
Inter-Office Memonmdum

To Pilot, Mesa, DO architecture

From Paul McJones

Subject Page faults and multiple processes
per MOS

XEROX
Archive "

Filed on: < McJones) FaultEvents.memo

Date 14 July 1977

Location Palo Alto

Organization SO~/SO

XEROX SDD ARCHIVES
I have read and understood

Pages To -----Reviewer ________ Date _____ _

of Pages ____ Ref .. 11SpJ) - 2.7 I

With the current processor architecture, running multiple processes capable of taking page
faults within a single MOS leads to problems. If significant resources (Le. one or more
resident frames) are not to be dedicated on a per-process basis, changes to the processor are
indicated. Two different proposed changes are sketched here. Additionally, an analogy is
drawn between handling page faults, which requires dedicated, resident frames, and
handling frame heap allocation traps, which requires dedicated (possibly nonresident)
frames. Each of the proposed hardware changes can be extended to handle frame heap
allocation traps.

Handling a page fault requires a definite amount of resident memory for local frames. In a
system which chooses not to ded icate this memory on a per-process basis, there must be a
way to queue a fault until sufficient such memory is available to handle it. The current
processor architecture, in which page fault handler frame space is associated with the MOS,
does not provide an efficient way to dedicate this frame space specifically to page fault
handling, or to regulate accesses to it by multiple processes within the MOS. One remedy
for this situation would maintain the association of frame space for handling page faults
with an MDS, but would provide a way to suspend a faulting process until enough of the
space is available. Another remedy would decouple the handling of page faults from any
particular MDS by converting page faults into messages, thereby achieving the necessary
serialization of access to dedicated frame space using the "dual" approach to the first
proposal.

The situation now

Traps

Currently every processor-detected trap forces the running process to execute a
KernelFunctionCal1 (KFC) instruction with an offset in the SD (system dispatch table)
determined by the particillar trap. The SD entry must contain either a procedure descriptor
or a pointer to a fixed frame. In the former case, a call is clone, which implies allocating a
new local frame from the frame heap. In the latter case, execution continues in the fixed
frame.

Handling page faults

The page fault handler must be very c:ueful about generating page faults. In particular, the
original I<FC which invokes it must not generate a page fault, or an infinite loop will result.
Several ways to prevent this suggest themselves:

Page faults and multiple processes per MDS 2

1. Pin the whole frame heap in resident pages. While it may be that the frame
heap will. be "hot" enough that it will all stay resident anyway, it would be nice to
avoid the logical necessity to pin it; the rest of this memo is concerned with how to
do that.

2. Reserve an entry of the AV (allocation vector) for the page fault handler and
stock it with resident frames. There seem to be several ways to run multiple
processes per MDS in this scheme. The second and third schemes below are not
intended as solutions in themselves, but as motivation for the hardware-change
proposals to follow.

a. Reserve enough resident frames to handle a page fault by each process.

b. Reserve resident frames for fewer instances of the page fault handler
than there are processes. This requires additional reserved resident
per-process frames (2?) for a "first level page fault handler" procedure
which invokes a monitor to wait until enough frames are available to handle
the fault. Later we will look at how the "first level handler" could be
pushed into the hardware, eliminating the per-process reserved frames.

c. Use the idea of a "first level handler" in a different way, to send a
message describing the page fault; one or more processes running in an
environment with dedicated resident frames would receive such messages and
handle the page faults. In a large system with many MDS's this would allow
sharing among them the page fault handler's dedicated frames. Later we will
look at how the one (?) resident frame per process required by this scheme
on the current hardware could be saved by pushing the message-sending
"first level handler" into the hardware, making It attractive even in a small
system with one MDS and minimal real memory.

3. Use a fixed frame for the page fault handler (and probably for all the code it
calls). This does not seem fruitful: there is no way to prevent another process from
entering this frame before the first one has returned from it.

Monitors as currently defined «Redell > MesaProcesses, MesaProcesslmpl .ears) can't
be used to serialize gccess Lo the page fault handler frame(s) because a
process must have "a place to stand" to enter a monitor. The monitor entry
sequence is a loop several instructions long which must be executed one or
more times in the context of a local frame, but the problem is we don't have
a local frame. --

Disabling process scheduling (using the IncrementWakeupDisableCounter
instruction) is equally fruitless. We dare not leave process scheduling
disabled for the duration of the page fault handling episode, but it can't be
reenabled until the original process has exited the handler's fixed frame.

A possible change: hardware frame reservation

Eliminating the per-process resident frames required by scheme 2.b. above would require
something like a per-MDS "semaphore": a count of the number of frames remaining in the
special AV slot, together with a queue of processes waiting for sllch frames.

A page fault trap would decrement the semaphore counter (by a standard amount)
conditional on the result being nonnegative. If the processor was able to decrement the
count it would continue as with the current architecture to XFER to the handler; if it was not
able to decrement the semaphore it would queue the process on the semaphore (and run
another process). Incrementing the semaphore counter when a process finished handling a
page fault would have to be atomic with freeing the frames. (This could be done in a way
analogous to the trick currently lIsed for reenabling wakeups after handling a frame heap
allocation trap.) Whenever the counter was incremented, the processor would also remove
one or all processes from the queue to retry the originally faulting instruction.

Page faults and multiple processes per MDS 3

The semaphore would take only a few words at a standard place in each MDS, although of
course it would have to be resident. Processes waiting on a semaphore could be queued
through an existing word of the PSB. With only a single size of reserved frames for all the
procedures involved in handling a page fault. there would be some wasted space. In a
system with many MDS's. the resident space (and accompanying breakage) penalty would
have to be paid for each MOS. Finally. modifying the entry vectors of these procedures to
use the reserved AV would be a minor nuisance.

Another proposal: hardware fault messages

Scheme 2.c. above converted a page fault to a message sent to a process running in dedicated
resident frames. As with scheme 2.b .• the per-process dedicated resident frames can be
eliminated with new hardware features.

New processor features

We define a new process state, HaltedByPageFault; the PSB of a Halted ... process has a
field faultedPage: PageNumber (one of the other PSB fields can probably be reused for
this purpose). An instruction Restart is provided to clear the Halted... status of all
processes with a given faultedPage value. Finally. a mechanism to "receive messages from"
faulted processes is provided.

There could be a HaltedByPageFaultList, on which the hardware would queue
processes using their PSB.link field. and an associated wakeup word or condition
variable.

As alluded to earlier, the process receiving the fault messages may or may not be in the
same MDS as the faulting process. The important thing is that this receiving process have
enough resident frames: because it is running in an MDS with all-resident frames, or
because it has fixed frames, or even because it is running off a reserved AV slot in the same
MDS as the faulting process.

Programming the swapper

With these facilities, writing the page fault handler becomes fairly straightforward. A
Swapln process repeatedly waits for a process to fault, then consults the swapping tables
and performs an appropriate ReadPageSet call (see < McJones>FilePageTransfer.ears). A
Terminator process repeatedly executes a WaitPageTransferred call. then snaps the page to
the correct location, updates the swapping tables, and finally Restarts processes faulted on
the newly transferred page. Of course pages must also be swapped out; this is probably
done by a SwapOut process in conjunction with the Terminator process.

There will certainly be limitations on the number of simultaneous transfers in
progress at anyone time. However now the necessary serialization is possible.
Faulting processes immediately enter the Halted ... state, but the Swapln process may
not get to them for a while if, for example, it is waiting in a monitor for a storage
block to become available.

A comparison of the proposals

Each proposal requires a new process state, some queue management by the page fault trap,
and a way to restart waiting/halted processes. Both schemes will work in a system with one
MDS. but the second proposal (fault messages) also allows sharing the resident frames
dedicated for page fault handling across all MDS's. (One might argue that this interaction
between MDS's would be undesirable, but there will be other sharing anyway (e.g. of disks);
the message mechanism allows extra flexibility [via policy programmed in the Swap In
process], whether or hOt it is used.)

Page faults and multiple processes per MDS 4

Allocating PSBextensions

In the above we have glossed over another problem area. The proposed process-monitor
implementation factors a saved process state into a PSB and a separate PSBextension
which is only present for a process which has been preempted. The PSBextension holds
the evaluation stack, which is required to be empty when a process WAITS. There need be
allocated only one PSBextension per preemptible priority level as long as a given process is
allowed to run until it WAITS (thus freeing the PSBextension) before another process of the
same or lower priority runs. Any implementation of the page fault handler must save the
stack of the faulting process, and in either of these proposals the fault will store the stack
in the PSBextension for the current priority level, "using liP" that PSBextension. (The same
limitation of static allocation of PSBextensions would come up with an implementation of time-slicing using a
timer driven process at, say, the second-to-the-Iowest priority, which reordered the lowest priority Queue of
the readyList.)

If multiprogramming during swap-in is to be achieved, more PSBextensions are needed.
One way to achieve this would be to run each faultable process at a different priority level,
an artificial constraint. Instead we could have the basic process microcode maintain a list
of PSBextensions for each level; when a list became empty the only PSB's at that level
eligible for scheduling would be those which already had a PSBextension. (In a fancy
system design allowing limited recursion of page fault handling it would still be necessary
to run the faultable part of the page fault handler at a level with one more PSBextension
than processes able to take page faults.)

Frame heap allocation traps and others

Handling a frame heap allocation trap requires a mechanism to provide frames for the
mechanism which is itself providing frames. Either of the two proposed mechanisms for
reserving resident frames for page fault handling can be used for this purpose too. rn the
semaphore scheme, there would be two semaphores and two reserved AV entries, one for the
page fault handler (with resident frames) and one for the allocation fault handler (with
nonresident frames). In the message scheme, there would be an additional process state,
HaltedByAllocationFault, an additional message queue (still threaded through the PSB), and
an additional Restart instruction. Assuming frame heap allocation faults are considerably
rarer than page faults, the message scheme would be advantageous in a system with multiple
MDS's.

In general, the message scheme allows a trap to be handled in a totally different
environment from that in which it was generated. Thus if the breakpoint trap generated a
fault message, the debugger could live in a different MDS than the debuggee, avoiding
stealing local address space from the debuggee (and, for what it is worth, isolating the
debugger from some forms of damage).

