XEROX

BASIC-80

ALL SOFTWARE IS WARRANTED AS SET OUT IN THE XEROX
OFFICE PRODUCTS SOFTWARE LICENSE AND SOFTWARE
MAINTENANCE AGREEMENT

610P70641

basic-80
reference
manual

This manual is a reference for Microsoft’s BASIC-80 language, release 5.0 and later.

There are significant differences between the 5.0 release of BASIC-80 and the previous releases
(release 4.51 and earlier). If you have programs written under a previous release of BASIC-BO
check Appendix A for new features in 5.0 that may affect execution.

Introduction

BASIC-80 is the most extensive implementation of BASIC
available for the 8080 and Z80 microprocessors. In its
fifth major release (Release 5.0), BASIC-80 meets the ANSI
qualifications for BASIC, as set forth in document
BSRX3.60-1978. Each release of BASIC-80 consists of three
upward compatible versions: 8K, Extended and Disk . This
manual is a reference for all three versions of BASIC-80,
release 5.0 and later. This manual is also a reference for
Microsoft BASIC-86 and the Microsoft BASIC Compiler.
BASIC-86 is currently available in Extended and Disk
Standalone versions, which are comparable to the BASIC-80
Extended and Disk Standalone versions.

There are significant differences between the 5.0 release of
BASIC-80 and the previous releases (release 4.51 and
earlier). If you have programs written under a previous
release of BASIC-80, check Appendix A for new. features in
5.0 that may affect execution.

The manual is divided into three 1large chapters plus a
number of appendices. Chapter 1 covers a variety of topics,
largely pertaining to information representation when using
BASIC-80. Chapter 2 contains the syntax and semantics of
every command and statement in BASIC-80, ordered
alphabetically. Chapter 3 describes all of BASIC-80's
intrinsic functions, also ordered alphabetically. The
appendices contain information pertaining to individual
operating systems; plus 1lists of error messages, ASCII
codes, and math functions; and helpful information on
assembly language subroutines and disk I/O.

information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft. The software described in this document is furnished
under a license agreement or non-disclosure agreement. The software may be used or copied
only in accordance with the terms of the agreement. It is against the law to copy Microsoft
BASIC on cassette tape, disk, or any other medium for any purpose other than personal
convenience.

© Microsoft, 1979

LIMITED WARRANTY

MICROSOFT shall have no liability or responsibility to purchaser or any other person or entity
with respect to any liability, loss or damage caused or alleged to be caused directly or indirectly
by this product, including but not limited to any interruption of service, loss of business or
anticipatory profits or consequential damages resulting from the use or operation of this
product. This product will be exchanged within twelve months from date of purchase if
defective in manufacture, labeling or packaging, but except for such replacement the sale or
subsequent use of this program is without warranty or liability.

THE ABOVE IS A LIMITED WARRANTY AND THE ONLY WARRANTY MADE BY MICROSOFT.
ANY AND ALL WARRANTIES FOR MERCHANTABILITY AND/OR FITNESS FOR A PARTIC-
ULAR PURPOSE ARE EXPRESSLY EXCLUDED.

To report software bugs or errors in the documentation, please complete and return the
Problem Report at the back of this manual.

CP/M is a registered trademark of Digital Research

8101-530-07

INTRODUCTION

CHAPTER 1
CHAPTER 2

CHAPTER 3

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX

BASIC~80 Reference Manual

H O o w p»

nmoQ m

(&

=

2 v

CONTENTS

General Information About BASIC-80
BASIC-80 Commands and Statements

BASIC-80 Functions

New Features in BASIC-80, Release 5.0

BASIC-80 Disk I/O

Assembly Language Subroutines

BASIC-80 with the CP/M Operating System

BASIC-80 with the ISIS-II Operating System

BASIC-80 with the TEKDOS Operating System

BASIC-80 with the Intel SBC and MDS Systems
Standalone Disk BASIC

Converting Programs to BASIC-80

Summary of Error Codes and Error Messages
Mathematical Functions

Microsoft BASIC Compiler

ASCII Character Codes

CHAPTER 1

GENERAL INFORMATION ABOUT BASIC-80

1.1 INITIALIZATION

The procedure for initialization will vary with different
implementations of BASIC-80. Check the appropriate appendix
at the back of this manual to determine how BASIC-80 1is
initialized with your operating system.

1.2 MODES -OF OPERATION

When BASIC-80 is initialized, it tvpes the prompt "Ok".
"Ok" means BASIC-80 1is at command level, that is, it is
ready to accept commands. At this point, BASIC-80 may be
used in either of two modes: the direct mode or the
indirect mode.

In the direct mode, BASIC statements and commands are not
preceded by 1line numbers. They are executed as they are
entered. Results of arithmetic and logical operations may
be displayed immediately and stored for later use, but the
instructions themselves are lost after execution. This mode
is useful for debugging and for using BASIC as a
"calculator" for quick computations that do not regquire a
complete program.

The indirect mode is the mode used for entering programs.
Program lines are preceded by line numbers and are stored in
memory. The program stored in memory is executed by
entering the RUN command.

1.3 LINE FORMAT

Program lines in a BASIC program have the following format
(square brackets indicate optional):

nnnnn BASIC statement[:BASIC statement...] <carriage return>

GENERAL INFORMATION ABOUT BASIC-80 Page 1-2

At the programmer's option, more than one BASIC statement
may be placed on a line, but each statement on a line must
be separated from the last by a colon.

A BASIC program line always begins with a line number, ends
with a carriage return, and may contain a maximum of:

72 characters in 8K BASIC-80
255 characters in Extended and Disk BASIC-80.

In Extended and Disk versions, it is possible to extend a
logical 1line over more than one physical line by use of the
terminal's <line feed> key. <Line feed> lets vyou continue
typing a 1logical 1line on the next physical line without
entering a <carriage return>. (In the 8K wversion, <line
feed> has no effect.)

1.3.1 Line Numbers

Every BASIC program line begins with a 1line number. Line
numbers indicate the order in which the program lines are
stored in memory and are also used as references when
branching and editing. Line numbers must be in the range 0
to 65529. In the Extended and Disk versions, a period (.)
may be used in EDIT, LIST, AUTO and DELETE commands to refer
to the current line.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-3

1.4 CHARACTER SET

The BASIC-80 character set 1is comprised of alphabetic
characters, numeric characters and special characters.

The alphabetic characters in BASIC-80 are the upper case and
lower case letters of the alphabet.

The numeric characters in BASIC-80 are the digits 0 through
9.

The following special characters and terminal keys are
recognized by BASIC-80:

Character Name
Blank
= Equal sign or assignment symbol
+ Plus sign
- Minus sign
* Asterisk or multiplication symbol
/ Slash or division symbol
° Up arrow or exponentiation symbol
(Left parenthesis
) Right parenthesis
% Percent
Number (or pound) sign
$ Dollar sign
! Exclamation point
[Left bracket
] Right bracket
’ Comma
. Period or decimal point
! Single quotation mark (apostrophe)
: Semicolon
: Colon
& Amper sand
? Question mark
< Less than
> Greater than
\ Backslash or integer division symbol
e At-sign
_ Underscore
<rubout> Deletes last character typed.
<escape> Escapes Edit Mode subcommands.
See Section 2.16.
<tab> Moves print position to next tab stop.

Tab stops are every eight columns.
<line feed> Moves to next physical line.
<carriage

return> Terminates input of a line.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-4

1.4.1 Control Characters

The following control characters are in BASIC-80:
Control-A Enters Edit Mode on the line being typed.

Control-C Interrupts program execution and returns to
BASIC~-80 command level.

Control-G Rings the bell at the terminal.

Control-H Backspace. Deletes the last character typed.

Control-I Tab. Tab stops are every eight columns.

Control-0O Halts program output while execution
continues. A second Control-O restarts
output.

Control-R Retypes the 1line that 1is currently being
typed.

Control-~S Suspends program execution.

Control-Q Resumes program execution after a Control-S.

Control-U Deletes the 1line that is currently being
typed.

1.5 CONSTANTS

Constants are the actual values BASIC uses during execution.
There are two types of constants: string and numeric.

A string constant is a sequence of up to 255 alphanumeric
characters enclosed in double quotation marks. Examples of
string constants:

"HELLO"
"$25,000.00"
"Number of Employees”

Numeric constants are positive or negative numbers. Numeric
constants in BASIC cannot contain commas. There are five
types of numeric constants:

1. Integer constants Whole numbers between -=32768 and
+32767. Integer constants do not
have decimal points. '

2. Fixed Point Positive or negative real numbers,
constants i.e., numbers that contain decimal
points.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-5

3. Floating Point Positive or negative numbers repre-
constants sented in exponential form (similar
to scientific notation). A

floating point constant consists of
an optionally signed integer or
fixed point number (the mantissa)
followed by the 1letter E and an
optionally signed integer (the
exponent). The allowable range for
floating point constants is 10-38
to 10+38.

Examples:

235.988E-7 = .0000235988
2359E6 = 2359000000

(Double ©precision floating point
constants use the letter D instead
of E. See Section 1l.5.1l.)

4., Hex constants Hexadecimal numbers with the prefix
&H, Examples:

&H76
&H32F

5. Octal constants Octal numbers with the prefix &0 or
&. Examples:

&0347
&1234

1.5.1 Single And Double Precision Form For Numeric Constants

In the 8K version of BASIC-80, all numeric constants are
single precision numbers. They are stored with 7 digits of
precision, and printed with up to 6 digits.

In the Extended and Disk versions, however, numeric
constants may be either single precision or double precision
numbers. With double precision, the numbers are stored with
16 digits of precision, and printed with up to 16 digits.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-6
A single precision constant is any numeric constant that
has:

1. seven or fewer digits, or

2. exponential form using E, or

3. a trailing exclamation point (!)

" A double precision constant is any numeric constant that
has:

1. eight or more digits, or
2. exponential form using D, or
3. a trailing number sign (%)

Examples:

Single Precision Constants Double Precision Constants
46.8 345692811
-1.09E-06 ~1.09432D-06
3489.0 3489.,0%#
22.5!1 7654321.1234

1.6 VARIABLES

Variables are names used to represent values that are used
in a BASIC program. The value of a variable may be assigned
explicitly by the programmer, or it may be assigned as the
result of calculations in the program. Before a variable is
assigned a value, its value is assumed to be zero.

1.6.1 Variable Names And Declaration Characters

BASIC-80 variable names may be any length, however, in the
8K version, only the first two characters are significant.
In the Extended and Disk versions, up to 40 characters are
significant. The characters allowed in a variable name are
letters and numbers, and the decimal point 1is allowed in
Extended and Disk variable names. The first character must
be a letter. Special type declaration characters are also
allowed -- see below.

A variable name mav not be a reserved word. The Extended
and Disk versions allow embedded reserved words; the 8K
version does not. If a variable begins with FN, it 1is
assumed to be a call to a user-defined function. Reserved
words include all BASIC-80 commands, statements, function

GENERAL INFORMATION ABOUT BASIC-80 Page 1-7

names and operator names.

Variables may represent either a numeric value or a string.
String wvariable names are written with a dollar sign ($) as
the last character. For example: AS$ = "SALES REPORT". The
dollar sign 1is a variable type declaration character, that
is, it "declares" that the variable will represent a string.

may declare integer, single or double precisicn va
(All"numeric values in 8K are single precision.) The type
declaration characters for these variable names are as
follows:

In the Extended and Disk versions, numeric variable names
hi -

(ST}
- .

% Integer variable
! Single precision variable
Double precision variable

The default type for a numeric variable name 1is single
precision.

Examples of BASIC-80 variable names follow.

In Extended and Disk versions:

PI# declares a double precision value
MINIMUM! declares a single precision value
LIMITS declares an integer value

In 8K, Extended and Disk wversions:

NS declares a string value
ABC represents a single precision value

In the Extended and Disk versions of BASIC-80, there is a
second method by which variable types may be declared. The
BASIC-80 statements DEFINT, DEFSTR, DEFSNG and DEFDBL may be
included in a program to declare the types for certain
variable names. These statements are described in detail in
Section 2.12.

l1.6.2 Array Variables

An array is a group or table of values referenced by the
same variable name. Each element in an array is referenced
by an array variable that is subscripted with an integer or
an integer expression. An array variable name has as many
subscripts as there are dimensions in the array. For
example V(10) would reference a value in a one-dimension
array, T(l,4) would reference a value in a two-dimension
array, and so on. The maximum number of dimensions for an

GENERAL INFORMATION ABOUT BASIC-80 Page 1-8

array is 255. The maximum number of elements per dimension
is 32767.

1.6.3 Space Requirements

VARIABLES: BYTES
INTEGER 2
SINGLE PRECISION 4
DOUBLE PRECISION 8
ARRAYS: BYTES
INTEGER 2 per element
SINGLE PRECISION 4 per element
DOUBLE PRECISION 8 per element
STRINGS:

3 bytes overhead plus the present contents of the string.

1.7 TYPE CONVERSION

When necessary, BASIC will convert a numeric constant from
one type to another. The following rules and examples
should be kept in mind.

1. If a numeric constant of one type is set equal to a
numeric variable of a different type, the number
will be stored as the type declared in the variable
name. (If a string variable is set equal to a
numeric value or vice versa, a "Type mismatch"
error occurs.)

Example:

10 A% = 23.42
20 PRINT A%
RUN

23

2. During expression evaluation, all of the operands
in an arithmetic or relational operation are
converted to the same degree of precision, i.e.,
that of the most precise operand. Also, the result
of an arithmetic operation 1is returned to this
degree of precision.

Examples:

10 D# = 6#/7 The arithmetic was performed

GENERAL INFORMATION ABOUT BASIC-80 Page 1-9

20 PRINT D# in double precision and the
RUN result was returned in D#
.8571428571428571 as a double precision value.

10 D = 6#/7 The arithmetic was performed
20 PRINT D in double precision and the
RUN result was returned to D (single
.857143 precision variable), rounded and
printed as a single precision
value.

3. Logical operators (see Section 1.8.3) convert their
operands to integers and return an integer result.
Operands must be in the range -32768 to 32767 or an
"Overflow" error occurs.

4. When a floating point wvalue 1is converted to an
integer, the fractional portion is rounded.
Example:

10 C% = 55.88
20 PRINT C%
RUN

56

5. If a double precision variable is assigned a single
precision wvalue, only the first seven digits,
rounded, of the converted number will be wvalid.
This 1is because only seven digits of accuracy were
supplied with the single precision value. The
absolute value of the difference between the
printed double precision number and the original
single precision value will be less than 6.3E-8
times. the original single precision value.

Example:

10 A = 2.04

20 B# = A

30 PRINT A;B#

RUN

2.04 2.039999961853027

1.8 EXPRESSIONS AND OPERATORS

An expression may be simply a string or numeric constant, or
a variable, or it may combine constants and variables with
operators to produce a single value.

Operators perform mathematical or 1logical operations on
values. The operators provided by BASIC-80 may be divided
into four categories:

GENERAL INFORMATION ABOUT BASIC-80 Page 1-10

l. Arithmetic
2. Relational
3. Logical

4, Functional

1.8.1 Arithmetic Operators

The arithmetic operators, in order of precedence, are:

Operator Operation Sample Expression

- Exponentiation X°Y

- Negation -X

*,/ Multiplication, Floating X*y

Point Division X/Y

+,- Addition, Subtraction X+Y
To change the order in which the operations are performed,
use parentheses. Operations within parentheses are
performed first. 1Inside parentheses, the usual order of

operations is maintained.

Here are some sample algebraic expressions and their BASIC
counterparts.

Algebraic EXpression BASIC BExpression

X+2Y X+Y*2

X— _g_ X-Y/2

ESZ.Y_' X*Y/%

§_*Z;¥_ (X+Y) /2

(x%) ¥ (X72) "Y

XYZ X" (¥"2)

X (=Y) ' X*(-Y) Two consecutive

operators must
be separated by
parentheses.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-11

1.8.1.1 1Integer Division And Modulus Arithmetic -

Two additional operators are available in Extended and Disk
versions of BASIC-80: Integer division and modulus
arithmetic.

Integer division is denoted by the baskslash (\). The
operands are rounded ¢to integers (must be in the range
-32768 to 32767) before the division is performed, and the
quotient is truncated to an integer.

e omeom e T
ror exaliplies

10\d = 2
25.68\6.99 = 3

The precedence of integer division is just after
multiplication and floating point division.

Modulus arithmetic is denoted by the operator MOD. It gives
the integer wvalue that 1is the remainder of an integer
division. For example:

10.4 MOD 4 = 2 (10/4=2 with a remainder 2)
25.68 MOD 6.99 = 5 (26/7=3 with a remainder 5)

The precedence of modulus arithmetic is just after integer
division.

1.8.1.2 Overflow And Division By Zero -

If, during the evaluation of an expression, a division by
zero is encountered, the "Division by zero" error message is
displayed, machine infinity with the sign of the numerator
is supplied as the result of the division, and execution
continues. If the evaluation of an exponentiation results
in 2zero being raised to a negative power, the "Division by
zero" error message is displayed, positive machine infinity
is supplied as the result of the exponentiation, and
execution continues.

If overflow occurs, the "Overflow" error message is
displayed, machine infinity with the algebraically correct
sign is supplied as the result, and execution continues.

1.8.2 Relational Operators

Relational operators are used to compare two values. The
result of the comparison is either "true" (-1) or "false"
(0). This result may then used to make a decision regarding
program flow. (See IF, Section 2.26.)

GENERAL INFORMATION ABOUT BASIC-80 Page 1-12

Operator Relation Tested | Expression
= Equality X=Y
<> Inequality X<>Y
< Less than X<Y
> Greater than X>Y
<= Less than or equal to X<=Y
>= Greater than or equal to X>=Y

(The equal sign is also used to assign a value to a
variable. See LET, Section 2.30.)

When arithmetic and relational operators are combined in one
expression, the arithmetic is always performed first. For
example, the expression

X+Y < (T-1)/2Z

is true if the value of X plus Y is less than the value of
T-1 divided by Z. More examples:

IF SIN(X)<0 GOTO 1000
IF I MOD J <> Q0 THEN K=K+l

1.8.3 Logical Operators

Logical operators perform tests on multiple relations, bit
manipulation, or Boolean operations. The logical operator
returns a bitwise result which is either "true" (not =zero)
or "false" (zero). In an expression, logical operations are
performed after arithmetic and relational operations. The
outcome of a logical operation is determined as shown in the
following table. The operators are 1listed in order of
precedence.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-13

NOT

X NOT X

1 0

0 1
AND

X Y X AND Y

1 1 1

1 0 0

Y 1 0

0 0 0
OR

X Y XORY

1 1 1

1 0 1

0 1 1

0 0 0
XO0R

X Y X XOR Y '

1 1 0

1 0 1

0 1 1

0 0 0
IMP

X Y X IMP Y

1 1 1

1 0 0

0 1 1

0 0 1
EQV

X Y X EQV Y

1 1 1

1 0 0

0 1 0

0 0 1

Just as the relational operators can be used to make
decisions regarding program flow, logical operators can
connect two or more relations and return a true or false
value to be used in a decision (see IF, Section 2.26). For
example:

IF D<200 AND F<4 THEN 80
IF I>10 OR K<0 THEN 50
IF NOT P THEN 100

Logical operators work by converting their operands to
sixteen bit, signed, two's complement integers in the range
-32768 to +32767. (If the operands are not in this range,
an error results.) If both operands are supplied as 0 or -1,
logical operators return 0 or ~-1. The given operation is

GENERAL INFORMATION ABOUT BASIC-80 Page 1-14

performed on these integers in bitwise fashion, i.e., each
bit of the result is determined by the corresponding bits in
the two operands.

Thus, it is possible to use logical operators to test bytes
for a particular bit pattern. For instance, the AND
operator may be used to "mask"™ all but one of the bits of a
status byte at a machine I/O port. The OR operator may be
used to "merge" two bytes to <c¢reate a particular binary
value. The following examples will help demonstrate how the
logical operators work.

63 AND 16=16 63 = binary 111111 and 16 = binary
10000, so 63 AND 16 = 16

15 AND 14=14 15 = binary 1111 and 14 = binary 1110,
so 15 AND 14 = 14 (binary 1110)

-1 AND 8=8 -1 = binary 1111111111111111 and
8 = binary 1000, so -1 AND 8 = 8

4 OR 2=6 4 = binary 100 and 2 = binary 10,
so 4 OR 2 = 6 (binary 110)

10 OR 10=10 10 = binary 1010, so 1010 OR 1010 =
1010 (10)

-1 OR -2=-1 -1 = binary 1111111111111111 and

-2 binary 1111111111111110,

so -1 OR -2 = -1. The bit

complement of sixteen zeros is
sixteen ones, which is the

two's complement representation of -1.

NOT X=-(X+1) The two's complement of any integer
is the bit complement plus one.

1.8.4 Functional Operators

A function is used in an expression to call a predetermined
operation that 1is to be performed on an operand. BASIC-80
has "intrinsic" functions that reside in the system, such as
SQR (square root) or SIN (sine). All of BASIC-80's
intrinsic functions are described in Chapter 3.

BASIC-80 also allows "user defined"™ functions that are
written by the programmer. See DEF FN, Section 2.11.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-15

1.8.5 String Operations

Strings may be concatenated using +. For example:

10 AS="FILE" : BS="NAME"
20 PRINT AS + BS

30 PRINT "NEW " + AS$ + BS
RUN

FILENAME

NEW FILENAME

Strings may be compared using the same relational operators
that are used with numbers:

= <> < > <= >=

String comparisodé are made by taking one character at a
time from each string and comparing the ASCII codes. If all
the ASCII codes are the same, the strings are equal. If the
ASCII codes differ, the 1lower code number precedes the
higher. 1If, during string comparison, the end of one string
is reached, the shorter string 1is said to be smaller.
Leading and trailing blanks are significant. Examples:

IIAAII < "AB"

"FILENAME" = "FILENAME"

“X& n > nx# "

"CL " > "CL"

"kg " > "KG"

"SMYTH" < "SMYTHE"

B$ < "9/12/78" where B$ = "8/12/78"

Thus, string comparisons can be used to test string values
or to alphabetize strings. All string constants used in
comparison expressions must be enclosed in quotation marks.

1.9 INPUT EDITING

If an incorrect character is entered as a 1line 1is being
typed, it <can be deleted with the RUBOUT key or with
Control-H. Rubout surrounds the deleted character(s) with
backslashes, and Control-H has the effect of backspacing
over a character and erasing it. Once a character(s) has
been deleted, simply continue typing the line as desired.

To delete a line that is in the process of being typed, type
Control-U. A carriage return 1is executed automatically
after the line is deleted.

To correct program lines for a program that is currently in
memory, simply retype the line using the same line number.
BASIC-80 will automatically replace the old 1line with the
new line.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-16

More sophisticated editing capabilities are provided in the
Extended and Disk versions of BASIC-80. See EDIT, Section
2.16.

To delete the entire program that is currently residing in
memory, enter the NEW command. (See Section 2.41.) NEW is
usually used to clear memory prior to entering a new
program.

1.10 ERROR MESSAGES

If BASIC-80 detects an error that causes program execution
to terminate, an error message 1s printed. In the 8K
version, only the error code is printed. In the Extended
and Disk versions, the entire error message is printed. For
a complete list of BASIC-80 error codes and error messages,
see Appendix J.

-

CHAPTER 2

BASIC-80 COMMANDS AND STATEMENTS

All of the BASIC-80 commands and statements are described in
this chapter. Each description is formatted as follows:

Format:

Versions:

Purpose:

Remarks:

Example:

Shows the correct format for the.instruction.
See below for format notation.

Lists the versions of BASIC-80
in which the instruction is available.

Tells what the instruction is used for.

Describes in detail how the instruction
is used.

Shows sample programs or program segments
that demonstrate the use of the instruction.

Format Notation

Wherever

the format for a statement or command is given, the

following rules apply:

l.
2'

Items in capital letters must be input as shown.

Items in lower case letters enclosed in angle
brackets (< >) are to be supplied by the user.

Items in square brackets ([]) are optional.

All punctuation except angle brackets and square
brackets (i.e., commas, parentheses, semicolons,
hyphens, equal signs) must be included where shown.

Items followed by an ellipsis (...) may be repeated
any number of times (up to the length of the line).

BASIC-80 COMMANDS AND STATEMENTS Page 2-2

2.1 AUTO

Format:
Versions:

Purpose:

Remarks:

Example:

AUTO [<line number>[,<increment>]]
Extended, Disk

To generate a line number automatically after
every carriage return.

AUTO begins numbering at <line number> and
increments each subsequent 1line number by
<increment>., The default for both values is 10.
If <line number> 1is followed by a comma but
<increment> is not specified, the last increment
specified in an AUTO command is assumed.

If AUTO generates a line number that is already
being wused, an asterisk 1is printed after the
number to warn the wuser that any input will
replace the existing 1line. However, typing a
carriage return immediately after the asterisk
will save the 1line and generate the next line
number.

AUTO is terminated by typing Control-C. The
line in which Control-C is typed is not saved.
After Control-C 1is typed, BASIC returns to
command level.

AUTO 100,50 Generates line numbers 100,
150, 200 ...

AUTO Generates line numbers 10,
20, 30' 40 . e 9

BASIC-80 COMMANDS AND STATEMENTS Page 2-3

2.2 CALL

Format:
Version:
Purpose:

Remarks:

Example:

NOTE:

CALL <variable name>[(<argument list>)]
Extended, Disk

To call an assembly language subroutine.

The CALL statement 1is one way to transfer
program flow to an external subroutine. (See
also the USR function, Section 3.40)

<variable name> contains an address that is the
starting point in memory of the subroutine.
<variable name> may not be an array variable
name. <argument 1list> contains the arguments
that are passed to the external subroutine.
<argument list> may contain only variables.

The CALL statement generates the same calling
sequence used by Microsoft's FORTRAN, COBOL and
BASIC compilers.

110 MYROUT=&HDOOO
120 CALL MYROUT(I,J,K)

For a BASIC Compiler program, line 110 is not
needed because the address of MYROUT will be
assigned by the linking loader at load time.

BASIC-80 COMMANDS AND STATEMENTS Page 2-4

2.3 CHAIN

Format:

Version:

Purpose:

Remarks:

CHAIN [MERGE] <filename>[,[<line number exp>]
[,ALL] [,DELETE<range>]]

Disk

To call a program and pass variables to it from
the current program.

<filename> is the name of the program that is
called. Example:

CHAIN"PROGL"

<line number exp> 1is a line number or an
expression that evaluates to a line number in
the called program. It is the starting point
for execution of the called program. If it is
omitted, execution begins at the first line.
Example:

CHAIN"PROG1",1000

<line number exp> is not affected by a RENUM
command.

With the ALL option, every variable in the
current program is passed to the called program.
If the- ALL option 1is omitted, the current
program must contain a COMMON statement to list
the variables that are passed. See Section 2.7.
Example:

CHAIN"PROG1",1000,ALL

If the MERGE option is included, it allows a
subroutine to be brought into the BASIC program
as an overlay. That is, a MERGE operation 1is
performed with the current program and the
called program. The called program must be an
ASCII file if it is to be MERGEd. Example:

CHAIN MERGE"OVRLAY",1000
After an overlay is brought in, it is usually
desirable to delete it so that a new overlay may
be brought in. To do this, use the DELETE
option. Example:
CHAIN MERGE"OVRLAY2",1000,DELETE 1000-5000

The line numbers in <range> are affected by the
RENUM command.

BASIC-80 COMMANDS AND STATEMENTS Page 2-5

NOTE:

NOTE:

NOTE:

The CHAIN statement with MERGE option leaves the
files open and preserves the current OPTION BASE
setting.

If the MERGE option is omitted, CHAIN does not
preserve variable types or user-defined
functions for use by the chained program. That
is, any DEFINT, DEFSNG, DEFDBL, DEFSTR, or DEFFN
statements containing shared variables must be
restated in the chained program.

The Microsoft BASIC compiler does not support
the ALL, MERGE, DELETE, and LINE number exp>
options to CHAIN. Thus, the statement format is
CHAIN FILENAME>. If you wish to maintain
compatibility with the BASIC compiler, it is
recommended that COMMON be used to pass
variables and that overlays not be used. The
CHAIN statement leaves the files open during
CHAINing.

BASIC-80 COMMANDS AND STATEMENTS Page 2-6

2.4 CLEAR

Format:
Versions:

Purpose:

Remarks:

NOTE:

NOTE:

Examples:

CLEAR [, [<expressionl>][,<expression2>]]
8K, Extended, Disk

To set all numeric variables to zero, all string
variables to null, and to close all open files;
and, optionally, to set the end of memory and
the amount of stack space.

<expressionl> is a memory 1location which, 1if
specified, sets the highest location available
for use by BASIC-80.

<expression2> sets aside stack space for BASIC.
The default 1is 256 bytes or one-eighth of the
available memory, whichever is smaller.

In previous versions of BASIC-80, <expressionl>
set the amount of string space, and
<expression2> set the end of memory. BASIC-80,
release 5.0 and later, allocates string space
dynamically. An "Out of string space error"
occurs only if there is no free memory left for
BASIC to use.

The BASIC Compiler supports the CLEAR statement
with the restriction that EXPRESSION1> and
EXPRESSION2> must be integer expressions. If a
value of 0 is given for either expression, the
appropriate default is used. The default stack
size .is 256 bytes, and the default top of memory
is the <current top of memory. The CLEAR

statement performs the following actions:
Closes all files
Clears all COMMON and user variables
Resets the stack and string space
Releases all disk buffers

CLEAR

CLEAR ,32768

CLEAR ,,2000

CLEAR ,32768,2000

BASIC-80 COMMANDS AND STATEMENTS Page 2-7

2.5 CLOAD

Formats:

Versions:

Purpose:

Remarks:

NOTE:

Example:

CLOAD <filename>

CLOAD? <filename>

CLOAD* <array name>

8K (cassette), Extended (cassette)

To load a program or an array from cassette tape
into memory.

CLOAD executes a NEW command before it loads the
program from cassette tape. <filename> 1is the
string expression or the first character of the
string expression that was specified when the
program was CSAVEd.

CLOAD? verifies tapes by comparing the program
currently in memory with the file on tape that
has the same filename. If they are the same,
BASIC-80 prints Ok. If not, BASIC-80 prints NO

GOOD.

CLOAD* loads a numeric array that has been saved
on tape. The data on tape is loaded into the
array called <array name> specified when the
array was CSAVE*ed.

CLOAD and CLOAD? are always entered at command
level as direct mode commands. CLOAD* may be

entered at command level or used as a program

statement. Make sure the array has been
DIMensioned before it 1is loaded. BASIC-80
always returns to command level after a CLOAD,
CLOAD? or CLOAD* is executed. Before a CLOAD
is executed, make sure the cassette recorder is
properly connected and in the Play mode, and the
tape is possitioned correctly.

See also CSAVE, Section 2.9.

CLOAD and CSAVE are not included in all
implementations of BASIC-80.

CLOAD "MAX2"

Loads file "M" into memory.

BASIC-80 COMMANDS AND STATEMENTS Page 2-8

2.6 CLOSE

Format:
Version:
Purpose:

Remarks:

Example:

CLOSE{[#]<file number>[,[#]<file number...>]]
Disk
To conclude I/0 to a disk file.

<file number> is the number under which the file
was OPENed. A CLOSE with no arguments closes
all open files.

The association between a particular file and
file number terminates upon execution of a
CLOSE. The file may then be reOPENed using the
same or a different file number; likewise, that
file number may now be reused to OPEN any file.

A CLOSE for a sequential output file writes the
final buffer of output.

The END statement and the NEW command always
CLOSE all disk files automatically. (STOP does
not close disk files.)

See Appendix B.

BASIC~-80 COMMANDS AND STATEMENTS Page 2-9

2.7 COMMON

Format:
Version:
Purpose:

Remarks:

Example:

NOTE:

COMMON <list of variables>
Disk
To pass variables to a CHAINed program.

The COMMON statement is used in conjunction with
the CHAIN statement. COMMON statements may
appear anywhere in a program, though it is
recommended that they appear at the beginning.
The same variable cannot appear in more than one
COMMON statement. Array variables are specified
by appending " ()" to the variable name. If all
variables are to be passed, use CHAIN with the
ALL option and omit the COMMON statement.

100 CoMMON A,B,C,D() ,GS
110 CHAIN "PROG3",10

.
.

.

The BASIC Compiler supports a modified version
of the COMMON statement. The COMMON statement
must appear in a program before any executable
statements. The current non-executable
statements are:

COMMON

DEFDBL, DEFINT, DEFSNG, DEFSTR
DIM

OPTION BASE

REM

¥ INCLUDE

Arrays in COMMON must be declared in preceding
DIM statements,

The standard form of the COMMON statement is
referred to as blank COMMON. FORTRAN style
named COMMON areas are also supported; however,
the variables are not preserved across CHAINs.
The syntax for named COMMON is as follows:

COMMON /NAME>/ LIST of variables>

where NAME> is 1 to 6 alphanumeric characters
starting with a letter. This is useful for
communicating with FORTRAN and assembly language
routines without having to explicityly pass
parameters in the CALL statement.

BASIC-80 COMMANDS AND STATEMENTS Page 2-10

The blank COMMON size and order of variables
must be the same in the CHAINing and CHAINed-to
programs. With the BASIC Compiler, the best way
to insure this 1is to ©place all blank COMMON
declarations in a single include file and use
the 3$INCLUDE statement 1in each program. For

example:

MENU. BAS

10 $INCLUDE COMDEF

. 1000 CHAIN "PROG1"
PROG1.BAS

10 $INCLUDE COMDEF

. 2000 CHAIN "MENU"
COMDEF.BAS

100 DIM A(100) ,BS$(200)
110 coMMON I,J,K,A, ()
120 COMMON AS$,BS, () ,X,Y,Z

BASIC-80 COMMANDS AND STATEMENTS Page 2-11

2.8 CONT

Format:
Versions:

Purpose:

Remarks:

Example:

CONT
8K, Extended, Disk

To continue program execution after a Control-C
has been typed, or a STOP or END statement has
been executed.

Execution resumes at the point where the break
occurred. If the break occurred after a prompt
from an INPUT statement, execution continues
with the reprinting of the prompt (? or prompt
string).

CONT is usually used in conjunction with STOP
for debugging. When execution 1is stopped,
intermediate values may be examined and changed
using direct mode statements. Execution may be
resumed with CONT or a direct mode GOTO, which
resumes execution at a specified line number.
With the Extended and Disk versions, CONT may be
used to continue execution after an error.

CONT is invalid if the program has been edited
during the break. In 8K BASIC-80, execution
cannot be CONTinued if a direct mode error has
occurred during the break.

See example Section 2.61, STOP.

BASIC-80 COMMANDS AND STATEMENTS Page 2-12

2.9 CSAVE

Formats:

Versions:

Purpose:

Remarks:

NOTE:

Example:

CSAVE <string expression>
CSAVE* <array variable name>
8K (cassette), Extended (cassette)

To save the program or an array currently in
memory on cassette tape.

Each program or array saved on tape is
identified by a filename. When the command
CSAVE <string expression> is executed, BASIC-80
saves the program currently in memory on tape
and uses the first character in <string
expression> as the filename. <string
expression> may be more than one character, but
only - the first <character 1is used for the
filename.

When the command CSAVE* <array variable name> is
executed, BASIC-80 saves the specified array on
tape. The array must be a numeric array. The
elements of a multidimensional array are saved
with the leftmost subscript changing fastest.

CSAVE may be used as a program statement or as a
direct mode command.

Before a CSAVE or CSAVE* is executed, make sure

the cassette recorder is properly connected and
in the Record mode.

See also CLOAD, Section 2.5.

CSAVE and CLOAD are not included in all
implementations of BASIC-80.

CSAVE "TIMER"

Saves the program currently in memory on
cassette under filename "T".

BASIC-80 COMMANDS AND STATEMENTS Page 2-13

2.10 DATA

Format:
Versions:

Purpose:

Remarks:

Example:

DATA <list of constants>
8K, Extended, Disk

To store the numeric and string constants that
are accessed by the program's READ statement(s).
(See READ. Section 2.54)

DATA statements are nonexecutable and may be
placed anywhere in the program. A DATA
statement may contain as many constants as will
fit on a 1line (separated by commas), and any
number of DATA statements may be used in a
program. The READ statements access the DATA
statements in order (by 1line number) and the
data contained therein may be thought of as one
continuous list of items, regardless of how many
items are on a 1line or where the lines are
placed in the program.

<list of constants> may contain numeric
constants in any format, i.e., fixed point,
floating point or integer. (No numeric
expressions are allowed in the list.) String
constants in DATA statements must be surrounded
by double gquotation marks only if they contain
commas, .colons or significant leading or
trailing spaces. Otherwise, quotation marks are
not needed.

The variable type (numeric or string) given in
the READ statement must agree with the
corresponding constant in the DATA statement.

DATA statements may be reread from the beginning
by use of the RESTORE statement (Section 2.57).

See examples in Section 2.54, READ.

BASIC-80 COMMANDS AND STATEMENTS Page 2-14
2.11 DEF FN

Format: DEF FN<name> [(<parameter list>)]=<function definition>

Versions: 8K,_Extended, Disk

Purpose: To define and name a function that is written by
the user.
Remarks: <name> must be a 1legal variable name. This

name, preceded by FN, becomes the name of the
function. <parameter list> 1is comprised of
those variable names in the function definition
that are to be replaced when the function is
called. The items in the list are separated by
commas. <function definition> is an expression
that performs the operation of the function. It
is limited to one 1line. Variable names that
appear in this expression serve only to define
the function; they do not affect program
variables that have the same name. A variable
name used in a function definition may or may
not appear in the parameter list. If it does,
the value of the parameter is supplied when the
function is called. Otherwise, the current
value of the variable is used.)

The variables in the parameter 1list represent,
on a one-to-one basis, the argument variables or
values that will be given in the function call.
(Remember, 1in the 8K version only one argument
is allowed in a function call, therefore the DEF
FN statement will contain only one variable.)

In Extended and Disk BASIC-80, user-defined
functions may be numeric or string; in 8K,
user-defined string functions are not allowed.
If a type is specified in the function name, the
value of the expression is forced to that type
before it is returned to the calling statement.
If a type is specified in the function name and
the argument type does not match, a "Type
mismatch" error occurs.

A DEF FN statement must be executed before the
function it defines may be called. If a
function is called before it has been defined,
an "Undefined user function" error occurs. DEF
FN is illegal in the direct mode.

BASIC-80 COMMANDS AND STATEMENTS Page 2-15

Example: .

410 DEF FNAB(X,Y)=X"3/Y"2
420 T=FNAB(I,J)

Line 410 defines the function FNAB. The
function is called in line 420.

BASIC-80 COMMANDS AND STATEMENTS Page 2-16

2.12 DEFINT/SNG/DBL/STR

Format:

Versions:

Purpose:

Remarks:

Examples:

DEF<type> <randge(s) of letters>
where <type> is INT, SNG, DBL, or STR

Extended, Disk

To declare variable types as integer, single
precision, double precision, or string.

A DEFtype statement declares that the variable
names beginning with the 1letter(s) specified
will be that type variable. However, a type
declaration character always takes precedence
over a DEFtype statement in the typing of a
variable.

If no type declaration statements are
encountered, BASIC-80 assumes all variables
without declaration characters are single
precision variables.

10 DEFDBL L-P All variables beginning with
the letters L, M, N, O, and P
will be double precision
variables.

10 DEFSTR A All variables beginning with
the letter A will be string
variables.

10 DEFINT I-N,W-2
nnnnnnn a
the letters I, J, K, L, M
N, W, X, ¥, Z will be integer
variables.

BASIC-80 COMMANDS AND STATEMENTS Page 2-17

2.13 DEF USR

Format:
Versions:

Purpose:

Remarks:

Example:

DEF USR[<digit>]=<integer expression>
Extended, Disk

To specify the starting address of an assembly
language subroutine.

<digit> may be any digit from 0 to 9. The digit
corresponds to the number of the USR routine
whose address is being specified. If <digit> is

omitted, DEF USRO is assumed. The value of
<integer expression> is the starting address of
the USR routine. See Appendix C, Assembly

Language Subroutines.

Any number of DEF USR statements may appear in a
program to redefine subroutine starting
addresses, thus allowing access. to as many
subroutines as necessary.

.

200 DEF USR0=24000
210 X=USRO(Y"2/2.89)

BASIC-80 COMMANDS AND STATEMENTS Page 2-18

2.14 DELETE

Format: DELETE[<line number>][-<line number>]
Versions: Extended, Disk
Purpose: To delete program lines.

Remarks: BASIC-80 always returns to command level after a
DELETE 1is executed. If <line number> does not
exist, an "Illegal function call" error occurs.

Examples: DELETE 40 Deletes line 40

DELETE 40-100 Deletes lines 40 through
100, inclusive

DELETE-40 Deletes all lines up to
and including line 40

BASIC-80 COMMANDS AND STATEMENTS Page 2-19

2.15 DIM

Format:
Versions:

Purpose:

Remarks:

Example:

DIM <list of subscripted variables>
8K, Extended, Disk

To specify the maximum values for array variable
subscripts and allocate storage accordingly.

If an array variable name is used without a DIM
statement, the maximum value of its subscript(s)
is assumed to be 10. If a subscript 1is used
that 1is greater than the maximum specified, a
"Subscript out of range" error occurs. The
minimum value for a subscript 1is always O,
unless otherwise specified with the OPTION BASE
statement (see Section 2.46).

The DIM statement sets all the elements of the
specified arrays to an initial value of zero.

10 DIM A(20)

20 FOR I=0 TO 20
30 READ A(I)

40 NEXT I

BASIC-80 COMMANDS AND STATEMENTS Page 2-20

2.16 EDIT

Format: EDIT <line number>

Versions: Extended, Disk

Purpose: To enter Edit Mode at the specified line.

Remarks: In E4dit Mode, it is possible to edit portions of
- a line without retyping the entire line. Upon

entering Edit Mode, BASIC-80 types the 1line

number of the line to be edited, then it types a
space and waits for an Edit Mode subcommand.

Edit Mode Subcommands

Edit Mode subcommands are used to move the
cursor or to insert, delete, replace, or search
for text within a line. The subcommands are not
echoed. Most of the Edit Mode subcommands may

be preceded by an integer which

causes the

command to be executed that number of times.

When a preceding integer is not specified,

assumed to be 1.

it is

Edit Mode subcommands may be categorized

according to the following functions:

1. Moving the cursor
2. 1Inserting text

3. Deleting text

4, Finding text

5. Replacing text

6. Ending and restarting Edit Mode

NOTE

In the descriptions that follow,

represents any character,

<ch>

<text>

represents a string of characters of
arbitrary length, [i] represents an
optional integer (the default is 1), and
$ represents the Escape (or Altmode)

key.

BASIC-80 COMMANDS AND STATEMENTS Page 2-21

l.

Moving the Cursor

Space

Rubout

Use the space bar to move the cursor to the
right. [i]Space moves the cursor i1 spaces to
the right. Characters are printed as you space
over them.

In Edit Mode, [i]Rubout moves the cursor i

spaces to the left (backspaces). Characters are
printed as you backspace over them.

Inserting Text

I

I<text>$ inserts <text> at the current cursor
position. The inserted characters are printed
on the terminal. To terminate insertion, type
Escape. If Carriage Return is typed during an
Insert command, the effect is the same as typing
Escape and then Carriage Return. During an
Insert command, the Rubout, Delete, or
Underscore key on the terminal may be used to
delete characters to the 1left of the cursor.
Rubout will print out the characters as you
backspace over them. Delete and Underscore will
print an Underscore for each character that you
backspace over. If an attempt is made to insert
a character that will make the line longer than
255 characters, a bell (Control-G) is typed and
the character is not printed.

The X subcommand is used to extend the line. X
moves the cursor to the end of the line, goes
into insert mode, and allows insertion of text
as if an 1Insert command had been given. When
you are finished extending the line, tvpe Escape
or Carriage Return.

Deleting Text

D

Finding

S

[i]D deletes i characters to the right of the
cursor. The deleted <characters are echoed
between backslashes, and the cur sor is
positioned to the right of the last character
deleted. If there are fewer than i characters
to the right of the cursor, iD deletes the
remainder of the line.

H deletes all characters to the right of the
cursor and then automatically enters insert

mode. H is useful for replacing statements at
the end of a line.

Text

The subcommand [i]S<ch> searches for the ith

BASIC-80 COMMANDS AND STATEMENTS Page 2-22

occurrence of <ch> and positions the cursor
before it. The character at the current cursor
position is not included in the search. If <ch>
is not found, the cursor will stop at the end of
the line. All characters passed over during the
search are printed.

The subcommand [i]K<ch> is similar to [i]S<ch>,
except all the characters passed over in the
search are deleted. The <cursor 1is positioned
before <ch>, and the deleted characters are
enclosed in backslashes.

Replacing Text

C

The subcommand C<ch> changes the next character
to <ch>. If you wish to change the next i
characters, use the subcommand iC, followed by i
characters. After the ith new character is
typed, change mode is exited and you will return
to Edit Mode.

Ending and Restarting Edit Mode

<Ccr>

Typing Carriage Return prints the remainder of
the 1line, saves the changes you made and exits
Edit Mode.

The E subcommand has the same effect as Carriage

'Return, except the remainder of the line is not
printed.

The Q subcommand returns to BASIC-80 command
level, without saving any of the changes that
were made to the line during Edit Mode.

The L subcommand lists the remainder of the line
(saving any changes made so far) and repositions
the cursor at the beginning of the 1line, still
in Edit Mode. L is usually used to list the
line when you first enter Edit Mode.

The A subcommand lets you begin editing a 1line
over again. It restores the original line and
repositions the cursor at the beginning.

N NOTE

If BASIC-80 receives an unrecognizable
command or 1illegal <character while in
Edit Mode, it prints a bell (Control-G)
and the command or character is ignored.

BASIC-80 COMMANDS AND STATEMENTS Page 2-23

Svntax Errors

When a Svntax Error 1is encountered during
execution of a program, BASIC-80 automatically
enters Edit Mode at the 1line that caused the
error. For example:

10 K = 2(4)

RUN

?8yntax error in 10
10

When you finish editing the 1line and type
Carriage Return (or the E subcommand), BASIC-80
reinserts the line, which causes all wvariable
values to be lost. To preserve the variable
values for examination , first exit Edit Mode
with the Q subcommand. BASIC~80 will return to
command level, and all variable wvalues will be
preserved.

Control-A

To enter Edit Mode on the line you are currently
typing, type Control-A. BASIC-80 responds with
a carriage return, an exclamation point (!) and
a space. The cursor will be positioned at the
first character in the line. Proceed by typing
an Edit Mode subcommand.

NOTE

Remember, if you have Jjust entered a
line and wish to go back and edit it,
the command "EDIT." will enter Edit Mode
at the current line. (The line number
symbol "." always refers to the current
line.)

BASIC-80 COMMANDS AND STATEMENTS Page 2-24

2.17 END

Format:
Versions:

Purpose:

Remarks:

Example:

END
8K, Extended, Disk

To terminate program execution, close all files
and return to command level.

END statements may be placed anywhere in the
program to terminate execution. Unlike the STOP
statement, END does not cause a BREAK message to
be printed. An END statement at the end of a
program is optional. BASIC-80 always returns to
command level after an END is executed.

520 IF K>1000 THEN END ELSE GOTO 20

BASIC~80 COMMANDS AND STATEMENTS Page 2-25

2.18 ERASE

Format:
Versions:
Purpose:

Remarks:

NOTE:

Example:

ERASE <list of array variables>
Extended, Disk
To eliminate arrays from a program.

Arrays may be redimensioned after they are
ERASEd, or the previously allocated array space
in memory may be used for other purposes. If an
attempt is made to redimension an array without
first ERASEing it, a "Redimensioned array" error
occurs.,

The Microsoft BASIC compiler does not support
ERASE.

.

.

450 ERASE A,B
460 DIM B(99)

BASIC-80 COMMANDS AND STATEMENTS Page 2-26

2.19 ERR AND ERL VARIABLES

When an error handling subroutine is entered,
the variable ERR contains the error code for the
error, and the variable ERL contains the 1line
number of the 1line in which the error was
detected. The ERR and ERL variables are usually
used in IF...THEN statements to direct program
flow in the error trap routine.

If the statement that caused the error was a
direct mode statement, ERL will contain 65535.
To test if an error occurred in a direct
statement, use IF 65535 = ERL THEN ...
Otherwise, use

IF ERR

error code THEN ...

IF ERL line number THEN ...

If the line number is not on the right side of
the relational operator, it cannot be renumbered
by RENUM. Because ERL and ERR are reserved
variables, neither may appear to the left of the
equal sign in a LET (assignment) statement.
BASIC-80's error codes are listed in Appendix J.
(For Standalone Disk BASIC error codes, see
Appendix H.)

BASIC-80 COMMANDS AND STATEMENTS _ Page 2-27

2.20 ERROR

Format:
Versions:

Purpose:

Remarks:

Example 1:

ERROR <integer expression>
Extended, Disk

1) To simulate the occurrence of a BASIC-80
error; or 2) to allow error codes to be
defined by the user.

.The value of <integer expression> must be

greater than 0 and less than 255. 1If the value
of <integer expression> equals an error code
already in use by BASIC-80 (see Appendix J), the
ERROR statement will simulate the occurrence of
that error, and the corresponding error message
will be printed. (See Example 1l.)

To define your own error code, use a value that
is greater than any used by BASIC-80's error
codes. (It is preferable to use the highest
available values, so compatibility may be
maintained when more error codes are added to
BASIC-80.) This user-defined error code may then
be conveniently handled in an error trap
routine. (See Example 2.)

If an ERROR statement specifies a code for which
no error message has been defined, BASIC-80
responds with the message UNPRINTABLE ERROR.
Execution of an ERROR statement for which there
is no error trap routine causes an error message
to be printed and execution to halt.

LIST

10 s 10

20T 5

30 ERROR S + T

40 END

Ok

RUN

String too long in line 30

Or, in direct mode:

Ok
ERROR 15 (you type this line)
String too 1long (BASIC-80 types this line)

Ok

BASIC-80 COMMANDS AND STATEMENTS - Page 2-28

Example 2:

.

110
120
130

400
410

ON ERROR GOTO 400
INPUT "WHAT IS YOUR BET";B
IF B > 5000 THEN ERROR 210

210 THEN PRINT "HOUSE LIMIT IS $5000"
130 THEN RESUME 120

IF ERR
IF ERL

BASIC-80 COMMANDS AND STATEMENTS Page 2-29

2.21 FIELD

Format: FIELD(#]<file number>,<field width> AS <string variable>...
Version: Disk
Purpose: To allocate space for variables in a random file
buffer.
Remarks: To get data out of a random buffer after a GET

or to enter data before a PUT, a FIELD statement
must have been executed.

<file number> is the number under which the file
was OPENed. <field width> 1is the number of
characters to be allocated to <string variable>.
For example,

FIELD 1, 20 AS NS, 10 AS ID$, 40 AS ADDS

allocates the first 20 positions (bytes) in the
random file buffer to the string variable NS,

the next 10 positions to IDS, and the next 40 -
positions to ADDS. FIELD does NOT place any
data in the random file buffer. (See LSET/RSET
and GET.)

The total number of bytes allocated in a FIELD
statement must not exceed the record length that
was specified when the file was OPENed.
Otherwise, a "Field overflow" error occurs.
(The default record length is 128.)

Any number of FIELD statements may be executed
for the same file, and all FIELD statements that
have been executed are in effect at the same

time.
Example: See Appendix B.
NOTE: Do not use a FIELDed variable name in an INPUT

or LET statement. Once a variable name is
FIELDed, it points to the correct place in the
random £file buffer. If a subsequent INPUT or
LET statement with that wvariable name is
executed, the wvariable's pointer is moved to
string space.

BASIC-80 COMMANDS AND STATEMENTS ' Page 2-30

2.22 FOR...NEXT

Format:

“Versions:

Purpose:

Remarks:

FOR <variable>=x TO y ([STEP z]

NEXT [<variable>][,<variable>...]
where %, y and z are numeric expressions.
8K, Extended, Disk

To allow a series of instructions to be
performed in a loop a given number of times.

<variable> is used as a counter. The first
numeric expression (x) is the initial value of
the counter. The second numeric expression (y)
is the final value of the counter. The program
lines following the FOR statement are executed
until the NEXT statement is encountered. Then
the counter 1is incremented by the amount
specified by STEP. A check is performed to see
if the value of the counter is now greater than
the final value (y). If it is not greater,
BASIC-80 branches back to the statement after
the PFOR statement and the process is repeated.
If it is greater, execution continues with the
statement following the NEXT statement. This is
a FOR...NEXT loop. If STEP is not specified,
the increment is assumed to be one. 1If STEP is
negative, the final value of the counter is set
to be less than the initial value. The counter
is decremented each time through the 1loop, and
the 1loop 1is executed until the counter is less
than the final value.

The body of the loop is skipped if the initial
value of the loop times the sign of the step
exceeds the final value times the sign of the
step.

Nested Loops

FOR...NEXT loops may be nested, that 1is, a
FOR...NEXT loop may be placed within the context
of another FOR...NEXT 1loop. When 1loops are
nested, each loop must have a unique variable
name as its counter. The NEXT statement for the
inside 1loop must appear before that for the
outside loop. If nested loops have the same end
point, a single NEXT statement may be used for
all of them.

The variable(s) in the NEXT statement may be

BASIC-80 COMMANDS AND STATEMENTS Page 2-31

omitted, in which case the NEXT statement will
match the most recent FOR statement. If a NEXT
statement is encountered before its
corresponding FOR statement, a "NEXT without
FOR" error message is issued and execution is
terminated.

Example 1: 10 K=10
20 FOR I=1 TO K STEP 2

30 PRINT I;
40 K=K+10
50 PRINT K
60 NEXT
RUN

1 20

3 30

5 40

7 50

9 60
Ok

Example 2: 10 J=0
20 FOR I=1 TO J
30 PRINT I
40 NEXT I

In this example, the 1loop does not execute
because the initial wvalue of the loop exceeds
the final value.

Example 3: 10 I=5
20 FOR I=1 TO I+S
30 PRINT I;
40 NEXT
RUN
1 2 3 4 5 6 7 8 9 10
Ok

In this example, the loop executes ten times.
The final value for the loop variable is always
set before the initial wvalue 1is set. (Note:
Previous versions of BASIC-80 set the initial
value of the loop variable before setting the
final wvalue; i.e., the above loop would have
executed six times.)

BASIC-80 COMMANDS AND STATEMENTS Page 2-32

2.23 GET

Pormat:
Version:

Purpose:

Remarks:

Example:

NOTE:

GET [#]<file number>[,<record number>]
Disk

To read a record from a random disk file into a
random buffer.

<file number> is the number under which the file
was OPENed. If <record number> is omitted, the
next record (after the last GET) 1is read into
the buffer. The largest possible record number
is 32767.

See Appendix B.

After a GET statement, INPUT# and LINE INPUT#
may be done to read characters from the random
file buffer.

BASIC-80 COMMANDS AND STATEMENTS Page 2-33

2.24 GOSUB...RETURN

Format:

Versions:
Purpose:

Remarks:

Example:

GOSUB <line number>

.

RETURN
8K, Extended, Disk
To branch to and return from a subroutine.

<line number> is the first line of the
subroutine.

A subroutine may be called any number of times
in a program, and a subroutine may be called
from within another subroutine. Such nesting of
subroutines is limited only by available memory.

The RETURN statement(s) in a subroutine 'cause
BASIC~80 to branch back to the statement
following the most recent GOSUB statement. A
subroutine may contain more than one RETURN
statement, should 1logic dictate a return at
different points in the subroutine. Subroutines
may appear anywhere in the program, but it 1is
recommended that the subroutine be readily
distinguishable from the main program. To
prevent inadvertant entry into the subroutine,
it may be preceded by a STOP, END, or GOTO
statement that directs program control around
the subroutine.

10 GOSUB 40

20 PRINT "BACK FROM SUBROUTINE"
30 END

40 PRINT "SUBROUTINE";
50 PRINT " IN";

60 PRINT " PROGRESS"
70 RETURN

RUN

SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE
Ok '

BASIC-80 COMMANDS AND STATEMENTS Page 2-34

2.25 GOTO

Format:
Versions:

Purpose:

Remarks:

Example:

GOTO <line number>
8K, Extended, Disk

To branch unconditionally out of the normal
program sequence to a specified line number.

If <line number> 1is an executable statement,
that statement and those following are executed.
If it is a nonexecutable statement, execution
proceeds at the first executable statement
encountered after <line number>.

LIST

10 READ R

20 PRINT "R =";R,
30 A = 3,14*R"2

40 PRINT "AREA =";A

50 GOTO 10

60 DATA 5,7,12

ok

RUN

R=25 - AREA = 78.5
R=7 AREA = 153.86
R =12 AREA = 452.16

?0ut of data in 10
ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-35

2.26 IF...THEN[...ELSE] AND IF...GOTO
Format: IF <expression> THEN <statement(s)> | <line number>
[ELSE <statement(s)> | <line number>]
Format: IF <expression> GOTO <line number>
[ELSE <statement(s)> | <line number>]
Versions: 8K, Extended, Disk

NOTE: The ELSE clause is allowed only in Extended and
Disk versions.

Purpose: To make a decision regarding program flow based
on the result returned by an expression.

Remarks: If the result of <expression> is not zero, the
THEN or GOTO <clause is executed. THEN may be
followed by either a line number for branching
or one or more statements to be executed. GOTO
is always followed by a 1line number. If the
result of <expression> is zero, the THEN or GOTO
clause 1is ignored and the ELSE clause, if
present, 1is executed. Execution continues with
the next executable statement. (ELSE is allowed
only in Extended and Disk versions.) Extended
and Disk versions allow a comma before THEN.

Nesting of IF Statements

In the Extended and Disk versions,
IF...THEN...ELSE statements may be nested.
Nesting is limited only by. the 1length of the
line. For example ‘

IF X>Y THEN PRINT "GREATER" ELSE IF Y>X
THEN PRINT "LESS THAN" ELSE PRINT "EQUAL"

is a legal statement. If the statement does not
contain the same number of ELSE and THEN
clauses, each ELSE is matched with the closest
unmatched THEN. For example

IF A=B THEN IF B=C THEN PRINT "A=C"
ELSE PRINT "a<>C"

will not print "A<>C" when A<>B.

If an IF...THEN statement is followed by a line
number in the direct mode, an "Undefined line"
error results unless a statement with the
specified line number had previously been
entered in the indirect mode.

BASIC-80 COMMANDS AND STATEMENTS Page 2-36

NOTE:

Example 1l:

Example 2:

Example 3:

When using IF to test equality for a wvalue that
is the result of a floating point computation,
remember that the internal representation of the
value may not be exact. Therefore, the test
should be against the range over which the
accuracy of the value may vary. For example, to
test a computed variable A against the value
1.0, use:

IF ABS (A-1.0)<1.0E-6 THEN ...

This test returns true if the wvalue of A is 1.0
with a relative error of less than 1.0E-6.

200 IF I THEN GET#1,I

This statement GETs record number I if I is not
zero.

100 IF(I<20)*(I>10) THEN DB=1979-1:GOTO 300
110 PRINT "OUT OF RANGE"

.
.

In this example, a test determines if I |is
greater than 10 and less than 20. If I is in
this range, DB 1is calculated and execution
branches to 1line 300. If I 1is not in this
range, execution continues with line 110.

210 IF IOFLAG THEN PRINT AS$ ELSE LPRINT AS

This statement causes printed output to go
either to the terminal or the line printer,
depending on the value of a variable (IOFLAG).
If IOFLAG 1is zero, output goes to the line

printer, otherwise output goes to the terminal.

BASIC-80 COMMANDS AND STATEMENTS Page 2-37

2.27 INPUT

Format:
Versions:

Purpose:

Remarks:

INPUT(;] [<"prompt string®">;]<list of variables>
8K, Extended, Disk

To allow input from the terminal during program
execution.

When an INPUT statement is encountered, program
execution pauses and a question mark is printed
to indicate the program is waiting for data. 1If
<"prompt string"> 1is included, the string is
printed before the question mark. The required
data is then entered at the terminal.

A comma may be used instead of a semicolon after
the prompt string to suppress the question mark.
For example, the statement INPUT "ENTER
BIRTHDATE",BS will print the prompt with no
guestion mark.

If INPUT is immediately followed by a semicolon,
then the <carriage return typed by the user to
input data does not echo a carriage return/line
feed sequence.

The data that is entered is assigned to the
variable(s) given 1in <variable 1list>. The
number of data items supplied must be the same
as the number of variables in the list. Data
items are separated by commas.

The variable names in the list may be numeric or
string variable names (including subscripted
variables). The type of each data item that is
input must agree with the type specified by the
variable name. (Strings input to an INPUT
statement need not be surrounded by quotation
marks.)

Responding to INPUT with too many or too few
items, or with the wrong type of value (numeric
instead of string, etc.) causes the messsage
"?Redo from start" to be printed. No assignment
of input values 1is made until an acceptable
response is given.

In the 8K version, INPUT is 1illegal in the
direct mode.

BASIC-80 COMMANDS AND STATEMENTS Page 2-38

Examples:

10
20
30

RUN

?

.

5

Ok

INPUT X
PRINT X "SQUARED IS" X2
END

5 {The 5 was typed in by the user
in response to the gquestion mark.)
SQUARED IS 25

LIST

10
20
30
40
50
60
Ok

RUN

PI=3.14

INPUT "WHAT IS THE RADIUS";R
A=PI*R"2

PRINT "THE AREA OF THE CIRCLE IS";A
PRINT

GOTO 20

WHAT IS THE RADIUS? 7.4 (User types 7.4)
THE AREA OF THE CIRCLE IS 171.946

WHAT IS THE RADIUS?
etc.

BASIC-80 COMMANDS AND STATEMENTS Page 2-39

2.28 INPUT#

Format:
Version:

Purpose:

Remarks:

Example:

INPUT#<file number>,<variable list>
Disk

To read data items from a sequential disk file
and assign them to program variables.

<file number> is the number used when the file
was OPENed for input. <variable list> contains
the variable names that will be assigned to the
items in the file. (The variable type must
match the type specified by the variable name.)
With INPUT#, no question mark is printed, as
with INPUT.

The data items in the file should appear just as
they would if data were being typed in response
to an INPUT statement. With numeric values,
leading spaces, carriage returns and line feeds
are ignored. The first character encountered
that 1is not a space, carriage return or line
feed is assumed to be the start of a number.
The number terminates on a space, carriage
return, line feed or comma.

If BASIC-80 is scanning the sequential data file
for a string item, leading spaces, carriage
returns and line feeds are also ignored. The
first character encountered that is not a space,
carriage return, or line feed is assumed to be
the start of a string item. If this first
character is a quotation mark ("), the string
item will consist of all characters read between
the first quotation mark and the second. Thus,
a quoted string may not contain a quotation mark
as a character. If the first character of the
string is not a gquotation mark, the string is an
unquoted string, and will terminate on a comma,
carriage or line feed (or after 255 characters
have been read). 1If end of file is reached when
a numeric or string item is being INPUT, the
item is terminated.

See Appendix B.

BASIC-80 COMMANDS AND STATEMENTS Page 2-40

2.29 KILL

Format:
Version:

Purpose:

Remarks:

Example:

KILL <filename>
Disk
To delete a file from disk.

If a KILL statement is given for a file that is
currently OPEN, a "File already open" error
occurs.

KILL is wused for all types of disk files:
program files, random data files and sequential
data files.

200 KILL "DATAl"

See also Appendix B.

BASIC-80 COMMANDS AND STATEMENTS Page 2-41

2.30 LET

Format:
Versions:

Purpose:

Remarks:

Example:

[LET] <variable>=<expression>
8K, Extended, Disk

To assign the wvalue of an expression to a
variable.

Notice the word LET is optional, i.e., the equal
sign is sufficient when assigning an expression
to a variable name.

110 LET D=12

120 LET E=12"2
130 LET F=12"4
140 LET SUM=D+E+F

or

110 Dp=1l2

120 E=12"2
130 FP=12"4
140 SUM=D+E+F

.
.

BASIC-80 COMMANDS AND STATEMENTS Page 2-42

2.31 LINE INPUT

Format: LINE INPUT[;]([<"prompt string">;l<string variable>

Versions: Extended, Disk

Purpose: To input an entire line (up to 254 characters)
to a string variable, without the use of
delimiters.

Remarks: The prompt string is a string 1literal that is

printed at the terminal before input is
accepted. A question mark is not printed unless
it is part of the prompt string. All input from
the end of the prompt to the carriage return is
assigned to <string variable>. However, if a
line feed/carriage return sequence (this order
only) is encountered, both characters are
echoed; but the carriage return is ignored, the
line feed is put into STRING variable>, and data
input continues.

If LINE INPUT is immediately followed by a
semicolon, then the carriage return typed by the
user to end the input 1line does not echo a
carriage return/line feed sequence at the
terminal.

A LINE INPUT may be escaped by typing Control-C.
BASIC-80 will return to command level and type
Ok. Typing CONT resumes execution at the LINE
INPUT.

BASIC-80 COMMANDS AND STATEMENTS Page 2-43

2.32 LINE INPUT#

Format: LINE INPUT#<file number>,<string variable>
Version: Disk
Purpose: To read an entire line (up to 254 characters),

without delimiters, from a sequential disk data

E3VTAa A & mbvtmoa travsalla
P S N\ L= c\—&ﬂ-llv V b de de o bd e o @

Remarks: <file number> is the number under which the file
was OPENed. <string variable> is the wvariable
name to which the line will be assigned. LINE
INPUT# reads all characters in the sequential
file up to a carriage return. It then skips
over the carriage return/line feed sequence, and
the next LINE INPUT# reads all characters up to
the next carriage return. (If a line
feed/carriage return sequence is encountered, it
is preserved.)

LINE INPUT# is especially useful if each line of
a data file has been broken into fields, or if a
BASIC-80 program saved in ASCII mode is being
read as data by another program.

Example: 10 OPEN "O",1,"LIST"
20 LINE INPUT "CUSTOMER INFORMATION? ";C$
30 PRINT #1, CS$
40 CLOSE 1
50 OPEN "I",1,"LIST"
60 LINE INPUT #1, CS$
70 PRINT C$
80 CLOSE 1
RUN
CUSTOMER INFORMATION? LINDA JONES 234,4 MEMPHIS
LINDA JONES 234,4 MEMPHIS
Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-44

2.33 LIST

Format 1:
Versions:
Format 2:
Versions:

Purpose:

Remarks:

LIST [<line number>]

8K, Extended, Disk

LIST {<line number>[-[<line number>]]]
Extended, Disk

To list all or part of the program currently in
memory at the terminal.

BASIC-80 always returns to command level after a
LIST is executed.

Format 1: If <line number> 1is omitted, the
program 1is listed beginning at the lowest line
number. (Listing is terminated either by the
end of the program or by typing Control-C.) If
<line number> is included, the 8K version will
list the program beginning at that line; and
the Extended and Disk versions will 1list only
the specified line.

Format 2: This format allows the following
options:

1. If only the first number is specified, that
line and all higher-numbered 1lines are
listed.

2. If only the second number is specified, all
lines from the beginning of the program
through that line are listed. :

3. If both numbers are specified, the entire
range is listed.

BASIC-80 COMMANDS AND STATEMENTS Page 2-45

Examples: Format 1l:

LIST Lists the program currently
in memory.

LIST 500 In the 8K version, lists
all programs lines from
500 to the end.
In Extended and Disk,
14 a+a l-;ne Sﬂ

.
<
e e 2D A a bl

Format 2:

LIST 150- Lists all lines from 150
to the end.

LIST -1000 Lists all lines from the
lowest number through 1000.

LIST 150-1000 Lists lines 150 through
1000, inclusive.

BASIC-80 COMMANDS AND STATEMENTS Page 2-46

2.34 LLIST

Format:

Versions:

Purpose:

Remarks:

NOTE:

Example:

LLIST [<line number>[-[<line number>11]]

Extended, Disk

To list all or part of the program currently 1in
memory at the line printer.

LLIST assumes a l32-character wide printer.
BASIC-80 always returns to command level after
an LLIST is executed. The options for LLIST are
the same as for LIST, Format 2.

LLIST and LPRINT are not included in all
implementations of BASIC-80.

See the examples for LIST, Format 2.

BASIC-80 COMMANDS AND STATEMENTS Page 2-47

2.35 LOAD

Format:
Version:
Purpose:

Remarks:

Example:

LOAD <filename>[,R])
Disk
To load a file from disk into memory.

<filename> is the name that was used when the
file was SAVEd. (With CP/M, the default
extension .BAS is supplied.)

LOAD closes all open files and deletes all
variables and program lines currently residing
in memory before it loads the designated
program. However, if the "R" option is used
with LOAD, the program is RUN after it is
LOADed, and all open data files are kept open.
Thus, LOAD with the "R" option may be used to
chain . several programs (or segments of the same
program). Information may be passed between the
programs using their disk data files.

LOAD "STRTRK",R

BASIC-80 COMMANDS AND STATEMENTS Page 2-48

2.36 LPRINT AND LPRINT USING

Format:

Versions:
Purpose:

Remarks:

NOTE:

LPRINT ([<list of expressions>]

LPRINT USING <string exp>;<list of expressions>
Extended, Disk

To print data at the line printer.

Same as PRINT and PRINT USING, except output
goes to the line printer. See Section 2.49 and
Section 2.50.

LPRINT assumes a l32-character-wide printer.

LPRINT and LLIST are not included in all
implementations of BASIC-80.

BASIC-80 COMMANDS AND STATEMENTS Page 2-49

2.37 LSET AND RSET

Format:

Version:

Purpose:

Remarks:

" Examples:

NOTE:

LSET <string variable> = <string expression>
RSET <string variable> = <string expression>

Disk

To move data
(in preparat

from memory to a random file buffer
ion for a PUT statement).

If <string expression> requires fewer bytes than
were FIELDed to <string variable>, LSET
left-justifies the string in the field, and RSET
right-justifies the string. (Spaces are used to
pad the extra positions.) If the string 1is too
long for the field, characters are dropped from
the right. Numeric values must be converted to
strings before they are LSET or RSET. See the
MKI$, MKS$, MKDS$ functions, Section 3.25.

150 LSET AS$=MKSS$ (AMT)
160 LSET D$=DESC(S)

See also Appendix B.

LSET or RSET may also be used with a non-fielded
string variable to left-justify or right-justify
a string in a given field. For example, the
program lines

110 AS=SPACES (20)
120 RSET A$=NS$

right-justify the string N$§ in a 20-character
field. This can be very handy for formatting
printed output.

BASIC-80 COMMANDS AND STATEMENTS Page 2-50

2.38 MERGE

Format:
Version:

Purpose:

Remarks:

Example:

MERGE <filename>
Disk

To merge a specified disk file into the program
currently in memory.

<filename> is the name used when the £file was
SAVEQ. (Wwith CP/M, the default extension .BAS
is supplied.) The file must have been SAVEd in
ASCII format. (If not, a "Bad file mode" error
occurs.)

If any lines in the disk file have the same line
numbers as 1lines in the program in memory, the
lines from the file on disk will replace the
corresponding lines in memory. (MERGEing may be
thought of as "inserting"” the program 1lines on
disk into the program in memory.)

BASIC-80 always returns to command level after
executing a MERGE command.

MERGE "NUMBRS"

BASIC-80 COMMANDS AND STATEMENTS Page 2-51

2.39 MIDS

Format:

Versions:

Purpose:

Remarks:

Example:

MIDS (<string expl>,n[,m])=<string exp2>

where n and m are integer expressions and
<string expl> and <string exp2> are string
expressions.

Extended, Disk

To replace a portion of one string with another
string.

The characters in <string expl>, beginning at
position n, are replaced by the characters in
<string exp2>. The optional m refers to the
number of characters from <string exp2> that
will be used in the replacement. If m is
omitted, all of <string exp2> is used. However,
regardless of whether m is omitted or included,
the replacement of characters never goes beyond
the original length of <string expl>.

10 AS="KANSAS CITY, MO"
20 MIDS (A$,14)="KS"

30 PRINT AS

RUN

KANSAS CITY, KS

MIDS$ is also a function that returns a substring
of a given string. See Section 3.24.

BASIC-80 COMMANDS AND STATEMENTS Page 2-52

2.40 NAME

Format:
Version:
Purpose:

Remarks:

Example:

NAME <old filename> AS <new filename>
Disk
To change the name of a disk file.

<0ld filename> must exist and <new filename>
must not exist; otherwise an error will result.
After a NAME command, the file exists on the
same disk, in the same area of disk space, with
the new name.

Ok
NAME "ACCTS" AS "LEDGER"
Ok

In this example, the file that was
formerly named ACCTS will now be named LEDGER.

BASIC-80 COMMANDS AND STATEMENTS Page 2-53

2.41 NEW

Format:
Versions:

Purpose:

Remarks:

NEW
8K, Extended, Disk

To delete the program currently in memory and
clear all variables.

NEW is entered at command level to clear memory
before entering a new program. BASIC-80 always
returns to command level after a NEW is
executed.

BASIC-80 COMMANDS AND STATEMENTS Page 2-54

2.42 NULL

Format:
Versions:

Purpose:

Remarks:

Example:

NULL <integer expression>
8K, Extended, Disk

To set the number of nulls to be printed at the
end of each line.

For l0-character-per-second tape punches,
<integer expression> should be >=3. When tapes
are not being punched, <integer expression>
should be 0 or 1 for Teletypes and
Teletype-compatible CRTs. <integer expression>
should be 2 or 3 for 30 cps hard copy printers.
The default value is 0.

Ok

NULL 2

Ok

100 INPUT X

200 IF X<50 GOTO 800

Two null characters will be printed after each
line.

BASIC-80 COMMANDS AND STATEMENTS Page 2-55

2.43 ON ERROR GOTO

Format:
Versions:

Purpose:

Remarks:

NOTE:

Example:

ON ERROR GOTO <line number>
Extended, Disk

To enable error trapping and specify the first
line of the error handling subroutine.

Once error trapping has been enabled all errors
detected, including direct mode errors (e.g.,
Syntax errors), will cause a Jjump to the
specified error handling subroutine. If <line
number> does not exist, an "Undefined 1line"
error results. To disable error trapping,
execute an ON ERROR GOTO 0. Subsequent errors
will print an error message and halt execution.
An ON ERROR GOTO 0 statement that appears in an
error trapping subroutine causes BASIC-80 to
stop and print the error message for the error
that caused the trap. It is recommended that
all error trapping subroutines execute an ON
ERROR GOTO 0 if an error is encountered for
which there is no recovery action.

If an error occurs during execution of an error
handling subroutine, the BASIC error message is
printed and execution terminates. Error
trapping does not occur within the error
handling subroutine.

10 ON ERROR GOTO 1000

BASIC-80 COMMANDS AND STATEMENTS Page 2-56

2.44 ON...GOSUB AND ON...GOTO

Format:

Versions:

Purpose:

Remarks:

Example:

ON <expression> GOTO <list of line numbers>
ON <expression> GOSUB <list of line numbers>

8K, Extended, Disk

To branch to one of several specified 1line
numbers, depending on the value returned when an
expression is evaluated.

The value of <expression> determines which line
number in the list will be used for branching.
For example, if the value is three, the third
line number in the list will be the destination
of the branch. (If the value is a non-integer,
the fractional portion is rounded.)

In the ON...GOSUR statement, each line number in
the 1list must be the first line number of a
subroutine.

If the value of <expression> is zero or greater
than the number of items in the list (but less
than or equal to 255), BASIC continues with the
next executable statement. If the wvalue of
<expression> is negative or greater than 255, an
"Illegal function call" error occurs.

100 ON L-1 GOTO 150,300,320,390

BASIC-80 COMMANDS AND STATEMENTS Page 2-57

2.45 OPEN

Format: OPEN <mode>, [#]<file number>,<filename>, [<reclen>]
Version: Disk
Purpose: To allow I/0 to a disk file.

Remarks: A disk file must be OPENed before any disk 1I/O
operation can be performed on that file. OPEN
allocates a buffer for I/0 to the file and
determines the mode of access that will be used

with the buffer.

<mode> 1is a string expression whose first
character is one of the following:

0] specifies sequential output mode
I specifies sequential input mode
R specifies random input/output mode

<file number> is an integer expression whose
value is between one and fifteen. The number is
then associated with the file for as long as it
is OPEN and 1is wused to refer other disk I/0
statements to the file.

<filename> is a string expression containing a
name that conforms to your operating system's
rules for disk filenames.

<reclen> is an integer expression which, 1if
included, sets the record 1length for random
files. The default record length is 128 bytes.
See also page A-3.

NOTE: A file can be OPENed for sequential input or
random access on more than one file number at a
time. A file may be OPENed for output, however,
on only one file number at a time.

Example: 10 OPEN "I",2,"INVEN"

See also Appendix B.

BASIC-80 COMMANDS AND STATEMENTS Page 2-58

2.46 OPTION BASE

Format: OPTION BASE n
where n is 1 or O

Versions: 8K, Extended, Disk

Purpose: To declare the minimum value for array
subscripts.
Remarks: The default base is 0. If the statement

OPTION BASE 1

is executed, the lowest value an array subscript
may have is one.

BASIC-80 COMMANDS AND STATEMENTS Page 2-59

2.47 OUT

Format:

Versions:

n
(1]

Purpo

Remarks:

Example:

our 1I1,J

where I and J are integer expressions in the
range 0 to 255,

8K, Extended, Disk

~ e | T Y S,
1O Senu a ycte Lo a

P R L]

- - 2 -~ o~ A = - oo b
IACILILIIC LVURLpPUL PUL e

The integer expression I is the port number, and

the integer expression J 1is the data to be
transmitted.

100 ouT 32,100

BASIC-80 COMMANDS AND STATEMENTS Page 2-60

2.48 POKE

Format:

Versions:
Purpose:

Remarks:

Example:

POKE I,J
where I and J are integer expressions

8K, Extended, Disk
To write a byte into a memory location.

The integer expression I is the address of the
memory location to be POKEd. The integer
expression J is the data to be POKEd. J must be
in the range 0 to 255. 1In the 8K version, I
must be less than 32768. 1In the Extended and
Disk versions, I must be in the range 0 to
65536.

With the 8K version, data may be POKRKEd into
memory locations above 32768 by supplying a
negative number for I. The wvalue of I 1is
computed by subtracting 65536 from the desired
address. For example, to POKE data into
location 45000, I = 45000-65536, -or -20536.

The complementary function to POKE is PEEK. The
argument to PEEK is an address from which a byte
is to be read. See Section 3.27.

POKE and PEEK are useful for efficient data
storage, loading assembly language subroutines,
and passing arguments and results to and from
assembly language subroutines.

10 POKE &HS5A00,&HFF

BASIC-80 COMMANDS AND STATEMENTS Page 2-61

2.49 PRINT

Format:
Versions:
Purpose:

Remarks:

PRINT {<list of expressions>]
8K, Extended, Disk

To output data at the terminal.

line 1is printed. If <list of expressions> is
included, the values of the expressions are
printed at the terminal. The expressions in the
list may be numeric and/or string expressions.
(Strings must be enclosed in quotation marks.)

If <list of expressions> is omitted, a blank

Print Positions

The position of each printed item is determined
by the punctuation used to separate the items in
the list. BASIC-80 divides the line into print
zones of 14 spaces each. In the 1list of
expressions, a comma causes the next value to be
printed at the beginning of the next zone. A
semicolon causes the next value to be printed
immediately after the last value. Typing one or
more spaces between expressions has the same
effect as typing a semicolon.

If a comma or a semicolon terminates the list of
expressions, the next PRINT statement begins
printing on the same line, spacing accordingly.
If the list of expressions terminates without a
comma or a semicolon, a carriage return is
printed at the end of the line. If the printed
line is longer than the terminal width, BASIC-80
goes to the next physical line and continues
printing.

Printed numbers are always followed by a space.
Positive numbers are preceded by a space.
Negative numbers are preceded by a minus sign.
Single precision numbers that can be represented
with 6 or fewer digits in the unscaled format no
less accurately than they can be represented in
the scaled format, are output using the unscaled
format. For example, 1lE-7 is output as .0000001
and 1lE-8(-7) is output as 1E-08. Double
precision numbers that can be represented with
16 or fewer digits in the wunscaled format no
less accurately than they can be represented in
the scaled format, are output using the unscaled
format. For example, 1D-15 1is output as
.0000000000000001 and 1D-16 is output as 1D-16.

BASIC-80 COMMANDS AND STATEMENTS Page 2-62

Example 1l:

Example 2:

Example 3:

A question mark may be used in place of the word
PRINT in a PRINT statement.

10 X=5

20 PRINT X+5, X-5, X*(-5), X*5
30 END

RUN

10 0 =25 3125
Ok :

In this example, the commas in the PRINT
statement cause each value to be printed at the
beginning of the next print zone.

LIST
10 INPUT X
20 PRINT X "SQUARED IS" X"2 "AND";
30 PRINT X "CUBED IS" X"3
40 PRINT
50 GOTO 10
Ok
RUN
29
9 SQUARED IS 81 AND 9 CUBED IS 729

? 21
21 SQUARED IS 441 AND 21 CUBED IS 9261

?

In this exam?le, the semicolon at the end of

line 20 <causes both PRINT statements to be
printed on the same line. and line 40 causes a

blank line to be printed before the next prompt.

10 FOR X =1 TO 5
20 J=J+5
30 RK=K+10
40 ?2J;:K:;
50 NEXT X
Ok
RUN
5 10 10 20 15 30 20 40 25 50
Ok

In this example, the semicolons in the PRINT
statement cause each value to be printed
immediately after the preceding value. (Don't
forget, a number is always followed by a space
and positive numbers are preceded by a space.)
In 1line 40, a question mark is used instead of
the word PRINT.

BASIC-80 COMMANDS AND STATEMENTS Page 2-63

2.50 PRINT USING

Format:
Versions:
Purpose:
Remarks

and
Examples:

"\n spaces\"

PRINT USING <string exp>;<list of expressions>
Extended, Disk

To print strings or numbers using a specified
format.

<list of expressions> is comprised of the string
expressions or numeric expressions that are to

be printed, separated by semicolons. <string
exp> 1is a string literal (or variable) comprised
of special formatting characters. These

formatting characters (see below) determine the
field and the format of the printed strings or
numbers.

String Fields

When PRINT USING is used to print strings, one
of three formatting characters may be used to
format the string field:

Specifies that only the first character in the
given string is to be printed.

Specifies that 2+n characters from the string
are to be printed. If the backslashes are typed
with no spaces, two characters will be printed;
with one space, three characters will be
printed, and so on. If the string is 1longer
than the field, the extra characters are
ignored. 1If the field 1is 1lonnger than the
string, the string will be left-justified in the
field and padded with spaces on the right.
Example:

10 AS$="LOOK" :B$="0OUT"

30 PRINT USING "!";AS$;BS

40 PRINT USING "\ \";A$;BS

50 PRINT USING "\ \";AS$;BS;"!11"
RUN

Lo

LOOKOUT

LOOK ouT !!

BASIC-80 COMMANDS AND STATEMENTS Page 2-64

Il&"

Specifies a variable length string field. When
the field 1is specified with "&", the string is
output exactly as input. Example:

10 AS="LOOK":B$="OUT"
20 PRINT USING "!";AS;
30 PRINT USING "&";BS$
RUN

LouT

Numeric Fields

When PRINT USING is used to print numbers, the

following special characters may be used to
format the numeric field:

A number sign is used to represent each digit
position. Digit positions are always filled.
If the number to be printed has fewer digits
than positions specified, the number will be
right-justified (preceded by spaces) in the
field.

A decimal point may be inserted at any position
in the field. If the format string specifies
that a digit is to precede the decimal point,
the digit will always be printed (as 0 if
necessary). Numbers are rounded as necessary.

PRINT USING "##.##";.78
0.78

987.65

PRINT USING "##.## ";10.2,5.3,66.789,.234
10.20 5.30 66.79 0.23

In the last example, three spaces were inserted
at the end of the format string to separate the
printed values on the line. ~— -

A plus sign at the beginning or end of the
format string will cause the sign of the number
(plus or minus) to be printed before or after
the number.

BASIC-80 COMMANDS AND STATEMENTS Page 2-65

* %

$$

**s

A minus sign at the end of the format field will
cause negative numbers to be printed with a
trailing minus sign.

PRINT USING "+##.##% ";-68.95,2.4,55.6,-.9
-68.95 +2.40 +55.60 -0.90

PRINT USING "##.##- ":=-68.95,22.449,-7.01
68.95- 22.45 7.01-

A double asterisk at the beginning of the format
string causes leading spaces in the numeric
field to be filled with asterisks. The ** also
specifies positions for two more digits.

PRINT USING "**#.% ";12.39,-0.9,765.1
*12.4 *-0.9 765.1

A double dollar sign causes a dollar sign to be
printed to the immediate left of the formatted
number. The $$ specifies two more digit
positions, one of which is the dollar sign. The
exponential format cannot be used with §§.
Negative numbers cannot be used unless the minus
sign trails to the right.

PRINT USING "SS###.##":456.78
$456.78

The **$ at the beginning of a format string
combines the effects of the above two symbols.
Leading spaces will be asterisk-filled and a
dollar sign will be printed before the number.
**S specifies three more digit positions, one of
which is the dollar sign.

PRINT USING "**S## . #4#";2.34
**%x$2 .34

A comma that is to the left of the decimal point
in a formatting string causes a comma to be
printed to the left of every third digit to the
left of the decimal point. A comma that is at
the end of the format string is printed as part
of the string. A comma specifies another digit
position. The comma has no effect if used with
the exponential (°°"") format.

PRINT USING "####,.##";1234.5
1,234.50

PRINT USING "####.##,";1234.5
1234.50,

BASIC-80 COMMANDS AND STATEMENTS Page 2-66

AAAAN

Four carats (or up-arrows) may be placed after
the digit position characters to specify
exponential format. The four carats allow space
for E+xx to be printed. Any decimal point
position may be specified. The significant
digits are left-justified, and the exponent is
adjusted. Unless a leading + or trailing + or -
is specified, one digit position will be used to
the left of the decimal point to print a space
or a minus sign.

PRINT USING "##.##°"""";234.56
2.35E+02

PRINT USING ".###4#°"°""-",;888888
.8889E+06

PRINT USING "+.##°"""";123
+.12E+03

An underscore in the format string causes the
next character to be output as a 1literal
character.

PRINT USING "_l##.## 1";12.34
112.34!

The 1literal -character itself may be an
underscore by placing "_ " in the format string.

If the number to be printed is larger than the
specified numeric field, a percent sign 1is
printed in front of the number. If rounding

aveand +ha £ia1A a marc~rand
oD e e s wdd LRl A 4 b r\-.a.vw.av

------- olha mivminar m
AUITO (S 99— LA INM T W s

sign will be printed in front of the rounded
number.

PRINT USING "##.##";111.22
$111.22 :

PRINT USING ".##";.999
$1.00

If the number of digits specified exceeds 24, an
"Illegal function call" error will result.

BASIC-80 COMMANDS AND STATEMENTS Page 2-67

2.51 PRINT# AND PRINT# USING

Format: PRINT#<filenumber>, [USING<string exp>;]<list of exps>
Version: Disk

Purpose: To write data to a sequential disk file.

Remarks: <file number> is the number wused when the file

was OPENed for output. <string exp> is
comprised of formatting characters as described
in Section 2.50, PRINT USING. The expressions
in <list of expressions> are the numeric and/or
string expressions that will be written to the
file.

PRINT# does not compress data on the disk. An
image of the data is written to the disk, just
as it would be displayed on the terminal with a
PRINT statement. For this reason, care should
be taken to delimit the data on the disk, so
that it will be input correctly from the disk.

In the list of expressions, numeric expressions
should be delimited by- semicolons. For example,

PRINT#1,A;B;C;X:Y; 2

(If commas are used as delimiters, the extra
blanks that are inserted between print fields
will also be written to disk.)

String expressions must be separated by
semicolons in the 1list. To format the string
expressions correctly on the disk, use explicit
delimiters in the list of expressions.

For example, let AS="CAMERA" and B$="93604-1".
The statement

PRINT#1,AS$;BS

would write CAMERA93604~1 to the disk. Because
there are no delimiters, this could not be input
as two separate strings. To correct the
problem, 1insert explicit delimiters into the
PRINT# statement as follows:

PRINT#1,A$;",";BS
The image written to disk is

CAMERA,93604-~-1

BASIC-80 COMMANDS AND STATEMENTS Page 2-68

which can be read back into two string
variables.

If the strings themselves contain commas,
semicolons, significant leading blanks, carriage
returns, or line feeds, write them to disk
surrounded by explicit quotation marks,
CHRS (34) .

For example, 1let AS$S="CAMERA, AUTOMATIC" and
BS=" 93604-1". The statement

PRINT#1,AS$;B$

would write the following image to disk:
CAMERA, AUTOMATIC 93604-1

and the statement

INPUT#1,AS$,BS

would input "CAMERA" to AS and
"AUTOMATIC 93604-1" to B$. To separate these
strings properly on the disk, write double
quotes to the disk image using CHRS$(34). The
statement :

PRINT#1,CHRS (34) ;AS;CHRS (34) ;CHRS (34) ;BS;CHRS$ (34)
writes the following image to disk:

"CAMERA, AUTOMATIC"" 93604-1"

and the statement

INPUT#1,AS$,BS

would input "CAMERA, AUTOMATIC" to AS and
" 93604-1" to BS.

The PRINT# statement may also be used with the
USING option to control the format of the disk
file. For example:
PRINT#1,USING"SS###.#%,";J:;K;L

For more examples using PRINT#, see Appendix B.

See also WRITE#, Section 2.68.

BASIC-80 COMMANDS AND STATEMENTS Page 2-69

2.52 PUT

Format:
Version:

Purpose:

Remarks:

Example:

NOTE:

PUT [#]<file number>[,<record number>]

Disk

To write a record from a random buffer to a
random disk file.

<file number> is the number under which the file
was OPENed. 1If <record number> is omitted, the
record will have the next available record
number (after the last PUT). The largest
possible record number is 32767. The smallest
record number is 1.

See Appendix B.

PRINT#, PRINT# USING, and WRITE# may be used to
put characters in the random file buffer before

‘a PUT statement.

In the case of WRITE#, BASIC-80 pads the buffer
with spaces up to the carriage return. Any
attempt to read or write past the end of the
buffer causes a