
This document is for internal Xerox use only.

ALTO: A Personal Computer System
Hardware Manual

August 1976

Abstract

This manual is a revlSlon of the original description of the Alto: "Alto, A Personal
Computer System." It includes a complete description of the Alto I and Alto II hardware
and of the standard microcode (version 23). .

© Copyright 1975. 1976 by Xerox Corporation

XEROX
PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road / Palo Alto / California 94304

This document is for internal Xerox use only.

1.0 Introduction

2.0 Microprocessor
2.1 Arithmetic section
2.2 Constant Memory
2.3 Main Memory
2.4 Microprocessor control

3.0 Emulator
3.1 Standard Instruction Set
3.2 Interrupts
3.3 Augmented Instruction Set
3.4 Bootstrapping
3.5 Hardware

4.0 Display Controller
4.1 Programming Characteristics
4.2 Hardware
4.3 Display Controller Microcode
4.4 Cursor

5.0 Miscellaneous Peri pherals
5.1 Keyboard
5.2 Mouse
5.3 Keyset
5.4 Diablo Printer
5.5 Analog Board
5.6 Parity Error Detection

6.0 Disk and Controller

7.0 Ethernet
7.1 Programming Characteristics
7.2 Ethernet Interface
7.3 Ethernet Microcode
7.4 Software Initiated Boot Feature

8.0 Control RAM
8.1 RAM-Related Tasks
8.2 Processor Bus and ALU Interface
8.3 Microinstruction Bus Interface
8.4 Reset Mode Register
8.5 Standard Emulator Access
8.6 M and S Registers

9.0 Nuts and Bolts for the Microcoder
9.1 Standard Microcode Conventions

Contents

9.2 Microcode Techniques Which Need Not Be Rediscovered

Appendix A Microinstruction Summary

Appendix B Reserved Memory Locations

Appendix C Optional Alto Peripherals

1.0 INTRODUCTION

This document is a description of the Alto, a small personal computing system originally
designed at PARCo By 'personal computer' we mean a non-shared system containing sufficient
processing power, storage, and input-output capability to satisfy the computational needs of a
single user.

A standard Alto system includes:

An 875-line television monitor, ·oriented with the long tube dimension vertical. This
monitor provides a 606 by 808 point display which is refreshed from main memory at 60
fields (30 frames) per second. It has programmable polarity, a low resolution mode
which conseryes memory space, and a cursor whose position and content are under
program control.

An undecoded keyboard.

A mouse (pointing device) and five-finger keyset.

A Diablo Model 31 or Model 44 disk file.

An interface to the Ethernet, a 3 Mbps serial communications line that can connect a
large number of Alto's and other computers.

A microprogrammed processor which controls the disk and display, and emulates a
virtual machine whose characteristics are approximately those of the Data General Nova.

64K 16 bit words of 850ns semiconductor memory.

lK microinstruction RAM that can be read and written with special microcode to extend
the facilities of the processor or to drive special I/O devices.

Optionally,. a Diablo HyType printer.

The processor, disk, and their power supplies are packaged in a small cabinet. The other
I/O devices may be a few feet away. and are pleasingly packaged for desk top use.

The remaining sections of this document will discuss the hardware and microcode of the
standard configuration Alto. At present, two slightly different versions .of the Alto exist: the
Alto I and the Alto 11. Most passages of this document pertain to both machines; those that
apply to one only are clearly marked.

This document does not deal with non-standard peripheral devices that may have been
interfaced to the Alto. Appendix C is a brief listing of non-standard interfaces and their
designers.

People

The Alto was originally designed by Charles P. Thacker and Edward M. McCreight and was
based on requirements and ideas contributed by several members of PARC'S Computer Sciences
Laboratory and Systems Sciences Laboratory. Bob Metcalfe and David Boggs designed the
Ethernet and its controller. Tat Lam designed the Alto Analog Board.

The machine was re-engineered as the Alto" for ITG/SDD to a specification developed by John
Ellenby. The engineering and production were carried out by EOD Special Programs Group,
managed by Doug Stewart and coordinated on behalf of PARe and SDD by John Ellenby. The
members of EOD/SPG who worked on the project are Doug Stewart, Ron Cude, Ron Freeman,
Jim Leung, Tom Logan, Bob Nishimura, Abbey Silverstone, Nathan Tobol. and Ed Wakida.

2

This hardware manual has had a long history of modification and extension and has benefited
from endless toil by numerous individuals. The present document is the responsibility of Diana
Merry, Ed McCreight and Bob Sproull.

Conventions and Notation

Numbers in this document are decimal unless followed by "B"; thus 10 : 12B.

Bits in registers are numbered from the most significant bit (0) toward the least significant bit.
Fields within registers are given by following the register name with a pair of numbers in
parentheses: IR[a-b] describes the b-a+l bit field of the IR register beginning with bit a and
ending with bit b inclusive. IR[a] is short for IR[a-a].

The symbol "+-" is used to mean "is replaced by." Thus IR[4-5] +- 2 means that the 2-bit field,
of IR including bits 4 and 5 is replaced by the bits 1 and 0 respectively. The symbol ":" is used
as an equality test.

Memory is by convention divided into 256-word "pages." Page n thus contains addresses 256*n
to 256*n+255 inclusive. The notation "rv(adr)" is used, as in Bcpl, to denote "the contents of
the memory location with address adr."

3

2.0 MICROPROCESSOR

The microprocessor is shown schematically in Figures I and 2. A principal design goal in this
system was to achieve the simplest structure adequate for the required tasks. As a result, the
central portion of the processor contains very little application-specific logic, and no specialized
data paths. The entire system is synchronous, with a clock interval of 170nsec.
Microinstructions require one cycle for their execution.

A second design goal was to minimize the amount of hardware in the I/O controllers. This is
achieved by doing most of the processing associated with I/O transfers with microprograms. To
allow devices to proceed in parallel with each other and with CPU activity, a control structure
was devised which allows the microprocessor to be shared among up to 16 fixed priority tasks.
Switching between tasks requires very little overhead, and occurs typically every fe~
microseconds.

2.1 Arithmetic Section

The arithmetic section of the processor consists of a 32-word by 16-bit register file R, and four
registers, T, L, MAR, and IR. The registers are connected to the memory and to an ALU with a
16-bit parallel bus.

The ALU is a SN74181 type, restricted so that it can do only 16 arithmetic and logical functions.
The ALU output feeds the L and MAR registers. T may also be loaded from the ALU output under
certain conditions. L is connected to a shifter capable of left and right shifts by one place, and
cycles of 8. It has a mode in which it does the peculiar 17-bit shifts of the Nova, and a mode
which allows double-length shifts to be done.

The IR register is used exclusively by the Nova emulator to hold the current CPU instruction.

Attached to the bus is a 256-word read only memory (ROM) which holds arbitrary 16-bit
constants.

The microprocessor executes instructions from a IK word by 32-bit programmable read-only
memory (PROM). The fields of the microinstruction are:

FIELD

0-4
5-8
9-11
12-15
16-19
20
21
22-31

R Select

NAME

RSELECT
ALUF
BS
Fl
F2

NEXT

MEANING

R Register Select
ALU Function
Bus Data Source
Function I
Function 2
Load L
Load T
Next microinstruction address

(subject to modifiers)

The R select field specifies one of the 32 R cells to be loaded or read under control of the bus
source field, or, in conjunction with the bus source field, one of the 256 locations to be read
from the constant ROM.

The low order two bits of the R address (but not the constant ROM address) may be taken from
fields in IR under control of the functions. This allows the emulator to address its central
registers easily.

4

Monitor
I
I

Display * RSEL[O-2] Control
R

5
RSEL ~ Constant

3 ROM
BS -A 256 x 16

RSEL[3-4] ~r-;;
---?

p 32 x 16
IR[1-2]

X
....

IR[3-4] ~
Processor Bus , ,

16
\It

,....-1-' . .L..-1---11--_~~: M P X I

LOAD T

~

P A

ALUF[O-3] -?
R 6

0
M
""-

LOAD L

J,
~I T

J,
B

ALU

F

\

L

Shifter

\

I I IR

MAR

Memory

Address Bus

16

Decode
&

Control

Figure 1 -- Processor Data Paths

Transceiver
Disk I

I I
I Ethernet
I
I
I

Disk
Control

Drivers
&

Parity

Memory
32 Data Bus

Main

Memory

64K x 16

Dynamic MOS

w S
A I
K
E G
U N
p A

L
S

= ~ = ~ = = = =

p
R E
I N

0 C
R 0 4
I D

T E
Iv R

c ,I
U
R T MPC RAM
R A

E S 4
N K 16 x 12
T

10 ,
Address

Control

ROM

1K x 32

Data Out

I
22

\

MIR

1
Instruction

Figure 2 -- Processor Control

I '" p

10

Next
MicroinstructIOn
Address
Bus

Address
Modification

Logic

ALU Functions

The ALU function field controls the SN74181 ALU. This device can do a total of 48 arithmetic
and logical operations, most of which are relatively useless. The 4-bit field is mapped by a
PROM into the 16 most useful functions:

ALUF FJELD FUNCTION S3,s2,SI.SO.M.C
INPUTS TO SN74181

0 BUS 1111 I 0 (A)
I T 1010 I 0 (B)
2 BUS OR T* 1110 I 0 (A+B)
3 BUS AND T 1011 I 0 (AB)
4 BUS XOR T 0110 I 0 (A XOR B)
5 BUS + I· 0000 0 0 (A PLUS I)
6 BUS - I· 1111 o I (A MINUS I)
7 BUS + T 1001 o I (A PLUS B)
lOB BUS - T 0110 o 0 (A MINUS B)
liB BUS - T - I 0110 o I (A MINUS B MINUS I)
12B BUS + T + 1* 1001 o 0 (A PLUS B PLUS I)
I3B BUS+SKIP* 0000 0 SKIP' (A PLUS I)
l4B BUS.T* (AND) 1011 I 0 (AB)
15B BUS AND NOT T 0111 1 0 (A & NOT B)
168-17B UNDEFINED

*If T is loaded during an instruction which specifies this function, it will be loaded from the ALU output
rather than from the bus.

Bus Sources

The bus data source field specifies one of 8 data sources for the bus:

VALUE

o
I
2
3
4
5
6
7

NAME

foRName
RName fo

foKSTAT
foKDATA
foMD
foMOUSE
foDlSP

SOURCE

Read R
Load R*
Nothing (-1)
Kstat (disk control status bits)*·
Kdata (16 bits of disk data)"
Memory data
Mouse data (4 bits. remai nder of word is I)
Disp (low order 8 bits of IR. sign extended)

*This is not logically a source, but because R is gated to the bus during both 'reading and writing, it is
included in the source specifiers. Load R forces the BUS to 0, so that Tfo ALUFunction(O,T) may be
executed simultaneously.

*·By convention, these bus sources are task specific, i.e., their meaning depends on the currently active task.
foKSTAT and foKDATA are the interpretations used during the disk sector and word tasks.

Special Functions

The two function fields specify the address modifiers, register load signals (other than those for
R, Land T), and other special conditions required in the processor. The first eight conditions
specified by each field are interpreted identically by all tasks (except BLOCK), but the
interpretation of the second eight depends on the active task. The task-independent functions
are given below, the task-specific functions are included with the task descriptions.

FUNCTION I:

Fl

o

NAME MEANING

No Activity

5

2

3

4

5

6

7

MAR~

TASK

BLOCK

~L LSH I

~L RSH I

~L LCY 8

~CONSTANT

Load MAR from ALU output; start main memory reference (see section
2.3).

Switch tasks if higher priority wakeup is pending.

Disable current task until re-enabled by hardware-generated condition.
(Note: This is simply a hardware convention.)

Left shift L one place-

Right shift L one place-

Cycle L (8 places)-

Put on the bus the constant from the ROM location addressed by
RSELECT.BS

·Modified by DNS (do Nova shifts) function, and MAGIC function.

FUNCTION 2:

F2 NAME MEANING

0 No Activity

1 BUS=O NEXTt-NEXT or (if (BUS=O) then 1 else 0)

2 SH(O NEXTt-NEXT or (if (SHIFTER OUTPUT (0)
then 1 else 0)

3 SH=O NEXTt-NEXT or (if (SHIFTER OUTPUT =0)
then 1 else 0)

4 BUS NEXTt-NEXT or BUS(6,15)

5 ALUCY NEXTt-NEXT or LastALUCO·

6 MDt- Deliver BUS data to memory (see section 2.3)

7 t-CONSTANT Same as FI=7

*The carry used is that produced by the ALU function which last loaded the ~ register.

2.2 Constant Memory

The constant memory is a 256 x 16 PROM which holds arbitrary constants. The constant memory
is gated to the bus by Fl=7, F2=7, or Bs~4. The constant memory is addressed by the (8 bit)
concatenation of RSELECT and BS. The intent in enabling constants with Bs~4 is to provide a
masking facility, particularly for the t-MOUSE and "DISP bus source. This works because the
processor bus ANDs if more than one source is gated to it. Up to 32 such mask constants can be
provided for each of the 4 bus sources 2:: 4.

Alto I: Note that it is not possible to use a constant other than -1 with the t-MD bus source,
because memory parity is calculated on the bus, and a parity error will result if bits are marked
off in a word fetched from memory.

2.3 Main Memory

Main memory references are handled differently on Alto I and Alto II. It is, however, possible
to write most microcode so that it will operate correctly on both machines.

Alto I and Alto II: A memory reference is initiated by executing FI:6, MAR". The results of a
read operation are delivered somewhat later onto the bus with Rs=5, "MD. A store into the
addressed memory location is achieved with F2:=6, MDt-. The microprogram partially controls

6

memory timing. and must observe certain rules to insure correct operation.

a)

b)

c)

d)

e)

Alto I:
f)

g)

Alto 11:
f)

g)

A minimum of one microinstruction must intervene between the initiation of a
memory reference and an MO .. or t-MO.

Although the exact details of memory timing differ on Alto I and Alto II. both
machines share the property that the processor will suspend execution of
microinstructions if an "MO or MO" is executed before the memory interface is
prepared to deliver or accept data.

The memory checks parity on al1 fetches. unless the cycle is a refresh cycle or the
address is between 177000B and 177777B inclusive, in which case an 110 device is
being referenced. Parity errors result in activation of the highest-priority task
(task number 15) whose purpose is to deal with the error (see section 5.6).

If RSELECT = 37B during the instruction which starts the memory. a refresh cycle
is assumed and al1 memory cards are activated. This is used by the refresh task.

MAR" cannot be invoked in the same instruction as "MO of a previous access.

During the fourth cycle after MAR has been loaded, if F2=6, MO ... a store of bus
data into the word addressed by MAR will occur. The MO" may not be issued
later than the fourth cycle. (Note: Some Alto I's have been modified to allow a
"double-word store." On these machines, it is permissible to issue two MO"
instructions in a row, the first coming in the fourth cycle folJowing the MAR .. ,
and the second following directly. If MAR is loaded with an even address adr, the
two words will be stored at adr and adr+1 respectively.).

During the fourth cycle of a reference, if Bs=5, t-MO, the reference is a fetch of
the word addressed by MAR. During the fifth cycle of a reference, if Bs=5, "MD.
the odd word of the doubleword addressed by MAR is delivered. The memory
cycle is extended by one cycle if both words of a doubleword are fetched. If MO
is referenced during the fifth cycle, it must have also been referenced during the
fourth.

During the third cycle after MAR has been loaded, if F2=6, MO<-, a store of bus
data into the word addressed by MAR will occur. The MO'" may not be issued
later than the third cycle. Alto I\'s alJow a "double-word store:" it is permissible
to issue two MO'" instructions in a row, the first coming in the third cycle
following the MAR ... , and the second following directly. If MAR is loaded with an
address adr, the two words will be stored at adr and (adr XOR 1) respectively.

During the fourth cycle of a reference, if Bs=5, <-MD, the reference is a fetch of
the word addressed by MAR. During the fifth cycle of a reference, if Bs=5, "'MD,
the other word of the doubleword addressed by MAR is delivered. The memory
cycle is extended by one cycle if both words of a doubleword are fetched.

Because the Alto 1\ latches memory contents, it is possible to execute "'MO
anytime after the fourth cycle of a reference and obtain the results of the read
operation. This convention permits a double-word "exchange" operation to be
coded as follows:

MAR ... adr;
Nap;
M D<-newContents 1;
M D"'newConlents2;
L ... MO;
T .. MD;
oldContcntsl<-L, L ... T;
oldContents2<-L;

address= adr
address= adr XOR 1
address= adr
address= adr XOR 1

7

2.4 Microprocessor Control

Control of the Alto microprocessor is shared among 16 "tasks" arranged in a priority order. The
tasks are numbered 0 to 15: 0 is the lowest priority task and 15 is the highest. The lowest
priority task is the emulator task which fetches instructions and executes them.

The only state saved for each task is a "micro program counter," MPC. The current task number,
saved in the current task register, addresses a 16 by l2 MPC RAM. The result is an MPC for the
current task; it is used to address a lK by 32-bit microinstruction memory (MI ROM). The
microinstruction memory produces an instruction and the address of its successor NEXT[O-n
This successor address may be modified by merging bits into it under control of the function
fields of the current microinstruction. This limited branching capability makes coding more
difficult than with a more general scheme, but not seriously so, as examples of microcode
demonstrate.

The amount of memory available for microinstructions is often extended by an additional lK of
control memory implemented with RAM. Because the MPC RAM produces 12 bits, enough are
available (11) to address both the microinstruction ROM and RAM. The microinstruction RAM
may be loaded or read by special CPU instructions, and provisions exist for causing any of the 16
tasks to execute instructions from it (see section 8).

At the end of each cycle, the microinstruction register (MIR) and the MPC are loaded, and the
cycle repeats. There is only one phase of the system clock. It is true during the last 25 ns. of
every instruction.

Tasks

If the processor executes the TASK function (F1=2) during an instruction, the current task register
is loaded (at the end of the instruction) with the number of the current highest priority task as
determined by the priority encoder. This causes the next instruction to be fetched from the ROM
location specified by the saved task's MPC. One additional instruction is executed before the
switch becomes effective. A version of the current task register which is delayed from the MPC
RAM address by one cycle exists so that this instruction can execute task-specific functions, but
these functions must do no address modification, since any modification would affect the new
task. The situation for two streams of instructions A-F and J-M in two different tasks is shown
below:

Instruction
Being Executed

A
B
C*
D
J **
K ***
L
E

Instruction
Being Fetched

B
C
D
J
K
L
E
F

Address Stored
MPC at End of Cycle

C
D
E
K
L
M
F
G

*Instrllction C allows task switching. New task's MPC = J.
**Instruction J. does an operation which removes its task's wakeup request.
***Instrllction K allows task switching, and the original task is now highest priority.

The "wakeup signals" which drive the priority encoder are hardware-generated and are not
accessihle to the microprogram. When a running task executes the TASK function, control will
switch to another task only if a higher priority task has a wakeup signal held true, or if the

8

current task no longer has a wakeup signal true. In the latter case, control goes to a lower
priority task. The lowest priority task is the CPU emulator, which is always requesting wakeup.

The BLOCK function (Fl=3) is used, by convention, to signal a hardware device associated with
the currently running task to remove its wakeup signal. This function is not accomplished by
the Alto microprocessor, but rather by the individual device interfaces.

The TASK function should be executed only at times when the current task has no state in Lor T,
and has no main memory operations in progress, since there is no provision in the hardware for
saving this information.

Initialization

The only way in which the microprogram can affect the task structure is to request a task,
switch. In particular, it cannot affect the MPC'S of tasks other than itself. This presents an
initialization problem which is solved by having each task start at the location which is its task
number (thus the emulator task finds its first instruction to execute at MPC=O). Task numbers
are written into the MPC RAM during a reset cycle, which may be initiated manually or by a CPU
instruction (see SID instruction in section 3.3).

9

3.0 EMULATOR

The standard microcode on the Alto contains an "emulator" as the lowest-priority task. This
code fetches, decodes, and executes instructions resident in the Alto memory whose encoding
resembles that of the Data General Nova computers. This "standard" emulator can be replaced
by changing the microcode that is executed as the lowest priority task, often by executing special
emulator microcode in the microcode RAM.

3.1 Standard Instruction Set (Nov.a)

The standard instruction set is that of the Data General Nova, with the following differences:

An address requires 16 bits, rather than the 15 on the Nova. Therefore, multi-level
indirection is not possible, and all 16 bits of a register used for indexing are significant..

There are no auto-index locations.

The interrupt system is entirely different (see section 3.2).

The 1/0 class of instructions is not implemented. Instead, the Alto has augmented the
instruction set (see section 3.3).

Registers

The emulator state is contained in several registers:

pc: The "program counter," which contains the 16-bit address of the next instruction to
be fetched and executed.

ACO, ACl, AC2, AC3: The accumulators, each of which contains 16 bits. Instructions are
available for transferring contents of accumulators to and from memory registers and for
performing arithmetic and logical operations among accumulators. The notation Ac(n) is
often used to refer to the contents of accumulator n (n=0,1,2,3).

c: The "carry" bit which is modified by most arithmetic operations.

Memory: The Alto has "64K" 16-bit memory words, addressed by values ranging from 0
to 176777B. Addresses 177000B to 177777B are reserved for various 110 device uses (see
Appendix B).

Operations

The instructions are best described by breaking them into four groups according to the way the
instructions are formatted (see figure 3).

Several of the instructions compute an "effective address" based on the values of the I (indirect),
x (index) and D1sr (displacement) fields of the M-group, J-group and some S-group
instructions. The effective address calculation is best described by a brief "program." We
define the function SExtend(x) to represent the sign-extension of the 8-bit number x.

SExtend(x) = (if x ge 200B then x+I77400B else x)

EO = [liThe symbol "E" denotes effective address
E~(IIValues of I,X, and DISP are from the instruction
if X=O then DlSP Il"page 0 addressing"
elseif X=1 then SExtend(D1sr)+Pc Il"relative addressing"
elseif X=2 then SExtend(DlsP)+AC(2) Il"base register addressing"
elseif X=3 then SExtend(DlsP)+Ac(3) II"base register addressing"

)
if I ne 0 then E~rv(E) IINow do' single-level indirection

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 I MFunc InestAC x DISP

M-Group (LDA,STA)

0 0 o I JFunc X DISP

J-Group (JMP,JSR,ISZ,DSZ)

1 I SrcAC I DestAC I AFunc SH CY INL I SK

A-Group (COM,NEG,MOV,INC,ADC,SUB,ADD,AND)

o 1 1

S-Group

Figure 3 -- Instruction Formats

To/From Memory o tAC es

Accumulators

Carry

SrcAC DestAC
Carry Generator

1 16 16

Function Generator

1 16

Shifter

1 16

Skip Sensor

1 16

Governed by NL

I I
Figure 4 -- Instruction Execution

]

The notation for these addressing modes is demonstrated below. The 'DISP value is always
specified first; the x value is not given explicitly, but is determined either by the address of the
label or by a modifier ",2" or ",3" which specifies base register indexing:

JMP LABEL2

JMP 15,3
JMP@3

IIWili use X=O or 1 depending where LABEL2 is:
II If LABEL2 is in page 0, X=O; otherwise X=l.
II DlSP=I5; 3 means use AC3 as base register.
II The character @ causes I to be 1.

Note that instructions which compute' an effective address always do so before any other
operations. Thus JSR 1,3 computes the effective address of 1+AC(3) before saving pc+1 in AC3.

Memory Group Operations: The OestAC field specifies one of the four accumulators (OestAC=O for
ACO, OestAc=1 for ACI, etc.). The MFunc field specifies one of two operations:

LOA (MFunc=1): This operation loads an accumulator from memory. AC(OestAc)+-rv(E).

STA (MFunc=2): This operation stores an accumulator into memory. rV(E)+-AC(OestAC).

These instructions are written by giving the mnemonic, followed by the accumulator number
(OestAC). followed by an effective address notation:

STA 3,.+4 IIStore AC3 in the fourth location following this one
LOA 0,4,2 II Load ACO from address=4+AC(2)

Jump and Modify Group Operations: The JFunc field specifies one of four operations:

JMP (JFunc=O): This operation causes a "jump" by changing the value of the PC. PC+-E.

JSR (JFunc=1): This operation is useful when calling subroutines because it saves a return
address in AC3. AC(3)+-pc+1; PC+-E.

ISZ (JFunc=2): This operation increments the contents of a memory cell and skips if the
new contents are zero. rV(E)+-rv(E)+1; if rV(E)=O then pc+-pc+l. This instruction does
not alter the C bit.

OSZ (JFunc=3): This instruction decrements the contents of a memory cell and skips if the
new contents are zero. rV(E)+-rv(E)-1; if rV(E)=O then pc+-pc+l. This instruction does not
alter the C bit.

These instructions are written by giving the mnemonic and the effective address notation:

JSR SUBR
JMP 1,3 IIJump to AC(3)+1

Arithmetic Group Operations: All 8 of these instructions operate on the contents of 'the
accumulators and the carry bit. Typically. a binary operation involves the contents of the
"source accumulator" (SrcAC) and the "destination accumulator" (OestAC) and leaves the result in
the destination accumulator. The carry bit (c bit) and the PC can also be modified in the process.

The operation of the instructions is best explained by following the flow in figure 4. The 16-bit
contents of the source and destination accumulators are fetched and passed to the function
generator.

The carry generator produces an output that depends on the value of the C bit and the Cy field
of the instruction:

none (Cy=O): The output is c.

Z (cy=l): The output is O.

11

o (cy=2): The output is 1.

C (cY=3): The output is l-c (i.e., the complement of c).

The function generator is controlled by the AFunc field; various values will be described below. It
takes two 16-bit numbers and a carry input and generates a 16-bit Result and a carryResult.

The shifter is controlled by the" SH field in the instruction:

none (SH=O): No shifting; the 17 output bits are the same as the 17 input bits.

L (sH=l): Rotate the 17 input bits left by one bit. This has the effect of rotating bit 0
left into the carry position and the carry bit into bit 15.

R (sH=2): Rotate the 17 bits right by one bit. Bit 15 is rotated into the carry position and
the carry bit into bit O.

S (sH=3): Swap the 8-bit halves of the 16-bit result. The carry is not affected.

The skip sensor tests various of the 17 bits presented to it and may cause a skip (PC+-PC+l) if
an appropriate condition is detected:

none (SK=O):
SKP (sK=I):
szc (sK=2):
SNC (sK=3):
SZR (sK=4):
SNR (sK=5):
SEZ (sK=6):
SBN (sK=7):

Never skip
Always skip
Skip if the carryResult is zero
Skip if the carryResult is non-zero
Skip if the 16-bit Result is zero
Skip if the 16-bit Result is non-zero
Skip if either carry Result or Result is zero
Skip if both carry Result and Result are non-zero

The alert reader will detect that the SK field is microcoded. The skip condition can be described
as:

skip = (SK2:;O!:O) XOR
«SKO:;o!:O AND result=O) OR (SKI:;o!:O AND carryResult=O»

where SKO is the first bit of the field, SKI the second and SK2 the third.

The NL bit in the instruction controls the operation of the switch in the illustration. If NL=I,
neither the destination accumulator nor the carry bit is loaded: otherwise the destination
accumulator is loaded from Result and the carry bit from carry Result. The "no-load" feature is
useful for instruc"ti.ons whose only use is testing some value. The character # is appended to the
mnemonic for operations if the NL bit is to be set.

The AFunc operations are described below. Note that "Result" will be stored into the destination
accumulator (DestAC) unless NL=l.

COM (AFunc=O) Complement: The function generator produces the logical complement of
AC(SrcAC). It passes the carry bit unaffected.

NEG (AFunc=l) Negate: The function generator produces the two's complement of
AC(SrcAC). If AC(SrcAC) contains zero, complement the value of the carry supplied to the
function generator, otherwise supply the specified value.

MOY (AFunc=2) Move: The function generator passes AC(SrcAC) and the carry bit
unaffected.

INC (AFunc=3) Increment: The Result produced is AC(SrcAC)+ 1; the carry is complemented

12

if AC(SrcAC)=177777B.

ADC (AFunc=4) Add Complement The Result produced is the sum of AC(DestAC) and the
logical complement of AC(SrcAC). The carry bit is complemented if the addition
generates a carry.

SUB (AFunc=5) Subtract: Subtracts by adding the two's complement of AC(SrcAC) to
AC(DestAC). The carry bit is complemented if the addition generates a carry.

ADD (AFunc=6) Add. Adds AC(SrcAC) to AC(DestAC). The carry bit is complemented if the
addition generates a carry.

AND (AFunc=7) And. The Result is the logical and of AC(SrcAC) and AC(DestAC). The
carry is passed unaffected.

The arithmetic instructions are written by citing the AFunc mnemonic, followed optionally by the
CY mnemonic, followed optionally by the SH mnemonic, followed optionally by the NL
mnemonic. Then after a space. the source accumulator number is given, the destination
accumulator number, and optionally an SK mnemonic. For example:

SUB 0,0
MOYZ 2,1
SUBZL 1,1
ADC 0,0
SUB# 2,3,SNR
COM# I.1,SZR
SUBZ# I,O,SZC
ADCZ# I,O,SZC

IIZero ACO by subtracting it from itself
IIMove AC2 to ACI, and zero C.
IISet ACI to 1
IISet ACO to I77777B
IISkips if AC2 and AC3 are unequal but affects neither
IISkips if ACI is I77777B but leaves it unchanged
IISkips if ACO(ACI unsigned
IISkips if ACOiACI unsigned

To subtract the constant 1 from ACl:
NEG 1,1
COM 1,1

To "or" together the contents of ACO and ACI; results ACO:
COM 1.1
AND 1,0
ADC 1,0

To "xor" together the contents of ACO and ACI; result in ACO:
MOY 0,2
ANDZL 1,2
ADD 1,0
SUB 2,0

To negate a double-length number in ACO and ACI:
NEG I,l,sNR
NEG O,O,SKP
COM 0,0

To add the double-It!ngth number in AC2,AC3. to one in ACO,AC1:
ADDZ 3,l,SZC
INC 2,2
ADD 2,0

To subtract the double-length number in AC2,AC3 from one in ACO,ACI:
SUBZ 3,l,SZC
SUB 2,O,SKP
ADC 2,0

The Bcpl construct "if a gr b then ... " uses code which does a subtract and checks the sign. Unfortunately, this is not
a true sIgned compare because the subtract may overflow. With this code, 2 gr 0 is true. but 0777778 gr 1000008 is
false (077777B is the largest positive number and 1000008 the largest negative. The code generated by Bcpl looks like:

LDA 04,2
LDA 1 5,2
ADeL# 1,0,SZC
JMP falsePart
JMP truePart

II Pick up a
II Pick up b
IISubtract and check sign
IINot true
IITrue

13

The "true signed compare"
LDA 0 4,2
LDA 1 5,2
SUBZR 2,2
AND 1,2
ADDL 0,2
A DC# 1,0,SNC
JMP falsePart
JMP truePart

for a>b is:
II Pick up a
IIPick up b
IIPlace 1000008 in AC2
I I AC2=(if b(O then 1000008 else 0)
IICARRY=(if a and b signs differ then 1 else 0)
II

3.2 Interrupts

The emulator microcode implements an interrupt structure which allows both 1/0 devices and
programs to interrupt the main program. The interrupt system provides 15 channels of vectored
interrupts with adjustable priority: the lowest-priority channel is numbered 1; the highest is
numbered 15. The interrupt system uses one register in R (NWW, new wakeups waiting) which is
inaccessible to the programmer, and a number of fixed locations in page 1:

ACTIVE (4538):

WW (452B):

PCLOC (500B):

This word contains l's for the channels which are currently active. Bit n
is set if channel n is active. Bit 0 is not used, and should not be set by
any program.

This word contains bits for channels on which interrupts are pending. Bit
o is not used.

When an interrupt is initiated by the microcode, the PC is saved here.

INTVEC (501B) to INTVEC+14: Contains pointers to the service routines for the 15 interrupt
channels. The first word corresponds to the highest priority interrupt
channel (bit 15), the last corresponds to the lowest priority channel (bit 1).

The main loop of the emulator checks NWW during the fetch of each emulated instruction. If
NWW is greater than zero, the microcode computes (NWW OR WW) AND ACTIVE. If this quantity
is nonzero, an interrupt is caused. If not, NWW OR WW is stored in WW, NWW is cleared, and the
instruction is restarted.

If the interrupt is caused, the microcode stores the program counter in PCLOC, sets bit 0 of NWW
to disable further interrupts, clears the bit in NWW corresponding to the interrupt channel about
to occur, and loads the PC with rv(INTvEC+15-CHANNEL).

Interrupts are caused by oRing into NWW or into WW. 110 device microcode usually has a
dedicated location in which the program places a bitword for the interrupt(s) to be caused upon
completion of 110 activity.

Only one interrupt channel is permanently assigned: the highest priority channel (bit 15) is
triggered when a main memory parity error is detected.

The interrupt system uses three instructions:

DIR (61000B) Disable interrupts:
Sets bit 0 of NWW. Since NWW is negative, the check made at the start of every
instruction will not process any new wakeup requests.

DIRS (610l3B) Disable interrupts and skip if on:
Disable interrupts (see DIR, above), but skips the next instruction if interrupts were
enabled at the start of this instruction.

EIR (61001B) Enable interrupts:
Clears bit 0 of NWW, and ORs WW into NWW to detect any interrupts which were
requested (by oRing into ww) while interrupts were off.

14

15

BRI (61002B) Branch and return from interrupt: .
This instruction clears bit 0 of NWW, ORS WW into NWW, and restores PC from PCLOC.

3.3 Augmented Instruction Set

Opcodes above 60000B, which are 1/0 instructions in the Nova, have been reassigned to
instructions which augment the standard instruction set. Bits 3 through 7 of the instruction
determine 32 opcodes, each of which may use the displacement field. One of these opcodes is
used to represent up to 256 instructions which do not require a displacement or a parameter as
part of the opcode.

Currently, only a small number of the available extra instructions have been implemented. The
remaining unimplemented instructions all trap in some way. If no microcode RAM is present or
IR[3-7]=37B, an unimplemented opcode causes the microcode to store the PC (which points one
location beyond the instruction which caused the trap) in location TRAPPC, and simulate a JMP@
TRAPVEC ! IR[3-7]. TRAPPC (527B), and the 32 word trap vector starting at TRAPVEC (530B) are,
reserved locations in page 1. If a microcode RAM is present on the Alto. and IR[3-7] is not 37B,
unimplemented opcodes will trap into the RAM (see section 8.6).

The currently assigned extra instructions and their operations are:

MUL (61020B) Unsigned multiply:
Multiplies the unsigned integers in ACl and AC2 to generate a 32-bit product; add the
product to the integer in ACO. Leave the high-order part of the result in ACO and the
low-order part in ACI. AC2 is unaffected.

DlV (6102lB) Unsigned divide:
The double-length unsigned integer in ACO and ACI is divided by the unsigned integer in
AC2. The quotient is left in ACl; the remainder in ACO. AC2 is unaffected. The
instruction normally skips the next instruction; if overflow occurs (ACO > AC2 unsigned).
DlV does not skip.

CYCLE (60000B):
Left cycle (rotate) the contents of ACO by the amount specified in instruction bits 12-15,
unless this value is zero, in which case cycle ACO left by the amount specified in ACI.
Leaves ACI = cycle count mod 20B.

JSRII (64400B) Jump to subroutine double indirect, PC relative:
AC3,-pc+l
pc.-rv(rv(pc+DlSP»

JSRIS (65000B) Jump to subroutine double indirect. AC2 relative:
AC3,-pc+l
pc.-rv(rv(AC2+DISP»

CONVERT (67000B):
The convert instruction does scan conversion of characters, i.e., it transfers data between
an area of main memory containing a font and an area of memory containing a bit map
to be displayed on the TV monitor.

Convert takes a number of arguments:

ACO contains the address of the destination word into which the upper left corner of the
character is to be placed, offset by NWRDS, the number of words to be displayed on each
scan line (ACO=DWA-NWRDS).

AC3 points to a character pointer in the font for the character to be displayed
(AC3=FONTBASE+CHARACTER CODE).

AC2+Displacement points to a two word table:
word 0: NWRDS (number of words per to scan line); NWRDS < 128.
word 1: DBA, the destination bit address corresponding to the left hand

16

edge of the character. Convert interprets this bit address reversed
from the normal convention, i.e., 0 is the least significant bit, 15
the most significant bit.

Convert requires that a 16 word mask table be set up starting at MASKTAB (460B) in page
1. MAsKTAB!n=(2**(n+1»-1 (0<n<16).

The format of an Alto font designed for use with CONVERT is given below; font files in
this format conventionally have an extension ".AL". The CONVERT instruction does not
examine the words at FONTBASE-2 and FONTBAsE-l; these are provided solely for
convenience of software.

FONTBASE-2:
The height of a line of text in scan lines. This number incorporates the
effects of the highest and lowest character in the font, i.e. it is
max(HD+xH)-min(HD) where the max and min are taken independently
and HD and XH are defined below.

FONTBASE-l:
Bit 0:

Bits 1-7:

Bits 8-15:

o = Fixed width font.
1 = Proportional width font.
Baseline -- number of scan-lines from top of highest
character in font to the baseline.
The width of the widest character in raster points.

FONTBASE to FONTBASE+377B:
Self-relative pointers to word xw of the character descriptor block for
the character codes 0- 377B.

FONTBASE 400B to FONTBASE+400B+EXTCNT-l:
These locations contain self-relative pointers to word xw of the character
descriptor blocks for extensions, i.e., portions of characters which are
wider than 16 bits.

FONTBASE+400B+EXTCNT to end:
Contains a number of character descriptor blocks of the form:

word 0 to word xw-l: The bit map for the character and surrounding
spaces. The bit map does not include O's at the top and bottom of
the character, as the character will be vertically positioned by
convert. The upper left-hand bit of the character is in the MSB of
word O.

word xw: If the character is less than 16 bits wide, this word contains
(2*width)+ 1. If the character requires an extension, this word
contains 2* a pseudo-character which is used as a character code
to index the font. If this is the last extension block of a
character, this word contains (2* the width of the final extension),
rather than the total width. The pointer indexed by the character
code points to this word.

word xw+1: In the left byte. HD. In the right byte. XH. HD is the number
of scan lines to skip before displaying the character, XH is the
height of the bit map.

The CONVERT instruction ORS the character bitmap into the display area.
If the character does not require an extension, CONVERT skips, with the
following information in the ACtS:

ACO: unchanged

17

ACI: DBA and 17B
AC2: unchanged
AC3: the width of the character in bits

If the character requires an extension, convert returns normally. AC3
contains the pseudo-character code for the extension, and AC'S 0-2 are as
above.

RCLK (61003B) Read Clock:
The microcode maintains a 26 bit real time clock which is incremented by the memory
refresh task at 38.08 microsecond intervals. The high order 16 bits of this clock are
maintained in location RTC (430B) in page I, the low order 10 bits are kept in the high
order bits of R37. R37 is incremented by 100B each 38.08 microseconds. The low order 6.
bits of R37 c.ontain state information unrelated to the time.

RCLK loads ACO with the contents of location RTC, and loads ACl with the contents of
R37. If the program then zeros bits 10-15 of ACl, it will have a clock value in units of
.595 microseconds. ACO alone is in units of 39 ms. The period of the clock is about 40
minutes.

Sf 0 (61004B) Start 110:
Start I/O is included to facilitate I/O control. It places the contents of ACO on the
processor bus and executes the STARTF function (Fl=17B). By convention, bits of ACO
must be "I" in order to signal devices.

If bit 0 of ACO is I, and if an Ethernet board is plugged into the Alto, the machine will
boot, just as if the "boot button" were pressed (see section 3.4 for a discussion of
bootstrappi ng).

SIO also returns a result in ACO. If the Ethernet hardware is installed, the serial number
and/or Ethernet number of the machine (0-377B) is loaded into ACO[8-IS]. (On Alto I,
the serial number and Ethernet number are equivalent; on Alto II, the value loaded into
ACO is the Ethernet number only.) Microcode installed after June 1976, which this
manual describes, turns bit 0 of ACO off. Microcode installed prior to June 1976 sets bit
o of ACO; this is a quick way of acquiring the approximate vintage of a machine's
microcode.

BLT (61005B) Block transfer:
BLKS (61006B) Block store:

These instructions use tight microcode loops to move a block of me.mory from one place
to another (BLT) or to store a constant value into a block of memory (BLKS). Block
transfer and block store take the following arguments:

ACO: Address of the first source word-1 (BLT), or data to be stored (BLKS).
ACI: Address of the last word of the destination area.
AC3: Negative word count.

Because these instructions are potentially time consuming, and keep their state in the
Acts, they are interruptible. If an interrupt occurs, the pc is decremented by one, and the
AC'S contain the intermediate state. On return, the instruction continues. On
completion, the AC'S are:

ACO: Address of last source word+1 (BLT), or unchanged (BLKS).
ACI: Unchanged.
AC2: Unchanged.
AC3: O.

The firstr word of the destination area (ACl + AC3 + 1) is the first to be stored into.

SIT (61007B) Start interval timer:

18

The microcode implements an interval timer which has a resolution of 38 microseconds,
and a maximum period of 10 bits. As the principal application for this timer is to do
bit sampling for a serial EIA-RS232 compatible communications line, the timer is
specialized for this purpose. It uses three dedicated locations in page 1:

ITTIME (525B): Contains the time at which the next timer interrupt should be caused.
This is a 10 bit number, left justified in the 16 bit word. The low order 6 bits
are not interpreted.

ITIBITS (423B): This word contains one or more bits specifying the channel or channels
on which the timer interrupt is to occur.

ITQUAN (4228): When the interval timer interrupt is caused, the microcode stores a
quantity in this location which depends on the mode.

The SIT instruction ORs the contents of ACO into R37. The high 13 bits should be 0; the
low order 2 bits determine the interval timer mode:

R37[14-15]

o Off.
1 Normal mode. Every 38 microseconds, compare R37[0-9] with
ITTIME[0-9]. If they are equal, cause an interrupt on the channel
specified by ITIBITS. Store the current state of the EIA interface in
ITQUAN, and set R37[14-15] to zero. The state of the EIA interface is bit
15 of location EIALOC (177701B) in page 377B. This bit is 0 if the line is
spacing, 1 if it is marking.
2 Same as O.
3 Every 38 microseconds, check the state of the EIA line. If the line
is marking, do nothing. If the line is spacing, cause an interrupt on the
channel specified by ITIBITS. Store the current value of R37 in ITQUAN,
and set R37[14-15] to zero.

The intention is that a program which does EIA input can use mode 3 to monitor the line
for the arrival of a character, and can then use mode 2 to time the center of each bit. By
storing the state of the line, the interrupt latency can be as much as 1 bit time without
errors.

JMPRM (610108) Jump to RAM
RDRM (61011B) Read RAM
WTRM (61012B) Write RAM:

See Section 8.4.

VERS (61013B) Version:

ACO is loaded with a number which is coded as follows:

bits 0-3

bits 4-7
bits 8-15

Alto engineering number
(Alto I = 0 or 1, Alto II = 2)
Alto build number.
Version number of the microcode.

This instruction permits programs to know the differences among various kinds of Altos
(e.g. Alto II's have special memory diagnosing features and additional emulator
instructions to provide access to the diagnotics).

The two flavors of Alto maintain separate enumerations of microcode versions (see
section 9 for some conventions).

19

DREAD (610158) Double-word read (Alto II only):
Aco+-rv(AC3); ACI +-rv(AC3 XOR 1)

DWRITE (610168) Double-word write (Alto II only):
rV(Ac3)+-ACO; rV(Ac3 XOR 1)+-ACI

DEXCH (610178) Double-word exchange (Alto II only):
t+-rv(Ac3); rV(Ac3)+-ACO; ACO+-t
t+-rv(Ac3 XOR 1); rV(Ac3 XOR 1)+-ACl; ACl+-t

DlAGNOSEl (61022B) Diagnostic instruction (Alto II only):
This instruction starts a special double-word write cycle that also writes the Hamming
code check bits.

Hamming code +-AC2
rV(Ac3)+-ACO; rV(Ac3 XOR 1)+-ACl·

DlAGNOSE2 (61023B) Diagnostic instruction (Alto II only):
This instruction writes the same memory location with two different values in quick
succession:

rV(AC3)+-ACO
rV(Ac3)+-ACO ACI

BITBLT (61024B) Bit-boundary block transfer:
An instruction for moving bits around in memory. It is particularly helpful for dealing
with the display bit map.

Definitions

A bit map is a region of memory defined by bca and bmr, where bca is the base core
address (starting location) and brur is the bit map rasler width in words; the number of
scan lines is irrelevant for our purposes. (If both brur and bca are even, then the bit map
may be displayed on the screen using standard Alto facilities.)

A block is a rectangle within a bit map. It has four corners which need not fall on word
boundaries. A block is described by 6 numbers:

Bit map's base core address (bca)
Bit map's width in words (brur)
Block's Left x ("x offset" from first bit of scan-line)
Block's Top y ("y offset" from first scan-line)
Block's width (in bits)
Block's height (in scan-lines)

Example: A block is used to designate a sequence of bits in memory, such as a 16 wide
14 high region containing the bit pattern of a font character. In this case, bca points to
the font character, bmw is I, x and yare 0, width is 16, and height is 14.

Block Operations

The basic block operations operate by storing some bits into a "destination block." The
source of these bits varies; often it is another block, the "source block." There are
various functions that BITBLT can perform.

The function is encoded as the sum of two parts: operation + sourcefype. The operation
codes (2 low-order bits) are:

o
1

Replace:
Paint:

Destination Block +- Source
Destination Block +- Source ior Destination

20

2
3

Invert:
Erase:

Destination Block ~ Source xor Destination
Destination Block ~ not Source and Destination

The sourcetype specifies how the Source as used in the above 4 operations is to be
computed. The encodings (next 2 bits) are:

o The Source is a block of a bit map
4 The Source is the complement of a block of a bit map
8 The Source is the logical "and" of a source block and

the "gray block" (see below).
12 The Source is the "gray block."

The "gray block" is conceptually a block of infinite extent in which a pattern of dots is.
repeated. The .pattern is specified by four words (GrayO through Gray3). These give the
patterns to write into the destination block where called for. The words will align with
destination block word boundaries. While the BITBLT instruction takes care of going
through these values appropriately, the table must be adjusted to eliminate seams.
Specifically, if ABC 0 are the desired values of gray for lines 0 1 2 3 (mod 4), then two
adjustments must be made:

Let Q = OTY + 1
If OTY :::; STY, then exchange Band 0 and let Q = -(OTY+OH).
Rotate the pattern left by (Q rem 4)*4 bits.

When the source is a block of bit map, the width and height parameters of the block are
not needed: the width and height of the destination block are also used as the width and
height of the source block.

BITBLT requires the RAM to be present in order to use some S registers. If the RAM is not
present, BITBLT will trap.

Calling sequence

The B1TBL T function is invoked with:

ACI = 0
AC2 = pointer to BBTable, which must be even.
Only AC2 is preserved by B1TBLT.

The instruction is interruptable as it begins consideration of each scan line. If an
interrupt happens, the state of its progress is saved in ACl and the PC is backed up so
that on return from the interrupt, B1TBLT will finish its job.

The format of the BBTable is as follows:

Word
o
1
2
3
4
5
6
7
8
9
10
11
12

Name Remarks
Function =operation + sourcetype
unused
OBCA
OBMR*
DLX*
DTY*
DW*
DH*
SBCA
SBMR
SLX*
STY*
GrayO

bca
bmr
left x
top y
width
height

Oesti nation
Oesti nation
Desti nation
Oesti nation
Destination
Desti nation
Source bca
Source bmr
Source left x
Source top y
Four words to specify gray block ...

21

13 Gray!
14 Gray2
15 Gray3

·Should all be positive values, although OH<O or ow<O will merely cause a NOP.

Timing Details

The microcode has roughly the following speed characteristics:

Horizontally, along one raster line (so to speak)
Store constant 13 cycles/word
Move block 23 cycles/word

if skew not zero add 6
if source not zero add 7
1st or last word add 13
function not store add 6

Vertical loop overhead (time to change raster lines)
14-21 cycles, depending on source/dest alignment

add 6 more if function uses gray

Initial setup overhead (time to start or resume from interrupt)
approx 240 cycles

Total for a typical character, 8 wide by 14 high
approx 1500 cycles

These are all in terms of Alto minor cycles and do include all memory wait time and do
not include any degradation due to competing tasks, such as the display or disk. For
typical characters on the Alto screen. BITBl T is about 213 the speed of CONVERT.

3.4 Bootstrapping

The emulator contains microcode for initializing the Alto in certain ways, and thereby
"bootstrapping" a runnable program into the machine. A "boot," which is invoked either by
pressing the small button at the rear of the keyboard or by executing an appropriate SIO
instruction (see section 3.3). simply resets all micro-pc's to fixed initial values determined by
their task numbers. Unless the Reset Mode Register specifies otherwise (see section 8.4). the
emulator task is started in the PROM and performs a number of operations:

1. The current value of PC is stored in memory location O. The accumulators are not
altered d'u(ing booting.

2. The display is cleared; i.e. rv(420B)+-0.

3. Interrupts are disabled.

4. The first keyboard word (KBOAO, 177034B) is read to determine what sort of boot is to
be done:

Disk Boot: If the <8S> key is not depressed, the microcode interprets any depressed keys
reported in this keyboard word as a real disk address. If no keys are depressed.
this results in a real disk address of O.

The single disk sector at the given address is read: the 256 data words are read
into locations 1 to 400B inclusive; the label is read into locations 402n to 411B
inclusive. When the transfer is complete, pc+-1. and the emulator is started. The
disk status is stored in location 2. so the bootstrapping code must skip this

22

location.

Ether Boot: If the <BS) key is depressed, the microcode anticpates breathing life into the
Alto via the Ethernet. The Ethernet hardware is set up to read any packet with
destination Alto number 377B into locations 1 to 400B inclusive. If a packet
arrives with good status and with memory location 2 (i.e., the second word of the
packet) equal to 602B (a "Breath-of-Life" packet), pc+-3, and the emulator is
started.

More information regarding boot loaders and boot file formats is found with Buildboot
documentation in the Alto Subsystems Manual.

3.5 Hardware

There is a small amount of special hardware which is used exclusively by the emulator. This
hardware is controlled by the task specific F2'S, and by the +-D1SP bus source.

The IR register is used to hold the current instruction. It is loaded with IR+- (F2=14B). IR+- also
merges bus bits 0,5,6 and 7 into NEXT, which does a first level instruction dispatch. The high
order bits of IR cannot be directly read, but the displacement field of IR (8 low order bits, sign
extended), may be read with the +-D1SP bus source.

There are two additional F2'S which assist in instruction decoding, IDISP and +-ACSOURCE. The
IDISP function (F2=15B) does a 16 way dispatch under control of a 256x4 PROM. The values are
tabulated below:

Conditions

if
elseif
elseif
elseif
elseif
elseif
else

IR[1-2] : 0
IR[1-2] : 1
IR[1-2] : 2
IR[4-7] : 0
IR[4-7] : 1
IR[4-7] : 6

ORed onto NEXT

then IR[3-4]
then 4
then 5
then 1
then 0
then 16B
JR[4-7]

+-ACSOURCE (F2=16B) has two roles. First, it replaces the two low order bits of the R select field
with the complement of the SrcAC field of IR, (IR[1-2] XOR 3), allowing the emulator to address
its accumulators (which are assigned to RO-R3). Second, a dispatch is performed:

Conditions ORed onto NEXT

if IR[O]:l then IR[8-9] xor 3; the complement of the
SH field of IR

elseif IR[l-2] : 3 then IR[S]; the indirect bit of IR
elseif IR[3-7] : 0 then 2
elseif IR[3-7] : 1 then 5
elseif IR[3-7] : 2 then 3
elseif IR[3-7] : 3 then 6
elseif IR[3-7] : 4 then 7
elseif IR[3-7] = lIB then 4
elseif JR[3-7] : 12B then 4
elseif IR[3-7] : 16B then 1
elseif JR[3-7] = 37B then 17B
else 16B

F2=13B, ACDEST, causes (IR[3-4] XOR 3) to be used as the low order two bits of the RSELECT
field. This addresses the accumulators from the destination field of the instruction. The
selected register may be loaded or read.

The emulator has two additional bits of state, the SKIP and CARRY flip flops. CARRY is identical
to the Nova carry bit, and is set or cleared as appropriate when the DNS+- (do Nova shifts)
function is executed. DNS also addresses R from (1R[3-4] XOR 3), and sets the SKIP flip flop if

23

appropriate. The PC is incremented by 1 at the beginning of the next emulated instruction if
SKIP is set, using ALUF DB. IR4- clears SKIP.

Note that the functions which replace the low bits of RSELECT with IR affect only the selection
of R; they do not affect the address supplied to the constant ROM.

The two additional emulator specific functions, BUSODD and MAGIC, are not peculiar to Nova
emulation, but are included for their general usefulness. BUSODD merges BUS[15] into NEXT[9],
and MAGIC is applied in conjunction with LSH and RSH to allow double length shifts. It shifts
the high order bit of T into the low order bit of R on left shifts, and shifts the low order bit of
T into the high order bit of R on right shifts.

The STARTF function (Fl=17B) is used by the SIO instruction, and is used to define commands for
110 hardware, including the Ethernet.

24

4.0 DISPLAY CONTROLLER

4.1 Programming Characteristics

The display controller handles transfers between the main memory and the CRT. The CRT is a
standard 875 line raster-scanned TV monitor, refreshed at 60 fields per second from a bit map in
main memory. The CRT contains 606 points horizontally, and 808 points vertically, or 489,648
points total.

The basic way in which information is presented on the display is by fetching a series of words
from Alto main memory, and serially extracting bits to become the video signal. Therefore, 38
16-bit words are required to represent each scan line; 30704 words are required to fill the screen.

The display is defined by one or more display control blocks in main memory. Control blocks
(DCB'S) are linked together starting at location DASTART(420B) in page I:

DASTART:

DASTART+I:

Pointer to word 0 of the first (top on the screen) DCB, or 0 if display is off.

Vertical field interupt bit mask. Every 1/60 second, this word is oR'ed into NWW
to calise interrupts.

Display control blocks must begin located at even addresses in memory, and have the following
format:

DCB: Pointer to next DCB, or 0 if this is the last.

DCB+l: Bit 0: O=high resolution mode
1=Iow resolution mode
Bit 1: O=black on white background presentation
l=white on black background
Bits 2-7 (HTAB): On each scan line of this block, wait 16*HTAB bits before
displaying information from memory.
Bits 8-15 (NWRDS): Each scan line in this block is defined by NWRDS 16
bit words. (NWRDS must be even). In order to skip space on the screen
without requiring bit-map, set NWRDS to O.

DCB+2 (SA): Bit map starting address, which must be even.

DCB+3 (SLC): This block defines 2*SLC scan lines, SLC in each field.

At the start of each field, the display controller inspects DASTART and DASTART+l. An interrupt
is initiated on th~ channel(s) specified by the bites) in DASTART+l. The controller then executes
each DCB sequentially until the display list or the field ends. At normal resolution, the first scan
line of the first (even) field of a block is taken from location SA to SA+NWRDS-l, the first scan
line of the odd field is taken from locations SA+NWRDS to sA+2*NWRDS-1. During each field,
the bit map address is incremented by NWRDS between each scan line. Thus, although the
display is interlaced, its representation in memory is not. In low resolution mode, the video is
generated at half speed, and each scan line is displayed twice (once in each field). During each
field, the bit map address is not incremented between the display of adjacent scan lines. This
makes the format of the bit map in memory identical for both modes--only the size of the
presentation is affected by the mode.

4.2 Hardware

The display controller consists of a sync generator, a data buffer and serializing shift register,
and three microcode tasks which control data handling and communicate with the Alto
program. The hardware is shown in block form in Figure 5. The 16 word buffer is loaded from
the Alto bus with the DDR~ function (F2=IOB. specific to the display word task DWT). The
purpose of the intermediate buffer is to synchronize data transfers between the main buffer.

24

which is synchronous with the 170ns. master clock, and the shift register, which is clocked with
an asynchronous bit clock. The sync generator provides this clock and the vertical horizontal
synchronization signals required by the monitor.

The bit clock is disabled by vertical and horizontal blanking, and its rate can be set by the
microcode to either 50 or 100 ns. by the function SETMODE (F2=llB, specific to the display
horizontal task DHT). This function examines the two high order bits of the processor bus. If
bit 0=1, the bit clock rate is set to lOOns period (at the start of the next scan line), and a 1 is
merged into NEXT[9]. SETMODE also latches bit 1 of the processor bus and uses the value to
control the polarity of the video output. A third function, EVENFIELD (F2=10B, specific to DHT
and to the display vertical task DVT), merges a 1 into NEXT[9] if the display is in the even field.

The display control hardware also generates wakeup requests to the microprocessor tasking
hardware. The vertical task DVT is awakened once per field, at the beginning of vertical retrace.
The display horizontal task is awakened once at the beginning of each field, and thereafter
whenever the display word task blocks. DHT can block itself, in which case neither it nor the
word task can be awakened until the start of the next field. The wakeup request for the display
word task (DWT) is controlled by the state of the 16 word buffer. If DWT has not executed a
BLOCK, if DHT is not blocked, and if the buffer is not full, DWT wakeups are generated. The
hardware sets the buffer empty and clears the DWT block flip-flop at the beginning of
horizontal retrace for every scan line.

4.3 Display Controller Microcode

The display controller microcode is divided into three tasks. The highest priority task is DVT,
the display vertical task, the next is DHT, the horizontal task, and the third is DWT. The display
controller uses 6 registers in R:

CBA:
AECL: Holds
SLC:
HTAB: Holds
DWA:

MTEMP:

Holds the address of the currently active DCB+l.
the address of the end of the currently active scan line's bit map in main memory.

Holds the number of scan lines remaining in the currently active DCB.
the number of tab words remaining on the current scan line.

Holds the address of the bit map doubleword currently being fetched for transmission to
the hardware buffer.
Is a temporary cell.

The vertical task initializes the controller by setting SLC to a and CBA to DASTART+l. It also
merges the contents of DASTART+l into NWW, which. will cause an interrupt if the specified
channel is active. DVT also sets up information required for the cursor (see below), TASKS and
becomes inactive until the next field.

DHT starts by initiating a fetch to the word addressed by CBA. It checks SLC, and if it is zero, the
controller is finished with the current DCB, and the link word of the DCB is fetched. If this
word is non-zero, it replaces CBA and processing of a new block is begun. If the link word is
zero, DHT blocks until the start of the next field.

If the check of SLC indicates that more scan lines remain in the current DCB, SLC is decremented
by one and the fetch of (CBA) is used to obtain the second word of the DCB, rather than the link
word. The contents of this word are used to set the display mode and polarity, and the tab
count is extracted and put into HTAB. NWRDS is extracted, and used to increment DWA and AECL
by the appropriate amount, depending on the mode and field. All the registers required by DWT
have now been set up, and DHT TASKS and becomes inactive until DWT blocks.

If a new DCB is required, DHT fetches all four words of the new DCB, and initializes all the
registers. During all scan lines of a DCB except the first, DHT only accesses the first doubleword
of the block.

DWT has the sale task of transferring words from memory to the hardware. When it first
awakens during horizontal retrace, it checks IITAB. If it is non-zero, it enters a loop which
outputs HTAB O'S to the display. When HTAB is zero, a second loop is entered which fetches a
doubleword from the location specified by DWA. DWA is compared with AECL, and if they are

25

equal, DWT blocks until the next scan line. DWA is incremented by 2, in preparation for the
fetch of the next doubleword. If DWA:;t::AECL, DWT continues to supply words to the buffer
whenever it becomes non-full.

4.4 Cursor

Because of the difficulty of inserting a cursor at the appropriate place in the display bit map at
reasonable speed, a hardware cursor is included in the Alto. The cursor consists of an arbitrary
16xl6 bit patch, which is merged with the video at the appropriate time. The bit map for the
cursor is contained in 16 words starting at location CURMAP(431B) in page one, and the X,Y
coordinates of the cursor are specified by· location CURLOC (426B) and CURLOC+l (427B) in page
one. The coordinate origin for the cursor is the upper left hand corner of the screen. The
cursor presentation is unaffected by changes in display resolution. Its polarity is that of the.
current DCB, or the last DCB processed if it is located on an area of the screen not defined by a
DCB, The cursor may be removed from view in a number of ways. The most efficient in terms
of processing time is to set the x coordinate to -1.

The cursor hardware consists of a 16 bit shift register which holds the information to be
displayed on the current scan line, and a counter which is incremented by the bit clock, and
determines the x coordinate at which the shift register begins shifting.

The hardware is loaded during horizontal retrace by the cursor task microcode, which simply
copies the x coordinate and bit map segment from the R memory into the hardware.

The values of x and the bit map are set up in R by a section of the memory refresh task, whose
wakeup and priority are arranged so that it runs during every scan line after DWT has done all
necessary output and DHT has set up the information required by DWT for the next scan line.
MRT checks the current y position of the display, and if it is in the range in which the cursor
should be displayed, fetches the appropriate bit map segment from CURMAP. When the cursor y
position is exceeded by the display, a flag is set in MRT to disable further processing. The x and
y coordinates of the cursor are fetched from CURLOC and CURLOC+l at the beginning of each
display field by a section of the display vertical task microcode.

Cursor processing is distributed as it is to minimize the amount of processing which must be
done during the monitor's horizontal retrace time. This time is approximately 6 microsec, and it
must include the worst case latency imposed by tasks at lower priority than the display, plus the
worst case disk word processing time (the disk word task is at higher priority than the display),
plus the time necessary for DWT to partially fill the display buffer, plus cursor processing time.

26

Alto Processor Bus
,

I

16

16-word
-

Buffer

f-- 1 -word Buffer

r-- Display
.....

Shift Register ,

/ Sync
"-

Generator

Buffer
/ Control
"'

Figure 5 -- Display Control

Cursor
Shift Register +

Digital

Mixer

Video
..... ,

Syn c
~

5.0 MISCELLANEOUS PERIPHERALS

The Alto can have a number of slow peripherals which appear to programs as memory locations
in the range 177000-177777B. The standard peripherals are described here and some
non-standard devices are described in Appendix C. which describes each word in detail. In the
reserved memory locations associated with keyboard, mouse, keyset and Diablo printer input, a
more positive logic value reads as a 1.

5.1 Keyboard

The Alto keyboard contains 61 keys. It appears to the program as four 16 bit words in 4 adjacent
locations starting at K BDAD (177034B). Depressed keys correspond to O's in memory, idle keys

,correspond to I's. Figure 6 shows layouts of the Alto I and Alto II keyboards, including key tops,
and the word number, bit number corresponding to each key.

ALTO I KEYBOARD

Bit Word KBDAD Word KBDAD+l Word KBDAD+2

0 5 3 1
1 4 2 ESC
2 6 W TAB
3 E Q F
4 7 S CTRL
5 0 A C
6 U 9 J
7 V I B
8 O(zero) X Z
9 K 0 <shift-left>
10 L
11 P . .
12 / .. RETURN
13 \] .-
14 LF <blank-middle> DEL
15 BS (blank-top> xxx

ALTO II KEYBOARD

Bit Word KBDAD Word KBDAD+l Word KBDAD+2

0 5 3 1
1 4 2 ESC
2 6 W TAB
3 E Q F
4 7 S CTRL
5 0 A C
6 U 9 J
7 V I B
8 O(zero) X Z
9 K 0 <shift-left>
10 L
11 P .
12 / .. RETURN
13 \(FR2)] .-(FR3)
14 LF(FL2) FR4 DEL(FLl)
15 BS BW FL3

Figure 6

Word K BDAD+3

R
T
G
Y
H
8
N
M
LOCK
SPACE
[
+
< sh i ft-right>
<blank-bottom>
xxx
xxx

Word KBDAD+3

R
T
G
Y
H
8
N
M
LOCK
SPACE
[
+
<shift-right>
FlU
FL4
FL5

27

5.2 Mouse

The mouse is a hand-held pointing device which contains two encoders which digitize its
position as it is rolled over a table-top. It also has three buttons which may be read as the three
low-order bits of memory location UTIUN. (177030B), in the manner of the keyboard. The
bit/button correspondences in UTIUN are:

Bit 13:
Bit 14:
Bit 15:

Top or Left Button
Bottom or Right Button
Middle Button

The mouse coordinates are maintained by the MRT microcode in locations MOUSELOC(424B)=X
and MOUSELOC+l(425B)=y in page one of the Alto memory. These coordinates are relative, i.e.,
the hardware only increments and decrements them. The resolution of the mouse is
approximately 100 points per inch.

5.3 Keyset

The standard Alto includes a five-finger keyset which is presented to the program as 5 bits of
memory location UTILIN (177030B), similar to the keyboard. Where key 0 is the left-most key
on the key set and key 4 the right-most. the bit/key correspondences in UTIUN are:

Bit 8: Key 0 (left-most)
Bit 9: Key 1
Bit 10: Key 2
Bit 11: Key 3
Bit 12: Key 4 (right-most)

5.4 Diablo Printer

The Alto includes an interface to a Diablo HyType printer. The printer uses a portion of one
memory location to report status, and another location into which the Alto program can store to
send signals to the printer. None of the timing signals required by the printer are generated
automatically--all must be program generated. For detailed information on the printer, refer to
the Diablo manual.

The Diablo printer is accessed and controlled through two locations in high memory, an input
status word and an output control word. The relevant bits of these two words are as follows:

Location UTILIN (177030B):

Bit 0: Paper ready bit. 0 when the printer is ready for a paper scrolling operation.

Bit 1: Printer check bit. Should the printer find itself in an abnormal state, it sets this
bit to O.

Bit 2: Unused.

Bit 3: Daisy ready bit. 0 when the printer is ready to print a character.

Bit 4: Carriage ready bit. 0 when the printer is ready for horizontal positioning.

Bit 5: Ready bit. Both this bit and the appropriate other ready bit (carriage, daisy, etc.)
must be 0 before attempting any output operation.

Bit 6: Setting of "memory configuration switch", described in Parity Error Detection
below.

28

Bit 7: Unused.

Bits 8-15: Used by mouse and keyset keys as set out above.

Location UTI LOUT (1770168):

Several of the output operations are invoked by "toggling" a bit in the output status word. To
toggle a bit, set it first to I, then back to 0 immediately. In this memory location, a 1 writes as
a more negative logic value.

Bit 0: Paper strobe bit. Toggling this bit causes a paper scrolling operation.

Bit 1: Restore bit. Toggling this bit resets the printer.

Bit 2: Ribbon bit. When this bit is 1 the ribbon is up (in printing position); when 0, it
is down.

Bit 3: Daisy strobe bit. Toggling this bit causes a character to be printed.

Bit 4: Carriage strobe bit. Toggling this bit causes a horizontal positioning operation.

Bits 5-15: Argument to various output operations:

l. Printing characters. When the daisy bit is toggled bits 9-15 of this
field are interpreted as an ASCII character code to be printed (it should be
noted that all codes less than 40B print as lower case "w").

2. For paper and carriage operations the field is interpreted as a signed
displacement (-1024 to +1023), in units of 1148 inch for paper and 1160
inch for carriage. Positive is down or to the right, negative up or to the
left.

The printer is initialized by toggling the restore bit, then waiting for all ready bits to be O. A
typical output sequence, say printing a character, involves examining the check bit for abnormal
status, waiting for both the ready and daisy ready bits to be 0, then writing in the printer output
location the character code, the character code oRed with the daisy strobe bit, and the
unmodified code again.

The device behaves more or less like a plotter, i.e. you must explicitly position each character in
software; a print operation does not affect the position of either the carriage or the paper. All
coordinates in paper or carriage operations are relative; the device does not know its absolute
position. Again, you must keep track of this in software.

5.5 Alla/og Board

(Reserved for words from Ed McCreight)

5.6 Parity Error Detection

The detection and reporting of parity errors is accomplished somewhat differently on Alto I and
Alto II. In both machines, the processing of errors is undertaken by the highest priority
microtask, which is invoked very soon after an error occurs. The microtask reports a parity
error by causing an interrupt on the highest-priority emulator interrupt channel, i.e. by oring
into NWW bit 15. Bear in mind that parity errors can be generated by memory references
undertaken by any microtask; as a result, it may be some time between the occurrence of the
error and the next execution of the emulator task and consequent servicing of the interrupt.

Both Alto I and Alto II have a switch mounted just below the disk drive that affects the

29

corresondance between addresses in the range 0-777778 and memory boards. Flipping the switch
interchanges the roles of the first two 16K parts of memory. If a parity error at a known
address is to be traced to a particular memory board, the setting of this switch must be known.
All Alto II's and most Alto I's (a slight modification is necessary) report the switch setting in bit
6 of memory location UTILIN (177030B). The bit is "??" if the switch is in the normal ("left")
position.

When a parity error happens, the parity task stores the contents of various R registers into some
page 1 reserved locations. Unfortunately, the information recorded by the parity task is not
sufficient to determine precisely where the parity error occurred. The registers saved in page 1
when on error are given below. The intent of the collection is to save values of the R registers
most likely to be used as a source of memory addresses.

DCBR (614B)
KNMAR (615B)
DWA (616B)
CBA (617B)
PC (6208)
SAD (621B)

Disk control block fetch pointer
Disk word fetch/store pointer
Display word fetch address
Display control block fetch address
Current program counter in the emulator
Temporary register for indirection in emulator

The Alto II memory contains circuitry for correcting single-bit errors and detecting double-bit
errors. The logic expects a good deal of set-up and in turn reports copious error information.
Interaction with the error control is effected through three memory locations (177024B, 177025B
and 177026B):

Memory Error Address Register (MEAR = 177024B). This register holds the address of the first
error since the error status was last read. If no error has occurred, this register reports the
address of the last memory access. Note that MEAR is set whenever an error of any kind is
detected.

Memory Error Status Register (MESR = 177025B). This register reports specifics of the first error
that occurred since MESR was last read. Reading the register resets the error logic and enables it
to detect a new error. The bits in MESR are (all bits are "low true," i.e. if the bit is 0, the
condition is true):

Bits 0-5 Hamming code reported from error
Bit 6 Parity OK
Bit 7 Memory parity bit
Bit 8-13 Syndrome bits
Bits 14-15 Spare

Memory Error Control Register (MECR = 177026B). Storing into this register is the means for
controlling the memory error logic. Bits are "low true," i.e. a 0 bit enables the condition. This
register is set to all ones (disable all interrupts) when the Alto is bootstrapped and when the
parity error task first detects an error. When an error has occurred, the MEAR and MESR should
be read before s~tting the MECR.

Bits 0-3 Spare
Bits 4-10
Bit 11
Bit 12
Bit 13
Bit 14
Bit 15

Test Hamming code (used only for special diagnostics)
Test mode (used only for special diagnostics)
Cause interrupt on single-bit errors
Cause interrupt on double-bit errors
Do not use error correction
Spare

Note that bits 12 and 13 govern only the initiation of interrupts; the MEAR and MESR hold
information about the first error that occurs after reading MESR regardless of what kind of
errors are to cause interrupts.

30

6.0 DISK AND CONTROLLER

The disk controller is designed to accommodate one of a variety of DIABLO disk drives, including
models 31 and 44. Each drive accommodates one or two disks. Each disk has two heads, one per
side. Information is recorded on each disk in a 12-sector format on each of up to 406
(depending on the disk model) radial track positions. Thus, each disk contains up to 9744
recording positions (2 heads x 12 sectors x 406 track positions). Figure 7 tabulates various useful
information about the performance of the disk drives.

Device Diablo 31 Diablo 44
Number of drives/Alto lor 2 1
Number of packs 1 removable 1 removable

1 fixed

Number of cylinders 203 406
Tracks/cylinder/pack 2 same
Sectors per track 12 same
Words per sector 2 header same

8 label
256 data

Data words/track 3072 3072
Sectors/pack 4872 9744

Rotation time 40 25 ms
Seek time (approx.) 15+8.6*sqrt(dt) 8+3*sqrt(dt) ms

min-avg-max 15-70-135 8-30-68 ms
A verage access to 1 megabyte 80 32 (using both packs) ms

Transfer rate:
peak/avg 1.6/1.22 2.5/1.9 MHz
peak/avg 10.2113 6.718. ns/word
per sector 3.3 2.1 ms
for full display .460 .266 sec
for 64k memory 1.03 .6 sec
whole drive 19.3 44(both packs) sec

Figure 7

The disk controller records three independent data blocks in each recording position. The first
is two words long, and is intended to include the address of the recording position. This block
is called the Header block. The second block is eight words long, and is cal1ed the Label block.
The third block is 256 words long. and is the Data block. Each block may be independently
read, written, or checked, except that writing, once begun, must continue until the end of the
recording position.

When a block is checked, information on the disk is compared word for word with a specified
block of main memory. During checking, a main memory word containing 0 has special
significance. When this word is encountered, the matching word read from the disk is stored in
its place and does not take part in the check. This feature permits a combination of reading and
checking to occur in the same block. (It also has the drawback of making it impossible to use
the disk control1er to check for words containing 0 on the disk.)

The Alto program communicates with the disk controller via a four-word block of main
memory beginning at location KBLK (521B). The first word is interpreted as a pointer to a chain
of disk command blocks. If it contains 0, the disk controller will remain idle. Otherwise, the
disk control1er will commence execution of the command contained in the first disk command
block. When a command is completed successfully, the disk controller stores in KBLK a pointer
to the next command in the chain and the cycle repeats. If a command terminates in error, a 0
is immediately stored in KBLK and the disk controller idles. At the beginning of each sector,
status information, including the number of the current sector, is stored in KBI.K+l. This can be
used by the Alto program to sense the readiness of the disk and to schedule disk transfers, for
example. When the disk control1er begins executing a command, it stores the disk address of

31

that command in KBLK+2. This information is later used by the disk controller to decide
whether seek operations or disk switches are necessary. It can be used by the Alto program for
scheduling disk arm motion. If the Alto program stores an illegal disk address (like -I) in this
word, the disk controller will perform a seek at the beginning of the next disk operation. (This
is useful, for example, when the operating system wants to force a restore operation.) The disk
controller also communicates with the Alto program by interrupts (see Section 3.2). At the
beginning of each sector interrupts are initiated on the channels specified by the bits in KBLK+3.

KBLK (521B):
KBLK+I (522B):

Pointer to first disk command block.
Status at beginning of current sector.

KBLK+2 (523B): Disk address of most-recently started disk command.
Sector interrupt bit mask. KBLK+3 (524B):

A disk command block is a ten-word block of memory which describes a disk transfer operation
to the disk controller, and which is also used by the controller to record the status of that
operation. The first word is a pointer to the next disk command block in this chain. A 0 means
that this is the last disk command block in the chain. When the command is complete, the disk
controller stores its status in the second word. The third word contains the command itself,
telling the disk controller what to do. The fourth word contains a pointer to the block of
memory from/to which the header block will be transferred. The fifth word contains a similar
pointer for the label block. The sixth word contains a similar pointer for the data block.

The seventh and eighth words of the disk command block control the initiation of interrupts
when the command block is finished. If the command terminates without error, interrupts are
initiated on the channels specified by the bits in DCB+6. However, if the command terminates
with an error, the bits in DCB+7 are used instead.

The ninth word is unused by the disk controller, and may be used by the Alto program to
facilitate chained disk operations. The tenth word contains the disk address at which the current
operation is to take place.

DCB:
DCB+1:
DCB+2:
DCB+3:
DCB+4:
DCB+5:
DCB+6:
DCB+7:
DCB+8:
DCB+9:

Pointer to next command block.
Status.
Command.
Header block pointer.
Label block pointer.
Data pointer.
Command complete no-error interrupt bit mask.
Command complete error interrupt bit mask.
Currently unused.
Disk address.

A disk address word A contains the following fields:

Field Range

A[0-3] 0-138

A[4-12] 0-625B (Model 44)
0-312B (Model 31)

A[13] 0-1

A[14] 0'-1

A[15] 0-1

Significance

Sector number.

Track number.

Head number.

Disk number (see also C[15]). 0 is removable pack
on Model 44. 1 is optional second Model 31 drive.

o normally.
1 if track 0 is to be addressed via a hardware
"restore" operation.

32

A disk command word C contains the following fields:

Field

C[0-7]

C[8-9]

C[10-U]

C[12-13]

C[14]

C[15]

Range

110B

0-3

0-3

0-3

0-1

0-1

Significance

Checked to verify that this is a valid disk command.

o if Header block to be read.
1 if Header block to be checked.
2 or 3 if Header block to be written.

o if Label block to be read.
1 if Label block to be checked.
2 or 3 if Label block to be written.

o if Data block to be read.
1 if Data block to be checked.
2 or 3 if Data block to be written.

o normally.
I if the command is to terminate immediately after
the correct track position is reached (before any
data is transferred).

xOR'ed with A[14] to yield hardware disk number.

A disk status word S has the following fields:

Field

S[0-3]

S[4-7]

S[8]

S[9]

S[10]

S[l1]

S[12]

S[13]

S[14-15]

Values

0-138

178

0-1

0-1

0-1

0-1

0-1

0-1

0-3

Significance

Current sector number.

One can tell whether status has been stored by
setting this field initially to 0 and then checking
for non-zero.

1 means seek failed, possibly due to illegal track
address.

1 means seek in progress.

1 means disk unit not ready.

1 means data or sector processing was late during
the last sector. Data and current sector number
unreliable.

1 means disk interface was not transferring data
last sector.

1 means checksum error. Command allowed to
proceed.

o means command completed correctly_
1 means hardware error (see S[8-11]) or sector
overflow.
2 means check error. Command terminated
instantly.
3 means disk command specified illegal sector.

33

Several clever programming tricks have been suggested to drive the disk controller. For an
initial program load, KBLK should be set to point to a disk command block representing a read
into location STRT. Before setting KBLK, the Alto program should put a JMP STRT instruction in
STRT; afterward it should jump to STRT. The disk controller transfers data downward, from high
to low addresses, so that when location STRT is cha.nged the reading of the block is complete.
(See section 3.4 on the standard bootstrap loading microcode.)

Another trick is to chain disk reads through their label blocks. That is, the label block for
sector n contains part of the disk command block for reading sector n+l, and so on.

6.1 Disk Controller Implementation

The following walk-through of an average day in the life of the standard disk controller is not
intended for the casual reader, but rather as a roadmap to ease the pain of learning the
innermost workings of the controller. If you really want to benefit from this next section, you
should have a copy of the standard disk controller microcode and logic drawings close at hand.

The disk controller consists of a modest amount of hardware and two microcode tasks (the
sector task and the word task). Communication with the emulator is via the four special main
memory words, the disk command blocks, and the interrupts described earlier. In following few
paragraphs the actions of the standard disk controller microcode are described. Occasionally it
may be unclear whether the actor is microcode or hardware. Referring to microcode listings
and/or logic drawings will resolve any such questions.

The sector task is awakened by a sector signal from the disk. When awakened, it stores the
status of the disk and controller in the special disk status word (KBLK+I). In addition, if this
sector signal terminates a disk command (for example, a data transfer during the previous
sector), the status of the disk and controller are stored in the status word of the disk command
block containing the terminated command, and the command block pointer (KBLK) is advanced.
If a command was terminated with an error, KBLK (DCB pointer) is set to 0 and KBLK+2 (current
disk address) is set to -\. The effect of this is to cause the disk controller to abandon the
current disk command chain and to forget where the disk arm is positioned.

Next, the sector task considers the first command on the disk command block chain (by using
KBLK). If there is none, or if the disk unit is not ready to accept a command, the sector task
goes to sleep until the next sector pulse. Otherwise, the sector specified in the new command is
verified to be less than 13. Then, the disk and cylinder specified in the new command are
compared with those stored in KBLK+2 (current disk address), and then the new disk address is
stored in KBLK+2 and in the disk controller hardware. Part of the new command is also stored
in the hardware. If the comparison is unequal, a seek is initiated and the sector task goes to
sleep until the next sector pulse.

If the comparison was equal, the SEEKOK hardware flag is tested. If that is OK, then the
no-transfer bit of the disk command (bit 14 of the command word of the current disk command
block) is tested to see whether a data transfer is required. If not, the sector task goes to sleep
such that the command will terminate at the next sector pulse. If a data transfer is required, the
specified sector number and the current disk sector number are compared. If unequal, the sector
task goes to sleep until the next sector pulse. If sector numbers are equal, awakening of the word
task is enabled and the sector task goes to sleep such that the command will terminate at the
next sector pulse.

The word task awakens when a word has been processed by the disk controller hardware and the
word task has been enabled by the sector task. First, a starting delay is computed, based on
whether the current record is to be read or written. Second. control is dispatched based on the
current record number. A record length and main memory starting address are computed based
on the record number. In addition. special starting delays are computed for record number O.
The disk unit is set into the delay mode appropriate for the operation (read/write) and the word
task goes to sleep the appropriate number of times.

34

Then a sync word is written (if writing) or awaited (if reading). Finally the main transfer loop
is entered. Here the word count is decremented, a memory operation is started, and control is
dispatched on the transfer type. If read, the disk word is stored in memory. If write, the
memory word is sent to the disk. If check, the memory word is compared with O. If non-zero,
the disk and memory words are compared. An unequal compare here terminates this sector's
operation with an error immediately. If the memory word is 0, it is replaced by the disk word.
In any case, the checksum is updated and control returns to the main transfer loop. Due to the
ALU functions available, the main transfer loop moves in sequence from high to low main
memory addresses.

After the wordcount reaches 0, the checksum is written or checked. A checksum error will be
noted in the status word, but will not terminate this sector's operation. A finishing delay is
computed, based on the current operation, the disk unit is set into a delay mode appropriate to
the operation, and the delay happens. Finally, all disk transfers are shut off, the record number
is incremented, and control returns to the beginning of the word task.

To accomplish all this, the disk controller hardware communicates with the microprocessor in
four ways: first, by task wakeup signals for the sector and word tasks; second, by five
task-specific F2'S which modify the next microinstruction address; third, by seven task-specific
FI'S, four of which activitate bus destination registers, and the remaining three of which provide
useful pulses; and fourth, by two task-specific BS'S. The following tables describe the effects of
these.

FI Value Name

178 KDATA+-

16B KADR+-

I5B KCOM+-

Effect

The KDATA register is loaded from 8US[0-15]. This register
is the data output register to the disk, and is also used to
hold the disk address during KADR+- and seek commands.
When used as a disk address it has the format of word A
in section 6.0 above.

This causes the KADR register to be loaded from 8US[8-14].
This register has the format of word C in section 6.0
above. In addition, it causes the head address bit to be
loaded from KDATA[l3].

This causes the KCOM register to be loaded from 8US[I-5].
The KCOM register has the following interpretation:

(I) XFEROFF = 1 Inhibits data transmission to/from the
disk.

(2) WDINHIB = 1 Prevents the disk word task from
awakening.

(3) BCLKSRC
I: Take bit clock from disk input or crystal clock,
as appropriate.
0: Forces use of crystal clock.

(4) WFFO
0: Holds the disk bit counter at -1 until a I-bit is
read.
1: Allows the bit counter to proceed normally.

(5) SENDADR
1: Causes KDATA[4-12] and KDATA[15] to be
transmitted to disk unit as track address.
0: Inhibits such transmission.

35

148 CLRSTAT

138 INCRECNO

128 KSTAT+-

118 STR08E

F2 Value Name

108 INIT

118 RWC

12B RECNO

138 XFRDAT

148 SWRNRDY

158 NFER

16B STROBON

BS Value Name

3 +-KSTAT

4 +-KDATA

Causes all error latches in disk controller hardware to
reset, clears KST A T[ll].

Advances the shift registers holding the KADR register so
that they present the number and read/write/check status
of the next record to the hardware.

KSTAT[12-15] are loaded from 8US[l2-15]. (Actually. 8US[l3]
is ORed into KSTAT[I3].) This enables the microcode to
enter conditions it detects into the status register.

Initiates a disk seek operation. The KDATA register must
have been loaded previously. and the SENDADR bit of the
KCOMM register previously set to 1.

Effect

NEXT+-NEXT OR (if WDTASKACT AND WDiNIT) then 37B else
0)

NEXT+-NEXT OR (if current record to be written then 3
else;f current record to be checked
then 2 else 0)

NEXT+-NEXT OR MAP (current record number) where

MAP(O) = 0
MAP(I) = 2
MAP(2) = 3
MAP(3) = I

NEXT+-NEXT OR (if current command wants data transfer
then I else 0)

NEXT+-NEXT OR (if disk not ready to accept command then
I else 0)

NEXT+-NEXT OR (if fatal error in latches then 0 else I).

NEXT+-NEXT OR (if seek strobe still on then I else 0).

Effect

The KSTAT register is placed on 8US. It has the format of a
disk status word.

The disk input data register is placed on BUS.

A feature of interest mostly to the diagnostic microcode writer is that if one reads the disk input
data register while writing. what should appear is delayed written data correctly aligned on word
boundaries. This is a painless way of checking most of the data paths in the disk controller
hardware.

36

7.0 ETHERNET

The Ethernet is the principal means of communications between an Alto and the outside world.
It is a broadcast, multi-drop, packet-switching, bit serial, digital communications network. Our
object is to design a communication system which can grow smoothly to accomodate several
buildings full of personal computers and the facilities needed for their support. In concrete
terms, to connect up to 256 nodes, separated by as much as 1 kilometer, with a 2.94 megabits/sec
channel. Like the computing stations to be connected, the communications facility had to be
inexpensive. We chose to distribute control of the communications facility among the
communicating computers to eliminate the reliability problems of an active central controller, to
avoid a bottleneck in a system rich in parallelism, and to reduce the fixed costs which make
small systems uneconomical.

The Ethernet is intended to be an efficient, low-level packet transport mechanism which gives'
its best efforts to delivering packets, but it is not error free. Even wh'en transmitted without
source-detected interference, a packet may still not reach its destination without error; thus,
packets are delivered only with high probability. Stations requiring a residual error rate lower
than that provided by this bare packet transport mechanism must follow mutually agreed upon
packet protocols.

Alto Ethernets come in three pieces: the transceiver, the interface, and the microcode. The
transceiver is a small device which taps into the passing Ether inserting and extracting bits under
the control of the interface while disturbing the Ether as little as possible. The same device is
used to connect all types of Ethernet interfaces to the Ether, so the transceiver design is not
specific to the Alto, and will not be described here. Before describing the internals of the
interface and microcode, we present their programming characteristics.

7.1 Programming Characteristics

Programs communicate with the interface and the microcode via the emulator instruction SIO
and 9 reserved locations in page 1. Word counts, buffer addresses, etc. are put in the
appropriate locations and then SIO is executed with an Ethernet command in ACO.

The special page 1 memory locations and their functions are:

EPLoc = 600b: Post location. Microcode and interface status information is posted in
this location when a command completes.

EBLoc = 601b: Interrupt Qit location. The contents of this location are ORed into NWW
when a command completes, thereby causing interrupt(s) on the channels
corresponding to the one bits in EBLoc.

EELoc = 602b: .I;;nd count location. The number of words remaining in the main
memory buffer at command completion is stored here as part of the
posting operation.

ELLoc = 603b: load location. This location is used by the microcode to hold a mask of
l's shifted in from the right for generating random retransmission
intervals. This location should be zeroed before starting the transmitter.

EICLoc = 604b: Input fOllOt location. The emulator program should put the size of the
input buffer (in words) into this location before starting the receiver. If
a packet arrives that is longer than EICLoc, the receiver will post an
Input Buffer Overrun error status.

EIPLoc = 605b: Input .llointer location. The emulator program should put 'a pointer to the
beginning of the input buffer into this location before starting the
receiver.

37

EOCLoc = 606b: Output £ount location. The emulator program should put the size of the
output buffer (in words) into this location before starting the
transmitter. By convention, packets should not be substantially longer
than 256 words.

EOPLoc = 607b: Output Qointer location. The emulator program should put a pointer to
the beginning of the input buffer into this location before starting the
transmitter.

EHLoc = 610b: Host address location. This location must contain zero in the left byte
and the host address in the right byte. The microcode will match the host
address against the first byte of a passing packet to decide whether to
accept it

SID passes commands to the interface and returns the host address of the Alto.. Commands to
the Ethernet interface are encoded in the two low order bits of ACO (the remaining bits may be
interpreted by other devices and thus should be zero) and have the following meaning:

ACO [14:15]: o
1
2
3

Do nothing
Start the transmitter
Start the receiver
Reset the interface and microcode.

The host address, returned in the right byte of ACO by SIO, is set by wires on the Alto back panel.
This number is normally put in EHLoc thereby causing packets with destination addresses
matching the address set with the wires to be accepted by the reciever. For more on addressing,
see below.

Upon completion of a command, EPLoc contains the status of the microcode in the left byte
and the status of the interface in the right byte. The possible values of the microcode status
byte, EPLoc [0:7], and their meanings are:

EPLoc[0:7] = 0:

EPLoc[0:7] = 1:

EPLoc[0:7] = 2:

EPLoc[0:7] = 3:

EPLoc[0:7] = 4:

EPLoc[0:7] = 5:

EPLoc[O:7] = 6:

Input done. If the hardare status byte is 377b, the interface
believes the packet was recieved without error.

Output done. If the hardare status byte is 377b, the interface
believes the packet was· sent without error. The number of
coli isions experienced while sending the packet is
log2(ELLocl2+ 1)-1.

Input buffer overrun. The recieved packet was longer than the
buffer. and the excess words were lost. Buffer overrun causes an
early exit from the microcode input main loop, so it is likely that
the CRC error and Incomplete lransmission bits in the hardware
status byte will be set.

Load overflow. The transmitter detected 16 collisions (assuming
ELLoc was zeroed before starting the transmitter) while trying to
transmit the packet described by EOPLoc and EOCLoc. ELLoc
will be -1.

Command specified a zero length buffer.

Reset. Generally indicates that a reset command (SID with ACO =
3) was issued to the interface when it was idle or any command
was issued when it was not idle.

Microcode branch conditions that should never happen cause this
code to be ·posted if they do happen. Call a repairman.

38

EPLoc[O:7] = 7-3778: The microcode does not generate these values for status.

Note that the microcode statuses are small integers and not individual bits as in the interface
status byte. Bits in the interface status byte, EPLoc [8:15], are low~. When zero, their
meanings are:

EPLoc[8:9]

EPLoc[10]

EPLoc[ll]

EPLoc[12]

EPLoc[13]

EPLoc[14]

EPLoc[15]

Unused. These should always be one.

Input data late. The interface did not get enough processor cycles.

Collision.

. Input CRC bad.

Input command issued. (ACO [14] in last SIO)

Output command issued. (ACO [151 in last SIO)

Incomplete transmission - the received packet did not end on a word
boundary.

Command completion can be detected in two ways: (1) zero EPLoc and wait for it to go
non-zero, and (2) set bits in EBloc corresponding to the channels on which interrupts are
desired at command completion.

When a program wishes to send a packet, it must first turn off the receiver if it is on. If the
receiver is actively copying a packet into memory, the transmitter should wait for the receiver to
finish (a maximum of about 1.5 ms. assuming 250-300 word packets). The program can tell
whether the receiver is actively transferring or idle by zeroing the first word of the input buffer
before starting the reciever. When the program wants to start the transmitter, if the first word of
the current input buffer is zero, then the receiver is idle (this assumes that the first word of all
Ethernet packets is non-zero).

A program can determine the size of an input message (and though not too useful, the size of an
output message) by subtracting the contents of EELoc from the original buffer count in
ExCloc. The microcode never modifies the buffer count or pointer locations.

To keep the receiver listening as much of the time as possible, if EICloc is non-zero when an
output command is issued, the microcode will start the receiver 'under' the .transmitter: while the
transmitter is counting down a random retransmission interval after a collision, the receiver is
listening. If a message arrives addressed to the receiver, the transmission attempt is aborted and
the incoming message is received into the buffer described by EICloc and EIPloc. The
transmit command is not executed in this case, and must be reissued. The microcode status byte
in EPloc will have an 'input done' status value if the transmission attempt was aborted by ,an
incoming packet.

The first word of all Ethernet packets must contain the address to which the packet is destined
in the left byte, and the address of the sender (or 'source') in the right byte. Receivers examine
at least the destination byte, and in some cases the source byte to determine whether to copy the
message into memory as it passes by. Address zero has special meaning to the Ethernet. Packets
with destination zero are broadcast packets, and all active receivers will receive them. If a
program wishes to receive ill.! packets on the Ether regardless of address, it should put zero
instead of the machin~ host number (returned by SIO) into EHloc.

By convention, the second word of all Ethernet packets is designated as the packet type.
Communication protocols using the Ethernet should use the type word to describe the protocol
to which the packet belongs (for example Pup protocol packets have 1000b in the type word).
The type word is purely a software convention; no Ethernet hardware or microcode interprets
the type word.

39

7.2 The Ethernet Interface

The Ethernet interface consists of a interface buffer, an output shift register and phase encoder.
a clock recovery circuit, an input shift register, a eRe register, and one microcode task. The
hardware is shown in block diagram form in figure 8. Packets on the Ether are phase encoded
and transmitter synchronous: it is the responsibility of the receiver to decide where a packet
begins (and thus establish the phase of the data clock), separate the clock from the data, and
deserialize the incoming bit stream. The purpose of the write register is to synchronize data
transfers between the input shift register whose clock is derived from the incoming data, and the
interface buffer which is synchronous to the processor system clock. The large interface buffer
is necessary because the Ethernet task is relatively low priority, and the worst case latency from
request to task wakeup is on the order of 20 microseconds. The phase encoder uses the system
clock where one bit time is two clock periods, so the output shift register is synchronous with.
the buffer, however latency is still ·a problem and the large buffer is useful.

Included in the clock recovery section is a one-shot which is retriggered by each level transition
of a passing packet. This detects the envelope of a packet and is called its 'carrier'. Ethernet
phase encoders mark the beginning of a packet by inserting a single 1 bit, called the sync bit, in
front of all transmissions. The leading edge of the sync bit of a packet will trigger the carrier
one-shot of a listening receiver and establish the receiver clock phase. The sync bit is clocked
into the input shift register and recirculated every 16 bit times thereafter to mark the presence
of a complete word in the register. If carrier drops without the sync bit at the end of the
register, the transmission was incomplete, and is flagged in the hardware status bits. When the
shift register is full, the word is transferred to the interface buffer write register where it sits
until the buffer control has synchronized its presence and and there is room to write it into the
buffer. If the shift register fills up again before the word has been transferred from the write
register to the interface buffer, data has been lost and the input Qata late flip flop is set.

Ethernet transmitters accumulate a 16 bit £yclic redundancy £hecksum on the data as it is
serialized, and append it to an outgoing packet after the last data word. As a receiver
deserializes an incoming packet it recomputes the checksum over the data plus the appended eRe
word. If the resulting receiver checksum is non-zero, the received packet is assumed to be in
error, and the condition is flagged in the hardware status byte. Since the eRe is of no interest to
the emulator program, a wakeup request to empty data from the interface buffer is only made
when it contains two or more words. This reduces the effective size of the buffer by one word,
but insures that the eRe will be left behind at the end of a packet.

The phase encoder is started when the microcode has decremented the countdown to zero, there
is no carrier present, and either the interface buffer is full, or if the message is less than 16
words long, all of it has been transferred to the buffer. The phase encoder will not start up
while there is carrier present. This means that collisions can only happen because of delay in
sensing carrier between widely spaced transmitters. Collisions are detected at the transceiver by
comparing the data. the interface is supplying to the data being received off the Ether. If the
two are not identical, a signal is returned to the interface which sets the collision flip flop
causing a wakeup request to the microcode which resets the interface. Countdowns are
accomplished by setting a flip flop from the microcode which will cause a wakeup request on
the next occurrance of SWAKMRT. This makes the grain size of countdowns about 37
microseconds.

The interface and the transceiver are connected together by three twisted pairs for signals plus
two supply voltages and ground supplied from the interface. The signals are (1) transmitted data
to the transceiver, (2) received data from the transceiver, and (3) the collision signal from the
transceiver indicating interference.

7.3 Ethernet Microcode

The Ethernet microcode uses a single task and 2 registers in R:

ECntr: The number of words remaining in the buffer.

40

EPntr: Points at the word prior to that next to be processed.

The task and R registers are shared by input and output so that at any time they are (1) unused,
(2) transmitting a packet, or (3) receiving a packet When an Ethernet SIO is issued while the
Ethernet microcode is reset, the code dispatches on whether it is an input, output, or reset
command.

Each Ethernet SIO has a result which is posted. The states of the microcode and hardware at the
time of the post are deposited in EPLoc, the contents of ECntr are deposited in EELoc, and the
contents of EBLoc is ORed into NWW. Note that resetting the interface with EBLoc non-zero
will result in an interrupt.

An input command (SIO with ACO [14:15] = 2) causes the microcode to start the input hardware.
searching for the start of a packet and then blocks. When a packet begins to arrive, the
hardware wakes up the microcode, which looks at the interface buffer - reads the first word
without advancing the read pointer - and checks the packet's address against the filtering
instructions left in EHLoc by the emulator program. The packet will be accepted if any of three
conditions is true: (1) If EHLoc is zero, the receiver is said to be promiscuous - all packets are
accepted; (2) if the destination address (left byte of the first word) of the packet is zero, the
packet is a broadcast packet - all receivers accept broadcast packets; or (3) if the destination
byte matches the right byte of EHLoc - the packet was sent to that specific host. If none of
these conditions is met, the packet is rejected and the microcode resets the interface, causing it
to hunt for the beginning of the J.l.e~t., packet. If the packet is accepted, the microcode enters the
input main loop.

The input main loop first loads ECntr and EPntr from EICLoc and EIPLoc. Note that EICLoc
and EIPLoc are not read until the receiver is committed to transferring data to. memory, so these
locations should not be disturbed while the receiver is running. The main loop repeatedly
counts down the buffer size in ECntr and advances the buffer pointer in EPntr depositing
packet words until either the hardware says that the packet is over or the buffer overflows; in
either case, the input operation terminates and posts.

An output command (SIO with ACO [14:15] = 1) causes the microcode to compute a random
retransmission interval, wait that long, and then start transmitting the packet described by
EOCLoc and EOPLoc. The retransmission interval is computed by ANDing the contents of
ELLoc with the contents of R37, the low part of the real time clock (ELLoc is not modified).
Then a one bit is left shifted into ELLoc and the high order bit of the result is tested. If the
high order bit is on, the transmission attempt is aborted with a 'load overflow' microcode status.
The above process is repeated each time the transmitter detects a collision while transmitting the
packet. If ELLoc started out zero, each collision will double the value of ELLoc, thus doubling
the mean of the random number generated by ANDing ELLoc with the real time clock. If 16
consecutive collisions occur without successfulIy transmitting the packet, the attempt is aborted.
Note that the mean of the first retransmission interval is zero, so the first transmission attempt
wilI begin as soon as the Ether is quiet.

After the retransmission interval is generated, it is decremented every 37 microseconds (the
memory refresh task wakeup is used) until it reaches zero, at which time ECntr and EPntr are
loaded from EOCLoc and EOPLoc and the transmitter part of the interface is started. Actual
transmission of the packet does not begin until the interface buffer has been filled by the output
main loop (or if the packet is smaller than the buffer, until all of the packet is in the buffer)
and there is silence on the Ether. During countdown, if EICLoc is non-zero, the receiver is
turned on, and if a packet arrives with an acceptable address, the transmission attempt is
forgotten and the microcode enters the input main loop as if an input command had been issued.

The output main loop repeatedly counts down the packet length in ECntr and advances the
address in EPntr taking words from the output buffer and putting them in the interface buffer
until either the main memory buffer is emptied or a hardware condition aborts the operation.
The output main loop is awakened for a data word once every 5.44 microseconds on the
average. The microcode signals the hardware when the main memory buffer is empty and waits

41

for the hardware to terminate; it then posts status.

A reset command (SIO with ACO [14:15] = 3) will always bring the interface back to a reset state.
If the receiver was on, it is stopped even if a packet was pouring into memory. If the
transmitter was on, it is stopped. even if it was in the middle of transmitting a packet (the result
to the receiver of the interrupted packet will almost certainly be an incomplete transmission and
incorrect CRC). The status will immediately be' posted in EPLoc: the microcode will post the
reset status (5) in the microcode status byte, and the hardware will post the conditions at the
time of the reset in the hardware status byte. The contents of the ECntr R register will be
deposited in EELoc, and the contents of EBLoc will be ORed into NWW, possibly causing
interrupts. After doing this, the interface and microcode are reset and ready for another
command.

The task specific microcode functions for the Ethernet interface are sumarized below.

EIDFct

EILFct

EPFct

EWFct

EODFct

EOSFct

ERBFct

EEFct

EBFct

ECBFct

EISFct

BS = 4

Fl=13B

Fl=14B

Fl=15B

F2=lOB

F2=llB

F2=12B

F2=13B

F2=14B

F2=15B

F2=16B

Input Data function. Gates the contents of the interface buffer
to BUS [0:15], and increments the read pointer at the end of the
cycle.

Input Look function. Gates the contents of the interface buffer
to BUS [0:15] but does not increment the read pointer.

fost function. Gates interface status to BUS [8:15]. Resets the
interface at the end of the cycle.

Countdown Wakeup function. Sets a flip flop in the interface
that will cause a wakeup to the Ether task on the next tick of
SWAKMRT. This function must be issued in the instruction after a
TASK. The resulting wakeup is cleared when the Ether task runs.

Output Data function. Loads the interface buffer from BUS [0:15],
then increments the write pointer at the end of the cycle.

Output ~tart function. Sets the OBusy Flip Flop in the interface,
starting data wakeups to fill the buffer for output. When the
buffer is full, or EEFct has been issued, the interface will wait for
silence on the Ether and begin transmitting.

Reset J2ranch function. This command dispatch function merges
the ICmd and OCmd flip flops, into NEXT [6:7]. These flip flops
are the means of communication between the emulator task and
the Ethernet task. The emulator task sets them from BUS [14:15]
with the STARTF function, causing the Ethernet task to wakeup,
dispatch on them and then reset them with EPFct.

End of transmission Function. This function is issued when all
'Of the main memory-output buffer has been transferred to the
interface buffer. It disables futher data wakeups.

nranch function. ORs a one into NEXT [7] if an input data late is
detected. or an SIO with ACO [14:15] non-zero is issued, or if the
transmitter or reciever goes done. ORs a one into NEXT [6] if a
coli ision is detected.

Countdown Branch Function. ORs a one into NEXT [7] if the
Interface buffer is not empty.

Input ~tart function. Sets the IBusy Flip Flop in the interface.
causing it to hunt for the beginning of a packet: silence on the
Ether followed by a transition. When the interface has collected

42

two words, it will begin generating a data wakeups to the
microcode.

43

8.0 CONTROL RAM

The control RAM is an optional logic card containing a fast (90 nsec.) 1024-word by 32-bit
read/write memory, an even faster (40 nsec.) 32-word by 16-bit read/write memory, and logic
to interface those memories to the Alto's microinstruction bus, processor bus, and ALU output.
Unlike other memories in the Alto, the larger memory of the control RAM can hold
microinstructions and/or data, and may be used exactly as the memory of a von Neumann
computer.

8.1 RAM-Related Tasks

The control RAM performs data manipulation (as distinct from microcode fetching) functions in.
response to certain values of the FI and BS fields of the microinstruction. Not all tasks will
likely be interested in these functions. More important, not all tasks will have the appropriate
values of the FI and BS fields uncommitted. A RAM-related task is defined as one during whose
execution the control RAM card will respond to FI and BS fields of microinstructions. The
standard Alto is wired so that the emulator task is the only RAM-related task. At most two other
tasks can be made RAM-related by a simple backpanel wiring change.

8.2 Processor Bus and ALU Interface

The Alto's ALU output and processor bus are each 16-bits wide and its microinstruction bus is
32-bits wide, so loading the control RAM from the ALU output and reading the control RAM onto
the processor bus is slightly clumsy. It is done by using the RAM-related FI'S WRTRAM and
RDRAM (see Appendix A).

For both reading and writing, the control RAM address is specified by the control RAM address
register, which is loaded from the ALU output whenever T is loaded from its source. This load
may take place as late as the microinstruction in which WRTRAM or RDRAM is asserted. The bits
of the ALU output have the following significance as a control RAM address:

Bit

0-3

4

5

6-15

Use

Ignored.

RAM/ROM
o
1

HALFSEL
o
1

Means read/write the control RAM.
Means read the control ROM. (This doesn't quite work
the way you might think. See section 8.8 for details.)

- Ignored on writing
Means read out the low-order 16-bits of the addressed
word.
Means read out the high-order 16-bits of the addressed
word.

Word address (0-1023).

Since it was expected that reading the control RAM would be a relatively infrequent operation, a
single assertion of RDRAM reads out only one half of a 32-bit control RAM word onto the
processor bus. To read out both halves, the control RAM address register must be loaded twice
and RDRAM invoked twice. Data resulting from RDRAM is AND'ed onto the processor bus during
the microinstruction following that in which the RDRAM was asserted.

In contrast, it was expected that writing into the control RAM would occur frequently. Therefore
a single application of WRTRAM writes both halves of a control RAM word at once. The M
register contents (see section 8.7) after the microinstruction containing the WRTRAM will be
written into the high-order half of the addressed control RAM word. The ALU output during the

44

microinstruction following the WRTRAM will be written into the low-order half. This protocol
mates well with doubleword main memory reads.

8.3 Microinstruction Bus Interface

The PCO bit of the micro-program counter (MPC) of each Alto task specifies whether that task is
currently executing microinstructions from the control ROM or the control RAM. The next
microinstruction address field of a microinstruction is not wide enough to specify a transfer
from ROM to RAM or vice-versa. A special transfer mechanism exists only for RAM-related tasks,
in the form of SWMODE. a RAM-related Fl. SWMODE inverts the pco bit of the running task,
taking effect after the microinstruction following that in which the SWMODE appears. In other
words, in RAM-related tasks SWMODE behaves much like an address modifier. Other tasks cannot
switch between ROM and RAM.

The correspondence of ALU output bits with microinstruction fields appears in the following
table:

High/Low Order Bit of ALU Meaning Value in
Halfword Output Example

H 0-4 R Register Select 0
H 5-8 ALU Function Select 0
H 9-11 Bus Data Source 5
H 12-15* Function 1 2
L 0-3* Function 2 0
L 4 Load T 0
L 5* Load L 1
L 6-15 Next micro address 3258

Fields denoted by * are represented with their high-order bit inverted; this is an artifact
of hardware microinstruction decoding.

As an example, consider the representation of the microinstruction

L+-MD, TASK, :LOCA;

where LOCA is 3258. The values for the various microinstruction fields are listed in the table
above. After complementing the appropriate high-order bits and concatenating, we see that the
microinstruction above would be represented as 1328 in its high-order halfword and 123258 in
its low-order halfword.

8.4 Reset Mode Register

The RAM-related PI RMR~ causes the reset mode register to be loaded from the processor bus.
This register is used to supply the initial value of the PCO bit of each task's program counter
during the next reset ("boot") operation. The 16 bits of the processor bus correspond to the 16
Alto tasks in the following way: the low order bit of the processor bus specifies the initial mode
of task 0, the lowest priority task (emulator). and the high-order bit of the bus specifies the
initial mode of task 15. the highest priority task. A task will commence in the control ROM if its
associated bit in the reset mode register contains the value 1; otherwise it will start in the control
RAM. Upon initial power-up of the Alto, and after each reset operation. the reset mode register
is automatically set to all 1's, corresponding to starting all tasks in the control ROM.

8.5 Standard Emulator Access

The standard emulator includes three instructions allowing basic access to the control RAM. More
sophisticated access may be implemented by using the basic access primitives to write
sophisticated access microcode into the control RAM and then transferring control to that
microcode.

45

RDRAM (610118) Read from Control RAM:
Reads the control RAM halfword addressed by ACI into ACO. The microcode is:

RDRM:
Tf-ACI, RDRAM;
Lf-ALLONES; (AND'ed with control RAM data)
ACOf-L, :START;

WRTRAM (610128) Write into Control RAM:
Writes ACO into the high-order half and AC3 into the low-order half of the control RAM
word addressed by ACl. The microcode is:

WTRM:
Tf-ACl;
Lf-ACO, WRTRAM;
Lf-AC3;
:START;

(This loads the M register)

JMPRAM (610108) Jump to Control RAM:
Sends control of the emulator task to the RAM location in ACI (mod 1024). This
operation is fraught with peril. If done in error it is the one of the few emulator
instructions which can cause the machine to plunge completely off the deep end. If the
RAM is not installed, control will go to the ROM location in ACI (mod 1024). Clever
coders can use this feature to determine from within whether or not a control RAM is
installed. However they are better advised to make this determination using WRTRAM and
RDRAM. The microcode for JMPRAM is:

JMPR:
Tf-ACI, 8US, SWMODE;
:NOVEM; (NOVEM = 0)

8.6 Interpretation of Emulator Traps

All unused opcodes except 774008-777778 (which is used by Swat, the Alto debugger) and
61xxxB, where xxx is between 0 and 377B, transfer to microlocation RAMTRAP with the
instruction in L, the instruction cycled by 8 bits in the R-register XREG, and the emulator's
R-register PC counted one beyond the trapping instruction:

RAMTRAP: SWMODE, :TRAP;

...
TRAP: ... , :TRAPl;

The result of this is that if your machine has a control RAM, these instructions will cause
control to enter it at a location which is equal to TRAP} in the ROM microcode. If no RAM
is present, the unimplemented opcode will be handled as described in Section 3.3.

8.7 M and S Registers

The control RAM card also includes an M register and 31 S registers. The M register is the analog
of the basic Alto's L register. It provides data for the S registers, which are analogous to the basic
Alto's R registers. These additional registers were provided to ease the tight constraint on R
register availability which might have limited the utility of the control RAM.

The similarities between the M and L registers and between the Rand S registers are striking.
Both M and L are loaded from the output of the ALU, and only when the Load L bit of the
microinstruction is active. R registers are loaded from L, and S registers are loaded from M. Both
Rand S registers output data onto the processor bus. Both Rand S registers are addressed by the
RSELECT field of the microinstruction. (Thus the same caveats which apply to the use of R37
apply to S37 (see section 2.3 f),) Loading and reading of both Rand S registers are controlled by

46

the BS field of the microinstruction.

Nevertheless there are considerable differences. To begin with, the M and's registers are active
only when a RAM-related task is executing. This means, for example, that in the highest-priority
RAM-related task it is not necessary to save the value of M across a TASK, since no
higher-priority task can change the value of M. Unlike the data path from the L register to the
R registers. the data path from the M register to the S registers contains no shifter. When an s
register is being loaded from M, the processor bus is not set to zero. The emulator-specific
functions ACSOURCE and ACDEST have no effect on S register addressing. And finally, when
reading data from the s registers onto the processor bus, the RSELECT value 0 causes the current
value of the M register to appear on the bus. (This explains why there are only 31 useful s
registers.)

8.8 Restrictions and Caveats

Both RDRAM and WRTRAM cause the microprocessor's system clock to stop for one cycle. This
may yield unspecified results if the system clock is also stopped for some other reason (e. g.
waiting for memory data). As a general rule, the system clock should run without hesitation
during the microinstruction following a RDRAM or WRTRAM, except for the effect of the RDRAM
or WRTRAM itself. On Alto I, there is an additional timing problem which manifests itself in
some machines, for example, in the following microcode sequence:

MAR+-FOO;
T+-FIE;
L+-MD, WRTRAM;
L+-MD;

Starts memory reference
Loads the control RAM address register
Save away the high-order word in M
Completes the write into the RAM

What happens is that the last instruction suspends the system clock for one microinstruction,
and some Alto I memories cannot keep the memory data good for two microinstruction times, so
a parity error may occur. The data is actually stored in the RAM at the end of the first
microinstruction time, so there is probably no error in the data even if a parity interrupt
subsequently occurs. This "phantom" parity error may be averted by the following code, which
takes three more microinstruction times, but does not invoke the horrendous microcode
overhead of parity error recording:

MAR+-FOO;
NOP;
L+-MD;
T+-MD;
TEMP+-L, L+-T;
T+-FIE, WRTRAM;
L+-TEMP;

Starts memory reference
Required for memory timing
Save away the low-order word
Save away the high-order word

Loads the address register, starts the write.
Complete the write into the RAM

Another Alto I restriction is that one cannot reliably test BUS=O in the first instruction after a
task switch into a RAM-related task when the bus data being tested is coming from the M register
or one of the S registers. This restriction arises from a timing problem. The signal that
determines whether a RAM-related task is running changes rather late in a microinstruction,
while BUS=O requires correct bus data some considerable time before the end of a
m icroi nstruction.

47

9.0 NUTS AND BOLTS FOR THE MICROCODER

9.1 Standard Microcode Conventions

The microassembler which assembles microcode for the Alto is called Mu. By convention,
microcode source files have the extension .MU, and binary files have the extension .MB. Standard
Alto I ROM microcode versions will be calfed AltoCodex.Mu; those for Alto II will be called
AltoIlCodex.Mu. A microcode source file can be divided into three largely separable pieces: the
language definitions, which tell Mu what names will be used for what octal values of what
microcode fields; the constant definitions, which declare all constants that may later be
referenced, and which cause the constant memory to be laid out; and the register declarations,
microinstruction label declarations, and microinstructions.

In order for microprograms written to execute in the RAM to be compatible with those in th~
ROM, at a minimum the constants assumed by the RAM microcode must be a subset of those
declared by the ROM microcode, and the subset must reside in the same addresses. As a practical
matter, one should preface one's RAM microcode by the same constant definitions which were
used in the assembly of one's ROM microcode. In order to facilitate and encourage this
compatibility, the file AltoConstsx.MU will be maintained (the x corresponding to the latest
AltoCodex) containing definitions and constants for both Alto I and Alto II. These can be
logically incorporated into other microcode assemblies via the "include" feature of Mu
(#ALTOCONSTSx.MU;).

If one or more microcode tasks pass control back and forth between ROM and RAM, it becomes
necessary to associate addresses with microinstruction labels. It is possible to do this completely
generally, based on the microcode version number. A more limited solution is simply to fix'the
addresses of certain useful labels. The following addresses are guaranteed in all standard Alto I
microcode versions after 20, and all standard Alto II microcode versions (and are included in
AltoConstsx.MU):

Address

20B

37B

22B

105B

106B

120B

121B

124B

160B

Label

START

TRAPl

RAMCYCX

BLT

BLKS

MUL

DIV

BITBLT

to

Semantics

Beginning of emulator's main loop; starts a new emulated
instruction.

RAM location to which unfamiliar traps are sent; ROM
location which implements trap sequence.

Fast cyclic shift subroutine.

Block transfer subroutine.

Block store subroutine.

Multiply subroutine.

Divide subroutine.

BITBLT subroutine.

Cyclic shift dispatch table.

9.2 Microcode Techniques Which Need Not Be Rediscovered

For the most part, since the Alto is such a simple machine, writing Alto microcode is a
straightforward exercise in rule-following. However, during the course of writing the few-odd
thousand microinstructions which have ever been written by anybody for the Alto, a few
microcoding techniques have emerged as particularly ingenious or useful or both. They are

48

recorded here for posterity.

9.21 Microcode Subroutines

You have probably already noticed that that the Alto hardware does not provide an easy way of
doing microcode-level subroutine calls and returns. Several subroutine-call techniques have
evolved. Two of these are used for RAM-tO-ROM subroutine calls, and these will be presented
first.

PC Call (used with BLT, BLKS, MUL, DlV, BITBLT)

This call takes advantage of the assumption that nobody in his right mind would want
the emulator to execute in the non-memory I/O area from 1770008 to 177777B.
Therefore when one of these ROM subroutines terminates, the R-register PC is examined.
If it is outside the range 177000B-177777B, then control is passed to the beginning of the
emulator's main loop in the ROM. Otherwise. control is passed to location PC AND 777B
in the RAM.

Warning: Some of these ROM subroutines modify PC during execution. If BLT or BLKS or
BITBLT is terminated by an interrupt condition, PC is decremented by 1 so that the
instruction can be resumed later. If a DIV is successful. PC is incremented by 1 to cause a
skip.

Register Call (used with RAMCYCX)

This call uses an R-register, in this case CYRET (R-register 5), to dispatch into a table of
successor instructions. The cyclic shift subroutine, for example, is called from six places
in the ROM. Each of these places sets CYRET to the index of its successor instruction in
the return dispatch table [0-5], and then dispatches into the cycle table beginning at LO.
The successor corresponding to RAMCYCX dispatches into the RAM using the low-order 10
bits of the PC register.

IR Calls

These calls use the emulator's JR register in various ways: some straightforward and some
devious. The main advantages of IR calls are that

1) several levels of return can be encoded into a single number, because it is
fairly easy to dispatch on various parts of JR, and

2) unlike R-registers, IR can be loaded in one microinstruction.

The most straightforward use of IR is dispatching on its low-order 8 bits using the DlSP
bus source. Since D1SP is a bus source> 3, a constant may be "and-ed" onto the bus with
DJSP, allowing one to dispatch on sub-fields of DJSP.

The most devious use of IR involves a group of constants labeled srO to sr12, sr14 to sr17,
and sr20 to sr37 (as you might suspect, the numbers on these constant names are octal).
If the constant sri has been loaded into JR, then the following code will cause control to
transfer to location FOO OR i:

JDJSP; (see section 3.5)
: FOO;

The statement above is only true if i is less than 20B; otherwise an additional dispatch on
the D1SP field of JR is required to get the desired effect:

FOO13: SJNK.-OJSP,BUS;
: F0020;

49

(This explains why there is no sr13. Any of sr20-sr37 will carry control to the 13Bth
entry in Faa's dispatch table, where an additional level of dispatch can be used to
differentiate among them if necessary. You may be wondering what is special about 13B.
You are in good company.)

9.22 The Silent Boot

Many of the effects of a hardware "reset" operation (invoked by the boot button, or Bus[o]=l in
conjunction with the emulator-specific Fl STARTF (17B» can be faithfully simulated by emulated
software. At least two important ones cannot. A reset operation is the only way of moving
non-RAM-related tasks back and forth between ROM and RAM, and the only way of guaranteeing
that all tasks are initialized. However, the time required for a reset operation is not necessarily
longer than a few microseconds. On both Alto I's and Alto II's a reset operation does not alter
the contents of the Alto's R or S registers, its microinstruction RAM, or its main memory.
Therefore if these memories contain appropriate contents it is not really necessary to go through
the full disk or Ethernet bootstrap load sequence, since the major purpose of those sequences is
to initialize these memories with desired contents. .

The "silent boot" consists first of getting the desired contents into the RAM and main memory.
The RAM should contain an emulator task (beginning with address 0) which, for example, simply
jumps into the main loop of the ROM emulator code, skipping all the bootstrap code. For
example:

NOVEM: SWMODE;
:START;

(RAM location 0, task O's reset location,)
(to ROM location 20B)

Second, the reset mode register should be set so that the reset operation will begin execution of
the emulator task in the RAM, and the other tasks wherever they are desired. Finally, the reset
operation is initiated, the emulator hiccoughs momentarily into the RAM, and then proceeds in
the ROM as if nothing had happened.

50

APPENDIX A - MICROINSTRUCTION SUMMARY

FIELDS:
0-4
5-8
9-11
12-15
16-19
20
21
22-31

RSELECf
ALUF
BS
FI
F2
LOAD L
LOADT
NEXT

All subsequent numbers on this page are in octal.

ALUF:
0: BUS 4: BUS XOR T
1: T 5: BUS+I·
2: BUS OR T* 6: BUS-I·
3: BUS AND T 7: BUS+T

·Loads T from ALU output

BUS SOURCE:
0: +-RLOCA nON
I: RLOCATION+-
2: Undefined
3: (task-specific)

FI(STANDARD):
0:
I: MAR+-
2: TASK
3: BLOCK

F2(STANDARD):
0: --
I: BUS=O
2: SH < 0

3: SH = 0

BUS SOURCE(TASK SPECIFIC):

o
CPU

3: +-SLOCATION
4: SLOCA TION +-

Fl(T ASK SPECIFIC):

0 4,16
CPU KSEC,KWD

7
ETHER

4:
5:
6:
7:

4:
5:
6:
7:

4:
5:
6:

10: BUS-T
11: BUS-T-I
12: BUS+ T +1*
13: BUS+SKIP

(task-specific)
+-MD
+-MOUSE
+-DlSP

+-L LSH I
+-L RSH I
+-L LCY8
+-CONSTANT

BUS
A LUCY
MD+-

14: BUS.T·
15: BUS A NO NOT T
16: UNDEFINED
17: UNDEFINED

7: +-CONSTANT

7
ETHER

EIOFCf

10 11
MRT DWT

4,16
KSEC,KWD

+-KSTAT
+-KDATA

12 13
CURT DHT

RAM
Related

+-SLOCA TION
SLOCATION+-

14 15
DVT PART

RAM
Related

10: SWMODE SWMODE
11: WRTRAM STROBE WRTRAM
12: RDRAM KSTAT+- RDRAM
13: RMR+- INCRECNO ELFCT - RMR+-
14: CLRSTAT EPFCT -
15: KCOMM+- EWFCT -
16 RSNF KADR+-
17: START KDATA+-

F2(T ASK SPECIFIC):

0 4,16 7 10 11 12 13 14 15
CPU KSEC,KWD ETHER MRT DWT CURT DHT DVT PART

10: BUSODD INIT EODFCT - DDR+- XPREG+- EVENFIELD EVENFIELD
11: MAGIC RWC EOSFCT CSR+- SETMODE
12: DNS+- RECNO ERBFCT
13: ACDEST XFRDAT EEFCr
14: IR +- SWRNRDY EBFCT
15: IOISP NFER ECBFCT
16: ACSOURCE STROBON EISFCT
17: -

51

Lo!;a1iQn

Page 0:

0-17

Page 1:

420
421
422
423
424
425
426
427
430
431-450
451
452
453

456
457
460-477
500
501-517

521
522
523
524
525
526
527
530-567

572-577
600
601
602
603
604
605
606
607
610
611-613
614
615
616
617
620
621
622
630-633
631-661
640-644
700-706
720-777
776-777

Page 376B:

177016-177017
177020-177023
177024
177025
177026
177030-177033
177034
177035-177037
177100-177177
177140-177157
177200-177204
177234-177237
177244-177247
177340-177777

APPENDIX B - RESERVED MEMORY LOCATIONS

~

DASTART

IT~UAN
ITI ITS
MOUSELOC

CURLOC

RTC
CURMAP -
WW
ACTIVE

MASKTAB
PCLOC
INTVEC

KBLK

ITTIME

TRAPPC
TRAPVEC

EPLOC
EBLOC
EELOC
ELLOC
EICLOC
EIPLOC
EOCLOC
EOPLOC
EHLOC

DCBR
KNMAR
DWA
CBA
PC
SAD

UTI LOUT
XBUS
MEAR
MESR
MECR
UTILIN
KBDAD

Con1ents

Set to 77400B by OS (Swat)

Display list header (Std. Microcode)
Display vertical field interrupt bitword (Std. Microcode)
Interval timer stored quantity (Std. Microcode)
Interval timer bitword (Std. Microcode)
Mouse X coordinate \Std. Microcode~
Mouse Y coordinate Std. Microcode
Cursor X coordinate Std. Microcode
Cursor Y coordinate Std. Microcode
Real Time Clock (Std. Microcode)
Cursor bitmap (Std. Microcode)
Color Map pointer (Color Alto)
Interrupt wakeups waiting (Std. Microcode)
Active interrupt bitword (Std. Microcode)

Mesa disaster flag (Mesa microcode)
=0 (Extension of MASKTAB by convention; set by OS)
Mask table for convert (Std. Microcode)
Saved interrupt PC (Std. Microcode)
Interrupt Transfer Vector (Std. Microcode)

Disk command block address (Std. Microcode)
Disk status at start of current sector (Std. Microcode)
Disk address of latest disk command (Std. Microcode)
Sector Interrupt bit mask (Std. Microcode)
Interval timer time (Std. Microcode)
Trap exit instruction (PARC/SSL-SmaIlTalk)
Trap saved PC (Std. Microcode)
Trap vector (Std. Microcode)

Timer data (OS)
Ethernet post location (Std. Microcode)
Ethernet Interrupt bit mask (Std. Microcode)
Ethernet EOT count (Std. Microcode)
Ethernet load location (Std. Microcode)
Ethernet input buffer count (Std. Microcode)
Ethernet input buffer pOinter (Std. Microcode)
Ethernet output buffer count (Std. Microcode)
Ethernet output buffer pointer (Std. Microcode)
Ethernet host number (Std. Microcode)
Reserved for Ethernet expansion (Std. Microcode)
Posted by parity task when a main memory parity error is detected.
.. :: (Std. Microcode)

Tape control block head (TaRe Controller)
Run-code display processor (PARC/SSL)
Hexadecllnal floating-poI nt microcode (PA RC/CSL)
Trident disk control table (Trident Disk)
Saved registers (Swat)
Reserved for SLOT devices (PARC)
Reserved for music (PARC/SSL)

Printer output (Std. Hardware)
Utility input bus (Alto II Std. Hardware)
Memory Error Address Register (A Ito" Std. Hardware)
Memory error status regl~ter (Alto II Std. Hardware)
Memory error control register (Alto II Std. Hardware)
Printer status, mouse, keyset (all 4 locations return same thing)
First of 4 words of undecodcd keyboard (Std. Hardware)
-- remaining keyboard words
Run-code dl~play processor (PARC/SSL)
Ol1'an keyboard (PARC/SS!.)
PROM programmer (PARC/CSt)
Expefll11ental cursor control (I'ARC/SSL)
GraphiCS keyboard (PARe/SSL)
EARS Data buffer (PARC)

52

Page 3778:

177700
177701 EIALOC
177720-177737
177764-177773
177776
177776
177776
177777
177777

EIA interface output bit (EIA Hardware)
EIA interface input bIt (EIA lIardware)
TV Camera Interface (PARC/SSL)
Redactron tape drive (PARC/SSL)
Scriptographics tablet X (PARC/SSL)
DigItal-Analog Converter (DAC - PARC)
Digital-Analog Converter (Joystick - PARC/SSL)
Scriptographics tablet Y (PARC/SSL)
DigItal-Analog Converter (Joystick - PARC/SSL)

53

APPENDIX C - OPTIONAL HARDWARE DEVICES FOR THE ALTO

This section lists hardware items that have been interfaced to the Alto in quantities greater than
1. EOO/SPG is the source for information about many of these interfaces and devices, and may
be willing to contract to provide necessary hardware. Sources in PARC are not committed to
producing any hardware. No software guarantees are made about any of these devices.

HyType Printer. A spinning daisy printer that can be ordered from Diablo Systems, Inc.
Arrangements can be made with SPG to build a cable that will connect the printer to the
"printer connector" on the rear of the Alto. No additonal hardware is required.

Versatec Printer/Plotter. The Versatec models?? and?? printers can be connected to the
Alto II without additional hardware. Arrangements can be made with SPG to build a
cable. Documentation on the control of the printers is available from SPG.

Tape Controller. A one-card processor-bus interface to Bucode model?? tape drives has
been built for the Alto. It will handle 1600 bpi phase-encoded tapes only. Consult
PARC/SSL.

Trident Disk Interface. An interface to the Trident family of disk drives, manufactured
by Calcomp, has been built. Alto II owners should consult SPG, Alto I owners consult
PARC/SSL.

54

	00
	01
	02
	03
	04
	04a
	04b
	05
	06
	07
	08
	09
	10
	10a
	10b
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	24a
	25
	26
	26a
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54

