

12 EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE

1.5 Backing Up a Complex Epidemic with Anti-entropy

We have seen that a complex epidemic algorithnl can spread updates rapidly with very low
network traffic. Unfortunately, a complex epidemic can fail; that is, there is a nonzero probability
that the number of infective sites will fall to zero while some sites remain susceptible. This event
can be made extremely unlikely; nevertheless, if it occurs, the system will be in a stable state in
which an update is known by some, but not all, sites. To eliminate this possibility, anti-entropy
can be run infrequently to back up a complex epidemic, just as it is used in the Clearinghouse to
back up direct mail. This ensures with probC;1bility 1 that every update eventually reaches (or is
superseded at) every site.

When anti-entropy is used as a backup mechanism, there is a significant advantage in using
a complex epidemic such as rumor mongering rather than direct mail for initial distribution of
updates. Consider what should be done if a missing update is discovered when two sites perform
anti-entropy. A conservative response would be to do nothing (except make the databases of the
two sites consistent, of course), relying on anti-entropy eventually to deliver the update to all sites.
A more aggressive response would be to redistribute the update, using whatever mechanism is
used for the initial distribution; e.g., mail it to all other sites or make it a hot rumor again. The
conservative approach is adequate in the usual case that the update is known at all but a few sites.
However, to deal with the occasional complete failure of the initial distribution, a redistribution
step is desirable.

Unfortunately, the cost of redistribution by direct mail can be very high. The worst case
occurs when the initial distribution manages to deliver an update to approximately half the sites,
so that on the next anti-entropy cycle each of 0 (n) sites attempts to redistribute the update by
mailing it to all n sites, generating O(n2) mail messages. The Clearinghouse originally implemented
redistribution, but we were forced to eliminate it because of its high cost.

Using rumor mongering instead of direct mail would greatly reduce the expected cost of redis
tribution. Rumor mongering is ideal for the simple case in which only a few sites fail to receive an
update, since a single hot rumor that is already known at nearly all sites dies out quickly without
generating much network traffic. It also behaves well in the worst-case situation mentioned above:
if an update is distributed to approximately half the sites, then O(n) copies of the update will be
introduced as hot rumors in the next round of anti-entropy. This actually generates less network
traffic than introducing the rumor at a single site.

This brings us to an interesting way of combining rumor mongering and anti-entropy. Recall
that we described earlier a variation of anti-entropy called peel back that required an additional
index of the database in timestamp order. The idea was to have sites exchange updates in reverse
timestamp order until they reached checksum agreement on their entire databases. Peel back and
rumor mongering can be combined by keeping the updates in a doubly-linked list rather than a
search tree. Whereas before we needed a search tree to maintain reverse timestamp order, we now
use a doubly-linked list to maintain a local activity order: sites send updates according to their
local list order, and they receive the usual rumor feedback that tells them when an update was
useful. The useful updates are moved to the front of their respective lists, while the useless updates
slip gradually deeper in the lists. This combined variation is better than peel back alone because:
1) it avoids the extra index, and 2) it behaves well when a network partitions and rejoins. It is
better than rumor mongering alone because it has no failure probability. In practice one would
probably not send one update at a �t�i�m�e�~� but batch together a collection of updates from the head
of the list. This set is analogous to the hot rumor list of rumor mongering, but membership is no

XEROX PARC, CSL-89-1, JANUARY 1989

EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE 13

longer a binary nlatter since if the first batch fails to reach checksum agreement, then more batches
are sent. If necessary, any update in the database can become a hot rumor again.

2. Deletion and Death Certificates

U sing either anti-entropy or rumor mongering, we cannot delete an item from the database
simply by removing a local copy of the item, expecting the absence of the item to spread to
other sites. Just the opposite will happen: the propagation mechanism will spread old copies of
the item from elsewhere in the database back to the site where we have deleted it. Unless we
can simultaneously delete all copies of an obsolete item from the database, it will eventually be
"resurrected" in this way.

To remedy this problem we replace deleted items with death certificates, which carry times
tamps and spread like ordinary data. During propagation, when old copies of deleted items meet
death certificates, the old items are removed. If we keep a death certificate long enough it even
tually cancels all old copies of its associated item. Unfortunately, this does not completely solve
the problem. We still must decide when to delete the death certificates themselves or they will
ultimately consume all available storage at the sites.

One strategy is to retain each death certificate until it can be determined that every site has
received it. Sarin and Lynch [Sa] describe a protocol for making this determination, based on the
distributed snapshot algorithm of Chandy and Lamport [Ch]. Separate protocols are needed for
adding and removing sites (Sarin and Lynch do not describe the site addition protocol in any detail).
If any site fails permanently between the creation of a death certificate and the completion of the
distributed snapshot, that death certificate cannot be deleted until the site removal protocol has
been run. For a network of several hundred sites this fact can be quite significant. In our experience,
there is a fairly'high probability that at any time some site will be down (or unreachable) for hours
or even days, preventing the distributed snapshot or site deletion algorithm from completing.

A much sinlpler strategy is to hold death certificates for some fixed time, such as 30 days, and
then discard them. With this scheme, we run the risk of obsolete items older than the threshold
being resurrected, as described above. There is a clear tradeoff between the amount of space
devoted to death certificates and the risk of obsolete items being resurrected: increasing the time
threshold reduces the risk but increases the amount of space consumed by death certificates.

2.1 Dormant Death Certificates

There is a distributed way of extending the time threshold back much further than the space on
anyone server would permit. This schelne, which we call dormant death certificates, is based on the
following observation. If a death certificate is older than the expected time required to propagate it
to all sites, then the existence of an obsolete copy of the corresponding data item anywhere in the
network is unlikely. We can delete very old death certificates at most sites, retaining "dormant"
copies at only a few sites. When an obsolete update encounters a dormant death certificate, the
death certificate can be "awakened" and propagated again to all sites. This operation is expensive,
but it will occur infrequently. In this way we can ensure that if a death certificate is present at any
site in the network, resurrection of the associated data item will not persist for any appreciable

XEROX PARC, CSL-89-1, JANUARY 1989

14 EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE

time. Note the analogy to an inlnlune reaction, with the awakened death certificates behaving like
antibodies.

The implementation uses two thresholds, 71 and 72, and attaches a list of r retention site
names to each death certificate. When a death certificate is created, its retention sites are chosen
at random. The death certificate is propagated by the same mechanism used for ordinary updates.
Each server retains all death certificates timestamped within 71 of the current time. Once 71

is reached, most servers delete the death certificate, but every server on the death certificate's
retention site list saves a dormant copy. Dormant death certificates are discarded when 71 + 72 is
reached.

(For simplicity we ignore the differences between sites' local clocks. It is realistic to assume
that the clock synchronization error is at most E < < 71. This has no significant effect on the
arguments.)

Dormant death certificates will occasionally be lost due to permanent server failures. For
example, after one server half-life the probability that all servers holding dormant copies of a given
death certificate have failed is 2-r • The value of r can be chosen to make this probability acceptably
small.

To compare this scheme to a scheme using a single fixed threshold 7, assume that the rate of
deletion is steady over time. For equal space usage, assuming 7 > 7}, we obtain

That is, there is O(n) improvement in the amount of history we can maintain. In our existing
system, this would enable us to increase the effective history from 30 days to several years.

At first glance, the dormant death certificate algorithm would appear to scale indefinitely.
Unfortunately, this is not the case. The problem is that the expected time to propagate a new
death certificate to all sites, which grows with n, will eventually exceed the threshold value 71,

which does not grow with n. While the propagation time is less than 71, it is seldom necessary
to reactiva.te old death certificates; after the propagation time grows beyond 71, reactivation of
old death certificates becomes more and more frequent. This introduces additional load on the
network for propagating the old death certificates, thereby further degrading the propagation time.
The ultimate result is catastrophic failure. To avoid such a failure, system parameters must be
chosen to keep the expected propagation time below 71. As described above, the time required
for a new update to propagate through the network using anti-entropy is expected to be O(logn).
This implies that for sufficiently large networks 71, and hence the space required at each server,
eventually must grow as O(Iogn).

2.2. Anti-Entropy with Dormant Death Certificates

If anti-entropy is used for distributing updates, dormant death certificates should not normally
be propagated during anti-entropy exchanges. Whenever a dormant death certificate encounters
an obsolete data item, however, the death certificate must be "activated" in some way, so it will
propagate to all sites and cancel the obsolete data item.

The obvious way to activate a death certificate is to set its· timestamp forward to the current
clock value. This approach might be acceptable in a system that did not allow deleted data items
to be "reinstated." In general it is incorrect, because somewhere in the network there could be
a legitimate update with a timestamp between the original and revised timestamps of the death

XEROX PARC, CSL-89-1, JANUARY 1989

EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE 15

certificate (e.g. an update reinstating the deleted item). Such an update would incorrectly be
cancelled by the reactivated death certificate.

To avoid this problem, we store a second timestamp, called the activation timestamp, with
each death certificate. Initially the ordinary and activation timestamps are the same. A death
certificate still cancels a corresponding data item if its ordinary timestamp is greater than the
timestamp of the item. However, the activation timestamp controls whether a death certificate is
considered dormant and how it propagates. Specifically, a death certificate is deleted (or considered
dormant by a site on its site list) when its activation timestamp grows older than 71; a dormant
death certificate is deleted when its activation timestamp grows older than 71 + 72; and a death
certificate is propagated by anti-entropy only if it is not dormant. To reactivate a death certificate,
we set its activation timestamp to the current time, leaving its ordinary timestamp unchanged.
This has the desired effect of propagating the reactivated death certificate without cancelling more
recent updates.

2.3. Rumor Mongering with Dormant Death Certificates

The activation timestamp mechanism described above for anti-entropy works equally well if
rumor mongering is used for distributing updates. Each death certificate is created as an active
rumor. Eventually it propagates through the network and becomes inactive at all sites. Whenever
a dormant death certificate encounters an obsolete data item at some site, the death certificate
is activated by setting its activation timestamp to the current time. In addition, it is made an
active rumor again. The normal rumor mongering mechanism then distributes the reactivated
death certificate throughout the network.

3. Spatial Distributions

Up to this point we have regarded the network as unifornl, but in reality the cost of sending
an update to a nearby site is much lower than the cost of sending the update to a distant site. To
reduce communication costs, we would like our protocols to favor nearby neighbors, but there are
drawbacks to too much local favoritism. It is easiest to begin exploring this tradeoff on a line.

Assume, for the moment, that the database sites are arranged on a linear network, and that
each site is one link from its nearest neighbors. If we were using only nearest neighbors for anti
entropy exchanges, then the traffic per link per cycle would be 0(1), but it would take O(n) cycles
to spread an update. At the other extreme, if we were using uniform random connections, then
the average distance of a connection would be O(n), so that even though the convergence would be
O(1ogn), the traffic per link per cycle would be O(n). In general, let the probability of connecting
to a site at distance d be proportional to d- a , where a is a parameter to be determined. Analysis
shows that the expected traffic per link is:

{

O(n),
O(n/logn),

T(n) = 0(n2- a),

O(logn),
0(1),

a < 1;
a= 1;
1 < a < 2;
a =2;
a> 2.

XEROX PARC, CSL-89-1, JANUARY 1989

16 EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE JVIAINTENANCE

Convergence times for the d-a. distribution are 111uch harder to COlnpute exactly. Infonnal equations
and simulations suggest that they follow the reverse pattern: for a > 2 the convergence is polyno111ial
in n, and for a < 2 the convergence is polynonlial in log n. This strongly suggests using a d- 2

distribution for spreading updates on a line, since both traffic and convergence would scale well as
n goes to infinity.

A realistic network bears little resemblance to the linear example used above (surprisingly,
small sections of the CIN are in fact linear, but the bulk of the network is 1110re highly connected),
so it is not immediately obvious how to· generalize the d- 2 distribution. The above reasoning
can be generalized to higher dimensional rectilinear Ineshes of sites, suggesting good converge11ce
(polyno111ial in log n) with distributio11s as tight as d-2D , where D is the dimension of the 111esh.
Moreover, the traffic drops to O(1ogn) as soon as the distribution is d-(D+l), so we have a broader
region of good behavior, but it is dependent on the dimension of the mesh, D. This observation led
us to consider letting each site s independently choose connections according to a distribution that
is a function of Q s (d), where Q s (d) is the cumulative number of sites at distance d or less from s. On
a D-dimensional mesh, Qs(d) is 8(dD), so that a distribution like l/Qs(d)2 is 8(d-2D), regardless
of the dimension of the mesh. We conjectured that the Qs(d) function's ability to adapt to the
dimension of a mesh would make it work well in an arbitrary network, and that the asymptotic
properties would make distributions between IjdQs(d) and 1/Qs(d)2 have the best scaling behavior.
The next section· describes further practical considerations for the choice of distribution and our
experience with 1 j Q s (d) 2 .

3.1 Spatial Distributions and Anti-Entropy

We argued above that a nonuniform spatial distribution can significantly reduce the traffic
generated by anti-entropy without unacceptably increasing its convergence time. The network
topologies considered were very regular: D-dimensional rectilinear grids.

Use of a nonuniform distribution becomes even more attractive when we consider the actual
CIN topology. In particular, the CIN includes small sets of critical links, such as a pair of transat
lantic links that are the only routes connecting nl sites in Europe to n2 sites in North America.
Currently nl is a few tens, and n2 is several hundred. Using a uniform distribution, the expected
number of conversations on these transatlantic links per round of anti-entropy is 2nln2/(nl + n2).
This is about 80 conversations, shared between the two links. By comparison, when averaged
over all links, the expected traffic per link per cycle is less than 6 conversations. It is the unac
ceptably high traffic on critical links, rather than the average traffic per link, that makes uniform
anti-entropy too costly for use in our system. This observation originally inspired our study of
nonuniform· spatial distributions.

To learn how network traffic could be reduced, we performed extensive simulations of anti
entropy behavior using the actual CIN topology and a number of different spatial distributions.

Preliminary results indicated that distributions parameterized by Q s (d) adapt well to the
"local dimension" of the network as suggested in Section 3, and perform significantly better than
distributions with any direct dependence on d. In particular, 1/Qs(d)2 outperforms IjdQs(d).
The results using spatial distributions of the form Qs(d)-a for anti-entropy were very encouraging.
However, early simulations of rumor mongering uncovered a few problem spots in the CIN topology
when spatial distributions were used.

After examining these results, we developed a slightly different class of distributions that are
less sensitive to sudden increases in Qs(d). These distributions proved to be more effective for both

XEROX PARC, CSL-89-1,· JANUARY 1989

EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE 17

anti-entropy and rumor mongering on the CIN topology. Informally, let each site s build a list
of the other sites sorted by their distance from s, and then select anti-entropy exchange partners
from the sorted list according to a function J(i). This function gives the probability of choosing
a site as a function of its position i in the list. For J we can use the spatial distribution function
that would be used on a uniform linear network. Of course, two sites at the same distance from
s in the real network (but at different positions in the list) should not be selected with different
probabilities. We can arrange for this by averaging the probabilities of selecting equidistant sites;
i.e., by selecting each of the sites at distance d with probability proportional 'to

",Q(d) .
(d) = LJi=Q(d-l)+l J(z)

P Q (d) - Q (d - 1) .

Letting J = i-a, where a is a parameter to be determined, and approximating the summation
by an integral, we obtain

Q(d _1)-a+l - Q(d)-a+l
p(d) ~ Q(d) - Q(d - 1) (3.1.1)

Note for a = 2 the right side of (3.1.1) reduces to

which is O(d-2D) on a D-dimensional mesh, as discussed in Section 3.

Sinlulation results reported in this and the next section use either uniform distributions or
distributions of the above form for selected values of a. (To avoid the singularity at Q(d) = 0 we
add one to Q(d) throughout equation (3.1.1).)

Table 4 suinnlarizes results for the CIN topology using push-pull anti-entropy with no con
nection limit. This table represents 250 runs" each propagating a single update introduced at a
randomly chosen site. The "Compare Traffic" figures represent the number of anti-entropy com
parisons per cycle, averaged over all network links and averaged separately for the transatlantic
link to Bushey, England. "Update 'fraffic" represents the total number of anti-entropy exchanges
in which the update had to be sent fronl one site to the other. (The distinction between compare
and update traffic can be significant if checksums are used for database comparison, as discussed
in Section 1.3).

Table 4. Sinlulation results for anti-entropy, no connection limit.

Spatial tla.'1t tave Compare 'fraffic Update Traffic
Distribution Average Bushey Average Bushey

uniform 7.8 5.3 5.9 75.7 5.8 74.4
a = 1.2 10.0 6.3 2.0 11.2 2.6 17.5
a = 1.4 10.3 6.4 1.9 8.8 2.5 14.1
a = 1.6 10.9 6.7 1.7 5.7 2.3 10.9
a = 1.8 12.0 7.2 1.5 3.7 2.1 7.7
a = 2.0 13.3 7.8 1.4 2.4 1.9 5.9

Two points are worth mentioning:

XEROX PARC, CSL-89-1, JANUARY 1989

18 EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE lVIAINTENANCE

1. Comparing the a = 2 results with the unifornl case, convergence tiIne tla..'!t degrades by less than
a factor of 2, while average traffic per round hnproves by a factor of Inore than 4. Arguably,
we could afford to perfornl anti-entropy twice as frequently with the nonunifornl distribution,
thereby getting an equivalent convergence rate with a factor of two inlprovenlent in average
traffic.

2. Again comparing the a = 2 results with the uniform case, the COlnpare traffic on the transat
lantic link falls from 75.7 to 2.4, a factor of Inore than 30. Traffic on this link is now less
than twice the mean. We view this as the 11l0St important benefit of nonunifornl distributions
for the CIN topology. Using this distribution, anti-entropy exchanges do not overload critical
network links.

The results in Table 4 assume no connection linlit. This assumption is quite unrealistic - the
actual Clearinghouse servers can support only a few anti-entropy connections at once. Table 5
gives simulation results under the most pessinlistic assulllption: connection limit of 1 and hunt
limit O. As above, the table represents 250 runs, each propagating a single update introduced at a
randomly chosen site.

Table 5. Simulation results for anti-entropy, connection linlit 1.

Spatial tlast ta.ve Compare Traffic Update Traffic
Distribution Average Bushey Average Bushey

uniform 11.0 7.0 3.7 47.5 5.8 75.2
a = 1.2 16.9 9.9 1.1 6.4 2.7 18.0
a = 1.4 17.3 10.1 1.1 4.7 2.5 13.7
a = 1.6 19.1 11.1 0.9 2.9 2.3 10.2
a = 1.8 21.5 12.4 0.8 1.7 2.1 7.0
a = 2.0 24.6 14.1 0.7 0.9 1.9 4.8

Note:

3. The "Compare Traffic" figures in Table 5 are significantly lower than those in Table 4, reflecting
the fact that fewer successful connections are established per cycle. The convergence times in
Table 5 are correspondingly higher than those in Table 4. These effects are more pronounced
with the less uniform distributions.

4. The total comparison traffic (which is the product of convergence time and "Compare Traffic")
does not change significantly when the connection limit is imposed; the compare traffic per
cycle decreases, while the number of cycles increases.

To summarize: using a spatial distribution with anti-entropy can significantly reduce traffic on
critical links that would be "hot spots" if a uniform distribution were used. The most pessimistic
connection limit slows convergence but does not significantly change the total amount of traffic
generated in distributing the update; it just slows down distribution of the update somewhat.

Based on our early simulation results, a nonuniform anti-entropy algorithm using a 1/Q(d)2
distribution was implemented as part of an internal release of the Clearinghouse service. The new
release has now been installed on the entire CIN and has produced dramatic improvements both
in network load generated by the Clearinghouse servers and in consistency' of their databases.

XEROX PARC, CSL-89-1, JANUARY 1989

EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE 19

3.2 Spatial Distributions and Rumors

Because anti-entropy effectively examines the entire database on each exchange, it is very
robust. For example, consider a spatial distribution such that for every pair (s, S/) of sites there
is a nonzero probability that s will choose to exchange data with S'. It is easy to show that anti
entropy converges with probability 1 using such a distribution, since under those conditions every
site eventually exchanges data directly with every other site.

Rumor mongering, on the other hand, runs to quiescence - every rumor eventually becomes
inactive, and if it has not spread to all sites by that time it will never do so. Thus it is not sufficient
that the site holding a new update eventually contact every other site; the contact must occur "soon
enough," or the update can fail to spread to all sites. This suggests that rumor mongering might
be less robust than anti-entropy against changes in spatial distribution and network topology. In
fact, we have found this to be the case.

Rumor mongering has a parameter that can be adjusted: as the spatial distribution is made
less uniform, we can increase the value of k in the rumor mongering algorithm to compensate.
For push-pull rumor mongering on the CIN topology, this technique is quite effective. We have
simulated the (Feedback, Counter, push-pull, No Connection. Limit) variation of rumor mongering
described in Section 1.4, using increasingly nonuniform spatial distributions. We found that once k
was adjusted to give 100% distribution in each of 200 trials, that the traffic and convergence times
were nearly identical to the results in Table 4. That is, there is a small finite k that achieves the
same results as k = 00.

The fact that rumor mongering achieves the same results as Table 4 is a stronger fact than it
might seem at first. The convergence times in Table 4 are given in cycles; however, the cost of an
anti-entropy cycle is a function of the database size, while the cost of a rumor mongering cycle is
a function of the number of active rumors in the system. Similarly, the compare traffic figures in
Table 4 have different meanings when interpreted as pertaining to anti-entropy or rumor mongering.
In general rumor mongering comparisons should be cheaper than anti-entropy comparisons, since
they need to examine only the list of hot rumors.

We conclude that a nonuniform spatial distribution can produce a worthwhile improvement in
the performance of push-pull rumor mongering, particularly the traffic on critical network links.

The push and pull variants of rumor mongering appear to be much more sensitive than push
pull to the combination of nonuniform spatial distribution and arbitrary network topology. Using
(Feedback, Counter, push, No Connection Limit) rumor mongering and the spatial distribution
(3.1.1) with a = 1.2, the value of k required to achieve 100% distribution in each of 200 simulation
trials was 36; convergence times were correspondingly high. Simulations for larger a values did not
complete overnight, so the attempt was abandoned.

We do not yet fully understand this behavior, but two simple examples illustrate the kind of
problem that can arise. Both examples rely on having isolated sites, fairly distant from the rest of
the network.

XEROX PARe, CSL-89-1, JANUARY 1989

20 EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE

Figure 1 Figure 2

Ul

S S
U2 00----

t
Urn

First, consider a network like the one shown in Figure 1, in which two sites sand t are near
each other and slightly farther away from sites u}, ... , Urn, which are all equidistant from sand
equidistant from t. (It is easy to construct such a network, since we are not required to have a
database site at every network node). Suppose sand t use a Qs(d)-2 distribution to select partners.
If m is larger than k there is a significant probability that sand t will select each other as partners
on k consecutive cycles. If push rumor mongering is being used and an update has been introduced
at s or t, this results in a catastrophic failure - the update is delivered to sand t; after k cycles it
ceases to be a hot rumor without being delivered to any other site. If pull is being used and the
update is introduced in the main part of the network, there is a significant chance that each time
s or t contacts a site Ui, that site either does not yet know the update or has. known it so long that
it is no longer a hot rumor; the result is that neither s nor t ever learns of the update.

As a second example, consider a network like the one shown in Figure 2. Site s is connected to
the root Uo of a complete binary tree of n - 1 sites, with the distance from s to Uo greater than the
height of the tree. As above, suppose all sites use a Qs(d)-2 distribution to select rumor mongering
partners. If n is large relative to k, there is a significant probability that in k consecutive cycles
no site in the tree will attempt to contact s. Using push rumor mongering, if an update has been
introduced at some node of the tree, the update may fail to be delivered to s until it has ceased to
be a hot rumor anywhere.

More study will be needed before the relation between spatial distribution and irregular net
work topology is fully understood. The examples and simulation results above emphasize the need
to back up rumor mongering with anti-entropy to guarantee complete coverage. Given such a guar
antee, however, push-pull rumor mongering with a spatial distribution appears quite attractive for
the CIN.

4. Conclusions

It is possible to replace complex deterministic algorithms for replicated database consistency
with simple randomized algorithms that require few guarantees from the underlying communication
system. The randomized anti-entropy algorithm has been implemented on the Xerox Corporate
Internet providing impressive performance improvements both in achieving consistency and reduc
ing network overhead traffic. By using a well chosen spatial distribution for selecting anti-entropy
partners, the implemented algorithm reduces average link traffic by a factor of more than 4 and

XEROX PARC, CSL-89-1, JANUARY 1989

EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE 21

traffic on certain critical links by a factor of 30 when compared with an algorithm using uniform
selection of partners.

The observation that anti-entropy behaves like a simple epidemic led us to consider other
epidemic-like algorithms such as rumor mongering, which shows promise as an efficient replacement
for the initial mailing step for distributing updates. A backup anti-entropy scheme easily spreads
the updates to the few sites that do not receive them as a rumor. In fact, it is possible to combine
a peel back version of anti-entropy with rumor mongering, so that rumor mongering never fails to
spread an update completely.

N either the epidemic algorithms nor the direct mail algorithms can correctly spread the absence
of an item without assistance from death certificates. There is a trade-off between the retention
time for death certificates, the storage space consumed, and the likelihood of old data undesir
ably reappearing in the database. By retaining dormant death certificates at a few sites we can
significantly improve the network's immunity to obsolete data at a reasonable storage cost.

There are more issues to be explored. Pathological network topologies present performance
problems. One solution would be to find algorithms that work well with all topologies; failing
this, one would like to characterize the pathological topologies. Work still needs to be done on the
analysis and design of epidemics. So far we have avoided differentiating among the servers; better
performance might be achieved by constructing a dynamic hierarchy, in which sites at high levels
contact other high level servers at long distances and lower level servers at short distances. (The
key problem with such a mechanism is maintaining the hierarchical structure.)

5. Acknowledgments

We would like to thank Mike Paterson for his help with parts of the analysis, and Subhana
Menis and Laurel Morgan for threading the arcane production maze required to produce the camera
ready copy of this paper.

References

[Ab] Karl Abrahamson, Andrew Addler, Lisa Higham, David Kirkpatrick
Probabilistic Solitude Verification on a Ring.
Proceedings of the Fifth Annual ACM Symposium on Principles of Distributed Computing.
Calgary, Alberta, Canada. 1986, Pages 161-173.

[Aw] Baruch Awerbuch and Shimon Even.
Efficient and Reliable Broadcast is Achievable in an Eventually Connected Network.
Proceedings of the Third Annual ACM Symposium on Principles of Distributed Computing.
Vancouver, B.C., Canada. 1984, Pages 278-281.

[Ba] Norman T. J. Bailey.
The Mathematical Theory of Infectious Diseases and its Applications (second edition).
Hafner Press, Second Edition, 1975.

XEROX PARC, CSL-89-1, JANUARY 1989

22 EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE

[Be83] M. Ben-Or.
Another Advantage of Free Choice.
Proceedings of the Second Annual ACM Symposium on Principles
of Distributed Computing.
Montreal, Quebec, Canada. 1983.

[Be85] M. Ben-Or
Fast Asynchronous Byzantine Agreement.
Proceedings of the Fourth Annual ACM Symposium on Principles
of Distributed Computing.
Minaki, Ontario, Canada. 1985, Pages 149-151.

[Bi] A. D. Birrell, R. Levin, R. M. Needham, and M. D. Schroeder.
Grapevine, An Exercise in Distributed Computing.
Communications of the ACM 25(4):260-274, 1982.

[Ch] K. M. Chandy and L. Lamport.
Distributed Snapshots: Determining Global States of Distributed Systems.
ACM Transactions on Computing Systems 3(1):63-75 1985

[Fr] J. C. Frauenthal.
Mathematical Modeling in Epidemiology, Pages 12-24.
Springer-Verlag, 1980.

[Gi] D. K. Gifford.
Weighted Voting for Replicated Data.
Proceedings of the Seventh Symposium on Operating Systems Principles ACM SIGOPS.
Pacific Grove, California. 1979, Pages 150-159.

[Jo] P. R. Johnson and R. H. Thomas.
The Maintenance of Duplicate Databases.
Bolt Beranek and Newman Inc., Arpanet Request for Comments (RFC)
677, 1975.

[La] Butler W. Lampson.
Designing a Global Name Service.
Proceedings of the Fifth Annual ACM Symposium on Principles of Distributed Computing.
Calgary, Alberta, Canada. 1986, Pages 1-10.

[Mo] P. Mockapetris.
The domain name system.
Proceedings IFIP 6.5 International Symposium on Computer Messaging,
Nottingham, England, May 1984.
Also available as:
USC Information Sciences Institute,
Report ISI/RS-84-133, June 1984.

[Op] Derek C. Oppen and Yogen K. Dalal.
The Clearinghouse: A Decentralized Agent for Locating Named Objects in a Distributed
Environment.
Xerox Technical Report: OPD-T8103, 1981.

XEROX PARC, CSL-89-1, JANUARY 1989

EPIDEMIC ALGORITHMS FOR REPLICATED DATABASE MAINTENANCE

[Pi] Boris Pittel.
On Spreading a Rumor.
SIAM Journal of Applied Mathematics 47(1):213-223, 1987.

'[Ra] Michael O. Rabin.
Randomized Byzantine Generals.
24th Annual Symposium on Foundations of Computer Science.
IEEE Computer Society, 1983, Pages 403-409.

[Sa] S. K. Sarin and N. A. Lynch.
Discarding Obsolete Information in a Replicated Database System.
IEEE Transactions on Software Engineering SE-13(1):39-47 1987.

XEROX PARC, CSL-89-1, JANUARY 1989

23

0'

