
A Retrospective on the Dorado,
A High-Performance Personal Computer

Kenneth A. Pier

A Retrospective on the Dorado,
A High-Performance Personal Computer

Kenneth A. Pier

ISL·83·1 August 1983 [P83·000Q7]

@ Copyright Xerox Corporation 1983. All rights reserved.

Abstract: In late 1975, members of the Xerox Palo Alto Research Center embarked on the

specification of a high·performance successor to the Alto personal minicomputer, in use

since 1973. After four years, the resulting machine, called the Dorado, was in use within the

research community at PARCo This paper begins with an overview of the design goals, archi

tecture, and implementation of the Dorado and then provides a retrospective view and

critique of the Dorado project as a whole. The major machine architectural features are

evaluated, other project aspects such as design automation and management structures are

explained, a chronological history with milestones is included, and a variety of accomplish·

ments, red herrings, and shortfalls is discussed. The paper concludes with some specula

tions on what the project might have done differently and what might be done differently

today instead of in the late 1970s.

Although more than a dozen scientists and technicians contributed to the project, the

evaluative and speculative parts of this paper are the sole responsibility of the author.

CR categories: B.1.1 [Control Structures and Microprogramming]: Control Design Styles;

B.3.2 [Memory Structures]: Design Styles; B.4.3 [Input/Output and Data Communications]:

Interconnections (subsystems); C.1.3 [Processor Architectures]: Other Architecture Styles

Key words and phrases: architecture, processor, memory, cache, instruction fetch,

emulation, input/output, microprogram, pipeline, retrospective.

XEROX Xerox Corporation
Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

Table of Contents

1. Introduction

2. History

3. Design Goals

4. Architecture Overview

4.1 Processor Details

4.2 Memory Details

4.3 Instruction Fetch Unit Details

4.4 Input/Output Details

4.5 Packaging Overview

5. Retrospective

5.1 Processor retrospective

5.2 Memory Retrospective

5.3 IFU Retrospective

5.4 1/0 Retrospective

5.5 Debugging and Diagnostic Aids

5.6 Design Automation and Prototype Fabrication

5.7 Project Organization

6. Observations and Commentary

7. Speculation

Acknowledgements

Appendix A: Dorado Project Chronology

Appendix B: Dorado Project Personnel

References

1

2

3

4

20

31

34

36

37

38

39

RETROSPECfIVE ON THE DoRADO 1

1. Introduction

The machine reviewed in this paper, called the Dorado, was designed and implemented by the

Computer Science Laboratory (CSL) of the Xerox Palo Alto Research Center (PARC). It is currently

used by researchers in several laboratories working in most areas of computer science, including

programming systems, networks, database systems, VLSI design, graphics and imaging, office

automation, artificial intelligence, computational linguistics, and analysis of algorithms. These

researchers place a heavy emphasis on building usable prototype systems and many such systems,

both hardware and software, have been developed over the last ten years. Most systems are part of

a personal computing environment which is loosely coupled to other such environments, and to

service facilities for storage and printing, by a high-bandwidth communication network [27].

The Dorado provides the hardware base for the current generation of system research within

Xerox PARCo It supports a variety of high-level language environments and high-bandwidth 110

devices. Although the Dorado far exceeds the capabilities and cost of what is traditionally thought

of as a personal computer, it is personal in the sense that it is designed to be used by a single (expert)

user running multiple cooperating processes in an integrated programming environment. It has a

microprogrammed processor with a 60 nanosecond microinstruction cycle time, a high-speed cache,

memory map, large main memory, an instruction fetch/decode unit, and high-resolution monochrome

and color displays. The processor is shared among priority-ordered microcoded tasks, performing

microcode context switches on demand with no overhead. The memory subsystem is controlled by

a seven-stage pipeline. It can deliver a peak main-storage bandwidth of 530 million bits per second

to service fast I/O devices and cache misses, and has a cache with hit rates commonly over 99%.

The instruction fetch unit (IFU) speeds up the emulation of instructions by fetching, decoding, and

preparing later instructions in parallel with the execution of earlier ones. A writeable decoding

memory allows the IFU to be specialized to particular instruction sets. There are implementations of

instruction sets for the BCPL [27], Mesa [10], Interlisp [26], and Smalltalk [7] languages. The IFU is

implemented with a six-stage pipeline, and under favorable conditions can deliver instructions at a

peak rate of 16 million instructions per second. The machine is implemented using standard ECL

10K technology.

The Dorado has been extensively documented in three papers [13, 2, 14, collected in 12]. The

technical overview in this paper is excerpted from these papers. It begins by sketching the history of

the machine's development (Section 2), discusses the design goals for the architecture (Section 3),

and then summarizes the most important features of the processor, memory, IFU, and 110 subsystems

in tum (Section 4). The retrospective (Section 5) discusses the subsystems, debugging aids and

diagnostics, design automation and fabrication issues, and the project management and personnel

structure. General observations, comments, and rumination follow (Section 6). A final section offers

some speculation based on hindsight, and some attempt at foresight (Section 7).

XEROX PARC, ISL-83-1, AUGUST, 1983

2 REfROSPECfIVE ON THE DoRAOO

2. History

The Dorado is a descendant of a small personal computer called the Alto, which was designed

and built as an experimental machine during 1973 [27]. The Alto is a fairly simple machine, but it

has several features which have turned out to be important:

a microprogrammed processor that is efficiently shared among all the device controllers as

well as the virtual machine interpreter;

a high-resolution display system that uses a full bitmap stored in the Alto main memory;

a device for pointing at images on the display;

an interface to a high-bandwidth communication network.

The microarchitecture allows all the device controllers to share the full power of the processor,

rather than having independent access to the memory. As a result. controllers can be small and yet

the 110 interface provided to programs can be powerful. This concept of processor sharing is

fundamental to the Dorado as well.

It was clear by 1975 that a large and rapidly increasing amount of effort was going into

surmounting the Alto's limitations of space and speed, and its lack of virtual memory, rather than

into trying out research ideas in experimental systems. Researchers therefore began to design a new

machine aimed at relieving these burdens. During 1976 and 1977, design work on the Dorado

proceeded in the Computer Science Laboratory and the Systems Development Department

Requirements and contributions from parts of Xerox outside of Research affected the design

considerably; the memory bandwidth and processor throughput were substantially increased.

In 1977, implementation of the laboratory prototype for the Dorado began in the Computer

Science Laboratory. The prototype packaging and a design automation system had already been

implemented, and were used for constructing and debugging Dorado "Model 0." A small team of

people worked steadily on all aspects of the Dorado system until summer of 1978, when the prototype

successfully ran Alto software in an Alto emulation mode. During the summer and fall of 1978 the

lessons learned in debugging and microcoding the Model 0, together with the significant improvements

made in memory technology since the Model 0 design was frozen, were used to redesign and

reimplement nearly every section of the Dorado. Some serious design errors and a number of

annoyances to the microcoder were fixed, all the memories of the machine were substantially

expanded, and the basic cycle time was decreased. Dorado Modell came up in the spring of 1979.

During the next year, several copies of this machine were built in the stitch weld technology used

for the prototypes. Stitch welding works very well for prototypes, but is too expensive for even

modest production quantities. Its major advantages are packaging density and signal propagation

characteristics similar to those of production technologies, very rapid turnaround during development

(three days for a complete 300-chip board, a few hours for a modest change), and complete

compatibility with our design automation system.

At the same time, the design was transferred to multi wire circuit boards; the Manhattan wire

routing and lower impedance of this technology slowed the machine down by about 15%.

XEROX PARCo ISL-83-I, AUGUST. 1983

RETROSPECTIVE ON THE DoRADO 3

Approximately 25 Dorados were manufactured in this technology. By fall of 1982. a production line

was delivering Dorados to the Palo Alto Research Center at the rate of three or four per month. and

the production technology had successfully been transferred to multi-layer printed circuit boards that

would have been impractical just a few years before.

Since the power of the Dorado has made a substantial impact on the productivity of researchers

and system developers. the Computer Science and Imaging Sciences Laboratories have decided to

equip all members of the programming staff with personal Dorados.

Appendix A of this paper contains a chronology of the Dorado project. and Appendix B is a

tabulation of the people and their contributions.

3. Design Goals

The Dorado is intended to be a powerful but personal computing system supporting a single

user within a programming system that extends from the microinstruction level to an integrated

programming environment for a high-level language. It should be physically small and quiet enough

to occupy space near its users in an office or laboratory setting. and inexpensive enough to be

acquired in considerable numbers. These constraints on size. noise. and cost have a major effect on

the design. Not all of these design goals were successfully met, as the retrospective part of this paper

will discuss.

The Dorado is designed for efficient execution of multiple languages that are compiled into a

stream of byte codes [24]; this execution is called emulation. Such byte code compilers exist for Mesa

[10. 17]. Interiisp [1. 25] and Smalltalk [7]. The instruction fetch unit (IFU) fetches bytes from such

a stream. decodes them as instructions and operands. and provides the necessary control and data

information to the processor [14]. Further support for efficient emulation dictates a very fast

microcycle. a microinstruction powerful enough to allow interpretation of a simple macroinstruction

in a single microinstruction. and a cache with low latency and high throughput

Very high-bandwidth input/output capability is another major goal for the Dorado. In particular.

color graphics monitors, raster scanned printers. and high-speed communications are all part of the

research activities at Xerox; these devices typically have bandwidths ranging from 20- to 400-
megabits/second. Fast devices should not delay emulation too much. even though the two functions

compete for many of the same resources. Relatively slow devices must also be supported, without

tying up the high-bandwidth I/O system. These considerations clearly suggest that I/O activity and

emulation should proceed in parallel as much as possible. A memory system which supports these

requirements allows cache accesses for emulation and main storage references for 110 to proceed in

parallel. a cache reference to start in every microinstruction cycle. and a storage reference to start in

every main storage cycle. It must also be possible to integrate new device controllers into the Dorado

in a relatively straightforward way, by writing microcode and creating a small amount of new

device-specific hardware that can be plugged into the existing system.

XEROX PARC, ISLoSH, AUGUST, 1983

4 REfROSPECfIVE ON THE DoRADO

Relief of the bottlenecks commonly found in memory systems requires hardware support for

virtual memory, with a large virtual address space and correspondingly large real address space and

storage. In addition, the ability to evolve with advancing memory technologies is called for as

memory devices are expected to double and redouble in capacity over the lifetime of the Dorado.

However, since the architecture supports a single user using collections of cooperating processes with

a high degree of information sharing, the machine deliberately does not support multiple or protected

address spaces.

4. Architecture Overview

Figure 1 is a simplified block diagram of the Dorado. Aside from 110, the machine consists of

the processor, the IFU, and the memory system. Both the processor and the IFU can make memory

references and transfer data to and from the memory through the cache. Slow (low-bandwidth) 110

devices communicate with the processor, which in turn transfers their data to and from the cache.

Fast (high-bandwidth) devices communicate directly with storage, bypassing the cache most of the

time.

Instruction
Fetch Unit -

I 265 MBits/sec 265 MBits/sec Cache Slow input/output 16 bits/60 ns 16 bits/60 ns
Processor 8K-32K

""" 120 ns access bytes

I Keyboard I I Displays II Disk II Ethernet I
530 MBits/sec
256 bits/480 ns Storage

Fast input/output 1 .7 us access 512K-16M bytes

Figure 1: Dorado Block Diagram

For the most part, data is handled sixteen bits (one word) at a time. The relatively narrow

busses, registers, data paths, and memories which result from this choice help to keep the machine

compact This is especially important for the memory, which has a large number of busses. Packaging,

however, is not the only consideration. Speed dictates a heavily pipelined structure in any case, and

this parallelism in the time domain tends to compensate for the lack of parallelism in the space

domain. There are several pipelines, and they are generally able to start a new operation every cycle.

The memory, for instance, has two pipelines, the processor has two, the instruction fetch unit another.

Also, there are many independent busses: eight in the memory, half a dozen in the processor, three

XEROX PARC, ISL-83-!, AUGUST, 1983

RETROSPECfIVE ON THE DoRADO 5

in the IFU. These busses increase bandwidth and simplify scheduling. Large I/O bandwidth requires

multiple parallel busses in order to allow 110 activity and emulation to proceed in parallel. Keeping

the machine physically small also improves the speed, since physical distance (Le., wire length)

accounts for a considerable fraction of the basic cycle time. Finally, performance is often limited by

the cache hit rate, which cannot be improved, and may be reduced, by wider data paths (if the

number of bits in the cache is fixed).

Rather than putting processing capability in each I/O controller and using a shared bus or a

switch to access the memory, the Dorado shares the processor among all the 110 devices and the

emulator. This idea originated in the TX-2 computer [6] and is also used in the Alto. This processor

sharing is accomplished with 16 hardware-scheduled microcode processes called microtasks, or simply

tasks. Tasks have fixed priority. Most tasks serve a single I/O device, which raises a request line

when it wants service from its task. Hardware schedules the processor to serve the highest priority

request; control can switch from one task to another on every microinstruction with no overhead.

When no device is requesting service, the lowest priority task runs and does high-level language

emulation. To eliminate the time cost of multiplexing the processor among the tasks in this way, a

number of the machine's working registers are task-specific, that is, there is a copy for each task.

The implementation typically involves a single physical register, and a 16-element memory which is

addressed by the current task number and whose output is held in the register.

When no 110 device wants service, the emulator runs. To execute byte codes, the processor

gives the IFU an initial program counter, and subsequently receives a sequence of decoded instructions,

which are from sequential bytes except where the IFU has followed a branch. This sequence continues

until the processor resets the IFU with another program counter, usually due to a conditional branch

that causes the processor to change the locus of program control, or until a fault or interrupt is

detected. For each instruction the IFU supplies a microcode dispatch address (into which instructions

or exceptions are encoded), some bits of initial state for the processor, a sequence of field data values,

and the program counter value for the first byte of the instruction.

Instruction interpretation by the IFU is based on a definite model of how instructions are

encoded. Although this model is not specialized to the details of a particular target instruction set,

good performance depends on adherence to certain rules. The IFU deals with variable length

instructions of up to three bytes in length. Variable length instructions provide code compaction,

since frequent operations can be encoded as one-byte instructions. There is also a performance

payoff in cache and virtual memory systems, since the compaction enhances locality and thus reduces

cache misses and page faulting. Our experience has shown that byte codes provide a flexible format

for different languages without favoring a particular one. The choice of eight-bit bytes as the

encoding grain is a compromise among optimum encoding, the desire to keep code addresses short,

and simplicity of the hardware. A larger grain is highly undesirable, both because more than half

the instructions can fit into one byte, and because table lookup as a decoding technique is not feasible

XEROX PARC, ISL-8H, AUGUST, 1983

6 REfROSPECfIVE ON THE DoRADO

for units much larger than eight bits. A finer grain improves code compactness at the expense of

more complex instruction length calculation and memory word disassembly.

The memory system implements paged virtual memory with a maximum virtual address of 28

bits, depending on memory chip density. Memory references specify a 16- or 28- bit displacement,

and one of 32 base registers of 28 bits; the virtual address is the sum of the displacement and the

base. Virtual address translation, or mapping, is implemented by table lookup in a dedicated memory.

Main storage is the permanent home of data stored by the memory system. The storage is necessarily

slow (i.e., it has long latency, which means that it takes a long time to respond to a request), because

of its implementation in cheap but slow dynamic MOS RAMs. To make up for being slow, storage

is big, and it also has high-bandwidth, which is more important than latency for sequential references.

In addition, there is a cache which services non-sequential references with high-speed (low latency),

but is inferior to main storage in its other parameters. Deeper layers of virtual memory, such as

disk virtual memory, are not implemented in hardware.

With one exception (the IFU), all memory references are initiated by the processor, which acts

as a multiplexor controlling access to the memory and is the sole source of addresses. Once started,

a reference proceeds independently of the processor. Each one carries with it the number of its

originating microtask, which serves to identify the source or sink of any data transfer associated with

the reference. The actual transfer may take place much later, and each source or sink must be

continually ready to deliver or accept data on demand. It is possible for a microtask to have several

references outstanding, but order is preserved within each type of reference, so that the task number

plus some careful hardware bookkeeping is sufficient to match up data with references.

4.1 Processor Details

A detailed description of the processor appears in [13]; this subsection summarizes that material.

The processor includes the basic data, arithmetic, and control paths for the machine. It is a

microprogrammed unit using writeable control store containing 4096 36-bit microinstructions (34

instruction bits plus two parity check bits). Microinstructions are tightly encoded with subfields

often interpreted in several different ways depending on the type of instruction being executed.

There is a four-stage microinstruction execution pipeline; a block diagram of this pipeline appears

as Figure 2. The pipeline allows a new microinstruction to begin execution every microcycle (60

nanoseconds) and completes execution of a microinstruction in three microcycles.

Figure 3 is a detailed block diagram of the data section of the processor. Its major features

include 256 high-speed registers (RM on the diagram) and four 64-deep high-speed stacks (STACK)

accessed via the microinstruction. There is a 32-bit-wide shifter (Shifter) and masker for bit field

extraction/insertion or for handling bitmapped graphics. The ALU operates on 16-bit quantities.

There is also a set of temporary registers (T. Q, COUNT) for intermediate results. Numerous

independent busses (memory address, memory data, 10 data) allow communication with memory

and I/O devices simultaneously.

XEROX PARCo ISL-83-1, AUGUST. 1983

T-2

..... ...

RETROSPECfIVE ON THE DoRAOO 7

There are 16 tasks (priority levels) associated with microcode execution. Each task is normally

associated with some hardware and microcode which together implement a device controller. The

tasks have a fixed priority. from task 0 (lowest) to task 15 (highest). Device hardware can request

that the processor be switched to the associated task; such a wakeup request will be honored when

no requests of higher priority are outstanding. The set of wakeup requests is arbitrated within the

processor. and a lask switch from one task to another occurs on demand. typically every ten or

twenty microcycles when a high-speed device is running. Task arbitration logic is not shown in

Figure 3.

Microinstruction Pipeline

T-1 TO T1 T2 T3

I I
~ ~ -

.;a ~
R

Fetch from M operand
A r- e result

~ -~
operand ..,.. s microinstruction I fetch ~ modification u 1-, store

memory R .;a B r- '" I
t -- - -

first cycle i..-' second cycle third cycle

Timing Overlap
T·2 - T-l -TO -Tl -T2 -T3--T4

T·2 -T·l -TO -Tl--T2--T3--T4
T·2 -T-l -TO--Tl--T2--T3--T4

T-2 - T-l -TO--Tl--T2--T3 -T4
T-2 - T·l -TO--Tl -T2 -T3 -T4

T4

..... ...

T·2 - T·l -TO -Tl -T2 -T3 -T4

Time between Ts is 30 nsec. TO marks the time when the microinstruction is latched in the
microinstruction register and begins execution.

Figure 2: Microinstruction Pipeline and Timing Overlap

When a device acquires the processor (that is. the processor is running at the requested priority

level and executing the microcode for that task). the device will receive service from its microcode.

Eventually the microcode will block. relinquishing the processor to lower priority tasks until it next

requires service. While a given task is running. it has the exclusive attention of the processor. This

arrangement is similar in many ways to a conventional priority interrupt system. An important

difference is that the tasks are like coroutines or processes. rather than subroutines; when a task is

awakened. it continues execution at the point where it blocked. rather than restarting. at a fixed point

This ability to capture part of the state in the microprogram counter is very useful.

Task 0 is not associated with a device controller; its microcode implements the emulators

currently resident in the Dorado. Task 0 requests service from the processor at all times. but with

the lowest priority.

XEROX PARC, ISL-8H, AUGUST, 1983

8 REfROSPECTIVE ON THE DoRADO

MemOata (MO) (FetchReg)

data from memory
Base ~
Regs Adder~============~r~

.. add ress to memo ry ---IFU
B '-I MemBase*

<.I"

IOAddress :::.: ,
TIOA* I ...

.... :
COUNT ... ". A ... ,. ,

SHIFTCTL

F~ ,

FF , 1----..., small
constant

...

IFU

<I :::. RBasJ'
1t--+-R- A-d-dl-3;"! to RESULT

ALUOP

-W
ALUFM

" .'V~
11=tI====F={==ILoad~~ =I RM 1= ~ rRlnr~~~~===;~ 'Ji

control =lSTACKI= {bypass}

also to RESULT .L)\

Raddr]+

"

1;===H===F=={=~~~~~cl

Stack I
pointer I

Q
{bypass}

shift 1 bit left or right

_FF~ ________ ~F~F~,~======~ ,
B

RESULT

..
to I/O
devices

tolfrom devices

to/from
control,
memory,
IFU

-{] register or memory main bus (A, B, RESULT, Mem or 10 Data)
other 16 bit path

----11 latch

==Il multiplexor latch
{control}

__ -II multiplexor
{control}

narrower data path
* task specific

Figure 3: Processor Data Section

XEROX PARCo ISL-83-1. AUGUST. 1983

RETROSPECTIVE ON THE DoRADO 9

In order to allow immediate task switching, the processor must be able to save and restore state

with no microinstruction overhead. This is accomplished by keeping volatile state information

throughout the processor not in a single rank of registers but in task-specific registers. These are

implemented with high-speed memory that is addressed by a task number. Examples of task-specific

registers are the microcode program counter, the branch condition register, the microcode subroutine

link register, the memory data register, and a temporary storage register (T) for each task. The

number of the task which will execute in the next microcycle is broadcast throughout the processor

and used to address the task-specific registers. Thus, data can be fetched from the high-speed

task-specific memories and be available for use in the next cycle. Not all registers are task-specific.

There are two distinct pipelines in the Dorado processor. The main one fetches and executes

microinstructions. The other handles task switching, arbitrates wakeup requests, and broadcasts the

next task number to the rest of the Dorado. Each pipeline is synchronous, and there is no waiting

between stages.

4.2 Memory Details

This subsection is excerpted from [2]. Many interesting problems and solutions within the

memory subsystem deal with pipeline management, hardware resource conflict resolution, and

processor/memory/IO communication. [2] describes these issues in detail; they are too lengthy to

recount here.

Reference

Fetch(a)

Store(d. a)

1/0Re04.a)

1/0Write(a)

Pre/etch(a)

Flush(a)

MapRe04.a)

MapWrite(d. a)

DummyRej(a)

Task

any task

any task

I/O task only

110 task only

any task

emulator only

emulator only

emulator only

any task

Effect

fetches one word of data from virtual address a in the

cache and delivers it to FetchReg

stores data word d at virtual address a in the cache

reads a 16-word data block at virtual address a in

storage and delivers it to a fast output device

takes a data block from a fast input device and writes

it at virtual address a in storage

forces the data block at virtual address a into the cache

removes from the cache (storing if dirty) the data block

at virtual address a

reads the map entry addressed by virtual address a

writes d into the map entry addressed by virtual address

a
makes a pseudo-reference guaranteed not to reference

storage or alter the cache (useful for diagnostics)

Table 1: Memory Reference Operations

XEROX PARCo ISL·83-I. AUGUST. 1983

10 REfROSPECfIVE ON THE DoRADO

Cache Data Paths

from Processor

StoreReg

CacheD
(Cache Data)

III

I FetchReg*

v i-
to IFU to Processor

• task specific

__ -I~~ word-at-a-time,
16-bit-wide path

==~~ block-at-a-time,
16-bit-wide path

:;;;;;;;;:;;;;;;;;!$'~ word or block
path ¥ multiplexor

Storage Data Paths

Fast Input Device

FastlnBus

EcGen
(Check-bit Generator)

WriteBus

Main
Storage

ReadBus

EcCor
(Error Corrector)

FastOutBus

Fast Output Device

Figure 4: Memory System Data Paths

XEROX PARC, ISL-83-I, AUGUST, 1983

RETROSPECTIVE ON THE DoRADO 11

Recall that the system implements a straightforward paged virtual memory with a single level of

mapping implemented via table lookup. All references originate in the processor (except IFU fetches)

and deal in virtual addresses. The memory reference operations are shown in Table 1 above.

Figure 4 is a picture of the memory main data paths. A Fetch from the cache delivers data to

a memory data register called FetchReg, from which it can be retrieved at any later time; since

FetchReg is task-specific, separate tasks can make their cache references independently. An VORead

reference delivers a 16-word block of data from storage to the FastOutBus by way of the error

corrector, tagged with the identity of the requesting task; the associated output device is expected to

monitor this bus and use the data when it appears. Similarly, the processor can Store one word of

data into the cache, or do an VOWrite reference which demands a block of data from an input

device and sends it to storage (by way of the error check-bit generator). There is also a Prefetch

reference, which brings a block into the cache. Fetch. Store, and Pre/etch are called cache references.

There are special references to flush data from the cache and to allow map entries to be read and

written.

A cache reference usually hitS; it finds the referenced word in the cache. If it misses, a main

storage operation must be done to bring the block containing the requested word into the cache. In

addition, 110 references always do storage operations. There are two kinds of storage· operations,

read and write. The former transfers a block out of storage to the cache or 110 system; the latter

transfers a block into storage from the cache or 110 system.

I
Cache pipeline

EmA)
Misses,
1/0 refs,
Victim writes

1/0 writes
Victim writes

Storage pipeline

Figure 5: Cache and Storage Pipelines

Figure 5 shows the pipelined organization of the memory system. There are two pipelines.

One, consisting of the ADDRESS and HITDATA stages, handles cache references; the other, containing

MAP, WRITETR, STORAGE, READTRl, and READTR2 takes care of storage references. A brief explanation

of the function of each section follows.

XEROX PARC, ISL-83-1, AUGUST, 1983

Time

Ons

30

60

90

120

150

12 RETROSPECTIVE ON THE DoRADO

Every reference is first handled by the cache ADDRESS stage, whether or not it involves a cache

data transfer. The stage calculates the virtual address and checks to see whether the associated data

is in the cache. If it is (a hit), and the reference is a Fetch or Store, ADDRESS starts HlTDATA, which

is responsible for the one-word data transfer. On a cache reference that misses, and on any I/O

reference, ADDRESS starts MAP.

CacheA

Processor
Bbus

o

Virtual
address

Processor
A bus

5

Column 0 Column 1 Column 2

Cache

~;l~~~~~~::~~i:~~~~~~i9~ addresses 256 rows
4 columns 16

CacheD

Cache
data

I
2 banks

column

Cache flags

vacant

Figure 6: Data Paths in the Cache

XEROX PARC, ISL-83-1, AUGUST, 1983

being NEXT
loaded VICTIM VICTIM

REfROSPECfIVE ON THE DoRADO 13

The virtual address for the reference is divided into a 16-bit key, an 8-bit row number, and a

4-bit word number; Figure 6 illustrates. This division reflects the physical structure of the cache,

which consists of 256 rows, each capable of holding four independent 16-word blocks of data, one

in each of four columns. A given address detennines a row (based on its eight row bits), and it must

appear in some column of that row if it is in the cache at all. For each row, the cache address

memory, called CacheA, stores the keys of the four blocks currently in that row, together with four

flag bits for each block. The Dorado cache is therefore set-associative [3]; rows correspond to sets

and columns correspond to the elements of a set The 4-bit word number detennines the word

desired from the 16-word block.

On a miss, the cache uses a nearly LRU ("least recently used") algorithm to decide which of

the four possible column entries to displace with the incoming data block. Each row has two fields,

called Victim and NextVictim, which are managed in hardware by the replacement algorithm. Each

field contains a cache column number. When a miss is detected, the data in the column designated

by the Victim is written back to storage (if dirty), the NextVictim is promoted to Victim, and a new

NextVictim is chosen from one of the other two columns which was neither the Victim nor the

NextVictim to begin. The original Victim is overwritten with the incoming block.

The CacheD memory stores the data for the blocks whose addresses appear in CacheA; closely

associated with it are the StoreReg and task-specific FetchReg registers which allow the processor to

deliver and retrieve its data independently of the memory system's detailed timing. HITDATA obtains

the cache address of the word being referenced from ADDRESS, sends this address to CacheD, which

holds the cache data, and either fetches a word into the FetchReg register of the task that made the

reference, or stores the data delivered by the processor via the StoreReg register. StoreReg is not

task-specific because stores are relatively rare (10% to 19% of all cache references) and the cache

timing and control are much simpler using a single StoreReg for all tasks. CacheD holds 4-Kwords

of data, expandable to 16-K words.

Cache misses and fast 110 references use the storage pipeline, shown in Figure 5. Each of the

pipeline stages is implemented by a simple finite-state automaton that can change state on every

microinstruction cycle. Control is passed from one stage to the next when the first produces a Start

signal for the second; this signal forces the second automaton into its initial state. Necessary

infonnation about the reference type is also passed along when one stage starts another.

The MAP stage translates a virtual address into a real address by looking it up in a hardware

table called the MapRAM, and then starts the STORAGE stage. Figure 7 illustrates the straightforward

conversion of a virtual page number into a real page number. The low-order bits are not mapped;

they address a single word within a page.

Three flag bits are stored in MapRAM for each virtual page:

ref, set automatically by any reference to the page;

dirty, set automatically by any write into the page;

writeProtect, set by memory-management software (using the MapWrite reference).

XEROX PARC, ISL-83-l, AUGUST, 1983

14 RETROSPECfIVE ON THE DoRADO

A virtual page not in use is marked as vacant by setting both writeProtect and dirty, an otherwise

nonsensical combination. A reference is aborted by the hardware if it touches a vacant page, attempts

to write a write-protected page, or causes a parity error in the MapRAM. All three kinds of map

fault are passed down the pipeline to READTR2 for reporting to the processor.

The map output is a real address in main storage. Main storage consists of from one to four

storage modules. Each storage module has a capacity of 2 megabytes using 64K RAM chips or,

eventually, 8 megabytes using 256K RAM chips. The two high order bits of the real address select

the module. A standard Hamming error-correcting code is used, capable of correcting single errors

and detecting double errors in four-word groups.

VIRTUAL
ADDRESS VIRTUAL PAGE WORD ON PAGE
28BITS (24) L..----,.------____ --'-___ --r-_....J

18 (16) 10 (8)
REAL PAGE NUMBER FLAGS

n(m) means that with 64K RAM
the value is m; with 256K chips the value
will be n, for which the boards are wired.

REAL ADDRESS
24 BITS (22)

MODULE

MapRAM
256K(64K)

14 ref WPdirty

STORAGE CHIP
ADDRESS

WORD IN
BLOCK

Figure 7: Virtual Address to Real Address Mapping

The Dorado's main storage is controlled by the STORAGE stage. STORAGE is started by MAP,

which supplies the real storage address and the operation type (read or write). Storage is organized

into 16-word blocks, and the transfer of a block is called a transport. All references to storage involve

an entire block. Transports into or out of storage take place on word-sized busses called ReadBus

and WriteBus shown in Figure 8. Block-sized shift registers called ReadReg and WriteReg lie between

these busses and storage memory chips. When storage is read, an entire block (256 bits plus 32

error-correction bits) is loaded into ReadReg all at once, and then transported to the cache or to a

fast output device by shifting words sequentially out of ReadReg at the rate of two words per

microcycle (one word every 30 ns). On a write. the block is shifted a word at a time into WriteReg,

and when the transport is finished, the 288 storage chips involved in that block are written all at

once.

XEROX PARC, ISL-8H. AUGUST, 1983

RETROSPECfIVE ON THE DoRADO 15

The WRITEfR stage transports a block into WriteReg, either from CacheD or from a fast input

device. It uses ECGen, the Hamming check bit generator, and WriteBus, and shares WriteReg with

STORAGE. It is started by ADDRESS on every write, and synchronizes with STORAGE as needed.

Once ReadReg is loaded by STORAGE, the block is ready for transport to CacheD or to a fast

output device. Because it must pass through the error corrector EeCor, the ftrst word appears on

ReadBus three cycles before the ftrst corrected word appears at the input to CacheD or on the

FastOut bus (Figure 4). To match the storage, bus, and error corrector bandwidths, read transport

must be controlled by two stages in series; they are called READTR1 and READTR2.

16 bit serial-in, parallel-out shift register

StorageRAM
MOSRAMs

256K (64K) by 1 bit

16 bit parallel-in, serial-out shift register

'-------------______J ReadBus
Bit 0

Figure 8: One Bit-slice of Storage RAM and its Data Registers

In fact, these stages run on every storage operation, not just on reads. There are several reasons

for this. First, READTR2 reports jaults (page faults, map parity errors, error corrections) and wakes

up a fault-handling microtask if necessary; this must be done for a write, as well as for a read.

Second, hardware is saved by making all operations flow through the pipeline in the same way.

Third, storage latency is in any case limited by the transport time and the storage RAM cycle time.

Finishing a write sooner would not reduce the latency of a read, and nothing ever waits for a write

to complete.

On a read, STORAGE starts READTR1 just as it parallel-loads ReadReg with a block to be

transported. READTR1 starts shifting words out of ReadReg and through the error corrector. On a

write, READTR1 is started at the same point, but no transport is done. READTR1 starts READTR2,

which shares with it responsibility for controlling the transport and the error corrector. READTR2

reports faults and completes cache read operations either by delivering the requested word into

FetchReg (for a fetch). or by storing the contents of StoreReg into the newly-loaded block in the

cache (for a store).

As mentioned in the overview, resource management and conflict resolution are major jobs

performed by the memory control logic. Most of the difficulty is concentrated in a small section of

the logic, which can synchronize and control the other subsystems through the use of a single

mechanism called the Hold signal. Hold is the signal generated by the memory system in response

to a processor request that cannot yet be satisfied. Its effect is to convert the microinstruction

XEROX PARC, ISL-83-1. AUGUST, 1983

16 RETROSPECTIVE ON THE DoRADO

containing the request into a jump-to-self; one cycle is thus lost As long as the same task is running

in the processor and the condition causing Hold is still present. that instruction will be held repeatedly.

However, the processor may switch to a higher priority task which can perhaps make more progress.

Hold is generated when resources (say, the ADDRESS section or new data in FetchReg) required by

the processor are temporarily unavailable because of a previous reference or an incomplete storage

read.

4.3 Instruction Fetch Unit Details

The IFU is documented in [14], from which the following is taken. It begins with a general

discussion of instruction interpretation and the problems involved with pipelined architectures for

instruction decoding. The operation of instruction fetching divides naturally into four stages:

Generating addresses of instruction words in the code, typically by sequentially advancing a

program counter, one memory word at a time.

Fetching data from the code at these addresses. This requires interactions with the machine's

memory in general, although recently used code may be cached within the IFU. Such a cache

looks much like main memory to the rest of the IFU.

Decoding instructions to determine their length and internal structure, and perhaps whether

they are branches which the IFU should execute. Decoding changes the representation of the

instruction. from one which is compact and convenient for the compiler. to one which is

convenient for the processor and IFU.

Formatting the fields of each instruction (addresses. immediate operands. register numbers.

mode control fields. or whatever) for the convenience of the processor; e.g .• extracting fields

onto the processor's data busses.

The Dorado IFU performs all these functions. Figure 9 is a block diagram of the IFU pipeline.

Recall that the IFU deals in byte coded instructions sets whose instructions are one. two. or three

bytes in length. The first byte of each instruction. called the opcode. is decoded by table lookup. It

may be followed by as many as two optional data bytes (known as alpha and beta. respectively) that

are passed to the processor with only slight reformatting. Of course the processor is free to interpret

these bytes as it wishes. but the IFU can only do complex decoding operations on the opcode byte.

The limitation to three-byte instructions reduces hardware complexity at a considerable cost in speed

for longer instructions; bytes after the third must be fetched explicitly by the processor. and the IFU

must restart at the proper point beyond these extra bytes.

The IFU decodes an instruction by looking up its first byte in a 1024 word RAM. called the

decoding table. The additional two bits of address come from an instruction-set register. The IFU

can emulate up to four different instruction sets at a time. The contents of the table describe the

instruction in sufficient detail for the IFU and the processor to do their jobs. so the opcode byte itself

is not passed to the processor. Thus. the table lookup does most of the transformation of the

instruction; it also governs some minor transformations of the data bytes such as sign extension.

XEROX PARC, ISL-83-1, AUGUST, 1983

RETROSPECfIVE ON THE DoRADO 17

In addition to decoding instructions, the IFU must deal with certain exception conditions as well.

The exceptions may be divided into three classes:

1) The IFU has not finished decoding the next instruction, and hence is not ready to respond

to a processor demand;

2) It is necessary to do something different (to handle an interrupt or a page fault);

3) There has been a hardware problem; it is not wise to proceed.

pipe stage

single-item
buffer

two-item
buffer

regular

item = word

irregular
outputs

item = word

regular

dou ble- rate
item = byte

irregular
throughput

item = instruction

irregular
inputs

item = instruction

Figure 9: IFU Pipeline Stages

Exception conditions are handled by extending the space of values produced in the IFU and

handed off from one stage to the next, rather than by establishing separate communication paths.

Thus, for example, a page fault from the memory is indicated by a status bit returned along with

XEROX PARC, ISL-83-1, AUGUST, 1983

18 RETROSPECTIVE ON THE DoRAOO

the data word from memory; the resulting "page fault value" is propagated through the IFU pipeline

and decoded into a page fault dispatch address which is handed to the processor like any ordinary

instruction. Each exception has its own dispatch address. Interrupts cause a slight complication.

The IFU accepts a signal called Reschedule which means "cause an interrupt"; this signal is actually

generated by 110 microcode in the processor, but it could come from separate hardware. The next

item leaving DECODE (Figure 9, center) is modified to have a reschedule dispatch address. The

microcode at this address examines registers to find out what interrupt condition has occurred. Since

the reschedule item replaces one of the instructions in the code, it has a program counter value,

which is the address of the next instruction to be executed. After the interrupt has been dealt with,

the IFU will be restarted at that point.

Since more than one exception condition may occur at a time, they are arranged in a fixed

priority order. Exceptions are communicated only by a dispatch; all exceptions having to do with a

particular opcode must be detected before it is handed off to the processor. Thus, all the bytes of

an instruction must have been fetched from memory and be available within the IFU before it is

handed off.

The IFU takes complete responsibility for keeping track of the emulator program counter. Every

item in the pipe carries its program counter value with it, so that when an instruction is delivered to

the processor, the program counter is delivered at the same time. The processor actually has access

to all the information needed to maintain its own program counter, but the time required to do this

in microcode would be prohibitive (at least one cycle per instruction).

The IFU can also follow branches, provided they are program counter-relative, have displacements

specified entirely in the instruction, and are encoded in certain limited ways. These restrictions

ensure that only information from the code (plus the current program counter value) is needed to

compute the branch address, so that no external dependencies are introduced. It would be possible

to handle absolute as well as program counter-relative branches, but this did not seem useful, since

none of the target instruction sets use absolute branches. The decoding table specifies for each

opcode whether it branches and how to obtain the displacement. On a branch, DECODE resets the

earlier stages of the pipe and passes the branch program counter back to ADDRESS. The branch

instruction is also passed on to the processor. If it is actually a conditional branch which should not

have been taken, the processor will reset the IFU to continue with the next instruction; the work

done in following the branch is wasted. If the branch is likely not to be taken, then the decoding

table should be set up so that it is treated as an ordinary instruction by the IFU, and if the branch

is taken after all, the processor will reset the IFU to continue with the branch path; in this case, the

work done in following the sequential path is wasted. Even unconditional jumps are passed on to

the processor, partly to avoid another case in the IFU, and partly to prevent infinite loops in the IFU

without any processor intervention.

The IFU is implemented as a six-stage pipeline (Figure 9). The ADDRESS stage generates the

addresses of memory words which contain the successive bytes of code. It increments the program

counter by two (there are two bytes per memory word) for each successive reference. ADDRESS

XEROX PARC, ISL-83-1, AUGUST, 1983

RETROSPECTIVE ON THE DoRADO 19

contends with the processor for the memory address bus; since the IFU has lowest priority, it waits

until this bus is not being used by the processor. MEMORY is not really a pipeline stage; it is the

memory system itself. ADDRESS and MEMORY cooperate to assure that bytes are delivered in the

order in which they are requested and that there is always room in the IFU pipeline for data coming

from MEMORY. BYTES is a very simple stage which passes the byte stream to DECODE.

The main complications in DECODE are the decoding table, the variable number of bytes required

to make up an instruction, the encoding of exceptions, and the execution of jumps. The decoding

table is implemented with 1024 x 1 RAMs, which provide room for four instruction sets with 256

opcodes each. The details of the encoding are explained in [14]. DECODE replaces the microcode

dispatch address from the table with an exception address, if necessary. If a Reschedule is pending,

it is treated like any other exception, by replacing the dispatch address of the next instruction item

with the reschedule microcode dispatch address. Thus, there is always a valid program counter

associated with the exception.

If a Jump is decoded, DECODE computes a new program counter by adding an offset to the

program counter of the instruction. This offset comes from the alpha byte if there is one, or from

the decoding table, sign-extended. The new program counter is sent back to ADDRESS. Jump

instructions in which the displacement is not encoded in this way cannot be executed by the IFU,

but must be handled by the processor.

The interesting work of DISPATCH is done by the processor, which takes the dispatch address,

together with processor state initialization, from the DECODE output buffer. Because DispatchEmpty

is encoded into a NotReady dispatch (another exception), the processor takes no account of whether

this stage is empty.

Finally, the EXECUTE stage implements the logic which passes alpha, beta, and program counter

values to the processor as requested. The sequence of data items delivered in response to processor

demands is controlled by other fields in the decoding table.

4.4 Input/Output Details

There is no distinct 110 subsystem in the Dorado because the processor and memory implement

the functions traditionally provided by DMA controllers. Devices simply conform to the protocols

for data and control used over the busses between the processor and controllers. Controllers

implement buffers to provide the elasticity needed for asynchronous operation of physical devices

and logic for device-specific formatting and control.

The standard Dorado comes with an 80 M Byte removable disk which transfers data to the

processor at a rate of about 10 MHz over the slow I/O bus, one word at a time. Continuous

sequential sector disk transfers require approximately 8% of the processor cycles. Other slow 110

devices include a 3 MHz full duplex Research Ethernet controller, a keyboard, and "mouse" pointing

device, and the command and control sections of both high-resolution monochrome and

variable-resolution color terminals. Actual transfers of bitmapped images are performed over the

XEROX PARCo ISL-83-1. AUGUST. 1983

20 REfROSPECfIVE ON THE DoRADO

high-bandwidth fast 1/0 bus to the tenninals. A device typically requires, at most, a few hundred

words of microcode to implement its function.

4.5 Packaging Overview

The Dorado fits into a very compact package, illustrated in Figure 10. Circuits are mounted on

large, high-density logic boards (288 16-pin packages plus 144 8-pin resistor packages per board).

The boards slide horizontally into zero-insertion-force connectors mounted in dual backpanels

("sidepanels"). Boards are 0.625 inches apart. This density makes it possible to reconcile the goals

of size and capability. Certain sacrifices are made, however. For example, it is not possible to access

every signal with an oscilloscope probe for debugging and maintenance. We make up for this by

providing sophisticated debugging facilities (Section 5.5), diagnostics, and the ability to incrementally

assemble and test a Dorado in steps from the bottom card slot upward.

The entire machine, including disk, displays, and network interfaces, is implemented with

approximately 3200 medium-scale integrated components, mostly of the ECL 10K family. In addition

there are up to 4 storage modules, each with about 300 64K RAMs and 200 MSI components, for a

maximum of 8 megabytes. The total volume, including power and cooling, is about .14 m3 (4.5 ft-1:
this is without any enclosing cabinet, however, and the open machine is quite noisy. Including the

80 megabyte removable disk, it requires about 2.5 KWatts of AC power.

5. Retrospective

This section revisits the processor, memory, IFU, and 1/0 sections of the machine for comments

and evaluation. It then introduces the other major components of the Dorado project: debugging

aids and diagnostics, design automation and fabrication, and the management structure, all of which

were vital to the success of the project

5.1 Processor retrospective

We chose a highly encoded ("vertical") microprogrammed processor with fully writeable control

store, as opposed to a hardwired processor or one with an unencoded ("horizontal") micro engine.

Why? First, control stuctures for high-performance machines tend to be complex and difficult to

master. There is very little formal methodology for the design of such systems at their lowest level,

and it is difficult to guarantee correctness in any convincing way. One can master this complexity

by expressing it in a programming language (microcode) that is powerful and flexible, so that it may

be corrected and also evolved and improved over the lifetime of a machine. Second, a machine for

multiple high-level languages is much more effective if it allows each language to define its own

XEROX PARC, ISL-83-1, AUGUST, 1983

REfROSPECTIVE ON THE DoRADO 21

target architecture, rather than forcing very different kinds of compilers and interpreters into a mold

dictated by a fixed machine language. Microprogrammed architectures fill these needs.

L
.625 "

1/0
110

T 1/0
1/0

Color disolav controller

K:-f----- 15 " ----~>I BIW Disolav Controller
DisklEthernet controller

Storaae -5 Volt -2 Volt
Storaae
Storace
Storace

15.5 '
,

Storaae
Storace
Storace
Storace

Cache data error correction
Pi De mao and storace control

Memorv addressinc
Instruction fetch unit
Processor hiah byte
Processor low byte

Control section
Microinstruction memorY

Baseboard

Air plenum

Board Area

288 16-pin DIPs (logic)
and

144 a·pin SIPs (terminators)

i
45"

Side Side
Panel
Wiring

per board
Panel 13 "
Wiring

Power Supplies

-5 V x 250 A
10.5 '

, -2 V x 75 A
+5 V x 70 A

+12 V x 25 A

Front View +5 Volt Top View

Figure 10: Dorado Chassis

High-performance machines, however, must still be hardware intensive and cannot rely on

microcode to make up for a lack of functional richness or operand processing capability. The ratio

of microcycles per emulated instruction must be small, and for the simplest macroinstruction a ratio

XEROX PARC, ISL-83-1, AUGUST, 1983

+ 12 Volt

22 RETROSPECTIVE ON THE DoRAOO

of 1:1 is desirable. It would have been a mistake to push too much functionality off into the

microcode. In fact. as we shall discuss, language emulation could have been substantially speeded

up had some more hardware been devoted to managing process context switching, a frequent and

somewhat costly event

The Dorado has a very compact microinstruction, with context dependent interpretation of nearly

all fields and a highly encoded field for specifying "next instruction" addresses. There are several

motivations for this structure. One is raw cost of components. For very high-speed RAMs, with

under 20 nanosecond access times, price is an important factor. In 1977, such RAMs sold for nearly

$30 each. The physical size of the RAM array is also important, as additional wiring delay for a

large array contributes to overall access time. So, vertical encoding minimizes microstore chip count

and cost at the expense of fast microinstruction decoding at execution time. The EeL technology

mitigates this problem by allowing the designer to build a decoder that operates in three or fewer

stages of combinatorial logic, or around 10 nanoseconds delay.

When encodings are tight and complex they can be hard to deal with. After three major

iterations, we were able to invent a very successful encoding which provided both compactness and

nearly maximal parallelism on control and data resources available in the processor. However, the

complexity of the encoding had to be hidden in a very good microassembler and instruction placer,

a loader, and an interactive debugger. We were successful in developing such tools. The tools give

the microcoder/debugger the illusion of dealing with a linear, unencoded address space and a

language similar to conventional machine languages without regard (most of the time) for details of

the encoding. In fact, the Dorado is certainly the easiest processor to microprogram of the several

available in the Xerox family of processors.

The data handling section of the processor was redesigned several times to increase quantity of

and parallel access to resources. There are 256 general-purpose registers, four hardware stacks, and

a number of special-purpose registers commonly used by the microcode. The two ALU inputs are

symmetric so that any common source of data can be connected to either side of the ALU. Similarly,

the memory address and data registers are coupled tightly to the processor and are treated just like

a general register or a temporary, thus bringing memory operations immediately within the scope of

the data section.

The multitasking architecture, perhaps the most unique feature of the processor, has proved

itself, particularly in the areas of uniformity and flexibility. There is a single microlanguage in which

all emulators and device controllers are expressed, and there is a single virtual address space for all

devices and language emulators to use for communication and data. By mastering a small set of

skills, a designer can easily add new instructions to an instruction set or a new 110 device to the

machine. Multitasking and the design of the memory system allows these additions to be made with

relatively little concern for impact on already installed devices. Fixed priority of tasks, as opposed

to round-robin scheduling, has worked thus far. High priority tasks are very carefully designed and

coded to execute only two microinstructions per wakeup (except for the disk. See section 5.4).

XEROX PARC, ISL'83-I, AUGUST, 1983

RErROSPECfIVE ON THE DoRADO 23

Of course, there are possible improvements. We now realize that language emulation could be

substantially speeded up by concentrating hardware resources on context switching and on keeping

call stacks cached in high-speed registeIS; the IBM 801 project [21] and the RISC [20] project have

emphasized some of these areas and realized significant performance improvements for relatively low

cost
The processor contains a bottleneck as all data must pass through the ALU in order to reach a

destination, so there is only one destination site per microcycle. Some other external paths could be

useful for, say, saving and restoring stack top entries in registers. A frequently performed operation,

especially by I/O microcode, is the generation and use of 16-bit constant values. The processor can

generate only an eight-bit immediate operand. It requires two microinstructions to piece together two

bytes into a constant before storing or sending it over the 110 command bus, for example. The

Alto, to solve this problem, contains a small ROM with two hundred or so "commonly used"

constants; such a constant memory did not mesh into the Dorado processor architecture and wasn't

used.

The data section occupies two full boards in the Dorado with considerable overhead and chip

count (-100 chips) for high-speed communication between boards. It might be possible, by reducing

some functionality, to collapse the implementation onto one board and save the overhead and

complexity of the larger implementation.

5.2 Memory Retrospective

It is really the memory, rather than the processor, that is the heart of the Dorado. The cache

and cache control architecture have been particularly successful. A great deal of effort was expended

in the design and implementation which produced a pipeline with only two cycles of latency (one

for CacheA. the second for CacheD) and a single cycle of throughput to the processor, an essentially

optimal design. For the byte-coded target languages emulated, this cache not only functions almost

as fast as internal registers, but also provides hit rates of greater than 99% in ordinary cases. It has

a write-back rather than write-through scheme for managing dirty blocks of data, and this scheme

reduces the bandwidth required between storage and the cache by a factor of about seven for write

operations.

Because of the resource management and contention resolution performed by the memory

control logic, there is essentially no effort required on the part of microcoders to deal with contention,

latency, implementation quirks, or error conditions. For example, once a Fetch has been executed

by the microcode, any subsequent microinstruction may request that the fetched data be used. If

the data is not available for any reason, the Hold mechanism will be invoked and the processor

delayed only until the data arrives. Contrast this to common microprogrammed architectures where

it is either forbidden that data be accessed before a certain (perhaps worst case) time or required

that data be accessed at exactly a certain cycle after the request is made. It is also possible to write

the various 110 driver microcode segments without regard for what the emulator or other I/O

XEROX PARCo ISL-83-I. AUGUST. 1983

24 RETRosPECTIVE ON THE DoRADO

microcode is doing with the memory; since the processor switches tasks completely asynchronously

and microcode can make arbitrarily sequenced accesses, this reduces a potentially exhausting problem

to a simple one.

Another desirable feature of the architecture is the ability for all clients of the memory to deal

only in virtual addresses. It is common in many systems for 1/0 devices to deal explicitly in real

addresses and to negotiate with memory management software for both buffer management and

explicit translation from virtual to real addresses. As the processor initiates all transfers and everything

goes through the Map, these issues disappear in the operating systems for the Dorado.

The virtual memory address size, the MapRAM, and main storage are all implemented with an

eye towards growing chip technology. This was relatively easy to do and is important over the

lifetime of the Dorado, helping to extend its useful life in the face of voracious software systems. In

fact, the original Dorado memory modules were constructed using 4K X 1 MOS RAMs in 1976.

Evolution has since produced the 16K (1977) and 64K (1981) chips, and modules are upgraded by

simply plugging in the higher density devices and reconfiguring a few jumper wires.

But, everything has its price. The control structures for the memory are tightly woven from

logical steel wool, a necessary evil if one wants both compactness and speed without custom LSI

components. As a result, memory control logic had numerous obscure and nasty design bugs that

the original implementors wrestled with. Such bugs often have delayed effects due to pipelining; an

error can manifest itself long after its cause has disappeared (a feature of pipelined systems in

general). Although production machines seem to contain no design errors, difficulties in debugging

new machines result from the complexity of this logic. Further, with any system containing dynamic

RAMs, it isn't possible to single step clocks and maintain refreshed data. The diagnostic system has

several options for single stepping clocks with and without refresh enabled; this helps find control

failures where data values are not critical.

One aspect of the architecture, memory latency on cache misses, could be substantially improved.

Ideally, once CacheA detects a miss, the desired word should be read and delivered to the processor

within the memory access, bus transit, and error correction time. Had more resources been devoted

to the storage-cache transport mechanism, this ideal could have been achieved. As implemented, an

entire 16-word block of data (on a 16-word address boundary) is transported, in order, up the bus

and into the cache. After the block is in place, the cache is accessed again to fetch the desired word

and deliver it to the processor. This method results in about nine additional microcycles of miss

latency over the ideal scheme. We should note that this inefficiency does not degrade performance

as much as it might seem, since only 8% of the total available cycles is spent in memory wait (Hold)

time.

The storage modules are now very reliable and easily manufactured; they were converted early

in 1979 to printed circuit board technology because of their regular arrangement However, the

original storage modules, manufactured on a custom stitchweld board, were a major headache due

to careless distribution of different logic families (EeL, TIL, and MOS) on a single board. Crosstalk

between EeL and TIL clock signals and badly distributed sheet currents in the ground plane made

XEROX PARC, ISL-83-1, AUGUST, 1983

REfROSPECfIVE ON THE DoRAOO 25

these modules unreliable. Major redesign by an expert electronic engineer was necessary to reform

and layout the board to eliminate problems due to logic family mixing.

The very high 110 bandwidth (530 Mbits/sec) is a major factor in the cost of the memory

system. The many busses that operate in parallel, the fully segmented pipeline with its "extra"

automata stages designed to keep up with the data transport rate, the separation of the error correction

code generator and error checking logic to enable them to run in parallel, and the ability of the

cache to handle multiple misses simultaneously (for the emulator and for an 110 task) are all

motivated by the lID service requirements. Less stringent requirements would have made the

memory system quite a bit smaller and simpler.

5.3 IFU Retrospective

The IFU produces a doubling of emulation speed over the same machine with emulation done

strictly in microcode. In fact, the Dorado is carefully partitioned so that the IFU is not required for

emulation. It is possible to load a microcoded interpreter and do conventional instruction fetching

and decoding without hardware assist, unlike some modem architectures in which the instruction

fetch unit and the execution unit are not fully separated (11). Dorado Model 0 ran exactly that way,

without an IFU.

It is the IFU, in conjunction with the processor, that fulfills the design objective of being able to

execute a simple byte code in a single microinstruction. There is a separate high-speed bus (the

IFUData bus) between the processor and the IFU, over which alpha and beta bytes move to the

processor in parallel with register and memory accesses. The processor uses this data like any other

operand source without needing to store IFuData into a register. Another parallel bus, IFuAddress,

is the dispatch address source for the microstore and is used directly to indicate "next dispatch

address" information for emulators. Second, a technique called instruction forwarding, detailed in

Section 4 of (14), allows certain cleanup actions to be left over from one instruction to another, thus

saving microcycles. For example, to push a variable onto the stack top, it needs to be fetched, then

pushed. However, if all emulators have multiple entry points so that emulation microcode can deal

with the top of stack located either on the stack itself or in the memory data register (FetchReg), the

extra push instructions can be eliminated (forwarded). This technique allows simple instructions to

require a single microinstruction for emulation and saves approximately 8% of the execution time in

straight line code without much cost in added microinstructions for multiple entry points.

A major advantage of the IFU is its programmability. All decoding takes place via table lookup,

and these tables are implemented in RAMs which are loaded by initialization microcode and can

even be modified "on the fly" if needed. As a result, instruction sets can evolve, and new instruction

sets for experimental languages can be derived. In fact, after approximately four years and hundreds

of thousands of lines of Mesa code were completed for the Xerox 8010 Star Network Systems

product, the Mesa instruction set was redesigned and achieved a 20% improvement in overall code

compaction [23]. Note that this revision required nothing from the large Mesa client community

XEROX PARCo ISL-83-1. AUGUST. 1983

26 RETROSPECTIVE ON THE DoRADO

other than recompilation of sources once the microcode, IFU, and compiler updates were done by

the Mesa system developers.

Unfortunately, the IFU is also constructed of logical steel wool, like the memory control. Its

complexity is due to the variable length instructions, to the need for a global pipeline architecture,

and to the desire to deliver one byte code per cycle on demand. Also, board site limitations required

that the IFU be squeezed onto a single board, since the processor and memory subsystems had already

overflowed onto more boards than originally planned. As a result, there is not enough inter-stage

buffering to smooth out the pipeline flow irregularities due to memory response time and to jump

handling.

The six-stage pipeline in the IFU is too long to handle frequent code branches well, since they

cause pipeline flushes to occur. It is common for highly structured code to consist of branches every

five instructions; even with good branch prediction, long delays are introduced while the pipe is

refilled. Without the aforementioned board site restrictions, it would have been possible to reduce

the length and complexity of the pipeline by adding more buffering, and perhaps to enhance branch

prediction capability by dynamically recording branch results and following previous paths [29].

The IFU offers little help for long, complex instructions such as process switch or Raste,op [19].

Even subroutine calls in Mesa require multiple microinstructions to interpret [15]. It is even less

effective for languages like Smalltalk, whose target language typically requires thirty to forty

microinstructions to execute a macroinstruction; in this case the IFU offers marginal speed-up, and

instruction forwarding to save a single microinstruction is essentially useless.

5.4 110 Retrospective

There is little to be said about the I/O subsystem. Device controllers are first-class citizens,

serviced on demand from the processor via the virtual memory system. High-performance devices

make good use of the microtasking scheme and the memory bandwidth available. A high-resolution,

large format (1024- X 808- pixels) binary terminal display and a full color (640- X 480- pixels) display

are supported, without special frame buffers, with little degradation of emulator performance because

the bandwidth for refreshing the displays would be essentially unused were they not present These

fast 110 devices require only two microinstructions per transfer to manage 16-word block transfers

over the I/O busses, and these busses interact with main storage only, bypassing the cache whenever

possible. Future controller development is simplified by the ability to borrow standard "canned"

interface logic from existing controllers. Memory bandwidth is still available for future controllers.

The only drawback to the existing set of controllers is the disk controller, which was one of the

earliest designs completed and runs on the slow 110 system instead of the fast I/O system. It is odd

to call a 10 MHz device "slow," but the processor is capable of handling the disk over the

word-by-word 110 bus. This does use the cache and degrades cache performance some (we have no

hard data on how much), and unfortunately requires that the disk controller run as the highest

priority I/O device in the machine in order to access sequential disk sectors without missing

XEROX PARCo ISL-83-!, AUGUST. 1983

REI'ROSPECfIVE ON THE DoRADO 27

revolutions. The disk microcode takes up several hundred microinstructions and is convoluted. Data

transfers over the fast 1/0 bus with control over the slow 110 bus would be a much cleaner

implementation, but is complicated by disk format requirements for small fields (as small as two

words) in the disk format No resources have been expended to remedy this situation.

5.5 Debugging and Diagnostic Aids

The Alto was a natural choice to help us bootstrap to the next generation. We attached an Alto,

via a simple parallel interface, to a special port on the Dorado processor and wrote a display oriented

"console program" called Midizs. A small amount of dedicated hardware in the processor allows

Midas to completely control the Dorado via its umbilical cord. Midas controls the starting, stopping,

single stepping, and running rates of clocks in the Dorado, and it can cause any microinstruction to

be placed in the microinstruction register and executed by the processor. As a result, all registers

and memories accessible to the microcode are accessible through the console program as well, which

presents to the Midas user a screen full of fields in which any named register or memory location

can be displayed and/or written at the user's discretion. Several formats of readout and typein are

available, including symbolic format for microcode disassembly when examining or modifying the

microstore.

In addition to memories and registers, Midas has read-only access to two thousand hand-selected

(hardwired) "vision" or "scan" signals. There is a 2000 element serial multiplexor spread across all

the boards in the machine, and the Midas Alto can scan out all multiplexed signals in under half a

second. The Dorado scanning system is described in [5]. Typically, these signals are used to display

the states of automata and critical control signals in the hardware, or to directly read out bus contents.

The combination of si~gle stepping, scan signals, and microcode jamming allows Midas to

provide a predictive simulator and a history list for the hardware. The simulator is executed within

the Alto program and the states of as many of the scan signals, memories and registers as possible

are calculated for the next microinstruction to be executed. Midas then causes that instruction to be

executed and reads out the hardware state, comparing it to the simulated state and announcing any

discrepancies. The user can also single step and symbolically observe the state of internal signals, a

technique which proved very useful for initial checkout of un debugged prototype subsystems.

Midas serves many other functions. It loads microcode into the microstore and allows the user

to set microcode breakpoints and to single step or run through microcode routines as needed. Other

features provided by Midas are a suite of very low-level diagnostic and exerciser routines which

execute via the umbilical, and error reporting for low-level unrecoverable errors detected by the

hardware.

Originally, Dorados were completely dependent on Midas for bootstrapping, including clock

speed adjustment, setting of all registers and memories with good parity data, and downloading

microcode. Dorados can now do this independently because another logic board, called the baseboard,

has been installed in the machine. The baseboard has a microcomputer on it which is programmed

XEROX PARCo (SL-8H, AUGUST, 1983

28 RETROSPECTIVE ON THE DoRADO

to simulate Midas and to execute a standard bootstrapping sequence on command or at power-on

time. The baseboard also does environmental monitoring of temperatures, voltages, and currents to

prevent failure due to meltdown or overload.

It would be difficult to overemphasize how important the Midas system was (and is) to the

commissioning and maintaining of Dorados. Software and system expertise were concentrated on

Midas instead of on building either a logic level or microcode level simulator for the Dorado.

Basically, it was decided to build and debug the hardware in place rather than simulate it first That

seems to have been a good decision, because the tools and skills developed for the prototype apply

to both reproduction of Dorados and to new projects.

As the machine was designed and implemented, sets of microdiagnostics were specified and

microcoded. These diagnostics are aimed at incremental assembly of the Dorado hardware, from the

baseboard on up. As each board was built, it went into the prototype chassis as the uppermost board

in the system, fully accessible to logic analyzers and oscilloscopes. A diagnostic was prepared to

exercise that fraction of the machine installed and available at that point As the machine grew,

more and more elaborate diagnostics could be run, relying on the already debugged lower sections

of the machine to exercise the undebugged new boards in the upper chassis. These diagnostics are

still used to debug new Dorados, but the production line does not normally use the incremental

assembly scheme. Instead, a working Dorado station debugs one new board at a time within a fully

functioning system.

System level diagnostics for such areas as instruction set verification or exhaustive memory tests

have yet to emerge. Diagnostics for the disk, Research Ethernet network, and display terminal systems

still run in Alto emulation mode and were borrowed from the Alto world. There are a number of

problems with this diagnostic gap, and they all stem from the nature of digital system col/apse.

Digital system collapse: The set of states attained by a digital programmed system in which

nothing but the diagnostic programs will run to completion.

Diagnostics at the microcode level are a maintenance headache. There is one person responsible

for nearly sixteen thousand lines of microcode. Technicians were not accustomed to dealing with

microdiagnostics for repair of machines; the designers had to teach machine architecture and

debugging techniques before Dorados could be produced. New systems, both hardware and software,

constantly appear to challenge the technical support and maintenance people.

5.6 Design Automation and Prototype Fabrication

A new design automation (DA) system had to be in place before the project could proceed, and

it is this system that really made the actual implementation and commissioning of the Dorado

prototype possible. Although by today's standards the DA system has shortfalls, it was a marvel in

1976. As the project evolved so did the DA system, and every effort to refine or enhance the

functionality of this system has paid off. Originally intended for use with a custom, point-to-point

wiring technique called stitch weld, the system today handles stitchweld, Multiwire, and multi-layer

XEROX PARC, ISL-8H, AUGUST, 1983

REfROSPECI1VE ON THE DoRADO 29

printed circuit boards for a variety of digital environments. The DA system insures that. at essentially

all times during a project, all logic design documentation is current, accurate, and available on-line

to anyone on the design team. It also provides automatic version and revision control, and, most

important, a uniform syntax and semantics for expressing hardware designs and implementations

across projects and designers.

The sole user input to the DA system consists of stylized logic diagrams, at the chip level, of

logic designs. Diagrams are created via an interactive graphics illustrator running on any Alto (or

Alto emulator). By following a simple set of conventions designers quickly build, from prestored

libraries of chip macros, their logic designs. Once the diagrams and board layouts are complete, all

syntax checking, semantic interpretation, and generation of intermediate files, net lists, wire lists, and

other documentation are done automatically by the DA system. There is no intervention or additional

information supplied by the designer. This system works both for the creation of new logic boards

and for incremental upgrading of existing boards during debugging. The user simply revises the

logic diagrams using the illustrator, and the DA system automatically compares the new design

against the existing one to generate "Delete/Add" instructions for the stitch welder.

Coupled with the Midas debugger, this system can be compared in style to high-level language

programming systems. The interactive illustrator acts like a text editor for a high-level description

of a logic board (a "program module"); the DA system then "compiles" this description into lower

levels of abstraction, without user intervention, culminating in a wirelist to drive a semi-automatic

wiring machine and a stuffing list for component type and location specifications. Midas then acts

as a symbolic level debugger/interpreter when the physical board is installed and checked out

There are two major shortfalls of the DA system. One is the lack of hierarchically organized

graphics for defining logical pieces of a system, which can then be hooked together to form larger

pieces. All registers, for example, are explicitly drawn by the designer instead of expanded by the

system from a prototypical register "bit-slice." The SCALD (Structured Computer Aided Logic

Design) [28] system designed for the S1 computer project incorporates such hierarchical graphics

which yield a much more compact, structured representation of a digital system. Automatic

hierarchical construction from prototypes markedly reduces specification errors. Many of our initial

Dorado bugs were simply "typographical" in nature. A second shortfall is the lack of timing analysis

tools that give a true picture of the expected performance of a logic board once its design and layout

is complete [16]. Although we made some attempt to implement such an analysis tool, the attempt

was not very successful or complete.

5.7 Project Organization

Exactly how was the Dorado specified, designed, implemented, and commissioned? And, why

was it done in a research environment? The second question is easy to answer: the research laboratory

determined that it needed a Dorado class machine to pursue software systems research over the

coming five to ten years, and there were no alternatives. The Dorado project began at PARC in

XEROX PARCo ISL-83-l. AUGUST. 1983

30 RETROSPECTIVE ON THE DoRAOO

1975, then moved to the Systems Development Department, which was formed in order to transfer

distributed computing technology into future Xerox product lines. Systems Development decided,

after design sketches for the Dorado were completed, that a smaller, less expensive, less powerful

machine would be required for the envisioned systems applications, and the Dorado was shelved in

favor of other processor design projects. By this time, Research had already made plans to employ

Dorados, and after many meetings and much soul searching within the Computer Science Laboratory,

a small group of people made the commitment, in June of 1977, to complete the Dorado

implementation.

This team of about ten individuals was led by Butler Lampson, who had been one of the two

system architects (with Chuck Thacker) since the beginning of the project Lampson continued as

the senior architect and also implemented the control section of the memory system. The team

members were mostly veterans of one or more major systems (hardware and software). Lampson,

Ed McCreight, Gene McDaniel, and several others had worked on the MAXC time sharing system

[4] and the Alto at PARC, both predecessors of the Dorado effort

Team members proved highly motivated once their commitment to the project was made.

Subsystem teams (processor, memory, storage, IFU, I/O devices, microcode, diagnostics, Midas, design

automation) formed naturally according to the skills and interests of the people involved, with many

members participating on multiple subteams. As initial pieces of the machine came into existence

their designers worked on later pieces, eventually building up the global overview of the entire system

necessary for system integration. There was an adequate mix of skills and experience to eventually

solve or finesse the myriad of problems that arose over the next several years.

Weekly meetings were held at which the week's progress was reviewed and planning of "open"

schedules was done. There were no hardline management decisions or deadlines imposed. McCreight

and Severo Ornstein served as co-managers of the project in addition to making technical

contributions. It was the attitude of the laboratory manager (Bob Taylor) that the team be free to

manage itself, and to make even major decisions, like the complete redesign from Model 0 to Model

1, without external pressure. This attitude was consistent with the style of research projects within

the laboratory (small groups proceeding independently) and kept the team members from feeling

isolated from their colleagues. In addition, all activities and personnel were located in the same

building, within a few steps of one another. Team members were in constant communication

personally, via electronic mail, and via the on-line DA system. Design and implementation details

were thrashed out on a daily basis, and all logic designs were subject to careful peer review before

being welded into a prototype.

Nearly all efforts were applied to the actual prototype itself, or to the tools and diagnostics

directly needed to construct and debug the prototype. In particular, no code simulators were built,

and microcode was debugged directly on the prototype hardware via the Midas interface. A software

simulator specifically for the IFU was coded in order to test and debug implementation alternatives.

Since much of the microcode has real-time applications for 110 controllers, simulation is less useful

in this microtasking architecture than in a conventional system.

XEROX PARC, ISL-83-1, AUGUST, 1983

RETROSPECfIVE ON THE DoRADO 31

6. Observations and Commentary

The Dorado is not the machine that would have been designed just for research. Its architectural

demands for both high-performance emulation and high I/O bandwidth are inherited from the

Systems Development Department specification of a high-performance processor for imaging systems

(composers and printers) and for office information systems. Although we take advantage of this

duality in the Dorado to easily integrate imaging systems with information processing systems, they

could have been more traditionally separated. We are pleased that we do not have to make that

distinction.

One major impact on the daily working life of the research staff, as Dorados became available,

was the breaking of a "psycho-computational" barrier that has plagued expert system implementors

until recently. It has always been the case that system experts have felt hampered by their tools; no

matter how good the batch, interactive remote job entry, timesharing, or small-scale personal machine

was, it wasn't enough. Far too much real time was expended waiting for the machine to compile or

load or respond in some other way, and far too much programming effort was expended to try to

overcome resource limitations within machines. With the advent of the Dorado, experimentors took

a large step towards becoming weary from concentrating on their work instead of becoming frustrated

by their tools. This really changed the scope and style of research attempted and accomplished at

PARCo It seemed as if a few hours on a Dorado were more productive than an entire day on a

smaller machine running an identical programming environment [22]. With so much processing

power available, very large systems (notably Smalltalk personal environments like PIE [8]) that were

previously barely demonstrable became viable for daily use. Fully integrated programming

environments in three major languages (lnterlisp. Smalltalk-80, and an extension of Mesa called

Cedar) were produced and today are the development environments of choice for nearly a hundred

scientists and engineers. An informal survey of Cedar users [9] found that expert users claimed

subjective productivity improvement factors ranging from two to five over Cedar or similar

programming environments running on less powerful machines.

The Dorado came into service quickly because of nearly complete "backward emulation" of the

Alto. Backward emulation provided a stable, working software environment to implement as a first

goal. Having a working language (BCPL). operating and executive systems, and many applications

as tests guided the hardware/microcode effort on the project from the start. Once the Alto emulation

really worked, we could proceed to develop new programming environments with the confidence

that a very large fraction of the hardware was operational. Contrast this to the prospect of developing

all new hardware, system software, and applications contemporaneously, without a stable platform to

rely on.

The experience gained on the original Model 0 prototype was crucial to the success of the

project The design team realized that the lessons learned were too valuable not to be immediately

applied. We were willing to discard the functioning prototype and work an additional 14 months (5

months of which overlapped completion of Model 0) to produce the Modell. Although physically

XEROX PARCo ISL-SH. AUGUST. 1983

32 REfROSPECrIVE ON THE DoRAOO

nearly identical to Model 0, Model 1 has much larger memories and register banks, a more versatile

microinstruction encoding, a higher performance cache, and the IFU.

There were a few worries that at least the author had at the inception of the project that turned

out to be groundless. The first was a common misconception that ECL logic, because of its very

high-speed, would be difficult to work with. All of the team members had experience with TIL

based systems only. ECL is in fact easier to work with than Schottky TIL in a properly designed

environment with controlled impedances, adequate grounding, and termination resistors. Except

where we carelessly mixed logic families on the original storage boards, we never had any problems

with ECL logic; the "digital illusion" model of perfect components and binary logic always worked.

ECL 10K has other advantages, such as uniform 16-pin DIP packages and consistent pinouts, which

earlier TIL families lacked.

High component density and limited access to boards in the board stack was also a gamble that

worked. Recall that the physical structure of the machine is such that it is easy to get at only the

top board and the two side panels with instrument probes. Other components are hidden, and can

be accessed only very painfully, essentially one pin at a time, by power cycling the machine and

removing boards to attach low-profile probes to particular pins. This procedure was used a few

times, notably during attempts to speed up the basic cycle time, but was by and large unnecessary.

By careful use of the information provided via Midas, construction of a useful suite of diagnostics,

and some cleverness on the part of debuggers to deduce information from side panel signals, it was

possible to live with the limited access and still work effectively. Packaging technologies are available

today that combine high-density board stacks, cooling, and access to every pin by "unfolding" a

machine, but these techinques still don't allow the compactness available in the Dorado system.

Incidentally, we weren't able to design any kind of extender board that would allow the system to

continue to function.

Perhaps the most pleasant surprise for the design team was the success in turning over the

Dorado to manufacturing and maintenance personnel. Would every new instance of a Dorado have

to be brought up with some help from designers, due to the overwhelming complexity of boards in

the system? Fortunately, no. Although one member of the team continued to serve as liaison for

manufacturing and to assist with the toughest problems, all the other team members quickly dispersed

to new jobs (both within and outside the company). Dozens of Dorados have been manufactured

and installed, working perfectly, with no intervention from the designers. This is a tribute to the

skill and enthusiasm of the production and maintenance people at PARCo

Everything did not come up roses, however. There are two major disappointments with the

existing Dorado, and other disappointments with "the machine that might have been." The existing

machine fails to run at design speed and fails to work reliably in office environments. The original

design specification called for a 40 nanosecond microcycle. Although sections of the machine can

execute at a 40- nanosecond clock speed, fully functional prototypes operated at 50- nanoseconds,

and production machines operate at 60. In choosing a very simple model which tried to simplify

timing delays introduced by wires and board transitions, we were naive. A further introduction of

XEROX PARC, ISL-8H. AUGUST, 1983

RETROSPECTIVE ON THE DoRADO 33

time penalties occurred after changing the point-to-point prototype wiring technology (stitch weld) to

a Manhattan routing multi-layer production technology (MultiWire and printed circuit). Also, the

complexity and cleverness employed in the logic implementation were heavily influenced by the very

high-speed goal. If we had realized the limitations on clock speed earlier, the machine would have

been simpler, with equivalent functionality. A really first-class timing analyzer, such as the one

eventually developed for the SI Mark IIA project [16], is crucial for accurately designing and

implementing a machine out of a high-speed technology like ECL.

The Dorado, in spite of its compactness, turned out to be too b~g, too hot, and too noisy. We

were unable to solve power distribution and air circulation problems within a noise-abating enclosure

well enough to maintain the PARC style of physically distributed personal computers located in

offices and powered by conventional nov AC wall circuits. After numerous attempts, we simply

finessed these problems by restructuring machine rooms previously devoted to time-sharing systems.

Dorados at PARC are now rack mounted and installed in "free air" in machine rooms with cables

strung to terminals in individual offices. This actually improves the quality of life in offices

considerably, but makes cable installation and machine room maintenance an ongoing headache. It

also discourages the development of experimental devices and controllers, since it is much more

difficult to attach a new device, sayan input scanner or digitizing tablet, to a machine that is

physically far away. Commercial devices are usually designed for shorter cable lengths than we now

require.

With respect to the machine that might have been, Lampson claims that by reworking the

processor to enhance high-level language context switiching and by reducing the 110 bandwidth, the

Dorado would be half its physical size and have twice the emulation performance. Such a machine

might be a better match for the software intensive research activities at PARCo

Dorados, we had hoped, would begin production by mid-1978. Two factors made the project

considerably later. First, the redesign to Model 1 added about nine months to the prototype

production stage. Second, moving to production technologies involved letting go of complete in-house

facilities and contracting with outside vendors. It took over a year to get boards rolling successfully

ofT external production lines, due primarily to very long turnaround times (3-4 months) per iteration,

and to the "pioneering" nature of the work (larger, denser circuit boards with more layers than had

been previously implemented by the vendor). This was not fun.

In summary, the overall architecture of the machine has been successful, and the flexibility and

extensibility of the machine is actively being exploited. Microcode support for floating point

operations and microcode/hardware for a full-color display system were added after the machine was

in service. Recently, new instruction sets have been implemented resulting in enhanced functionality,

increased code density, and faster execution. New boards for implementing data encryption services,

random number generation from white noise sources, and small amounts of "stable storage" used to

implement transaction based systems [18], have been designed. The design automation system has

been used for dozens of projects throughout the Xerox Corporation, and has been extended to

encompass automatic generation of PC boards.

XEROX PARCo ISL-8H, AUGUST, 1983

34 REfROSPECTIVE ON THE DoRADO

7. Speculation

What are some of the things we might have done differently? We have already noted the

possibility of reducing resources devoted to high-bandwidth 110 capability and directing those

resources (chip count, designer attention, etc.) to support for language emulation. Although we

deliberately avoided special-purpose hardware targeted at a specific language, most high-level

languages share certain ideas that could benefit from hardware support. For example, array bounds

are frequently checked in microcode, and NIL dereferencing causes spurious page faults; some

hardware assistance in the form of bounds registers or comparators could help. Except for the ref

and dirty bits in the Map, the hardware doesn't enhance automatic storage management schemes.

Some provision for more memory protection in hardware, or a small number of isolated address

spaces might have made implementing debuggers or automatic allocators (garbage collectors) easier.

This is a complex issue, involving tradeoffs between the advantages of isolation and the difficulties

such isolation produces with respect to sharing and cooperating processes, beyond the scope of this

discussion.

Perhaps we should have built and used a viable timing analysis program early in the project. I

say perhaps, because it is conceivable that the project would not have proceeded had the "bad news"

been known early on. It is difficult to build analysis programs that will handle non-trivial systems;

we implemented one to analyze Modell, with limited success. Fortunately, the Dorado clock system

was simple and uniform throughout the machine, so we were able to simply lower the clock rate

until reliable performance was achieved, after burning out on speed enhancement efforts.

There was relatively little we could do about the problems that were a result of inexperience,

such as the packaging and cooling problems or the production technology transfer difficulties. Those

were essentially painful learning experiences which in the future we will try not to repeat They

were costly in time and effort.

What might we do today, were we embarking on a similar processor design project? It's certain

we would go to a full 32-bit architecture for both data and address spaces. Technologies for

implementation could be semi-custom EeL gate arrays, commercially available, and a mix of EeL

10K and EeL lOOK logic. An alternative would be fully custom VLSI chips. Timing and logic

verification extensions to the design automation system should be developed, although it is possible

today, as opposed to just a few years ago, to purchase commercial services that fulfill these functions.

Processor/memory design should emphasize context switching speed and "lightweight" processes,

as larger and larger software systems use more and more processes and procedures. Stack caching

schemes such as those proposed for the RISe architecture [20] and high-speed, low-overhead control

transfer functions [15] should be supported in the processor.

Should the architectural style of the Dorado, founded on the Alto, be continued? The answer

is not clear. When memory and processors were expensive the multitask sharing was justified. With

the advent of VLSI, it is less important to keep a processor busy most of the time, and one can

justify constructing multiprocessor systems in which some of the processors do relatively little, but

XEROX PARC, ISL-83-1, AUGUST, 1983

RETROSPECTIVE ON THE DoRADO 35

the structure of the system is simple and expandable. It is more important to develop

high-performance hierarchical memory systems (caches) and high-performance instruction decoder

units that can be instantiated multiple times using VLSI. Memory components are cheaper now, but

large multi-port memories are still expensive due to multiple busses, switches, and contention problems

that can result in poor performance. It is likely that the Dorado is the last machine of its line but,

like most dinosaurs, it will have a very long tail.

XEROX PARC, ISL-83-1, AUGUST, 1983

36 ACKNOWLEOOMENTS

Acknowledgments

The project could not have been done without the support of the Computer Science Laboratory

and the patience of its members. Appendix B lists the personnel directly involved with the Dorado

project and their main areas of contribution. Each member of the team should be commended for

high professional standards and a spirit of cooperation vital to completing a project of this difficulty

with a minimal size staff. Finally, special thanks go to the people who took up where the design

and commissioning team left off and who are responsible for the ongoing success of the Dorado.

XEROX PARe. ISL-B3-I. JULY, 1983

ApPENDIX A: DoRAOO PROJECT CHRONOLOOY 37

Appendix A: Dorado Project Chronology

1975 January-December: Initial concept and staffing.

1976 January-December: Concept refinement, design automation system initial implementation,

logic design sketches for microcontroller, processing unit, instruction fetch unit, storage

module.

1977 January-June: Project re-evaluation. Some logic design sketches for display controller and

memory system.

June: Project moves from Systems Development Department to Computer Science Lab.

Dorado team formed.

June-December: Model 0 prototype implementation progresses on control, processor, and

memory.

1978 January-June: Complete Model O. Alto system emulator without IFU running. Begin Model

1 specification and logic design.

June-December: Refine Model 0 and continue Model!. Virtual memory support, page

fault and error handling hardware completed. First Mesa. Smalltalk, and Interiisp emulators.

1979 January-March: Debugging of Modell, with baseboard, control, processor, new memory

system, and IFU design in progress. Released Model 0 to users. Extensive microdiagnostics

developed; training of technicians begins. 110 controllers debugged. Model 1 language

emulators installed. Major Mesa system executes successfully.

March-June: Microdiagnostics completed. First 16K RAM chips installed in memory Map

and storage modules. Second prototype commissioning begins.

July-August: Attempts to speed up system clocks and improve cooling in individually

packaged Dorados. First Modell delivered to Laboratory.

August-December: Continued wrestling with power, cooling, and packaging problems.

Technology transfer for manufacturing begins.

1980 January-June: Full-color display system implemented. Manufacturing begins at

approximately one Dorado per month. Machine room installation prepared.

1981 Manufacturing continues; multi-layer PC board versions implemented.

1982 Manufacturing continues; multi-layer PC board versions tested.

1983 Manufacturing successful. Approximately 75 Dorados in service. Technology transfer to

printed circuit boards completed. All programming staff to have personal Dorados.

XEROX PARCo ISL-83-l. JULY. 1983

38 ApPENDIX B: DoRADO PROJECf PERSONNEL

Appendix B: Dorado Project Personnel

Early System Architects:

Butler Lampson, Chuck Thacker, Ron Rider

Systems Development Department, early sketches:

Chuck Thacker, Brian Rosen, Don Charnley. Tom Chang. Ken Pier

CSL Dorado Team:

Baseboard, storage modules, and Friend of the Electron: Ed McCreight

Control and Data Processor: Roger Bates, Ed Fiala, Ken Pier

Memory: Butler Lampson, Doug Clark. Ken Pier

IFU: Butler Lampson, Gene McDaniel, Severo Ornstein, Will Crowther

Disk Controller: Roger Bates, Willie-Sue Haugeland

Ethernet Controller: Ed Taft, David Boggs

Display Controllers: Ken Pier

Debugging and Diagnostics: Gene McDaniel, Ed Fiala

MicroAssembler and Placer: Peter Deutsch. Ed Fiala

Language Emulators: Willie-Sue Haugeland, Ed Taft, Peter Deutsch. Nori Suzuki. Bruce

Hom, Larry Masinter

Design Automation: Chuck Thacker. Roger Bates. Ed McCreight, Bob Sproull, Martin Kay

Technical Support: Mike Overton, Charlie Sosinski, Herb Yeary

Manufacturing: Larry Clark. Tim Diebert

XEROX PARCo ISL-83-1. JULY. 1983

REfERENCES 39

References

[1] Cognitive and Infonnation Sciences Group. Papers on Interlisp-D. Technical Report CIS-5,

Xerox Palo Alto Research Center, 1981.

[2] Clark, D.W., Lampson. B.W., and Pier, K. A. The Memory System of a High-Performance

Personal Computer. IEEE Transactions On Computers C-30, 10, Oct 1981, 715-733. Also in

Technical Report CSL-81-1, Xerox Palo Alto Research Center, Jan. 1981.

[3] Conti, C.J. Concepts for Buffer Storage. IEEE Computer Group News 2, March 1969, 9-13.

[4] Fiala, E.H. The Maxc Systems. Computer 11, 5, May 1978, 57-67.

[5] Frank, E. H. and Sproull, R.F. Testing and Debugging Custom Integrated Circuits. Computing

Surveys ACM 13, 4, Dec. 1981,425-451.

[6] Forgie, J.W. The Lincoln TX-2 Input-Output System. Proc. Western Joint Computer Conference,
Los Angeles, Feb. 1957, 156-160.

[7] Goldberg, A., and the Smalltalk Language Group. The Smalltalk-80 System. BYTE Magazine,

June 1981, 36-48.

[8] Goldstein, I.P. PIE: A Network Based Personal Information Environment Proc. oj the Office
Semantics Workshop, Chatham, Mass., June 1980.

[9] Horning, J. G. Private Communication.

[10] Johnsson, R.K. and Wick, J.D. An Overview of the Mesa Processor Architecture. Proc. Symp.
on Architectural Support jor Programming Languages and Operating Systems, SigArchlSigPLAN,

Palo Alto, March 1982,20-29.

[11] Kidder, T. The Soul oj a New Machine. Little Brown, 1981.

[12] Lampson, B.W., Clark, D.W., McDaniel, G.A., Ornstein, S.M., and Pier, K.A. The Dorado: A

High-Performance Personal Computer-Three Papers. Technical Report CSL-81-1, Xerox Palo

Alto Research Center, Jan. 1981.

[13] Lampson, B.W. and Pier, K.A. A Processor for a High-Performance Personal Computer. Proc.

7th Int. Symp. Computer Architecture, SigArchlIEEE, La Baule, May 1980, 146-160. Also in

Technical Report CSL-81-1, Xerox Palo Alto Research Center, Jan. 1981.

[14] Lampson. B.W., McDaniel, G.A., and Ornstein, S.M. An Instruction Fetch Unit for a

High-Performance Personal Computer. Technical Report CSL-81-1, Xerox Palo Alto Research

Center, Jan. 1981. Submitted for publication to IEEE Transactions on Computers.

[IS] Lampson, B.W. Fast Procedure Calls. Proc. Symp. on Architectural Support jor Programming
Languages and Operating Systems, SigArch/SigPLAN, Palo Alto, March 1982, 66-76.

[16] McWilliams, T.M. Verification of Timing Constraints on Large Digital Systems. J. Digital Syst.
(USA) 5, 4, Winter 1981, 401-427.

[17] Mitchell, J.G.; Maybury, W., and Sweet, R.E. Mesa Language Manual, Technical Report

CSL-79-3, Xerox Palo Alto Research Center, April 1979.

XEROX PARCo ISL-83-1. JULY. 1983

40 REFERENCES

[18] Needham, R.M., Herbert, AJ., and Mitchell, J.G. How to Connect Stable Memory to a

Computer. SigOps Newsletter, to appear.

[19] Newman, W.M. and Sproull, R.F. Principles of Interactive Computer Graphics, 2nd ed.

McGraw-Hill, 1979.

[20] Patterson, D. A. and Sequin, C. H. RISC-I: A Reduced Instruction Set Vlsi Computer. Proc.

8th InL Symp. Computer Architecture, SigArchllEEE, May 1981.

[21] Radin, G. The 801 Minicomputer. Proc. Symp. on Architectural Support for Programming
Languages and Operating Systems, SigArchlSigPLAN, Palo Alto, March 1982, 39-47.

[22] Sturgis, H. Private Communication.

[23] Sweet, R. E. and Sandman, J. G. Empirical Analysis of the Mesa Instruction Set Proc. Symp.

on Architectural Support for Programming Languages and Operating Systems, SigArch/SigPLAN,

Palo Alto, March 1982, 158-166.

[24] Tanenbaum, A.S. Implications of Structured Programming for Machine Architecture. Comm.

ACM 21, 3, March 1978,237-246.

[25] Teitelman, W. Interlisp Reference Manual, Xerox Palo Alto Research Center, Oct 1978.

[26] Teitelman, W. and Masinter, L. The Interlisp Programming Environment Computer 14, 4, April

1981, 25-33.

[27] Thacker, C. P. eL al. Alto: A Personal Computer. In Computer Structures: Readings and Examples,
2nd edition, Sieworek, Bell and Newell, eds., McGraw-Hill, 1981. Also in Technical Report

CSL-79-11, Xerox Palo Alto Research Center, August 1979.

[28] Widdoes, L. C. eL al. SCALD: Structured Computer Aided Logic Design. Proc. 15th Annual
Design Automation Conference, SigDA, June 1978, 271-284.

[29] Widdoes, L. C. The s-1 project: Developing High Performance Digital Computers. Proc. IEEE

Compeon, San Francisco, Feb. 1980, 282-291.

XEROX PARCo ISL-83-1 • JULY. 1983

