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AUSTRACT 

Many modern computer languages have a variety of basic data types and allow the 
programmer to define more. The facilities for debugging programs written in thes~ languages, 
however. seldom provide any capabilities to capture the abstraction represented in the programmer's 
mind by the data types. Incense, the system described here, is a working prototype system that 
allows the programmer to interactively investigate data structures in programs. The desired displays 
can be specified by the programmer or a default can be used. The defaults include using the 
standard form for literals of the basic types. the actual names for enumerated types. stacked boxes 
for records, and curved lines with arrowheads for pointers. The intention is that the display 
produced should be similar to the picture the programmer would have drawn to explain the data 
type. Incense dLplays have the additional feature that they can change dynamically. 

Incense is written in and for the Pascal-like language Af esa. which was developed at the Xerox 
Palo Alto Research Center. Incense has been used to investigate and document many data 
structures including some of the internal data structures of the Incense system itself. 

In addition to displaying data structures, Incense also allows the user to select, move, erase 
and redimension the resulting displays. Incense also· allows the user to modify the actual values 
stored using the same high-level names that arc displayed. These functions arc provided in a 
uniform, natural manner using a pointing device ("mouse") and keyboard. 
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I. Introduction 

Many modern computer languages have a variety of basic data types and allow the 

programmer to define others. Few languages, however, have facilities to allow the programmer to 

display these data structures for debugging, monitoring or documenting programs in a reasonable 

fashion. This thesis describes the system Incense, written in the Mesa computer language [Mitchell 

79b], which allows the client to design and use graphical representations for data structures. 

Pictures are clearly useful for representing data since they are used by programmers to explain 

their data structures to other humans. Frequently, a picture will be drawn of the typical case or the 
one under examination. A system that could present the information in the same manner that a 

programmer does would thus be taking a large step towards making the information easier to 

understand. 

The most basic part of Incense is simply a framework for data display. Thus, Incense would 
be useful to many types of systems that have data display as a component. The major emphasis of 

the current work, however, has been in the area of debugging systems. Incense has therefore been 

augmented with a large number of procedures that automatically display the data structures found 

in actual Mesa programs. In addition, facilities exist to allow the user to specify and modify the 
displays at various levels. 

The most difficult aspects of Incense were the display of pointers, and allowing the client to 
define new display formats. The solution to the first problem involved using a carefully designed 

abstraction to hide the internal data and procedures. The problem with pointers is that a location 
on the screen must be chosen for the referent. Inc~nse provides a mechanism to allow this to be 
done without dynamic space allocation. Although presently Incense does not have an acceptable 
front end, it should increase the effectiveness of any debugger into which it might be integrated. 

1.1 Importance of Debugging. 

Relatively little work has been done on debuggers and data structure display since the early 
days of computer science. Model [79, p. 4) claims that "the past twenty years has seen little change 

in the nature of the debugging facilities available to the typical programmer." The debuggers for 

high level languages such as Fortran, Pascal, and Mesa have mostly copied the aids developed for 

assembly languages. One reason for this is that programmers tend to discount the importance of 

debugging. Some, such as Dijkstra [72, p. 863), claim that good programmers should not waste their 

time debugging because "they should not introduce bugs to start with." When interesting 

debugging facilities are developed, they are frequently not documented or published since the 
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2 OISPLA YING DATA STRUCTURES FOR INTERACTIVE DEBUGGING 

systems are frequently proprietary and specific to a particular machine and/or language. In the area 

of data structure display, there has been even less work. In fact, "few attempts have been made to 

create formal external representations for the data environments (for any language)" [Swinehart 74, 

p. 83]. 

Unfortunately, the problem of debugging is not likely to go away. Even with the use of 

modern languages and the advent of structured programming techniques, programmers still spend 
"countless hours" debugging [Hanson 78]. Van Tassel [74, p. 117] goes so far as to claim that "a 

bug-free program is an abstract theoretical concept" Naur [74, p. 54] substantiates this claim: "The 

difficulty in achieving correctness in programs may be understood when the degree of complexity of 

many programs and the need for virtually absolute correctness of all details of these programs is 
considered." 

The importance of debugging can also be seen in its costs. Estimates of the amounts of time 
programmers spend debugging vary from fifty to ninety percent of the programming task [van 
Tassel 74, p. 117]. · Debugging and maintenance together may cost fifty times more than original 

program production [Tratner 79, p. 97]. 

1.2 The Theory and Teaching of Debugging. 

Unfortunately, few theories exist about how people debug and what makes a debugging system 
more effective. Debugging is generally considered an art, a creative activity. In finding the errors 
in a program, "the programmer operates in a very intuitive mode. depending more on insight and 

imagination than on rigorous step-by-step analysis" [Model 79, p. 53]. Some studies have attempted 
to classify types of bugs [van Tassel 77] and to find some global rules to help programmers (e.g., 

[Loeser 76]). Atwood (78) did.a study based on cognitive psychology to try to develop a theory of 
the difficulty of finding different types of bugs. He claims that the deeper the logical nesting depth 
·of a bug's location in the program, the harder it is to find. Sheppard (79] presents evidence, 
however, that Atwood's findings might not be valid and that there are strong dependencies oli the 

particular algorithm used in the study. Levine (77) attempted to discover if carefully planned 

debugging was more effective than "ad hoc" techniques but found no significant results. Most of 
these studies have used smalJ programs with very small numbers of subjects (e.g., 10) so no real 

conclusions can be drawn from them. 

One result of _the lack of a theory of debugging is that it is difficult to teach debugging 
techniques. "From the beginning," Tratner (79, p. 97] claims, "our best schooling in debugging 

teaches futility." All that texts and teachers can do is suggest general approaches and demonstrate 

the debugging aids that arc available. 
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1.3 Importance of Monitoring. 

In many cases, it is important to be able to monitor the state of a program while it is 

executing. A graphical display, such as presented by Incense, would allow the user to more easily 

follow the monitoring process (see chapter 2). Frequently, the information needed to locate an 

error is no longer available when recognized as important. This is especially true with real-time 

programs such as operating systems. In an informal poll of Mesa users (see Appendix A), two of 

the most frequently listed problems were random overwriting of memory locations and process 

interactions (including timing problems). Monitoring that allowed watching of both control flow 

and variables would help immensely in locating the sources of these. bugs. 

The programmer may also be able to discover problems with the flow of control or 

manipulations of the data structures using monitoring. Swinehart [74, p. 2] explains: "Continuous 

display of information with some associated context helps the user to retain comprehension of 

complex program environments, and to indicate the environments to be affected by his commands.·~ 

1.4 Overview of Thesis. 

In view of the importance of debugging and the general lack of research and theories about it, 

the best way to investigate ideas about better techniques seems to be to implement a system and 

then see if it appears to increase the programmer's productivity. Incense is an attempt to study one 

very important part of debugging systems: the display of data structures. This thesis first presents 

some of the requirements felt to be important in any debugging system (chapter II) and then 

describes some related work in debuggers and graphical systems (chapter III). Following this is a 

description of the environment at the Palo Alto Research Center (PARC) in which Incense was 

created (chapter IV). An overview of the Incense system (chapter V) is followed by a discussion of 

the run time type system required for generating the default displays (chapter VI). More detail 

about the actual implementation of Incense is then given (chapter VII). The thesis concludes with 

some ideas for future work (chapter VII) and a summary and conclusion (chapter VIII). It is 

important first, however, to define the terms used in the rest of the paper. 

1.5 Definition of Important Terms. 

This paper assumes the reader is familiar with programming and some computer languages; 

however, some terms will be used in a specific or unusual manner and are therefore defined below. 
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Data. Knuth, in his famous text book [Knuth 69, p. 620), defines data as 

representation in a precise. formalized language of some facts or concepts. often numeric 
or alphabetic values, in a manner which can be manipulated by a computational method. 

Data Types. All variables in languages such as Mesa are required to be of some specific type. 

Each type is characterized by (1) the set of values included in it, (2) the way literals of 
that type can be written in a program. (3) mies about how the values of the type may be 
used as operands of operations, and ( 4) rules about how values of the type result from 
executing operations. [Naur 74, p. 40) 

A type may also specify the way the values arc to be laid out in memory [Aho 78, p. 387). Types 
in Mesa include INTEGER, REAL, CARDINAL (positive integers). BOOLEAN (true or false), CHARACTER, 

POINTER, RECORD. ARRAY, ENUMERATED (lists of names, e.g. {Mon. Tues, Wed, Thurs, Fri}), 
subranges of the above types, and many other more esoteric types (sec chapter 6). 

Strongly Typed Languages. Strongly typed languages are ones "that have many types, but the type 

of every name and expression must be calculable at compile time" [Aho 78, p. 36). Mesa and 

Pascal arc strongly typed, but Piil, Fortran and Lisp are not. This feature provides many 

opportunities For a data display system since the compiler can save the type infonnation allowing 

the correct display format of any data to be chosen. 

Data Structures. "A data structure is a set of primitive data clements and other data structures, 

together with a set of structural relations among its components" [Aho 78, p. 38). Thus instances of 

records and arrays are data structures under this definition. In this thesis, however, I will frequently 

use data structure to also include the basic data elements. 

Debugging. Debugging "is the process of making a program behave as intended. The difference 

between the intended behavior and actual behavior is caused by 'bugs' (program errors) which are 
to be corrected during debugging;' [Lauesen 79, p. 51). Model (79, p.52] classifies different stages of 

debugging: 

Fundamentally, debugging is the act of {1) observing the behavior of a computer 
program; ... (2) comparing the actual behavior to the behavior desired of the program; 
(3) analyzing the cause of variances thereby detected; (4) devising changes to the 
program that would make it conform more closely to the desired behavior; and (5) 
altering the program in accordance with those changes. Normally the act is cyclical: 
aher the program has been modified. the steps are repeated until a sufficient match 
between desired and observed behavior is obtained. 

Testing. Some authors distinguish between testing and debugging. Van Tassel (74, p. 118] asserts 
that "testing determines that an error exists; debugging localizes the cause of the error." Debugging 

will be used to include testing in this thesis, however. 

Client.. In the text above, there have been references to what the programmer can do in Incense. 

In fact. however, the system is configured so that a program can call on Incense and get the same 

results. Client wiJl be used to denote both human and procedural users, and programmer and user 

will be used interchangeably to refer exclusively to the human user. 



II. Desired Features in a Debugging System 

Many different requirements for debugging systems have been specified in the literature, and 

actual systems conform to these constraints to varying extents. This section will attempt to list many 

of the desired features of debugging and data display systems and the reasons they are appropriate. 

These requirements will be used as criteria for judging debugging systems and will serve as goals for 

Incense. 

2.1 Motivation for Features. 

As might be expected, most of the desired features are motivated by limitations of the human 

users. People can only attend to a small amount of information at a time, but "when dealing with 

infonnation in a familiar form, ... humans arc highly adaptable. They tend to supply missing items 

themselves" [Naur 74, p. 238]. Another aspect of human understanding is that it tends to be highly 

"context sensitive" [Swinehart 74, p. 10]. That is, the presentation of context allows more rapid 

recognition of the information's meaning and significance. 

Another aspect of the programmer-computer interface is the volume of data that needs to be 

transferred. Frequently, the programmer must process large amounts of information produced by 

the computer, for example to find a bug with unusua;, non-local effects. Furthermore, this data 

may be generated by multiple processes running in the computer. In this case, the programmer 

must be able to separate the output coming from the various sources. 

2.2 Features. 

Naur [74, pp. 239-245) gives a long list of design requirements for any computer system for 

which a human interface must be provided. The principles governing design of input from the user 

are: 

(1) Reduce the volume of data required from the user; 

(2) Adjust the fonn of the input to make best use of the human faculties; 

(3) Use feedback to allow correction of mistakes as they are made; and 

(4) Include careful redundancy to allow automatic recognition of mistakes [Naur 74, p. 244]. 

For output, Naur has a similar list: 

(5) Adjust output quantity to human capacity; 

(6) Choose forms of output that arc readily acceptable to human comprehension; and 

(7) Output only completely processed results [Naur 74, p. 245). 

This section wilt discuss these points (and some others) emphasizing their applicability to 

debugging systems. 

5 
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2.2.l Speed. 

One of the most common complaints about current systems is that the operations required to 
find a bug take too long. Many of the experimental systems that seemed very attractive on paper 

(for example, [Model 79]), · are not used because they operate too slowly [Fikes 79][Laaser 79]. 

Systems such as RAID [Petit 69], which essentially add a Cathode Ray Tube (CRT) screen to 

conventional debugging aids, are very effective partially because "relatively conventional tools are 

considerably enhanced by increasing the bandwidth of the communication path" [Satterthwaite 75, 

p. 21]. 

Mitchell [79a, p. 7] gives a more theoretical definition of the speed requirements of an 

interactive system. He prop~scs that the two conversants should be matched in response time (a 
"balanced conversation"). If not, the more powerful one wilt either use his time poorly or waste 

energy doing unnecessary computation. Different types of tasks arc allowed to take different 

amounts of time, however. For example, the wait before commencing a complex operation an~ 
seeing it complete may be much longer than the wait between pressing of a key and seeing the 

letter typed. Recently, it has become acceptable to allow the computer to be under-utilized due to 

decreasing costs of hardware. Consequently, the appropriate criterion today is that the human 

should be able to avoid wasting his time. 

2.2.2 Information at user's level. 

Naur requires that output should be "completely processed." For example, if the user 

requests the display of a CHARACTER and the debugger prints an octal number, the user rather than 

the computer will have to do the conversion. A similar requirement also applies to input With 

respect to programming languages, "it is imperative that information about the behavior of a 

program be presented at the conceptual level at which the program was written and in terms of the 

constraints and operations of the programming language used" [Model 79, p. SS]. 

A motivation for this principle is given by Model [79, p. 28]. He explains that people do not 

usually understand higher level constructs by breaking them down into the lower level constituents 

because these details require the user to handle more information, most of which is irrelevant to his 

task. If the information is presented at a higher level, this "leaves more of the programmer's 

resources available for the demanding analytic and creative phases of debugging activity" [Model 79, 

p. 55). 

Another aspect of this requirement is that the programmer can best understand the 

information if the context in which the information is to be evaluated is presented. Most current 

systems require the user to declare the context in which he is interested. The system then assumes 
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he remembers it. In systems with complex, dynamic displays, however, sufficient contextual 

information must be displayed to allow the programmer to identify the meaning of the displayed 

information. 

2.2.3 Use of appropriate level of detail. 

In addition to the requirement that the information be presented at the correct conceptual 

level, the amount of information produced should be minimized. If the user is interested in one 

particular value, he should not be required to hunt through a large amount of output to find it 

"The name of an object is often all the programmer needs to see, as printouts frequently serve only 

to identify which one of a set of known objects a particular one is. When the user docs want further 

details, it is imperative that ~c be able to request them selectively" [Model 79, p. 78]. Providing 

only the needed information can also allow the system to respond much more quickly since 

interactive systems frequently spend much time handling Input/Output (1/0). 

2.2.4 Analogical display. 

The use of analogical display helps to handle many of the requirements listed above. An 

analogical disp1cly uses abstract pictures, such as bar graphs, icons, arrows, tables, etc. Thus the 

information is not simply printed out; it is converted into a form that is easier for the human to 

understand, possibly by analogy to the physical world. 

Again, Model [79, p. 12) motivates this requirement with reference to human psychology. The 

structure of the human brain and current undcrsta~ding of human information processing "show 

that sensory information [of the physical world] is highly organized before it reaches the parts of the 

brain associated with abstraction, analysis, and other components of thought" Thus, analogical 

displays more effectively utilize the brain's innate capacities. For example, the eye is good at 

making rough estimates in proportion. A display of an iteration variable as a "percent-done 

thermometer" (like those used in charity drives; see Figure 2.1) or a bar graph (Figure 2.2) may 

present all of the required information in a manner that is easy to understand. 

Pictures are used by programmers to explain their data structures to other humans. For 

example, the programmer often draws a picture of the typical case or the one under examination. 

The programmer rarely would write a set of octal numbers to explain how his trcc-strncture is 

represented. Therefore, a system that uses pictorial output presents the information in a more 

natural and understandable manner. 
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Figure 2.1. Percent-done thermometer showing 80% complete . 
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Figure 2.2. Display of storage usage in DLISP as numbers (top) and bar-graph (bottom). 
· [Model 79, p. 117). . 

2.2.5 Automatically generated pictures. 

Pictures are also produced as documentation for programs. The most obvious example of this 
is flowcharts. Drawings of ·data structures are also frequently drawn by hand, especially for 
languages with standard, high-level structures such as LISP. Unfortunately, "readable, neat copies 
of pictures are expensive· to produce and reproduce ... [and] with manually generated pictures, there 
is no guarantee of correspondence with a real computation running on.a real machine" [Yarwood 
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77, p. 9]. Thus, automatic generation of the pictures is required. This was done on the earliest 

computers (section 3.6.1), but was seldom used until recently (section 3.5.2). Interest in automatic 

generation of flowcharts began in the late 1950's (see section 3.6). The automatic generation of 

pictures as a means of display seems the natural choice considering the desire for analogical display. 

2.2.6 Meta-knowledge. 

Debugging systems might help the programmer understand the output at a more global level 

even more than by using analogical display. For example, when asked the value of an array, the 

system might say: "All have initial value except for element #17 which equals .... " This would 

usuaUy be easier to understand than the list of all the values. Another useful facility would be to 

detect that certain elements of a complex structure had been overwritten by accident. At an even 

higher level, t11e programmer might ask, "Did anything unusual happen during this execution?" A 

system that would allow expression of these sorts of requests would require knowledge and 

capabilities not yet available even in the most advanced artificial intelligence systems. If the 

techniques were available, however, debugging systems would be a" useful place for them to be 

applied replacing much of the current interface to debuggers. A sophisticated data display system 

would still be useful, however, and would be improved through the use of knowledge about the 

user and program. 

2.2.7 Replay. 

The ability to make a history of the events that occurred during an execution or debugging 

session has proved useful in many systems. If the running time of the program under investigation 

is too long, a replay at a higher speed using the history may be the only practical way of following 

it [Lenders 78]. Replays may also allow the user to back up a computation, change something, and 

then repeat the computation in the new environment Yarwood [77, p. 61] gives another motivation 

for replays: 

In onler to understand a complex change in ... data, the user must be able, for a short 
time at least. to move his attention more or less randomly between the "before" state, 
the "after" state, and the intervening part of the program which caused the change. 

In a CRT based environment, a history should be stored to a11ow the user to look back at previous 

output. With an analogical display, the information stored on the history should be sufficiently 

detailed to allow a replay of the pictures produced originally. 





III. History of Debuggers and Other Relevant Systems 

Debugging of computer programs has been necessary ever since the first programs were 

written. There are many good histories and surveys of debugging (for example, [Model 79], 

[Satterthwaite 75], and [Blair 71] all contain good surveys over different sets of systems). The survey 

presented here makes no attempt to be thorough or comprehensive. The important stages of 

computer software debugging are presented along with some illustrative examples in sections 3.1 

through 3.5. 

Some systems that were not aimed directly at debugging have profoundly affected the way 

humans interact with the computers. These have generally been graphically oriented. and some are 

discussed in section 3.6. 

3.1 Earliest Systems and the Basic Debugging Techniques. 

The earliest stored program computers were small enough that one user's program could 

effectively utiJize the computer's resources. Therefore, the programmer could sit at the console and 

debug his program while it was operating. This is called the interactive mode of operating since the 

user is interacting with the computer. 'Jbe alternativ-:- is batch mode, in which the user has no 

control over the execution of the program once it has begun. The earliest interactive debugging was 

frequently done by watching the lights on the front panel of the computer. 111e three basic forms 

of debugging, trace. dump, and break, were all developed on the EDSAC, the "first practical Stored­

program electronic digital computer" [Satterthwaite 75, p. 18]. The EDSAC was built at Cambridge 

University in the middle 1940's [Bell 71, p. 42). 

3.1.1 1be Trace. 

In a program trace, some portion of the state of the machine, such as the location in the code 

and the values of important variables, is printed out every time certain events occur. These events 

are usually the reading or writing of a memory location or the execution of a certain type of 

instruction (e.g. a branch at a specific point). One purpose of a trace is to "give the user some 

picture of which of the many possible sequences of operations was actually performed" [Model 79, 

p. 44]. Flow tracing is useful for optimizing code, since the user can discover where the program is 

spending its time. Tracing is also useful for discovering how some variable got a certain value. 

3.1.2 lbe Dump. 

The dump is actually a more primitive operation than a trace. The programmer displays all 

the values in a certain area of memory, usually in some numerical representation such as octal. He 

11 
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must then try to figure out what all the values mean and if any of them are wrong. Dumps are 

inefficient since (1) the bug may have occurred long before the effects seen in the dump; (2) 

finding more than one bug is difficult: (3) too much information is available, making it hard to find 

the important parts: and (4) it is hard to get any meaning from a dump if a higher level language is 

in use [Lauesen 79, p. 53]. Dumps were discouraged on the earlier machines such as the EDSAC, 

due to the slow output devices available [Bell 71, p. 139). 

3.1.3 The Breakpoint. 

Whereas traces and dumps can be used in either interactive or batch modes, breakpoints are 

only useful in the former. A breakpoint is simply a method for causing the program to cease 

executing, usually in a mann~r that will allow it to resume at the user's command. 'Ille standard 

implementation method is to save the instruction where a break is desired and store a trap 

instruction in that location [Hughes 78, p. 102]. Care must be taken in executing the instruction ou~ 

of line to maintain the correct semantics. 

Breakpoints only allow "snapshots" of the program state and are not very good for finding 

certain types of bugs. For example, to find out how code is being clobbered, the programmer 

might have to repeatedly run his program setting breaks further and further back [Leslie 78). 

Breakpoints also generally give confusing information in systems with multiple processes. 

A small enhancement on breakpoints is single-stepping where the system sets a breakpoint 

before every instruction. Each system that provides this facility must therefore define the meaning 

of "an instruction." For example, in LISP, an instruction might be the processing of one atom, the 

call of a function, or one cycle of the read-eval-print loop. 

3.1.4 Events. 

Events in a program execution are the occurrences of certain happenings, for examples, 

accessing or writing of a memory location or the execution of a certain type of instruction. Hanson 

[78] has formalized the idea of events and provided facilities in the language system SNOBOL for 

executing arbitrary functions when they occur. He classifies the events into five types: (1) 

referencing of a variable; (2) execution of a statement; (3) external interruption (by the user); (4) 

function call or return; and (5) execution time error [p. 116). A new function has been added to 

the language definition of SNOBOL called CONNECT which attaches a function to a particular 

instance of an event type. This mechanism is sufficiently general to allow any type of breakpoint, 

trace or dump to be written, and it is possible to provide an entire debugging system such as DDT 

(section 3.4.2). 
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Hanson claims that the overhead for all of this flexibility is small. One extra compare is 

required for every assignment to a variable, but this can be omitted if no events associated with 

variables are used [p. 125]. Thus event associations seem to be a general and powerful way to 

achieve some of the facilities desired in a debugging system. 

3.2 Hatch Debugging Systems. 

When computers became faster and more expensive, one person could no longer efficiently 

use the entire machine. Thus, batch processing was invented [Mitchell 79a, p. 4). Here the 

programmer develops his program off-line and then (usually) punches it on cards. These are 

submitted and later its output is available. The turn-around time for batch systems is typically on 

the order of six hours or more. The programmer was therefore encouraged to carefully examine his 

program to try to avoid extra runs. Lots of output was generated on each run so the programmer 

would have some hint as to where bugs might be. 

It was in batch processing that dumps became a dominant form of debugging. With the 

advent of high speed line printers, dumps were much more practical than allowing the user to 

investigate a running program. Operating systems were frequently configured to dump all of 

memory when .:;ome faults occurred. Lyon [78, p. I} reports that "whole books have been devoted 

to deciphering COBOL dumps." 

3.2.1 Print statements as a debugging tool. 

Unfortunately, dumps frequently proved inadequate and many systems did not have usable 

trace facilities, so another popular debugging technique emerged. The programmer would insert 

print statements in his program, to try to simulate an effective trace. Knuth [69, p. 189) reports that 

"many of today's best programmers will devote nearly half of their program to facilitating the 

debugging process on the other half; ... the net result is a surprising gain in productivity." 

Problems with this mode of debugging arc that the "debugging statements usually must be left out 

of the final version of the program, and are tedious to include in [its] development" [Hanson 78, p. 

121]. Another problem is that the output (or its absence) may modify the program's behavior (e.g •• 

its timing characteristics) in a way that creates or hides bugs. 

Lauesen [75) [79] claims that in spite of these problems, he was able to produce an operating 

system that "seems to be error-free" using print statement output as the major debugging technique 

[Lauescn 75, p. 378). He further maintains that "if the program is properly structured, [putting 

print statements] in a few places will suffice, even in large programs" [Laucscn 79, p. 53). The 

output is directed at a file during production runs to act as a history, allowing tJ1c programmers to 

do a mental replay of events if a bug occurs. 
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3.2.2 An advanced batch system. 

Satterthwaite [75) developed a system to aid in the debugging of programs written in Algol W 

at Stanford University. His system allows the user to add ASSERT statements to the program that 

the system will then check. If they arc not true, the program will be halted, and, as for any other 

run-time errors, a post-mortem dump will be generated containing the values of all variables. A 

tracing facility was also provided along with a simulator to execute the traced statements. All 

. output was given in terms of the original program and contained only symbolic names for variables 

and their values. 

3.3 Intermediate ))chugging Systems. 

Some debuggers attempted to handle both batch and interactive access. For example, the 
PEBUG system is a low-level system that "provides the general debugging environment for the 
debugging of any relocatable object program" through either batch or interactive interfaces [Blair 
71, p. 1). This system attempts to avoid language dependencies by having a standardized symbol 

table format It also allows users to define debugging routines and can tolerate bugs in them. 

3.4 Interactive Debugging Systems. 

Interactive systems developed along with timesharing in the middle 1960's. Users could now 
interact with thei~ programs as if they had an entire system to themselves. Later, when hardware 
became even cheaper, personal computers began to be popular. In these systems, the user actually 

do have the entire machine. Since the abstraction presented to the user does not differ substantially 
in the two worlds, they wiJJ be discussed together in this section. 

Mitchell [79al describes how an interactive system might be built and provides some insight 

into the motivation and requirements for one. For example, he claims that "it is a gencralty held 
belief that interactive systems should give 'immediate' response to trivial requests" [p. 6). Examples 
of interactive programming systems arc JOSS, Basic, APL, LCC, Interlisp and COPILOT [Swinehart 
74, p. 1). 

One property of interactive systems is that more effective software tools are needed to facilitate 

program debugging [Evans 66, p. 37]. Unfortunately, few tools provided any techniques not 

available on EDSAC (sec, for example, [Schueler 77] and [Kazek 78]). In addition, "few high level 

languages provide facilities for interactive debugging in which the interaction is in terms of the high 

level language itself' [Hanson 78, p. 116). 
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3.4.l Importance of interactive debugging. 

Some have claimed that the programmer using an interactive system consumes more computer 

time and does a more superficial analysis of the problems than he would using a batch system 

[Model 79, p. 46]. In fact, however, other studies have shown that the overaU elapsed time to find 

bugs is shorter by 50% to 300% with on-line systems and that the computer usage only 30% higher 

[Sackman 68). A study by Boehm [71) suggested that enforcement of an interval between runs 

decreased the overall time required. In spite of this, there is ample evidence that users strongly 

prefer the interactive systems [Gold 69]. 

There are other advantages to on-line debugging. The system can give the user continuous 

guidance on the format of desired input, immediate feedback of errors, and control over output 

format [Naur 74, p. 252). Also, Henriksen [77) notes, it is often difficult to locate a bug with the 

snapshot output available from batch runs. Only with interactive systems can monitoring be 

effectively used (section 1.3). 

3.4.2 Examples of interactive debuggers. 

The original DDT (originally for DEC Debugging Iape but more recently, Dynamic 

Debugging Technique) was developed at MIT for the PDP-1 (Kotok 61]. It allowed interrogation of 

machine registers, interpretive execution, breakpoints, single stepping, tracing, and patching of code. 

DDT-like debuggers have emerged for most assembly languages. Most allow use of the symbolic 

names of labels to specify locations. 

Most debuggers for higher level languages have not expanded on the capabilities offered by 

DDT. Some, however, do attempt to allow the programmer to avoid having to know anything 

about the machine implementation of the language or the compiler. Examples of this are the PL/I 

debugger on Multics, the IBM PL/l checkout compiler (Satterthwaite 75, p. 23] and the current 

Mesa debugger (see section 4.2.1.2). 

Some other debugging systems alJow the user to correct mistakes using the source language 

and then continue execution. ll1is implies that the full capabilities of the language should be 

available at debug time. An early system with this feature was the IMP system which had an 

integrated debugger and assembler [Lampson 65]. Most of the systems with this feature, however, 

arc interpreted rather than compiled. Examples arc APL, Basic. and MDL Interlisp (Teitelman 78] 

is an interpretive system where case of debugging was a significant design goal. Since Lisp is an 

interpreted language, it is easy for the system to allow the user to do arbitrary computations at any 

point. Interlisp also contains a powerful tracing facility that allows the user to investigate the call 

stack. A return can be enacted at any poi~t with the return argument specified by the user. In 
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addition, any changes the user makes to the program, even the very procedure being run, are 

immediately reflected in the computation. The modified version is also saved ff eitelman 78, p. 

15.3]. 

Interlisp also contains a system called DWIM (Qo What ! Mean) which attempts to correct 

errors as programs execute. If Interlisp cannot understand a string, it tries to find a spelling of that 

string that makes sense. If successful, the user is asked to confirm the new spelling or supply 

another one. DWIM also tries to correct unmatched parentheses and certain other common errors 

ff cite Iman 78, pp. 17.l • 17 .28]. 

Unfortunately, interpreted languages tend to run slower than compiled languages [Satterthwaite 

75, p. 24]. 'Ilic ability to correct a mistake and continue is much harder to provide with compiled 

languages since "decisions made during compilation, such as those concerning the allocation of 

registers for temporary results, make the different pieces of the resulting machine level code inter­

dependant" [Model 79, p. 53]. This makes incremental compiling (compi1ing only a small piece of 

code) very difficult. It is still used in some cases, however. 

3.5 Dynamic and Pictorial Debugging Systems. 

This section discusses a group of debugging systems that either use a CRT to allow monitoring 

of data, or produce pictures of the data, or both. 

3.5.1 Non-pictorial monitoring systems. 

The advent of CRTs as computer 1/0 devices allowed more effective monitoring of programs 

as they are executing [Gladwin 69]. RAID [Petit 69] provides the facilities of DDT, along with the 
ability to assign a variable to a ·particular place on the screen. 1l1e system wilt update the displayed 

.value at breakpoints and while single-stepping allowing the user to monitor the program during 

execution. North [77] developed a system for an Intel 8080 microprocessor that updated the 

displayed values continuously by interpreting the code. 

3.5.2 Pictorial static systems. 

Yarwood [77] developed a system that would generate "itlustrations" for programs in a very 

limited subset of PL/I. 'Ille pictures were generated on an electrostatic printer and were only 

useful for documentation of the program after it had been debugged. This system, however, is 

claimed to be one of the few attempts at analogical display [Model 79, p. 82]. In each snapshOt, 

Yarwood's system displays a piece of text relevant to the state of the system along with a display of 

some data. A major feature is the ability . to display one-dimensional arrays with the indices 
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displayed as pointers into the array. Parts of the array can also be labeled so that a level of 

abstraction can be shown (see Figure 3.1). A special language is used to specify what is to be 

displayed and when. lbis along with the original program is sent through a pre-processor which 

produces a new program which is then compiled and executed. 

ITERATION 6 OF ENTRY 6 OF LOOP NLEQK 
r:::-:===:::~~=::~-::--7~-r-~,..-, 

N K u 

24 13 3 23 10 12 34 25 12 45 45 37 27 55 57 62 78 94 98 99 
A <= A(L ? >AL 

Figure 3.1 Yarwood's display of an array showing indices as pointers and labeled sections underneith. 
[Yarwood 77, p. 92] 

3.5.3 Pictorial monitoring systems. 

3.5.3.1 EXDAMS. 

One of the earliest pictorial monitoring systems is EXDAMS (!ilitendible Debugging !!nd 

· Monitoring ~ystem) [Ilalzer 69]. Unlike other systems, EXDAMS docs not allow monitoring of 

running programs; the program under study must be run with an EXDAMS routine that collects 

information on a history tape. The information about the run can then be investigated at a later 

time. This history file allows the debugging aids to be language independent, since only the part 

that creates the history tape needs to know about the actual target program. 

EXDAMS provides some very powerful display routines. For example, an inverted tree can 

be produced showing how a variable got a certain value (see Figure 3.2). The user can then request 

a similar "flowback" analysis along any of the resulting paths. Another static display available is a 

temporal list of all the values assigned to a variable. In addition, "movies" of the action of the 

program can be shown. The statement being executed will be highlighted and the values of 

displayed variables will be kept continuously updated. Also, as in Yarwood's system, the user can 

specify that a variable is an index into an array and have it displayed as an arrow. Balzer claims 

that the system is extensible so that even more interesting features could be added. In order for 

EXDAMS to work, it has to save a great deal of information. 'lbe statements added to the source 

program increase its length by approximately a factor of three. 
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Figure 3.2. EXDAMS "flowback display showing how A got its current value. [Balzer 69, p. 569) 

3.5.3.2 COPILOT. 

COPILOT, a interactive programming system useful for debugging [Swinehart 74), was the first 
to exploit "the idea of using the display as a means for a11owing the user to retain comprehension of 
complex program environments, and to monitor several simultaneous tasks" rreitelman 77, p. 1). 

COPILOT is a dynamic system that "allows the user to create, modify, investigate and control 
programs written in an Algol-like language, which has been augmented with facilities for multiple 
processing" [Swinehart 74, p. xiv]. Central to the design is the use of multiple CRT displays that 
a11ow the different processes all to show their current state simultaneously. A major design goal was 
to allow the user to input commands at any time and not have to wait for completion of tasks. 
Thus "the user's terminal is continuously available for commands of any kind: program editing, 
variable inquiry, program control, etc" [p. xiv]. In addition, no process can prevent the user from 
directing input to another process. This is called the non-preemption property. Since the user's 
understanding of a display is dependent on the context, and there are many different contexts in a 

multiple-processing system, the environment in which a value was generated is displayed along with 
the values. Unfortunately, the processing power was not available to have the displays continuously 
kept up-to-date so the system operates using snapshots [p. 73), nor was the performance of 
COPILOT good enough to support actual users. 

3.5.3.3 Smalltalk, windoMi and selections. 

Smalltalk [Shoch 79][lngalls 78) is a language system that incorporates a large number of 
display facilities. It was felt that graphics would make the system easier to learn and use [Kay 77). 
Smalltalk. developed the idea, first proposed in the FLEX system [Kay 69), of using multiple 

overlapping rectangular regions called windows to extend the available screen space [Goldberg 79). 
The display for FLEX was a "large virtual screen on which displays may be 'tacked' like notices on 
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a bulletin board" [Kay 69, p. 235). Windows can be moved in 3 dimensions. They can be 

translated to any portion of the screen, possibly changing size, and they can be moved "forward" 

(or "back") so they are less (or more) occluded by other windows (see Figure 3.3). The information 

in the windows may not be able to fit in the area specified, in which case only part of it is shown. 

The rest may be seen by scrolling the window the way one might move a scroll of text behind a 

small opening. The FLEX system incorporated the added feature of a true zoom where the 

displayed objects increase in size. This feature was not carried over into any of the later systems, 

however. Smalltalk presents a uniform window interface both to the programs and the user, 

thereby allowing complex systems to be easy to use (e.g., an animation system [Backer 76] and 

Thinglab (section 3.6.4)). 

Figure 3.3 A typical Smalltalk screen showing multiple overlapping windows including a font-editing 
window (at top) and various types of pictures. [Picture courtesy Glenn K rnsnerl. 

Another important aspect of a display-based system such as Smalltalk is the use of selection to 

specify commands and their arguments. Selection using a light-pen to point at objccL<; on the screen 

was used as early as 1963 for Sketchpad (section 3.6.2). Its applicability to interactive debugging 

has been long known [Zimmerman 67]. English (67) is credited with the first use of a mouse as a 

pointing device to select portions of the display (section 4.l.l). The advantages of using selection 

over type-in is that it is faster and less prone to errors. In addition, the user does not have to 

remember the corresponding text. Selections are closely tied to menus, which are lists of commands 

where the· selected command is executed. Figure 3.4 shows two menus from the Smalltalk system. 
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Figure 3.4. Two Smalltalk menus. (a) is the editing, compilation and execution menu and appears 
when the Yellow mouse button is hit. (b) is the window menu and appears when the 
Blue button is hit. [Picture courtesy Glenn Krasner) .. 

3.5.3.4 DLISP. 

Another programming system that facilitates debugging is DLISP (for Display Lisp) rreitclman 

77). This system is built on top of INTERLISP (section 3.4.2) and thus has all of the debugging 

facilities of that system. Jn addition, DUSP uses multiple windows on a CRT to allow the user to 

interact with multiple processes using only one display. The windows are allowed to overlap {see 

Figure 3.5) and are treated essentially the same as Smalltalk windows. DLISP also contains 

primitives that make it easy to create pictures. For example, Bill Laaser was able in just two weeks 

to create a package that drew pictures of actual Lisp lisle; such as in Figure 3.6 [Laaser 79]. ln 

another data-display application, Figure 3.7 shows a pretty-printed list output and a pictorial 

presentation of the same tree data structure. It is clear that the latter is much more evocative. 
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Figure 3.5 DUSP screen showing windows overlapping during a typical session. Text in WORK 
AREA on black background is selected. [Tcitelman 77, p. 18). 
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E,I(' 1t~'.:i :)\J: \ ~w~ ~ c11· ,(',~ :. ' ........... : . : :.: ........ : ......... :. ,' : •. : .... • .. ' ... : 

Figure 3.6 Pictorial display of the list: (((AB (Mo (P Q)))) 
0 E ( F G ((H 1)))) 

in DLISP after being modified by selecting cells and specifying where they should 
point with the mouse. (Picture courtesy Bill Laascr). 
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'TOP (ONE (2) 
(3)) 

(TWO (A (B) 
(0 (E))) 

(L (M (N)) 
(P))) 

(THREE)) 

(b) 

Figure 3.7 Pictorial display in DUSP (a) of the tree structure shown in (b). [Model 79. p. 115]. 

3.5.3.5 Sweet's tree drawing system. 
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Another system for making trees from internal data structures was done for Mesa by Sweet 

(78). This was incidental to his major project but proved invaluable to the understanding and 

debugging of his program. His trees are produced on a fixed-width character output device (such as 

a line-printer) and have the following properties: 

(1) All nodes at a given level in the tree are at the same level on the page: 

(2) Each non-terminal node is centered over the nodes of it-; sons; and 

(2) The width of the resulting tree is minimized [Sweet 78. p. 91). 

A sample of the output of his system can be seen in Figure 3.8. 
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3.5.3.6 Model's system. 

Figure 3.8. SamP,le of Sweet's Mesa tree display. 
[Sweet 78. p. 89) 
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Model (79] attempted to blend some of the good ideas presented above into a system that 

would allow the debugging of complex artificial inteJligence programs. His system was 

demonstrated monitoring KRL [Bobrow 77) and Mycin programs. but was designed to handle a 

more general rlass of programs. It is built on top of DLISP and uses many of its sophisticated 

display facilities. In Figure 3.9, a snapshot of a sample run of Mycin is shown. The Mycin 

program was actually running at Stanford while the monitoring program was running at PARC and 

communicating over the ArpaNet [Kahn 72). Model's system keeps the different windows 

consistent by showing the progress and actions of the monitored system at all times. As in 

COPILOT, the multiple windows allow the information to be displayed in a highly organized 

manner. Thus, "many pieces of information can be presented in a constantly changing display, but 

the user need only look at those pieces which arc of immediate interest" [Model 79, p. 47). A 

major feature of the system was the ability, as in SNOBOL (section 3.1.4) to define events in 

programs and have monitoring activity take place when they occurred. In addition. a history was 

kept, allowing the investigation of any processing after a run "perhaps at different speeds. levels of 

detail, or foci of attention" [Model 79, p. 13]. All investigations are in terms of the Mycin or KRL 

language; the programmer never had to know about the underlying Lisp implementation of these 

languages, much less the machine implementations of USP. 
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Figure 3.9 Example of Model's display for monitoring Mycin. [Model 79, p. 156}. 
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Although Model discusses analogical display a great deal in his thesis, his display is not really 

analogical. As can be seen in Figure 3.9, the infonnation is all presented in textual form. He does 

mention that a tree such as shown in Figure 3.7 could be made for the trigger structure of KRL [p. 

145}. This was apparently not exploited, however. Another important problem with Model's system 

is that it requires the full power of a large computer to run and even then is very slow [Fikes 79). 

This is partially due to the slowness of DUSP itself. 

3.6 Graphical Systems. 

The systems that have attempted to create dynamic, analogical displays have, for the most part, 

not been directed at debugging. These systems did develop many of the central ideas used in 

Incense and other graphical display systems, however. /\MBIT/G, Sketchpad and Thinglab were 

designed as unified systems with graphics as a central part. The earliest systems to attempt to use 

computer generated graphics to help in the understanding of programs were the automatic flowchart 

generating programs (for example [Knuth 63}. [Hain 65) and [Greene 73)). Automatic logic diagram 

layout systems (such as [Aaronson 61]) were another early application of computer generated 

graphics. The layout algorithms used in these systems were mostly trivial or excessively complex 

and had no influence on Incense. 
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3.6.l Early analogical display. 

Another example on early work at graphicaJJy displaying information by computer was 

motivated by a completely different problem. The Whirlwind computer, built at MIT in 1951, had 

only mechanical typewriters for character output, and these were very slow. Therefore, an 

oscilJoscope was attached to the computer along with a computer controlled camera. Programmers 

were encouraged to have the computer make graphs of their data rather than trying to type it out 

[Bell 71, p. 139]. Soon, however, line printers were developed and having the computer generate 

the pictures became more expensive than making listings. 

3.6.2 Sketchpad 

Sketchpad [Sutherland 63] was an early system that attempted to simplify the process of using 

the computer to make pictures. It used a light-pen, four knobs, and a tremendous number of 

toggle switches to allow the user to input information analogically (for the most part} [p. 25]. The 

basic building blocks available were line segments, circle arcs, and text The system also allowed 

the user to define symbols out of a set of these which then could be used in higher level objects. If 

the definition of a symbol was changed, aJJ instances immediately re-shaped themselves. Instances 

could be different from the original (prototype) by having different location, size (scaling), :.llld 

rotation [p. 46). Symbols had the additional property of connection points, which were the only 

places at which additional objects could be attached. The system also incorporated some powerful 

mathematical constraints that aJJowed the user to specify relations that had to be preserved among 

various objects displayed. Another important feature of the system was that "the organization of 

Sketchpad display as a set of display routines with identical external properties [made] it possible to 

add new kinds of displays to the system with the greatest of case" [p. 42]. Drawings could also be 

saved in a manner that allowed "cartoon motion pictures" to be displayed (p. 67]. Sketchpad was a 

powerful system and it had· a major influence on almost all subsequent graphics systems. 

3.6.3 AMBIT/O. 

One such system is AMBIT/G (Algebraic Manipulation QY Identity Iransfonnation/Graphical} 

[Christensen 67]. This system attempted to allow the user to specify his program entirely with 

pictures through the use of a pattern matching language. The results. of the computation were then 

presented pictorially. An AMDIT/G program is composed of a generic set of shapes, instances of 

those shapes, a data graph connecting the instances, a set of program statements and a control 
structure connecting the statements [Henderson 69]. The programmer "usually endows each shape 

with some distinct interpretation" [Henderson 69, p. l]. A property of the shapes is the fixed 

number of links that are allowed to leave the node; a node can have an arbitrary number of Jinks to 

it, however. Links were all drawn as straight lines with arrowheads in the system implemented. 
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The layout of the data graph in the AMBIT/G language is irrelevant to its meaning and there was 

no automatic formatting. In fact, 

the problem of automatically laying out and displaying an entire data graph has been 
carefully avoided: the user is required to specify small parts of the data graph that he 
wishes to sec, and he is encouraged to aid. in the layout of these [Rovner 69, p. 12). 

To display a data graph, the user specified a uniquely named node and where it was to go on 

the screen. If he then wished to sec sub-nodes, he had to point at each connection point he wanted 

to see expanded. The sub-node would then be drawn at a canonical place relative to the parent 

irrespective of what may have been there previously [Rovner 79]. If the subnode was nil, an "*" 

(asterisk) would be drawn, and if the subnodc happened to already be displayed, the link would 

have been drawn to the original instead of to a copy. If a node was drawn in an inconvenient 

place, the user could move it and the links would redraw themselves correctly [Rovner 69, p. 11). 

AMBIT/G has a number of techniques for recognizing user commands. 'I11e programmer 

used a tablet and pen with which he could draw and select objects. The system also recognized a 

number of gestures such as the "scratching out" of a line to specify deletion. In addition, there 

were displayed menus to allow selection of some commands [Rovner 69, p. 10). 

AMBIT/G, unfortunately, was slow (typical delay was IO to 20 seconds [Rovner 69, p. 13)) 

and "so gcncrai that it is difficult to build and use, and. it has never been completely implemented" 

[Christensen 7la]. Efforts were therefore directed at specifying related but more practical languages. 

AMBIT/L [Christensen 71a] has a limited and fixed number of predefined shapes which support list 

structures. IAM, a system for interactive ~lgcbraic manipulation, was implemented using it 

[Christensen 7lb]. Proposals for future research included the ability to monitor the system white. 

manipulating the data graphs by having the modifications shown as they occur [Rovner 69, p. 13). 

3.6.4 Thinglab. 

Thinglab [Dorning 79) was written in Smalltalk to study aspects of a constraint oriented system. 

It was based in a language which had powerful facilities for interacting with the screen (section 

3.5.3.3). The system allows multiple views of an object to be visible at the same time and "a typical 

object can be depicted in several ways.... The object itself defines the views that it can provide" [p. 

4]. For example, the user can specify a constraint that the height of a bar in a bar graph 

corresponds to the value of some integer in a text paragraph. When one is changed, the system 

forces the other to re-adjust itself so they arc once again consistent [p. 4]. The collection of all the 

constraints on an object may be "incomplete, circular, or contradictory" yet the system manages to 

sort this out [p. 5}. When the user specifics that he wishes to display an object, a menu of all its 

possible ways of displaying it is presented and the user can pick one. He then specifics where the 

object is to be placed [p. 15]. As in Sketchpad, to which this system owes much, objects all use the 
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same protocols making the generation of new classes easier. In fact, some classes can be specified 

simply by drawing a prototypical example (e.g., making a class trapezoid from the class 

quadrilateral). For a given class, the prototype "is a distinguished instance that owns default or 

typical parts" (p. 46) which arc inherited by instances unless overruled. This prototype may be NIL 

except for graphical objects which must have some specified appearance. 

The 'lbinglab system is claimed to have good response time for objects with simpJc (linear) 

constraints. The time to arrive at consistent values is "usually as good as if a suitable method had 

been hand-coded" (p. 51). If constraints arc circular. however. the system must use a relaxation 

technique which is much slower. 



IV. The PARC Environment for Incense 

Incense incorporates some of the good ideas from earlier systems. In addition, Incense reflects 

many of the constraints and capabilities provided by the environment in which it was designed and 

implemented. The Palo Alto Research Center (PARC) has extensive facilities available to aid in the 

development of systems such as Incense. In hardware, there is the Alto mini-computer and two 

types of faster research machines. In addition there is a large body of software written in the 

PARC· language Mesa that was useful in building Incense. The Computer Science Laboratory 

(CSL) at PARC is currently in the process of developing a new environment for Mesa called Cedar, 

and it will have adcHtional facilities that will be useful for future versions of lncense. This chapter 

briefly discusses each of these facilities so that the Incense system can be understood in context. 

4.1 Hardware. 

ll1e Alto ffhacker 79) is a general purpose, microprogramrnable mini-computer designed in 

1973. The standard configuration .. of. the Alto includes (sec Figure 4.1): 
• 
• 
• 
• 

• 

• 

An 875 line raster-scanned display; 
A keyboard, a "mouse" pointing device with three buttons, and a five-finger keyset; 
One or two 2.5 Mbyte removabJe cartridge disks; 
An interface to the Ethernet distributed packet-switching local computer network 
("Ethernet"), a 3 Mbit/second communic"tions facility [Metcalfe 76]; 
A microprogrammed processor that executes programs, controls input-output 
devices, and supports up to 3K of user-programmable micro store RAM (along 
with the lK of PROM); and 
64K 16-bit words of semiconductor memory, expandable to 256K words [!'hacker 
79, p. l}. -

Figure 4.1. Picture of typical Alto work-station with keyset, screen, keyboard, mouse, computer with 
two disk drives. 

27 
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Incense docs not current]y use the keysct or Ethernet, and it requires an AJto with extra 

micro-programmable RAM (for loading of specia] micro-code for doing real number arithmetic) and 
at least 128K of main memory to ho1d all of the data and programs. The next sections describe the 

most important aspects of the Alto for Incense: the mouse and the screen. 

4.1.l The mouse. 

The mouse (sec Figure 4.2) is a pointing device which fits comfortably under the hand and 
can be rolled around on any frictional surface (English 67). The mouse buttons (which are called 
Red. Yellow, and Blue) allow the user to specify a number of actions using the same hand with 

·which he is pointing. The current state of these buttons (up or down), aJong with the mouse 
position, arc available through high-level abstractions in Mesa. 

Yellow 

Blue Red Hlue 
Yellow 

Figure 4.2. Two styles of mice with buttons labeled. 

Since the mouse only measures relative movements and not an absolute position, it is essential 
to have visual feedback as to where the mouse is with respect to objects on th~ screen. This is 
provided by the cursor which foUows the mouse. The actual picture shown at the cursor location 
can be set by the user. The default is a simple left-pointing arrow (Figure 4.Ja). Even though the 
area of the cursor is small (about 1/4" square) a large amount of information can be presented in it. 

For example, the system Okra, built by the author to interface the Alto to a remote file server, 
utilizes 15 different cursors which clearly show the state of the system (Figure 4.3). Incense 
currently does not take advantage of this capability; however. 
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(~ % fc~B ~B [I] :i: XB ~ l!R Ii~· 

(b) ) (d) (e) (t) (g) (h) 
Default Okra. Send Retrieve Create file Busy Delete Exit 
(up-left (user to (file system (flower). (hourglass). (file system (setting sun). 
arrow for file system). to user). to garbage can). selection). 

6 :i: © ~ i t ... ~ 
(i) (j) (k) (1) (m) (n) (o) (p) 

Confinn Close transaction Hell0> Abort Scroll bar Scroll up. Scroll down. Text position 
(question mark). (hourglass). (smiley). (dead flower). (up-down). (finger pointing). 

Figure 4.3. Cursors used in the Okra system. Incense uses only (a). 

4.1.2 The screen. 

The Alto display is an interlaced 875 line monitor running at 30 frames/second. There are 

808 visible scan lines, and 608 picture clements (pixels) per line. It is oriented with the long 

dimension vertical, and the screen area is about 81h by 11 inches (Figure 4.1). The actual picture 

on the Alto screen is controlled directly by the contents of a set of bitmaps or frame buffers that are 

stored in memory. Each bit of the bitmap corresponds to one pixel on the screen and detennines 

whether it is on or off. 111e Alto screen has the capability to use multiple bitmaps for the display, 

but Incense docs not use this feature. The standard microcode provides one very useful function 

called BitBlt which can transfer an arbitrary rectangle from one place to another in memory. Since 

the picture presented is stored in memory, BitBlt allows arbitrary rectangles on the screen to be 

moved. The resulting display can be a function of the source and destination rectangles such as 

XOR, OR, AND, etc. BitBlt is useful for filling areas, drawing lines and displaying text 

Since the bitmaps arc stored in main memory, it is possible to trade off the size of the picture 

and the amount of memory available for other data. For example, a full screen requires 

(808 lines/screen * 606 bits/line) 116 bits/word = 30603 words 

or nearly half of the 65K· allowed for data in an Alto. llterefore, a full screen is seldom used in 

applications such as Incense where there is a lot of other data. 

4.2 Software. 

There has been a great deal of software written to help the programmer at PARC. Incense is 

written in Mesa so it takes advantage of the facilities of the Mesa system. ln addition, two special 

systems were used in the development of Incense. CGraphics, written by John Warnock at PARC, 

provides the basic interface to the screen, and JAM, designed by Warnock along with Martin 

Newell, is an interpretive environment that was used to debug Incense. 
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4.2.1 Mesa. 

Mesa. {Mitchell 79b} is a large and complex strongly typed language, and there are a large 

number of programs and systems built in and around Mesa to aid in the production of software. 

4.2.1.I Compiler and symbol tables. 

The current compiler for Mesa is batch oriented and operates on one file at a time, producing 

error.messages in another file. The compiler operates fairlj quickly and produces efficient code. In 

addition to its main duty of producing the object code, the compiler also produces very complete 

symbol tables. These arc used to allow separate compilation of different modules and allow Mcsa­

levcl debugging of programs. The symbol tables contain sufficient information to discover the 

location in memory and type of all the variables and constants used in the program, to find the 

source statement corresponding to a value of the program counter and vice versa, and to resolve 

references to types declared in different modules. As a result, symbol tables tend to be very large, 

typically taking up about four times as much disk space as the object code for the program. 

Symbol tables and Mesa types will he discussed further in chapter 6. 

4.2.1.2 Current Mesa debugger. 

Mesa, unlike many high level languages, ha~ a very powerful debugger that allows 

investigation of a program almost entirely in terms of the abstractions of Mesa. lltere is no 

requirement, or even advantage (in most cases}, to know anything about the machine instructions or 

data formats. The extensive symbol tables provided by the compiler allow the debugger to know 

about user-defined types, local variables, enumerated· types, and aggregate data structures. It also 

allows the setting of breakpoints by pointing with the mouse at a source text line and executing the 

command set-break (sec Figure 4.4). The debugger has ·a limited interpreter for evaluating 

expressions and some statements. The source program and its execution speed is not affected by 

the presence or use of the debugger. Another advantage of the current debugger is that it is uses a 

screen package. '11tis allows the user to have multiple windows on different files. Snapshots of 

actual debugging sessions are shown in Figures 4.4 through 4.7. 
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Figure 4.4 Mesa Debugger screen showing debugger window, two text windows. and a menu of source 
commands with Set Break selected. The break will be set before the statement 
selected in the TestModule3 source window: 
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Figure 4.6 Mesa Debu~&er screen showin~ display of a large record (a Document: sec section 5.3) 
contammg arrays and pomters. 
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Figure 4.7 Mesa Debugger screen showing an attempt to investigate a pointer structure. 
assignment shortening the list by making a next field NIL. 

Note the 

The debugger does have some limitations, however, which irritate a number of people. The 

main complaint is that it runs too slowly. The user can invoke the debugger while a program is 

running or by setting breakpoints. In either case it takes about two seconds for the debugger to be 

installed. Similarly, when continuing from a break, it takes another two seconds. This makes it 

very tedious to single step through a program or to monitor variables. "The real problem," 

according to one Mesa user, "is that I can think a lot faster than the debugger." There also is no 

control over the way variables print, so, for example. the user cannot request that only certain fields 

of a record be displayed. 

Another limitation of the debugger has to do with multiple processes since inspecting their 

various states is usually awkward. Some people also complain about the inability to display lists. 
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trees, hash tables, and other sparse or pointer-based data structures conveniently (sec Figure 4.7). 

In addition, the interpreter is very limited. It incorrectly handles certain Mesa types and will not 

allow any memory allocation operations such as creating new strings or temporary variables. [The 

information in this section is from personal experience and the results of a debugger poll described 

in Appendix /\]. 

4.2.2 CGraphics: The underlying graphics package. 

CGraphics is a graphics package wtitten by John Warnock at PARC that allows the client to 

use the abstractions of lines, areas, and text rather than the low level BitBlt operations. In addition, 

the same commands can be used to draw on an Alto screen, a black and white or color TV display, 

or to hardcopy output flies. Higher level systems such as Incense can therefore be independent of 
the display type. 

A basic data structure in CGraphics is a Display Context (or /JC). Every drawing command 

uses a display context to determine how the command wilJ operate. The display contexts contain 

information about the current position; scaling, rotation, clipping boundary, text font, font size anct 

style, area and line colors and textures, and painting functions. The DC used is either an explicit 
parameter to the functions, or the top of a stack of OCs which is maintained by the system. 

Some of the drawing functions provided by CGraphics are: draw a line at any angle, draw a 
rectangle outline, fiJl a rectangular area, draw an arbitrary polygon or fill its interior, and put up 

text. It is also possible to draw a parametric cubic polynomial curved line (Newman 79] (in 

particular, a spline (Ahlberg 67)) that goes through a specified set of points called knots. Finally, 

there are routines for modifying a display context. for finding out the size of a string, and for 

transforming a rectangle or point from the coordinate system of DC to that of another. In the 

future, there will also be routines for filling, an area defined by splines and for finding the 

intersections of regions. Figure 4.8 shows an example of the current capabilities of CGraphics. 

Figure 4.8. Demonstration of some capabilities ofCGraphics. 
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4.2.3 JAM: An interpretive environment 

JAM is an interpretive system written in Mesa. It has its own syntax and command language 

that is strictly reverse-polish. Incense was debugged using JAM as the user-interface and currently 

only exists in the JAM environment. If Incense were to be released, it would have to be removed 

from JAM (a simple and straightforward task) and an alternative method of specifying the Incense 

commands would have to be implemented. This was not done for the current Incense since it 

seemed more appropriate to await the Cedar paradigms. 

4.3 Cedar: A Future Environment for Incense. 

Incense is actually a prototype for a component of Cedar, a future programming environment 

of the Computer Science Laboratory (CSL) at PARC. (In the world of botany, Incense is a type of Cedar: 

Calocedrus decurrens.) Many of the facilities designed and planned for Cedar have a direct impact on 

Incense. Incense was designed to utilize all these features, but many were not available at the time 

of its implementation. Section 8.2 will discuss how Incense might be modified to use these 
I 

additional features. 

One of the most important changes to Mesa envisioned for Cedar is a garbage collector. This 

will free the user from having to worry about storage management Adding this feature to Mesa 

required that a subset of current language be defined, called the safe language, that eliminates any 

possibility that the programmer might destroy the garbage collector's state. The safe language 

contains restrictions on the use of pointers and on breaches of the type system. 

One of the Cedar committees is the User Facilities Group, under which the Incense project was 

conducted. This group was given the task of defining how the users of Cedar would interact with 

the system and his programs. It was decided early that many of the features of DLISP and 

Smalltalk were required in Cedar, such as a history facility to allow replays, and a uniform manner 

of accepting keyboard and mouse inputs from the user. In addition, an abstraction called a 

document was defined to allow operations on the screen. Documents play a central role in Incense 

and are described in section 5.3. 



V. Incense - An Overview 

In chapter 3's survey of debugging and graphical systems, there were no systems presented that 

could claim to provide analogical display of data in a manner that would allow truly interactive 

debugging. In chapter 2, however, it was posited that this is an important feature for a debugging 

system to have. Incense attempts to fill this void, but since it is actually a prototype rather than a 

production system, many desired features arc not included. Incense docs manage, however, to 

demonstrate many of the advantages of automatically generated analogical displays for actual 

program data structures. 

This chapter describes the goals of Incense as motivated by the discussion of chapters 2 and 3, 

and then presents an overview of the design. The next chapter describes the design and 

implementation of a run-time type system called CedarSymbols. It was created by the author to 

allow Incense to discover the types of actual Mesa variables. The chapter following presents some 

details of the current implementation of Incense and its performance and limitations. 

5.1 General Goals for Incense. 

This section summarizes the important goals of debugging and data display systems discussed 

in chapters 2 and 3, and mentions how they relate to the actual design of Incense. 

Easy to use. If a debugging or data display system is to be popular or even tolerated by 

programmers, it must present a natural and pleasing user interface. Many systems require the 

programmer to put special commands into his code, to re-compile, or to specify the desired display 

in a special language (as in Yarwood's system: section 3.5.2). Incense was designed to have 

reasonable and understandable displays for data structures. The interactions required to select and 

modify the display or the underlying data are similarly straightforward and natural. 

Extensible. One major problem with the current Mesa debugger is that there is no way for the user 

to modify the way that information is presented. It is also difficult to fix the debugger when there 

are changes to the Mesa language. Many of the systems discussed (e.g.,Yarwood's, section 3.5.2), 

allow the user to control the display but require the use of special languages. Incense was designed 

to allow the programmer maximum flexibility in designing the displays: He is allowed to specify 

where data is to be displayed; he can choose among a set of predefined displays for any particular 

data structure; he can modify that display in certain ways; and he can construct actual programs (in 

Mesa) to define the display. In addition, the programmer can associate a certain display style with a 

variable or type so it will be used whenever the variable or instances of the type are displayed. 

Finally, the programmer should be able to use any of these capabilities during a debugging session. 

35 
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Analogical. Section 2.2.4 argued that displays should be easy to read and pleasing to the eye. Few 
debugging systems fulfill this principle (see, for example, Figure 4.7). A pictorial display for data 
structures would make the structure of the data much easier to understand. This might then make 

the debugging task swifter and more enjoyable. Incense had as a crucial goal the capability for 
analogical display. To achieve this, Incense uses the graphical capabilities inherent in the Alto to 

provide displays at as high a conceptual level as possible. 

Fast. The most common complaint about most systems is that they run too slowly. The Mesa 
debugger suffers from this problem. People can become accustomed to even the most complex 
interface, but they tend to be continually frustrated at delays. D.LISP (section 3.5.3.4) is a very 
exciting and powerful system, but it is seldom used because the response time is so long [Teitclman 
79). Incense is a prototype system (as is DLISP), so speed was not a design goal. Incense does, 
however, display most data at an acceptable rate, even faster than the Mesa debugger for certain 
cases. Running on the faster of PARC's new research computers, Incense should produce displays 
very quickly. 

5.2 The Incense System. 

Incense h. a working system that displays data stmctures analogically. All of the illustrations 
in this chapter and the two following were created by Incense and taken directly from the screen. 
Defaults displays arc generated automatically based on the type of the data. These display formats 
are general enough to handle almost all data structures in a reasonable manner. In addition, the 
programmer is given the option of specifying and modifying the displays at various levels. The next 

sections discuss how this was achieved 

The most difficult aspects of Incense were (1) allowing the client to define new display 
formats. and (2) the display of pointers. The solution to the first problem involved using a carefully 
designed abstraction to hide the internal data and procedures (see section 5.3). The problem with 

pointers is that a location on the display must be chosen for the referent. Layouts were invented to 
handle this problem (see section 5.3.1.3). 

5.3 Documents: The HasicComponcnt oflncense. 

In order to have some data displayed in Incense, a document must be associated with it. The 

term arose in Cedar where documents will be the entities that can display themselves on the screen. 
A major item that will be displayed by Cedar programs is text, in particular, computer programs, 

memos, and business letters. These arc generally grouped under the heading document, so Cedar 
used the concept as a metaphor for all displayable entities. 
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Chiefly to allow Incense to be extensible and unifonn, an object-oriented or data-abstraction 

approach was taken. Documents arc therefore organized as a data objects: each instance keeps 

internally all of its state and all of the procedures that arc allowed to modify the state. 'Thus, 

documents are like instances of CLU data abstractions [Liskov 77] or Smalltalk classes. All 

documents have the same basic structure including the types of their data and procedures. Thus the 

interface to all documents is the same. The actual procedures used in a specific document will be 

different for documents of different types, however. Thus the type of the document is defined by 

the actions of its procedures. For example, a document for an INTEGER would differ from that for a 

BOOLEAN in that they would have different procedures for interpreting the value in memory and 

translating that value into a textual representation that could be displayed. 

The association between the data structures and the documents to display them is 

automatically created by the Incense. The memory address and type of the a.-;sociated data structure 

arc stored in the document along with the appropriate procedures and other data. There are six 

basic classes of procedures required for documents in the current Incense system: procedures for 

display, erasure, selection. editing, de-allocation, and drawing of arrows. 

5.3.l Displaying a document 

5.3. l. l Fonnats and subformats. 

A document for viewing a data structure would obviously not be very useful if it were not 

able to display itself. This is the most important operation of the document and also the most 

. complex. Each document can display itself in an arbitrary number of ways called formats. A 

document must have at least one format, however. The fonnats are intended to be radically 

different ways of displaying the data. For example, a document for a certain type of record (Figure 

5.1) might contain formats for displaying itself as a normal record (a) or a clock (b). '11le client is 

required to specify which format should be used. Currently, all automatically generated documents 

contain only one format 

hou.rs: 16 
min: 2S 
seconds: 30 

(a) (b) 

Figure 5.1. Two formats for the record document for: 
Time: RECORD [hours, min, seconds: CARDINAL]; 

holding the time of day: (a) as a normal record and (b) as an analog clock. 
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Each fonnat contains an arbitrary number (nonzero) of subfonnats. The subformats specify 

the actual display and are chosen automaticatJy by the system based on various contextual 

infonnation. such as the size of the area in which the document is to be displayed. Thus, an array 

document (Figure 5.2) might contain two subfonnats. The first would display the data normally (a). 

The other subfonnat would be used only if there was not enough room, and would use grey 

rectangles for the values (b). The client cannot choose a subfonnat explicitly. Instead, the creator 

of the document associates a test with each subfonnat to detennine whether it is applicable in the 

current context. Since more than one of these tests may succeed, the designer ·also specifies an 

ordering of the subformats. The fonnatProc procedure associated with the client-specified format 

will cycle through the subfonnats in order until one is found that can be used. If there are none, 

then the document will not be displayed. This may happen, for example, if the area in which the 

document is to be displayed is very tiny. The designer can force a document to be displayed by 

assuring that the final subfonnatProc will always return TRUE. 

(a) (b) 

Figure 5.2. Two sub formats for an array of records: 
ar1: ARRAY [1 . .4] OF RECORD [z, b, c: CHARACTER]; 

(a) normal and (b) as grey areas due to lack of room in the Y direction. Note that the 
length of the grey areas varies depending on the length of the actual value. 

The arguments to the fonnatProc are the document itself, the format chosen by the client, and 

a rectangle, called maxArea, into which the display must fit. Thus the invoking procedure (or the 

user) always specifics the size of the display and the document must be prepared to fit itself into 

any size rectangle. Jn mo"st other systems, the display area specification is handled differently. For 

example, in AM BIT /G, the displayed objects always take the same amount of space, and in 

Smalltalk, the objects take as much room as they desire. In Incense, the user always has control of 

the placement and size of the displays. This feature also allows aggregate structures such as records 

to accurately specify the position and size of subparts. 
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The subformat procedures for some documents, such as those for RECORDS and POINTERS, can 

cause the display of subordinate documents. For example, the standard record subformatProc will 

iterate through the documents corresponding to each field, calling the formatProc in each. The 

maxArea rectangle for the subordinate will specify where the field should be placed relative to the 

rectangle for the record. This uniform structure hides all details of the type of the subordinates. 

Tims the record docs not have to know, for example, whether a subordinate is an integer, pointer or 

another record (see Figure 5.3). 

a: 3 
b:.@ 

ca: -2. 
cb: This is a. t.est. 

in ternalF:ec: cc: TRUE 
d: kl rna.x.t..bsPos: 

(a) m AbsPos: 
(b) 

Figure 5.3. Two ways records can contain other records. Full size (a) and reduced (b). 

Figure 5.4 shows the default display for all of the basic types. Note that the format chosen 

draws a box around the datum of exactly the correct size. 

ru:mJ I m I t.466916e+ 151 1354561 ITRUEI 51 l1nn6BI 
UNSPECIFIED INTEGER REAL CARDINAL BOOLEAN CHARACTER WORD 

!This is a tesy lmnl IProc 11 
STRING ENUMERATED PROCEDURE 

Figure 5.4. Default boxed display for the basic types. 

5.3.1.2 The form and display data. 

For aggregate data structures such as arrays and records, the document must know where to 

put the subordinates which will all be fit inside the rectangle for the aggregate. The relative 

locations are specified by some auxiliary internal data called the fonn. Each subformat has its own 

internal data, so that documents could conceivably rearrange their display automatically based on 

some criteria. In the current system, however, all the subformats for a particular format share the 
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same form data. For records, this data is a set of rectangles that specifics the field locations, the 

documents to be used to display the field, and a specification of the format to be used for each field 

document 

In addition to the fonn, which is constant throughout the lifetime of the document, other data 

is needed for a document that is on the screen. 11lis data is called the display data and includes 

such things as the current screen position and the screen position where arrows should be drawn. 

Pointers also have the documents for the referent in their display data rather than in the form. If 

the value of the pointer was modified, the subordinate document would change and thus not be 

constant as the form is required to be. 

5.3.1.3 Layouts. 

The location of the subordinates for aggregates (records and arrays) is fixed relative to the 

aggregatc's rectangle and easy to compute no matter how and at what level of nesting the record is 

displayed. With pointers, however, that is not the case. AU documents must fit inside the rectangle 

provided for them by their caller. The rectangle for a pointer, however, specifics only the box for 

the pointer source end point. Therefore, the object pointed to must be put somewhere else. 

Layouts are a means for specifying where the documents corresponding to the destination of arrows 

should be placed. A layout has a field for the pointer or pointer-containing document, and one 

field for each object pointed to. Thus, for a record containing 2 pointers, a layout with 3 fields 

would be used: one for the record and one for each of the two referents (see Figure 5.5). Layouts 

and layout fields both have special documents that have no associated data or type, but simply serve 

to locate the various pieces. 

data: 4 
less: 
i:o·reater: 

(fil) 

Figure 5.5. Layout with 3 fields: one for record: (ffi), and one for each referent: (fl) and (t2). 

An alternative strategy to layouts would be to have some global procedure allocate space on 

the screen for the pointer's referent. 'lllis would require a large amount of added complexity to 

locate, allocate, free, and compact rectangles of screen space based on various heuristics and 

constraints. Also, with automatic allocation, it would be difficult for the client to specify the space 

to be used if he wished to. All of the systems studied in chapter 3 (e.g., AMBIT /G, Sketchpad, and 

Smalltalk) avoided this two-dimensional space allocation problem. 
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Currently, layouts use a very simple scheme for making the subcomponents fit into the area 

specified for the layout document. As with records and arrays, the rectangles for the various fields 

(the fonn) are fully specified at document creation time. When the layout is displayed, the 

subcomponents are simply told to fit into the specified area. Whenever a particular layout is 

displayed, the fields are placed in the same relative positions. 

In a recursive structure such as Figure 5.6, there are layouts at each level of nesting. They get 

progressively smaller since the area provided for them is reduced at each level. TJ1is theoretically 

would allow the display of an arbitrary number of levels, but, in fact, after a threshold is reached 

and the documents are too small to see, displaying terminates. Pointers to documents that are 

already displayed do not cause an infinite cycle, since an arrow is simply drawn to the original 

occurrence (see Figure 5.7). 

· Figure 5.6. Deep recursive tree display demonstrating how elements get smaller. Overall structure, 
however, is easily understood. 

data: 3 
less: 
e-rea.ter: 

Figure 5.7. Pointer to previously displayed object does not generate a new copy. The second arrow is 
drawn to the first occurrence: 
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5.3.1.4 Prototypes. 

Orte important feature of documents is that a client can design new ones and then associate 

these documents with particular variables or data types. Thus, the clock document could be 

associated with all data of type Time and then a variable such as CurrentTime below would be 

displayed as a clock: 

Time: TYPE = RECORD [hours, minutes, seconds: CARDINAL); 
CurrentTime: Time; 

These prototype documents will never be displayed. The important information in them is copied 

into the documents for specific instances. Thus prototype documents have form but no display 

data. 

Model (79, p. 74] says that "at the very least, system builders should provide formatted 

printing facilities for the system data structures they implement." 'llms any major data type should 

have a prototype document built for it. A poll of current Mesa users (Appendix A) shows that 

many people would be willing to create documents for their data structures if it were simple and 

straightforward. In fact, many people do something similar currentJy: "I've always been in the habit 

of writing pretty-print routines for my more complicated data structures." Documents provide a 

structured way of doing this and promote the use of analogical output. 

" 

There ar~ presently three ways of producing prototypes for a document. The most 

straightforward is to use the system default This requires no knowledge or special actions. The 

second way is to write a Mesa program to define the display. 'Ibe latter approach is clearly 

necessary for the more esoteric and unusual displays such as the clock. Finally, the client can 

specify the fonn for the document. For example, a user might draw boxes on the screen using the 

mouse to specify the relative size and position of the various fields of a record or array. Fields can 

be omitted simply by specifying a rectangle of zero size. Figure 5.8 shows an example of record 

form design. 

11 I !weight: 11.S I initial: 'B 
wei_g_ht: 115 
lastName: Myers 

I initial: 'B la.st.Name: M ers 
(a) (b) (c) 

Figure 5.8. Normal display for record (a), form defined by user (b), and resulting display (c). Note that 
field order has been switched. 
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5.3.2 Drawing arrows. 

Documents require three different procedures for properly handling layouts and pointers. The 

precise operation of these procedures will be discussed in section 7.2.3.2, but a general overview of 

the procedure that actually causes the arrow to be drawn will be given here. The document for the 

pointer calls the DrawA"owFrom procedure in the document associated with the referent. An 

argument of this procedure is the source location on the screen for the arrow. The target document 

must already be displayed for this operation to be successful since it needs to calculate the 

destination point of the arrow on the screen. A curved spline is then drawn from the source to the 

destination, and an arrowhead is drawn at the receiving end. The size of the arrowhead varies so 

that it is never bigger than the destination. The splines arc defined by seven points (called knots) 

placed along the intended path. Three of these define the exit point and direction from the pointer 

and three define the entrance point and direction to the referent (sec Figure 5.9). A final knot is 

added in between to make the arrow path smoother. Three points arc used at each end to allow the 

arrow to leave the pointer from any side and intersect the referent at any point 

Splines are used rather than a straight line since it is more attractive and docs not cause 

confusion with other lines in the picture (no "co11ision avoidance" is done). In addition, it is 

simpler to draw a curved line since the arrows can always be drawn leaving the pointer from the 

right and intersecting the referent on the left (Figure 5.9). The DrawArrowFrom procedure returns 

information needed to erase the arrow. This is then stored as part of the display data in the 

pointer document 

initial: 'B 

i.:i.stJ.J.:i:tne: _Ivlyer§ 
initi~I: 'Ei 

Figure 5.9. Demonstration of the advantage of curved lines used in Incense (a) over straight lines (h ). 
The knots used in drawing the spline arc shown as black squares in (a). · 

5.3.3 Erasing a document 

After a document is displayed, it useful to be able to make it disappear. The process of 

removing. the picture from the screen is called erasure (as opposed to de-a!localion or destruction of 

the actual document itself which is a separate operation). An erased document can be re-displayed 

with a new size, location and format. The erase procedure of a document, as well as all the other 
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non-display procedures, operate similarly to the formatProc, in that its main purpose is to pass 

control to another erase procedure at the subformat level. This is necessary since the different 

subformats may have caused different displays to be used. For example, to erase a record, each 

field document must be erased, but one subformat may have omitted a field due to the lack of 

sufficient room, whereas another subf01mat would have included it. The top level erase procedure 

simply calls the low level (or internal) erase procedure corresponding to the subformat that was used 

for the current display. 

5.3.4 Selecting a document. 

Once documents have been displayed, some way is needed to refer to them. The user may 

want to modify, re-display, o.r change the fonnat used for a document. In Incense, the user refers 

tQ documents simply by pointing at them using the mouse. The document referred to is said to be 

selected. There can be only one document selected at a time and its picture is video reversed on the 
screen (in a similar manner to DLISP and Smalltalk). This is not sufficient, however, since 

documents can contain other documents. For example, a record document contains documents for 

the various fields. In order to allow any of these to be selected, Incense always selects the smallest 

(in screen area) object under the mouse. If this document is already selected, however, its parent is 
selected instead. All documents fit into a hierarchy where the top document was displayed by the 

user and lower level documents are displayed as subordinates of aggregates or pointers. 

Incense has a special procedure that returns the selected document so that it can be 

manipulated. All documents accept the message FindSelection, which has the coordinates of a point 
as a parameter. It is intended that these coordinates come from the position of the mouse, but 

other. options are allowed. When FindSelection is called, the document determines whether the 

point is inside its current screen picture (it is an error to call this procedure for a document which is not 

displayed). If not, the procedure returns missed. Otherwise, if the document is already selected, it is 

de-selected and then the procedure returns next. This indicates to the parent that it should be the 

selected document. If neither of these conditions is true, the procedure will test each of the 

document's subordinates, if any, to see if they want the selection. If any of them returns next or if 

none want the selection, then hit is returned and the current document is selected. See Figure 5.10 

for an example of selections moving up the document hierarchy. 

There is a special JAM function that cycles through all of the documents on the display testing 

calling FindSelection on each. The user can click the red button to select documents until the 

correct one is found. A click on the yellow-button will then cause that document to be erased. 

Then the mouse is used to specify a rectangle in which the erased document will be redisplayed. 

This is very useful for expanding documents displayed too small to sec (Figure 5.11). The 

documents explicitly displayed by the programmer (called top-level) are tagged (in the AMBIT/G 

sense) in that they arc the starting points for all searches. Thus, the selections to move up the 
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hierarchy in the correct manner. Another feature is that the more recently displayed top-level 

documents (which tend to be smaller in practice) are searched first. This allows a record placed on 

top of a layout, for example, to be selected before the layout underneath. This user interface is 

very natural, making exploration of multi-level structures fast and easy. 

(d) 

Figure 5.10. Selections moving up the document hierarchy: from record field (a) to record (b) to layout 
for record (c) to layout for everything (d). · 

data: 2 

(b) 

(a) 

Figure 5.11. The display for the selected record in (a) expanded in (b). 

5.3.5 Editing a document. 

In addition to erasing and redisplaying a document, modifying the actual value of the 

associated data structure is useful. Incense currently only provides the structure for this operation. 

In future versions, to modify variables of the basic types such as INTEGERS, REALS, and BOOLEANS, 

the user will type a new value. For pointers, however, the user will be allowed to specify the new 

value simply by pointing at the new referent on the display. The pointer document will then do all 

the calculations necessary to .deduce the correct value to be stored as the pointer's value. Type­

checking of the pointer and the referent will be done to assure legality of the modification. For 

clocks, as another example, the user will be able to select a hand and rotate it to the correct value. 

Thus, the result of the editing operation will be vastly different depending on the particular format 

used to display the data. The edit command in Smalltalk handles this problem by taking no 
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arguments. The system is put into a state where all user actions are handled directly by the edit 

procedure, but Incense will probably use a different approach (see section 8.1.3). 

5.3.6 Deallocating a document. 

Current Mesa does not have any built-in storage management. It is therefore necessary for 

programs to handle deallocation of storage by themselves. Incense, as it may be clear, requires a 

large number of variable-length structures and consequently allocates storage for them. To allow 

this storage to be rt::·used, a destroy procedure has been added to documents. A. great deal of 

sophistication would be needed to find aJl of the storage actuaJly used by a document since there 

are many places where arrays of pointers arc used, some of which may point to the same place. 

Deallocating something more than once in Mesa causes the entire system to crash. This problem 

will disappear in Cedar, however, with the advent of an automatic garbage collector. TI1erefore, 

little effort was expended to perfect the destroy procedures and they occasionally fail. 



VI. CedarSymbols: The Type System for Incense 

To automatically generate documents and forms for Mesa data strnctures, Incense requires the 

ability to ascertain the types, memory addresses, and values the data to be displayed. As discussed 

in section 4.2.1.1, the compiler produces detailed symbol tables that contain sufficient data to get 

this infonnation for any variable in a program. The existing facilities for accessing this infonnation, 

however, were not sufficiently modular, efficient and extensible to be used for this application. The 

current Mesa debugger, for example, has the symbol table manipulations tightly coupled with 

storage management, interpreter, and user interface mechanisms. It was therefore necessary to 

design and implement a system for accessing the symbol tables as part of the work of Incense. This 

chapter describes the design for this system, which is called CedarSymbols. 

6.1 Goals of CcdarSymbols. 

It was clear that a system such as CedarSymbols would be needed in Cedar, and some attempt 

was made to include the requirements of Cedar in the design. The current implementation of 

CedarSymbols, however, will need to be revised before being used by any production system. This 

section discusses some of the design considerations that affected CedarSymbols. 

6.1.1 Opaque types. 

The amount of information needed to define many data types in Mesa is quite large. For a 

record, the programmer needs to know the number of fields, the field names, and the types of each 

field, for example. The symbol tables contain all this information in a highly encoded form which 

is inconvenient to access. While a copy could be made that was simpler to use, large amounts of 

memory and time would be wasted since the information existed in memory already and much that 

was translated might not be needed. It was therefore decided to hide the details of the 

implementation by using opaque types. The internal data and structure of the types is not available 

to the client since all information about the types is obtained through standard procedures. 

It was decided early that some of the principles of data abstractions would be important for 

CedarSymbols. The design is not completely object oriented like the design for documents, 

however, mostly due to the difficulty in current Mesa of having different objects accept different 

messages. The data strnctures used to represent a type are made completely opaque, however, 

through the USC of a POINTER TO UNSPECIFIED, called a Type!D. A procedure called GetType can be 
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used to discover the basic type of a TypelD. GetType returns an element of an enumerated type 

(called Types) containing all the legal types: 

Types: TYPE = {noType, unspecified, .integer, real, cardinal. boolean, character, word, string, 
enumerated, subrange, pointer, union, record, array, descriptor, signal, error, condition, 
process, procedure, userDefined, typeType}; 

6.1.2 Opaque memory addresses. 

A large amount of information is required to describe the memory location of data. A simple 

POINTER is not sufficient because Mesa has types which require different amounts of storage. 
INTEGERS, BOOLEANS, and CARDINALS normally are stored in one word each, but if they are 

embedded in a PACKED ARRAY they use 1, 1h, and 1 word respectively (and if in a PACKED RECORD, 

1 word, l bit, and 1 word). In addition, there arc LONG types which arc stored using 2 words, as 

are REALS. PACKED RECORDS. add a further problem in that the various fields can start and any 

arbitrary bit position. For example, 
messyRec: PACKED RECORD 

I 
a: (1 .. 71, 
b: CHARACTER, 
c: (-3 .. 0), 
d: BOOLEAN, 
e: (20 .. 22), 
]; 

··(0, 3) 
··(3, 8) 
··(11, 2) 
··(13, 1) 
··(14, 2) 

fits exactly into one Alto word (16 bits). Each field above starts at the bit position x, taking y bits, 

in the (x, y) comment following the field. 

The opaque type Memory Address in CedarSymbols abstracts out much of this complexity. As 

with TypelDs, the client is given a POINTER TO UNSPECIFIED from which he can only get information 

. by calling CcdarSymbols routines. At some point the client will need to get at the actual data. 
'There could have been a different procedure for eac~ type, but instead two generic functions were 

provided. GetOneWordValue has as a parameter a MemoryAddress. It extracts the value from 

MemoryAddrcsses whose lengths are 16 bits or less. The function copies the data into the 

appropriate part of the resultant word while masking out all other bits. Thus, while the 

memoryAddress for messyRec.d will specify the actual location in memory, GctOneWordValue called 

with that memoryAddress as an argument will return a word that can be used as a normal BOOLEAN. 

There is also a PutOncWordValuc routine that stores values in the correct format. Another pair of 

routines is provided for two-word values. No non-aggregate type in current Mesa is larger than two 

words. Decomposing aggregate structure is done through the use of the AddrOjSub routine 

described in section 6.3. 

Another advantage of opaque memoryAddresses is that they can be constructed for constants 

simply by allocating some storage for the value. The symbol tables contain sufficient infonnation 

for reconstructing many constants, so Incense allows the user to request a display for a value such as 

maxNumEls: CARDINAL= 15; whereas the current debugger docs not. The memory Addresses for 

constants arc flagged readOnly so any attempt to store into one causes a signal. The memory for 

the value is deallocated automatically when the memoryAddress is. 
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6.2 TypeOfSub. 

An early design for CedarSymbols provided a separate procedure to handle every type. This 

required a large number of procedures, so one generic procedure is used instead. TypcO.fSub takes 

a typeID and an index and returns a typclD representing the type of the subcomponent. Since the 

generic procedure is implemented using a case statement branching to a different procedure for 

each type, it would be easy to provide both interfaces, but there seems to be no motivation for this. 

The interpretation of the index argument to TypeOfSub depends on the specific type of the typeID. 

If no action is specified for a particular index, or if it is out of bounds, a signal is raised. In 

particular: (in the following, <Name> will mean a typclD for Name.) 

Subrange: For subrange types, if index = 0 then the type over which the subrange 

occurs is returned. Example, for Sub1: TYPE = [1 .. 10]; Type01Sub[<Sub1>, o] returns 

a CARDINAL typclD. 

Pointer: For . pointer types, if index = 0 then the type of the referent is returned. 

Example, for p1: POINTER TO BOOLEAN; 

TypeOfSub[<p1), O] returns a BOOLEAN typcID. 

Array: For array types, if index = 0 then the type of the array index (which will be a 

subrange or enumerated type) is returned. For index = 1, the type of the clements 

is returned. 

Array Descriptor: For an array descriptor type!., if index = 0, the type of the array 

described is returned. 

Record: For a record type, the type of the index th field is returned. Example, for r1: 

RECORD [fO: BOOLEAN, f1: CARDINAL]; TypeOfSub[<rD, 1) returns a CARDINAL typelD 

(counting is from zero). 

Union: Unions types arc used for the variant parts of records. Thus for a variant 

record, the type of the entire variant part is union. TypcOfSub applied to a union 

typelD returns the type of the tag for index = 0. Since the actual value of the tag 

is needed to find which variant is current and thus the types of the fields of the 

variant part, a special routine is needed (see section 6.4.5). 

Transfer: Transfer types include PROCEDURES, SIGNALS, ERRORS, PROCESSCS, AND 

PORTS. These all have arguments and return values that arc represented as records. 

Therefore, TypcOfSub with iAdex = 0 returns a record type describing the 

argument<>. With index = 1, it returns a record describing the return values. 

TypcTY(1c: Mesa allows the programmer to define new types which can then be used in 

the definition of variables. CcdarSymbols allows the client to discover this 

information. TypcOfSub on a typcTypc type ID returns the base type if index = 0. 

Example, for 

Age: TYPE = POINTER TO CARDINAL; 

TypeOfSub[<Age>, O] returns a POINTER typcID. Note that typclDs of type typeType 

never have associated memory Addresses. 
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UscrDcfincd: Once a type has been defined, any variables defined using that type 

have type userDefined in CedarSymbols. The Mesa compiler does not use this 

distinction, but it is important for Incense to be able to assign a particular display, 

for example, for Age, and not have it apply to all POINTER TO CARDINALS. 

TypeOfSub returns the base type for index = 0. Variables of type userDefincd do 

have memory Addresses. For example, for 

myAge: Age .. 22; 

myAge has type uscrDefined and TypeOtSub of the associated typclD would return 

a POINTER typeID. 

6.3 AddrOISub. 

As described in section 6.1.2, GetXWordValue (where X = One or Two) is used to get the 

value of abstract memoryAddress for variables of the basic types. For aggregate types, however, 

decomposition must be done first. AddrOjSub provides the required capability in the same manner 

as TypcOfSub. In particular: 

Pointer: The Memory Address of the referent is returned for index = 0. This allows the 

client to avoid having to know the details of how the pointer is stored. 

Array: The address of the index th clement of the array is returned. 

Array Descriptors: An array descriptor is actually a record containing a· POINTER TO 

ARRAY and a CARDINAL specifying the length of the array. AddrOfSub with index 

= 0 returns the address of the POINTER part of the descriptor, with index = 1, 

returns the address of the length (CARDINAL) part, and for index = 2, returns the 

address of the array itself. 

Record: The address of the index th field of the record is returned. 

Union: The address of the tag is returned for index = 0. For index = 1, the address 

of the entire variant part is returned. Note that the length in the memoryAddress 

for the variant part will be determined by the current value of the tag if the 

different variants have different lengths. 

6.4 Other Routines Needed by Certain Types. 

Mesa is a very complex language and the generic procedures described above do not provide 

all of the infonnation required for all types. n1erefore, some additional procedures arc provided tO 
handle specific problems. These also were made as generic as possible. 

6.4.1 Index<--> Name. 

For· records and enumerated types, it is necessary to translate between the actual string names 

used in the program and the indices required in the above routines. GetlndexFromName, which 
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accepts a typelD and a string, searches for a field for records or a name for enumerated types which 

uses that string as the name. It then returns the corresponding index or raises a signal if it is not 

there. GetNameFromlndex translates in the opposite direction. 

6.4.2 Maximum Index. 

It is useful to be able to get the maximum legal index that can be used in the CedarSymbols 

procedures for array, record, enumerated and subrange types. GetMaxlndex takes a typeID and 

returns the maximum index (which is one less than the number of legal values since counting is 

from zero). For arrays, this operation is simply: GetMaxlndex(TypeOfSub[arrayTypelD, OJ]. 

6.4.3 Subrange types. 

Subrange types have three special procedures associated with them. GetOrgRangeSubrange, 

which takes a subrange typeID, returns the lower bound (origin) and the maximum legal index 

(range). The origin is an INTEGER to allow subranges of INTEGERS, but will be non-negative for 

subranges of CARDINALS and enumerated types. The range is the number of clements in the 

subrange minus one (since the indices start at zero). The other two procedures provided are similar 

to the index and name translation procedures, since they allow the conversion of an index to a value 

used in the program. In this case, the value is the actual number stored in memory. With subrange 

types, the lowest legal value is always represented in memory by zero, so the client would have to 

add the origin to find the number used in the program text. GetlndexFrom Value takes a typeID 

and the value stored and returns an index suitable for displaying or using to get the name for 

enumerated types. GetValueFromlndex translates in the opposite direction. For example, for: 

Days: TYPE = {Sun, Mon, Tues, Wed, Thurs, Fri, Sat}; 

WeekDays: TYPE = Days[Mon .. Fri]; 

today: WeekDays .. Tues; 

the value stored in today would be 1, and GetlndexFromValue can be used to translate that to the 2 

that GetNamcFromlndex would take to return "Tues". Note that these two procedures could be 

computed by the client using GetOrgRangeSubrange. 

6.4.4 Procedure types. 

The value stored in procedure variables is a tightly coded representation which includes a 

pointer to the code to be executed. One useful piece of information about procedure variables is 

the name of the constant procedure that was assigned to this variable. For example, for: 

MyProcedureType: TYPE = PROCEDURE [arg1: CARDINAL] RETURNS [ret1: BOOLEAN); 

Proc1: MyProcedureType = BEGIN ... END; 

ProcVar: MyProcedureType .. Proc1; 



52 DISPLAYING DAT A STRUCTURES FOR INTERACTIVE DEBUGGING 

where MyProcedureType is a type, Proc1 is a constant procedure of that type, and ProcVar is a 

procedure variable of that type. GetProcedureNanui.<ProcVar>] will return the string "Proc1" which is 

the name of the procedure that would actually be executed if ProcVar was called. If Proc1 had been 

a non-constant procedure, initialized with "+-" instead of"=": 

Proc1: MyProcedureType +- BEGIN ... END; 

then there is no constant procedure that can be found that names the code between the BEGIN and 

END (since Procl is now a variable and could be assigned another value). In this case, the string 

"<ANONYMOUS>" would be returned. 

6.4.5 Union types. 

For union types, unlike with records, the actual value of the tag is required to discover the 

subtype . This is the only situation in Mesa where the type of something depends on its value. 

GetU11io11Varia111Type takes a union typelD and a memoryAddress and returns the type of the 

variant part This is a record TypelD, and the standard routines can be used on it 

6.4.6 UserDefined and TypeType types. 

While it is important to distinguish userDefined types from the types they are based on, the 

client frequently is not interested. The ToBase proc..\!dure is therefore provided. It converts a 

typelD into a base type. If the argument typelD is not userDefined or typcType, then it is simply 

returned unmodified. ToBase uses no internal information and could have been written by the 

client 

6.5 Contexts. 

The reader may. have noticed that no way has been described for getting the first typelD and 

memoryAddress from which to find the subcomponents. This is handled through the use of 

. Contexts. A context describes a module, procedure, or block that contains definitions of variables 

or types. One procedure returns the context for a module of a certain name. Another returns the 

context for the procedure on the top of the execution stack for a particular process. Other 

.Procedures allow iteration through contexts in execution call order or lexical order. This allows 

traversal to be either top-down (e.g •• from the module to all of its components) or bottom-up (e.g •• 

from a procedure to its ca11ers). Finally, there arc procedures for getting the typelD and 

mcmoryAddrcss for a context. The type of the typclD will be a record, and the memoryAddress 

only exist for contexts describing modules, procedures or blocks that currently are active (since only 

then do they have memory assigned to them). 



VII. Incense - Details or the Implementation 

This chapter describes some of the details of the implementation of Incense. Section 7.1 

contains a discussion of exactly what documents arc and how they work. Following that, some 

details are given about how documents arc displayed: section 7.2, erased: section 7.3, and created: 

section 7.4. Section 7 .2 discusses the basic documents, records and layouts in detail. Arrays are so 

similar to records that they do not require any further elaboration. Section 7.2 also describes the 

built-in facilities for allowing the client to specify the rectangles for field placement Finally, 

section 7.5 discusses how a client could define his own documents. 

7.1 I mplcmcntat ion of Documents. 

Mesa currently docs not have convenient methods for supporting object-oriented 

programming. The motivation for this style out-weighed the problems, however, so a somewhat 

clumsy scheme was used. In order for this to work, LOOPHOLES had to be used to breach the type 

system. A document creator stores into UNSPECIFIED pointers in the document whatever data is 

necessary. Since the procedures that manipulate this data are attached to the document, they can 

always know the type of the data. A well-fonncd document therefore has information about the 

type of the data structure to be displayed embedded ii; the typclD field, in the type of the various 

data fields, and in the specific procedures themselves. These must be all consistent for Incense to 

operate correctly. 

The definition of a document and its constituents is given below and Incense's picture of a 

typical document for an INTEGER is given in Figures 7.1 and 7.2. Note that DESCRIPTOR FOR ARRAY 

is used to implement an array of a variable size. 

Document: TYPE = POINTER TO DocumentRecord; 

DocumentRecord: TYPE = RECORD 

formatSet: FormatSet, 
procs: pProcedures, 
typelD: TypelD, --of associated data to be displayed 
addr: MemoryAddress, --of associated data to be displayed 
parent: Document, 
displayed: BOOLEAN, --The following are only valid if doc is displayed 
displayUsed: Subformatlndex, --is index used to display doc; 
selected: BOOLEAN, 
myAbsPos: Rectangle --position on screen 
]; 

--A formatSet is an array of formats, each of which in turn is an array of subformats. If f is a FormatSet, then 
f.formats[x].formatProc[args} is used to display the datum in format x. The subformats should not be 
accessed directly. 

FormatSet: TYPE = RECORD 
[ 
formats: DESCRIPTOR FOR ARRAY OF Format, 
data: POINTER --global data useful for displaying document in all formats. This is one place the type 

system is breached. 
J; 
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Format: TYPE = RECORD --r 
formatProc: FormatProc, 
subformats: DESCRIPTOR FOR ARRAY OF Subformatlnfo ·-internal 
]; 

Subformatlnfo: TYPE = RECORD 

subformatProc: SublormatProc, 
iprocs: plnternalProcs, --procedures for this subformat 
subData: POINTER --other useful data for display specific to this subformat. This is one place the type 

system is breached. 
]; 

FormatProc: TYPE = PROCEDURE [me: Document, formatlndex: Formatlndex, maxArea: Rectangle] 
RETURNS [areaUsed: Rectangle]; -

Subformatlndex: TYPE = RECORD 

format: Formatlndex, 
subformat: Formatlndex 
]; 

Formatlndex: TYPE = CARDINAL; 

SubformatProc: TYPE = PROCEDURE [me: Document, mylndex: Subformatlndex, maxArea: Rectangle] 
RETURNS [used: BOOLEAN, areaUsed: Rectangle]; 

--if applicable then used= TRUE and executes; 
--otherwise used = FALSE 

pProcedures: TYPE = POINTER TO Procedures; 

plnternalProcs: TYPE = POINTER TO lnternalProcs; 

Procedures: TYPE = RECORD 
( 
destroy: Destroy, --erase if displayed and de-allocate storage 
erase: Erase, --to un-display doc; doc not destroyed 
findSelection: FindSelection, 
deSelect: Deselect., 
findField: FindField, --for layouts 
findDocUnder: FindDocUnder, --for layouts 
drawArrowFrom: DrawArrowFrom, --for layouts 
edit: Edit 
]; 

lnternalProcs: TYPE = RECORD 

destroy: lntDestroy, --erase if displayed and de-allocate storage 
erase: lntErase, --to un-display doc; doc not destroyed 
findSelection: lntFindSelection, 
deSelect: lntDeSelect, 
findDocUnder: lntFindDocUnder, --for layouts 
drawArrowFrom: lntDrawArrowFrom, --for layouts 
edit: lntEdit 
]; 

Select: TYPE = {hit, next, missed}; 

Destroy: TYPE = PROCEDURE [me: Document]; --erases and de-allocates document and any subdocuments 

Erase: TYPE = PROCEDURE [me: Document, eraseScreen: BOOLEAN); 

FindField: TYPE = PROCEDURE [me: Document, ptrlD: PtrlD, dataPointedTo: MemoryAddress, dataType: TypelD) 
RETURNS [fieldDoc: Document]; 

DrawArrowFrom: TYPE = PROCEDURE [from: ThreePoints, me: Document] RETURNS [pts: SevenPoints, destHeight: 
Coordinate]; 

--returns all points of spline to allow erasure 

··The following finds a doc under or equal to me that has data as its data of type data Type. 
FindDocUnder: TYPE = PROCEDURE [me: Document, data: MemoryAddress, dataType: TypelD] RETURNS [dataDoc: 

Document]; 
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FindSelection: TYPE = PROCEDURE [me: Document, mouse: Point] RETURNS [sel: Select, selD: Document]; 
•• If mouse pointjs for this object, selects self and returns hit unless 
··already selected, in which case, returns next and de-selects self, 
··otherwise, returns missed. -

DeSelect: TYPE = PROCEDURE [me: Document]; 

Edit: TYPE = PROCEDURE [me: Document, newValue: Memory Address]; 

lntDestroy: TYPE = PROCEDURE [me: Document, mylndex: Subformatlndex]; 
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lntErase: TYPE = PROCEDURE [me: Document, eraseScreen: BOOLEAN, mylndex: Subformatlndex]; 

lntDrawArrowFrom: TYPE = PROCEDURE [from: ThreePoints, me: Document, mylndex: Subformatlndex] RETURNS 
[pis: SevenPoints, destHeight: Coordinate]; 

lntFindDocUnder: TYPE = PROCEDURE [me: Document, data: MemoryAddress, data Type: TypelD, mylndex: 
Subformatlndex] RETURNS [dataDoc: Document]; 

lntFindSelection: TYPE = PROCEDURE [me: Document, mouse: Point, mylndex: Subformatlndex] RETURNS [sel: 
Select, selD: Document]; 

lntDeSelect: TYPE = PROCEDURE [me: Document, mylndex: Subformatlndex); 

lntEdit: TYPE = PROCEDURE [me: Document, newValue: MemoryAddress, mylndex: Subformatlndex]; 

(a) 

fomi.a.ts: 
form.3tSet: data.: 
:irocs: 
tv :ieID: 
addr: 
:iarent: 

(e) dis :•laved: TRUE 
format: O 

dis )}a.vUsed: su.bformat: 0 
selected: FALSE 

llx: 3.S 
llv: 100 
urx: 60 

rn ·AbsPos: ur· : 2.0.S 
(b) 

(c) 

destro..,.: StandardDestro"' 
er a.se: Stand.3fdEr.:i.se 
findSelection: St.:111d..:inlFindSelection 
deSelect: St.~r1dard.DeSelect. 

find.Field.: NonL.:..,rF·intl.F'ield 
find.Doc Under: St.:indarcl.Fincl.Doc Under 
d.ra . .-.11 i·.rro•N F·rom: St.:.incl.ard.Dr.:.i.w }l..rro\1•• From 
edit.: Nu.llEdit 

(d) 

Figure 7.1. Incense display of a document for a displayed INTEGER. The document (a) is a pointer to a 
document Record (b). That record contains 1 format (c) expanded in Figure 7.2, a set 
of procedures (d), and other data (c). 
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forn-1..:..t.Proc: 

su.bformat.s: 
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(a) 

(d) 

findSelect.ion: :NonA !2. He r.>-.:i.t.eln t.F"indJ.:.elect.ion 
d.eSelect: St.:.ndaxcUn t.OeSelect 
findDocUnder: Non A€ ne 12"·:<.telnt.Find.Doc Und 
d.ra.w Arrow Froni.: CenLeftln t.Or a.w Arrm.•l F·rom 
edit.: JIJu.llintEdit 

Figure 7.2. Expansion of integer document fo1mat. There is one fonnat with its formatProc: (a) and 
two subformats: (b) and (c). The subforinats have different subf01matProcs and no 
sub Data, but they share the same internal procedures: (d). 

The fields of a documentRecord are: 

formatSet which contains the procedures and data required for displaying; 
procs which arc the top level procedures for doing all of the other operations on 

documents such as erasing, selecting, etc. These typically call on the corresponding 

internalProc in the subformatlnfo for the currentsubformat; 

typelD and addr for the data structure this document is meant to display. For some 

documents, such as those for layouts, these fields will be NIL since there is no 

associated data; 
parent which allows tracing up the document hierarchy. The parent field is used by 

procedures such as FindFicld which must search up the tree. Every document has 

at most one parent Some documents that have subordinates, such as for the fields 

of records. The infonnation describing the subordinate documents is stored in the 

subData field of subformatlnfo; 

displayed which te11s if this document is displayed. The rest of the fields in a 

document arc only valid if the document is displayed; 

displayUscd contains the format and subformat indices used to display the document. 

This is required by the procedures that manipulate the displayed documents since 

they need to know which intcrnalProc to use; 
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selected tells whether this document is the one selected or not; 

myAhsPos gives the rectangle that the document fit into when displayed. It is 

guaranteed to be less than or equal to the rectangle specified as maxArca 'in the 

FormatProc used to display the document 

7.2 Displaying Documents. 
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As described in section 5.3.1.1, a client causes a document to be displayed by choosing a 

format and calling the associated formatProc. This formatProc iterates through the subfonnatProcs 

to find one that will display the document. The operation of the subformats for various types is 

described below. In addition, however, the fonnatProc takes care of other bookkeeping tasks. First, 

if the document was selected, it is deselected. Next, the displayed flag is set to true and 

displayUscd.format is set. After the subfo1mats arc checked, the document is registered. A list is 

kept of all the documents that arc currently displayed, and a RegisterDoc procedure is provided for 

adding documents to the list. This list allows the erasure of all documents on the screen (and a 

JAM function provides this operation to the user). In addition, the list is necessary for the selection 

process and for allowing multiple pointers to the same data structure to point to the same place on 

the screen. A generic procedure EnumerateRegDocs is provided: 

EnumerateRegDocs: PUBLIC PROCEDURE [proc: PROCEDURE [enumD: Document, enumTopLevel: BOOLEAN) 
RETURNS (BOOLEAN]) RETURNS [docChosen: Document]; 

where the proc argument is a procedure to be called on each registered document. 

EnumerateRegDocs terminates and returns the current enumD argument when proc returns TRUE. 

The enumTopLevel flag is used to distinguish documents that were explicitly displayed by the client 

from those displayed by other documents. The formatProc procedure sets the topLevcl flag FALSE, 

and the utility routine DisplayDoc called by the client changes it to TRUE for the appropriate 

documents. 

7.2.1 Displaying the basic types. 

Documents for data of types STRING, INTEGER, CARDINAL, WORD, UNSPECIFIED, BOOLEAN, 

CHARACTER, REAL, PROCEDURE, and ENUMERATED do not need any extra infonnation for display. 

Subranges of these do store the type of the base and the offset and range of the subrange for 

efficiency, however. 'lherc are four subformats defined for each of these types. Two of these 

display the data using text and two display the data using grey blobs. One of each of these draws a 

box around the value and the other docs not. The choice between the "boxed" or "non-boxed" 

subformats is usually made by the creator of the document based on whether it will be displayed in 

an aggregate structure or not. For example, the record document will draw a box around the entire 

field and not just the value portion so the unboxed option is chosen for the values enclosed. In 
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Figure 7.3, the value in a field has been selected showing the extent of its rectangle. A box is 

drawn around documents of the basic types that arc intended to be displayed by themselves (see 

Figure 5.4). This is especially useful if there is a pointer to the value (Figure 7.4). 

weie-ht.: 11.S 
I.:i.st.I'·I.:one: IB~ 
initial: 'B 

Figure 7.3. Selection of a field value in a record showing the extent of its rectangle. 

Figure 7.4. Pointer to CARDINAL showing utility of the boxes. 

The documents for the basic types contain subformats for normal and grey display. One of 

these styles is chosen at run time by the subfonnats based on the amount of room available 

(maxArca). 'Dle normal subformat will not be used if the area specified is smaller in the vertical 

("Y") direction than the height of the font used to display the value, or if less than half of the value 

will flt in the horizontal ("X") direction. The latter restriction is used since half of the string 

displayed is frequently enough to allow recognition of the value (sec Figure 7.Sa and 7.5b). The 

grey blobs used if there is not enough room are supposed to represent very tiny text. Thus, the size 
of the blob is adjusted to correspond to the length of the string that would have been printed for 

the value. This may allow the programmer to distinguish between a number of values if they have 

different lengths (see Figure 7.Sc and 7.Sd). 

IFAD ITRl i::i:::U.:k.:f.!.i±!.o:@ IWRij 

(a) (b) (c) (d) 

Figure 7.5. Demonstration that clipped strings do supply information: (a) and (b) are values of 
BOOLEANS. Grey areas arc different sizes depending on string: (c) is for FALSE and (d) 
is for TRUE. 

Two utility procedures are used by these subfonnats. One displays a string in a given 

rectangle, clipping it if necessary. The other displays a grey blob of a given height and width. 'This 

makes it easy to add subfonnats for displaying new types whose values can be represented as simple 

strings. For example. PROCEDURE types recently were added to Incense in just a few minutes after 

GetProcedureName was added to CedarSymbols. 
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7.2.2 Displaying records. 

Records arc more complex than INTEGERS and require extra infonnation to be displayed. No 

global data (formatSct.data) is needed, but a great deal of infonnation is stored in the subData slot 

for each subformat. This data includes two documents for each record field. This is an example of 

recursive nesting of documents since any field may be a record. For the automatically created 

record documents, the subData is the same for both subformats, so the suhData pointers refer to the 

same data. 

7.2.2.l Afesa definition of record document. 

The definition for the data structure used in the subData field of records is given below: 

pRecSubformatData: TYPE = POINTER TO RecSubformatData; 

RecSubformatData: TYPE = RECORD 

needed: Rectangle, --area needed for this subformat to work; 
--must be bigger that sum of field rects (in base) 

maxNameWidth: Coordinate, --needed to see if will fit (in base) 
arrowEnd: ThreePoints, --dest point for arrow (in local coord sys) 
curArrowEnd: ThreePoints, --set when displayed (in Base coord sys) 
fields: DESCRIPTOR FOR ARRAY OF RecFieldData --
); 

RecFieldData: TYPE = RECORD 

dataDoc: Document, --for actual data contained in field 
dataForlnd: Formatlndex, 
dataRect: Rectangle, --relative to needed rect 
nameDoc: Document, --for field name 
nameForlnd: Formatlndex, 
nameRect: Rectangle --relative to needed rect 
); 

The fields of RccSubformatData are: 

needed, a rectangle describing how big the record display was when it was designed. 

For the basic types, such as BOOLEAN the size is easily calculated from the current 

value. 1bis is not true for records and other aggregate structures that can have 

fields in arbitrary locations (sec Figure 5.8). Therefore, the size is stored as data. 

The rectangle is calculated in a base coordinate system so that changes of scaling 

will not affect its size; 

maxNameWidth, the width of the longest field name. This is used to decide if the 

rectangle supplied wiH be large enough . to display a reasonable amount of. the 

record (sec below); 

arrowEnd, the place on the record where an arrow drawn to the record should end. 

'Ille basic types simply use the center of the left side, but for aggregate structures, 

it is useful to be able to specify the destination points. Three points arc used to 

allow specification of the direction as well as the position of the arrow; 
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curArro\\'End, the arrowEnd points converted so they correspond to the current 
position of the record; and 

fields, an array of data needed for each field. 

The extra data needed for each record field is: 
data Doc, the document which will display the value of this field; 

dataForlnd, the formatlndex to be used when displaying that field's value document; 

dataRect, the rectangle. to be used to hold the value; 
nameDoc, a document used for displaying the name of the field. The name was made 

a document to allow more consistent handling of the name and the value portions 
of the field display. The nmneDoc usually is a simple string-handling document; 
and 

namcForlnd and namcl~cct, the formatlndex and rectangle for the name part of the 
field display. Note that this allows the field name and field value to be displayed 
in any position. not just the name: value as used in the default. Thus, for example, 
a special record field name document might be created that centered the name in 
the field or put it flush with the top. 

7.2.2.2 Operat:on ofthe subfonnats 

The default record documents have one format and two subformats. As with basic types, a 
subformat is chosen based on the amount of screen area available. For records, the needed and 
maxNamcWidth fields of the RecSubformatData arc used in this decision. The standard subformat 

· is used if the maxArea is larger in the vertical direction than the height of the needed rectangle, and 
if it is. wider in the horizontal direction than maxNmneWidth. This allows part of the value to be 

clipped (Figure 7.6). If there is not enough room, the other subformatProc is used. This latter 
procedure introduces a scaling · factor that allows the entire needed rectangle to tit into the area 
specified. The proportion of the height to width of the resulting rectangle on the screen is kept the 

same as the proportion in the needed rectangle irrespective of any uneven scaling that might have 
been imposed from above. This scaling must be taking into account, however, since it affects the 
size of the maxArea rectangle. The formula used to determine the scaling amount is: 

scale .. MIN[maxAreaWidth/neededWidth, maxAreaHeight/neededHeight]; 

where both maxArea and needed have been converted into the same (base) coordinate system. 
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a: 3 
b: '@ 

ca: -2 
cb: This is a~ 

internalRec: cc: TRUE 
d: kl 

Figure 7.6. Record with a value clipped. Most of the infonnation is stilJ available. 

A further complication arises since the record display should be centered vertically inside the 
maxArca rectangle. This is straightforward in the non-scaling case, but here it requires the scale 
factor to be taken into account. The fonnula for the starting Y position is: 

yStart +- MAX[maxAreaLowerY, (maxAreaHeight-neededHeight*scale)/2); 

Figure 7.7 shows a scaled record centered inside of the bounding box and taking the same 
proportions as the full-size display. 

a: 3 
b: '@ 

ik_a: -2. 
cb: This is a test 

in ternalRec: cc: TRUE 
d: kl 

(a) 

(b) 

Figure 7.7. Record shown full size (a), and scaled proportionally and centered inside a bounding 
rectangle (b ). 

After all these manipulations have taken place, both the record subformats first calculate the 
destination points for arrows in the current context If the record contains a pointer back to itself, it 
wi11 therefore be drawn to the correct place. Afterwards. the subformats simply iterate through the 

fields causing the name and field documents to be displayed in their respective rectangles. 

7. 2. 2.3 Display of clocks. 

Clocks are record documents with two special subformat procedures. Clock documents have 
two fmmats, one of which displays as a nonnal record and the other as a dock with hands (Figure 

5.1). 11te clock format differs from the others discussed in that it docs not decide which subfonnat 
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to use based on maxArca. The first subformat is used if the document is being displayed for the 
first time. If the document is being re-displayed with the same rectangle as used previously, 

however, the second subformat is chosen which knows how to move the hands on the existing 
display. Thus, the clock document can be associated with a process that will cause it to be re­
displayed when the time has changed, and a s~ple JAM procedure to do this has been written. 

The angle of the hands of the clock arc easily calculated as follows: 

minAngle +- -(min*6 • 90 + (sec/10)); 
hourAngle +- ·(hour*30 • 90 + (min/2)); 

llms the hands can move continuously rather than in unit steps. 

7.2.3 Displaying layouts and pointers. 

As mentioned in section 5.3.1.3, the display of layouts and pointers is very complex. Since no 
space allocation is done at run-time, the layout documents, like records, contain rectangles 
specifying where each field should be placed. These rectangles are allocated in a very simple 
manner described in section 7.4.7. This section discusses some of the data structures and procedures 
that are used by the pointer and layout documents to decide what fields to use and to draw the 
arrows. 

7.2.3.1 Mesa definitions for pointers and layouts. 

In section 5.3.1.3, it was mentioned that layout documents contain a document for each field. 

The following are the definitions for the data structures needed for the data and subData fields for 
pointer, layout .and layout field documents: 

--Pointers: 

··PtData fits in the data slot of FormatSets since is global; pPtSubformatData goes In the subformat subData slot 

pPtData: TYPE = POINTER TO PtData; 

PtData: TYPE = RECORD --r 
subDataType: TypelD, --need type to create dataDoc if not available 
subDataAddr: MemoryAddress, 
ptrlD: PtrlD --used to associate pointer with a layout field 
); 

pPtSubformatData: TYPE = POINTER TO PtSubformatData; 

DisplayRec: TYPE = RECORD 
[ 
splinePointsUsed: BOOLEAN, ··false if not (e.g. due to NIL) 
splinePoints: SevenPoints, --kept to allow erase 
destHeight: Coordinate, ··kept to allow erase (used by arrowHead routine) 
subDocField: Document, ··is doc for field holding data I point to 
dataDoc: Document ··is document for data I point to 
); 
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PtSubformatData: TYPE = RECORD 

display: DisplayRec, 
form: RECORD[formatlndex: Formatlndex] 
]; 

--Layouts: 

--Goes in the subformat subdata slot 

pLaySubformatData: TYPE = POINTER TO LaySubformatData; 

LaySubformatData: TYPE = RECORD 
( 
needed: Rectangle, --area needed for entire layout 
displayContext: POINTER TO CGraphicsDefs.DisplayContext, 
fields: DESCRIPTOR FOR ARRAY OF LayDocFieldData 
]; 

LayDocFieldData: TYPE = RECORD 
( 
ptrlD: PtrlD, --used to associate pointer with a layout field 
document: Document, -·is a Layout Field Doc 
formatlndex: Formatlndex --which format to use for layout field doc 
--unlike everything else, layout fields decide where to put themselves so no Rect here. 
]; 

--Fields of layouts: 

--For the data slot of format5et 

pLayFieldData: TYPE = POINTER TO LayFieldData; 

LayFieldData: TYPE = RECORD 
( 
datatype: TyoelD, --of thing to be displayed in this field 
dataAddr: Mi::moryAddress ··ditto 
]; 

--Goes in the subformat subdata slot 

pLayFieldSubformatData: TYPE = POINTER TO LayFieldSubformatData; 

LayFieldSubformatData: TYPE = RECORD 
[ 
valueDoc: Document, ··document to display value inside field 
formatlndex: Formatlndex, -·format for valueDoc 
valueRect: Rectangle, --where value will go 
fieldRect: Rectangle ·-where field will go 
]; 
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PtData, which contains global infonnation needed by all subfonnats for pointers, has the 

following fields: 

subDataTypc which is the type of the data pointed to; 

subDataAddr which is the address of the data pointed to. This changes whenever the 

value in the pointer is changed, whereas the type stays the same; and 

ptrlD which is a unique identifier used to associate the pointers with the layout field 

in which to display the referent (see below). 

The PtSubformalData is divided into two parts, the form and the display. The fonn contains 

the information about how the pointer is to look. In particular, it has a formatlndcx for the layout 

field. The display contains information about the current display. In particular, 
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splincPointsUscd specifics whether a spline was drawn for· the pointer or not For 

pointers that arc NIL, for example, a diagonal line is used instead of a spline (see 
Figure 7.1); 

splincPoints contains the sevenPoints used in drawing the spline for the arrow. This 

a11ows it to be erased; 

dcstHcight is the height of the side to which the arrow was drawn. This is used to 

decide how big the· arrowhead should be so it must be saved to allow correct 

erasure; 

dataDoc is th~ document for the data referred to by the pointer; and 

subDocField is the layout field document that displays dataDoc. 

Layouts do not need any global data and consequently only have LaySubformatData. 1be 

fields of this are: 

needed which is the rectangle required by the Jayout; 

displayContcxt which is the display context used to display the layout itself (see 
section 7.2.3.2); and-

fields which is an array of all the fields of the layout. each of which has a document 

which is the layout field document, a formatlndcx for that field, and a ptrlD that 

associates the field with a pointer. 

Layout fields have global data like that for pointers: 

dataTypc and dataAddr which describe the type and address of the data to be 

displayed in them. Layout fields need this infonnation to create a document for 

their valueDoc if it docs not already exist (sec section 7.2.3.2). 

In addition, layout fields have Layl<'icldSubformatl>ata containing: 

valucDoc which is the document to be displayed in this field; 

formatlndcx which is to be used for valueDoc; 

valueRect which is the rectangle for valucDoc; and 

ficldRcct which is the rectangle for the field itself. 

7.2.3.2 Operation of the subfonnats. 

When a layout subformatProc is called, it is given a maxArea rectangle like all other 

documents. It then sets the scaling factor so that the needed rectangle exactly fitc; into the maxArca 

rectangle. It is assumed that the proportions of the layout needed rectangle were not significant (in 

fact, the default layouts all use a 100 by 100 rectangle). The current display context is then stored 

in the layout subllata. Finally, the layout iterates through the layout field documents causing each 

to be displayed if it has not been displayed already. 
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The layout field subformat procedure first tests to see if valucDoc is non-NIL. If so, the 

display context of the layout is used to display the valucDoc. If not, a new document is created as 

described below. 

Assume a pointer is enclosed in a record which is inside the first layout field (sec Figure 7.8). 

The record will be told to display by the field and the pointer subformatProc will be called in turn. 

The pointer document first gets a new memoryAddress for the referent (since it may change). Next 

EnumerateRegDocs is used to sec if a document is already on the screen whi~h has the same 

memoryAddress as the referent. This allows structures such as Figure 7.9 to be displayed correctly 

where multiple pointers refer to the same data item. It has the additional advantage that pointers to 

subparts of records can be handled correctly (Figure 7.10). 

Layout 

Figure 7.8. Document hierarchy ·that would be created for: 
rec: RECORD [p1: POINTER TO CARDINAL, int: INTEGER); 

(This figure was not created by Incense). 

Figure 7.9. Array of pointers with two pointers referring to same value. 
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If the target document is not already displayed, the pointer will attempt display it. This is 

handled in the following manner. First, the procedure FindField is called using the pointer's parent 

and the type and address of the data referred to. This procedure traces up the document tree 

attempting to find a layout field that has the same ptrID as the pointer. A ptrlD is used, rather 

than simply the field index, to allow aggregates of aggregates (all containing pointers) to work 

correctly. For example, in Figure 7.11, a record contains another record and both have pointers in 

record field number one. A unique naming scheme for the pointers is therefore needed. If the 

search for a layout field is successful, the layout which found it will return the winning layout field. 
. ~ 

In addition, however, the layout wi11 store the type and address. of the data being pointed to in the 

LayData of the layout field. If the search for the field does not succeed, either a symbol for illegal 

(Figure 7.12a) or unknown (Figure 7.12b) is used. Illegal means that a document was malformed or 

an attempt was made to use an unimplemented feature of CedarSymbols. Unknown is used if there 

arc simply no layouts that want to handle the pointer's referent, but this should never occur with 

automatically created documents. 

(a) 

ers 
initial: 'B 

Figure 7.10. Pointer to value inside a record (a) does not get confused with a pointer to the record 
itself (b). 

--~s11 

useful: TRUE 
m Val: 

first.El: -2.4 
currentVal: 

fU.rtJ1erSt.:i.t.e: l.:i.stVal: 

334.S 

Figure 7 .11. Record with internal record both with pointers in record field number one demonstrating 
necessity for unique PtrIDs. 
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next.: 
V·:tlP: 

(a) 
(b) 

Figure 7.12. Record containing pointers represented as Illegal (a) and Unknown (b). 
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Once the pointer finds a layout field, it is displayed. Now control passes to a layout field. As 

described above, if the fjeld's valueDoc is not NIL, the valueDoc is displayed in the valueRect 

rectangle. Note that in this case the displayContext from the layout is very important since the 

layout is 1101 causing the layout field to be displayed. Rather, it is the pointer's document that calls 

the layout field so an arbitrary display context might be current. If the valueDoc is NIL, then the 

field will attempt to create a new document using the data address and type stored earlier in its 

global data by the layout when FindField was called. It is necessary to be able to create documents 

dynamically for layouts (unlike for records) because laynuts can be used t.o display structures of 

indeterminate depth. An example of this is a recursive data type, such as 

List: TYPE = POINTER TO ListRecord; 
ustRecord: TYPE = RECORD [value: CARDINAL. next: List]; 

for which no number of documents can be known to be sufficient a priori. The creation process is 

described in section 7.4. After a rnlueDoc has been created, it can be displayed using the 

techniques described above. 

Returning to the pointer, the field has completed its display, presumably including the display 

of the document for the data the pointer refers to. Now, however, the pointer must find this 

document so the arrow can be drawn to it. This is done through the use of the FindDocUnder 

routine in the layout field. This routine matches the memory address and type arguments (which 

are of pointer's referent) against the address and type of the document and all constituent 

documents. It is necessary to travel down the document tree because the valueDoc in a field may 

be a layout. and the actual referent could be buried down many levels. Once the dataDoc is found. 

the DrawArrowFrom routine in it is called to draw the arrow from the pointer. 

7.3 Erasing Documents. 

Erasing of documents is not complicated and was essentially covered in section 5.3.3. The 

current section merely explains the arguments and the actual operation of the erase procedures. 

The standard top level erase procedure first checks to see if the document is displayed and if 

not the procedure simply returns. Otherwise, it de-selects the document if it is selected, de-registers 

the document, and then calls the internal erase procedure corresponding to the format and 

subfonnat used for display (displayUsed). After the internal procedure is completed. displayed is set 

to FALSE and the rest of the display information is reset. 
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The most time-consuming part of the erase is the actual clearing of the screen picture. With 

records and arrays, some parts of the screen will be erased more than once since both the fields and 

the aggregate erase the same area. To avoid this, an argument to the erase procedure (eraseScreen) 

determines whether or not the screen area (myAbsPos) should be erased. The erase procedures for 

the non-aggregate documents simply test this boolean and erase if TRUE. Records, arrays, layouts 

and other aggregate documents, however, first call the erase procedure in each sub-document. In 

this case, the eraseScrccn flag is set to FALSE to save time. Pointers, however, always erase the 

arrow since it would lie outside of the rectangle of the parent. 

7.4 Creation of Documents. 

The creation of documents is a relatively complex task, due to the necessity for allocating 

different types of storage and correctly filling the many fields. Since there is very little consistency 

checking in documents, it is imperative that the documents be created correctly. This section 

discusses the generic CreateDoc routine and all of the procedures it uses to create documents of the 

various types. In addition, the creation of documents with client-defined rectangles will be 

described. 

7.4.l Generic creation routines. 

A generic creation procedure, called CreaJeDoc, has been provided. It takes a typeID and a 

memoryAddrcss and creates a document using all the defaults. In addition, CreateDocForVar is 

provided as a utility. It creates a document for a variable using its string name and a description of 

its context. Thus, the simplest way to get the value for a variable myVar using format 0 and 

rectangle rect is: 

d: Document E-- CreateDocForVar["myVar", ctxTypelD, ctxAddr]; 
U E-- DisplayDoc[d, 0, reel]; 

A JAM procedure, called vis (for "visible") is provided that gets the variable-name string using the 

keyboard and the rectangle using the mouse and then executes the above code. 

CreateDoc is actually a dummy procedure since all it docs is call lnLerna!CreateDoc with some 

of the parameters already set. InternalCreateDoc actually does all the work. Its definition is 

lnternalCreateDoc: PROCEDURE [typelD: TypefD, addr: MemoryAddress. layptr, boxed, arrayDown: BOOLEAN] 
RETURNS [d: Document, w, h: Coordinate]; 

and CreateDoc calls InternaICreateDoc with the booleans all TRUE. The w and h returned are the 

width and height (in a base coordinate system) of the display for the document created. This allows 

recursive embedding of documents. 
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First, IntcrnalCrcatcDoc determines whether a prototype document has been specified for the 

current display. If so. the prototype is copied into a document which is returned. This test 

proceeds in three stages, since a prototype can be specified for a variable, its type, or that type's base 

type. Thus, for example, for 

Age: TYPE = CARDINAL; 
myAge: Age*" 22; 

the client might specify a prototype for myAge, all data of type Age, or all data of type CARDINAL. If 

all of these tests fail, lnternalCreatcDoc docs a case select on the base type of the data to find the 

correct default. The actions for the various types is described in the next sections. 

7.4.2 Creation of simple documents. 

For data of types UNSPE'.CIFIED, INTEGER, REAL, CARDINAL, BOOLEAN, CHARACTER, WORD, STRING, 

ENUMERATED, and PROCEDURE no internal data is required. A generic procedure (TwoSubDoc) is 

used to create documents for these types. The procedure is called TwoSubDoc since it fills the 

document with two subformats (sec section 7.2.1). The parameters to this procedure are the two 

subfo1matProcs and the address and type of the data. If the boxed parameter to IntcrnalCrcateDoc 

is TRUE then the normal and grey boxing subfonnats arc used. Otherwise the non-boxing 

subformats are chosen. TwoSubDoc allocates storage for a document with one format and two 

subfo1mats and initializes all the fields. The height returned by CrcateDoc is simply the height of 

the font that will be used to print the the value. The width returned is calculated based on the 

average or maximum number of characters necessary to write a value of that type. This is 

multiplied times the average character width. The number of characters used is given in the 

following table: 

~ T~QNumChars Maximum or Average 

UNSPECIFIED 7 max 
INTEGER 6 max 
REAL 15 ave 
CARDINAL 5 max 
BOOLEAN 5 max 
CHARACTER 2 max 
WORD 7 max 
STRING 20 ave 
ENUMERATED 10 ave 
SUBRANGE Typ N umChars[baseType] 
POINTER 2 
PROCEDURE 20 ave 

Subrange documents require a small amount of extra data, so they arc given their own 

creation routine. Operating similarly to TwoSubDoc. CreateSubrangeDoc also allocates and 

initializes the extra data required. 
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7.4.3 Creation of record documents. 

When IntemalCreateDoc is ca11ed with a POINTER, RECORD, ARRAY, or DESCRIPTOR FOR ARRAY, 

it first checks the BOOLEAN argument layptr. If this is TRUE and the type contains one or more 

pointers, then a layout is created instead of the type specified. Thus when a document for an array 

of pointers is requested, a layout document is actually returned. This allows the pointers to be able 

to display the referent. Section 7.4.7 discusses the creation of layouts, and this section discusses the 

case where the record contains no pointers or layptr is FALSE. 

The record co11struction procedure (Create2SubRecDoc) takes as arguments the type and 

address of the record and three procedures. Tiiese procedures are used to get the rectangles and 

arrow end points used in designing the form for the record. In automatically created record 

documents, the procedure orients the rectangles stacked vcrticaUy. The size used for each field is 

derived from the width and height of the field document. The definitions for record creation are: 

.--Records 
Create2SubRecDoc: PUBLIC PROCEDURE [rec Type: TypelD, recAddr: MemoryAddress, getRects: RecGetRects, 

adjustRects: RecAdjustRects, get3Points: Get3Points) RETURNS (d: Document, w, h: Coordinate]; 
·-the following is used to get or generate the rectangles to be used for the field and value (data) in a record field. 
RecGetRects: TYPE = PROCEDURE [fieldName: STRING, lieldType: TypelD, xStart, yStart, valueW, valueH: 

Coordinate) RETURNS [nameR, valueR, sum: Rectangle, nameW: Coordinate); 
--The following is called after all fields are processed and can modify the rectangles to put in correct place, mahe sum 

rectangular, etc. (May be a do-nothing procedure). 
RecAdjustRects: TYPE = PROCEDURE [recDoc: Document, which: Subformatlndex); 
--The following (called after all fields are adjusted for records} is used to get the 3 points needed to point to this 

document (record or array). 
Get3Points: TYPE = PROCEDURE [d: Document, which: Subformatlndex) RETURNS[attach: ThreePoints]; 

The operation of Create2SubRccDoc is as follows: first, the number of fields of the record is 

discovered using the CedarSymbols command GetMaxlndex. A document is then created with one 

format and two subformats. Next, the RecSubformatData and RecFieldData data structures are 

allocated. An internal procedure, called MakeRecFie/d, is then called to fill in each field. 

MakeRecField is defined as: 

MakeRecReld: PRIVATE PROCEDURE (i: CARDINAL, rec Type: TypelD, recAddr: MemoryAddress, psubData: 
pRecSubformatData, getRects: RecGetRects, parent: Document, xStart, yStart: Coordinate] RETURNS [xEnd, 
yEnd: Coordinate]; 

where i is the field index. MakeRecField uses the rccTypc to get the field name, and it creates a 

document for it after appending ": " to the end of the string. The recType, along with the 

rccAddr, is also used for getting the type and address of the ith component of the record. 

lntcrnalCreateDoc is then called by MakcRecField to create the document for the field. The 

arguments arc the field's type and address. FALSE for layptr and boxed. and TRUE for arrayDown. 

Thus, the record field components will not box themselves and they will not create internal layouts 

since this would have been handled first at the top. The width and height returned from 

IntcrnalCrcatcDoc, along with the field name string, the field value type, and xStart and yStart, are 

all used as arguments to the getRect procedure. For the case where the user explicitly specifies the 
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rectangles (see Figure 5.8), this routine ignores all the arguments. For the automatic case, however, 

they arc used in the following manner: the width (namew) and height (nameH) of the field name are 

calculated using CGraphics routines. The rectangles arc then calculated as follows: 

nameR +- [xStart, yStart, xStart + nameW, yStart + nameH]; 
valueR +- [xStart + nameW, yStart, xStart + nameW + valueW, yStart + valueH]; 

Thus the rectangles are situated in the correct manner with the field name to the left of the value. 

Note that this recursive creation allows a display of any size to be included as the record value with 

no special work. 

One problem with this scheme, however, is that the right end of the record display would end 

up very ragged. A RecAdjustRects routine is therefore caJJcd after all the fields have been created. 

This iterates through all the field rectangles to find the one with the greatest width. All the other 

rectangles are then modified so they line up on the right. When the user is specifying the 

rectangles, RecAdjustRccts docs nothing. Finally, after all this has been completed, the needed 

rectangle is calculated by summing all of the other rectangles. Using this rectangle, the Get3Points 

routine then calculates the destination points for arrows. The automatic Gct3Points simply uses the 

left edge of the needed rectangle for the first X value and the top of the needed rectangle minus 1h 

the height of the current font for the Y value. The other two points are five and ten screen points 

directly left of the first. 

7.4.4 Creation of array documents. 

Arrays are created in a manner very similar to records. The major difference is the use of the 

arrayDown argument. This controls the direction the rectangles arc stacked for the automatic 

creation of rectangles for the array clements. Thus, one dimensional arrays have the first clement at 

the top and the last element at the bottom (Figure 7.13a). When the lnternaJCreateDoc is called for 

the next level, the arrayDown flag is complemented so the next level arrays will be arranged with 

the first clement on the left and the last on the right (Figure 7.13b). Thus, a two dimensional array 

will be displayed in two dimensions (Figure 7.14a). For three dimensional arrays, the the third 

dimension will fit vertically into the rectangle for the the second dimension (Figure 7.14b). The 

array creation procedure ( CreateArDoc) docs not need an AdjustRccts procedure since all the 

clements arc tl1e same size (being the same type). 
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Figure 7.13. Arrays oriented vertically (a) and horizontally (b). 
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Figure 7.14. Two dimensional array {a): '.'>.O l2? 

ARRAY [1..3] OF ARRAY [1..4] OF INTEGER; 
and three dimensional array (b) with one internal array selected: 

. ARRAY [1..4] OF ARRAY [1..2] OF ARRAY [1 .. 3] OF CARDINAL; 

7.4.5 Creation of pointer documents. 

Once the layout has been created, a pointer document is still needed to draw the actual arrow. 

The complexity is all actually in the layout and the pointer procedures; the pointer document itself 

is very simple. The only item of interest is the Ptrl D which is associated with the pointer. This is 

generated by a simple procedure that ensures that there will never be two ptrIDs alike (see section 

7.2.3.2). The constituent documents and address of the referent are all set to NIL so they will be 

created at run-time. 

7.4.6 Creation of array descriptor documents. 

Array descriptors are used primarily to implement variable size arrays. They are composed of 

a length and a pointer to an array. Therefore, the display for them is simply a CARDINAL and a 

pointer (Figure 7.15). This is handled in a manner very similar to records and pointers. A 

document is created for the descriptor and then one each for the length and pointer. The length 

document is the same as other CARDINAL documents, but the pointer requires a special 

subformatProc, however, since it needs to get the address of the referent (the array) from the 
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descriptor and not the pointer. This is a minor complication, however, and the rest of the operation 

is the same. 

_q 
.s -:=-

- ·1 

-f. 

Figure 7.15. Display for a DESCRIPTOR FOR ARRAY [1..5] OF INTEGER; 

7.4.7 Creation oflayout documents. 

Layout documents arc constructed in a similar manner to record documents. The 

Createlayout procedure has the following definition: 

Createlayout: PUBLIC PROCEDURE [typelD: TypelD, numFields: CARDINAL, addr: MemoryAddress, getRects: 
LayGetRects] RETURNS [d: Document, w, h: Coordinate]; 

111e number of fields for the layout is calculated by the InternalCreateDoc by adding one to the 

number of pointers in the data structure to be displayed. The procedure which counts the number 

of pointers is recursive since it must include in the count pointers in all internal data structures 

(such as records in records: Figure 7.11 ). The document for the data structure will be placed in 

layout field zero. The operation of CreateLayout is as follows: first a document is allocated for the 

layout, and then InternalCreateDoc is called for the data structure for field zero. The arguments 

are the typeID and address passed to CreateLayout, layptr: FALSE, boxed: TRUE, and arrayDown: 

TRUE. lbc next step is to get all of the PtrlDs used in that document. These will be distributed 

among the fields of the layout. Finally, a layout field document is created for each field and the 

rectangles for it are found using the layGetRects procedure. Documents for the value in each field 

are 1101 created here, however, since they will be created at run-time. 

The layout routine for automatically constructing the rectangles for the fields works somewhat 

. differently than that for records or arrays. Its definition is: 

LayGetRects: TYPE = PROCEDURE [i: Field Index, r: Rectangle, fOw, fOh, inc: Coordinate] RETURNS [fieldR, valueR: 
Rectangle); 

where i is the the index of the field, and r is the rectangle for the entire layout. Note that this is 

different from the record case where the size of the whole record was the sum of the constituents. 

Here, the constituents arc expected to get their rectangles by partitioning the larger rectangle. This 

is done using the width (mw) and height (fOh) of field zero and the height of each of the fields (inc). 

When the client is defining the rectangles, he can simply divide the rectangle in any manner 

desired. The automatic generation routine gives one-third of the area to the first field and divides 

the rest vertically for the rest of the fields. Figure 7.16 shows the rectangles for a layout with 4 

fields. For field zero, the value is given slightly less room in the horizontal direction than the field 

to ensure that there is sufficient room for the arrows to exit the pointers on t11c right (Figure 5.6). 

row and fOh arc not used in the current algorithm which is: 
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valueR +- [r.lowerX, r.lowerY, r.lowerX + (2/9)*rWidth, r.upperV]; 
fieldR +- [r.lowerX, r.lowerY, r.lowerX + (1/3)*rWiclth, r.upperV]; 
END 

ELSE BEGIN 
valueR +- [r.lowerX + (1/3)*rWidth; r.lowerY + (i-1)*inc, r.upperX, r.lowerY + i*inc]; 
fieldR +- valueR; 
END; 

The constituent documents of layouts are thus given an amount of room for display which is 

entirely independent of the amount of room they desire. This was the motivation for having 

records, arrays, etc. center themselves in the vertical direction. 

Figure 7.16. Rectangles for fields and values in a layout with 4 fields. The bold lines arc the field 
rectangles, and the rectangle to the left of the thin line is a value rectangle for field 0. 
The other value rectangles equal the field rectangles. 

7.5 Clicnt·defined Documents. 

One of the chief goals of Incense was to allow the client to define, create and use his own 

documents. This section will investigate how this can be done and the facilities available for aiding 

the process. 

Incense allows the user to define his own global and subfonnat data and write his own 

procedures for displaying and modifying documents. This provides a structured environment in 

which the client can specify his own document displays. The utility procedures provided by Incense 

and CGraphics make many types of displays very simple. Thus, for example, the "percent-done 

thermometer" of Figure 2.1 could be implemented by writing only one small procedure for the 

subformatProc since procedures already exist that arc appropriate for the rest of the operations. 

One problem that might be encountered when creating documents is that it is very difficult to 

add procedures to the previously define~ documents. Layouts, for example, required the 
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DrawArrowFrom, FindField and FindDocUnder procedures to be added to all documents. To add 

another document type like layouts that required all documents to have new procedures would 

require recompilation of all of Incense and some other major changes. This problem, unfortunately, 

arises directly from tl1e structure of Mesa and would be hard to program around. 

Once a document prototype is created, the client can then simply associate it with a variable or 

type and have it used whenever appropriate. The original default display can be included as one 

format of his document. Then the client can choose at run-time in which format the data structure 

will be displayed. ·me clock document was implemented in this manner. 





VIII. Ideas for Future Work 

Although Incense is a powerful system and has the capability to display data of almost every 

type in Mesa, there are many dimensions in which it could be extended. These can be divided 

into four classes: improvements to the current Incense prototype, modifications to make Incense a 

production system under Cedar, special purpose documents for specific types, and changes that 

would require major alterations to the Incense system. 

8.1 Improvements to the Incense Prototype. 

Incense and CedarSymbols currently arc not complete systems. A number of planned and 

desired features were not implemented due to the lack of time. This section describes these 

features, which involve little or no change to the basic structure of Incense. 

8.1.1 CedarSymbols. 

Much of the code used in the current prototype implementation of CedarSymbols was copied 

from the current Mesa compiler, where the code is used for debugging the compiler itself. Ed 

Satterthwaite was invaluable in explaining what was going on and how to access and interpret the 

exceptionally complex symbol tables produced by the compiler. Largely due to time limitations and 

this complexity, which stems from the attempt to minimize the size of the tables, some of the 

functions described in chapter 6 have not been implemented. 

The most serious limitation is that only global variables in modules can be accessed. In 

addition, there must be enough memory available to hold the entire symbol table for that module. 

This symbol table must be kept in memory while any of the typelDs based on the associated 

context arc in use. In a real implementation, a more clever storage management scheme would be 

needed since symbol tables tend to be very large. 

In addition, variant records and the subcomponent operations on transfer types, processes, 

conditions, and certain types of pointers are not implemented. Also. memory Addresses can only be 

created for constants that take one word that contain POINTERS. In addition, due to the lack of a 

garbage collector, the client of CcdarSymbols must deallocate all typclDs and memoryAddresses 

explicitly. These repairs would require a fairly large amount of work by an experienced Mesa 

systems programmer. 

[n order to be able to associate a prototype with a particular type, Incense needs to be able to 

find out whether types arc equivalent. CedarSymbots currently allocates a new TypeID every time 

one is returned. A procedure is therefore needed to determine if two typclDs correspond to the 

same type. Jn addition, it would be useful to have a unique typeAtom for a typelD that could be 

used to test equality. 

77 
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8.1.2 Prototype Documents. 

Prototype documents currently arc not implemented. They would require the type equivalence 

tests described above and a method for copying the relevant parts of a prototype document A 

special prototype document type that understands the message Copy may provide the latter part of 

feature. A list of prototypes and the types they go with would also have to be maintained by 

Incense. 

8.1.3 Editing. 

The edit message is not implemented for any documents. Part of the problem is deciding 

where to get the new value. 'Inc current design has the edit procedure take a mcmoryAddress for 

the new value. This docs not allow special types such as pointers to accept their values by pointing, 

etc. A final design for the edit command must await the Cedar specifications of user input. 

8.1.4 Additions to arrow display'. 

At present, documents do not remember anything about the arrows that were drawn to them. 

Thus when a document is moved, the arrows that previously pointed to it arc left dangling. Since 

the destination documents arc responsible for drawing the arrows from the pointer documents, 

infonnation could easily be stored that would allow the document to cause redisplay of all arrows to 

it if it moved. 

Another small and useful modification to arrows would be to allow the user to specify a new 

point (knot) for the arrow to go through. This would allow the user to move a line out of the way 

of other objects on the display ... The only trick to i!1Jplementing this modification is deciding the 
two knots in between which the new point goes. 

8.1.5 Creating a forms editor. 

Currently, it is very difficult to specify the form for a document (The fonn contains the 

various rectangles and connection points.) A display-based graphical toot for creating and editing 

the pictures would therefore be very useful. It might allow the user to draw icons to be used as 

. subformat displays of documents. A forms editor would actually be a another piece of a debugging 

system and should not require any modifications to Incense itself . . 
8.2 Making Incense a Production System. 

Incense witl eventually be converted into a production system as part of the Cedar debugger. 

For this to happen. however, a large number of modifications and enhancements need to take place. 

Many of these stem from the additional facilities that will be provided by Cedar; but others will be 

performance tuning. 
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8.2.1 Utilizing Cedar language features. 

Cedar Mesa will contain a number of useful features that Incense has been designed to 

exploit. A run-time type system that will tie into CedarSymbols should allow Documents to be 

entirely type-safe. Thus all the LOOPHOLES and POINTER TO UNSPECIFIEDS could be eliminated. In 

addition, this will allow garbage collection of documents and their constituents. The language is 

also supposed to be extended to promote object-oriented programming. This will clearly be 

beneficial and useful for Incense. 

8.2.2 Utilizing Cedar documents. 

Apart from the language changes, Cedar will include sophisticated user-interface mechanisms 

for input and output. The notion of a document in Cedar has taken on additional structure since 

the Incense documents were designed and these changes should be incorporated. This wiU allow 

Incense's displays to be shown in a window white other activity occurs in other windows similar to 

the way operations arc handled in DLISP (Figure 3.5) and Smalltalk (Figure 3.3). In order to make 

this work properly, documents in Incense wilt need better control over their display. Documents in 

Cedar are allowed to be displayed an arbitrary number of times simultaneously in different styles. 

TI1is will be confusing in Incense. however, because the destination for arrows will not be well­

defined. 

8.2.3 Adding Views to Incense. 

The notion of a view has been developed to take care of this problem. Each Incense display 

wilt take place in a view, which might be a rectangular window or may simply be a logical 

organization. The restriction will be that there can only be one document associated with any data 

structure in a view and that document can only be displayed there once. Thus, if the user selected 

a document and requested that it be redisplayed in the same view as the original, the original would 

have to be erased. If the document were to be redisplayed in another view, the original could be 

left alone. The additional restriction that makes this all attractive is that arrows never cross from 

one view to another. Views could be added to Incense with a minimal amount of additional 

mechanism. The registering facility would be extended to include the view, and the creation 

routines would take a view as a parameter and check to see if a document for the data was already 

there. 

8.2.4 Increasing the speed of lncense. 

Incense will execute faster under Cedar since it wilt be nm on faster machines. In addition, a 

general cache mechanism is being designed for Cedar that should allow bitmaps and splines to be 

stored to allow much faster redisplay. lf some ability to define events exists (as in section 3.1.4), 
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monitoring of the program's activity using pictures will become feasible. Presently, the Incense 

display on an Alto is too slow to be reasonably used in monitoring. 

Ot11er speed improvements can be achieved by optimizing and simplifying some of the 

complex mechanism used for displaying layouts. Also, some of the internal data structures, such as 

the list of all documents displayed, could be profitably changed to hash tables. 

8.2.5 Using Cedar's history facility. 

Plans for Cedar include a sophisticated history facility. Presumably, it will allow saving of 

arbitrary events that could be used to enact a replay. Incense could be modified to store in this 

history the this information. Thus, the advantages of real-time monitoring and replays using 

analogical displays could be achieved using Incense. 

8.2.6 Removing Incense from JAM. 

Clearly, Incense needs a more powerful user interface than JAM. Once a debugging system 

for Cedar is developed, Incense should be integrated with it. This should also solve the problems 

with editing and accepting other user commands. The programmer should be given the option of 
using Incense if desired, but other methods of data display wilJ probably be available. Further, the 

debugger should allow specification of documents for data stmcturcs at run-time without destroying 

the state of the program being debugged. 

8.3 Special Purpose Documents for Specific Types. 

Once documents can be associated with specific types, there will be a great temptation to 

develop prototype documents that use more sophisticated displays for various types. In addition to 

the display, however, some thought must be given to how the programmer will be able to edit the 

values through these displays (since conversion may be necessary). Another problem is what to do 

with illegal values. A library of successful prototype documents might be maintained so that anyone 

could use them. Some ideas for such documents arc listed in this section and most could be 

implemented either in current or Cedar Incense. 

Percent-done thermometer. This would be useful for showing progress in loops or for variables 

representing percentages. The only thing special about this document is that the maximum legal 

value would have to be stored to allow calculation of the correct percentage. 

Progress in program as arrow to source. This would be slightly harder since the conversion would 

have to be made between the program counter and the actual source statements. This is clearly 
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possible since the debugger does it for breakpoint setting, but requires added sophistication in 

CedarSymbols. 

Mesa run-time stack display. A more likely (and possibly more useful) facility than showing the 

progress in the program would be a symbolic representation of the nm-time stack of Mesa. This 

also requires new facilities from CedarSymbols. The current Mesa debugger is particularly deficient 

at handling multiple processes, but if Incense could graphically display the stacks from all current 

processes, the user would be able to move around much more easily. The complex context 

mechanisms of the current debugger and CedarSymbols could be hidden. by allowing the user to 

simply select a stack frame using the mouse. A more generic stack prototype document might also 

be useful for displaying stacks that the programmer created. 

Index into an array as pointer. '11Iis would be simple to implement using the tools and procedures 

already available. 

Time and Date as string. The time and date can be most concisely represented as the string: "4:32 

PM, 12/15179". This is an example of a large class of types where a larger structure (such as a 
record) is used to represent a simple concept 

Arrays and Re«7ords as pretty-printed string. Sometimes the user may not feel that the graphic 

display gives him any insight or that it is too costly in terms of execution time or screen space 

required. In that case, a pretty-printed display of a textual representation might be more 

appropriate. 

Ring buffers, lists, and trees. These are example of common data stmctures used in programs that 

would probably be easier to debug and understand with special displays. List and trees are 

sufficiently well structured that much better space allocation can be done than is possible for layouts 

which must handle arbitrary structures. In addition, if these stmctures are used to represent a 

variable length array or other higher-level abstraction, alt of the pointers might be omitted in favor 

of the array or some other notation. A ring buffer might be represented as a circle with the 
appropriate parts marked as in Figure 8.1. 

Pie charts and bar graphs. 'lbcse analogical displays would be very simple with the tools already 

provided by Incense and CGraphics. A small amount of extra data would have to be stored to 

describe the maximum or total values so the correct distances could be calculated. 

Single variable trace of values. EXDAMS (section 3.5.3.1) allowed the user to request a "tlowback" 

trace of how a variable received its current value. If the history facility of Cedar were sufficiently 

powerful; Incense could offer the same capability. Even if it were not, a variable could be 

displayed as a special type of array representing all past values. This would only require some way 

of monitoring variables to collect the values as they were assigned. 
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first 
element 

Figure 8.1. Possible display for a ring buffer. 

Better display for arrays. There are many ideas for improving the rendition of large structures such 

as arrays. For example, a small portion of the array might be presented in a window and the user 

could scroll up and down to find the interesting values. Also. some means of representing the 
· indices is needed. 

Array as bitmaps. Sometimes arrays are used to hold actual pictures. For example, the cursors 

shown in Figure 4.3 were stored as arrays of octal numbers. Some method of converting these into 

the actual pictures would be useful. 

8.4 Improvements That Require Major Alterations. 

Jn addition to the ideas presented above, there arc others that would require a major amount 

of work, or which arc even beyond the present state of the art. Just the same, they might be useful 

in a future system if an implementation could be achieved. 

8.4.l Unifying typelDs and memory Address. 

One problem with CcdarSymbols is that the client must be careful to ensure that the typcIDs 

and mcmoryAddresscs arc consistent. It is always an error to use a mcmoryAddrcss and typclD 
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together that do not correspond to the same data structure. Therefore, these concepts could be 

combined to make the system easier to use. In addition, a fully object-oriented approach could be 

adopted to allow a type-safe way of getting and changing values with only a small decrease in 

efficiency. 

8.4.2 General two-pass display. 

Currently. Incense uses a simple one pass algorithm to display documents. The location of all 

documents on the screen is rigidly set before the document is displayed. There is no notion of the 

document negotiating with the parent for "just a little more room." ·It should be clear from the text 

and pictures in this paper that this docs not achieve maximal utilization of the screen space in some 

cases. Another method for displaying would be to have the parent ask the subordinate document 

how much room it would like and then calculate the room to be used by other documents based on 

how much room was left. This requires a fairly detailed two-dimensional "free-space" map to be 

kept from which documents could use and return screen space. The reason the tree and list 

displays could use the space so much more efficiently than layouts is that they could count on 

allocating space exactly along a single line since the size of all nodes is known. This one­

dimensional space allocation problem is clearly much easier to solve. 

An additional problem with two-pass space attocation is that the documents may do as much 

work deciding how much room they need as they would have to actually display it. Some caching 

mechanism is therefore called for. If the parent decides the subordinate cannot have as much room 

as it requested, however, this work may be entirely wasted. Thus the two-pass scheme has the 

. potential to be very unstructured and possibly more complex, stow and expensive than warranted 

for a debugger's data display .. 

8.4.3 Remote monitoring. 

One of the major applications for the Alto and PARC's other research computers has been the 

development of screen-oriented systems. For example, there is a menu-driven multi-window mail 

program, a full-screen editor, etc. Monitoring of these programs is therefore difficult since the 

screen is completely filled by the application programs. Hashing back and fort11 from one 

environment to another would be very disturbing and probably not very enlightening. In addition, 

some of the applications arc computation-intensive and monitoring toots that substantially slowed 

them down would not be acceptable. 

All of PARC's computers are connected to each other using the Ethernet local communications 

network [Metcalfe 76] so it seems natural to try to take advantage of this for monitoring. If a 

facility for making a history were available, it should be a natural extension to put all this 

information into a packet as it is gathered a~d then send it over the Ethernet to another Alto. The 
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user could then monitor his program remotely. There might even be remote facilities for 

interrupting and interrogating the program while it is executing. Model's system (section 3.5.3.6) 

allowed a similar form of remote monitoring. 

8.4.4 Ideas from a1tificial intelligence and program methodology. 

Some features that might be added to Incense must await further advances in artificial 

intelligence and other fields of computer science before they can be practical. Such things as a 

natural language front end and the ability of the system to answer questions about the data would 

clearly be useful. In addition. work in program methodology may eventually progress far enough so 

that Incense could generate a picture of a "typical" data structure instance from only the type. This 

would be useful for documentation so the user would not have to explicitly create the display, as 

was done, for example, in making Figure 7.1. 



IX. Summary and Conclusion 

This thesis describes a system called Incense which graphically displays data structures of 

various types for the language Mesa. Currently running on an Alto mini-computer, Incense can 

display all of the basic types of Mesa in a reasonable textual form. It uses a more analogical format 

for the aggregate types such as arrays and records. A major advantage of Incense over other data 

display systems is its ability to display pointers as arrows to the actual target data. The displays are 

automatically created for variables with minimal interaction required of the user, yet a programmer 

can easily create his own displays if desired. A stmcturc has been provided for storing these 

prototype displays in a library and associating them with specific types or variables. Finally, the 

client can specify a number of different formats and st1bformats that allow the display of a 

particular data structure to be changed by the user or program based on various criteria. Thus, a 

display can be automatically generated that is very similar to the picture the programmer might 

have drawn if he were explaining his data structure to another programmer. 

Incense has solved a number of difficult problems to achieve this level of performance. 

J,ayouts were developed to avoid the expensive and difficult two-dimensional space allocation 

problem and to allow one-pass display for all data types. Layouts also allow the client to specify 

where the referents of pointers should be drawn. In addition, an abstract interface to the Mesa 

symbol tables was defined that successfully allows Incense to avoid knowing any details of the 

implementation of Mesa types. 

The design and implementation of Incense has incorporated many of the appropriate features 

of a debugging system as discussed in chapter 2 and section 5.2: 

• 

• 

• 

Reduce the volume of data required from the user: If the user requests a display 

for a pointer, the referent is automatically displayed also. Selections and many 

commands can be done using the mouse. 

Adjust the form of the input to make good use of the human faculties: lhe user 

can point at and move the displays using an analog device (the mouse and its 

buttons). 

Use feedback to allow correction of mistakes as they arc made: The selected 

document is video-reversed so the user can tell what is selected. Boxes are drawn 

when the user specifics a rectangle for a document 

Adjust output <1uantity to human capacity: The display may fill up but the user can 

concentrate only on those portions that interest him. When many things are 

displayed, they decrease in size or disappear so that the screen is not cluttered. 

Choose forms of output that arc readily acceptable to hmmm comprehension: This 

· is one of the main objectives of Incense. Incense docs promote analogical pictures 

and automatically produces organized displays for data structures. 
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• 

• 

• 

• 
• 

• 

• 

• 
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Output only completely processed results: Incense allows the user to develop 

documents for any data type. This allows presentation of data structures at the 

highest conceptual level appropriate. All of the pre-defined Mesa types currently 

are presented completely processed. 

Appropriate level of detail: Incense allows the user to specify that certain fields of 

a record should not be shown. He can also specify an iconic format for some data 

structures or fields to reduce the amount of information presented. 

Automatically generated pictures. Incense creates the pictures based on the type of 
the data structures without requiring user intervention. A picture can be produced 

simply by specifying the variable to be looked at and the· rectangle into which to fit 

the display. A hardcopy can also be easily made of the displays (as was done for 

this paper). 

Replay: Replay is currently not possible, but should be in Cedar Incense . 

Easy to use: Incense allows the use of the mouse for selection and specifying 

rectangles. The other issues of user input will be handled by the system into which 

Incense is incorporated. 

No modification of source program: The source program does not need to be 

modified to use Incense, although an additional program might have to be written 

to specify any special documents required. 

Extensible: The user can create new documents and associate them with particular 

types. Libraries of documents could be maintained. In addition, a document for a 

data structure might allow it to be displayed in a number of formats. 
Fast: Incense currently actually allows the investigation of certain data structures at 

a rate faster than the current Mesa debugger. This is probably an unfair 

comparison, however, and Incense clearly needs to execute faster. The Cedar 

implementation will run at least three to ten times faster due to some 

reprogramming and better hardware and microcode support. 

The displays produced by Incense will be useful to programmers. Sutherland [63, p. 67] 
claimed that "it is worthwhile to make a drawing on the computer only if you get something more 

out of the drawing than just a drawing." The pictures and the associated data structures. can be 

dynamically rearranged and modified. The displays from future Incense systems will be useful for 

monitoring of running programs. Since the user can specify documents, the resulting pictures can 

be used to provide documentation for the data structures themselves (as in Figure 7.1 and 7.2). 

Finally, debugging will probably be more fun when using pictures rather than long strings of 

characters. This combined with the higher conceptual level provided by the pictures may make the 

debugging task easier and thereby increase programmer productivity and reduce the number of 

missed bugs. 
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Thus, while it could not actually be described as finished, Incense has fulfilled most of its 

goals. It was an enjoyable project designing and implementing Incense, and I appreciate the 

opportunity to be a part of the Cedar effort It should be exciting to fit Incense into Cedar and to 

study its actual use in the debugging of programs. Only this final test will demonstrate if analogical 

display of data structures as provided by Incense increases programmer productivity. 





APPENDIX A. Informal Poll on the Current Mesa Debugger 

A. l The Questionnaire. 

As part of my research for the discussion of section 4.2.1.2 on the current Mesa debugger, I 

distributed a questionnaire about the debugger. The questions were: 

CONTEXT: 

(1) Compare the Mesa debugger to others you have used and list the advantages/disadvantages. 

(2) Can you debug faster with the Mesa system than with your previous system(s)? Why? 

GENERAL: 

(3) What do you like about the debugger? 

(4) What are the debugger's biggest weaknesses? 

(5) Where does the debugger fail to allow you to "think in Mesa"? 

DATA DISPLAY: 

(6) How would you like data structures {records, pointers, arrays, etc.) to be displayed and would that help you 
debug programs? 

(7) What are the hardest problems to debug and could a clever data display system help with them? 

(8) How much additional delay would you be willing to tolerate to have your data structures displayed as pictures? 

(9) Would you ever be willing to write a program to specify the picture to be used for displaying data of a certain 
type? If so, for what kinds of data types? 

A.2 Hesults. 

I received 19 responses from Mesa users. 'Ibey were generally not surprising and are 

summarized below: 

Most people answered questions 1, 3 and 4 together. ·n1e advantages of the Mesa debugger 

were given as: 

• lbe debugger's knowledge of user-defined types and local variables; 
• 
• 
• 

• 

The ability to display multi-item data structures symbolically all at once; 

'lbe ability to avoid knowledge of machine instructions . 

The ability to set an apparently arbitrary number of breakpoint-; by pointing at 

source text; 

The ease of using the debugger for beginners. (Note: This was disputed by other 

respondents); 
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• 
• 
• 
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The existence of an interpreter; 
The ability to look at source code while debugging; and 

The lack of planning required to use the debugger . 

Disadvantages of the Mesa debugger were given as: 
• 

• 
• 

• 

• 

• 

• 

• 
• 

• 

• 
• 

• 

• 
• 

The slowness of many operations such as getting into the debugger and finding the 
types of data when using multiple symbol tables; 
The debugger's lack of the ability to mix and manipulate contexts; 
The inability to patch code and proceed from errors. Jn fact, a Mesa program 
cannot be continued in any location except exactly where it stopped; 
The incomplete interpretive mode: many of the types and operations of full Mesa 
arc not supported in the debugger's interpreter; 
The lack of conditional breakpoints; 
The lack of the ability to automatically display certain variables and then proceed 
at a breakpoint (which would allow easier monitoring); 
The lack of the ·ability to omit from the display selected portions of arrays or 
records; 
The lack of the ability to use command files with the debugger; 
The reliability problems with the debugger itself: "A debugger must be 
trustworthy;" 
The lack of the ability to monitor variables by having them continuously updated 
on the screen; 
The extreme difficulty of single-stepping through a Mesa program; 
The lack of information provided about a signal or error if the . symbol table 
describing it is not on the disk. (All that is displayed is an octal number); 
The inability of the user to provide formatting information and/or 
validity/consistency checks; 
The excessively symbolic and verbose command language of the debugger; and 
The inadequate presentation for arrays . 

Jn answer to question 2, almost everyone agreed that he could not debug faster in Mesa than 
in other languages. Those who disagreed did so only because the Mesa compiler caught many bugs 

that would have gotten through in the other languages. In addition, some felt that the Mesa 
debugger allowed them to debug faster when dealing with highly typed data structures since it 
intcrprctc; the data. Everyone felt that the debugger was too slow, however. 

Although the debugger attempts . ~o prevent the user from having to use the underlying 
representations for data and instructions, it docs not always succeed in allowing the programmer to 
"think in Mesa" (question 5). Some places where this happens are: 



• 
• 
• 
• 

• 
• 

APPENDIX A. INFORMAL POLL ON THE CURRENT MESA DEBUGGER 

When using monitors; 

When using COMPUTED VARIANT RECORDS or OVERLAID VARIANT RECORDS; 

When using enumerated types in the interpreter; 

When investigating variables in catch phrases for signals; 

When investigating multiple processes; and 

When trying to constmct arguments for calling of procedures from the debugger . 
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On the data display part of the questionnaire, the responses were encouraging for Incense. 

For question 6, some people felt that the "facilities of Incense arc in the right direction" but should 

be augmented with some ability to "window" onto large structures. Most people felt that some 

method for pretty-printing of aggregate stmctures was necessary, even if only textually. Since one 

can split and scroll the debugger's window, many felt there was no reason not to use extra spaces, 

tabs and carriage-returns to make data structures easier to read. Others disagreed, however, and 

thought it was more important to have a Jot of information on the screen at once. Some specific 

data types were mentioned· as problems: one respondent wanted to be able to use the mouse to 

move around in a data structure tree, and another mentioned that it would be nice to be able to 

display sparse structures such as hash tables in a reasonable manner. 

There was surprising agreement in answer to question 7 concerning the hardest problems to 

debug. The two problems mentioned most were random core smashes and timing problems related 

to multiple processes. It was felt that a data display system would not help with this, unless it 

allowed true monitoring of variables and control flow. Other useful features would be user-defined 

write protection and "a flavor of breakpoint that invoked frequent consistency checking on the data 

structures involved." One person mentioned that a hard problem is ensuring that all storage is 

deallocated when no longer needed. 

For the delay that people would tolerate (question 8), most people said "none". A few said 

that they would tolerate a small amount if the overall time it took to display a data structure was 

faster than without the pictorial display, and one mentioned that as long as he could watch it 

happening, up to 10 seconds to complete the drawing would be tolerable. If the fancy display took 

longer, it should be an option and not the default, according to one respondent. 

The responses to question 9 were also very encouraging. Most people felt that they were 

currently in the habit of writing data display routines to allow debugging of complex structures. 

Other people claimed they might do this if there were fancy tools to encourage it and it could be 

done in a "simple language." Otherwise, the displaying procedures would have to be debugged and 

"debugging the debugging facilities is almost always a waste of time." Many people hoped that a 

large number of standard displays would be available in a library that they could use or modify 

slightly to display their own data structures. 
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