
(

(

I Chapter3

Subroutines and Libraries

This chapter describes functions conventionally found in various libraries,
other than those functions that directly invoke X/OPEN system calis,
which are described in Chapter 2 of this part of the Guide. Certain major
coliections are identified by a letter after the section number. The
established 3C, 3M, 38, and 3X nomenclature is preserved, but is not
important in the context of an interface definition .

(3C) These functions, together with those of chapter 2 and those
marked (38), constitute the conventional C Library.
Declarations for some of these functions may be obtained from
#include files indicated on the appropriate pages.

(3M) These functions constitute the optional math group.
Declarations for these functions may be obtained from the
#include file < math .h>.

(38) These functions constitute the "standard I/ O group" (see
stdio(38». Declarations for these functions may be obtained
from the #include file < stdio.h >.

(3X) Various specialised functions .

Functions in the math group (3M) may return the conventional
values 0 or HUGE (the largest single-precision floating-point
number) when the function is undefined for the given arguments
or when the value is not representable. In these cases, the
external variable ermo is set to the value [EDOM] or [ERANGE].

X/OPEN Portability Guide (July 1985) Part II Page : 3.1

(

(

(

(

Subroutines ABORT(3C)

NAME
abort - generate an abnormal process abort

SYNOPSIS
int abort ()

DESCRIPTION

ERRORS

Abort first closes all open files if possible then causes the process abort
signal, SIGABRT, to be sent to the process. This invokes abnormal pro­
cess termination routines, such as a core dump, which are implementa­
tion dependent.

None.

APPLICATION USAGE
SIGABRT is not intended to be caught.

SEE ALSO
exit(2), signal(2), kill(2) .

RELATIONSHIP TO SVID
Identical to the SVID entry, except that the signal is identified as
SIGABRT. The SVID does not identify the signal, but forecasts in the
FUTURE DIRECTIONS section that it will be SIGABRT. (In UNIX System
V Release 2.0 it is SIGIOT.)

X/ OPEN Portability Guide (July 1985) Part II Page: ABORT(3C) .1

(

(

(

(

Subroutines

NAME
abs - return integer absolute value

SYNOPSIS
int abs (i)
int i;

DESCRIPTION

ABS(3C)

Abs returns the absolute value of its integer operand.

SEE ALSO
fabs(3C).

APPLICATION USAGE
In two's-complement representation, the absolute value of the negative
integer with largest magnitude {INT_MIN} is undefined. Some implemen­
tations trap this error, but others simply ignore it.

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/OPEN Portability Guide (July 1985) Part II Page : ABS(3C) .1

(

(

(

(

Subroutines ASSERT(3X)

NAME
assert - verify program assertion

SYNOPSIS
#include <assert.h>

void assert (expression)
int expression;

DESCRIPTION
This macro is useful for putting diagnostics into programs. When it is
executed, if expression is false (zero), assert prints

"Assertion failed: expression, file xyz, line nnn"

on the standard error output and aborts. In the error message, xyz is
the name of the source file and nnn the source line number of the assert
statement.

SEE ALSO
abort(3C).

APPLICATION USAGE
Forcing a definition of the name NDEBUG, either from the compiler com­
mand line or with the preprocessor control statement #define NDEBUG
ahead of the #include <assert.h> statement, will stop assertions from
being compiled into the program.

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/OPEN Portability Guide (July 1985) Part II Page: ASSERT(3X).1

(

(I

(

(

Subroutines BESSEL(3M)

NAME
jO, j1 , jn, yO, y1, yn - Bessel functions OPTIONAL

SYNOPSIS
inciude <math.h >

double jO (x)
double x;

double j1 (x)
double x;

double jn (n, x)
int n;
double x;

double yO (x)
double x;

double y1 (x)
double x;

double yn (n, x)
int n;
double x;

DESCRIPTION
JO and j1 return Bessel functions of x of the first kind of orders ° and 1
respectively. In returns the Bessel function of x of the first kind of order
n.

YO and y1 return Bessel functions of x of the second kind of orders °
and 1 respectively. Yn returns the Bessel function of x of the second
kind of order n. The value of x must be positive.

RETURN VALUE
Non-positive arguments cause yO, y1 and yn to return the value -HUGE
and to set erma to [EDaM]. In addition, a message indicating DOMAIN
error is printed on the standard error output.

Arguments too large in magnitude cause jO, j1, yO and y1 to return zero
and to set erma to [ERANGE] . In addition, a message indicating TLOSS
error is printed on the standard error output.

These error-handling procedures may be changed with the function
matherr(3M).

SEE ALSO
matherr(3M).

X/ OPEN Portability Guide (July 1985) Part II Page: BESSEL(3M) .1

BESSEL(3M) Subroutines

RELATIONSHIP TO SVID
Identical to the SVID entry. The optional mathematical group is manda­
tory in the SVID.

Part II Page: BESSEL(3M).2 X/OPEN Portability Guide (July 1985)

(

(

(

Subroutines BSEARCH (3C)

NAME
bsearch - binary search a sorted table

SYNOPSIS
#include < search.h >

char *bsearch (key, base, nel, width, com par)
char *key;
char *base;
unsigned nel, width;
int (*compar)();

DESCRIPTION
Bsearch is a binary search routine generalized from Knuth (6.2.1) Algo­
rithm B. It returns a pointer into a table indicating where a datum may
be found. The table must be previously sorted in increasing order
according to a provided comparison function, compar. Key points to a
datum instance to be sought in the table. Base pOints to the element at
the base of the table. Net is the number of elements in the table. Width
is the size of an element in bytes. Compar is the name of the com­
parison function, which is called with two arguments that point to the
elements being compared. The function must return an integer less
than , equal to, or greater than zero as accordingly the first argument is
to be considered less than , equal to, or greater than the second.

RETURN VALUE
A NULL pointer is returned if the key cannot be found in the table.

SEE ALSO
hsearch(3C), Isearch(3C), qsort(3C), tsearch(3C).

APPLICATION USAGE
The pointers to the key and the element at the base of the table should
be of type pOinter-to-element, and cast to type pOinter-to-character.
The comparison function need not compare every byte, so arbitrary data
may be contained in the elements in addition to the values being com­
pared.
Although declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

EXAMPLE
The example below searches a table containing pOinters to nodes con­
sisting of a string and its length . The table is ordered alphabetically on
the string in the node pointed to by each entry.

This code fragment reads in strings and either finds the corresponding
node and prints out the string and its length, or prints an error message.

X/OPEN Portability Guide (July 1985) Part II Page : BSEARCH (3C).1

BSEARCH (3C) Subroutines

#include <stdio.h>
#include <search.h >

#define TABSIZE 1000

struct node { / * these are stored in the table * /
char *string;
int length;

} ;
struct node table[TABSIZE); / * table to be searched * /

*/
int

struct node *node_ptr, node;
int node_compare(); /* routine to compare 2 nodes */
char str _space[20); / * space to read string into * /

node.string = str_space;
while (scanf("%s", node. string) != EOF) {

node_ptr = (struct node *)bsearch((char *)(&node),
(char *)table, TABSIZE,
sizeof(struct node) , node_compare);

if (node_ptr != NULL) {
(void)printf("string = %20s, length = %d \ n" ,

node_ptr- >string, node_ptr - > Iength);
else {

(void)printf("not found : %s \ n", node.string);

This routine compares two nodes based on an
alphabetical ordering of the string field.

node_compare(node1, node2)
char *node1, *node2;
(

return strcmp((struct node *) node1 - >string,
(struct node *) node2 - > string);

Part II Page: BSEARCH(3C).2 X/OPEN Portability Guide (July 1985)

(

(

(

(

Subroutines BSEARCH (3C)

RELATIONSHI P TO SVI D
Identical to the SVID entry. except that a programming error in the
node_compare part of the example has been corrected.

X/OPEN Portability Guide (July 1985) Part II Page : BSEARCH(3C).3

(

(

(

(

Subroutines

NAME
clock - report CPU time used

SYNOPSIS
long clock ()

DESCRIPTION

CLOCK (3C)

Clock returns the amount of CPU time (in microseconds) used since the
first call to clock. The time reported is the sum of the user and system
times of the calling process and its terminated child processes for which
it has executed wait(2) or system(3S).

SEE ALSO
times(2), wait(2) .

APPLICATION USAGE
The value returned by clock is defined in microseconds for compatibility
with systems that have CPU clocks with much higher resolution.

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/ OPEN Portability Guide (July 1985) Part II Page : CLOCK(3C).1

(

(

(

(

Subroutines CONV(3C)

NAME
toupper, tolower, _toupper, _tolower, toascii - translate characters

SYNOPSIS
#include < ctype.h >

int toupper (c)
int c;

int tolower (c)
int c;

int _toupper (c)
int c;

int _tolower (c)
int c;

int toascii (c)
int c;

DESCRIPTION
Toupper and tolower have as domain the range of getc(3S): the integers
from -1 through 255. If the argument of toupper represents a lower­
case letter, the result is the corresponding upper-case letter. If the argu­
ment of tolower represents an upper-case letter, the result is the
corresponding lower-case letter. All other arguments in the domain are
returned unchanged.

The macros _to upper and _tolower are macros that accomplish the
same thing as toupper and tolower but have restricted domains and are
faster. The macro _toupper requires a lower-case letter as its argument;
its result is the corresponding upper-case letter. The macro _tolower
requires an upper-case letter as its argument; its result is the
corresponding lower-case letter. Arguments outside the domain cause
undefined results.

Toascii yields its argument with all bits turned off that are not part of a
standard ASCII character; it is intended for compatibility with other sys­
tems.

SEE ALSO
ctype(3C), getc(3S).

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/OPEN Portability Guide (July 1985) Part II Page: CONV(3C) .1

(

(

(

(

Subroutines CRVPT(3C)

NAME
crypt, setkey, encrypt - generate DES encryption

SYNOPSIS
char *crypt (key, salt)
char *key, *salt;

void set key (key)
char *key;

void encrypt (block, edflag)
char *block;
int edflag;

DESCRIPTION
Crypt is the password encryption function . It is based on the NBS Data
Encryption Standard (DES), with variations intended (among other
things) to frustrate use of hardware implementations of the DES for key
search.

Key is a user's typed password . Salt is a two-character string chosen
from the set [a-zA-ZO-9./] ; this string is used to perturb the DES algo­
rithm in one of 4096 different ways, after which the password is used as
the key to encrypt repeatedly a constant string. The returned value
points to the encrypted password . The first two characters are the salt
itself.

The setkey and encrypt entry provides (rather primitive) access to the
actual DES algorithm. The argument of setkey is a character array of
length 64 containing only the characters with numerical value of 0 and
1. If this string is divided into groups of 8, the low-order bit in each
group is ignored; this gives a 56-bit key which is set into the machine.
This is the key that will be used with the above mentioned algorithm to
encrypt the string block with the function encrypt.

The argument to the encrypt entry is a character array of length 64 con­
taining only the characters with numerical value of 0 and 1. The argu­
ment array is modified in place to a similar array representing the bits of
the argument after having been subjected to the DES algorithm using the
key set by setkey . If edflag is zero (0), the argument is encrypted .

APPLICATION USAGE
The return value of crypt points to static data that are overwritten by
each call.

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/ OPEN Portabilily Guide (July 1985) Part II Page: CRYPT(3C). 1

(

(

(

(

Subroutines CTERMID(3S)

NAME
ctermid - generate file name for terminal

SYNOPSIS
#include <stdio.h>

char *ctermid (s)
char *s;

DESCRIPTION
Ctermid generates the path name of the controlling terminal for the
current process, and stores it in a string.

If s is a NULL pointer, the string is stored in an internal static area, with
contents overwritten at the next call to ctermid, and returned address.
Otherwise, s is assumed to point to a character array of at least
{L_ctermid} elements; the path name is placed in this array and the
value of s is returned. The constant {L_ctermid} is defined in the
< stdio.h > header file .

SEE ALSO
ttyname(3C).

APPLICATION USAGE
The difference between ctermid and ttyname(3C) is that ttyname must
be handed a file descriptor and returns the actual name of the terminal
associated with that file descriptor, while ctermid returns a string (such
as I dev Itty) that will refer to the terminal if used as a file name. Thus
ttyname is useful only if the process already has at least one file open to
a terminal.

RELATIONSHIP TO SVID
Identical to the SVID entry, except that the words "such as" have been
inserted before "/dev/lty" in the APPLICATION USAGE section.

X/OPEN Portability Guide (July 1985) Part II Page: CTERMID(3S) .1

(

(

(

(

Subroutines CTIME(3C)

NAME
ctime, localtime, gmtime, asctime, tzset, timezone, daylight, tzname -
convert date and time to string

SYNOPSIS
#include <time.h>

#include <sys/types.h>

char *ctime (clock)
long *clock;

struct tm *Iocaltime (clock)
long *clock;

struct tm *gmtime (clock)
long *clock;

char *asctime (tm)
struct tm *tm;

extern long timezone;

extern int daylight;

extern char *tzname[2];

void tzset ()

DESCRIPTION
Ctime converts a long integer, pointed to by clock, representing the time
in seconds since 00:00:00 GMT, January 1, 1970, and returns a pointer
to a 26-character string in the following form:

Sun Sep 1601:03:52 1973 \ n \ 0

All the fields have constant width. Localtime and gmtime return pOinters
to tm structures, described below. Localtime corrects for the time zone
and possible Daylight Savings Time; gmtime converts directly to
Greenwich Mean Time (GMT), which is the time the system uses.

Asctime converts a tm structure to a 26-character string, as shown in
the above example, and returns a pointer to the string.

Declarations of all the functions and externals, and the tm structure, are
in the <time.h> header file. The structure contains the following fields:

int tm_sec; I * seconds (0 - 59) * I
int tm_min; 1* minutes (0 - 59) *1
int tm_hour; I * hours (0 - 23) * I
int tm_mday; 1* day of month (1 - 31) *1
int tm_mon; 1* month of year (0 - 11) * I
i nt tm_year; I * year - 1900 * I

X/ OPEN Portability Guide (July 1985) Part II Page : CTIME(3C) .1

CTIME(3C)

int tm_wday;
int tm_yday;
int tm_isdst;

Subroutines

I * day of week (Sunday is 0) * I
1* day of year (0 - 365) * I
I * Daylight savings time flag * I

Tm_isdst is non-zero if Daylight Savings Time is in effect.

The external long variable timezone contains the difference, in seconds,
between GMT and local standard time (in MET, timezone is -1 *60*60) ;
the external variable daylight is non-zero if and only if some Daylight
Savings Time conversion should be applied.

If an environment variable named TZ is present, asctime uses the con­
tents of the variable to override the default time zone. The value of TZ
must be a three-letter time zone name, followed by an optional minus
sign (for zones east of Greenwich) and a series of digits representing the
difference between local time and GMT in hours; this is followed by an
optional three letter name for a daylight time zone. The setting for most
of continental Europe would be MET-1 EET. The effects of setting TZ are
thus to change the values of the external variables timezone and day­
light . In addition, the time zone names contained in the external variable

char *tzname[2] = { " MET", "EET" };

are set from the environment variable TZ. The function tzset sets these
external variables from TZ; tzset is called by asctime and may also be
called explicitly by the user.

SEE ALSO
time(2), getenv(3C), environ(5).

APPLICATION USAGE
The return values point to static data whose content is overwritten by
each call.

The usefulness of these functions is diminished by the fact that they are
inappropriate in those parts of the world which do not base their reckon­
ing of time upon GMT. The algorithm used to determine whether Day­
light Savings Time applies depends on the location in question; as it is
usually supplied, the implementation of ctime only knows about a small
number of the necessary conversions. There is no agreed international
standard for timezone names. The following names are suggested for
Europe:

WET (GMT)
MET (GMT+1)
EET (GMT+2)

Part II Page: CTIME(3C) .2

Western European Time, eg U.K.
Middle European Time
Eastern European Time

X/OPEN Portability Guide (July 1985)

(

(

(

(

Subroutines CTIME(3C)

FUTURE DIRECTIONS
The argument clock to ctime, localtimeand gmtime will be declared
through the typedef facility as a pOinter to timeJ

The number in TZ will be defined as an optional minus sign followed by
two hour digits and two minute digits, [-]hhmm , to represent fractional
timezones .

RELATIONSHIP TO SVID
Identical to SVID, except that European timezone names have replaced
references to North America, and the names timezone , daylight and
tzname have been added to the NAME section .

In the second paragraph of the DESCRIPTION section, the SVID uses
the term "UNIX system" instead of "system" .

X/ OPEN Portability Guide (July 1985) Part II Page : CTIME(3C) .3

(

(

(

(

Subroutines CTVPE(3C)

NAME
isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct,
isprint, isgraph, iscntrl, isascii - classify characters

SYNOPSIS
#include < ctype.h >

int isalpha (c)
int c;

DESCRIPTION
These macros classify character-coded integer values. Each is a predi­
cate returning non-zero for true, zero (0) for false. /saseii is defined on
all integer values; the rest are defined only where isaseii is true and on
the single non-ASCII value EOF, see stdio(3S).

isa/pha e is a letter.

isupper e is an upper-case letter.

is/ower e is a lower-case letter.

isdigit e is a digit [0-9].

isxdigit e is a hexadecimal digit [0-9], [A-F] or [a-fJ .

isa/num e is an alphanumeric (letter or digit).

isspaee e is a space, tab, carriage return, new-line, vertical tab or
form-feed.

ispunet e is a punctuation character (neither control nor alphanumeric).

isprint e is a printing character, code 040 (space) through 0176
(tilde).

isgraph e is a printing character, like isprint except false for space.

isentrl e is a delete character (0177) or an ordinary control character
(less than 040) .

isaseii e is an ASCII character, code between 0 and 0177 inclusive.

RETURN VALUE
If the argument to any of these macros is not in the domain of the func­
tion, the result is undefined.

APPLICATIONS USAGE
To ensure applications portability, especially across natural languages,
no other character classification method should be used.

X/OPEN Portability Guide (July 1985) Part II Page : CTYPE(3C) .1

CTVPE (3C)

SEE ALSO
stdio(3S).

RELATIONSHIP TO SVID
Identical to the SVID entry.

Part II Page : CTYPE(3C).2

Subroutines

(

(

X/ OPEN Portability Guide (July 1985)

(

Subroutines CURSES(3X)

NAME
curses - CRT screen handling and optimization package (OPTIONAL)

SYNOPSIS
#include <curses.h>

DESCRIPTION
Following is a list of the minicurses library functions found in System V,
Release 2.0. This is for information only, and there is no guarantee that
a particular X/OPEN system will offer support for this package. Chapter
1 describes the X/OPEN attitude towards curses. The header file
< curses.h> is not a part of the XVS.

This package is usually implemented via a database of terminal capabili­
ties. Some systems use a human-readable form called termcap, while
others use a compiled form known as terminfo . Neither of these data­
bases are described in the XVS.

FUNCTIONS
addch(ch)

addstr(str)
attroff(attrs)
attron(attrs)
attrset(attrs)
baudrate()
beep()
cbreak()
delay-output(ms)
echo()
endwinO
flushinp()
getch()
idlok(win, bf)
initscr()
meta(win, flag)
move(y, x)
nlO
nocbreak()
noecho()
nonl()
noraw()
raw()
refresh()
resetterm()
resetty()
saveterm()

add a character to stdscr (like putchar)
(wraps to next line at end of line)
calls addch with each character in str
turn off attributes named
turn on attributes named
set current attributes to attrs
current terminal speed
sound beep on terminal
set cbreak mode
insert ms millisecond pause in output
set echo mode
end window modes
throwaway any typeahead
get a char from tty
use terminal's insert/delete line if bf!= 0
initialize screens
allow meta characters on input if flag != 0
move to (y, x) on stdscr
set newline mapping
unset cbreak mode
unset echo mode
unset newline mapping
unset raw mode
set raw mode
make current screen look like stdscr
set tty modes to "out of curses" state
reset tty flags to stored value
save current modes as " in curses" state

X/OPEN Portability Guide (July 1985) Part II Page: GURSES(3X).1

CURSES(3X)

savetty()
standend()
standout()
unctrl(ch)

RELATIONSHIP TO SVID

store current tty flags
clear standout mode attribute
set standout mode attribute
printable version of ch

Subroutines

The SVID, in Section 5 FUTURE DIRECTIONS (5.1 User Interface Ser­
vices Extension), says that applications relying on curses will be compa­
tible with whatever is done to the User Interface Services Extension at a
future date. In Section 4 EXT: OTHER PLANNED EXTENSIONS, oblique
mention is made of curses by referring to the System V Release 2.0 lib­
curses library. No detail of its contents is given.

Part II Page : CURSES(3X).2 X/OPEN Portability Guide (July 1985)

(

(

(

(

Subroutines CUSERID(3S)

NAME
cuserid - character login name of the user

SYNOPSIS
include <stdio.h>

char *cuserid (s)
char *s;

DESCRIPTION
Cuserid generates a character representation of the login name of the
owner of the current process. If s is NULL, this representation is gen­
erated in an internal static area, the address of which is returned. If s is
not NULL, s is assumed to point to an array of at least {L_cuserid} char­
acters; the representation is left in this array. The symbolic constant
{L_cuserid} is defined in <stdio.h>.

RETURN VALUE
If s is NULL and the login name cannot be found, cuserid returns NULL; if
s is not NULL and the login name cannot be found, the null character
' \ 0' will be placed at *s .

SEE ALSO
getlogin(3C), getpwent(3C).

APPLICATION USAGE
Cuserid uses getpwnam(3C); thus the results of a user's call to the latter
will be obliterated by a subsequent call to the former.

RELATIONSHIP TO SVID
This function is not included in the SVID. It comes from UNIX System V
Release 2.0.

X/OPEN Portability Guide (July 1985) Part II Page: CUSERIO(3S) .1

(

(

(

(

Subroutines DRAND48(3C)

NAME
drand48, erand48, Irand48, nrand48, mrand48, jrand48, srand48,
seed48, Icong48 - generate uniformly distributed pseudo-random
numbers

SYNOPSIS
double drand48 ()

double erand48 (xsubi)
unsigned short xsubi[3];

long Irand48 ()

long nrand48 (xsubi)
unsigned short xsubi[3] ;

long mrand48 ()

long jrand48 (xsubi)
unsigned short xsubi[3] ;

void srand48 (seedval)
long seedval;

unsigned short *seed48 (seed16v)
unsigned short seed16v[3] ;

void Icong48 (param)
unsigned short param[7];

DESCRIPTION
This family of functions generates pseudo-random numbers using the
well-known linear congruential algorithm and 48-bit integer arithmetic.

N.B. In the following , the formal mathematical notation [0.0, 1.0) indi­
cates an interval including 0.0 but not including 1 .0.

Functions drand48 and erand48 return non-negative double-precision
floating-point values uniformly distributed over the interval [0.0, 1.0).

Functions Irand48 and nrand48 return non-negative long integers uni ­
formly distributed over the interval [0, 231).

Functions mrand48 and jrand48 return signed long integers uniformly
distributed over the interval [- 231, 231).

Functions srand48, seed48 and Icong48 are initialization entry points,
one of which should be invoked before either drand48, Irand48 or
mrand48 is called. (Although it is not recommended practice, constant
default initializer values will be supplied automatically if drand48, Irand48
or mrand48 is called without a prior call to an initialization entry pOint.)
Functions erand48, nrand48 and jrand48 do not require an initialization
entry point to be called first.

X/OPEN Portability Guide (July 1985) Part II Page: DRAND48(3C).1

DRAND48(3C) Subroutines

All the routines work by generating a sequence of 48-bit integer values,
Xi, according to the linear congruential formula

Xn+ l = (aXn + C)modm n> O.25n' = O.

The parameter m = 24s; hence 48-bit integer arithmetic is performed.
Unless /cong48 has been invoked, the multiplier value a and the addend
value c are given by

a = 5DEECE66D1 6 = 273673163155 s
c = BI 6 =13 s.

The value returned by any of the functions drand48, erand48, /rand48,
nrand48, mrand48 or jrand48 is computed by first generating the next
48-bit Xi in the sequence. Then the appropriate number of bits, accord­
ing to the type of data item to be returned, are copied from the high­
order (leftmost) bits of Xi and transformed into the returned value.

The functions drand48, /rand48 and mrand48 store the last 48-bit Xi
generated in an internal buffer; that is why they must be initialized prior
to being invoked. The functions erand48, nrand48 and jrand48 require
the calling program to provide storage for the successive Xi values in the
array specified as an argument when the functions are invoked. That is
why these routines do not have to be initialized; the calling program
merely has to place the desired initial value of Xi into the array and pass
it as an argument. By using different arguments, functions erand48,
nrand48 and jrand48 allow separate modules of a large program to gen­
erate several independent streams of pseudo-random numbers, i.e. the
sequence of numbers in each stream will not depend upon how many
times the routines have been called to generate numbers for the other
streams.

The initializer function srand48 sets the high-order 32 bits of Xi to the
{LONG_BIT} bits contained in its argument. The low-order 16 bits of Xi
are set to the arbitrary value 330E16.

The initializer function seed48 sets the value of Xi to the 48-bit value
specified in the argument array. In addition , the previous value of Xi is
copied into a 48-bit internal buffer, used only by seed48, and a pointer
to this buffer is the value returned by seed48. This returned pointer,
which can just be ignored if not needed, is useful if a program is to be
restarted from a given point at some future time - use the pointer to get
at and store the last Xi value, and then use this value to reinitialize via
seed48 when the program is restarted.

The initialization function /cong48 allows the user to specify the initial Xi,
the multiplier value a, and the addend value c. Argument array elements
param[O-2] specify Xi, param[3-5] specify the multiplier a, and param[6]
specifies the 16-bit addend c. After /cong48 has been called, a

Part" Page : DRAND48(3C) .2 X/ OPEN Portability Guide (July 1985)

(

(

(

(

Subroutines DRAND48(3C)

subsequent call to either srand48 or seed48 will restore the "standard"
multiplier and addend values, a and c, specified on the previous page.

SEE ALSO
rand(3C).

RELATIONSHIP TO SVI D
Identical to the SVID entry, except that the SVID paragraph in the APPLI­
CATIONS USAGE section has been moved up into the DESCRIPTION
section and added onto the end of the seed48 paragraph .

X/OPEN Portability Guide (July 1985) Part II Page: DRAND48(3C).3

(

(

(

(

Subroutines ECVT(3C)

NAME
ecvt, fcvt, gcvt - convert floating-point number to string

SYNOPSIS
char *ecvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char * fcvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *gcvt (value, ndigit, buf)
double value;
int ndigit;
char *buf;

DESCRIPTION
Ecvt converts value to a nUll-terminated string of ndigit digits and returns
a pOinter thereto. The high-order digit is non-zero, unless the value is
zero (0). The low-order digit is rounded. The position of the decimal
point relative to the beginning of the string is stored indirectly through
decpt (negative means to the left of the returned digits). The decimal
point is not included in the returned string . If the sign of the result is
negative, the word pointed to by sign is non-zero, otherwise it is zero.

Fcvt is identical to ecvt, except that the correct digit has been rounded
for printt "%f" (FORTRAN F-format) output of the number of digits
specified by ndigit.

Gcvt converts the value to a nUll-terminated string in the array pOinted to
by but and returns but. It attempts to produce ndigit significant digits in
FORTRAN F-format if possible, otherwise E-format, ready for printing. A
minus sign, if there is one, or a decimal point will be included as part of
the returned string. Trailing zeros are suppressed.

SEE ALSO
printf(3S).

BUGS
The values returned by ecvt and tcvt point to a single static data array
whose content is overwritten by each call.

RELATIONSHIP TO SVID
This function is not included in the SVID. It comes from UNIX System V
Release 2.0.

X/OPEN Portability Guide (July 1985) Part II Page : ECVT(3C) .1

(

(

(

(

Subroutines END(3C)

NAME
end, etext, edata - last locations in program (OPTIONAL)

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting
contents. The address of etext is the first address above the program
text, edata above the initialized data region, and end above the uninitial­
ized data region .

When execution begins, the program break (the first location beyond the
data) coincides with end, but the program break may be reset by the
routines of brk(2), malloc(3X) , standard input/output (stdio(3S», and so
on. Thus, the current value of the program break should be determined
by sbrk(O) , see brk(2).

SEE ALSO
brk(2), malloc(3X), stdio(3S).

RELATIONSHIP TO SVID
This function is not included in the SVID. It comes from UNIX System V
Release 2.0.

X/ OPEN Portability Guide (July 1985) Part II Page : END(3C).1

(

(

(

Subroutines ERF(3M)

NAME
erf, erfc - error function and complementary error functions
(OPTIONAL)

SYNOPSIS
#include < math.h>

double ert (x)
double x;

double ertc (x)
double x;

DESCRIPTION
x

Erf returns the error function of x, defined as _ ~ f e - ,' dt.
v 7T 0

Erfe returns 1.0 - erf(x).

SEE ALSO
exp(3M).

APPLICATION USAGE
Erfe is provided because of the extreme loss of relative accuracy if erf(x)
is called for large x and the result subtracted from 1 .0.

RELATIONSHI P TO SVID
Identical to the SVID entry. The optional mathematical group is manda­
tory in SVID.

X/OPEN Portability Guide (July 1985) Part II Page: ERF(3M).1

(

(

(

(

Subroutines EXP(3M)

NAME
exp, log, log10, pow, sqrt - exponential, logarithm, power, square root
functions (OPTIONAL)

SYNOPSIS
#include < math .h>

double exp (x)
double x;

double log (x)
double x;

double 10910 (x)
double x;

double pow (x, y)
double x, y;

double sqrt (x)
double x;

DESCRIPTION
Exp returns eX .

Log returns the natural logarithm of x. The value of x must be positive.

Log10 returns the logarithm base ten of x. The value of x must be posi­
tive.

Pow returns xY. If x is zero (0), y must be positive. If x is negative, Y
must be an integer value.

Sqrt returns the non-negative square root of x . The value of x may not
be negative.

RETURN VALUE
Exp returns HUGE when the correct value would overflow, or 0 when the
correct value would underflow, and sets erma to [ERANGE] .

Log and log10 return HUGE and set erma to [EDaM] when x is non­
positive. A message indicating DOMAIN error (or SING error when x is 0)
is printed on the standard error output.

Pow returns 0 and sets erma to [EDaM] when x is 0 and y is non­
positive, or when x is negative and y is not an integer. In these cases a
message indicating DOMAIN error is printed on the standard error output.
When the correct value for pow would overflow or underflow, pow
returns ±HUGE or 0 respectively, and sets erma to [ERANGE] .

Sqrt returns 0 and sets erma to [EDaM] when x is negative. A message
indicating DOMAIN error is printed on the standard error output.

X/ OPEN Portability Guide (July 1985) Part II Page : EXP(3M).1

EXP(3M) Subroutines

These error-handling procedures may be changed with the function
matherr(3M) .

SEE ALSO
hypot(3M), matherr(3M), sinh(3M).

FUTURE DIRECTIONS
A macro HUGE_VAL will be defined in the header file < math.h >. This
macro will call a function which will either return + 00 on a system sup­
porting IEEE P754 standard or +{MAXDOUBLE} on a system that does
not support the IEEE P754 standard.
If the correct value overflows, exp will return HUGE_VAL.

Log and log 10 will return -HUGE_VAL when n is not positive.

Sqrt will return -0 when the value of n is -0.

The return value of pow will be negative HUGLVAL when an illegal com­
bination of input arguments is passed to pow.

RELATIONSHIP TO SVID
Identical to the SVID entry. The optional mathematical group is manda­
tory in SVID.

Part II Page : EXP(3M) .2 X/OPEN Portability Guide (July 1985)

(

(

(

(

Subroutines

NAME
!Close, fflush - close or flush a stream

SYNOPSIS
#include <stdio.h>

int fclose (stream)
FILE *stream;

int fflush (stream)
FILE *stream;

DESCRIPTION

FCLOSE(3S)

Fclose causes any buffered data for the named stream to be written out,
and the stream to be closed .

Fclose is performed automatically for all open files upon calling exit(2) .

Fflush causes any buffered data for the named stream to be written to
that file. The stream remains open .

RETURN VALUE
These functions return 0 for success, and EOF if any error (such as try­
ing to write to a file that has not been opened for writing) was detected.

SEE ALSO
close(2), exit(2), fopen(3S), setbuf(3C).

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/ OPEN Portability Guide (July 1985) Part II Page: FCLOSE(3S).1

(

(,

(

(

Subroutines FERROR(3S)

NAME
ferror, feof, clearerr, fileno - stream status inquiries

SYNOPSIS
include < stdio.h>

int ferror (stream)
FILE *stream;

int feof (stream)
FILE *stream;

void clearerr (stream)
FILE *stream ;

int fileno (stream)
FILE *stream;

DESCRIPTION
Ferror returns non-zero when an I/O error has previously occurred
reading from or writing to the named stream, otherwise zero (0).

Feat returns non-zero when EOF has previously been detected reading
the named input stream, otherwise zero.

Clearerr resets the error indicator and EOF indicator to zero on the
named stream.

Fileno returns the integer file descriptor associated with the named
stream, see open(2).

SEE ALSO
open(2), fopen(3S) .

APPLICATIONS USAGE
All these functions are implemented as macros; they cannot be declared
or redeclared.

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/OPEN Portability Guide (July 1985) Part II Page: FERROR(3S) .1

(

(

(

(

Subroutines FLOOR(3M)

NAME
floor, ceil, fmod, fabs - floor, ceiling, remainder, absolute value func­
tions (OPTIONAL)

SYNOPSIS
#include < math .h>

double floor (x)
double x;

double ceil (x)
double x;

double fmod (x, y)
double x, y;

double fabs (x)
double x;

DESCRIPTION
Floor returns the largest integer (as a double-precision number) not
greater than x .

Ceil returns the smallest integer not less than x.

Fmod returns the floating-point remainder of the division of x by y: zero
if y is zero or if x/y would overflow; otherwise the number f with the
same sign as x, such that x = iy + f for some integer i, and 1 f 1 < 1 y I·

Fabs returns the absolute value of x, 1 x I.

SEE ALSO
abs(3M).

FUTURE DIRECTIONS
Fmod will return x if y is zero or if x/y would overflow.

RELATIONSHIP TO SVID
Identical to the SVID entry. The optional mathematical group is manda­
tory in SVID.

X/OPEN Portability Guide (July 1985) Part II Page : FLOOR(3M) .1

(

(

(

Subroutines FOPEN(3S)

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
include < stdio.h>

FILE * fopen (file-name, type)
char *file-name, *type;

FILE * freopen (file-name, type, stream)
char *file-name, *type;
FILE *stream;

FILE * fdopen (fildes, type)
int fildes;
char *type;

DESCRIPTION
Fopen opens the file named by file-name and associates a stream with
it . Fopen returns a pointer to the FILE structure associated with the
stream.

File-name points to a character string that contains the name of the file
to be opened.

Type is a character string having one of the following values:

" r" open for reading

"w" truncate or create for writing

" a" append; open for writing at end of file, or create for
writing

" r+ " open for update (reading and writing)

" w+ " truncate or create for update

" a+ " append; open or create for update at end-of-file

Freopen substitutes the named file in place of the open stream. The ori­
ginal stream is closed, regardless of whether the open ultimately
succeeds. Freopen returns a pointer to the FILE structure associated
with stream.

Freopen is typically used to attach the preopened streams associated
with stdin, stdout and stderr to other files .

Fdopen associates a stream with a file descriptor. File descriptors are
obtained from open(2), dup(2) , creat (2) or pipe(2) , which open files but
do not return pOinters to a FILE structure stream. Streams are necessary
input for many of the Section 3S library routines. The type of stream
must agree with the mode of the open file.

X/ OPEN Portability Guide (July 1985) Part II Page : FOPEN (3S) .1

FOPEN(3S) Subroutines

When a file is opened for update, both input and output may be done on
the resulting stream. However, output may not be directly followed by
input without an intervening fseek or rewind, and input may not be
directly followed by output without an intervening fseek, rewind, or an
input operation which encounters end-of-file.

When a file is opened for append (i .e. , when type is "a" or "a+"), it is
impossible to overwrite information already in the file. Fseek may be
used to reposition the file pOinter to any position in the file, but when
output is written to the file, the current file pointer is disregarded. All
output is written at the end of the file and causes the file pointer to be
repositioned at the end of the output. If two separate processes open
the same file for append, each process may write freely to the file
without fear of destroying output being written by the other. The output
from the two processes will be intermixed in the file.

RETURN VALUE
Fopen and freopen return a NULL pointer if file-name cannot be
accessed and the external variable ermo may contain any of the values
listed for open(2).

SEE ALSO
creat(2), dup(2), open(2), pipe(2), fclose(3S), fseek(3S) .

RELATIONSHIP TO SVID
Identical to the SVID entry.

Part II Page : FOPEN(3S).2 X/OPEN Portability Guide (July 1985)

(

(

(

(

Subroutines FREAD(3S)

NAME
fread, fwrite - binary input/output

SYNOPSIS
#include <stdio.h>

#include <sys/types.h>

int fread (ptr, size, nitems, stream)
char *ptr;
size_t size;
int nitems;
FILE *stream;

int fwrite (ptr, size, nitems, stream)
char *ptr;
size_t size;
int nitems;
FILE *stream;

DESCRIPTION
Fread copies, into an array pOinted to by ptr, nitems items of data from
the named input stream, where an item of data is a sequence of bytes
(not necessarily terminated by a null byte) of length size. Fread stops
appending bytes if an end-of-file or error condition is encountered while
reading stream, or if nitems items have been read. Fread leaves the file
pOinter in stream, if defined, pointing to the byte following the last byte
read if there is one. Fread does not change the contents of stream.

Fwrite appends at most nitems items of data from the array pOinted to
by ptr to the named output stream. Fwrite stops appending when it has
appended nitems items of data or if an error condition is encountered on
stream. Fwrite does not change the contents of the array pointed to by
ptr. Fwrite increments the file pointer in stream , if defined, by the
number of bytes written.

RETURN VALUE
Fread and twrite return the number of items read or written. If size or
nitems is non-positive, no characters are read or written and 0 is
returned by both tread and twrite .

SEE ALSO
read(2), write(2), ferror(3S), fopen(3S), getc(3S), gets(3S), printf(3S),
putc(3S), puts(3S), scanf(3S).

APPLICATION USAGE
The argument size is typically sizeot(*ptr) where the C operator sizeof
gives the length of an item pointed to by ptr. If ptr pOints to a data type
other than char it should be cast into a pointer to char.

X/OPEN Portability Guide (July 1985) Part II Page : FREAD(3S).1

FREAD(3S) Subroutines

Ferror(3S) or teot(3S) must be used to distinguish between an error
condition and an end-of-file condition.

RELATIONSHIP TO SVID
Identical to the SVID entry, except that the parameters of tread and twrite
that are declared to be of type size_t are of type int in the SVID. Also, to
define this type the header file < sys/types.h> is specified for inclusion .
This is a FUTURE DIRECTION in the SVID.

Part II Page: FREAO(3S).2 X/OPEN Portability Guide (July 1985)

(

(

(

(

Subroutines FREXP(3C)

NAME
frexp, Idexp, modf - manipulate parts of floating-point numbers

SYNOPSIS
double frexp (value, eptr)
double value;
int *eptr;

double Idexp (value, exp)
double value;
int exp;

double modf (value, iptr)
double value, * iptr;

DESCRIPTION
Every non-zero number can be written uniquely as x * 2n

, where the
" mantissa" (fraction) x is in the range 0.5 = I x I < 1.0, and the
"exponent" n is an integer. Frexp returns the mantissa of a double
value, and stores the exponent indirectly in the location pOinted to by
eptr. If value is zero (0), both results returned by frexp are zero.

Ldexp returns the quantity value * 2exp
.

Madf returns the signed fractional part of value and stores the integral
part indirectly in the location pOinted to by iptr.

RETUR VALUE
If Idexp would cause overflow, ± HUGE is returned (according to the sign
of value), and erma is set to [ERANGE).
If Idexp would cause underflow, 0 is returned and erma is set to
[ERANGEJ.

FUTURE DIRECTIONS
A macro HUGE_VAL will be defined in the header file < math.h > . This
macro will call a function which will either return - 00 on a system sup­
porting the IEEE P754 standard, or +{MAXDOUBLE} on a system which
does not.

The return value Idexp will be ±HUGE_VAL (according to the sign of
value) in case of overflow.

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/OPEN Portability Guide (July 1985) Part II Page : FREXP(3C) .1

(

(

(

Subroutines FSEEK(3S)

NAME
fseek, rewind, ftell - reposition a file pOinter in a stream

SYNOPSIS
#include < unistd.h >
#include < stdio.h>

int fseek (stream, offset, ptrname)
FILE *stream;
long offset;
int ptrname;

void rewind (stream)
FILE *stream;

long ftell (stream)
FILE *stream;

DESCRIPTION
Fseek sets the position of the next input or output operation on the
stream. The new position is at the signed distance offset bytes from the
beginning, from the current position, or from the end of the file, respec­
tively, as ptrname takes the value SEEK_SET, SEEK_CUR or SEEK_END t .
Rewind(stream) is equivalent to fseek(stream, OL, 0), except that no
value is returned.

Fseek and rewind undo any effects of ungetc(3S) .

After fseek or rewind, the next operation on a file opened for update
may be either input or output.

Ftell returns the offset of the current byte relative to the beginning of the
file associated with the named stream . The offset is always measured in
bytes.

SEE ALSO
Iseek(2), fopen(3S), ungetc(3S) .

RETURN VALUE
Fseek returns non-zero for improper seeks, otherwise zero. An improper
seek can be, for example, an fseek done on a file that has not been
opened via fopen; particularly, fseek may not be used on a terminal, or
a file opened via popen(3S):j: .

RELATIONSHIP TO SVID
t SVID does not use symbolic values - SEEK_SET, SEEK_CUR and
SEEK_END for ptrname.
Wording change at end of Return Value. The SVID reads" ... via fopen ;
particularly, fseek may not be used on a terminal or a file opened vi
popen(OS) .

X/OPEN Portability Guide (July 1985) Part II Page: FSEEK(3S) .1

(

(

(

Subroutines FTW(3C)

NAME
ftw - walk a file tree

SYNOPSIS
#include < f1w.h >

int ftw (path, fn, depth)
char *path;
int (*fn) 0;
int depth;

DESCRIPTION
Ftw recursively descends the directory hierarchy rooted in path . For
each object in the hierarchy, ftw calls tn, passing it a pointer to a null­
terminated character string containing the name of the object, a pOinter
to a stat structure (see s(at(2)) containing information about the object,
and an integer. Possible values of the integer, defined in the < f1w.h >
header file, are FTWJ for a file, FTW_D for a directory, FTW_DNR for a
directory that cannot be read, and FTW_NS for an object for which stat
could not successfully be executed. If the integer is FTW_DNR, descen­
dants of that directory will not be processed. If the integer is FTW_NS,
the stat structure will contain garbage. An example of an object that
would cause FTW_NS to be passed to tn would be a file in a directory
with read but without execute (search) permission .

Ftw visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation of
tn returns a non-zero value, or some error is detected within ftw (such
as an I/ O error) . If the tree is exhausted, ftw returns zero (0) . If tn
returns a non-zero value, ftw stops its tree traversal and returns what­
ever value was returned by tn. If ftw detects an error, it returns -1,
and sets the error type in ermo.

Ftw uses one file descriptor for each level in the tree. The depth argu­
ment limits the number of file descriptors so used. If depth is zero or
negative, the effect is the same as if it were 1. Depth must not be
greater than the number of file descriptors currently available for use.
Ftw will run more quickly if depth is at least as large as the number of
levels in the tree.

SEE ALSO
stat(2) , malloc(3X).

APPLICATION USAGE
Because ftw is recursive, it is possible for it to terminate with a memory
fault when applied to very deep file structures.

X/ OPEN Portability Guide (July 1985) Part II Page : FlW(3C).1

FTW(3C) Subroutines

Ftw uses mal/oc(3X) to allocate dynamic storage during its operation. If
ftw is forcibly terminated, such as by longjmp being executed by fn or
an interrupt routine, ftw will not have a chance to free that storage, so it
will remain permanently allocated. A safe way to handle interrupts is to
store the fact that an interrupt has occurred, and arrange to have fn
return a non-zero value at its next invocation .

RELATIONSHIP TO SVID
Identical to the SVID entry .

Part II Page: FTW(3C).2 X/OPEN Portability Guide (July 1985)

(

(

(

(

Subroutines GAMMA(3M)

NAME
gamma, signgam - log gamma function (OPTIONAL)

SYNOPSIS
#include < math.h >

double gamma (x)
double x;

extern int signgam;

DESCRIPTION

Gamma returns In(I f(x) I), where f(x) is defined as f e- 1tx - 1 dt. The
o

sign of f(x) is returned in the external integer signgam. The argument
x may not be a non-positive integer.

The following C program fragment might be used to calculate f :

if ((y = gamma(x)) > LN_MAXDOUBLE)
error() ;

y = signgam * exp(y);

where LN_MAXDOUBLE is the least value that causes exp(3M) to return a
range error, and is defined in the < values.h > header file.

RETURN VALUE
For non-negative integer arguments HUGE is returned, and ermo is set to
[EDOM]. A message indicating SING error is printed on the standard
error output.

If the correct value would overflow, gamma returns HUGE and sets ermo
to [ERANGE].

These error-handling procedures may be changed with the function
matherr(3M).

SEE ALSO
exp(3M), matherr(3M).

FUTURE DIRECTIONS
A macro HUGE_VAL will be defined in the header file < math.h >. This
macro will call a function which will either return + 00 on a system sup­
porting IEEE P754 standard or +{MAXDOUBLE} on a system that does
not support the IEEE P754 standard.
If the correct value overflows, gamma will return HUGE_VAL.

RELATIONSHIP TO SVID
Identical to the SVID entry, with the addition of signgam to the NAME
section . The optional mathematical group is mandatory in SVID.

X/OPEN Portability Guide (July 1985) Part II Page : GAMMA(3M).1

(

(

(

(

Subroutines GETC(3S)

NAME
getc, getchar, fgetc, getw - get character or word from a stream

SYNOPSIS
#include <stdio.h>

int getc (stream)
FILE -stream;

int getchar ()

int fgetc (stream)
FILE -stream;

int getw (stream)
FILE -stream;

DESCRIPTION
Getc returns the next character (i.e., byte) from the named input stream,
as an integer. It also moves the file pOinter, if defined, ahead one char­
acter in stream. Getchar is defined as getc(stdin). Getc and getchar
are macros.

Fgetc behaves like getc, but is a function rather than a macro. Fgetc
runs more slowly than getc, but it takes less space per invocation and its
name can be passed as an argument to a function .

Getw returns the next word (i.e. integer) from the named input stream.
Getw increments the associated file pointer, if defined, to point to the
next word. The size of a word is the size of an integer and varies from
machine to machine. Getw assumes no special alignment in the file.

RETURN VALUE
These functions return the constant EOF at end-of-file or upon an error.
Because EOF is a valid integer, ferror(3S) should be used to detect getw
errors.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), gets(3S), putc(3S),
scanf(3S).

APPLICATION USAGE
If the integer value returned by getc, getchar, or fgetc is stored into a
character variable and then compared against the integer constant EOF,
the comparison may never succeed, because sign-extension of a char­
acter on widening to integer is machine-dependent.

Because of possible differences in word length and byte ordering, files
written using putw are machine-dependent, and may not be read using
getw on a different processor.

X/OPEN Portability Guide (July 1985) Part II Page : GETC(3S).1

GETC(3S) Subroutines

Because it is implemented as a macro, getc treats incorrectly a stream
argument with side effects. In particular, getc (*t+ +) does not work
sensibly. Fgetc should be used instead.

RELATIONSHIP TO SVID
Identical to the SVID entry.

Part II Page: GETC(3S) .2 X/ OPEN Portability Guide (July 1985)

(

(

(

(

Subroutines GETCWD(3C)

NAME
getcwd - get path-name of current working directory

SYNOPSIS
char *getcwd (buf, size)
char *buf;
int size;

DESCRIPTION

ERRORS

Getcwd returns a pointer to the current directory path-name. The value
of size must be at least two greater than the length of the path-name to
be returned.

If buf is a NULL pointer, getcwd will obtain size bytes of space using
mal/ac(3X) . In this case, the pointer returned by getcwd may be used
as the argument in a subsequent call to free.

[EINVAL)

[ENOMEM)

[ERANGE)

size is zero

no space available

size not large enough to hold the path-name.

RETURN VALUE
Returns NULL with erma set if size is not large enough, or if an error
occurs in a lower-level function .

SEE ALSO
malloc(3X).

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/OPEN Portability Guide (July 1985) Part II Page: GETCWD(3C) .1

(

(

(

(

Subroutines

NAME
getenv - return value for environment name

SYNOPSIS
char *getenv (name)
char *name;

DESCRIPTION

GETENV(3C)

Getenv searches the environment list for a string of the form "name =

value ", and returns a pointer to the value in the current environment if
such a string is present. Otherwise a NULL pOinter is returned.

SEE ALSO
exec(2), putenv(3C).

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/OPEN Portability Guide (July 1985) Part II Page : GETENV(3C) .1

(

(

(

(

Subroutines GETGRENT(3C)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent - get group file entry

SYNOPSIS
#include < grp.h >

struct group *getgrent ();

struct group *getgrgid (gid)
int gid;

struct group *getgrnam (name)
char *name;

int setgrent ();

int endgrent ();

DESCRI PTION

FI LES

Getgrent, getgrgid and getgrnam each return pointers to an object with
the following structure containing the broken-out fields of a line in the
group file.

char *gcname;
char *gcpasswd;
int gr_gid;
char **gcmem;

The members of this structure are:

gcname
gr-passwd
grJJid

The name of the group.
The encrypted password of the group.
The numerical group 10.
Null-terminated vector of pOinters to the indivi­
dual member names.

Getgrent reads the next line of the file, so successive calls may be used
to search the entire file. Getgrgid and getgrnam search from the begin­
ning of the file until a matching gid or name is found or EOF is encoun­
tered .

A call to setgrent has the effect of rewinding the group file to allow
repeated searches. Endgrent may be called to close the group file when
processing is complete.

/ etc / group

SEE ALSO
getlogin(3C), getpwent(3C), group(4).

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

XiOPEN Portability Guide (July t 985) Part II Page : GETGRENT(3C) .1

GETGRENT (3C) Subroutines

APPLICATION USAGE
All information is contained in a static area so it must be copied if it is to
be saved.

RELATIONSHIP TO SVID
This function is not included in the SVID. It comes from UNIX System V
Release 2.0.

Part II Page : GETGRENT(3C) .2 X/ OPEN Portability Guide (July 1985)

(

(

(

(

Subroutines GETLOGIN(3C)

NAME
getlogin - get login name

SYNOPSIS
cnar *getlogin ();

DESCRIPTION

FILES

lietlogm returns a pointer to the login name as found in letc/utmp. It
may be used in conjunction with getpwnam(3C) to locate the correct
password file entry when the same user 10 is shared by several login
names.

If getlogin is called within a process that is not attached to a typewriter,
it returns NULL. The correct procedure for determining the login name is
to call cuserid(3S) , or to call getlogin and if it fails, to call getpwuid(3C).

l etc / utmp

SEE ALSO
cuserid(3S), getgrent(3C), getpwent(3C), utmp(5).

DIAGNOSTICS
Heturns NULL if name not found .

APPLICATION USAGE
The return values point to static data whose content is overwritten by
each call.

RELATIONSHIP TO SVID
This function is not included in the SVID. It comes from UNIX System V
Release 2.0.

X/OPEN Portability Guide (July 1985) Part II Page : GETLOGIN(3C) .1

(

(

(

(

Subroutines GETOPT(3C)

NAME
getopt - get option letter from argument vector

SYNOPSIS
int getopt (argc, argv, optstring)
int argc;
char *argv [], *optstring;

extern char *optarg ;
extern int optind, opterr;

DESCRIPTION
Getopt is a command line parser. It returns the next option letter in argv
that matches a letter in optstring . Optstring is a string of recognized
option letters; if a letter is followed by a colon, the option is expected to
have an argument that mayor may not be separated from it by white
space. Optarg is set to point to the start of the option argument on
return from getopt.

Getopt places in optind the argv index of the next argument to be pro­
cessed . The external variable optind is initialized to 1 before the first call
to getopt.

When all options have been processed (i.e., up to the first non-option
argument), getopt returns EOF. The special option -- may be used to
delimit the end of the options; EOF will be returned, and -- will be
skipped .

RETURN VALUE
Getopt prints an error message on stderr and returns a question mark
(?) when it encounters an option letter not included in optstring. This
error message may be disabled by setting opterr to zero (0) .

EXAMPLE
The following code fragment shows how one might process the argu­
ments for a command that can take the mutually exclusive options a and
b, and the options f and 0 , both of which require arguments:

main (argc, argv)
int argc;
char **argv;
{

int c;
int bflg, aflg, errflg;
char *ifile;
char *ofile;
extern char *optarg;
extern int optind;

X/OPEN Portability Guide (July 1985) Part II Page : GETOPT(3C).1

GETOPT(3C)

FUTURE DIRECTIONS

Subroutines

while ((c = getopt(argc, argv, " abf :o: " » != EOF)
switch (c) (
case 'a' :

if (bflg)

else

break;
case 'b':

if (aflg)

else

break;
case '1':

errflg+ +;

aflg++;

errflg+ +;

bproc();

ifile = optarg;
break;

case '0':
ofile = optarg;
break;

case '?':
errflg+ +;

}
if (errflg) (

}

fprintf(stderr, "usage: . .. ");
exit (2);

for (; optind < argc; optind+ +) {
if (access(argv[optind], 4» {

getopt will be enhanced to enforce all rules of the System V Command
Syntax Standard.

RELATIONSHIP TO SVID
Identical to the SVID entry.

Part II Page : GETOPT(3C).2 X/ OPEN Portability Guide (July 1985)

(

(

(

(

Subroutines

NAME
get pass - read a password

SYNOPSIS
char *getpass (prompt)
char *prompt;

DESCRIPTION

GETPASS(3C)

Getpass reads a password from the file Idev/tty, or if that cannot be
opened, from the standard input, after prompting with the null-terminated
string prompt and disabling echoing. A pointer is returned to a null­
terminated string of at most 8 characters.

FILES
/ dev / tty

SEE ALSO
crypt(3C).

APPLICATION USAGE
The return value paints to static data whose content is overwritten by
each call.

RELATIONSHIP TO SVID
This function is not included in the SVID. It comes from UNIX System V
Release 2.0.

X/OPEN Portability Guide (July 1985) Part II Page : GETPASS(3C).1

(

(

(

(

Subroutines

NAME
getpw - get name from UID

SYNOPSIS
getpw (uid, but)
int uid;
char *but;

DESCRIPTION

GETPW(3C)

Getpw searches the password file for the (numerical) uid, and fills in but
with the corresponding line; it returns non-zero if uid could not be found.
The line is null-terminated.

This routine is included only for compatibility with prior systems and
should not be used, see getpwent(3C) for routines to use instead.

FILES
I etc I passwd

SEE ALSO
getpwent(3C), passwd(5).

DIAGNOSTICS
Non-zero return on error.

RELATION~HIP TO SVID
This function is not included in the SVID. It comes from UNIX System V
Release 2.0.

X/ OPEN Portability Guide (July 1985) Part II Page : GETPW(3C) .1

(

(

(

(

Subroutines GETPWENT(3C)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent - get password
file entry

SYNOPSIS
#include <pwd.h>

struct passwd *getpwent ();

struct passwd *getpwuid (uid)
int uid;

struct passwd *getpwnam (name)
char *name;

int setpwent ();

int endpwent ();

DESCRIPTION
Getpwent, getpwuid and getpwnam each return a pointer to an object
with the following structure containing the broken-out fields of a line in
the password file.

struet passwd
char *pw_name;
char *pw_passwd;
int pw_uid;
int pw_gid;
char *pw_age;
char *pw_comment;
char *pw_gecos;
char *pw_dir;
char *pw_shell;

struet comment
char *c_dept;
char *c_name;
char *c_acct;
char *c_bin:

The pw_comment field is unused; the others have meanings described in
passwd(5).

Getpwent reads the next line in the file, so successive calls can be used
to search the entire file. Getpwuid and getpwnam search from the
beginning of the file until a matching uid or name is found, or EOF is

X/ OPEN Portability Guide (July 1985) Part II Page : GETPWENT(3C) .1

GETPWENT(3C) Subroutines

encountered.

A call to setpwent has the effect of rewinding the password file to allow
repeated searches. Endpwent may be called to close the password file
when processing is complete.

FILES
l etc / passwd

SEE ALSO
getlogin(3C), getgrent(3C), passwd(5).

DIAGNOSTICS
Null pointer returned on EOF or error.

APPLICATION USAGE
All information is contained in a static area so it must be copied if it is to
be saved.

RELATIONSHIP TO SVID
This function is not included in the SVID. It comes from UNIX System V
Release 2.0.

Part II Page : GETPWENT(3C) .2 X/OPEN Portability Guide (July 1985)

(

(

(

(

Subroutines GETS(3S)

NAME
gets, fgets - get a string from a stream

SYNOPSIS
include < stdio.h>

char *gets (s)
char *s;

char *fgets (s, n, stream)
char *s;
int n;
FILE *stream;

DESCRIPTION
Gets reads characters from the standard input stream, stdin, into the
array pointed to by s , until a new-line character is read or an end-of-file
condition is encountered . The new-line character is discarded and the
string is terminated with a NULL character.

Fgets reads characters from the stream into the array pointed to by s ,
until n-1 characters are read , or a new-line character is read and
transferred to s, or an end-of-file condition is encountered . The string is
then terminated with a NULL character.

RETURN VALUE
If end-of-file is encountered and no characters have been read, no char­
acters are transferred to s and a NULL pointer is returned . If a read
error occurs, such as trying to use these functions on a file that has not
been opened for reading, a NULL pointer is returned . Otherwise s is
returned.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), getc(3S), scanf(3S).

APPLICATION USAGE
Reading a line that is too long through gets causes gets to break. The
use of fgets is recommended.

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/OPEN Portability Guide (July 1985) Part II Page: GETS(3S).1

(

(

(

Subroutines GETUT(3C)

NAME
getutent, getutid , getutline, pututline, setutent, endutent, utmpname -
access utmp file entry

SYNOPSIS
include < utmp.h >

struct utmp *getutent ()

struct utmp *getutid (id)
struct utmp * id ;

struct utmp *getutline (line)
struct utmp *Iine;

void pututline (utmp)
struct utmp *utmp;

void setutent ()

void endutent ()

void utmpname (file)
char *file;

DESCRIPTION
Getutent , getutid and getutline each return a pointer to a structure con­
taining the following members:

struct utmp

char
char
char
short
short
struct exiCstatus

uCuser[8];
uUd[4];
uUine[12];
ut_pid;
uUype;
ut_exit;

uUime;

struct exiCstatus contains

1* User login name *1
1* l etc / inittab id (usually line #) *1
I * device name (console, Inxx) * I
I * process id * I
I * type of entry * I
I * The exit status of a process
* marked as DEAD_PROCESS. * I

I * time entry made * I

short e_termination ; 1* Process termination status * I
short e_exit; 1* Process exit

Getutent reads in the next entry from a utmp-like file. If the file is not
already open , it opens it. If it reaches the end of the file, it fails .

Getutid searches forward from the current point in the utmp file until it
finds an entry with a uUype matching id->uUype if the type specified
is RUN_LVL , BOOT_TIME, OLD_TIME or NEW_TIME. If the type specified in
uUype is INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS or
DEAD_PROCESS, then getutid will return a pointer to the first entry whose

X/ OPEN Portability Guide (July 1985) Part II Page : GETUT(3C). 1

GETUT(3C) Subroutines

FILES

type is one of these four and whose uUd field matches id-> uUd. If
the end of file is reached without a match, it fails.

Getutline searches forward from the current point in the utmp file until it
finds an entry of the type LOGIN_PROCESS or USER_PROCESS which also
has a uUine string matching the line-> uUine string. If the end of file
is reached without a match, it fails.

Pututline writes out the supplied utmp structure into the utmp file. It uses
getutid to search forward for the proper place if it finds that it is not
already at the proper place. It is expected that normally the user of
pututline will have searched for the proper entry using one of the getut
routines. If so, pututline will not search. If pututline does not find a
matching slot for the new entry, it will add a new entry to the end of the
file.

Setutent resets the input stream to the beginning of the file. This should
be done before each search for a new entry if it is desired that the entire
file be examined .

Endutent closes the currently open fi le.

Utmpname allows the user to change the name of the file examined,
from /etc/utmp to any other file. It is most often expected that this other
file will be /etc/wtmp. If the file doesn't exist, this will not be apparent
until the first attempt to reference the file is made. Utmpname does not
open the file. It just closes the old file if it is currently open and saves
the new file name.

/ etc / utmp
/ etc / wtmp

SEE ALSO
ttyslot(3C), utmp(5).

DIAGNOSTICS
A NULL pOinter is returned upon failure to read, whether for permissions
or having reached the end of file, or upon failure to write .

APPLICATION USAGE
The most current entry is saved in a static structure. Multiple accesses
require that it be copied before further accesses are made. Each call to
either getutid or getutline sees the routine examine the static structure
before performing more I/ O. If the contents of the static structure match
what it is searching for, it looks no further. For this reason to use getut­
line to search for multiple occurrences, it would be necessary to zero
out the static after each success, or getutline would just return the same
pOinter over and over again. There is one exception to the rule about
removing the structure before further reads are done. The implicit read

Part II Page: GETUT(3C).2 X/OPEN Portability Guide (July 1985)

(

(

(

(

Subroutines GETUT(3C)

done by pututline if it finds that it isn't already at the correct place in the
file will not hurt the contents of the static structure returned by the getu­
tent, getutid or getutline routines, if the user has just modified those
contents and passed the pointer back to pututline .

These routines use buffered standard 1/0 for input, but pututline uses an
unbuffered non-standard write to avoid race conditions between
processes trying to modify the utmp and wtmp files .

RELATIONSHIP TO SVID
This function is not included in the SVID. It comes from UNIX System V
Release 2.0.

X/OPEN Portability Guide (July 1985) Part II Page : GETUT(3C).3

(

(

(

(

Subroutines HSEARCH (3C)

NAME
hsearch, hcreate, hdestroy - manage hash search tables

SYNOPSIS
#include < search .h>

ENTRY * hsearch (item, action)
ENTRY item;
ACTION action;

int hcreate (nel)
unsigned nel;

void hdestroy ()

DESCRIPTION
Hsearch is a hash-table search routine generalized from Knuth (6.4)
Algorithm D. It returns a pointer into a hash table indicating the location
at which an entry can be found . Item is a structure of type ENTRY
(defined in the < search.h > header file) containing two pointers:
item.key pOints to the comparison key, and item.data points to any other
data to be associated with that key. (Pointers to types other than char­
acter should be cast to pointer-to-character.) Action is a member of an
enumeration type ACTION indicating the disposition of the entry if it can­
not be found in the table. ENTER indicates that the item should be
inserted in the table at an appropriate point. FIND indicates that no entry
should be made. Unsuccessful resolution is indicated by the return of a
NULL pOinter.

Hcreate allocates sufficient space for the table, and must be called
before hsearch is used. Ne/ is an estimate of the maximum number of
entries that the table will contain. This number may be adjusted upward
by the algorithm in order to obtain certain mathematically favorable cir­
cumstances.

Hdestroy destroys the search table, and may be followed by another call
to hcreate .

RETURN VALUE
Hsearch returns a NULL pointer if either the action is FIND and the item
could not be found or the action is ENTER and the table is full.

Hcreate returns zero (0) if it cannot allocate sufficient space for the
table.

SEE ALSO
bsearch(3C), Isearch(3C), malloc(3X), string(3C), tsearch(3C) .

APPLICATION USAGE
Hsearch and hcreate use mal/oc(3X) to allocate space. Hsearch uses
open addressing with a multiplicative hash function. However, its source

X/ OPEN Portability Guide (July 1985) Part II Page: HSEARCH(3C) .1

HSEARCH(3C) Subroutines

code has many other options available which the user may select by
compiling the hsearch source with the following symbols defined to the
preprocessor:

DIV Use the remainder modulo table size as the hash
function instead of the multiplicative algorithm.

USCR Use a User Supplied Comparison Routine for ascer­
taining table membership. The routine should be
named hcompar and should behave in a manner
similar to strcmp, see string(3C).

CHAINED Use a linked list to resolve collisions. If this option is
selected, the following other options become avail­
able:

START Place new entries at the beginning of the
linked list (default is at the end).

SORTUP Keep the linked list sorted by key in
ascending order.

SORT DOWN Keep the linked list sorted by key in des-
cending order.

Additionally, there are preprocessor flags for obtaining debugging prin­
tout (-DDEBUG) and for including a test driver in the calling routine (­
DDRIVER). The source code should be consulted for further details.

EXAMPLE
The following example will read in strings followed by two numbers and
store them in a hash table, discarding duplicates. It will then read in
strings and find the matching entry in the hash table and print it out.

#include < stdio.h>
#include < search.h>

struct info { / * this is the info stored in the table * /
int age, room; / * other than the key. * /

} ;
#define NUM_EMPL 5000 / * # of elements in search table * /

maine)
{

/ * space to store strings * /
char string_space[NUM_EMPL*20) ;
/ * space to store employee info * /
struct info info_space[NUM_EMPL);
/ .,; next avail space in string_space * /
char *stcptr = string_space;

Part II Page : HSEARCH(.3C) .2 X/ OPEN Portability Guide (July 1985)

(

(

(

(

Subroutines

/ * next avail space in info_space * /
struct info *info_ptr = info_space;
ENTRY item, *found_item, *hsearch();
/ * name to look for in table * /
char name_to_find(30);
int i = 0;

/ * create table * /
(void) hcreate(NUM_EMPL);

HSEARCH(3C)

while (scanf("%s%d%d", str_ptr, &info_ptr - >age,
&info_ptr- > room) != EOF && i+ + < NUM_EMPL)
/* put info in structure, and structure in item */
item. key = str_ptr;
item.data = (char *)info_ptr;
str_ptr + = strlen(stcptr) + 1;
info_ptr+ +;
/ * put item into table * /
(void) hsearch(item, ENTER);

/ * access table * /
item.key = name_to_find;
while (scanf("%s", item.key) != EOF) {

if ((found_item = hsearch(item, FIND)) != NULL) {
/ * if item is in the table * /
(void)printf("found %s, age = %d, room = %d \ n",

found_item - > key,

} else {

((struct info *)found_item - >data) - > age,
((struct info *)foundjtem - > data) - > room);

(void)printf("no such employee %s \ n",
name_to_find)

FUTURE DIRECTIONS
The restriction of having only one hash search table active at any given
time will be removed.

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/OPEN Portability Guide (July 1985) Part II Page: HSEARCH(3C).3

(

(

(

(

Subroutines HVPOT(3M)

NAME
hypot - Euclidean distance function (OPTIONAL)

SYNOPSIS
#include < math.h >

double hypot (x, y)
double x, y;

DESCRIPTION
Hypot returns

sqrt(x * x + Y * y),

taking precautions against unwarranted overflows .

RETURN VALUE
When the correct value would overflow, hypot returns HUGE and sets
ermo to [ERANGE).

These error-handling procedures may be changed with the function
matherr(3M).

SEE ALSO
matherr(3M).

FUTURE DIRECTIONS
A macro HUGE_VAL will be defined in the header file <math.h>. This
macro will call a function which will either return + 00 on a system sup­
porting IEEE P754 standard or +{MAXDOUBLE} on a system that does
not support the IEEE P754 standard.
If the correct value overflows, hypot will return HUGE_VAL.

RELATIONSHIP TO SVID
Identical to the SVID entry. The optional mathematical group is manda­
tory in SVID.

X/OPEN Portability Guide (July 1985) Part II Page: HYPOT(3M) .1

(

(

(

Subroutines L3TOL(3C)

NAME
13tol, Itol3 - convert between 3-byte integers and long integers

SYNOPSIS
void 13tol (Ip, cp, n)
long * Ip;
char *cp;
int n;

void Itol3 (cp, Ip, n)
char *cp;
long *Ip;
int n;

DESCRIPTION
L3tol converts a list of n three-byte integers packed into a character
string pointed to by cp into a list of long integers pointed to by Ip .

Ltol3 performs the reverse conversion from long integers (lp) to three­
byte integers (cp) .

These functions are useful for file-system maintenance where the block
numbers are three bytes long.

APPLICATION USAGE
Because of possible differences in byte ordering, the numerical values of
the long integers are machine-dependent.

RELATIONSHIP TO SVID
This function is not included in the SVID. It comes from UNIX System V
Release 2.0.

X/OPEN Portability Guide (July 1985) Part II Page : L3TOL(3C).1

(

(

(

(

Subroutines LOCKF(3C)

NAME
lockf - record locking on files

SYNOPSIS
include < unistd.h >

lockf (fildes, function , size)
long size;
int fildes, function;

DESCRIPTION
The lockf routine will allow sections of a file to be locked. Lockf calls
from other processes which attempt to lock the locked file section will
either return an error value or be put to sleep until the resource
becomes unlocked. All the locks for a process are removed when the
process terminates. See fcntl(2) for more information about record lock­
ing.

Fildes is an open file descriptor. The file descriptor must have
O_WRONL Y or O_RDWR permission in order to establish a lock with this
function call.

Function is a control value which specifies the action to be taken . The
permissible values for function are defined in < unistd.h > as follows:

F _ULOCK 0 /* Unlock a previously locked section * /
F _LOCK 1 / * Lock a section for exclusive use * /
F_TLOCK 2 / * Test and lock a section for exclusive use * /
F _TEST 3 / * Test section for other processes' locks * /

All other values of function are reserved for future extensions and will
result in an error return if not implemented.

F _TEST is used to detect if a lock by another process is present on the
specified section . F _LOCK and F _ TLOCK both lock a section of a file if
the section is available. F _ULOCK removes locks from a section of the
file.

Size is the number of contiguous bytes to be locked or unlocked. The
resource to be locked starts at the current offset in the file, and extends
forward, for a positive size, or backwards for a negative size (the
preceding byte, up to but not including the current offset) . If size is zero
(0) the section from the current offset through {FCHR_MAX} is locked (i.e.
from the current offset through the present or any future end-of-file). An
area need not be allocated to the file in order to be locked, as locks may
exist past the end-of-file.

The sections locked with F_LOCK or F_TLOCK may, in whole or in part,
contain or be contained by a previously locked section lor the same pro­
cess. When this occurs, or if adjacent sections occur, the sections are

X/ OPEN Portability Guide (July 1985) Part II Page: LOCKF(3C) .1

LOCKF(3C) Subroutines

ERRORS

combined into a single section. If the request requires that a new ele­
ment be added to the table of active locks and this table is already full,
an [EDEADLK] error is returned , and the new section is not locked.

F _LOCK and F _ TLOCK requests differ only by the action taken if the
resource is not available. F_LOCK will cause the calling process to sleep
until the resource is available. F_TLOCK will cause the function to return
a -1 and set ermo to [EAGAIN] error if the section is already locked by
another process.

F _ULOCK requests may, in whole or in part, release one or more locked
sections controlled by the process. When sections are not fully
released, the remaining sections are still locked by the process. Releas­
ing the center section of locked section requires an additional element in
the table of active locks. If this table is full, an [EDEADLK] error is
returned, and the requested section is not released.

A potential for deadlock occurs if a process controlling a locked
resource is put to sleep by accessing another process's locked
resource. Thus calls to lockf(3C) , or fcnt/(2) scan for a deadlock prior
to sleeping on a locked resource. An error return is made if sleeping on
the locked resource would cause a deadlock.

Sleeping on a resource is interrupted with any signal. The alarm(2) rou­
tine may be used to provide a timeout facility in applications which
require this facility .

The lockf routine will fail if one or more of the following are true:

[EBADF]

[EAGAIN]

[EDEADLK]

tildes is not a valid file descriptor.

function is F _LOCK or F _TLOCK and the section is
already locked by another process.

function is F _LOCK or F _ TLOCK and a deadlock would
occur. Also the function is either of the above or
F _ULOCK and the number of entries in the system lock
table would exceed {LOCK_MAX}.

RETURN VALUE
Upon successful completion, a value of a is returned. Otherwise, a
value of -1 is returned and ermo is set to indicate the error.

SEE ALSO
chmod(2), close(2), creat(2), fcntl(2), open(2), read(2), write(2),
unistd(5).

APPLICATION USAGE
Record and file locking should not be used in combination with the
stdio(3S) routines: fopen(3S), fread(3S) , fwrite(3S) , etc. Instead, the

Part II Page: LOCKF(3C).2 X/OPEN Portability Guide (July 1985)

(

(

(

(

Subroutines LOCKF(3C)

more primitive, non-buffered routines, e.g. open(2) should be used.
Unexpected results may occur in processes that do buffering in the user
address space. The process may later read / write data which is / was
locked. The standard I/ O package is the most common source of unex­
pected buffering.

FUTURE DIRECTIONS
Mandatory or enforcement-mode file and record locking will be added.

RELATIONSHIP TO SVID
Identical to the SVID entry, except for corrections / wording changes as
follows:
a) SVID had F _UNLOCK instead of F _ULOCK in sixth paragraph of descrip­
tion.
b) The word " file" has been substituted for "open" in the [EBADF]
definition.
c) In SVID the end of [EDEADLK] reads: "". and there are not enough
entries in the system lock table to honor the request".
d) In [EAGAIN] the SVID erroneously refers to F_TEST instead of F_TLOCK.

X/ OPEN Portability Guide (July 1985) Part II Page : LOCKF(3C) .3

(

(

(

Subroutines

NAME
log name - return login name of user

SYNOPSIS
char *Iogname ()

DESCRIPTION

LOGNAME(3X)

Logname returns a pOinter to the null-terminated login name; it extracts
the LOGNAME variable from the user's environment.

FILES
/ etc / profile

SEE ALSO
environ(5).

APPLICATION USAGE
The return values point to static data whose content is overwritten by
each call.

RELATIONSHIP TO SVID
This function is not included in the SVID. It comes from UNIX System V
Release 2.0.

X/ OPEN Portability Guide (July 1985) Part II Page : LOGNAME(3X) .1

(

(

(

(

Subroutines LSEARCH (3C)

NAME
Isearch, Ifind - linear search and update

SYNOPSIS
include < search .h>

char * Isearch (key, base, nelp, width , compar)
char *key;
char *base;
unsigned *nelp;
unsigned *width;
int (*compar)();

char *Ifind (key, base, nelp, width, compar)
char *key;
char *base;
unsigned *nelp;
unsigned *width;
int (*compar)() ;

DESCRIPTION
Lsearch is a linear search routine generalized from Knuth (6.1) Algo­
rithm S. It returns a pointer into a table indicating where a datum may
be found . If the datum does not occur, it is added at the end of the
table. Key points to the datum to be sought in the table. Base points to
the first element in the table. Width is the size of an element in bytes.
Ne'p points to an integer containing the current number of elements in
the table. The integer is incremented if the datum is added to the table.
Campar is the name of the comparison function which the user must
supply (strcmp, for example). It is called with two arguments that point
to the elements being compared. The function must return zero (0) if
the elements are equal and non-zero otherwise.

Lfind is the same as 'search except that if the datum is not found, it is
not added to the table. Instead, a NULL pointer is returned.

RETURN VALUE
If the searched for datum is found , both 'search and !find return a
pOinter to it. Otherwise, !find returns NULL and 'search returns a pointer
to the newly added element.

SEE ALSO
bsearch(3C), hsearch(3C), tsearch(3C).

APPLICATION USAGF
The pointers to the key and the element at the base of the table should
be of type pointer-to-element, and cast to type pOinter-to-character.
The comparison function need not compare every byte, so arbitrary data
may be contained in the elements in addition to the values being

X/OPEN Portability Guide (July 1985) Part II Page : LSEARCH(3C) .1

LSEARCH (3C) Subroutines

compared.
Although declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

Undefined results can occur if there is not enough room in the table to
add a new item.

EXAMPLE
This fragment will read in <= TABSIZE strings of length < = ELSIZE and
store them in a table , eliminating duplicates.

#include <stdio.h>
#include <search.h>

#define T ABSIZE 50
#define ELSIZE 120

char line[ELSIZE], tab[TABSIZE][ELSIZE], *Isearch();
unsigned nel = 0;
int strcmp();

while (fgets(line, ELSIZE, stdin) != NULL &&
nel < TABSIZE)

FUTURE DIRECTIONS

(void) Isearch(line, (char *)tab, &nel,
ELSIZE, strcmp);

A NULL pointer will be returned with erma set appropriately, if there is
not enough room in the table to add a new item.

RELATIONSHIP TO SVID
Identical to the SVID entry.

Part II Page : LSEARCH(3C) .2 X/OPEN Portability Guide (July 1985)

(

(

(

(

Subroutines MALLOC(3X)

NAME
malloc, free, realloc, calloc, mallopt, mall info - fast main memory allo­
cator

SYNOPSIS
include < malloc.h >

char *malloc (size)
unsigned size;

void free (ptr)
char *ptr;

char *realloc (ptr, size)
char *ptr;
unsigned size;

char *calloc (nelem, elsize)
unsigned nelem, elsize;

int mallopt (cmd, value)
int cmd, value;

struct mall info mallinfo ();

DESCRIPTION
Mal/oc and free provide a simple general-purpose memory allocation
package.

Mal/oc returns a pOinter to a block of at least size bytes suitably aligned
for any use.

The argument to free is a pointer to a block previously allocated by mal­
lac ; after free is performed this space is made available for further allo­
cation.

Undefined results will occur if the space assigned by mal/oc is overrun
or if some random number is handed to free.

Real/oc changes the size of the block pointed to by ptr to size bytes and
returns a pointer to the (possibly moved) block. The contents will be
unchanged up to the lesser of the new and old sizes.

Gal/oc allocates space for an array of nelem elements of size elsize.
The space is initialized to zeros.

Mal/opt provides for control over the allocation algorithm. The available
values for cmd are:

Set maxfast to value. The algorithm allocates all blocks
below the size of maxfast in large groups and then doles
them out very quickly. The default value for maxfast is
zero (0).

X/OPEN Portability Guide (July 1985) Part II Page : MALLOC(3X). 1

MALLOC (3X) Subroutines

M_NLBLKS Set numlblks to value. The above mentioned "large
groups" each contain numlblks blocks. Numlblks must
be greater than zero. The default value for numlblks is
100.

Set grain to value . The sizes of all blocks smaller than
maxfast are considered to be rounded up to the nearest
multiple of grain . Grain must be greater than zero. The
default value of grain is the smallest number of bytes
which will allow alignment of any data type. Value will
be rounded up to a multiple of the default when grain is
set.

Preserve data in a freed block until the next mal/oc,
real/oc, or cal/oc. This option is provided only for com­
patibility with the old version of mal/oc and is not recom­
mended.

These values are defined in the < malloc.h> header file.

Mal/opt may be called repeatedly, but may not be called after the first
small block is allocated.

Mal/info provides information describing space usage. It returns the
structure mal/info which includes the following members:

int arena;
int ordblks;
int smblks;
int hblkhd;
int hblks;
int usmblks;
int fsmblks;
int uordblks;
int fordblks;
int keepcost;

I * total space in arena * I
I * number of ordinary blocks * I
I * number of small blocks * I
I * space in holding block headers * I
I * number of holding blocks * I
I * space in small blocks in use * I
I * space in free small blocks * I
I * space in ordinary blocks in use * I
I * space in free ordinary blocks * I
I * space penalty if keep option * I
1* is used * I

This structure is defined in the < malloc.h > header file.

Each of the allocation routines returns a pointer to space suitably aligned
(after possible pointer coercion) for storage of any type of object.

RETURN VALUE
Mal/oc, real/oc and cal/oc return a NULL pointer if there is not enough
available memory. When real/oc returns NULL, the block painted to by
ptr is left intact. If mal/opt is called after any allocation or if cmd or
value are invalid, non-zero is returned . Otherwise, it returns zero.

Part II Page : MALLOC(3X).2 X/ OPEN Portability Guide (July 1985)

(

(

(

(

Subroutines MALLOC(3X)

APPLICATION USAGE
This is the SVID version of malloc . An older (smaller) form may also
exist, providing only the functionality of malloc , free , realloc and calloc.
If both forms are present, it is the responsibility of the application
developers to ensure that the appropriate version is linked into their
applications. The system documentation will indicate in which library
which version of malloc can be found.

RELATIONSHIP TO SVID
Identical to the SVID malloc(OS) entry.

X/OPEN Portability Guide (July 1985) Part II Page: MALLOC(3X).3

(

(

(

(

Subroutines MATHERR(3M)

NAME
matherr - error-handling function (OPTIONAL)

SYNOPSIS
include < math.h>

int matherr (x)
struct exception *x;

DESCRIPTION
Matherr is invoked by functions in the Math Library when errors are
detected. Users may define their own procedures for handling errors, by
including a function named matherr in their programs. Matherr must be
of the form described above. When an error occurs, a pointer to the
exception structure x will be passed to the user-supplied matherr func­
tion. This structure, which is defined in the <math .h> header file
includes the following members:

int type;
char *name;
double arg1 , arg2, relval;

The element type is an integer describing the type of error that has
occurred, from the following list of constants (defined in the header file):

DOMAIN argument domain error
SING argument singularity
OVERFLOW overflow range error
UNDERFLOW underflow range error
TLOSS total loss of significance
PLOSS partial loss of significance

The element name pOints to a string containing the name of the function
that incurred the error. The variables arg1 and arg2 are the arguments
with which the function was invoked. Retval is set to the default value
that will be returned by the function unless the user's matherr sets it to a
different value.

If the user's matherr function returns non-zero, no error message will be
printed, and erma will not be set.

If matherr is not supplied by the user, the default error-handling pro­
cedures, described with the mathematical functions involved, will be
invoked upon error. These procedures are also summarized in the table
below. In every case, erma is set to [EDOM] or [ERANGE] and the pro­
gram continues.

FUTURE DIRECTIONS
The mathematical functions which return HUGE or ±HUGE on overflow
will return HUGE_VAL or ±HUGE_VAL respectively.

X/ OPEN Portability Guide (July 1985) Part II Page: MATHERR(3M).1

MATHERR(3M) Subroutines

EXAMPLE
#include <math .h>

int
matherr(x)
register struct exception *x;
{

switch (x->type) {
case DOMAIN:

/* change sqrt to return sqrt(-arg1), not 0 * /
if (!strcmp(x->name, "sqrt ")) {

x->retval = sqrt(-x-> arg1);
return (0); / * print message and set errno * /

}
case SING:

/ * all other domain or sing errors, print message and abort * /
fprintf(stderr, "domain error in %s \ n" , x-> name);
abort();

case PLOSS:

}

/ * print detailed error message * /
fprintf(stderr, "loss of significance in %s(%g) = %g \ n" ,

x->name, x-> arg1 , x-> retval);
return (1); /* take no other action */

return (0); / * all other errors, execute default procedure * /

Part II Page: MATHERR(3M).2 X/OPEN Portability Guide (July 1985)

(

(

(

(

Subroutines MATHERR(3M)

DEFAULT ERROR HANDLING PROCEDURES
Types of Errors

type DOMAIN SING OVERFLOW UNDERFLOW TLOSS PLOSS

erma EDaM EDaM ERANGE ERANGE ERANGE ERANGE

BESSEL: - - - - M,O .
yO, y1 , yn (arg = 0) M,-H - - - - -
EXP: - - H 0 - -
LOG. LOG1O:

(arg < 0) M, -H - - -
(arg = 0) - M, -H - - -

POW: - - ± H 0 - -
neg *. non-int M,O - - -
o *. non-pas

SORT: M,O - - - - -
GAMMA: - M, H H - - -
HYPOT: - - H - - -
SINH: - - ± H - -
COSH: - - H - - -
SIN, COS, TAN: - - - M,O .
ASIN, ACOS, ATAN2: M, 0 - - - - -

ABBREVIATIONS
As much as possible of the value is returned.

M Message is printed (EDOM error).
H HUGE is returned.
-H -HUGE is returned.

± H HUGE or -HUGE is returned .
o 0 is returned.

RELATIONSHIP TO SVID
Identical to the SVID entry. The optional mathematical group is manda­
tary in the SVID.

X/OPEN Portability Guide (July 1985) Part II Page : MATHERR(3M) .3

(

(

(

Subroutines MEMORY(3C)

NAME
memccpy, memchr, memcmp, memcpy, memset - memory operations

SYNOPSIS
#include < memory.h >

char *memccpy (s1, s2, c, n)
char *s1, *s2;
int c, n;

char *memchr (s, c, n)
char *s;
int c, n;

int memcmp (s1, s2, n)
char *s1, *s2;
int n;

char *memcpy (s1, s2, n)
char *s1, *s2;
int n;

char *memset (s, c, n)
char *s;
int c, n;

DESCRIPTION
These functions operate as efficiently as possible on memory areas
(arrays of characters bounded by a count, not terminated by a NULL
character). They do not check for the overflow of any receiving memory
area.

Memccpy copies characters from memory area s2 into s1, stopping after
the first occurrence of character c has been copied, or after n charac­
ters have been copied, whichever comes first. It returns a pointer to the
character after the copy of c in s1 , or a NULL pointer if c was not found
in the first n characters of s2.

Memchr returns a pOinter to the first occurrence of character c in the
first n characters of memory area s, or a NULL pointer if c does not
occur.

Memcmp compares its arguments, looking at the first n characters only,
and returns an integer less than , equal to, or greater than 0, according
as s1 i:;; lexicographically less than, equal to, or greater than s2.

Memcpy copies n characters from memory area s2 to s1. It returns s1 .

Memset sets the first n characters in memory area s to the value of
character c. It returns s.

X/OPEN Portability Guide (July 1985) Part II Page : MEMORY(3C) .1

MEMORY(3C)

SEE ALSO
string(3C).

APPLICATION USAGE

Subroutines

All these functions are declared in the optional < memory.h > header
file .

Memcmp uses native character comparison. The sign of the value
returned when one of the characters has its high-order bit set is
implementation-dependent.

Character movement is performed differently in different implementa­
tions. Thus overlapping moves may be unpredictable.

FUTURE DIRECTIONS
The declarations in < memory.h > will move to < string.h > .

RELATIONSHIP TO SVID
Identical to the SVID entry.

Part II Page : MEMORY(3C) .2 X/ OPEN Portability Guide (July 1985)

(

(

(

(

Subroutines

NAME
mktemp - make a unique file name

SYNOPSIS
char *mktemp (template)
char *template;

DESCRIPTION

MKTEMP(3C)

Mktemp replaces the contents of the string painted to by template by a
unique file name, and returns the address of template. The string in
template should look like a file name with six trailing X's; mktemp will
replace the X's with a letter and the current process 10. The letter will be
chosen so that the resulting name does not duplicate an existing file.

APPLICATION USAGE
It is possible to run out of letters in which case a NULL painter is
returned.

SEE ALSO
getpid(2), tmpfile(3S), tmpnam(3S).

FUTURE DIRECTIONS
A NULL pointer will be returned if a unique name cannot be created.

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/OPEN Portability Guide (July 1985) Part II Page: MKTEMP(3C) .1

(

(

(

(

Subroutines MONITOR(3C)

NAME
monitor - prepare execution profile (OPTIONAL)

SYNOPSIS
include < mon .h>

void monitor (Iowpc, highpc, buffer, bufsize, nfunc)
int (* Iowpc)(), (*highpc)();
WORD *buffer;
int bufsize, nfunc;

DESCRIPTION
Monitor is an interface to profil(2) . Lowpc and highpc are the
addresses of two functions; buffer is the address of a (user supplied)
array of bufsize WORDs (defined in the < mon.h > header file) . Monitor
arranges to record a histogram of periodically sampled values of the pro­
gram counter, and of counts of calls of certain functions, in the buffer.
The lowest address sampled is that of lowpc and the highest is just
below highpc . Lowpc may not equal zero (0) for this use of monitor. At
most nfunc call counts can be kept.

For the results to be significant, especially where there are small, heavily
used routines, it is suggested that the buffer be no more than a few
times smaller than the range of locations sampled .

To profile the entire program, it is sufficient to use

extern etext;

monitor ((int (*)(»2, etext, buf, bufsize, nfunc);

Etext lies just above all the program text , see end(3C) .

SEE ALSO
profil(2), end(3C).

RELATIONSHIP TO SVID
This optional function is not included in the SVID. It comes from UNIX
System V Release 2.0.

X/ OPEN Portability Guide (July 1985) Part II Page : MONITOR(3C). 1

(

(

(

(

Subroutines PERROR(3C)

NAME
perror, errno, sys_errlist, sys_nerr - system error messages

SYNOPSIS
void perror (s)
char *s;

extern int errno;

extern char *sys_errlist[];

extern int sys_nerr;

DESCRIPTION
Perror produces a message on the standard error output, describing the
last error encountered during a call to a system or library function . The
argument string s is printed first, then a colon and a blank, then the
message and a new-line. To be of most use, the argument string should
include the name of the program that incurred the error. The error
number is taken from the external variable erma, which is set when
errors occur but not cleared when non-erroneous calls are made.

To simplify variant formatting of messages, the array of message strings
sys_errlist is provided; erma can be used as an index in this table to get
the message string without the new-line. Sys_nerr is the largest mes­
sage number provided for in the table; it should be checked because
new error codes may be added to the system before they are added to
the table.

RELATIONSHIP TO SVID
Identical to the SVID entry. This is "level 2" in SVID, see SUBJECT TO
CHANGE in Chapter 1. In the FUTURE DIRECTIONS section, the SVID
states: "New error handling routines will be added to support the System
V Error Message Standard as a tool for application developers to use".

X/OPEN Portability Guide (July 1985) Part II Page : PERROR(3C) .1

(

(

(

(

Subroutines POPEN(3S)

NAME
popen, pc lose - initiate pipe to / from a process

SYNOPSIS
inciude < stdio.h>

FILE *popen (command, type)
char *command, *type;

int pclose (stream)
FILE *stream;

DESCRIPTION
The arguments to popen are pointers to null-terminated strings contain­
ing, respectively , a command line and an I/ O mode, either " r" for read­
ing or " w" for writing. Popen creates a pipe between the calling pro­
cess and the command to be executed. The value returned is a stream
pointer such that one can write to the standard input of the command , if
the I/ O mode is " w" by writing to the file stream; and one can read from
the standard output of the command, if the I/ O mode is " r" by reading
from the file stream.

A stream opened by popen should be closed by pclose, which waits for
the associated process to terminate and returns the exit status of the
command .

Because open files are shared, a type " r" command may be used as an
input filter, and a type " w" as an output filter.

SEE ALSO
pipe(2), wait(2), fclose(3S) , fopen(3S), system(3S) .

RETURN VALUE
Popen returns a NULL pointer if files or processes cannot be created, or
if the command cannot be executed .

Pclose returns -1 if stream is not associated with a popen command .

APPLICATION USAGE
Only one stream opened by popen can be in use at once.

Buffered reading before opening an input filter may leave the standard
input of that filter mispositioned. Similar problems with an output filter
may be forestalled by careful buffer flushing, e.g. with ff/ush , see
fclose(3S) .

RELATIONSHIP TO SVID
Identical to the SVID entry, except that in the SVID the first sentence of
the RETURN VALUE section ends: " ".or if the shell cannot be accessed".

X/OPEN Portability Guide (July 1985) Part II Page: POPEN(3S) .1

(

(

(

(

Subroutines PRINTF(3S)

NAME
printf, fprintf, sprintf - print formatted output

SYNOPSIS
#include <stdio.h>

int printf (format [, arg 1 . ..)
char *format;

int fprintf (stream, format [, arg] ...)
FILE *stream;
char *format;

int sprintf (s, format [, arg] . . .)
char *s, format;

DESCRIPTION
Printf places output on the standard output stream stdout. Fprintf
places output on the named output stream. Sprintf places output fol­
lowed by the NULL character (' \ 0'), in consecutive bytes starting at *s;
it is the user's responsibility to ensure that enough storage is available.
Each function returns the number of characters transmitted (not includ­
ing the ' \ 0' in the case of sprintf) , or a negative value if an output error
was encountered .

Each of these functions converts, formats , and prints its args under con­
trol of the format. The format is a character string that contains two
types of objects: plain characters, which are simply copied to the output
stream, and conversion specifications, each of which results in fetching
of zero or more args. The results are undefined if there are insufficient
args for the format. If the format is exhausted while args remain, the
excess args are simply ignored.

Each conversion specification is introduced by the character '%'. After
the '%', the following appear in sequence:

Zero or more flags, which modify the meaning of the conver­
sion specification.

An optional decimal digit string specifying a minimum field
width. If the converted value has fewer characters than the
field width, it will be padded on the left (or right. if the left­
adjustment flag '-', described below, has been given) to the
field width .

A precision that gives the minimum number of digits to appear
for the 'd', '0', 'u', 'x', or 'X' conversions, the number of digits
to appear after the decimal point for the 'e' and 'f' conversions,
the maximum number of significant digits for the 'g' conversion,
or the maximum number of characters to be printed from a

X/OPEN Portability Guide (July 1985) Part II Page: PRINTF(3S).1

PRINTF(3S) Subroutines

string in's' conversion . The precision takes the form of a
period ('. ') followed by a decimal digit string; a null digit string
is treated as zero.

An optional I (ell) specifying that a following 'd', '0', 'u' , 'x', or
'X' conversion character applies to a long integer argo A 'f'
before any other conversion character is ignored.

A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk ('* ') instead of
a digit string. In this case, an integer arg supplies the field width or pre­
cision. The arg that is actually converted is not fetched until the conver­
sion letter is seen, so the args specifying field width or precision must
appear before the arg (if any) to be converted.

The flag characters and their meanings are:

The result of the conversion will be left-justified within the field.
+ The result of a signed conversion will always begin with a sign

(,+' or '- ') .
blank If the first character of a signed conversion is not a sign, a blank

will be prefixed to the result. This implies that if the blank and '+'
flags both appear, the blank flag will be ignored.

This flag specifies that the value is to be converted to an "alter­
nate form". For 'c', 'd ' , 's' and 'u' conversions, the flag has no
effect. For '0' conversion, it increases the precision to force the
first digit of the result to be a zero. For 'x' or 'X ' conversion, a
non-zero result will have "Ox" or "OX" prefixed to it. For 'e', 'E ',
'f', 'g' , and 'G' conversions, the result will always contain a
decimal point , even if no digits follow the point (normally, a
decimal point appears in the result of these conversions only if a
digit follows it). For 'g' and 'G' conversions, trailing zeroes will
not be removed from the result as they normally are.

The conversion characters and their meanings are:

d,o,u,x,X The integer arg is converted to signed decimal, unsigned
octal, decimal, or hexadecimal notation ('x ' and 'X'), respec­
tively ; the letters "abcdef" are used for 'x ' conversion and the
letters "ABCDEF" for 'X' conversion . The precision specifies
the minimum number of digits to appear; if the value being
converted can be represented in fewer digits, it will be
expanded with leading zeroes. The default precision is 1. The
result of converting a zero value with a precision of zero is a
null string.

The float or double arg is converted to decimal notation in the style
"[-]ddd .ddd", where the number of digits after the decimal point is
equal to the precision specification. If the precision is missing, six

Part II Page : PRINTF(3S) .2 X/ OPEN Portability Guide (July 1985)

(

(

(

(

Subroutines PRINTF(3S)

digits are output; if the precision is explicitly 0, no decimal point
appears.

e,E The float or double arg is converted in the style "[-]d.ddde±dd",
where there is one digit before the decimal point and the number of
digits after it is equal to the precision; when the precision is missing,
six digits are produced; if the precision is zero, no decimal point
appears. The 'E' format code will produce a number with "E"
instead of "e " introducing the exponent. The exponent always con­
tains at least two digits. However, if the value to be printed is
greater than or equal to 1 E + 100, additional exponent digits will be
pOinted as necessary.

g,G The float or double arg is printed in style 'f' or 'e' (or in style 'E'in
the case of a 'G' format code), with the precision specifying the
number of significant digits. The style used depends on the value
converted: style 'e' will be used only if the exponent resulting from
the conversion is less than -4 or greater than the precision. Trailing
zeroes are removed from the result; a decimal point appears only if
it is followed by a digit.

c The character arg is printed.
s The arg is taken to be a string (character pointer) and characters

from the string are printed until a NULL character (' \ 0') is encoun­
tered or the number of characters indicated by the precision
specification is reached. If the precision is missing, it is taken to be
infinite, so all characters up to the first null character are printed . A
NULL value for arg will yield undefined results.

% Print a "% " ; no argument is converted.

If the character after the '% ' is not a valid conversion character , the
results of the conversion are not predictable.

In no case does a non-existent or small field width cause truncation of a
field; if the result of a conversion is wider than the field width , the field is
simply expanded to contain the conversion result. Characters generated
by printf and fprintf are printed as if putc(3S) had been called.

SEE ALSO
putc(3S), scanf(3S), stdio(3S).

FUTURE DIRECTIONS
Printf will make available character string representation for 00 and " Not
a Number" (NaN: a symbolic entity encoded in floating point format) to
support the IEEE P754 standard.

EXAMPLES
To print a date and time in the form "Sunday, July 3, 10:02" , where
weekday and month are pointers to nUll-terminated strings:

printf("%s, %s %d, %d:%.2d",
weekday, month , day, hour, min) ;

X/OPEN Portability Guide (July 1985) Part" Page: PRINTF(3S) .3

PRINTF(3S)

To print 7T to 5 decimal places:

printf("pi = %.5f", 4 * atan(1 .0));

RELATIONSHIP TO SVID

Subroutines

Identical to the SVID entry, except for the removal of the part of the
FUTURE DIRECTIONS section which in the SVID reads as follows:

"System V currently allows leading zero padding to be specified
by prepending a zero to the field width. The documentation of
this feature will be removed to describe the preferred usage for
the future application development. Ultimately this feature will
be unsupported and customers will be warned of using an
unsupported feature."

The SVID has in fact already incorporated this FUTURE DIRECTION.

Part II Page : PRINTF(3S).4 X/ OPEN Portability Guide (July 1985)

(

(

(

(

Subroutines PUTC(3S)

NAME
putc, putchar, fputc , putw - put character or word on a stream

SYNOPSIS
#include < stdio.h>

int putc (c, stream)
int c ;
FILE .stream;

int putchar (c)
int c;

int fputc (c, stream)
int c;
FILE *stream;

int putw (w, stream)
int w;
FILE .stream;

DESCRIPTION
Pute writes the character e onto the output stream (at the position
where the file pOinter, if defined, is pointing). Putehar(e) is defined as
pute(e, stdout) Pute and putehar are macros.

Fpute behaves like pute, but is a function rather than a macro. Fpute
runs more slowly than pute , but it takes less space per invocation and its
name can be passed as an argument to a function .

Putw writes the word (i.e. integer) w to the output stream (at the posi­
tion at which the file pOinter, if defined, is pointing). The size of a word
is the size of an integer and varies from machine to machine. Putw nei­
ther assumes nor causes special alignment in the file.

Output streams, with the exception of the standard error stream stderr,
are by default buffered if the output refers to a file and line-buffered if
the output refers to a terminal. The standard error output stream stderr
is by default unbuffered, but use of freopen (see fopen(3S» will cause it
to become buffered or line-buffered. When an output stream is
unbuffered, information is queued for writing on the destination file or
terminal as soon as written; when it is buffered, many characters are
saved up and written as a block. When it is line-buffered, each line of
output is queued for writing on the destination terminal as soon as the
line is completed (that is, as soon as a new-line character is written or
terminal input is requested). Setbuf(3C) or setvbuf(3C) may be used to
change the stream's buffering strategy.

X/OPEN Portability Guide (July 1985) Part II Page : PUTC(3S) .1

PUTC (3S) Subroutines

RETURN VALUE
On success, these functions each return the value they have written. On
failure, they return the constant EOF. This will occur if the file stream is
not open for writing or if the output file cannot be grown. Because EOF
is a valid integer, ferror(3S) should be used to detect putw errors.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), printf(3S), puts(3S),
setbuf(3C).

APPLICATION USAGE
Because it is implemented as a macro, putc(3S) treats incorrectly a
stream argument with side effects. In particular, putc(c, * f+ +); doesn 't
work sensibly. Fputc(3S) should be used instead.

Because of possible differences in word length and byte ordering, files
written using putw(3S) are machine-dependent, and may not be read
using getw(3S) on a different processor.

RELATIONSHIP TO SVID
Identical to the SVID entry.

Part II Page : PUTC(3S) .2 X/ OPEN Portability Guide (July 1985)

(

(

(

(

Subroutines PUTENV(3C)

NAME
putenv - change or add value to environment

SYNOPSIS
int putenv (string)
char *string;

DESCRIPTION
String pOints to a string of the form "name=value" . Putenv makes the
value of the environment variable name equal to value by altering an
existing variable or creating a new one. In either case, the string pointed
to by string becomes part of the environment, so altering the string will
change the environment. The space used by string is no longer used
once a new string-defining name is passed to putenv.

RETURN VALUE
Putenv returns non-zero if it was unable to obtain enough space via mal­
loc for an expanded environment, otherwise zero (0).

SEE ALSO
exec(2) , getenv(3C), malloc(3X).

APPLICATION USAGE
Putenv manipulates the environment pOinted to by environ, and can be
used in conjunction with getenv(3C) . However, envp (the third argu­
ment to main) is not changed.
This routine uses mal/oc(3X) to enlarge the environment.
After putenv is cal led, environmental variables are not in alphabetical
order.

A potential error is to call putenv with an automatic variable as the argu­
ment, then return from the calling function whi le string is still part of the
environment.

RELATIONSHIP TO SVID
Identical to the SVID entry, except for the addition of the statement in the
APPLICATIONS USAGE section: " After putenv is called, environment
vari ables are not in alphabetical order".

X/OPEN Portability Guide (July 1985) Part" Page : PUTENV(3C).1

(

(

(

(

Subroutines PUTPWENT(3C)

NAME
putpwent - write password file entry

SYNOPSIS
#include < pwd.h >

int putpwent (p, f)
struct passwd *p;
FILE *f;

DESCRIPTION
Putpwent is the inverse of getpwent(3C) . Given a pointer to a passwd
structure created by getpwent(3C) (or getpwent(3C) or getpwnam(3C)),
putpwent writes a line on the stream f which matches the format of
letc/passwd.

DIAGNOSTICS
Putpwent returns non-zero if an error was detected during its operation,
otherwise zero (0) .

RELATIONSHIP TO SVID
This function is not included in the SVID. It comes from UNIX System V
Release 2.0.

X/OPEN Portability Guide (July 1985) Part II Page : PUTPWENT(3C) .1

(

(,

(

(

Subroutines

NAME
puts, fputs - put a string on a stream

SYNOPSIS
include < stdio.h>

int puts (s)
char *s;

int fputs (s, stream)
char *s;
FILE *stream;

DESCRIPTION

PUTS(3S)

Puts writes the null-terminated string pointed to by s, followed by a
new-line character, to the standard output stream stdout.

Fputs writes the null-terminated string pointed to by s to the named out­
put stream.

Neither function writes the terminating null character.

RETURN VALUE
Both routines return EOF on error. This will happen if the routines try to
write on a file that has not been opened for writing.

SEE ALSO
ferror(3S), fopen(3S), fread(3S) , printf(3S), putc(3S).

APPLICATION USAGE
Puts appends a new-line character while {puts does not.

RELATIONsHIP TO SVID
Identical to the SVID entry.

X/OPEN Portability Guide (July 1985) Part II Page: PUTS(3S).1

(

(

(

Subroutines QSORT(3C)

NAME
qsort - quicker sort

SYNOPSIS
void qsort (base, nel, width, com par)
char *base;
unsigned nel, width ;
int (*compar)O;

DESCRIPTION
Osort is an implementation of the quicker-sort algorithm. It sorts a table
of data in place.

Base pOints to the element at the base of the table. Net is the number
of elements in the table. Width is the size of an element in bytes. Com­
par is the name of the comparison function, which is called with two
arguments that point to the elements being compared. As the function
must return an integer less than , equal to, or greater than zero, so must
the first argument to be considered be less than, equal to, or greater
than the second.

SEE ALSO
bsearch(3C), Isearch(3C), string(3C).

APPLICATION USAGE
The pointer to the base of the table should be of type pointer-to-element,
and cast to type pOinter-to-character.
The comparison function need not compare every byte, so arbitrary data
may be contained in the elements in addition to the values being com­
pared.
The order in the output of two items which compare as equal is
unpredictable.

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/OPEN Portability Guide (July 1985) Part II Page : OSORT(3C).1

(

(

(

(

Subroutines RAND (3C)

NAME
rand, srand - simple random-number generator

SYNOPSIS
int rand ()

void srand (seed)
unsigned seed;

DESCRIPTION
Rand uses a multiplicative congruential random-number generator with
period 232 that returns successive pseudo-random numbers in the range
from 0 to 215_1 .

Srand can be called at any time to reset the random-number generator
to a random starting point. The generator is initially seeded with a value
of one (1).

SEE ALSO
drand48(3C).

APPLICATION USAGE
Orand48(3C) provides a much more elaborate random number genera­
tor.

The following functions define the semantics of rand and srand.

static unsigned long int next = 1;
int randO
{

next next * 1103515245 + 12345;
return«unsigned int)(next / 65536) % 32768);

}
void srand(seed)
unsigned int seed;
{

next = seed;

Specifying the semantic makes it possible to reproduce the behavior of
programs that use pseudo-random sequences. This facilitates the test­
ing of portable applications in different implementation.

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/ OPEN Portability Guide (July 1985) Part II Page : RANO(3C) .1

(

(

(

Subroutines REGCMP(3X)

NAME
regcmp, regex - compile and execute regular expression

SYNOPSIS
char *regcmp (string1 [, string2, ... J, (char *)0)
char *string1, *string2, ... ;

char *regex (re, subject [, retO, . . .])
char *re, *subject, * retO,

extern char * loc1 ;

DESCRIPTION
Regemp compiles a regular expression and returns a pOinter to the com­
piled form. Mal/oc(3X) is used to create space for the vector. It is the
user's responsibility to free unneeded space so allocated. A NULL return
from regemp indicates an incorrect argument.

Regex executes a compiled pattern against the subject string. Additional
arguments are passed to receive values back. Regex returns NULL on
failure or a pointer to the next unmatched character on success. A glo­
bal character pOinter loe1 pOints to where the match began. The fol­
lowing are the valid symbols and their associated meanings.

Matches any character execpt new-line.

* Matches zero or more occurences of the preceding character.
The longest leftmost string that permits a match is chosen.

[J A non-empty string of characters in square brackets specifies a
regular expression that matches anyone character in that
string.

Within brackets the minus means through. For example, [a-z]
is equivalent to [abed ... xyz]. The - can appear as itself only if
used as the first or last character. For example, the character
class expression [J-] matches the characters] and -.

at the beginning of a regular expression matches an initial seg­
ment of string. A · immediatly following the left of a pair of
square brackets (m causes the minus (-) to lose its special
meaning within brackets, when it (-) occurs first or last in the
string.

$ Matches the end of the string; \ n matches a new-line.

+ A regular expression followed by + means one or more times.
For example, [0-9]+ is equivalent to [0-9][0-9]* .

{m} {m,} {m,u}
Integer values enclosed in {} indicate the number of times the
preceding regular expression is to be applied. The value m is

X/OPEN Portability Guide (July 1985) Part II Page: REGCMP(3X).1

REGCMP(3X) Subroutines

the minimum number and u is a number, less than 256, which
is the maximum. If only m is present (e.g ., em}), it indicates
the exact number of times the regular expression is to be
applied. The value em,} is analogous to {m,infinity}. The plus
(+) and star (*) operations are equivalent to {1,} and CO,}
respectively .

(. ..)$n The value of the enclosed regular expression is to be returned.
The value will be stored in the (n+ 1)th argument following the
subject argument. At most ten enclosed regular expressions
are allowed. Regex makes its assignments unconditionally.

(...) Parentheses are used for grouping. An operator, e.g., *, +,
{ }, can work on a single character or a regular expression
enclosed in parentheses. For example, (a*(cb+)*)$0.

By necessity, all the above defined symbols are special. They must,
therefore, be escaped to be used as themselves.

SEE ALSO
malloc(3X).

APPLICATION USAGE
The user program may run out of memory if regcmp is called iteratively
without freeing the vectors no longer required . The following user­
supplied replacement for malloc(3X) reuses the same vector saving time
and space:

/ * user's program * /

char *
malloc(n)
unsigned n;
{

static char rebuf[51 2] ;
return (n <= sizeof rebuf) ? rebuf : NULL;

Part II Page: REGCMP(3X).2 X/OPEN Portability Guide (July 1985)

(

(

Subroutines

EXAMPLES
Example 1:
char *cursor, *newcursor, *ptr;

REGCMP(3X)

newcursor = regex((ptr = regcmp('''''\ n" , 0)), cursor);
free(ptr);

This example will match a leading new-line in the subject string pOinted
at by cursor.

Example 2:
char retO[9];
char *newcursor, *name;

name = regcmp("([A-Za-z][A-za-zO-9]{0,7})$0", 0);
newcursor = regex(name, "123Testing321 ", retO);

This example will match through the string "Testing3" and will return the
address of the character after the last matched character (ie. address of
character '2' after the string "Testing3"). The string "Testing3" will be
copied to the character array (eta.

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/OPEN Portability Guide (July 1985) Part II Page: REGCMP(3X).3

(

(

(

(

Subroutines SCANF(3S)

NAME
scanf, fscanf, sscanf - convert formatted input

SYNOPSIS
include < stdio.h>

int scanf (format [, pOinter] . . .)
char * format;

int fscanf (stream, format [, pointer] . ..)
FILE *stream;
char *format;

int sscanf (s, format [, pOinter] .. .)
char *s, *format;

DESCRIPTION
Scanf reads from the standard input stream stdin. Fscanf reads from
the named input stream. Sscanf reads from the character string s .
Each function reads characters, interprets them according to a format,
and stores the results in its arguments. Each expects, as arguments, a
control string format described below, and a set of pointer arguments
indicating where the converted input should be stored.

The control string usually contains conversion specifications, which are
used to direct interpretation of input sequences. The control string may
contain :

1. White-space characters (blanks, tabs, new-lines, or form-feeds)
which, except in two cases described below, cause input to be read
up to the next non-white-space character.

2. An ordinary character (not '%'), which must match the next charac­
ter of the input stream.

3. Conversion specifications, consisting of the character '% ', an
optional assignment suppressing character '* ', an optional numerical
maximum field width, an optional 'I' (ell) or 'h' indicating the size of
the receiving variable, and a conversion code.

A conversion specification directs the conversion of the next input field;
the result is placed in the variable pOinted to by the corresponding argu­
ment, unless assignment suppression was indicated by '* '. The
suppression of assignment provides a way of describing an input field
which is to be skipped. An input field is defined as a string of non-space
characters; it extends to the next inappropriate character or until the field
width , if specified, is exhausted . For all descriptors except '[' and 'c',
white space leading an input field is ignored .

The conversion code indicates the interpretation of the input field ; the
corresponding pOinter argument must usually be of a restricted type.
For a suppressed field , no pOinter argument is given. The following

X/OPEN Portability Guide (July 1985) Part II Page : SCANF(3S) .1

SCANF(3S) Subroutines

conversion codes are legal:

% a single '%' is expected in the input at this point; no assignment is
done.

n returns total number of characters so far which have been
scanned from the beginning of the scan.

d a decimal integer is expected; the corresponding argument should
be an integer pOinter.

u an unsigned decimal integer is expected; the corresponding argu­
ment should be an unsigned integer pointer.

o an octal integer is expected; the corresponding argument should
be an integer pOinter.

x a hexadecimal integer is expected; the corresponding argument
should be an integer pOinter.
is used for general integer conversion. it reads the input as an
integer using C rules for conversion . for example, 12 would be
read as 12(decimal), 012 would be read as 1 0 (decimal) and
OX12 as 18 (decimal). The corresponding argument should be an
integer pOinter.

e'(,g a floating point number is expected; the next field is converted
accordingly and stored through the corresponding argument,
which should be a pOinter to a float. The input format for floating
point numbers is an optionally signed string of digits, possibly con­
taining a decimal point, followed by an optional exponent field con­
sisting of an 'E' or an 'e', followed by an optional '+ ', '-', or space,
followed by an integer.

s a character string is expected; the corresponding argument should
be a character pOinter pointing to an array of characters large
enough to accept the string and a terminating ' \ 0', which will be
added automatically. The input field is terminated by a white­
space character.

c a character is expected; the corresponding argument should be a
character ·pointer. The normal skip over white space is suppressed
in this case; to read the next non-space character, use "%1s" . If
a field width is given, the corresponding argument should refer to a
character array; the indicated number of characters is read.
indicates string data and the normal skip over leading white space
is suppressed. The left bracket is followed by a set of characters,
which we will call the scanset, and a right bracket; the input field is
the maximal sequence of input characters consisting entirely of
characters in the scanset. The circumflex (~ '), when it appears as
the first character in the scanset, serves as a complement operator
and redefines the scanset as the set of all characters not contained
in the remainder of the scanset string. There are some conven­
tions used in the construction of the scanset. A range of charac­
ters may be represented by the construct first-last, thus

Part II Page: SCANF(3S) .2 X/OPEN Portability Guide (July 1985)

(

(

(

(

Subroutines SCANF(3S)

"[0123456789]" may be expressed "[0-9]". Using this convention,
first must be lexically less than or equal to last, or else the dash
will stand for itself. The dash will also stand for itself whenever it is
the first or the last character in the scanset. To include the right
square bracket as an element of the scanset, it must appear as the
first character (possibly preceded by a circumflex) of the scanset,
and in this case it will not be syntactically interpreted as the clos­
ing bracket. The corresponding argument must point to a charac­
ter array large enough to hold the data field and the terminating
' \ 0', which will be added automatically. At least one character
must match for this conversion to be considered successful.

If an invalid conversion character follows the '%', the results of the
operation may not be predictable.

The conversion characters 'd', 'u', '0', and 'x 'may be preceded by'/' or
'h' to indicate that a pointer to long or to short rather than to int is in
the argument list. Similarly, the conversion characters 'e', 'f', and 'g'
may be preceded by 'I'to indicate that a pOinter to double rather than to
float is in the argument list. The '/' or 'h' modifier is ignored for other
conversion characters.

Scanf conversion terminates at EO, at the end of the control string, or
when an input character conflicts with the control string. In the latter
case, the offending character is left unread in the input stream.

Scanf returns the number of successfully matched and assigned input
items; this number can be zero in the event of an early conflict between
an input character and the control string. If the input ends before the
first conflict or conversion, EOF is returned .

RETURN VALUE
These functions return EOF on end of input and a short count for missing
or illegal data items.

SEE ALSO
getc(3S), printf(3S), strtod(3C), strtol(3C) .

FUTURE DIRECTIONS
scanf will make available character string representations for 00 and
" Not a Number" (NaN: a symbolic entity encoded in floating point for­
mat) to support the IEEE P754 standard.

APPLICATION USAGE
Trailing white space (including a new-line) is left unread unless matched
in the control string.

The success of literal matches and suppressed aSSignments is not
directly determinable.

X/ OPEN Portability Guide (July 1985) Part II Page : SCANF(3S) .3

SCANF(3S) Subroutines

EXAMPLES
The call :

int i, n; float x; char name[50];
n = scanf ("%d%f%s", &i, &x, name);

with the input line:

25 54.32E -1 thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and
name will contain "thompson \ 0". Or:

int i; float x; char name[50];
(void) scanf ("%2d%f%*d %[0-9] " , &i, &x, name);

with input:

56789 0123 56a72

will assign 56 to i, 789.0 to x , skip 0123, and place the string "56 \ 0" in
name. The next call to getchar (see getc(3S)) will return 'a'.

RELATIONSHIP TO SVID
Identical to the SVID entry.

Part II Page : SCANF(3S) .4 X/ OPEN Portability Guide (July 1985)

(

(

(

(

Subroutines SETBUF(3C)

NAME
setbuf, setvbuf - assign buffering to a stream

SYNOPSIS
#include <stdio.h>

void setbuf (stream, buf)
FILE *stream;
char *buf;

int setvbuf (stream, buf, type, size)
FILE *stream;
char *buf;
int type, size;

DESCRIPTION
Setbut may be used after a stream has been opened but before it is read
or written. It causes the array pointed to by but to be used instead of an
automatically allocated buffer. If but is the NULL pointer input/output will
be completely unbuffered.

A constant BUFSIZ, defined in the <std io.h > header file, tells how big an
array is needed:

char buf[BUFSIZ];

Setvbut may be used after a stream has been opened but before it is
read or written . Type determines how stream will be buffered . Legal
values for type (defined in <stdio.h» are:

_IOFBF

JOLBF

causes input/output to be fully buffered.

causes output to be line buffered; the buffer will be
flushed when a newline is written, the buffer is full , or
input is requested.

causes input/output to be completely unbuffered.

If but is not the NULL pOinter, the array it points to will be used for
buffering, instead of an automatically allocated buffer. Size specifies the
size of the buffer to be used. The constant BUFSIZ in < stdio.h > is sug­
gested as a good buffer size. If input/output is unbuffered, but and size
are ignored.

By default, output to a terminal is line buffered and all other input/output
is fully buffered.

RETURN VALUE
If an illegal value for type or size is provided, setvbut returns a non-zero
value. Otherwise, the value returned will be zero.

X/OPEN Portability Guide (July 1985) Part II Page: SETBUF(3C). 1

SETBUF(3C) Subroutines

SEE ALSO
fopen(3S), getc(3S), malloc(3X), putc(3S), stdio(3S).

APPLICATION USAGE
A common source of error is allocating buffer space as an "automatic"
variable in a code block, and then failing to close the stream in the same
block.

RELATIONSHIP TO SVID
Identical to the SVID entry.

Part II Page : SETBUF(3C).2 X/OPEN Portability Guide (July 1985)

(

(

(

Subroutines SETJMP(3C)

NAME
setjmp, longjmp - non-local goto

SYNOPSIS
include < setjmp.h>

int setjmp (env)
jmp_but env;

void longjmp (env, val)
jmp_but env;
int val;

DESCRIPTION
These tunctions are useful for dealing with errors and interrupts encoun­
tered in a low-level subroutine of a program.

Setjmp saves its stack environment in env (whose type, jmp_but, is
defined in the < setjmp.h > header file) for later use by longjmp . It
returns the value zero (0).

Longjmp restores the environment saved by the last call of setjmp with
the corresponding envargument . After longjmp is completed, program
execution continues as if the corresponding call of setjmp (the caller of
which must not itself have returned in the interim) had just returned the
value val. Longjmp cannot cause setjmp to return the value O. If
longjmp is invoked with a second argument of 0, setjmp will return 1.
All accessible data have values as of the time longjmp was called.

SEE ALSO
signal(2).

APPLICATION USAGE
If longjmp is called even though env was never primed by a call to
setjmp, or when the last such call was in a function which has since
returned , absolute chaos is guaranteed.

If the call to longjmp is in a different function from the coresponding call
to setjmp, register variables may have unpredictable values.

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/ OPEN Portability Guide (July 1985) Part II Page : SETJMP(3C). 1

(

(

(

(

Subroutines SINH(3M)

NAME
sinh, cosh, tanh - hyperbolic functions (OPTIONAL)

SYNOPSIS
#inciude <math.h>

double sinh (x)
double x;

double cosh (x)
double x;

double tanh (x)
double x;

DESCRIPTION
Sinh, cosh, and tanh return, respectively, the hyberbolic sine, cosine
and tangent of their argument.

RETURN VALUE
Sinh and cosh return HUGE (and sinh may return -HUGE for negative x)
when the correct value would overflow and set erma to [ERANGE].

These error-handling procedures may be changed with the function
matherr(3M) .

SEE ALSO
matherr(3M).

FUTURE DIRECTIONS
A macro HUGE_VAL will be defined in the header file < math .h>. This
macro will call a function which will either return + 00 on a system sup­
porting IEEE P754 standard or +{MAXDOUBLE} on a system that does
not support the IEEE P754 standard .

Sinh and cosh will return HUGE_VAL (sinh will return -HUGE_VAL for
negative n) when the correct value overflows.

RELATIONSHIP TO SVID
Identical to the SVID entry. The optional mathematical group is manda­
tory in SVID.

X/OPEN Portability Guide (July 1985) Part II Page : SINH(3M).1

(

(

(

Subroutines SLEEP(3C)

NAME
sleep - suspend execution for interval

SYNOPSIS
unsigned sleep (seconds)
unsigned seconds;

DESCRIPTION
The current process is suspended from execution for the number of
seconds specified by the argument. The actual suspension time may be
less than that requested for two reasons: (1) Because scheduled wake­
ups occur at fixed intervals, and (2) because any caught signal will ter­
minate the sleep following execution of that signal's catching routine.
Also, the suspension time may be longer than requested by an arbitrary
amount due to the scheduling of other activity in the system. The value
returned by sleep will be the "unslept" amount (the requested time
minus the time actually slept) in case the caller had an alarm set to go
off earlier than the end of the requested sleep time, or premature arousal
due to another caught signal.

The routine is implemented by setting an alarm signal and pausing until it
(or some other signal) occurs. The previous state of the alarm signal is
saved and restored. The calling program may have set up an alarm sig­
nal before calling sleep. If the sleep time exceeds the time till such
alarm signal, the process sleeps only until the alarm signal would have
occurred. The caller's alarm catch routine is executed just before the
sleep routine returns. But if the sleep time is less than the time till such
alarm, the prior alarm time is reset to go off at the same time it would
have without the intervening sleep .

SEE ALSO
alarm(2), pause(2), signal(2).

RELATIONSHIP TO SVID
Identical to the SVID entry, except that "1-second" has been deleted
from after "fixed" in the second sentence of the DESCRIPTION section.

X/OPEN Portability Guide (July 1985) Part II Page: SLEEP(3C).1

(

(

(

(

Subroutines SSIGNAL(3C)

NAME
ssignal, gsignal - software signals

SYNOPSIS
#inciude < signal.h >

int (*ssignal (sig, action))()
int sig, (*action)();

int gsignal (sig)
int sig;

DESCRIPTION
Ssignal and gsignal implement a software facility simi lar to signal(2) ,
This facility is made available to users for their own purposes,

Software signals made available to users are listed in signal(2) , A call to
ssignal associates a procedure, action, with the software signal sig; the
software signal, sig, is raised by a call to gsignal, Raising a software
signal causes the action established for that signal to be taken,

The first argument to ssignal is a signal listed in signal(2) for which an
action is to be established, The second argument defines the action; it is
either the name of a (user-defined) action function or one of the mani­
fest constants SIG_DFL (default) or SIG_IGN (ignore), Ssignal returns the
action previously established for that signal type; if no action has been
established or the signal number is illegal, ssignal returns SIG_DFL,

Gsignal raises the signal identified by its argument, sig:

SEE ALSO

If an action function has been established for sig, then that action
is reset to SIG_DFL and the action function is entered with argu­
ment sig, Gsignal returns the value returned to it by the action
function,

If the action for sig is SIG_IGN, gsignal returns the value 1 and
takes no other action ,

If the action for sig is SIG_DFL, gsignal returns the value zero (0)
and takes no other action,

If sig has an illegal value or no action was ever specified for sig,
gsignal returns the value 0 and takes no other action,

signal(2),

RELATIONSHIP TO SVID
Identical to the SVID entry,

X/OPEN Portability Guide (July 1985) Part II Page : SSIGNAL(3C), 1

(

(

(

(

Subroutines STDIO(3S)

NAME
stdio - standard buffered input/output package

SYNOPSIS
#include < stdio.h >

FILE *stdin, *stdout, *stderr;

DESCRIPTION
The functions described as Standard I/ O routines (stdio) constitute an
efficient, user-level I/ O buffering scheme. The in-line macros getc(3S)
and putc(3S) handle characters quickly. The macros getchar and
putchar, and the higher-level routines fgetc, fgets, fprintf, fputc, tputs,
tread, tscant, twrite, gets, getw, printf, puts, putw, and scant all use or
act as if they use getc and putc; they can be freely intermixed.

A file with associated buffering is called a stream and is declared to be a
pOinter to a defined type FILE. Fopen(3S) creates certain descriptive
data for a stream and returns a pointer to designate the stream in all
further transactions. Normally, there are three open streams with con­
stant pointers declared in the < stdio.h> header file and associated with
the standard open files:

stdin
stdout
stderr

standard input file
standard output file
standard error file

A constant NULL designates a nonexistent pointer.

An integer-constant EOF is returned upon end-of-file or error by most
integer functions that deal with streams (see the individual descriptions
for details).

An integer constant BUFSIZ specifies the size of the buffers used by the
particular implementation.

Any program that uses this package must include the header file of per­
tinent macro definitions, as follows :

#include <stdio.h>

The Standard I/ O related functions and constants are declared in that
header file and need no further declaration . The constants and the fol­
lowing "functions" are implemented as macros (redeclaration of these
names is perilous): getc, getchar, putc , putchar, terror, teot, clearerr,
and fileno.

RETURN VALUE
Invalid stream pointers will usually cause grave disorder, possibly includ­
ing program termination. Individual function descriptions describe the
possible error conditions.

X/ OPEN Portability Guide (July 1985) Part II Page: STDIO(3S) .1

STDIO(3S) Subroutines

SEE ALSO
open(2), close(2), Iseek(2), pipe(2), read(2), write(2), ctermid(3S),
fclose(3S), ferror(3S), fopen(3S), fread(3S), fseek(3S), getc(3S),
gets(3S), popen(3S), printf(3S), putc(3S), puts(3S), scanf(3S),
setbuf(3C), system(3S), tmpfile(3S), tmpnam(3S), ungetc(3S).

RELATIONSHIP TO SVID
Identical to the SVID entry.

Part II Page: STDIO(3S) .2 X/OPEN Portability Guide (July 1985)

(

(

(

(

Subroutines STRING(3C)

NAME
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, strchr, strrchr,
strpbrk, strspn, strcspn, strtok - string operations

SYNOPSIS
include < string.h >

char *strcat (s1, s2)
char *s1, *s2;

char *strncat (s1, s2, n)
char *s1, *s2;
int n;

int strcmp (s1, s2)
char *s1, *s2;

int strncmp (s1 , s2, n)
char *s1, *s2;
int n;

char *strcpy (s1, s2)
char *s1, *s2;

char *strncpy (s1, s2, n)
char *s1, *s2;
int n;

int strlen (s)
char *s;

char *strchr (s, c)
char *s;
int c;

char *strrchr (s, c)
char *s;
int c;

char *strpbrk (s1, s2)
char *s1, *s2;

int strspn (s1, s2)
char *s1, *s2;

int strcspn (s1, s2)
char *s1, *s2;

char *strtok (s1, s2)
char *s1, *s2;

X/OPEN Portability Guide (July 1985) Part II Page: STRING(3C) .1

STRING(3C) Subroutines

DESCRIPTION
The arguments s1, s2 and s point to strings (arrays of characters ter­
minated by a NULL character). The functions strcat , strncat, strcpy,
and strncpy all alter s1 . These functions do not check for overflow of
the array pointed to by s1.

Strcat appends a copy of string s2 to the end of string s1. Strncat
appends at most n characters. Each returns a pOinter to the null­
terminated result.

Strcmp compares its arguments and returns an integer less than, equal
to, or greater than zero (0), according as s1 is lexicographically less
than, equal to, or greater than s2. Strncmp makes the same com­
parison but looks at at most n characters.

Strcpy copies string s2 to s1, stopping after the NULL character has
been copied . Strncpy copies exactly n characters, truncating s2 or
adding NULL characters to s1 if necessary. The result will not be null­
terminated if the length of s2 is n or more. Each function returns s1 .

Str/en returns the number of characters in s, not including the terminat­
ing NULL character .

Strchr (strrchr) returns a pointer to the first (last) occurrence of charac­
ter c in string s, or a NULL pointer if c does not occur in the string. The
NULL character terminating a string is considered to be part of the string.

Strpbrk returns a pointer to the first occurrence in string s1 of any char­
acter from string s2, or a NULL pointer if no character from s2 exists in
s1.

Strspn (strcspn) returns the length of the initial segment of string s1
which consists entirely of characters from (not from) string s2.

Strtok considers the string s1 to consist of a sequence of zero or more
text tokens separated by spans of one or more characters from the
separator string s2. The first call (with pointer s1 specified) returns a
pOinter to the first character of the first token, and will have written a null
character into s1 immediately following the returned token. The function
keeps track of its position in the string between separate calls, so that
subsequent calls (which must be made with the first argument a NULL
pointer) will work through the string s1 immediately following that token.
In this way subsequent calls will work through the string s1 until no
tokens remain. The separator string s2 may be different from call to call .
When no token remains in s1, a NULL pointer is returned.

Part II Page: STRING(3C).2 X/OPEN Portability Guide (July 1985)

(

(

(

(

Subroutines

SEE ALSO
memory(3C).

APPLICATION USAGE

STRING(3C)

All these functions are declared in the optional < string.h> header file.

Strcmp and strncmp use native character comparison. The sign of the
value returned when one of the characters has its high-order bit set is
implementation-dependent.

Character movement is performed differently in different implementa­
tions. Thus overlapping moves may yield surprises.

FUTURE DIRECTIONS
The type of the argument n to strncat, strncmp and strncpy and the type
of the value returned by strlen will be declared through the typedef facil­
ity in a header file as size_t.

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/OPEN Portability Guide (July 1985) Part II Page : STRING(3C) .3

(

(

(

(

Subroutines STRTOD(3C)

NAME
strtod, alof - convert string to double-precision number

SYNOPSIS
double strtod (str, ptr)
char *str, **ptr;

double atof (str)
char *slr;

DESCRIPTION
Strtad returns as a double-precision floating-point number the value
represented by the character string pOinted to by str. The string is
scanned up to the first unrecognized character.

Strtad recognizes an optional string of "white-space" characters (as
defined by isspace in ctype(3C)) , then an optional sign, then a string of
digits optionally containing a decimal point, then an optional e or E fol­
lowed by an optional sign, followed by an integer.

If the value of ptr is not (char **)0, a pOinter to the character terminating
the scan is returned in the location pOinted to by ptr. If no number can
be formed , *ptr is set to str, and zero is returned .

Ataf(str) is equivalent to strtad(str, (char **)0).

RETURN VALUE
If the correct value would cause overflow, ±HUGE is returned (according
to the sign of the value), and erma is set to [ERANGE].
If the correct value would cause underflow, zero is returned and erma is
set to [ERANGEJ .

SEE ALSO
ctype(3C), scanf(3S), strtol(3C).

FUTURE DIRECTIONS
A macro HUGE_VAL will be defined in the header file <math.h>. This
macro will call a function which will either return + 00 on a system sup­
porting IEEE P754 standard or +{MAXDOUBLE} on a system that does
not support the IEEE P754 standard.
If the correct value overflows, strtad will return ±HUGE_VAL (according
to the sign of the value).

RELATIONSHIP TO SVI D
Identical to the SVID entry.

X/OPEN Portability Guide (July 1985) Part II Page : STRTOD(3C).1

(

(

(

(

Subroutines STRTOL(3C)

NAME
strtol, atol , atoi - convert string to integer

SYNOPSIS
long strtol (str, ptr, base)
char *str, **ptr;
int base;

long atol (str)
char *str;

int atoi (str)
char *str;

DESCRIPTION
Strtol returns as a long integer the value represented by the character
string pOinted to by str. The string is scanned up to the first character
inconsistent with the base. Leading "white-space" characters (as
defined by isspace in ctype(3C)) are ignored.

If the value of ptr is not (char **)0, a pOinter to the character terminating
the scan is returned in the location pOinted to by ptr. If no integer can
be formed , that location is set to str, and zero is returned.

If base is positive (and not greater than 36), it is used as the base for
conversion. After an optional leading sign, leading zeros are ignored,
and "Ox" or "OX" is ignored if base is 16.

If base is zero, the string itself determines the base thusly: After an
optional leading sign a leading zero indicates octal conversion, and a
leading "Ox" or "OX" hexadecimal conversion. Otherwise, decimal
conversion is used.

Truncation from long to int can, of course, take place upon assignment
or by an explicit cast.

Atol(str) is equivalent to strtol(str, (char **)0, 10).

Atoi(str) is equivalent to (int) strtol(str, (char **)0, 10) .

SEE ALSO
ctype(3C), scanf(3S), strtod(3C).

APPLICATION USAGE
Overflow conditions are ignored.

FUTURE DIRECTIONS
Error handling will be added to strtol.

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/OPEN Portability Guide (July 1985) Part II Page : STRTOL(3C).1

(

(

(

(

Subroutines

NAME
swab - swap bytes

SYNOPSIS
void swab (from, to, nbytes)
char *from, *to;
int nbytes;

DESCRIPTION

SWAB(3C)

Swab copies nbytes bytes pOinted to by from to the array pointed to by
to, exchanging adjacent even and odd bytes. Nbytes should be even
and non-negative. If nbytes is odd and positive swab uses nbytes-1
instead. If nbytes is negative, swab does nothing .

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/OPEN Portability Guide (July 1985) Part II Page : SWAB(3C).1

(

(

(

(

Subroutines SYSTEM(3S)

NAME
system - issue a command

SYNOPSIS
#include < stdio.h >

int system (string)
char *string;

DESCRIPTION
System causes the string to be given to a command interpreter and exe­
cution process as input.

Definitions
A blank is a tab or a space. A parameter name is a sequence of letters,
digits, or underscores beginning with a letter or underscore. A parame­
ter is a parameter name, a digit, or any of the characters *, @, #, ?, -,
$, and!.

Commands
A simple-command is a sequence of non-blank words separated by
blanks. The first word specifies the path name or file name of the com­
mand to be executed. Except as specified below, the remaining words
are passed as arguments to the invoked command. The command name
is passed as argument 0, see exec(2). The value of a simple-command
is its exit status if it terminates normally, or (octal) 200+status if it ter­
minates abnormally (see signa/(2) for a list of status values).

A pipeline is a sequence of two or more commands separated by I.
The standard output of each command but the last is connected by a
pipe(2) to the standard input of the next command. Each command is
run as a separate process; the command execution process waits for the
last command to terminate. The exit status of a pipeline is the exit status
of the last command.

A list is a sequence of one or more simple commands or pipelines
separated by;, &, &&, or 1 I. A list may optionally be terminated by ; or
&. Of these four symbols, ; and & have equal precedence, which is
lower than that of && and 1 I. The symbols && and 1 1 also have equal
precedence.

A semicolon (;) causes sequential execution of the preceding
pipeline;

An ampersand (&) causes asynchronous execution of the
preceding pipeline;

The symbol && (1 I) causes the list following it to be executed
only if the preceding pipeline returns a zero (non-zero) ex it
status. An arbitrarily long sequence of new-lines may appear in

X/OPEN Portability Guide (Juty 1985) Part tl Page: SYSTEM(3S).1

SYSTEM(3S) Subroutines

a list, instead of a semicolon, to delimit commands.

A command is either a simple-command or one of the following . Unless
otherwise stated, the value returned by a command is that of the last
simple-command executed in the command list.

Comments
A word beginning with # causes that word and all the following charac­
ters up to a new-line to be ignored.

Command Substitution
The standard output from a command enclosed in a pair of grave
accents (") may be used as part or all of a word; trailing new-lines are
removed.

Parameter Substitution
The character $ is used to introduce substitutable parameters. There
are two types of parameters, positional and keyword. If parameter is a
digit, it is a positional parameter. Keyword parameters (also known as
variables) may be assigned values by writing:

parameter-name = value

parameter-name= value

${parameter)
The value, if any, of the parameter is substituted. The braces
are required only when parameter is followed by a letter, digit,
or underscore that is not to be interpreted as part of its name.
If parameter is * or @, all the positional parameters, starting
with $1, are substituted (separated by spaces). Parameter $0
is set from argument zero.

The following parameters are automatically set:
The number of positional parameters in decimal.
? The decimal value returned by the last synchronously

executed command.
$ The process number of this process.

The process number of the last background command
invoked.

The following parameters are used by the command execution process:
HOME The initial working (home) directory, initially set from

the 6th field in the letc/passwd file (see Appendix
2.9).

PATH The search path for commands (see Execution below) .

Blank Interpretation
After parameter and command substitution , the results of substitution are

Part II Page : SYSTEM(3S).2 X/OPEN Portability Guide (July 1985)

(

(

(

(

Subroutines SYSTEM(3S)

scanned for internal field separator characters (space, tab and newline)
and split into distinct arguments where such characters are found.
Explicit null arguments ('ft' or -) are retained. Implicit null arguments
(those resulting from parameters that have no values) are removed.

File Name Generation
Following substitution, each command word is scanned for the charac­
ters *, ?, and [. If one of these characters appears the word is regarded
as a pattern. The word is replaced with alphabetically sorted file names
that match the pattern. If no file name is found that matches the pattern,
the word is left unchanged. The character. at the start of a file name or
immediately following a I, as well as the character I itself, must be
matched explicitly.

* Matches any string, including the null string.
? Matches any single character.

Quoting

[... 1 Matches anyone of the enclosed characters. A pair
of characters separated by - matches any charac­
ter lexically between the pair, inclusive. If the first
character following the opening l' is a "!" any char­
acter not enclosed is matched.

The following characters have a special meaning and cause termination
of a word unless quoted:

; & () I A < > new-line space tab

A character may be quoted (i.e., made to stand for itself) by preceding it
with a \. The pair \ new-line is ignored. All characters enclosed
between a pair of single quote marks (-), except a single quote, are
quoted. Inside double quote marks (" "), parameter and command sub­
stitution occurs and \ quotes the characters \. ', ", and $. "$*" is
equivalent to "$1 $2 ... ", whereas "$@" is equivalent to "$1" "$2"

Input/Output
Before a command is executed, its input and output may be redirected
using a special notation. The following may appear anywhere in a
simple-command or may precede or follow a command and are not
passed on to the invoked command; substitution occurs before word or
digit is used:

< word
> word '

» word

Use file word as standard input (file descriptor 0) .
Use file word as standard output (file descriptor 1). If
the file does not exist it is created; otherwise, it is trun­
cated to zero length.
Use file word as standard output. If the file exists output
is appended to it (by first seeking to the end-of-file);

X/OPEN Portability Guide (July 1985) Part II Page : SYSTEM(3S).3

SYSTEM(3S) Subroutines

otherwise, the file is created.
« [- jword The shell input is read up to a line that is the same as

word, or to an end-of-file. The resulting document
becomes the standard input. If any character of word is
quoted, no interpretation is placed upon the characters
of the document; otherwise, parameter and command
substitution occurs, (unescaped) \ new-line is ignored,
and \ must be used to quote the characters \ ' $, " and
the first character of word. If - is appended to <<. al l
leading tabs are stripped from word and from the docu­
ment.

<&digit Use the file associated with file descriptor digit as stan­
dard input. Similarly for the standard output using
>&digit.

<&- The standard input is closed. Similarly for the standard
output using >&-.

If any of the above is preceded by a digit, the file descriptor which will
be associated with the file is that specified by the digit (instead of the
default 0 or 1). For example:

... 2> &1

associates file descriptor 2 with the file currently associated with file
descriptor 1 .

The order in which redirections are specified is significant. The shell
evaluates redirections left-to-right. For example:

... 1 >xxx 2>&1

first associates file descriptor 1 with file xxx. It associates file descriptor
2 with the file associated with file descriptor 1 (i.e. xxx) . If the order of
redirections were reversed, file descriptor 2 would be associated with the
terminal (assuming file descriptor 1 had been) and file descriptor 1
would be associated with file xxx.

If a command is followed by & the default standard input for the com­
mand is the empty file /dev/nu ll. Otherwise, the environment for the
execution of a command contains the file descriptors of the invoking
process as modified by input/output specifications.

Environment
The environment (see exec(2» is a list of parameter name-value pairs
that is passed to an executed program in the same way as a normal
argument list. On invocation, the environment is scanned and a parame­
ter is created for each name found, giving it the corresponding value.

The environment for any simple-command may be augmented by
prefixing it with one or more assignments to parameters.

Part II Page: SYSTEM(3S).4 X/ OPEN Portability Guide (July 1985)

(

(

(

Subroutines SYSTEM(3S)

TERM=450 cmd;

Signals
The SIGINT and SIGQUIT signals for an invoked command are ignored if
the command is followed by &; otherwise signals have the values inher­
ited by the command execution process from its parent.

Execution
Each time a command is executed, the above substitutions are carried
out. A new process is created and an attempt is made to execute the
command via exec(2) .

The parameter PATH defines the search path for the directory containing
the command . Alternative directory names are separated by a colon (:) .
The default path is :/bin:/usr /bin (specifying the current directory,
/bin, and /usr/bin, in that order). Note that the current directory is
specified by a null path name, which can appear immediately after the
equal sign or between the colon delimiters anywhere else in the path list.
If the command name contains a / the search path is not used. Other­
wise, each directory in the path is searched for an executable file. If the
file has execute permission but is not an a.out file, it is assumed to be a
file containing commands.

Conventionally, system has been implemented with the Bourne shell , sh.
The current definition of system is not intended to preclude that or its
implementation by another command interpreter that provides the
minimum functionality described here. Of course, any implementation
may provide a superset of the functionality described.

RETURN VALUE

FILES

Errors, such as syntax errors, cause a non-zero return value and execu­
tion of the command file is abandoned. Otherwise, the exit status of the
last command executed is returned.

/ dev / null

.SEE ALSO
dup(2), exec(2) , fork(2), pipe(2) , signal(2) , ulimit(2), umask(2), wait(2) .

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/ OPEN Portability Guide (July 1985) Part II Page: SYSTEM(3S) .5

(

(

(

(

Subroutines TMPFILE (3S)

NAME
tmpfile - create a temporary file

SYNOPSIS
#include < stdio.h >

FILE *tmpfile ()

DESCRIPTION
Tmpfile creates a temporary file using a name generated by
tmpnam(3S) , and returns a corresponding FILE pOinter. If the file cannot
be opened , an error message is printed and a NULL pOinter is returned .
The file will automatically be deleted when the process using it ter­
minates. The file is opened for update (" w+").

RETURN VALUE
If the file cannot be opened, an error message is printed and a NULL
pOinter is returned.

SEE ALSO
creat(2), unlink(2), fopen(3S) , mktemp(3C), tmpnam(3S).

RELATIONSHIP TO SVID
Identical to the SVID entry, except that the RETURN VALUE sentence
has also been repeated in the DESCRIPTION section.

X/ OPEN Portability Guide (July 1985) Part II Page: TMPFILE(3S).1

(

(

(

(

Subroutines TMPNAM(3S)

NAME
tmpnam, tempnam - create a name for a temporary file

SYNOPSIS
#include < stdio.h >

char *tmpnam (s)
char *s;

char *tempnam (dir, pfx)
char *dir, *pfx;

DESCRIPTION
These functions generate file names that can safely be used for a tem­
porary file .

Tmpnam always generates a file name using the path-prefix defined as
{P _tmpdir} in the < stdio.h> header file. If s is NULL, tmpnam leaves
its result in an internal static area and returns a pOinter to that area. The
next call to tmpnam will destroy the contents of the area. If s is not
NULL, it is assumed to be the address of an array of at least {L_tmpnam}
bytes, where {L_tmpnam} is a constant defined in < stdio.h >; tmpnam
places its result in that array and returns s.

Tempnam allows the user to control the choice of a directory. The argu­
ment dir points to the name of the directory in which the file is to be
created . If dir is NULL or pOints to a string which is not a name for an
appropriate directory, the path-prefix defined as {P _tmpdir} in the
<stdio.h> header file is used. If that directory is not accessible, Itmp
will be used as a last resort.

Tempnam uses mal/oc(3X) to get space for the constructed file name,
and returns a pOinter to this area. Thus, any pointer value returned from
tempnam may serve as an argument to free (see mal/oc(3X» . If temp­
nam cannot return the expected result for any reason, i.e. mal/oc(3X)
failed, or none of the above mentioned attempts to find an appropriate
directory was successful, a NULL pOinter will be returned.

SEE ALSO
creat(2) , unlink(2), fopen(3S), malloc(3X), mktemp(3C), tmpfile(3S).

APPLICATION USAGE
Many applications prefer their temporary files to have certain favorite ini­
tial letter sequences in their names. Use the pfx argument for this. This
argument may be NULL or point to a string of up to five characters to be
used as the first few characters of the temporary-file name.

The functions tmpnam and tempnam generate a different file name each
time they are called.

X/OPEN Portability Guide (July 1985) Part II Page : TMPNAM(3S) .1

TMPNAM(3S) Subroutines

Files created using these functions and either fopen(3S) or creat(2) are
temporary only in the sense that they reside in a directory intended for
temporary use, and their names are unique. It is the user's responsibility
to use fclose(2) or unlink(2) to remove the file when its use is ended.

If called more than (TMP _MAX) times in a single process, these functions
will start recycling previously used names. Between the time a file name
is created and the file is opened, it is possible for some other process to
create a file with the same name. This can never happen if that other
process is using these functions or mktemp, and the file names are
chosen so as to render duplication by other means unlikely.

RELATIONSHIP TO SVID
Identical to the SVID entry.

Part II Page : TMPNAM(3S) .2 X/ OPEN Portability Guide (July 1985)

(

(

(

(

Subroutines TRIG(3M)

NAME
sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

(OPTIONAL)

SYNOPSIS
include < math.h>

double sin (x)
double x;

double cos (x)
double x;

double tan (x)
double x;

double asin (x)
double x;

double acos (x)
double x;

double atan (x)
double x;

double atan2 (y, x)
double y, x;

DESCRIPTION
Sin, cos and tan return respectively the sine, cosine and tangent of their
argument x, measured in radians.

Asin returns the arcsine of x, in the range -7T12 to 7T 12.

Acos returns the arccosine of x, in the range 0 to 7T .

Atan returns the arctangent of x , in the range -7T12 to 7T 12 .

Atan2 returns the arctangent of y 1 x, in the range -7T to 7T, using the
signs of both arguments to determine the quadrant of the return value.

RETURN VALUE
Sin, cos, and tan lose accuracy when their argument is far from zero
(0). For arguments sufficiently large, these functions return zero when
there would otherwise be a complete loss of significance. In this case a
message indicating TLOSS error is printed on the standard error output.
For less extreme arguments causing partial loss of significance, a PLOSS
error is generated but no message is printed. In both cases, erma is set
to [ERANGE] .

X/OPEN Portability Guide (July 1985) Part II Page: TRIG (3M) .1

TRIG(3M) Subroutines

If the magnitude of the argument of asin or acos is greater than one, or
if both arguments of atan2 are zero, zero is returned and ermo is set to
[EDOM]. In addition, a message indicating DOMAIN error is printed on the
standard error output.

These error-handling procedures may be changed with the function
matherr(3M) .

SEE ALSO
matherr(3M).

RELATIONSHIP TO SVID
Identical to SVID entry. The optional mathematical group is mandatory in
SVID.

Part II Page: TRIG(3M).2 X/ OPEN Portability Guide (July 1985)

(

(

(

Subroutines TSEARCH(3C)

NAME
tsearch, tfind, tdelete, twalk - manage binary search trees

SYNOPSIS
#include <search.h>

char *tsearch (key, rootp, com par)
char *key;
char **rootp;
int (*compar)();

char *tfind (key, rootp, com par)
char * key;
char **rootp;
int (*compar)();

char *tdelete (key, rootp, compar)
char *key;
char **rootp;
int (*compar)();

void twalk (root, action)
char *root;
void (*action)();

DESCRIPTION
Tsearch, tfind, tdelete, and twalk are routines for manipulating binary
search trees. They are generalized from Knuth (6.2.2) Algorithms T and
D. All comparisons are done with a user-supplied routine. This routine
is called with two arguments, the pointers to the elements being com­
pared. It returns an integer less than, equal to , or greater than zero (0),
according to whether the first argument is to be considered less than,
equal to or greater than the second argument. The comparison function
need not compare every byte, so arbitrary data may be contained in the
elements in addition to the values being compared.

Tsearch is used to build and access the tree. Key is a pOinter to a
datum to be accessed or stored. If there is a datum in the tree equal to
*key (the value pointed to by key) , a pointer to this found datum is
returned. Otherwise, *key is inserted , and a pointer to it returned. Only
painters are copied, so the calling routine must store the data. Rootp
points to a variable that points to the root of the tree. A NULL value for
the variable pointed to by rootp denotes an empty tree; in this case, the
variable will be set to point to the datum which will be at the root of the
new tree.

Like tsearch, tfind will search for a datum in the tree, returning a pOinter
to it if found. However, if it is not found, tfind will return a NULL pointer.
The arguments for tfind are the same as for tsearch.

X/OPEN Portability Guide (July 1985) Part II Page : TSEARCH(3C).1

TSEARCH (3C) Subroutines

Tdelete deletes a node from a binary search tree. The arguments are
the same as for tsearch . The variable pointed to by rootp will be
changed if the deleted node was the root of the tree. Tdelete returns a
pointer to the parent of the deleted node, or a NULL pointer if the node is
not found.

Twalk traverses a binary search tree. Root is the root of the tree to be
traversed. (Any node in a tree may be used as the root for a walk below
that node.) Action is the name of a routine to be invoked at each node.
This routine is, in turn, called with three arguments. The first argument
is the address of the node being visited. The second argument is a
value from an enumeration data type typedef enum { preorder, pos­
torder, endorder, leaf} VISIT; (defined in the < search .h> header file),
depending on whether this is the first, second or third time that the node
has been visited (during a depth-first, left-to-right traversal of the tree), or
whether the node is a leaf. The third argument is the level of the node in
the tree, with the root being level zero.

RETURN VALUE

A NULL painter is returned by tsearch if there is not enough space avail­
able to create a new node.
A NULL pointer is returned by tsearch , tfind and tdelete if rootp is NULL
on entry.
If the datum is found, both tsearch and tfind return a pOinter to it. If not,
tfind returns NULL, and tsearch returns a pointer to the inserted item.

SEE ALSO

bsearch(3C), hsearch(3C), Isearch(3C).
APPLICATION USAGE

The pointers to the key and the root of the tree should be of type
pOinter-to-element, and cast to type pointer-to-character. Similarly,
although declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

The root argument to twalk is one level of indirection less than the rootp
arguments to tsearch and tdelete.
There are two nomenclatures used to refer to the order in which tree
nodes are visited. Tsearch uses preorder, postorder and endorder to
respectively refer to visting a node before any of its children, after its left
child and before its right, and after both its children . The alternate
nomenclature uses preorder, inorder and postorder to refer to the same
visits, which could result in some confusion over the meaning of pos­
torder.

If the calling function alters the pOinter to the root , results are unpredict­
able.

Part II Page: TSEARCH(3C).2 X/ OPEN Portability Guide (July 1985)

(

(

(

(

Subroutines TSEARCH (3C)

EXAMPLE
The following code reads in strings and stores structures containing a
pOinter to each string and a count of its length. It then walks the tree,
printing out the stored strings and their lengths in alphabetical order.

include <search.h>
#include < stdio.h>

struct node { I * pointers to these are stored in the tree * I
char *string;
int length;

};
char string_space[10000];
struct node nodes[500];
struct node *root = NULL;

I * space to store strings * I
I * nodes to store * I

I * this pOints to the root * I

maine)
(

*1
int

char *strptr = string_space;
struct node *nodeptr = nodes;
void prinCnode(), twalk();
int i = 0, node_comparee) ;

while (gets(strptr) != NULL && i+ + < 500)
1* set node * I

}

nodeptr - >string = strptr;
nodeptr- >Iength = strlen(strptr);
I * put node into the tree * I
(void) tsearch((char *)nodeptr, &root,

node_compare);
1* adjust pOinters, so we don 't overwrite tree *1
strptr + = nodeptr - > Iength + 1;
nodeptr+ + ;

twalk(root, prinCnode);

This routine compares two nodes, based on an
alphabetical ordering of the string field .

node_compare(node1, node2)
char *node1, *node2;
(

return strcmp((struct node *) node1 - >string,
(struct node *) node2 - > string);

X/OPEN Portability Guide (July 1985) Part II Page: TSEARCH(3C) .3

TSEARCH (3C)

This routine prints out a node, the first time
twalk encounters it.

void
prinCnode(node, order,
struct node **node;
VISIT order;
int level;
(

level)

Subroutines

if (order = = preorder I I order = = leaf) (
(void)printf("string = %20s, length = %d \ n",

(*node)- >string, (*node) - > Iength);

RELATIONSHIP TO SVID
Identical to the SVID entry, except that a programming error in the
node_compare part of the example has been corrected . The SVID
reads:

return strcmp(node1-> string, node2-> string);

Part II Page: TSEARCH(3C).4 X/ OPEN Portability Guide (July 1985)

(

(

(

(

Subroutines TTYNAME(3C)

NAME
ttyname, isatty - find name of a terminal

SYNOPSIS
char *ttyname (fildes)
int fildes;

int isatty (fildes)
int fildes;

DESCRIPTION

FILES

Ttyname returns a pointer to a string containing the null-terminated path
name of the terminal device associated with file descriptor fildes.

Isatty returns 1 if fildes is associated with a terminal device, zero (0) oth­
erwise.

I dev /*

RETURN VALUE
Ttyname returns a NULL pointer if tildes does not describe a terminal
device in directory Idev .

APPLICATION USAGE
The return value points to static data whose content is overwritten by
each call.

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/ OPEN Portability Guide (July 1985) Part II Page: TIYNAME(3C).1

(

(

(

(

Subroutines TTVSLOT (3C)

NAME
ttyslot - find the slot in the utmp file of the current user

SYNOPSIS
int ttyslot ()

DESCRIPTION

FILES

Ttyslot returns the index of the current user's entry in the letc/utmp
file.

l etc / utmp

SEE ALSO
getut(3C) , ttyname(3C).

DIAGNOSTICS
A value of zero (0) is returned if an error was encountered while search­
ing for the terminal name or if none of the above file descriptors is asso­
ciated with a terminal device.

RELATIONSHIP TO SVI D
This function is not included in the SVID. It comes from UNIX System V
Release 2.0.

X/OPEN Portability Guide (July 1985) Part II Page: TTYSLOT(3C) .1

(

(

(

(

Subroutines UNGETC(3S)

NAME
ungetc - push character back into input stream

SYNOPSIS
#include <stdio.h >

int ungetc (c, stream)
int c;
FILE *stream;

DESCRIPTION
Ungetc inserts the character c into the buffer associated with an input
stream. That character c, will be returned by the next getc(3S) call on
that stream. Ungetc returns c, and leaves the file stream unchanged.

One character of pushback is guaranteed, provided something has
already been read from the stream and the stream is actually buffered.
In the case that stream is stdin , one character may be pushed back
onto the buffer without a previous read statement.

If c equals EOF ungetc does nothing to the buffer and returns EOF.

Fseek(3S) erases all memory of inserted characters.

RETURN VALUE
Ungetc returns EOF if it cannot insert the character.

SEE ALSO
fseek(3S), getc(3S), setbuf(3C).

RELATIONSHIP TO SVID
Identical to the SVID entry.

X/OPEN Portability Guide (July 1985) Part II Page: UNGETC(3S) .1

(

(

(,

(

Subroutines VPRINTF(3S)

NAME
vprintf, vfprintf, vsprintf - print formatted output of a varargs argument
list

SYNOPSIS
#include < stdio.h>
#include < varargs.h>

int vprintf (format, ap)
char *format;
va_list ap;

int vfprintf (stream, format, ap)
FILE *stream;
char *format;
va_list ap;

int vsprintf (s, format, ap)
char *s, *format;
va_list ap;

DESCRIPTION
vprintf, vfprintf, and vsprintf are the same as printf, fprintf, and sprintf
respectively, except that instead of being called with a variable number
of arguments, they are called with an argument list as defined by
<varargs.h>.

SEE ALSO
printf(3S).

EXAMPLE
The following demonstrates how vfprintf could be used to write an error
routine.

#include < stdio.h >
#include <varargs.h >

/*
* error should be called like
* error(function_name, format, arg1, arg2 ...);
*/

/ * VARARGSO* /
void
error(va_alist)
/* Note that the function_name and format arguments cannot be
* separately declared because of the definition of varargs.
*/

X/OPEN Portability Guide (July 1985) Part II Page : VPRINTF(3S).1

VPRINTF(3S)

vaJist args;
char *fmt;

va_start(args);

Subroutines

/ * print out name of function causing error * /
(void)fprintf(stderr, " ERROR in %s: " , va_arg(args, char *));
fmt = va_arg(args, char *);
/ * print out remainder of message * /
(void)vfprintf(fmt, args);
va_end(args);
(void)abort();

RELATIONSHIP TO SVID
Identical to the SVID entry.

Part II Page : VPRINTF(3S).2 X/ OPEN Portability Guide (July 1985)

()

(.

