
Epidemic Algorithms for Replicated
. Database Maintenance

Alan Demers, Mark Gealy, Dan Greene, Carl Hauser,
Wes Irish, John Larson, Sue Manning, Scott
Shenker, Howard Sturgis, Dan Swinehart, Doug
Terry, and Don Woods

Epidemic Algorithms for Replicated Database
Maintenance

Alan Demers, Mark Gealy, Dan Greene, Carl Hauser, Wes Irish, John Larson,
Sue Manning, Scott Shenker, Howard Sturgis, Dan Swinehart, Doug Terry, and
Don Woods

CSL·89·1 January 1989 [P89·00001]

© Copyright 1987 Association of Computing Machinery. Printed with permission.

Abstract: When a database is replicated at many sites, maintaining mutual consistency among

the sites in the face of updates is a significant problem. This paper describes several

randomized algorithms for distributing updates and driving the replicas toward consistency.

The algorithms are very simple and require few guarantees from the underlying communication

system, yet they ensure that the effect of every update is eventually reflected in all replicas. The

cost and performance of the algorithms are tuned by choosing appropriate distributions in the

randomization step. The algorithms are closely analogous to epidemics, and the epidemiology

literature aids in understanding their behavior. One of the algorithms has been implemented in

the Clearinghouse servers of the Xerox Corporate Internet, solving long-standing problems of

high traffic and database inconsistency.

An earlier version of this paper appeared in the Proceedings of the Sixth Annual ACM

Symposium on Principles of Distributed Computing, Vancouver, August 1987, pages 1-12.

CR Categories and Subject Descriptors: C.2.4 [Computer-Communication

Networks]: Distributed Systems - distributed databases.

General Terms: Algorithms, experimentation, performance, theory.

Additional Keywords and Phrases: Epidemiology, rumors, consistency, name service,

electronic mail.

XEROX Xerox Corporation

Palo Alto Research Center

3333 Coyote Hill Road

Palo Alto, California 94304

EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE 1

o. Introduction

Considering a database replicated at many sites in a large, heterogeneous, slightly unreliable
and slowly changing network of several hundred or thousand sites, we examine several methods
for achieving and maintaining consistency among the sites. Each database update is injected at
a single site and must be propagated to all the other sites or supplanted by a later update. The
sites can become fully consistent only when all updating activity has stopped and the system has
become quiescent. On the other hand, assuming a reasonable update rate, most information at any
given site is current. This relaxed form of consistency has been shown to be quite useful in practice
[Bi]. Our goal is to design algorithms that are efficient and robust and that scale gracefully as the
number of sites increases.

Inlportant factors to be considered in examining algorithms for solving this problem include

• the time required for an update to propagate to all sites, and

• the network traffic generated in propagating a single update. Ideally network traffic is propor
tional to the size of the update times the number of servers, but some algorithms create much
more traffic.

In this paper we present analyses, simulation results and practical experience using several
strategies for spreading updates. The methods examined include:

1. Direct mail: each new update is immediately mailed from its entry site to all other sites. This
is timely and reasonably efficient but not entirely reliable since individual sites do not always
know about all other sites and since mail is sometimes lost.

2. Anti-entropy: every site regularly chooses another site at random and by exchanging database
contents with it resolves any differences between the two. Anti-entropy is extremely reliable
but requires examining the contents of the database and so cannot be used too frequently.
Analysis and simulation show that· anti-entropy, while reliable, propagates updates much more
slowly than direct mail.

3. Rumor mongering: sites are initially "ignorant"; when a site receives a new update it becomes
a "hot rumor"; while a site holds a hot rumor, it periodically chooses another site at random
and ensures that the other site has seen the update; when a site has tried to share a hot rumor
with too many sites that have already seen it, the site stops treating the rumor as hot and
retains the update without propagating it further. Rumor cycles can be more frequent than
anti-entropy cycles because they require fewer resources at each site, but there is some chance
that an update will not reach all sites.

Anti-entropy and rumor mongering are both examples of epidemic processes, and results from
the theory of epidemics [Ba] are applicable. Our understanding of these mechanisms benefits
greatly from the existing mathematical theory of epidemiology, although our goals differ (we would
be pleased with the rapid and complete spread of an update). Moreover, we have the freedom to
design the epidemic mechanism, rather than the problem of modeling an existing disease. We adopt
the terminology of the epidemiology literature and call a site with an update it is willing to share
infective with respect to that update. A site is susceptible if it has not yet received the update;
and a site is removed if it has received the update but is no longer willing to share the update.
Anti-entropy is an example of a simple epidemic: one in which sites are always either susceptible
or infective.

Choosing partners uniformly results in fairly high network traffic, leading us to consider spatial
distributions in which the choice tends to favor nearby servers. Analyses and simulations on the

XEROX PARC, CSL-89-1, JANUARY 1989

2 EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE

actual topology of the Xerox Corporate Internet reveal distributions for both anti-entropy and
rumor mongering that converge nearly as rapidly as the unifornl distribution while reducing the
average and maximum traffic per link. The resulting anti-entropy algorithnl has been installed on
the Xerox Corporate Internet and has resulted in a significant perfornlance inlprovenlent.

We should point out that extensive replication of a database is expensive. It should be avoided
whenever possible by hierarchical decomposition of the database or by caching. Even so, the results
of our paper are interesting because they indicate that significant replication can be achieved, with
simple algorithms, at each level of a hierarchy or in the backbone of a caching schenle.

0.1 Motivation

This work originated in our study of the Clearinghouse servers [Op] on the Xerox Corporate
Internet (CIN). The worldwide CIN comprises several hundred Ethernets connected by gateways (on
the CIN these are called internetwork routers) and phone lines of many different capacities. Several
thousand workstations, servers, and computing hosts are connected to CIN. A packet enroute from
a machine in Japan to one in Europe may traverse as many as 14 gateways and 7 phone lines.

The Clearinghouse service maintains translations from three-level, hierarchical names to ma
chine addresses, user identities, etc. The top two levels of the hierarchy partition the name space
into a set of domains. Each domain may be stored (replicated) on as few as one, or as many as all,
of the Clearinghouse servers, of which there are several hundred.

Several domains are in fact stored at all Clearinghouse servers in CIN. In early 1986, many
of the network's observable performance problems could be traced to traffic created in trying to
achieve consistency on these highly replicated domains. As the network size increased, updates to
domains stored at even just a few servers propagated very slowly.

When we first approached the problem, the Clearinghouse servers were using both direct mail
and anti-entropy. Anti-entropy was run on each domain, in theory, once per day (by each server)
between midnight and 6 a.m. local time. In fact, servers often did not complete anti-entropy in
the allowed time because of the load on the network.

Our first discovery was that anti-entropy had been followed by a remailing step: the correct
database value was mailed to all sites when two anti-entropy participants had previously disagreed.
More disagreement among the sites led to much more traffic. For a domain stored at 300 sites,
90,000 mail messages might be introduced each night. This was far beyond the capacity of the
network, and resulted in breakdowns in all the network services: mail, file transfer, name lookup,
etc.

Since the rem ailing step was clearly unworkable on a large network our first observation was
that it had to be disabled. Further analysis showed that this would be insufficient: certain key
links in the network would still be overloaded by anti-entropy traffic. Our explorations of spatial
distributions and rumor mongering arose from our attempt to further reduce the network load
imposed by the Clearinghouse update process.

XEROX PARC, CSL-89-1, JANUARY 1989

EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE 3

0.2 Related Work

The algorithms in this paper are intended to maintain a widely-replicated directory, or name
look-up, database. Rather than using transaction-based mechanisms that attempt to achieve "one
copy serializability" (for example, [Gi)), we use mechanisms that drive the replicas towards eventual
agreement. Such mechanisms were apparently first proposed by Johnson et al. [Jo] and have been
used in Grapevine [Bi] and Clearinghouse fOp]. Experience with these systems has suggested that
some problems remain; in particular, that some updates (with low probability) do not reach all
sites. Lampson [La] proposes a hierarchical data structure that avoids high replication, but still
requires some replication of each component, say by six to a dozen servers. Primary-site update
algorithms for replicated databases have been proposed that synchronize updates by requiring them
to be applied to a single site; the update site then takes responsibility for propagating updates to
all replicas. The DARPA domain system, for example, employs an algorithm of this sort [MoJ.
Primary-site update avoids problems of update distribution addressed by the algorithms described
in this paper but suffers from centralized control.

Two features distinguish our algorithms from previous mechanisms. First, the previous mecha
nisms depend on various guarantees from underlying communications protocols and on maintaining
consistent distributed control structures. For example, in Clearinghouse the initial distribution of
updates depends on an underlying guaranteed mail protocol, which in practice fails from time to
time due to physical queue overflow, even though the mail queues are maintained on disk storage.
Sarin and Lynch [Sa] present a distributed algorithm for discarding obsolete data that depends
on guaranteed, properly ordered, message delivery, together with a detailed data structure at each
server (of size O(n2

)) describing all other servers for the same database. Lampson et al. {La]
envision a sweep moving deterministically around a ring of servers, held together by pointers from
one server to the next. These algorithms depend upon various mutual consistency properties of the
distributed data structure, e.g., in Lampson's algorithm the pointers must define a ring. The algo
rithms in this paper merely depend orieventual delivery of repeated messages and do not require
data structures at one server describing information held at other servers.

Second, the algorithms described in this paper are randomized; that is, there are points in the
algorithm at which each server makes an independent random choice [Ra, Be85]. In distinction,
the previous mechanisms are deterministic. For example, in both the anti-entropy and the rumor
mongering algorithms, a server randomly chooses a partner. In some versions of the rumor mon
gering algorithm, a server makes a random choice to either remain infective or become removed.
The use of random choice prevents us from making such claims as: "the information will converge
in time proportional to the diameter of the network." The best that we can claim is that in the
absence of further updates, the probability that the information has not converged is exponentially
decreasing with time. On the other hand, we believe that the use of randomized protocols makes
our algorithms straightforward to implement correctly using simple data structures.

0.3 Plan of this paper

Section 1 formalizes the notion of a replicated database and presents the basic techniques
for achieving consistency. Section 2 describes a technique for deleting items from the database;
deletions are more complicated than other changes because the deleted item must be represented
by a surrogate until the news of the deletion has spread to all the sites. Section 3 presents simulation
and analytical results for non-uniform spatial distributions in the choice of anti-entropy and rumor
mongering partners.

XEROX PARC, CSL-89-1, JANUARY 1989

4 EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE

1. Basic Techniques

This section introduces our notion of a replicated database and presents the basic direct Blail,
anti-entropy and cOlnplex epidelnic protocols together with their analyses.

1.1 Notation

Consider a network consisting of a set S of n sites, each storing a copy of a database. The
database copy at site s E S is a tinle-varying partial function

s.ValueOf: K -+ (v : V x t : T)

where K is a set of keys (nanles), V is a set of values, and T is a set of tilnestalnps. V contains the
distinguished elenlent NIL but is otherwise unspecified. T is totally ordered by <. We interpret
s.ValueOf[k] = (NIL, t) to nlean that the itenl identified by k has been deleted frOln the database.
That is, from a database client's perspective, s.ValueOf[k] = (NIL, t) is the saIne as "s.ValueOf[k]
is undefined."

The exposition of the distribution techniques in Sections 1.2 and 1.3 is shnplified by considering
a database that stores the value and timestanlp for only a single nanle. This is done without loss
of generality since the algorithms treat each nanle separately. So we will say

s.ValueOf E (v: V x t: T)

i.e., s.ValueOf is just an ordered pair consisting of a value and a timestanlp. As before, the first
component may be NIL, meaning the item was deleted as of the time indicated by the second
component.

The goal of the update distribution process is to drive the system towards

Vs, Sf E S : s.ValueOf = sf.ValueOf

There is one operation that clients may invoke to update the database at any given site, s:

Update[v : V] == s.ValueOf +- (v, Now[])

where Now is a function returning a globally unique timestamp. One hopes that the timestaInps
returned by Now[] will be approximately the current Greenwich Mean Time-if not, the algorithms
work formally but not practically. The interested reader is referred to the Clearinghouse[Op] and
Grapevine [Bi] papers for a further description of the role of the timestamps in building a usable
database. For our purposes here, it is sufficient to know that a pair with a larger timestamp will
always supersede one with a smaller timestamp.

XEROX PARe, CSL-89-1, JANUARY 1989

EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE 5

1.2 Direct Mail

The direct mail strategy attempts to notify all other sites of an update soon after it occurs.
The basic algorithm, executed at a site s where an update occurs is:

FOR EACH s' E S DO
PostMail[to: s', msg : ("Update", s.ValueOf)]
END LOOP

Upon receiving the message ("Update", (v, t)) site s executes

IF s.ValueOf.t < t THEN
s.ValueOf ~ (v, t)

The operation PostMail is expected to be nearly, but .not completely, reliable. It queues
messages so the sender isn't delayed. The queues are kept in stable storage at the mail server so
they are unaffected by server crashes. Nevertheless, PostMail can fail: messages may be discarded
when queues overflow or their destinations are inaccessible for a long time. In addition to this basic
fallibility of the mail system, the direct mail may also fail when the source site of an update does
not have accurate knowledge of S, the set of sites.

In the Grapevine system [Bi] the burden of detecting and correcting failures of the direct mail
strategy was placed on the people administering the network. In networks with only a few tens of
servers this proved adequate.

Direct mail generates n messages per update; each message traverses all the network links
between its source and destination. So in units of (links . messages) the traffic is proportional to
the number of sites times the average distance between sites.

1.3 Anti-entropy

The Grapevine designers recognized that handling failures of direct mail in a large network
would be beyond people's ability. They proposed anti-entropy as a mechanism that could be run in
the background to recover automatically from such failures [Bi]. Anti-entropy was not implemented
as part of Grapevine, but the design was adopted essentially unchanged for the Clearinghouse. In
its most basic form an~i-entropy is expressed by the following algorithm periodically executed at
each site s: .

FOR SOME s' E S DO
ResolveDifference [s, s']
ENDLOOP

The procedure ResolveDifference[s, s'] is carried out by the two servers in cooperation. De
pending on its design, its effect may be expressed in one of three ways, called push, pull and
push-pull:

XEROX PARC, CSL-89-1, JANUARY 1989

6 EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE

ResolveDifference : PROC[s, s'] = { -- push
IF s.ValueOf.t > s'.ValueOf.t THEN

s' .ValueOf ~ s.ValueOf
}

ResolveDifference : PROC[s, s'] = { -- pull
IF s.ValueOf.t < s'.ValueOf.t THEN

s.ValueOf ~ s'.ValueOf
}

ResolveDifference: PROC[s, s'] = { -- push-pull
SELECT TRUE FROM

}

s.ValueOf.t> s'.ValueOf.t =:;. s'.ValueOf ~ s.ValueOf;
s.ValueOf.t < s'.ValueOf.t =:;. s.ValueOf ~ s'.ValueOf;
ENDCASE =:;. NULL;

For the moment we assume that site s' is chosen uniformly at random from the set S, and that
each site executes the anti-entropy algorithm once per period.

It is a basic result of epidemic theory that simple epidemics, of which anti-entropy is one,
eventually infect the entire population. The theory also shows that starting with a single infected
site this is achieved in expected time proportional to the log of the population size. The constant
of proportionality is sensitive to which ResolveDifference procedure is used. For push, the exact
formula is log2(n) + In(n) + 0(1) for large n [Pi].

It is comforting to know that even if mail fails to spread an update beyond a single site, then
anti-entropy will eventually distribute it throughout the network. Normally, however, we expect
anti-entropy to distribute updates to only a few sites, assuming most sites receive them by direct
mail. Thus, it is important to consider what happens when only a few sites remain susceptible. In
that case the big difference in behavior is between push and pull, with push-pull behaving essentially
like pull. A simple deterministic model predicts the observed behavior. Let Pi be the probability of
a site's remaining susceptible' after the ith cycle of anti-entropy. For pull, a site remains susceptible
after the i + 1st cycle if it was susceptible after the ith cycle and it contacted a susceptible site in
the i + 1st cycle. Thus, we obtain the recurrence

which converges very rapidly to 0 when Pi is small. For push, a site remains susceptible after the
i + 1st cycle if it was susceptible after the ith cycle and no infectious site chose to contact it in the
i + 1st cycle. Thus, the analogous recurrence relation for push is

(1) n(l-pd

Pi+l = Pi 1- n
which also converges to 0, but much less rapidly, since for very small Pi (and large n) it is approx
imately

XEROX PARC, CSL-89-1, JANUARY 1989

EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE 7

This strongly suggests that in practice, when anti-entropy is used as a backup for some other
distribution nlechanism such as direct mail, either pull or push-pull is greatly preferable to push,
which behaves poorly in the expected case.

As expressed here the anti-entropy algorithm is very expensive, since it involves a comparison
of two complete copies of the database, one of which is sent over the network. Normally the
copies of the database are in nearly complete agreement, so most of the work is wasted. Given
this observation, a possible performance improvement is for each site to maintain a checksum
of its database contents, recomputing the checksum incrementally as the database is updated.
Sites performing anti-entropy first exchange checksums, comparing their full databases only if the
checksums disagree. This scheme saves a great deal of network traffic, assuming the checksums
agree most of the time. Unfortunately, it is common for a very recent update to be known by some
but not all sites. Checksums at different sites are likely to disagree unless the time required for an
update to be sent to all sites is small relative to the expected time between new updates. As the
size of the network increases, the time required to distribute an update to all sites increases, so the
naive use of checksums described above becomes less and less useful.

A more sophisticated approach to using checksums defines a time window T large enough that
updates are expected to reach all sites within time T. As in the naive scheme, each site maintains
a checksum of its database. In addition, the site maintains a recent update list, a list of all entries
in its database whose ages (measured by the difference between their timestamp values and the
site's local clock) are less than T. Two sites sand s' perform anti-entropy by first exchanging
recent update lists, using the lists to update their databases and checksums, and then comparing
checksums. Only if the checksums disagree do the sites compare their entire databases.

Exchanging recent update lists before comparing checksums ensures that if one site has received
a change or delete recently, the corresponding obsolete entry does not contribute to the other
site's checksum. Thus, the checksum comparison is very likely to succeed, making a full database
comparison unnecessary. In that case, the expected traffic generated by an anti-entropy comparison
is just the expected size of the recent update list, which is bounded by the expected number of
updates occurring on the network in time T. Note that the choice of T to exceed the expected
distribution time for an update is critical; if T is chosen poorly, or if growth of the network drives
the expected update distribution time above T, checksum comparisons will usually fail and network
traffic will rise to a level slightly higher than what would be produced by anti-entropy without
checksums.

A simple variation on the above scheme, which does not require a priori choice of a value for
T, can be used if each site can maintain an inverted index of its database by timestamp. Two sites
perform anti-entropy by exchanging updates in reverse timestamp order, incrementally recomputing
their checksums, until agreement of the checksums is achieved. While it is nearly ideal from the
standpoint of network traffic, this scheme (which we will hereafter refer to as peel back) may not
be desirable in practice because of the expense of maintaining an additional inverted index at each
site.

1.4 Complex Epidemics

As we have seen already, direct mailing of updates has several problems: it can fail because
of message loss, or because the originator has incomplete information about other database sites,
and it introduces an O(n) bottleneck at the originating site. Some of these problems would be
remedied by a broadcast mailing mechanism, but most likely that mechanism would itself depend
on distributed information. The epidemic mechanisms we are about to describe do avoid these

XEROX PARC, CSL-89-1, JANUARY 1989

8 EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE

problems, but they have a different, explicit probability of failure that nlust be studied carefully
with analysis and simulations. Fortunately this probability of failure can be made arbitrarily small.
We refer to these mechanisms as "complex" epidemics only to distinguish them from anti-entropy
which is a simple epidemic; complex epidemics still have simple implementations.

Recall that with respect to an individual update, a database is either susceptible (it does not
know the update), infective (it knows the update and is actively sharing it with others), or removed
(it knows the update but is not spreading it). It is a relatively easy matter to implement this so
that a sharing step does not require a complete' pass through the database. The sender keeps a list
of infective updates, and the recipient tries to i~sert each update into its own database and adds all
new updates to its infective list. The only complication lies in deciding when to remove an update
from the infective list.

Before we discuss the design of a "good" epidemic, let's look at one example that is usually
called rumor spreading in the epidemiology literature.

Rumor spreading is based on the following scenario: There are n individuals, initially inactive
(susceptible). We plant a rumor with one person who becomes active (infective), phoning other
people at random and sharing the rumor. Every person hearing the rumor also becomes active
and likewise shares the rumor. When an active individual makes an unnecessary phone call (the
recipient already knows the rumor), then with probability 11k the active individual loses interest in
sharing the rumor (the individual becomes removed). We would like to know how fast the system
converges to an inactive state (a state in which no one is infective) and the percentage of people
who know the rumor (are removed) when this state is reached.

Following the epidemiology literature, rumor spreading can be modeled deterministically with
a pair of differential equations. We let s, i, and r represent the fraction of individuals susceptible,
infective, and removed respectively, so that s + i + r = 1:

ds . - = -sz
dt

di . 1 (1). - = +sz - - - s z
dt k

The first equation suggests that susceptibles will be infected according to the product si. The
second equation has an additional term for loss due to individuals making unnecessary phone calls.
A third equation for r is redundant.

A standard technique for dealing with equations like (*) is to use the ratio [Ba]. This eliminates
t and lets us solve for i as a function of s:

di k + 1 1
-=---+
ds k ks

. k+ 1 1
z(s) = --k-s + k logs + c

. where c is a constant of integration that can be determined by the initial conditions: i(l - t) = Eo

For large n, t goes to zero, giving:
k+l

c=--
k

and a solution of
. k + 1 1
z(s) = -k-(l -~) + k log s.

XEROX PARC, CSL-89-1, JANUARY 1989

EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE 9

The function i(s) is zero when

This is an implicit equation for s, but the dominant term shows s decreasing exponentially with
k. Thus increasing k is an effective way of insuring that almost everybody hears the rumor. For
example, at k = 1 this formula suggests that 20% will miss that rumor, while at k = 2 only 6%
will nliss it.

Variations

So far we have seen only one complex epidemic, based on the rumor spreading technique. In
general we would like to understand how to design a "good" epidemic, so it is worth pausing now
to review the criteria used to judge epidemics. We are principally concerned with:

1. Residue. This is the value of s when i is zero, that is, the remaining susceptibles when the
epidemic finishes. We would like the residue to be as small as possible, and, as the above
analysis shows, it is feasible to make the residue arbitrarily small.

2. Traffic. Presently we are measuring traffic in database updates sent between sites, without
regard for the topology of the network. It is convenient to use. an average m, the number of
messages sent from a typical site:

Total update traffic
m=

N umber of sites

In section 3 we will refine this metric to incorporate traffic on individual links.

3. Delay. There are two interesting times. The average delay is the difference between the time
of the initial injection of an update and the arrival of the update at a given site, averaged
over all sites. We will refer to this as t ave . A similar quantity, tlast , is the delay until the
reception by the last site that will receive the update during the epidemic. Update messages
may continue to appear in the network after tlast , but they will never reach a susceptible site.
We found it necessary to introduce two times because they often behave differently, and the
designer is legitimately concerned about both times.

Next, let us consider a few simple variations of rumor spreading. First we will describe the practical
aspects of the modifications, and later we will discuss residue, traffic, and delay.

Blind vs. Feedback. The rumor example used feedback from the recipient; a sender loses interest
only if the recipient already knows the rumor. A blind variation loses interest with probability 11k
regardless of the recipient. This obviates the need for the bit vector response from the recipient.

Counter vs. Coin. Instead of losing interest with probability 11k we can use a counter, so that
we lose interest only after k unnecessary contacts. The counters require keeping extra state for
elements on the infective lists. Note that we can combine counter with blind, remaining infective
for k cycles independent of any feedback.

A surprising aspect of the above variations is that they share the same fundamental relationship
between traffic and residue:

This is relatively easy to see by noticing that there are nm updates sent and the chance that a single
site misses all these updates is (1 - I/n)nm. (Since m is not constant this relationship depends on
the moments around the mean of the distribution of m going to zero as n ~ 00, a fact that we have
observed empirically, but have not proven.) Delay is the the only consideration that distinguishes

XEROX PARC, CSL-89-1, JANUARY 1989

10 EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE

the above possibilities: simulations indicate that counters and feedback improve the delay, with
counters playing a more significant role than feedback.

Table 1. Performance of an epidemic on 1000 sites using feedback and counters.

Counter Residue Traffic Convergence
k s m t ave tlast

1 0.18 1.7 11.0 16.8
2 0.037 3.3 12.1 16.9
3 0.011 4.5 12.5 17.4
4 0.0036 5.6 12.7 17.5
5 0.0012 6.7 12.8 17.7

Table 2. Performance of an epidemic on 1000 sites using blind and coin.

Coin Residue Traffic Convergence
k s m tave tlast

1 0.96 0.04 19 38
2 0.20 1.6 17 33
3 0.060 2.8 15 32
4 0.021 3.9 14.1 32
5 0.008 4.9 13.8 32

Push vs. Pull. So far we have assumed that all the sites would randomly choose destination
sites and push infective updates to the destinations. The push vs. pull distinction made already
for anti-entropy can be applied to rumor mongering as well. Pull has some advantages, but the
primary practical consideration is the rate of update injection into the distributed database. If
there are numerous independent updates a pull request is likely to find a source with a non-empty
rumor list, triggering useful information flow. By contrast, if the database is quiescent, the push
algorithm ceases to introduce traffic overhead, while the pull variation continues to inject fruitless
requests for updates. Our own CIN application has a high enough update rate to warrant the use
of pull.

The chief advantage of pull is that it does significantly better than the s = e-m relationship
of push. Here the blind vs. feedback and counter vs. coin variations are important. Simulations
indicate that the counter and feedback variations improve residue, with counters being more im
portant than feedback. We have a recurrence relation modeling the counter with feedback case
that exhibits s = e-e(m3) behavior.

Table 3. Performance of a pull epidemic on 1000 sites using feedback and counters t.
Counter Residue Traffic Convergence

k s m tave tlast

1 3.1 X 10-:l 2.7 9.97 17.6
2 5.8 x 10-4 4.5 10.07 15.4
3 4.0 x 10-6 6.1 10.08 14.0

t If more than one recipient pulls from a site in a single cycle, then at the end of the cycle the
effects on the counter are as follows: if any recipient needed the update then the counter is reset;
if all recipients did not need the update then one is added to the counter.

XEROX PARC, CSL-89-1, JANUARY 1989

EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE 11

Minimization. It is also possible to make use of the counters of both parties in an exchange to
make the removal decision. The idea is to use a push and a pull together, and if both sites already
know the update, then only the site with the smaller counter is incremented (in the case of equality
both must be incremented). This requires sending the counters over the network, but it results in
the smallest residue we have seen so far.

Connection Limit. It is unclear whether connection limitation should be seen as a difficulty or an
advantage. So far we have ignored connection limitations. Under the push model, for example, we
have assumed that a site can become the recipient of more than one push in a single cycle, and in
the case of pull we have assumed that a site can service an unlimited number of requests. Since we
plan to run the rumor spreading algorithms frequently, realism dictates that we use a connection
limit. The connection limit affects the push and pull mechanism differently: pull gets significantly
worse, and, paradoxically, push gets significantly better.

To see why push gets better, assume that the database is nearly quiescent, that is, only one
update is being spread, and that the connection limit is one. If two sites contact the same recipient
then one of the contacts is rejected. The recipient still gets the update, but with one less unit of
traffic. (We have chosen to measure traffic only in terms of updates sent. Some network activity
arises in attempting the rejected connection, but this is less' than that involved in transmitting
the update. We have, in essence, shortened a connection that was otherwise useless). How many
connections are rejected? Since an epidemic grows exponentially, we assume most of the traffic
occurs at the end when nearly everybody is infective and the probability of rejection is close to
e- 1 . So we would expect that push with connection limit one would behave like:

1
A = 1- e-1'

Simulations indicate that the counter variations are closest to this behavior (counter with feedback
being the most effective). The coin variations do not fit the above assumptions, since they do not
have most of their traffic occurring when nearly all sites are infective. Nevertheless they still do
better than s = e-m . In all variations, since push on a nearly quiescent network works best with a
connection limit of 1 it seems worthwhile to enforce this limit even if more connections are possible.

Pull gets worse with a connection limit, because its good performance depends on every site
being a recipient in every cycle. As soon as there is a finite connection failure probability 8, the
asymptotics of pull changes. Assuming, as before, that almost all the traffic occurs when nearly all
sites are infective, then the chance of a site missing an update during this active period is roughly:

A = -ln8.

Fortunately, with only modest-sized connection limits, the probability of failure becomes extremely
small, since the chance of a site having j connections in a cycle is e-1 / j!.

Hunting. If a connection is rejected then the choosing site can "hunt" for alternate sites. Hunting
is relatively inexpensive and seems to improve all connection-limited cases. In the extreme case,
a connection limit of 1 with infinite hunt limit results in a complete permutation. Push and pull
then become equivalent, and the residue is very small.

XEROX PARC, CSL-89-1, JANUARY 1989

12 EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE

1.5 Backing Up a Complex Epidemic with Anti-entropy

We have seen that a complex epidemic algorithnl can spread updates rapidly with very low
network traffic. Unfortunately, a complex epidemic can fail; that is, there is a nonzero probability
that the number of infective sites will fall to zero while some sites remain susceptible. This event
can be made extremely unlikely; nevertheless, if it occurs, the system will be in a stable state in
which an update is known by some, but not all, sites. To eliminate this possibility, anti-entropy
can be run infrequently to back up a complex epidemic, just as it is used in the Clearinghouse to
back up direct mail. This ensures with probC;1bility 1 that every update eventually reaches (or is
superseded at) every site.

When anti-entropy is used as a backup mechanism, there is a significant advantage in using
a complex epidemic such as rumor mongering rather than direct mail for initial distribution of
updates. Consider what should be done if a missing update is discovered when two sites perform
anti-entropy. A conservative response would be to do nothing (except make the databases of the
two sites consistent, of course), relying on anti-entropy eventually to deliver the update to all sites.
A more aggressive response would be to redistribute the update, using whatever mechanism is
used for the initial distribution; e.g., mail it to all other sites or make it a hot rumor again. The
conservative approach is adequate in the usual case that the update is known at all but a few sites.
However, to deal with the occasional complete failure of the initial distribution, a redistribution
step is desirable.

Unfortunately, the cost of redistribution by direct mail can be very high. The worst case
occurs when the initial distribution manages to deliver an update to approximately half the sites,
so that on the next anti-entropy cycle each of 0 (n) sites attempts to redistribute the update by
mailing it to all n sites, generating O(n2) mail messages. The Clearinghouse originally implemented
redistribution, but we were forced to eliminate it because of its high cost.

Using rumor mongering instead of direct mail would greatly reduce the expected cost of redis
tribution. Rumor mongering is ideal for the simple case in which only a few sites fail to receive an
update, since a single hot rumor that is already known at nearly all sites dies out quickly without
generating much network traffic. It also behaves well in the worst-case situation mentioned above:
if an update is distributed to approximately half the sites, then O(n) copies of the update will be
introduced as hot rumors in the next round of anti-entropy. This actually generates less network
traffic than introducing the rumor at a single site.

This brings us to an interesting way of combining rumor mongering and anti-entropy. Recall
that we described earlier a variation of anti-entropy called peel back that required an additional
index of the database in timestamp order. The idea was to have sites exchange updates in reverse
timestamp order until they reached checksum agreement on their entire databases. Peel back and
rumor mongering can be combined by keeping the updates in a doubly-linked list rather than a
search tree. Whereas before we needed a search tree to maintain reverse timestamp order, we now
use a doubly-linked list to maintain a local activity order: sites send updates according to their
local list order, and they receive the usual rumor feedback that tells them when an update was
useful. The useful updates are moved to the front of their respective lists, while the useless updates
slip gradually deeper in the lists. This combined variation is better than peel back alone because:
1) it avoids the extra index, and 2) it behaves well when a network partitions and rejoins. It is
better than rumor mongering alone because it has no failure probability. In practice one would
probably not send one update at a time~ but batch together a collection of updates from the head
of the list. This set is analogous to the hot rumor list of rumor mongering, but membership is no

XEROX PARC, CSL-89-1, JANUARY 1989

EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE 13

longer a binary nlatter since if the first batch fails to reach checksum agreement, then more batches
are sent. If necessary, any update in the database can become a hot rumor again.

2. Deletion and Death Certificates

U sing either anti-entropy or rumor mongering, we cannot delete an item from the database
simply by removing a local copy of the item, expecting the absence of the item to spread to
other sites. Just the opposite will happen: the propagation mechanism will spread old copies of
the item from elsewhere in the database back to the site where we have deleted it. Unless we
can simultaneously delete all copies of an obsolete item from the database, it will eventually be
"resurrected" in this way.

To remedy this problem we replace deleted items with death certificates, which carry times
tamps and spread like ordinary data. During propagation, when old copies of deleted items meet
death certificates, the old items are removed. If we keep a death certificate long enough it even
tually cancels all old copies of its associated item. Unfortunately, this does not completely solve
the problem. We still must decide when to delete the death certificates themselves or they will
ultimately consume all available storage at the sites.

One strategy is to retain each death certificate until it can be determined that every site has
received it. Sarin and Lynch [Sa] describe a protocol for making this determination, based on the
distributed snapshot algorithm of Chandy and Lamport [Ch]. Separate protocols are needed for
adding and removing sites (Sarin and Lynch do not describe the site addition protocol in any detail).
If any site fails permanently between the creation of a death certificate and the completion of the
distributed snapshot, that death certificate cannot be deleted until the site removal protocol has
been run. For a network of several hundred sites this fact can be quite significant. In our experience,
there is a fairly'high probability that at any time some site will be down (or unreachable) for hours
or even days, preventing the distributed snapshot or site deletion algorithm from completing.

A much sinlpler strategy is to hold death certificates for some fixed time, such as 30 days, and
then discard them. With this scheme, we run the risk of obsolete items older than the threshold
being resurrected, as described above. There is a clear tradeoff between the amount of space
devoted to death certificates and the risk of obsolete items being resurrected: increasing the time
threshold reduces the risk but increases the amount of space consumed by death certificates.

2.1 Dormant Death Certificates

There is a distributed way of extending the time threshold back much further than the space on
anyone server would permit. This schelne, which we call dormant death certificates, is based on the
following observation. If a death certificate is older than the expected time required to propagate it
to all sites, then the existence of an obsolete copy of the corresponding data item anywhere in the
network is unlikely. We can delete very old death certificates at most sites, retaining "dormant"
copies at only a few sites. When an obsolete update encounters a dormant death certificate, the
death certificate can be "awakened" and propagated again to all sites. This operation is expensive,
but it will occur infrequently. In this way we can ensure that if a death certificate is present at any
site in the network, resurrection of the associated data item will not persist for any appreciable

XEROX PARC, CSL-89-1, JANUARY 1989

14 EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE

time. Note the analogy to an inlnlune reaction, with the awakened death certificates behaving like
antibodies.

The implementation uses two thresholds, 71 and 72, and attaches a list of r retention site
names to each death certificate. When a death certificate is created, its retention sites are chosen
at random. The death certificate is propagated by the same mechanism used for ordinary updates.
Each server retains all death certificates timestamped within 71 of the current time. Once 71

is reached, most servers delete the death certificate, but every server on the death certificate's
retention site list saves a dormant copy. Dormant death certificates are discarded when 71 + 72 is
reached.

(For simplicity we ignore the differences between sites' local clocks. It is realistic to assume
that the clock synchronization error is at most E < < 71. This has no significant effect on the
arguments.)

Dormant death certificates will occasionally be lost due to permanent server failures. For
example, after one server half-life the probability that all servers holding dormant copies of a given
death certificate have failed is 2-r • The value of r can be chosen to make this probability acceptably
small.

To compare this scheme to a scheme using a single fixed threshold 7, assume that the rate of
deletion is steady over time. For equal space usage, assuming 7 > 7}, we obtain

That is, there is O(n) improvement in the amount of history we can maintain. In our existing
system, this would enable us to increase the effective history from 30 days to several years.

At first glance, the dormant death certificate algorithm would appear to scale indefinitely.
Unfortunately, this is not the case. The problem is that the expected time to propagate a new
death certificate to all sites, which grows with n, will eventually exceed the threshold value 71,

which does not grow with n. While the propagation time is less than 71, it is seldom necessary
to reactiva.te old death certificates; after the propagation time grows beyond 71, reactivation of
old death certificates becomes more and more frequent. This introduces additional load on the
network for propagating the old death certificates, thereby further degrading the propagation time.
The ultimate result is catastrophic failure. To avoid such a failure, system parameters must be
chosen to keep the expected propagation time below 71. As described above, the time required
for a new update to propagate through the network using anti-entropy is expected to be O(logn).
This implies that for sufficiently large networks 71, and hence the space required at each server,
eventually must grow as O(Iogn).

2.2. Anti-Entropy with Dormant Death Certificates

If anti-entropy is used for distributing updates, dormant death certificates should not normally
be propagated during anti-entropy exchanges. Whenever a dormant death certificate encounters
an obsolete data item, however, the death certificate must be "activated" in some way, so it will
propagate to all sites and cancel the obsolete data item.

The obvious way to activate a death certificate is to set its· timestamp forward to the current
clock value. This approach might be acceptable in a system that did not allow deleted data items
to be "reinstated." In general it is incorrect, because somewhere in the network there could be
a legitimate update with a timestamp between the original and revised timestamps of the death

XEROX PARC, CSL-89-1, JANUARY 1989

EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE 15

certificate (e.g. an update reinstating the deleted item). Such an update would incorrectly be
cancelled by the reactivated death certificate.

To avoid this problem, we store a second timestamp, called the activation timestamp, with
each death certificate. Initially the ordinary and activation timestamps are the same. A death
certificate still cancels a corresponding data item if its ordinary timestamp is greater than the
timestamp of the item. However, the activation timestamp controls whether a death certificate is
considered dormant and how it propagates. Specifically, a death certificate is deleted (or considered
dormant by a site on its site list) when its activation timestamp grows older than 71; a dormant
death certificate is deleted when its activation timestamp grows older than 71 + 72; and a death
certificate is propagated by anti-entropy only if it is not dormant. To reactivate a death certificate,
we set its activation timestamp to the current time, leaving its ordinary timestamp unchanged.
This has the desired effect of propagating the reactivated death certificate without cancelling more
recent updates.

2.3. Rumor Mongering with Dormant Death Certificates

The activation timestamp mechanism described above for anti-entropy works equally well if
rumor mongering is used for distributing updates. Each death certificate is created as an active
rumor. Eventually it propagates through the network and becomes inactive at all sites. Whenever
a dormant death certificate encounters an obsolete data item at some site, the death certificate
is activated by setting its activation timestamp to the current time. In addition, it is made an
active rumor again. The normal rumor mongering mechanism then distributes the reactivated
death certificate throughout the network.

3. Spatial Distributions

Up to this point we have regarded the network as unifornl, but in reality the cost of sending
an update to a nearby site is much lower than the cost of sending the update to a distant site. To
reduce communication costs, we would like our protocols to favor nearby neighbors, but there are
drawbacks to too much local favoritism. It is easiest to begin exploring this tradeoff on a line.

Assume, for the moment, that the database sites are arranged on a linear network, and that
each site is one link from its nearest neighbors. If we were using only nearest neighbors for anti
entropy exchanges, then the traffic per link per cycle would be 0(1), but it would take O(n) cycles
to spread an update. At the other extreme, if we were using uniform random connections, then
the average distance of a connection would be O(n), so that even though the convergence would be
O(1ogn), the traffic per link per cycle would be O(n). In general, let the probability of connecting
to a site at distance d be proportional to d- a , where a is a parameter to be determined. Analysis
shows that the expected traffic per link is:

{

O(n),
O(n/logn),

T(n) = 0(n2- a),

O(logn),
0(1),

a < 1;
a= 1;
1 < a < 2;
a =2;
a> 2.

XEROX PARC, CSL-89-1, JANUARY 1989

16 EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE JVIAINTENANCE

Convergence times for the d-a. distribution are 111uch harder to COlnpute exactly. Infonnal equations
and simulations suggest that they follow the reverse pattern: for a > 2 the convergence is polyno111ial
in n, and for a < 2 the convergence is polynonlial in log n. This strongly suggests using a d- 2

distribution for spreading updates on a line, since both traffic and convergence would scale well as
n goes to infinity.

A realistic network bears little resemblance to the linear example used above (surprisingly,
small sections of the CIN are in fact linear, but the bulk of the network is 1110re highly connected),
so it is not immediately obvious how to· generalize the d- 2 distribution. The above reasoning
can be generalized to higher dimensional rectilinear Ineshes of sites, suggesting good converge11ce
(polyno111ial in log n) with distributio11s as tight as d-2D , where D is the dimension of the 111esh.
Moreover, the traffic drops to O(1ogn) as soon as the distribution is d-(D+l), so we have a broader
region of good behavior, but it is dependent on the dimension of the mesh, D. This observation led
us to consider letting each site s independently choose connections according to a distribution that
is a function of Q s (d), where Q s (d) is the cumulative number of sites at distance d or less from s. On
a D-dimensional mesh, Qs(d) is 8(dD), so that a distribution like l/Qs(d)2 is 8(d-2D), regardless
of the dimension of the mesh. We conjectured that the Qs(d) function's ability to adapt to the
dimension of a mesh would make it work well in an arbitrary network, and that the asymptotic
properties would make distributions between IjdQs(d) and 1/Qs(d)2 have the best scaling behavior.
The next section· describes further practical considerations for the choice of distribution and our
experience with 1 j Q s (d) 2 .

3.1 Spatial Distributions and Anti-Entropy

We argued above that a nonuniform spatial distribution can significantly reduce the traffic
generated by anti-entropy without unacceptably increasing its convergence time. The network
topologies considered were very regular: D-dimensional rectilinear grids.

Use of a nonuniform distribution becomes even more attractive when we consider the actual
CIN topology. In particular, the CIN includes small sets of critical links, such as a pair of transat
lantic links that are the only routes connecting nl sites in Europe to n2 sites in North America.
Currently nl is a few tens, and n2 is several hundred. Using a uniform distribution, the expected
number of conversations on these transatlantic links per round of anti-entropy is 2nln2/(nl + n2).
This is about 80 conversations, shared between the two links. By comparison, when averaged
over all links, the expected traffic per link per cycle is less than 6 conversations. It is the unac
ceptably high traffic on critical links, rather than the average traffic per link, that makes uniform
anti-entropy too costly for use in our system. This observation originally inspired our study of
nonuniform· spatial distributions.

To learn how network traffic could be reduced, we performed extensive simulations of anti
entropy behavior using the actual CIN topology and a number of different spatial distributions.

Preliminary results indicated that distributions parameterized by Q s (d) adapt well to the
"local dimension" of the network as suggested in Section 3, and perform significantly better than
distributions with any direct dependence on d. In particular, 1/Qs(d)2 outperforms IjdQs(d).
The results using spatial distributions of the form Qs(d)-a for anti-entropy were very encouraging.
However, early simulations of rumor mongering uncovered a few problem spots in the CIN topology
when spatial distributions were used.

After examining these results, we developed a slightly different class of distributions that are
less sensitive to sudden increases in Qs(d). These distributions proved to be more effective for both

XEROX PARC, CSL-89-1,· JANUARY 1989

EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE 17

anti-entropy and rumor mongering on the CIN topology. Informally, let each site s build a list
of the other sites sorted by their distance from s, and then select anti-entropy exchange partners
from the sorted list according to a function J(i). This function gives the probability of choosing
a site as a function of its position i in the list. For J we can use the spatial distribution function
that would be used on a uniform linear network. Of course, two sites at the same distance from
s in the real network (but at different positions in the list) should not be selected with different
probabilities. We can arrange for this by averaging the probabilities of selecting equidistant sites;
i.e., by selecting each of the sites at distance d with probability proportional 'to

",Q(d) .
(d) = LJi=Q(d-l)+l J(z)

P Q (d) - Q (d - 1) .

Letting J = i-a, where a is a parameter to be determined, and approximating the summation
by an integral, we obtain

Q(d _1)-a+l - Q(d)-a+l
p(d) ~ Q(d) - Q(d - 1) (3.1.1)

Note for a = 2 the right side of (3.1.1) reduces to

which is O(d-2D) on a D-dimensional mesh, as discussed in Section 3.

Sinlulation results reported in this and the next section use either uniform distributions or
distributions of the above form for selected values of a. (To avoid the singularity at Q(d) = 0 we
add one to Q(d) throughout equation (3.1.1).)

Table 4 suinnlarizes results for the CIN topology using push-pull anti-entropy with no con
nection limit. This table represents 250 runs" each propagating a single update introduced at a
randomly chosen site. The "Compare Traffic" figures represent the number of anti-entropy com
parisons per cycle, averaged over all network links and averaged separately for the transatlantic
link to Bushey, England. "Update 'fraffic" represents the total number of anti-entropy exchanges
in which the update had to be sent fronl one site to the other. (The distinction between compare
and update traffic can be significant if checksums are used for database comparison, as discussed
in Section 1.3).

Table 4. Sinlulation results for anti-entropy, no connection limit.

Spatial tla.'1t tave Compare 'fraffic Update Traffic
Distribution Average Bushey Average Bushey

uniform 7.8 5.3 5.9 75.7 5.8 74.4
a = 1.2 10.0 6.3 2.0 11.2 2.6 17.5
a = 1.4 10.3 6.4 1.9 8.8 2.5 14.1
a = 1.6 10.9 6.7 1.7 5.7 2.3 10.9
a = 1.8 12.0 7.2 1.5 3.7 2.1 7.7
a = 2.0 13.3 7.8 1.4 2.4 1.9 5.9

Two points are worth mentioning:

XEROX PARC, CSL-89-1, JANUARY 1989

18 EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE lVIAINTENANCE

1. Comparing the a = 2 results with the unifornl case, convergence tiIne tla..'!t degrades by less than
a factor of 2, while average traffic per round hnproves by a factor of Inore than 4. Arguably,
we could afford to perfornl anti-entropy twice as frequently with the nonunifornl distribution,
thereby getting an equivalent convergence rate with a factor of two inlprovenlent in average
traffic.

2. Again comparing the a = 2 results with the uniform case, the COlnpare traffic on the transat
lantic link falls from 75.7 to 2.4, a factor of Inore than 30. Traffic on this link is now less
than twice the mean. We view this as the 11l0St important benefit of nonunifornl distributions
for the CIN topology. Using this distribution, anti-entropy exchanges do not overload critical
network links.

The results in Table 4 assume no connection linlit. This assumption is quite unrealistic - the
actual Clearinghouse servers can support only a few anti-entropy connections at once. Table 5
gives simulation results under the most pessinlistic assulllption: connection limit of 1 and hunt
limit O. As above, the table represents 250 runs, each propagating a single update introduced at a
randomly chosen site.

Table 5. Simulation results for anti-entropy, connection linlit 1.

Spatial tlast ta.ve Compare Traffic Update Traffic
Distribution Average Bushey Average Bushey

uniform 11.0 7.0 3.7 47.5 5.8 75.2
a = 1.2 16.9 9.9 1.1 6.4 2.7 18.0
a = 1.4 17.3 10.1 1.1 4.7 2.5 13.7
a = 1.6 19.1 11.1 0.9 2.9 2.3 10.2
a = 1.8 21.5 12.4 0.8 1.7 2.1 7.0
a = 2.0 24.6 14.1 0.7 0.9 1.9 4.8

Note:

3. The "Compare Traffic" figures in Table 5 are significantly lower than those in Table 4, reflecting
the fact that fewer successful connections are established per cycle. The convergence times in
Table 5 are correspondingly higher than those in Table 4. These effects are more pronounced
with the less uniform distributions.

4. The total comparison traffic (which is the product of convergence time and "Compare Traffic")
does not change significantly when the connection limit is imposed; the compare traffic per
cycle decreases, while the number of cycles increases.

To summarize: using a spatial distribution with anti-entropy can significantly reduce traffic on
critical links that would be "hot spots" if a uniform distribution were used. The most pessimistic
connection limit slows convergence but does not significantly change the total amount of traffic
generated in distributing the update; it just slows down distribution of the update somewhat.

Based on our early simulation results, a nonuniform anti-entropy algorithm using a 1/Q(d)2
distribution was implemented as part of an internal release of the Clearinghouse service. The new
release has now been installed on the entire CIN and has produced dramatic improvements both
in network load generated by the Clearinghouse servers and in consistency' of their databases.

XEROX PARC, CSL-89-1, JANUARY 1989

EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE 19

3.2 Spatial Distributions and Rumors

Because anti-entropy effectively examines the entire database on each exchange, it is very
robust. For example, consider a spatial distribution such that for every pair (s, S/) of sites there
is a nonzero probability that s will choose to exchange data with S'. It is easy to show that anti
entropy converges with probability 1 using such a distribution, since under those conditions every
site eventually exchanges data directly with every other site.

Rumor mongering, on the other hand, runs to quiescence - every rumor eventually becomes
inactive, and if it has not spread to all sites by that time it will never do so. Thus it is not sufficient
that the site holding a new update eventually contact every other site; the contact must occur "soon
enough," or the update can fail to spread to all sites. This suggests that rumor mongering might
be less robust than anti-entropy against changes in spatial distribution and network topology. In
fact, we have found this to be the case.

Rumor mongering has a parameter that can be adjusted: as the spatial distribution is made
less uniform, we can increase the value of k in the rumor mongering algorithm to compensate.
For push-pull rumor mongering on the CIN topology, this technique is quite effective. We have
simulated the (Feedback, Counter, push-pull, No Connection. Limit) variation of rumor mongering
described in Section 1.4, using increasingly nonuniform spatial distributions. We found that once k
was adjusted to give 100% distribution in each of 200 trials, that the traffic and convergence times
were nearly identical to the results in Table 4. That is, there is a small finite k that achieves the
same results as k = 00.

The fact that rumor mongering achieves the same results as Table 4 is a stronger fact than it
might seem at first. The convergence times in Table 4 are given in cycles; however, the cost of an
anti-entropy cycle is a function of the database size, while the cost of a rumor mongering cycle is
a function of the number of active rumors in the system. Similarly, the compare traffic figures in
Table 4 have different meanings when interpreted as pertaining to anti-entropy or rumor mongering.
In general rumor mongering comparisons should be cheaper than anti-entropy comparisons, since
they need to examine only the list of hot rumors.

We conclude that a nonuniform spatial distribution can produce a worthwhile improvement in
the performance of push-pull rumor mongering, particularly the traffic on critical network links.

The push and pull variants of rumor mongering appear to be much more sensitive than push
pull to the combination of nonuniform spatial distribution and arbitrary network topology. Using
(Feedback, Counter, push, No Connection Limit) rumor mongering and the spatial distribution
(3.1.1) with a = 1.2, the value of k required to achieve 100% distribution in each of 200 simulation
trials was 36; convergence times were correspondingly high. Simulations for larger a values did not
complete overnight, so the attempt was abandoned.

We do not yet fully understand this behavior, but two simple examples illustrate the kind of
problem that can arise. Both examples rely on having isolated sites, fairly distant from the rest of
the network.

XEROX PARe, CSL-89-1, JANUARY 1989

20 EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE

Figure 1 Figure 2

Ul

S S
U2 00----

t
Urn

First, consider a network like the one shown in Figure 1, in which two sites sand t are near
each other and slightly farther away from sites u}, ... , Urn, which are all equidistant from sand
equidistant from t. (It is easy to construct such a network, since we are not required to have a
database site at every network node). Suppose sand t use a Qs(d)-2 distribution to select partners.
If m is larger than k there is a significant probability that sand t will select each other as partners
on k consecutive cycles. If push rumor mongering is being used and an update has been introduced
at s or t, this results in a catastrophic failure - the update is delivered to sand t; after k cycles it
ceases to be a hot rumor without being delivered to any other site. If pull is being used and the
update is introduced in the main part of the network, there is a significant chance that each time
s or t contacts a site Ui, that site either does not yet know the update or has. known it so long that
it is no longer a hot rumor; the result is that neither s nor t ever learns of the update.

As a second example, consider a network like the one shown in Figure 2. Site s is connected to
the root Uo of a complete binary tree of n - 1 sites, with the distance from s to Uo greater than the
height of the tree. As above, suppose all sites use a Qs(d)-2 distribution to select rumor mongering
partners. If n is large relative to k, there is a significant probability that in k consecutive cycles
no site in the tree will attempt to contact s. Using push rumor mongering, if an update has been
introduced at some node of the tree, the update may fail to be delivered to s until it has ceased to
be a hot rumor anywhere.

More study will be needed before the relation between spatial distribution and irregular net
work topology is fully understood. The examples and simulation results above emphasize the need
to back up rumor mongering with anti-entropy to guarantee complete coverage. Given such a guar
antee, however, push-pull rumor mongering with a spatial distribution appears quite attractive for
the CIN.

4. Conclusions

It is possible to replace complex deterministic algorithms for replicated database consistency
with simple randomized algorithms that require few guarantees from the underlying communication
system. The randomized anti-entropy algorithm has been implemented on the Xerox Corporate
Internet providing impressive performance improvements both in achieving consistency and reduc
ing network overhead traffic. By using a well chosen spatial distribution for selecting anti-entropy
partners, the implemented algorithm reduces average link traffic by a factor of more than 4 and

XEROX PARC, CSL-89-1, JANUARY 1989

EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE 21

traffic on certain critical links by a factor of 30 when compared with an algorithm using uniform
selection of partners.

The observation that anti-entropy behaves like a simple epidemic led us to consider other
epidemic-like algorithms such as rumor mongering, which shows promise as an efficient replacement
for the initial mailing step for distributing updates. A backup anti-entropy scheme easily spreads
the updates to the few sites that do not receive them as a rumor. In fact, it is possible to combine
a peel back version of anti-entropy with rumor mongering, so that rumor mongering never fails to
spread an update completely.

N either the epidemic algorithms nor the direct mail algorithms can correctly spread the absence
of an item without assistance from death certificates. There is a trade-off between the retention
time for death certificates, the storage space consumed, and the likelihood of old data undesir
ably reappearing in the database. By retaining dormant death certificates at a few sites we can
significantly improve the network's immunity to obsolete data at a reasonable storage cost.

There are more issues to be explored. Pathological network topologies present performance
problems. One solution would be to find algorithms that work well with all topologies; failing
this, one would like to characterize the pathological topologies. Work still needs to be done on the
analysis and design of epidemics. So far we have avoided differentiating among the servers; better
performance might be achieved by constructing a dynamic hierarchy, in which sites at high levels
contact other high level servers at long distances and lower level servers at short distances. (The
key problem with such a mechanism is maintaining the hierarchical structure.)

5. Acknowledgments

We would like to thank Mike Paterson for his help with parts of the analysis, and Subhana
Menis and Laurel Morgan for threading the arcane production maze required to produce the camera
ready copy of this paper.

References

[Ab] Karl Abrahamson, Andrew Addler, Lisa Higham, David Kirkpatrick
Probabilistic Solitude Verification on a Ring.
Proceedings of the Fifth Annual ACM Symposium on Principles of Distributed Computing.
Calgary, Alberta, Canada. 1986, Pages 161-173.

[Aw] Baruch Awerbuch and Shimon Even.
Efficient and Reliable Broadcast is Achievable in an Eventually Connected Network.
Proceedings of the Third Annual ACM Symposium on Principles of Distributed Computing.
Vancouver, B.C., Canada. 1984, Pages 278-281.

[Ba] Norman T. J. Bailey.
The Mathematical Theory of Infectious Diseases and its Applications (second edition).
Hafner Press, Second Edition, 1975.

XEROX PARC, CSL-89-1, JANUARY 1989

22 EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE

[Be83] M. Ben-Or.
Another Advantage of Free Choice.
Proceedings of the Second Annual ACM Symposium on Principles
of Distributed Computing.
Montreal, Quebec, Canada. 1983.

[Be85] M. Ben-Or
Fast Asynchronous Byzantine Agreement.
Proceedings of the Fourth Annual ACM Symposium on Principles
of Distributed Computing.
Minaki, Ontario, Canada. 1985, Pages 149-151.

[Bi] A. D. Birrell, R. Levin, R. M. Needham, and M. D. Schroeder.
Grapevine, An Exercise in Distributed Computing.
Communications of the ACM 25(4):260-274, 1982.

[Ch] K. M. Chandy and L. Lamport.
Distributed Snapshots: Determining Global States of Distributed Systems.
ACM Transactions on Computing Systems 3(1):63-75 1985

[Fr] J. C. Frauenthal.
Mathematical Modeling in Epidemiology, Pages 12-24.
Springer-Verlag, 1980.

[Gi] D. K. Gifford.
Weighted Voting for Replicated Data.
Proceedings of the Seventh Symposium on Operating Systems Principles ACM SIGOPS.
Pacific Grove, California. 1979, Pages 150-159.

[Jo] P. R. Johnson and R. H. Thomas.
The Maintenance of Duplicate Databases.
Bolt Beranek and Newman Inc., Arpanet Request for Comments (RFC)
677, 1975.

[La] Butler W. Lampson.
Designing a Global Name Service.
Proceedings of the Fifth Annual ACM Symposium on Principles of Distributed Computing.
Calgary, Alberta, Canada. 1986, Pages 1-10.

[Mo] P. Mockapetris.
The domain name system.
Proceedings IFIP 6.5 International Symposium on Computer Messaging,
Nottingham, England, May 1984.
Also available as:
USC Information Sciences Institute,
Report ISI/RS-84-133, June 1984.

[Op] Derek C. Oppen and Yogen K. Dalal.
The Clearinghouse: A Decentralized Agent for Locating Named Objects in a Distributed
Environment.
Xerox Technical Report: OPD-T8103, 1981.

XEROX PARC, CSL-89-1, JANUARY 1989

EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE

[Pi] Boris Pittel.
On Spreading a Rumor.
SIAM Journal of Applied Mathematics 47(1):213-223, 1987.

'[Ra] Michael O. Rabin.
Randomized Byzantine Generals.
24th Annual Symposium on Foundations of Computer Science.
IEEE Computer Society, 1983, Pages 403-409.

[Sa] S. K. Sarin and N. A. Lynch.
Discarding Obsolete Information in a Replicated Database System.
IEEE Transactions on Software Engineering SE-13(1):39-47 1987.

XEROX PARC, CSL-89-1, JANUARY 1989

23

0'

