
Inter-Office McmonmdlllU

To Distribution

From Jim White

Subject Data Structure Transmission Protocol
(Version 2)

XEROX

Filed on: <White)DSTP2.Ears

Pteface

Date 11 July 77

location Palo Alto

Organi7:ttion SDD/SD/es

This is the fourth in a series of memos [1. 2, 3] aimed at identifying new Mesa facilities
for simplifying the construction of distributed systems. This memo obsoletes its
predecessors by defining Version 2 of a Data StruclUre Transmission Protocol (DSTP)
that facilitates the transmission of Mesa data structures between hosts. This second
iteration provides support for strings, array descriptor~. and pointers. and incorporates
background and motivational material from previous memos.

Thanks are due Will Crowther and Hal Murray, who made themselves available for
numerous discussions, and Jay Israel and Chuck Geschke, who cOlltributed valuable
information on the use of similar techniques within Juniper and SiI.

Outline

The present memo is organized along the following lines:

General Goals
Specific Goals
Scope of the Protocol
Specification of the Protocol
Implications of the Protocol
SpecifiCation of the Package
Conclusions
Appendix A: Byte Stream Procedures
Appendix B: A Slice of a Client Protocol and its Implementation
References

XEr.OX SDD ARCHIVES
I have read and underBtoo~

Pages _________ To ________ _

Reviewer Date ----
of Pages_..-;Ref .. ??.sJ)/)-p26g

Data Structure Transmission Protocol (Version 2) 2

General Goals

A variety of network communication facilities are currently available within the Mesa
programming environment. Depending upon his requirements for generality and efficiency,
the programmer can select from among a number of subroutine packages, each providing a
different grade of service (e.g. raw packet mode, packet stream mode, byte stream mode, and
file transfer mode).

While providing an important spectrum of communication services, all of the existing
facilities require the programmer to manipulate remote objects in ways that are different
and typically more cumbersome than those used to manipulate local objects of the same
type. Local program modules, for example, are accessible by procedure call; to
communicate with a remote module, however, the programmer must construct (say) a packet
stream, encode and transmit a service request to tbe remote module, and await and decode
the remote module's reply. To read a local file, the programmer need only invoke the
appropriate file system primitives; to read a remote file, on the other hand. he must first
transport tbe file to his local machine using the File Transfer Package.

Some of the problems associated with providing uniform access to objects in a distributed
system, especially problems in the area of distributed file systems, are already being tackled
in the Mesa environment. A Page Level Access Protocol, for example, is being developed as
a vehicle for more direct manipulation of remote files. The Mesa compiler is also being
augmented to automatically retrieve from a remote file system any XM files it needs which
aren't availahle locally.

The present memo addresses the uniform access problem in a more general way and
describes a new Mesa facility that greatly simplifies the construction of distributed systems
generally, rather than just aiding in the construction of one particular distributed service
(e.g. a distributed file system). The author's ultimate aim is to extend the application
domain of the Mesa programming system itself to include distributed programs, and so to
reduce the cost of building and maintaining distributed systems.

Specific Goals

Underlying every distributed service is a protocol that specifies, among other things, t.he
content and format of messages exchanged between the local program that requires the
service and the remote program that provides it. Although the interface between consumer
and supplier is thus ultimately message oriented, it is usually advantageolls to interpose an
additional piece of software local to the consumer that provides him with a procedural
interface to the remote service. Doing so both localizes knowledge of the protocol (which
may change from time to time) and makes the service easier and more natural to use.

One important task of the module that implements the procedural interface is to prepare
messages for transmission to the remote system and interpret the messages it receives in
response. To accomplish this task, the module must convert outgoing data structures (e.g.
those that originate as arguments to its public procedures) from their standard internal
representation, dictated by the Mesa compiler, to their standard external representation,
dictated by the protocol. Similarly, it must convert incoming data structures (e.g. those
destined to be returned as results of its public procedures) from their external
representation to their internal one. Because the required formats for even the most
common data types (such as integers and character strings) vary from one protocol to
another, specialized conversion code must be written for each distributed service.

As an initial step toward simplifying the construction of distributed systems in the Tv1esa
environment, this memo defines a standard, service-independent, Data Structure
Transmission Protocol (DSTP) ihat facilitates the transmission of Mesa data structures
between hosts by specifying a standard external representation for each Mesa data type

Data Structure Transmission Protocol (Version 2) 3

(including, of course,. integers and character strings). DSTP is thus a first step toward
extending the domain of the f\1esa type system to include network protocols. DSTP's two
immediate results are, first, to reduce ·the size of programs that use it by enabling them to
share a single internal-external cOl/version package, and second, [0 elevate higher-level
client protocols thaI use DSTP above Ihe level oj detailed message jormats 10 the more
abSTract level of Mesa data structures. While both results are important, the second has
profound implications for the protocol design proce~s. Since DSTP specifies (once and for
all) the precise encoding of each data type (e.g. INTEGER. STRING, ARRAY. RECORD), the
designers of higher-level protocols are relieved of such chores and need only specify the
abstract structure of the· messages required by their applications. The syntactic de'icriptiolls
of client protocols are. in fact, Mesa definitions moclules (rather than prose or BNF) which
can be compiled ancl used by software that implements the protocols.

Scope of the Protocol

DSTP provides a means for transmitting Mesa data structures between hosts. The term
data Slruclure here denotes the value of any data object whose definition is permitted by
the .. Mesa type system, encompassing objects of all types (both predefined and constructed)
and uses (constants, variables, procedure arguments, procedure results).

DSTP is concerned with the format of transmitted data, rather than with the mechanism of
transmission. DSTP therefore specifies an encoding for transmitted data structures but does
not legislate a transmission mode (or a rendezvous technique or, of course, the higher-level
semantics of the data structures transmitted). For applications that use the communication
system's packet-level transmission facilities, DSTP requires that the text field of each
packet contain the encoding of all integral number of data structures and that no extraneOllS
data be present. For applications that use the communication system's byte-stream
transmission facilities, DSTP requires that the byte stream contain the encoding of an
integral number of data structures and, again, that no extraneous data be present.

Most client protocols will enforce a one-to-one correspondence between data structures and
commands to or requests of the remote host. In the general case, a service request will be
implemented as a record whose components are the parameters of the requcst.

Specification of 'the Protocol

The current specification of the protocol assumes no modifications to the Mesa compiler.
Where compiler modifications would signiflc3ntly enhance the protocol and its usc, that fact is indicated in
small type ,(like this).

DSTP defines a nctwork encoding for Mesa data structures transmitted between hosts,
consisting of a fixed-length header component followed by variable-length l'alue and
relocation vector components:

Header (3 words):
Type (1 word)
Value Size (l word)
Vector Size (l word)

Value (value size worth):
Primary data structure (length unspecified)
Secondary data structure #1 (length unspecified)
Secondary data structure 112 (length unspecified)

Data Structure Transmission I)rotoco) (Version 2)

.,. elc.
Relocation Vector (vector size words):

Value offset to link to secondary data structure #1 (1 word)
Value offse~ to link to secondary data structure #2 (1 word)
... etc.

4

As he reads the remainder of this protocol specification, the reader is invited to consult, as
an example, the following Mesa data structure and its DSTP encoding. The size (in words)
of each element of the encoding is given as a subscript--<elemenDsize--foJlowing the
value of the element, which is enclosed in angle brackets:

Mesa Declaration:

dataStructure: RECORD [
integer: INTEGER::3,
POINTER TO RECORD [

boolean: BOOLEAN::TRUE,
string: STRING="example"]];

dataStructure Type: TYPE :: {data Structure};

DSTP Encoding;

Header

Header (3 words): (dataStructure>l <10>1 <2>1 .
Value (10 words):

Primary (RECORD[INTEGER,POINTER): 0>1<2>1
Secondary (RECORDlBOOLEAN.STRING): <1>1(4)1
Secondary (string structure): 0>1<7>1 <"example"> 4

Relocation Vector (2 words): (1)1(3>1

The header records the size (in words) of each of the two variable-length components that
follow it. It also identifies the type of the data structure by means of a code that associates
the transmitted value with either a predefined type or a constructed type located in a
definitions module to which both sender and receiver have access. Future specifications of the
p/Otocol might (with the compiler's help) inc.lude in the header a date-tllne-pl:Jce 5tJrnp associated with the
definitions module, thereby permitting verificntion that sender and receiver were compiled with the same
version of that module. In the current specification of the protocol, the type code found in the
header is supplied and interpreted by the sending and receiving applications programs,
respectively (an enumerated type is suggested but not required as the mcans by which the
code is specified). Because the type code is only interpretable by the applications programs, the receiver
must use a loophole to assign the transmitted value to a 'Mesa variable. A beller apPIOJeh, one that preserves
the .integrity of the M.:sa type system but which also requires compiler support, would be that in which the type
code is generated (at the sending end) and cheel-ed (at the r~eeiving end) by the compiler.

Value

The value component of the data structure's encoding contains a copy of the compiler's own
internal (untyped) encoding of the primary data structure and any secondary data structures
(as defined below) which the sender elects to transmit. Since the data structure's internal
and external representations are identical, no conversion code or processing overhead is
requi red by either sender or receiver.

The address and size (in words) of a data structure named structure of type Structure are
given in Mesa by @structurc and SlzE[Structure), respectively; by definition, the primary
data structure is the data described by these parameters. Immcdiately following the primary
data structure (in arbitrary order) are zero or more secondary data structures to which the

Data Structure Tr:msmission Protocol (Version 2) 5

primary data structure or another secondary data structure makes reference. (The term
composite data slructure denotes the primary data structure and all of its transmitted
secondary data structures.)

Three classes of secondary data structures are currently definecl: (1) If the composite data
structure contains a STRING, the string structure it addresses (containing the string's
LENGTH, t.1AXLENGTH, and TEXT) may be transmitted as a secondary data structure. (All
MAXLCN(jTH characters are transmitted, regardless of the value of LENGTH.) The address
and size (Ill words) of the string structure for a string named string are given in Mesa by
LOOPHO/,E[string, rOfNTER) and 2+(string.maxlength+/)/ 2, respectively. (2) If the
composite data structure contains an ARRAY DESCRIPTOR (which specifies the BASE and
LENGTJI of the array), the array itself may be transmitted as a secondary data structure.
The address and size (in words) of an array of elements of type type denoted by an array
descriptor named descriptor are given in Mesa by BASE[descriptor) and
LENGTH[descriptor)*SIZF:[type), respectively. (3) Finally. if the composite data structure
contains a POINTER, its referent may be transmitted as a secondary data structure. The
address and size (in words) of the referent of type Referent of a pointer named pointer are
given in Mesa by pOinter and SIZE[Referent), respectively.

Relocation vector

Each secondary data structure is addressed from somewhere within the composite data
structure. Strings and pointers are nothing more then links to their respective string
structures and referents. while the link to an array is embedded in an array descriptor as its
BASE attribute.

In its passage from sender to receiver, each link between the composite data structure and a
secondary data structure undergoes two successive transformations. Beginning as an address
within the sending host, the link is converted to a word offset within the value component
before the data structure is transmitted via the network. Once the data structure has been
delivered to the receiver and positioned in its memory, the link is converted to an address
within the receiving host.

The third and final component of the data structure encoding, the relocation vector,
enumerates the links the receiver must convert from offsets to addresses to obtain a
legitimate Mesa data structure. Each word of the relocation vector contains the word offset
within the value component of a string, array descriptor, or pointer whose string structure,
array, or referent was transmitted as a secondary data structure. To instantiate all of a data
structure's secondary data structures, the receiver need only execute the code:

FOR i IN iVector DO
siteOfLink +- vector[i] + baseOfYalueComponent;
siteOfLinkt +- sitcOfLinkt + baseOfYalueComponent;
ENDLOOP;

Implications of the Protocol

The data structure encoding described above always achieves the intuitively correct results
for types BOOLEAN, CARDINAL, ENUMERATION. INTEGER, SUBRANGE, CIIAP.ACTER, ARRAY
(with element type chosen from this same set), and RECORD (with component types chosen
from this same set). Such data structures arc always transmitted by value and no secondary
data structures are involved.

The sender may transmit a data structure of type STRING, ARRAY DESCRIPTOR, or POINTER
with (i.e. attached to) or without (i.e. detached from) its associated string structure, array,
or referent. While detached strings and array descriptors are rarely lIseful, the protocol

Data Structure Transmission Protocol (Version 2) 6

permits their use. "C.Jjent protocol "designers, however, should lise them only with an
understanding of their limitations and of the possible pitfalls involved in their use.
Detached pointers. on the other hand: are often useful, as in the case where the pointer
serves as a handle to an object maintained by the sender and the handle is always returned
to iis source for evaluation. The compiler could help here by providing primitives (for encodlllg and
decoding data structures for transmission) that interpret strings. array dc!>criptors, and pointers as attached or
detached data structures according to directives embedded in the data structure's declaration.

Data structures of type PROCEDURE are admitted by the protocol, but must always be
returned to their source for evaluation. In subsequent versions of the protocol, the body of :1
procedure could conceivably (in some cases) accompany the PROCEDURE as a secondary data structure.

Data structures of type SIGNAL and PORT are unsupported by the protocol and should not be
transmitted. (The transmission of SIGNALs is pointless since signals are implemented as
addresses \'v'ithin the sending host). The compiler could help here by providlllg primitives (for encoding
and decoding data structures for transmission) that prohibit (or at least warn of) the use of these prohibited
data types.

Specification of the Package

Described below is a Data Structure Transmission Package (DSTP) that implements the
protocol. The Mesa source code for the definitions and program modules can be found in
[4] and [5], respectively. The implementation described here is 434 bytes (less ~han one
page) of code and requires a 12-wqrd global frame.

Principal Data Structures

DSTP maintains all of the state information it requires in a client-supplied data structure
of type Ds. All of the components of the state record addressed by Ds except the first,
dsHeader, must be initialized by the client before any DSTP procedures referencing Ds are
called. (The client may also modify the state record between data structures if it so
desires.) Once initialized, a single state record can be used to send and receive an arbitrary
number of data structures in sllccession:

Ds: TYPE = POINTER TO DsObject;
DsObject: TYPE = RECORD [

dsHeader: DsHeader,
dsSegmentQueue: DsSegmentQueue,
dsRelocationVector: DsRelocationVector,
dsSendBlock: Send Block,
dsReceiveWhoteBlock: ReceiveWholeBlock,
dsSendRoceiveParameter: UNSPECIFIED]:

The state record contains a workarea dsHeader in which the data structure's header
component is constrllcted, a descriptor dsSegmentQueue for a client-supplied array in
which sllch information as the addre~s and size of primary and secondary data structures is
recorded for later transmission, and a descriptor dsRe!ocationVector for a client-supplied
array in which the data structure's relocation vector component is constructed:

DsHeader: TYPE = RECORD [
dsType: INTEGER,
dsSegmentQueueSize: INTEGER,
dsRelocalionVec;!orSize: INTEGER]:

DsSegmentQuouo: TYPE = DESCRIPTOR FOR ARRAY OF DsSegment;
DsSegment: TYPE = RECORD r

dsSegmentReforencePomter. POINTER,
dsSegmentPomter: POINTER.
dsSegmenlSize: INTEGER.
dsSegmcntOffset: INTEGER1:

DsRelocationVoclor: TYPE = DESCRIPTOR FOR ARRAY OF WORD;

Data Structure TnlOsmission Protocol (Version 2) 7

The state record also identifks client-supplied procedures (Send Block and
RcceiveWllOleBlock) that DSTP may call to send and receive hlocks of outgoing and
incoming data struclures, and an arbitrary parameter dsSendRec.eiveParollTeter (e.g. a byte
stream handle) to be passed to those procedures by DSTP. Requiring the client to supply
sllch procedures allows a single DSTP package to be used in conjunction with the
communication ·system's various (e.g. packet-Jevel and byte stream) transmission facilities:

SendBlock: TYPE = PROCEDURE r parameter: UNSPECIFIED,
blockPointer: POINTER, blockSizc: INTEGER, blockldentlty: Blockldentity];

ReceiveWholeBlock: TYPE = PROCEDURE Lp[1rameter: UNSPECIFIED, blockPointer: POINTER,
blockSize: INTEGER, blockldenlity: Blockldentity] RETURNS [blockPointer: POINTER];

Blockldentity: TYPE = {firstOfDs. interiorOfDs, laslOfDs};

The block Pointer passed to ReceiveWholeBlock may be NIL. in which case
ReceiveWholeBlock is expected to provide the necessary storage.

Public Procedures

DSTP provides five procedures for sending data structures. only two of which need be
called to send data structures that contain neither strings. array descriptors, nor pointers
(Le. that have no secondary data strtlctures): .

EnqueueDsForSend: PROCEDURE [ds: Os,
dsType: UNSPECIFIED. dsPointer: POINTER, dsSize: INTEGER];

SendDs: PROCEDURE Cds: Os];

The first procedure, EnqueueDsForSend. records in the state record the type, address, and
size (in words) of the (primary) data structure to be sent. The second procedure. Send Ds,
actually sends the data structure, calling the client-supplied SendBlock procedure indicated
in the state record. The data structure is not copied by EnqueueDsForSend but rather is
passed directly to SendB/ock by SendDs.

To send data structures containing (attached) strings, array descriptors, or pointers, calls to
one or more of the following additional procedures mllst be interposed between the caBs to
EnqueueDsForSend and SendDs (strings, arrays descriptors, or pointers which the client
fails to identify in. this fashion will be sent as detached data structures):

NoteStringlnDs: PROCEDURE [ds: Ds. stringSlte: POINTER TO STRING];
NoteArrayDescriptorlnDs: PROCEDURE £. ds: Ds,

arrayDescriptorSlte: POINTER--TO DESCRIPTOR FOR ARRAY --, arrayElementSize: INTEGER];
NotePointerlnDs: PROCEDURE [ds: Os, pOll1terSite: POINTER TO POINTER, refcrcntSize:

INTEGER];

A cal1 to NoreSrringlnDs, NoteArrayDescriptorlnDs, or NotePointerlnDs makes known to
DSTP the existence of a string, array descriptor, or pointer within the composite data
structure and causes the corresponding string structure. array, or refer~nt to be transmitted
when SendDs is invoked. These procedures simply note (in the client-surplied segment
queue) the address and size (in words) of the second<lry data structure, which SendDs later
passes directly to SendlJ!ock (no copying is performed). (ScndDs must modify the
composite data structure to convert embedded Jinks (to secondary data structures) from
addresses to offsets before delivery to SendJJ!ock, but restores the data structure to its
original state before returning to the client.)

DSTP provides a single procedure for receiving data structures:

ReceivcDs: PROCEDURE [ds' Dsl

Dahl Structure Transmission Protocol (Version 2) 8

RETURNS [dsType: UNSPECIFIED. dsPointer: POINTER, dsSize: INTEGER];

ReceivcDs returns the type, address, and size (in words) of the received (composite) data
structure. Space for the composite data structure Is provided by ReceiveWholeBlock; proper
disposal of this storage is therefore the responsibility of the client. When ReceiveD:;
returns, links to any string structures, arrays, or referent!) will have been converted from'
offsets to addresses within the client's host.

Conclusions

The Mesa type system provides powerful facilities for controIHng the exchange of
procedure arguments and results between programs on a single machine. DSTP brings these
same facilities to bear upon the exchange of messages by distant programs Jinked by a
network.

DSTP elevates higher-level client protocols from the level of detailed message formats to
the more abstract level of Mesa data structures. The syntactic description of a DSTP-based
protocol is itself Mesa source code (a definitions module) that can be compiled and used by
programs that implement the protocol.

DSTP is basically a discovery (that Mesa objects can be transmitted via the network) rather
than an invention; less than a page of code is required for its use. DSTP reduces the
amount of communications software required within the system by enabling diverse
applications to share a single, much simpler software package for converting data structures
between their internal (Mesa) and external (protocol) representations.

Data Structure Transmission Protocol (Version 2) 9

Appendix A: nyte. Stream Procedures

Given below are the definitions and pi'ogram modules (available also as [6, 7]) for the byte
stream implementat ion of the Send Block and ReceiveWhole Block procedures required by
the Data Structure Transmission Package. The impiementation given here is 80 bytes uf
code and requires an ll-word global frame.

Definitions Module

DIRECTOFlY
PupDefs: FROM "PupDefs",
DSTPDefs: mOM "DSTPDefs";

DEFINITIONS FROM PupDefs, DSTPDefs;

BsDSTPDefs: DEFINITIONS =
BEGIN

-- BsDSTP procedures
BsSendBlock: PROCEDURE Cbs: ByteStrearn, blockPointer: POINTt::R, blockSizc: INTEGER, blockldentity:

BlockldentityJ :
BsflecelveWholeBlock: PROCEDUflE rbs: ByteStrearn, blockPointer: POINTER, block Size: INTEGER,

bloclddentity: Blockldentity] RETUHNS [blockPointer: POiNTER];

END.

Program Modlile

DIRECTORY
PupDefs: FROM "PupDefs",
DSTPDefs: FROM "DSTPDefs",
BsDSTPDefs: FROM "8sDSTPDefs";

DEFINiTIONS FROM PupDefs, DSTPDofs, BsDSTPDefs;

BsDSTP: PROGRAM [PupFacilities: Puplnterface] IMPLEMENTING BsDSTPDefs ~
BEGIN OPEN PupFaciiities;

-- BsDSTP public procedures
BsSendBlock: PUBLIC PROCEDURE [bs: ByteStrearn, blockPolnter: POINTER, blockSizc: INTEGER,

blockldantity: Blockldentlty) =
B[GIN
blockringer: BlockFinger;
biockringer ;.. DESCRIPTOR! blockPointer, blockSiz.e, WORD);
ByteStreamPutBlockrbs, @blockFinger]:
IF blockldentity = lastOfDs THEN ByteStreamSendNow[bs];
END:

BsReceiveWholeBlock: PUBLIC PROCEDURE Cbs: ByteStrearn, biockPointer: POINTER, blockSize:
INTEGER. blocklclentiry: Dlockldentity] RETURNS lblockPoll1ter: POINTER] =

BEGIN
blockFinger: BlockFingar; .
IF blockPointer = NIL THEN blockPointer ... AllocateHeLlpNode[blockSize];
blockFinger ;.. DESCF{IPTORrblockPointer. blockSize, WORD);
ByteStreamGetWholeBlock[bs, @blockFingerJ;
END;

END.

D~lta Structure Transmission Protocol (Version 2) 10

Appendix B: A Slice of a Client Protocol and its Implementation

Given below are the definitions and program modules for the implementation of a small
subset of a hypothetical, DSTP-based, Page-Level Access Protocol (PLAP). Note
particularly the procedure OpenRemoleFile, which demonstrates the use of the DSTP
Package. Note also that the syntactic descriptions of PLAP messages are Mesa declarations.

Definitions Module

PLAPDefs: DEFINITIONS =
BEGIN

-- PLAP data types
OpenMode: TYPE::: {read. write, append, readWrite};
Handle: TYPE :: CARDINAL;

-- PLAP signals
NonExistentFile: ERROR [file: STRING);
-- etc.

-"- PLAP procedures
OpenRemoteFile: PROCEDURE Cbs: ByteStream, file: STRING, openMode: OpenMode] RETURNS [handle:

CARDINAL):
-- etc.

-- PLAP command and response types
CommandType: TYPE = {openFile}; -- etc.
ResponseType: TYPE", {successful, rioSuchFile}; -- etc.

-- PLAP commands and responses
OpenFilcCommand: TYPE = RECORD [file: STRING, opcnMode: OpenMode];
OpenFileResponse: TYPE ~ Handle;
-- etc.

END.

Program Module

DIRECTORY
PupDefs: FROM "PupDefs".
DSTPDefs: FROM "DSTPDefs",
BsDSTPDefs: FROM "BsDSTPDefs",
PLAPDefs: FROM "PLAPDefs";

DEFINITIONS FROM PupDefs, DSTPDefs, BsDSTPDefs, PLAPDefs;

PLAP: PROGRAM [PupFacilities: Puplnterface, bs: ByteStream) ::
BEGIN OPEN PupFacilities;

-- PLAP signals
NonExistentFifc: ERROR [f,Ie: STRING] = CODE;

-- PLAP global variables
sendBlock: PROCEDURE [UNSPECIFIED. POINTER. INTEGER, Blockldentity] ... ElsSendBlock;'
receiveWholeBlock. PROCEDURE rUNSPECIFIED. POINTER. INTEGER. Blockldentity] RETURNS [POINTER]

... BsReceiveWholeBlock:
ds: Ds:
dsSegmentQueue: DsSegmentQueue = DESCrlIPTOR[segm€mIQuoue];
segmentQucue. ARRAY [0 .. 2) OF. DsScgment:
dsr~elocatlonVeclor: DsRelocationVector = DESCRIPTOR[relocationVoclor];
reloca!lonVoctor: /\RRAY rO .. 2) OF WORD;
handle: Handle;

-- PLAP procedures
OpenRemolcFile: PROCEDURE [bs: Byte-Stream, file: STRING. openMode: OponMode] RETURNS [handle:

CARDINAL] =
BEGIN
-- declarations

Data Structure Transmission Protocol (Version 2)

comrnandType: CornrncllldType ... openFile;
responscTypc: ncspom:eType:
opcnl=lleCornmand: OpenFil~Cornmflnd ... [file. openMode]:
openFileResponse: POINTER TO OpenFileResponse;
-- sene! open ftle command
EnQueucDsF orSend[" dS. comrnandType. @openFileCommand. SIZE[OpenFileCornmand]];
NotcStringlnDs[ds, @openFileCommand. file]:
SendDsr ds 1;
-- receive open file response
[dsType: responscType, dsPoinler: openFileResponse] ... ReceiveDs[ds]:
handle'" openFileHesponset:
FreeHeapNode[openFlleResponse]:
-- mtcrpret response
SELECT responseType FROM

= successful = > RETURN:
= noSuchFile => ERROR NonExistentFile[file]:
ENDCASE =) ERROR;

END;

--etc.

-- PLAP main program
ds.dsSegmentQueue ... dsSegmentQueue:
ds~dsRelocationVector ... dsRelocatlonVector:
ds.dsSendBlock ... senclBlock;
dS.dsReceiveWholeBlock ... receiveWholeBlock;
ds.dsSendReceiveParameter <- bs;

END.

11

Datil Stru~turc Transmission Protocol (Version 2)

Uefercnces

[1] While, J.E., Mesa Data Type Transmission Protocol, 8 June 77, Filed on
< White> DTTP.Ears.

[2] White, J.E., An Example of DTTP's Use By Higher-Level Protocols, 10 June
77, Filed on <White>DTIPExample.Ears.

[3] White. J.E., Data Structure Transmission Protocol, 24 June 77, Filed on
<White> DSTP.EilfS.

[4] DSTP Definitions Module, Filed 011 (White>DSTPDefs.Mesa.

[5] DSTP Program Module, Filed on (White) DSTP.Mesa.

[6] BsDSTP Definitions Module, Filed on (White) BsDSTPDefs.Mesa.

[7] BsDSTP Program Module, Filed on <White> BsDSTP.Mesa.

Distribution:

SOD/SD/es
David Boggs
Chuck Geschke
Charles Irby
Jay Israel
Butler Lampson
Hugh Lauer
Bill Lynch
Paul Melones
Dave Redell
Ed Satterthwaite
John Shoch
Wendell Shultz
Dan StottJemyre
Ed Taft
Smokey Wallace
John Weaver
Ben Wegbreit
John Wick

12

