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Abstract 

We wish to investigate compact representation of object programs, therefore we wish to 

measure entropy, the average in/onnation content of programs. This number tells how many bits, 

on the average, would be needed to represent a program in the best possible encoding. A 

collection of 114 MESA programs, comprising approximately a million characters of source text, 

is analyzed. For analysis purposes, the programs are represented by trees, obtained by taking 

the parse trees from the compiler before the code generation pass and merging some of the 

symbol table information into them. 

A new definition is given for a Markov source where the concept of "previous" is defined 

in terms of the tree structure, and this definition is used to model the MESA program source. 

The lowest entropy value for these Markov models is 1.7 bits per tree node, assuming 

dependencies of each node on its grandfather, father, and elder brother (order 3). These 

numbers compare with an approximate 10 bits per node required for a naive encoding, and an 

equivalent of 3.2 bits per "node of code generated by the existing compiler. Motivated by sample 

set limitations for higher order models, we derive an entropy formula in which the order is non

uniform. 

The non-uniform entropy formulas are particularly suited to trees, where we can now 

speak of conditional probabilities in terms of patterns, or arbitrarily shaped contexts around a 

node. A method called pattern refinement is presented whereby patterns are "grown", i.e., the 

set of nodes matching an existing pattern is divided into those matching a larger pattern and 

those remaining. A proof is given that the process always leads to a lower estimate unless the 

old and new patterns induce exactly the same conditional probabilities. The result of applying 

this technique to the sample was an estimate of 1.6 bits per node. Further application would 

reduce this number even more. 

Analytic solutions for the error bounds in approximating the entropy of a Markov source 

are very difficult to obtain, so an experimental approach is used to gauge a confidence figure for 

the estimate. These calculations suggest that a more accurate estimate would be 1.8 bits per 

node, with a standard deviation of 13%. This corresponds to an entropy of .54 bits per character 

of source program. 

The methods of this thesis can be used both to define a bound for code compression and 

to evaluate existing object code. 
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1 . Introduction 

1.1. Measuring Program Entropy 

The designer of a system should have a good model of how it will be used. For 

example, much effort in early compilers went into optimizing program constructs that 

seldom, if ever, occurred in real programs. The modern trend is toward finding 

techniques that lessen the likelihood of such misdirected effort. A statistical study of 

the programs that are actually written in a language is a valuable tool for a compiler 

designer. Its worth can be manifested in several ways: in a more efficient compiler, in 

a faster program, or in a more compact object program representation. 

This thesis deals with estimating the entropy, or average information content of 

programs. Such a number will tell a compiler designer just how many bits of 

information an average program contains, i.e., how small the object program may be and 

still contain the full program specification. These numbers are usually given in terms of 

some easily computed dimension of the source programs, for example, length. Such 

knowledge of the typical source program can help the designer to design compact object 

programs, and can also provide a theoretical framework against which to measure 

progress. 

In recent years, there has been dramatic reduction in the cost of computer 

hardware, sparked by advances in integrated circuit technology. The current trend is 

. away from large time-shared computers and toward small single user machines. One 

component that still is a major cost item in computers is memory. Those of us 

accustomed to computers having tens of millions of bits of main storage must learn to 

"think smal1." Since most interesting computer tasks require large amounts of memory, 

it is not uncommon to have a virtual memory, in which some of the information treated 

as main memory is actually residing on secondary storage, such as a disk.· In these cases, 

the running time of programs is largely influenced by the size of the working set, that 
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CHAPTER 1: INTRODUCTION 

portion of the virtual memory that is being actively referenced. Anything that reduces 

the size of programs can thereby also increase the speed. 

Working set considerations aside, we often are in a position to trade execution 

speed for program size, and vice versa. One longstanding technique used by 

programmers to reduce size is the interpretation of instructions specially designed for a 

given task. This is sometimes thought of as "table driven programming", where a single 

concise table entry can cause a specialized interpreter to execute a large number of 

instructions. One does, nevertheless, pay a price; running programs interpretively is 

typically slower than running programs written directly in the machine code. However, 

exactly what is meant by machine code is becoming less distinct. For some time, the 

"machine code" that programmers have used has actuaJly been interpreted by programs 

written for a lower level instruction set, called microcode. The task of writing such 

microprograms has been done by a few experts and typicaJly stored in read-only 

memory. In recent years, however, manufacturers have provided computers that store 

their microprograms in read'-write memories, aJlowing a language designer to tailor the 

perceived machine language to match the constructs of the source language. Using the 

formalism of information· theory, we shall see how the statistical properties of 

programming language usage can be exploited in the design of an interpretive code. 

1.2. Entropy of Programs 

Entropy is a quantity associated with a source, a process that emits a sequence of 

symbols (outputs) according to some fixed probability laws. Typically, the probabilities 

associated with a given source output are influenced by the values of previous outputs. 

When dealing with experimental data, we cannot determine the exact probability laws, 

but must be content to build a model of the source and estimate the entropy of the 

model. We will carefully construct our model so that the entropy of the model is an 

overestimate of the true entropy; hence, we know that our lower bound for encoding is a . 

conservative one. 

There has been much activity in estimating the entropy of natural language. In an 

early paper on the subject [Shannon51]. several models of English language sources were 
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CHAPTER 1: INTRODUCTION 

investigated. Some models had probability rules that depended on the value of the 

previous few characters or words; such models are called Markov sources. One can 

apply similar models to programming languages. With programming languages, however, 

we are dealing with a much more controlled grammar, so we need not consider the 

programs as, mere strings of source text. We can exploit the structure of the statements 

in a straightforward manner. 

One way that programming languages differ from natural languages is that 

sentences have an underlying nested structure that can be thought of as a tree. Modern 

programming language constructs such as "IF ••• THEN ••• ELSE" and "BEGIN ••• END" 

allow statements much more deeply nested than even German natural language 

sentences. The author once wrote a program profile facility which produced a neatly 

indented listing of a program together with statement counts. One of the early users of 

the system uncovered a "bug" when one of his program statements that was nested over 

30 levels deep caused the placement procedure to "indent" the program completely off 

the right side of the page! Such programs are fairly uncommon, but they do help to 

point out the treelike nature of computer programs. 

In this thesis, we will be concerned with finding representations for programs that 

allow the tree structure to be exploited when estimating the average information content 

of an atomic program symbol. The representation chosen is a tree as produced by the 

parser and clarified by means of the program semantics. What is meant by the entropy 

of such a model? Standard formulas for the entropy of Markov sources require knowing 

the probabilities of all m-tuples of source symbols and conditional probabilities based 

upon all (m-1)-tuples, numbers which are difficult to obtain for some m-tuples with any 

confidence due to the finite nature of our sample set. We will see an alternative 

formula in which the amount of history used in the calculation is context dependent 

rather than uniform. This formula has better error bound properties for estimating 

entropy from experimental data, and is readily generalized to an entropy formula for 

trees, allowing us to define the concept of a Markov source of trees and estimate its 

entropy with a reasonably sized empirical sample. 

3 



CHAPTER 1: INTRODUCTION 

1.3. Survey of Related Work 

Empirical Study of Programs 

Historically, designers of compilers and languages have had little knowledge of how 

typical programmers were using a programming language. There has recently been a 

trend toward empirical study of programs. One of the better known works is by Knuth 

[Knuth71a], in which he reports on a collection of FORTRAN programs analyzed one 

summer at Stanford. His bibliography lists some of the earlier works in the field. 

The results of Knuth's paper are divided into static and dynamic statistics. In this 

thesis, we shall be primarily concerned with static statistics, although Chapter 6 contains 

a few words about the dynamic case. Knuth's static counts were made by a program that 

read source programs and maintained a count of occurrences of the various reserved 

words and operators of the language. The most striking conclusion that can be drawn 

from these numbers is that actual programs are far simpler than had been previously 

believed. Compiler writers had prided themselves in generating efficient code for 

complicated expressions, while in practice, expressions had an average length of only two 

operands. Knuth found that 68% of the assignments involved no operator at all. Figure 

1.1 shows the complexity of expressions in assignment statements where the operators + 

and - were given one point, * given five, and / given eight points: 

Complexity 0 1 2 3 4 5 6 7 8 9 

Number 56,751 14,645 1,124 106 267 2,436 1,988 562 2,359 552 

Per cent 68.0 17.5 1.4 0.1 0.3 3.0 2.0 0.6 3.0 0.6 

Figure l.l. Complexity of expressions in Knuth's FORTRAN sample. 

Further analyses showed that although FORTRAN allows arbitrarily complex control 

flow due to the presence of GOTO statements, all of the tested programs had reasonably 

simple flow graphs. Since the analysis programs were working with the surface strings 

of the language and not with parsed programs, they could not tell procedure calls from 

array accesses, so the interesting statistics about procedure parameters was not available. 
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CHAPTER 1: INTRODUCTION 

Alexander and Wortman made similar studies of XPL programs [Alexander75]. 

Rather than write a routine to analyze source programs, they modified the compiler to 

count various statement and expression types. The XPL compiler is a BNF 

production-oriented one, so this task was easy. Like Knuth, they also analyzed the 

programs· both statically and dynamically. The following enumeration from 

[Alexander75] shows statically obtained information they found useful for determining 

resource consumption: 

• distribution of constants by type and value; 

• distribution of variables by type, value, and point to declaration nexical nesting); 

• distribution of statements by type; 

• complexity of expressions and use of operators in expressions; 

• distribution of machine instruction emitted by the compiler, also adjacent pairs 

and triples of instructions; 

• distribution of registers, operand addresses, and constants occurring in emitted 

instructions. 

Another interesting item from this paper is a table showing the distribution of 

numeric constants in their sample programs. Figure l.2 shows an excerpt from their 

table, which also indicates the number of bits necessary to represent numbers in the 

given range by the standard number representation techniques. Their compiler treated 

unary minus as an operator rather than as a part of a number, so all constants in their 

sample were positive. 

Range Number Cumulative 
(logarithmic) of bits Number Percentage Percentage 

ZERO 1 7762 15.6 15.6 
[2**0,2**1) 1 8459 17.0 32.6 
[2**1,2**2) 2 3952 7.9 40.5 
[2**2,2**3) 3 2986 6.0 46.5 
[2**3,2**4) 4 4747 9.5 56.0 
[2**4,2**5) 5 4682 9.4 65.4 
[2**5,2**6) 6 5908 11.9 77.3 
[2**6,2**7) 7 4715 9.5 86.8 
[2**7,2**8) 8 4037 8.1 94.9. 
[2**8,2**9) 9 1372 2.8 97.7 

Figure 1.2. Distribution of numeric constants in Alexander's XPL sample. 
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CHAPTER 1: INTRODUCTION 

Figure 1.2 provides the interesting result that more than half of the numeric 

constants of their sample could be represented in 4 bits. In the sample of programs 

analyzed below in Chapter 4, the results were even more dramatic: when one considers 

all the numeric constants either stated directly or resulting from "constant folding", the 

numbers 0., 1, 2, and 3 account for 52% of the total static usage. 

The author made an informal study of programs written in an early version of the 

MESA language running on the PDP-IO. This study was motivated by the trend toward 

personal computers that caused the effort on that language to be directed toward a small 

16 bit machine. In order to conserve space, the language was to be compiled int<? a 

compact code that was then to be interpreted. Several studies were made of existing 

TENEX-MESA programs to give guidance to the designers of the interpreter. One of these 

studies, which was never formally written up, concerned the complexity of expressions 

and procedure calls. 

The TENEX-MESA compiler parsed the programs into trees one statement at a time 

and then generated code from the tree in essentially a one pass style. Some of the 

operations normally associated with the code generation pass of classical compilers took 

place in the tree building process. For example, when building a tree for an iteration 

statement (FOR i. .. ), the parser generated the standard trees of an assignment and an 

if-statement for the incrementation and testing of the control variable. It was easy to 

intercept the parse trees before the code generation and to "walk" through them, looking 

at various operators and their operands. 

Of particular interest were the assignment statements. Of the 4818 assignments in 

the TENEX-MESA sample, 17% were of the form variable too number, 10% were variable 

too variable, and 18% were variable too procedure call. Some 11% were increment or 

decrement statements, i.e., variable too same variable ± number. Figures 1.3 and 1.4 show 

statistics taken on the arguments of procedure calls in the sample. 

args 0 
count 873 

per cent 17 

1 

2462 

49 

2 

1175 

23 

3 

387 

8 

4 

98 

2 

5 

34 

1 

Figure 1.3. Number of arguments in TENEX-MESA procedures. 
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CHAPTER 1: INTRODUCTION 

# of field array procedure 
args variable number selection access call other total 

1 1601 329 224 19 153 136 2462 

2 1464 368 187 11 100 220 2350 

3 601 319 90 7 36 108 1161 

4 187 90 61 5 49 392 

5 62 45 27 1 7 28 170 
)5 10 3 5 3 3 24 

total 3925 1154 594 38 304 544 6559 
% 60 18 9 1 5 8 

Figure 1.4. Description of arguments to TENEX-MESA procedures. 

Figures such as the above are helpful when deciding on conventions for subroutine 

linkage and immediate operands, but they need a firmer mathematical foundation on 

which the designer can base decisions about the relative merit of competing features for 

the interpreter. 

Probabilistic Grammars 

In an early paper on the entropy of languages [Grenander67], Grenander discussed 

the shortcomings of the simple Markov models of language generation such as those of 

the previously mentioned Shannon paper, in this case, the first order Markov model: 

. .. the probability that a certain word is generated given the string of words 

that precedes it, depends only upon the last word in the string .... Some defects 

of this model are obvious. Although it allows for stochastic dependence, it does 

so only in a very special way via interaction of neighboring words. It is easy to 

exhibit examples in which the dependence has longer span .... This defect of 

the model could be expressed by saying that the Markovian dependence is too 

linear; it attributes too much significance to the linear ordering of words making 

up the sentence. 

Grenander continues with a discussion of the exponentially growing number of 

probabilities needed for higher order Markov sources, and concludes that is impractical 

. to get estimates of reasonable accuracy for source models of sufficiently high order to 

capture the span of dependencies in natural language text. He concludes: 
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CHAPTER 1: INTRODUCTION 

. .. The prospect of such models therefore appears gloomy if we require both a 

high level of approximation and that we be able to estimate its structure from 

real data. What is wrong with this approach is clearly that we have generalized 

in a too mechanical manner. We must introduce the dependence in a way 

tailored to fit the phenomenon we study. 

He then continues by choosing to represent sentences by derivation trees, given a 

context free grammar, and calculate the entropy in terms of probabilities associated with 

the various productions used in the derivation of sentence. Rather than discuss his work 

in detail, we will consider two more recent papers in the field. 

In a recent paper [Soule74] on entropies of probabilistic grammars, Soule defines a 

grammar G as a triple (V N' V T' R) consisting of a set of nonterminal symbols V N' 

terminal symbols VT• and rules R. A rule is written 

p: s -+ a, 

where O<p< 1, S is in V N' and a is in (V N U V T)*' Denote the set of rules that rewrite s 

by R s; for each s, we must have 

~ P, = 1, 
rERs 

where P, is the probability associated with rule r. 

Soule denotes the language generated by G, with starting symbol s, by L(G, s). He 

chooses to define the entropy in terms of a derivation, a (possibly countable) sequence 

of rule-names that specify the generation of either a sentence in L(G, s), or (in bad 

cases) a countably long intermediate form. If more than one non-terminal is to be 

rewritten at some step in the derivation, we will choose to do so in a consistent order, 

such as always rewriting the leftmost non-terminal. The set of all derivations beginning 

with a rule in R s is denoted by D(G, s). The probability of a derivation d, denoted 

P(d), is the product of the probabilities associated with all rules in the derivation. The 

function 

Gens: D(G, s) -+ L(G, s) 

simply maps a derivation into the word that results when s is rewritten by the each of 

the rules that make up that derivation. 

8 



CHAPTER 1: INTRODUCTION 

The probability p(w) of a word w in L(G, s) is defined to be the sum of the 

probabilities of all derivations d such that ·Genld) = w. 

The derivational entropy of G is a vector B(G) of N components such that for each 

s in V N' 

H(G, s) = ~ P(d) log P(d). 
dEQ(G, s) 

Of more interest than the entropy of derivations is the entropy of words. Soule defines 

the sentential entropy to be the following: 

Hs(G, s) = ~ p(w) log p(w). 
wEL(G, s) 

He then proves a theorem that HlG, s) < H(G, s), with equality if and only if LeG, s) 

is unambiguous. Soule gives several results relating the mean word length and sentential 

entropy to various information theoretical concepts such as information rate, and 

channel capacity. 

Thompson and Booth [Thompson71a] had previously considered various schemes 

for encoding the languages generated by probabilistic grammars. For a probabilistic 

language L, they defined a code to be another probabilistic language C, with terminal 

alphabet typically {O, 1}, such that there is a mapping of L onto C. In general, one code 

word in C is the empty code word €, where wEL is mapped onto e if p(w) = 1 or 0, i.e., 

if w is impossible or certain. If L€~L is defined as 

Le = {wELl w maps onto e}, 

then the mapping of L-Le onto C-e is a one-to-one mapping. 

Thompson and Booth investigated four classes of coding automata that use the 

probability information to define the mapping from L onto C in such a way as to be 

optimal under various constraints. They are character encoding, word encoding, 

grammar encoding, and parse encoding. The character encoding is the standard 

Huffman encoding [Huffman52] obtained by calculating the probabilities of the various 

characters. The word encoding requires a finite language, but accommodates general 

ones by approximating the language by a finite one and including an "escape code". The 

grammar encoding uses the previous kcharacters of a sentence to determine the 

encoding of the next character. They show that if the language has a property called 

9 



CHAPTER 1: INTRODUCTION 

LL(k), then the language C is a context-free probabilistic language, and, since there are 

means of determining the average word length for such languages, the codes can be 

compared. The parse encoding is similar to the entropy model of Soule; one encodes the 

sequence of productions from one possible derivation of the sentence to be encoded. 

The grammar based models of language encoding are similar to the Markov model 

we shall be concerned with in later chapters of this thesis, restricted to uniform first 

orqer approximations in which only the father of a node in the parse tree affects the 

conditional probabilities of this node. Furthermore, the trees we shall d,eal with contain 

considerable semantic information. 

Statistical Models 

One of the early mentions of program entropy was in a set of unpublished notes 

written by McKeeman and Horning sometime around 1968-69 [McKeeman68]. Their 

principal concern was determining the appropriateness of a particular machine 

organization for a given programming language by seeing which machine yielded the 

smaJlest program. They also had some thoughts on theoretical bounds of encoding using 

an entropy-like formula. They considered how to deal with the problem of variable 

names: 

... We clearly do not wish to distinguish, in machine code, programs that differ 

only by a systematic substitution of identifiers. We propose that we first 

tabulate all identifiers used in a program and then systematically replace them by 
a standard set (say Xl, X2, ... , XIOO, etc.). We can reduce the set even more by 

taking into account biock structure and the permissibility of duplicate use of 

names, or may have to do something more complex if the form of the identifier 

carries some semantic information (for instance the [FORTRAN] IJKLMN type 
convention). The essential point, reducing the variability of programs by using a 

consistent naming convention, is straightforward for any given conventional 

programming language. 

Their means for estimating the entropy of a given program was essentially that 

used by Soule. Their methods did not take into account any influence of the 

probabilities of one production caused by the previous ones, although they pointed out 

that the higher order dependencies should be considered when defining entropy. At the 
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time, they were only considering conventional machine architectures where such 

conditional probabilitites could not be exploited. 

In his thesis [Hehner74], Hehner applied the framework of information theory to 

the design of computer hardware, both instruction encoding and data encoding. In a 

more recent paper [Hehner77], he was concerned primarily with the encoding of 

computer instructions. He found that for his sample, as much as 75% of the space taken 

by contemporary machine-language representations could be saved. One question that 

he addressed is the reliability implications of removing redundancy from object 

programs: 

One may object to the goal of minimizing redundancy on the grounds that it is 
needed for reliability. Some forms of redundancy allow the detection of some 
errors .... If the error results in a legal instruction, it may be detected indirectly 

but escape identification, or it may escape detection. ... The use of accidental 
redundancy in. machine-language instructions for error detection is at best a 
haphazard approach, and at worst a poor excuse for badly-designed codes. The 

purpose of machine-language is to specify a sequence of actions as succinctly as 
possible. Error detection ability is important enough to deserve its own separate 
mechanisms, specially designed for that purpose, such as parity bits or tag bits. 

Hehner also discussed the entropy of programs; he represented the program as a 

sequence of tokens in the conventional way (rather than as tree structure), and he 

determined an entropy estimate in terms of bits per token. If there is a large sample of 

programs, one can hope that the frequencies of the various tokens are representative of 

programs in general. This is also probably true for pairs of tokens, and, with decreasing 

confidence, for higher order m-tuples. He defined the entropy in terms of conditional 

probabilities much as we shall do in Chapter 3, but did not provide any numerical 

estimates from his sample for the entropy of the tokens. 

Hehner then applied the same methodology to the object programs generated by the 

XPL compiler. The stream of instructions can be thought to have conditional 

probabilities based on previous instructions just as source tokens do. Since his 

measurements were all static, it is necessary to establish a known context after every 

label. One very interesting portion of his paper is an analysis of a process he calls 

iterative pairing wherein commonly occurring adjacent pairs of instructions are replaced 
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by a single one. He gave criteria for deciding how much the information content of the 

program will decrease upon making the replacement (it may actually be increased by the 

replacement). He then discussed the encoding of instructions using their conditional 

probabilities based on m previous instructions. Figure 1.5 shows the numerical results 

from encoding his sample by various schemes. The "minimum redundancy" figure 

comes from applying the Huffman coding procedure to the "360-like" instructions. 

bits per percent percent 
encoding operation 0/ (b) 01 (a) 

(a) like IBM 360 8 

(b) "minimum redundancy" 3.6 45.3 

(c) iterative pairing 1.8* 49.9 22.6 

(d) conditional coding 

1 preceding 2.1 57.2 25.9 

2 preceding 1.7 47.0 21.3 

3 preceding 1.6 43.8 19.8 

* bits per original operation, 4.85 bits per compound operation. 

Figure 1.5. Code compression in Hehner's XPL sample. 

Final1y, Hehner showed that in the limit, conditional encoding of instructions is 

always better than grouping together common operations for code compactness. The 

principal differences between the work of Hehner and the author's work are in the 

source of tokens to· be encoded, object instructions vs. parse tokens, and in the structure 

imposed upon them, linear vs. tree structure. 

Program Oriented Encodings 

The use of an interpreter of specialized codes has long been a practice by software 

designers to reduce the size of programs. Recently, there have been some papers on 

producing computers with architectures well suited to a particular language. Hehner 

discusses a number of the earlier works in his thesis [Hehner74], one of the better 
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known examples being the Burroughs B5000 series of computers. Now that 

microprogramming has made computer architecture such a malleable concept, we can 

expect more work in the field. 

Deutsch [Deutsch73] describes an architecture for a machine to execute LIsP 

programs, called MicroLISP. He observes the fact that a typical LISP function references 

rather few functions and variables, and hence can be encoded by instructions with short 

address fields that refer to an external table, called the "local name table". In addition, 

there are a small number of commonly referenced functions stored in a "global name 

table". These techniques, plus others described in the paper allow object programs of 

one-third to one-fourth the size of the same programs compiled for the PDP-IO by 

more conventional means. 

Deutsch also presents an argument for program oriented architectures concerning 

the ease of writing debugging aids: 

,MicroLISP has been presented as a machine language, but slight additions would 

permit unambiguous decompilation into the original S-expression for editing. 

This approach is only feasible in general when the machine language closely 

resembles the source code: compilers for conventional machines must rearrange 

and suppress the original program structure extensively to achieve efficient 

execution. Interpretive systems, of course, generally do reconstruct the source 

text from an intermediate representation, often using their knowledge of the 

program structure to advantage (e.g. indenting to indicate depth of logical 

nesting). 

Wade and Stigall [Wade7S] analyze the potential cost savings of several encoding 

features. They first analyze the grouping of common sequences of instructions into new 

instructions. This is essentially the "iterative pairing" process of Hehner, and the 

criteria for improvement are essentially equivalent. They also analyze the si tuation 

where the instructions can be broken into several classes, with the interpreter having 

"modes". They give formulas for the code length improvement as a function of the 

average number of instructions executed before a "mode switch" instruction is needed. 
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Foster and Gonter [Foster71] describe a technique for conditional1y encoding 

computer instructions. They observe the common sequences of instructions in object 

programs and make the following observations: 

... Given that we have just executed instruction x, it is not the case that all 

possible instructions are equally likely to fol1ow x. For example, "load 

accumulator" is very rarely (in most codes) fol1owed by "enter accumulator." ..• 

Suppose instead of complete generality we decide that in the normal course of 

events we wil1 allow N different instructions to folJow a given instruction. One 

of these must provide an escape mechanism to allow for the unusual program. If 

N is much less than the total repertoire of the machine, w~ can achieve 

considerable compression of the op-code field. 

To tryout their ideas, they took a colJection of programs written in assembly 

language for the CDC-3600. Figure 1.6 shows the percentage of op-code transitions 

captured by the mechan ism as a function of the size of the conditional op code field. 

Number of Bits in Number of % transitions 
Op-Code Field Successors captured by successors 

2 3 46.3 
3 7 67.5 
4 15 84.4 
5 31 95.4 
6 63 99.7 

Figure 1.6. Conditional code efficiency from Foster and Gonter study. 

The total number of possible instructions is 142. Clearly conditional encoding of 

the instructions would reduce the total space required. They discuss the difficulties of 

programming such a machine in assembly language,_ primarily in debugging. The 

modern trend is away from assembly language programming, so this is less of a problem; 

a debugger that operates on a source language level can be made smart enough to 

translate the conditional codes into something understandable. 

Of course, computer programs do not consist entirely of instructions, they also 

contain data. For some languages, it is' possible to effectively encode these data by 

techniques exploiting their statistical properties. For the language LISP, the line 

separating instructions and data is a fuzzy one; when developing programs, one tends to 

run them interpretively. Clark and Green [Clark77] describe an empirical study of LISP 
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list structures. A computation that they perform that is most related to the content of 

this thesis is the entropy of car and cdr pointers (relativized to the address of the cell 

containing the pointer). The common LISP systems for the PDP-I0 use 18 bits for each 

of the pointers. Clark and Green found considerably fewer bits of information in the 

pointers of the programs that they studied. 

The statistics of that paper are all static, but in his thesis [Clark76], Clark also 

obtained dynamic statistics on distribution of values for car, cdr, and other language 

features. In addition, he gave algorithms for linearizing lists. i.e., rearranging them so 

that the cdr (car) points to the very next cell in memory whenever possible. Two thirds 

of the car's and one fourth of the cdr's do not point to lists at all, in which cases the 

algorithm does not apply. Nevertheless, one would predict that the entropy estimate of 

the affected pointer would go down after such an operation. In fact, the entropy 

estimate of both pointers usually goes down; Figure 1.7 shows the entropy of car and cdr 

in the original data, and after either car or cdr direction linearization. They chose to 

give separate values for each of five large sample programs. 

original car direction cdr direction 
sample data linearization linearization 
number car cdr sum car cdr sum car cdr sum 

#1 9.05 4.81 13.86 7.90 2.37 10.27 9.15 1.13 10.27 

#2 10.32 5.16 15.48 8.63 3.04 11.66 9.88 1.98 11.86 

#3 9.73 5.08 14.80 8.35 2.38 10.73 9.56 1.28 10.84 

#4 6.39 3.46 9.86 4.96 2.39 7.35 6.13 1.17 7.30 

#5 9.93 3.33 13.26 8.16 2.07 10.23 9.19 .99 10.17 

Figure 1.7. Pointer entropy from Clark and Green study. 

The reason that the entropy estimate for cdr dropped more dramatically upon 

linearizations is that the cdr pointed to another list a much higher percentage of the 

time than did the car. Also, the car direction linearization tended to put the cdr cells 

nearby as well, so either form of linearization produced about the same numbers. Clark 

and Green point out that the actual entropy of the pointers should be dependent only on 

the semantics of the language and not on the particular representation chosen. Thus the 

smaller entropy numbers obtained by linearizing the lists more accurately reflects the 
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entropy of the pointers. 

1.4. Summary of Thesis Results 

In this thesis, a large sample of programs, amounting to approximately a million 

characters of source code, is analyzed, using new techniques for analysis. In the first 

place, the representation chosen for study is a tree, for reasons described in Chapter 2; 

an entropy number is calculated in terms of bits per node, where the nodes are those 

making up the trees. Since there is a reasonable correspondence between input tokens 

and tree nodes, these numbers could also be stated in terms of more familiar dimensions 

of programs. By making several extensions and generalizations to the entropy formulas 

for sources of strings, the entropy of trees is defined in terms of the probability 

distribution of nodenames occurring at any given point in the tree. In most cases, these 

probabilities depend upon the values of various neighbors of the given node. 

Several mathematical models are presented to capture the dependencies of nodes 

upon their neighbors. The first class consists of the uniform Markov models, in which 

there is a fixed coJlection of neighbors determining the conditional probabilities of a 

node. Figure 4.2 contains detailed results of the entropy estimates using these models; 

Figure 1.8 is a summary of the entropy values. 

Neighbors 
Affecting Probabilities 

none 
father 

Entropy Estimate 

4.75 
3.18 

grandfather, father 2.80 
father, elder brother 2.05 
grandfather, father, elder brother 1.66 

Figure 1.8. Summary of uniform Markov entropy estimates. 

The finite nature of the sample set causes problems when using these uniform 

formulas. For a model using m neighbors, the formulas require probabilities for all 

(m+1)-tuples, and conditional probabilities based on all m-tuples. For those m-tuples 

with only a few occurrences in the sample, there is a high likelihood of error in the 

probabi I ity estimate. 
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Dissatisfaction with the uniform models motivated the derivation of a new 

non-umform entropy formula wherein nodes are conditioned on various collections of 

neighbors depending upon the context. The collection of neighbors that influence the 

probability distribution of a place in the tree is called a pattern. An initial set of 

patterns is generated by a modification of the uniform Markov entropy models. A 

procedure for obtaining a larger set of patterns, called pattern refinement, is given, with 

a proof that the entropy of the enlarged model is a better estimate of the true entropy, 

except in a specialized case, where it is not worse. Figure 1.9 shows the entropy estimate 

both before and after enlarging the pattern set. One cannot compare the size of the 

patterns exactly with the number of conditioning nodes in the uniform models since the 

patterns specify not only who the father is, but which son position a particular node 

occupies. Nevertheless, the number of nodenames specified in the pattern is given in the 

figure. The last two columns relate the estimate to more familiar quantities. 

number of patterns Source Equivalent 
nodenames entropy bits per bits per 
specified: 1 2 3 estimate token character 

initial set 154 2.1 3.1 .63 
final set 152 41 75 1.6 2.4 .48 

Figure 1.9. Non-uniform Markov entropy estimates. 

The reduction in the estimate is not as dramatic as that of the uniform Markov 

estimates, partly because the initial set is already well chosen; furthermore, a 

. conservative approach was taken of only increasing the order in those cases where there 

was a reasonable sample for estimating the probabilities. 

Analytic solutions for the error bounds are very difficult to derive when dealing 

with Markov processes. In order to obtain some confidence in the probabilities that 

determine the entropy of the model, the sample was therefore divided into several pieces, 

with a portion of the sample, called a training sample, used to postulate an encoding for 

the trees. The remaining test sample can be encoded according to these codes and an 

average code length computed. If the statistics of the sample are uniform over the 

pieces, this average length will be close to the entropy. By applying this process 

repeatedly with each piece having a turn as the test sample, we obtain a more likely 

estimate of the entropy for the sample to be 1.8 ± 13%. 
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1.5. Guide to the Reader 

Chapter 2 discusses ways of representing a program as a tree structure. A sample 

program is given which is used throughout the thesis whenever examples of 

representation or encoding are needed. Details of the representation ultimately chosen 

are presented, together with diagrams of trees drawn from the representation of the 

sample program. 

Chapter 3 contains most of the formal mathematics of the thesis. It contains 

definitions of all the information theory terms used, and a discussion of trees as outputs 

from a Markov source. The non-uniform formula for entropy of a Markov source is 

derived, and a generalization of the formula is made for trees, taking the structure of the 

trees into account when defining the concept of "previous". Finally, there is a proof 

that the pattern refinement procedure, described further in Chapter 4, always yields an 

improvement in the estimate (although increased experimental error may outweigh the 

i m provemen t). 

Chapter 4 contains the experimental results. The sample set, comprising 

approximately a million characters of source programs, is described. Results are given 

for the entropy of Markov source models of various orders, using the uniform formula 

for entropy. The patterns used in the more general entropy formula are described, and 

sample results are shown from the entropy estimate determined from the original set of 

patterns. The new methodology called pattern refinement, which obtains a lower 

estimate by enlarging the set of patterns~ is discussed, together with sample output from 

the process applied to the sample set of programs. Finally, it is shown how the tools 

developed for the pattern refinement procedures can be used to evaluate the merit of 

various program transformations interactively. 

Chapter 5 discusses the potential error in the entropy estimate. An experimental 

test of sample variability is described, together with results of applying the test to actual 

data. Another formula for the entropy estimate from a finite sample is presented which 

is faster and easier to compute than those of Chapter 3. 
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Chapter 6 discusses application for the methodology of the thesis and possible 

extensions and suggestions for further research. 

Appendix A contains an alphabetical listing of the nodenames occurring in the 

program tree representations defined in Chapter 2. 

Appendix B contains a few comments about how some of the non-obvious 

algorithms of the thesis were implemented, together with a few general pointers for 

anyone who wishes to apply similar analyses to other programming languages. It also 

contains a description of the algorithm used to format the tree diagrams that appear in 

various figures of the thesis. 

Appendix C contains detailed statistics for both the initial pattern set and the final 

pattern set. They are shown sorted by pattern number, by entropy contribution, and by 

pattern description (alphabetically). These statistics reveal a great deal about the nature 

of "typical" programs, since they show the conditional probabilities of a wide variety of 

language constructs. 
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2. Deciding on a Data Representation 

The programs analyzed in this thesis were written in MESA [Geschke77], a 

hmguage under development at Xerox Palo Alto Research Center, being implemented on 

a 16 bit minicomputer. For the purposes of this thesis, one can consider MESA to be a 

dialect of PASCAL [Wirth7l]. 

Our goal is to estimate a bound for the space required to hold an object program, 

which we will do by studying a collection of existing programs. First, we must decide 

what representation of the programs should be adopted for study. Any representation 

that retains enough information to generate the object program is a legitimate candidate, 

but some representations allow a lower estimate, or make more intuitive the 

interpretation of partial results. Therefore, let us consider several possibilities. 

2.1. Representations not Employed 

The work of Thompson and Booth involving probabilistic languages used the 

grammar of the language to draw conclusion about encoding efficiency and hence 

entropy. This approach has some attractiveness because of the large body of theory 

involving grammars. However, the existing grammar used by the parser in the existing 

compiler has many nonterminal symbols that are present only to allow its specific 

parsing method to work; and do not really bear information. This grammar is not the 

proper one for incorporation into such a theoretical framework. Moreover, there are 

program dependencies which are semantically based, which would not be considered if 

we deal only with syntax. 

Hehner used a related representation by investigating the sequence 0/ tokens that 

make up a program. This is an improvement over surface strings, but does not capture 

nested dependencies where there is no adjacency of source text. He also studied the 

program object code, a representation in which too much encoding has already taken 

place to judge the true entropy of the language. 
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2.2. Parsed Structure as Representation 

In any language such as MESA (or ALGOL) that allows nested statements, a program 

can be viewed naturally as a tree. Such a representation allows the control structure and 

inter-statement dependencies to be easily manipulated by analysis programs. A tree 

representation has the advantage of being less tied to the surface structure of the 

particular programming language than most other choices. Parsed ALGOL programs and 

LISP programs look quite similar. 

Fortunately, the MESA compiler is a ready source of trees for programs. The 

compiler is written in the classical manner, with multiple passes operating on a 

program. It represents the intermediate stages as a tree. The initial tree is constructed 

by an LALR parser, and succeeding passes modify the tree in light of increasing 

knowledge, or extract information into symbol tables, literal tables, etc. The final passes 

generate code from the entire collection of information. In the discussion below, 

references to "the compiler" are to this mUltipass system. Other compilers would not 

necessarily perform the same actions at the various passes. 

Examples of language and encoding features discussed in the remainder of this 

thesis will be drawn from the following procedure, paraphrased from a stream 

input-output program. It is not really necessary to understand the operation of this 

program, we shall be concerned only with superficial aspects of its syntax. 

WriteString: PROCEDURE [s: STRING] = 
BEGIN 

c: CHARACTER; 

i: INTEGER; 

FOR i IN [0 .. S. LENGTH) DO 

C +- sri]; 

WriteCharacter[c]; 
ENDLOOP; 

IF S. LENGTH '* 0 

THEN StartofLin&+- (c = CR); 
END; 

Figure 2.1. A sample MESA program. 
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To aid readers in understanding the syntax~ a. few explanatory comments are in 

order. 

• id: type is a declaration of ide The type of Wr i teStr i ng is a procedure that 

takes one parameter of type STRING. The n=" in the declaration equates 

Wr iteStr i ng to the following procedure body. 

• id. id' is a field selection operation. If id is a POINTER, the expression refers to 

the id' field of the RECORD to which id points. If id is of type RECORD, the 

expression refers to the id' field of ide The predefined type STRING is a pointer 

to a record containing a LENGTH field and the actual string text .. The construct 

s . LENGTH is the length of the string s. 

• [exp .. exp') is a half-open interval from exp up to but not including exp'. The 

FOR statement is executed for i taking on each value in the range. 

• Procedure arguments, like array indices and character selections, are enclosed in 

square brackets []. 

Wr i teStr i ng is a simple procedure that writes a string by writing each character 

in turn. It finally checks to see whether the last character written is a carriage return, 

and if so, sets a BOOLEAN flag saying that the output device is currently at the beginning 

of a new line. Figure 2.2 shows the statement list of the above procedure body as parsed 

by the first pass of the compiler. 

list 
I 

1 \ 
dostmt ifstmt 

J I I----.'.------llf------.-t ---\ 1 I \ 
upthru <empty> list <empty> <empty> relN assign <empty> 
--1 I L t 

I \ 1 \ 1 \ 1'--&--,' 
i intCO assign apply dot 0 Startofline relE 

-1 --1 I..L 1 
1 \ 1 \ I \ I \ I \ 
o dot c apply WriteCharacter c s length c CR 
-L 1 

I \ I \ 
s length s i 

Figure 2.2. Portion of a parse tree generated by Pass t of the Compiler. 
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In the remainder of the thesis, nodenames taken from trees will be underlined. For 

those readers not familiar with parse trees, Figure 2.2 may be somewhat difficult to read 

at first, but the meaning is actually quite straightforward. The procedure body is a 1; st 

of statements, in this case a dostmt and an ifstmt. The subtree rooted by dostmt is 

generated for the source construct "FOR i ... ". Notice that some of its sons are empty, 

denoted "(empty>". This is because the language allows several forms of iteration 

statement, with, for example, WHILE clauses at the beginning or end, or with nonstandard 

exits. The parser generates the same general tree for a)) such statements, merely leaving 

the subtree "empty" for those features not present in the given source statement The 

; f s tmt tree is easier to understand. It has three sons, the test, the "THEN" part and the 

"ELSE" part. In the example program, there is no "ELSE" part. Appendix A gives a 

complete list of nodenames, together with number of sons and the source constructs 

which give rise to the node. 

Such a tree representation of the program clearly does not discard any important 

information. In fact, a quite successful program has been written to produce neatly 

indented listings that takes these trees and unparses them, using the program structure to 

control line breaks, etc. For analysis, however, it is best to wait until later passes of the 

compiler have had a chance to embellish the tree. 

Knuth's study of FORTRAN programs used the surface strings as a representation 

[Knuth7l]. We could produce similar results from Pass 1 trees, and would, in fact, have 

an easier task than he did, since statement typing and decomposition has already been 

done by the parser. The study of TENEX-MESA programs described in Chapter 1 was 

done using Pass 1 trees. 

Experience with Pass 1 trees suggests several problems. Some syntactically similar 

program constructs must be differentiated by means of the semantics. Thus the string 

character selection and procedure call in the dos tmt of Figure 2.2 are both parsed as 

~ by Pass 1. Later passes will convert the subtrees to seq index and call, 

respectively. 

The names of variables allow us to tell very little about variable usage. In a 
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strongly typed language, two identifiers of the same name appearing in the same 

expression might welJ have entirely different semantics. The earliest time to obtain a 

tree in which variable names have been disambiguated is at the end of Pass 3, when each 

name is replaced by an index into the compiler's symbol table. This seems like a good 

source of trees for analysis. Indeed, the initial programs developed for this thesis 

manipulated Pass 3 trees. 

RecalJ that we wish to encode programs using a minimum of space. As we shall see 

in Chapter 3, increasing redundancy can help to make more compact encodings. 

Programmers know that ea.ch program or procedure contains a few variables that are 

used frequently and some others that are used only a few times~ Since the actual names 

of the variables do not affect the execution of the program, we can increase redundancy 

for analysis by renaming the variables of each procedure to be the same, ordering by 

frequency of reference. We are concerned with minimizing object code size, so static 

frequency is a sufficient measure. 

One cannot tell the type of a variable from its name. This information is available 

elsewhere in the parse tree in the declarations, but such remote references are not very 

convenient for analysis. Similarly, some "variable" names actualJy refer to named 

constants, such as CR in the example, which is declared earlier to be equal to the ASCII 

code for carriage return. For analysis, we wish to replace such references with their 

values. 

2.3. Tree Representation Emp!oyed in Analysis 

It is not until Pass 4 of the MESA compiler that named constants are replaced by 

their value. As an added bonus, "constant folding" has taken place, i.e., arithmetic on 

constants has been performed at compile time. However, by this time, the declarations 

have been completely processed and removed from the trees. This poses a problem: if 

we are to benefit from the processing done by Pass 4, we need to encode some 

information from the symbol table. Otherwise, we would be lacking information about 

lengths of variables, etc. 
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Putting the Variable Type Information Back into the Trees 

The symbol table entries for variables contain all the relevant information about 

type. One way to retain the information of the program would be to encode the parse 

tree and symbol table separately. This would be similar to the approach used with Pass 

3 trees, since the declaration trees were easily separable. This would retain a 

shortcoming that was observed in the statistics obtained from the Pass 3 trees: we know 

what operations are executed on variables, but we don't know the types of variables 

involved. That is an oversimplification; the type information is in the tree, but is not 

located conveniently to the actual variable occurrences. We solve this problem by 

placing information from the symbol table back into the tree. Each instance of a 

variable in a tree is replaced by the collection of information necessary to generate a 

proper object program from the tree. This puts more information into the tree than is 

absolutely necessary, but it simplifies investigations of operations needed to execute 

actual programs. 

Variables can be divided into four classes, depending upon where they are 

declared. For reasons related to the runtime structure, we will call the class name a 

frame. 

1. 91 oba 1 -- a variable declared outside of procedure bodies. 

2. 1 oca 1 -- a variable local to the given procedure. 

3. fie 1 d -- a named field of a record. 

4. entry -- a procedure entry point. 

In our discussion above, we saw that renaming the variables within each procedure 

increases redundancy. It is sufficient to assign sequence numbers to the variables, 

ordered by frequency of use. Fortunately, the compiler does just that in assigning 

addresses, so that we may simply use the address of each variable within its procedure 

frame as its sequence number. 

Some variables, primarily f; e 1 d variables, begin at arbitrary places within a word. 

Thus, a variable must have a bit offset. 
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Not all variables occupy a single full word of memory. For example, the type 

BOOLEAN is defined as a single bit. A length is therefore needed for a variable. The 

compiler unpacks non-f i e 1 d variables into whole words, but for analysis purposes, the 

length used is the minimum number of bits necessary to hold a value of the given type. 

In a language supporting floating point operations, additional information would have to 

be included to distinguish what operations were used with the variable. 

To summarize, each instance of a variable in the Pass 4 parse tree can be replaced 

by a tree with root ~ and four sons, corresponding to frame; address, bit offset, and 

length. For example, the variable c, an 8-bit character variable in the local frame, was 

assigned by the compiler to word 2 in the frame. References to c are replaced in the tree 

by 

var 
I 

/ I I \ 
local 2 0 8. 

This makes the trees rather cumbersome to read, but it puts the pertinent variable 

information in a form easily manipulated by tree matching procedures. 

Marking Literal Constants in the Trees 

The nodes that provide type information for variables introduce a great quantity of 

numbers into the trees. We are interested in knowing what numbers are used by 

programmers as literal constants; therefore, two nonterminals were invented in the 

analysis programs for specifying numerical and string constants. All numerical 

constants are placed below num nodes, and all string constants are placed below str 

nodes. This mechanism provides a positive test (under num), instead of just a negative 

test (not under var) for determining the presence of a literal. It also helps to avoid 

fragmentation of common patterns, as we will see in our later discussion of patterns. 

Assuming that i is allocated the first location in the frame, the statement i +- 1 would 

compile to the tree 
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assign 
f 

I \ 
var num 

I I 
I I I \ I 

local 0 0 16 1. 

Dealing with Arbitrarily Long Lists 

Several schemes for dealing with the variable length 1 i st nodes were considered. 

Although the programs studied are written for a 16 bit computer, the analysis routines 

are based on a compiler that runs on a 36 bit machine. In this compiler, each 

non-terminal tree node has a field in the node header that gives the son count. This is 

redundant in all cases except 1 is t since all other nodes have a degree that is known a 

priori. Hence, only 1 is t nodes need an explicit means for determining son count. In 

the Pass 3 trees, the convention was an invented node 1 i stterm as the final son of each 

1 i st node. This is equivalent to parentheses with 1 ist as the opening bracket and 

1 is t te rm as the closing one. One of the problems with that scheme was the difficulty 

of relating the length of lists to other context information. Several other, forgettable 

schemes were considered when the decision was made to use Pass 4 trees, but the one 

chosen allows the lengths to be easily related to context in the same manner as are other 

tree nodes: the first son of 1 i st is a count of the remaining sons. In the experimental 

data, 85% of the 1 is t nodes have fewer than 5 sons, so considerably fewer than 16 bits 

are required on the average for the son count. Results from the entropy studies were 

used by the compiler designers to decide on an encoding of 1 is t in versions of the 

compiler that run on the 16 bit machine. 

Example of a Transformed Tree 

Figure 2.3 is the transformed Pass 4 tree of the dos tmt of Figure 2.2. Note that 

the compiler has used the semantics of sand Wr i teCharacter to convert the app ly 

nodes of Figure 2.2 into the proper seqindex and call nodes. 
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local 1 0 16 field 0 0 16 local 1 0 

Figure 2.3. Portion of a converted Pass 4 tree. 
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In these trees, there is enough information to generate the same object code as the 

compiler does from the original program. One could not, however, recover the exact 

surface strings of the original, since the variable names are not in the tree. Furthermore, 

the user may define types that are used for compile time type consistency checking, but 

are the same at machine level. The information is moved into the trees after the 

compiler has done such checking. 

2.4. Summary of Program Representation 

The empirical study of programs described in the remainder of this thesis 

represents a program by the parse tree obtained from the compiler after Pass 4, during 

which declarations are removed and expressions involving only constant values are 

replaced with their computed value. The analysis routines further replace variables by 

subtrees giving their address and length, and mark literals by inserting nonterminal 

nodes nurn and str above them. Variable length 1 i st nodes are encoded by placing in 

their first son position a count of the remaining sons. 
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3. Finding an Entropy Model 

3.1. Some Definitions from Information Theory 

In order to discuss the methodology used for program analysis, it is necessary to 

present a few definitions and results from information theory. Let us consider a few 

definitions [Abramson63]. 

Definition: Let E be some event which occurs with probability P(£). If we are 

told that the event E has occurred, then we say we have received 

1 
I(E) = log -- = -log P(£) 

peE) 

units of information. 

The unit of measure depends upon the base of the logarithm. Typically, logz is 

used and the unit of measure is the bit. 

Definition: Let S = {sl' sz' ... , Sq} be a fixed finite source alphabet. A 

discrete information source is a process that emits a sequence of source 

symbols according to some fixed probability law. 

The simplest type of source in one in which successive symbols are statistically 

independent. Such a source is called a zero-memory source and is characterized by the 

alphabet S, and the probabilities 

P(sl)' p(sz)' •.. , P(Sq) 

with which the symbols occur. We will often refer to a source by the name of its source 

alphabet when this can be done without danger of confusion. 

Definition: Let S be a zero-memory source with a given probability distribution 

of the symbols. The entropy of S, denoted H(S), is defined to be the average 

amount of information per source symbol: 
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q 

H(S) = -~ P(Sj) log P(S;). 
;=1 

Entropy can be thought of as a measure of uncertainty. If a source usually emits 

the same symbol. there is little uncertainty, and also by the above definitions, the source 

has a low entropy. While the definition in terms of logarithms may seem somewhat 

arbitrary, it can be shown (see [Ash65] Section l.2) that any uncertainty measure 

satisfying a particular set of reasonable axioms is equal to H within a constant 

multiplicative factor. We will later consider the definition of entropy for discrete 

information sources with more sophisticated probability laws. 

source 
message 

encoder 

noisy 
channel 

~------~ p------~ 

noiseless channel 

Figure 3.1. A model of information transmission. 

source 
message' 

decode 

The principle application of source information and entropy is to the problem of 

source encoding. We can envision a process where source messages are converted into 

some sort of code, transmitted across a channel, and decoded on the other side. There 

are generally two dissimilar kinds of encoding taking place: source encoding and channel 

encoding. In the former, the redundancy of the source output is being exploited to allow 

shorter average code lengths. I n the latter, redundancy is often added so that errors 

induced by noise on the channel may be detected or corrected. As a simple example, 

parity is added to teletype characters. Often the channel encoding and decoding is 

"factored out" to yield an abstraction called a noiseless channel. Figure 3.1 is a block 

diagram of the transmission process. The criterion for source encoders and decoders is 

that no relevant information is lost between message and message'. OUf goal is to 

investigate encoders for programming languages that minimize the average object code 

30 



CHAPTER 3: FINDING AN ENTROPY MODEL 

length. Therefore, the relevant information is that which is necessary to generate correct 

object programs. 

A code in which each codeword can be deciphered as soon as all bits of it are 

received is called an instantaneous code. This is a property that we desire for object 

codes. A fundamental theorem of information theory [Shannon48], states that no 

instantaneous encoding of a source may be found which requires on the average fewer 

bits per source symbol than the entropy of the source. Therefore, we wish as small a 

value for the entropy as is possible. There are schemes that allow encodings which are 

quite close to the entropy in average code length [Huffman52] [Pasc076]. 

3.2. Markov Sources 

For our purposes, it is too restrictive to consider only zero-memory sources. In 

many cases, the probability distribution of source outputs depends upon the values of 

recent previous outputs. Such sources are called Markov sources, and they require the 

concept of conditional probability for their analysis. 

Let S be a source. We will need some notation to describe the sequential nature of 

the source outputs. We will let Pij = P{SjSj} denote the probability that the symbols Sj 

and Sj appear as successive outputs from S. This can be extended to higher order 

n-tuples, where 

Pi1i2 . .. in = P{sil si2' .• Sin} 

denotes the probability that the n specified outputs occur together. We will use the 

notation Pjl i = P{sjl Sj} = Pij / Pi for the conditional probability that symbol Sj will be 

output given that the previous output was s;- For sources where there are dependencies 

on more than one previous symbol, we similarly let 

denote the probability of sj' given that the n preceding were as specified. We can now 

define the order of a Markov source. 

31 



CHAPTER 3: FJNDJNG AN ENTROPY MODEL 

Definition: Let S be a source with alphabet {sl' s2' .•• , Sq} in which the 

occurrence of a source symbol si' may depend upon at most m preceding 

symbols. Such a source is called a Markov source of order m. It is specified 

by giving the alphabet and the set of conditional probabilities 

Pjl il i2 • •• im for j = 1, 2, ... , q; it= 1, 2,. .. , q. 

3.3. Entropy of a Markov Source 

It is possible to define the concepts of information and entropy for Markov 

sources in a fashion similar to that for zero-memory sources. 

Definition: Let S be a Markov source. The conditional entropy of S is defined 

by 

H(SI si1 si2· .• Sin) = -~ Pj/ i1 i2 . .• in log Pjl i1i2 • •• in· 
J 

The entropy of the source S of order m is defined by 

H(S) = ~ Pili2 . .. im H(SI s;1 s;2· .. sim)· 
. i 1 i2· .. im 

There is another formula for the source entropy that is sometimes more convenient to 

use. It is obtained by rearranging the summation above and using the definition of 

conditional probability. In order to avoid notational overload, we will go through the 

rearrangement for m = 1, and simply state the result for general m. 

H(S) = ~ Pj H(S! s;) 

= ~ Pi ~ -Pjli log Pjli 
i j 

= -~ PjPjl j log Pjl i 
ij 

= ~ Pij log Pj/ i' by definition of conditional probability 
ij 

In the case of general m, H is computed by a sum over all (m+l)-tuples: 

R(S) = -~ Pi1i2 • .. inJ log Pjl i1i2 . .. im• 
i1 i2· .. inJ 

In the remainder of the thesis, we will have occasion to refer to either of the above 

formulas for H(S) as uniform formulas. This name is chosen because the formulas 
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uniformly use tuples of a given size. This is contnisted with formulas derived below 

that use an amount of history varying with context. 

We will be dealing with experimental data in which we will never be sure of the 

order of the source. It is possible to perform an entropy calculation on a source as if it 

were of order less than its true order, so we want to know something about how this 

entropy estimate relates to the true entropy. This question is answered by the following 

theorem. 

Theorem 3.1: Let S be a Markov source of order m. Suppose that we assume an 

order k ( m, and calculate an entropy value HiS), 

HiS) = ~ Pi}i2 . . . ;k H(SI si1 si2 .. . sik)· 
i1;2 • .. ik 

The sequence of values H k(S) is monotone nonincl'easing, i.e., 

Hk(S) 2:: Hk+1(S) > H(S). 

Note that by definition, H k(S) = H(S), for k> m. 

Proof: The proof is straightforward, and found in any information theory book. 

Theorem 3.2, proved below, is a generalization of this theorem. For a explicit 

proof of Theorem 3.1, the reader is directed to Ash, Theorem 1.4.5. [Ash65]. 

Although we will not be concerned with any such sources, it is possible to have a 

Markov source of infinite order. In that case, the entropy of the source is defined to be 

the limit of the sequence {H k(S)}. 

3.4. Considering Trees as the Output of a Markov Source 

Traversal Order 

Consider a source that emits nodes from trees of the form described in Chapter 2. 

One method would be to traverse the tree in preorder (father, then sons from left to 

right), emitting each nodename as it is reached. All nodes except 1 is t have a fixed 

number of sons, and the first son of 1 is t is its son count, so clearly the tree structure 

could be reconstructed from this linearized representation. Given the sequential nature 
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of most programming languages, such an orderisweH suited for encoding program 

trees. However, for the purposes of entropy definition, any well defined algorithm that 

. eventualJyemits all nodes 'Of a tree is sufficient. One general scheme would use an 

arbitrarycol1ection 'Of previously emitted n'Odes to determine the 'Order in whic'h to visit 

the sons of a node. A process reconstructing the tree would use the same amount of 

context to determine whicb son recei'ves the incoming nodes. It should be obvious that 

no traversal will cause the most recently visited nodes to be those that most influence the 

probabiHtiesat the next node. In the next section, we wiTl deal with this problem. 

The mathematical modelsempJoyed in analyzing Markov sources assume a 

non-terminating supply ofoutpuls. For tree analysis, we wiHassume that when our 

source reaches the end of one program tree, it starts sending another one. The space of 

possible programs is dearly infinite, but we will hopefuHyhave.a large enough sample 

to draw,concIusions about the microscopic nature of programs in general. 

Meaningo!"l'revious" for Trees 

In Markov sources of strings, the concept of "previous"means just what 'One might 

expect: the output just seen. When we extend the .conc.ept to trees, we wi 11 mean not the 

node just traversed~ but a '''nearby'' node ala location defined in terms of tbe tree 

structure. A small examp'le will help us to see why the 'standard sense of previ.ous 

symbol is not su'itable for trees. The tree in Figure 3..2 represents the IF statement of the 

progr.am from Figure 2.1. 

va ... 

i '.1 \ locaJ 10 16 

if.stmt 
1 

Figure 3.2. Treereprese,ntationofa:n:IF .stat·ement 
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Consider the position of the ass i gn node in the tree. From a preorder traversal, the 

preceding 6 outputs from the source are var, field, Q, Q, 16, num, and ~ Intuitively, 

the appearance of assign is more influenced by the fact that its father is ifstmt, and 

that it is the second son. There might also be an influence from the presence of a test 

for inequality (re 1 N). but the most recent nodes, the expression on the right of the re 1 N 

test, have little influence on the output. It seems best to chose the previous node from 

the set of chronologically previous ones in terms of the tree structure. For example, in 

Chapter 4, the sample data is used to model a source of order 3 with the probability 

distributions conditioned on the elder brother, the father, and the grandfather. 

Experience with a Markov Model for Tree Entropy 

The formalism ~escribed above was applied to a set of sample programs in order to 

estimate the entropy of a tree node. The results are summarized in Figure 4.2. A fixed 

traversal order of preorder was used in all cases. Various candidates for previous were 

tried from the set of siblings and ancestors of a node. Estimates were made for orders 

of 1, 2, and 3. The probabilities of the various (m+I)-tuples were estimated by their 

relative frequency in the sample. There were several shortcomings in this approach that 

led to the entropy formulation described later in this chapter. 

• Any choice of previous seemed better in come contexts than in others. No set of 

previous positions was uniformly superior to all others. 

• When the order of the approximation is m, we need estimates of the probability 

of (m+I)-tuples and conditional probabilities based on m-tuples. As m gets 

large, the nllmber of occurrences of a given m-tuple in the sample becomes quite 

small. No formal error analysis of the results was achieved, but an 

uncomfortably large portion of the entropy estimate came from (m+ I)-tuples 

that occurred only a few times. 

Fortunately, the above problems can be ameliorated by recasting the entropy 

formula in a form that takes the context into consideration when determining the order. 
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3.S. Non-uniform Formula for Entropy of a Markov Source 

J nformal Statement 0/ the Formalism 

The order of a Markov source, say m, is the maximum number of previous outputs 

that influence the next output. In most actual sources, there are sequences of outputs 

where the next output is influenced by fewer than m. For example, in a simple model 

for an English language source, one might consider previous words only back to the 

beginning of the current sentence. 

We wish to compute approximations H k(S) for increasing values of k, but our 

goals are best served by a formula that does not require extending k-tuples to k+l-tuples 

uniformly. Before deriving such a formula, it will be helpful to consider a small 

example. 

Example 

Figure 3.3. State diagram of a simple Markov source. 

The state diagram of Figure 3.3 defines a simple Markov source. Associate 

probabilities with each of the arrows, subject to the constraint that the sum of the 

probabilities for all arrows leaving a circ1e is unity. The alphabet of S is {a, b}, and the 

order is 2. However, if the previous output was a, the probabilities are not affected by 

what the output was before the a. In other words, P{yl xa} = P{yl a}, for all x,yE S. 

Clearly H(SI xa) = H(SI a), for al1 xES. Consider the sum that defines H(S), 
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H(S) = ~ P xy H(SI xy) 
xy 

= PaaH(SI aa) + PbaH(SI ba) + PabH(SI ab) + PbbH(SI bb) 

= PaaH(SI a) + PbaH(SI a) + PabH(SI ab) + PbbH(SI bb) 

= (p aa + Pba)H(SI a) + P abH(SI ab) + PbbH(SI bb) 

= PaH(SI a) + PabH(SI ab) + PbbH(SI bb) 

which the reader can see is a sum over the states of the Markov source of the productof 

a state probability and the entropy given that state. Using such, a formulation for the 

entropy requires us to deal with m-tuples only in those cases where ·all m previous 

outputs affect the value of the current output. 

Entropy Formulation for a Markov Source 

Let S be a Markov source of order m with source alphabet {sl' s2' . •. , Sq}. In 

order to simplify our notation, we will let boldface letters denote vectors, typically of 

order m. If j = VI' j2' . .• , j m)' we shall use the abbreviation Sj for the m-tuple of 

alphabet characters (s). , s. , ... , s).). Let P
J
• be the probability of occurrence of the 

1)2 m 

m-tuple si' and let Pilj be the conditional probability of si given that Sj occurs 

immediately before. The entropy of S is defined by 

H(S) = ~ Pj H(SI Sj) 
j 

= -~ Pj ~ Pili log (Pili)· 
j i 

Suppose now that dependencies of order m are not needed throughout the entire range of 

source output. That is, suppose that there is some p-tuple k such that for all 

(m-p)-tuples r, and all i E {I, 2, ... , q}, 

The sum defining H(S) can be partitioned into that portion of vectors j ending in k, and 

a]] the rest. Consider now the portion containing k. 
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~ Prk H(SI Srk) 
r 

= -~ Prk ~ Pi! rk log (Pi! rk) 
r i 

= -~ Prk ~ Pil k log (Pi! k) 
r i 

= -~ Pi I k log (Pi I k) ~ Prk 
. ; r 

=-P~ ~ Pi! k log (Pil k) 
I 

Hence we see that in calculating the entropy of a source of order m, the sum over all 

m-tuples can be replaced by a sum over vectors of length< m. 

3.6. A Non-uniform Entropy Formula for Trees 

Generalization of the Non-uniform Entropy Formula 

In the derivation of the non-uniform entropy formulation for Markov sources, the 

simplification came from considering a p-tuple k t such that all m-tuples ending in k had 

the same conditional probabilities for their next output. The derivation actually made 

no use of the fact that k was contiguous t and at the end. Let us try to generalize those 

results. 

Let y(£ S be allowed to match any source output. Engineers call such a variable a 

don't care condition. Let cp be an m-tuple over S U{y}, which we will call a pattern. 

Define containment as follows: If Sj is an m-tuple over S, then cp~ Sj if for each cp ;*y, " - " - . 
cP i = sr Suppose that a set of patterns <I> has been chosen with the properties: 

• The elements of <J) form a partition of S. That iS t for every m-tuple Sj' there is a 

unique cpE<I>, such that cp~ Sj and cp has a minimal number of elements equal to 

y. 

• For all cpE<I>, if m-tuples Sj and sk are both in the equivalence class defined by cp 

through the above partition, 

Pilj = Pil k' for all i. 
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Then we can restate the entropy formula as 

H(S) = ~ P H(S! cp), 
cpE ell cp 

where Pcp = ~ {Pj! Sj in the equivalence class defined by cp}. 

Tree Formula 

Suppose that S is a source of tree nodes with a well defined traversal order. Let a 

pattern be a partial subtreet possibly with don't care elementst denoted *. The pattern 

has a nodet denoted @t which is the last nod~· of the pattern in traversal order. We will 

be interested in the probability distribution of nodenames that occur in this @ position, 

given that the rest of the pattern is matched. The location of the as sign node in 

Figure 3.2 might correspond to the pattern 

ifstmt 
-.L 

I \ 
relN @ 

meaning the second son of an ifstmt whose first son is a relN test. Asterisks for the 

third son of i fstmt and the sons of re 1 N are omitted. Suppose that we can find a set 

n of patterns, such that for each wEn, the conditional probabilities of the values of @ 

are independent of any previous context other than that specified in'll. Suppose further 

that for each node in a possible tree, there is some unique 'liEn, such that the node is in 

the @ position of 'IT. If the patterns are allowed to overlap, we will require an effective 

algorithm for determining which pattern to associate with a given tree position. By 

reasoning similar to that of the previous section, 

H(S) = ~ P'II H(S! '11). 
'liEn 

In order to estimate H, we need to find a traversal ordert a suitable pattern set n t and 

we need to estimate the probabilities P'I1' and Pi! 'IT. The comments above about 

overlapping patterns above might lead one to the conclusion that such situations are to 

be avoided; on the contrary, the pattern refinement procedure discussed below generates 

large numbers of nondisjoint patterns. 
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3.7. Pattern Refinement 

In Section 4.4 we will describe a process called pattern refinement, in which the 

nodes matching a pattern 'IT are partitioned into two sets: those also matching a new 

larger pattern II, and the remaining ones. This section contains a proof that pattern 

refinement always leads to an improvement in the estimate unless " has the same 

conditional probabilities as 'IT. It is not even necessary for the refining pattern" to have 

a lower entropy for its matching nodes than the original. In order to prove the theorem, 

a few elementary results from probability theory and information theorywiH be needed. 

Lemma 3.l. Let A, H, and C be events. Then 

P{A and HI C} = P{AI Band C}· P{BI C}. 

Proof: The result follows by two applications of the definition 

P{XI Y} = P{X and Y} / P{y}, 

with Y = Band C, then Y = C. See [Feller68], page 116. I 

Lemma 3.2. Let {Pl,P2' •. . Pn} and {ql,q2' . .. qn} be sets of probabilities. That is 

Pj'?:.O and q;>O, for all i, and 

~ Pi = 1, ~ qi = 1. 
i i 

Then the formula 

-~ Pi log Pi < -~ Pi log qi 
i i 

holds with equality if and only if Pi = qj' for all i. 

Proof: This is a well known result, fo11owing from the inequality In x < x-I, with 

equality if and only if x = l. See, for example, [Abramson63], formula 2-8b. I 

Theorem 3.2. Let 'IT be a pattern, and " a pattern containing 'IT. Let 'IT' be the 

pattern defined by "matching'IT, but not matching ,,". Then the component of the 

entropy estimate contributed by the two disjoint patterns" and 'IT' does not exceed 

the component of the pattern 'IT that they replace. In other words, 

P'IT H(SI71) > P" H(SI") + P'lT' H(SI'IT')· 
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Furthermore, equality holds if and only if P{s;I,,} = P{s;1 'II} for all i. 

Proof: The general approach of the proof is to divide the probabilities of various 

nodes into a " component and a '11" component. There will be some nodes for which 

one of the components will be zero. We will adopt the convention that 0 log 0 = 0 

in order to simplify our notation. 

Let a = P{" I 'II}, j3 =P{w'I'IT}. Clearly a+/J = 1. 

For each node siES, let Pi = P{s;1 w}. Decompose Pi as follows: 

Let Pi = qi + ri , where qj = P{si and v I w}, 

ri = P{si and w'I-w}. 

Clearly ~ qj = a, and ~ '; = /3. Also, by Lemma 3.1 and the fact that matching" 
. i i 

or'll' implies matching'll, 

q. 
P{s.1 v} = ...J, 

I a 

r. 
P{si 1w'} = 7/. 

Consider now the contribution of '11' to the entropy estimate. 

Pw H(SI 'IT) = - Pw ~ Pi log Pi 
i 

= -Pw ~ qi log Pi - Pw ~ rj log Pi 
i i 

~ q. ~ r. 
= -apw ~ a' log Pi - PPw ~ 7f log Pi 

I' I 

~ q. ~ r. 
= -P" ~ a' log Pi - Pw' ~ pi log Pi 

I I 

~ 
q. q. ~ r. r. > -p -' log -' - p, ...J log I 

- ".a a 'IT .13 ]I , , 

= P" H(SI,,) + Pw' H(Slw'). 
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q. ,. 
From Lemma 3.2, equality holds if and only if at = 71 = Pi for all i. Since fJ = 

1 d qi· 1·'j I ' 
-a an q;+r; = Pi' a = Pi Imp les 7i = Pi" 

Although Theorem 3.2 is stated in terms of tree patterns,. the concept is equally 

valid for any non-uniform entropy formula where a partition of the possible source 

output configurations is refined by splitting one of the equivalence classes into two 

disjoint pieces. 

This chapter has contained most of the formal mathematics of the thesis; Chapter 

5, on error analysis, also contains a few results. 
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4. Applying the Entropy Model to the Sample 

4.1. Sample Description 

Obtaining a Representative Sample 

When it was decided to apply the framework of information theory to the 

empirical study of programs, the MESA language and its compiler were still under 

development, so there were very few source programs. Thus, the analysis programs were 

being developed as the language was maturing and as a collection of source programs 

were being written. Writing software that depends upon the internal workings of a 

compiler under development by others is a frustrating task, but eventually enough 

programs existed to provide a suitable sample for analysis. At this point the compiler, 

all support routines, and the entire set of available source programs were saved away on 

tape .. (ind this frozen universe was used for analysis and for refinement of the analysis 

tools. The sample lasted for almost 5 months, and for several iterations of the analysis 

programs. These were the Pass 3 trees described in Chapter 2. When Pass 4 trees were 

chosen for study, the changing language had stabilized, so a new larger sample was made 

from essentially all existing source programs. 

The compiler and runtime system are all written in MESA itself. Since it is a young 

language, these comprise the majority of the programs written. The language is intended 

for system implementation, so these programs are probably representative of the ones 

. which will be written in the future. The sample was 114 programs, of which 

approximately half were the multipass compiler. The remainder were runtime support 

and utility software. 
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Sample Size 

The physical characteristics of the set of sample programs are enumerated below. 

Since length of identifiers varies with programmers, a count of the tokens as returned by 

the lexical scanner of the compiler was also taken as a measure of source program size. 

Tokens inc1uded identifiers, operators, numbers, reserved words, etc. The count of lines 

was made as an afterthought and in some cases represents a count of lines in a later 

version ,of a given program. 

Number of Programs: 114. 

Lines of Source: approximately 37,000. 

Characters of Source (exc1uding comments); 992,030. 

Tokens of Source: 199,406. 

The programs were written by 5 programmers, all of considerable experience. The size 

of the programs varied from small collections of shared definitions to large compiler 

modules. The smallest was 165 characters (28 tokens), and the largest was 31,696 

characters (7119 tokens). The mean number of characters per program was 8090, with a 

standard deviation of 7150, indicating a large variability in program size. The following 

information is irrelevant to our further discussion, but is inc1uded for interest. 

Average length of identifier (exc1uding reserved): 8.12 chars 

Average proportion of comments: 7.9% 

The programs are low on comments, but the programmers compensate by choosing long 

descriptive names for variables. The mean of 8.12 characters is quite large when one 

considers the relatively frequent use of short variables such as land j. Some definitions 

modules had an average identifier length in excess of 13. These modules also had a 

higher percentage of comments, sometimes in the range of 30 to 40%. 

Existing Encodings of the Sample 

OUf goal is to see how little code is necessary to represent a program. It is useful 

to have a benchmark against which to measure our ability. Since code compression 
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comes often at the cost of increased complexity in the encoding and decoding processes, 

knowing the cost of a naive encoding would be helpful. Certainly the output of the 

existing compiler can serve as an upper bound on the amount of space needed to encode 

a program, but this does not reflect a naive encoding since an effort was made to have 

the compiler produce compact object code. The other representation of the programs 

that we have is the trees described in Chapter 2. The actual representation of these trees 

used by the analysis routines was designed for ease of incremental updating of various 

data bases, so the size of the set of trees is not the correct measure. We will see in the 

next section that a naive, but compact encoding of these trees would require at least 10 

bits per node. 

Code generated by the compiler: 944,512 bits. 

Tree representation: 296,895 nodes ·10 bits per node = 2,968,950 bits. 

4.2. Applying Uniform Order Markov Model 

Zero-memory Source Model 

The simplest model for encoding the trees is to assume that the various tree nodes 

are independent. Each node j is assumed to occur with probability p.o From the 
1 

definitions of Chapter 2, we can calculate the entropy Ho(S) by the formula 

HO(S) = -~ Pi log p( 
i 

This model provides some insight into the use of the language. Of the 296,895 

nodes in the sample, there were 1037 distinct nodenames. While this number seems 

large, recall that it also includes programmer-specified numbers and strings. There were 

556 nodes which occurred only once, 399 of them string literals. We wil1 consider the 

effects of literals in the next section. The entropy estimate was 4.75 bits per node, quite 

a bit smaller than the slightly over 10 bits needed to represent 1037 symbols of equal 

frequency. 

Figure 4.1 shows the 35 most frequent nodes together with their contribution to the 

entropy calculation. The most frequent nodes are those that were invented to put the 
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information about variables into the tree. No meaningful conclusions can be drawn 

about use of numerical literals, since most of the O's, 1 's, and 16's are sons of var nodes, 

the node which was invented to put information from the symbol table back into the 

trees for analysis. We can see that the static usage of variables by frame location is 

ordered: local, global, field. and entry. The most popular statement nodes! are 

call, assign, ifstmt, and return. Some of the list nodes refer to compound 

statements. The most popular expression nodes are: var, call, dot (field selection via 

pointer), do 11 ar (field selection from variable), .IW!§.~ re 1 E (test for equality), ,and 

uparrow (obtaining value of cell from pointer to the cell). The node call, c,an be 

either a statement or an expression; we cannot tell from these zero-memory statistics 

which is which. The first 35 nodes (3% of the total) accounted for 93% of the node 

usage and 84% of the total entropy estimate. 

node name count p -p log p }:.-p log p 

0 54280 .183 .448 .448 
var 40289 .136 .391 .839 
16 26481 .089 .311 1.150 
local 17580 .059 .241 1.392 
empty 13917 .047 .207 1.599 
global 12279 .041 .190 1. 789 
1 11293 .038 .179 1.968 
num 10220 .034 .167 2.135 
2 9230 .031 .156 2.291 
field 7744 .026 .137 2.428 
list 7425 .025 .133 2.561 
14 7054 .024 .128 2.690 
call 6616 .022 .122 2.812 
assign 5826 .020 .111 2.923 
dot 5726 .019 .110 3.033 
3 5428 .018 .106 3.139 
plus 4039 .014 .084 3.223 
4 3309 .011 .072 3.295 
dollar 2770 .009 .063 3.358 
entry 2686 .009 .061 3.420 
relE 2348 .008 .055 3.475 
8 2245 .008 .053 3.528 
5 2189 .007 ;052 3.580 
ifstmt 1810 .006 .045, 3.625 
return 1683 .006 .042 3.667 
body 1513 .005 .039 3.706 
6 1385 .005 .036 3.742 
32 1341 .005 .035 3.778 
uparrow 1270 .004 .034 3.811 
7 1264 .004 .034 3.845 
item 1214 .004 .032 3.877 
9 1178 .004 .032 3.909 
15 929 .003 .026 3.935 
11 928 .003 .026 3.961 
10 890 ~n .. ~ ... ., ~ "'n~ 

.uu'"' .UL~ ,;).~ou 

Figure 4.1. Excerpt from the zero memory entropy calculation. 
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Dealing with Programmer-defined Literals 

In the Markov studies performed for this thesis. certain simplifying assumptions 

were made about literal constants. It was assumed that the numbers and string constants 

seen in the sample defined the range of all possible values for numbers and string 

constants. For numbers this was not too bad an assumption. A vast majority of the 

numbers fell into a small range. making the entropy estimate for those outside the range 

unimportant to the total estimate for numbers. With strings. however, this was not the 

case. Of the 449 literal strings in the sample, the most frequent occurred 4 times, and 

only 30 occurred more than once. In Chapter 5, on error analysis, a more conservative 

estimate of entropy for string constants is factored back into the final estimates in the 

more general entropy model (they increase the total estimate by 4%). 

Uniform Markov Estimates 

In Chapter 3, we saw that the standard definition of "previous" for Markov sources 

was not the proper definition to use for trees; the notion should be defined in terms of 

the tree structure. Figure 4.2 shows the results of applying a Markov source 

approximation of order m to the sample for various values of m, and for various 

definitions of "previous." The formula used to compute the entropy was 

H( S) = -~ Pkj log Pj I k ' 
kj 

where k denotes an m-tuple over the source alphabet. In order to obtain a number, one 

must approximate Pkj for all (m+ I)-tuples which occur in the sample. For those nodes 

with a low frequency of occurrence. the relative error in the approximation is likely to 

be larger. In Figure 4.2, f is the frequency of the (m+I)-tuple in the sample. The last 

two columns show the percentage of (m+I)-tuples which occurred fewer than 6 times, 

and their contribution to the total entropy estimate. In the table, brother refers to the 

immediately preceding brother in the tree. For a node that is a first son. the value of its 

brother is null. 
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order definition H #of distinct % tuples %H from 
m of previous estimate (m+l)-tuples with f < 6 f<6 
0 4.752 1037 72 1.4 
1 father 3.180 1945 60 2.3 
1 brother 3.158 2652 61 3.4 
2 grand/ather. father 2.802 6507 66 6.4 

2 father. brother 2.053 4002 62 4.9 
3 grand/ather. father, 1.662 11954 61 12.2 

brother 

Figure 4.2. Results of uniform Markov estimates on trees. 

The results for the zero memory approximation have also been included in Figure 

4.2 for comparison. Another interesting number is the average number of bits of object 

code per node as generated by the existing compiler. There were 296,895 nodes in the 

trees and 944,512 bits of code generated, yielding an average of 3.18 bits per node. This 

shows that the Markov estimates and the current compiler are of similar magnitude. It 

also reflects the considerable thought that went into the design of the current object code 

in order to keep size to a minimum. 

As the order of the Markov source approximation increases, the entropy estimate 

decreases. At the same time, however, the amount of the estimate which comes from 

low frequency terms increases. We also see that the choice of previous as well as the 

order affects the results. Figure 4.3 shows the 35 most frequent 3-tuples in the second 

order estimate with father and brother as previous nodes. 

Several things can be learned by examining Figure 4.3. The most frequent nodes 

are not necessarily the ones which contribute the most to the entropy estimate. If the 

conditional probability Pjl k is close to unity, log Pjl k is small, offsetting the large Pkj 

value. If the 3-tuples were ordered by contribution to H instead of frequency. the total 

for the top 35 3-tuples would be .941 instead of .723. The 3-tuples (dot, Y2.!:, ~) 

and (dot, ~, var) each contribute zero to the entropy. This is true not because of 

the value of the brother (var and ~, respectively), but because dot has 2 sons, the 

second of which is always~. In 40% of the cases shown, the brother is null. telling us 

only that the node j is a first son. The other two entries with an entropy contribution 

of 0 result from the "boundary conditions" on the traversal: all trees begin 

body[list[ .... 
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father brother j count P=Pjbj p'=Pjl jb -P log p' :£-p log p' 

var 0 16 26020 .088 .503 .087 .087 
var local 17580 .059 .436 .071 .158 
var global 12279 .041 .305 .071 .229 
var 0 0 11970 .040 .231 .085 .314 
var field 7744 .026 .192 .062 .376 
var local 0 7230 .024 .411 .031 .407 
var 1 0 6542 .022 .957 .001 .409 
call val' 6370 .021 .963 .001 .410 
val' 0 14 6190 .021 .120 .064 .474 
assign val' 4011 .014 .688 .007 .481 
val' 2 0 3959 .013 .890 .002 .483 
val' local 1 3726 .013 .212 .028 .511 
list 2 3599 .012 .485 .013 .524 
plus var 3396 .011 .841 .003 .527 
val' 3 0 3159 .011 .925 .001 .528 
val' global 0 3033 .010 .247 .021 .548· 
dot val' 2965 .010 .518 .009 .558 
dot val' var 2965 .010 1.000 0.000 .558 
plus var val' 2720 .009 .801 .003 .561 
var entry 2686 .009 .067 .035 .596 
val' field 0 2651 .009 .342 .014 .610 
call val' empty 2469 .008 .304 .014 .624 
dot plus 2352 .008 .411 .010 .634 
dot plus val' 2352 .008 1. 000 0.000 .634 
val' local 2 2260 .008 .129 .023 .657 
nurn 0 2254 .008 .221 .017 .674 
list assign assign 2179 .007 .506 .007 .681 
val' 4 0 2080 .007 .969 .000 .681 
call val' list 1786 .006 .220 .013 .694 
nurn 1 1786 .006 .175 .015 .709 
call list empty 1769 .006 .974 .000 .710 
call val' val' 1620 .005 .200 .013 .722 

body 1513 .005 1.000 0.000 .722 
body list 1513 .005 1.000 0.000 .722 
val' 5 0 1510 .005 .961 .000 .723 

Figure 4.3. Excerpt from Markov source estimate of order 2. 

There are definitely dependencies of the nodes upon the values of the neighbors 

within the tree. The high percentage of entropy coming from m-tuples of low frequency 

in the models above suggests that simple uniform attempts to capture the dependencies 

are not adequate. Below we win apply the non-uniform formulation for entropy 

discussed in Chapter 3. 

4.3. Estimating the Entropy by the Non-uniform Entropy Formula 

General Methodology 

We wish to choose a set of patterns so that every node in a tree can be associated 

with a unique pattern, depending on nodes which appeared earlier in a traversal of the 

tree. For our investigations, we shall always be using preorder traversal. One can think 

of the patterns as defining a set of states of an encoding process. The ultimate goal is 
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to have a set of patterns such that all previous context that significantly affects the value 

of a node is contained in the pattern associated with that node. If our current set of 

patterns does not have that property, our model is one which assumes a smaller local 

order than the actual local order of the source. This corresponds to an overestimate of 

the true entropy, but for practical purposes, we will not have a sufficient sample set to 

find all dependencies accurately. We will, however, have a bound for-each pattern 'IT 

and we can use it to decide whether it is useful to pursue larger patterns containing 'IT. 

Description of the Patterns Used 

Recall from Chapter 3 that a patterns specifies a context reached by a partial 

traversal of the tree. The pattern has a distinguished node, denoted @, which is the next 

node to be visited in the traversal. As long as each point in the tree is associated with a 

unique pattern, we need not be limited to simple equal matches in the definition of our 

patterns. For example, one could have the pattern 

{assignlassignx} 
--1 

/ \. 
* var 

--.L 
/ \ 

local @ 

which selects the address of local variables appearing as the right side of either 

assignment statements or assignment expressions. The patterns need not be disjoint. If 

'IT and p are both patterns, with 'IT~J1, then there are some places within trees that match 

both patterns. In fact. all places matching v also match 'IT. We do not wish to associate 

a given node with more than one pattern, so we will think of the pattern 'IT as matching 

all situations which do not also match P. Since a 1 i st node can have an arbitrary 

number of sons, we need some way to deal with this freedom in our choice of patterns. 

This is accomplished by allowing a node in the pattern to be preceded, by an arbitrary 

number of brothers. Thus the pattern 

list 
I 

/ I \ 
* @ 

selects a node which is a son of 1 is t, but not the first son. 
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Notation 

We will be talking about many patterns in the remainder of the chapter. While the 

tree diagrams are helpful, they are not very compact. We will adopt a "function-like" 

notation to specify patterns, which is clearly equivalent to the trees. In this notation. the 

above patterns would be written: 

{assignlassignx}[*.var[local.0]] 

list[* •... @]. 

I nitiai Pattern Set 

In order to "grow" a set of patterns, we must chose a starting point. The most 

conservative approach would begin with a zero-memory model, i.e., the single pattern 

"@'~. But nodes seem to depend upon at least their father, so we shall start with a first 

~order model. Such a set of patterns can be generated quickly and easily by a 

modification to the programs which produced the uniform Markov estim.ates. 

The starting pattern set specifies for each node in the tree its father and the son 

position which the node occupies. For example. the node i fs tmt has 3 sons. so the 

initial pattern set contains the three patterns: 

ifstmt[@]. ifstmt[*,@]. and ifstmt[*.*,@]. 

The variable length 1 is t node requires special handling. The first son is a count of the 

remaining sons, and should be treated differently from the later sons. In the initial 

pattern set, all non-initial sons of 1 i st are considered to be in the same pattern. 

Hence, there are the two patterns: 

list[@]. and list[* •..• @]. 

Entropy Estimate from the Initial Pattern Set 

For each pattern '11, there is the set of nodes in the sample associated with '11. These 

nodes, considered as the output of a zero memory source, have an entropy H(SI71). If 

the probability that a node is associated with pattern '11 is P'11' then the pattern has a 

contri bution to the total entropy estimate of P'11 H(SI '11). Experi mentally. we estimate P'11 

and H(SI '11) by assuming the probabilities of patterns and nodes to be their relative 

frequency in the sample. 
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(2) var[.,@] (address of variables) 
f = 40289 H = 3.680, P = .136, H contI' • .. .499, cumul. H '" .499 

154 cases (11 shown) 
0 12914 .32 4 2076 .05 9 833 .02 
1 6658 .17 8 1532 .04 1 825 .02 
2 4014 .10 5 1517 .04 10 590 .01 
3 3131 .08 6 946 .02 «others» 5253 .13 

(5) 1 i st[*, ... @] (elements of lists: statements. expressions, etc.) 
f = 22481 H = 3.763, P = .076. H contI'. = .285, cumul. H .. .784 

72 cases (11 shown) 
assign 5085 .23 ifstmt 1528 .07 casetest 572 .03 
call 3573 .16 return 1409 .06 casestmt 509 .02 
num 2623 .12 item 1068 .. 05 dostmt 448 .02 
var 2420 .11 dot 582 .03 «others» 2664 .12 

(4) var[.,*,*.@] (length of variables) 
. 285, cumul . f = 40289 H = 2.099, P = .136, H contr. H = 1.069 

67 cases (11 shown) 
16 26020 .65 15 611 .02 11 357 .01 
14 6502 .16 8 451 .01 4 347 .01 
1 1509 .04 2 414 .01 3 334 .01 
32 1168 .03 64 381 .01 «others» 2195 .01 

(1) var[@] (frame of variables) 
f = 40289 H 1. 762, P .136. H contI'. = .239, cumul. H ... 1.308 

4 cases 
local 17580 .44 field 7744 .19 
global 12279 .30 entry 2686 .07 

(6) num[@] (programmer specified numbers) 
f = 10220 H = 5.132, p" .034, H contI'. .. .177, cumul. H '" 1.485 

408 cases (11 shown) 
0 2254 .22 16383 397 .04 16 196 .02 
1 1786 .17 -1 345 .03 13 161 .02 
2 748 .07 65535 242 .02 5 143 .01 
3 537 .05 4 221 . .02 «others» 3190 .31 

(12) assign[* .@] (right hand side of assignment statements) 
f= 5826 H = 3.591, P .. .020, H contI'. = .070. cumul. H = 1.556 

42 cases (11 shown) 
call 1288 .22 plus 377 .06 assignx 153 

.03 
num 1078 .19 <empty> 314 .05 minus 134 

.02 
val' 775 .13 doll ar 261 .04 dindex 113 

.02 
dot 580 .10 addr 208 .04 «others» 545 

.09 

(9) ca 11 [* • @] (procedure call actual parameters) 
f = 6616 H = 2.961, P = .022, H contr. = .066. cumul. H = 1.622 

27 cases (11 shown) 
list 1816 .27 dot 571 .09 addr 129 .02 
var 1739 .26 dollar 209 .03 plus 68 .01 
<empty> 760 .11 str 204 .03 dindex 56 .01 
num &:o&: 1n call 189 .03 «others» 189 .03 vvv • .LV 

(7) 1 i st[@] (length of lists) 
f = 7425 H = 2.476. P = .025, H contr. ,. .062, cumul. H = 1.683 

38 cases (11 shown) 
2 3599 .48 5 322 .04 10 61 .01 
3 1139 .15 6 208 .03 0 60 ,#/'.01 
1 1038 .14 7 113 .02 9 54 .01 
4 591 .08 8 80 .01 «others» 160 .02 

(3) var[ •••• @] (bit offset of variables) 
f = 40289 H = .336, P = . 136. H contr . .046, cumul. H = 1. 729 

16 cases (3 shown) 
0 38841 .96 3 283 .01 
2 432 .01 «others» 733 .02 

Figure 4.4. Excerpt from initial pattern entropy calculation. 
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In the initial pattern set, there are 154 patterns. The most frequent one occurs 

4~289 Jimes, and the least frequent one 2 times. There are 12 patterns which occur 

fewer than 25 times. The estimated entropy per node'is 2.058 bits. This number is very 

close to the uniform Markov model of order 2, with father and brother as the previous 

nodes. This is not surprising, since we saw above that the brother in that model was 

often simply specifying the son position. Figure 4.4 contains a portion of the output 

from the entropy calculation, showing patterns, their contribution to the total, and the 

distribution of nodes associated with those patterns. For purposes of this figure, only 

the frequently occurring nodes are shown for a pattern. See Appendix C for a more 

complete listing. 

A few words of explanation are needed for Figure 4.4. The number in parentheses 

is the pattern number. For the initial pattern set, they are assigned in order of 

decreasing frequency.. As patterns are added to the set, they are given numbers 

sequentially. The description in parentheses tells what source constructs give rise to trees 

matching the pattern. The H figure given is the entropy estimate for the nodes 

associated with the pattern. The patterns are sorted by H contr, the product of p and 

H. The cumul. H value is the running total of H contr. for the patterns. The nodes 

matching the pattern are shown in three columns, giving the nodename, its frequency, 

and its relative frequency. 

In the uniform Markov source models, it was difficult to relate the dependencies to 

the actual statements which appear in programs. The patterns show the correspondence 

in a more natural way_ One should remember, however, that these are static counts, 

made on the basis of occurrence in programs, not dynamic counts taken of nodes as they 

occur during execution of a program. 

From pattern 12, we can see that 32% of the right-hand-sides of assignments are 

simple, with the value assigned either a simple variable or a number. Procedure calls 

~ccount for 22% of the right-hand-sides, and field selection (dot and doll ar) account 

for 14%. The 5% figure for <~> occurs in extract statements, e.g., [vi ,v2] +- f[]. 

The compiler parses the left side of such statements into a 1; st of empty assignments. 

The count for simple variables also includes subscripted variables with constant indices 

that can be "folded" into a si mpJe variable. 
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In pattern 9, we see that only 27% of a11 procedure ca11s take more than 1 

argument, and that 11% of the procedure calls are parameterless. Of the procedurecalls 

with only one argument, 60% take a simple variable or a number. 

Pattern 7 matches the length specification for 1; s t nodes. Short lists predominate. 

Even without other encoding, one could save space by defining new nodes 1 ist2, 

1 is t3, etc. to handle the common cases and using just about any reasonable scheme for 

longer lists. 

Pattern 3 matches the bit offset of variables. It is overwhelmingly ~ero. We will 

later see that only a small amount of further context suffices to s~parate all the nonzero 

instances. 

Structuring the Sample to Facilitate Matching 

A data structure was· developed for the analysis programs that greatly simplifies the 

pattern match procedure, the refinement procedure, and the transformation procedures 

described below. With the first pattern matching facilities used, a problem developed; as 

the size of existing patterns grew, the computation required for finding all instances of a 

set of refinement patterns took 30 minutes to an hour of CPU time; and it was clear that 

some of the extensions of the analysis software could not be run at all. The solution to 

these problems is quite simple: in the sample trees, we store a value associated with each 

node that identifies which pattern that node matches. Since the analysis programs run 

on a 36 bit machine,. there was enough unused room in a node to store a pattern 

sequence number without increasing the storage occupied by the sample. This is 

essentially the data processing technique of inverting a data base. Figure 4.5 shows the 

; f s tmt tree from Figure 3.2, with the number of the pattern in the initial pattern set 

that each node matches. 
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r5] 
ifstmt 

I 
I 

[21] 
relN 
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[12] [~3] 
assign <empty> 
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I 
[1] 

local 

I \ I 
[36] [37] [11] 
dot num var 
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Figure 4.5. Parse tree showing pattern sequence numbers. 

For the numbers to be useful, any procedure that places a node in a new pattern 

must update the pattern sequence field in· the tree. This consistency maintenance is far 

simpler than general pattern matching. By writing all such changes to the, sample onto a 

file, it -is also possible to "undo" the effects of a new pattern. 

4.4. Improving the Pattern Set 

Finding Larger Patterns 

The output from the entropy calculation gives the contribution of each pattern to 

the total entropy estimate. We can lower the estimate by finding, for a given pattern, 

situations where a larger context produces a distribution of nodes with a smaller 

entropy. For example, we see from pattern 7, Figure 4.4, that 48% of all lists are of 

length 2, and the entropy for the distribution of lengths is 2.476 bits. If however, we 

single out those lists which are parameter lists of call statements (approximately a 

quarter of all lists), 77% are of length 2, and the distribution of lengths has an entropy 

of only 1.085 bits. 

Several schemes were used for finding such larger patterns. A more detailed 

description of the program finally used is given in Appendix B. Below is a brief listing 

of the features of the pattern match facility. 
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1. The entire collection of trees is traversed in preorder. Several auxiliary data . 

structures keep a record of ancestors and siblings. 

2. For an existing pattern, further restrictions may be made by specifying a list of 

predecessors to have given nodenames or son displacements. 

3. For a pattern, perhaps restricted as in 2, the user can specify a collection of 

historical information (nodenames or son displacements of predecessors) on 

which he wishes· to obtain statistics; they are automatically obtained for the 

nodes in the "@" position of the pattern. 

4. One may also specify a collection of pairs of the items selected in item 3 above. 

For example, grandfather and "@" node. 

5 .. As each node is encountered which matches the (possibly restricted) pattern, all 

requested information is stored in a hash table. 

6. ' The output of the match gives the distribution of nodes or values as requested in 

item 3. For a pair of items (a,/J), the distribution of items fJ is given for each 

value of a. 

For patterns only one node larger than existing ones, the pair statistics from item 6 

point out potential entropy reducers. For more complicated patterns, one can restrict an 

existing pattern by item 2 and iterate the match process. Other features of the match 

procedure allow several patterns to be investigated at once, allow the same statistics to be 

taken on a set of existing patterns, and allow seveial independent sets of statistics to be 

taken on a given pattern during a single traversal of the sample set. 

Pattern Refinement 

We will use the term pattern refinement to denote the process of "growing" 

patterns. A pattern 1r with a large entropy contribution is explored using the techniques 

of the previous section. A set of larger patterns "1' "2' ... ' I' k' containing 'IT, are 

discovered which have node distributions of lower entropy than that of 'IT. The 
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refinement procedure removes the nodes matching "i from those of '11. This leaves a 

new pattern '11', defined as those nodes matching 'IT, but not" r We know by Theorem 

3.2 that this will lead to a lower entropy estimate. 

A program related to the matching routines of the previous section allows 

incremental updating of the entropy estimate. The entire set of trees is traversed. When 

a node matching '11 is encountered, a test is made to see if it also matches" r If so, the 

node is marked as matching,,;, and the triple composed of 'IT, "i' and the nodename is 

added to a hash table. In later sections of. the thesis, we will refer to this triple, together 

with a count of occurrences, as· a transaction. Another procedure processes the 

transactions, ma~ing changes to the node list of all relevant patterns. Figure 4.6 shows 

the. transactions produced by the matching procedure and sample output from the update 

procedure when pattern 7, the length of lists, is refined. 

TRANSACTIONS: 
old new 

pattern 
7 

pattern 
218 
219 
219 
219 
219 

7 
7 
7 
7 

BEFORE: 
(7) list[@] 

f = 7425 H = 2.476, p'. 
38 cases (11 shown) 

2 3599 .48 
3 1139 .15 
1 1038 .. 14 
4 591 .08 

AFTER: 
(7) list[@] 

nodename 
2 
2 
3 
4 
5 

count 
80 

1390 
263 
121 

42 

.025, H cont ... .. 
5 322 
6 208 
7 113 
8 80 

.062 

.04 

.03 

.02 

.01 

f = 5529 H = 2.786, P = .010, H cont..... .052 
SEE ALSO: f H P cOAtr 

(218) 80 0.000 .000 0.000. arraydesc[list[@]] 
(219) 1816 1.085 .006 .007, call[*,list[@]] 
38 cases (11 shown) 

2 2129 .39 5 280 .05 
1 1038 .19 6 208 .04 
3 876 .16 7 113 .02 
4 470 .09 8 8~ .01 

(218) arraydesc[list[@]] 
f = 80 H = 0.000. p = .000, H cont ... = 0.000 

2 80 1.00 

(219) call[*,list[@]] 
f = 1816 H = 1.085, P .006, H cont ... .007 

4 cases 
2 1390 .71 4 121 .07 
3 263 .14 5 42 .02 

delta H = -.003 

Figure 4.6. Example pattern refinement. 
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The description of results shown in Figure 4.6 are perhaps a little cryptic. In the 

"after" case, pattern 7 has been refined to mean all those lists that do not also satisfy 

patterns 218 and 219. Pattern 218 is particularly interesting. It says that a list under an 

arraydesc node has two sons (with probability 1), and no information need be encoded 

about the length of these lists. 

,Results of Pattern Refinement 

The procedure for lowering the entropy estimate by pattern refinement is quite 

easy to characterize. 

• The pattern matcher is used to find possible refinements of patterns with large 

entropy contributions. 

• The refinement procedure produces a list of transactions on the pattern set. 

• The entropy update procedure produces a new estimate for the affected patterns. 

• The process is repeated. 

Of course, as the Sorcerer's Apprentice learned, there needs to be some means for 

terminating the loop. 'The ridiculous extreme would be to find a huge set of patterns 

where nearly every pattern determines a unique member of the sample set. This 

approaches an encoding of programs by assigning them sequence numbers, an encoding 

that would be undefined on a program never seen before. The "rule of thumb" actually 

used was to consider a pattern '!! only if the number of instances of 7T was large 

compared to the range of values for the nodes associated with 'IT. In Chapter 5, we will 

see a better stopping criterion in which the variability of the sample is gauged in order 

to decide on the advisability of a particular refinement. 

Such a process could be automated, but would require some care in choosing the 

predecessors of a pattern when looking for larger patterns. For the purposes of this 

thesis, the refinement was done with a "programmer in the loop." This has its 

advantages, since some patterns can be produced by knowledge of the compiler. 
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The initial set of patterns contained 154 patterns, with the most "costly" pattern 

having an entropy estimate contribution of .499 bits. After applying the refinement 

procedure repeatedly, there were 268 patterns, with a highest contribution of .095 bits. 

The entropy estimate went from 2.058 to 1.642. This not only yielded a slightly lower 

value than produced by the uniform Markov approximations, it also reflects a 

conservative policy of only choosing refinements when the error introduced seems 

small. Section 5.8 contains an analysis of the potential inaccuracy of the estimate. 

Appendix C contains the actual data from the final set of patterns, including those 

additional modifications described in the next section. 

4.5. Program Transformations . 

Sometimes a problem becomes much simpler to solve whe.n· approached from a 

different direction. Mathematicians use this concept when they apply a "change of 

variables" to a problem. The same is true of program encoding. For example, when 

Clark and Green were studying the encoding of list structures in LISP [Clark77], they 

found little regularity in the absolute value of CDR cells. When, however, the pointers 

were made relative to the address of the list cell, it became apparent that a most of CDR'S 

point nearby in memory, and that many point to the adjacent cell. This relativizing of 

pointers is what can be considered an invertible transformation of the program. Such a 

transformation leads to a lower entropy estimate, since the model of the source 

corresponding to this new representation better reflects the dependencies in the data. 

With a slight modification to the entropy update procedure, we can provide 

machinery to allow rather general invertible transformations of the sample trees. Recall 

that a transaction is a triple of old pattern, new pattern, and nodename, together with a 

count. If we simply allow either the old pattern or new pattern field to be zero, we have 

the capability of adding or deleting nodes in the set of trees and incrementally updating 

the entropy estimate. A concrete example will help us to see what else is needed to 

facilitate transformations. 
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Transforming "bump" Trees 

Every programmer knows that programs contain many statements of the form 

a ... a+1. In fact, quite a few computers have instructions for incrementing a memory 

location. It is not uncommon for a compiler's code generator to generate such an 

instruction when applicable. We might therefore wish to encode the statement more 

compactly than the standard tree representation of assign[a,plus[a,num[1]]. By 

suitable modifications to the matching procedure, we can find aJI such trees. Let us 

devise a scheme for transforming one into bump[a], and see what other tools are 

needed. One must be careful, of course, that a causes no side effects, such as a field 

pointed to by a procedure call. The "before" portion of Figure 4.7 shows the tree for 

such a statement. The numbers in square brackets are the patterns associated with the 

various nodes .. 

I 
[167] 
local 

1. 
3. 

11. 
12. 
15. 
16. 

156. 
160. 

Be/ore 
[259] 

assign 
I 

I \ 
[11] [12] 
var plus 

r I 
I I \ I \ 

[196] [3] [229] [15] _ [16] 
o 0 16 var num 

I I I I \ I 
[1] [204] [3] [160] [191] 

local 0 0 16 1 

Glossary 0/ pattern numbers 

167. assign[var[@]] 
191. plus[*,num[@]] 

I 
[ 1] 

local 

A/ter 
[259] 
bump 

[zI9] 
var 

I 
I I \ 

[156] [3] [160] 
o 0 16 

var[@] 
var[*.*.@] 
assign[@] 
~C"<';nnr* til, 
....~~ '~"L· ,UJ 

196. {assign I assignx}[var[local.@]] 
204. plus[var[local.@]] 

plus[@] 
plus[*,@] 
var[local,@] 
var[local,*,*.@] 

229. assign[var[local,*.*,@]] 
259. i t em [* , 1 i s t[ * , . . .@]] 
269. bump[@] 

Figure 4.7. Example of a program transformation. 

Igilore for the moment the pattern numbers given in brackets. In order to change 

the trees to reflect the new bump construct. we need only insert a single node, bump, in 

the tree, change the pointer that previously pointed to ass i gn, and have the son of 

bump point to the old first son of ass i gn. In addition to transforming the tree, we 
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wish to update our pattern data base incrementally to reflect changes in the entropy 

estimate caused by such a transformation, and we wish to keep the pattern sequence 

numbers consistent with the patterns matched by the nodes. For the newly created bump 

node t the matching pattern is the same as that of the old ass i gn node. The ~ node is 

assigned a new pattern number, that for son of bump. All the nodes of the subtree 

rooted by ~ are discarded t so transactions are generated for them with a new pattern 

field of O. The sons of the other ~ node are much more difficult to deal with because 

they match patterns involving the grandfathert which is ass i gn in the original trees. 

Since we are taking away the as sign node t we have to associate these sons with smaller 

patterns not involving the value of their grandfather. This is simplified by having each 

newly generated pattern remember which smaller pattern or patterns it refines. If we 

define the depth of a pattern to be the number of levels in its tree representation, we 

can describe a pattern downgrading procedure to deal with our problem. 

• Begin the procedure with an allowable pattern depth of 1. Begin at the sons of 

the subtree to be downgraded. 

• Until the pattern matching a node no longer exceeds the allowable depth, replace 

the pattern with the one from which it was refined. If there is more than one 

possibility. ask an "oracle" (in the current implementation t the programmer). 

Record a transaction of any pattern change for this node. 

• Recursively apply this procedure to the sons of the node with the allowable 

depth increased by one. 

In the sample set, there were 188 instances of the construct a .~ a+lt of which 25 

were assignment expressions. In most casest a was a simple variablet but some involved 

field selection operations and pointer arithmetic. The results of the TENEX-MESA 

statistical study, Sec. 1.3 t would predict a larger number of "bump" statements, but that 

study also counted the increment clauses of FOR statements. During the transformation 

phase, there were 177710 transactions generated t which involved creating 2 new patterns, 

bump and bumpx, and adjusting the node distribution for 62 previously existing 
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patterns. All of these changes reduced the entropy estimate by .0012 bits per node,· 

although the total number of nodes fell from 296895 to 295093, giving an effective 

decrease of .01L Even so, such numbers indicate that "bump" operations do not really 

consume very much of the total program information when viewed statically. 
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5. Error Analysis 

5.1. Need for Error Bounds 

One of our goals is to find a lower bound on the size of an object program. The 

smaller the determined entropy, the more compact our encoding can be made. We saw 

in Chapter 4 with both the uniform and nonuniform Markov models, that as we 

increased the order of the source, the amount of history used, the number obtained for 

the entropy became smaller. It should be clear, however, that the possible error in the 

estimate increases with the order of the modeL It does us little good to have an entropy 

estimate of 1.0 if this number is known only to within ± 10. 

We can view a Markov source as a process that can be in one of a number of 

states, depending upon the context, i.e., the values of previous outputs. The entropy of 

the source is defined in terms of the probabilities of the various states, and the 

conditional probabilities for given states. When we estimate the entropy of a source, 

there are two sources of error: we may overlook some of the states of the process, or we 

may incorrectly estimate one of the probabilities. We know from Theorem 3.2 that in 

the former case, our estimate will be an overestimate. Since such errors are inevitable, 

we can loosely rationalize them as bounding the compression capability of an encoder 

with a given level of complexity. The other source of errors, incorrect probabilities, is 

more serious. Statisticians have shown that for zero-memory sources, estimating the 

probabilities by the relative frequencies produces an underestimate of the true entropy 

[8asharin59]. A Markov source can be viewed as a collection of zero-memory sources, 

one for each state [Cover76], so it seems likely that experimental data wilt produce an 

underestimate in the Markov case as well. 
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5.2. Notation 

Let us try to understand how the estimation of probabilities from the experimental 

data might cause problems. To facilitate our discussion, we wil1 define some notation. 

It will be instructive to talk first about a zero-memory source S. Let the possible source 

outputs be 

SIt 32t ••• t Sq 

which occur with probabilities 

PI' P2'· 0 0' Pq 

We don't know the values of the Pi' but we have empirical frequencies obtained from a 

"representative" sample. Denote them by 

n1, R2, • •• t nq 

where n1 +n2+' 0 • +nq = N. We choose to estimate P; by Pi = n/ N. Note that some of 

the n/s could be 0, so we will continue our convention that 0 log 0 = 0 in the sums 

below, while in actual practice, we simply wouldn't have a term for that s;-

5.3. 'Encoding Inefficiencies Induced by Improper Probability Estimates 

Entropy is defined as the average information content of a source output It is also 

a lower bound for the average, code length. We can achieve this bound if can we give 

an output si a code of length I(s;) = - log Pi" While this is not always possible, assume 

for the moment that such a code can be found. We want to know how the average code 

length is affected when we devise a code, not uSing the Pi' but using our empirical Pi" 
The true entropy of S is given by 

q 

H(S) = -~ Pi log P; , 
;=1 

we have approximated this by 
q 

H(S) = -~ Pi log P; • 
i=1 

The average code length, on the other hand, is defined by the sum 
q 

average code length = -~ Pi log Pi • 
;=1 

We know from Lemma 3.2 that the average code length will be larger than either H or 
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ii. The real difficulty occurs for those cases when Pi = O. This corresponds to possible 

outputs which did not occur at all in the sample. The quantity log 0 is undefined, so if 

we had assigned codes on the basis of Pi' we would not be able to encode Sj at all. 

5.4. Experimental Tests of Sample Variability 

One means of determining the quality of our probability estimates Pi is to use them 

to devise an encoding and then try the encoding out with new data, obtaining an 

empirical average cost. We will refer to the original data used to calculate Pi as the 

training sample. If both the training sample and our new test sample are representative, 

then the average cost should be close to fie For the purposes 9f estimating the error, it 

is not really necessary to produce the encoding, we can simply assume that we have 

devised a code with codeword lengths based on the probabilities. 

In order to deal with the case of outputs not in the training sample, we will add to 

our en'coding an "escape t;;ode". Whenever we see the escape code, we know that the next 

I bits denote the output in a less compact, but complete code. We will take a small 

quantity £ away from each of the probabilities Pi in order to create the escape code. 

Let 1>; = (l-e )Pr Suppose that we can encode the test sample using a code with 

codeword lengths of -log 1>;, except for "new" outputs, which require a codeword of 

-log £, followed by I bits of a less compact code. Suppose that in the test sample, there 

are h "new" outputs, and that Sj occurs mj times. For those s;'s whose frequencies 

contribute to h, let mi = O. Let us determine the total cost of encoding the test sample. 

cost = -~ mi log 1>; - h log £ + hi 

= -~ m;log (l-e)Pi - hlog £ + hI 

= -~ mj log Pi - (M-/) log (1-£) - h log £ + hi 
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As £-+0, the -log (1-£) term approaches 0, but the -log £ term becomes large. 

Therefore, a car~ful choice of £ can reduce our encoding cost. The value of £ must be 

fixed before encoding a new sample, but we can make an a posteriori determination of 

the value of £ that would have minimized the cost. We can do this by computing the 

derivative 

o cost M-h 
a;-- = 1-£ 

h 

and setting the expression to 0. This yields a minimizing value of hIM, which can be 

given the unsurprising interpretation that the best choice of £ is the actual probability of 

a new output. 

Although £ must be fixed, there is no reason that we cannot use several training 

samples in order to determine an empirical probability of encountering outputs not in 

previous training samples. 

5.5 Applying Experimental Tests to the Markov Models 

The problem 'of finding an optimal encoding scheme for a Markov source is 

considerably more difficult than finding one for a zero-memory source. Pasco 

[Pasc076] has a good discussion of the published literature in the field. Our principle 

concern, however, is to gauge the variability in our sample set. For this, it is not 

actually necessary to produce an encoding, but rather to use the empirical probabilities 

to hypothesize code lengths and see if the distribution of nodes in the new sample is 

A Markov Source Example 

The techniques described above for zero-memory sources<:an be readily extended 

to Markov sources. To gain insight into the extension, it is instructive to look first at 

some actual experimental data for a simpler source. Consider again the Markov source 

defined by the state diagram in Figure 3.3. Assign probabilities to the transitions as 

follows: 
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state output probability 

a a .3 
a b .7 

ab a .4 
ab b .6 
bb a .5 
bb b .5 

Figure 5.1. Conditional probabilities for the example. 

If we assume that the source is stationary, we can calculate the steady state 

probabilities of the various states by a technique beyond the scope of this discussion (see 

[Ash65]). They are given in Figure 5.2. 

state probabil ify 

a .3937 
ab .2756 
bb .3307 

, Figure 5.2. Steady state probabilities for the example. 

Using the values from Figures 5.1 and 5.2, we can compute the entropy of the 

source to be .9452 bits per symbol. Figure 5.3 show results from a program that 

randomly generated a string of a's and b1s based upon the probabilities from Figure 5.1. 

H is comforting to see that the empirical steady state probabilities are close to the 

theoretical ones. 

stale _ output Sample 

'II ; 1 2 3 

a a 13 9 19 
a b 29 28 28 

ab a 14 11 13 
ab b 15 18 15 
bb a 15 17 15 
bb b 14 17 10 

Figure 5.3. Randomly generated data. 
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A Computationally Simpler Formula for Entropy 

The formulas for entropy are defined in 'terms of probabilities and their 

logarithms. Since we are using relative frequencies for approximations of the 

probabilities, perhaps there will be some cancellation of terms in the formula when we 

deal with the frequencies not as decimal numbers but as fractions. 

196 (54 54 142 142) 
= 500· - 196 log 196 - 196 log 196 

144 (60 60 84· 84) 
+ 500 - 144 log 144 - 144 log 144 

160 (83 83 77 77) 
+ 500 - 160 log 160 - 160 log 160 

= 5~0 ( 196 log 196 + 142 log 142 + 160 log 160 

- 54 log 54 - 142 log 142 - 60 log 60 

.- 84 log 84 - 83 log 83 - 77 log 77) 

= .935 bits per symbol. 

This example shows that the reduced formula is indeed much easier to compute. 

with only one division required at the end. rather than requiring all of the probabilities 

to be computed. It is easy to derive the corresponding formula for arbitrary sources; we 

will merely state the result. Let nw denote the number of occurrences of pattern w in 

the sample.' Let n
Wi 

denote the number of occurrences of the node Sj in a situation 

matching patternw. If there are a total of N nodes in the sample. 

With the customary formula. it is necessary to know the frequency of occurrence of 

each pattern (nw) in order :to estimate the probabilities Pi! W' This implies that if we 

have only sequential access to the data. it is neccessary to make two passes over the data 

in order to calculate the entropy. The formula above does not have this restriction; we 
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can use the frequency of each node in a pattern and accumulate pattern totals. One 

should ask, however, what roundoff error is introduced by the subtraction of the two 

potentially large sums. There does not seem to be a real problem; when the two 

formulas were used to calculate the entropy of the program tree sample (300,000 nodes), 

the two estimates differed by less than one part per million. 

5.6. Computing Average Code Length 

Suppose now that we have used a training sample to estimate the probabilities that 

characterize our source. We now wish to encode a new sample using code lengths 

determined by these probabilities. Let n~ and n~i denote the pattern and node 

frequencies for the training sample. Consider the formula for average code length, 

ignoring for the moment the possibility of nodes in the sample not present in the 

training sample: 

,average code length = 1 ~n'11; (-log P;I'11) 
'11 ,i 

One should note that if the training sample and the test sample are the same, the 

average code length formula reduces to the formula for fi, the estimated entropy. We 

can apply this formula to the data of Figure 5.3 using 80% of the data as a training 

sample and the remaining 20% as a test sample; Figure 5.4 show the relevant counts. 
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state output 

i 

a a 

a b 
ab a 

ab b 
bb a 
bb b 

10 
30 
13 
18 
18 
11 
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40 

31 

29 

44 
112 
47 
66 
65 
66 

156 

113 

131 

Figure 5.4. Node counts considering first 80% of data as a training sample. 

We can readily calculate the average code length from the formula: 

average code length = 1~0 (40 log 156 + 31 log 113 +' 29 log 131 

- 10 log 44 - 30 log 112 - 13 log 47 

- 18 log 66 - 18 log 65 - 11 log 66 ) 

= .921 

If we repeat this process for each of the 5 samples, we get the average code lengths 

shown in Figure 5.5 

missing 
sample 

length 

1 

.963 

'2 3 

.918 1.037 

4 5 

.896 .921 

standard 
mean deviation 

.947 .056 

Figure 5.S. Average code length for each sample in terms of the others. 

Allowing for Outputs not in the Training Sample 

As we have seen before, we must allow for nodes in the sample that occur in 

situations where they did not occur in the training sample. We do this by "stealing" a 

smaii probabiiiiy Ew from each of the probabilities Pil w. When computing the cost of 

the "surprise" nodes, we add a length of -log Ew as an "escape code" plus a length of I'll 

for a naive encoding of the node. The average code length is a little more complicated: 
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Let gw = ~ {nwil n~i *- OJ, 

hw = ~ {nw i I n~ i = O}. 

This allows us to restate the cost as the following visually complicated but 

computationally simple formula: 

5.7. A Criterion for Deciding Whether to Use a Pattern Refinement 

Adqing a new pattern to the source model defines a zero-memory source: the nodes 

appearing in situations matching the pattern. We can use the techniques of the 

preceding section to estimate the variability of the sample set for the new pattern. 

Suppose that our data contains q distinct nodes, each occurring n; times for 

l<i~q. Let ~ni = N. We can calculate an estimate for the entropy of this 
; 

distribution using the formula: 

liCS) = kr ( N log N - ~ ni log n;) 
I 

When we compute the entropy of S from the finite sample, we make the assumption 

that n/ N is a valid approximation to the probability that node s; will appear in a 

similar situation in future programs. If, however, the "density" of si nodes is highly 

non-uniform across the sample, this is not a very good assumption. Let us now consider 

how to know if the assumption is worthwhile. Let the sample be divided into, roughly 

equal pieces, with total sizes of N<k), 1~ k~ ,. Denote the count of s; nodes in the kth 

by rI;. Using the formulas of Section 5.6, we can obtain , values for the average code 

length, using ,-1 pieces of the large sample as the training sample as follows: 
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Total training sample size: N - Mk), 

Training count for node Sj: nj - rIf, . 
Total test sample size: Mk)~ 

Test count for node Sj: rIf. 

The only remaining quantity in the average code length formulas is E, the "fudge factor" 

for nodes not in the training sample. For the purposes of deciding upon a refinement, 

we will simply use E equal to the empirical probability of an unseen node (shown to be 

the best possible E in Section 5.4). 

It is instructive to look at the two patterns in Figure 5.6, taken from Appendix C. 

They each predict the frame of a variable (local, global, field, or entry, see 

Chapter 2). In the sample, only 1 oca 1 and g 1 oba 1 variables occurred in these 

constructs. Pattern 180 predicts the frame of a variable on the right side of a relational 

operator. Pattern 185 predicts the frame of a variable that is a "subscript", either of an 

array o,r a string. 

(180) {relElrelGlrelNlrelLlrelGElrelLE}[.,var[@]] 
f = 403 H = .998. P = .001. H contr. .001 

global 212 .53 local 191 .47 

(185) {indexldindexlseqindex}[.,var[@]] 
f = 289 H = .615. P = .001. H contr. .001 

local 245 .85 global 44 .15 

Figure 5.6. Two patterns from the final pattern set. 

Figure 5.7 shows the results of encoding approximately 20% of the sample using 

code lengths determined by the statistics of the remaining 80%. If the distribution of 

nodes is reasonably uniform across the sample, the average code length should be close 

for each of the 5 samples. For Pattern 180, this appears to be true; we can predict with 

some confidence the probability distribution for nodes in situations matching the 

pattern. With Pattern 185, however, the situation is much worse; we would need a much 

selection of refinement patterns, we would rule out pattern 185 as a viable candidate. 
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Test Sample standard 

pattern 1 2 3 4 5 mean deviation 

count 69 88 95 63 88 
180 

l:~~ih 1.017 1. 001 1.102 1. 037 1.057 1.024 .021 os 2'%. 

count 96 79 61 36 17 
185 

l:~~ih 2.579 .373 .309 .332 .255 1.080 1.498 os 139'%. 

Figure 5.7. Average code length using codes based on remaining samples. 

This procedure was devised after the results shown in Appendix C were obtained. 

There were a few obviously bad patterns like 185 above, but the typical pattern produced 

a standard deviation of 15% for the 5 sample pieces. 

Once we have a criterion for deciding on the quality of 'the sample for a given 

pattern, we can use it to decide whether a particular pattern refinement is warranted. 

Figure 4.6 showed a pattern refinement where two new patterns were added. Consider 

now only one of them, pattern 219. Pattern 7 predicts the length of a list in the parse 

tree; pattern 219 predicts the length of a list which is a parameter list of a procedure 

call. Figure 5.8 shows the average code length calculation for pattern 7 before 

refinement. 

Test Sample 
pattern 1 2 3 4 5 

count 1727 1308 1518 1483 1389 
7 

l:~~ih 2.437 2.727 2.405 2.362 2.656 

Figure 5.8. Variability of pattern 7 before refinement. 

mean 

2.508 

standard 
deviation 

.142 os 5.7'%. 

Recall that we are interested in lowering our entropy estimate. When we refine the 

pattern, we obtain two new patterns, and replace the contribution to the entropy of the 

original pattern by a linear combination of the entropy estimates of the two new 

patterns. Although the entropy estimate for the combined new patterns will never be 

higher than that of the original, the variability of the sample may well place us in a 
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situation where the mean plus one standard deviation is higher after the refinement than 

before. This is a usable criterion for deciding on a refinement. Figure 5.9 shows the 

two patterns after refinement. 

pattern 1 2 

count 1160 1084 
7 

l:~:ih 2.896 2.945 

count 567 224 
219 

ave. .920 1. 012 length 

count 1727 1308 
total 

l:~:ih 2.247 2.614 

Test Sample 
3 4 

1208 1092 

2.590 2.669 

310 391 

1.257 .918 

1518 1483 

2.318 2.208 

5 

1065 

2.859 

324 

1.584 

1389 

2.561 

mean 

2.789 

standard 
deviation 

.139 = 5.0% 

1.107 .253 23% 

2.377 .163 = 6.9% 

Figure 5.9. Variability of pattern 7 and pattern 219 after refinement. 

If we use the mean code length figure for our estimate, the original estimate of 

2.508 is replaced by the linear combination 

5609 1816 _ 
7425 . 2.789 + 7425 ·1.107 - 2.377. 

The Iinear combination figure for the 5 samples has a standard deviation of .163. We 

note that 2.377+.163 is less than 2.508+.142, so the refinement is warranted. 

5.8. Evaluating the Entropy Estimates for the Program Sample 

In this section, we will reexamine the entropy estimate obtained in Chapter 4 for 

the final pattern set. Certain simplifying assumptions used in the estimates are removed 

in order to make a more realistic estimate. 

String Literals 

As we saw in Section 4.2, the string literals that occurred in the test sample were 

not suited to the same sort of encoding as were the other tree nodes. In the uniform 

Markov studies, strings were given no special treatment since they do not grossly affect 
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the results. When we calculate the average code length for the program sample, we are 

in a position to treat the string literal nodes as a special case and use code lengths for 

them that more accurately reflect the actual number of bits required in an object 

program. 

Quite a bit of work has been done on the problem of "compressing" character 

strings. Hehner discusses several possible schemes in his thesis [Hehner71J. Some of 

the more interesting methods for string compression are adaptive, using early parts of 

the string to encode later ones. The analysis programs for this tpesis use a very 

conservative approach: the string length is given, followed by the characters of the 

string. In order to have the average code length for strings closer to the entropy, the 

individual characters are Huffman coded, requiring on the average 5.06 bits per 

character as opposed to the 7 bit ASCII codes used by the compiler. 

Average Code Length for the Program Sample 

It'is straightforward to modify the average code length formulas of Section 5.6 to 

consider string literals as a special case. Recall that the entropy estimate for the sample 

was 1.642 bits per node. This corresponds to an average code length using the entire 

sample as a training sample, and setting €'11 = 0, for all '11. When we simply add a more 

realistic cost for string literals to the computation, the entropy value goes to 1.702 bits 

per node. the 4% increase mentioned in Section 4.2. 

More interesting numbers are obtained from the average code lengths for encoding 

part of the sample using code lengths based on the remaining sample. In this case, we 

have to be more conservative in our choice of €'1T than in the procedure for deciding 

upon a refinement. The procedure is as follows: 

• The encoding process is run on some portion of the samples, with a count of 

missing nodes maintained for each pattern. 

• For each pattern, a value of €'11 is chosen equal to the empirical probability of a 

missing node for that pattern. 
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• For patterns with a zero empirical probability, Ew is set to a small positive· 

constant (.001 in this case) unless it is known that indeed there can be no 

missing nodes. An example of the latter is the Y..!!r. node which is constructed 

with one of four possibilities as its first son. In these cases, a value of Ew = 0 is 

warranted. If an empirical probability of 1 is obtained, some smaller value (.5 in 

this case) is used for Ewo 

Table 5.10 shows the results of encoding 20% of the sample using code lengths 

based on the remaining 80%. The values of EW were chosen by considering the first 

three sampies as described above. 

1 2 

count 62322 59001 
ave. 

length 1.940 1.978 

Test Sample 
3 4 

58638 56843 

1.726 1. 729 

5 

58289 

1.799 

mean 

1.837 

standard 
deviation 

.230 = 13% 

Figure 5.10. Average code length and variability for program sample. 

The mean code length from Figure 5.10 of 1.84 bits per node is a reasonable 

estimate of the entropy of the source mdoel defined by the final pattern set. The 

standard deviation figure gives a measure of confidence in the entropy estimate. 

We must be careful when choosing a division of our sample into pieces for the 

above procedure. If there are few large pieces, the training sample is correspondingly 

reduced, yielding poor estimates of the probabilities. If there are many small samples, 

the nodes of the test sampie are iess iikeiy to have a typical distribution. Figure 5.11 

shows the procedure applied to the same sample broken into 10 pieces instead of 5. 

Test Sample 

1 2 3 4 5 6 7 8 9 10 

count 23664 21407 20056 28655 24096 29634 34974 32747 42266 37594 

ave. 
length 1.862 2.060 1.941 1.969 2.002 1.653 1.630 1.534 1.937 1.943 

mean = 1.840 standard deviation = .376 == 20% 

Figure 5.11. Average code length procedure applied to 10 sample pieces. 
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The mean code length was almost the same for both applications of the procedure, 

indicating that th~ probability estimates from 80% of the samples were close to those 

from 90%. The smaller test sample size in Figure 5.11 results in a larger variability of 

the average code length, but within the factor of.)2 expected by doubling the number 

of samples; the samples are still large enough to have typical distributions of nodes. 

5.9. Conclusions 

The error estimating procedures produced for this thesis give a reasonably good 

picture of the variability of the empirical sample. They do not, however give 

mathematically rigorous estimates of the error bounds. This is an area ripe for further 

study, presumably by someone with a strong grounding in theoretical statistics. 
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6. Conclusions 

6.1. Applications 

The entropy of a program source defines a lower bound for the size of object 

programs. The most obvious application of this is the evaluation of existing compilers. 

As we have seen, to the extent that additional program dependencies exist. we can lower 

the average code length for programs by using more complicated encoding schemes. 

More complicated encoding schemes. however. entail more complicated decoding 

schemes or interpreters in the case of object programs. A designer can look at the 

performance of his current encoding and compare itto the theoretical minimum. If the 

current performance is "close enough". then the potential increase in size of the 

interpreter may not warrant further work on encoding. 

One assumption of the analysis routines is that the program sample is 

representative of programs that will be written in the future. Just as a present day 

programmer might choose ALGOL for a numerical analysis task, LISP for a list processing 

task, and COBOL for a business application. it makes sense for a given language to have a 

compiler that can generate several different object codes. each tailored to a type of 

program. For example, input-output device driver programs and compilers may not 

have the same instruction mix. One could easily have several data bases of programs on 

which to run the analysis routines. each containing programs of a given class. 

While the patterns used to estimate the entropy do in fact define an encoding for 

the language, it is not one that is easy to implement. The analysis routines build the set 

of pattern incrementally and never have to recognize patterns in actual trees after the 

initial pattern set is ci\.:ated. If one weie tiying to "automate" the design of an ubject 

code. it would probably be worthwhile to limit the number of possible patterns (states of 

the encoder). One could intuitively think of states such as statement, expression, string 
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constant, etc. The methodology of this thesis would allow evaluation of the merit of 

such a constrained set of patterns. 

Another related application is the ability to answer questions about programming 

style. Appendix C.4 - C.6 is full of interesting information. For example, in Pattern 9, 

we see what sort of parameters are used in procedure calls. These statistics, together with 

patterns 219 (lengths of parameter lists), and 246 (elements of parameter lists) tell us 

quite a lot about how we should design procedure linkage. Figure 6.1 shows the 

percentage of all procedure calls in the sample having a given number of parameters. 

parameters 0 

count 760 

percent 11% 

1 

4040 

61% 

2 

1390 

21% 

3 

263 

4% 

4 

121 

2% 

5 

42 

1% 

Figure 6.1. Number of parameters in procedure calls (static count). 

These numbers point out an interesting phenomenon. The statistics taken on 

TENEX-MESA programs, discussed in Section 1.3, that were used to design the encoding 

of MESA programs indicated that most procedure calls had fewer than 6 parameters. 

While MESA allows an arbitrary number of parameters, it is more efficient if there are 5 

or less. The programmers in the test sample were implementers of the language who 

knew this; they didn't use more than 5 parameters. This is a feedback situation that one 

must be careful about when defining new features. 

Another use for these program statistics is in language design. Suppose that a 

designer is adding a feature to the language to simplify a common construct that 

previously took many symbols to specify. Knowledge of how the construct is used in a 

large collection of programs can guide the designer in deciding what should be the 

default values of various parameters to the new feature. 

6.2. Extensions and Directions for Further Research 

All of the counts of various program constructs studied in this thesis are static 

counts. That is, they reflect how often something appears in the program text rather 
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than how often it occurs in the course of program execution. When Knuth made his 

study of FORTRAN programs [Knuth71i. he found that less than 4% of a typical 

program accounted for more than half of its running time. Thus the distribution of use 

of various statement types was different for the dynamic counts. those weighted by the 

number of times that they are executed. An obvious candidate for extension of the 

analysis programs of this thesis is to find a way to investigate dynamic statistics of 

MESA programs. 

The first thing that one would need for studying dynamic statistics is a facility for 

producing them. Since the language was under development at the same time as the 

static analysis, it was not considered a good idea to add the additional complication of 

making the necessary modifications to allow statement counts. Presumably such 

facilities will be provided in the future. but they were not ready in time for this thesis. 

Most of the static analysis procedures could be extended to allow frequency weights on 

the trees. but some care would have to be chosen in defining previous in the dynamic 

case. One would probably have to use some global flow analysis. restrict dependencies to 

cases where the flow is well understood. or establish a known context at all labels. 

Another use for the methodology is the ability to simulate and evaluate new 

features. For example. with a slight extension to the matching routines, one can ask. 

such questions as "How many times is a variable the same as the previously mentioned 

variable?" Such questions are probably more interesting in the dynamic case. but are 

still of some merit in static counts. 

Another extension mentioned briefly in the preceding Section is the problem of 

limiting the size and complexity of the interpreter. One interesting. but difficult. 

approach would be to specify a host machine for the interpreter, say one of the 

commercially available microprogrammable computers, with a fixed size of control stor'e 

and try to produce an "optimal" encoding for the language subject to the constraint that 

the interpreter fit into the chosen machine. A simpler problem would be to limit the 

number of allowed patterns. thereby limiting the possible interpretations of code bits 

and hence the size of the interpreter. 
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As was mentioned in Chapter 5, very little published work is available on error· 

bounds for estimating entropy of a Markov source from experimental data. For that 

matter, there are only a few papers on error analysis for zero-memory sources 

[Basharin59] [Pfaffelhuber71] [Nemetz72]. Hopefully, as information theory is 

applied more often to the analysis of programs and language constructs, there will be a 

motivation within the statistics and information theory community to provide these very 

difficult theoretical analyses. 

Another building block needed for the "automatic generation of program codes" is 

a means for deciding what patterns to try for refinement of existing patterns. Such a 

program falls into the domain of artificial intelligence; a set of heuristics for pattern 

"growing" could perhaps be obtained by looking at the performance of several 

programmers doing the task by hand. 

In conclusion, it should be noted that even without facilities for automating 

instruction set design, much useful guidance can be obtained by the ability to obtain 

program statistics and by the metric that information theory provides for gauging the 

relative importance of various constructs. 
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Appendix A. 

Nodename Sons 

abs 1 
addr 1 
and 2 
apply 2 
arraydesc 1 
assign 2 
assignx 2 
base 1 
body 1 
call 3 
caseexp 3 
casestmt 3 
caseswitch 3 
casetest 2 
catchmark. 1 
catchphrase 2 
construct 2 
constructx 2 
continue 0 
dindex 2 
div 2 
dollar 2 
dostmt 5 
dot 2 
dst 1 
downthru 2 
enable 2 
entry 0 
error 3 
exit 0 
extract 2 
fdollar 2 
fextract 2 
field 0 
for seq 3 
global 0 
go to 1 
ifexp 3 
ifstmt 3 
in 2 
index 2 

Nodenames Found in Program 
Parse Trees 

Meaning 

A BS operator 
address of variable 
AND operator 
used by early passes for id [ explist ] 
descriptor for ARRAY 
assignment statement 
assignment expression 
base of ARRAY 
list of statements of program or procedure body 
procedure call (proc, args, catch phrases) 
case expression (cv, list of cases, endcase) 
case statement (cv, list of cases, endcase) 
case statement that can be implemented by a dispatch 
case statement items with constant labels 
used to mark label for RETRY, etc. 
SIGNAL catching statement list 
record constructor statement 
record constructor expression 
CONTINUE statement 
index using ARRAY DESCRIPTOR 
/ operator 
field select within sonl variable 
do statement 
field select with son1 variable pointer 
dump state (low level machine dependent) 
down through range (cv, range) 
ENABLE statement (catchphrase, statementlist) 
frame = procedure entry point 
ERROR statement 
EXIT statement 
extraction from record 
field extraction from procedure return record 
extraction for procedure return record 
frame = field of a record 
sequence type FOR statement iteration 
frame = global to procedure bodies 
GO TO statement 
if expression (boolean, then, else) 
if statement (boolean, then, else) 
I N relational 
element of an ARRAY 
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Nodename Sons Meaning 

inlinecall 3 call of INLINE code' 
intCC 2 interval closed on both ends 
intCO 2 interval closed on left,open on right 
intOC 2 interval open on left, closed on right 
intOO 2 interval open on both ends 
item 2 general pairing node with many uses 
label 2 block with exit labels (stmt list, exit list) 
length 1 LENGTH of ARRAY (from DESCRIPTOR) 
list ? only arbitrary length node in trees 
local 0 frame = local to a procedure body 
1st 1 load state (low level machine dependent) 
1stf 1 load state and free (low level machine dependent) 
loophole 2 treat variable as having another type 
max 1 MAX operator (of list) 
memory 1 contents of named memory address 
min 1 MIN operator (of list) 
minus 2 - operator 
mod 2 MOD operator 
mwconst 1 multiword constant (list of values) 
new 3 NEW statement 
not 1 NOT operator 
nullstmt 0 null statement 
num 1 numerical literal 
openstmt 2 OPE N. statement 
or 2 OR operator 
.plus 2 + operator 
register 1 contents of named REGISTER 
relE 2 = -operator 
re1G 2 > operator 
relGE 2 )= operator 
re1l 2 < operator 
relLE 2 <= operator 
relN 2 # operator (not equal) 
resume 1 RESUME from SIGNAL handler 
retry () RETR Y statement 
return 1 R ETUR N statement 
row 1 list of value for ARRAY construction 
rowcons 2 ARRA Y constructor statement 
rowconsx 2 ARRA Y constructor expression 
seqindex 2 character selection from STRING 
signal 3 SIGNAL statement 
start 3 START statement 
stop 1 STOP statement . 
str 1 STRING literal 
svc 1 call on operating system function 
syserror 1 ERROR statement for unspecified ERROR 
temp 0 associated with constructors 
times 2 * operator 
uminus 1 unary - operator 
unionx 2 associated with constructor for variant records 
uparrow 1 indirect address operator 
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Nodename Sons 

upthru 2 
var 4 
vconstruct 2 
vconstructx 2 

Meaning 

FOR sequence up through range (cv, range) 
variable (frame~ address, bit address, length) 
constructor statement for variant records 
constructor expression for variant records 
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B.l. General Comments 

While the low level details of the implementation are not of general interest. there 

are a few principles and techniques which would be usefu1 to someone implementing a 

similar system. 

The analysis programs and their associated data structures underwent several 

evolutionary changes. There were two general forces that motivated these changes: 

increasing amounts of data. and a desire to facilitate incremental changes to the entropy 

estimate. 

On the subject of increasing amounts of data. one should consider the following 

advice: If you have a lot of data to process, you should consider using data processing 

techniques. One of the more useful pieces of software used in the analysis was a general 

sort/merge package. It was used in three or four different contexts. simply by supplying 

it with different input, output, and comparison procedures in each case. This removed 

the necessity of keeping all information in the computer main memory at once. In early 

versions of the analysis routines, the trees were used exactly as obtained from the 

compiler and converted to the analysis form "on the fly"; for the final version. the trees 

were converted in a batch mode and all the trees stored on a large data file. 

Another useful tool is a hash table package with a very easy-lo-use interface. It 

allows the storage and retrieval of several types of items (1 and 2 word keys, strings, etc.) 

and allows counts to be associated with items. The set of routines to find and update 

patterns contains four separate instances of the hash table package. 
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B.2. Machine Considerations 

The analysis programs are written in an earlier version of MESA that runs under 

. the TENEX operating system [Bobrow72]. The machine used has a 36 bit word with 18 

bits of address space. A most useful facility provided by TEN EX is the mapping of disk 

file pages (512 words) into the user's address space. ThisgreaUy simplifies virtual 

memory management since "dirty" pages are automatically written back to the disk. The 

large word size allowed auxiliary information to be added to the trees "for free" when a 

potential was seen for improving the system performance by using this information. 

The storage management facilities of the MESA runtime system make it easy to obtain 

blocks of free storage for making linked ,data structures, or for providing space for hash 

tables. 

B.3. Toke-n Representation 

The basic item under investigation is the tree node. In order to facilitate 

manipulation of nodenames, a uniform representation. called a tokenhandle, is used. A 

tokenhandle occupies 18 bits, or a half-word of memory. It has three fields: a 

tokentype, a datdvalue, and a data/lag. In the final version of the analysis routines, the 

tokentype has one of the following four values: 

nodename a non-terminal produced by the compiler 

numlit a number 

s t r 1 ita string 

newnode an invented nodenamet like var t or global. 

Earlier versions had a larger collection of token types. Interpretation of the data value 

field depends upon the tokentype and the data/lag. 

tokentype data/lag datavalue 

nodename index into an array of strings 

numlit 

numlit 

FALSE 

TRUE 

a small positive or negative number 

a hash table index 
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a hash table index 

a hash table index 

The overflow numbers and the string constants are contained in the same hash 

table, which only requires 2000 words of storage for the entire 400,000 words of sample 

trees. For reasons which don't seem very strong in retrospect, the new nodenames are 

kept in their own (200 word) hash table. 

B.4. Tree Representation 

Experience with early versions of the analysis programs shows the inadvisability of 

having the samples trees share the same address space as the programs. In fact, there are 

so many trees in the sample that they require more than 18 bits to address when stored 

in a straightforward way. Nevertheless, it is helpful for the matching routines to have 

random access to the set of trees. Fortunately, TENEX al10ws easy maintenance of 

virtual ,memories. The data structures used to store the trees are defined using 21 bit 

pointers. more than enough for the amount of data available for analysis. 

Since the total space taken up by the trees is not a critical problem, a very 

conventional representation is used for them. Each tree has a one word header that 

contains a tokenhandle called the nodename, and a soncount. It then contains as many 

more words as it has sons, each containing a sonvalue. A son value has three fields: 

termson 

sonptr 

patseq 

a BOOLEAN variable that says whether this son is terminal or 

nonterminal. 

if a term-inal son, contains a tokenhandle, otherwise contains a 21 

bit pointer to the root of the subtree. 

contains the sequence number of the pattern matched by the node 

in this son position of this particular tree. 

The uses of the patseq field are discussed in the following section. 
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B.S. Tree Matching and Pattern Refinement 

To decide what larger patterns should be tried as refinements, and to actually 

accomplish the refinement,a facility for matching trees is required. The routines used 

for this thesis underwent several complete replacements, but none of the algorithms 

represent any advances in the art of tree matching. The first routines were very 

straightforward in design; they could be called "brute force" matching procedures. 

While slow and lacking in esthetics, the procedures worked well enough on the small 

sample set available at the time and provided insight for the design of the other an~lysis 

routines. When the size of the sample made the matching routines impractical, the 

patseq field was added to the sonvalue record to speed things up as discussed below. 

For this thesis, we are interested in a specialized form of tree matching: we want to 

take an existing pattern and see how the distribution of nodes matching that pattern 

changes when the pattern is made larger. This takes two related forms: 

l.' For hypothesizing new patterns, we want to obtain statistics for all possible node 

values occupying a position defined by a particular structural relationship to the 

existing pattern. 

2. For refining an existing pattern, we want to find each node matching the old 

pattern which also match the new one, note what node occurs in the match, and 

update the data base containing statistics on the node distribution for the various 

patterns. 

The pat seq field in the trees makes the above tasks simple. A traversal procedure 

"walks" through the forest of program trees, maintaining a list of ancestors and 

brothers. For each tree to be visited, the patseq field of the sonvalue pointing to that 

tree is used as an index into an array. If we are not interested in expanding that pattern, 

the entry is null, otherwise it points to a list of items, each specifying a structurally 

related node such as father,brother-3-back, etc, and one of the following actions for 

matching the tokenhandle which is the nodename in that node: 
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simplename match a tokenhandle included in the item 

listofnames match one of a list of tQkenhandles pointed to by a pointer 

in the item. 

freename match any tokenhandle, storing the value in a specified 

position in an array of free values. 

boundname match the token handle stored in a specified position in the 

array of free values. 

During the refinement procedure, whenever an instance of the new pattern is 

encountered as described in Section 4.4, a transaction (old pattern, new pattern, 

nodename, count) is added to a hash table (or the count of an existing one incremented), 

indicating that the node now is in the set of nodes matching the new pattern. At the 

same time, the patseq field of the sonvalue pointing to the node is updated to reflect the 

new pattern. Figure 8.1 shows the same tree as Figure 4.5, but with the pattern sequence 

numbt;(rs corresponding to the final pattern set. 

I 
[173] 
local 

I 
[21] 
relN 

I 
I \ 

(36] [37] 
dot num 

I I I------~~------\ I 
[13] [14} [194] [167] 

[245] 
ifstmt 

I 
I \ 

(22] [23] 
assign <empty> 

I 
I \ 

[11] [12] 
var rel£ 

I I 
I I \ I \ 

[213] [3] [159] [19] [20] 
var var 0 global 

I I 
5 0 1 var num 

I I I ,. \ I I , \ I I I \ 
[199] [3] [234] {174] [243] [163] [267] 

1 0 16 field 0 0 16 
[179][209] [3] [160] [194] 
local 2 0 8 13 

Figure B.t. Program tree showing pattern numbers from final set. 

While the pat seq scheme works satisfactorily, it is probably not the best. If disk 

space is not a concern, it would speed things up considerably to keep a completely 

inverted file with a list of tree address for each node matching each pattern, and making 

the pointers in the trees two-way pointers so that father nodes can be found without 

having to traverse the tree from the top. 
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B.6. A verage Code Length Calculations 

Recall from Section 4.5. dealing with program transformations, that we sometimes 

find it necessary to delete all of the nodes in a subtree from the data base of matched 

nodes. This is accomplished by a procedure that produces a set of transactions changing 

the matched pattern of each node to O. If one applies the procedure to a collection of 

entire program trees and writes these transactions onto a file, the data can be given a 

different interpretation. The file contains a concise record of pattern-nodename pair 

counts for the portion of the sample that was used to produce the file. This is precisely 

the data needed for the entropy formula derived in Section 5.5. If we further sort the 

data so that a]] nodes matching a given pattern occur together, it becomes trivial to write 

a program estimating the entropy for this set of trees. 

Of more importance is the average code length computation of Section 5.8. These 

are produced as foHows: 

• 'The number of sub-samples, n, is decided upon (in this case 5). 

• Data files are produce by the elimination procedure for n collections of program 

trees of approximately the same magnitude, whose union is the entire sample 

set. A simple program transforms these data into records that contain: 

pattern sequence, nodename, SUb-sample number, count. 

• The data for all sub-samples are sorted according to the first three keys named 

above. 

• Another simpie program produces a file with n+3 word records, containing the 

following: 

pattern sequence, nodename, sample total, (n) sub-sample totals. 

• It is now simple to calculate the average code cost of one sub-sample in terms of 

the others by using the sub-sample totals (some of which may be zero) and 

sample totals for the various patterns and nodes (the actual names of the nodes 

are irrelevant, though they are contained in the file). 
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These procedures were developed after most of the data analysis was performed for 

the thesis. If one were designing a new system to analyze a language, it would be 

worthwhile to consider how much of the computation can be done by, such batch 

techniques. 

B.7. Tree Printing 

There are several figures in this thesis that contain diagrams of trees; these were 

primarily produced by a tree printing program. While there are some shortcomings to 

the program, there seems to be no published algorithm that does better. See, for 

example. Knuth's program for printing small binary trees [Knuth71b]. The program is 

based on a few easily stated principles: 

• All nodes at a given level in the tree are at the same level on the page. 

• Each nonterminal node is centered over the names of its sons. 

• ,The width of the resulting tree is minimized. 

There could "be many implementations of such an algorithm. We will loosely 

discuss the program used for the thesis. The program relies heavily on the fact that all 

characters and blanks on the printing device are the same width, a restriction that is met 

by most currently available computer output devices. The program was also designed 

under the assumption of the availability of large amounts of data space in the computer 

memory. When we discuss the program. it will be useful to look at some sample output. 

Figure B.2 is a portion of the tree from Figure 3.2. 
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relN 

bracket line -+ •..••••••••• • 

arrow fine -+ •• • • • • • • • • •• I \ 

name line -+ • • • • • • . • • •• dot 

I 
var 

I 
I 'J \ I 

local 1 0 16 field 

Figure B.2. A port.ion of a printed tree. 

num 

I f \ o 0 16 

The program represents the entire tree image in memory before printing any of it; 

the unit of representation is a record called a pageentry. This record contains one 

character on each of three lines, called the bracket, the arrow, and the name. The 

principle data structure is an array called row. Each entry of row has two fields, an 

integer named nextavailable, and an array of page entry's named column. The 

interpretation of these variables is as follows: 

• row[i].nextavailable is the next free character position of the i1h row of the 

printed tree. 

• row[;].column is an array of pageentry's, each containing a single character on 

each of 3 adjacent lines on. the output. row[iJcolumn[j] is the pageentry that 

describes the /h character position of those lines. 

• row[i].coiumn[j].bracket is a blank or a character in the line below a nodename 

(I or _). 

• row[i].column[j].arrow is a blank or a character pointing down to a nodename 

(I, I, or \). 

• row[i].column[j].name is a blank or a character in a nodename. 

Since trees come in assorted sizes and shapes, it is difficult to see what size to make 

the various arrays. In the program, the arrays are allocated at run time. The length of 
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the array row is made equal to the maximum depth of the tree. The length of the array 

row[;].column is made equal to the rightmost character position occupied by a nonblank 

character in any of the three lines of the i1h row. The determination of the lengths for 

the column arrays is made by running the placement procedure described below without 

actually storing into the arrays. 

In our discussion below, if t is a tree, lettl " t2, ••• , tkl be the sons of t. Let 

,nodename denote the nodename of the root of t, and let Itnodenamel denote its length. In 

order to simplify the program, we will have each nodename contain a trailing blank. 

which is also reflected in its length. The constant blankentry is a pageentry with all 

three characters equal to blank. 

The Placement Procedure 

Most of the work of the program is done by a recursive procedure called 

placement, which is called with a pointer to a tree and a few other parameters and 

returns the character pcsition of the nodename of its root. 

Calling Sequence: placement [ t, leftmost, rownum] 

Input Parameters: 

t -- a tree to be placed on the "page." 

leftmost -- the leftmost character position allowed for its nodename. 

rownum -- the number of the row on which to place the name. 

Returned Value: pas -- position actually given to the nodename. 

Side Effects: builds a representation of the tree in the array row. 

Descrtption of the procedure: 

1. (Make first approximation to placement.) 

Set I = MAX{ leftmost, row[rownum].nextavailable} 

2. (Terminal node?) If thas no sons (k
J 

= 0), set pos = I, and go to step 12. 
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3. (Calculate widths.) Set r = / + Itnodename,, ' 
kt 

set tot a/sons = ~ It;Odenamel. 
;=1 

4. (Place first son.) Set I = placement [ 11' (/+r)/2 - (lotalsons-l)/2, rownum+I]~ 

set al = I + It~odenameI/2. 

5. (Only one son?) If (k l = 1) • 

set row[rownum+I].column[al].arrow = "I", 
set r = I + It~odename" and go to step 10. 

6. (Poillt down to first son.) Set row[rownum+l].column[a!].arrow = It'tt. 

7. (Place middle sons.) For 1 < i < k t, 

set a = placement [t;, 0, rownum+I] + It;odename,/2, 

set row[rownum+l].column[a].arrow = "I". 

8. (Place final son.) Set r = placement [t
k" 

0, rownum+l] + ItZ;denamel, 

set ar = r - Cltzodenamel+l)/2, 
I . 

set row[rownum+l].co!umn[ar].arrow = "'''. 

9. (Draw bar between outside sons.) 

For al < i < ar, set row[rownum+l].column[i].bracket = tt .. 

10. (Determine position for root.) 

Set pos = MAX{ row[rownum].nextavailable, (I+r)/2 - ItnodenameI/2}. 

11. (Point down from root~) Set ac = pos + Itnodenamel/2, 

set row[Fownum+l].column[ac].bracket = ''1''. 

12. (Write root node name.) 

For row[rownum].nextavailable < i < pos, 

set row[rownum].co/umn[i] = blankentry. 

For 0 < i < Itnodenamel, 

set. row[rownum].column[pos+i].name = tnodenamt(i], 

set row[rownum].column[pos+i].bracket = blank, 

set row[rownum].column[pos+i].arrow = blank. 

Set row[rownum].nextavailable = pos + Itnodenamel. 
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13. Return pos, the placement of t. 

The Printing Program 

The placement procedure builds a representation of the tree in the array row. Once 

this is done, it is straightforward to print the tree. This is done by procedures with 

knowledge of how many rows will fit on a page and the width of a page. The resulting 

output is a collection of pages which can be cut and pasted into a large tree diagram. 

In the implementation of placement, any statements that actually write into the 

column arrays first test a BOOLEAN variable. Hence, placement is run, resulting in values 

for the nextavailable fields, which are then used to allocate column arrays of the proper 

size. Several fields were added to the tree nodes to facilitate printing. A width field 

saves computation when determining the width of the nodename, and allows the trailing 

blank to be synthesized by having the width be one more than the actual string width. A 

value field allows a number to be associated with a node and to be printed in brackets 

above the nodename. This is done by adding a value character field to the pageentry 

record. When the value is printed, the width field contains the maximum space needed 

for the nodename or value. 

The final printing program is described below: 

• Comp-ute maximum depth, setting width fields. 

• Allocate row array, with empty column elements. 

• Call placement [root, 0, 0], with printing inhibited. 

• Allocate column elements of proper size, resetting nextavailable fields. 

• Call placement [root, 0, 0], with printing enabled. 

• Produce printed output. 

Experience with the Tree Printer 

Another common way of printing trees is the "table of contents" listing. In this 

form, the structure is shown by indentation. All nodes at a given level in the tree are 

given the same indentation in the listing. Such listings often are more compact than 
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tree diagrams, and show local structure adequately .. They do not, however, show the 

global structure of the tree nearly as well as a diagram does. 

The tree printing program proved very helpful when designing and debugging the 

analysis routines. There are several data structure that are treelike: programs trees, 

patterns, etc. Procedures were written to convert each of them into trees acceptable to 

the printer. For program trees, which tend to be large, the procedure provides an option 

of truncating the tree at a specified depth. One can set the value of the node to its 

address, its pattern sequence number, its ttcost'\ or other useful information. Below we 

shall see some of the problems with the program. 

I 

I 
8 

! ~ 
I 

A 
I 

I I I 
(A very wide subtree) 

\ 
o 
I 

J ~ 
1 1 

\ / \ / \ 
H I J K 

,Figure B.3. Example tree showing a shortcoming of the printing algorithm. 

The principal shortcoming of the algorithm is somewhat difficult to demonstrate 

in a small tree. Figure 8.3 is a somewhat contrived example that points out the 

problem. Consider the sons of node Q: they are I, I, and §.. Since the subtree I is 

"shallow", it is placed quite far to the left. The nodes I and §. must be placed 

considerably farther to the right in order to make room for their subtrees. With larger, 

wider trees, a shallow subtree such as I can be SO far from its brothers that it gets 

"lost". Shallow subtrees in son positions other than the first lead to uneven spacing of 

the sons. One could probably add a pass to the algorithm that, once having established 

the rightmost subtree of a node, then reformats the other subtrees for compactness and 

even spaci ng. 

The array structure used to represent the tree in memory was chosen in order to 

make the final, printing pass of the program very easy, and since it was written for a 

large computer with virtual memory, was a reasonable choice. For a smaller machine, 

some sort of list structure would probably be better, but would require a more 

sophisticated algorithm for slicing the diagram up into page-sized pieces for printing. 
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Appendix C. Detailed Pattern Data 

This appendix contains the detailed statistics from the sample set. Both the initial 

and final pattern sets are shown, together with their contribution to the total entropy 

estimate. The patterns are shown sorted by various keys, but the detailed listing of 

nodes associated with a pattern is given only for the listing sorted by pattern number. 

C.l. Initial Pattern Set -- Sorted by Pattern Number 

In order to conserve space, the full set of nodes matching a given pattern is not 

always given. Any node whose conditional probability exceeds .005 is shown, however. 

( 1) var[@] 
f = 40289 H 1. 762. P 

4 cases 
local 17580 .44 
global 12279 .30 

(2) var[ •• @] 
f = 40289 H = 3.680. P 

154 cases (18 shown) 
0 12914 .32 
1 6658 .17 
2 4014 .10 
3 3131 .08 
4 2076 .05 
8 1532 .04 
-5 1517 .04 

(3) var[ •••• @] 
f = 40289 H = .336. P = 

16 cases 
0 38841 .96 
2 432 .01 
3 283 .01 
1 175 .00 
14 104 .00 
8 90 .00 

(4) var[ •••••• @] 
f = 40289 H = 2.099. P 

67 cases (13 shown) 
16 26020 .65 
14 6502 .16 
1 1509 .04 
32 1168 .03 
15 611 .02 

(5) list[· •... @] 
f 22481 H = 3.763. P 

72 cases (20 shown) 

.136. H contr. = 

field 7744 
entry 2686 

.136. H contr. 

6 946 
9 833 
7 825 
10 590 
12 469 
11 464 
14 384 

.136. H contr. 

4 71 
6 63 
12 56 
5 54 
,15 33 
9 28 

.136. H contr. = 

8 451 
2 414 
64 381 
11 357 
4 347 

.076. H contr. 

97 

.239 

.19 

.07 

.499 

.02 

.02 

.02 

.01 

.01 

.01 

.01 

.046 

.00 

.00 

.00 

.00 

.00 

.00 

.285 

.01 

.01 

.01 

.01 

.01 

.285 

13 
16 
15 
17 
«others» 

7 
11 
10 
13 

3 
48 
o 
«others» 

316 
247 
221 
209 

2943 

20 
18 
13 

8 

334 
215 
211 

1769 

.01 

.01 

.01 

.01 

.07 

.00 

.00 

.00 

.0"0 

.01 

.01 

.01 

.04 
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C.l. 1 niNal Pattern Set -- Sorted by Pattern Number 

assign 5085 .23 dot 582 .03 addr 207 .01 
call 3573 .16 casetest 572 .03 <empty) 188 .01 
num 2623 .12 casestmt 509 .02 fextract 185 .01 
val' 2420 .11 dostmt 448 .0,2 unionx 179 .01 
ifstmt 1528 .01 str 269 .01 construct 165 .01 
return 1409 .06 re1E 233 .01 plus 127 .01 
item 1068 .05 dollar 219 .01 «others» 892 .04 

(6) num[@] 
f = 10220 H = 5.132. P .034. H contr. = .177 

408 cases (23 shown) 
0 2254 .22 16 196 .02 9 13 .01 
1 1186 .17 13 161 .02 32767 73 .01 
2 748 .07 5 143 .01 15 59 .01 
3 537 .05 7 138 .01 12 58 .01 
16383 397 .04 6 113 .01 14 54 .01 
-1 345 .03 8 92 .01 255 54 .01 
65535 242 .02 10 92 .01 11 53 .01 
4 221 .02 32 82 .01 «others» 2249 .22 

(7) 1ist[@] 
f = 1425 H = 2.416. P .025. H contr. .062 

38 cases (11 shown) 
2 3599 .48 5 322 .04 10 61 .01 
3 1139 .15 6 208 .03 0 60 .01 
1 1038 .14 1 113 .02 9 54 .01 
4 591 .08 8 80 .01 «others» 160 .02 

(8) ca1l[@] 
f = 6616 H = .238. P .022, H contI'. = .005 
val' 6370 .96 dot 236 .04 dollar 10 .00 

(9) call[* ,@] 
f = 6616 H = 2.961, P .022, H contr. .066 

21 cases (12 shown) 
list 181Q .21 dollar 209 .03 dindex 56 .01 
val' 1139 .26 str 204 .03 ifexp 47 .01 
(empty) 160 .11 call 189 .03 «others» .142 .02 
num 686 .10 addr 129 .02 
dot 571 .09 plus 68 .01 

(10) call [*, * ,@] 
f = 6616 H = .112, P .022, H contI'. .002 

(empty) 6517 .99 catchphrase 99 .01 

( 11) assign[@] 
f = 5826 H 1.413. P .020, H contI'. .028 

9 cases 
val' 4011 .69 uparrow 102 .02 seqindex 17 .00 

. dot 1090 .19 index 79 .01 register 9 .00 
dollar 450 .08 dindex 63 .vi memory 5 .00 

( 12) assign[*,@] 
f = 5826 H= 3.591, P .020, H contI'. .070 

42 cases (18 shown) 
call 1288 .22 addr 208 .04 uparrow 36 .01 
num 1018 .19 assignx 153 .03 index 36 .01 
val' 115 .13 minus 134 .02 mwconst 34 .01 
dot 580 .10 dindex 113 .02 times 31 .01 
pluS 371 .06 inl inecal1 12 .01 «others» 213 .04 
(empty) 314 .05 arraydesc 63 .01 
dollar 261 .04 ifexp 60 .01 

(13) dot[@] 
f = 5726 H 1.400, P .019, H contI'. .027 

9 cases 
val' 2965 .52 dollar . 110 .02 minus 7 .00 
plus 2352 .41 register 16 .00 call 7 .00 
dot 254 .04 num 11 .00 assignx 4 .00 
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C.l. I nitiai Pattern Set -- Sorted by Pattern Number 

( 14) dot[.,@] 
f = 5726 H = 0.000, P .019, H contr. 0.000 
var 5726 1.00 

(15) plus[@] 
f = 4039 H = 1.037, P = .014, H contr. .014 

2'2 cases (11 shown) 
var 3396 .84 times 39 .01 plus 16 .00 
dot 357 .09 minus 25 .01 call 15 .00 
dollar 60 .01 register 22 .01 caseexp 5 .00 
num 49 .01 -index 21 .01 «others» 34 .01 

(16) plus[·,@] 
f == 4039 H = 1. 279, P = .014, H contr. .017 

17 cases (11 shown) 
var 3085 .76 call 51 .01 caseexp 6 .00 
num 504 .12 times 18 .00 ifexp 5 .00 
dollar 182 .05 div 13 .0-0 minus 5 .00 
dot 149 .04 inlinecall 10 .00 «oth-ers» 11 .00 

( 17) dollar[@] 
f = 2770 H 2.051. P ;: .009. H c~ntro e .019 

8 cases 
var 968 .35 dollar 109 .04 call 18 .01 
uparrow 952 .34 index 77 .03 assignx 1 .00 
dot 568 .21 dindex 77 .03 

(18 ) dollar[ •• @] 
f = 2770 H = 0.000, P '" .009. H contr. = 0.000 
var 2770 1.00 

(19 ) r,elE[@] 
f = 2348 H = 2.010, P .008. H contr. e .016 

14 cases 
<empty) 1249 .53 call 50 .02 index 7 .00 
var 558 .24 inlinecall 15 .01 .plus 5 .00 
dot 230 .10 dindex 12 .01 minus 2 .00 
dollar 136 .06 seq index 11 .00 uparrow 1 .00 
assignx 64 .03 mod 8 .00 

(20) relE[ •• @] 
f = 2348 H '" .819. P .008, H contr. .006 

15 cases 
num 1976 .84 call 4 .00 plus 1 .00 
var 298 .13 dindex 3 .00 addr 1 .00 
dot 41 .02 mwconst 3 .00 seqindex 1 .00 
dollar 10 .00 relN 2 .00 length 1 .00 
relE 5 .00 or 1 .00 register 1 .00 

(21) ifstmt[@] 
f = 1810 H 3_047. P .006, H contr. .019 

16 cases 
relE 593 .33 or 86 .05 relLE 20 .01 
relN 370 .20 dot 57 .03 in 18 .01 
not 157 .09 call 48 .03 assignx 3 .00 
var 135 .07 relL 36 .02 dindex 3 .00 
and 132 .07 relGE 29 .02 
relG 101 .06 dollar 22 .01 

(22) ifstmt[·,@] 
f = 1810 H = 3.059, P .006, H c~ntro .019 

24 cases (15 shown) 
list 598 .33 signal 70 .04 resume 12 .01 
call 324 .18 ifstmt 40 .02 construct 11 .01 
assign 249 .14 syserror 37 .02 openstmt 10 .01 
return 196 .11 goto 33 .02 «others» 32 .02 
error 82 .05 dostmt 23 .01 
exit 75 .04 casestmt 18 .01 
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C.l. I nitiai Pattern Set -- Sorted by Pattern Number 

(23) ifstmt[ •• ·.@] 
f = 1810 H .. 1.329. P .. .006. H contr. a .008 

18 cases (11 shown) 
<empty> 1406 .78 ifstmt 45 .02 return 6 .00 
list 173 .10 casestmt 13 .01 go to 4 .00 
call 69 .04 openstmt 10 .01 fextract 2 .00 . 
assign 65 .04 dostmt 7 .00 «oth.ers» 10 .01 

(24) . return[8] 
f = 1683 H = 2.521. P = .006. H contr. a .014 

30 cases (12 shown) 
<empty> 839 .50 caseexp 32 .02 relE 15 .01 
var 337 .20 constructx 31 .02 plus 15 .Ql 
num 148 .09 dollar 26 .02 «others» 47 .03 
list 74 .04 ifexp 24 .01 
call 73 .04 dot 22 .01 

(25) @ 
f = 1513 H 0.000. P .005. H contr. a 0.000 
body 1513 1.00 

(26) body[@] 
f '"' 1513 H = 0.000, P .005. H contr. a 0.000 
list 1513 1.00 

(27) uparrow[@] 
f = 1270 H 1.191, P .004. H contr. '"' .005 

7 cases 
plus 823 .65 dollar 4 .00 register 1 .00 
var 379 .30 minus 2 .00 
num 60 .05 dot 1 .00 

(28) item[@] 
f = 1214 H .936, P '"' .004, H contr. a .004 

9 cases 
relE 1021 .84 in 25 .02 relN 2 .00 
list 97 .08 rell 7 .01 rellE 2 .00 
lbl 52 .04 relG 7 .01 relGE 1 .00 

(29) item[*.@] / 

f .. 1214 H = 3.315. P .. .004, H contr. a .014 
36 cases (19 shown) 

list 425 .35 num 26 .02 resume 11 .01 
assign 187 .15 dollar 20 .02 and 10 .01 
call 170 .14 goto 20 .02 exit 10 .01 
ifstmt 102 .08 openstmt 17 .01 dot 7 .01 
casestmt 42 .03 caseexp 14 .01 continue 7 .01 
nullstmt 41 .03 signal 12 .01 «others» 45 .04 
return 37 .03 error 11 .01 

(30) casestmt[@] 
f = 639 H 1.543. P .002. H contr . .. .003 

11 cases 
dollar 450 .70 num 17 .03 uparrow 2 .00 
var 67 .10 assignx 4 .01 inlinecall 1 .00 
dot 55 .09 seqindex 3 .00 index 1 .00 
call 37 .06 minus 2 .00 

(31) casestmt[·,@] 
f = 639 H = 0.000. P .002, H contr. 0.000 
list 639 1.00 

(32) casestmt[· ••• @] 
f= 639 H 2.581, P .002. H contr. .006 

14 cases 
<empty) 269 .42 assign 22 .03 nullstmt 7 .01 
syserror 151 .24 return 22 .03 goto 4 .01 
list 61 .10 ifstmt 13 .02 casestmt 2 .00 
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C.l. J nitta! Pallern Set Sorted by Pattern Number 

signal 35 .05 exit 10 .02 openstmt 1 .00 
call 32 .05 error 10 .02 

(33) casetest[@] 
f = 572 H = .597. P .002, H contr. .001 

num 489 .85 list 83 .15 

(34) casetest[·.@] 
f = 572 H 2.612, P .. .002, H cORtr . .. .005 

15 cases 
list 194 .34 nullstmt 16 .03 openstmt 4 .01 
assign 140 .24 str 15 .03 exit 3 .01 
call 112 .20 return 11 .02 goto 2 .00 
num 41 .07 ifexp 6 .01 signal 2 .00 
ifstmt 20 .03 casestmt 5 .01 label 1 .00 

(35) addr[@] 
f = 570 H .. 1. 824, P .. .002, H contr. .. .004 

6 cases 
var 339 .59 uparrow 68 .12 index 32 .06 
dot 84 .15 dollar 32 .06 dindex 15 .03 

(36) relN[@] 
f = 538 H .. 2.411. P .. .002, H contr. = .004 

16 cases 
var 209 .39 dindex 6 .01 mod 2 .00 
dot 157 .29 seqindex 6 .01 fdollar 1 .00 
dollar 69 .13 plus 4 .01 uparrow 1 .00 
call 37 .07 index 3 .01 length 1 .00 
inlinecall 24 .04 <empty> 2 .00 
assignx 14 .03 minus 2 .00 

(37) , relN[.,@] 
f .. 538 H = 1. 174, P .002. H contr . .. .002 

10 cases 
num 430. .80 call 7 .01 inlinecall 2 .00 
var 53 .10 addr 5 .01 mwconst 1 .00 
dot 24 .04 seqindex 5 .01 
dollar 8 .01 uparrow 3 .01 

(38) str[@] 
f = 511 H .. 8.735, P .002, H contr. ;015 

449 cases (11 shown) 
"Break" 4 .01 "VM." 3 .01 "error" 3 .01 
"Trace" 4 .01 .. XXX" 3 .01 "Error II ., 3 .01 
".xm" 3 .01 "NIL" 3 .01 "New" 2 .00 
.. -- " 3 .01 ".XM" 3 .01 «others» 477 .93 

(39) dostmt[@] 
f = 484 H 1.610, P .002, H contr. .003 

4 cases 
<empty> 219 .45 forseq 84 .17 
upthru 170 .35 downthru 11 .02 

(40) dostmt[·,@] 
f = 484 H .. 1.777, P .002, H contr . .. .003 

12 cases 
<empty> 277 .57 rell 10 .02 in 3 .01 
not 136 .28 and 5 .01 var 3 .01 
relN 28 .06 relG 5 .01 rellE 2 .00 
relE 11 .02 relGE 3 .01 or 1 .00 

(41) dostmt[·,.,@] 
f = 484 H 2.224, P II .002. H contr. = .004 

13 cases 
list 253 .52 openstmt 8 .02 inl inecall 1 .00 
assign 66 .14 label 7 .01 dostmt 1 .00 
ifstmt 54 .11 signal 3 .01 catchmark 1 .00 
casestmt 44 .09 nullstmt 3 .01 
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C.l. I nitial Pattern Set -- Sorted by Pattern Number 

call 40 .08 enable 3 .01 

(42) dostmt[·,·,·,@] I 
f = 484 H = .133, P .002, H cont ... .. .000 
<empty> 475 . 98 item 9 .02 

(43) dostmt[·,·,·,·,@] 
f .. 484 H = .292, P .. .002, H cont ... .. .000 

8 cases 
<empty> 468- .97 ifstmt 2 .00 goto 1 .00 
list 6 .01 .. eturn 2 .00 exit 1 .00 
assign 3 .01 call 1 .00 

(44) minus[@] 
f .. 469 H 2.672, P .002, H cont ... .004 

18 cases 
va .. 224 .48 call 11 .02 uminus 3 .01 
dot 62 .13 div 10 .02 length 3 .01 
<empty> 45 .10 minus 8 .02 times 2 .00 
plus 38 .08 index 7 .01 uparr~w 2 .00 
dollar 25 .05 dindex 4 .01 assigl)x 1 .00 
num 20 .04 ifexp 3 .01 abs 1 .00 

(45) minus[.,@] 
f .. 469 H = 1. 590, P .002, H cont ... a .003 

14 cases 
num 318 .68 minus 4 .01 ifexp 1 .00 
val' 91 .19 times 4 .01 assignx 1 ... 00 
dot 17 .04 index 4 .01 div ·1 .00 
dollar 15 .03 addr 2 .00 inl inecall 1 .00 
plus 8 .02 call 2 .00 

(46) ~index[@] 
f = 433 H = .195, P .001, H cont ... .000 

var 420 .97 dot 13 .03 

(47) dindex[*,@] 
f = 433 H 2.450, P .001, H contI'. .. .004 

11 cases 
var 131 .30 minus 21 .05 call 3 .01 
num 102 .24 dot 8 .02 upa .... ow 2 .00 
times 89 .21 as:s ignx 4 .01 ifexp 1 .00 
plus 68 .16 dollar 4 .01 

(48) not[@] 
f .. 382 H 2.636. P .001, H contI'. .003 

13 cases 
relE 118 .31 in 19 .05 and 1 .00 
va .. 97 .25 .. ell 5 .01 relN 1 .00 
call 50 .13 relG 5 .01 relGE 1 .00 
dot 47 .12 or 4 .Oi 
doll a .. 32 .08 ifexp 2 .01 

(49) assignx[@] 
f :: 348 H 1. 308, P .001, H contI'. .. .002 

7 cases 
val' 246 .71 uparrow 7 .02 dindex 1 .00 
dot 69 .20 seqindex 4 .01 
dollar 18 .05 index 3 .01 

(50) assignx[*,@] 
f .. 348 H = 3.349, P .001, H cont ... .004 

21 cases (14 shown) 
call 73 .21 assignx 23 .07 register 6 .02 
num 71 .20 minus 19 .05 inl inecall 3 .01 
dot 40 .11 dollar 19 .05 seqindex 3 .01 
plus 34 .10 dindex 12 .03 relE 2 .01 
val' 30 .09 addr 6 .02 «others» 7 .02 
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C.l. Initial Pattern Set -- Sorted by Pattern Number 

(51) index[@] 
f .. 338 H .. .965, P .. .001, H contr. .001 

var 265 .78 do 11 ar 42 .12 dot 31 .09 

(52) index[*,@] 
f = 338 H 2.325, P .001, H contr. .. .003 

11 cases 
var 106 .31 dollar 13 .04 in1 inecall 2 .01 
times 85 .25 mod 4 .01 ifexp 1 .00 
num 85 .25 .plus 3 .01 div 1 .00 
minus 36 .11 dot 2 .01 

(53) times[@] 
f .. 317 H .. 1. 702, P .. .001, H contr. .002 

13 cases 
var 227 .72 'plus 9 .03 1 ength 2 .01 
minus 22 .07 . in1 inecall 4 .01 ifexp 1 .00 
call 18 .06 times 3. .01 abs 1 .00 
dot 16 .05 div 2 .. 01 
dollar to .03 uminus 2 .01 

(54) times[*,@] 
f .. 317 H .. .535, P = .001, H contr. = .001 

5 cases 
num 292 .92 dot 8 .03 dollar 1 .00 
var 10 .03 call 6 .02 

(55) inlinecall[@] 
f = 262 H 3.019. P .001. H contr. .003 

18 cases 
BITANO 86 .33 Stop 9 .03 PORTI 2 .01 
BITSHIFT 42 .16 BITXOR 7 .03 CONVERT 1 .00 
BITOR 39 .15 LOIVMOO 4 .02 PUSH 1 .00 
olvMob 26 .10 . BLOCK 4 .02 USC 1 .00 
COPY 17 .06 NovaOutld 3 .01 longOiv 1 .00 
BITNOT 16 .06 Novalnld 2 .01 longMult 1 .00 

(56) in1inecall[ •• @] 
f = 262 H .843. P = .001. H contr. = .001 

8 cases 
list 230 .88 var 7 .03 uparrow 1 .00 
num 8 .03 dot 4 .02 index 1 .00 
<empty> 7 .03 inl inecall 4 .02 

(57) and[@] 
f = 251 1i 3.104. P = .001. H contr. = .003 

14 cases 
relE 60 .24 call 12 .05 or 5 .02 
and 51 .20 dot 8 .03 relGE 3 .1)1 
relN 37 .15 re1l 7 .03 in 3 .01 
var 32 .13 relG 6 .02 rellE 1 .00 
not 20 .08 dollar 6 .02 

(58) and[*.@] 
f = 251 H 3.113. P .001. H contr. .{l03 

17 cases 
relE 85 .34 or 10 .04 caseexp 2 .01 
relN 42 .17 dot 10 .04 index 2 .01 
not 28 .11 in 8 .03 and 1 .00 
call 22 .09 dollar 7 .03 re1GE 1 .00 
var 12 .05 fell 6 .02 fdollar 1 .00 
relG 11 .04 rellE 3 .01 

(59) ifexp[@] 
f = 211 H 2.315, P .001, H contr. .002 

12 cases 
relE 102 .48 relN 6 .03 dollar 4 .02 
var 54 .26 rell 6 .03 or 3 .01 
in 14 .07 dot 6 .03 not 3 .01 
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C.l. / nitiai Pattern Set -- Sorted by Pattern Number 

relG 8 .04 and 4 .02 

(60) ifexp[ •• @] 
f = 211 H = 2.433. P .001. H contr. = .002, 

18 cases (11 shown) 
num 115 .55 dollar 9 .04 
dot 25 .12 ifexp 6 .03 
call 18 .09 plus 3 .01 
var 18 .09 minus 3 .01 

(61) ifexp[ •••• @] 
f = 211 H 3.005. P = .001. H contr. = .002 

21 cases 
num 
dot 
var 
call 
ifexp 
dollar 
minus 

95 
20 
20 
14 
13 
9 
7 

(62) fextract[@] 

.45 

.09 

.09 

.07 

.96 

.04 

.03 

f = 
list 

196 H = 0.000. P = 
196 1. 00 

(63) fextract[.,@] 

plus 
str 
caseexp 
index 
dindex 
min 
not 

6 .03 
4 .02 
3 .01 
3 .01 
3 .01 
3 .01 
2 .01 

.001. H contr. = 0.000 

f = 196 H = .672, P = .001. H contr. .000 
call 166 .85 inlinecal1 28 .14 

(64) s19na1[@] 
f = 186 H = .524. P = .001. H contr. = .000 
var 164 .88 dot 22 .12 

(65) signal[.,@] 
f = 186 H 1.602. P .001. H contr. = .001 

5 cases 
(empty> 104 .56 var 31 .17 
1 ist 44.24 dollar 5 .03 

(66) signal[ •••• @] 
f = 186 H = O.OOO~ P = .001. H contr. 0.000 

<empty> 186 1.00 

(67) intCC[@] 
f = 183 H = .483. P = .001. H contr. = .000 

4 cases 
num 
var 

168 
12 

(68) intCC[ •• @] 

.92 

.07 

f = 183 H 1.466. P 
7 cases 

num 
var 
dot 

133 .73 
19 .10 
10 .05 

(69) construct[@] 
f = 183 H 1.817. P 

6 cases 
var 
uparrow 

90 
52 

(70) construct[ •• @] 

.49 

.28 

f = 183 H = 0.000. P 
list 183 1.00 

(71) unionx[@] 
f ~ 179 H = 0.000, p 
var 179 1.00 

dot 
minus 

.001. H contr. 

plus 
div 
minus 

.001. H contr. 

dot 
dindex 

2 
1 

.01 

.01 

.OOi 

7 .04 
7 .04 
6 .03 

26 
10 

.001 

.14 

.05 

.001. H contr. = 0.000 

.001. H contr. = 0.000 

104 

relGE 

str 
index 
memory 
«others» 

uminus 
addr 
relN 
rell 
times 
inl inecall 
constructx 

signal 

num 

dollar 

dollar 
index 

1 

3 
2 
2 
7 

.00 

.01 

.01 

.01 

.03 

2 .01 
2 .01 
1 .00 
1 .00 
1 .00 
1 '.00, 
1 .00 

2 .01' 

2 .01 

1 .01 

3 .02 
2 '.01 



ApPENDIX C: DETAILED PATTERN UAIA 

C.l. Initial Pattern Set -- Sorted by Pattern Number 

(72) unionx[*.@] 
f = 179 H = 0.000. P .001, H contr. = 0.000 
list 179 1.00 

(73 ) upthru[@] 
f = 170 H = .767. P .001, H contr. .000 
var 132 .78 <empty> 38 .22 

(74) upthru[*,@] 
f = 170 Ii 1. 220, P .001, A contr. '" .001 

4 cases 
intCC 83 .49 intOO 3 .02 
intCO 81 .48 intOC 3 .02 

(75 ) relG[@] 
f = 159 H 2.109, P .-001, H contr. .001 

11 cases 
var 94 .59 <empty> 8 .05 times 1 .01 
dot 21 .13 plus 7 .04 inlinecall 1 .01 
dollar 10 .06 length 5 .03 abs 1 .01 
assignx 9 .06 index 2- .01 

(76) relG[*,@] 
f = 159 H 1. 386. P .001, H contr. .001 

9 cases 
num 120 .75 doll ar 6 .04 ifexp 1 .01 
var 14 .09 index 3 .02 mod 1 .01 
dot 11 -.07 minus 2 .01 max 1 .01 

( 71) lbl[@] 
f = 159 H .984. P .001, H contr. .001 

5'cases 
1 127 .80 3 4 .03 5 2 .01 
2 23 .14 4 3 .02 

(78) catchphrase[@] 
f = 130 H = 1. 040. P .000, H contr. .000 

item 98 .75 <empty> 20 .15 list 12 .09 

(79) catchphrase[*,@] 
f = 130 H 1.024. P .000, H contr. .000 

8 cases 
<empty> 109 .84 continue 4 .03 assign 1 .01 
goto 8 .06 list 2 .02 error 1 .01 
inlinecal1 4 .03 call 1 .01 

(80) error[@] 
f = 129 H = .065, P .000. H contr. .000 

var 128 .99 dot 1 .01 

(81) error[*.@] 
f = 129 H 1.903. P .000, H contr. .001 

9 cases 
<empty> 59 .46 num 6 .05 ifexp 1 .01 
var 47 .36 dot 3 .02 plus 1 .01 
list 9 .07 str 2 .02 addr 1 .01 

(82) error[ •••• @] 
f = 129 H .065, P .000, H contr. .000 

<empty> 128 .99 catchphrase 1 .01 

(83) or[@] 
f = 127 H 2.955, P .000, H contr. .001 

11 cases 
relE 38 .30 relG 8 .06 dot 5 .04 
relN 21 .17 var 8 .06 call 2 .02 
not 20 .16 and 7 .06 assignx 1 .01 
or 10 .08 relL 7 .06 
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APPENDIX L: LJETAILED PATTERN UATA 

C.l. I nitia! Pattern Set -- Sorted by Pattern Number 

(84) or[*,@] 
f = 127 H 2.856, P .000. H contI'. = .001 

14 cases 
relE 43 .34 re1G 5 .04 dollar 2 .02 
and 25 .20 dot 4 .03 re1GE 1 .01 
relN 21 .17 call 3 .02 re1lE 1 .01 
not 10 .08 caseexp 2 .02 in 1 .01 
var 7 .06 rell 2 .02 

(85) goto[@] 
f = 105 H 0.000, P .000, H contI'. = 0.000 

1 bl 105 1.00 

(86) in[@] 
f =, 102 H 1.492, P .000. H contr. .001 

6 cases 
var 57 .56 minus 5 .05 plus 1 .01 
(empty> 35 .,34 dollar 3 .03 call 1 .01 

(87) in[*,@] 
f = 102 H = .323, P = .000. H contr. .000 

intCe 96 .94 intCO 6 .06 

(88) intCO[@] 
f = 94 H = .849. P .000. H contI'. = .000 

4 cases 
num 78 .83 dot 4 .04 
val' 11 .12 length 1 .01 

(89) intCO[*.@] 
f = 94 H 2.573. P = .000. H contr. .001 

9 cases 
var 38 .40 plus 10 .11 min 3 .03 
length 15 .16 dollar 7 .07 div 2 .02 
dot 12 .13 minus 5 .05 call 2 ~02 

(90) re1l[@] 
f = 93 H 2.197. P .000, H contr. .001 

'9 cases 
var 51 .55 a,ssignx 9 .10 call 2 .02 
dO,ll ar 10 .1.1 dot 6 .06 index 2 .02 
(empty> 9 .10 plus 3 .03 div 1 .01 

(91) rell[*.@] 
f = 93 H 2.141. P .000. H contr. .001 

9 cases 
num 46 .49 dollar 6 .06 times 1 .01 
var 20 .22 length 4 .04 index 1 .01 
dot 12 .13 div 2 .02 min 1 .01 

(92) openstmt[@] 
f =, , 91 H = 0.000. P .000. H contr. 0.000 

(empty> 91 1.00 

(93) openstmt[*.@] 
f = 91 H 1.052. P .000. H contI'. .000-

8 cases 
list 76 .84 casestmt 2 .02 ifstmt 1 .01 
enable 5 .05 inlineca11 1 .01 dostmt 1 .01 
label 4 .04 assign 1 .01 

(94) div[@] 
f = 81 H 2.183. P .000. Ii contI'. .001 

7 cases 
val' 37 .43 dollar 6 .07 minus 1 .01 
plus 23 .26 call 6 .07 
dot 11 .13 times 3 .03 
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ApPENDIX C: DETAILED PATTERN DATA 

C.l. Initial Pattern Set -- Sorted by Pattern Number 

(95) div[.,@] 
f = 87 H .572, P .000, H contr. = .000 

4 cases 
num 79 .91 dot 3 .03, 
var 4 .05 times 1 .01 

(96) register[@] 
f = 87 H = 0.000, P .000, H contr. = 0.000 

num 87 1.00 

(97) caseexp[@] 
f = 84 H 1. 343, P .000, H contr. = .000 

7 cases 
dollar 62 .74 call 2 .02 Dum 1 .01 
var 12 .14 inlinecall 2 .02 
dot 4 .05 dindex 1 .01 

(98) caseexp[.,@] 
f = 84 H = 0.000, p .000, H contr. = 0.000 
list 84 1.00 

(99) caseexp[.,·,@] 
f = 84 H '" .885, P = .000. H c~ntro a .000 

7 cases 
num 73 .87 dot 2 .02 val' 1 .01 
call 3 .04 str 2 .02 
ifexp 2 .02 dindex 1 .01 

(100) forseq[@] 
f = 84 H = 0.000. P .000. H contr. = 0.000 

var 84 1.00 

(101) ~orseq[.,@] 
f = 84 H 2.496. P = • OO~. H contI'. .001 

10 cases 
var 30 .36 index 4 .05 minus 1 .01 
dot 25 .30 num 4 .05 div 1 .01 
call 10 .12 dindex 3 .04 
dollar 4 .05 plus 2 .02 

(102) forseq[ •••• @] 
f= 84H 1. 745. P .000, H c~ntro .000 

5 cases 
dot 49 .58 var 10 .12 minus 3 .04 
call 14 .11 plus 8 .10 

(103 ) seqindex[@] 
f = 82 H = .592. P .000. H c~ntro .000 

var 72 .88 dot 9 .11 dindex 1 .01 

( 104) seqindex[ •• @] 
f = 82 H 1.736. P .000. H c~ntro = .000 

6 cases 
var 52 .63 dot 7 .. 09 assignx 4 .05 
minus 10 .12 num 7 .09 plus 2 .02 

( 105) caseswitch[@] 
f = 81 H = 1. 175. P .000. H c~ntro .000 
minus 45 .56 <empty> 33 .41 plus 3 .04 

(106) caseswitch[ •• @] 
f = 81 H = 0.000. P .000. H c~ntro = 0.000 

num 81 1.00 

( 107) caseswitch[ •••• @] 
f = 81 H = 0.000. p ;000, H contr. 0.000 
list 81 1.00 

(108) arraydesc[@] 

107 
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C.l. I nitial Pattern Set -- Sorted by Pattern Number 

f = 80 H = 0.000, p 
list 80 1.00 

(109) constructx[@] 
f '" 77 H = 0.000, p 

temp 77 1.00 

( 110) constructx[.,@] 
f = 71 H = 0.000. P = 
list 77 1.00 

( 111) length[@] 
f = 50 H = .529, P = 
var 44 .. 88 

( 112) row[@] 
f = 47 H = 0.000, P 
list 47 1.00 

(113 ) rowcons[@] 
f = 47 H = 0.000, P = 
val' 47 1.00 

(114 ) rowcons[-,@] 
f = 47 H = 0.000, P 

row 47 1.00 

(115 ) mwconst[@] 
f = 44 H = 0.000, P 
list 44 1.00 

( 116) resume[@] 
f = 44 H .774, P = 

4 cases 
<empty> 38 .86 
val' 3 .07 

( 117) relGE[@] 
f = 41 H 1. 778, P 

6 cases 
val' 23 .56 
assignx 10 .24 

(118) .,.elGE[-,@] 
f = 41 H 2.022, P 

7 cases 
num 18 .44 
var 13 .32 
length 5 .12 

( 119) I abel l@] 
f = 41 H 1.883, P 

7 cases 
list 25 .61 
enable 5 .12 
casestmt 4 .10 

(120 ) label[-,@] 
f = 41 H = .281. P 

item 39 .95 

(121) uminus[@] 
f = 35 H 1. 391. P 

5 cases 
val' 25 .71 
dollar 4 .11 

(122 ) vconstruct[@] 
f = 32 H = 0.000. P 

.000, H contr. 

.000, H contr. 

.000, H contr. 

.000, H contI'. 
dot 

.000. H contI'. 

.000. H contr. 

.000, H contr. 

.000. H contr. 

.000. H contI'. 

dot 
list 

.000. H contI'. 

dot 
dollar 

.000. H contr. 

dot 
assignx 
dollar 

.000. H contr. 

ifstmt 
catchmark 
call 

.000. H contr. 
list 

.000, H contI'. 

call 
dot 

.000. H contr. 
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= 

'" 

'" 
6 

'" 

a 

a 

= 
2 
1 

'" 

3 
3 

2 
1 
1 

3 
2 
1 

2 

3 
2 

0.000 

0.000 

0.000 

.000 
.12 

0.000 

0.000 

0.000 

0.000 

.000 

.05 

.02 

.000 

.07 

.07 

.000 

.05 

.02 

.02 

.000 

.07 

.05 

.02 

.000 
.05 

,000 

.09 

.06 

0.000 

<empty> 
plus 

max 

assign 

dindex 

1 .02 
1 .02 

1 .02 

1 .02 

1 .03 



ApPENDIX C: DETAILED PATTERN DATA 

C.l. I nitiai Pattern Set -- Sorted by Pattern Number 

dollar 32 1.00 

( 123) vconstruct[*,@] 
f .. 32 H = 0.000, P .000, H contr . .. 0.009 
list 32 1.00 

(124 ) rellE[@] 
f = 30 H .. 1. 826, P .. .000, H contr. .. .000 

8 cases 
var 20 .67 abs 2 .01 dollar 1 .03 
<empty> 2 .07 times 1 .03 index 1 .03 
assignx 2 .07 dot 1 .03 

(125) rellE(*,@] 
f = 30 H 1. 505, P .000, H contr. .. .000 

5 cases 
num 20 .67 dot 2 .07 dollar 1 .03 
var 6 .17 index 2 .07 

( 126) enable[@] 
f .. 29 H = 0.000, P .000, H contr. 0.000 

catchphrase 29 1.00 

( 127) enable[*,@] 
f = 29 H = .431, P .. .000, H contI'. .000 
list 27 .93 ifstmt 1 .03 dostmt 1 .03 

(128) mod[@] 
f = 27 H 2.203, P .000, H contr. .000 

6 cases 
var 12 .44 assignx 3 .11 inl inecall 3 .11 
plus 6 .19 dot 3 .11 dollar 1 .04 

( 129) mod[*~@] 
f= 27 H = .979, P = .O~O. H contr. .000 

num 20 .74 length 6 .22 val' 1 .04 

(130) min[@] 
f = 27 H = 0.000, P .000, H contI'. = 0.000 
list 2.7 1.00 

(131) s tr i ng i n it(@] 
f = 27H = 0.000, P .000, H contI'. 0.000 

Rum 27 1.00 

(132) max[@] 
f = 25 H = 0.000, P ~OOO, H contI'. .. 0.000 
list 25 1.00 

(133) catchmark[@] 
f = 24 H 1.908, P .ODO, H contr. .000 

5 cases 
call 10 .42 enable 6 .25 ifstmt 1 .04 
assign 6 .25 fextract 1 .04 

(134 ) base[@] 
f = 22 H = .439, P .000, H contr. .000 

var 20 .91 dot 2 .09 

( 135) , memory(@] 
f = 13 H 1. 884, P .000, H contr. .000 

4 cases 
var 5 .38 plus 2 .15 
num 4 .31 minus 2 .16 

(136) fdollar[@] 
f .. 11 H = .845, P .000, H contr. .000 
call 8 .73 inlinecall 3 .27 
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C.l. Initial Pattern Set -- Sorted by Pattern Number 

(137) fdollar[.,@] 
f .. 11 H .. 0.000, p .000. H contr. .. 0.000 
var 11 1.00 

(138) downthru[@] 
f .. 11 H .. 0.000, P .. .000, H contr. .. 0.000 
var 11 1.00 

(139) downthru[·.@] 
f .. 11 H .. .946, P .000, H contr. .. .000 

intCO 7 .64 intCC 4 .36 

(140) dst[@] 
f = 10 H .. 0.000. P .000. H contr . .. 0.000 
var 10 1.00 

(141) lstf[@] 
f .. 10 H .. 0.000. p .. .000. Hcontr. .. 0.000 
var 10 1.00 

(142) extract[@) 
f· = 9.H .. 0.000. P .. .000, H contr. 0.000 
list 9 1.00 

(143) extract[·,@] 
f .. 9 H .. 1.224. P .000. H contr. .000 
call 6 .67 uparrow. 2 .22 dollar 1 .11 

(144) lst[@] 
f .. 9 H .. 0.000. P .000, H contr. 0.000 
var 9 1.00 

(145), abs[@] 
f .. 8 H .. 1. 299, P .000. H contr . .000 
var 5 . 62 call 2 .25 dot 1 .12 

(146) start[@] 
f .. 8 H .. .811. P .000, H contr . .. .000 
var 6 .75 dot 2 .25 

( 147) start[·,@] 
f = 8 H .. 0.000, P .. .000. H contr . .. 0.000 
(empty> 8 1.00 

(148) start[·.·.@] 
f .. 8 H .. . 544. P .000, H contr . .. .000 
(empty> 7 . 87 catchphrase 1 .12 

(149) intOO[@] 
f .. 3 H .. 0.000. P = .000, H contr. .. 0.000 
var 3 LOO 

( 150) intOO[ •• @] 
f = 3 H .. .918. P .. .000, H contr. .. .000 
var 2 .67 plus 1 .33 

(151) intOC[@] 
f = 3 H .. 0.000. p = .000, H contr. .. 0.000 
var 3 1.00 

(152) intOC[.,@] 
f .. 3 H = 0.000. p .000, H contr. 0.000 
var 3 1.00 

(153) stop[@] 
f = 3 H = 0.000. P .000. H contr . .. 0.000 
(empty> 3 1.00 

(154) svc[@] 

110 



ApPENDIX C: DETAILED PAlTERN DATA 

C.l. Initial Pattern Set -- Sorted by Pallern Number 

f = 2 H = 0.000, p = .000. H contr. = 0.000 
nurn 2 1.00 
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ApPENDIX C: DETAILED PATIERN DATA 

C.2. Initial Pattern Set -- Sorted by Entropy Contribution 

pattern jreq. H H cumul. pattern. 
number contr. H 

2. 40289 3.680 .499 .499 var[·.@] 
5. 22481 3.763 .285 .784 list[· •... @] 
4. 40289 2.099 .285 1.069 var[ •••••• @] 
1. 40289 1. 762 .239 1. 308 var[@] 
6. 10220 5.132 .177 1. 485 num[@] 

12. 5826 3.591 .070 1. 556 assign[ •• @] 
9. 6616 2.961 .066 1.622 call[·.@] 
7. 7425 2.476 .062 1.683 list[@] 
3. 40289 .336 .046 1. 729 var[·.·.@] 

11. 5826 1.413 .028 1.757 assign[@] 
13. 5726 1. 400 .027 1. 784 dot[@] 
17. 2770 2.051 .019 1.803 doll ar[@] 
22. 1810 3.059 .019 1. 822 ifstmt[* .@] 
21. 1810 3.047 .019 1.840 ifstmt[@] 
16. 4039 1. 279 .017 1.858 plus[*.@] 
19. 2348 2.010 .016 1. 873 relE[@] 
38. 511 8.735 .015 1.888 str(@] 
24. 1683 2.521 .014 1.903 return[@] 
15. 4039 1. 037 .014 1. 917 plus[@] 
29. 1214 3.315 .014 1. 930 item[ *.@] 
23. 1810 1. 329 .008 1. 939 ifstmt[·.·,@] 
20. 2348 .819 .006 1.945 relE[.,@] 
32. 639 2.581 .006 1. 951 casestmt[·.·.@] 
8. 6616 .238 .005 1. 956 call [@] 

27. 1270 1. 191 .005 1. 961 uparrow[@] 
34. 572 2.612 .005 1.966 casetest[·.@] 
36. 538 2.411 .004 1. 970 relN[@] 
44. 469 2.672 .004 1. 975 minus[@] 
50. 348 3.349 .004 1. 979 -assignx[.,@] 
28. 1214 .936 .004 1.982 item[@] 
41. 484 2.224 .004 1.986 dostmt[·.·,@] 
47. 433 2.450 .004 1. 990 dindex[ •• @] 
35. 570 1. 824 .004 1. 993 addr[@] 
48. 382 2.636 .003 1.996 not[@] 
30. 639 1. 543 .003 2.000 casestmt[@] 
40. 484 1.777 .003 2.003 dostmt[*.@] 
55. 262 3.019 .003 2.005 inlinecall[@] 
52. 338 2.325 .003 2.008 index[.,@] 
58. 251 3.113 .003 2.011 and[·.@] 
39. 484 1. 610 .003 2.013 dostmt[@] 
57. 251 3.104 .003 2.016 and[@] 
45. 469 1.590 .003 2.018 minus[ •• @] 
10. 6616 .112 .002 2.021 call [*. * :@] 
61. 211 3.005 .002 2.023 ifexpr·.·.@l 
37. 538 1. 174 .002 2.025 relNt·.@] -
53. 317 1.702 .002 2.027 times[@] 
60. 211 2.433 .002 2.029 ifexp[ •• @] 
59. 211 2.315 .002 2.030 ifexp[@] 
49. 348 1.308 .002 2.032 assignx[@] 
83. 127 2.955 .001 2.033 or[@] 
84. 127 2.856 .001 2.034 or[*.@] 
33. 572 .597 .001 2.035 casetest[@] 
75. 159 2.109 .001 2.037 relG[@] 
69. 183 1. 817 .001 2.038 construct[@] 
51. 338 .965 .001 2.039 index[@] 
65. 186 1.602 .001 2.040 signal[*.@] 
*38. 183 1.466 .001 2.041 ;n+rrr* ~, 

'11 "''''''L· 'UJ 
81. 129 1. 903 .001 2.042 error[*.@] 
89. 94 2.573 .001 2.042 intCO[·,@] 
56. 262 .843 .001 2.043 inlinecall[.,@] 
76. 159 1.386 .001 2.044 relG[*,@] 

101. 84 2.496 .001 2.045 forseq[*.@] 
74. 170 1. 220 .001 2.045 upthru[*.@] 
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pattern freq. H H cumul. pattern 
number contr. H 
90. 93 2.197 .001 2.046 rell[@] 
91. 93 2.141 .001 2.047 rell[ •• @] 
94. 87 2.183 .001 2.047 div[@] 
54. 317 .535 .001 2.048 times[·.@] 
77. 159 .984 .001 2.048 lbl[@] 
86. t02 1. 492 .001 2.049 in[@] 

102. 84 1. 745 .000 2.049 forseq[·.·.@] 
104. 82 1. 736 .000 2.050 seqindex[ •• @] 
43. 484 .292 .000 2.050 dostmt[ •••••• ·.@] 
78. 130 1.040 .000 2.051 catchphrase[@] 
79. 130 1. 024 .000 2.051 catchphrase[ •• @] 
63. 196 .672 .000 2.052 fextract[·.@] 
73. 170 .767 .000 2.052 upthru[@] 
97. 84 1.343 .000 2.053 caseexp[@] 
64. 186 .524 .000 2.053 signal[@] 
93. 91 1.052 .000 2.053 openstmt[· .@l 

105. 81 1.175 .000 2.053 caseswitch[@] 
67. 183 .483 .000 2.054 intCC[@] 
46. 433 .195 .000 2.054 dindex[@] 

118. 41 2.022 .000 2.054 relGE[·.@] 
88. 94 .849 .000 2.055 intCO[@] 

119. 41 1.883 .000 2.055 1 abel[@] 
99. 84 .885 .000 2.055 caseexp[ •••• @] 

117. 41 1. 778 .000 2.055 relGE[@] 
42. 484 .133 .000 2.056 dostmt[·.·.·.@] 

128. 27 2.203 .000 2.056 mod[@] 
124. 30 1.826 .000 2.056 rellE[@] 
95. 87 .572 .000 2.056 div[ •• @] 

121. 35 1.391 .000 2.056 uminus[@] 
103. 82 .592 .000 2.056 seq;ndex[@] 
133. 24 1.908 .000 2.057 catchmark[@] 
125. 30 1. 505 .000 2.057 rellE[·.@] 
116. 44 .'774 .000 2.057 resume[@] 
87. 102 .323 .000 2.057 in[.,@] 

111. 50 .529 .000 2.057 length[@] 
129. 27 .979 .000 2.057 mod[·.@] 
135. 13 1.884 .000 2.057 memory[@] 
127. 29 .431 .000 2.057 enable[ •• @] 
120. 41 .281 .000 2.057 label[·.@] 
143. 9 1.224 .000 2.057 extract[·.@] 
139. 11 .946 .000 2.057 downthru[·.@] 
145. 8 1.299 .000 2.057 abs[@] 
134. 22 .439 .000 2.057 base[@] 
136. 11 .845 .000 2.058 fdollar[@] 
80. 129 .065 .000 2.058 error[@] 
82. 129 .065 .000 2.058 error[· ••• @] 

146. 8 .811 .000 2.058 start[@] 
148. 8 .544 .000 2.058 start[·.·.@] 
150. 3 .918 .000 2.058 intOO[·.@) 
14. 5726 0.000 0.000 2.058 dot[*.@] 
18. 2770 0.000 0.000 2.058 dollar[ •• @] 
25. 1513 0.000 0.000 2.058 @ 
26. 1513 0.000 0.000 2.058 body[@] 
31. 639 0.000 0.000 2.058 casestmt[·,@] 
62. 196 0.000 0.000 2.058 fextract[@] 
66. 186 0.000 0.000 2.058 signal[ •••• @] 
70. 183 0.000 0.000 2.058 construct[*.@] 
71. 179 0.000 0.000 2.058 unionx[@] 
72. 179 0.000 0.000 2.058 unionx[ •• @] 
85. 105 0.000 0.000 2.058 goto[@] 
92. 91 0.000 0.000 2.058 openstmt[@] 
96. 87 0.000 0.000 2.058 register[@] 
98. 84 0.000 0.000 2.058 caseexp[*.@] 

100. 84 0.000 0.000 2.058 forseq[@] 
106. 81 0.000 0.000 2.058 caseswitch[ •• @] 
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ApPENDIX C: DETAILED PATTERN DATA 

C.2. Initial Pattern Set -- Sorted by Entropy Contribution 

pattern freq. H H cumul. pattern 
number contr. H 
107. 81 0.000 0.000 2.058 caseswitch[ •••• @] 
108. 80 0.000 0.000 2.058 arraydesc[@] 
109. 77 0.000 0.000 2.058 constructx[@] 
110. 77 0.000 0.000 2.058 constructx[ •• @] 
112. 47 0.000 0.000 2.058 row[@] 
113. 47 0.000 0.000 2.058 rowcons[@] 
114. 47 0.000 0.000 2.058 ro.wcons[ •• @] 
115. 44 0.000 0.000 2.058 mwconst[@] 
122. 32 0.000 0.000 2.058 vconstruct[@] 
123. 32 0.000 0.000 2.058 vconstruct[·.@] 
126. 29 0.000 0.000 2.058 enable[@] 
130. 27 0.000 0.000 2.058 min[@] 
131. 27 0.000 0.000 2.058 stringinit[@] 
132. 25 0.000 0.000 2.058 max(@] 
137. 11 0.000 0.000 2.058 fdollar[ •• @] 
138. 11 0.000 0.000 2.058 downthru[@] 
140. 10 0.000 0.000 2.058 dst[@] 
141. 10 0.000 0.000 2.058 lstf[@] 
142. 9 0.000 0.000 2.058 extract[@] 
144. 9 0.000 0.000 2.058 lst[@] 
147. 8 0.000 0.000 2.058 start[·.@] 
149. 3 0.000 0.000 2.058 intOO[@] 
151. 3 0.000 0.000 2.058 intOC[@] 
152. 3 0.000 0.000 2.058 intOC[*.@] # 
153. 3 0.000 0.000 2.058 stop[@] 
154. 2 0.000 0.000 2.058 svc[@] 
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ApPENDIX C: DETAILED PATTERN DATA 

C.3. Initial Pattern Set -- Alphabetical by Pattern 

pattern /req. H H pattern 
number conlr. 

25. 1513 0.000 0.000 8 
145. 8 1. 299 .000 abs[@] 
35. 570 1. 824 .004 addr[@] 
57. 251 3.104 .003 andre] 
58. 251 3.113 .003 and[·.@] 

108. 80 0.000 0.000 arraydesc[@] 
11. 5826 1. 413 .028 assign[@] 
12. 5826 3.591 .070 assign[ •• @] 
49. 348 1.308 .002 assignx[@] 
50. 348 3.349 .004 assignx[ •• @] 

134. 22 .439 .000 base[@] 
26. 1513 0.000 0.000 body[@] 
8. 6616 .238 .005 call[@] 
9. 6616 2.961 .066 call[ •• @] 

10. 6616 .112 .002 call [ •••• @] 
97. 84 1.343 .000 caseexp[@] 
98. 84 . 0.000 0.000 caseexp[·.8] 
99. 84 .885 .000 caseexp[ •••• @] 
30. 639 1. 543 .G03 casestmt[8] 
31. .639 0.000 0.000 casestmt[·.@] 
32. 639 2.581 .006 casestmt[·.·.@] 

105. 81 1.175 .000 caseswitch[@] 
106. 81 0.000 0.000 caseswitch[ •• @] 
107. 81 0.000 0.000 caseswitch[ •••• @] 
33. 572 .597 .001 casetest[@] 
34. 572 2.612 .005 casetest[ •• @] 

133. 24 1.908 .000 catchmark[@] 
78. 130 1.040 .000 catchphrase[@] 
79. 130 1.024 .000 catchphrase[ •• @] 
69. 183 1.817 .001 construct[@] 
70. 183 0;000 0.000 construct[·.@] 

109. 77 0.000 0.000 constructx[@] 
110. 77 0.000 0.000 constructx[ •• @] 

46. 433 .195 .000 dindex[@] 
47. 433 2.450 .004 dindex[.,@] 
94. 87 2.183 .001 div[@] 
95. 87 .572 .000 div[ •• @] 
17. 2770 2.051 .019 dollar[@] 
18. 2770 0.000 0.000 dollar[.;@] 
39. 484 1. 610 .003 dostmt[@] 
40. 484 1. 777 .003 dostmt[·.@] 
41. 484 2.224 .004 dostmt[ •••• @] 
42. 484 .133 .000 dostmt[·.·.·.@] 
43. 484 .292 .000 dostmt[ •••••••• @] 
13. 5726 1. 400 .027 dot[@] 
14. 5726 0.000 0.000 dot[·.@] 

138. 11 0.000 0.000 downthru[@] 
139. 11 .946 .000 downthru[·.@] 
140. 10 0.000 0.000 dst[@] 
126. 29 0.000 0.000 enable[@] 
127. 29 .431 .000 enable[ •• @] 
80. 129 .065 .000 error[@] 
81. 129 1.903 .001 error[ •• @] 
82. 129 .065 .000 error[ •••• @] 

142. 9 0.000 0.000 extract[@] 
143. 9 1.224 .000 extract[·.@] 
136. 11 .845 .000 fdollar[@] 
137. 11 0.000 0.000 fdollar[ •• @] 
62. 196;- 0.000 0.000 fextract[@] 
63. 196 .672 .000 fextract[·.@] 

100. 84 0.000 0.000 forseq[@] 
101. 84 2.496 .001 forseq[·.@] 
102. 84 1. 745 .000 forseq[·.·.@] 
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ApPENDIX C: DETAILED PATTERN DATA 

C.3. Initial Pall ern Set -- Alphabetical by Pattern 

pattern freq. H H pattern 
number conlr. 

85. 105 0.000 0.000 goto[@] 
59. 211 2.315 .002 ifexp[@] 
60. 211 2.433 .002 ifexp[ •• @] 
61. 211 3.005 .002 ifexp[ •••• @] 
21. 1810 3.047 .019 ifstmt[@] 
22. 1810 3.059 .019 ifstmt[·.@] 
23. 1810 1.329 .008 ifstmt[·.·.@] 
86. 102 1.492 .001 in[@] 
87. 102 .323 .000 in[ •• @] 
51. 338 .965 .001 index[@] 
52. 338 2.325 .003 index[ •• @] 
55. 262 3.019 .003 inlinecall[@] 
56. 262 .843 .001 inlinecall[.~@] 
67. 183 .483 .000 intCC[@] 
68. 183 1.466 .001 intCC[.,@] 
88. 94 .849 .000 intCO[@] 
89. 94 2.573 .001 intCO[·.@] 

151. 3 0.000 0.000 intOC[@] 
152. 3 0.000 0.000 intOC[·.@] 
149. 3 0.000 0.000 intOO[@] 
150. 3 .918 .000 intOO[ •• @] 

28. 1214 .936 .004 item[@] 
29. 1214 3.315 .014 item[* .@l 

119. 41 1.883 .000 label[@] 
120. 41 .281 .000 label[ •• @] 

77. 159 .984 .001 lbl[@] 
111. 50 .529 .000 lengtb[@] 

7. 7425 2.476 .062 1 iSt[@l 
5. 22481 3.763 .285 list[· •... @] 

144. 9 0.000 0.000 lst[@] 
141. 10 0.000 0.000 lstf[@] 
132. 25 0.000 0.000 max[@] 
135. 13 1.884 .000 memory[@] 
130. 27 0.000 0.000 min[@] 

44. 469 2.672 .004 minus[@] 
45. 469 1.590 .003 minus[.,@] 

128. 27 2.203 .000 mOd[@] 
129. 27 .979 .000 mOd[·,@] 
115. 44 0.000 0.000 mwconst[@] 
48. 382 2.636 .003 not[@] 
6. 10220 5.132 .177 num[@] 

92. 91 0.000 0.000 openstmt[@] 
93. 91 1.052 .000 openstmt[*.@] 
83. 127 2.955 .001 or[@] 
84. 127 2.856 .001 or[*.@] 
15. 4039 1.037 .014 plus[@] 
16. 4039 1.279 .017 plus[·,@] 
96. 87 0.000 0.000 register[@] 
19. 2348 2.010 .016 relE[@] 
20. 2348 .819 .006 relE[.,@] 

117. 41 1. 778 .000 relGE[@] 
118. 41 2.022 .000 relGE[ •• @] 

75. 159 2.109 .001 relG[@] 
76. 159 1.386 .001 relG[*,@] 

124. 30 1.826 .000 relLE[@] 
125. 30 1.505 .000 rellE[.,@] 
90. 93 2.197 .001 rell[@] 
91. 93 2.141 .001 rell[*.@] 
36, 538 ~,411 .004 rA1Nn~1 

37. 538 1.174 .002 relN[*:@] 
116. 44 .774 .000 resume[@] 
24. 1683 2.521 .014 return[@] 

112. 47 0.000 0.000 row[@] 
113. 47 0.000 0.000 rowcons[@] 
114. 47 0.000 0.000 rowcons[*.@] 
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ApPENDIX C: DETAILED PATTERN DATA 

C.3. I nilial Pattern Set -- Alphabetical by Pattern 

pattern jreq. H H pattern 
number contr. 

103. 82 .592 .000 seqindex[@] 
104. 82 1. 736 .000 seqindex[ •• @] 
64. 186 .524 .000 signal[@] 
65. 186 1.602 .001 signal[ •• @] 
66. 186 0.000 0.000 signal[ •••• @] 

146. 8 .811 .000 start[@] 
147. 8 0.000 0.000 start[·.@] 
148. 8 .544 .000 start[· ••• @] 
153. 3 0.000 0.000 stop[@] 

38. 511 8.735 .015 str[@] 
131. 27 0.000 0.000 str i n9i nit[@] 
154. 2 0.000 0.000 svc[@] 

53. 317 1. 702 .002 times[@] 
54. 317 .535 .001 times[ •• @] 

121. 35 1.391 .000 uminus[@] 
71. 179 0.000 0.000 unionx[@] 
72. 179 0.000 0.000 unionx[ •• @] 
27. 1270 1.191 .005 uparrow[@] 
73. 17{) .767 .000 upthru[@] 
74. 170 1.220 .001 upthru[·.@] 

1. 40289 1.762 .239 var[@] 
2. 40289 3.680 .499 var[·.@] 
3. 40289 .336 .046 var[ •••• @] 
4. 40289 2.099 .285 var[ •••••• @] 

122. 32 0.000 0.000 vconstruct[@] 
123. 32 O.t>OO 0.000 vconstruct[·.@] 
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ApPENDIX C: DETAILED PAITERN DATA 

C.4. Final Pattern Set -- Sorted by Entropy Contribution 

In the refined pattern set, some patterns are defined in terms of those larger 

patterns "removed" from them. These patterns are denoted by an asterisk (*) in the 

"was refined" column. See the listing sorted by pattern number to find the set of 

patterns refining the given pattern. 

pattern was freq. 
number refined 

6. 
12. 
9. 

155. 
245. 
214. 
243. 
160. 
159. 
194. 

1. 
267. 
158. 
246. 
196. 

5. 
1. 

268. 
11. 
13. 

156. 
242. 
229. 
171. 

17. 
22. 
21. 

205. 
201. 
174. 

19. 
164. 
216. 

16. 
38. 
24. 
29. 

237. 
15. 

163. 
213. 
259. 
186. 
198. 
167. 
173. 
199. 
23. 

215. 
209. 
232. 
255. 
254. 
219. 

20. 

• 

• 

• 

• 

• 
• 

• 

4850 
5663 
6616 
5332 
6617 
4016 
4570 
6685 

12217 
2610 

10800 
4570 
2686 
4263 
3296 
3096 
2874 
2709 
5663 
5697 
2335 
2709 
3114 
6370 
2754 
1810 
1810 
3027 
1909 
5697 
2348 
2754 

944 
3847 

511 
1683 
1214 
1909 
3847 
5697 

752 
1355 
1078 
1445 
3885 
2941 
1929 
1810 
1009 
853 

1445 
828 
670 

1816 
2348 

H 

5.828 
3.574 
2.961 
3.411 
2.639 
4.241 
3.441 
2.327 
1.114 
4.744 
1.141 
2.548 
4.039 
2.425 
2.995 
3.130 
3.163 
3.287 
1. 423 
1.401 
3.153 
2.433 
2.078 

.992 
2.050 
3.093 
3.047 
1. 795 
2.798 

.855 
2.023 
1. 713 
4.912 
1.180 
8.735 
2.521 
3.315 
2.104 
1.032 

.657 
4.743 
2.625 
3.056 
2.275 

.752 

.939 
1.384 
1.333 
2:.2:5i 
2.607 
1.463 
2.427 
2.948 
1.085 

.819 

H 
contr. 

.096 

.069 

.066 

.062 

.059 

.058 

.053 

.053 

. 046 

.042 

.042 

.039 

.037 

.035 

.033 

.033 

.031 

.030 

.027 

.027 

.025 

.022 

.022 

.021 

.019 

.019 

.019 

.018 

.018 

.017 

.016 

.016 

.016 

.015 

.015 

.014 

.014 

.014 

.013 

.013 

.012 

.012 

.011 

.011 

.010 

.009 

.009 

.008 

.008 

.008 

.007 

.007 

.007 

.007 

.007 

cumul. pattern 
H 

.096 

.164 

.231 

.292 

.352 

.409 

.463 

.515 

.561 

.603 

.645 

.685 

.721 

.756 

.790 

.823 

.853 

.884 

.911 

.938 

.963 

.985 
1. 007 
1.029 
1.048 
1. 067 
1.085 
1.104 
1.122 
1.138 
1.155 
1.171 
1.186 
1.202 
1.217 
1.231 
1.245 
1.258 
1. 272 
1.285 
1. 297 
1.309 
1.320 
1. 331 
1. 341 
1. 350 
1.359 
1. 367 
i.J/b 
1.383 
1. 390 
1. 397 
1.403 
1. 410 
1. 417 
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num[@] 
assign[.,@] 
call [. ,@] 
var[global.@] 
body[list[· •... @]] 
call[var[global,@]] 
dot[·,var[field.@]] 
var[local •••• ,@] 
var[global,·,*,@] . 
{re1llrellElrelElrelNlrelGElrelG}[*,num[@]] 
var[@] 
dot[·,var[field.·.·.@]] 
var[entry,@] 
call[ •• list[· •... @]] 
{assignlassignx}[var[local.@]] 
list(· •... @] -
list[@] 
dollar[·.var[field ••••• @]] 
assign[@] 
dot[@] 
var(local.@] 
dollar[.,var[field.@]] 
assign[var[local •••• ,@]] 
call[var[@]] 
doll ar[@] 
ifstmt[· ,@] 
ifstmt[@] 
plus[ •• var[local.@]] 
list[· •... var[local.@]] 
dot[·,var[@]] 
relE[@] 
dollar[ •. var[ •••• @]] 
dot[·.var[global,@]] 
plus[·.@] 
str[@] 
return[@] 
item[ •• @] 
list[·, ... var[local ••••• @]] 
plus[@] 
dot[·,var[* •• ,@]] 
assfgn[var[global,@]] 
item[*,list[*, ... @]] 
assign[*.num[@]] 
call[*.var[local,@]] 
assign[var[@]] 
dot[var[@]] 
dot[var[local,@]] 
ifstmt[·,·,@] 
(Jotlvarlglobal,@]] 
{relllrellElrelElrelNlrelGElrelG}[var[local,@]] 
call[ •. var[local.·,*,@]] 
dostmt[·.·.list[·, ... @]] 
{constructlconstructx}[.,list[., ... @]] 
call [.,1 i st[@]] 
relE[ •• @] 



ApPENDIX C: DETAILED PATTERN DATA 

CA. Final Pallern Set -- Sorted by Entropy Contribution 

pattern was freq. H H cumul. pattern 
number refined contr. H 

233. 840 2.252 .006 1. 423 dol)ar[var[local,*,*,@]] 
197. 610 2.949 .006 1.429 {assignlassignx}[*,var[local,@]] 

32. 639 2.590 .006 1.435 casestmt[.,.,@] 
8. 6616 .238 .005 1. 440 call [@] 

34. 572 2.612 .005 1. 445 casetest[*,@] 
27. 1260 1.184 .005 1. 450 uparrow[@] 

257. 489 3.016 .005 1. 455 inlinecall[·.list[· •... @]] 
172. 1739 .806 .005 1. 460 call[ •• var(@]] 
36. 538 2.411 .004 1.464 relN[@] 

223. 598 2.132 .004 1.469 ifstmt[·.list[@]] 
44. 469 2.672 .004 1. 473 minus[@] 

230. 590 2.026 .004 1.477 assign[.,var[local •• , •• @]] 
28. 1214 .936 .004 1.481 item[@] 

252. 600 1.863 .004 1.485 casetest[.,list[ ••... @]] 
41. 484 2.269 .004 1.488 dostmt[·.·.@] 
50. 323 3.313 .004 1. 492 assignx[ •• @] 
47. 433 2.450 .004 1. 495 dindex[ •• @] 
35. 570 1.824 .004 1.499 addr[@] 
48. 382 2.636 .003 1. 502 not[@] 

184. 757 1. 317 .003 1. 506 {indexldindex!seqindex}[var[@]] 
30. 639 1.543 .003 1. 509 casestmt[@] 

207. 264 3.453 .003 1. 512 {indexldindex\seqindex}[var[local.@]] 
227. 425 2.096 .003 1. 515 item[.,list[@]] 
191. 316 2.807 .003 1. 518 plus[·,num[@]] 
204. 321 2.684 .003 1. 521 plus[var[local.@]] 

40. 484· 1.777 .003 1. 524 dostmt[*,@] 
262. 391 2.113 .003 1. 527 openstmt[·.list[· •... @]] 

55. 262 3.019 .003 1. 530 inlinecall[@] 
52. 338 2.325 .003 1. 532 index[·.@] 
58 .. 251 3.113 .003 1. 535 and[·.@] 
39. 484 1. 610 .003 1. 537 dostmt[@] 
57. 251 3.104 .003 1. 540 and[@] 

190. 318 2.446 .003 1. 543 minus[ •• num[@]] 
220. 639 1. 208 .003 1. 545 casestmt[·.list[@]] 
161. • 428 1. 749 .003 1.548 var[field.·.·,@] 
45. 469 1. 590 .003 1. 550 minus[·.@] 

168. 775 .959 .003 1. 553 assign[*.var[@]] 
10. 6616 .112 .003 1. 555 call[ •.•• @] 

192. 292 2.387 .002 1. 558 times[·.num[@]] 
175. 964 .682 .002 1.560 dollar[var[@]] 
217. 164 3.938 .002 1. 562 signal[var[global.@]] 
157. • 428 1.491 .002 1.564 var[field.@] 
61. 211 3.005 .002 1. 567 ifexp[· •• ,@] 
37. 538 1.174 .002 1.569 relN[*,@] 

264. 686 .882 .002 1.571 rOw[list[· .... @]] 
208. 245 2.364 .002 1. 573 {indexldindex\seqindex}[.,var[local.@]] 
210. 191 3.006 .002 1. 575 {relLlrelLElrelElrelNlrelGElrelG}[·,var[local.@ 
221. 253 2.208 .002 1.577 dostmt[·.·.list[@]] 
202. 199 2.803 .002 1. 578 minus[var[local.@]] 
53. 317 1. 702 .002 1.580 times[@] 

179. 955 .549 .002 1. 582 {relElrelGlrelNlrelLlrelGElrelLE}[var[@]] 
60. 211 2.433 .002 1.584 ifexp[ *.@] 

165. 179 2.818 .002 1.586 unionx[var[ •• *.@]] 
59. 211 2.315 .002 1. 587 ifexp[@] 
49. 323 1. 353 .001 1.589 assignx[@] 

260. 187 2.311 .001 1.590 label[list[· •... @]] 
188. 168 2.569 .001 1. 592 intCC[num[@]] 
206. 162 2.598 .001 1. 593 times[var[local.@]] 
244. 160 2.536 .001 1. 594 arraydesc[list[* .... @]] 
180. 403 .998 .001 1.596 {relElrelGlrelNlrelLlrelGElrelLE}[ •• var[@]] 
211. 355 1.130 .001 1. 597 uparrow[var[local.@]] 
83. 127 2.955 .001 1.598 or[@] 
84. 127 2.856 .001 1. 600 or[*,@] 

231. 182 1.963 .001 1. 601 assignx[var[local •• , •• @]] 
248. 982 .363 .001 1. 602 casestmt[*.list[*, ... @]] 
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ApPENDIX C: DETAILED PATTERN DATA 

CA. Final Pallern Set -- Sorted by Entropy Contribution 
I 

pattern was freq. H H cumul. pattern 
number refined contr. H 

224. 173 2.051 .001 1.603 ifstmt[* ••• list[@]] 
249. 159 2.228 .001 1. 604 casestmt[*.*.list[ ••... @]] 
176. 2754 .126 .001 1.606 dollar[ •• var(@]] 
33. 572 .597 .001 1. 607 casetest[@] 
75. 159 2.138 .001 1.608 relG[@] 
69. 183 1.817 .001 1.609 construct[@] 

195. 148 2.227 .001 1. 610 return[num[@]] 
51. 338 .965 .001 1.611 index[@] 

166. 339 .958 .001 1. 612 addr[var[@]] 
65. 186 1.602 .001 1. 613 signal[ •• @] 
68. 183 1.466 .001 1.614 intCC[·.@] 

263. 160 1. 636 .001 1. 615 return[list[· •... @]] 
212. 129 2.023 .001 1. 616 upthru[var[local.@]] 
81. 129 1. 903 .001 1. 617 error[·.@] 
89. 94 2.573 .001 1. 618 intCO[ •• @] 

256. 354 .663 .001 1. 618 fextract[list[· •... @]] 
203. 90 2.595 .001 1. 619 minus[·.var[local.@]] 
181. 337 .692 .001 1. 620 return[var[@]] 

56. 262 .843 .001 1. 621 inl inecall[ •• @] 
76. 159 1. 386 .001 1. 622 relG[*.@] 

222. 196 1.099 .001 1. 622 fextract[list[@]] 
101. 84 2.496 .001 1. 623 forseq[*.@] 

74. 170 1. 220 .001 1. 624 upthru[·.@] 
90. 93 2.197 .001 1.624 rell[@] 
91. 93 2.141 .001 1.625 rell[*.@] 

193. 87 "2.221 .001 1. 626 register[num[@]] 
94. 87 2.183 .001 1. 626 div[@] 

241. 129 1.400 .001 1. 627 upthru[var[local.· ••• @]] 
185. 289 .615 .001 1.628 {index/dindex/seqindex}[ •• var[@]] 

54. 317 .535 .001 1.628 tirnes[·.@] 
269. 163 1.027 .001 1.629 bump[@] 

77. 159 .984 .001 1.629 lbl[@] 
169. 223 .688 .001 1.630 assignx[var[@]] 
86. 102 1. 492 .001 1. 630 in[@] 

265. 88 L680 .001 1.631 signal[ •• list[· •... @]] 
102. 84 1. 745 .000 1.631 forseq[· ••• @] 
104. 82 1. 736 .000 1.632 seqindex[ •• @] 

43. 484 .292 .000 1.632 dostmt[ •••••••• @] 
187. 85 1.606 .000 1. 633 index[*.num[@]] 

78. 130 1.040 .000 1. 633 catchphrase[@] 
79. 130 1. 024 .000 1.634 catchphrase[*.@] 
63. 196 .672 .000 1.634 fextract[·.@] 
73. 170 .767 .000 1.635 upthru[@] 

225. 230 .549 .000 1.635 inlinecall[ •• l~st[@]] 
226. 97 1.190 .000 1. 635 item[list[@]] 
97. 84 1.343 .000 1.636 caseexp[@] 

258. 243 .422 .000 i.636 item[list[· •... @]] 
182. 372 .268 .000 1.636 uparrow[var[@]] 
64. 186 .524 .000 1.637 signal[@] 
93. 91 1.052 .000 1. 637 openstmt[·.@] 

105. 81 1.175 .000 1. 637 caseswitch[@] 
67. 183 .483 .000 1.638 intCC[@] 
46. 433 .195 .000 1.638 dindex[@] 

118. 41 2.022 .000 1.638 relGE[·.@] 
200. 84 .963 .000 1.639 forseq[var[local.@]] 
117. 41 1.954 .000 1. 639 relGE[@] 
88. 94 .849 .000 1. 639 intCO[@] 

119. 41 1. 883 .000 1.639 label[@] 
99. 84 .885 .000 1.640 caseexp[ •• *:@] 
42. 484 .133 .000 1.640 dostmt[*.* ••• @] 

128. 27 2.203 .000 1.640 mod[@] 
247. 120 .495 .000 1.640 caseexp[ •• list[* •... @]] 
124. 30 1.826 .000 1. 640 rellE[@] 
95. 87 .572 .000 1. 641 div[ •• @] 

121. 35 1. 391 .000 1.641 uminus[@] 
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ApPENDIX C: DETAILED ~A1TERN UATA 

CA. Final Pattern Set -- Sorted by Entropy Contribution 

pattern was freq. H H cumul. pattern 
number refined contr. H 

103. 82 .592 .000 1. 641 seqindex[@] 
133. 24 1.908 .000 1. 641 catchmark[@] 
125. 30 1.505 .000 1.641 relLE[*,@] 
189. 78 .477 .000 1. 641 intCO[num[@]] 
170. 30 1.159 .000 1.641 assignx[*,var[@]] 
116. 44 .774 .000 1.642 resume[@] 
87. 102 .323 .000 1.642 in[*,@] 

111. 50 .529 .000 1.642 length[@] 
129. 27 .979 .000 1.642 mod[.,@] 
135. 13 1.884 .000 1.642 memory[@] 
183. 132 .156 .000 1.642 upthru[var[@]] 
127. 29 ~431 .000 1. 642 enable[*,@] 
239. 50 .242 .000 1.642 seqindex[ •• var[local ••••• @]] 
270. 25 .482 .000 1.642 bumpx[@] 
120. 41 .281 .000 1.642 label[ •• @] 
143. 9 1.224 .000 1.642 extract[·.@] 
139. 11 .946 .000 1. 642 downthru[·.@] 
145. 8 1.299 .000 1. 642 abs[@] 
134. 22 .439 .000 1.642 base[@] 
136. 11 .845 .000 1.642 fdollar[@] 

80. 129 .065 .000 1.642 error[@] 
82. 129 .065 .000 1.642 error[ •••• @] 

146. 8 .811 .000 1.642 start[@] 
148. 8 .544 .000 1.642 start[·.·.@] 
150. 3 .918 .000 1.642 intOO[·.@] 
154. 2 0.000 0.000 1.642 svc[@] 
153. 3 0.000 0.000 1.642 stop[@] 
152. 3 0.000 0.000 1.642 intOC[ •• @] 
151. 3 0.000 0.000 1.642 intOC[@] 
149. ' 3 0.000 0.000 1.642 intOO[@] 
147. 8 0.000 0.000 1.642 start[ •• @] 

3. • 31424 0.000 0.000 1.642 var[.,.,@] 
14. 5697 0.000 0.000 1.642 dot[·,@] 
18. 2754 0.000 0.000 1.642 dollar[.,@] 
25. 1513 0.000 0.000 1.642 @ 
26. 1513 0.000 0.000 1.642 body[@] 
31. 639 0.000 0.000 1.642 casestmt[ •• @] 
62. 196 0.000 0.000 ~.642 fextract[@] 
66. 186 0.000 0.000 1.642 signa1[ •••• @] 
70. 183 0.000 0.000 1.642 construct[·.@] 
71. 179 0.000 0.000 1.642 unionx[@] 
72. 179 0.000 0.000 1.642 unionx[ •• @] 
85. 105 0.000 0.000 1. 642 goto[@] 
92. 91 0.000 0.000 1.642 openstmt[@] 
96. 87 0.000 0.000 1.642 register[@] 
98. 84 0.000 0.000 1.642 caseexp[ •• @] 

100. 84 0.000 0.000 1.642 forseq[@] 
106. 81 0.000 0.000 1.642 caseswitch[ •• @] 
107. 81 0.000 0.000 1. 642 caseswitch[ •••• @] 
108. 80 0.000 0.000 1. 642 arraydesc[@] 
109. 77 0.000 0.000 1.642 constructx[@] 
110. 77 0.000 0.000 1.642 constructx[*.@] 
112. 47 0.000 0.000 1.642 row[@] 
113. 47 0.000 0.000 1.642 rowcons[@] 
114. 47 0.000 0.000 1.642 rowcons[·,@] 
115. 44 0.000 0.000 1.642 mwconst[@] 
122. 32 0.000 0.000 1.642 vconstruct[@] 
123. 32 0.000 0.000 1.642 vconstruct[*.@] 
126. 29 0.000 0.000 1.642 enable[@] 
130. 27 0.000 0.000 1.642 min[@] 
131. 27 0.000 0.000 1.642 stringinit[@] 
132. 25 0.000 0.000 1.642 max[@] 
137. 11 0.000 0.000 1.642 fdollar[.,@] 
138. 11 0.000 0.000 1.642 downthru[@] 
140. 10 0.000 0.000 1.642 dst[@] 
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CA. Final Pattern Set -- Sorted by Entropy Contribution 

pattern was freq. H H cumul. pattern 
number refined conlr. H 

141. 10 0.000 0.000 1.642 lstf[@] 
142. 9 0.000 0.000 1.642 extract[@] 
144. 9 0.000 0.000 1.642 lst[@] 
162. 2686 0.000 0.000 1.642 var[entry;., •• @] 
177. 128 0.000 0.000 1.642 ~rror[var[@]] 
178. 164 0.000 0.000 1.642 s i 9 n a 1 [va r [@]] 
218. 80 0.000 0.000 1.642 arraydesc[list[@]] 
228. 44 0.000 0.000 1.642 signalI*,list[@]] 
234. 1929 0.000 0.000 1.642 dot[var[local,.,.,@]] 
235. 45 0.000 0.000 1.642 error[·,var[local, ••• ,@]] 
236. 113 0.000 0.000 ,1.642 ifstmt[var[local •• ,.,@]] 
238. 58 0.000 0.000 1.642 seqindex[var[local,.,.,@]] 
240. 355 0.000 0.000 1.642 uparrow[var[local, •••• @]] 
250. 572 0.000 0.000 1.642 caseswitch[· ••• list[· •... @]] 
25\1. 254 0.000 0.000 1.642 casetest[list[·~ ... ~]] 
253. 42 0.000 0.000 1.642 catchphrase[list[*, ... @]] 
261. 133 0.000 0.000 1.642 mwconst[list[· •... @]] 
266. 32 0.000 0.000 1.642 vconstruct[.~ 115t[., ... @]] 
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ApPENDIX C: DETAILED PAn'ERN DATA 

C.S. Final Pattern Set -- Alphabetical by Pattern 

Pattern that have been refined are denoted by ,an asterisk (*) in the "was refined" 

column. See Section C.S to find the set of patterns refining the given pattern. 

pattern was ireq. H H pattern 
number refined contr. 

25. 1513 0.000 0.000 @ 
145. 8 1.299 .000 abs[@] 

35. 570 1.824 .004 addr[@] 
166. 339 .958 .001 addr[var[@]] 
57. 251 3.104 .003 and[@] 
58. 251 3.113 .003 and[.,@] 

108. 80 0.000 0.000 arraydesc[@] 
218. 80 0.000 0.000 arraydesc[list[@]] 
244. 160 2.536 .001 arraydesc[list[., ... @]] 

11. 5663 1. 423 .027 assign[@] 
12. 5663 3.574 .069 assign[·.@] . 

186. 1078 3.056 .011 ass i gn[ •• num[@]] 
168. 775 .959 .003 assign[·.var[@]] 
230. 590 2.026 .004 assign[.,var[local •• , •• @]] 
167. 3885 ~752 .010 assign[var[@]] 
213. 752 4.743 .012 assign[var[global.@]] 
229. 3114 2.078 .022 assign[var[local, •••• @]] 

49. 323 1.353 .001 assignx[@] 
50. 323 3.313 .004 assignx[.,@] 

170. 30 1.159 .000 assignx[.,var[@]] 
169. 223 .688 .001 assignx[var[@]] 
231. 182 1.963 .001 assignx[var[local ••••• @]] 
134. , 22 .439 .000 base[@] 

26. 1513 0.000 0.000 body[@] 
245. 6617 2.639 .059 body[list[· •... @]] 
269. 163 1. 027 .001 bump[@] 
270. 25 .482 .000 bumpx[@] 

8. 6616 .238 .005 call[@] 
9. 6616 2.961 .066 call[.,@] 

10. 6616 .112 .003 call[ •••• @] 
219. 1816 1.085 .007 call[.,list[@]] 
246. 4263 2.425 .035 call[·,list[· •... @]] 
172. 1739 .806 .005 ca 11 [., var[@]] 
198. 1445 2.275 .011 call[·,var[l~cal,@]] 
232. 1445 1.463 .007 call[.,var[local,., •• @]] 
171. 6370 .992 .021 call[var[@]] 
214. 4016 4.241 .058 call[var[global,@]] 
97. 84 1.343 .000 caseexp[@] 
98. 84 0.000 0.000 caseexp[.,@] 
99. 84 .885 .000 caseexp[.,·.@] 

247. 120 .495 .000 caseexp[.,list[ ••... @]] 
30. 639 1. 543 .003 casestmt[@] 
31. 639 0.000 0.000 casestmt[·.@] 
32. 639 2.590 .006 casestmt[ ••• ,@] 

249. 159 2.228 .001 casestmt[·.·,list[· •... @]] 
220. 639 1. 208 .003 casestmt[·.list[@]] 
248. 982 .363 .001 casestmt[.,list[· •... @]] 
105. 81 1.175 .000 caseswitch[@] 
106. 81 0.000 0.000 caseswitch[.,@] 
107. 81 0.000 0.000 caseswitch[.,.,@] 
250. 572 0.000 0.000 caseswitch[·,.,list[·, ... @]] 

33. 572 .597 .001 casetest[@] 
34. 572 2.612 .005 casetest[·,@] 

252. 600 1. 863 .004 casetest[·,list[· •... @]] 
251. 254 0.000 0.000 casetest[list[·, ... @]] 
133. 24 1.908 .000 catchmarl<[@] 

78. 130 1.040 .000 catchphrase[@] 
79. 130 1. 024 .000 catchphrase[·,@] 

253. 42 0.000 0.000 catchphrase[list[·, ... @]] 
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C.5. Final Pallern Set -- Alphabetical by Pattern 

pattern was freq. H H pattern 
number refined contr. 

69. 183 1. 817 .001 construct[@] 
70. 183 0.000 0.000 construct[ •• @] 

109. 77 0.000 0.000 constructx[@] 
110. 77 0.000 0.000 constructx[ •• @] 
46. 433 .195 .000 dindex[@] 
47. 433 2.450 .004 dindex[·.@] 
94. 87 2.183 .001 div[@] 
95. 87 .572 .000 div[ •• @] 
17. 2754 2.050 .019 dollar[@] 
18. 2754 0.000 0.000 dollar[ •• @] 

176. 2754 .126 .001 dollar[ •• var[@]] 
164. 2754 1. 713 .016 dollar[ •• var[ •• ·.@]] 
242. 2709 2.433 .022 dollar[·.var[field.@]] 
268. 2709 3.287 .030 dol1ar[ •• var[field ••••• @]] 
175. 964 .682 .002 dollar[var[@]] 
233. 840 2.252 .006 dollar[var[local ••••• @]] 

39. 484 1. 610 .003 dostmt[@] 
40. 484 1.777 .003 dostmt[·.@] 
41. 484 2.269 .004 dostmt[· ••• @] 
42. 484 .133 .000 dostmt[·.·.·.@] 
43. 484 .292 .000 dostmt[·.·.·.·.@] 

221. 253 2.208 .002 dostmt[·.·.list[@]] 
255. 828 2.427 .007 dostmt[·.·.list[· •... @]] 

13. 5697 1.401 .027 dot[@] 
14. 5697 0.000 0.000 dot[·.@] 

174. 5697 .855 .017 dot[·.var[@]] 
163. 5697 .657 .013 dot[·.var[ ••• ,@]] 
243. 4570 3.441 .053 dot[·.var[field.~]] 
267. 4570 2.548 .039 dot[·,var[field ••••• @]] 
216. 944 4.912 .016 dot[·,var[global.@]] 
173. 2941 .939 .009 dot[var[@]] 
215. 1009 2.251 .008 dot[var[global.@]] 
199. 1929 1.384 .009 dot[var[local.@]] 
234. 1929 0.000 0.000 dot[var[local ••••• @]] 
138. 11 0.000 0.000 downthru[@] 
139. 11 .946 .000 downthru[·.@] 
140. 10 0.000 0.000 dst[@] 
126. 29 0.000 0.000 enable[@] 
127. 29 .431 .000 enable[ •• @] 
80. 129 .065 .000 error[@] 
81. 129 1.903 .001 error[·.@] 
82. 129 .065 .000 error[ •••• @] 

235. 45 0.000 0.000 error[*.var[local ••••• @]] 
177. 128 0.000 0.000 error[var[@]] 
142. 9 0.000 0.000 extract[@] 
143. 9 1.224 .000 extract[·.@] 
136. 11 .845 .000 fdo 1J ar[@] 
137. 11 0.000 0.000 fdollar[ •• @] 
62. 196 0.000 0.000 fextract[@] 
63. 1~6 .672 .000 fextract[·.@] 

222. 196 1.099 .001 fextract[list[@]] 
256. 354 .663 .001 fextract[list[· •... @]] 
100. 84 0.000 0.000 forseq[@] 
101. 84 2.496 .001 forseq[.,@] 
102. 84 1.745 .000 forseq[·.·.@] 
200. 84 .963 .000 forseq[var[local.@]] 
85. 105 0.000 0.000 90to[@] 
59. 211 2.315 .002 "i fexp[@] 
60. 711 2,433 .002 i-r"ynr. /al - • _ ...... L '-J 

61. 211 3.005 .002 ifexp[ •••• @] 
21. 1810 3.047 .019 ifstmt[@] 
22. 1810 3.093 .019 ifstmt[·,@] 
23. 1810 1. 333 .008 Hstmt[·,·.@] 

224. 173 2.051 .001 ifstmt[·.·.list[@]] 
223. 598 2.132 .004 ifstmt[·.list[@]] 
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C.5. Final Pattern Set -- Alphabetical by Pattern 

pattern was freq. H H pattern 
number refined contr. 

236. 113 0.000 0.000 ifstmt[var[local.· ••• @]] 
86. 102 1.492 .001 in[@] 
87. 102 .323 .000 in[ •• @] 
51. 338 .965 .001 index[@] 
52. 338 2.325 .003 index[ •• @] 

187. 85 1.606 .000 index[·.num[@]] 
55. 262 3.019 .003 inlinecall[@] 
56. 262 .843 .001 inlinecall[ •• @] 

225. 230 .549 .000 inlinecall[ •• list[@]] 
257. 489 3.016 .005 inlinecall[·.list[· •... @]] 
67. 183 .483 .000 intCC[@] 
68. 183 1.466 .001 intCC[·.@] 

188. 168 2.569 .001 intCC[num[@]] 
88. 94 .849 .000 intCO[@] 
89. 94 2.573 .001 intCO[ •• @] 

189. 78 .477 .000 intCO[num[@]] 
15t. 3 0.000 0.000 intOC[@] 
152. 3 0.000 0.000 intOC[·.@] 
149. 3 0.000 0.000 intOO[@] 
150. 3 .918 .000 i ntOO[ •• @] 
28. 1214 .936 .004 item[@] 
29. 1214 3.315 .014 item[ •• @] 

227. 425 2.096 .003 item[ •• list[@]] 
259. 1355 2.625 .012 item[ •• list[· •... @]] 
226. 97 1.190 .000 item[list[@]] 
258. 243 .422 .000 item[list[· •... @]] 
119. 41 1.883 .000 label[@] 
120. 41 .281 .000 label[·.@] 
260. 187 2.311 .001 label[list[ ••... @]] 

77. 159 .984 .001 lbl[@] 
11t. 50 .529 .000 length[@] 

7. • 2874 3.163 .031 list[@] 
5. • 3096 3.130 .033 list[· •... @] 

201. 1909 2.798 .018 list[· •... var[local.@]] 
231. 1909 2.104 .014 1 ist[ ••... var[local ••••• @]] 
144. 9 0.000 0.000 lst[@] 
141. 10 0.000 0.000 lstf[@] 
132. 25 0.000 0.000 max[@] 
135. 13 1.884 .000 memory[@] 
130. 21 0.000 0.000 min[@] 
44. 469 2.612 .004 minus[@] 
45. 469 1.590 .003 minus[ •• @] 

190. 318 2.446 .003 minus[ •• num[@]] 
203. 90 2.595 .001 minus[.,var[local.@]] 
202. 199 2.803 .002 minus[var[local.@]] 
128. 21 2.203 .000 mod[@] 
129. 21 .919 .000 mod[·.@] 
115. 44 0.000 0.000 mwconst[@] 
261. 133 0.000 0.000 mwconst[list[· •... @]] 
48. 382 2.636 .003 not[@] 
6. • 4850 5.828 .096 num[@] 

92. 91 0.000 0.000 openstmt[@] 
93. 91 1.052 .000 openstmt[·.@] 

262. 391 2.113 .003 openstmt[·.list[· •... @]] 
83. 121 2.955 .001 or[@] 
84. 127 2.856 .001 or[ •• @] 
15. 3847 1.032 .013 plus[@] 
16. 3847 1.180 .015 plus[*.@] 

191. 316 2.807 .003 plus[·.num[@]] 
205. 3021 1.195 .018 plus[·,var[local.@]] 
204. 321 2.684 .003 plus[var[local.@]] 
96. 81 0.000 0.000 register[@] 

193. 87 2.221 .001 register[num[@]] 
19. 2348 2.023 .016 relE[@] 
20. 2348 .819 .007 relE[*.@] 
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C.S. Final Pattern Sel -- Alphabetical by Pattern 

pattern was freq. H H pattern 
number refined conlr. 

117. 41 1.954 .000 relGE[@] 
118. 41 2.022 .000 relGE[.,@] 

75. 159 2.138 .001 relG[@] 
76. 159 1.386 .001 relG[·.@] 

124. 30 1.826 .000 rellE[@] 
125. 30 1.505 .000 rellE[.,@] 
90. 93 2.197 .001 rell[@] 
91. 93 2.141 .001 rell[.,@] 
36. 538 2.411 .004 relN[@] 
37. 538 1.174 .002 relN[ •• @] 

116. 44 .774 .000 resume[@] 
24. 1683 2.521 .014 return[@] 

263. 160 1.636 .001 return[list[· •... @]] 
195. 148 2.227 .001 return[num[@]] 
181. 337 .692 .001 return[var[@]] 
112. 47 0.000 0.000 row[@] 
264. 686 .882 .002 row[list[·, ... @]] 
113. 47 0.000 0.000 rowcons[@] 
114. 47 0.000 0.000 rowcons[·,@] 
103. 82 .592 .000 se:qindex[@] 
104. 82 1.736 .000 seqindex[.,@] 
239. 50 .242 .000 seqindex[.,var[local~.,.,@]] 
238. 58 0.000 0.000 seqindex[var[local,.,.,@]] 
64. 186 .524 .000 signal[@] 
65. 186 1.602 .001 signal[.,@] 
66. 186 0.000 0.000 signal[*,.,@] 

228. 44 0.000 0.000 signal[ •• list[@]] 
265. 88 1.680 .001 signal[*.list[·.~ .. @]] 
178. 164 0.000 0.000 signal[var[@]] 
217. 164 3.938 .002 signal[var[global.@]] 
146. 8 .811 .000 start[@] 
147. 8 0.000 0.000 start[·,@] 
148. 8 .544 .000 start[·,*.@] 
153. 3 0.000 0.000 stop[@] 

38. 511 8.735 .015 str[@] 
131. 27 0.000 0.000 stringinit[@] 
154. 2 0.000 0.000 svc[@] 

53. 317 1. 702 .002 times[@] 
54. 317 .535 .001 times[·.@] 

192. 292 2.387 .002 times[·,num[@]] 
206. 162 2.598 .001 times[var[local.@]] 
121. 35 1.391 .000 uminus[@] 

71. 179 0.000 0.000 unionx[@] 
72. 179 0.000 0.000 unionx[*,@] 

165. 179 2.818 .002 unionx[var[*,.,@]] 
27. 1260 1.184 .005 uparrow[@] 

182. 372 .268 .000 uparrow[var[@]] 
211. 355 1.130 .001 uparrow[var[local,@]] 
240. 355 0.000 0.000 uparrow[var[local •• ,.,@]] 

73. 170 .767 .000 upthru[@] 
74. 170 1.220 .001 upthru[*,@] 

183. 132 . .156 .000 upthru[var[@]] 
212. 129 2.023 .001 upthru[var[local,@]] 
241., 129 1.400 .001 upthru[var[local.*, •• @]] 

1. * 10800 1.141 .042 var[@] 
2. • 0 0.000 0.000 var[*.@] 
3. * 31424 0.000 0.000 var[ ••• ,@] 
4. * 0 0.000 0.000 var[* •• ,*.@] 

158. 2686 4.039 .037 varrentrY.@l 
162. 2686 0.000 0.000 var[entry.*~.,@] 
157. • 428 1.491 .002 var[field.@] 
161. • 428 1. 749 .003 var[field, ••• ,@] 
155. • 5332 3.411 .062 var[global,@] 
159. 12217 1.114 .046 var[global ••••• @] 
156. • 2335 3.153 .025 var[local.@] 
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C.S. Final Pattern Set -- Alphabetical by Pattern 

pattern was freq. H H pattern 
number refined contr. 

160. • 6685 2.327 .053 var[local,';.,@] 
122. 32 0.000 0.000 vconstruct[@] 
123. 32 0.000 0.000 vconstruct[·,@] 
266. 32 0.000 0.000 vconstruct[·,list[· •... @]] 
197. 610 2.949 .006 {assignlassignx}[ •. var[local,@]] 
196. 3296 2.995 .033 {assignlassignx}[var[local,@]] 
254. 670 2.948 .007 {constructlconstructx}[*,list[., ... @]] 
185. 289 .615 .001 {indexldindexlseqindex}[ •• var[@]] 
208. 245 2.364 .002 {indexldindexlseqindex}[*.var[local,@]] 
184. 757 1. 317 .003 {indexldindexlseqindex}[var[@]] 
207. 264 3.453 .003 {indexldindexlseqindex}[var[local,@]] 
180. 403 .998 .001 {relElrelGlrelNlrelLlrelGElrelLE}[*,var[@]] 
179. 955 .549 .002 {relElrelGlrelNlrelLlrelGElrelLE}[var[@]] 
194. 2610 4.744 .042 {relLlrelLElrelElrelNlrelGElrelG}[.,num[@]] 
210. 191 3.006 .002 {relLlrelLElrelElrelNlrelGElrelG}[*.var[local,@]] 
209. 853 2.607 .008 {relLlrelLElrelElrelNlrelGElrelG}[var[local,@]] 
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C.6. Final Pattern Set -- Sorted by Pattern Number 

(1) var[@] 
f = 10800 H = 

SEE ALSO: f 
(166) 339 
(167) 3885 
(168) 775 
(169) 223 
(170) 30 
(171) 6370 
(172) 1739 
(173) 2941 
(174) 5697 
(175) 964 
(176) 2754 
(177) 128 
(178) 164 
(179) 955 
(180) 403 
(181) 337 
(182)372 
(183) 132 
(184) 757 
(185) 289 

4 cases 

1. 141. 
H 

.958 

.752 

.969 

.688 
1.159 

.992 

.806 

.939 

.855 

.682 

.126 
0.000 
0.000 

.549 

.998 

.692 

.268 

.156 
1.317 

.615 

p = 
P 

.001 

.013 

.003 

.001 

.000 

.022 

.006 

.010 

.019 

.003 

.009 
~OOO 
.001 
.003 
.001 
.001 
.001 
.000 
.003 
.001 

.037. H contr. = .042 
contr 

.001. addr[var[@]] 

.010. assign[var[@]] 

.003. assign[ •• var[@]] 

.001. assignx[var[@]] 

.000. assignx[ •• var[@]] 

.021. call[var[@]] 

.005. call[.,var[@]] 

.009. dot[var[@]] 

.017. dot[.,var[@]] 

.002. dollar[var[@]] 

.001. dollar[ •• var[@]] 
0.000. error[var[@]] 
0.000. signal[var[@]] 

.002, {relE~relGlrelNlrelLlrelGElrelLE}[var[@]] 

.001. {relElrelGlrelNlrelLlrelGElrelLE}[.,var[@]] 
,DOl. return[var[@]] 
.000. uparrow[var[@]] 
.000, upth~u[var[@]] 
.003. {indexldindexlseqindex}[var[@]] 
.001. {indexldindexlseqindex}[ •• var[@]] 

local 
global 

6816 
3632 

.63 

.34 
field 
entry 

209 .02 
143 .01 

(2) var[ •• @] 
f = 0 H = 

SEE ALSO: f 
(155) 5332 
(156) 2335 
(157) 428 
(158) 2686 

0.000. 
H 

3.411 
3.153 
1. 491 
4.039 

(3) var[ •••• @] 

p 0.000, H contr. = 0.000 
p contr 

.018 .062. var[global.@] 

.008 .025, var[local.@] 

.001 .002, var[field,@] 

.009 .037. var[entry.@] 

f = 31424 H = 0.000. p = .106, H contr. = 0.000 
SEE ALSO: f H P contr 

(163) 5697 .657 .019 .013. dot[.,var[., •• @]] 
(164) 2754 1.713 .009 .016, dollar[.,var[ •••• @]] 
(165) 179 2.818 .001 .002, unionx[var[ •••• @]] 
o 31424 1.00 

(4) var[ ••• , •• @] 
f = 0 H = 0.000. 

SEE ALSO: f H 
(159) 12217 1.114 
(160) 6685 2.327 
(161) 428 1.749 
(162) 2686 0.000 

(5) list[ ••... @] 
f = 3096 H = 3.130. 

SEE ALSO: f H 
(244) 160 2.536 
(245) 6617 2.639 
(246) 4263 2.425 
(247) 120 .495 
(248) 982 .363 
(249) 159 2.228 
(250) 572 0.000 
(251) 254 0.000 
(252) 600 1.863 
(253) 42 0.000 
(254) 670 2.948 
(255) 828 2.427 
(256) 354.663 

p = 0.000, H contr. = 0.000 
p contr 

.041 .046. var[global ••••• @] 

.023 .053. var[local.*.*.@] 

.001 .003. var[field ••••• @] 

.009 0.000, var[entry •• , •• @] 

p = 
P 

.001 

.022 

.014 

.000 

.003 

.001 

.002 

.001 

.002 

.000 

.002 

.003 

.001 

.010. H contr. = .033 
contr 

.001, arraydesc[list[ ••... @]] 

.059. body[list[., ... @]] 

.035, call[.,list[ ••... @]] 

.000. caseexp[.,list[., ... @]] 

.001. casestmt[*. 1 ist[ ••... @]] 

.001. casestmt[ •••• list[ ••... @]] 
0.000. caseswitch[ •••• list[ ••... @]] 
0.000. casetest[list[ ••... @]] 

.004. casetest[ •. list[* •... @]] 
0.000. catchphrase[list[ •.... @]] 

.007. {constructlconstructx}[ •• list[ ••... @]] 

.007. dostmt[ •••• list[ ••... @]] 

.001. fextract[list[ ••... @]] 
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(257) 489 3.016 .002 .005. inlineca11[ •• list[., ... @]] 
(258) 243 .422 .001 .000, item[list[ ••... @]] 
(259) 1355 2.625 .005 .012, item[·,list[·, ... @]] 
(260) 187 2.311 .001 .001, label[list[ ••... @]) 
(261) 133 0.000 .000 0.000, mwconst[list[·, ... @]] 
(262) 391 2.113 .001 .003, openstmt[·,list[·, ... @]] 
(263) 160 1.636 .001 .001, return[list[·, ... @]] 
(264) 686 .882 .002 .002, row[list[·, ... @]] 
(265) 88 1.680 .000 .001, signa1[.,list[·, ... @]] 
(266) 32 0.000 .000 0.000, vconstruct[.,list[ ••... @]] 
44 cases (17 shown) 

assign 966 .31 num 82 .03 signal 25 .01 
call 901 .29 dostmt 73 ~02 dot 23 .01 
ifstmt 265 .09 casestmt 63 .02 unionx 23 .01 
var 168 .05 fextract 57 .02 doll ar 22 .01 
return 140 .05 construct 43 .01 exit 18 .01 
<empty> 85 .03 bump 40 .01 «others» 102 .03 

(6) num[@] 
f = 4850 H = 5.828. P .016. H contr. .096 

SEE ALSO: f H P contr 
(186) 1078 3.056 .004 .011. assign[*.nurn[@]] 
( 187) 85 1.606 .000 .000, index[.,num[@]] 
(188) 168 2.569 .001 .001, intCC[num[@]] 
(189) 78 .477 .000 .000, intCO[num[@]] 
(190) 318 2.446 .001 .003, minus[.,num[@]] 
(191) 316 2.807 .001 .003, plus[*.num[@]] 
(192) 292 2.387 .001 .002, times[*,nurn[@]] 
(193) 87 2.221 .000 .001, register[num[@]] 
(194 ) 2610 4.744 .009 .042, {relLlrelLElrelElrelNlrelGElrelG}[.,num[@]] 
(195) 148 2.227 .001 .001, return[num[@]] 
388 cases (25 shown) 
0 930 .19 65535 91 .02 11 33 .01 
1 606 .12 16383 85 .02 256 30 .01 
2 318 .07 6 80 .02 40 29 .01 
3 195 .04 7 75 .02 17 27 .01 
4 152 .03 8 60 .01 12 26 .01 
13 114 .02 10 58 .01 14 26 .01 
16 104 .02 32 56 .01 63 26 .01 
5 103 .02 9 44 .01 «others» 1450 .30 
-1 93 .02 255 39 .01 

(7) 1ist[@] 
f = 2874 H = 3.163, P .010, H contr. .031 

SEE ALSO: f H P contr 
(218) 80 0.000 .000 0.000, arraydesc[list[@]] 
(219) 1816 1.085 .006 .007, call[*,list[@]] 
(220) 639 1. 208 .002 .003, casestmt[·,list[@]] 
(221) 253 2.208 .001 .002, dostmt[*,*,list[@]] 
(222) 196 1.099 .001 .001, fextract[list[@]] 
(223) 598 2.132 .002 .004, ifstmt[*,list[@]] 
(224) 173 2.051 .001 .001, ifstmt[*,*,list[@]] 
(225) 230 .549 .001 .000, inlinecall[*,list[@]] 
(226) 97 1.190 .000 .000, item[l ist[@]] 
( 227) 425 2.096 .001 .003, item[*,list[@]] 
(228) 44 0.000 .000 0.000, signal[*,list[@]] 

36 cases (15 shown) 
2 839 .29 7 79 .03 12 20 .01 
1 511 .18 8 65 .02 13 15 .01 
3 482 .17 0 60 .02 16 15 .01 
4 279 .10 10 53 .02 «others» 61 .02 
5 184 .06 9 44 .02 
6 137 .05 11 30 .01 

(8) call[@] 
f = 6616 H = .238, P .022, H contr. .005 

var 6370 .96 dot 236 .04 dollar 10 .00 

(9) call[.,@] 
f = 6616 H = 2.961, P .022, H contr. .066 
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27 cases (12 shown) 
list 1816 .27 dollar 209 .03 dindex 56 .01 
val' 1739 .26 str 204 .03 ifexp 47 .01 
<empty> 760 .11 call 189 .03 «others» 142 .02 
num 686 .10 addr 129 .02 
dot 571 .09 plus 68 .01 

(10) call [*, * ,@] 
f = 6616 H = .112. P .022, H contr. = .003 

<empty> 6517 .99 catchphrase 99 .01 

(11 ) assign[@] 
f = 5663 H 1.423, P .019, H contr. a .027 

9 cases 
val' 3885 .69 uparrow 100 .02 seqindex 17 .00 
dot 1065 .19 index 79 .01 register 9 .00 
dollar 440 .08 dindex 63 .01 memory 5 .00 

(12) assign[.,@) 
f = 5663 H = 3.574. P = .019, H contr. a .069 

43 cases (18 shown) 
call 1288 .23 addr 208 .04 uparrow 36 .01 
num 1078 .19 assignx 151 .03 index 36 .01 
val' 775 .14 minus 134 .02 mwconst 34 .01 
dot 580 .10 dindex 113 .02 times 31 .01 
<empty> 314 .06 inlinecall 72 .01 «others» 215 .04 
dollar 261 .05 arraydesc 63 .01 
plus 214 .04 ifexp 60 .01 

(13) dot[@] 
f = 5697 H 1. 401, P .019, H contr. .027 

. 9 cases 
val' 2941 .52 dollar 109 .02 minus 7 .00 
plus 2349 .41 register 16 .00 call 7 .00 
dot 253 .04 num 11 .00 assignx 4 .00 

(14) dot[*,@] 
f = 5697 H = 0.000. P .019, H contr. 0.000 
var 5697 1.00 

(15) plus[@] 
f = 3847 H = 1. 032. P .013, H contr. .013 

22 cases (11 shown) 
val' 3243 .84 times 39 .01 plus 16 .00 
dot 331 .09 minus 25 .01 call 15 .00 
dollar 49 .01 register 22 .01 caseexp 5 .00 
num 49 .01 index 21 .01 «others» 32 .01 

(t6) plus[*,@) 
f .. 3847 H = 1.180, P .013, H contr. .015 

1"7 cases (11 shown) ~I 

var 3083 .80 call 51 .01 caseexp 6 .00 
num 316 .08 times 18 .00 ifexp 5 .00 
dollar 181 .05 div 13 .00 minus 5 .00 
dot 148 .04 inlinecall 10 .00 «others» 11 .00 

(17) dollar[@] 
f = 2754 H :: 2.050, p .009, H contr. = .019 

8 cases 
var 964 .35 dollar 106 .04 call 18 .01 
uparrow 944 .34 index 77 .03 assignx 1 .00 
dot 567 .21 dindex 77 .03 

(18 ) doll ar[. ,@] 
f = 2754 H = 0.000, P .009, H contr. 0.000 
var 2754 1.00 

(19) relE[@] 
f 2348 H = 2.023, P .008, H contr. .016 

15 cases 
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<empty> 1249 .53 call 50 .02 index 7 .00 
var 558 .24 inlinecall 15 .01 bumpx 6 .00 
dot 230 .10 dindex 12 .01 plus 5 .00 
dollar 136 .06 seqindex 11 .00 minus 2 .00 
assignx 58 .02 mod 8 .00 uparrow 1 .00 

(20) relE[ •• @] 
f = 2348 H . 819. P .008 • H contr. .007 

15 cases 
num 1976 .84 call 4 .00 plus 1 .00 
var 298 .13 dindex 3 .00 addr 1 .00 
dot 41 .02 mwconst 3 .00 seqindex 1 .00 
dollar 10 .00 relN 2 .00 length 1 .00 
relE 5 .00 or 1 .00 register 1 .00 

(21) ifstmt[@] 
f = 1810 H 3.047. P .006. H contr. .019 

16 cases 
relE 593 .33 or 86 .05 rellE 20 .01 
relN 370 .20 dot ·57 .03 in 18 .01 
not 157 .09 call 48 .03 assignx 3 .00 
var 135 .07 rell 36 .02 dindex 3 .00 
and 132 .07 relGE 29 .02 
relG . 101 .06 dollar 22 .01 

(22) ifstmt[·. ~] 
f = 1810 H = 3.093. P .006. H contr. .019 

25 cases (16 shown) 
list 598 .33 signal 70 .04 resume 12 .01 
call 324 .18 ifstmt 40 .02 construct 11 .01 
assign 239 .13 syserror 37 .02 openstmt 10 .01 
return 196 .11 go to 33 .02 bump 10 .01 
error 82 .05 dostmt 23 .01 «others» 32 .02 
exit 75 .04 casestmt 18 .01 

(23) ifstmt[·.·.@] 
f = 1810 H = 1. 333, P .006, H contr. .008 

19 cases (11 shown) 
(empty> 1406 .78 ifstmt 45 .02 return 6 .00 
list 173 .10 casestmt 13 .01 goto 4 .00 
call 69 .04 openstmt 10 .01 fextract 2 .00 
assign 64 .04 dostmt 7 .00 «others» 11 .01 

(24) return[@] 
f = 1683 H = 2.521, P .006, H contr. .014 

30 cases (12 shown) 
(empty> 839 .50 caseexp 32 .02 relE 15 .01 
var 337 .20 constructx 31 .02 plus 15 .01 
num 148 .09 dollar 26 .02 «others» 47 .03 
list 74 .04 ifexp 24 .01 
call 73 .04 dot 22 .01 

(25) @ 
f = 1513 H = 0.000, P .005, H contr. 0.000 
body 1513 1. 00 

(26) body[@] 
f = 1513 H = 0.000, P .005, H contr. 0.000 
list 1513 1.00 

(27) uparrow[@] 
f = 1260 H 1.184, P .004, H contr. .005 

7 cases 
plus 822 .65 dollar 4 .00 register 1 .00 
var 372 .30 minus 2 .00 
num 58 .05 dot 1 .00 

(28) item[@] 
f 1214 H .936, P .004, H contr. .004 

9 cases 

131 



ApPENDIX C: DETAILED PATTERN DATA 

C.6. Final Pattern Set -- Sorted by Pattern Number 

relE 1021 .84 in 25 .02 re1N 2 .00 
list 97 .08 re1L 7 .01 re1LE 2 .00 
1 bl 52 .04 relG 7 .01 re1GE 1 .00 

(29) item[*,@] 
f = 1214 H = 3.315, P .004. H contr. .014 

36 cases (19 shown) 
list 425 .35 num 26 .02 resume 11 .01 
assign 187 .15 dollar 20 .02 and 10 .01 
call 170 .14 go to 20 .02 exit 10 .01 
ifstmt 102 .08 openstmt 17 .01 dot 7 .01 
casestmt 42 .03 caseexp 14 .01 continue 7 .01 
nullstmt 41 .03 signal 12 .01 «others» 45 .04 
return 37 .03 error 11 .01 

(30) casestmt[@] 
f '" 639 H 1. 543. P .002. H contI'. '" .003 

11 cases 
dollar 450 .70 num 17 .03 uparrow 2 .00 
val' 67 .10 assignx 4 .01 in1inecall 1 .00 
dot 55 .09 seqindex 3 .00 index 1 .00 
call 37 .06 minus 2 .00 

( 31) casestmt[·.@] 
f = 639 H = 0.000. P .002, H contI'. 0.000 
list 639 1. 00 

(32) casestmt[·.·.@] 
f '" 639 H 2.590, P .002. H contI'. .006 

15 cases 
<empty) 269 .42 return 22 .03 nullstmt 7 .01 
syserror 151 .. 24 assign 21 .03 go to 4 .01 
1 ist 61 .10 ifstmt 13 .02 casestmt 2 .00 
signal 35 .05 exit 10 .02 openstmt 1 .00 
call 32 .05 error 10 .02 bump 1 .00 

(33) casetest[@] 
f = 572 H = .597, P .002, H contI'. '" .001 

num 489 .85, list 83 .15 

(34) casetest[·,@], 
f = 572 H 2.612, P = .002. H contI'. .005 

15 cases 
list 194 .34 nullstmt 16 .03 openstmt 4 .01 
assign 140 .24 str 15 .03 exit 3 .01 
call 112 .20 return 11 .02 goto 2 .00 
num 41 .07 ifexp 6 .01 signal 2 .00 
ifstmt 20 .03 casestmt 5 .01 label 1 .00 

(35) addr[@] 
f ,. l:."1n u 

~IU II 
.. .n~. 
.L.O.:. ... p .002. H contI'. .004 

6 cases 
var 339 .59 uparrow 68 .12 index 32 .06 
dot 84 .15 dollar 32 .06 dindex 15 .03 

(36) relN[@] 
f = 538 H 2.411. P .002, H contI'. .004 

16 cases 
var 209 .39 dindex 6 .01 mod 2 .00 
dot 151 .29 seqindex 6 .01 fdollar 1 .00 
dollar 69 .13 plus 4 .01 uparrow 1 .00 
c'a 11 37 .01 index 3 .01 length 1 .00 
inlinecall 24 .04 <empty) 2 .00 
assignx 14 .03 minus 2 .00 

(37) relN[ •• @] 
f = 538 H 1.174, P .002. H contI'. .002 

10 cas,es 
num 430 .80 call 7 .01 inlinecall 2 .00 
var 53 .10 addr 5 .01 mwconst 1 .00 
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dot 24 .04 seqindex 5 .01 
dollar 8 .01 uparrow 3 .01 

(38) str[@] 
f = 511 H = 8.735, P .002, H contr. .015 

449 cases (11 shown) 
"Break" 4 .01 "VM. " 3 .01 "error" 3 .01 
"Trace" 4 .01 " XXX" 3 .01 "Error # " 3 .01 
".xm" 3 .01 "NIL" 3 .01 "New" 2 .00 
.. __ It 3 .01 ".XM" 3 .01 «others» 477 .93 

(39) dostmt[@] 
f = 484 H 1.610, P = .002, H contr. = .003 

4 cases 
<empty> 219 .45 forseq 84 .17 
upthru 170 .35 downthru 11 .02 

(40) dostmt[.,@] 
f = 484 H 1.777, P .002, H contr. .003 

12 cases 
(empty> 277 .57 rell 10 .02 in 3 .01 
not 136 .28 and 5 .01 var 3 .01 
relN 28 .06 relG 5 .01 rellE 2 .00 
relE 11 .02 relGE 3 .01 or 1 .00 

(41) dostmt[*,·,@] 
f = 484 H 2.2-69, P .002, H contr. = .004 

14 cases 
list 253 .52 openstmt 8 .02 enable 3 .01 
assign 62 .13 1 abel 7 .01 inlinecall 1 .00 
ifstmt 54 .11 bump 4 .01 dostmt 1 .00 . 
casestmt 44 .09 signal 3 .01 catchmark 1 .00 
call 40 .08 nullstmt 3 .01 

(42) dostmt[*,.,*,@] 
f = 484 H = .133, P .002, H contr. .000 

(empty> 415 .98 item 9 .02 

(43) dostmt[*i*,*,·,@] 
f = 484 H .292, P .002, H contr. .000 

8 cases 
(empty> 468 .97 ifstmt 2 .00 goto 1 .00 
list 6 .01 return 2 .00 exit 1 .00 
assign 3 .01 call 1 .00 

(44) minus[@] 
f = 469 H 2.672, P .002, H contr. .004 

18 cases 
var 224 .48 call 11 .02 uminus 3 .01 
dot 62 .13 div 10 .02 length 3 .01 
<empty> 45 .10 minus 8 .02 times 2 .00 
plus 38 .08 index 7 .01 uparrow 2 .00 
dollar 25 .05 dindex 4 .01 assignx 1 .00 
num 20 .04 ifexp 3 .01 abs 1 .00 

(45) minus[*,@] 
f = 469 H 1.590, P .002, H contr. .003 

14 cases 
num 318 .68 minus 4 .01 ifexp 1 .00 
var 91 .19 times 4 .01 assignx 1 .00 
dot 17 .04 index 4 .01 div 1 .00 
dollar 15 .03 addr 2 .00 inl inecall 1 .00 
plus 8 .02 call 2 .00 

(46) dindex[@] 
f = 433 H = .195, P .001, H contr. .000 

var 420 .91 dot 13 .03 

( 47) dindex[.,@] 
f = 433 H = 2.450, P .001, H contr. .004 
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11 cases 
var 131 .30 minus 21 .05 call 3 .01 
num 102 .24 dot .8 .02 uparrow 2 .00 
times 89 .21 assignx 4 .01 ifexp 1 .00 
plus 68 .16 dollar 4 .01 

(48) not[@] 
f = 382 H 2.636, P .001. H contr. = .003 

13 cases 
relE 118 .31 in 19 .05 and 1 .00 
var 97 .25 rell 5 .01 relN 1 .00 
call 50 .13 relG 5 .01 re1GE 1 .00 
dot 47 .12 or 4 .01 
dollar 32 .08 ifexp 2 .01 

(49) assignx[@] 
f = 323 H 1.353, P .001. Hcontr. = .001 

7 cases 
var 223 .69 uparrow 7 .02 dindex 1 .00 
dot 68 .21 seqindex 4 .01 
dollar 17 .05 index 3 .01 

(50) assignx[.,@] 
,f = 323 H = ,3.313, P .001, H contr. .004 

22 cases (14 shown) 
call 73 .23 minus 19 .06 register 6 .02 
num 71 .22 dollar 19 .06 inl inecall 3 .01 
dot 40 .12 dindex 12 .04 seqindex 3 .01 
var 30 .09 plus 9 .03 relE 2 .01 
assignx 22 .07 addr 6 .02 «others» 8 .02 

(51) index[@] 
f = 338 H = .965, P .001, H contr . .001 
var 265 . 78 dollar 42 .12 dot. 31 .09 

(52) index[*,@] 
f = 338 H 2.325, P .001, H contr. .003 

11 cases 
var 106 .31 dollar 13 .04 in1 inecall 2 .01 
times 85 .25 mod 4 .01 ifexp 1 .00 
num 85 .25 plus 3 .01 div 1 .00 
minus 36 .11 dot 2 .01 

(53) times[@] 
f = 317 H 1. 702, P .001., H contr. .002 

13 cases 
var 227 .72 plus 9 .03 length 2 .01 
minus 22 .07 in1 inecall 4 .01 ifexp 1 .00 
call 18 .06 times 3 .01 abs 1 .00 
dot 16 .05 div 2 .01 
dollar 10 .03 uminus 2 .vi 

(54) times[·.@] 
f = 317 H .535, P .001, H contr. .001 

5 cases 
num 292 .92 dot 8 .03 dollar 1 .00 
var 10 .03 call 6 .02 

(55) in1inecal1[@] 
f = 262 H 3.019, P .001. H contr. = .003 

18 cases 
BITAND 86 .33 Stop 9 .03 PORTI 2 .01 
BITSHIFT 42 .16 BITXOR 7 .03 CONVERT 1 .00 
BITOR 39 .15 LOIVMOD 4 .02 PUSH 1 .00 
DIVMOD 26 .10 BLOCK 4 .02 USC 1 .00 
COpy 17 .06 NovaOutLd 3 .01 LongDiv 1 .00 
BITNOT 16 .06 NovaInld 2 .01 longMult 1 .00 

(56) inlinecall[*,@] 
f = 262 H = .843, P .001. H contr. I: .001 
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8 cases 
list 230 .88 var 7 .03 uparrow 1 .00 
num 8 .03 dot 4 .02 index 1 .00 
<empty> 7 .03 in 1 i neca 11 4 .02 

(57) and[@] 
f = 251 H 3.104. P .001. H contr. = .003 

14 cases 
relE 60 .24 call .. 

12 .05 or 5 .02 
and 51 .20 dot 8 .03 relGE 3 .01 
relN 37 .15 relL 7 .03 in 3 .01 
var 32 .13 relG 6 .02 relLE 1 .00 
not 20 .08 dollar 6 .02 

(58) and[ •• @] 
f = 251 H 3.113. P .001. H contr. .003 

17 cases 
relE 85 .34 or 10 .04 caseexp 2 .01 
relN 42 .17 dot 10 .04 index 2 .01 
not 28 .11 in 8 .03 and 1 .00 
call 22 .09 dollar 7 .03 relGE 1 .00 
var 12 .05 relL 6 .02 fdo 11 ar 1 .00 
relG 11 .04 relLE 3 .01 

(59) ifexp[@] 
f = 211 H 2.315. P .001. H contr. .002 

12 cases 
relE 102 .48 relN 6 .03 dollar 4 .02 
var 54 .26 relL 6 .03 or 3 .01 
in 14 .07 dot 6 .03 not 3 .01 
relG 8 .04 and 4 .02 relGE 1 .00 

(60) ifexp[ •• @] 
f = 211 H = 2.433. P .001. H contr. .002 

18 cases (11 shown) 
num 115 .55 dollar 9 .04 str 3 .01 
dot 25 .12 ifexp 6 .03 index 2 .01 
call 18 .09 plus 3 .01 memory 2 .01 
var 18 .09 minus 3 .01 «others» 7 .03 

(61) ifexp[ •••• @] 
f = 211 H 3.005. P .001. H contr. .002 

21 cases 
num 95 .45 plus 6 .03 uminus 2 .01 
dot 20 .09 str 4 .02 addr 2 .01 
var 20 .09 caseexp 3 .01 relN 1 .00 
call 14 .07 index 3 .01 relL 1 .00 
ifexp 13 .06 dindex 3 .01 times 1 .00 
dollar 9 .04 min 3 .01 inlinecall 1 .00 
minus 7 .03 not 2 .01 constructx 1 .00 

(62) fextract[@] 
f = 196 H = 0.000. P .001. H contr. 0.000 
list 196 1.00 

(63) fextract[·.@] 
f = 196 H = .672. P .001. H contr. .000 
call 166 .85 inl inecall 28 .14 signal 2 .01 

(64) signal[@] 
f = 186 H = .524. P .001. H contr. .000 
var 164 .88 dot 22 .12 

(65) signal[ •• @] 
f = 186 H 1.602. P .001. H contr. .001 

5 cases 
<empty> 104 .56 var 31 .17 num 2 .01 
list 44 .24 doll ar 5 .03 

(66) signal[ •••• @] 
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f = 186 H = 0.000, P .001, H contr. = 0.000 
(empty> 186 1. 00 

(67) intCC[@] 
f = 183 Ii .483, P .001, Ii contr. .000 

4 cases 
num 168 .92 dot 2 .01 
var 12 .07 minus 1 .01 

(68) intCC[*,@] 
f = 183 H 1. 466, ,p .001, H contr. .001 

7 cases 
num 133 .73 plus 7 .04 dollar 1 .01 
var 19 .10 div 7 .04 
dot 10 .05 minus 6 .03 

(69) construct[@] 
f = 183 H 1.817. P .001, H contr. .001 

6 cases 
var 90 .49 dot 26 .14 dollar 3 .02 
uparrow 52 .28 dindex 10 .05 index 2 .01 

(70) construct[*,@] 
f = 183 H = 0.000, P .001, H contr. 0.000 
list 183 1.00 

(71) unionx[@] 
f = 179 H = 0.000. P .001, H contr. 0.000 

var 179 1. 00 

(72) unionx[*,@] 
f = 179 H = 0.000, P .001, H contr. 0.000 
list 179 1. 00 

(73) upthru[@] 
f = 170 H = .767, P .001, H contr. .000 

var 132 .78 (empty> 38 .22 

(74 ) upthru[*,@] 
f = 170 H 1. 220, P .001, H contr.~ .001 

4 cases 
intCC 83 .49 intOO 3 .02 
intCO 81 .48 intOC 3 .02 

(75 ) relG[@] 
f = 159 H 2.138, P .001, H contr. .001 

12 cases 
var 94 .59 assignx 8 .05 times 1 .01 
dot 21 .13 plus 7 .04 i,nl inecall 1 .01 
doll ar 10 .06 length 5 .03 abs 1 .01 
(empty> 8 .05 index 2 .01 bumpx 1 .01 

(76) relG[*,@] 
f = 159 H 1. 386, P .001, H contr. .001 

9 cases 
num 120 .75 dollar 6 .04 ifexp 1 .01 
var 14 .09 index 3 .02 mod 1 .01 
dot 11 .07 minus 2 .01 max 1 .01 

(77 ) lbl[@] 
f = 159 H .984, P .001, H contr. .001 

5 cases 
1 127 .80 3 4 .03 5 2 .01 
2 23 .14 4 3 .02 

(78) catchphrase[@] 
f = 130 ~I = 1. 040, P .000, H contr. .000 

item 98 .75 (empty> 20 .15 list 12 .09 

(79) catchphrase[*.@] 
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f = 130 H 1. 024. P = .000. H contr. .000 
8 cases 

<empty> 109 .84 continue .4 .03 assign 1 .01 
goto 8 .06 list 2 .OZ error 1 .01 
inl inecall 4 .03 call 1 .01 

(80) error[@] 
f .. 129 H = .065. P .000, H c~ntro = .000 
var 128 .99 dot 1 .01 

(81) error[ •• @] 
f = 129 H 1. 903. P = .000. H c~ntro .. .001 

9 cases 
<empty> 59 .46 num 6 .05 ifexp 1 .01 
var 47 .36 dot 3 .02 plus 1 .01 
list 9 .07 str 2 .02 addr 1 .01 

(82) error[ •••• @] 
f = 129 H .065, P .000. H c~ntro .000 
<empty> 128 .99 catchphrase 1 .01 

(83 ) or[@] 
f = 127 H 2.955. P .000, H contr. .001 

11 cases 
relE 38 .30 relG 8 .06 dot 5 .04 
relN 21 .17 var 8 .06 call 2 .02 
not 20 .16 and 7 .06 assignx 1 .01 
or 10 .0'8 relL 7 .06 

(84 ) or[.,@] 
f = 127 H 2.856. P .000, H contr. .001 

14 cases 
relE 43 .34 relG 5 .04 dollar 2 .02 
and 25 .20 . dot 4 .03 relGE 1 .01 
relN 21 .17 call 3 .02 relLE 1 .01 
not 10 .08 caseexp 2 .02 in 1 .01 
var 7 .06 relL 2 .02 

(85) goto[@] 
f = 105 H 0.000, P .000. H contr. 0.000 
lbl 105 1.00 

(86) in[@] 
f = 102 H 1.492. P .000. H contr. .001 

6 cases 
var 57 .56 minus 5 .05 plus 1 .01 
<empty> 35 .34 dollar 3 .03 call 1 .01 

( 87) in[ •• @] 
f = 102 H = .323. P .000. H contr. .000 

intCC 96 .94 intCO 6 .06 

(88) intCO[@] 
f = 94 H .849. P .000. H contr. .000 

4 cases 
num 78 .83 dot 4 .04 
var 11 .12 length 1 .01 

(89) intCO[.,@] 
f = 94 H 2.573, P .000, H contr. .001 

9 cases 
var 38 .40 plus 10 .11 min 3 .03 
length 15 .16 doll ar 7 .07 div 2 .02 
dot 12 .13 minus 5 .05 call 2 .02 

(90) rell[@] 
f = 93 H 2.197. P .000, H contr. .001 

9 cases 
var 51 .55 assignx 9 .10 call 2 .02 
dollar 10 .11 dot 6 .06 index 2 .02 
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<empty> 9 . 10 plus 3 .03 div 1 .01 

(91) rell[*,@] 
f = 93 H 2.141, P .000, H contr. .001 

9 cases 
num 46 .49 dollar 6 .06 times 1 .01 
var 20 .22 length 4 .04 index 1 .01 
dot 12 .13 div 2 .02 min 1 '.01 

(92) openstmt[@] 
f = 91 H = 0.000, P .000, H contr. = 0.000 

<empty> 91 1.00 

(93) openstmt[*,@] 
f = 91 H 1. 052, P .000, H contr. .000 

8 cases 
list 76 .84 casestmt 2 .02 ifstmt 1 .01 
enable 5 .05 inl inecall 1 .01 dostmt 1 .01 
label 4 .04 assign 1 .01 

(94) div[@] 
f = 87 H = 2.183, P .000, H contr . ... .001 

7 cases 
var 37 .43 dollar 6 .07 minus 1 .01 
plus 23 .26 call 6 .07 
dot 11 .13 times 3 .03 

(95) div[*,@] 
f = 87 H .572, P .000, H contr. = .000 

4 cases 
num 79 .91 dot 3 .03 
var 4 .05 times 1 .01 

(96) register[@] 
f .. 87 H = 0.000, P = .000, H contr. = 0.000 

nurn 87 1.00 

(97) caseexp[@] 
f :: 84 H 1. 343, P .000, H contr. .000 

7 cases 
dollar 62 .74 call 2 .02 num 1 .01 
var 12 .14 inl inecall 2 .02 
dot 4 .05 dindex 1 .01 

(98) caseexp[*,@] 
f = 84 H = 0.000, P = .000, H contr. = 0.000 
list 84 1.00 

(99) caseexp[.,*,@] 
f = 84 H .885, P .000, H contr. .000 

7 cases 
num 73 .87 dot 2 .02 var 1 .01 
call 3 .04 str 2 .02 
ifexp 2 .02 dindex 1 .01 

( 100) forseq[@] 
f = 84 H = 0.000, P .000, H contr. 0.000 

var 84 1. 00 

(101 ) forseq[*,@] 
f = 84 H 2.496, P .000, H contr. .001 

10 cases 
var 30 .36 index 4 .05 minus 1 .01 
oot. 25 .30 num 4 .05 div 1 .01 
call 10 .12 dindex 3 .04 
dollar 4 .05 plus 2 .02 

(102) forseq[*,*,@] 
f 84 H 1. 745, P .000, H contr. .000 

5 cases 
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dot 49 .58 var 10 .12 minus 3 .04 
call 14 .17 plus 8 .10 

(103 ) seqindex[@] 
f = 82 H = .592, P .000, H contI'. .000 ' 

val' 72 .88 dot 9 .11 dindex 1 .01 

(104) seqindex[*,@] 
f = 82 H 1. 736, P .000, H contI'. .000 

6 cases 
var 52 .63 dot 7 .09 bumpx 4 .05 
minus 10 .12 num 7 .09 plus 2 .02 

(105 ) caseswitch[@] 
f = 81 H = 1.175, P .000, H contI'. = .000 
minus 45 .56 (empty> 33 .41 plus 3 .04 

(106) caseswitch[* ,@] 
f = 81 H = 0.000, P . 000, H contr • 0.000 

num 81 1.00 

(107) caseswitch[·,*,@] 
f = 81 H = 0.000, p .000, H contr. 0.000 
list 81 1.00 

(108) arraydesc[@] 
f = 80 H = 0.000, P .000, H contr. 0.000 
list 80 1.00 

(109 ) constructx[@] 
f = 77 H = 0.000, P . 000, H contr . 0.000 

temp 77 1.00 

(110 ) 'constructx[·,@] 
f = 77 H = 0.000, P = .000, H contr. 0.000 
list 71 1.00 

( 111) length[@] 
f :: 50 H = .529, P .000, H contr. .000 

var 44 .88 dot 6 .12 

(112) row[@] 
f = 47 H = 0.000, P .000, H contr. 0.000 
list 47 1.00 

(113 ) rowcons[@] 
f :: 47 H = 0.000, P .000, H contr. 0.000 

val' 47 1.0·0 

(114 ) rowcons[*,@] 
f = 47 H = 0.000, P .000, H contr. 0.000 

row 47 1. 00 

(115 ) mwconst[@] 
f = 44 H = 0.000, P .000, H contI'. 0.000 
list 44 1.00 

( 116) resume[@] 
f :: 44 H .174, P .000, H contr. .000 

4 cases 
<empty> 38 .86 dot 2 .05 
var 3 .07 list 1 .02 

( 117) relGE[@] 
f :: 41 H 1. 954, P .000, H contr. .000 

7 cases 
val' 23 .56 doll ar 3 .07 plus 1 .02 
bumpx 8 .20 assignx 2 .05 
dot 3 .07 <empty> 1 .02 
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(118 ) relGE[.,@] 
f .. 41 H 2.022, P .000, H contr. .000 

7 cases 
num 18 .44 dot 2 .05, max 1 .02 
var 13 .32 assignx 1 .02 
length 5 .12 dollar 1 .02 

( 119) label[@] 
f .. 41 H 1. 883, P .. .000, H contI'. .. .000 

7 cases" 
list 25 .61 ifstmt 3 .07 assign 1 .02 
enable 5 .12 catchmar-k 2 .05 
casestmt 4 .10 call 1 .02 

(120) label[.,@] 
"f .. 41 H .. .281, P .. .000, H contI'. .000 

item 39 .95 list 2 .05 

( 121) uminus[@] 
f .. 35 H .. 1. 391, P .000, H contI'. .. .000 

5 cases 
val' 25 .71 call 3 .09 dindex 1 .03 
dollar 4 .11 dot 2 .06 

( 122) vconstruct[@] 
f .. 32 H .. 0.000. P .. .000, H contr. 0.000 
dollar 32 1.00 

(123) vconstruct[·,@] 
f .. 32 H = 0.000, P .000, H contr. 0.000 
list 32 1.00 

(124) rellE[@] 
f .. '30 H 1. 826, P .000, H contr. .000 

8 cases 
var 20 .67 abs 2 .07 dollar 1 .03 
<empty> 2 .07 times 1 .03 index 1 .03 
assignx 2 .07 dot 1 .03 

(125) rellE[.,@] 
f .. 30 H 1. 505. P .. .000, H contr. .. .000 

5 cases 
num 20 .67 dot 2 .07 dollar 1 .03 
val' 5 .17 index 2 .07 

(126) enable[@] 
f .. 29 H .. 0.000, P .. .000, H contr. 0.000 
catchphrase 29 1.00 

( 127) enable[.,@] 
f· :r 29 H .. ".,1 P .000, H conti'. .uuu .,,"'.1., 
list 27 .93 ifstmt 1 .03 dostmt 1 .03 

(128) mod[@] 
f .. 27 H .. 2.203, P = .000, H contI'. .000 

6 cases 
var 12 .44 dot 3 .11 bumpx 3 .11 
plus 5 .19 inlinecall 3 .11 dollar 1 .04 

(129) mOd[.,@] 
f .. 21 H = .979, P .000, H contI'. .000 

num 20 .74 length 6 .22 var 1 .04 

( 130) min[@] 
f .. 27 H .. 0.000, P .000, H"contr. 0.000 
list 27 1.00 

(131) stringinit[@] 
f .. 27 H .. 0.000, P .000, H contr. 0.000 

num 27 1.00 
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( 132) max[@] 
f = 25 H = 0.000, P .000, H contr. 0.000 
list 25 1.00 

( 133) catchmark[@] 
f = 24 H 1. 908, P .000, H contr. = .000 

5 cases 
call 10 .42 enable 6 .25 ifstmt 1 .04 
assign 6 .25 fextract 1 .04 

(134) base[@] 
f = 22 H = .439, P .000, H contr. = .000 

var 20 .91 dot 2 .-09 

(135 ) memory[@] 
f = 13 H 1.884, P .000, H contr. = .000 

4 cases 
var 5 .38 plus 2 .15 
num 4 .31 minus 2 .15 

(136) fdo11ar[@] 
f = 11 H = .845, P .000, H contr. .000 
call 8 .73 inlineca11 3 .27 "-

( 137) fdo11ar[*,@] 
f = 11 H = 0.000, P .000, H contr. 0.000 

var 11 1. 00 

( 138) downthru[@] 
f = 11 H = 0.000, p .000, H contr. 0.000 

var 11 1.00 

( 139) downthru[*,@] 
f = 11 H = .946, P .000, H contr . .000 

intCO 7 . 64 intCC 4 .36 

(140) dst[@] 
f = 10 H = 0.000, P .000, H contr. 0.000 
var 10 1.00 

(141) lstf[@] 
f = 10 H = 0.000, P .000, H contr. 0.00l) 

var 10 1.00 

(142) ~xtract[@] 
f = 9 H = 0.000, P .000, H contr. 0.000 
list 9 1.00 

(143) extract[*,@] 
f = 9 H = 1. 224, P .000, H contr. .000 
call 6 .67 uparrow 2 .22 dollar 1 .11 

(144 ) lst[@] 
f = 9 H = 0.000, P .000, H contr. 0.000 

var 9 1. 00 

(145 ) abs[@] 
f = 8 H = 1. 299, P .000, H contr. .000 

var 5 .62 call 2 .25 dot 1 .12 

(146 ) start[@] 
f = 8 H = .811, P .000, H contr. .000 

var 6 .75 dot 2 .25 

(147) start[*,@] 
f = 8 H = 0.000, P .000, H contr. 0.000 

(empty> 8 1. 00 
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(148) start[·.·.@] 
f = 8 H = . 544. P .000 • H contr. .000 

<empty> 7 .87 catchphrase 1 .12 

(149) intOO[@] 
f = 3 H = 0.000. P = .000. H contr. 0.000 

var 3 1.00 

(150) intOO[·,@] 
f = 3 H· = .918. P .000. H contI". = .000 

val" 2 .67 plus 1 .33 

(151 ) intOC[@] 
f = 3 H = 0.000, P = .000. H contr. 0.000 
var 3 1.00 

(152 ) intOC[*.@] 
f = 3 H = 0.000. P = .000, H contI". = 0.000 
var 3 1.00 

(153 ) stop[@1 
f = 3 H = 0.000, P .. .000 •. H contI". .. 0.000 
<empty> 3 1.00 

(154) svc[@] 
f .. 2 H = 0.000. P .000. H contI". 0.000 

num 2 1.00 

(155) var[global.@] 
f = 5332 H = 3.411. P .. .018. H contI". .. .062 

SEE ALSO: f H P contI" 
(213 ) 752 4.743 .003 .012. assign[var[global.@]] 
(214) 4016 4.241 .014 .058. call[var[global.@]] 
( 215) , 1009 2.251 .003 .008. dot[var[global.@]] 
(216 ) 944 4.912 .003 .016. dot[*,var[global.@]] 
(217) 164 3.938 .001 .002. signal[var[global.@]] 
134 cases (12 show·n) 
0 2396 .45 5 149 .03 44 31 .01 
1 925 .17 6 111 .02 12 27 .01 
2 361 .07 7 75 .01 «others» 722 .14 
3 236 .04 40 59 .01 
4 198 .04 -10 42 .01 

(156) var[local.@] 
f = 2335 H = 3.153, P .008, H contr. .025 

SEE ALSO: f H P contr 
( 196) 3296 2.995 .011 .033, {assign/assignx}[var[local,@]] 
(197) 610 2.949 .002 .006, {assign/assignx}[*,var[local.@]] 
(198 ) 1445 2.275 .005 .011, call[*,var[local,@]] 
( 199) 1929 1.384 .007 .009, dot[var[local.@]] 
I?nn\ 84 .963 nnn nnn forseq[var[local,@]] ,'-VV/ • vvv .vvu • 
(201) 1909 2.798 .006 .018, list[·, ... var[local,@]] 
(202) 199 2.803 .001 .002, minus[var[local,@]] 
(203) 90 2.595 .000 .001, minus[*,var[local,@]] 
(204) 321 2.684 . 001 .003 • plus[var[local,@]] 
(205) 3027 1. 795 .010 .018, plus[*,var[local,@]] 
(206) 162 2.598 . 001 .001 • times[var[local.@]] 
( 207) 264 3.453 .001 .003, {indexldindex/seqindex}[var[local.@]] 
(208) 245 2.364 .001 .002 , {indexldindex/seqindex}[*,var[local.@]] 
(209) 853 2.607 .003 .OOB, {relllrelLElrelElrelN/relGE/relG}[var[local.@]] 
(210) 191 3.006 .001 .002. {relLlrelLE/relElrelNlrelGE/relG}[*.var[local.@]] 
(211 ) 355 1.130 .001 .001, uparrow[var[local,@]] 
(212) 129 2.023 .000 .001, upthru[var[local,@]] 

ZI cases (15 shown) 
0 5BO .25 7 116 .05 12 14 .01 
1 503 .22 6 63 .03 11 13 .01 
2 379 .16 8 40 .02 10 12 .01 
3 217 ~09 9 35 .01 «others» 41 .02 
4 160 .07 14 19 .01 
5 127 .05 13 16 .01 
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( 157) var[field,@] 
f = 428 H = 1. 491, P = .001,H contr. = .002 

SEE ALSO: f H P contr 
dollar[.,var[field,@]] (242) 2709 2.433 .009 .022. 

(243) 4570 3.441 .015 .053. dot[·,var[field,@]] 
6 cases 

5 193 .45 6 52 .12 3 1 .00 
0 179 .42 4 2 .00 7 1 .00 

(158 ) var[entry,@] 
f = 2686 H = 4.039. P = .009. H contr. .037 

54 cases (24 shown) 
1 651 .24 10 67 .02 20 29 .01 
2 350 .13 11 57 .02 21 29 .01 
3 267 .10 14 54 .02 18 24 .01 
4 190 .07 13 53 .02 23 22 .01 
5 155 .06 12 52 .02 22 19 .01 
6 130 .05 16 39 .01 24 14 .01 
7 111 .04 15 34 .01 «others» 98 .04 
9 91 .03 17 32 .01 
8 88 .03 19 30 .01 

(159 ) var[global ••••• @] 
f = 12217 H = 1.114, P .041, H contr. .046 

43 cases (11 shown) 
16 10530 .86 11 60 .00 1584 48 .00 
14 362 .03 12 59 .00 64 44 .00 
32 354 .03 3 54 .00 15 42 .00 
1 237 .02 144 48 .00 «others» 379 .03 

(160 ) var[local, •••• @] 
f = 6685 H = 2.327. P .023. H contr. = .053 

SEE ALSO': f H P contr 
(229) 3114 2.078 .011 .022. assign[var[local •••• ,@]] 
(230) 590 2.026 .002 .004. assign[ •• var[local,.,.,@]] 
(231) 182 1.963 .001 .001. assignx[var[local •• ,.,@]] 
(232) 1445 1. 463 . 005 .007 • call[.,var[local •• ,.,@]] 
(233) 840 2.252 .003 .006, dollar[var[local ••••• @]] 
(234) 1929 0.000 . 007 0.000 • dot[var[local ••••• @]] 
(235) 45 0.000 .000 0.000. error[ •• var[local ••••• @]] 
(236) 113 0.000 .000 0.000. ifstmt[var[local ••••• @]] 
( 237) 1909 2.104 .006 .014. list[., ... var[local ••••• @]] 
(238) 58 0.000 .000 0.000, seqindex[var[local, •••• @]] 
(239) 50 .242 .000 .000, seqindex[ •• var[local •• ,.,@]] 
(240) 355 0.000 .001 0.000, uparrow[var[local ••••• @]] 
(241) 129 1.400 .000 .001. upthru[var[local ••••• @]] 

34 cases (12 shown) 
14 3135 .47 8 95 .01 3 53 .01 
16 2168 .32 11 94 .01 176 39 .01 
1 231 .03 48 69 .01 «others» 269 .04 
15 210 .03 4 65 .01 
32 199 .03 9 58 .01 

(161) var[field, •••• @] 
f = 428 H = 1.749. P .001. H contr. = .003 

SEE ALSO: f H P contr 
(267) 4570 2.548 .015 .039. dot[·,var[field ••••• @]] 
(268) 2709 3.287 .009 .030. dollar[ •• var[field, •• ·,@]] 

7 cases 
0 179 .42 1 5 .01 14 1 .00 
16 145 .34 3 5 .01 
32 90 .21 15 3 .01 

( 162) var[entry ••••• @] 
f = 2686 H = 0.000, P .009. H contr. 0.000 

16 2686 1. 00 

(163) dot[·,var[ •••• @]] 
f = 5697 H = .657. P .019, H contr. .013 
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15 cases 
0 5256 .92 14 47 .01 10 11 .00 
1 74 .01 4 36 .01 15 11 .00 
8 62 .01 2 35 .0.1 7 9 .00 
3 53 .01 9 24 .00 11 5 .00 
6 50 .01 5 23 .00 12 1 .00 

(164) dollar[ •• var[ •••• @]] 
f = 2754 H = 1. 713. P .009. H contr. .016 

15 cases 
0 1904 .69 12 50 .02 6 12 .00 
2 364 .13 4 31 .01 11 11 .00 
3 186 .07 5 28 .01 7 9 .00 
1 56 .02 8 21 .01 13 6 .00 
14 53 .02 15 21 .01 9 2 .00 

(165 ) unionx[var[ •••• @]] 
f .. 179 H 2.818. P .001. H contr. .. .002 

16 cases 
1 45 .25 5 3 .02 12 2 .01 
3 43 .24 7 2 .01 13 2 .01 
0 32 .18 8 2 .01 6 1 .01 
2 32 .18 9 2 .01 15 1 .01 
4 4 .02 10 2 .01 
14 4 .02 11 2 .01 

(166) addr[var[@]] , 
f .. 339 H = .958. P .001. H contr. .001 
global 210 .62 local 129 .38 

(167) assign[var[@]] 
f .. 3885 H = .752,. P .013. H contr. .010 

local 3114 .80 global 752 .19 field 19 .00 

(168) assign( •• var[@]] 
f = 775 H .. .959. P .003. H contr. ,. .003 

4 cases 
local 590 .76 entry 28 .04 
global 155 .20 field 2 .00 

( 169) assignx[var[@]] 
f = 223 H = .688. P .001. H contr. .. .001, 

local 182 .82 global 41 .18 

( 170) assignx[ •• var[@]] 
f = 30 H = 1.159. P .000. H contr. = .000 
local 20 .67 global 8 .27 entry 2 .07 

(171 ) call[var[@]] 
f = 6370 H = .992. P .022. H contr. .021 
global 4016 .63 entry 2319 .36 local 35 .01 

( 172) call[ •• var[@]] 
f = 1739 H .806, P .006, H contr. .005 

4 cases 
local 1445 .83 field 33 .02 
global 238 .14 entry 23 .01 

(173) dot[var[@]] 
f = 2941 H = .939. P .010. H contr. .009 

local 1929 .66 global 1009 .34 field 3 .00 

(174 ) dotr*.varr@ll 
f .. 5697-H -.855. P .019. H contr. .017 

4 cases 
field 4570 .80 entry 171 .03 
global 944 .17 local 12 .00 

(175) dollar[var[@]] 
f = 964 H .. .682, P .003. H contr. .002 
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local 840 .87 field 63 .07 global 61 .06 

( 176) dollar[*,var[@]] 
f = 2754 H = .126, P .009, H contr. .001 
field 2709 .98 global 42 .02 local 3 .00 

( 177) error[var[@]] 
f = 128 H = 0.000, p .000, H contr. = 0.000 
global 128 1.00 

( 178) signal[var[@]] 
f = 164 H = 0.000, P .001, H contr. = 0.000 
global 164 1. 00 

(179) {relElrelGlrelNlrelllrelGElrellE}[var[@]] 
f = 955 H = .549, P = .003, H contr. = .002 

local 853 .89 global 89 .09 field 13 .01 

(180) {relElrelGlrelNlrelllrelGElrellE}[*,var[@]] 
f = 403 H = . 998, P .001, H contr . .001 

global 212 .53 local 191 .47 

( 181) return[var[@]] 
f = 337 H = .692, P .001, H contr. .001 

local 292 .87 global 29 .09 field 16 .05 

(182) uparrow[var[@]] 
f = 372 H = .268, P .001, H contr. .000 
local 355 .95 global 17 .05 

(183) upthru[var[@]] 
f = 132 H = .156, P .000, H contr. .000 

local 129 .98 global 3 .02 

( 184) {indexldindexlseqindex}[var[@]] 
f = 757 H = 1.317, P = .003, H contr. .003 
global 423 .56 local 264 .35 field 70 .09 

( 185) {indexldindexlseqindex}[·,var[@]] 
f = 289 H = .615, P .001, H contr. .001 

local 245 .85 global 44 .15 

( 186) assign[.,num[@]] 
f = 1078 H = 3.056, P .004, H contr. .011 

79 cases (11 shown) 
0 431 .40 65535 51 .05 3 10 .01 
1 282 .26 2 26 .02 16 8 .01 
-1 81 .08 17 11 .01 4 5 .00 
16383 58 .05 32767 11 .01 «others» 104 .10 

( 187) index[.,num[@]] 
f = 85 H 1. 606, P .000, H contr. .000 

7 cases 
0 54 .64 -65536 2 .02 1788 1 .01 
1 17 .20 -65535 2 .02 
2 8 .09 8 1 .01 

( 188) intCC[num[@]] 
f = 168 H 2.569, P .001, H contr. .001 

19 cases 
0 79 .47 18 3 .02 -326 1 ... 01 
1 42 .25 -507 2 .01 7 1 .01 
48 8 .05 -506 2 .01 8 1 .01 
2 6 .04 -325 2 .01 24 1 .01 
97 6 .04 3 2 .01 65408 1 .01 
-505 4 .02 34 2 .01 
65 4 .02 -327 1 .01 

(189) intCO[num[@]] 
f = 78 H = .477 , P .000, H contr. .000 
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0 10 .90 1 8 .10 

( 190) minus[*,num[@]] 
f = 318 H = 2.446, P .001, H contr. .003 

26 cases (17 shown) 
1 195 .61 4 6 .02 16 3 .01 
2 34 .11 48 6 .02 35 3 .01 
3 12 .04 101 5 .02 112 3 .01 
63 10 .03 5 4 .01 18 2 .01 
6 8 .03 32 4 .01 61 2 .01 
1 .8 .03 65535 4 .01 «others» 9 .03 

(191) plus[*,num[@]] 
f = 316 H = 2.807, P .001, H contr. .003 

26 cases (19 shown) 
1 147 .47 6 5 .02 31 2 .01 
2 58 .18 16 4 .01 48 2 .01 
3 31 .10 32 4 .01 119 2 .01 
4 15 .05 20 3 .01 259 2 .01 
15 10 .03 64 3 .01 512 2 .01 
5 8 .03 256 3 .01 «others» 7 .02 
255 6 .02 19 2 .01 

(192 ) times[*,num[@]] 
f = 292 H 2.387, P .001, H contr. .002 

11 cases 
2 133 .46 8 4 .01 11 2 .01 
3 71 .24 12 4 .01 6 1 .00 
16 42 .14 15 4 .01 9 1 .00 
256 10 .03 1 3 .01 20 1 .00 
121 5 .02 10 3 .01 64 1 .00 
4 4 .01 512 3 .01 

(193 ) ~egister[num[@]] 
f = 87 H 2.221. P .000, B contr. .001 

5 cases 
253 29 .33 2 17 .20 1 10 .11 
3 19 .22 254 12 .14 

( 194) {relLlrelLElrelElrelNlrelGElrelG}[*,num[@]] 
f = 2610 H = 4.744, P .009, H contr. .042 

152 cases (25 shown) 
0 625 .24 4 39 .01 32767 19 .01 
1 254 .10 16 35 .01 2047 17 .01 
16383 245 .09 5 28 .01 11 15 .01 
3 197 .08 10 28 .01 32 15 .01 
-1 164 .06 12 27 .01 66 15 .01 
2 147 .06 9 25 .01 6 14 .01 
65535 93 .04 14 25 .01 63 14 .01 
1 49 .02 8 21 .01 «others» 433 .17 
13 45 .02 15 21 .01 

(195 ) return[num[@]] 
f = 148 H 2.227, P .001, H contr. .001 

9 cases 
0 65 .44 16383 9 .06 2047 2 .01 
1 34 .23 -1 7 .05 49151 2 .01 
32767 25 .17 65535 3 .02 2 1 .01 

( 196) {assignlassignx}[var[local,@]] 
f = 3296 H = 2.995, P .011, H contr. .033 

21 cases (12 shown) 
0 868 .26 5 170 .05 10 21 .01 
1 762 .23 6 107 .03 11 17 .01 
2 500 .15 7 79 .02 «others» 78 .02 
3 386 .12 8 48 .01 
4 226 .07 9 34 .01 

( 197) {assignlassignx}[*,var[local,@]] 
f = 610 H = 2.949, P = .002, B contr. .006 
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22 cases (11 shown) 
0 186 .30 4 50 .08 8 7 .01 
1 122 .20 5 37 .06 9 5 .01 
2 88 .14 6 25 .04 10 4 .01 
3 59 .10 7 12 .02 «others» 15 .02 

(198 ) call[*,var[local,@]] 
f = 1445 H = 2.275, P .005, H contr. a .011 

18 cases (11 shown) 
0 647 .45 4 53 .04 10 4 .00 
1 363 .25 5 38 .03 9 3 .00 
2 175 .12 7 21 .01 11 3 .00 
3 113 .08 6 15 .01 «others» 10 .01 

( 199) dot[var[local,@]] 
f' = 1929 H 1.384~ P .007, H contr . .. .009 

13 cases 
0 1365 .71 5 8 .00 21 2 .00 
1 340 .18 6 5 .00 7 1 .00 
2 115 .06 22 3 .00 9 1 .00 
3 63 .03 8 2 .00 
4 22 .01 20 2 .00 

(200) forseqIvar[local,@]] 
f = 84 H .963, P = .000, H· contr. .000 

4 cases 
0 67 .80 2 5 .06 
1 11 .13 6 1 .01 

(201) list[*, ... var[local,@]] 
f = 1909 H = 2.798, P .006, H contr. .018 

23 cases (11 shown) 
0 578 .30 4 133 .07 8 19 .01 
1 421 .22 5 85 .04 9 14 .01 
2 313 .16 6 47 .02 10 13 .n1 
3 221 .12 7 30 .02 «others» 29 .02 

(202) minus[var[local,@]] 
f = 199H 2.803, P .001, H contr . .. .002 

13 cases 
2 49 .25 6 11 .06 9 1 .01 
1 48 .24 5 5 .03 11 1 .01 
0 39 .20 7 4 .02 16 1 .01 
3 24 .12 8 3 .02 
4 11 .06 10 2 .01 

(203) minus[*,var{local,@]] 
f = 90 H 2.595, P .000, H contr. .001 

10 cases 
1 33 .37 5 6 .07 7 1 .01 
0 15 .17 9 3 .03 8 1 .01 
2 14 .16 4 2 .02 
3 13 .14 6 2 .02 

(204) plus[var[local,@]] 
f = 321 H 2.684, P .001, H contr. .003 

15 cases 
0 102 .32 4 9 .03 16 2 .01 
1 74 .23 6 9 .03 10 1 .00 
3 54 .17 7 5 .02 14 1 .00 
2 38 .12 8 2 .01 18 1 .00 
5 20 .06 9 2 .01 23 1 .00 

(205) plus[*,var[local.@]] 
f = 3027 H 1.795, P .010, M contr. .018 

15 cases 
0 1852 .61 5 29 .01 17 2 .00 
1 565 .19 6 27 .01 10 1 .00 
2 278 .09 7 25 .01 12 1 .00 
3 150 .05 8 5 .00 14 1 .00 
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4 86 .03 9 4 .00 23 1 .00 

(206) times[var[local,@]] 
f = 162 H 2.598, P .001, H contr. .001 

11 cases 
0 66 .41 3 10 .06 10 1 .01 
1 30 .19 6 8 .05 15 1 .01 
4 17 .10 7 7 .04 17 1 .. 01 
2 16 .10 5 5 .03 

(207) {indexldindexlseqindex}[var[local.@]] 
f = 264 H = 3.453, P .001. H contr. .003 

21 cases (13 shown) 
2 51 .19 5 27 .10 16 7 .03 
7 37 .14 18 12 .05 6 3 .01 
0 36 .14 3 10 .04 28 2 .01 
1 29 .11 9 8 .03 «others» 8 .03 
4 27 .10 11 7 .03 

(208) {indexldindexlseqindex}[·,var[local,@]] 
f = 245 H 2.364, P .001, H contr. = .002 

12 cases 
0 95 .39 4 10 .04 11 2 .01 
1 69 .28 5 6 .02 16 2 .0.1 
2 35 .14 9 3 .01 7 1 .00 
3 19 .08 6 2 .01 8 1 .00 

(209) {relLlrelLElrelElrelNlrelGEfrelG}[var[local,@]] 
f = 853 H 2.607, P .003, H contr. .008 

16 cases 
0 313 .37 6 20 .02 12 1 .00 
1 189 .22 8 12 .01 13 .1 .00 
2 134 .16 7 10 .01 16 1 .00 
3 71 .08 .9 6 .01 20 1 .00 
4 57 .07 10 3 .00 
5 31 .04 15 3 .00 

(210) {relLlrelLElrelEfrelNlrelGElrelG}[*,var[local,@]] 
f = 191 H 3.006, P .001, H contr. .002 

13 cases 
1 46 .24 6 11 .06 11 1 .01 
2 33 .17 5 8 .04 16 1 .01 
0 30 .16 7 6 .03 68 1 .01 
3 29 .15 8 6 .03 
4 17 .09 10 2 .01 

( 211) uparrow[var[local,@]] 
f = 355 H 1.130, P .001, H contr. .001 

8 cases 
0 281 .79 .2 11 .03 5 1 .00 
1 39 .il 4 3 .01 7 1 .00 
3 17 .05 6 2 .01 

(212) upthru[var[local,@]] 
f = 129 H 2.023, P .000, H contr. .001 

9 cases 
0 67 .52 3 5 .04 5 1 .01 
1 30 .23 4 5 .04 9 1 .01 
2 15 .12 6 4 .03 11 1 .01 

(213) assign[var[global,@]] 
f = 752 H = 4.743, P .003, H contr. .012 

95 cases (31 shown) 
1 100 .13 30 6 .01 28 4 .01 
0 85 .11 45 6 .01 32 4 .01 
3 79 .11 63 6 .01 33 4 .01 
2 68 .09 23 5 .01 38 4 .01 
4 61 .08 31 5 .01 40 4 .01 
5 59 .08 35 5 .01 42 4 .01 
6 41 .05 37 5 .01 43 4 .01 
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7 40 .05 41 5 .01 44 4 .01 
27 7 .01 64 5 .01 53 4 .01 
34 7 .01 16 .4 .01 «others» 107 .14 
24 6 .01 17 4 .01 

(214) call[var[global,@]] 
f = 4016 H = 4.241, P .014, H contr. = .058 

68 cases (25 shown) 
8 916 .23 17 101 .03 26 40 .01 
9 536 .13 18 93 .02 27 35 .01 
10 380 .09 19 82 .02 29 32 .01 
11 285 .07 20 75 .02 28 31 .01 
12 227 .06 21 68 .02 30 28 .01 
13 188 .05 22 58 .01 31 24 .01 
14 147 .04 23 50 .01 32 24 .01 
15 128 .03 24 45 .01 «others» 269 .07 
16 113 .03 25 41 .01 

(215) dot[var[global.@]] 
f = 1009 H 2.251, P .003, H contr. .008 

16 cases 
0 434 .43 7 7 .01 65 2 .00 
1 214 .21 6 5 .00 26 1 .00 
2 193 .19 59 5 .00 32 1 .00 
3 95 .09 22 3 .00 62 1 .00 
4 27 .03 25 3 .00 
5 16 .02 29 2 .00 

(216) dot[*,var[global,@]] 
f = 944 H = 4.912, P .003, H contr. .016 

48 cases (40 shown) 
3 97 .10 27 18 .02 2 9 .01 
14 87 .09 29 18 .02 21 9 .01 
0 60 .06 18 17 .02 25 8 .01 
6 51 .05 17 16 .02 5 7 .01 
12 48 .05 28 16 .02 8 7 .01 
22 48 .05 38 16 .02 15 7 .01 
1 46 .05 26 15 .02 36 7 .01 
32 45 .05 16 14 .01 44 7 .01 
4 43 .05 23 14 .01 41 6 .01 
7 27 .03 19 12 .01 33 5 .01 
24 27 .03 20 12 .01 42 5 .01 
31 24 .03 13 11 .01 43 5 .01 
30 23 .02 10 10 .01 «others» 17 .02 
45 20 .02 11 10 .01 

(217) signal[var[global,@]] 
f = 164 H 3.938, P .001, H contr. .002 

39 cases 
0 42 .26 15 1 .01 60 1 .01 
1 24 .15 17 1 .01 61 1 .01 
2 22 .13 20 1 .01 66 1 .01 
3 10 .06 21 1 .01 67 1 .01 
4 9 .05 26 1 .01 69 1 .01 
5 7 .04 29 1 .01 70 1 .01 
7 5 .03 31 1 .01 74 1 .01 
58 5 .03 34 1 .01 104 1 .01 
6 4 .02 40 1 .01 105 1 .01 
27 3 .02 46 1 .01 112 1 .01 
542 3 .02 47 1 .01 118 1 .01 
16 2 .01 53 1 .01 553 1 .01 
538 2 .01 54 1 .01 554 1 .01 

(218) arraydesc[list[@]] 
f = 80 H = 0.000, p .000, H contr. 0.000 

2 80 1. 00 
"'-

(219) call[*,list[@]] 
f 1816 H 1. 085, P .006, H contr. .007 

4 cases 
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2 1390 .77 4 121 .07 
3 263 .14 5 42 .02 

(220) casestmt[·.list[0]] 
f = 639 H 1.208. P .002. H contI' ... .003 

12 cases 
1 478 .75 4 7 .01 16 1 .00 
2 116 .18 5 4 .01 17 1 .00 
3 18 .03 9 2 .00 21 1 .00 
6 9 .01 10 1 .00 34 1 .00 

(221) dostmt[ •• ·.list[0]] 
f = 253 H 2.208, P .001. H contI'. '" .002 

10 cases 
2 111 .44 6 7 .03 11 2 .01 
3 62· .25 7 4 .02 12 2 .01 
4 40 .16 8 3 .01 
5 20 .08 10 2 .01 

(222) fextl'act[list[@]] 
f .. 196 H .. 1. 099, P .. .001. H cant ... '" .001 

2 136 .69 1 49 .25 3 11 .06 

(223) ifstmt[·.list[@]] 
f = 598 H 2.132. P .002. H cant ... .. .004 

12 cases 
2 314 .53 5 26 .04 11 4 .01 
3 120 .20 7 19 .03 12 2 .00 
4 70 .12 8 8 .01 16 2 .00 
6 27 .05 9 5 .01 10 1 .00 

(224) ifstmt[ •• ·.list[@]] 
f .. 173 H 2.051.p .. .001, H cant ... = .001 

8 c'ases 
2 77 .45 5 15 .09 8 1 .01 
3 50 .29 6 7 .04 9 1 .01 
4 20 .12 10 2 .01 

(225) in1ineca11[ •• list[@]] 
f = 230 H .. . 549. P .. .001 • H cont ... .000 

2 203 .88 3 26 .11 5 1 .00 

(226) item[list[@]] 
f .. 97 H 1.190, P .000. H cont ... .000 

5'- cases 
2 74 .76 6 6 .06 4 2 .02 
3 12 .12 5 3 .03 

(227) item[*.list[@]] 
f = 425 H 2.096. P .001. H cont ... .003 

12 cases 
2 215 .51 6 15 .04 10 2 .00 
3 95 .22 7 11 .03 12 1 .00 
4 52 .12 8 3 .01 14 1 .00 
5 27 .06 9 2 .00 42 1 .00 

(228) si9na1 [.,list[@]] 
f .. 44 H .. 0.000. P .000, H cont ... 0.000 

2 44 1.00 

(229) assign[va .. [loca1 ••••• @]] 
f .. 3114 H .. 2.078, P .011, H cont ... .. .022 

22 cases (11 shown) 
it> 1719 .55 8 64 .02 3 28 .01 
14 726 .23 32 64 .02 9 19 .01 
1 284 .09 11 39 .01 7 14 .00 
15 73 .02 5 30 .01 «othe .. s» 54 .02 

(230) assign[ •• var[local,., •• @]] 
f = 590 H .. 2.026, P = .002, H contr . .. .004 
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18 cases (12 shown) 
16 340 .58 11 10 .02 4 3 .01 
14 142 .24 3 9 .02 176 3 .01 
1 21 .04 32 9 .02 «others» 10 .02 
8 19 .03 5 4 .Ot' 
15 16 .03 10 4 .01 

(231) assignx[var[local •••• ,@]] 
f = 182 H 1. 963, P .001. H contr. = .001 

10 cases· 
16 99 .54 8 9 .05 9 1 .01 
14 43 .24 11 3 .02 32 1 .01 
1 13 .07 3 1 .01 
15 11 .06 5 1 .01 

(232) call(.,var[local,., •• @]] 
f = 1445 H 1. 463, P .005." H contr. = .007 

11 cases 
16 773 .53 lr 14 .01 4 ~ .00 
14 564 .39 15 7 .00 5 2' .00 
8 47 .03 3 4 .00 13 1 .00 
32 .27 .02 6 4 .00 

(233) dollar[var[local •••• ,@]] 
f = 840 H 2.252, P .003. H contr. = .006 

12 cases 
16 420 .50 304 41 .05 8 8 .01 
32 164 .20 208 19 .02 96 7 .01 
176 109 .13 160 11 .01 64 5 .01 
48 43 .05 128 9 .01 80 4 .00 

(234) dot[var[local •••• ,@]] 
f = 1929 H = 0.000, p = .007, H contr. 0.000 

16 1929 1.00 

(235) error[·,var[local,·,·,@]] 
f = 45 H = 0.000, p = .000, H contr. 0.000 

16 45 1.00 

(236) ifstmt[var[local,·,.,@]] 
f = 113 H = 0.000, p = .000, H contr. 0.000 

1 113 1.00 

( 237) list[., ... var[local ,.,.,@]] 
f = 1909 H = 2.104, P .006, H contr. .014 

17 cases (11 shown) 
16 986 .52 32 51 .03 5 31 .02 
14 542 .28 3 43 .02 8 17 .01 
15 77 .04 9 38 .02 7 6 .00 
1 70 .04 11 32 .02 «others» 16 .01 

(238) seqindex[var[local •• ,*.@]] 
f = 58 H = 0.000, p = .000, H contr. = 0.000 

16 58 1.00 

(239) seqindex[.,var[local •••• ,@]] 
f = 50 H = .242, P = .000, H contr. .000 

16 48 .96 3 2 .04 

(240) uparrow[var[local,.,*,@]] 
f = 355 H = 0.000, P = .001, H contr. 0.000 

16 355 1.00 

(241) upthru[var[local,*,.,@]] 
f = 129 H 1. 400, P .000, H contr. .001 

9 cases 
16 99 .77 4 4 .03 8 2 .02 
15 10 .08 9 4 .03 5 1 .01 
3 5 .04 6 3 .02 7 1 .01 
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(242) dollar[ •• var[field.@]] 
f = 2709 H = 2.433. P .009. H cant ... .022 

32 cases (11 shown) 
0 1432 .53 8 73 .03 4 47 .02 
1 370 .14 6 60 .02 5 40 .01 
2 343 .13 9 54 .02 10 23 .01 
3 157 .06 7 48 .02 «others» 62 .02 

(243) dot[·.var[field,@]] 
f = 4570H = 3.441. P .015, H contI'. = .053 

30 cases (17 shown) 
0 1032 .23 5 283 .06 26 36 .01 
3 701 .15 7 146 .03 14 28 .01 
4 597 .13 6 127 .03 17 27 .01 
1 588 .13 12 70 .02 19 24 .01 
2 390 .09 t1 44 .01 9 23 .01 
8 290 .06 10 42 .01 «others» 122 .03 

(244) arraydesc[list[·, ... @]] 
f = 160 H 2.536. P .001. H contr. = .001 

10 cases 
num 56 .35 plus 12 .08 dollar 1 .01 
addr 39 .24 dot 7 .04 base 1 .01 
val' 21 .13 div 4 .02 
call 17 .11 register 2 ~01 

(245) body[list[· •... @]] 
f = 6617 H = 2.639. P .022. H contI'. .059 

27 cases (11 shown) 
assign 2312 .35 casestmt 313 .05 rowcons 47 .01 
call 1364 .21 dostmt 304 .05 openstmt 31 .00 
return 1207 .18 construct 89 .01 bump 31- .00 
ifstmt 744 .11 fextract 79 .01 «others» 96 .01 

(246) call[ •• ltst[· •... @]] 
f = 4263 H = 2.425. P .014. H contI'. a .035 

29 cases (11 shown) 
var 1813 .43 doll ar 144 .03 minus 32 .01 
num 1216 .29 addr 112 .03 ifexp 24 .01 
dot 447 .10 plus 84 .02 dindex 22 .01 
call 226 .05 str 63 .01 «others» 80 .02 

(241) caseexp[ •• list[· •... @]] 
f = 120 H = .495. P = .000. H contr. .000 

item 107 .89 caseswitch 13 .11 

(248) casestmt[·.list[· •... @]] 
f = 982 H = .363. P = .003. H contI'. = .001 

item 914 .93 caseswitch 68 .07 

(249) casestmt[·;·;list[·, ... @]] 
f = 159 H 2.228. P .001. H contI'. "" .001 

12 cases 
call 71 .45 signal 5 .03 bump 2 .01 
assign 49 .31 fextract 3 .02 casestmt 1 .01 
ifstmt 12 .08 construct 3 .02 exit 1 .01 
return 9 .06 dostmt 2 .01 error 1 .01 

(250) caseswitch[·.·.list[· •... @]] 
f = 572 H = 0.000. P = .002. H contI'. 0.000 

case test 572 1.00 

(251) casetest[list[· •... @]] 
f = 254 n = v.vuv. p = .uui. n contI". u.uuu 

num 254 1.00 

(252) casetest[·.list[· •... @]] 
f = 600 H 1. 863. P .002. H contI'. = .004 

16 cases 
call 331 .55 fextract 5 .01 goto 1 .00 
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assign 169 .28 dostmt 4 .01 start 1 .00 
ifstmt 46 .08 return 4 .01 stop 1 .00 
vconstruct 12 .02 exit 2 .00 1st 1 .00 
casestmt 12 .02 inlinecall 1 .00 
bump 9 .02 construct 1 .00 

(253) catchphrase[list[· •... @]] 
f = 42 H = 0.000. P = .000. H contr. = 0.000 

item 42 1. 00 

(254) {constructlconstructx}[ •• list[· •... @]] 
f = 670 H = 2.948. P .002. H contr. '" .007 

20 cases (13 shown) 
var 180 .27 do 11 ar 28 .04 index 6 .01 
num 162 .24 call 15 .02 ifexp 5 .01 
unionx 124 .19 addr 14 .02 times 5 .01 
dot 55 .08 constructx 12 .02 «others» 13 .02 
(empty> 42 .06 dindex 9 .01 

(255) dostmt[·.·.list[ ••... @]] 
f = 828 H 2.427, P .003. H contr. '" .007 

14 cases 
assign 340 .41 dostmt 22 .03 signal 4 .00 
ifstmt 189 .23 fextract 15 .02 inl inecall 3 .00 
call 135 .16 construct 10 .01 openstint 2 .00 
casestmt 55 .07 catchmari< 6 .01 stop 1 .00 
bump 42 .05 1 abel 4 .00 

(256) fextract[list[· •... @]] 
f = 354 H = . 663, P = .001. H contr . .001 
assign 293 .83 <empty> 61 .17 

(251) inlinecall[*.list[·, ... @]] 
f = 489 H 3.016. P .002. H contr. .005 

17 cases 
num 160 .33 dollar 16 .03 call 5 .01 
var 114 .23 addr 16 .03 dindex 3 .01 
dot 44 .09 minus 12 .02 uminus 2 .00 
uparrow 31 .06 seqindex 12 .02 base 2 .00 
inlinecall 30 .06 index 8 .02 ifexp 1 .00 
plus 27 .06 times 6 .01 

(258) item[list[· •... @]] 
f = 243 H .422. P .001, H c~ntro .000 

5 cases 
relE 228 .94 relL 2 .01 relG 1 .00 
in 10 .04 lbl 2 .01 

(259) item[ •• list[· •... @]] 
f = 1355 H = 2.625. P .005. H contr. .012 

21 cases (14 shown) 
assign 542 .40 dostmt 28 .02 resume 15 .01 
call 354 .26 exit 25 .02 continue 15 .01 
ifstmt 187 .14 goto 17 .01 construct 13 .01 
casestmt 47 .03 bump 16 .01 vconstruct 13 .01 
return 45 .03 fextract 15 .01 «others» 23 .02 

(260) label[list[· •... @]] 
f = 187 H 2.311. P .001, H contr. .001 

12 cases 
call 62 .33 fextract 5 .03 label 1 .01 
assign 61 .33 bump 4 .02 exit 1 .01 
ifstmt 38 .20 construct 3 .02 openstmt 1 .01 
dostmt 7 .04 casestmt 3 .02 catchmari< 1 .01 

(261) mwconst[list[ ••... @]] 
f = 133 H = 0.000. P = .000. H contr. 0.000 

num 133 1.00 

(262) openstmt[·.list[· •... @]] 
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f = 391 H ~.113. P .001. H contr. = .003 
15 cases 

assign 206 .53 fextract 6 .02 goto 2 .01 
call 88 .23 return 4 .01 start 2 .01 
ifstmt 47 .12 signal 4 .01 dst 1 .00 
casestmt 15 .04 construct 3 .01 1st 1 .00 
dostmt 8 .02 bump 3 .01 catchmark 1 .00 

(263) return[list[· •... @]] 
f = 160 H 1.636. P .001. H contr. = .001 

9 cases 
var 98 .61 dot 6 .04 div 1 .01 
nurn 41 .26 call 3 .02 mod 1 .01 
dollar 7 .04 index 2 .01 addr 1 .01 

(264) rOw[list[· •... @]] 
f = 686 H = .882. P .002. H contr. = .002 

num 480 .70 str 206 .30 

(265) signal[ •• list[· •... @]] 
f = 8'8 H 1.68.0. P .000. H contr. = .001 

5 cases 
num 39 .44 addr 21 .24 call 1 .01 
var 26 .30 dollar 1 .01 

(266) vconstr~ct[·,list[., ... @]] 
f = 32 H = 0.000. P = .000. H contr. = 0.000 

unionx 32 1.00 

(267) dot[·,var[field.· •• ,@]] 
f = 4570H = 2.548, P .015. H contr. = .039 

27 cases (19 shown) 
16 2647 .58 10 84 .02 128 44 .01 
14 412 .09 2 75 .02 48 43 .01 
64 302 .07 8 66 .01 9 38 .01 
1 271· .06 11 64 .01 80 26 .01 
32 109 .02 3 51 .01 6 23 .01 
7 108 .02 4 44 .01 «others» 32 .01 
15 87 .02 5 44 .01 

(268) dollar[ •• var[field ••••• @]] 
f = 2709 H = 3.287, P .009. H contr. = .030 

33 cases (18 shown) 
16 792 .29 3 73 .03 80 24 .01 
14 562 .21 15 70 .03 13 21 .01 
1 264 .10 12 52 .02 5 20 .01 
2 259 .10 11 41 .02 9 17 .01 
4 209 .08 0 32 .01 «others» 35 .01 
32 97 .04 48 32 .01 
8 80 .03 128 29 .01 

(269) bump[@] 
f = 163 H 1.027. P .001. H contr. = .001 

4 cases 
var 126 .77 dollar 10 .06 
dot 25 .15 uparrow 2 .01 

(270) bumpx[@] 
f = 25 H = .482. P .000. H contr. .000 

var 23 .92 dot 1 .04 dollar 1 .. 04 
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