
BCPL

Reference Manual

James E. Curry

Compiled on: September 9, 1975

Computer Sciences Laboratory
Xerox Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, California 94304

Copyright @) 1975 by Xerox Corporation.

Revised BCPL Manual, September 9, 1975

TABLE OF CONTENTS

SECTION

1 INTRODUCTION

2 A SAMPLE PROGRAM

2-1 The Queens Problem

2-2 Source Code -- QUEENS.

2-3 Source. Code -- QUEENS1

2-4 Notes on the Source Code

2-5 Compiling and Loading QUEENS

3 DECLARATIONS AND PROCEDURES

BCPL Variables

Scope Rules. .

Manifest Constants

Structure Declarations

.

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

Static and External Variables

4 EXPRESSIONS

4-1

4-2

4-3

4-4

5 STATEMENTS

5-1

Procedure Declarations

Procedure Execution . .

Dynll;mic Variables. .

Memory References

Constants
Precedence of Expressions

BCPL Expressions . . .

Assignment Statements:

i

.

.

PAGE

2.1

2.2

2.3

2.4

2.4

3.1

3.1

3.3

3.3

3.3

3.5

3.6

3.7

4.1

4.2

4.3

4.4

5.1

Revised BCPL Manual, September 9, 1975

6

7

8

9

5-2

5-3

5-4

5-5

5-6

5-7

5-8

STRUCTURES

6-1

6-2

6-3

6-4

6-5

6-6

6-7

Routine Calls: .

Conditionals and Iterative Statements:.

Condi tional Compilation Statements:

Labels and Goto Statements:.

Returns: .

Switches:

Single-Word Statements

Structure declarations and references .

Nested fields

Subscripted fields.

Overlays.

Left-lump structure references .

Other structure operators

Syntax of structure declarations

SOURCE FILE CONVENTIONS

7-1 Declaration files

7-2 Labeled brackets

7-3 Semicolon insertion

7-4 Do/Then insertion.

7-5 Comments

7-6 Upper case vs. Lower Case

COMPILATION

8-1 Normal compilation

8-2 Global swi tches

8-3 Local swi tches .

LOADING

9-1 Normal loading.

ii

TABLE OF CONTENTS

5.1

5.1

5.3

5.4

5.5

5.5

5.6

6.1

6.3

6.5

6.8

6.8

6.10

6.11

7.1

7.1

7.1

7.2

7.2

7.3

8.1

8.2

8.3

9.1

Revised BCPL Manual, September 9, 1975

9-2 Errors
9-3 Global switches . . .
9-4 Local switches -- group 1

9-5 Local switches -- group 2

9-6 Save file image

9-7 Overlays. .

10 RUNTIME ENVIRONMENT

Procedure Frame Format.

Procedure Calls

10-1

10-2

10-3 Frame Allocation on the Nova

11 NOVA 1/0 and UTILITY ROUTINES

11-1

11-2

11-3

12 APPENDICES

Introduction

Global Names'.

Procedures . .

.
. .

TABLE OF CONTENTS

. . .
. . .

. .

. .
.

. .

.

.

9.2

9.3

9.3

9.5

9.5

9.6

10.1

10.1

10.3

11.1

11.1

11.2

12-1 BCPL Reserved Words 12.1

iii

Revised BCPL Manual, September 9, 1975

SECTION 1

INTRODUCTION

BCPL is a general purpose recursive programming language which is particularly
suitable for systems programming applications. Versions of BCPL exist on various
computer systems, including CTSS at Project MAC, the GE635 under GE COS, the
TX-2 at Lincoln Lab, and the PDP-ll, as well as for the Nova. The Nova version of
BCPL was bootstrapped from the TX-2 implementation, and incorporates most of the
features introduced mto BCPL at Lincoln, including a version of structures.

This manual uses an informal syntactic notation. Ellipsis (" ... ") indicates repetition.
Lower-case words are reserved words. Upper-case words represent syntactic classes,
the most common of which are:

NAME:
EXP:
CONST:
REF:
STAT:

an identifier
a BCPL expression
an expression involving only constants
a memory reference expression
a BCPL statement or compound statement

1.1

Revised BCPL Manual, September 9, 1975

SECTION 2

A SAMPLE PROGRAM

2-1 The Queens Problem

The following program is a complete, working example of BCPL. It solves the "8-
Queens" problem, generating all 8*8 chessboard configurations of eight queens such
that no queen can capture any of the others. The central procedure "Queens(Col}" is
called with a column number as its argument; it assumes that there are no conflicts
in the columns to the left, and tries to place a queen in the current column.
"Queens" calls itself recursively to iterate over the columns to the right, or p.rints a
J?icture of the board if a solution has been found. Three global vectors, "Horiz",
'UpDiag", and "DnDiag", are maintained to indicate whether a queen has already been
placed in a particular row, upward-diagonal, or downward-diagonal; an attempt to
place a queen in an occupied line results in rejection. A solution vector "Row" is
maintained for typeout, remembering which row the queen is in for each column.

The program consists of two source files: "QUEENS" and "QUEENSl". The first file
contains the main program and some 10 procedures; the second contains the "Queens"
procedure.

2.1

Revised BCPL Manual, September 9, 1975 A SAMPLE PROGRAM

2-2 Source Code -- QUEENS

II Solution of 8 Queens problem -- Main Program

get "iox" II Include definitions for 10 package

manifest boardsize = 7

external

II Rows & Columns are numbered 0-7

[Solutions
Row

II Total number of solutions
II Row!I = occupied column in row I
II Horiz!I = true if row I is occupied Horiz

UpDiag
DnDiag

II UpDiag!I= true if up-dia~onal I is occupied
II DnDiag!I= true if down-dlagonal I is occupied

]
external Queens
external

II The procedure that does the work
II Some extra 10 procedures

[WriteS
WriteN
WriteL

]

static
[II No solutions initially

II Global vectors -- set up by Main
Solutions = 0
Row = nil
Horiz = nil
UpDiag = nil
DnDiag = nil

st~tic TTYstream II The stream used by WriteS. etc.

let MainO be
[main

]main

II Initialize the Q1oba1 vectors
let v = vec boardslze; Row = v
let v = vec boardsize; Horiz = v
for i = 0 to boardsize do Horiz!i = false
let v = vec boardsize*2; UpDiag = v
let v = vec boardsize*2; DnDiag = v
for i = 0 to boardsize*2 do UpDiag!i. DnDiag!i = false, false

II Initialize output to TTY
initbcp1 io()
TTYstream = open("")

II Do the work
Queens(O)

II Print number of solutions
WriteN(Solutions)
WriteS(" solutions found*n")

and WriteS(S) be writestr(TTYstream, S)

and WriteN(N) be writedec(TTYstream, N)

and WriteL() be writestr(TTYstream, "*n")

2.2

Revised BCPL Manual, September 9, 1975 A SAMPLE PROGRAM

2-3 Source Code -- QUEENS 1

II Solution of 8 Queens problem -- Queens procedure

manifest boardsize = 7

external

II Rows & Columns are numbered 0-7

[Solutions
Row

II Total number of solutions
II Row!1 = occupied column in row 1
II Horiz!1 = true if row 1 is occupied Horiz

UpDiag
DnDiag

II UpDiag!l= true if up-diaQonal 1 is occupied
II DnDiag!l= true if down-dlagonal 1 is occupied

]
external Queens
external

II The procedure that does the work
II Some extra 10 procedures

[WriteS
WriteN
Writel

]

let Queens(Col) be
[queens

II There are no conflicts in columns left of Col

let UpDiag2. DnDiag2 = UpDiag+boardsize-Col, DnDiag+Co1
II UpDiag2, Dndiag2 are the diagonal vectors for this.co1umn

for n = 0 to boardsize do
[row100p 1/ Try to put a Queen .in each row of this column

if Horiz!n % UpDiag2!n % DnDiag2!n loop II Can't - go on

II There are no conflicts to the left, so we can
Row!Co1 = n /1 Remember for typeout

test Col eq boardsize II Done?

ifnot [Horiz!n,UpDiag2!n,DnDiaQ2!n = true,true,true
/1 Now a Queen is in thlS column

]

Queens(Co1+1) II Find all solutions to the right
/1 Now remove the Queen
Horiz!n,UpDiag2!n,DnDiag2!n = fa1se,fa1se,false

ifso [II Print the solution
Writel()
for r = 0 to boardsize do

]row100p
]queens

]

[for c = 0 to boardsize do
WriteS(Row!r eq c ? ~ Q", " .")

Wr HelO

S~lutions = Solutions + 1

II Do the next row

2.3

Revised BCPL Manual, September 9, 1975 A SAMPLE PROGRAM

2-4 Notes on the Source Code

The file "lOX" contains external declarations for a basic 10 library; "QUEENS" uses
"initbcplio", "open", "writestr", and "writedec" from this library.

The manifest and external declarations appear in both source files. These
declarations would usually be put into a separate file; each source file would "get"
this file in order to include the declarations.

The static declarations appear only in "QUEENS"; static variables must be declared as
static only once, although they may be declared external in many files. "Solutions"
is initialized to 0; the statics for the global vectors will be initialized by the main
procedure, so they are initialized to "nil". "TTYstream" is declared static but not
external, so it is local to "QUEENS", as is "Main".

The main program allocates the vector space for the global vectors by declaring four
local vectors (all named "v") and storing the address of the first elements in the
external variables for the vectors. This is the simplest way to get space which is
global to several procedures (or to a recursive procedure); the space is global to
"Queens" since it is allocated by the procedure which calls "Queens".

Note that declarations may be intermixed with statements.

2-5 Compiling and Loading QUEENS

To compile the source file QUEENS, just type

BCPL QUEENS

(Only one source file may be compiled at a time.) The compiler will print

BCPL 2.0 -- QUEENS.BR = QUEENS

and begin compiling the program. If no errors are detected, the BCPL relocatable
binary file QUEENI:?BR will be created, and the compiler will print

QUEENS.BR -- 217 (143) WORDS

The numbers are the length of the code generated in octal (decimal). QUEENS1 is
compiled similarly.

To load the program, type

BLDR/D/L/V QUEENS QUEENS1 101 102

This will create the file QUEENS.SV, an executable Nova save file, from the BCPL
relocatable binary files QUEENS.BR, QUEENS1.BR, I01.BR, and I02.BR. (The latter
two files are the input-output routines.) The ID switch causes the Nova debugger to
be loaded into the save file. The IL/V switches create a symbol table file named
QUEENS.BS, containing information about where things will be in core when the
program runs; a listing of this file is included in the section on Loading (Section 9).
The loader prints

BLDR 2.0 -- QUEENS.SV, QUEENS.BS

2.4

Revised BCPL Manual, September 9, 1975

at the beginning of the loading process, and when it is done,

QUEENS.SV -- 14162 (6256) WORDS

The numbers give the size of the save file in octal (decimal).

A SAMPLE PROGRAM

To run the program, just type QUEENS. It will print out 92 solutions.

2.5

Revised BCPL Manual, September 9, 1975

SECTION 3

DECLARATIONS AND PROCEDURES

3-1 BCPL Variables

BCPL is a vaguely ALGOL-like language (it is block-structured; it allocates procedure
space dynamically, so recursion is permissible; and most BCPL statements correspond
roughly to ALGOL statements, although there are syntactic differences). The major
difference between BCPL and ALGOL is that all ALGOL variables are declared with
data-types (integer, real, boolean, string, array, procedure, label, pointer, etc.),
whereas all BCPL variables have the same data-type: a I6-bit number. In ALGOL,
the meaning of an expression is dependent both on its context and on the data-t},pes
of the entities involved, and only expressions with certain data-types may appear 10 a
given context. In BCPL, any expression may be used in any context; the context
alone determines how the I6-bit value of the expression is interpreted. BCPL never
checks that a value is "appropriate" for use in a given way. For example, an
expression which appears in a "goto" statement is assumed to have "as its value the
address of someplace which is reasonable to jump to; the thing following a "goto"
need not be a label. The advantages of this philosophy about data-types are that it
allows the programmer to do almost anything, and that it makes the language
conceptually simple. The disadvantages are that the user can make errors which
would have been caught by data-type checking, and that some things must be done
explicitly which ALGOL-type languages would do automatically (implicit indirection
on pointer variables, operations on multi-word values such as real numbers and
strings, type conversion, etc.).

Although BCPL has only one data-type, it does distinguish between two kinds of
variables: static and dynamic. They differ as to when and where the cells to which
they refer are allocated. A static variable refers to a cell which is allocated at the
beginning of program execution (i.e., by the BCPL loader); it refers to the same
memory cell for as long as the program runs. A dynamic variable refers to a cell
which is (conceptually) allocated when the block in which it is defined is entered,
and exists only until execution of that block terminates. The space from which the
dynamic variable is allocated is created dynamically when the procedure containing
its defining block is called. "

As in ALGOL, variable names (and other names) are defined in declarations. The
lexical scope of a declared name (the portion of the source .text in which the name is
defined) is governed by BCPL's block structure.

3-2 Scope Rules

At the outermost level, a BCPL source file consists of a sequence of global
declarations followed by a multiple procedure declaration. The possible global
declarations are:

external [NAME; ... ; NAME]

3.1

Revised BCPL Manual, September 9, 1975 DECLARATIONS AND PROCEDURES

static [NAME = CONSTj ... j NAME = CONST]

manifest [NAME = CONSTj ... j NAME = CONST]

structure NAME: [...]

The external and static declarations define static variables; the manifest declaration
defines literals; the structure declaration defines templates for symbolic references to
partial-word and multi-word data.

A multiple procedure declaration has the form

let NAME(ARG, ... , ARG) BODY
and NAME(ARG, ... , ARC) BODY

and NAME(ARG, ... , ARG) BODY

where BODY is either "be STAT" or "= EXP".

The NAMEs in external, static, manifest, and structure declarations at the outermost
level are defined from the point of declaration to the end of the source file; all of
the NAMEs in the "let ... and ... " sequence at the outermost level are defined in all
of the BODYs. These are the only names which are globally defined. All other
names are defined either as ARGs in the procedure declarations, or in local
declarations within compound statements in the BODYs.

A compound statement is a sequence of statements and declarations, separated by
semicolons, and enclosed within the brackets "[" and "]". (If a carriage return
separates two statements, the semicolon can be omitted.) The brackets have a function
similar to that. of the words "begin" and "end" in ALGOL. A compound statement
may be used wherever a simple statement can be; in this manual, "STAT" always
means either a simple statement or a compound statement. Compound stat.ements are
used when two or more st.atements are needed in a context in which BCPL expects a
single statement (e.g., as the body of a procedure, or as one of the arms of a
conditional statement). Compound statements delimit the scope of locally declared
names.

Local declarations may be intermixed with statements (unlike ALGOL, in which
declarations may appear only at the beginning of a comJilOund statement).
"Declaration" here includes dynamic variable declarations (let NAMEl, ... ,
NAMEn = EXPl, ... , -EXPn"), as well as the external, static, manifest, structure, and
procedure declarations mentioned above. The following rules govern the scope of
local declarations:

1)

2)

3)

A local declaration may appear in a compound statement only in the
following contexts: at the beginning of a statement, or after a semicolon
(including a semicolon implicitly inserted by the compiler between
statements on different lines), or following a statement label that follows a
semicolon. The effect of this rule is to disallow things like
"if x eq 0 then let y = 0 (although "if x eq 0 then [let y = 0 ...] is
perfectly legal). A declaration may be labeled.

A declaration starts a block; the block ends at the end of the compound
statement containing the declaration. A name defined in the declaration is
known only within the block introduced by the declaration, and in
sub-blocks contained within that block if the name is not redeclared.

(Exception to rule (2).) A dynamic variable is not known in any procedure
body other than the one in which it was declared. Thus, if the procedure

3.2

Revised BCPL Manual, September 9, 1975 DECLARATIONS AND PROCEDURES

3-3

"g" is declared inside of the body of procedure "f", the dynamic variables
defined in "f" are not known to "g". (This is because the dynamic
variables of "f" reside in space which is dynamically allocated when "f" is
called. When "g" is called, it does not know where this space is; in fact,
there might be more than one execution of "f" in progress when "g" is
called, or there might not be any active execution of "f".)

4) A statement label ("NAME: ... ") appearing within a block is treated as if it
were a static variable declared immediately after the declaration which
begins the block. So a label is known throughout its enclosing block, but
not outside that block.

Manifest Constants

The declaration

manifest [NAME1 = CONST1; ... ; NAMEn = CONSTn]

defines NAME! through NAMEn as manifest constants. (If there is only one NAME,
the brackets are not necessary.) The expressions CONST! through CONSTn must be
constant expressions; that is, their values must be computable by the compiler. The
meaning of a program would be unchanged if each manifest name were replaced by a
string of digits representing its value. In particular, manifest names do not have
addresses.

3-4 Structure Declarations

(Structures are described in Section 6 of this manual.)

3-5 . Static and External Variables

Static variables may be declared in four ways: by a static or external declaration, by
a procedure declaration, or by a statement label assignment.

The declaration

static [NAME1 = CONST!; ... ; NAMEn = CONSTn]

defines NAME! through NAMEn as static variables, and causes them to be initialized
with the values CONST! through CONSTn at the beginning of program execution
(i.e., in the "save file" created by the loader). (If there is only one NAME, the
brackets are not necessary.) The CONSTs must be expressions whose values are
computable by the compiler. If it doesn't matter what the variable is initialized to,
the " = CONST" should be left out, or " = nil" should be used.

Any of the NAMEs that are preceded by an "@" will be allocated by the loader in

3.3

Revised BCPL Manual. September 9. 1975 DECLARATIONS AND PROCEDURES

page zero. Such variables are called "common" variables. They can be addressed
directly by the compiled code, whereas normal static variables must be addressed by
indirection through a literal; so common variables are more efficient. However, there
is room in page zero for only about 150 (decimal) common variables; the loader will
complain if too many common variables are assigned.

The procedure declarations

let NAME(ARG ARG) be STAT

let NAME(ARG, ARG) = EXP

declare NAME as a static variable which is to be initialized by the loader to the
address of the code compiled for the procedure.

The procedure declaration is discussed fully in the sections on procedure and dynamic
variable declarations.

A statement label assignment

NAME: STAT

declares NAME as a static variable which is to be initialized by the loader to the
address of the code compiled for STAT. A label assignment does not begin a block;
the name is treated as if it were declared immediately after the declaration which
begins the smallest enclosing block. Thus. a label is defined throughout the block in
which it appears.

The declaration

external [NAMEl; ... ; NAMEnl

declares NAME! through NAMEn as external static variables. (If there is only one
NAME. the brackets are not necessary.) The purpose of the external declaration is to
allow separately compiled pieces of a program to reference the same variables.
Within a given source file, the scope of an external variable is the same as that of
other types of variables; but if two or more separately compiled source files declare a
given name external, the loader will make each refer to the same cell. In (exactly)
one of the source files in which a given name is declared external, the name should
also be declared as a static variable (by a static declaration, a procedure declaration,
or a statement label assignment) someplace within the scope of the external
declaration. (Note that the static declaration must follow the external declaration.)
This is not a re-definition of the name, but rather tells the loader how to initialize
the external static variable: The loader will complain about an external variable
which is not declared static someplace, or about one which is declared static more
than once.

NAMEs that are preceded by an "@" in an external declaration will be defined as
common variables. A NAME that is declared both external and static may be
designated as common in either or both declarations.

Note that only static variables may be external.

3.4

Revised BCPL Manual, September 9, 1975 DECLARATIONS AND PROCEDURES

3-6 . . Procedure Declarations

There are two kinds of BCPL procedures: "functions", which return a value upon
completion, and "routines", which do not. A function is defined by a declaration of
the form

let NAME (ARG1, ... , ARGn) = EXP

A routine is defined by

let NAME(ARG1, ... , ARGn) be STAT

NAME is the name of the function or routine being defined. (Actually, NAME
becomes a static variable which will be initialized with the address of the procedure,
as noted in the section on static variables.) ARG 1 through ARGn are the formal
parameters (dummy arguments) of the procedure. They are either NAMEs, or the
special symbol "nil", indicating an unnamed argument. ARGl through ARGn become
the first n dynamic variables declared in the procedure body. If there are no .dummy
arguments, the declaration is of the form "let NAME() be STAT" or "let
NAME() = EXP".

In the function declaration, EXP is the expression whose value is returned when the
function is called. EXP may be a simple BCPL expression; but for most functions it
will be an expression of the form "valof STAT", where STAT may be a compound
statement. The STAT in a "valof" expression should contain at least one "resultis"
statement. The STAT is executed until a statement of the form "resultis EXP" is
encountered; then EXP becomes the value of the "valof" expression, and therefore the
result of the function. The "valof" expression will also terminate when control would
otherwise pass to the statement following STAT. If ihis happens, the value of the
"valof" expression is garbage.

In the routine declaration, STAT is the statement which is executed when the routine
is called. STAT may be a compound statement. STAT may contain one or more
"return" statements; the routine returns when a "return" statement is executed, or
when control would otherwise pass to the statement following STAT.

A multiple procedure declaration has the form

let NAMEl(ARG, ... , ARG) be STAT (=EXP)
and NAME2(ARG, ... , ARG) be STAT (=EXP)

and NAMEn(ARG, ... , ARG) be STAT (= EXP)

This declares the procedures NAMEl through NAMEn "simultaneously"; that iE, all of
the NAMEi's are known in each of the procedure bodies. (So, for example, NAME1
can call NAME2 and NAME2 can call NAME1.) The ARGs, of course, are defined
only in their' corresponding procedure bodies.

A procedure body may contain procedure declarations; the names of such procedures
will be local to the defining body (unless they are declared external). But remember
rule (3) in the section on the scope of dynamic variables: dynamic variables are
defined only in the body of the defining procedure, and not in sub-procedure bodies.
For this reason, all procedures in a BCPL program are usually defined at the top
level.

3.5

Revised BCPL Manual. September 9. 1975 DECLARATIONS AND PROCEDURES

3-7 Procedure Execution

A procedure is called by a statement or expression of the form

EXP(EXPI. EXP2 EXPn)

EXP determines the procedure to be executed; EXP1 through EXPn are the actual
parameters. If there are no actual parameters. the form is "EXP()". A procedure
call is an expression if it appears in a context in which a value is expected (e.g .• in
the right-hand side of an assignment statement); otherwise. it is a statement. The
calling mechanism is the same in either case. The only difference is that in the
context of an expression, the procedure is expected to return a value; if it doesn't
(because it is a "routine" rather than a "function"), a garbage value will be used. A
value which is returned by a function called in the context of a statement is
discarded.

EXP will usually be a NAME which is either declared in a procedure declaration in
the current source file, or declared external in the current file and declared as a
procedure in another file. But in general, EXP may be an arbitrary BCPL
expression; for example: "(n eq 0 ? f, g) (x, y)". The formal rule is that the location
referenced by the expression "rv EXP" is the location to which control is to be
transferred l via a "JSR"). The section on Runtime Environment goes into more
detail on this.

When a procedure is entered. it first ·allocates some "frame" space from someplace in
memory. This "frame" is a block of memory which the procedure will use for the
actual parameter values, for any dynamic variables and vectors declared within the
procedure. and for any temporary storage needed by the procedure. The space is
de-allocated when the procedure executes the "return" or "resultis" corresponding to
the call that allocated the frame.

After the frame space is allocated, the values of EXP1 through EXPn are stored in
the first n words of the frame. These n words are those referenced by the n formal
parameters ARG 1, ... , ARGn in the procedure declaration, assuming that the procedure
is called with exactly the number of actual parameters as it was declared to have.
(No check is made to see if actual and formal parameters match. If there are fewer
actual parameters, the formal parameters with no corresponding actual parameters
will have garbage values. If there are more actuar parameters than formal
parameters, the actual parameters with no corresponding formal parameters will be
lost; but this may create havoc by clobbering memory words beyond the end of the
newly created frame.)

Note that each formal parameter takes on the value of its corresponding actual
parameter at the beginning of the procedure call. This implies that procedure calls
are implem~nted by the "call by value" mechanism (in the ALGOL sense); assigning a
value to a formal parameter within a procedure does not affect the value of the
corresponding actual parameter in the calling routine, although it does change the
value of the formal parameter for the remainder of the procedure execution. Suppose
the function "next" is defined by:

let next(x) = valof [x = x + 1; resultis x]

and called as follows:

a = 0; b = next (a)

After the call of next. "a" will still be 0, but "b" will be 1. We can write "next" in

3.6

Revised BCPL Manual, September 9, 1975 DECLARATIONS AND PROCEDURES

such a way as to allow it to change the value of "a" by using the
address-manipulation primitives of BCPL:

let next (xaddr) = valof
[rv xaddr = rv xaddr + 1; resultis rv xaddr]

Then calling "next" as follows:

a = 0; b = next (Iva)

will cause both "a" and "b" to have the value 1.

After the procedure frame has been allocated and the actual parameters have been
stored in the frame, the procedure body is executed. If the procedure terminates
normally (with "return" or "resultis", or by falling through the last statement), the
frame space is deallocated and control returns to the caller. If the procedure exits
with a "goto", the frame space is not deallocated, and the frame pointer is not
changed. This is a bad thing to do.

3-8 Dynamic Variables

A dynamic variable refers to a cell at some fixed position in the frame associated
with the current execution of the procedure in which it is defined. This cell is only
allocated to the variable while the block defining the variable is active (e.g .• while
the block is being executed. or while a procedure called from within the block is
being executed). Outside of the block, the cell is used for something else.

Dynamic variables are declared in two ways: in a dynamic variable declaration, and
as formal parameters in a procedure declaration.

The dynamic variable declaration

let NAMEl, NAMEn = EXPl, ... , EXPn

allocates n consecutive frame cells to NAMEl through NAMEn, and compiles code to
assign the values of EXPl through EXPn to NAMEl through NAMEn. Unlike other
declarations, this declaration is executable; for a given execution of a procedure.
NAMEl through NAMEn always refer to the same frame cells, but the values stored
in these cells are recomputed each time the declaration is executed. The assignment
is done left-to-right.

The EXPs may be any BCPL expression. In addition, there are two special cases:
"nil" and "vec CaNST".

If EXPi is the symbol "nil". the variable NAMEi is declared, but no value is
assigned to NAMEi. Thus. "let x = nil" declares x, but compiles no code; "x" will
have some garbage value until something is assigned to it.

If EXPi is the special expression "vec CaNST" (where CaNST is an expression that
can be evaluated by the compiler), the value assigned to NAMEi will be the address
of the first word of a block of CONST+l consecutive frame cells. This "vector" of
CONST+l cells is allocated from the frame space, and NAMEi is initialized to point
to that vector. These cells exist as long as NAMEi exists; they are used for
something else outside of the block in which the declaration appears.

3.7

Revised BCPL Manual, September 9, 1975

In a procedure declaration

let NAME(ARGl, ... , ARGn) be STAT
or

let NAME(ARG 1, ... , ARGn) = EXP

DECLARATIONS AND PROCEDURES

ARG 1 through ARGn are declared as dynamic variables; their scope is the entire
procedure body. (Recall that the declaration defines NAME as a static variable.) The
declaration is equivalent to

let NAME() be
[let ARG 1, ... , ARGn = nil, ... , nil; STAT]

or to

let NAME() = valof
[let ARG 1, ... , ARGn = nil, ... , nil; resultis EXP]

That is, ARG I through ARGn are the first n dynamic variables declared in the
procedure body, and therefore refer to the first n cells in the frame. The procedure
call "NAME(EXPl, ... , EXPm)" stores the values of the m actual arguments in the
first m cells of the newly created frame. So if m > n, cells n + 1 through m will be
clobbered. If m = n, all is well. If m < n, ARGs m + I through n will have
garbage values. This permits procedures to be called with a variable number of
actual arguments, as long as enough formal arguments are declared to provide space
for the largest actual argument list. For example, if we define a procedure
something like

let f(.,xO, xl, x2, ... , x20) be
1 let ar~ = Iv xO

... argh
]

then the expression "arg!i" references the ith argument.

The ARGs are usually NAMEs, but the special symbol "nil" is also legal as an ARG.
The "nil" has the effect of leaving space for an argument, but not declaring a name
for that argument. So the procedure "f" above might also have been defined as

let f(xO, nil, nil, ... , nil) ...

Argument i can still be referenced by "arg!i".

In procedures which are called with a variable number of arguments, the "numargs"
facility may be useful. An argument list in a procedure declaration may take the
form

let NAME(ARGI, ... , ARGn ; numargs NAME) ...

The NAME following" ; numargs" is declared as a dynamic variable in the procedure
body; when the procedure is entered, NAME is set to the number of actual arguments
in the procedure call. Note the semicolon preceding "numargs".

3.8

Revised BCPL Manual, September 9, 1975

SECTION 4

EXPRESSIONS

4-1 Memory References

There are four kinds of BCPL expressions which ~efer to memory cells: variable
names, rv-expressions, vector reference expreSSlons, and structure reference
expressions. These are the only things that can appear as the left-hand side of an
assignment statement "REF = EXP" or as the argument of an lv-expression "Iv REF".
In an assignment statement, REF specifies the cell to be modified. The value of an
lv-expression is the address of the cell specified by REF. (These two contexts are
the only ones in which the form of the expression is restricted.) In all other
contexts, the value of a memory-reference expression is the value contained in the
specified cell.

Memory reference expressions are described below in terms of the Nova instructions
compiled. There are six Nova op-codes that reference memory: LDA ac, STA ac,
JMP, JSR, ISZ, DSZ. The symbol "OP" in the description below designates one of
these op-codes; the address of the op-code is in standard Nova form (@ displacement,
index). In general, an assignment statement generates a STA; a procedure call
generates a JSR; and other contexts generate a LDA.

dynamic variable names:

Dynamic variables are allocated cells in the first 200 (octal) words of the
frame for the procedure in which they are declared. While a procedure is
being executed, AC2 always points at the procedure's frame; so dynamic
variables are referenced by "OP n,2", where "n" is the offset of the
dynamic variable in the frame. This imposes a limit on how many
dynamic variables a procedure may declare; the I?ractical limit is about 100
(decimal) dynamic names in a given scope. (Because the frame is allocated
dynamically when a procedure is called, dynamic variables cannot be
accessed directly from any procedure other than the one in which they are
declared, as noted in scope rule (3) in Section 3.)

static variable names:

Static variables are allocated space by the loader, either in "common"
(page zero) or in another area of memory which is fixed during loading.
Common variables are accessed by "OP n,O", where 0 < n < 377. Other
static variables are not directly addressable, since they are in some
arbitrary area of core, so thex are addressed through indirection by "OP
@n,l" (that is, "OP @.+n'), where n is the PC-relative offset
(-200 < n < 177) of a word containing the address of the static variable.

vector references: EXP1! EXP2

This expression references a memory cell whose address is given by the
value of (EXP1 + EXP2). The reason for calling an expression like "All"
a "vector reference" is the . following. Suppose that the value of the

4.1

Revised BCPL Manual, September 9, 1975 . EXPRESSIONS

4-2 .

variable "A" is the address of the first word of a zero-origin
one-dimensional array (a "vector"). Then the expression "A!I" references
the Ith word of the vector A, since the value of the expression "A+I" is
the address of this word. Note that the "!" operator is commutative.

In general, vector references generate code to compute the sum of EXP1
and EXP2 in AC3 (e.g., "LDA O,EXPl; LDA 3,EXP2; ADD 0,3"), and then
reference the vector element with "OP 0,3". In the case where EXP2 (or
EXP1) is a small constant (-200 < n < 177), EXPI (or EXP2) is loaded
into AC3, and the vector element is accessed by "OP n,3". In any case, a
vector reference always uses indexing through AC3. See the note on
rv-expressions below.

rv-expressions: rv EXP, @EXP:

This expression references a memory cell via indirect addressing through
EXP. In general, the value of EXP is computed and stored in a temporary
cell in the frame, and the reference is done by "OP @n,2", where n is the
offset of the temp cell. There are several special cases: If EXP is a
dynamic variable name, "OP @n,2" is used, where n is the frame offset of
the variable. If EXP is a common variable name, "OP @n,O" is used,
where n is the page zero address of the variable. On the Nova, if EXP is
a static variable name, "OP @n,l" is used (that is, "OP @.+n), where n is
the PC-relative offset of a word containing the address of the static
variable with the indirect bit (bit 0) set. If EXP is a vector reference,
"OP @n,3" is used, after loading AC3 appropriately.

The expression "rv EXP" may also be written "@EXP".

An rv-expression always generates an indirect reference through a memory
cell. A vector reference always generates an instruction which is indexed
by AC3. Therefore, on the Nova, "rv EXP" is not necessarily equivalent
to "EXPl!EXP2" when the values of (EXP) and (EXPI + EXP2) are the
same: the rv-expression will always cause a multiple indirection if EXP
has bit 0 set; a vector reference will never do so, since indexing ignores
bit O. On the Alto the two are always the same, since all 16 bits are part
of the memory address.

structure reference expressions:

These are described in the section on structures.

Constants

BCPL recognizes the following constructs as constants:

*

*

*

A name which is declared "manifest" is treated as if it had been replaced
by its value.

A string of digits is interpreted as a decimal integer. It may not exceed
2**15-1 (32767 decimal, 77777 octal).

A string of digits preceded by a "#" is interpreted as an octal integer. It
must be less than 2** 16-1 (177777 octal, 65535 decimal).

4.2

Revised BCPL Manual, September 9, 1975 EXPRESSIONS

*

*

*

A string of digits immediately followed by "B" or "b" is also interpreted
as an octal integer. If the "B" or "b" is immediately followed by a
(decimal) number n, the octal value is shifted left n bits. Thus, #1230,
1230B, and 123B3 all represent the same value. One-bits may not be
shifted out of bit O.

The reserved words "true" and "false" are constants with values #177777
and 0 respectively.

A "$" followed by any printing character other than "*" represents a
constant whose value is the 7-bit ASCII code of the character. "*" is an
escape character; the following escapes are recognized:

*s *S space (#40)

*t *T tab (#11)

*n *N carriage return (#15)

*c *C carriage return (#15)

*1 *L line feed (#12)

*" double quote (#42) [$" IS also O.K.]

*nnn The octal number "nnn". [Exactly three digits.]

** * (#52)

Note: ""je" followed by anything else gives an error.

The compiler evaluates most expressions that involve only constants, and treats the
resulting value as a single constant. (The exceptions are "selecton" and "valof"
expressions. Conditional expressions like "CONST ? CONSTl, CONST2" are evaluated;
the value is CONST2 if CONST is 0, and CONST! otherwise.) Throughout this
manual, the symbol "CONST" (described as "an expression which can be evaluated by
the compiler") means either one of the constant constructs above, or an expression
involving only constants.

4-3 Precedence of Expressions

In order of decreasing precedence, the legal BCPL expressions are:

NAME; constant; string literal; table literal; (EXP)

EXP(EXPl, ... , EXPn)

EXPl!EXP2

EXP»NAME.NAME. ... EXP< <N AME.NAME

Iv EXP; rv EXP; + EXP; -EXP

EXPI <muD EXP2 «muD: *, I, rem, lshift, rshift)

4.3

Revised BCPL Manual, September 9, 1975

-EXPI + EXP2; EXP1 - EXP2

vee CONST

EXP1 <reD EXP2 «reD: eq, ne, Is, Ie, gr, gel

not EXP

EXPl&EXP2

EXPl%EXP2

EXPI xor EXP2; EXPI eqv EXP2

EXP ? EXPl, EXP2

selecton EXP into ...

valof STAT

EXPRESSIONS

Operators with the same precedence are left-associative, except for "<muD", "&", "%",
"xor", and "eqv", which are right-associative. Precedence and associativity can be
changed by parenthesizing. Some cases to note:

"a/b*c" is "a/(b*c)"

"rv v!i" is "rv(v!i)"

"rv p»a.b" is "rv (p»a.b)"

"v!p»a.b" is "(v!p)>>a.b"

"v!i+j" is "(v!i)+j"

"a%b&c" is "a%(b&c)"

"a & b eq c" is "a & (b eq c)"

Precedence only determines the way in which an expreSSIOn is parsed; nothing is
implied about order of evaluation. In general, the order in which the sub-expressions
of an expression are computed is unspecified. So, although "f(x) + g(y) * h(z)"
means "f(x) + (g(y) * h(z))", no assumption should be made about which function is
executed first.

4-4 . . . BCPL Expressions

string literals

A sequence of characters enclosed in double quotes (") is a string literal.
Its value is the address of the first word of a block of memory containing
the string. A BCPL string is stored two bytes per word, left-hand byte
first, with the left-hand byte of the first word containing the number of
characters in the string. If the string has an even number of characters,
the right-hand byte of the last word is 0; but if it has an odd number of
characters, the last word of the string contains the last two characters, not

4.4

Revised BCPL Manual, September 9, 1975 EXPRESSIONS

two 0 bytes. Note that BCPL strings are not compatible with Nova DOS
strings.

String~ haye a maximum length of 255 characters. The character "*"
appearmg m a string literal is an escape character, as described for
character constants.

table [CONSTl; ... ; CONSTn]

The value of a table expression is the address of the first word of a block
of memory containing the CaNST values.

EXP ()
EXP (EXPl, EXP2, ... , EXPN)

The value of EXP is assumed to be the address of a BCPL function. This
function is called with the values of EXPl, ... , EXPN as arguments. The
value of the function call is the value returned by the function via a
"resultis" statement. See the section on procedure execution for details.

The call is implemented by a Nova JSR instruction (a memory reference
op-code) to "rv EXP". So if EXP has bit 0 set, a multiple indirection will
take place. If bit 0 is zero, the value of EXP is the address of the first
instruction executed.

The empty argument list "()" is necessary if there are no arguments.
"x = f(J" calls a function, but "x = fIt puts the address of the function in
"x". Forgetting the "()" is a common error; be careful.

Iv REF

REF must be a variable name, a vector reference, an rv-expression, or a
structure reference; anything else gives an error message. The value of
the lv-expression is the address of the cell which REF references (but see
the note on "lv(rv EXP)" below).

The value of "Iv NAME", if NAME is a dynamic variable, is the sum of
the current frame pointer (which is in AC2) and the offset of the variable
in the frame (a constant). This address is valid only while the block in
which the variable was declared is active.

The value of "Iv NAME", where NAME is a static variable, is the address
of the static variable. This is a constant throughout the execution of the
program, since static variables never move. (But "Iv NAME" is not a
compile-time CaNST.)

The value of "lv(EXPl!EXP2)" is the sum of, the values of EXPI and
EXP2.

The value of "Iv (rv EXP)" is the address of the cell that "rv EXP"
references. On the Nova, if EXP has bit 0 set, "rv EXP" would cause a
multiple indirection; in this case, the value is computed by following the
indirection chain. There is nothing special about bit 0 on the Alto; it is
just another bit of the address.

The value of "Iv (EXP»NAME.NAME)" is the address of the word
which contains the first bit of the referenced field.

rv EXP
EXPI ! EXP2

4.5

Revised BCPL Manual, September 9, 1975 EXPRESSIONS

See the section on Memory References (Section 4-1).

+EXP

The value is the value of EXP.

-EXP

The value is the two's-complement of the value of EXP.

EXPI * EXP2

The value IS the low-order 16 bits of the 32-bit signed product. If one of
the EXPs is a constant whose value is a power of 2, a left shift is done;
otherwise the standard Nova multiply sequence is done. There is currently
no way to get at the high-order part of the product, or to detect overflow.

EXPI/ EXP2
EXP2 rem EXP2

The standard Nova signed inte~er divide se<:J.uence is done. (Division by a
power of 2 is not done b;r shifting.) The I" expression gives the 16-bit
signed quotient; the "rem' expression gives the 16-bit remainder, which
has the same sign as EXPI. If EXP2 is zero, the results are undefined.
There is currently no way to detect this.

EXPI lshift EXP2
EXPI rshift EXP2

The value is the value of EXPI shifted left or ri~ht EXP2 bits. Vacated
positions are filled with O's. Bits shifted off eIther end of the 16-bit
word are lost. The shifts are logical, not arithmetic, in that the sign bit
may be changed. There are currently no arithmetic- or circular-shift
operators.

EXPI + EXP2
EXPI - EXP2

The value is the sum (difference) EXPI and EXP2. The statement
"EXP = EXP + 1" generates an ISZ or DSZ followed by a NOP. There is
currently- no way to detect overflow.

EXPI eq EXP2
EXPI ne EXP2
EXPI Is EXP2
EXPI Ie EXP2
EXPI gr EXP2
EXPI ge EXP2

EXPI-EXP2 is computed and compared with 0; the value of the relational
expression is always either "true" (#177777) or "false" (0). Warning: This
differs from a genuine signed comparison of EXPI and EXP2 if /EXPI-EXP2/ is
greater than 2**15-1.

not EXP

The value is the logical complement (one's-complement) of the value of
EXP. But see the note on "&' and "%" below.

EXPI & EXP2

4.6

Revised BCPL Manual, September 9, 1975 EXPRESSIONS

EXP1 % EXP2

In most contexts, the value is the logical-and or logical-or of EXP1 and
EXP2. However, in the context of the Boolean part of an "if", "unless",
"test", "while", "until", "repeatwhile", or "repeatuntil" statement, or of a
conditional expression, the evaluation of an expression involving "not", "&",
or "%" is optimized. This optimization can change the meaning of the
expression. For example, the sequence "if a & b then ... " is not always the
same as the sequence "x = a&bj if x then ... ", even if the evaluation of "a"
and "b" do not involve side effects. See the section on conditional
statements.

EXPl xor EXP2
EXPl eqv EXP2

The value of the "xor" expression is the logical exclusive-or of EXPl and
EXP2. The value of the "eqv" expression is the logical complement of this
value.

EXP ? EXPl, EXP2

The value is the value of EXPl if EXP is non-zero, or the value of EXP2
if EXP is zero. EXP is optimized if it involves "not", "&", or "%"j see the
section on conditional statements.

valof STAT

This expression causes the statement STAT to be executed until a
"resultis EXP" statement is encountered or until control would otherwise
pass to the statement following STAT. If a "resultis EXP" is executed,
EXP becomes the value of the "valof STAT" expression. If execution of
STAT terminates, the expression has a garbage value. The "valor"
expression is usually used as a function bodyj but it may be used anyplace
an expression can be.

selecton EXP into
[case CONSTl: EXPl

]

case CONSTn: EXPn
default: EXPO

This expression is equivalent to

switch on EXP into
[case CONSTl: resultis EXPl

]

case CONSTn: resultis EXPn
default: resultis EXPO

That is, its value is EXPi if the value of EXP is CONSTi, or EXPO if
EXP is not equal to any of the CONSTs. If no "default" label appears,
the "selecton" expression will have a garbage value if none of the cases is
matched.

newname NAME

This expression evaluates at compile time to "true" if the NAME is

4.7

Revised BCPL Manual, September 9, 1975 EXPRESSIONS

appearing in the source file for the first time. It evaluates to "false" if
it has appeared before (including previous "newname" constructs). This
construct is useful in conjunction with conditional compilation or the 1M
compiler switch (command-line declarations).

4.8

Revised BCPL Manual, September 9, 1975

SECTION 5

STATEMENTS

5-1 Assignment Statements:

REF = EXP

The value of EXP is stored into the memory cell referenced by REF. See
the section on Memory References (Section 4-1).

REFI, ... , REFn = EXPI, ... , EXPn

This statement is equivalent to the sequence "REFI = EXPI;
REFn = EXPn". The assignments are made left-to-right.

. ... ,

5-2 Routine Calls:

EXP ()
EXP(EXPl, EXP2, ... , EXPn)

A routine call differs from a function call only in that a routine call
occurs in a context where a statement is expected, whereas a function call
occurs in a context where an expression (a value) is expected. The calling
sequence for routines is identical to that for functions.

5-3 Cop.ditionals and Iterative Statements:

The evaluation of EXP in an "if", "unless", "test", "while", "until", "repeatwhile", or
"repeatuntil" statement is optimized if EXP involves "not", "&", or "%". In general,
EXP "succeeds" if it is non-zero, "fails" if it is O. But "EXPI&EXP2" is tested by
first testing one of the EXPs; if it "fails", the &-expression "fails", and the other
expression is not evaluated. Similarly, in "EXPI%EXP2", one of the EXPs is tested;
if it "succeeds", "EXPl%EXP2" succeeds. A "not EXP" "succeeds" if EXP "fails", and
"fails" if EXP "succeeds".

This optimization has two significant consequences:

a)

b)

In a statement such as "if f(x) & g(x) do ... ", it is not guaranteed that
both functions will be executed; so any side-effects of "f" and "g" cannot be
depended on.

The statement "if x & y do ... " is not necessarily equivalent to the sequence
"z = x&y; if z do ... ". For example, if "x" has the value 1 and "y" has the
value 2, "z = #x&y" would assign the value 0 to "z", because "1&2" is zero;

5.1

Revised BCPL Manual, September 9, 1975 STATEMENTS

so "if z do ... " will consider "z" to "fail". But both "x" and "y" are
nonzero, so "if x&y do ... " will consider "x&y" to "succeed". In general, "&"
should be used in conditional statements only when its operands are known
to take on only the values "true" (#177777) or "false" (OJ. Note that this
is the case for relations; so "if x ne 0 & y ne 0" does the right thing.

if EXP do STAT
unless EXP do STAT

The "if" statement executes STAT if EXP succeeds. The "unless" statement
executes STAT if EXP fails. The word "do" may be replaced by the word
"then", but (unlike ALGOL) no "else" clause IS allowed; use the "test"
statement for two-armed conditionals. The "do" or "then" may be omitted
if STAT appears on the same line as the "if" or "unless" clause, and if
STAT is one of the following types of statements:

"if" "unless" "test" "while" "until" "for" "goto" "return" "resultis"
"switchon" "break" "loop" "endcase"

test EXP then STATl or STAT2
test EXP ifso STATl ifnot STAT2
test EXP ifnot STAT2 ifso STAT1

Each of the above "test" statements executes STAT1 if EXP succeeds, or
STAT2 if EXP fails. Both clauses must be present; use the "if" statement
or the "unless" statement for one-armed conditionals. If "then" and "or"
are used, they must a~pear in that sequence; the STAT following "then" is
the true branch. If "1£so" and "ifnot" are used, they may appear in either
order; the STAT following "ifso" is the true branch.

while EXP do STAT
until EXP do STAT

The "while" statement executes STAT as long as EXP succeeds. The
"until" statement executes STAT as long as EXP fails. The test on EXP is
done before the first execution of STAT. The word "do" may be omitted
in the same contexts as for the "if" statement.

The "while" statement is equivalent to:

"goto M; L: STAT; M: if EXP goto L"

The "until" statement is equivalent to

"goto M; L: STAT; M: unless EXP go to L"

STAT repeatwhile EXP
STAT repeatuntil EXP

The "repeatwhile" statement executes STAT as long as EXP succeeds. The
"repeatuntil" statement executes STAT as long as EXP fails. STAT is
executed once before the test on EXP is done. STAT may be a single
statement or a compound statement.

The "repeatwhile" statement is equivalent to:

"L: STAT; if EXP goto L"

The "repeatuntil" statement is equivalent to:

5.2

Revised BCPL Manual, September 9, 1975 STATEMENTS

5-4

"L: STAT; unless EXP goto L"

STAT repeat

The "repeat" statement executes STAT repeatedly (until terminated by a
"break", "return", "resultis", or "goto" statement). It is equivalent to:

"L:STAT; goto L"

for NAME = EXP1 to EXP2 by CaNST do· STAT

break
loop

NAME is a legal variable name; EXP1 and EXP2 may be arbitrary
expressions; "by CONST" may be missing (1 is assumed), but if present, it
must be a constant expression. The "for" statement is (logically)
equivalent to the following block:

[

L:

M:

]

let NAME, lim, inc = EXP1, EXP2, CaNST
goto M
STAT
NAME = NAME + inc
test inc ge 0
ifso if NAME ge lim goto L
ifnot if NAME Ie lim goto L

Several things about the "for" statement should be noted:

1)

2)

3)

4)

5)

The controlled variable is implicitly declared as a new dynamic
variable; it is defined only in STAT, and not accessible after the
loop terminates.

EXP2 is evaluated only once, at the beginning of the "for" statement.

As noted, CaNST (if present) must be a constant expression. If it is
negative, the termination test is reversed.

STAT is not executed if the initial condition fails the termination
test (like ALGOL, unlike FORTRAN).

STAT is executed when the controlled variable is equal to the limit.

These are single-word BCPL statements which are legal only in the context
of an iterative statement. The effect of "break" is to jump to the
statement immediately following the smallest textually enclosing iterative
statement. The effect of "loop" is to jump to the point at which the next
iteration starts: to the test in a "while", ."until", "repeatwhile", or
"repeatuntil" statement; to the increment of NAME in a "for" statement;
or to the beginning of a "repeat" statement.

. Conditional Compilation Statements:

compileif EXP then [<sequence>]

5.3

Revised BCPL Manual, September 9, 1975 STATEMENTS

5-5

compiletest EXP then [<sequence>]

These constructs allow alternative code sequences to be chosen at compile
time; they are analogous to "if" and "test." There are several restrictions
on the use of these statements:

The EXP must be comprised of operations on manifest and
numeric constants, so that it may be evaluated at compile time.

A conditional com{lilation construct can appear wherever a "let"
would be legal lNot, for example, within a statement or
declaration, or directly following "then," "ifso," "ifnot," or
"case").

Although the syntax of conditional com'pilation parallels that of
conditional statements, the brackets Cl]) are mandatory. A
<sequence> is a legally separated sequence of commands and
declarations. The <sequence> may contain declarations which
will apply to commands which follow the conditional co;nstruct,
as long as the uses of the variable are also conditionally
compiled.

Conditional selections are done at a time after "get" files have
been read. As a result, "get" commands are unaffected by
conditionals -- the files are always read.

The auxilIary constructs "ifso," "i.fnot," "then," "do," and "or" may all be
used with the conditional compilation tests:

compiletest EXP then [<sequenceD] or [<sequence2>]

.. Labels and Gata Statements:

NAME: STAT

Any BCP.L statement may be labeled. A label is effectively a declaration
of a static variable which is initialized with the address of the labeled
statement. It differs from other declarations in that it does not implicitly
start a new block. Instead, it is treated as if it appeared at the beginning
of the smallest textually enclosing block. See the section on static
declarations for details.

goto EXP

A "Nova JMP is done to "rv EXP". The EXP is usually a label, but need
not be. Control is transferred to the memory location which is referenced
by "rv EXP".

5.4

Revised BCPL Manual, September 9,. 1975 STATEMENTS

5-6 .. Returns:

return
resultis EXP

These statements cause a return from the procedure in which they appear.
"return" is only legal in a routine body; "resultis EXP" is only legal in a
function body.

5-7 Switches:

swi tchon EXP into CASE BLOCK

CASEBLOCK is a BCPL block which contains labels of the form "case
CONSTi:", where the CONSTi are constant expressions. CASEBLOCK may
also contain a label of the form "default:". The effect of a "switchon"
statement is as follows: If the CASEBLOCK contains a "case" label whose
constant CONSTi is equal to the value of EXP, a jump is done to that
label. If no CONSTi matches the value of EXP, a jump is done to the
"default" label if there is one, or to the statement immediately following
the CASEBLOCK if there is no default label.

The appearance of a "case" label does not terminate the preceding case.
That is, in

switchon Char into
[case $A:x = 1

case $B:x = 2
defau1t:x = 0

]

"x" will be 0 no matter what "Char" contains. The statements "x = 1" and
"x = 2" should be followed by a jump to the end of the CASEBLOCK.
The single-word BCPL statement "endcase" woul~ accomplish this.

Case labels are legal only in CASE BLOCKs, and not in any sub-blocks of a
CASEBLOCK. In connection with this, recall that a declaration implicitly
begins a new block. Therefore the sequence

swi tchon x into
[case 0: let temp = 0

case 1:
]

will cause the compiler to complain that "case 1:" does not appear in a
CASEBLOCK. The code which uses "temp" must be enclosed in a block of
its own which does not span other case labels.

Switches are implemented by grouping the case values into one or more
value ranges in which listed values are fairly dense, and doing an indexed
branch on each of these ranges. Case values which do not fall into these
clusters are checked individually if all of the indexed branches fail.

endcase

5.5

Revised BCPL Manual, September 9, 1975 STATEMENTS

5-8

This single-word statement is legal only within the scope of a "switchon"
statement. It causes a transfer to the end of the smallest enclosing
"switchon" statement.

finish
abort

. . Single-Word Statements

These single-word statements terminate execution of the program (on the
Nova by a DOS ".RTN"· system call). The "abort" statement causes a
message to be typed on the terminal.

return
break
loop

These statements are described above.

5.6

Revised BCPL Manual, September 9, 1975

SECTION 6

STRUCTURES

6-1 Structure declarations and references

The structure facility allows the user to define templates for symbolically referencing
{lartial-word fields of variables, and individual words and partial-words of vectors.
(A "vector" in BCPL means any block of consecutive memory words). For example, a
program which manipulates rectangular areas on a display might be using four-word
blocks in memory to represent the center coordinates, width, and height of the
significant areas on the screen. This program could declare a structu.re for
referencing these blocks as follows:

structure rectangle: [x

]

y
width
height

word
word
word
word

The structure is used in conjunction with the If»n operator. For example, if the
program has a variable cursor which points at (i.e., contains the address of the first
word of) a four-word block, the expression cursor»rectangle.width references the
width field of that block, and is equivalent to the expression cursor!2. So the
program can contain statements like

cursor»rectangle.width = 1

and

let cursortop = cursor»rectangle.x + cursor»rectangle.height

The declaration defi.nes rectangle as a four-word structure, with fields named x, y,
width, and height, each of which is one word wide. The fields of a structure are
positioned sequentially, so the x field refers to the first word of a referenced block,
the y field to the second word, etc.

The operator "»" (pronounced "right-lump") expects an expression on the left, and a
description of the field to be referenced on the right. The value of the left-hand
expression is taken as the address of the block of memory to be referenced. The
right-hand side, in the simplest cases, consists of the name of the structure
describing thl:! block, followed by".", followed by the name of the field to be
referenced. The left precedence of "»" is higher than that of all expression
operators except procedure calls and vector subscripts; so

a(b))s.f

a!b»s.f

means

means

(a(b))))s.f

(a!b))s.f

but all other left-hand operands of n»n must be parenthesized.

6.1

Revised BCPL Manual, September 9, 1975 STRUCTURES

It is often convenient to define a structure consisting of a field list at the outermost
level, without a single top-name. For example:

structure [x word
word
word
word

]

y.
width
height

This structure describes a configuration of fields identical to that of rectangle.
However, references to the fields of the structure require only the field name, as in
cursor»width.

Structures may also contain partial-word fields, as in the following example:

structure area : [visible bit 1
blinking bit 1
color bit 5

]

x bit 9
blank bit 2
border bit 5
y bit 9
width byte
height byte

This structure describes three-word blocks which hold various pieces of information
about rectangular areas of the display. The field-size specifier bit N, where N is a
constant expression, defines a field which is N bits wide; the specifier byte defines a
field which is 8 bits wide. A bit field may not overlap a word boundary; the special
name blank (a reserved word) is used- in the above declaration to leave an unnamed
two-bit field in the second word in order to lrevent such an overlap. A byte field
must begin on a byte boundary. A word fiel must begin on a word boundary. No
automatic filling-out to boundaries is done; blank fields must be supplied explicitly
when needed.

With the above definition of area, assuming that cursor points at an area block, we
reference the width field with cursor»area.width, just as for rectangle. But the
definition of area makes this a reference to the leftmost a bits of the third word of
the vector cursor. The statement

cursor»area.width = w

is equivalent to

cursor!2 = ((w lshift 8) & #177400) + (cursor!2 & #377)

(The structure reference generates much better code than this). The rightmost 8 bits
of cursor!2 are unchanged. Similarly, the statement

w = cursor»area.width

stores the left-hand byte of cursor!2 into w, right-adjusted, with 8 leading zero bits;
it is equivalent to

w = (cursor!2 rshift 8) & #377

6.2

Revised BCPL Manual, September 9, 1975 STRUCTURES

6-2 Nested fields

A structure may contain substructures nested to any reasonable depth. For example,
we might define a structure for vectors representing displayed lines of text as
follows:

structure textline : [string word
color byte
linenum byte
margin: [left byte

byte

font: ~

]
]

right

tern pIa tesword
charsize [width

height
]

byte
byte

Now jf the variable title is a pointer to a five-word block of memory containing
textline data, its fields are referenced by:

ti tIe> >textline.string
ti tie> >textline.color
ti tie> >textIine.linenum
ti tle> >textline.margin.left
ti tie> >textline.margin.right
ti tIe> >textline.font.charsize.width
ti tle> >textline.font.charsize.height
ti tle> >textline.font.templates

That is, a field is specified to "»" by a sequence of substructure names separated by
".", ending with the field name.

A substructure name may be used as a field namej that is, it may be the last name
on the right-hand side of "»". So

ti tie> >textIine.margin

is a legal structure reference expression, referring to the full word title!2. However,
a "»" expression may not refer to a field that is longer than 16 bits, or to one that
overlaps a word boundaryj so

ti tIe> >textline.font

is illegal, since the total length of font's subfields is 32 bits.

It is often the case that a group of fields in a structure are identical to those in
another structure or substructure. For example, we might want to define a structure
for vectors which represent rectangular display areas containing a word of text as
follows:

6.3

Revised BCPL Manual, September 9, 1975

structure sign : [text word

]

textsize byte
textcolor byte
visi ble bl t 1
blinking bit 1
color bit 5

STRUCTURES

That is, a sign contains all of the information for a area (visible, blinking, etc.),
plus three additional fields. We can define sign as above without having to copy the
field definitions of area as follows:

structure sign : [text word

]

textcolor byte
textsize byte
@area

Within a structure declaration, an "@" followed by a previously defined structure
name is replaced by the body of that structure's definition. So the above definition
of sign is equivalent to:

structure sign : [text word
textcolor byte
textsize byte
[visible

]
]

blinking
color

bit 1
bit 1
bit 1

The brackets surrounding the inner field list have no effect, like unnecessary
parentheses surrounding expressions. So references like stop> >sign.color are legal
wi th ei ther definition.

We could alternatively have made the area fields part of a substructure in sign as
follows:

structure -sign:

or even

str~cture sign

[text word

]

textcolor byte
textsize byte
textarea @area

[text word

]

textcolor byte
textsize byte
area: @area

In the latter case, references to the area fields look like stop»sign.area.color.

6.4

Revised BCPL Manual, September 9, 1975 STRUCTURES

6-3 Subscripted fields

It is possible to have structure fields which are replicated, with individual
replications referred to in structure reference expressions by integer subscripts. A
simple example is a structure which describes BCPL-format strings:

structure string : [length
chartl,255

]

byte
byte

A "1''' following a field name in a structure declaration indicates that the field is to
be replicated; the "1''' is followed two constants, separated by"," , which specify the
subscripts of the first and last replications. So in the above example, the field char
is replicated 255 times, with the replications numbered from 1 thru 255. Now if s is
a pointer to a BCPL string, the expression

s> >string.chan4

references the fourth character of the string, which is in the left half of s!2. A
subscript in a structure reference expression may be an arbitrary BCPL expression;
the precedence of the "1''' operator is higher than any other operator, so any
subscript other than a name or number must be parenthesized, e.g.,

s»string.chart(i+j) = 0

In references to a subscripted field, the user must be sure to remember what low
subscript value was specified in the declaration. For example, in the above definition
of string, the first character is referenced by

s> >string.chart 1

and the last meaningful character by

s> >string.chart(s> >string.length)

But if the char field had been defined as chartO,254* byte, these references should
be

s> >string.char1'O

and

s> >string.chart(s> >string.length-l)

The low-subscript and high-subscript given in a structure declaration determine the
number of bits occupied by the replicated field:

(high-low+l)**(number of bits in one replication)

Since a structure is only a template, and allocates no memory on its own, the only
significance of this number is that it determines the position of subsequent fields, if
any, in the structure. (It also determines the value of the size expression, which
will be described later). In the string example, char is the last field, so it makes no
difference how many replications are specified. But suppose that we had chosen to
include a text string in sign blocks, rather than a pointer to the string in the first
word. The definition of sign would then be:

6.5

Revised BCPL Manual, September 9, 1975

structure sign : [@string
textcolor byte
textsize byte
area @area

]

STRUCTURES

(Note the uses of the "@" construct). We would then reference the ith character of
a sign with

stop> >sign.charti

With this definition, space for the maximum-length string would have to be left in
every sign block, since the expression stop> >sign. textcolor would be complied as a
reference to the left half of stop!128. It would be better to specify @strmg as the
last thing in sign, so that variable-length blocks could be used.

Any structure name, substructure name, or field name may be declared as subscripted,
subject to the SUBSCRIPTED STRUCTURE RULE given below. For example, we
might define a structure that describes tables of area descriptors as follows:

structure areatable : [numareas
areat1,100 :

]

word
@area

A areatable is a block of storage which contains some number of three-word
subblocks, each of which is formatted as a area block. The first of the area blocks
starts in the second word; the first word of a areatable holds the number of area
blocks in the table. If the variable screen points at a area table block, the expression

screen> >areatable.areat5.width

would reference the width field of the fifth three-word entry; that is, the left-half
of screen!14. Note that the subscript is applied to the name which is replicated in
the declaration (area), not at the end of the n»" expression.

The above expression is somewhat unwieldy. There are two ways in which the
structure could be modified so as to shorten the references to its subfields. One way
is to eliminate the numareas field, and attach the subscript to the name areatable:

structure areatablet 1,100 : @area

With this definition, the width field of the fifth entry would be referenced with

screen> >areatablet5.width

Note that if the numareas field had been included, it would have been replicated
along with the area fields. (An extra word could be allocated above areatable blocks
to hold the number of entries, and accessed as screen!-1; but there is no way to
reference this word as part of the structure).

The second way in which areatable could be redefined is to post-subscript the area
field list:

structure areatable : [numareasword
@areat1,100

]

This form of subscript declaration (subscript applied to a bracketed field list, which
is what @area is equivalent to) replicates the substructure defined by the field list

6.6

Revised BCPL Manual, September 9, 1975 STRUCTURES

(100 three-word blocks in this example), but subscripts in references to the structure
ap'pear after the individual field names. So a reference to the width field of the
fifth entry would be

screen> >areatable.widtht5

Only the area fields are replicated; so it was possible to include the numareas field
in this version of the structure.

Subscripted substructures may contain subscripted fields or sub-substructures to any
depth. For example, we might describe a table of file names with:

structure filetablet 1,50 : [length byte
chart1,15 byte

]

The length of the i th name is referenced by

t> >filetableti.length

and the jth character of the ith name by

t> >filetableti.chartj

Multiple subscripts are also allowable. For example, a 4x3 matrix of double-precision
numbers might be described by:

structure matrixt 1,3t 1,4 : [high
low

]

word
word

This structure describes a storage area which consists of a four-fold replication of a
three-fold replication of a two-word block. In references to a matrix block, the first
subscript specifies which of the four outer replications is to be referenced, and the
second indicates which of its three two-word blocks is wanted. So elements of a
matrix appear in memory in the following order:

m> >matrixt 1 t l.high
m> >matrixt 1 t l.1ow
m> >matrixt 1 t2.high
m> >matrixt 1 t2.1ow
m> >matrixt 1 t3.high
m> >matrixt 1 t3.low
m> >matrixt2t 1.high
m> >matrixt2t l.1ow

m> >matrixt4t3.high
m> >matrixt4t3.low

Note that the" order of subscripts in the matrix structure reference is the reverse of
the subscripts in the declaration.

SUBSCRIPTED STRUCTURE RULE: The replicated field or substructure must begin
on a word boundary and be a multiple of 16 bits wide, or begin on a byte boundary
and be 8 bits wide. Subfields within a replicated substructure need not satisfy this
restriction; it applies only to the size and position of the full replicated element.
For example,

ft1,10 [a bit 3 ; b bit 13]

6.7

: ,

Revised BCPL Manual, September 9, 1975

and

[a bit 3 b bit 5]t1,10

are both legal; but

a1'1,10 bit 3

and

b1'1,10 bit 13

are not.

6-4 Overlays

STRUCTURES

It is often the case that a portion of a structure must be referenced with different
sets of fields at different times; therefore the compiler allows parallel field lists to
be declared. For example, the following structure is a description of the Nova
instruction format:

structure instr : [logical bit 1
[acs bi t 2 ; acd bit 2

func bit 3
shft bit 2 ; cry bit 2
nlod bit 1 ; skp bit 3

=~ op bit 4
i bit 1
x bit 2
d bit 8

]
]

The bracketed field lists joined by "=" refer to the same portion of the structure
(bits 1 to 15). If p points to an instruction, the expression p»instr.logical
references bit 0 of the instruction. On the Nova, this bit distinguishes between
arithmetic/logical instructions and memory-reference instructions; a program would
use this bit to determine whether it is appropriate to reference p»instr.acs, etc. or
p»instr.op, etc.

Parallel substructures need not be of equal length; the position of subsequent fields
is determined by the longest of the overlaid substructures.

6-5 Left-lump structure references

The operator "»" uses the value of its left-hand operand as the address of the data
to be referenced. There is another structure reference operator, "«" (pronounced

6.8

Revised BCPL Manual, September 9, 1975 STRUCTURES

"left-lump"), which takes a variable as its left-hand operand, and loads data from or
stores data into the variable itself, rather than treating the variable as a pointer.
To illustrate, suppose we have defined

structure [lh byte ; rh byte]

and that the value of the variable p is #001003. The statement

q = p»rh

stores into q the right-hand 8 bits of the number contained in memory location
#1003; it is equivalent to

q = p!O & #377

The statement

q = p«rh

stores into q the value #000003, which is the right half of the value of p; it is
equivalent to

q = p & #377

Similarly, the statement

p»rh = q

is equivalent to

p!O = (p!O & #177400) + (q & #377)

which stores a value into the right half of location #1003. The statement

p«rh = q

is equivalent to

p = (p & #177400) + (q & #377)

which stores into the right half of the variable p.

The "«" operator should normally be used only with structures that are one word
wide. The compiler will interpret a statement like

p< <area.width = w

(a reference to the third word of a structure) to mean

(Iv p))area.width = w

This will store into the location which is two words below the place in memory
where p happens to be allocated. It is dangerous to assume anything about the
allocation of BCPL variables, except in special cases such as consecutively declared
dynamic variables, so use this feature with care.

The left-hand operand of a "«" expression may be a vector-subscript expression or
an rv-expression, instead of a variable name. The statement

v!i«area.width = w

6.9

Revised BCPL Manual, September 9, 1975 STRUCTURES

means

(Iv vli»>area.width = w ,or ,equivalently, (v+i» >area.width

and

(@p)«area.width ::: W

means

p»area.width ::: W

(Note where parentheses are needed in the above expressions).

6-6 Other structure operators

The "Iv" operator
as its operand.
referenced by the
field.

may take a structure reference expression ("»" or "«" expression)
Its value is the address of the memory word which would be
structure expression. The field referenced need not be a full-word

It is sometimes necessary to determine the location or width of a field in a
structure. Two special operators are provided for this: "size" and "offset". Both are
unary operators which take a field specification as an operand (that is, a construct
that can appear to the right of "»" or"«". The value of a "size" expression is the
size, in BITS, of the specified field. For example:

size area.width
size area
size string.chard
size string.char

(value is 8)
(value is 48)
(value IS 8)
(value is 2040)

A "size" expression is always a compile-time constant, even if a variable subscript
expression is involved. Note that if a subscript is missing in the field specification,
the size of the entir~ replication is returned.

The value of an "offset" expression is the BIT number, counting from bit 0 at the
beginning of the structure, of the first bit of the specified field. For example:

offset area. width
offset area
offset string.char1'5
offset string.chard
offset string.char

(value is 32)

~value is 0)
value is 40)
value is 8*i)

(value is 8)

An "offset" expression is a constant unless a variable subscript expression is involved.

Keep in mind that "size" and "offset" return values in BITS, not in words. To get a
vector for an area block, for example, you must say

let cursor = vec (size area) / 16

6.10

Revised BCPL Manual, September 9, 1975 STRUCTURES

6-7 " Syntax of structure declarations

STRUCTDECL structure STRUCTGROUP

STRUCTGROUP STRUCTITEM
STRUCTITEM = STRUCTITEM = ••• = STRUCTITEM

STRUCTITEM NAME : FIELDDESCR
NAME 't SUBSCR : FIELDDESCR
blank: FIELDDESCR
STRUCTLIST
STRUCTLIST t SUBSCR

STRUCTLIST [STRUCTITEM ; STRUCTITEM ; ... ; STRUCTITEM]

FIELDDESCR bit
bit CONST
byte
byte CONST
word
word CONST
STRUCTLIST
STRUCTLIST 't SUBSCR

SUBSCR CONST , CONST·
SUBSCR t CONST , CONST

The colons in STRUCTITEM are really only necessary if a carriage return precedes a
STRUCTLIST; in other places they may be omitted. The semicolons separating
STRUCTITEMs in a STRUCTLIST may be omitted if a carriage return separates the
STRUCTITEMs.

6.11

Revised BCPL Manual, September 9, 1975

SECTION 7

SOURCE FILE CONVENTIONS

7-1 Declaration files

The word "get" followed by a file name enclosed in quotes (" ... ") causes the file to be
included in the compilation, as if the contents of the file appeared in the source
text. The most common use of "get" files is to include a common set of manifest,
external, and structure declarations in a number of source files that will be loaded
together. The compiler will ignore a second "get" on a "get" file that it has already
read (this facilitates certain uses of the precompilation feature; see description of the
/G compiler switch) .

7-2 Labeled brackets

Brackets may be labeled with a se9..,uence of letters and digits immediately followin~
the "[" or "]". When a labeled "J" is seen by the compiler, each unmatched "['
(whether it is labeled or not) is implicitly matched until ihe "[" with the same- la-bel
is matched. Thus, in:

if n gr 0 do [1 i = 1
until i gr n do

[2 x!i = 0; i = i + 1]1

the "]1" closes both compound statements. Note that a carriage return, space, or tab
must be present between an unlabeled "[" and a statement that starts with a name.
Usually some error will be detected quickly if no space is left (as in "if n gr 0 do
[x = 0 ... "). But sometimes the resulting statement will be legal (as in
"if n gr 0 do [rv x = 0 ... "). In such cases, the error may not be detected until the
end of the source text; this is often the cause of a non-obvious "unmatched section
bracket" syntax error.

7-3 Semicolon insertion

If two statements are separated by a carriage return, a semicolon is not required
between them. This is accomplished by having the lexical analyzer replace a carriage
return by a semicolon if it is preceded by a symbol which might end a statement and
followed by a symbol which might begin a statement. Carriage returns are ignored
(treated as spaces) in other places. This implies that a BCPL statement may extend
over two or more lines, with the carriage returns occurring anywhere in the
statement except before a "+" or "_", or before the "(" which begins a function
argument list. So

7.1

Revised BCPL Manual, September 9, 1975 SOURCE FILE CONVENTIONS

x = a -
(b*c)

will be interpreted properly (no semicolon inserted), but

x = a
- (b*c)

and
x = a-f

(b,c)

will give a parsing error, because semicolons will be inserted at the carriage returns
("+", "-", and "(" might begin a statement).

Semicolons will also be inserted at carriage returns in external, manifest, static and
structure declarations, and in the constant list of table expressions.

Carriage returns may no appear in string constants. To include a carriage return,
use *N or *C.

7 -4 Do/Then insertion

The words "do" and "then" are equivalent; so .one may write

or
if x Is 0 then x=-x

if x Is 0 do x=-x

The "do" (or "then") in an "if," "unless," "while," "until," or "for" statement may be
omitted if the symbol which would follow the "do" is one of the following

if
unless
while
until
test

Thus one may write:

for
switchon
goto
return
resultis

break
loop
finish
abort
endcase

if x eq 0 resultis -1
while x Is 0 goto L
unless x gr 0 break
for i=1 to 10 switchon v!i into [...]

7-5 Comments

Comments may appear anywhere in the source text, and begin with a pair of slashes
(I I). The slashes and the remainder of the line on which they lie are ignored.

7.2

Revised BCPL Manual, September 9, 1975 SOURCE FILE CONVENTIONS

7 -6 Upper case VS. Lower Case

Source files may be upper-case only, or upper- and lower- case. If lower-case is used,
reserved words must be lower-case. The basic rules for case are as follows:

If the first word of the source program (i.e., of the file named in the command line)
consists of all lower-case characters, the compiler will distinguish words on the basis
of case; and reserved words must be typed in lower-case.

If the first word is not entirely lower-case, the compiler will, in effect, convert
everything to upper-case on input. The global switch IU will also cause input to be
converted, even if the first word is in lower-case.

This rule has implications for both compiling and loading. For compilation:

1.

2.

If your program is entirely upper-case, any "get" files specified in the program
will be treated as upper-case files, even if they were prepared in lower-case. So
an upper-case program can use a file of declarations (e.g., lOX for the 10
package), as long as that declaration file does not depend on case to distinguish
between names.

If your program wants to distinguish names on the basis of case, reserved words
must be typed in lower case, both in your program and in any "get" files which
the program needs. So in order to use a declaration file which was prepared in
upper case, you must either use the IU switch (if you don"t care about case) or
change the declaration file's reserved words to lower-case (if you do care about
case in your program).

The BCPL loader (BLDR) normally distinguishes external names 011 the basis of case.
So if you want to load upper-case and lower-case .BR files together, you must use the
IU global switch on BLDR (or, alternatively, recompile the lower-case programs with
IU). In particular, you must use BLDR/U if you load the 10 package (101.BR,
I02.BR) with upper-case programs, or recompile the source files (101, 102) with
BCPL/U.

7.3

Revised BCPL Manual, September 9, 1975

SECTION 8

COMPILATION

8-1 ... Normal compilation

The BCPL compiler consists of six files, normally called BCPL.SV, BCPL.YL,
BCPL.YC, BCPL.YS, BCPL.YT, and BCPL.YG. The .SV file is the main program; the
.y* files contain the code for the five passes of the compiler. The .y* files must
have the same name as the save file and the given extensions; so to rename the
compiler, you must rename the .y* files as well as the .SV file.

Normally, to compile a source file (e.g., QUEENS.3), just type

BCPL QUEENS.3

(Only one source file may be compiled at a time.) (No extension is automatically
assumed for the source file name.) The compiler will print

BCPL 2.0 -- QUEENS.BR = QUEENS.3

and begin compiling the program. (2.0 is the current version of the compiler.) If no
errors are detected, the BCPL relocatable binary file QUEENS.BR will be created, and
the compiler will print something like

QUEENS.BR -- 1426 (790) WORDS

The numbers are the length of the code generated in octal (decimal).

If an error is detected in the source text, the compiler will generally print each
offending line and indicate the error(s) found in that line. The compiler will
continue to look for further errors as long as it can do so without getting confused,
and finally print the message

n ERRORS IN QUEENS.3

Some errors are grounds for immediate termination of compilation. The most
common ones are trying to compile a source file that does not exist, or typing a
command line that BCPL does not undershnd. Suitable, messages are printed to
indicate such errors. It is also possible to have a program which is "too big", in one
respect or another, for BCPL to handle. This usually results in a message like
"FRAME SPACE OVERFLOW" or "OUT OF FRAME SPACE". You must split the
program into separately compilable files when this happens.

The compiler normally assumes that the Nova console is a CRT terminal. Therefore,
after producing 20 lines of terminal output, it rings the bell (if any), prints a colon,
and waits for the user to type a carriage-return or line-feed before proceeding.
Carriage-return produces 20 more lines; line-feed produces one more line; 0 followed
by carriage-return or line-feed causes the compiler to proceed without further pauses.

8.1

Revised BCPL Manual, September 9, 1975 COMPILATION

8-2 Global switches

These switches can be attached to the name BCPL (or a whatever you call- your
compiler); e.g., "BCPL/UI A QUEENS.3".

IU

IP

IF

Treat the source file as if it had been typed entirely in upper case.
(See the section on upperllower case considerations.)

Turn off the "pause" feature described above.

Write error messages onto the file QUEENS.BT (if the source file
name was QUEENS.3) instead of printing them on the terminal. If
IF is given, the compiler prints the message

BCPL 2.0 -- QUEENS.BR,QUEENS.BT = QUEENS.3

at the beginning of compilation.

I A Produce an assembly-language listing of the code generated. (This is
useful if you want to see what kind of code BCPL generates, or if
you are having a hard time debugging a particular piece of code.
But the listing file is big -- it takes a long time to generate and
print -- so you probably don"t want to make a habit of requesting
it.) The listing is written on the file QUEENS.BT, unless the IT
switch is given; error messages still appear on the terminal, unless IF
is given.

IT Causes all output (error messages and the I A listing, if requested) to
appear on the terminal. The file QUEENS;BT is- ne't created.

Summary: IF alone sends error messages to QUEENS.BT. I A/F sends both
errors and the assembly listing to QUEENS.BT; I AIT sends both to
the terminal. I A alone sends errors to the terminal, and the
assembly listing to QUEENS.BT. IFIT is illegal; IT alone has no
effect.

ID Causes the compiler to indicate when it starts a new compilation
phase (LEX, CAE, SAE, TRN, and NCG), and prints debugging
information with error messages.

IH Causes the compiler to pause (by entering the Nova debugger)
between compilation phases and after error messages. To resume,
type (ESC)R, not (ESC)P.

(lD and IH are generally useful only to compiler gurus.)

IG This switch is used to generate "precompiled" declarations files. Any
• source file (which may contain "get" statements) may be precompiled,

using the IG global switch. For example,

BCPL/G DECLDRIVER

will precompile DECLDRIVER and create the files DECLDRIVER.BD
and DECLDRIVER.BC. DECLDRIVER is typically just a list of "get"
statements, consolidating declaration files. Subsequently, the
precompiled declarations may be used with the local IG switch (see
below); precompiling increases the speed of the compiler slightly if
the same declarations are to be included in many files.

8.2

Revised BCPL Manual, September 9, 1975 COMPILATION

8-3 . Local switches

These switches are attached to names following the compiler name in the command
line; e.g., "BCPL QUEENS.3 QUEENS.LSI A":

name (no switches) The name is taken as the source file name. No extension is
assumed; you must type "name.ext" if the source file has an
extension. The source file name is used to generate the names for
the relocatable binary (.BR) file and the text output (.BT) file
(unless these are specified by the local swi tches I A, IF, IR). On the
Nova, if a device is specified with the name (e.g., DPI:QUEENS.3),
that device will be used for files specified in "get" directives in the
source text; and for the output files (unless these are specified by
the local switches I A, IF, IR). If no device is specified, the default
device is used (the device given in the last DIR command to DOS),
even if the compiler is running on a different device (e.g., if you
have typed "DIR DPO; DPI:BCPL QUEENS ... ", QUEENS and its "get"
files will come from DPO). There are no "devices" on the Alto.

namel A Like the global I A switch, but the assembly listing is written onto
"name" rather than QUEENS.BT. If "name" is a file name, the
extension .BT will be appended to it if it has no extension; to create
a file with no extension, use "name.! A". If "name" is a device (e.g.,
MCO:XGP.), it should be terminated with a "."; the output will be
sent to the device named.

namelF Like the global IF switch, but writes error messages onto "name" as
for I A above. ("namel A/F" does the obvious thing, but you cannot
send errors and the assembly listing to two different files.)

name/R Causes the relocatable binary file to be named "name" instead of
QUEENS.BR. The .BR extension is appended to "name" if it has no
extension; to create a file with no extension, use "name.!R".

name/G The named file is a file of precompiled definitions, created with the
global IG switch (see above). For example, the command

BCPL DECLDRIVER/G TEST

will compile test, including the declarations precompiled in
DECLDRIVER.

number/V The decimal number is used to set the "manifest constant" for use
with the 1M switch, below.

name 1M This switch declares the name to be a manifest constant, with the
value taken from the last setting of the IV switch (default is true,
-1). The value will apply throughout compilation, excluding any part
of the compilation introduced through the precompilation VG)
option.

If used in conjuction with "newname," this can be used to override
standard settings for parameters.

Caution: Nova DOS will convert all keyboard input to upper case;
names given to the 1M switch in this manner will therefore be upper
case. However, the 1M switch does not trigger the "upper case"
detector (section 7-6).

8.3

Revised BCPL Manual, September 9, 1975 COMPILATION

name/L

name IT These switches cause the compiler to print the source text (lL) and
intermediate compilation results (IT) as it proceeds through its
various phases. The phases are specified by the individual characters
of "name":

L for the lexical analyzer
C for the parser
S for the symbol table generator
T for the Ocode generator
I for the code generator, pass I
2 for the code generator, pass 2.

E.g., "CUL" would cause the compiler to print each line of source
text as it parses it, and again as It makes a first pass at generating
code for the line. The output would go to the file QUEENS.BT
unless the global IT switch were given. These switches are primarily
for debugging the compiler. But they might be helpful occasionally
in tracking down an obscure error, or one for which the error
message does not provide enough context to locate the offending
statement in the source text.

8.4

Revised BCPL Manual, September 9, 1975

SECTION 9

LOADING

9-1 Normal loading

The BCPL loader consists of four files, normally called BLDR.SV, BLDR.YU,
BLDR.YI, and BLDR.YD. The .y* files are copies of files that the loader needs for
initialization of the save file which it creates. The .y* files must have the same
name as the loader; so if you rename BLDR.SV, you must rename the . y* files as
well.

A typical command to BLDR looks like

BLDR/D/L/V QUEENS QUEENSl 101 102

This would create the file QUEENS.SV, an executable Nova save file, from the BCPL
relocatable binary files QUEENS.BR, QUEENS1.BR, 101.BR, and 102.BR. The ID
switch causes the Nova debugger to be loaded into the save file. The IL/V switches
create a symbol table file named QUEENS.BS, containing information about where
things will be in core when the program runs. The loader prints

BLDR 2.0 -- -QUEENS.SV, QUEENS.BS

at the beginning of the loading process, and, when it is done,

QUEENS.SV -- 14162 (6256) WORDS

The numbers give the size of the program in octal (decimal). A typical .BS file
listing is attached.

BLDR will accept concatenated .BR files as well as .BR files created directly by the
compiler. That is, if F1.BR, F2.BR, ... , Fn.BR are all BCPL relocatable binary files,
and F.BR has been created by giving the DOS command

APPEND F.BR F1.BR F2.BR ... Fn.BR

to DOS, then including F in a BLDR command has the same effect as including F1
F2 ... Fn. The purpose of this feature is to allow multi-file subroutine packages of
BCPL routines to be distributed as one file rather than as a collection of files. For
example, if the fie 10PACKAGE.BR was created by

APPEND 10PACKAGE.BR 101.BR 102.BR

then the above load command would be

BLDR/D/L/V QUEENS QUEENS1 10PACKAGE

9.1

Revised BCPL Manual, September 9, 1975 LOADING

9-2 Errors

Errors in the command line to BLDR are fatal; the loader immediately aborts. Most
such errors will result in a message like

BAD SWITCH L IN QUEENS/L/S

Undefined file names, and other DOS-detected errors will result in something like

CANNOT OPEN QUEENS.BR

Fatal error messages are always printed on the terminal.

The loader detects two types of external name conflicts. If an external name is
defined (by "static [name = ••• J" or by "let name (...) be ... ") in more than one
relocatable binary file, the loader generates a message like

QUEENS2.BR

THE EXTERNAL NAME name WAS ALSO DEFINED IN QUEENS1.BR

for each such conflict detected in QUEENS2. If an external name is declared to be a
common (page zero) variable in some files (by "external [@name; ... J") but not in the
first file in which the name appears, the loader genrates a message like

QUEENS2.BR

THE COMMON NAME name WAS NOT DECLARED COMMON IN QUEENS1.BR

These messages appear in the .BS file if one is being created; the message

n ERRORS DURING LOADING

is printed on the terminal if any name conflicts are detected. You must recompile
the offending files and reload before attempting to run the program.

External names which have been used but not defined result in the message

n UNDEFINED EXTERNALS

being printed on the terminal. The names are listed in the .BS file if one is being
created; or on the terminal otherwise.

The loader also generates "warnings" if it detects space allocation conflicts in the
save file being created. The most common of these are

NOT ENOUGH COMMON SPACE

if too many common (page zero) variables have been declared, and

NOT ENOUGH STATIC SPACE WAS RESERVED

if too many non-page-zero statics have been used.
cannot be increased: you must redefine some common
The space reserved for statics can be specified with
for this and for other space allocation controls.

9.2

The available page zero space
variables to be ordinary statics.
the local IW switch; see below

Revised BCPL Manual, September 9, 1975 LOADING

The error, warning, and undefined/multiple-definition error counts are separate; if
you are told that was one undefined external and one error, there are two things
wrong. The error being reported is not the undefined external but a different one.

9-3 . Global switches

ID Load the Nova debugger into the save file. This switch is legal only
if no assembly language file is specified with the II switch; if you
load assembly language programs, you should include the debugger
when you load them with DOS's RLDR. This switch is not needed
on the Alto, since debugging is done with Swat.

IU Convert the names of all external symbols to upper case. This is
needed, for example, if you are loading the 10 package (101, 102)
wi th programs written in upper case; the 10 procedure names in your
files are upper case, but in 101 and 102 they are defined in lower
case. Without IU, the upper case externals in your programs would
be undefined. (Alternatively, you could recompile the 10 package
source files with BCPL/U.)

IW Do not print warning messages. Normally the loader will tell you if
you do something suspicious, like loading a program on top of
something else. If you know what you are doing, and if the warning
messages bother you, you can turn them off with IW.

IL/V IN Generate lists of static variable names. IL prints procedure and
label names, sorted by the location of the procedure or label in the
code; the IL listins- is, in effect, a core map. IV prints
non-procedure names (variables). IN prints all static names, sorted
by address. The most useful combination is IL/V; it lists all statics,
separating procedure names from variable names. The listings go to
the file "savefilename.BS" unless the IT switch is used.

IT All printed loader output (errors, warnings, and listings) is sent to
the terminal. Normally, if listings are requested, they are sent to a
file. Error and warning messages, and other load map data if there
are no listings, normally go to the terminal.

IF All printed· output is sent to the file "savefilename.BS", except for
fatal error messages, which always go to the terminal.

9-4 Local switches -- group 1

These switches provide global information to the loader. All occurrences of these
switches must appear before any of the group 2 switches, and before the first
relocatable binary file name.

name/S The name of the save file to be created. (If not specified, the name
of the first relocatable binary file is used.) If "name" has no
extension, .SV is used. The "name" will also be used for the name of
the .BS file unless the local IF switch is used.

9.3

Revised BCPL Manual, September 9, 1975 LOADING

namelF All output is sent to the file "name". If "name" has no extension,
.BS is used.

namell Assembly language file (Nova only). The file "name" (extension .SV
if "name" has none) is assumed to be a Nova save file. The save file
created by BLDR is initialized to the contents of this file (except for
locations 300-377) at the beginning of loading. If the Nova debugger
is to be loaded, it must have been loaded with the II file. If no II
file is specified, a blank save file (BLDR.YI) is used, or if the global
switch ID is specified,

name/U BCPL runtime routines (Nova only). This switch allows the user to
replace the standard runtime routines (get new frame, multiply, etc.)
with his own. (These normally come from BLDR.YU.) The specified
file is a Nova save file, but it is special in several respects.

numberlN Maximum number of names allowed (octal). The default is 1000 (512
decimal). BLDR must allocate a certain amount of fixed space for
each name, and must also have room for the name strings themselves.
If you have a large number of long names, BLDR may run· out of
room, and print "OUT OF NAME SPACE"; or you may have more
than 512 names. In either case, you may be able to load by
adjusting the number of names allowed with IN. You may also be
able to get more room with IC, if none of your .DR files have as
much as 5000 words of code. (The IN switch does not affect the
default IW value - see below).

number/C Maximum (octal) size of code in a single .BR file. The default is
5000. The IC switch is useful either if you have an especially big
.BR file, or if you need more name space (see IN). (The compiler
message "QUEENS.DR -- 1426 (790) WORDS" indicates the size of
the code compiled, in octal and decimal).

number/Z The (octal) starting address for allocating common (page zero static
variables). If not specified, common starts at ZMAX of the II file
(which is 60 if global ID is specified), 50 otherwise.

numberlV The (octal) starting address for allocating static variables. If not
specified, statics start just after the DCPL runtime routines (which
are loaded just after the II file).

number/W The maximum number (octal) of non-page-zero static variables. The
default is 400 (256 decimal). If no IV is specified, this amount of
space is reserved in the save file at the default starting address for
statics; code will be loaded after this space unless IP is given. If
the starting address for statics is specified with IV, it is the user's
responsibility to see that enough space is left for static variables at
that address; IW is then just used in checking that static and code

. space do not overlap.

number/J The maximum number (octal) of overlay files permitted. The default
is 10 (8 decimal).

number/K The maximum number (octal) of .BR files which may be loaded. The
default is 100 (64 decimal).

9.4

Revised BCPL Manual, September 9, 1975 LOADING

9-5 . . Local switches -- group 2

These switches control the loading of BCPL code into the save file. The loader also
has facilities f.or creating "overlay" files to allow code to be swapped in dynamically;
see the section on overlays below.

name (no switches) A BCPL relocatable binary file. If "name" has no extension,
.BR is assumed (this is the extension normally used by the compiler).
The code in the file is loaded into the save file at the current PC.

numberlP Set the current PC to "number" (octal).

$number/P Add "number" to the current PC. No spaces may appear between the
"$" and the "number".

letter/Q

letter/X

letterlY The "letter" is a single character A-Z. These switches associate the
current PC with the letter so that the PC can later be restored with
the form of IP described below. IQ uses the value of the current
PC; IX uses the larger of the current PC and the value (if any)
currently associated wi th the "letter"; IY uses the smaller of the
current PC and the current value of the "letter".

letterlP Set the current PC to the value last assigned to the "letter" by IQ,
IX, or IY. If no value has been assigned, an error is reported.

The final PC value, after all files have been loaded, is taken as the address of the
start of frame space when the program executes. (This value can be changed with a
final IP specification.) Execution will begin with the first procedure defined in the
first relocatable binary file loaded. This procedure will be called with one argument,
a 32 (decimal) word vector whose contents are:

word 0:

word 25:
word 26:
word 27:
word 28:
word 29:
word 30:
word 31:

The last value assigned to "A" by IQ, IX, or IY.

The last value assigned to "Z" by IQ, IX, or IY.
The address at which statics were loaded.
The address of the last static variable.
The address of the first procedure loaded.
The address (+1) of the last word of BCPL code loaded.
The final value of PC (frame space start on the Nova).
The highest memory address available on the Nova,
unused on the Alto.

9-6 Save file image

The save file produced by BLDR on the Nova looks just like an ordinary Nova save
file. The core image it produces is organized as follows (all numbers are octal):

0 ... 15
(Not part of a save file. Nova save files start with location 16; DOS

9.5

Revised BCPL Manual, September 9, 1975 LOADING

16 ... 277

300 ... 377

400 ... 777

considers locations 0-15 sacred. The addressess listed below are core
addresses; subtract 16 (octal) if you are looking at the save file itself
(e.g., with OEDIT).

An image of these words from the II file.
normally be allocated starting at ZMAX, the
location not used by the II file; this can
swi tch to BLDR.

Common variables will
first page zero (.ZREL)
be changed by the IZ

Reserved part of page zero (used by the BCPL runtime routines).
You should refrain from clobbering these locations, unless you know
what you are doing. Locations 340-377 are relocated by BLDR to
point at various runtime routines.

An image of these words from the II file. DOS depends heavily on
this page being correct, so users should not clobber it. BLDR fixes a
few words in this page to make the save file look as if it was
created by the Nova loader.

1000-NMAX-l
An image of the rest of the II file. NMAX lIs the first unused
word of the II file. If there is no II file, NMAX will be
approximately 4300 if ID was used (the debugger is about 3300 words
long), 1000 otherwise.

NMAX ... UMAX-l
The BCPL runtime routines. These currently are about 700 words
long.

UMAX ... VMAX-l (if IV was not used)
Space for static variables, unless the starting address for statics was
explicitly specified by IV. The size of the space reserved
(VMAX-UMAX) is 400, unless changed with IW.

VMAX... (if IV was not used)
UMAX... (if IV was used)

The default starting address for loading BCPL code. If the group 1
swi tch specifications are followed by just a list of file names, the
BCPL code will be loaded sequentially starting here, unless the PC is
changed with IP.

The format of an Alto save file is described in the Alto Operating System Reference
Manual, section 4.7.

9-7 Overlays

All occurrences of these switches must appear after all .BR file names which are to
be loaded into the save file have been specified.

name/A Create the file "name" (extension .BB if "name" has no extension)
and load the following relocatable binary files sequentially into that

9.6

Revised BCPL Manual, September 9, 1975 LOADING

name/B

file. The code is intended to be read into core and run at the
current value of PC; procedures and labels defined in the files loaded
into "name" will point at this area of core. The PC should not be
changed (with IP) between the .BR files. The file "name" has the
format:

word 0:
word 1:
word 2:
word 3:
word 4:
word 5:

value of PC at the first .BR file loaded into "name"
length of the code loaded into "name"
o (this word is 1 for a IB file - see below)
length of "name" in words
length of "name" in words
o

word 15: 0
word 16: first word of code

The first word of the code for each .BR file is the length of the
code for that file.

Similar to I A, but in addition, the file "name" contains information
about which procedure and label pointers must be fixed when the
code is read into core. IB is used when the place at which the code
will be executed is not known at load-time.

All code compiled by BCPL is self-relocating; that is, the code
contains no absolute addresses which point at the code. The only
words which must point into' the code are the static variables which
are defined as procedures and labels. Therefore, in order to
dynamically relocate the code from one or more .BR files, all that is
necessary is to initialize the procedure and label variables defined in
the .BR files. This is the purpose of the relocation pair list at the
end of a IB file.

word 0:
word 1:
word 2:
word 3:
word 4:
word 5:
. . ".

value of PC at the first .BR file
length of code)
1 (to distinguish between I A and IB files)
L, the word at which the relocation table starts
length of "name" in words
o

word 15: 0
word 16: first word of code

word L: number of relocation pairs N
word L+l: static address
word L+2: relative PC

word L+N*2-1; static address
word L+N*2: relative PC

When the code is read in at location P, each "static address" must be
set to P+ "relative PC", so that the procedures and labels which
reference the code will point to the correct places. The following
procedure will do this; it assumes the standard 10 package and a
routine to get a block of storage from someplace in core.

let swapin(filename) be
[let channel=open(filename)

let header=vec 15

9.7

Revised BCPL Manual, September 9, 1975 LOADING

]

readseq(channel,header lshift 1,32) Ilread 16 word header
let length=header!l Illength of code
let codestart=getblock(length) Ilget core for code
readseq(channel,codestart lshift 1,length*2) Ilread code
setpos(channel,header!3 lshift 1) Ilget to relocation info
let n=readbin(channel) Iinumber of pairs
for i=l to n do
[let p=readbin(channel) Iistatic address to fix

Iloffset in code

]

let codeaddr=readbin(channel)
@p=codeaddr+codestart Ilfix static variable

close(channel)

It should be noted that string constants and label constants are part
of the code BCPL compiles; the pointer to the constant block is
recomputed each time the string or table expression is evaluated. So
non-resident code must be careful about its use of strings and tables.

9.B

Revised BCPL Manual, September 9, 1975

SECTION 10

RUNTIME ENVIRONMENT

10-1 Procedure Frame Format

Whenever code compiled by BCPL is being executed, AC2 points to the first word of
the frame for the procedure which owns the code. (AC2 is not changed by "goto," so
one should not jump across procedure boundaries; no check is made for this either at
compile time or run time.) While the procedure Q is running (Le. after a call has
been executed from the procedure P and Q's frame is initialized), the frame
belonging to Q contains:

!AC2j+0:
AC2 +1:
AC2 +2:
AC2)+3:

(AC2)+4,5, ...

address of P's frame
(temp -- see belOWj
(temp -- see below
(temp -- see below
argumen ts passed to Q by P
dynamic variables for Q
dynamic temps needed by Q
vectors declared in Q

The frame belonging to P, the procedure that called Q, contains:

word 0:
word 1:
word 2:
word 3:
word 4,5, ...

address of the frame of P's caller
address (-1) within P to which Q should return
(address (+2) of the start of P)
(temp used by P to pass arguments to Q)
arguments, dynamic variables, temps, vectors for P

The frames belonging to P's caller and earlier ancestors of P have the same format
as P'S frame. The only useful information contained in the frame of the procedure
currently executing (Q) is word 0; the return address for Q is in P's frame, not in
the current frame. Words 2 and 3 of P'S frame need not be preserved by Q once Q's
frame has been allocated. Words 1, 2 and 3 of Q's frame are available as temps for
the BCPL runtime routines (and for users' machine-language procedures -- see below)
while Q is running.

10-2 Procedure Calls

Assume that Q is the currently executing procedure, and that Q is about to call the
function R with two arguments: z=R(x,y). (Calls with more than two arguments will
be described below.) The code in Q for this statement will look something like this
(assuming x, y and z are directly addressable):

LDA O,x
LDA 1,y
JSR @R
2
STA O,z

I/put arg1 in ACO
Ilput arg2 in AC1
Ilcall R (R points to first instruction)
Iinumber of arguments passed
Iistore result passed back in ACO

10.1

Revised BCPL Manual, September 9, 1975 RUNTIME ENVIRONMENT

The JSR will transfer to the following code in R:

STA 3,1,2 Iisave return address (in Q's frame)
JSR @370 Iiset up R's frame
n Iisize of frame needed by R
JSR @367 I!(not executed unless)3 arguments)
(first instruction in R's body)

The "getframe" routine, pointed to by location 370, does most of the work for
entering a procedure. Its responsibilities are to set AC2 to point to a block of
storage at least n words long for R's frame, to save the original contents of AC2 (Q's
frame pointer) in word 0 of R's frame, and to store the two arguments passed to R
in words 4 and 5 of R's new frame. (If there are more than three arguments,
"getframe" executes the JSR @367 to store the additional arguments into R's frame;
otherwise the JSR @367 is skipped.) The "getframe" routine returns, in ACO, the
actual number of arguments passed to R. If R has declared a "numargs" variable, the
first instruction in R stores ACO into this variable.

After "getframe" is finished, the body of R is executed. R returns by executing JSR
@366, with its result in ACO if it is a function. This "return" routine must
deallocate R's frame, restore Q's frame pointer to AC2, and return to Q at the
location (+1) pointed to by word 1 of Q's frame.

For procedure calls which pass zero or one arguments, the above discussion applies as
well; ACO and/or AC1 are simply not loaded by Q, and are ignored by "getframe."

For procedure calls with exactly three arguments, ACO and AC1 are loaded with the
first two arguments as above, and the third argument is passed to R by Q in word 3
of Q's frame. In this case, in addition to the chores mentioned above, "getframe"
co:pies this word to word 6 of R's new frame (word 6 is the location for putting the
thud argument). The code in Q for a call a=R(x,y,z) might look like:

LOA O,x
LOA 1,y
LOA 3,z
STA 3,3,2
JSR @R
3
STA O,a

Ilput arg1 in ACO
/ /put arg2 in AC1
IIe.ut arg3 in word 3 of
//~'s frame
/lcall R
113 arguments to R
/lstore result

(The code might be· more complex that this if one or more of the arguments is not a
simple variable.)

For :procedure calls with N arguments (N)3), the calling se<\.uence is more
complIcated. N+1 consecutive cells are reserved (as dynamic temps) in Q's frame,
starting at word L of the frame. (L is not necessarily the same for every call.)
Arguments 3 through N are stored by Q in cells L+3 through L+N of Q'b frame;
arguments 1 and 2 are loaded into ACO and AC1; and the number L is stored in
word 3 of Q's frame. (Words L, L+1 and L+2 in Q's frame are available as temps for
"getframe.") 'So the code for a=R(zl,z2,z3,z4,z5) might look something like:

LOA 0,z3
STA 0,L+3,2
LOA O,z4
STA 0,L+4,2
LOA O,z5
STA 0,L+5,2
LOA O,KL
STA 0,3,2
LOA O,z1

Iistore args 3,4,5 in Q's frame

IIKL contains the number L
/lpass offset of args to R
Ilput args 1 and 2 in AC's

10.2

Revised BCPL Manual, September 9, 1975

LDA 1,z2
JSR @R
5
STA O,a

RUNTIME ENVIRONMENT

So for calls with more than three arguments, "getframe" must move arguments 3
through N from Q's frame into words 6 through 6+N-2 of the new frame for R.
This is done by the "moveargs" routine (pointed to by location 367) after "getframe"
has created the new frame. (The "moveargs" routine is used, rather than having
"getframe" itself move the arguments, for historical reasons. The "movearg-s" routine,
like "getframe," must return in ACO the number of arguments passed to R.)

Nothing in the above description of procedure frames and procedure calls depends on
where or how frame space is allocated by "getframe" and deallocated by "return." In
addition, the code compiled by BCPL makes no assumptions about frame allocation; a
BCPL procedure simply assumes that the standard four-instruction preface will set up
its frame and that the standard return instruction will deallocate it and restore the
state of the caller. By replacing the standard "getframe," "moveargs" and "return"
routines (e.g., by changing locations 366, 367 and 370), the user can tailor frame
allocation strategy to special needs.

10-3 Frame Allocation on the Nova

The standard Nova BCPL "getframe" allocates frames on a stack which starts from
the final PC value seen by BLDR and grows toward address #77777. When
"getframe" allocates a new frame, it checks to see that the last word of the ,frame is
not beyond the address contained in location 335; if ii is, "getframe" prints a message
indicating that the program has run out of frame space, and aborts execution.
Location 335 is initialized to point at the highest memory address available (not used
by DOS). Normally, all available memory is assumed to be devoted to frame space.
However, by adjusting the contents of location 335, a program can reserve storage for
itself (e.g., the statement @#335=@#335-#10000 reserves #10000 additional cells,
starting at location @#335 (after the statement is executed)).

The page zero location 336 points to the location which will be the first word of the
frame for the next procedure called. So when location 33'5 is adjusted, the program
should check the contents of location 336 to see if the desired space is available:
@#336 must be less than @#335.

10.3

Revised BCPL Manual, September 9, 1975

SECTION 11

NOVA I/O and UTILITY ROUTINES

11-1 Introduction

This section describes a number of routines which have been written to provide
limited but useful runtime support for Nova BCPL programs. In many cases, the
routines are very similar to the act.ual assembly-language DOS system call, or are
obvious extensions of the DOS function. Routines have been written to do many I/O
functions and a few string functions. Limited formatted 110 functions have been
implemented using general string and integer conversion routines.

Before calling any of the 110 runtime routines, the routine initbcplio must be called
to set up several global variables. The 110 errors are handled by the routine whose
address is in syserror. This routine is normally ioerror, a routine which corrects
some inadequacies of the DOS error-handling facility, and optionally prints procedure
information. Input routines do not consider end of file to be an error and return
this information through a byte count indicating how many bytes were actually read,
or a special ASCII character. Errors may be captured by changing the routine in
syserror to one of the user's routines or by setting syserrortrap to "false." If this is
done, after an 110 routine is called, the location syserrorflag will be false if no error
has occured, but otherwise will be true; syserrorvalue will have the error value from
AC2 after the DOS system call. End of file will be shown as an error when this
facili ty is used. For doing routine tasks, the default error routine will be adequate.

DOS strings are not compatible with BCPL strings. All the I/O routines accept
BCPL strings and convert them to DOS strings when necessary, with the exception of
readline and writeline (see description of those procedures).

The procedure descriptions will, in many cases carry a cross-reference note to the
DOS manual of the form DOS:ch-pp. In general, all procedure arguments must be
given; in a few specific cases, optional arguments are permitted -- these are indicated
by brackets ([D. The DOS channel for an open file is an argument to many of the
routines; it is always called "chno." When using routines in which the "chno"
description is marked with an asterisk (*), if the value of "chno" given is -I, the
system teletype will be used (via PCI-:IAR and GCHAR DOS functions). Thus, for
simple teletype 110 it is unnecessary to open a channel.

The routines are contained in the files 101 and 102. lOX is a file containing
external definitions that can be included in a BCPL program with the "get"
statement.

11-2 Global Names

sysac
The accumulators used for system calls to DOS. Not generally useful except
inside the runtime routines.

syserrorflag

11.1

Revised BCPL Manual, September 9, 1975 NOVA I/O and UTILITY ROUTINES

If set after a system call, an error has occurred. This will be true independent
of the state of syserrortrap. The value of the error will be in syserrorvalue
until another error occurs.

syserrorvalue
If syserror flag is set after a system call, this static contains the value of the
error. This value is constant until another error occurs.

syserrortrap
If this static is set to true, the routine ioerror will print an appropriate error
message and return to DOS CLI. If set to false, ioerror will simply return. If
ioerror is called by the user program with a single parameter, ioerror is called
by the user program with a single parameter, ioerror behaves as if syserrortrap
were set to true. For more information see ioerror(syserrorvalue).

sysprintpc
If set to true, ioerror will print the addresses of the system procedure from the
runtime I/O and the user procedure which caused the error. This is the variable
which is set to true by initbcplio(2). .

filename length
The maximum length of DOS filenames--manifest constant which may be used for
allocating vectors to receive DOS file names.

11-3 Procedures

nbytes = readcomcm(chno, string L switches])
Purpose: To read arguments and switches from the DOS command file,

chno
string

switches

nbytes

initbcplio(mode)
Purpose:

mode

char = readch(chno)
Purpose:

chno
char

wri tech(chno,char)
Purpose:

chno
char

COM.CM
DOS channel number, previously opened to file COM.CM
A BCPL vector for the name read from COM.CM (may be
allocated with vec filenamelength).
A 26 element boolean vector in which each element corresponds
to the alphabetic character for the switch.
The number of bytes actually read is returned.

To initialize various constants needed by the runtime I/O
routines. Failure to invoke this routine will lead to system
crashes at undefined times!
1 - normal mode; error messages will be given normally. 2-
diagnostic mode; stack information will be printed if this mode
is set. Mode 2 may also be invoked by setting sysprintpc to
true.

To read one 8 bit character from channel chno previously
opened to a DOS file.
* A DOS channel number 0-7.
The 8 bit character read from the channel.

To write one 8 bit character from channel chno previously
opened to a DOS file.
* A DOS channel number 0-7.
The 8 bit character to be written.

11.2

Revised BCPL Manual, September 9, 1975 NOVA I/O and UTILITY ROUTINES

rbytes = readseq(chno, bytepointer, nbytes) DOS:4-14
Purpose: Read a number of bytes using the DOS .RDS command.
chno A DOS channel number 0-7.
bytepointer DOS byte pointer to the first byte involved in the transfer.
nbytes Number of bytes to be read.
rbytes Number of bytes actually read--must be used to detect end of

file.

wri teseq(chno,
Purpose:
chno
bytepointer
nbytes

bytepointer, nbytes) DOS:4-18
Write a number of bytes using the DOS .WRS command.
A DOS channel number 0-7.
DOS byte pointer to the first byte involved in the transfer.
Number of bytes to be written.

nbytes = readline(chno, string[, true/false]) DOS:4-13
Purpose: To read a string terminated by a carriage return from a DOS

file.
chno A DOS channel number 0-7.
string A BCPL vector with enough space to receive the input string.
true/false If true, the TRUE DOS readline function is executed. The

.RDL function terminates on NULL as well as form feed,
carriage return and end of file. One usually does not want to
deal with this function. If false or absent, the NULL
termination is removed.

nbytes If 1, a terminator has been received. The last character in the
string received is either carriage return or form feed (or NULL
if the true .RDL) or carriage return followed by #377 if end of
file.

wri teline(chno,
Purpose:

chno
string

wri testr(chno,
Purpose:

chno
string

wri tezoct(chno,
Purpose:
chno
number

wri tedec(chno,
Purpose:
chno
string
space

wri teoct(ChIlO,
Purpose:
chno
number

string) DOS:4-17
Write a string which MUST be terminated by a carriage return,
null or form feed to the DOS channel previously opened. DOS
interprets tabs, form feeds for certain devices.

string)

A DOS channel number 0-7.
A BCPL string or vector which must be terminated as specified
for readline.

Write any BCPL string. A line feed is unconditionally issued
following every carriage return character.
* A DOS channel number 0-7.
A BCPL string or vector which must be terminated as specified
above.

number)
Write a six digit unsigned octal
* A DOS channel number 0-7.
16 bit quantity.

number with leading zeroes.

number[' space])
Write a signed decimal number with fixed or variable spacing.
* A DOS channel number 0-7.
16 bit quantity.
Number of spaces to be used. If missing or zero, a variable
number of spaces are used.

number[' space])
Write a signed octal number with
* A DOS channel number 0-7.
16 btit quantity.

- .11.3

fixed or variable spacing.

Revised BCPL Manualt September 9, 1975 NOVA I/O and UTILITY ROUTINES

space Number of spaces to be used. If missing or zero, a variable
number of spaces are used.

wri tef orm(chno,
Purpose:

formatcode, dataL formatcodet data ...])
Write a group of string or 16 bit data to the channel as
specified by the formatcodes.

chno
formatcode

* A DOS channel number 0-7.
o - data following is string data. 2-10 - data following is a 16
bit quanti ty to be displayed in that radix.

wri teval ue(chno,
Purpose:

numbert rdxL space])
Write a 16 bit signed number in arbitrary radix (2-10) using
fixed or variable spacing.

chno
number
rdx
space

* A DOS channel number 0-7.
A 16 bit signed quantity.
An arbitrary radix 2-10.
The number of spaces to be used. If the argument is missing
or 0, a variable number of spaces will be used.

word = readbin(chno)
Purpose: Read a 16 bit quantity from the DOS channel. No end of file

detection is provided except by capturing the error with
syserrortrap.

chno A DOS channel number 0-7.
word A 16 bit quantity read from the file.

writebin(chno,
Purpose:
chno
word

word)

chno = open(name)
Purpose:
name

chno

Write a 16 bit quantity to the specified channel.
A DOS channel number 0-7.
A 16 bit quantity to be written.

DOS:4-10
Open a DOS file to a channel selected by the runtime routines.
Any BCPL string which is a legal DOS file name. Device
specifier must be upper case, e.g., DPO--all other characters are
translated to uprer case.
A DOS channe number 0-7 returned specifying the channel
number to be used.

chno = append(name) DOS:4-11
Purpose: Re-open a DOS file to a channel selected by the runtime

routines. Writing will begin following the last character in the
existing file.

name Any BCPL string which is a legal DOS file name. Device
specifier must be upper caset e.g., DPO--all other characters are
translated to uprer case.

chno A DOS channe numb~r 0-7 returned specifying the channel
num ber to be used.

n bytes = curpos(chno)
Purpose: Return the current byte position of a DOS file.
chno A DOS channel 0-7.
nbytes Current byte pointer for the file.

setpos(chno, nbytes)
Purpose:
chno
nbytes

Set the current byte position of a DOS file.
DOS channel 0-7.
Current byte pointer for the file.

curposdw(chno, dou blewordvector)

11.4

Revised BCPL Manual, September 9, 1975 NOVA I/O and UTILITY ROUTINES

Purpose: Return the current block and byte number of a DOS file in a
BCPL vector to overcome the lack of double precision integers
in BCPL.

chno A DOS channel 0-7.
doublewordvector A 2 word BCPL vector giving the block number in word 0 and

the byte number in word 1.

setposdw(chno, doublewordvector)
Purpose: Set the current block and byte number of a DOS file in a

BCPL vector to overcome the lack of double precision integers
in BCPL.

chno A DOS channel 0-7.
doublewordvector A 2 word BCPL vector giving the block number in word 0 and

the byte number in word 1.

createfile(name)
Purpose:
name

deletefile(name)
Purpose:
name

ini tdev(name)
Purpose:
name

directorydev(name)
Purpose:
name

releasedev(name)
Purpose:
name

00S:4-6
Create a DOS file.
A legal DOS file name.

00S:4-7
Create a DOS file.
A legal DOS file name.

00S:4-4
Initialize a DOS device.
A legal DOS device name.

00S:4-4
Change the default directory to the indicated device.
A legal DOS device name.

00S:4-5
Release a device.
A legal DOS device name.

renamefile(name,newname) 00S:4-7
Purpose: Change the name of an existing DOS file.
name A legal DOS file name.

close(chno)
Purpose:
chno

resetfilesO
Purpose:

00S:4-12
Close an I/O channel to further use until re-opened.
A legal DOS channel number (0-7).

00S:4-13
Close all I/O channels to further use until re-opened.

errvalue = systemcall(acO, ac1, ac2, syscallname, err) 00S:4-1
Purpose: Generate a DOS system call directly.
acO NOVA ac 0 to be passed as part of the system call.
ac1 • NOVA ac 1.
ac2 NOVA ac 2.
syscallname A name from the list of system calls contained in iox,

generally, the DOS mnemonic preceded by "sys"--e.g., sysrdl for
.ROL. These are manifest constants defined in lOX.

err The BCPL procedure to be called in the event of an error
return from the system call.

errvalue The error value if an error occurs, otherwise -1. The error
code is returned in global vector SYSAC!2 and in the global
variables syserrorflag and syserrorvalue. If syserrorflag is set,

11.5

Revised BCPL Manual, September 9, 1975 NOVA 110 and UTILITY ROUTINES

ioerror(syscallname,
Purpose:

syscallname
sysac
syserrorvalue

install(chno)
Purpose:
chno

chatr(chno, acO)
Purpose:
chno
acO

syserrorvalue contains the value of the error. s¥serrorvalue will
not be changed, but SYSAC!2 will be changed wIth every system
call.

sysac) or (syserrorvalue)
Writes an error message to the teletype output device. Most
messages are generated by DOS, but in a few cases, ioerror
generates the correct message. If called with 2 parameters, the
error value is taken from the vector specified by sysac and in
some cases the name specified by sysac. If called with 1
parameter, the error value is taken to be the value of that
parameter and if needed syserrorname will be used. If
syserrortrap is set to false, this routine will simply return when
called with TWO parameters. The routine is executed
uncondi tionally if called with only one parameter.
The DOS system call used to generate the error.
The system call accumulator vector.
The error value which may be given directly in lieu of the two
above.

DOS:4-5
Install a DOS on the default directory device.
The DOS channel previously opened to the DOS to be installed.

DOS:4-8
Change the attributes of a DOS file.
A DOS channel previously opened to the file to be changed.
The value for acO as specified in the DOS manual for file
attributes: R=#100000, S=#020000, P=#000002, W=#OOOOOl.
WARNING: if #040000 (bit 1) is set and the file is permanent,
it cannot be removed except by a full initialization of the
directory!!!!!!!!

acO = getfileatr(chno) DOS:4-9
Purpose: Returns the attributes of a DOS file.
chno A DOS channel previously opened to the file in question.
acO The word returned with meanings defined by the DOS manual.

incr = memavailO
Purpose:
incr

memincr(incr)
Purpose:
incr

dosexec(narlle, ac1)
Purpose:
name
aci

dosreturnO
Purpose:

dosereturn(ac2)
Purpose:

DOS:4-21
Returns the amount of available memory for the user program.
The increment of available memory.

DOS:4-21
Change the amount of user available memory.
The increment of memory to be claimed.

DOS:4-23
Execute a DOS save file.
The name of a DOS save file to be executed.
The value for ac1 as specified by the DOS manual. If mlssmg,
o will be used so that the current execution level is pushed to
the disk and the next save file will be started at its normal
starting address.

DOS:4-24
Return control to DOS CLI.

DOS:4-24
Return control to DOS giving an error code. The common error

11.6

Revised BCPL Manual, September 9, 1975 NOVA I/O and UTILITY ROUTINES

ac2

dosbreakO
Purpose:

messages will be misprinted due to DOS assumptions about file
names.
The error value to be returned.

DOS:4-25
Create the file BREAK.SV. WARNING!!!!! All 1/0 channels
must be closed with a resetfiles command if the file is to be
re-executed.

word = strtovalue(string[, radix])
Purpose: Convert a signed string to a 16 bit integer in the specified

string
radix

word

radix.
The BCPL string to be converted.
The radix of the conversion. If unspecified, 8 is assumed.
A 16 bit word having the converted value.

valuetostr(word,
Purpose:

string, radix[' space])
Convert a 16 bit signed value to a signed string with no leading
zeros having either fixed or variable spacing.

word
string

radix
space

The 16 bit value to be converted.
A vector with enough space to hold the converted value. If
fixed spacing is specified, overflow will cause more spaces to be
used in this vector. The maximum number of spaces used
depends on the radix and is 16 for radix 2, 6 for radices 8 and
10.
The conversion radix.
The number of string spaces to be used. If zero or missing,
variable space is assumed.

packstr(us tri ng,
Purpose:

pstring')
~hange a BCPL string from unpacked format (one byte
word) to packed format (two bytes per word).

ustring

pstring

unpackstr(pstring,
Purpose:

pstring
ustring

movestr(s tri ngsrc,
Purpose:

stringsrc
stringdest

A vector containing a BCPL unpacked string, one character
word, the first word specifying the length.
A vector with enough room to receive the packed string.

per

per

ustring)
Change a BCPL string from packed format (two bytes per word)
to unpacked format (one byte per word).
A BCPL string.
A vector with enough room for the BCPL unpacked string, one
character per word, the first word specifying the length.

s tri ngdes t)'
Move a BCPL string which may be in either packed or
unpacked format.
A BCPL string to be moved.
A vector with sufficient room to receive the source string.

byteptr = dostr(bcplstrig, dosstring) .
Purpose: Convert a BCPL string to a DOS string.
bcplstring A BCPL string to be converted.
dosstring A vector with sufficient space to receive the converted string.

The only difference in the two formats is that DOS requires a
null character at the end of many strings.

byteptr A DOS byte pointer to the first character of the DOS string.

word = lengthstr(string) Purpose: Return the length of a BCPL string.
string A BCPL string.
word The length of the string.

11.7

Revised BCPL Manual, September 9, 1975 NOVA 110 and UTILITY ROUTINES

char = extractchar(string, index)
Purpose: Extract a single character from a string at a specified index.

ans

string A BCPL string.
index The index for the character. If out of range, garbage is

returned.
char A 16 bit word containing the value of the character.

= extractstr(stringl, string2, index, lengthstringl)
Purpose: Extract stringl from string2 beginning at the specified index.
stringl A vector of sufficient size to receive the extracted string.
string2 The string from which the extraction is to be made.
index The beginning index for extraction; if the index goes out of the

range of string2 at any time, the length of the extracted string
will be adjusted accordingly.

lengthstrl The length of the string to be extracted.
ans The actual length of the extracted string.

lastbyteindex =
Purpose:

imbedchar(char, string[, index])
Imbed a character into a vector containing a BCPL string. The
existing character at that index is destroyed. If the index for
the imbedded character is greater than the length of the string,
the second string is filled with blanks up to the imbedded
character. If no index is specified, the character will be
appended.

char
string2

index
lastbyteindex

The character to be imbedded.
A vector or BCPL string in which the character is to be
imbedded. If index extends the length of string2, string2 must
be a vector large enough to hold the results.
The index in string2 at which the character is to be imbedded.
The last position of string2 which was wodified.

lastbyteindex
Purpose:

= imbedstr(stringl, string2[, index])
Imbed stringl in string2. The existing sub-string at that index
is destroyed. If the index for the imbedded string! is greater
than the length of the string2, string2 is filled with blanks up
to the imbedded character. If no index is specified, string! will
be appended to string2.

string!
string2

index
lastbyteindex

The string to be imbedded.
A vector or BCPL string in which the first string is to be
imbedded. If stringl extends the length of string2, string2

. must be a vector large enough to hold the results.
The index in string2 at which stringl is to be imbedded.
The index of the last byte imbedded in string2.

index = searchstr(stringl, string2[, startindex])
Purpose: Search stringl for string2 at the specified starting index or at

string!
strin~2
startmdex
index

the start of string 1.
The string to be searched.
The string to be found.
The index in stringl at which to begin the search.
The index of the string if it is found; if not, then -1.

11.8

"

Revised BCPL Manual, September 9, 1975

12-1

and
be
case
default
eq
for
~e
If
let

manifest
ne

or
rv

switchon
to
unless
vec
while

SECTION 12

APPENDICES

BCPL Reserved Words

abort
by break
compileif compile test
do

bit byte blank

eqv ext endcase external
false finish
gr get goto
ifso ifnot into
Ie Is Iv loop
logand logor lshift

neg nil not neqv numargs
newname
offset
return resultis repeat repeatwhile
rem rshift repeatuntil
static size selecton structure
test then true table
until
valof
word xor

12.1

Revised BCPL Manual, September 9, 1975

abort
argument

bit
blank
break
byte

case
common variables
compileif
compiletest
condi tionals
constants

default
do
dynamic variable

endcase
eq
eqv
expressions
external

false
finish
for
function

ge
get
global declarations
goto
gr

identifier
if
ifnot
ifso
into

INDEX

12.2

5.6,7.2
3.5,3.8

6.7,6.8,6.10
6.11
5.2,5.3,7.2
6.2,6.7,6.9,6.11

5.5
3.4
5.3
5.4
5.2
4.2

4.7,5.5
5.1,5.2,5.4,7.1,7.2
3.1,3.2,3.7,3.8,4.1

5.2,5.5,7.2
4.4,4.6
4.4,4.7
4.3
2.4,3.1,3.2,3.3,3.4,3.6,7.1

4.3
5.6,7.2
5.2,7.2
3.5,3.6

4.4,4.6
5.4,7.1
3.1
5.2,5.4,7.2
4.4,4.6

1.1
5.1,5.2,7.2
5.2,5.4
5.2,5.4
4.4,5.5

Revised BCPL Manual, September 9, 1975

label
Ie
left-lump
let
loop
Is
lshift
Iv

manifest
mu!

ne
newname
nil
not
numargs

offset
Operators
or

parameter
procedure

rem
repeat
repeatuntil
repeatwhile
resultis
return
right-lump
routine
rshift
rv

selecton
size
static variable

string
structure

switchon

table
test
then
true

12.3

3.3,3.4,5.4,5.5,7.1,9.3
4.4,4.6
6.9
3.5,3.8
5.2,5.3,7.2
4.4,4.6
4.3,4.6,6.2
4.3,4.5

2.4,3.2,3.3,5.4,7.1,8.3
4.3

4.4,4.6
4.7,8.3
3.3,3.5,3.7,3.8
4.4,5.1
3.8

6.10
4.4,6.1,6.10
5.2,5.4

3.5,3.6
3.4,3.5,3.6,9.3

4.3,4.6
5.3
5.1,5.2
5.1,5.2
3.5,3.6,3.7,3.8,4.7,5.2,5.5,7.2
3.5,3.6,5.2,5.5,7.2
6.1
3.5,3.6,5.1
4.3,4.6,6.2
4.2,4.3,4.5

4.4,4.7
6.5,6.10
2.4,3.1,3.2,3.3,3.4,3.5,3.8,4.1,4.2,
4.5,5.4,9.3
4.4,6.5
3.2,6.1,6.2,6.3,6.4,6.5,6.7,6.8,6.10,
7.1
5.2,5.5,7.2

4.5
5.1,5.2,7.2
5.2,5.3,5.4,7.2
4.3

INDEX

Revised BCPL Manual, September 9, 1975

unless
until

valof
vec
vector

while
word

xor

12.4

5.1,5.2,7.2
5.1,5.2,7.2

3.5,3.6,4.4,4.7
3.7,4.4,6.10
3.7,4.1,4.2,6.1

5.1,5.2,7.2
6.1,6.2,6.3,6.6,6.7,6.9

4.4,4.7

INDEX

