
Displaying Data Structures for
Interactive Debugging

Brad A. Myers

Displaying Data Structures for
· 1nte ractive Debugging

by Brad A. Myers

CSL-80·7 June 1980; reprinted June 1982

© Copyright Brad Allen Myers 1980. All rights reserved.

Abstract: See next page

This report reproduces a thesis submitted to the Department of Computer Science and

Electrical Engineering of the Massachusetts Institute of Technology in partial fulfillment of the

requirements for the degrees of Bachelor of Science and Master of Science in Computer

Science.

CR Categories: 4.29, 4.34, 4.41 , 4.42, 8.2.

Key words and phrases: Debugging, data structures, user interface, symbol tables,

abstract data types, graphics.

XEROX Xerox Corporation
Palo Alto Research Centers
3333 Coyote Hill Road
Palo Alto, California 94304

DISPLAYING

DATA STRUCTURES

FOR

INTERACTIVE DEBUGGING

by

BRAD ALLAN MYERS

AUSTRACT

Many modern computer languages have a variety of basic data types and allow the
programmer to define more. The facilities for debugging programs written in thes~ languages,
however. seldom provide any capabilities to capture the abstraction represented in the programmer's
mind by the data types. Incense, the system described here, is a working prototype system that
allows the programmer to interactively investigate data structures in programs. The desired displays
can be specified by the programmer or a default can be used. The defaults include using the
standard form for literals of the basic types. the actual names for enumerated types. stacked boxes
for records, and curved lines with arrowheads for pointers. The intention is that the display
produced should be similar to the picture the programmer would have drawn to explain the data
type. Incense dLplays have the additional feature that they can change dynamically.

Incense is written in and for the Pascal-like language Af esa. which was developed at the Xerox
Palo Alto Research Center. Incense has been used to investigate and document many data
structures including some of the internal data structures of the Incense system itself.

In addition to displaying data structures, Incense also allows the user to select, move, erase
and redimension the resulting displays. Incense also· allows the user to modify the actual values
stored using the same high-level names that arc displayed. These functions arc provided in a
uniform, natural manner using a pointing device ("mouse") and keyboard.

iii

ACKNOWLEDGMENTS

I would like to thank my advisor at MIT, David Reed, and all the people at PARC who made

this effort possible. Dan Swinehart, my advisor, was available for helpful discussions and design

suggestions and even read almost all of my voluminous memos. John Warnock, who wrote the

underlying graphics system as well as the interpreter I used to debug Incense, was exceedingly

helpful in explaining how things worked and adding needed features quickly. Ed Satterthwaite was

gracious enough to an~wer my repeated cries for help when I was trying to write a run-time type

system using the compiler's symbol tables. I would also like to thank the many other people who

contributed to the design of Incense including Butler Lampson, Warren Teitelman, Bill Paxton and

Paul Rovner. Many others a.lso helped by answering my questionnaires or commenting during

demonstrations.

Special thanks must go to Dan Swinehart, Warren Teitelman, Ed Satterthwaite, David Reed

and many others for their helpful and thorough comments on earlier versions of this paper.

I would like to thank Mike Schroeder, John Tucker and the MIT 6-A program for giving me

the wonderful opportunity to work for Xerox PARC anQ to Bob Taylor and CSL for providing the

facilities and support for Incense. The generosity of Xerox in giving to MIT some Alto computers

allowed me to continue work on this paper even after leaving PARC, for which I am grateful. I am

also indebted to the staff of PARC's Technical Resource Center who helped immensely while I was

·doing research for this paper.

Finally, I would like to express my appreciation to my parents and grandparents for making it

all possible and to my sisters for their continued support.

v

TABLE OF CONTENTS

List of Figures ... xi

I. Introduction .. 1
1.1 Importance of Debugging .. ~ 1
1.2 The Theory and Teaching of J)cbugging ..••.......................... 2
1.3 Importance of Monitoring... 3
1.4 Overview of Thesis ... 3
1.5 I)efinition of ln1portant Terms ... 3

Data ... 4
Data Types ... 4
Strongly Typed Languages .. 4
l)ata Structures .. 4
J)cbugging .. 4
Testing ... 4
Client ... 4

II. Desired Features in a Debugging System .. 5
2.1 Motivation for Features ... 5
2.2 Features ... 5

2.2.1 Speed ... 6
2.2.2 Information at user's level .. 6
2.2.3 Use of appropriate level of detail ... 7
2.2.4 Analogical display .. 7
2.2.5 Automatically generated pictures .. 8
2.2.5 Meta-knowledge ... 9
2.2.5 Replay .. 9

Ill. History of Debuggers and Other Relevant Systems... 11
3.1 Earliest Systems and the Basic Debugging Techniques .. 11

3.1.1 The Trace .. 11
3.1.2 The Dump .. 11
3.1.3 l'he Breakpoint. .. 12
3.1;4 Events .. 12

3.2 Batch Debugging Systems .. 13
3.2.1 Print statements as a debugging tool.. .. 13
3.2.2 An advanced batch system .. 14

3.3 Intermediate l)cbugging Systems .. 14
3.4 Interactive))chugging Systems ... 14

3.4.1 Importance of interactive debugging .. 15
3.4.2 Examples of interactive debuggers ... 15

vii

3.5 Dynamic and Pictorial Debugging Systems.. 16
3.5.l Non-pictorial monitoring systems ... 16
3.5.2 Pictorial static systems ... 16
3.5.3 Pictorial monitoring systems .. 17

3.5.3.l EXl)AMS ... : 17
3.5.3.2 COPILOT .. 18
3.5.3.3 Smalltalk, windows and selections. .. 18
3.5.3.4 DLISP .. 20
3.5.3.5 Sweet's tree drawing system ... 21
3.5.3.6 Model's system ... ! 22

3.6 Graphical Systems ~ .. 23
3.6.l Early analogical display .. : 24
3.6.2 Sketchpad ... 24
3.6.3 AMBI1'/G ; ... 24
3.6.4 Thinglab .. 25

IV. The PARC Environ1ncnt for Incense .. 27
4.1 Hardware .. 27

4.1.1 The mouse ... 28
4.1.2 The screen ... 28

4.2 Software .. 28
4.2.l Mesa ; .. 29

4.2.1.1 Compiler and symbol tables ... 29
4.2.1.2 Current Mesa debugger · .. 29

4.2.2 CGraphics: The underlying graphics package .. 33
4.2.3 JAM: An interpretive environment .. 34

4.3 Cedar: A Future Environment for Incense .. 34

V. Incense-An Overview .. 35
5.1 General Goals for Incense .. 35

Easy to use ... 35
Extensible .. 35
Analogical ... 36
Fast .. 36

5.2 The Incense System .. 36
5.3 Documents: The Basic Comporient of Incense .. 36

5.3.1 l)isplaying a document ... 37
5.3.1.1 Fonnats and subfonnats ... 37
5.3.1.2 The fonn and display data ... 39
5.3.1.3 I,ayouts ... 40
5.3.1.4 Prototypes .. 42

5.3.2 Drawing arrows .. 43
5.3.3 Erasing a document ... 43
5.3.4 Selecting a document .. 44
5.3.5 Editing a document ... 45
5.3.6 J)e-allocating a document. ... 46

viii

VI. CedarSymbols: The Type System for Incense ... 47
6.1 Goals of CedarSymbols .. 47

6.1.l Opaque types .. 47
6.1.2 Opaque memory addresses ... 48

6.2 TypeOfSub .. , 49
6.3 AddrOfSub•.. 50
6A Other Routines Needed by Certain Types ... 50

6.4.1 lndcx·<--> Name .. 50
6.4.2 Maximum Index .. 51
6.4.3 Subrange types ... 51
6.4.4 Procedure types ... 51
6.4.5 Union types .. 52
6.4.6 UserDefined and TypeType types .. ~ 52

6.5 Contexts .. 52

Vil. Incense- Details of the Implementation .. 53
7.1 Implementation of Documents ... 53
7 .2 l)isplaying Documents ... 55

7.2.1 l)isplaying the basic types .. 58
7.2.2 l)isplaying records ... 59

7.2.2.1 Mesa definition of record document .. 59
7.2.2.2 Operation of the subformats .. 60
7.2.2.3 l)isplay of clocks .. 61

7.2.3 l)isplaying layouts and pointers .. 62
7.2.3.l Mesa definitions for pointers and layouts .. 62
7.2.3.2 Operation of the subformats .. 64

7 .3 Erasing Documents ... 67
7 .4 Creation of Documents .. 69

7.4.1 Generic creation routines ... 68
7.4.2 Creation of simple documents ... 69
7.4.3 Creation of record documents ... 70
7.4.4 Creation of array documents•.. 71
7.4.5 Creation of pointer documents .. 72
7.4.6 Creation of array descriptor documents .. 72
7.4.7 Creation of layout documents ... 73

7.5 Client-defined Documents ... 74

VIII. Ideas for Future Work ..•. 77
8.1 Improvements to the Incense Prototype ... 77

8.1.1 CedarSymbols•... 77
8.1.2 Prototype Documents .. 78
8.1.3 Editing ... 78
8.1.4 Additions to arrow display ... 78
8.1.5 Creating a forms editor ... 78

8.2 Making Incense a Production System ... 78
8.2.l Utilizing Cedar language features ... 79
8.2.2 Utilizing Cedar documents ... 79
8.2.3 Adding Views to Incense .. 79
8.2.4 Increasing the speed of Incense .. 79
8.2.5 Using Cedar's history facility ... 80

ix

8.2.6 Removing Incense from JAM ... 80
8.3 Special Purpose Documents for Specific Types ... 80
8.4 Improvements That Require Major Alterations ... 82

8.4.1 Unifying typeIDs and memoryAddresses .. 82
. 8.4.2 General two-pass display .. 83
8.4.3 Remote monitoring .. 83
8.4.4 Ideas from artificial intelligence and program methodology 84

IX. Summary and Conclusion ... 85

Appendix A. lnfonnal Poll on the Current Mesa Debugger ... 89
A.l The Questionnaire ... : .. 89
A.2 Results .. 89

Bibliography .. 93

x

LIST OF FIGURFS

. 2.1. Percent-done thennometer ... 8

2.2. Bar graph of Lisp storage utilization .. 8

3.1. Yarwood's system's display of an array ... 17

3.2. EXDAMS' "flowback" display .. 18

3.3. Typical Smalltalk screen ... ~ ... 19

3.4. Two Smalltalk menus .. 20

3.5. Typical DI ,ISP display .. 20

3.6. Pictorial list display in DLISP ... 21

3.7. Pictorial· tree display in DLISP ... 21

3.8. Sample of Sweet's Mesa tree display ... 22

3.9. Sample of Model's display for monitoring Mycin ... 23

4.1. Photograph of the Alto work station .. 27

4.2. The mouse ... 28

4.3. Various cursors used in the Okra system .. 29

4.4. Debugging scene demonstrating the operation set-break ... 31

4.5. 1be Mesa debugger's display of values ... 31

4.6. The debugger's display of a complex ·record .. 32

4.7. The debugger's display of a list .. 32

4.8. Example showing what can be done using CGraphics ... 33

5.1 Two formats for a Time record: nonnal and clock ... 37

5.2 Two subfonnats for an array: normal and grey... 38

5.3 Examples of records containing other records.. 39

5.4 Samples of the default display for the basic types.. 39

xi

5.5 · Layout for record containing two pointers .. 40

5.6 Deep recursive tree showing how elements get smaller .. 41

5.7 Pointer to data already displayed .. 41

5.8 User-defined form and resulting record display .. 42

5.9 Advantage of curved arrows over straight ones ... 43

5.10 Selection moving up document hierarchy ... 45

5.11 Expanding display of selected document .. 45

7.1 Incense picture of typical document .. 55

7.2 Expansion of fonnat for typical integer document .. 56

7.3 Selection of field in record showing extent of its rectangle ... 58

7.4 Pointer to basic type shows utility of box around value ~ .. 58

7 .5 Usefulness of clipping and size of grey area .. 58

7.6 Record with a value clipped .. 61

7.7 Record scaled to correct proportions and centered in Y .. 61

7.8 Document hierarchy for pointer in a record .. 65

7.9 Array of pointers with two pointer referring to same value .. 65

7.10 Pointer to value inside a record .. 66

7.11 Record inside another record both with pointers in field 1 .. 66

7.12 Records with pointers displayed as illegal and unknown ... 67

7.13 Arrays oriented vertically and horizontally ... 72

7.14 Two and three dimensional arrays .. 72

7.15 Display for array descriptors .. 73

7 .16 Rectangles for layout with 4 fields ... 74

8.1 Possible display for a ring buffer .. 82

xii

I. Introduction

Many modern computer languages have a variety of basic data types and allow the

programmer to define others. Few languages, however, have facilities to allow the programmer to

display these data structures for debugging, monitoring or documenting programs in a reasonable

fashion. This thesis describes the system Incense, written in the Mesa computer language [Mitchell

79b], which allows the client to design and use graphical representations for data structures.

Pictures are clearly useful for representing data since they are used by programmers to explain

their data structures to other humans. Frequently, a picture will be drawn of the typical case or the
one under examination. A system that could present the information in the same manner that a

programmer does would thus be taking a large step towards making the information easier to

understand.

The most basic part of Incense is simply a framework for data display. Thus, Incense would
be useful to many types of systems that have data display as a component. The major emphasis of

the current work, however, has been in the area of debugging systems. Incense has therefore been

augmented with a large number of procedures that automatically display the data structures found

in actual Mesa programs. In addition, facilities exist to allow the user to specify and modify the
displays at various levels.

The most difficult aspects of Incense were the display of pointers, and allowing the client to
define new display formats. The solution to the first problem involved using a carefully designed

abstraction to hide the internal data and procedures. The problem with pointers is that a location
on the screen must be chosen for the referent. Inc~nse provides a mechanism to allow this to be
done without dynamic space allocation. Although presently Incense does not have an acceptable
front end, it should increase the effectiveness of any debugger into which it might be integrated.

1.1 Importance of Debugging.

Relatively little work has been done on debuggers and data structure display since the early
days of computer science. Model [79, p. 4) claims that "the past twenty years has seen little change

in the nature of the debugging facilities available to the typical programmer." The debuggers for

high level languages such as Fortran, Pascal, and Mesa have mostly copied the aids developed for

assembly languages. One reason for this is that programmers tend to discount the importance of

debugging. Some, such as Dijkstra [72, p. 863), claim that good programmers should not waste their

time debugging because "they should not introduce bugs to start with." When interesting

debugging facilities are developed, they are frequently not documented or published since the

1

2 OISPLA YING DATA STRUCTURES FOR INTERACTIVE DEBUGGING

systems are frequently proprietary and specific to a particular machine and/or language. In the area

of data structure display, there has been even less work. In fact, "few attempts have been made to

create formal external representations for the data environments (for any language)" [Swinehart 74,

p. 83].

Unfortunately, the problem of debugging is not likely to go away. Even with the use of

modern languages and the advent of structured programming techniques, programmers still spend
"countless hours" debugging [Hanson 78]. Van Tassel [74, p. 117] goes so far as to claim that "a

bug-free program is an abstract theoretical concept" Naur [74, p. 54] substantiates this claim: "The

difficulty in achieving correctness in programs may be understood when the degree of complexity of

many programs and the need for virtually absolute correctness of all details of these programs is
considered."

The importance of debugging can also be seen in its costs. Estimates of the amounts of time
programmers spend debugging vary from fifty to ninety percent of the programming task [van
Tassel 74, p. 117]. · Debugging and maintenance together may cost fifty times more than original

program production [Tratner 79, p. 97].

1.2 The Theory and Teaching of Debugging.

Unfortunately, few theories exist about how people debug and what makes a debugging system
more effective. Debugging is generally considered an art, a creative activity. In finding the errors
in a program, "the programmer operates in a very intuitive mode. depending more on insight and

imagination than on rigorous step-by-step analysis" [Model 79, p. 53]. Some studies have attempted
to classify types of bugs [van Tassel 77] and to find some global rules to help programmers (e.g.,

[Loeser 76]). Atwood (78) did.a study based on cognitive psychology to try to develop a theory of
the difficulty of finding different types of bugs. He claims that the deeper the logical nesting depth
·of a bug's location in the program, the harder it is to find. Sheppard (79] presents evidence,
however, that Atwood's findings might not be valid and that there are strong dependencies oli the

particular algorithm used in the study. Levine (77) attempted to discover if carefully planned

debugging was more effective than "ad hoc" techniques but found no significant results. Most of
these studies have used smalJ programs with very small numbers of subjects (e.g., 10) so no real

conclusions can be drawn from them.

One result of _the lack of a theory of debugging is that it is difficult to teach debugging
techniques. "From the beginning," Tratner (79, p. 97] claims, "our best schooling in debugging

teaches futility." All that texts and teachers can do is suggest general approaches and demonstrate

the debugging aids that arc available.

INTRODUCTION 3

1.3 Importance of Monitoring.

In many cases, it is important to be able to monitor the state of a program while it is

executing. A graphical display, such as presented by Incense, would allow the user to more easily

follow the monitoring process (see chapter 2). Frequently, the information needed to locate an

error is no longer available when recognized as important. This is especially true with real-time

programs such as operating systems. In an informal poll of Mesa users (see Appendix A), two of

the most frequently listed problems were random overwriting of memory locations and process

interactions (including timing problems). Monitoring that allowed watching of both control flow

and variables would help immensely in locating the sources of these. bugs.

The programmer may also be able to discover problems with the flow of control or

manipulations of the data structures using monitoring. Swinehart [74, p. 2] explains: "Continuous

display of information with some associated context helps the user to retain comprehension of

complex program environments, and to indicate the environments to be affected by his commands.·~

1.4 Overview of Thesis.

In view of the importance of debugging and the general lack of research and theories about it,

the best way to investigate ideas about better techniques seems to be to implement a system and

then see if it appears to increase the programmer's productivity. Incense is an attempt to study one

very important part of debugging systems: the display of data structures. This thesis first presents

some of the requirements felt to be important in any debugging system (chapter II) and then

describes some related work in debuggers and graphical systems (chapter III). Following this is a

description of the environment at the Palo Alto Research Center (PARC) in which Incense was

created (chapter IV). An overview of the Incense system (chapter V) is followed by a discussion of

the run time type system required for generating the default displays (chapter VI). More detail

about the actual implementation of Incense is then given (chapter VII). The thesis concludes with

some ideas for future work (chapter VII) and a summary and conclusion (chapter VIII). It is

important first, however, to define the terms used in the rest of the paper.

1.5 Definition of Important Terms.

This paper assumes the reader is familiar with programming and some computer languages;

however, some terms will be used in a specific or unusual manner and are therefore defined below.

4 DISPLAYING DATA STRUCTURES FOR INTERACTIVE DEBUGGING

Data. Knuth, in his famous text book [Knuth 69, p. 620), defines data as

representation in a precise. formalized language of some facts or concepts. often numeric
or alphabetic values, in a manner which can be manipulated by a computational method.

Data Types. All variables in languages such as Mesa are required to be of some specific type.

Each type is characterized by (1) the set of values included in it, (2) the way literals of
that type can be written in a program. (3) mies about how the values of the type may be
used as operands of operations, and (4) rules about how values of the type result from
executing operations. [Naur 74, p. 40)

A type may also specify the way the values arc to be laid out in memory [Aho 78, p. 387). Types
in Mesa include INTEGER, REAL, CARDINAL (positive integers). BOOLEAN (true or false), CHARACTER,

POINTER, RECORD. ARRAY, ENUMERATED (lists of names, e.g. {Mon. Tues, Wed, Thurs, Fri}),
subranges of the above types, and many other more esoteric types (sec chapter 6).

Strongly Typed Languages. Strongly typed languages are ones "that have many types, but the type

of every name and expression must be calculable at compile time" [Aho 78, p. 36). Mesa and

Pascal arc strongly typed, but Piil, Fortran and Lisp are not. This feature provides many

opportunities For a data display system since the compiler can save the type infonnation allowing

the correct display format of any data to be chosen.

Data Structures. "A data structure is a set of primitive data clements and other data structures,

together with a set of structural relations among its components" [Aho 78, p. 38). Thus instances of

records and arrays are data structures under this definition. In this thesis, however, I will frequently

use data structure to also include the basic data elements.

Debugging. Debugging "is the process of making a program behave as intended. The difference

between the intended behavior and actual behavior is caused by 'bugs' (program errors) which are
to be corrected during debugging;' [Lauesen 79, p. 51). Model (79, p.52] classifies different stages of

debugging:

Fundamentally, debugging is the act of {1) observing the behavior of a computer
program; ... (2) comparing the actual behavior to the behavior desired of the program;
(3) analyzing the cause of variances thereby detected; (4) devising changes to the
program that would make it conform more closely to the desired behavior; and (5)
altering the program in accordance with those changes. Normally the act is cyclical:
aher the program has been modified. the steps are repeated until a sufficient match
between desired and observed behavior is obtained.

Testing. Some authors distinguish between testing and debugging. Van Tassel (74, p. 118] asserts
that "testing determines that an error exists; debugging localizes the cause of the error." Debugging

will be used to include testing in this thesis, however.

Client.. In the text above, there have been references to what the programmer can do in Incense.

In fact. however, the system is configured so that a program can call on Incense and get the same

results. Client wiJl be used to denote both human and procedural users, and programmer and user

will be used interchangeably to refer exclusively to the human user.

II. Desired Features in a Debugging System

Many different requirements for debugging systems have been specified in the literature, and

actual systems conform to these constraints to varying extents. This section will attempt to list many

of the desired features of debugging and data display systems and the reasons they are appropriate.

These requirements will be used as criteria for judging debugging systems and will serve as goals for

Incense.

2.1 Motivation for Features.

As might be expected, most of the desired features are motivated by limitations of the human

users. People can only attend to a small amount of information at a time, but "when dealing with

infonnation in a familiar form, ... humans arc highly adaptable. They tend to supply missing items

themselves" [Naur 74, p. 238]. Another aspect of human understanding is that it tends to be highly

"context sensitive" [Swinehart 74, p. 10]. That is, the presentation of context allows more rapid

recognition of the information's meaning and significance.

Another aspect of the programmer-computer interface is the volume of data that needs to be

transferred. Frequently, the programmer must process large amounts of information produced by

the computer, for example to find a bug with unusua;, non-local effects. Furthermore, this data

may be generated by multiple processes running in the computer. In this case, the programmer

must be able to separate the output coming from the various sources.

2.2 Features.

Naur [74, pp. 239-245) gives a long list of design requirements for any computer system for

which a human interface must be provided. The principles governing design of input from the user

are:

(1) Reduce the volume of data required from the user;

(2) Adjust the fonn of the input to make best use of the human faculties;

(3) Use feedback to allow correction of mistakes as they are made; and

(4) Include careful redundancy to allow automatic recognition of mistakes [Naur 74, p. 244].

For output, Naur has a similar list:

(5) Adjust output quantity to human capacity;

(6) Choose forms of output that arc readily acceptable to human comprehension; and

(7) Output only completely processed results [Naur 74, p. 245).

This section wilt discuss these points (and some others) emphasizing their applicability to

debugging systems.

5

6 DISPLAYING DATA STRUCTURES FOR INTERACTIVE DEBUGGING

2.2.l Speed.

One of the most common complaints about current systems is that the operations required to
find a bug take too long. Many of the experimental systems that seemed very attractive on paper

(for example, [Model 79]), · are not used because they operate too slowly [Fikes 79][Laaser 79].

Systems such as RAID [Petit 69], which essentially add a Cathode Ray Tube (CRT) screen to

conventional debugging aids, are very effective partially because "relatively conventional tools are

considerably enhanced by increasing the bandwidth of the communication path" [Satterthwaite 75,

p. 21].

Mitchell [79a, p. 7] gives a more theoretical definition of the speed requirements of an

interactive system. He prop~scs that the two conversants should be matched in response time (a
"balanced conversation"). If not, the more powerful one wilt either use his time poorly or waste

energy doing unnecessary computation. Different types of tasks arc allowed to take different

amounts of time, however. For example, the wait before commencing a complex operation an~
seeing it complete may be much longer than the wait between pressing of a key and seeing the

letter typed. Recently, it has become acceptable to allow the computer to be under-utilized due to

decreasing costs of hardware. Consequently, the appropriate criterion today is that the human

should be able to avoid wasting his time.

2.2.2 Information at user's level.

Naur requires that output should be "completely processed." For example, if the user

requests the display of a CHARACTER and the debugger prints an octal number, the user rather than

the computer will have to do the conversion. A similar requirement also applies to input With

respect to programming languages, "it is imperative that information about the behavior of a

program be presented at the conceptual level at which the program was written and in terms of the

constraints and operations of the programming language used" [Model 79, p. SS].

A motivation for this principle is given by Model [79, p. 28]. He explains that people do not

usually understand higher level constructs by breaking them down into the lower level constituents

because these details require the user to handle more information, most of which is irrelevant to his

task. If the information is presented at a higher level, this "leaves more of the programmer's

resources available for the demanding analytic and creative phases of debugging activity" [Model 79,

p. 55).

Another aspect of this requirement is that the programmer can best understand the

information if the context in which the information is to be evaluated is presented. Most current

systems require the user to declare the context in which he is interested. The system then assumes

DESIRED FEATURES IN A DEBUGGING SYSTEM 7

he remembers it. In systems with complex, dynamic displays, however, sufficient contextual

information must be displayed to allow the programmer to identify the meaning of the displayed

information.

2.2.3 Use of appropriate level of detail.

In addition to the requirement that the information be presented at the correct conceptual

level, the amount of information produced should be minimized. If the user is interested in one

particular value, he should not be required to hunt through a large amount of output to find it

"The name of an object is often all the programmer needs to see, as printouts frequently serve only

to identify which one of a set of known objects a particular one is. When the user docs want further

details, it is imperative that ~c be able to request them selectively" [Model 79, p. 78]. Providing

only the needed information can also allow the system to respond much more quickly since

interactive systems frequently spend much time handling Input/Output (1/0).

2.2.4 Analogical display.

The use of analogical display helps to handle many of the requirements listed above. An

analogical disp1cly uses abstract pictures, such as bar graphs, icons, arrows, tables, etc. Thus the

information is not simply printed out; it is converted into a form that is easier for the human to

understand, possibly by analogy to the physical world.

Again, Model [79, p. 12) motivates this requirement with reference to human psychology. The

structure of the human brain and current undcrsta~ding of human information processing "show

that sensory information [of the physical world] is highly organized before it reaches the parts of the

brain associated with abstraction, analysis, and other components of thought" Thus, analogical

displays more effectively utilize the brain's innate capacities. For example, the eye is good at

making rough estimates in proportion. A display of an iteration variable as a "percent-done

thermometer" (like those used in charity drives; see Figure 2.1) or a bar graph (Figure 2.2) may

present all of the required information in a manner that is easy to understand.

Pictures are used by programmers to explain their data structures to other humans. For

example, the programmer often draws a picture of the typical case or the one under examination.

The programmer rarely would write a set of octal numbers to explain how his trcc-strncture is

represented. Therefore, a system that uses pictorial output presents the information in a more

natural and understandable manner.

8 DISPLAYING DATA STRUCTURES FOR INTERACTIVE DEBUGGING

Figure 2.1. Percent-done thermometer showing 80% complete .

"" =~:" ~~1: u.., wrr ..
$Vl'llWVP .:1111,.,..1..,11•1.Jlin

SfACl\P t:t-.t. f'U"'""""
IC.lffl8 ~ "'""""''• llftll.M!H .. i. ... hdi,h t ,.
LJIYI' lhr\~
'CO.LP velw n1h
uratUI etNt
ILW.I" r~t1"'111,_..,.rs
I txt taroe nu-.Cr 1
wltUlllW 1trlflC1fe1t1Ur1
aW11.\lrtllt::i.at011,...,C"erec1te•·s
IOIKt"W.llPll*::J nr1"41cMr.c:t..-1
tlllfllCl.l'l*U .1 .. 11:&.WMDI
tKMlllllN T!d'IT ~
'"'"~' TilflTflUMf'fl&l!I.
fXftfll.,,lt T)IM'fltlrff'tt!t

1Xlltofl•nt:c-:4JI

IXlllHt•Hfl•

... ,.,h ...

.. .,,..,, ... •
"" lt::4
2MH ,..
' O.,J/ ,,.
CA.ii

""' • ..
l'IH•

-- •···

Figure 2.2. Display of storage usage in DLISP as numbers (top) and bar-graph (bottom).
· [Model 79, p. 117). .

2.2.5 Automatically generated pictures.

Pictures are also produced as documentation for programs. The most obvious example of this
is flowcharts. Drawings of ·data structures are also frequently drawn by hand, especially for
languages with standard, high-level structures such as LISP. Unfortunately, "readable, neat copies
of pictures are expensive· to produce and reproduce ... [and] with manually generated pictures, there
is no guarantee of correspondence with a real computation running on.a real machine" [Yarwood

DESIRED FEATURES IN A DEBUGGING SYSTEM 9

77, p. 9]. Thus, automatic generation of the pictures is required. This was done on the earliest

computers (section 3.6.1), but was seldom used until recently (section 3.5.2). Interest in automatic

generation of flowcharts began in the late 1950's (see section 3.6). The automatic generation of

pictures as a means of display seems the natural choice considering the desire for analogical display.

2.2.6 Meta-knowledge.

Debugging systems might help the programmer understand the output at a more global level

even more than by using analogical display. For example, when asked the value of an array, the

system might say: "All have initial value except for element #17 which equals " This would

usuaUy be easier to understand than the list of all the values. Another useful facility would be to

detect that certain elements of a complex structure had been overwritten by accident. At an even

higher level, t11e programmer might ask, "Did anything unusual happen during this execution?" A

system that would allow expression of these sorts of requests would require knowledge and

capabilities not yet available even in the most advanced artificial intelligence systems. If the

techniques were available, however, debugging systems would be a" useful place for them to be

applied replacing much of the current interface to debuggers. A sophisticated data display system

would still be useful, however, and would be improved through the use of knowledge about the

user and program.

2.2.7 Replay.

The ability to make a history of the events that occurred during an execution or debugging

session has proved useful in many systems. If the running time of the program under investigation

is too long, a replay at a higher speed using the history may be the only practical way of following

it [Lenders 78]. Replays may also allow the user to back up a computation, change something, and

then repeat the computation in the new environment Yarwood [77, p. 61] gives another motivation

for replays:

In onler to understand a complex change in ... data, the user must be able, for a short
time at least. to move his attention more or less randomly between the "before" state,
the "after" state, and the intervening part of the program which caused the change.

In a CRT based environment, a history should be stored to a11ow the user to look back at previous

output. With an analogical display, the information stored on the history should be sufficiently

detailed to allow a replay of the pictures produced originally.

III. History of Debuggers and Other Relevant Systems

Debugging of computer programs has been necessary ever since the first programs were

written. There are many good histories and surveys of debugging (for example, [Model 79],

[Satterthwaite 75], and [Blair 71] all contain good surveys over different sets of systems). The survey

presented here makes no attempt to be thorough or comprehensive. The important stages of

computer software debugging are presented along with some illustrative examples in sections 3.1

through 3.5.

Some systems that were not aimed directly at debugging have profoundly affected the way

humans interact with the computers. These have generally been graphically oriented. and some are

discussed in section 3.6.

3.1 Earliest Systems and the Basic Debugging Techniques.

The earliest stored program computers were small enough that one user's program could

effectively utiJize the computer's resources. Therefore, the programmer could sit at the console and

debug his program while it was operating. This is called the interactive mode of operating since the

user is interacting with the computer. 'Jbe alternativ-:- is batch mode, in which the user has no

control over the execution of the program once it has begun. The earliest interactive debugging was

frequently done by watching the lights on the front panel of the computer. 111e three basic forms

of debugging, trace. dump, and break, were all developed on the EDSAC, the "first practical Stored­

program electronic digital computer" [Satterthwaite 75, p. 18]. The EDSAC was built at Cambridge

University in the middle 1940's [Bell 71, p. 42).

3.1.1 1be Trace.

In a program trace, some portion of the state of the machine, such as the location in the code

and the values of important variables, is printed out every time certain events occur. These events

are usually the reading or writing of a memory location or the execution of a certain type of

instruction (e.g. a branch at a specific point). One purpose of a trace is to "give the user some

picture of which of the many possible sequences of operations was actually performed" [Model 79,

p. 44]. Flow tracing is useful for optimizing code, since the user can discover where the program is

spending its time. Tracing is also useful for discovering how some variable got a certain value.

3.1.2 lbe Dump.

The dump is actually a more primitive operation than a trace. The programmer displays all

the values in a certain area of memory, usually in some numerical representation such as octal. He

11

12 DISPLAYING DATA STRUCTURES FOR INTERACTIVE DEBUGGING

must then try to figure out what all the values mean and if any of them are wrong. Dumps are

inefficient since (1) the bug may have occurred long before the effects seen in the dump; (2)

finding more than one bug is difficult: (3) too much information is available, making it hard to find

the important parts: and (4) it is hard to get any meaning from a dump if a higher level language is

in use [Lauesen 79, p. 53]. Dumps were discouraged on the earlier machines such as the EDSAC,

due to the slow output devices available [Bell 71, p. 139).

3.1.3 The Breakpoint.

Whereas traces and dumps can be used in either interactive or batch modes, breakpoints are

only useful in the former. A breakpoint is simply a method for causing the program to cease

executing, usually in a mann~r that will allow it to resume at the user's command. 'Ille standard

implementation method is to save the instruction where a break is desired and store a trap

instruction in that location [Hughes 78, p. 102]. Care must be taken in executing the instruction ou~

of line to maintain the correct semantics.

Breakpoints only allow "snapshots" of the program state and are not very good for finding

certain types of bugs. For example, to find out how code is being clobbered, the programmer

might have to repeatedly run his program setting breaks further and further back [Leslie 78).

Breakpoints also generally give confusing information in systems with multiple processes.

A small enhancement on breakpoints is single-stepping where the system sets a breakpoint

before every instruction. Each system that provides this facility must therefore define the meaning

of "an instruction." For example, in LISP, an instruction might be the processing of one atom, the

call of a function, or one cycle of the read-eval-print loop.

3.1.4 Events.

Events in a program execution are the occurrences of certain happenings, for examples,

accessing or writing of a memory location or the execution of a certain type of instruction. Hanson

[78] has formalized the idea of events and provided facilities in the language system SNOBOL for

executing arbitrary functions when they occur. He classifies the events into five types: (1)

referencing of a variable; (2) execution of a statement; (3) external interruption (by the user); (4)

function call or return; and (5) execution time error [p. 116). A new function has been added to

the language definition of SNOBOL called CONNECT which attaches a function to a particular

instance of an event type. This mechanism is sufficiently general to allow any type of breakpoint,

trace or dump to be written, and it is possible to provide an entire debugging system such as DDT

(section 3.4.2).

HISTORY OF DEBUGGERS AND0TIIER RELEVANT SYSTEMS 13

Hanson claims that the overhead for all of this flexibility is small. One extra compare is

required for every assignment to a variable, but this can be omitted if no events associated with

variables are used [p. 125]. Thus event associations seem to be a general and powerful way to

achieve some of the facilities desired in a debugging system.

3.2 Hatch Debugging Systems.

When computers became faster and more expensive, one person could no longer efficiently

use the entire machine. Thus, batch processing was invented [Mitchell 79a, p. 4). Here the

programmer develops his program off-line and then (usually) punches it on cards. These are

submitted and later its output is available. The turn-around time for batch systems is typically on

the order of six hours or more. The programmer was therefore encouraged to carefully examine his

program to try to avoid extra runs. Lots of output was generated on each run so the programmer

would have some hint as to where bugs might be.

It was in batch processing that dumps became a dominant form of debugging. With the

advent of high speed line printers, dumps were much more practical than allowing the user to

investigate a running program. Operating systems were frequently configured to dump all of

memory when .:;ome faults occurred. Lyon [78, p. I} reports that "whole books have been devoted

to deciphering COBOL dumps."

3.2.1 Print statements as a debugging tool.

Unfortunately, dumps frequently proved inadequate and many systems did not have usable

trace facilities, so another popular debugging technique emerged. The programmer would insert

print statements in his program, to try to simulate an effective trace. Knuth [69, p. 189) reports that

"many of today's best programmers will devote nearly half of their program to facilitating the

debugging process on the other half; ... the net result is a surprising gain in productivity."

Problems with this mode of debugging arc that the "debugging statements usually must be left out

of the final version of the program, and are tedious to include in [its] development" [Hanson 78, p.

121]. Another problem is that the output (or its absence) may modify the program's behavior (e.g ••

its timing characteristics) in a way that creates or hides bugs.

Lauesen [75) [79] claims that in spite of these problems, he was able to produce an operating

system that "seems to be error-free" using print statement output as the major debugging technique

[Lauescn 75, p. 378). He further maintains that "if the program is properly structured, [putting

print statements] in a few places will suffice, even in large programs" [Laucscn 79, p. 53). The

output is directed at a file during production runs to act as a history, allowing tJ1c programmers to

do a mental replay of events if a bug occurs.

14 DISPLAYING DAT A STRUCrLJRES FOR INTERACTIVE DEBUGGING

3.2.2 An advanced batch system.

Satterthwaite [75) developed a system to aid in the debugging of programs written in Algol W

at Stanford University. His system allows the user to add ASSERT statements to the program that

the system will then check. If they arc not true, the program will be halted, and, as for any other

run-time errors, a post-mortem dump will be generated containing the values of all variables. A

tracing facility was also provided along with a simulator to execute the traced statements. All

. output was given in terms of the original program and contained only symbolic names for variables

and their values.

3.3 Intermediate))chugging Systems.

Some debuggers attempted to handle both batch and interactive access. For example, the
PEBUG system is a low-level system that "provides the general debugging environment for the
debugging of any relocatable object program" through either batch or interactive interfaces [Blair
71, p. 1). This system attempts to avoid language dependencies by having a standardized symbol

table format It also allows users to define debugging routines and can tolerate bugs in them.

3.4 Interactive Debugging Systems.

Interactive systems developed along with timesharing in the middle 1960's. Users could now
interact with thei~ programs as if they had an entire system to themselves. Later, when hardware
became even cheaper, personal computers began to be popular. In these systems, the user actually

do have the entire machine. Since the abstraction presented to the user does not differ substantially
in the two worlds, they wiJJ be discussed together in this section.

Mitchell [79al describes how an interactive system might be built and provides some insight

into the motivation and requirements for one. For example, he claims that "it is a gencralty held
belief that interactive systems should give 'immediate' response to trivial requests" [p. 6). Examples
of interactive programming systems arc JOSS, Basic, APL, LCC, Interlisp and COPILOT [Swinehart
74, p. 1).

One property of interactive systems is that more effective software tools are needed to facilitate

program debugging [Evans 66, p. 37]. Unfortunately, few tools provided any techniques not

available on EDSAC (sec, for example, [Schueler 77] and [Kazek 78]). In addition, "few high level

languages provide facilities for interactive debugging in which the interaction is in terms of the high

level language itself' [Hanson 78, p. 116).

HISTORY OF DEBUGGERS AND OTHER RELEVANT SYSTEMS 15

3.4.l Importance of interactive debugging.

Some have claimed that the programmer using an interactive system consumes more computer

time and does a more superficial analysis of the problems than he would using a batch system

[Model 79, p. 46]. In fact, however, other studies have shown that the overaU elapsed time to find

bugs is shorter by 50% to 300% with on-line systems and that the computer usage only 30% higher

[Sackman 68). A study by Boehm [71) suggested that enforcement of an interval between runs

decreased the overall time required. In spite of this, there is ample evidence that users strongly

prefer the interactive systems [Gold 69].

There are other advantages to on-line debugging. The system can give the user continuous

guidance on the format of desired input, immediate feedback of errors, and control over output

format [Naur 74, p. 252). Also, Henriksen [77) notes, it is often difficult to locate a bug with the

snapshot output available from batch runs. Only with interactive systems can monitoring be

effectively used (section 1.3).

3.4.2 Examples of interactive debuggers.

The original DDT (originally for DEC Debugging Iape but more recently, Dynamic

Debugging Technique) was developed at MIT for the PDP-1 (Kotok 61]. It allowed interrogation of

machine registers, interpretive execution, breakpoints, single stepping, tracing, and patching of code.

DDT-like debuggers have emerged for most assembly languages. Most allow use of the symbolic

names of labels to specify locations.

Most debuggers for higher level languages have not expanded on the capabilities offered by

DDT. Some, however, do attempt to allow the programmer to avoid having to know anything

about the machine implementation of the language or the compiler. Examples of this are the PL/I

debugger on Multics, the IBM PL/l checkout compiler (Satterthwaite 75, p. 23] and the current

Mesa debugger (see section 4.2.1.2).

Some other debugging systems alJow the user to correct mistakes using the source language

and then continue execution. ll1is implies that the full capabilities of the language should be

available at debug time. An early system with this feature was the IMP system which had an

integrated debugger and assembler [Lampson 65]. Most of the systems with this feature, however,

arc interpreted rather than compiled. Examples arc APL, Basic. and MDL Interlisp (Teitelman 78]

is an interpretive system where case of debugging was a significant design goal. Since Lisp is an

interpreted language, it is easy for the system to allow the user to do arbitrary computations at any

point. Interlisp also contains a powerful tracing facility that allows the user to investigate the call

stack. A return can be enacted at any poi~t with the return argument specified by the user. In

16 DISPLAYING DATA STRUCTURES FOR INTERACI'IVE DEBUGGING

addition, any changes the user makes to the program, even the very procedure being run, are

immediately reflected in the computation. The modified version is also saved ff eitelman 78, p.

15.3].

Interlisp also contains a system called DWIM (Qo What ! Mean) which attempts to correct

errors as programs execute. If Interlisp cannot understand a string, it tries to find a spelling of that

string that makes sense. If successful, the user is asked to confirm the new spelling or supply

another one. DWIM also tries to correct unmatched parentheses and certain other common errors

ff cite Iman 78, pp. 17.l • 17 .28].

Unfortunately, interpreted languages tend to run slower than compiled languages [Satterthwaite

75, p. 24]. 'Ilic ability to correct a mistake and continue is much harder to provide with compiled

languages since "decisions made during compilation, such as those concerning the allocation of

registers for temporary results, make the different pieces of the resulting machine level code inter­

dependant" [Model 79, p. 53]. This makes incremental compiling (compi1ing only a small piece of

code) very difficult. It is still used in some cases, however.

3.5 Dynamic and Pictorial Debugging Systems.

This section discusses a group of debugging systems that either use a CRT to allow monitoring

of data, or produce pictures of the data, or both.

3.5.1 Non-pictorial monitoring systems.

The advent of CRTs as computer 1/0 devices allowed more effective monitoring of programs

as they are executing [Gladwin 69]. RAID [Petit 69] provides the facilities of DDT, along with the
ability to assign a variable to a ·particular place on the screen. 1l1e system wilt update the displayed

.value at breakpoints and while single-stepping allowing the user to monitor the program during

execution. North [77] developed a system for an Intel 8080 microprocessor that updated the

displayed values continuously by interpreting the code.

3.5.2 Pictorial static systems.

Yarwood [77] developed a system that would generate "itlustrations" for programs in a very

limited subset of PL/I. 'Ille pictures were generated on an electrostatic printer and were only

useful for documentation of the program after it had been debugged. This system, however, is

claimed to be one of the few attempts at analogical display [Model 79, p. 82]. In each snapshOt,

Yarwood's system displays a piece of text relevant to the state of the system along with a display of

some data. A major feature is the ability . to display one-dimensional arrays with the indices

HISTORY OF DEBUGGERS AND 0TJ IER RELEVANT SYSTEMS 17

displayed as pointers into the array. Parts of the array can also be labeled so that a level of

abstraction can be shown (see Figure 3.1). A special language is used to specify what is to be

displayed and when. lbis along with the original program is sent through a pre-processor which

produces a new program which is then compiled and executed.

ITERATION 6 OF ENTRY 6 OF LOOP NLEQK
r:::-:===:::~~=::~-::--7~-r-~,..-,

N K u

24 13 3 23 10 12 34 25 12 45 45 37 27 55 57 62 78 94 98 99
A <= A(L ? >AL

Figure 3.1 Yarwood's display of an array showing indices as pointers and labeled sections underneith.
[Yarwood 77, p. 92]

3.5.3 Pictorial monitoring systems.

3.5.3.1 EXDAMS.

One of the earliest pictorial monitoring systems is EXDAMS (!ilitendible Debugging !!nd

· Monitoring ~ystem) [Ilalzer 69]. Unlike other systems, EXDAMS docs not allow monitoring of

running programs; the program under study must be run with an EXDAMS routine that collects

information on a history tape. The information about the run can then be investigated at a later

time. This history file allows the debugging aids to be language independent, since only the part

that creates the history tape needs to know about the actual target program.

EXDAMS provides some very powerful display routines. For example, an inverted tree can

be produced showing how a variable got a certain value (see Figure 3.2). The user can then request

a similar "flowback" analysis along any of the resulting paths. Another static display available is a

temporal list of all the values assigned to a variable. In addition, "movies" of the action of the

program can be shown. The statement being executed will be highlighted and the values of

displayed variables will be kept continuously updated. Also, as in Yarwood's system, the user can

specify that a variable is an index into an array and have it displayed as an arrow. Balzer claims

that the system is extensible so that even more interesting features could be added. In order for

EXDAMS to work, it has to save a great deal of information. 'lbe statements added to the source

program increase its length by approximately a factor of three.

18 DISPLAYING DATA STRUCTURES FOR INTERACTIVE DEBUGGING

D

A=B+C·D;
= 105

D R K

Figure 3.2. EXDAMS "flowback display showing how A got its current value. [Balzer 69, p. 569)

3.5.3.2 COPILOT.

COPILOT, a interactive programming system useful for debugging [Swinehart 74), was the first
to exploit "the idea of using the display as a means for a11owing the user to retain comprehension of
complex program environments, and to monitor several simultaneous tasks" rreitelman 77, p. 1).

COPILOT is a dynamic system that "allows the user to create, modify, investigate and control
programs written in an Algol-like language, which has been augmented with facilities for multiple
processing" [Swinehart 74, p. xiv]. Central to the design is the use of multiple CRT displays that
a11ow the different processes all to show their current state simultaneously. A major design goal was
to allow the user to input commands at any time and not have to wait for completion of tasks.
Thus "the user's terminal is continuously available for commands of any kind: program editing,
variable inquiry, program control, etc" [p. xiv]. In addition, no process can prevent the user from
directing input to another process. This is called the non-preemption property. Since the user's
understanding of a display is dependent on the context, and there are many different contexts in a

multiple-processing system, the environment in which a value was generated is displayed along with
the values. Unfortunately, the processing power was not available to have the displays continuously
kept up-to-date so the system operates using snapshots [p. 73), nor was the performance of
COPILOT good enough to support actual users.

3.5.3.3 Smalltalk, windoMi and selections.

Smalltalk [Shoch 79][lngalls 78) is a language system that incorporates a large number of
display facilities. It was felt that graphics would make the system easier to learn and use [Kay 77).
Smalltalk. developed the idea, first proposed in the FLEX system [Kay 69), of using multiple

overlapping rectangular regions called windows to extend the available screen space [Goldberg 79).
The display for FLEX was a "large virtual screen on which displays may be 'tacked' like notices on

HISTORY OF DEiiUGGERS AND 0TllER RELEVANT SYSTEMS 19

a bulletin board" [Kay 69, p. 235). Windows can be moved in 3 dimensions. They can be

translated to any portion of the screen, possibly changing size, and they can be moved "forward"

(or "back") so they are less (or more) occluded by other windows (see Figure 3.3). The information

in the windows may not be able to fit in the area specified, in which case only part of it is shown.

The rest may be seen by scrolling the window the way one might move a scroll of text behind a

small opening. The FLEX system incorporated the added feature of a true zoom where the

displayed objects increase in size. This feature was not carried over into any of the later systems,

however. Smalltalk presents a uniform window interface both to the programs and the user,

thereby allowing complex systems to be easy to use (e.g., an animation system [Backer 76] and

Thinglab (section 3.6.4)).

Figure 3.3 A typical Smalltalk screen showing multiple overlapping windows including a font-editing
window (at top) and various types of pictures. [Picture courtesy Glenn K rnsnerl.

Another important aspect of a display-based system such as Smalltalk is the use of selection to

specify commands and their arguments. Selection using a light-pen to point at objccL<; on the screen

was used as early as 1963 for Sketchpad (section 3.6.2). Its applicability to interactive debugging

has been long known [Zimmerman 67]. English (67) is credited with the first use of a mouse as a

pointing device to select portions of the display (section 4.l.l). The advantages of using selection

over type-in is that it is faster and less prone to errors. In addition, the user does not have to

remember the corresponding text. Selections are closely tied to menus, which are lists of commands

where the· selected command is executed. Figure 3.4 shows two menus from the Smalltalk system.

20 DISPLAYING DATA STRUCTURES FOR INTERACTIVE DEBUGGING

(ltJi;lt.ll.

GOp1J
r.::ur.

l'(lSte:

corn.pIT.e:
undo (b)
rn . .rv.::e.l.
ahqn

(a)

Figure 3.4. Two Smalltalk menus. (a) is the editing, compilation and execution menu and appears
when the Yellow mouse button is hit. (b) is the window menu and appears when the
Blue button is hit. [Picture courtesy Glenn Krasner) ..

3.5.3.4 DLISP.

Another programming system that facilitates debugging is DLISP (for Display Lisp) rreitclman

77). This system is built on top of INTERLISP (section 3.4.2) and thus has all of the debugging

facilities of that system. Jn addition, DUSP uses multiple windows on a CRT to allow the user to

interact with multiple processes using only one display. The windows are allowed to overlap {see

Figure 3.5) and are treated essentially the same as Smalltalk windows. DLISP also contains

primitives that make it easy to create pictures. For example, Bill Laaser was able in just two weeks

to create a package that drew pictures of actual Lisp lisle; such as in Figure 3.6 [Laaser 79]. ln

another data-display application, Figure 3.7 shows a pretty-printed list output and a pictorial

presentation of the same tree data structure. It is clear that the latter is much more evocative.

t~" .ol •.mt
'!9T'.'

" "::,:;:::.:. ;~r!·r~•~"r~.~_'t;. "~:;~!1",..7j'.";.' ~
'~ ot (I 1 N 'J Is Nil. ·~'be~ ~~-1

. 'P9ttn
1.l.fJI
~·H~l.11

... ..,,. ••• 4 •, ,
' .
ti .. 11~, 4 'I tft '1"1N , IN .If

" '"' ii.t.:o,~tt
,, ... i

JI ~:~'·~.~I ,e:T .. ~!::;IJ~'·.,~; :'PM)

t:-:~.! ~·~v!~~\':~ 3i'~"J.

,,,"'f,: -··--·
ftflJfllv M<!:til T1.1 (1
ct:OJ'""··
, .. it , ~ n
;;:··.;.;.,':' , .. -..rti.o.:! cr~~~nt:io11 0t1
'"'"":">."l'lfl j' . (•ftl ., J' ,.,.. 11-trtf
,,........ P,U.Mf~Tf' "'tn.& '""'' i\o 1 1f-.el fl·l'· E~.'t ~J'.
T": TiP·tQ.~

l8'1''W,
: .,..,,,....,, •<)M•t·J l..,.,., ro ""' IEI T[t ;-1.1r:'<1J T : ~;::'

::-~.~·~~:tri.~. ~;:.·,.4
;,~~~~.~~~::: ~
ii 1 '.l••.l T~ 11/•
.u•1<1'tJ1•.lio

1" 'I-'~"., u/1' ,.,

) !, .. 14

'l' 11" ;tL 1:~;rn~; ~~~e')
~3•" ?1 64 lfJl '<IL 2.

Figure 3.5 DUSP screen showing windows overlapping during a typical session. Text in WORK
AREA on black background is selected. [Tcitelman 77, p. 18).

HISTORY OF DEBUGGERS AND OTHER RELEVANT SYSTEMS

E,I(' 1t~'.:i :)\J: \ ~w~ ~ c11· ,(',~ :. ' : . : :.: : :. ,' : •. : • .. ' ... :

Figure 3.6 Pictorial display of the list: (((AB (Mo (P Q))))
0 E (F G ((H 1))))

in DLISP after being modified by selecting cells and specifying where they should
point with the mouse. (Picture courtesy Bill Laascr).

~--llUIJUlllllltlllllllllllllllllllllllllllllllHlllllllllillllllllllllllliUIUll
,.,.

(a)

'TOP (ONE (2)
(3))

(TWO (A (B)
(0 (E)))

(L (M (N))
(P)))

(THREE))

(b)

Figure 3.7 Pictorial display in DUSP (a) of the tree structure shown in (b). [Model 79. p. 115].

3.5.3.5 Sweet's tree drawing system.

21

Another system for making trees from internal data structures was done for Mesa by Sweet

(78). This was incidental to his major project but proved invaluable to the understanding and

debugging of his program. His trees are produced on a fixed-width character output device (such as

a line-printer) and have the following properties:

(1) All nodes at a given level in the tree are at the same level on the page:

(2) Each non-terminal node is centered over the nodes of it-; sons; and

(2) The width of the resulting tree is minimized [Sweet 78. p. 91).

A sample of the output of his system can be seen in Figure 3.8.

22 DISPLAYING DATA STRUCTURES FOR INTERACrIVE DEBUGGING

I
[13)
var

I
[36]
dot

I
[21]
re IN

[245)
if st mt

I ' [22) [23]
assign <empty>

\ I \
(37) [11) [12]
num var relE
I

\ I I \ I
[14) [194] [167] [213) [3] (159) [1g]
var O global 5 O 1 var

I I I \ I I I \
(173) (199] [3] [234] [174) (243) (163) [267)

I \
[179) [209) [3] (160)

local 1 O 16 field O O 16 local 2 o 8

3.5.3.6 Model's system.

Figure 3.8. SamP,le of Sweet's Mesa tree display.
[Sweet 78. p. 89)

\
[20]
num
I
I

[194)
13

Model (79] attempted to blend some of the good ideas presented above into a system that

would allow the debugging of complex artificial inteJligence programs. His system was

demonstrated monitoring KRL [Bobrow 77) and Mycin programs. but was designed to handle a

more general rlass of programs. It is built on top of DLISP and uses many of its sophisticated

display facilities. In Figure 3.9, a snapshot of a sample run of Mycin is shown. The Mycin

program was actually running at Stanford while the monitoring program was running at PARC and

communicating over the ArpaNet [Kahn 72). Model's system keeps the different windows

consistent by showing the progress and actions of the monitored system at all times. As in

COPILOT, the multiple windows allow the information to be displayed in a highly organized

manner. Thus, "many pieces of information can be presented in a constantly changing display, but

the user need only look at those pieces which arc of immediate interest" [Model 79, p. 47). A

major feature of the system was the ability, as in SNOBOL (section 3.1.4) to define events in

programs and have monitoring activity take place when they occurred. In addition. a history was

kept, allowing the investigation of any processing after a run "perhaps at different speeds. levels of

detail, or foci of attention" [Model 79, p. 13]. All investigations are in terms of the Mycin or KRL

language; the programmer never had to know about the underlying Lisp implementation of these

languages, much less the machine implementations of USP.

HISTORY OF DEBUGGERS AND OTHER RELEVANT SYSTEMS

:.:~~~~~i ~.::~::! f::: ~.:::::;~l :~:: ~:: :: :::::;:
l'IJLL.·.·· r41•oe··I ~.'" t•r!'''I!"} !'·~'~I~·.·:~ I
~:t•Ll'.'~'-· f4t l~d { 1r> !)r!._.t~'-'} ~k'!' ~~ ~ !t•.•H I

::[;~1 ; !~~:.,".i''' ;:~~~'.' 1 ~~1 •. :~t-~~11 -:;~~!ru:. •1-1
,,.,.,,.'l ~·<JLtllJ::••.11-:1,4111 ;n-1

--L 'I I tf'•:lt:>••I ;•.•r.llonl"iAl:I ~· '-:•sn~:.:·-~
•:1,Ll\'l4'.• f.,11!(1 { 1" pr!'v1!''1) do>!' I(•:I•"'.!' :

~~·' tl"i• l.H '"""' 11r. 1"""1".'I '"'" h < '""'"' I
"''1ff'~"l f.it'"d fir rr.,,,.t~~'} """ '" ~ l\tl'" I
11:"1f'"H f.)tlrtt {tr- rr·-•d,."} ,...,,. tr "hll"" I
ll:ll'f"'':' f.ltlrft pri rrr"l""l ''"·" ,,. ''"''""I
rr,-1"? J,11,~••,.-:r1.;111~" 1

1 A") 1 ...- 11 •. 11r' •"I c · ,..,,, .,.. "•·I• ,.,.. (r:nt fllfi' I:, ..,,.~ "' "~· • .,,... ·
<t11-1r·-) •i•t· « ... ,., . .-.• "'"'•' , .. '·'·l' •t ·~ cl•·• < ol· n·,·,,; .. ,

t.t•L((l.1'1 f ~· 1,.. •. 1 l•.to: •.•. •. 1.,.,,., :
f.t•L(r·11 f~•1o:-•.I flt,,,,.,..,;.,...,,,.•.•.·•. 11"·"' ~
T1yil"J •·.11.fll)fi,,:lf,t;t.tttOM-l.

' ' i-m

1\1) fl~~~"·' H'"~"to,' J••.H~ ~ ... to.,"' .'.'llfS.'"'·'""·"··11·,,~ '"•.I•<:'"'''~"
1,.1 . .,1. ~.-1,.,. 1 . .,~ , ... _, .. ~,.,.,, •'·'' _.,,.'.,.,., 1 •'.r '··' ... r.,,•. '·"'
I <1 ~~·•:'•\.'I •~, •H ~l·":.''. 1~·, '·" .,,. i·. . .'f i ''"··''\'' •.lfJf. • .,. '""I~ ~ ... •t.~

\ 'lr'~)lff t~"•-. F'f I Rl tF 11 !'1~1}
1P1F nc~~'I·~ .. 1 A!~ll~W)

(;c~ ! ~~-~~~~/~J~~~ ~r •, j ·:~~!~-1 '

-~-
Mhc~· .. 11·"""·'' I i:1 .. 1.1;.;1!tl~ - 1;

wr '* •wwww·
JIO&Q•,O""M. ,.~ ·f .,·,1. ;fll·· ·,. >l'!, r.o· ,· • 1.<1, lllllUt•ffl I~ 111•1 1•
lftl:l'f ,., '-F.C.f'tflt~~· I "1'!E',l(l•:•l.~·:.'lnt·•'~~·.~··'''· ;<1 , M•t11 •I ''"'"' .tt I
c;•l'f.GOflY .. ~-·~~r.ff••M-• i;U•ftt.•:•9"(,UAl"C(ll(:n1••1:;ol'1":! 1
""''" ,.,-: ... 0.11111; 1 •: r.r.·~u •I.>"!'. "<'

Figure 3.9 Example of Model's display for monitoring Mycin. [Model 79, p. 156}.

23

Although Model discusses analogical display a great deal in his thesis, his display is not really

analogical. As can be seen in Figure 3.9, the infonnation is all presented in textual form. He does

mention that a tree such as shown in Figure 3.7 could be made for the trigger structure of KRL [p.

145}. This was apparently not exploited, however. Another important problem with Model's system

is that it requires the full power of a large computer to run and even then is very slow [Fikes 79).

This is partially due to the slowness of DUSP itself.

3.6 Graphical Systems.

The systems that have attempted to create dynamic, analogical displays have, for the most part,

not been directed at debugging. These systems did develop many of the central ideas used in

Incense and other graphical display systems, however. /\MBIT/G, Sketchpad and Thinglab were

designed as unified systems with graphics as a central part. The earliest systems to attempt to use

computer generated graphics to help in the understanding of programs were the automatic flowchart

generating programs (for example [Knuth 63}. [Hain 65) and [Greene 73)). Automatic logic diagram

layout systems (such as [Aaronson 61]) were another early application of computer generated

graphics. The layout algorithms used in these systems were mostly trivial or excessively complex

and had no influence on Incense.

24 DISPLAYING DATA STRUCTURES FOR lNTERACrIVEDEBUGGING

3.6.l Early analogical display.

Another example on early work at graphicaJJy displaying information by computer was

motivated by a completely different problem. The Whirlwind computer, built at MIT in 1951, had

only mechanical typewriters for character output, and these were very slow. Therefore, an

oscilJoscope was attached to the computer along with a computer controlled camera. Programmers

were encouraged to have the computer make graphs of their data rather than trying to type it out

[Bell 71, p. 139]. Soon, however, line printers were developed and having the computer generate

the pictures became more expensive than making listings.

3.6.2 Sketchpad

Sketchpad [Sutherland 63] was an early system that attempted to simplify the process of using

the computer to make pictures. It used a light-pen, four knobs, and a tremendous number of

toggle switches to allow the user to input information analogically (for the most part} [p. 25]. The

basic building blocks available were line segments, circle arcs, and text The system also allowed

the user to define symbols out of a set of these which then could be used in higher level objects. If

the definition of a symbol was changed, aJJ instances immediately re-shaped themselves. Instances

could be different from the original (prototype) by having different location, size (scaling), :.llld

rotation [p. 46). Symbols had the additional property of connection points, which were the only

places at which additional objects could be attached. The system also incorporated some powerful

mathematical constraints that aJJowed the user to specify relations that had to be preserved among

various objects displayed. Another important feature of the system was that "the organization of

Sketchpad display as a set of display routines with identical external properties [made] it possible to

add new kinds of displays to the system with the greatest of case" [p. 42]. Drawings could also be

saved in a manner that allowed "cartoon motion pictures" to be displayed (p. 67]. Sketchpad was a

powerful system and it had· a major influence on almost all subsequent graphics systems.

3.6.3 AMBIT/O.

One such system is AMBIT/G (Algebraic Manipulation QY Identity Iransfonnation/Graphical}

[Christensen 67]. This system attempted to allow the user to specify his program entirely with

pictures through the use of a pattern matching language. The results. of the computation were then

presented pictorially. An AMDIT/G program is composed of a generic set of shapes, instances of

those shapes, a data graph connecting the instances, a set of program statements and a control
structure connecting the statements [Henderson 69]. The programmer "usually endows each shape

with some distinct interpretation" [Henderson 69, p. l]. A property of the shapes is the fixed

number of links that are allowed to leave the node; a node can have an arbitrary number of Jinks to

it, however. Links were all drawn as straight lines with arrowheads in the system implemented.

HISTORY OF DEBUGGERS AND OTHER RELEVANT SYSTEMS 25

The layout of the data graph in the AMBIT/G language is irrelevant to its meaning and there was

no automatic formatting. In fact,

the problem of automatically laying out and displaying an entire data graph has been
carefully avoided: the user is required to specify small parts of the data graph that he
wishes to sec, and he is encouraged to aid. in the layout of these [Rovner 69, p. 12).

To display a data graph, the user specified a uniquely named node and where it was to go on

the screen. If he then wished to sec sub-nodes, he had to point at each connection point he wanted

to see expanded. The sub-node would then be drawn at a canonical place relative to the parent

irrespective of what may have been there previously [Rovner 79]. If the subnode was nil, an "*"

(asterisk) would be drawn, and if the subnodc happened to already be displayed, the link would

have been drawn to the original instead of to a copy. If a node was drawn in an inconvenient

place, the user could move it and the links would redraw themselves correctly [Rovner 69, p. 11).

AMBIT/G has a number of techniques for recognizing user commands. 'I11e programmer

used a tablet and pen with which he could draw and select objects. The system also recognized a

number of gestures such as the "scratching out" of a line to specify deletion. In addition, there

were displayed menus to allow selection of some commands [Rovner 69, p. 10).

AMBIT/G, unfortunately, was slow (typical delay was IO to 20 seconds [Rovner 69, p. 13))

and "so gcncrai that it is difficult to build and use, and. it has never been completely implemented"

[Christensen 7la]. Efforts were therefore directed at specifying related but more practical languages.

AMBIT/L [Christensen 71a] has a limited and fixed number of predefined shapes which support list

structures. IAM, a system for interactive ~lgcbraic manipulation, was implemented using it

[Christensen 7lb]. Proposals for future research included the ability to monitor the system white.

manipulating the data graphs by having the modifications shown as they occur [Rovner 69, p. 13).

3.6.4 Thinglab.

Thinglab [Dorning 79) was written in Smalltalk to study aspects of a constraint oriented system.

It was based in a language which had powerful facilities for interacting with the screen (section

3.5.3.3). The system allows multiple views of an object to be visible at the same time and "a typical

object can be depicted in several ways.... The object itself defines the views that it can provide" [p.

4]. For example, the user can specify a constraint that the height of a bar in a bar graph

corresponds to the value of some integer in a text paragraph. When one is changed, the system

forces the other to re-adjust itself so they arc once again consistent [p. 4]. The collection of all the

constraints on an object may be "incomplete, circular, or contradictory" yet the system manages to

sort this out [p. 5}. When the user specifics that he wishes to display an object, a menu of all its

possible ways of displaying it is presented and the user can pick one. He then specifics where the

object is to be placed [p. 15]. As in Sketchpad, to which this system owes much, objects all use the

26 DISPLAYING DATA STRUCl"URES FOR INTERACrIVE DEBUGGING

same protocols making the generation of new classes easier. In fact, some classes can be specified

simply by drawing a prototypical example (e.g., making a class trapezoid from the class

quadrilateral). For a given class, the prototype "is a distinguished instance that owns default or

typical parts" (p. 46) which arc inherited by instances unless overruled. This prototype may be NIL

except for graphical objects which must have some specified appearance.

The 'lbinglab system is claimed to have good response time for objects with simpJc (linear)

constraints. The time to arrive at consistent values is "usually as good as if a suitable method had

been hand-coded" (p. 51). If constraints arc circular. however. the system must use a relaxation

technique which is much slower.

IV. The PARC Environment for Incense

Incense incorporates some of the good ideas from earlier systems. In addition, Incense reflects

many of the constraints and capabilities provided by the environment in which it was designed and

implemented. The Palo Alto Research Center (PARC) has extensive facilities available to aid in the

development of systems such as Incense. In hardware, there is the Alto mini-computer and two

types of faster research machines. In addition there is a large body of software written in the

PARC· language Mesa that was useful in building Incense. The Computer Science Laboratory

(CSL) at PARC is currently in the process of developing a new environment for Mesa called Cedar,

and it will have adcHtional facilities that will be useful for future versions of lncense. This chapter

briefly discusses each of these facilities so that the Incense system can be understood in context.

4.1 Hardware.

ll1e Alto ffhacker 79) is a general purpose, microprogramrnable mini-computer designed in

1973. The standard configuration .. of. the Alto includes (sec Figure 4.1):
•
•
•
•

•

•

An 875 line raster-scanned display;
A keyboard, a "mouse" pointing device with three buttons, and a five-finger keyset;
One or two 2.5 Mbyte removabJe cartridge disks;
An interface to the Ethernet distributed packet-switching local computer network
("Ethernet"), a 3 Mbit/second communic"tions facility [Metcalfe 76];
A microprogrammed processor that executes programs, controls input-output
devices, and supports up to 3K of user-programmable micro store RAM (along
with the lK of PROM); and
64K 16-bit words of semiconductor memory, expandable to 256K words [!'hacker
79, p. l}. -

Figure 4.1. Picture of typical Alto work-station with keyset, screen, keyboard, mouse, computer with
two disk drives.

27

28 DISPLAYING DATA STRUCTURES FOR 11'1TERACflVE DEBUGGING

Incense docs not current]y use the keysct or Ethernet, and it requires an AJto with extra

micro-programmable RAM (for loading of specia] micro-code for doing real number arithmetic) and
at least 128K of main memory to ho1d all of the data and programs. The next sections describe the

most important aspects of the Alto for Incense: the mouse and the screen.

4.1.l The mouse.

The mouse (sec Figure 4.2) is a pointing device which fits comfortably under the hand and
can be rolled around on any frictional surface (English 67). The mouse buttons (which are called
Red. Yellow, and Blue) allow the user to specify a number of actions using the same hand with

·which he is pointing. The current state of these buttons (up or down), aJong with the mouse
position, arc available through high-level abstractions in Mesa.

Yellow

Blue Red Hlue
Yellow

Figure 4.2. Two styles of mice with buttons labeled.

Since the mouse only measures relative movements and not an absolute position, it is essential
to have visual feedback as to where the mouse is with respect to objects on th~ screen. This is
provided by the cursor which foUows the mouse. The actual picture shown at the cursor location
can be set by the user. The default is a simple left-pointing arrow (Figure 4.Ja). Even though the
area of the cursor is small (about 1/4" square) a large amount of information can be presented in it.

For example, the system Okra, built by the author to interface the Alto to a remote file server,
utilizes 15 different cursors which clearly show the state of the system (Figure 4.3). Incense
currently does not take advantage of this capability; however.

Tl IE PARC ENVIRONMENT FOR INCENSE 29

(~ % fc~B ~B [I] :i: XB ~ l!R Ii~·

(b)) (d) (e) (t) (g) (h)
Default Okra. Send Retrieve Create file Busy Delete Exit
(up-left (user to (file system (flower). (hourglass). (file system (setting sun).
arrow for file system). to user). to garbage can). selection).

6 :i: © ~ i t ... ~
(i) (j) (k) (1) (m) (n) (o) (p)

Confinn Close transaction Hell0> Abort Scroll bar Scroll up. Scroll down. Text position
(question mark). (hourglass). (smiley). (dead flower). (up-down). (finger pointing).

Figure 4.3. Cursors used in the Okra system. Incense uses only (a).

4.1.2 The screen.

The Alto display is an interlaced 875 line monitor running at 30 frames/second. There are

808 visible scan lines, and 608 picture clements (pixels) per line. It is oriented with the long

dimension vertical, and the screen area is about 81h by 11 inches (Figure 4.1). The actual picture

on the Alto screen is controlled directly by the contents of a set of bitmaps or frame buffers that are

stored in memory. Each bit of the bitmap corresponds to one pixel on the screen and detennines

whether it is on or off. 111e Alto screen has the capability to use multiple bitmaps for the display,

but Incense docs not use this feature. The standard microcode provides one very useful function

called BitBlt which can transfer an arbitrary rectangle from one place to another in memory. Since

the picture presented is stored in memory, BitBlt allows arbitrary rectangles on the screen to be

moved. The resulting display can be a function of the source and destination rectangles such as

XOR, OR, AND, etc. BitBlt is useful for filling areas, drawing lines and displaying text

Since the bitmaps arc stored in main memory, it is possible to trade off the size of the picture

and the amount of memory available for other data. For example, a full screen requires

(808 lines/screen * 606 bits/line) 116 bits/word = 30603 words

or nearly half of the 65K· allowed for data in an Alto. llterefore, a full screen is seldom used in

applications such as Incense where there is a lot of other data.

4.2 Software.

There has been a great deal of software written to help the programmer at PARC. Incense is

written in Mesa so it takes advantage of the facilities of the Mesa system. ln addition, two special

systems were used in the development of Incense. CGraphics, written by John Warnock at PARC,

provides the basic interface to the screen, and JAM, designed by Warnock along with Martin

Newell, is an interpretive environment that was used to debug Incense.

30 DISPLAYING.DATA STRUCTURES FOR INTERACrIVE DEBUGGING

4.2.1 Mesa.

Mesa. {Mitchell 79b} is a large and complex strongly typed language, and there are a large

number of programs and systems built in and around Mesa to aid in the production of software.

4.2.1.I Compiler and symbol tables.

The current compiler for Mesa is batch oriented and operates on one file at a time, producing

error.messages in another file. The compiler operates fairlj quickly and produces efficient code. In

addition to its main duty of producing the object code, the compiler also produces very complete

symbol tables. These arc used to allow separate compilation of different modules and allow Mcsa­

levcl debugging of programs. The symbol tables contain sufficient information to discover the

location in memory and type of all the variables and constants used in the program, to find the

source statement corresponding to a value of the program counter and vice versa, and to resolve

references to types declared in different modules. As a result, symbol tables tend to be very large,

typically taking up about four times as much disk space as the object code for the program.

Symbol tables and Mesa types will he discussed further in chapter 6.

4.2.1.2 Current Mesa debugger.

Mesa, unlike many high level languages, ha~ a very powerful debugger that allows

investigation of a program almost entirely in terms of the abstractions of Mesa. lltere is no

requirement, or even advantage (in most cases}, to know anything about the machine instructions or

data formats. The extensive symbol tables provided by the compiler allow the debugger to know

about user-defined types, local variables, enumerated· types, and aggregate data structures. It also

allows the setting of breakpoints by pointing with the mouse at a source text line and executing the

command set-break (sec Figure 4.4). The debugger has ·a limited interpreter for evaluating

expressions and some statements. The source program and its execution speed is not affected by

the presence or use of the debugger. Another advantage of the current debugger is that it is uses a

screen package. '11tis allows the user to have multiple windows on different files. Snapshots of

actual debugging sessions are shown in Figures 4.4 through 4.7.

TI IE PARC ENVIRONMENT FOR INCENSE

Load

Al~o/M~sa Oebugger 5.9 of 9-Ar.r-79 15:;?61
11-0~c-79 11 :57 Set fr~ce

"""'• interri..1pt "'"'"' Jll!IRllil.lllJIDlil•••c lr 6r·e.1~
)Sft. Rt:'ot conf iaurat.1~n: .1 in~~n~"
>SEt Module coniext.: t.esti1u:u:fu1"3
> ti•e
(hours: 29'&, •1n: 31&, seconds: 368)
)

--Oefirntion.s fc-1~ th1Fh1d
--wishing to d1srlay ros1tion

--l.aist chan9e: Hovem&I r;re~te
""IO~;Stroy ltl

OIR£CTIJRY Vrop

~:~=~~;~~~~:~: ~~g: °":"'~cl~"''·'~°"'!::~"'~s";.""~-!~,i~~
Joc~nse:·-·ut.FHHT10NS =
6[GIH
-- - - l'TPES- - - - - -
Rectao~le: TYPE = CGr~rhii:-s-Oef
rolnt: TYPE CGraphicsO~f.!..Point;
Coordinar.e: lVPE • CGrdphic'.!"Oi;o:f
An9le: l'if'E • CGr·aphic<sOef-s-.Angloe;
PtrlO: TYPE • CAROINAl;
Th•·°'eP.,itH:!-: fVPE = t\~~AY ,~ .. 3)
SevenPoint::;<: fVP'E • ~9'f..AY 8 .. 7)
T~·pelO: TVPE • CedarSy111l:>ols. T~·pelO;

31

Figure 4.4 Mesa Debugger screen showing debugger window, two text windows. and a menu of source
commands with Set Break selected. The break will be set before the statement
selected in the TestModule3 source window:

realTime +- UnpackDT(CurrentOayTime[]J;

) l.ln~f'

777~
> int
-12
'> real
3.~
} C-3rd
10520136
) bOt)l
TRUE
) char
'~

:- 51'.r
(14,t4)''fhis is~ t~:st"
> sub
2
) rtr

}1:~~!1'· '\
b
:- f'#!C

~:·~ r~~~~;;?.~i,~~~~~~~7 ~ \
> ar
(5)[HLSE, HLSE, rALS
E, FALSE, FALSE)

1_nisp: l.IN~P£GlF fFI} .- 777!.; --1
int: INTEGER .. --17; --2
re•l: REAL• 22/'; --3
"=~rd: CAROJNAt .. 3154'515: --4
l:toet l: f'.OOU::t\N .. T~IJ£: --5
ch~r: CHAP.Af.TF~ .. '~; --6
'.l:Clf'd: VOf.0 ._ 177776!-: --7
s~r: SlF:tl4~ ... "This i! -! t:~st"; -·B
sub: (-tt' .. 51 .. ~; --~
ptr: POINTE.F: Tn 1'.,'\f,[1ltfAl ... '!o:c.'!lt·rJ; --Ht
r iec: F:£Cl)RO l1
(
1111! i?ht: CAf:D I ~Jl'iL.
1astN..,•e: .~ff:JHG,

irilt loll: GHt\l":,,,CTER
) • [115, "M;•ers". "t):
~ .. : Af.RllY (~ .. 1] or ~·)!)LEAH • Alllf~LSE]; -­
flesc: f)fSCP.fPrt:lP f 11 F: l\f'.P.AV (ff 600LEAH + 0£SC
slci: ~l(;HAL :r CDC'f; --14
t?ri: EF:f.OP. • C0['f: 15
{.On9: COHOlltOtl: --IS
pt·D~,.. ... -:;: Pf:flf:F::~·~: ---t l
rw0c: f'F.OC:ElllWF.: ("=· v: 1;AF:flrr1A1 J Ff-l''F'·'~~ 1 r·
'.JS>?r 1: H'PE "' { 3 l', c, o:f} ; 1 ·~
pfDO! TYF'E "" rciHPJ:F. T(I f<:>O:'.'•; --:=-"
FDn: TYPE"' F:Fc11rn{r!.,1:."I: i:!',f.~llfU.'\l. ri11ht · r·f
ern.1111: userl ... h; . '·

Figure 4.5 Mesa Debugger screen showing display of some v<iri<thlcs from module "Tcstmoduk3".
Note format of cardinal, pointer, record, and array displ<l.y.

32 DISPLAYING DATA STRUCTURES FOR INTERACTIVE DEHUGGING

··F:l!'!C 1 r.t.EYa!-": P11r.ttt PF;Ot.£01JF.:E · f""i!i: O"'Cl.IM~nt, ~r.!i.!.e:3cr&et"I: BOOL[AN~
&~t:~cfex.: Subfor•atlnctexj "'

i: Fi~ldlnd~x;
p.!-UbO~t.a: pF:ecSubf t:1r1t.11t.O-!t.a ..

•et. formatSet. forM.~ts(Mylnde:\. for111at J.
:rnbror-ni-ai:s(111vl nde-Y .. s1Jbf or-"..st). 31_1f:.[1.a~.a;

roR 1 IN [t .. LEllGT11[1>$Ub0at." fl• l<f!]) 00
OPEN 1>tobO~tM.fl~l<l.,[1];

J;,..,C'.lr.lf;. r•roct:. era.:;:~[n.6flle.0Qt::. .•:h•:i•,:F'ri:•,.trP.:=·::: J: --ch.:tn'J" tf\

ftr11!'31. in R'clntEr~te, L: 1653346 (in lnc:~n!ef:"i::ord~ G;10634'1D)
~~t.t~~~~E '- ".'ttdilll"'Ooc. f..~rcn::e. P.r-~--=t::>{ 11.=.111P.lti:11::. -sh('twPr··".trP.i::eJ; - -r.:h.:tll!J"'

) 1
e
~ -~ ...
(hJt:'.t•entfte-(;ord(fm·•atSet: For·•atSl?t (forrriat-s·: (1) [ror11at(ffJrMat.Proc: f'F-:0
CEDUF:E St.1nd~ro:tf.,rMat (1n lno:€n-:.:"='M~1n, ~:1"3&$24B).Htbfont-Hs-:(2)(81.1bf
o:•rM-!tlnfo(subfort1atF'roc: F'F.0(;:(0Uf:E P.ecS1.1b (m 1•,cen-!.eR-ecorct. 13;106~4'10
) , iftr-OJce: Hl66'10f!. f' • s•Jl~O~,.a: H54fl f 1'",~'" J. Subforfll.'tf. fnffJ(~1.1bf'(!t"fll.:ttF'r1Jc; 1-'l;OI.~
EOIJRE F.E'c·Sca 1-:~tib (m I ncen"l"ieif:f!i:-Qt·d_, G: 1l16344& J. lr>rocs: 11!tl364tl81, s-i..tf.•llat
•: 1~461581) II), data: HIL J, proc.: 1e66S78'. tYP• ID: 154i4S8', 3o:f<fr: 1547512',
par,ie:nt.: NIL, r.11sp hyetJ: TF:IJE, d i!P t.,ylJ!.4'd: Subfor111.:tt. l1"'ld11!: ... ·[forrilar:.: e, it1t:f or111a
t,: ~ J, :!:II!! lec• .. ~d :f :1L~E. Md:-:AbsPos: ~er.t~mJ! 11!'.'(1 h: t::iJ, ~. l ly>: J'18. ~. •.tri:: 353. !3,
')ry: 1'~8. 5 J, lll~lAb~Pos :P.ectaot;tle[11 . ..-:: 131. '5, 11y: 148. 5,rn· ,Y. :3'53. 5, ury: l'J{f. '5 J

~~--------~~~~-~--

Figure 4.6 Mesa Debu~&er screen showin~ display of a large record (a Document: sec section 5.3)
contammg arrays and pomters.

pOo.:.fl: Tf'PE """POfNltF; TO Ooctl;
rtr:::t.Ooc: f'Ooi.:El,. ffll.;
F:egh~er·Ooc: Pll8LIC PP.OCEOIJRE [o;t: O-:.c1.~111ent. lc•pleT·el: 600LEAH)'"'
M~lll
pd-:icEl: rnocEl .- fir!.t.Ooi:.;

~~rn~~El • OJIL;

f u-Hdoc
103%61>•
> f1retAi;.ct
OocE 1 ('t: 1041?_§}~ .. ,_t~Ql)level: TRUE. ne.><t: l~ 35728 t j
> f;r·"S"tdoci.~.vtft
OocE l [d: 1041568'.':'tople•• l: FALSE, n•>:t: 1035766•)
> firt.tdl)t;:t.ne"l't·t-.1~"·-:t,-r
OocE 1 [d: 1042518t,tOJ•leve1: FALSE, nP-xt~: 103f:it:'.12~ t)
} f ir"S"tdQCt, ne.Ytf. t~extt. next'
OocE l(d: 104 34461, toPL••e l: FALSE, ne:•.t: 1036066+)
> fir :.ttloc+. ne·Lt-t. nie:·.,-t,1·. nti:'-<t 1· .11e:...:t, •
Oocf 1 [d: Ht455i=.e. t, t.opte..:.e 1: FAlSE. nP,l'-'1 .• : 1~3t;12fh]
> f ir'5"tdQC-t, no:."'.t r .ne:-.tt. r1e't r .next t. ne..-t r
Ooc£ 1(d:14 7617e·t. tople-v~ 1: FAl$E. n~··:t : 10361(·t1)
> f ir.!.tdoct-. 11e:.<t,.. ne·.:t.+. n~); t ., .. f!e;:t-t. ne.-. t 1. n"·~·t+
Docf 1 [•1: 14 755l38t, toplevel: FALSE. n~x t.: Hl H'67B t J
~ .. F 11~-:t 1.foc t. ne:< t t. ftf!Xt t, oe.'<t t. ne:-.t t .m:· ~- t t. ne.v. t
:- fir st doc t. ne:v.t·t. n~:-:t-t. nex t1·. t't~:·:t,.. n~ · '>"

• tl!l

;9c.r l [d: 1476178+, toplevi!'t 1: FALSE. n"...:t; N 1 L J
~~---------------·----·---·----

Figure 4.7 Mesa Debugger screen showing an attempt to investigate a pointer structure.
assignment shortening the list by making a next field NIL.

Note the

The debugger does have some limitations, however, which irritate a number of people. The

main complaint is that it runs too slowly. The user can invoke the debugger while a program is

running or by setting breakpoints. In either case it takes about two seconds for the debugger to be

installed. Similarly, when continuing from a break, it takes another two seconds. This makes it

very tedious to single step through a program or to monitor variables. "The real problem,"

according to one Mesa user, "is that I can think a lot faster than the debugger." There also is no

control over the way variables print, so, for example. the user cannot request that only certain fields

of a record be displayed.

Another limitation of the debugger has to do with multiple processes since inspecting their

various states is usually awkward. Some people also complain about the inability to display lists.

THE PARC ENVIRONMENT FOR INCENSE 33

trees, hash tables, and other sparse or pointer-based data structures conveniently (sec Figure 4.7).

In addition, the interpreter is very limited. It incorrectly handles certain Mesa types and will not

allow any memory allocation operations such as creating new strings or temporary variables. [The

information in this section is from personal experience and the results of a debugger poll described

in Appendix /\].

4.2.2 CGraphics: The underlying graphics package.

CGraphics is a graphics package wtitten by John Warnock at PARC that allows the client to

use the abstractions of lines, areas, and text rather than the low level BitBlt operations. In addition,

the same commands can be used to draw on an Alto screen, a black and white or color TV display,

or to hardcopy output flies. Higher level systems such as Incense can therefore be independent of
the display type.

A basic data structure in CGraphics is a Display Context (or /JC). Every drawing command

uses a display context to determine how the command wilJ operate. The display contexts contain

information about the current position; scaling, rotation, clipping boundary, text font, font size anct

style, area and line colors and textures, and painting functions. The DC used is either an explicit
parameter to the functions, or the top of a stack of OCs which is maintained by the system.

Some of the drawing functions provided by CGraphics are: draw a line at any angle, draw a
rectangle outline, fiJl a rectangular area, draw an arbitrary polygon or fill its interior, and put up

text. It is also possible to draw a parametric cubic polynomial curved line (Newman 79] (in

particular, a spline (Ahlberg 67)) that goes through a specified set of points called knots. Finally,

there are routines for modifying a display context. for finding out the size of a string, and for

transforming a rectangle or point from the coordinate system of DC to that of another. In the

future, there will also be routines for filling, an area defined by splines and for finding the

intersections of regions. Figure 4.8 shows an example of the current capabilities of CGraphics.

Figure 4.8. Demonstration of some capabilities ofCGraphics.

34 DISPLAYING DATA STRUCTURES FOR INTERACTIVE DEBUGGING

4.2.3 JAM: An interpretive environment

JAM is an interpretive system written in Mesa. It has its own syntax and command language

that is strictly reverse-polish. Incense was debugged using JAM as the user-interface and currently

only exists in the JAM environment. If Incense were to be released, it would have to be removed

from JAM (a simple and straightforward task) and an alternative method of specifying the Incense

commands would have to be implemented. This was not done for the current Incense since it

seemed more appropriate to await the Cedar paradigms.

4.3 Cedar: A Future Environment for Incense.

Incense is actually a prototype for a component of Cedar, a future programming environment

of the Computer Science Laboratory (CSL) at PARC. (In the world of botany, Incense is a type of Cedar:

Calocedrus decurrens.) Many of the facilities designed and planned for Cedar have a direct impact on

Incense. Incense was designed to utilize all these features, but many were not available at the time

of its implementation. Section 8.2 will discuss how Incense might be modified to use these
I

additional features.

One of the most important changes to Mesa envisioned for Cedar is a garbage collector. This

will free the user from having to worry about storage management Adding this feature to Mesa

required that a subset of current language be defined, called the safe language, that eliminates any

possibility that the programmer might destroy the garbage collector's state. The safe language

contains restrictions on the use of pointers and on breaches of the type system.

One of the Cedar committees is the User Facilities Group, under which the Incense project was

conducted. This group was given the task of defining how the users of Cedar would interact with

the system and his programs. It was decided early that many of the features of DLISP and

Smalltalk were required in Cedar, such as a history facility to allow replays, and a uniform manner

of accepting keyboard and mouse inputs from the user. In addition, an abstraction called a

document was defined to allow operations on the screen. Documents play a central role in Incense

and are described in section 5.3.

V. Incense - An Overview

In chapter 3's survey of debugging and graphical systems, there were no systems presented that

could claim to provide analogical display of data in a manner that would allow truly interactive

debugging. In chapter 2, however, it was posited that this is an important feature for a debugging

system to have. Incense attempts to fill this void, but since it is actually a prototype rather than a

production system, many desired features arc not included. Incense docs manage, however, to

demonstrate many of the advantages of automatically generated analogical displays for actual

program data structures.

This chapter describes the goals of Incense as motivated by the discussion of chapters 2 and 3,

and then presents an overview of the design. The next chapter describes the design and

implementation of a run-time type system called CedarSymbols. It was created by the author to

allow Incense to discover the types of actual Mesa variables. The chapter following presents some

details of the current implementation of Incense and its performance and limitations.

5.1 General Goals for Incense.

This section summarizes the important goals of debugging and data display systems discussed

in chapters 2 and 3, and mentions how they relate to the actual design of Incense.

Easy to use. If a debugging or data display system is to be popular or even tolerated by

programmers, it must present a natural and pleasing user interface. Many systems require the

programmer to put special commands into his code, to re-compile, or to specify the desired display

in a special language (as in Yarwood's system: section 3.5.2). Incense was designed to have

reasonable and understandable displays for data structures. The interactions required to select and

modify the display or the underlying data are similarly straightforward and natural.

Extensible. One major problem with the current Mesa debugger is that there is no way for the user

to modify the way that information is presented. It is also difficult to fix the debugger when there

are changes to the Mesa language. Many of the systems discussed (e.g.,Yarwood's, section 3.5.2),

allow the user to control the display but require the use of special languages. Incense was designed

to allow the programmer maximum flexibility in designing the displays: He is allowed to specify

where data is to be displayed; he can choose among a set of predefined displays for any particular

data structure; he can modify that display in certain ways; and he can construct actual programs (in

Mesa) to define the display. In addition, the programmer can associate a certain display style with a

variable or type so it will be used whenever the variable or instances of the type are displayed.

Finally, the programmer should be able to use any of these capabilities during a debugging session.

35

36 DISPLAYING DATA STRUCTURES FOR INTERACIWE DEBUGGING

Analogical. Section 2.2.4 argued that displays should be easy to read and pleasing to the eye. Few
debugging systems fulfill this principle (see, for example, Figure 4.7). A pictorial display for data
structures would make the structure of the data much easier to understand. This might then make

the debugging task swifter and more enjoyable. Incense had as a crucial goal the capability for
analogical display. To achieve this, Incense uses the graphical capabilities inherent in the Alto to

provide displays at as high a conceptual level as possible.

Fast. The most common complaint about most systems is that they run too slowly. The Mesa
debugger suffers from this problem. People can become accustomed to even the most complex
interface, but they tend to be continually frustrated at delays. D.LISP (section 3.5.3.4) is a very
exciting and powerful system, but it is seldom used because the response time is so long [Teitclman
79). Incense is a prototype system (as is DLISP), so speed was not a design goal. Incense does,
however, display most data at an acceptable rate, even faster than the Mesa debugger for certain
cases. Running on the faster of PARC's new research computers, Incense should produce displays
very quickly.

5.2 The Incense System.

Incense h. a working system that displays data stmctures analogically. All of the illustrations
in this chapter and the two following were created by Incense and taken directly from the screen.
Defaults displays arc generated automatically based on the type of the data. These display formats
are general enough to handle almost all data structures in a reasonable manner. In addition, the
programmer is given the option of specifying and modifying the displays at various levels. The next

sections discuss how this was achieved

The most difficult aspects of Incense were (1) allowing the client to define new display
formats. and (2) the display of pointers. The solution to the first problem involved using a carefully
designed abstraction to hide the internal data and procedures (see section 5.3). The problem with

pointers is that a location on the display must be chosen for the referent. Layouts were invented to
handle this problem (see section 5.3.1.3).

5.3 Documents: The HasicComponcnt oflncense.

In order to have some data displayed in Incense, a document must be associated with it. The

term arose in Cedar where documents will be the entities that can display themselves on the screen.
A major item that will be displayed by Cedar programs is text, in particular, computer programs,

memos, and business letters. These arc generally grouped under the heading document, so Cedar
used the concept as a metaphor for all displayable entities.

INCENSE-AN OVERVIEW 37

Chiefly to allow Incense to be extensible and unifonn, an object-oriented or data-abstraction

approach was taken. Documents arc therefore organized as a data objects: each instance keeps

internally all of its state and all of the procedures that arc allowed to modify the state. 'Thus,

documents are like instances of CLU data abstractions [Liskov 77] or Smalltalk classes. All

documents have the same basic structure including the types of their data and procedures. Thus the

interface to all documents is the same. The actual procedures used in a specific document will be

different for documents of different types, however. Thus the type of the document is defined by

the actions of its procedures. For example, a document for an INTEGER would differ from that for a

BOOLEAN in that they would have different procedures for interpreting the value in memory and

translating that value into a textual representation that could be displayed.

The association between the data structures and the documents to display them is

automatically created by the Incense. The memory address and type of the a.-;sociated data structure

arc stored in the document along with the appropriate procedures and other data. There are six

basic classes of procedures required for documents in the current Incense system: procedures for

display, erasure, selection. editing, de-allocation, and drawing of arrows.

5.3.l Displaying a document

5.3. l. l Fonnats and subformats.

A document for viewing a data structure would obviously not be very useful if it were not

able to display itself. This is the most important operation of the document and also the most

. complex. Each document can display itself in an arbitrary number of ways called formats. A

document must have at least one format, however. The fonnats are intended to be radically

different ways of displaying the data. For example, a document for a certain type of record (Figure

5.1) might contain formats for displaying itself as a normal record (a) or a clock (b). '11le client is

required to specify which format should be used. Currently, all automatically generated documents

contain only one format

hou.rs: 16
min: 2S
seconds: 30

(a) (b)

Figure 5.1. Two formats for the record document for:
Time: RECORD [hours, min, seconds: CARDINAL];

holding the time of day: (a) as a normal record and (b) as an analog clock.

38 DISPLAYING DATA STRUCTURES FOR lNTERACrIVE DEBUGGING

Each fonnat contains an arbitrary number (nonzero) of subfonnats. The subformats specify

the actual display and are chosen automaticatJy by the system based on various contextual

infonnation. such as the size of the area in which the document is to be displayed. Thus, an array

document (Figure 5.2) might contain two subfonnats. The first would display the data normally (a).

The other subfonnat would be used only if there was not enough room, and would use grey

rectangles for the values (b). The client cannot choose a subfonnat explicitly. Instead, the creator

of the document associates a test with each subfonnat to detennine whether it is applicable in the

current context. Since more than one of these tests may succeed, the designer ·also specifies an

ordering of the subformats. The fonnatProc procedure associated with the client-specified format

will cycle through the subfonnats in order until one is found that can be used. If there are none,

then the document will not be displayed. This may happen, for example, if the area in which the

document is to be displayed is very tiny. The designer can force a document to be displayed by

assuring that the final subfonnatProc will always return TRUE.

(a) (b)

Figure 5.2. Two sub formats for an array of records:
ar1: ARRAY [1 . .4] OF RECORD [z, b, c: CHARACTER];

(a) normal and (b) as grey areas due to lack of room in the Y direction. Note that the
length of the grey areas varies depending on the length of the actual value.

The arguments to the fonnatProc are the document itself, the format chosen by the client, and

a rectangle, called maxArea, into which the display must fit. Thus the invoking procedure (or the

user) always specifics the size of the display and the document must be prepared to fit itself into

any size rectangle. Jn mo"st other systems, the display area specification is handled differently. For

example, in AM BIT /G, the displayed objects always take the same amount of space, and in

Smalltalk, the objects take as much room as they desire. In Incense, the user always has control of

the placement and size of the displays. This feature also allows aggregate structures such as records

to accurately specify the position and size of subparts.

INCENSE-AN OVERVIEW 39

The subformat procedures for some documents, such as those for RECORDS and POINTERS, can

cause the display of subordinate documents. For example, the standard record subformatProc will

iterate through the documents corresponding to each field, calling the formatProc in each. The

maxArea rectangle for the subordinate will specify where the field should be placed relative to the

rectangle for the record. This uniform structure hides all details of the type of the subordinates.

Tims the record docs not have to know, for example, whether a subordinate is an integer, pointer or

another record (see Figure 5.3).

a: 3
b:.@

ca: -2.
cb: This is a. t.est.

in ternalF:ec: cc: TRUE
d: kl rna.x.t..bsPos:

(a) m AbsPos:
(b)

Figure 5.3. Two ways records can contain other records. Full size (a) and reduced (b).

Figure 5.4 shows the default display for all of the basic types. Note that the format chosen

draws a box around the datum of exactly the correct size.

ru:mJ I m I t.466916e+ 151 1354561 ITRUEI 51 l1nn6BI
UNSPECIFIED INTEGER REAL CARDINAL BOOLEAN CHARACTER WORD

!This is a tesy lmnl IProc 11
STRING ENUMERATED PROCEDURE

Figure 5.4. Default boxed display for the basic types.

5.3.1.2 The form and display data.

For aggregate data structures such as arrays and records, the document must know where to

put the subordinates which will all be fit inside the rectangle for the aggregate. The relative

locations are specified by some auxiliary internal data called the fonn. Each subformat has its own

internal data, so that documents could conceivably rearrange their display automatically based on

some criteria. In the current system, however, all the subformats for a particular format share the

40 DISPLAYING DATA STRUCTURES FOR INTERACTIVE DEBUGGING

same form data. For records, this data is a set of rectangles that specifics the field locations, the

documents to be used to display the field, and a specification of the format to be used for each field

document

In addition to the fonn, which is constant throughout the lifetime of the document, other data

is needed for a document that is on the screen. 11lis data is called the display data and includes

such things as the current screen position and the screen position where arrows should be drawn.

Pointers also have the documents for the referent in their display data rather than in the form. If

the value of the pointer was modified, the subordinate document would change and thus not be

constant as the form is required to be.

5.3.1.3 Layouts.

The location of the subordinates for aggregates (records and arrays) is fixed relative to the

aggregatc's rectangle and easy to compute no matter how and at what level of nesting the record is

displayed. With pointers, however, that is not the case. AU documents must fit inside the rectangle

provided for them by their caller. The rectangle for a pointer, however, specifics only the box for

the pointer source end point. Therefore, the object pointed to must be put somewhere else.

Layouts are a means for specifying where the documents corresponding to the destination of arrows

should be placed. A layout has a field for the pointer or pointer-containing document, and one

field for each object pointed to. Thus, for a record containing 2 pointers, a layout with 3 fields

would be used: one for the record and one for each of the two referents (see Figure 5.5). Layouts

and layout fields both have special documents that have no associated data or type, but simply serve

to locate the various pieces.

data: 4
less:
i:o·reater:

(fil)

Figure 5.5. Layout with 3 fields: one for record: (ffi), and one for each referent: (fl) and (t2).

An alternative strategy to layouts would be to have some global procedure allocate space on

the screen for the pointer's referent. 'lllis would require a large amount of added complexity to

locate, allocate, free, and compact rectangles of screen space based on various heuristics and

constraints. Also, with automatic allocation, it would be difficult for the client to specify the space

to be used if he wished to. All of the systems studied in chapter 3 (e.g., AMBIT /G, Sketchpad, and

Smalltalk) avoided this two-dimensional space allocation problem.

INCENSE-AN OVERVIEW 41

Currently, layouts use a very simple scheme for making the subcomponents fit into the area

specified for the layout document. As with records and arrays, the rectangles for the various fields

(the fonn) are fully specified at document creation time. When the layout is displayed, the

subcomponents are simply told to fit into the specified area. Whenever a particular layout is

displayed, the fields are placed in the same relative positions.

In a recursive structure such as Figure 5.6, there are layouts at each level of nesting. They get

progressively smaller since the area provided for them is reduced at each level. TJ1is theoretically

would allow the display of an arbitrary number of levels, but, in fact, after a threshold is reached

and the documents are too small to see, displaying terminates. Pointers to documents that are

already displayed do not cause an infinite cycle, since an arrow is simply drawn to the original

occurrence (see Figure 5.7).

· Figure 5.6. Deep recursive tree display demonstrating how elements get smaller. Overall structure,
however, is easily understood.

data: 3
less:
e-rea.ter:

Figure 5.7. Pointer to previously displayed object does not generate a new copy. The second arrow is
drawn to the first occurrence:

42 DISPLAYING DATA STRUCTURES FOR INTERACTIVE DEBUGGING

5.3.1.4 Prototypes.

Orte important feature of documents is that a client can design new ones and then associate

these documents with particular variables or data types. Thus, the clock document could be

associated with all data of type Time and then a variable such as CurrentTime below would be

displayed as a clock:

Time: TYPE = RECORD [hours, minutes, seconds: CARDINAL);
CurrentTime: Time;

These prototype documents will never be displayed. The important information in them is copied

into the documents for specific instances. Thus prototype documents have form but no display

data.

Model (79, p. 74] says that "at the very least, system builders should provide formatted

printing facilities for the system data structures they implement." 'llms any major data type should

have a prototype document built for it. A poll of current Mesa users (Appendix A) shows that

many people would be willing to create documents for their data structures if it were simple and

straightforward. In fact, many people do something similar currentJy: "I've always been in the habit

of writing pretty-print routines for my more complicated data structures." Documents provide a

structured way of doing this and promote the use of analogical output.

"

There ar~ presently three ways of producing prototypes for a document. The most

straightforward is to use the system default This requires no knowledge or special actions. The

second way is to write a Mesa program to define the display. 'Ibe latter approach is clearly

necessary for the more esoteric and unusual displays such as the clock. Finally, the client can

specify the fonn for the document. For example, a user might draw boxes on the screen using the

mouse to specify the relative size and position of the various fields of a record or array. Fields can

be omitted simply by specifying a rectangle of zero size. Figure 5.8 shows an example of record

form design.

11 I !weight: 11.S I initial: 'B
wei_g_ht: 115
lastName: Myers

I initial: 'B la.st.Name: M ers
(a) (b) (c)

Figure 5.8. Normal display for record (a), form defined by user (b), and resulting display (c). Note that
field order has been switched.

INCENSE- AN OVERVIEW 43

5.3.2 Drawing arrows.

Documents require three different procedures for properly handling layouts and pointers. The

precise operation of these procedures will be discussed in section 7.2.3.2, but a general overview of

the procedure that actually causes the arrow to be drawn will be given here. The document for the

pointer calls the DrawA"owFrom procedure in the document associated with the referent. An

argument of this procedure is the source location on the screen for the arrow. The target document

must already be displayed for this operation to be successful since it needs to calculate the

destination point of the arrow on the screen. A curved spline is then drawn from the source to the

destination, and an arrowhead is drawn at the receiving end. The size of the arrowhead varies so

that it is never bigger than the destination. The splines arc defined by seven points (called knots)

placed along the intended path. Three of these define the exit point and direction from the pointer

and three define the entrance point and direction to the referent (sec Figure 5.9). A final knot is

added in between to make the arrow path smoother. Three points arc used at each end to allow the

arrow to leave the pointer from any side and intersect the referent at any point

Splines are used rather than a straight line since it is more attractive and docs not cause

confusion with other lines in the picture (no "co11ision avoidance" is done). In addition, it is

simpler to draw a curved line since the arrows can always be drawn leaving the pointer from the

right and intersecting the referent on the left (Figure 5.9). The DrawArrowFrom procedure returns

information needed to erase the arrow. This is then stored as part of the display data in the

pointer document

initial: 'B

i.:i.stJ.J.:i:tne: _Ivlyer§
initi~I: 'Ei

Figure 5.9. Demonstration of the advantage of curved lines used in Incense (a) over straight lines (h).
The knots used in drawing the spline arc shown as black squares in (a). ·

5.3.3 Erasing a document

After a document is displayed, it useful to be able to make it disappear. The process of

removing. the picture from the screen is called erasure (as opposed to de-a!localion or destruction of

the actual document itself which is a separate operation). An erased document can be re-displayed

with a new size, location and format. The erase procedure of a document, as well as all the other

44 DISPLAYING DATA STRUCTURES FOR INTERACTIVE DEBUGGING

non-display procedures, operate similarly to the formatProc, in that its main purpose is to pass

control to another erase procedure at the subformat level. This is necessary since the different

subformats may have caused different displays to be used. For example, to erase a record, each

field document must be erased, but one subformat may have omitted a field due to the lack of

sufficient room, whereas another subf01mat would have included it. The top level erase procedure

simply calls the low level (or internal) erase procedure corresponding to the subformat that was used

for the current display.

5.3.4 Selecting a document.

Once documents have been displayed, some way is needed to refer to them. The user may

want to modify, re-display, o.r change the fonnat used for a document. In Incense, the user refers

tQ documents simply by pointing at them using the mouse. The document referred to is said to be

selected. There can be only one document selected at a time and its picture is video reversed on the
screen (in a similar manner to DLISP and Smalltalk). This is not sufficient, however, since

documents can contain other documents. For example, a record document contains documents for

the various fields. In order to allow any of these to be selected, Incense always selects the smallest

(in screen area) object under the mouse. If this document is already selected, however, its parent is
selected instead. All documents fit into a hierarchy where the top document was displayed by the

user and lower level documents are displayed as subordinates of aggregates or pointers.

Incense has a special procedure that returns the selected document so that it can be

manipulated. All documents accept the message FindSelection, which has the coordinates of a point
as a parameter. It is intended that these coordinates come from the position of the mouse, but

other. options are allowed. When FindSelection is called, the document determines whether the

point is inside its current screen picture (it is an error to call this procedure for a document which is not

displayed). If not, the procedure returns missed. Otherwise, if the document is already selected, it is

de-selected and then the procedure returns next. This indicates to the parent that it should be the

selected document. If neither of these conditions is true, the procedure will test each of the

document's subordinates, if any, to see if they want the selection. If any of them returns next or if

none want the selection, then hit is returned and the current document is selected. See Figure 5.10

for an example of selections moving up the document hierarchy.

There is a special JAM function that cycles through all of the documents on the display testing

calling FindSelection on each. The user can click the red button to select documents until the

correct one is found. A click on the yellow-button will then cause that document to be erased.

Then the mouse is used to specify a rectangle in which the erased document will be redisplayed.

This is very useful for expanding documents displayed too small to sec (Figure 5.11). The

documents explicitly displayed by the programmer (called top-level) are tagged (in the AMBIT/G

sense) in that they arc the starting points for all searches. Thus, the selections to move up the

INCENSE-AN OVERVIEW 45

hierarchy in the correct manner. Another feature is that the more recently displayed top-level

documents (which tend to be smaller in practice) are searched first. This allows a record placed on

top of a layout, for example, to be selected before the layout underneath. This user interface is

very natural, making exploration of multi-level structures fast and easy.

(d)

Figure 5.10. Selections moving up the document hierarchy: from record field (a) to record (b) to layout
for record (c) to layout for everything (d). ·

data: 2

(b)

(a)

Figure 5.11. The display for the selected record in (a) expanded in (b).

5.3.5 Editing a document.

In addition to erasing and redisplaying a document, modifying the actual value of the

associated data structure is useful. Incense currently only provides the structure for this operation.

In future versions, to modify variables of the basic types such as INTEGERS, REALS, and BOOLEANS,

the user will type a new value. For pointers, however, the user will be allowed to specify the new

value simply by pointing at the new referent on the display. The pointer document will then do all

the calculations necessary to .deduce the correct value to be stored as the pointer's value. Type­

checking of the pointer and the referent will be done to assure legality of the modification. For

clocks, as another example, the user will be able to select a hand and rotate it to the correct value.

Thus, the result of the editing operation will be vastly different depending on the particular format

used to display the data. The edit command in Smalltalk handles this problem by taking no

46 DISPLAYING DATA STRUCTURES FOR INTERACTIVE DEBUGGING

arguments. The system is put into a state where all user actions are handled directly by the edit

procedure, but Incense will probably use a different approach (see section 8.1.3).

5.3.6 Deallocating a document.

Current Mesa does not have any built-in storage management. It is therefore necessary for

programs to handle deallocation of storage by themselves. Incense, as it may be clear, requires a

large number of variable-length structures and consequently allocates storage for them. To allow

this storage to be rt::·used, a destroy procedure has been added to documents. A. great deal of

sophistication would be needed to find aJl of the storage actuaJly used by a document since there

are many places where arrays of pointers arc used, some of which may point to the same place.

Deallocating something more than once in Mesa causes the entire system to crash. This problem

will disappear in Cedar, however, with the advent of an automatic garbage collector. TI1erefore,

little effort was expended to perfect the destroy procedures and they occasionally fail.

VI. CedarSymbols: The Type System for Incense

To automatically generate documents and forms for Mesa data strnctures, Incense requires the

ability to ascertain the types, memory addresses, and values the data to be displayed. As discussed

in section 4.2.1.1, the compiler produces detailed symbol tables that contain sufficient data to get

this infonnation for any variable in a program. The existing facilities for accessing this infonnation,

however, were not sufficiently modular, efficient and extensible to be used for this application. The

current Mesa debugger, for example, has the symbol table manipulations tightly coupled with

storage management, interpreter, and user interface mechanisms. It was therefore necessary to

design and implement a system for accessing the symbol tables as part of the work of Incense. This

chapter describes the design for this system, which is called CedarSymbols.

6.1 Goals of CcdarSymbols.

It was clear that a system such as CedarSymbols would be needed in Cedar, and some attempt

was made to include the requirements of Cedar in the design. The current implementation of

CedarSymbols, however, will need to be revised before being used by any production system. This

section discusses some of the design considerations that affected CedarSymbols.

6.1.1 Opaque types.

The amount of information needed to define many data types in Mesa is quite large. For a

record, the programmer needs to know the number of fields, the field names, and the types of each

field, for example. The symbol tables contain all this information in a highly encoded form which

is inconvenient to access. While a copy could be made that was simpler to use, large amounts of

memory and time would be wasted since the information existed in memory already and much that

was translated might not be needed. It was therefore decided to hide the details of the

implementation by using opaque types. The internal data and structure of the types is not available

to the client since all information about the types is obtained through standard procedures.

It was decided early that some of the principles of data abstractions would be important for

CedarSymbols. The design is not completely object oriented like the design for documents,

however, mostly due to the difficulty in current Mesa of having different objects accept different

messages. The data strnctures used to represent a type are made completely opaque, however,

through the USC of a POINTER TO UNSPECIFIED, called a Type!D. A procedure called GetType can be

47

48 DISPLAYING DATA STRUCTURES FOR INTERACTIVE DEBUGGING

used to discover the basic type of a TypelD. GetType returns an element of an enumerated type

(called Types) containing all the legal types:

Types: TYPE = {noType, unspecified, .integer, real, cardinal. boolean, character, word, string,
enumerated, subrange, pointer, union, record, array, descriptor, signal, error, condition,
process, procedure, userDefined, typeType};

6.1.2 Opaque memory addresses.

A large amount of information is required to describe the memory location of data. A simple

POINTER is not sufficient because Mesa has types which require different amounts of storage.
INTEGERS, BOOLEANS, and CARDINALS normally are stored in one word each, but if they are

embedded in a PACKED ARRAY they use 1, 1h, and 1 word respectively (and if in a PACKED RECORD,

1 word, l bit, and 1 word). In addition, there arc LONG types which arc stored using 2 words, as

are REALS. PACKED RECORDS. add a further problem in that the various fields can start and any

arbitrary bit position. For example,
messyRec: PACKED RECORD

I
a: (1 .. 71,
b: CHARACTER,
c: (-3 .. 0),
d: BOOLEAN,
e: (20 .. 22),
];

··(0, 3)
··(3, 8)
··(11, 2)
··(13, 1)
··(14, 2)

fits exactly into one Alto word (16 bits). Each field above starts at the bit position x, taking y bits,

in the (x, y) comment following the field.

The opaque type Memory Address in CedarSymbols abstracts out much of this complexity. As

with TypelDs, the client is given a POINTER TO UNSPECIFIED from which he can only get information

. by calling CcdarSymbols routines. At some point the client will need to get at the actual data.
'There could have been a different procedure for eac~ type, but instead two generic functions were

provided. GetOneWordValue has as a parameter a MemoryAddress. It extracts the value from

MemoryAddrcsses whose lengths are 16 bits or less. The function copies the data into the

appropriate part of the resultant word while masking out all other bits. Thus, while the

memoryAddress for messyRec.d will specify the actual location in memory, GctOneWordValue called

with that memoryAddress as an argument will return a word that can be used as a normal BOOLEAN.

There is also a PutOncWordValuc routine that stores values in the correct format. Another pair of

routines is provided for two-word values. No non-aggregate type in current Mesa is larger than two

words. Decomposing aggregate structure is done through the use of the AddrOjSub routine

described in section 6.3.

Another advantage of opaque memoryAddresses is that they can be constructed for constants

simply by allocating some storage for the value. The symbol tables contain sufficient infonnation

for reconstructing many constants, so Incense allows the user to request a display for a value such as

maxNumEls: CARDINAL= 15; whereas the current debugger docs not. The memory Addresses for

constants arc flagged readOnly so any attempt to store into one causes a signal. The memory for

the value is deallocated automatically when the memoryAddress is.

CEDARSYMBOLS: Tl!E TYPE SYSTEM FOR INCENSE 49

6.2 TypeOfSub.

An early design for CedarSymbols provided a separate procedure to handle every type. This

required a large number of procedures, so one generic procedure is used instead. TypcO.fSub takes

a typeID and an index and returns a typclD representing the type of the subcomponent. Since the

generic procedure is implemented using a case statement branching to a different procedure for

each type, it would be easy to provide both interfaces, but there seems to be no motivation for this.

The interpretation of the index argument to TypeOfSub depends on the specific type of the typeID.

If no action is specified for a particular index, or if it is out of bounds, a signal is raised. In

particular: (in the following, <Name> will mean a typclD for Name.)

Subrange: For subrange types, if index = 0 then the type over which the subrange

occurs is returned. Example, for Sub1: TYPE = [1 .. 10]; Type01Sub[<Sub1>, o] returns

a CARDINAL typclD.

Pointer: For . pointer types, if index = 0 then the type of the referent is returned.

Example, for p1: POINTER TO BOOLEAN;

TypeOfSub[<p1), O] returns a BOOLEAN typcID.

Array: For array types, if index = 0 then the type of the array index (which will be a

subrange or enumerated type) is returned. For index = 1, the type of the clements

is returned.

Array Descriptor: For an array descriptor type!., if index = 0, the type of the array

described is returned.

Record: For a record type, the type of the index th field is returned. Example, for r1:

RECORD [fO: BOOLEAN, f1: CARDINAL]; TypeOfSub[<rD, 1) returns a CARDINAL typelD

(counting is from zero).

Union: Unions types arc used for the variant parts of records. Thus for a variant

record, the type of the entire variant part is union. TypcOfSub applied to a union

typelD returns the type of the tag for index = 0. Since the actual value of the tag

is needed to find which variant is current and thus the types of the fields of the

variant part, a special routine is needed (see section 6.4.5).

Transfer: Transfer types include PROCEDURES, SIGNALS, ERRORS, PROCESSCS, AND

PORTS. These all have arguments and return values that arc represented as records.

Therefore, TypcOfSub with iAdex = 0 returns a record type describing the

argument<>. With index = 1, it returns a record describing the return values.

TypcTY(1c: Mesa allows the programmer to define new types which can then be used in

the definition of variables. CcdarSymbols allows the client to discover this

information. TypcOfSub on a typcTypc type ID returns the base type if index = 0.

Example, for

Age: TYPE = POINTER TO CARDINAL;

TypeOfSub[<Age>, O] returns a POINTER typcID. Note that typclDs of type typeType

never have associated memory Addresses.

SO DISPLAYING DATA STRUCTURES FOR INTERACTIVE DEBUGGING.

UscrDcfincd: Once a type has been defined, any variables defined using that type

have type userDefined in CedarSymbols. The Mesa compiler does not use this

distinction, but it is important for Incense to be able to assign a particular display,

for example, for Age, and not have it apply to all POINTER TO CARDINALS.

TypeOfSub returns the base type for index = 0. Variables of type userDefincd do

have memory Addresses. For example, for

myAge: Age .. 22;

myAge has type uscrDefined and TypeOtSub of the associated typclD would return

a POINTER typeID.

6.3 AddrOISub.

As described in section 6.1.2, GetXWordValue (where X = One or Two) is used to get the

value of abstract memoryAddress for variables of the basic types. For aggregate types, however,

decomposition must be done first. AddrOjSub provides the required capability in the same manner

as TypcOfSub. In particular:

Pointer: The Memory Address of the referent is returned for index = 0. This allows the

client to avoid having to know the details of how the pointer is stored.

Array: The address of the index th clement of the array is returned.

Array Descriptors: An array descriptor is actually a record containing a· POINTER TO

ARRAY and a CARDINAL specifying the length of the array. AddrOfSub with index

= 0 returns the address of the POINTER part of the descriptor, with index = 1,

returns the address of the length (CARDINAL) part, and for index = 2, returns the

address of the array itself.

Record: The address of the index th field of the record is returned.

Union: The address of the tag is returned for index = 0. For index = 1, the address

of the entire variant part is returned. Note that the length in the memoryAddress

for the variant part will be determined by the current value of the tag if the

different variants have different lengths.

6.4 Other Routines Needed by Certain Types.

Mesa is a very complex language and the generic procedures described above do not provide

all of the infonnation required for all types. n1erefore, some additional procedures arc provided tO
handle specific problems. These also were made as generic as possible.

6.4.1 Index<--> Name.

For· records and enumerated types, it is necessary to translate between the actual string names

used in the program and the indices required in the above routines. GetlndexFromName, which

CEDARSYMBOLS: THE TYPE SYSTEM FOR INCENSE 51

accepts a typelD and a string, searches for a field for records or a name for enumerated types which

uses that string as the name. It then returns the corresponding index or raises a signal if it is not

there. GetNameFromlndex translates in the opposite direction.

6.4.2 Maximum Index.

It is useful to be able to get the maximum legal index that can be used in the CedarSymbols

procedures for array, record, enumerated and subrange types. GetMaxlndex takes a typeID and

returns the maximum index (which is one less than the number of legal values since counting is

from zero). For arrays, this operation is simply: GetMaxlndex(TypeOfSub[arrayTypelD, OJ].

6.4.3 Subrange types.

Subrange types have three special procedures associated with them. GetOrgRangeSubrange,

which takes a subrange typeID, returns the lower bound (origin) and the maximum legal index

(range). The origin is an INTEGER to allow subranges of INTEGERS, but will be non-negative for

subranges of CARDINALS and enumerated types. The range is the number of clements in the

subrange minus one (since the indices start at zero). The other two procedures provided are similar

to the index and name translation procedures, since they allow the conversion of an index to a value

used in the program. In this case, the value is the actual number stored in memory. With subrange

types, the lowest legal value is always represented in memory by zero, so the client would have to

add the origin to find the number used in the program text. GetlndexFrom Value takes a typeID

and the value stored and returns an index suitable for displaying or using to get the name for

enumerated types. GetValueFromlndex translates in the opposite direction. For example, for:

Days: TYPE = {Sun, Mon, Tues, Wed, Thurs, Fri, Sat};

WeekDays: TYPE = Days[Mon .. Fri];

today: WeekDays .. Tues;

the value stored in today would be 1, and GetlndexFromValue can be used to translate that to the 2

that GetNamcFromlndex would take to return "Tues". Note that these two procedures could be

computed by the client using GetOrgRangeSubrange.

6.4.4 Procedure types.

The value stored in procedure variables is a tightly coded representation which includes a

pointer to the code to be executed. One useful piece of information about procedure variables is

the name of the constant procedure that was assigned to this variable. For example, for:

MyProcedureType: TYPE = PROCEDURE [arg1: CARDINAL] RETURNS [ret1: BOOLEAN);

Proc1: MyProcedureType = BEGIN ... END;

ProcVar: MyProcedureType .. Proc1;

52 DISPLAYING DAT A STRUCTURES FOR INTERACTIVE DEBUGGING

where MyProcedureType is a type, Proc1 is a constant procedure of that type, and ProcVar is a

procedure variable of that type. GetProcedureNanui.<ProcVar>] will return the string "Proc1" which is

the name of the procedure that would actually be executed if ProcVar was called. If Proc1 had been

a non-constant procedure, initialized with "+-" instead of"=":

Proc1: MyProcedureType +- BEGIN ... END;

then there is no constant procedure that can be found that names the code between the BEGIN and

END (since Procl is now a variable and could be assigned another value). In this case, the string

"<ANONYMOUS>" would be returned.

6.4.5 Union types.

For union types, unlike with records, the actual value of the tag is required to discover the

subtype . This is the only situation in Mesa where the type of something depends on its value.

GetU11io11Varia111Type takes a union typelD and a memoryAddress and returns the type of the

variant part This is a record TypelD, and the standard routines can be used on it

6.4.6 UserDefined and TypeType types.

While it is important to distinguish userDefined types from the types they are based on, the

client frequently is not interested. The ToBase proc..\!dure is therefore provided. It converts a

typelD into a base type. If the argument typelD is not userDefined or typcType, then it is simply

returned unmodified. ToBase uses no internal information and could have been written by the

client

6.5 Contexts.

The reader may. have noticed that no way has been described for getting the first typelD and

memoryAddress from which to find the subcomponents. This is handled through the use of

. Contexts. A context describes a module, procedure, or block that contains definitions of variables

or types. One procedure returns the context for a module of a certain name. Another returns the

context for the procedure on the top of the execution stack for a particular process. Other

.Procedures allow iteration through contexts in execution call order or lexical order. This allows

traversal to be either top-down (e.g •• from the module to all of its components) or bottom-up (e.g ••

from a procedure to its ca11ers). Finally, there arc procedures for getting the typelD and

mcmoryAddrcss for a context. The type of the typclD will be a record, and the memoryAddress

only exist for contexts describing modules, procedures or blocks that currently are active (since only

then do they have memory assigned to them).

VII. Incense - Details or the Implementation

This chapter describes some of the details of the implementation of Incense. Section 7.1

contains a discussion of exactly what documents arc and how they work. Following that, some

details are given about how documents arc displayed: section 7.2, erased: section 7.3, and created:

section 7.4. Section 7 .2 discusses the basic documents, records and layouts in detail. Arrays are so

similar to records that they do not require any further elaboration. Section 7.2 also describes the

built-in facilities for allowing the client to specify the rectangles for field placement Finally,

section 7.5 discusses how a client could define his own documents.

7.1 I mplcmcntat ion of Documents.

Mesa currently docs not have convenient methods for supporting object-oriented

programming. The motivation for this style out-weighed the problems, however, so a somewhat

clumsy scheme was used. In order for this to work, LOOPHOLES had to be used to breach the type

system. A document creator stores into UNSPECIFIED pointers in the document whatever data is

necessary. Since the procedures that manipulate this data are attached to the document, they can

always know the type of the data. A well-fonncd document therefore has information about the

type of the data structure to be displayed embedded ii; the typclD field, in the type of the various

data fields, and in the specific procedures themselves. These must be all consistent for Incense to

operate correctly.

The definition of a document and its constituents is given below and Incense's picture of a

typical document for an INTEGER is given in Figures 7.1 and 7.2. Note that DESCRIPTOR FOR ARRAY

is used to implement an array of a variable size.

Document: TYPE = POINTER TO DocumentRecord;

DocumentRecord: TYPE = RECORD

formatSet: FormatSet,
procs: pProcedures,
typelD: TypelD, --of associated data to be displayed
addr: MemoryAddress, --of associated data to be displayed
parent: Document,
displayed: BOOLEAN, --The following are only valid if doc is displayed
displayUsed: Subformatlndex, --is index used to display doc;
selected: BOOLEAN,
myAbsPos: Rectangle --position on screen
];

--A formatSet is an array of formats, each of which in turn is an array of subformats. If f is a FormatSet, then
f.formats[x].formatProc[args} is used to display the datum in format x. The subformats should not be
accessed directly.

FormatSet: TYPE = RECORD
[
formats: DESCRIPTOR FOR ARRAY OF Format,
data: POINTER --global data useful for displaying document in all formats. This is one place the type

system is breached.
J;

53

54 DISPLAYING DATA STRUCTURES FOR INTERACTIVE DEBUGGING

Format: TYPE = RECORD --r
formatProc: FormatProc,
subformats: DESCRIPTOR FOR ARRAY OF Subformatlnfo ·-internal
];

Subformatlnfo: TYPE = RECORD

subformatProc: SublormatProc,
iprocs: plnternalProcs, --procedures for this subformat
subData: POINTER --other useful data for display specific to this subformat. This is one place the type

system is breached.
];

FormatProc: TYPE = PROCEDURE [me: Document, formatlndex: Formatlndex, maxArea: Rectangle]
RETURNS [areaUsed: Rectangle]; -

Subformatlndex: TYPE = RECORD

format: Formatlndex,
subformat: Formatlndex
];

Formatlndex: TYPE = CARDINAL;

SubformatProc: TYPE = PROCEDURE [me: Document, mylndex: Subformatlndex, maxArea: Rectangle]
RETURNS [used: BOOLEAN, areaUsed: Rectangle];

--if applicable then used= TRUE and executes;
--otherwise used = FALSE

pProcedures: TYPE = POINTER TO Procedures;

plnternalProcs: TYPE = POINTER TO lnternalProcs;

Procedures: TYPE = RECORD
(
destroy: Destroy, --erase if displayed and de-allocate storage
erase: Erase, --to un-display doc; doc not destroyed
findSelection: FindSelection,
deSelect: Deselect.,
findField: FindField, --for layouts
findDocUnder: FindDocUnder, --for layouts
drawArrowFrom: DrawArrowFrom, --for layouts
edit: Edit
];

lnternalProcs: TYPE = RECORD

destroy: lntDestroy, --erase if displayed and de-allocate storage
erase: lntErase, --to un-display doc; doc not destroyed
findSelection: lntFindSelection,
deSelect: lntDeSelect,
findDocUnder: lntFindDocUnder, --for layouts
drawArrowFrom: lntDrawArrowFrom, --for layouts
edit: lntEdit
];

Select: TYPE = {hit, next, missed};

Destroy: TYPE = PROCEDURE [me: Document]; --erases and de-allocates document and any subdocuments

Erase: TYPE = PROCEDURE [me: Document, eraseScreen: BOOLEAN);

FindField: TYPE = PROCEDURE [me: Document, ptrlD: PtrlD, dataPointedTo: MemoryAddress, dataType: TypelD)
RETURNS [fieldDoc: Document];

DrawArrowFrom: TYPE = PROCEDURE [from: ThreePoints, me: Document] RETURNS [pts: SevenPoints, destHeight:
Coordinate];

--returns all points of spline to allow erasure

··The following finds a doc under or equal to me that has data as its data of type data Type.
FindDocUnder: TYPE = PROCEDURE [me: Document, data: MemoryAddress, dataType: TypelD] RETURNS [dataDoc:

Document];

INCENSE-DETAILS OFTIIE IMPLEMENTATION

FindSelection: TYPE = PROCEDURE [me: Document, mouse: Point] RETURNS [sel: Select, selD: Document];
•• If mouse pointjs for this object, selects self and returns hit unless
··already selected, in which case, returns next and de-selects self,
··otherwise, returns missed. -

DeSelect: TYPE = PROCEDURE [me: Document];

Edit: TYPE = PROCEDURE [me: Document, newValue: Memory Address];

lntDestroy: TYPE = PROCEDURE [me: Document, mylndex: Subformatlndex];

55

lntErase: TYPE = PROCEDURE [me: Document, eraseScreen: BOOLEAN, mylndex: Subformatlndex];

lntDrawArrowFrom: TYPE = PROCEDURE [from: ThreePoints, me: Document, mylndex: Subformatlndex] RETURNS
[pis: SevenPoints, destHeight: Coordinate];

lntFindDocUnder: TYPE = PROCEDURE [me: Document, data: MemoryAddress, data Type: TypelD, mylndex:
Subformatlndex] RETURNS [dataDoc: Document];

lntFindSelection: TYPE = PROCEDURE [me: Document, mouse: Point, mylndex: Subformatlndex] RETURNS [sel:
Select, selD: Document];

lntDeSelect: TYPE = PROCEDURE [me: Document, mylndex: Subformatlndex);

lntEdit: TYPE = PROCEDURE [me: Document, newValue: MemoryAddress, mylndex: Subformatlndex];

(a)

fomi.a.ts:
form.3tSet: data.:
:irocs:
tv :ieID:
addr:
:iarent:

(e) dis :•laved: TRUE
format: O

dis)}a.vUsed: su.bformat: 0
selected: FALSE

llx: 3.S
llv: 100
urx: 60

rn ·AbsPos: ur· : 2.0.S
(b)

(c)

destro..,.: StandardDestro"'
er a.se: Stand.3fdEr.:i.se
findSelection: St.:111d..:inlFindSelection
deSelect: St.~r1dard.DeSelect.

find.Field.: NonL.:..,rF·intl.F'ield
find.Doc Under: St.:indarcl.Fincl.Doc Under
d.ra . .-.11 i·.rro•N F·rom: St.:.incl.ard.Dr.:.i.w }l..rro\1•• From
edit.: Nu.llEdit

(d)

Figure 7.1. Incense display of a document for a displayed INTEGER. The document (a) is a pointer to a
document Record (b). That record contains 1 format (c) expanded in Figure 7.2, a set
of procedures (d), and other data (c).

56

forn-1..:..t.Proc:

su.bformat.s:

DISPLAYING DATA STRUCTURES FOR INTERACTIVE DEBUGGING

(a)

(d)

findSelect.ion: :NonA !2. He r.>-.:i.t.eln t.F"indJ.:.elect.ion
d.eSelect: St.:.ndaxcUn t.OeSelect
findDocUnder: Non A€ ne 12"·:<.telnt.Find.Doc Und
d.ra.w Arrow Froni.: CenLeftln t.Or a.w Arrm.•l F·rom
edit.: JIJu.llintEdit

Figure 7.2. Expansion of integer document fo1mat. There is one fonnat with its formatProc: (a) and
two subformats: (b) and (c). The subforinats have different subf01matProcs and no
sub Data, but they share the same internal procedures: (d).

The fields of a documentRecord are:

formatSet which contains the procedures and data required for displaying;
procs which arc the top level procedures for doing all of the other operations on

documents such as erasing, selecting, etc. These typically call on the corresponding

internalProc in the subformatlnfo for the currentsubformat;

typelD and addr for the data structure this document is meant to display. For some

documents, such as those for layouts, these fields will be NIL since there is no

associated data;
parent which allows tracing up the document hierarchy. The parent field is used by

procedures such as FindFicld which must search up the tree. Every document has

at most one parent Some documents that have subordinates, such as for the fields

of records. The infonnation describing the subordinate documents is stored in the

subData field of subformatlnfo;

displayed which te11s if this document is displayed. The rest of the fields in a

document arc only valid if the document is displayed;

displayUscd contains the format and subformat indices used to display the document.

This is required by the procedures that manipulate the displayed documents since

they need to know which intcrnalProc to use;

INCENSE- DETAILS OFTllE IMPLEMENTATION

selected tells whether this document is the one selected or not;

myAhsPos gives the rectangle that the document fit into when displayed. It is

guaranteed to be less than or equal to the rectangle specified as maxArca 'in the

FormatProc used to display the document

7.2 Displaying Documents.

57

As described in section 5.3.1.1, a client causes a document to be displayed by choosing a

format and calling the associated formatProc. This formatProc iterates through the subfonnatProcs

to find one that will display the document. The operation of the subformats for various types is

described below. In addition, however, the fonnatProc takes care of other bookkeeping tasks. First,

if the document was selected, it is deselected. Next, the displayed flag is set to true and

displayUscd.format is set. After the subfo1mats arc checked, the document is registered. A list is

kept of all the documents that arc currently displayed, and a RegisterDoc procedure is provided for

adding documents to the list. This list allows the erasure of all documents on the screen (and a

JAM function provides this operation to the user). In addition, the list is necessary for the selection

process and for allowing multiple pointers to the same data structure to point to the same place on

the screen. A generic procedure EnumerateRegDocs is provided:

EnumerateRegDocs: PUBLIC PROCEDURE [proc: PROCEDURE [enumD: Document, enumTopLevel: BOOLEAN)
RETURNS (BOOLEAN]) RETURNS [docChosen: Document];

where the proc argument is a procedure to be called on each registered document.

EnumerateRegDocs terminates and returns the current enumD argument when proc returns TRUE.

The enumTopLevel flag is used to distinguish documents that were explicitly displayed by the client

from those displayed by other documents. The formatProc procedure sets the topLevcl flag FALSE,

and the utility routine DisplayDoc called by the client changes it to TRUE for the appropriate

documents.

7.2.1 Displaying the basic types.

Documents for data of types STRING, INTEGER, CARDINAL, WORD, UNSPECIFIED, BOOLEAN,

CHARACTER, REAL, PROCEDURE, and ENUMERATED do not need any extra infonnation for display.

Subranges of these do store the type of the base and the offset and range of the subrange for

efficiency, however. 'lherc are four subformats defined for each of these types. Two of these

display the data using text and two display the data using grey blobs. One of each of these draws a

box around the value and the other docs not. The choice between the "boxed" or "non-boxed"

subformats is usually made by the creator of the document based on whether it will be displayed in

an aggregate structure or not. For example, the record document will draw a box around the entire

field and not just the value portion so the unboxed option is chosen for the values enclosed. In

58 DISPLAYING DATA STRUCfURES FOR INTERACTIVE DEBUGGING

Figure 7.3, the value in a field has been selected showing the extent of its rectangle. A box is

drawn around documents of the basic types that arc intended to be displayed by themselves (see

Figure 5.4). This is especially useful if there is a pointer to the value (Figure 7.4).

weie-ht.: 11.S
I.:i.st.I'·I.:one: IB~
initial: 'B

Figure 7.3. Selection of a field value in a record showing the extent of its rectangle.

Figure 7.4. Pointer to CARDINAL showing utility of the boxes.

The documents for the basic types contain subformats for normal and grey display. One of

these styles is chosen at run time by the subfonnats based on the amount of room available

(maxArca). 'Dle normal subformat will not be used if the area specified is smaller in the vertical

("Y") direction than the height of the font used to display the value, or if less than half of the value

will flt in the horizontal ("X") direction. The latter restriction is used since half of the string

displayed is frequently enough to allow recognition of the value (sec Figure 7.Sa and 7.5b). The

grey blobs used if there is not enough room are supposed to represent very tiny text. Thus, the size
of the blob is adjusted to correspond to the length of the string that would have been printed for

the value. This may allow the programmer to distinguish between a number of values if they have

different lengths (see Figure 7.Sc and 7.Sd).

IFAD ITRl i::i:::U.:k.:f.!.i±!.o:@ IWRij

(a) (b) (c) (d)

Figure 7.5. Demonstration that clipped strings do supply information: (a) and (b) are values of
BOOLEANS. Grey areas arc different sizes depending on string: (c) is for FALSE and (d)
is for TRUE.

Two utility procedures are used by these subfonnats. One displays a string in a given

rectangle, clipping it if necessary. The other displays a grey blob of a given height and width. 'This

makes it easy to add subfonnats for displaying new types whose values can be represented as simple

strings. For example. PROCEDURE types recently were added to Incense in just a few minutes after

GetProcedureName was added to CedarSymbols.

INCENSE- DETAILS OF Tl IE IMPLEMENTATION 59

7.2.2 Displaying records.

Records arc more complex than INTEGERS and require extra infonnation to be displayed. No

global data (formatSct.data) is needed, but a great deal of infonnation is stored in the subData slot

for each subformat. This data includes two documents for each record field. This is an example of

recursive nesting of documents since any field may be a record. For the automatically created

record documents, the subData is the same for both subformats, so the suhData pointers refer to the

same data.

7.2.2.l Afesa definition of record document.

The definition for the data structure used in the subData field of records is given below:

pRecSubformatData: TYPE = POINTER TO RecSubformatData;

RecSubformatData: TYPE = RECORD

needed: Rectangle, --area needed for this subformat to work;
--must be bigger that sum of field rects (in base)

maxNameWidth: Coordinate, --needed to see if will fit (in base)
arrowEnd: ThreePoints, --dest point for arrow (in local coord sys)
curArrowEnd: ThreePoints, --set when displayed (in Base coord sys)
fields: DESCRIPTOR FOR ARRAY OF RecFieldData --
);

RecFieldData: TYPE = RECORD

dataDoc: Document, --for actual data contained in field
dataForlnd: Formatlndex,
dataRect: Rectangle, --relative to needed rect
nameDoc: Document, --for field name
nameForlnd: Formatlndex,
nameRect: Rectangle --relative to needed rect
);

The fields of RccSubformatData are:

needed, a rectangle describing how big the record display was when it was designed.

For the basic types, such as BOOLEAN the size is easily calculated from the current

value. 1bis is not true for records and other aggregate structures that can have

fields in arbitrary locations (sec Figure 5.8). Therefore, the size is stored as data.

The rectangle is calculated in a base coordinate system so that changes of scaling

will not affect its size;

maxNameWidth, the width of the longest field name. This is used to decide if the

rectangle supplied wiH be large enough . to display a reasonable amount of. the

record (sec below);

arrowEnd, the place on the record where an arrow drawn to the record should end.

'Ille basic types simply use the center of the left side, but for aggregate structures,

it is useful to be able to specify the destination points. Three points arc used to

allow specification of the direction as well as the position of the arrow;

60 DISPLAYING DATA STRUCTURES FOR INTERACTIVE DEBUGGING

curArro\\'End, the arrowEnd points converted so they correspond to the current
position of the record; and

fields, an array of data needed for each field.

The extra data needed for each record field is:
data Doc, the document which will display the value of this field;

dataForlnd, the formatlndex to be used when displaying that field's value document;

dataRect, the rectangle. to be used to hold the value;
nameDoc, a document used for displaying the name of the field. The name was made

a document to allow more consistent handling of the name and the value portions
of the field display. The nmneDoc usually is a simple string-handling document;
and

namcForlnd and namcl~cct, the formatlndex and rectangle for the name part of the
field display. Note that this allows the field name and field value to be displayed
in any position. not just the name: value as used in the default. Thus, for example,
a special record field name document might be created that centered the name in
the field or put it flush with the top.

7.2.2.2 Operat:on ofthe subfonnats

The default record documents have one format and two subformats. As with basic types, a
subformat is chosen based on the amount of screen area available. For records, the needed and
maxNamcWidth fields of the RecSubformatData arc used in this decision. The standard subformat

· is used if the maxArea is larger in the vertical direction than the height of the needed rectangle, and
if it is. wider in the horizontal direction than maxNmneWidth. This allows part of the value to be

clipped (Figure 7.6). If there is not enough room, the other subformatProc is used. This latter
procedure introduces a scaling · factor that allows the entire needed rectangle to tit into the area
specified. The proportion of the height to width of the resulting rectangle on the screen is kept the

same as the proportion in the needed rectangle irrespective of any uneven scaling that might have
been imposed from above. This scaling must be taking into account, however, since it affects the
size of the maxArea rectangle. The formula used to determine the scaling amount is:

scale .. MIN[maxAreaWidth/neededWidth, maxAreaHeight/neededHeight];

where both maxArea and needed have been converted into the same (base) coordinate system.

INCENSE- DETAILS OF THE IMPLEMENTATION 61

a: 3
b: '@

ca: -2
cb: This is a~

internalRec: cc: TRUE
d: kl

Figure 7.6. Record with a value clipped. Most of the infonnation is stilJ available.

A further complication arises since the record display should be centered vertically inside the
maxArca rectangle. This is straightforward in the non-scaling case, but here it requires the scale
factor to be taken into account. The fonnula for the starting Y position is:

yStart +- MAX[maxAreaLowerY, (maxAreaHeight-neededHeight*scale)/2);

Figure 7.7 shows a scaled record centered inside of the bounding box and taking the same
proportions as the full-size display.

a: 3
b: '@

ik_a: -2.
cb: This is a test

in ternalRec: cc: TRUE
d: kl

(a)

(b)

Figure 7.7. Record shown full size (a), and scaled proportionally and centered inside a bounding
rectangle (b).

After all these manipulations have taken place, both the record subformats first calculate the
destination points for arrows in the current context If the record contains a pointer back to itself, it
wi11 therefore be drawn to the correct place. Afterwards. the subformats simply iterate through the

fields causing the name and field documents to be displayed in their respective rectangles.

7. 2. 2.3 Display of clocks.

Clocks are record documents with two special subformat procedures. Clock documents have
two fmmats, one of which displays as a nonnal record and the other as a dock with hands (Figure

5.1). 11te clock format differs from the others discussed in that it docs not decide which subfonnat

62 DISPLAYING DATA STRUCTURES FOR INfERACIWE DEBUGGING

to use based on maxArca. The first subformat is used if the document is being displayed for the
first time. If the document is being re-displayed with the same rectangle as used previously,

however, the second subformat is chosen which knows how to move the hands on the existing
display. Thus, the clock document can be associated with a process that will cause it to be re­
displayed when the time has changed, and a s~ple JAM procedure to do this has been written.

The angle of the hands of the clock arc easily calculated as follows:

minAngle +- -(min*6 • 90 + (sec/10));
hourAngle +- ·(hour*30 • 90 + (min/2));

llms the hands can move continuously rather than in unit steps.

7.2.3 Displaying layouts and pointers.

As mentioned in section 5.3.1.3, the display of layouts and pointers is very complex. Since no
space allocation is done at run-time, the layout documents, like records, contain rectangles
specifying where each field should be placed. These rectangles are allocated in a very simple
manner described in section 7.4.7. This section discusses some of the data structures and procedures
that are used by the pointer and layout documents to decide what fields to use and to draw the
arrows.

7.2.3.1 Mesa definitions for pointers and layouts.

In section 5.3.1.3, it was mentioned that layout documents contain a document for each field.

The following are the definitions for the data structures needed for the data and subData fields for
pointer, layout .and layout field documents:

--Pointers:

··PtData fits in the data slot of FormatSets since is global; pPtSubformatData goes In the subformat subData slot

pPtData: TYPE = POINTER TO PtData;

PtData: TYPE = RECORD --r
subDataType: TypelD, --need type to create dataDoc if not available
subDataAddr: MemoryAddress,
ptrlD: PtrlD --used to associate pointer with a layout field
);

pPtSubformatData: TYPE = POINTER TO PtSubformatData;

DisplayRec: TYPE = RECORD
[
splinePointsUsed: BOOLEAN, ··false if not (e.g. due to NIL)
splinePoints: SevenPoints, --kept to allow erase
destHeight: Coordinate, ··kept to allow erase (used by arrowHead routine)
subDocField: Document, ··is doc for field holding data I point to
dataDoc: Document ··is document for data I point to
);

INCENSE- DETAILS OF TIIE IMPLEMENTATION

PtSubformatData: TYPE = RECORD

display: DisplayRec,
form: RECORD[formatlndex: Formatlndex]
];

--Layouts:

--Goes in the subformat subdata slot

pLaySubformatData: TYPE = POINTER TO LaySubformatData;

LaySubformatData: TYPE = RECORD
(
needed: Rectangle, --area needed for entire layout
displayContext: POINTER TO CGraphicsDefs.DisplayContext,
fields: DESCRIPTOR FOR ARRAY OF LayDocFieldData
];

LayDocFieldData: TYPE = RECORD
(
ptrlD: PtrlD, --used to associate pointer with a layout field
document: Document, -·is a Layout Field Doc
formatlndex: Formatlndex --which format to use for layout field doc
--unlike everything else, layout fields decide where to put themselves so no Rect here.
];

--Fields of layouts:

--For the data slot of format5et

pLayFieldData: TYPE = POINTER TO LayFieldData;

LayFieldData: TYPE = RECORD
(
datatype: TyoelD, --of thing to be displayed in this field
dataAddr: Mi::moryAddress ··ditto
];

--Goes in the subformat subdata slot

pLayFieldSubformatData: TYPE = POINTER TO LayFieldSubformatData;

LayFieldSubformatData: TYPE = RECORD
[
valueDoc: Document, ··document to display value inside field
formatlndex: Formatlndex, -·format for valueDoc
valueRect: Rectangle, --where value will go
fieldRect: Rectangle ·-where field will go
];

63

PtData, which contains global infonnation needed by all subfonnats for pointers, has the

following fields:

subDataTypc which is the type of the data pointed to;

subDataAddr which is the address of the data pointed to. This changes whenever the

value in the pointer is changed, whereas the type stays the same; and

ptrlD which is a unique identifier used to associate the pointers with the layout field

in which to display the referent (see below).

The PtSubformalData is divided into two parts, the form and the display. The fonn contains

the information about how the pointer is to look. In particular, it has a formatlndcx for the layout

field. The display contains information about the current display. In particular,

64 DISPLAYING DATA STRUCTURES FOR INTERACrIVE DEHUGGING

splincPointsUscd specifics whether a spline was drawn for· the pointer or not For

pointers that arc NIL, for example, a diagonal line is used instead of a spline (see
Figure 7.1);

splincPoints contains the sevenPoints used in drawing the spline for the arrow. This

a11ows it to be erased;

dcstHcight is the height of the side to which the arrow was drawn. This is used to

decide how big the· arrowhead should be so it must be saved to allow correct

erasure;

dataDoc is th~ document for the data referred to by the pointer; and

subDocField is the layout field document that displays dataDoc.

Layouts do not need any global data and consequently only have LaySubformatData. 1be

fields of this are:

needed which is the rectangle required by the Jayout;

displayContcxt which is the display context used to display the layout itself (see
section 7.2.3.2); and-

fields which is an array of all the fields of the layout. each of which has a document

which is the layout field document, a formatlndcx for that field, and a ptrlD that

associates the field with a pointer.

Layout fields have global data like that for pointers:

dataTypc and dataAddr which describe the type and address of the data to be

displayed in them. Layout fields need this infonnation to create a document for

their valueDoc if it docs not already exist (sec section 7.2.3.2).

In addition, layout fields have Layl<'icldSubformatl>ata containing:

valucDoc which is the document to be displayed in this field;

formatlndcx which is to be used for valueDoc;

valueRect which is the rectangle for valucDoc; and

ficldRcct which is the rectangle for the field itself.

7.2.3.2 Operation of the subfonnats.

When a layout subformatProc is called, it is given a maxArea rectangle like all other

documents. It then sets the scaling factor so that the needed rectangle exactly fitc; into the maxArca

rectangle. It is assumed that the proportions of the layout needed rectangle were not significant (in

fact, the default layouts all use a 100 by 100 rectangle). The current display context is then stored

in the layout subllata. Finally, the layout iterates through the layout field documents causing each

to be displayed if it has not been displayed already.

INCENSE- DETAILS OF TI IE IMPLEMENTATION 65

The layout field subformat procedure first tests to see if valucDoc is non-NIL. If so, the

display context of the layout is used to display the valucDoc. If not, a new document is created as

described below.

Assume a pointer is enclosed in a record which is inside the first layout field (sec Figure 7.8).

The record will be told to display by the field and the pointer subformatProc will be called in turn.

The pointer document first gets a new memoryAddress for the referent (since it may change). Next

EnumerateRegDocs is used to sec if a document is already on the screen whi~h has the same

memoryAddress as the referent. This allows structures such as Figure 7.9 to be displayed correctly

where multiple pointers refer to the same data item. It has the additional advantage that pointers to

subparts of records can be handled correctly (Figure 7.10).

Layout

Figure 7.8. Document hierarchy ·that would be created for:
rec: RECORD [p1: POINTER TO CARDINAL, int: INTEGER);

(This figure was not created by Incense).

Figure 7.9. Array of pointers with two pointers referring to same value.

66 DISPLAYING DATA STRUCfURES FOR INTERACTIVE DEBUGGING

If the target document is not already displayed, the pointer will attempt display it. This is

handled in the following manner. First, the procedure FindField is called using the pointer's parent

and the type and address of the data referred to. This procedure traces up the document tree

attempting to find a layout field that has the same ptrID as the pointer. A ptrlD is used, rather

than simply the field index, to allow aggregates of aggregates (all containing pointers) to work

correctly. For example, in Figure 7.11, a record contains another record and both have pointers in

record field number one. A unique naming scheme for the pointers is therefore needed. If the

search for a layout field is successful, the layout which found it will return the winning layout field.
. ~

In addition, however, the layout wi11 store the type and address. of the data being pointed to in the

LayData of the layout field. If the search for the field does not succeed, either a symbol for illegal

(Figure 7.12a) or unknown (Figure 7.12b) is used. Illegal means that a document was malformed or

an attempt was made to use an unimplemented feature of CedarSymbols. Unknown is used if there

arc simply no layouts that want to handle the pointer's referent, but this should never occur with

automatically created documents.

(a)

ers
initial: 'B

Figure 7.10. Pointer to value inside a record (a) does not get confused with a pointer to the record
itself (b).

--~s11

useful: TRUE
m Val:

first.El: -2.4
currentVal:

fU.rtJ1erSt.:i.t.e: l.:i.stVal:

334.S

Figure 7 .11. Record with internal record both with pointers in record field number one demonstrating
necessity for unique PtrIDs.

INCENSE- DETAILS OFTI IE IMPLEMENTATION

next.:
V·:tlP:

(a)
(b)

Figure 7.12. Record containing pointers represented as Illegal (a) and Unknown (b).

67

Once the pointer finds a layout field, it is displayed. Now control passes to a layout field. As

described above, if the fjeld's valueDoc is not NIL, the valueDoc is displayed in the valueRect

rectangle. Note that in this case the displayContext from the layout is very important since the

layout is 1101 causing the layout field to be displayed. Rather, it is the pointer's document that calls

the layout field so an arbitrary display context might be current. If the valueDoc is NIL, then the

field will attempt to create a new document using the data address and type stored earlier in its

global data by the layout when FindField was called. It is necessary to be able to create documents

dynamically for layouts (unlike for records) because laynuts can be used t.o display structures of

indeterminate depth. An example of this is a recursive data type, such as

List: TYPE = POINTER TO ListRecord;
ustRecord: TYPE = RECORD [value: CARDINAL. next: List];

for which no number of documents can be known to be sufficient a priori. The creation process is

described in section 7.4. After a rnlueDoc has been created, it can be displayed using the

techniques described above.

Returning to the pointer, the field has completed its display, presumably including the display

of the document for the data the pointer refers to. Now, however, the pointer must find this

document so the arrow can be drawn to it. This is done through the use of the FindDocUnder

routine in the layout field. This routine matches the memory address and type arguments (which

are of pointer's referent) against the address and type of the document and all constituent

documents. It is necessary to travel down the document tree because the valueDoc in a field may

be a layout. and the actual referent could be buried down many levels. Once the dataDoc is found.

the DrawArrowFrom routine in it is called to draw the arrow from the pointer.

7.3 Erasing Documents.

Erasing of documents is not complicated and was essentially covered in section 5.3.3. The

current section merely explains the arguments and the actual operation of the erase procedures.

The standard top level erase procedure first checks to see if the document is displayed and if

not the procedure simply returns. Otherwise, it de-selects the document if it is selected, de-registers

the document, and then calls the internal erase procedure corresponding to the format and

subfonnat used for display (displayUsed). After the internal procedure is completed. displayed is set

to FALSE and the rest of the display information is reset.

68 DISPLAYING DATA STRUCTURES FOR INTERACTIVE DEBUGGING

The most time-consuming part of the erase is the actual clearing of the screen picture. With

records and arrays, some parts of the screen will be erased more than once since both the fields and

the aggregate erase the same area. To avoid this, an argument to the erase procedure (eraseScreen)

determines whether or not the screen area (myAbsPos) should be erased. The erase procedures for

the non-aggregate documents simply test this boolean and erase if TRUE. Records, arrays, layouts

and other aggregate documents, however, first call the erase procedure in each sub-document. In

this case, the eraseScrccn flag is set to FALSE to save time. Pointers, however, always erase the

arrow since it would lie outside of the rectangle of the parent.

7.4 Creation of Documents.

The creation of documents is a relatively complex task, due to the necessity for allocating

different types of storage and correctly filling the many fields. Since there is very little consistency

checking in documents, it is imperative that the documents be created correctly. This section

discusses the generic CreateDoc routine and all of the procedures it uses to create documents of the

various types. In addition, the creation of documents with client-defined rectangles will be

described.

7.4.l Generic creation routines.

A generic creation procedure, called CreaJeDoc, has been provided. It takes a typeID and a

memoryAddrcss and creates a document using all the defaults. In addition, CreateDocForVar is

provided as a utility. It creates a document for a variable using its string name and a description of

its context. Thus, the simplest way to get the value for a variable myVar using format 0 and

rectangle rect is:

d: Document E-- CreateDocForVar["myVar", ctxTypelD, ctxAddr];
U E-- DisplayDoc[d, 0, reel];

A JAM procedure, called vis (for "visible") is provided that gets the variable-name string using the

keyboard and the rectangle using the mouse and then executes the above code.

CreateDoc is actually a dummy procedure since all it docs is call lnLerna!CreateDoc with some

of the parameters already set. InternalCreateDoc actually does all the work. Its definition is

lnternalCreateDoc: PROCEDURE [typelD: TypefD, addr: MemoryAddress. layptr, boxed, arrayDown: BOOLEAN]
RETURNS [d: Document, w, h: Coordinate];

and CreateDoc calls InternaICreateDoc with the booleans all TRUE. The w and h returned are the

width and height (in a base coordinate system) of the display for the document created. This allows

recursive embedding of documents.

INCENSE- DETAILS OFTIIE IMPLEMENTATION 69

First, IntcrnalCrcatcDoc determines whether a prototype document has been specified for the

current display. If so. the prototype is copied into a document which is returned. This test

proceeds in three stages, since a prototype can be specified for a variable, its type, or that type's base

type. Thus, for example, for

Age: TYPE = CARDINAL;
myAge: Age*" 22;

the client might specify a prototype for myAge, all data of type Age, or all data of type CARDINAL. If

all of these tests fail, lnternalCreatcDoc docs a case select on the base type of the data to find the

correct default. The actions for the various types is described in the next sections.

7.4.2 Creation of simple documents.

For data of types UNSPE'.CIFIED, INTEGER, REAL, CARDINAL, BOOLEAN, CHARACTER, WORD, STRING,

ENUMERATED, and PROCEDURE no internal data is required. A generic procedure (TwoSubDoc) is

used to create documents for these types. The procedure is called TwoSubDoc since it fills the

document with two subformats (sec section 7.2.1). The parameters to this procedure are the two

subfo1matProcs and the address and type of the data. If the boxed parameter to IntcrnalCrcateDoc

is TRUE then the normal and grey boxing subfonnats arc used. Otherwise the non-boxing

subformats are chosen. TwoSubDoc allocates storage for a document with one format and two

subfo1mats and initializes all the fields. The height returned by CrcateDoc is simply the height of

the font that will be used to print the the value. The width returned is calculated based on the

average or maximum number of characters necessary to write a value of that type. This is

multiplied times the average character width. The number of characters used is given in the

following table:

~ T~QNumChars Maximum or Average

UNSPECIFIED 7 max
INTEGER 6 max
REAL 15 ave
CARDINAL 5 max
BOOLEAN 5 max
CHARACTER 2 max
WORD 7 max
STRING 20 ave
ENUMERATED 10 ave
SUBRANGE Typ N umChars[baseType]
POINTER 2
PROCEDURE 20 ave

Subrange documents require a small amount of extra data, so they arc given their own

creation routine. Operating similarly to TwoSubDoc. CreateSubrangeDoc also allocates and

initializes the extra data required.

70. DISPLAYING DATA STRUCTURES FOR INTERACTIVE DEBUGGING

7.4.3 Creation of record documents.

When IntemalCreateDoc is ca11ed with a POINTER, RECORD, ARRAY, or DESCRIPTOR FOR ARRAY,

it first checks the BOOLEAN argument layptr. If this is TRUE and the type contains one or more

pointers, then a layout is created instead of the type specified. Thus when a document for an array

of pointers is requested, a layout document is actually returned. This allows the pointers to be able

to display the referent. Section 7.4.7 discusses the creation of layouts, and this section discusses the

case where the record contains no pointers or layptr is FALSE.

The record co11struction procedure (Create2SubRecDoc) takes as arguments the type and

address of the record and three procedures. Tiiese procedures are used to get the rectangles and

arrow end points used in designing the form for the record. In automatically created record

documents, the procedure orients the rectangles stacked vcrticaUy. The size used for each field is

derived from the width and height of the field document. The definitions for record creation are:

.--Records
Create2SubRecDoc: PUBLIC PROCEDURE [rec Type: TypelD, recAddr: MemoryAddress, getRects: RecGetRects,

adjustRects: RecAdjustRects, get3Points: Get3Points) RETURNS (d: Document, w, h: Coordinate];
·-the following is used to get or generate the rectangles to be used for the field and value (data) in a record field.
RecGetRects: TYPE = PROCEDURE [fieldName: STRING, lieldType: TypelD, xStart, yStart, valueW, valueH:

Coordinate) RETURNS [nameR, valueR, sum: Rectangle, nameW: Coordinate);
--The following is called after all fields are processed and can modify the rectangles to put in correct place, mahe sum

rectangular, etc. (May be a do-nothing procedure).
RecAdjustRects: TYPE = PROCEDURE [recDoc: Document, which: Subformatlndex);
--The following (called after all fields are adjusted for records} is used to get the 3 points needed to point to this

document (record or array).
Get3Points: TYPE = PROCEDURE [d: Document, which: Subformatlndex) RETURNS[attach: ThreePoints];

The operation of Create2SubRccDoc is as follows: first, the number of fields of the record is

discovered using the CedarSymbols command GetMaxlndex. A document is then created with one

format and two subformats. Next, the RecSubformatData and RecFieldData data structures are

allocated. An internal procedure, called MakeRecFie/d, is then called to fill in each field.

MakeRecField is defined as:

MakeRecReld: PRIVATE PROCEDURE (i: CARDINAL, rec Type: TypelD, recAddr: MemoryAddress, psubData:
pRecSubformatData, getRects: RecGetRects, parent: Document, xStart, yStart: Coordinate] RETURNS [xEnd,
yEnd: Coordinate];

where i is the field index. MakeRecField uses the rccTypc to get the field name, and it creates a

document for it after appending ": " to the end of the string. The recType, along with the

rccAddr, is also used for getting the type and address of the ith component of the record.

lntcrnalCreateDoc is then called by MakcRecField to create the document for the field. The

arguments arc the field's type and address. FALSE for layptr and boxed. and TRUE for arrayDown.

Thus, the record field components will not box themselves and they will not create internal layouts

since this would have been handled first at the top. The width and height returned from

IntcrnalCrcatcDoc, along with the field name string, the field value type, and xStart and yStart, are

all used as arguments to the getRect procedure. For the case where the user explicitly specifies the

INCENSE- DETAILS OF THE IMPLEMENTATION 71

rectangles (see Figure 5.8), this routine ignores all the arguments. For the automatic case, however,

they arc used in the following manner: the width (namew) and height (nameH) of the field name are

calculated using CGraphics routines. The rectangles arc then calculated as follows:

nameR +- [xStart, yStart, xStart + nameW, yStart + nameH];
valueR +- [xStart + nameW, yStart, xStart + nameW + valueW, yStart + valueH];

Thus the rectangles are situated in the correct manner with the field name to the left of the value.

Note that this recursive creation allows a display of any size to be included as the record value with

no special work.

One problem with this scheme, however, is that the right end of the record display would end

up very ragged. A RecAdjustRects routine is therefore caJJcd after all the fields have been created.

This iterates through all the field rectangles to find the one with the greatest width. All the other

rectangles are then modified so they line up on the right. When the user is specifying the

rectangles, RecAdjustRccts docs nothing. Finally, after all this has been completed, the needed

rectangle is calculated by summing all of the other rectangles. Using this rectangle, the Get3Points

routine then calculates the destination points for arrows. The automatic Gct3Points simply uses the

left edge of the needed rectangle for the first X value and the top of the needed rectangle minus 1h

the height of the current font for the Y value. The other two points are five and ten screen points

directly left of the first.

7.4.4 Creation of array documents.

Arrays are created in a manner very similar to records. The major difference is the use of the

arrayDown argument. This controls the direction the rectangles arc stacked for the automatic

creation of rectangles for the array clements. Thus, one dimensional arrays have the first clement at

the top and the last element at the bottom (Figure 7.13a). When the lnternaJCreateDoc is called for

the next level, the arrayDown flag is complemented so the next level arrays will be arranged with

the first clement on the left and the last on the right (Figure 7.13b). Thus, a two dimensional array

will be displayed in two dimensions (Figure 7.14a). For three dimensional arrays, the the third

dimension will fit vertically into the rectangle for the the second dimension (Figure 7.14b). The

array creation procedure (CreateArDoc) docs not need an AdjustRccts procedure since all the

clements arc tl1e same size (being the same type).

72 DISPLAYING DATA STRUCTURES FOR INTERACTIVE DEBUGGING
'

1-ri 1-.s 1-4 l-3
(b)

(a)
Figure 7.13. Arrays oriented vertically (a) and horizontally (b).

J1 q

1 l!
12. <;

b l!
p 1r
f. 11
12 1<;

(a) 11 _l_6_

i4. 11
lR 121

(b) 19 122
Figure 7.14. Two dimensional array {a): '.'>.O l2?

ARRAY [1..3] OF ARRAY [1..4] OF INTEGER;
and three dimensional array (b) with one internal array selected:

. ARRAY [1..4] OF ARRAY [1..2] OF ARRAY [1 .. 3] OF CARDINAL;

7.4.5 Creation of pointer documents.

Once the layout has been created, a pointer document is still needed to draw the actual arrow.

The complexity is all actually in the layout and the pointer procedures; the pointer document itself

is very simple. The only item of interest is the Ptrl D which is associated with the pointer. This is

generated by a simple procedure that ensures that there will never be two ptrIDs alike (see section

7.2.3.2). The constituent documents and address of the referent are all set to NIL so they will be

created at run-time.

7.4.6 Creation of array descriptor documents.

Array descriptors are used primarily to implement variable size arrays. They are composed of

a length and a pointer to an array. Therefore, the display for them is simply a CARDINAL and a

pointer (Figure 7.15). This is handled in a manner very similar to records and pointers. A

document is created for the descriptor and then one each for the length and pointer. The length

document is the same as other CARDINAL documents, but the pointer requires a special

subformatProc, however, since it needs to get the address of the referent (the array) from the

INCENSE- DETAILS OF Tl IE IMPLEMENTATION 73

descriptor and not the pointer. This is a minor complication, however, and the rest of the operation

is the same.

_q
.s -:=-

- ·1

-f.

Figure 7.15. Display for a DESCRIPTOR FOR ARRAY [1..5] OF INTEGER;

7.4.7 Creation oflayout documents.

Layout documents arc constructed in a similar manner to record documents. The

Createlayout procedure has the following definition:

Createlayout: PUBLIC PROCEDURE [typelD: TypelD, numFields: CARDINAL, addr: MemoryAddress, getRects:
LayGetRects] RETURNS [d: Document, w, h: Coordinate];

111e number of fields for the layout is calculated by the InternalCreateDoc by adding one to the

number of pointers in the data structure to be displayed. The procedure which counts the number

of pointers is recursive since it must include in the count pointers in all internal data structures

(such as records in records: Figure 7.11). The document for the data structure will be placed in

layout field zero. The operation of CreateLayout is as follows: first a document is allocated for the

layout, and then InternalCreateDoc is called for the data structure for field zero. The arguments

are the typeID and address passed to CreateLayout, layptr: FALSE, boxed: TRUE, and arrayDown:

TRUE. lbc next step is to get all of the PtrlDs used in that document. These will be distributed

among the fields of the layout. Finally, a layout field document is created for each field and the

rectangles for it are found using the layGetRects procedure. Documents for the value in each field

are 1101 created here, however, since they will be created at run-time.

The layout routine for automatically constructing the rectangles for the fields works somewhat

. differently than that for records or arrays. Its definition is:

LayGetRects: TYPE = PROCEDURE [i: Field Index, r: Rectangle, fOw, fOh, inc: Coordinate] RETURNS [fieldR, valueR:
Rectangle);

where i is the the index of the field, and r is the rectangle for the entire layout. Note that this is

different from the record case where the size of the whole record was the sum of the constituents.

Here, the constituents arc expected to get their rectangles by partitioning the larger rectangle. This

is done using the width (mw) and height (fOh) of field zero and the height of each of the fields (inc).

When the client is defining the rectangles, he can simply divide the rectangle in any manner

desired. The automatic generation routine gives one-third of the area to the first field and divides

the rest vertically for the rest of the fields. Figure 7.16 shows the rectangles for a layout with 4

fields. For field zero, the value is given slightly less room in the horizontal direction than the field

to ensure that there is sufficient room for the arrows to exit the pointers on t11c right (Figure 5.6).

row and fOh arc not used in the current algorithm which is:

74

IFi = OTHEN
BEGIN

DISPLAYING DATA STRUCTURES FOR INTERACTIVE DEBUGGING

valueR +- [r.lowerX, r.lowerY, r.lowerX + (2/9)*rWidth, r.upperV];
fieldR +- [r.lowerX, r.lowerY, r.lowerX + (1/3)*rWiclth, r.upperV];
END

ELSE BEGIN
valueR +- [r.lowerX + (1/3)*rWidth; r.lowerY + (i-1)*inc, r.upperX, r.lowerY + i*inc];
fieldR +- valueR;
END;

The constituent documents of layouts are thus given an amount of room for display which is

entirely independent of the amount of room they desire. This was the motivation for having

records, arrays, etc. center themselves in the vertical direction.

Figure 7.16. Rectangles for fields and values in a layout with 4 fields. The bold lines arc the field
rectangles, and the rectangle to the left of the thin line is a value rectangle for field 0.
The other value rectangles equal the field rectangles.

7.5 Clicnt·defined Documents.

One of the chief goals of Incense was to allow the client to define, create and use his own

documents. This section will investigate how this can be done and the facilities available for aiding

the process.

Incense allows the user to define his own global and subfonnat data and write his own

procedures for displaying and modifying documents. This provides a structured environment in

which the client can specify his own document displays. The utility procedures provided by Incense

and CGraphics make many types of displays very simple. Thus, for example, the "percent-done

thermometer" of Figure 2.1 could be implemented by writing only one small procedure for the

subformatProc since procedures already exist that arc appropriate for the rest of the operations.

One problem that might be encountered when creating documents is that it is very difficult to

add procedures to the previously define~ documents. Layouts, for example, required the

INCENSE- DETAILS OF THE IMPLEMENTATION 75

DrawArrowFrom, FindField and FindDocUnder procedures to be added to all documents. To add

another document type like layouts that required all documents to have new procedures would

require recompilation of all of Incense and some other major changes. This problem, unfortunately,

arises directly from tl1e structure of Mesa and would be hard to program around.

Once a document prototype is created, the client can then simply associate it with a variable or

type and have it used whenever appropriate. The original default display can be included as one

format of his document. Then the client can choose at run-time in which format the data structure

will be displayed. ·me clock document was implemented in this manner.

VIII. Ideas for Future Work

Although Incense is a powerful system and has the capability to display data of almost every

type in Mesa, there are many dimensions in which it could be extended. These can be divided

into four classes: improvements to the current Incense prototype, modifications to make Incense a

production system under Cedar, special purpose documents for specific types, and changes that

would require major alterations to the Incense system.

8.1 Improvements to the Incense Prototype.

Incense and CedarSymbols currently arc not complete systems. A number of planned and

desired features were not implemented due to the lack of time. This section describes these

features, which involve little or no change to the basic structure of Incense.

8.1.1 CedarSymbols.

Much of the code used in the current prototype implementation of CedarSymbols was copied

from the current Mesa compiler, where the code is used for debugging the compiler itself. Ed

Satterthwaite was invaluable in explaining what was going on and how to access and interpret the

exceptionally complex symbol tables produced by the compiler. Largely due to time limitations and

this complexity, which stems from the attempt to minimize the size of the tables, some of the

functions described in chapter 6 have not been implemented.

The most serious limitation is that only global variables in modules can be accessed. In

addition, there must be enough memory available to hold the entire symbol table for that module.

This symbol table must be kept in memory while any of the typelDs based on the associated

context arc in use. In a real implementation, a more clever storage management scheme would be

needed since symbol tables tend to be very large.

In addition, variant records and the subcomponent operations on transfer types, processes,

conditions, and certain types of pointers are not implemented. Also. memory Addresses can only be

created for constants that take one word that contain POINTERS. In addition, due to the lack of a

garbage collector, the client of CcdarSymbols must deallocate all typclDs and memoryAddresses

explicitly. These repairs would require a fairly large amount of work by an experienced Mesa

systems programmer.

[n order to be able to associate a prototype with a particular type, Incense needs to be able to

find out whether types arc equivalent. CedarSymbots currently allocates a new TypeID every time

one is returned. A procedure is therefore needed to determine if two typclDs correspond to the

same type. Jn addition, it would be useful to have a unique typeAtom for a typelD that could be

used to test equality.

77

78 DISPLAYING DATA STRUCTURES FOR INTERACTIVE DEBUGGING

8.1.2 Prototype Documents.

Prototype documents currently arc not implemented. They would require the type equivalence

tests described above and a method for copying the relevant parts of a prototype document A

special prototype document type that understands the message Copy may provide the latter part of

feature. A list of prototypes and the types they go with would also have to be maintained by

Incense.

8.1.3 Editing.

The edit message is not implemented for any documents. Part of the problem is deciding

where to get the new value. 'Inc current design has the edit procedure take a mcmoryAddress for

the new value. This docs not allow special types such as pointers to accept their values by pointing,

etc. A final design for the edit command must await the Cedar specifications of user input.

8.1.4 Additions to arrow display'.

At present, documents do not remember anything about the arrows that were drawn to them.

Thus when a document is moved, the arrows that previously pointed to it arc left dangling. Since

the destination documents arc responsible for drawing the arrows from the pointer documents,

infonnation could easily be stored that would allow the document to cause redisplay of all arrows to

it if it moved.

Another small and useful modification to arrows would be to allow the user to specify a new

point (knot) for the arrow to go through. This would allow the user to move a line out of the way

of other objects on the display ... The only trick to i!1Jplementing this modification is deciding the
two knots in between which the new point goes.

8.1.5 Creating a forms editor.

Currently, it is very difficult to specify the form for a document (The fonn contains the

various rectangles and connection points.) A display-based graphical toot for creating and editing

the pictures would therefore be very useful. It might allow the user to draw icons to be used as

. subformat displays of documents. A forms editor would actually be a another piece of a debugging

system and should not require any modifications to Incense itself . .
8.2 Making Incense a Production System.

Incense witl eventually be converted into a production system as part of the Cedar debugger.

For this to happen. however, a large number of modifications and enhancements need to take place.

Many of these stem from the additional facilities that will be provided by Cedar; but others will be

performance tuning.

IDEAS FOR FUTURE WORK 79

8.2.1 Utilizing Cedar language features.

Cedar Mesa will contain a number of useful features that Incense has been designed to

exploit. A run-time type system that will tie into CedarSymbols should allow Documents to be

entirely type-safe. Thus all the LOOPHOLES and POINTER TO UNSPECIFIEDS could be eliminated. In

addition, this will allow garbage collection of documents and their constituents. The language is

also supposed to be extended to promote object-oriented programming. This will clearly be

beneficial and useful for Incense.

8.2.2 Utilizing Cedar documents.

Apart from the language changes, Cedar will include sophisticated user-interface mechanisms

for input and output. The notion of a document in Cedar has taken on additional structure since

the Incense documents were designed and these changes should be incorporated. This wiU allow

Incense's displays to be shown in a window white other activity occurs in other windows similar to

the way operations arc handled in DLISP (Figure 3.5) and Smalltalk (Figure 3.3). In order to make

this work properly, documents in Incense wilt need better control over their display. Documents in

Cedar are allowed to be displayed an arbitrary number of times simultaneously in different styles.

TI1is will be confusing in Incense. however, because the destination for arrows will not be well­

defined.

8.2.3 Adding Views to Incense.

The notion of a view has been developed to take care of this problem. Each Incense display

wilt take place in a view, which might be a rectangular window or may simply be a logical

organization. The restriction will be that there can only be one document associated with any data

structure in a view and that document can only be displayed there once. Thus, if the user selected

a document and requested that it be redisplayed in the same view as the original, the original would

have to be erased. If the document were to be redisplayed in another view, the original could be

left alone. The additional restriction that makes this all attractive is that arrows never cross from

one view to another. Views could be added to Incense with a minimal amount of additional

mechanism. The registering facility would be extended to include the view, and the creation

routines would take a view as a parameter and check to see if a document for the data was already

there.

8.2.4 Increasing the speed of lncense.

Incense will execute faster under Cedar since it wilt be nm on faster machines. In addition, a

general cache mechanism is being designed for Cedar that should allow bitmaps and splines to be

stored to allow much faster redisplay. lf some ability to define events exists (as in section 3.1.4),

80 DISPLAYING DATA STRUCTURES FOR INTERACTIVE DEBUGGING

monitoring of the program's activity using pictures will become feasible. Presently, the Incense

display on an Alto is too slow to be reasonably used in monitoring.

Ot11er speed improvements can be achieved by optimizing and simplifying some of the

complex mechanism used for displaying layouts. Also, some of the internal data structures, such as

the list of all documents displayed, could be profitably changed to hash tables.

8.2.5 Using Cedar's history facility.

Plans for Cedar include a sophisticated history facility. Presumably, it will allow saving of

arbitrary events that could be used to enact a replay. Incense could be modified to store in this

history the this information. Thus, the advantages of real-time monitoring and replays using

analogical displays could be achieved using Incense.

8.2.6 Removing Incense from JAM.

Clearly, Incense needs a more powerful user interface than JAM. Once a debugging system

for Cedar is developed, Incense should be integrated with it. This should also solve the problems

with editing and accepting other user commands. The programmer should be given the option of
using Incense if desired, but other methods of data display wilJ probably be available. Further, the

debugger should allow specification of documents for data stmcturcs at run-time without destroying

the state of the program being debugged.

8.3 Special Purpose Documents for Specific Types.

Once documents can be associated with specific types, there will be a great temptation to

develop prototype documents that use more sophisticated displays for various types. In addition to

the display, however, some thought must be given to how the programmer will be able to edit the

values through these displays (since conversion may be necessary). Another problem is what to do

with illegal values. A library of successful prototype documents might be maintained so that anyone

could use them. Some ideas for such documents arc listed in this section and most could be

implemented either in current or Cedar Incense.

Percent-done thermometer. This would be useful for showing progress in loops or for variables

representing percentages. The only thing special about this document is that the maximum legal

value would have to be stored to allow calculation of the correct percentage.

Progress in program as arrow to source. This would be slightly harder since the conversion would

have to be made between the program counter and the actual source statements. This is clearly

IDEAS FOR FlITURE WORK 81

possible since the debugger does it for breakpoint setting, but requires added sophistication in

CedarSymbols.

Mesa run-time stack display. A more likely (and possibly more useful) facility than showing the

progress in the program would be a symbolic representation of the nm-time stack of Mesa. This

also requires new facilities from CedarSymbols. The current Mesa debugger is particularly deficient

at handling multiple processes, but if Incense could graphically display the stacks from all current

processes, the user would be able to move around much more easily. The complex context

mechanisms of the current debugger and CedarSymbols could be hidden. by allowing the user to

simply select a stack frame using the mouse. A more generic stack prototype document might also

be useful for displaying stacks that the programmer created.

Index into an array as pointer. '11Iis would be simple to implement using the tools and procedures

already available.

Time and Date as string. The time and date can be most concisely represented as the string: "4:32

PM, 12/15179". This is an example of a large class of types where a larger structure (such as a
record) is used to represent a simple concept

Arrays and Re«7ords as pretty-printed string. Sometimes the user may not feel that the graphic

display gives him any insight or that it is too costly in terms of execution time or screen space

required. In that case, a pretty-printed display of a textual representation might be more

appropriate.

Ring buffers, lists, and trees. These are example of common data stmctures used in programs that

would probably be easier to debug and understand with special displays. List and trees are

sufficiently well structured that much better space allocation can be done than is possible for layouts

which must handle arbitrary structures. In addition, if these stmctures are used to represent a

variable length array or other higher-level abstraction, alt of the pointers might be omitted in favor

of the array or some other notation. A ring buffer might be represented as a circle with the
appropriate parts marked as in Figure 8.1.

Pie charts and bar graphs. 'lbcse analogical displays would be very simple with the tools already

provided by Incense and CGraphics. A small amount of extra data would have to be stored to

describe the maximum or total values so the correct distances could be calculated.

Single variable trace of values. EXDAMS (section 3.5.3.1) allowed the user to request a "tlowback"

trace of how a variable received its current value. If the history facility of Cedar were sufficiently

powerful; Incense could offer the same capability. Even if it were not, a variable could be

displayed as a special type of array representing all past values. This would only require some way

of monitoring variables to collect the values as they were assigned.

82 DISPLAYING DATA STRUCTURES FOR INTERACTIVE DEBUGGING

first
element

Figure 8.1. Possible display for a ring buffer.

Better display for arrays. There are many ideas for improving the rendition of large structures such

as arrays. For example, a small portion of the array might be presented in a window and the user

could scroll up and down to find the interesting values. Also. some means of representing the
· indices is needed.

Array as bitmaps. Sometimes arrays are used to hold actual pictures. For example, the cursors

shown in Figure 4.3 were stored as arrays of octal numbers. Some method of converting these into

the actual pictures would be useful.

8.4 Improvements That Require Major Alterations.

Jn addition to the ideas presented above, there arc others that would require a major amount

of work, or which arc even beyond the present state of the art. Just the same, they might be useful

in a future system if an implementation could be achieved.

8.4.l Unifying typelDs and memory Address.

One problem with CcdarSymbols is that the client must be careful to ensure that the typcIDs

and mcmoryAddresscs arc consistent. It is always an error to use a mcmoryAddrcss and typclD

IDEAS FOR FUTURE WORK 83

together that do not correspond to the same data structure. Therefore, these concepts could be

combined to make the system easier to use. In addition, a fully object-oriented approach could be

adopted to allow a type-safe way of getting and changing values with only a small decrease in

efficiency.

8.4.2 General two-pass display.

Currently. Incense uses a simple one pass algorithm to display documents. The location of all

documents on the screen is rigidly set before the document is displayed. There is no notion of the

document negotiating with the parent for "just a little more room." ·It should be clear from the text

and pictures in this paper that this docs not achieve maximal utilization of the screen space in some

cases. Another method for displaying would be to have the parent ask the subordinate document

how much room it would like and then calculate the room to be used by other documents based on

how much room was left. This requires a fairly detailed two-dimensional "free-space" map to be

kept from which documents could use and return screen space. The reason the tree and list

displays could use the space so much more efficiently than layouts is that they could count on

allocating space exactly along a single line since the size of all nodes is known. This one­

dimensional space allocation problem is clearly much easier to solve.

An additional problem with two-pass space attocation is that the documents may do as much

work deciding how much room they need as they would have to actually display it. Some caching

mechanism is therefore called for. If the parent decides the subordinate cannot have as much room

as it requested, however, this work may be entirely wasted. Thus the two-pass scheme has the

. potential to be very unstructured and possibly more complex, stow and expensive than warranted

for a debugger's data display ..

8.4.3 Remote monitoring.

One of the major applications for the Alto and PARC's other research computers has been the

development of screen-oriented systems. For example, there is a menu-driven multi-window mail

program, a full-screen editor, etc. Monitoring of these programs is therefore difficult since the

screen is completely filled by the application programs. Hashing back and fort11 from one

environment to another would be very disturbing and probably not very enlightening. In addition,

some of the applications arc computation-intensive and monitoring toots that substantially slowed

them down would not be acceptable.

All of PARC's computers are connected to each other using the Ethernet local communications

network [Metcalfe 76] so it seems natural to try to take advantage of this for monitoring. If a

facility for making a history were available, it should be a natural extension to put all this

information into a packet as it is gathered a~d then send it over the Ethernet to another Alto. The

84 DISPLAYING DATA STRUCTURES FOR INTERACTIVE DEBUGGING

user could then monitor his program remotely. There might even be remote facilities for

interrupting and interrogating the program while it is executing. Model's system (section 3.5.3.6)

allowed a similar form of remote monitoring.

8.4.4 Ideas from a1tificial intelligence and program methodology.

Some features that might be added to Incense must await further advances in artificial

intelligence and other fields of computer science before they can be practical. Such things as a

natural language front end and the ability of the system to answer questions about the data would

clearly be useful. In addition. work in program methodology may eventually progress far enough so

that Incense could generate a picture of a "typical" data structure instance from only the type. This

would be useful for documentation so the user would not have to explicitly create the display, as

was done, for example, in making Figure 7.1.

IX. Summary and Conclusion

This thesis describes a system called Incense which graphically displays data structures of

various types for the language Mesa. Currently running on an Alto mini-computer, Incense can

display all of the basic types of Mesa in a reasonable textual form. It uses a more analogical format

for the aggregate types such as arrays and records. A major advantage of Incense over other data

display systems is its ability to display pointers as arrows to the actual target data. The displays are

automatically created for variables with minimal interaction required of the user, yet a programmer

can easily create his own displays if desired. A stmcturc has been provided for storing these

prototype displays in a library and associating them with specific types or variables. Finally, the

client can specify a number of different formats and st1bformats that allow the display of a

particular data structure to be changed by the user or program based on various criteria. Thus, a

display can be automatically generated that is very similar to the picture the programmer might

have drawn if he were explaining his data structure to another programmer.

Incense has solved a number of difficult problems to achieve this level of performance.

J,ayouts were developed to avoid the expensive and difficult two-dimensional space allocation

problem and to allow one-pass display for all data types. Layouts also allow the client to specify

where the referents of pointers should be drawn. In addition, an abstract interface to the Mesa

symbol tables was defined that successfully allows Incense to avoid knowing any details of the

implementation of Mesa types.

The design and implementation of Incense has incorporated many of the appropriate features

of a debugging system as discussed in chapter 2 and section 5.2:

•

•

•

Reduce the volume of data required from the user: If the user requests a display

for a pointer, the referent is automatically displayed also. Selections and many

commands can be done using the mouse.

Adjust the form of the input to make good use of the human faculties: lhe user

can point at and move the displays using an analog device (the mouse and its

buttons).

Use feedback to allow correction of mistakes as they arc made: The selected

document is video-reversed so the user can tell what is selected. Boxes are drawn

when the user specifics a rectangle for a document

Adjust output <1uantity to human capacity: The display may fill up but the user can

concentrate only on those portions that interest him. When many things are

displayed, they decrease in size or disappear so that the screen is not cluttered.

Choose forms of output that arc readily acceptable to hmmm comprehension: This

· is one of the main objectives of Incense. Incense docs promote analogical pictures

and automatically produces organized displays for data structures.

85

86

•

•

•

•
•

•

•

•

DISPLAYING DATA STRUCTURES FOR INTERACTIVE DEBUGGING

Output only completely processed results: Incense allows the user to develop

documents for any data type. This allows presentation of data structures at the

highest conceptual level appropriate. All of the pre-defined Mesa types currently

are presented completely processed.

Appropriate level of detail: Incense allows the user to specify that certain fields of

a record should not be shown. He can also specify an iconic format for some data

structures or fields to reduce the amount of information presented.

Automatically generated pictures. Incense creates the pictures based on the type of
the data structures without requiring user intervention. A picture can be produced

simply by specifying the variable to be looked at and the· rectangle into which to fit

the display. A hardcopy can also be easily made of the displays (as was done for

this paper).

Replay: Replay is currently not possible, but should be in Cedar Incense .

Easy to use: Incense allows the use of the mouse for selection and specifying

rectangles. The other issues of user input will be handled by the system into which

Incense is incorporated.

No modification of source program: The source program does not need to be

modified to use Incense, although an additional program might have to be written

to specify any special documents required.

Extensible: The user can create new documents and associate them with particular

types. Libraries of documents could be maintained. In addition, a document for a

data structure might allow it to be displayed in a number of formats.
Fast: Incense currently actually allows the investigation of certain data structures at

a rate faster than the current Mesa debugger. This is probably an unfair

comparison, however, and Incense clearly needs to execute faster. The Cedar

implementation will run at least three to ten times faster due to some

reprogramming and better hardware and microcode support.

The displays produced by Incense will be useful to programmers. Sutherland [63, p. 67]
claimed that "it is worthwhile to make a drawing on the computer only if you get something more

out of the drawing than just a drawing." The pictures and the associated data structures. can be

dynamically rearranged and modified. The displays from future Incense systems will be useful for

monitoring of running programs. Since the user can specify documents, the resulting pictures can

be used to provide documentation for the data structures themselves (as in Figure 7.1 and 7.2).

Finally, debugging will probably be more fun when using pictures rather than long strings of

characters. This combined with the higher conceptual level provided by the pictures may make the

debugging task easier and thereby increase programmer productivity and reduce the number of

missed bugs.

SUMMARY AND CONCLUSION 87

Thus, while it could not actually be described as finished, Incense has fulfilled most of its

goals. It was an enjoyable project designing and implementing Incense, and I appreciate the

opportunity to be a part of the Cedar effort It should be exciting to fit Incense into Cedar and to

study its actual use in the debugging of programs. Only this final test will demonstrate if analogical

display of data structures as provided by Incense increases programmer productivity.

APPENDIX A. Informal Poll on the Current Mesa Debugger

A. l The Questionnaire.

As part of my research for the discussion of section 4.2.1.2 on the current Mesa debugger, I

distributed a questionnaire about the debugger. The questions were:

CONTEXT:

(1) Compare the Mesa debugger to others you have used and list the advantages/disadvantages.

(2) Can you debug faster with the Mesa system than with your previous system(s)? Why?

GENERAL:

(3) What do you like about the debugger?

(4) What are the debugger's biggest weaknesses?

(5) Where does the debugger fail to allow you to "think in Mesa"?

DATA DISPLAY:

(6) How would you like data structures {records, pointers, arrays, etc.) to be displayed and would that help you
debug programs?

(7) What are the hardest problems to debug and could a clever data display system help with them?

(8) How much additional delay would you be willing to tolerate to have your data structures displayed as pictures?

(9) Would you ever be willing to write a program to specify the picture to be used for displaying data of a certain
type? If so, for what kinds of data types?

A.2 Hesults.

I received 19 responses from Mesa users. 'Ibey were generally not surprising and are

summarized below:

Most people answered questions 1, 3 and 4 together. ·n1e advantages of the Mesa debugger

were given as:

• lbe debugger's knowledge of user-defined types and local variables;
•
•
•

•

The ability to display multi-item data structures symbolically all at once;

'lbe ability to avoid knowledge of machine instructions .

The ability to set an apparently arbitrary number of breakpoint-; by pointing at

source text;

The ease of using the debugger for beginners. (Note: This was disputed by other

respondents);

89

90

•
•
•

DISPLAYING DATA STRUCTURES FOR INTERACTIVE DEBUGGING

The existence of an interpreter;
The ability to look at source code while debugging; and

The lack of planning required to use the debugger .

Disadvantages of the Mesa debugger were given as:
•

•
•

•

•

•

•

•
•

•

•
•

•

•
•

The slowness of many operations such as getting into the debugger and finding the
types of data when using multiple symbol tables;
The debugger's lack of the ability to mix and manipulate contexts;
The inability to patch code and proceed from errors. Jn fact, a Mesa program
cannot be continued in any location except exactly where it stopped;
The incomplete interpretive mode: many of the types and operations of full Mesa
arc not supported in the debugger's interpreter;
The lack of conditional breakpoints;
The lack of the ability to automatically display certain variables and then proceed
at a breakpoint (which would allow easier monitoring);
The lack of the ·ability to omit from the display selected portions of arrays or
records;
The lack of the ability to use command files with the debugger;
The reliability problems with the debugger itself: "A debugger must be
trustworthy;"
The lack of the ability to monitor variables by having them continuously updated
on the screen;
The extreme difficulty of single-stepping through a Mesa program;
The lack of information provided about a signal or error if the . symbol table
describing it is not on the disk. (All that is displayed is an octal number);
The inability of the user to provide formatting information and/or
validity/consistency checks;
The excessively symbolic and verbose command language of the debugger; and
The inadequate presentation for arrays .

Jn answer to question 2, almost everyone agreed that he could not debug faster in Mesa than
in other languages. Those who disagreed did so only because the Mesa compiler caught many bugs

that would have gotten through in the other languages. In addition, some felt that the Mesa
debugger allowed them to debug faster when dealing with highly typed data structures since it
intcrprctc; the data. Everyone felt that the debugger was too slow, however.

Although the debugger attempts . ~o prevent the user from having to use the underlying
representations for data and instructions, it docs not always succeed in allowing the programmer to
"think in Mesa" (question 5). Some places where this happens are:

•
•
•
•

•
•

APPENDIX A. INFORMAL POLL ON THE CURRENT MESA DEBUGGER

When using monitors;

When using COMPUTED VARIANT RECORDS or OVERLAID VARIANT RECORDS;

When using enumerated types in the interpreter;

When investigating variables in catch phrases for signals;

When investigating multiple processes; and

When trying to constmct arguments for calling of procedures from the debugger .

91

On the data display part of the questionnaire, the responses were encouraging for Incense.

For question 6, some people felt that the "facilities of Incense arc in the right direction" but should

be augmented with some ability to "window" onto large structures. Most people felt that some

method for pretty-printing of aggregate stmctures was necessary, even if only textually. Since one

can split and scroll the debugger's window, many felt there was no reason not to use extra spaces,

tabs and carriage-returns to make data structures easier to read. Others disagreed, however, and

thought it was more important to have a Jot of information on the screen at once. Some specific

data types were mentioned· as problems: one respondent wanted to be able to use the mouse to

move around in a data structure tree, and another mentioned that it would be nice to be able to

display sparse structures such as hash tables in a reasonable manner.

There was surprising agreement in answer to question 7 concerning the hardest problems to

debug. The two problems mentioned most were random core smashes and timing problems related

to multiple processes. It was felt that a data display system would not help with this, unless it

allowed true monitoring of variables and control flow. Other useful features would be user-defined

write protection and "a flavor of breakpoint that invoked frequent consistency checking on the data

structures involved." One person mentioned that a hard problem is ensuring that all storage is

deallocated when no longer needed.

For the delay that people would tolerate (question 8), most people said "none". A few said

that they would tolerate a small amount if the overall time it took to display a data structure was

faster than without the pictorial display, and one mentioned that as long as he could watch it

happening, up to 10 seconds to complete the drawing would be tolerable. If the fancy display took

longer, it should be an option and not the default, according to one respondent.

The responses to question 9 were also very encouraging. Most people felt that they were

currently in the habit of writing data display routines to allow debugging of complex structures.

Other people claimed they might do this if there were fancy tools to encourage it and it could be

done in a "simple language." Otherwise, the displaying procedures would have to be debugged and

"debugging the debugging facilities is almost always a waste of time." Many people hoped that a

large number of standard displays would be available in a library that they could use or modify

slightly to display their own data structures.

BIBLIOGRAPHY

[Aaronson 61] David/\. Aaronson and Clarissa J. Kinnaman. Production of Large and Variable Size
Logic Block Diagrams on a High Speed Digital Computer. /\IEE Paper CP 61-1116,
Oct., 1961.

[Ahlberg 67] J. H. Ahlberg. E. N. Nilson. and J. L. Walsh. The Theory of Splines and their
Applications. New York: Academic Press, 1967.

[Aho 78] Alfred V. Aho and Jeffery D. Ullman. Principles of Compiler Design, lleading, MA:
Addison-Wesley Publishing Company, 1978.

[Atwood 78] Michael Atwood and H. Rudy Ramsey. Cognitive Stmcturcs in the Comprehension
and Memory of Computer Programs: An investigation of Computer Program
Debugging. Englewood, Colo: Science Applications Inc. Tech Report TR-78-A21,
Aug, 1978. 80 pages.

[Haecker 76] Ron Haecker. "A Conversational Extensible System for the Animation of Shaded
Images," Proceedings of ACM SIGGRAPH Symposium. Philadelphia, PA, June
1976.

[Balzer 69] R. M. Balzer. "EXDAMS -- EXtendable Debugging and Monitoring System",
Proceedings /\FIPS Spring Joint Computer Conference. 34, 1969. pp 567-580.

[Bell 71] C. Gordon Bell and /\lten Newell. Computer Structures: Readings and Examples.
New York: McGraw-Hill Book Company, 1971. pp. 37-45.139-144.

[Blair 71] James Curtis Blair. An Extendible Interactive Debugging System, Purdue University
PhD Thesis, June, 1971. Ann Arbor, Mich: University Microfilms International,
1979. 151 pages.

[Bobrow 77] Daniel G. Bobrow and Terry Winograd." An Overview of KRL, /\ Knowledge
Representation Language," Cognitive Science, Vol. 1, No. I, Jan, 1977. Also
available as Palo Alto: Xerox PARC CSL-76-4, July 4, 1976.

[Boehm 71] B. W. Boehm. M. J. Seven. and R. A. Watson. "Interactive problem-solving--An
experimental study of 'lockout' effects," Proc AFIPS 1971 Spring Joint Computer
Conference. AFIPS Press, Montvale, NJ. pp. 205-210.

[Borning 79] Alan Horning, ThingLab--/\ Constraint-Oriented Simulation Laboratory, Stanford
Unviersity Department of Computer Science PhD Thesis STAN-CS-79-746. Also
available as Palo Alto: Xerox PARC SSL-79-3, July, 1979. 100 pages.

[Christensen 67] Carlos Christensen. "An Example of the Manipulation of Directed Graphs in the
AM BIT/G Programming l.angu<1gc." Proceedings of the ACM Symposium on
Interactive Systems for Experimental Applied Mathematics, Washington, D.C.,
August, 1967.

"[Christensen 71a] Carlos Christensen. An Introduction to AMBIT/I., a Diagrammatic Language for
List Processing. Wakelield. MA: Massachusetts Computer Associates CA-7102-2211,
Feb 22. 1971. 65 pages.

93

94 DISJ>LA YING DATA STRUCTURES FOR INTERACflVE DEBUGGING

[Christensen 7lb] Carlos Christensen and Michael Karr. TAM, A System for Interactive Algebraic
Manipulation. Wakefield, MA: Massachusetts Computer Associates CA-7103-0311,
March 3, 1971. 38 pages.

[Dijkstra 72) Edsger W. Dijkstra. "The Humble Programmer," Communications of the ACM. Vol
15, No. 10, Oct 1972. pp 859-866.

[English 67) W. K. English, D. C. Engelhart, and M. L. Berman. "Display Selection Techniques
for Text Manipulation," IEEE Transactions on Human Factors in Electronics. Vol
HFE-8, No. 1, March 1967.

[Evans 66) T. G. Evans and D. L. Darley. "On-line Debugging Techniques: A Survey,"
Proceedings AFIPS Fall Joint Computer Conference. Vol 29, 1966. pp. 37-50.

[Fikes 79) Richard Fikes. Private conversation with the author, Nov. 9, 1979, 1:45 PM.

[Gladwin 69) B. J. Gladwin. "The Utilization of Graphic Display Units as the Main Form of
Computer Input," The Computer Journal. Vol 12, No. 2, May 1969. pp.114-117.

[Gold 69) Michael M. Gold. "Time-Sharing and Batch-Processing: An Experimental
Comparison of Their Values in a Problem Solving Situation," Communications of the
ACM. Vol 12, No. 5, May 69. pp. 249-259.

[Goldberg 79) A. Goldberg and D. Robson. "A Metaphor for User Interface Design," Proceedings
of the 12th Hawaii International Conference on System Sciences 1979. Vol. I. pp.
148-157.

[Greene 73) R. A. Greene. "Programming Tool For Automated flow Chart Generation of
Assembly Language Programs," IBM Technical Disclosure Bulletin. Vol 15, No.10,
March 1973. pp. 2999-3001.

[Hain, 65) G. Hain and K. Hain. "A general purpose automatic flowchartcr," Proc. Fourth
Annual Meeting of UAIDE, New York, Oct. 1965. pp. IV-i to IV-12.

[Hanson 78] David R. Hanson. "Event Associations i'n SNOBOT A for Program Debugging,"
Software--Practice and Experience. Vol 8, 1978. pp. 115-129.

[Henderson 69) D. Austin Henderson. A Description and Definition of Simple AMBIT/0--a
Graphical Programming I .anguage. Wakefield, MA: Massachusetts Computer
Associates CA-6904-2811, April 28, 1969. 32 pages.

[Henderson 79) D. Austin Henderson. Private conversation with the author, Nov. 15, 1979, 2:00 PM.

[Henriksen 77] James 0. Henriksen." An Interactive Debugging Facility for GPSS," IEEE 1977
Winter Simulation Conference. Gaithersburg, MD, Dec 5-7, 1977. pp. 331-8.

[Horning 79] Jim Horning. Private conversation with the author, December 12, 1979, 2:30 PM.

[Hughes 78] T. P. Hughes anctD. H. Sawin m. "Breakpoint Design for Debugging
Microprocessor Software," Computer Design. Nov 1978. pp. 99-107.

[Ingalls 78] Daniel H. H. Ingalls. "The Smalltalk-76 Programming System Design and
Implementation," Fifth Annual ACM Symposium on Principles of Programming
Languages. Tucson, Ariz., Jan 23-25, 1978.

[Kahn 72)

(Kay 69)

[Kay 76)

BmuoGRAPHY

R. E. Kahn. "Resource-sharing computer communications networks," Proceedings
IEEE. Vol. 60. No. 11, November 1972. pp. 1397-1407.

Alan Curtis Kay. The Reactive Engine. University of Utah Dept of Electrical
Engineering and Computer Science PhD Thesis. Aug, 1969. Ann Arbor, Michigan:
University Microfilms. Inc .. 1972. 327 pages.

Smalltalk-72 lnstrnction Manual. Alan Kay and Adele Goldberg, eds. Palo Alto:
Xerox PARCSSL-76-6, l976.130pagcs.

9S

[Kay 77] Alan Kay and Adele Goldberg. "Personal Dynamic Media.'' IEEE Computer. March
1977. pp. 31-41. An expanded version is available as Palo Alto: Xerox PARC SSL-
76-1. March 1976. 74 pages.

[Kazck 78]

[Knuth 63]

[Knuth 69]

[Kotok 61]

Chester S. Kazek, Jr. FORTRAN Extrndcd Interactive Debugging Aid. l.os Alamos.·
NM: University of California l.os Alamos ScienLilic I.ab LA-7467-MS, Sept, 1978. 11
pages.

Donald E. Knuth. "Computer Drawn Flowcharts." Communications of the ACM.
Vol 6 No. 9. Sept. 1963. pp. 555-563.

Donald E. Knuth. The Art of Computer Programming, Vol 1 Fundamental
Algorithms. Reading, Mass: Addison-Wesley Publishing Company, 1969.

/\.. Kotok. DEC Debugging Tape. Cambridge, MA: Massachusetts Institute of
Technology Memo MIT-I. December, 1961.

'·
(1.aascr 79] Wiltaim 1.aaser. Private conversation with the author, Nov. 9. 1979, 2:00 pm.

[I .ampson 65] Butler W. Lampson. "Interactive Machine Language Programming," Proc. FJCC,
1965. pp. 473-481.

[1.auescn 75] Soren 1.auesen. "A I .arge Semaphore based operating system," Communications of
the ACM. Vol 18, No. 7, July, 1975. pp. 377-389.

[Lauesen 79] Soren I .auescn, "Debugging Techniques.'' Softwarc--Practice and Experience. Vol 9,
1979. pp. 51-63.

[Lenders 78] P. Lenders and J. Tiberghicn. "Debugging Aids for Real Time Microprocessor
Systems," Euromicro Journal. Vol 4 No. 4, July 1978. pp. 220-1.

[Leslie 78) John Leslie. "Software Debugging for Beginners.'' Kilob<tud. No. 20, Aug.1978. pp
40-43.

[Levine 77] 1.awrence H. I .evine. "Debugging. Planned or /\.d Hoc. Which is More Effective?"
Journal of Educational Data Processing. Vol 14, No. 4, 1977. pp. 1-9.

[1.iskov 77) Barbara Liskov, /\Ian Snyder. Russell Atkinson. and Craig Schaffert. "Abstraction
Mechanisms in Cl.LI.'' Communications of the /\CM. Vol 20, No. 8, Aug, 1977. pp.
564-576.

[Loeser 76] It Loeser and E. M. Gaposchkin. "The second Law of Debugging," Software-­
Practice and Experience. Vol. 6, 1976. pp. 577-578.

96

[Lyon 78)

[Metcalfe 76)

[Mitchell 79a)

[Mitchell 79b)

[Model 79)

. [Naur 74)

[Newman 79)

[North 77)

[Petit 69)

[Rovner69)

[Rovner 79)

[Sackman 68)

01SPLA YING DATA STRUCTURES FOR INTERACrtVE DEBUGGING

R. M. Metcalfe and D.R. Boggs. "ETHERNET: Distributed Packet Switching for
Local Computer Networks." Communications of the ACM. Vol 19 No. 7, July 1976.
pp. 395-404. •

James G. Mitchell. The Desi n and Constmction of Flexible and Efficient Interactive
Programming Systems. New York: Garland Pub ishing, Inc .• 1979. 14 pages.
'lbesis at Carnegie Mellon Univ, 1970. ··

James Mitchell. et. al. Mesa Language Manual. Version 5.0. Palo Alto: Xerox PARC
CSL-79-3, 1979.

Mitchell I .. Model. Monitoring System Behavior In a Complex Computational
Environment. Palo !\Ito: Xerox PARC CSL-79-1. January 1979. 179 pages. Also
available as Stanford University Computer Science Dept. Report CS-79-701 .

Peter Naur. Concise Survey of Computer Methods. New York: Petrocelli Books,
1974. 307 pages.

William M. Newman and Robert F. Sproull. Princi les of Interactive C(>m uter
Graphics. second edition. New York: McGraw-Hill Hook Company, 1979. pp. 09-
331.

Steve North. "A Dynamic Debugging System," Creative Computing. Vol 3. No. S.
Sept-Oct 1977. pp. 26-8.

Philip Petit. Raid. Stanford Artificial lnteUigence Laboratory Operating Note SS.
Sept 1969. 24 pages.

P. D. Rovner and[); A. Henderson. Jr. "On the Implementation of AMBIT/G: A
Graphical Programming Language," Proceedings of the International Joint
Conference on Artificial Intelligence. Washington D.C .• May 7-9, 1969. pp. 9-19.

Paul D. Rovner. Private conversation with the author, Nov 15. 1979. 1:30 PM.

H. Sackman. W. J. Erikson and E. E. Grant. "Exploratory Experimental Studies
Comparing On-line and off-line Programming Performance," Communications of the
ACM. Vol 11, No. I. Jan 1968. pp 3-11.

[Satterthwaite 75) Edwin H. Satterthwaite. Jr. Source Language Debugging Tools. Stanford University
Computer Science Department PhD Thesis Stan-CS-75-494, May 1975. 338 pages.

[Schueler 77)

(Sheppard 79)

[Shoch 79)

J. Schueler. "Debugging Aids for Assembly Lai1guage Programmers," Canadian
DataSystcms:Vol 9, No. 8, Sept 1977. pp. 37-39. ·

Sylvia B. Sheppard, Phil Milliman and Bill Curtis. Factors Affcctin Pro rammer ·
Pcrfonnance in a Debugging Task. Arlington VA: Software management I cscarth
lnformalion Systems Programs, General Electric Company TR-79-388100-5.
February, 1979. 56 pages.

John F. Shoch. "An Overview of the Programming Language Smalltalk-72." ACM
Sigplan Notices. Vol 14, No. 9, Sept 1979. pp. 64-73. · -

BIBLIOGRAPHY 97

[Sutherland 63] Ivan E. Sutherland. Sketchpad: /\ Man-Machine Graphical Communication System.
MIT PhD Thesis. Lexington, MA: Lincoln Labs Technical Report No. 296, Jan 30,
1963, reissued May 19, 1965. 92 pages.

[Sweet 78] Richard Sweet. "/\ppendix B: Jmplementation Description," Empirical Estimates of
Program Entrophy. Palo Alto: Xerox PARC CSL-78-3, 1978. pp. 85-96.

[Swinehart 74] Daniel Carl Swinehart. Copilot: A Multiple Process Approach to Interactive
Programming Systems. Stanford Universtiy Computer Science Department PhD
Thesis. S/\IL Memo AIM-230 and CSO Report STAN-CS-74-412, July, 1974.193
pages.

n'eitelman 77] Warren Teitelman. /\ Display Oriented Programmer's /\ssistant. Palo Alto: Xerox
PARC CSL-77-3, March 8, 1977. 30 pages.

[Teitelman 78] Warren Teitelman. Interlisp Reference Manual. Palo Alto: Xerox PARC, 1978.

[l"eitelman 79] Warren Teitelman. Private conversation with the author, Nov. 13, 1979, 12: 10 PM.

[fhacker 79] C. P. Thacker, E. M. McCrcight. B. W. I .ampson. R. F. Sproull. and 0. R. Boggs.
Alto: A Personal Computer. Palo /\Ito: Xerox P/\RC CSL-79-11. /\ugust 7, 1979. 50
pages. Paper will also appear in Siewiorek, Be11 and Newell. Computer Structures:
Readings and Examples, second edition.

[fratner 79] M. Tratner. "A Fundamental Approach to Debugging," Software--Practice and
Experience. Vol 9, 1979. pp. 97-99.

[van Tassel 74) Dennie van Tassel. Program Style, Design. Efficiency, Debugging and Testing.
Englewood Cliffs. NJ: Prentice-Hall, lnc., 1974. 256 pages.

[Yarwood 77] Edward Yarwood. Toward Program Illustration. University of Toronto Computer
Systems Research Group Technical Report CSRG-84, October 1977 (M.Sc. Thesis).

[Zimmennan 67] Luther L. Zimmerman. "On-line Programming Debugging--/\ Graphic Approach,"
Computers and Automation. Vol 16, No. 11, Nov 1967. pp. 30-34.

