
To:

From:

Subject:

Keywords:

Filed On:

'XEROX
PALO ALTO RESEARCH CENTER

Computer Sciences Laboratory
INFORMATION PRODUCTS GROUP

System Development Division
July 7, 1977

DRAFT - DRAFT - DRAFT

A Sampling of Mesa Users XEROI SDD ARCHIVES d
' d and understoo

Ed Satterthwaite, John Wick 1 have rea.
To

Variant Record Changes pe.ges_ ...- --
Date_

Mesa, Variant Records 'Reviewer - 7 7' "'~b D - cQ63
f of pages

_Ref -',
< WICK) VRCHANGES,BRAVO

In a recent meeting of the Mesa Language Working Group, we considered two changes
in the implementation of variant records that might impact existing code in adverse
ways. We would appreciate your comments on these proposals soon, so they can be
included in the upcoming release definition (due July 10). Please pass this memo on to
anyone in your group who might like to review it

Variant Record Packing

The current algorithm for packing fields into multi-word records right justifies (and
widens, if necessary) the rightmost field in a word. For example, if the last field in the
record requires five bits, but eight bits remain in the word, the value of that field will
be stored right justified in the eight bits. This allows more efficient code in some
cases. More importantly, records do not have any empty holes (filler fields) in this
scheme. Thus records can be compared without worrying about garbage values in fill
fields. (Record comparison is a useful operation, and field by field comparison is an
unacceptably ugly alternative for either the user or the compiler.)

The tag fields of variant records currently do not follow this rule; the tag is left
justified in the remaining space in the word. This allows variants that begin with small
fields to "eat into" the remaining space. It has the disadvantage that most variant
records cannot be compared, because of the possibility of a garbage fill field to the right
of a tag.

The proposal is to convert to the right-justifying scheme for variant record tags. The
advantage is that comparison could be allowed. The disadvantage is that some variants
that formerly occupied n words would now take n+ 1 words, since there would be no fill
field to "eat into". Here's a worst case example (the notation to the right indicates field
positions as offset:fir~t-bit..last-bit inclusive):

Foo: TYPE = RECORD [

f1: [0 .. 377778),
f2: SELECT .. FROM

red => [b: BOOLEAN],

blue => [c: CARDINAL],

ENDCASE]

Old
0:0 .. 13
0:14 .. 14
0:15 .. 15
1:0 .. 15

New
0:0 .. 13
0:14 . .15
1:0 .. 15
1:0 .. 15

Note that, under the old scheme, bit fifteen of word zero of a blue Foo is unused
(garbage), hence blue Foos cannot be compared. On the other hand, in the new scheme,
both variants would occupy two words.

Note also that, under the new scheme, the tag field would not be widened if there were
some field in each variant that could be used to fill the remaining space. Thus if the
blue variant of Foo included some 1-bit field, a red Foo would occupy one word again
(at least if the record were not mutable; see below). If, as in this case, the variants were
of differing lengths, the compiler would still require discrimination before comparison.

Mutable Variant Records

There is a reasonably well known bug in the language definition that allows the type of
a variant record to be changed "on the fly", often wit.h disasterous consequences.
Consider the following code (assume the definition of Foo above):

foo: POINTER TO POINTER TO Foo;
baz: POINTER TO Foo;

WITH record: foot t SELECT FROM

red =>
BEGIN

foott +- Foo[3, blue[5]];
IF record.b THEN • . • ,

END;

blue =>
BEGIN

foot +- baz;
... record.c + 1 ...
END;

ENDCASE

There are two problems here. In the red arm, the storage containing the discriminated
record is overwritten with a blue Foo. Subsequent references to fields of a red Foo then
make no sense. Furthermore, the storage for the original red Foo might have been
obtained by requesting slze[red Foo] words from an allocator. If so, the store clobbers
the (logically unrelated) word that follows the allocated storage. In the blue arm, the
access path foott is changed so that subsequent mentions of record reference a different
Foo, possibly with the wrong variant.

The Early Experience with Mesa paper contains a discussion of these problems. We
don't know of a solution to the second problem (short of copying on discrimination)
that is compatible with the variations on compacting allocators that are so popular, and
we intend to ignore it. We believe that the first problem can be alleviated, however,
and it seems desirable to protect users (and ourselves) against the sort of memory
clobber that it allows. We would like to implement the first (and potentially

2

incompatible) steps of that solution as soon as possible.

The solution is to attach to the declaration of a variant record an attribute indicating
whether the record is mutabll' or not. The idea is that, unless the record is mutable, the
tag field is set upon initialization and never changed. Allocators can provide exactly the
amount of storage required for the particular variant of an immutable record, but we
adopt the convention that storage allocated for a mutable record must be large enough
to hold any variant.

To guarantee that an immutable tag is not changed in a sneaky way, the rules for
pointer assignment, etc., must also change: assignments of the form

x: POINTER TO red Foo;
y: POINTER TO Foo;
y ... x

become illegal unless Foo is immutable (otherwise, the new pointer could be used to
change the tag so t.hat x would no longer point to a red Foo). With this change,
discriminating on an immutable record is safe with respect to tag changes; overwriting a
discriminated (or undiscriminated) mutable record is still possible, and there will always
be enough space to avoid clobbering unrelated storage.

Other advantages are possible in future versions of Mesa. For example, a proposed
addition is an ALLOCATE expression intended to subsume a common but well understood
loophole and to eliminate most uses of S1ZE. With the conventi6ns outlined above,
allocation of variant records could be handled in a consistent way and, c.g, a NEXT

operator upon pointers into sequences of variant records could be defined.

Unfortunately, the current version of Mesa lacks special syntax to indicate the
initialization of dynamically allocated storage, and the initial solution would be
incomplete. The short term (next release) consequences of this change thus would be
the following:

Adding a specification of the mutability to the declaration of variant records.

Enforcing the pointer assignment rule given above.

Changing the definition of SIZE (to take mutability into account).

Requiring the declaration of an immutable variant record (as a local variable or
record field) to specify the particular variant, either explicity or implicitly (by
initialization).

The last of these is negotiable; because of the problem of distinguishing initialization,
actual protection of an immutable tag from overwriting by assignment will not be
possible until a later release.

The immediate question is whether mutable or immutable should be the default case.
The keyword VARYING has been suggested to indicate mutable records, or we might choose
CONSTANT to indicate the immutable property (both would follow the SELECT keyword in
the record declaration). We are currently leaning toward the VARYING attribute for
compatability reasons, since the current implementation is closer to immutable records,
except for the assignment check. Which do you prefer?

3

Distribution

Prototype Software: Malloy. Simonyi
Juniper Project: Morris. Sturgis
Tools Environment: Ayers. Smokey
Communications: Crowther. Murray
APL Project: Wyatt

Geschke
Johnsson
Koalkin
Lampson
Mitchell
Sandman
Sweet
Weaver

4

