX Threads
	3.4.1� POSIX Thread Attributes
	Stack Size
	Stack Address
	Detach State
	Contention Scope
	Inherit Scheduling
	Scheduling Policy
	Scheduling Parameters
	Specifying Attributes when Creating pThreads

	3.4.2� Thread Private Data
	3.4.3� Thread Cancellation

	3.5� POSIX Scheduling Interface
	3.5.1� Comparison of POSIX and Wind Scheduling
	3.5.2� Getting and Setting POSIX Task Priorities
	3.5.3� Getting and Displaying the Current Scheduling Policy
	3.5.4� Getting Scheduling Parameters: Priority Limits and Time Slice

	3.6� POSIX Semaphores
	3.6.1� Comparison of POSIX and Wind Semaphores
	3.6.2� Using Unnamed Semaphores
	3.6.3� Using Named Semaphores

	3.7� POSIX Mutexes and Condition Variables
	3.8� POSIX Message Queues
	3.8.1� Comparison of POSIX and Wind Message Queues
	3.8.2� POSIX Message Queue Attributes
	3.8.3� Displaying Message Queue Attributes
	3.8.4� Communicating Through a Message Queue
	3.8.5� Notifying a Task that a Message is Waiting

	3.9� POSIX Queued Signals

	4 I/O System
	4.1� Introduction
	4.2� Files, Devices, and Drivers
	4.2.1� Filenames and the Default Device

	4.3� Basic I/O
	4.3.1� File Descriptors
	4.3.2� Standard Input, Standard Output, and Standard Error
	Global Redirection
	Task-Specific Redirection

	4.3.3� Open and Close
	4.3.4� Create and Delete
	4.3.5� Read and Write
	4.3.6� File Truncation
	4.3.7� I/O Control
	4.3.8� Pending on Multiple File Descriptors: The Select Facility

	4.4� Buffered I/O: stdio
	4.4.1� Using stdio
	4.4.2� Standard Input, Standard Output, and Standard Error

	4.5� Other Formatted I/O
	4.5.1� Special Cases: printf(�), sprintf(�), and sscanf(�)
	4.5.2� Additional Routines: printErr(�) and fdprintf(�)
	4.5.3� Message Logging

	4.6� Asynchronous Input/Output
	4.6.1� The POSIX AIO Routines
	4.6.2� AIO Control Block
	4.6.3� Using AIO
	AIO with Periodic Checks for Completion
	Alternatives for Testing AIO Completion

	4.7� Devices in VxWorks
	4.7.1� Serial I/O Devices (Terminal and Pseudo-Terminal Devices)
	tty Options
	Raw Mode and Line Mode
	Tty Special Characters
	I/O Control Functions

	4.7.2� Pipe Devices
	Creating Pipes
	Writing to Pipes from ISRs
	I/O Control Functions

	4.7.3� Pseudo Memory Devices
	Installing the Memory Driver
	I/O Control Functions

	4.7.4� Network File System (NFS) Devices
	Mounting a Remote NFS File System from VxWorks
	I/O Control Functions for NFS Clients

	4.7.5� Non-NFS Network Devices
	Creating Network Devices
	I/O Control Functions

	4.7.6� CBIO Interface
	CBIO Disk Cache
	CBIO Disk Partition Handler
	CBIO RAM Disk
	I/O Control Functions for CBIO Devices

	4.7.7� Block Devices
	Block Device File Systems
	Block Device RAM Disk Drivers
	SCSI Drivers

	4.7.8� Sockets

	4.8� Differences Between VxWorks and Host System I/O
	4.9� Internal Structure
	4.9.1� Drivers
	The Driver Table and Installing Drivers
	Example of Installing a Driver

	4.9.2� Devices
	The Device List and Adding Devices
	Example of Adding Devices

	4.9.3� File Descriptors
	The Fd Table
	Example of Opening a File
	Example of Reading Data from the File
	Example of Closing a File
	Implementing select(�)
	Cache �Coherency

	4.9.4� Block Devices
	General Implementation
	Low-Level Driver Initialization Routine
	Device Creation Routine
	Read Routine (Direct-Access Devices)
	Read Routine (Sequential Devices)
	Write Routine (Direct-Access Devices)
	Write Routine (Sequential Devices)
	I/O Control Routine
	Device-Reset Routine
	Status-Check Routine
	Write-Protected Media
	Change in Ready Status
	Write-File-Marks Routine (Sequential Devices)
	Rewind Routine (Sequential Devices)
	Reserve Routine (Sequential Devices)
	Release Routine (Sequential Devices)
	Read-Block-Limits Routine (Sequential Devices)
	Load/Unload Routine (Sequential Devices)
	Space Routine (Sequential Devices)
	Erase Routine (Sequential Devices)

	4.9.5� Driver Support Libraries

	4.10� PCMCIA
	4.11� Peripheral Component Interconnect: PCI

	5 Local File Systems
	5.1� Introduction
	5.2� MS-DOS-Compatible File System: dosFs
	5.2.1� Creating a dosFs File System
	5.2.2� Configuring Your System
	5.2.3� Initializing the dosFs File System
	5.2.4� Creating a Block Device
	5.2.5� Creating a Disk Cache
	5.2.6� Creating and Using Partitions
	5.2.7� Creating a dosFs Device
	5.2.8� Formatting the Volume
	File Allocation Table (FAT) Formats
	Directory Formats

	5.2.9� Mounting Volumes
	5.2.10� Demonstrating with Examples
	5.2.11� Working with Volumes and Disks
	Announcing Disk Changes with Ready-Change
	Accessing Volume Configuration Information
	Synchronizing Volumes

	5.2.12� Working with Directories
	Creating Subdirectories
	Removing Subdirectories
	Reading Directory Entries

	5.2.13� Working with Files
	File I/O
	File Attributes

	5.2.14� Disk Space Allocation Options
	Choosing an Allocation Method
	Using Cluster Group Allocation
	Using Absolutely Contiguous Allocation

	5.2.15� Crash Recovery and Volume Consistency
	5.2.16� I/O Control Functions Supported by dosFsLib

	5.3� Booting from a Local dosFs File System Using SCSI
	5.4� Raw File System: rawFs
	5.4.1� Disk Organization
	5.4.2� Initializing the rawFs File System
	5.4.3� Initializing a Device for Use With rawFs
	5.4.4� Mounting Volumes
	5.4.5� File I/O
	5.4.6� Changing Disks
	Un-mounting Volumes
	Announcing Disk Changes with Ready-Change
	Synchronizing Volumes

	5.4.7� I/O Control Functions Supported by rawFsLib

	5.5� Tape File System: tapeFs
	5.5.1� Tape Organization
	5.5.2� Initializing the tapeFs File System
	Initializing a Device for Use With tapeFs
	Systems with Fixed Block and Variable Block Devices

	5.5.3� Mounting Volumes
	5.5.4� File I/O
	5.5.5� Changing Tapes
	5.5.6� I/O Control Functions Supported by tapeFsLib

	5.6� CD-ROM File System: cdromFs
	5.7� The Target Server File System: TSFS
	Socket Support
	Error Handling
	TSFS Configuration
	Security Considerations

	6 Target Tools
	6.1� Introduction
	6.2� Target-Resident Shell
	6.2.1� Summarizing the Target and Host�Shell Differences
	6.2.2� Configuring VxWorks With the Target Shell
	6.2.3� Using Target Shell Help and Control Characters
	6.2.4� Loading and Unloading Object Modules from the Target Shell
	6.2.5� Debugging with the Target Shell
	6.2.6� Aborting Routines Executing from the Target Shell
	6.2.7� Using a Remote Login to the Target Shell
	Remote Login From Host: telnet and rlogin
	Remote Login Security

	6.2.8� Distributing the Demangler

	6.3� Target-Resident Loader
	6.3.1� Configuring VxWorks with the Loader
	6.3.2� Target-Loader API
	6.3.3� Summary List of Loader Options
	6.3.4� Loading C++ Modules
	6.3.5� Specifying Memory Locations for Loading Objects
	6.3.6� Constraints Affecting Loader Behavior
	Relocatable Object Files
	Object Module Formats
	Linking and Reference Resolution
	The Sequential Nature of Loading
	Resolving Common Symbols

	6.4� Target-Resident Symbol Tables
	Symbol Entries
	Symbol Updates
	Searching the Symbol Library
	6.4.1� Configuring VxWorks with Symbol Tables
	Basic Configuration
	System Symbol Table Configuration

	6.4.2� Creating a Built-In System Symbol Table
	Generating the Symbol Information
	Compiling and Linking the Symbol File
	Advantages of Using a Built-in System Symbol Table

	6.4.3� Creating a Loadable System Symbol Table
	Creating the .sym File
	Loading the .sym File
	Advantages of Using the Loadable System Symbol Table

	6.4.4� Using the VxWorks System Symbol Table
	6.4.5� Synchronizing Host and Target-Resident Symbol Tables
	6.4.6� Creating User Symbol Tables

	6.5� Show Routines
	6.6� Common Problems
	Target Shell Debugging Never Hits a Breakpoint
	Insufficient Memory
	“Relocation Does Not Fit” Error Message
	Missing Symbols
	Loader is Using Too Much Memory
	Symbol Table Unavailable

	7 C++ Development
	7.1� Introduction
	7.2� Working with C++ under VxWorks
	7.2.1� Making C++ Accessible to C Code
	7.2.2� Adding Support Components
	Basic Support Components
	C++ Library Components

	7.2.3� The C++ Demangler

	7.3� Initializing and Finalizing Static Objects
	7.3.1� Munching C++ Application Modules
	Using GNU
	Using Diab
	Using a Generic Rule

	7.3.2� Calling Static Constructors and Destructors Interactively

	7.4� Programming with GNU C++
	7.4.1� Template Instantiation
	-fimplicit-templates
	-fmerge-templates
	-fno-implicit-templates
	-frepo

	7.4.2� Exception Handling
	Using the Pre-Exception Model
	Exception Handling Overhead
	Unhandled Exceptions

	7.4.3� Run-Time Type Information
	7.4.4� Namespaces

	7.5� Programming with Diab C++
	7.5.1� Template Instantiation
	-Ximplicit-templates
	-Ximplicit-templates-off
	-Xcomdat
	-Xcomdat-off

	7.5.2� Exception Handling
	7.5.3� Run-Time Type Information

	7.6� Using C++ Libraries
	String and Complex Number Classes
	iostreams Library
	Standard Template Library (STL)

	7.7� Running the Example Demo

	8 Flash Memory Block Device Driver
	8.1� Introduction
	8.1.1� Choosing TrueFFS as a Medium
	8.1.2� TrueFFS Layers

	8.2� Building Systems with TrueFFS
	8.3� Selecting an MTD Component
	8.4� Identifying the Socket Driver
	8.5� Configuring and Building the Project
	8.5.1� Including File System Components
	8.5.2� Including the Core Component
	8.5.3� Including Utility Components
	8.5.4� Including the MTD Component
	8.5.5� Including the Translation Layer
	8.5.6� Adding the Socket Driver
	8.5.7� Building the System Project

	8.6� Formatting the Device
	8.6.1� Specifying the Drive Number
	8.6.2� Formatting the Device

	8.7� Creating a Region for Writing a Boot Image
	8.7.1� Write Protecting Flash
	8.7.2� Creating the Boot Image Region
	Formatting at an Offset
	Using a BSP Helper Routine

	8.7.3� Writing the Boot Image to Flash

	8.8� Mounting the Drive
	8.9� Running the Shell Commands with Examples
	8.10� Writing Socket Drivers
	8.10.1� Porting the Socket Driver Stub File
	Call the Socket Register Routines
	Implement the Socket Structure Member Functions

	8.10.2� Understanding Socket Driver Functionality
	Socket Registration
	Socket Member Functions
	Socket Windowing and Address Mapping

	8.11� Using the MTD-Supported Flash Devices
	8.11.1� Supporting the Common Flash Interface (CFI)
	Common Functionality
	CFI/SCS Flash Support
	AMD/Fujitsu CFI Flash Support

	8.11.2� Supporting Other MTDs
	Intel 28F016 Flash Support
	Intel 28F008 Flash Support
	AMD/Fujitsu Flash Support

	8.11.3� Obtaining Disk On Chip Support

	8.12� Writing MTD Components
	8.12.1� Writing the MTD Identification Routine
	Initializing the FLFLash Structure Members
	Call Sequence

	8.12.2� Writing the MTD Map Function
	8.12.3� Writing the MTD Read, Write, and Erase Functions
	Read Routine
	Write Routine
	Erase Routine

	8.12.4� Defining Your MTD as a Component
	Adding Your MTD to the Project Facility
	Defining the MTD in the Socket Driver File

	8.12.5� Registering the Identification Routine

	8.13� Flash Memory Functionality
	8.13.1� Block Allocation and Data Clusters
	Block Allocation Algorithm
	Benefits of Clustering

	8.13.2� Read and Write Operations
	Reading from Blocks
	Writing to Previously Unwritten Blocks
	Writing to Previously Written Blocks

	8.13.3� Erase Cycles and Garbage Collection
	Erasing Units
	Reclaiming Erased Blocks
	Over-Programming

	8.13.4� Optimization Methods
	Wear Leveling
	Garbage Collection

	8.13.5� Fault Recovery in TrueFFS
	Recovering During a Write Operation
	Recovering Mapping Information
	Recovering During Garbage Collection
	Recovering During Formatting

	9 VxDCOM Applications
	9.1� Introduction
	9.2� An Overview of COM Technology
	9.2.1� COM Components and Software Reusability
	COM Interfaces
	CoClasses
	Interface Pointers
	VxDCOM Tools

	9.2.2� VxDCOM and Real-time Distributed Technology

	9.3� Using the Wind Object Template Library
	9.3.1� WOTL Template Class Categories
	9.3.2� True CoClass Template Classes
	CComObjectRoot – IUnknown Implementation Support Class
	CComCoClass – CoClass Class Template

	9.3.3� Lightweight Object Class Template
	9.3.4� Single Instance Class Macro

	9.4� Reading WOTL-Generated Code
	9.4.1� WOTL CoClass Definitions
	9.4.2� Macro Definitions Used in Generated Files
	Mapping IDL Definitions to Interface Header Prototypes
	Mapping Interface Prototypes to CoClass Method Definitions
	Defining CoClass Methods in Implementation Files

	9.4.3� Interface Maps

	9.5� Configuring DCOM Properties’ Parameters
	9.6� Using the Wind IDL Compiler
	9.6.1� Command-Line Syntax
	9.6.2� Generated Code
	9.6.3� Data Types
	Automation Data Types
	Non-Automation Data Types
	SAFEARRAY with VARIANTS
	HRESULT Return Values

	9.7� Reading IDL Files
	9.7.1� IDL File Structure
	The import Directive
	The Interface Definition
	Library and CoClass Definitions

	9.7.2� Definition Attributes
	IDL File Attributes
	Attribute Restrictions for VxDCOM
	Directional Attributes for Interface Method Parameters

	9.8� Adding Real-Time Extensions
	9.8.1� Using Priority Schemes on VxWorks
	Second Parameter Priority Scheme
	Third Parameter Priority Level

	9.8.2� Configuring Client Priority Propagation on Windows
	9.8.3� Using Threadpools

	9.9� Using OPC Interfaces
	9.10� Writing VxDCOM Servers and Client Applications
	9.10.1� Programming Issues
	9.10.2� Writing a Server Program
	Server Interfaces
	Client Interaction

	9.10.3� Writing Client Code
	Determining the Client Type
	Creating and Initializing the Client

	9.10.4� Querying the Server
	9.10.5� Executing the Client Code

	9.11� Comparing VxDCOM and ATL Implementations.
	9.11.1� CComObjectRoot
	9.11.2� CComClassFactory
	9.11.3� CComCoClass
	9.11.4� CComObject
	9.11.5� CComPtr
	9.11.6� CComBSTR
	9.11.7� VxComBSTR
	9.11.8� CComVariant

	10 Distributed Message Queues
	10.1� Introduction
	10.2� Configuring VxWorks with VxFusion
	10.3� Using VxFusion
	10.3.1� VxFusion System Architecture
	10.3.2� VxFusion Initialization
	10.3.3� Configuring VxFusion
	10.3.4� Working with the Distributed Name Database
	10.3.5� Working with Distributed Message Queues
	10.3.6� Working with Group Message Queues
	10.3.7� Working with Adapters

	10.4� System Limitations
	10.5� Node Startup
	10.6� Telegrams and Messages
	10.6.1� Telegrams Versus Messages
	10.6.2� Telegram Buffers

	10.7� Designing Adapters
	10.7.1� Designing the Network Header
	10.7.2� Writing an Initialization Routine
	Using the DIST_IF Structure

	10.7.3� Writing a Startup Routine
	10.7.4� Writing a Send Routine
	10.7.5� Writing an Input Routine
	10.7.6� Writing an I/O Control Routine

	11 Shared-Memory Objects
	11.1� Introduction
	11.2� Using Shared-Memory Objects
	11.2.1� Name Database
	11.2.2� Shared Semaphores
	11.2.3� Shared Message Queues
	11.2.4� Shared-Memory Allocator
	Shared-Memory System Partition
	User-Created Partitions
	Using the Shared-Memory System Partition
	Using User-Created Partitions
	Side Effects of Shared-Memory Partition Options

	11.3� Internal Considerations
	11.3.1� System Requirements
	11.3.2� Spin-lock Mechanism
	11.3.3� Interrupt Latency
	11.3.4� Restrictions
	11.3.5� Cache Coherency

	11.4� Configuration
	11.4.1� Shared-Memory Objects and Shared-Memory Network Driver
	11.4.2� Shared-Memory Region
	11.4.3� Initializing the Shared-Memory Objects Package
	11.4.4� Configuration Example
	11.4.5� Initialization Steps

	11.5� Troubleshooting
	11.5.1� Configuration Problems
	11.5.2� Troubleshooting Techniques

	12 Virtual Memory Interface
	12.1� Introduction
	12.2� Basic Virtual Memory Support
	12.3� Virtual Memory Configuration
	12.4� General Use
	12.5� Using the MMU Programmatically
	12.5.1� Virtual Memory Contexts
	Global Virtual Memory
	Initialization
	Page States

	12.5.2� Private Virtual Memory
	12.5.3� Noncacheable Memory
	12.5.4� Nonwritable Memory
	12.5.5� Troubleshooting
	12.5.6� Precautions

	Index

