
Inter-Office Memorandum 

To Bill Lynch, Wendell Shultz Date August 2, ,1977 

From H. C. Lauer location Palo Alto 

Subject Multiple MOS's in Pilot Organization SOD/SO 

XEROX , XEROX SDD ARCHIVES 
I have read and understood 

Pages _________ To_' _____ __ 

tevl~weL· Date ----Filed on: <Lauer>MDS.memo, .ears 
II of Pages ____ ,Ref •. -t 7 ~f)D· 2'1" 

Following our discussions, I have looked into the problem of designing Pilot to use and/or 
support multiple Main Data Spaces (MOS·s). There seem to be two different problems, 
which need to be treated separately: 

First, can we design Pilot so that some or all of its components occupy different 
MDS's from an), application processes. 

Second, can we arrange things so that different major applications occupy different 
MOS's in such a way that one can be completely swapped out while another is active 
(Le., supporting one or more processes which are either doing something are waiting 
to do something at short notice of, say, milliseconds rather than seconds or minutes). 

The first problem imposes very different requirements from the second. In particular, if 
Pilot or some part of Pilot occupies a different MDS from the application, the problem of 
cross-MOS calls (or transfers of control) must be solved to permit high-bandwidth 
communication between MOS's. I.e., it must be possible for an application to call Pilot 
functions or otherwise interrogate Pilot data structures in another MDS without undue 

, delay and loss of efficiency. The second case does not require this because communication 
between two applications is inherently more limited and can be resolved on an ad hoc basis. 

The two problems have different kinds of solutions. In partic~lar, a possible solution for 
the second problem is to copy Pilot 'in each MOS (its major data structures would probably 
be external to any MOS) and swap MOS's as whole units. This way, there would only by 
one MOS in real memory at any time (except, of course, when the swapping was actually 
taking place). This would pose no cost in resident memory while the MOS is actually active 
and would permit the application to call Pilot functions via the· normal procedure 
mechanism of Mesa with no loss of efficiency. Swapping would be slightly cumbersome 
and would require fetching or creating a temporary place to stand while the swapping takes 
places, but this would be sufficiently infrequent that the display could be blanked in order 
to provide the memory required for this purpose. ' 

The first problem is more interesting and more difficult Several approaches are:

Include a copy of the interface to Pilot in each application MOS. This would use 
the interprocess communication and synchronization facilities to activate Pilot 
processes in another MOS. 

Invent a fast cross-MOS procedure call and return mechanism which allows an 
application process to switch MOS's on the fly. The problem of passing pointer parameters 
in this case can be finessed easily by making Pilot do explicit short- to long-pointer conversion. 
something operating systems have done for years. ' 



Multiple MDS's in Pilot 2 

Design a cross-MDS FORK instruction by which an application can spawn a process 
in the Pilot MDS in lieu of a procedure call. 

Invent a fast me;:~age passing system capable of transmitting messages across MDS 
boundaries (the dual of the cross-MDS FORK). 

Cost of multiple active M DS's 

Any of the approaches to the first problem require that there be more than one active MDS 
is real memory at anyone time. In particular, any MDS which is supporting processes in 
the ready queue has several pages of fixed information which either must be locked down 
in non-swappable memory or which are accessed so frequently that they will by default be 
not swapped out even if they could be. The cost, in terms of real memory, of supporting 
two MDS's at the same time is thus measured as the difference between the number of 
pages in the working sets of both the Pilot and the application MDS and the number of 
pages which would be in the working set if everything were rol1ed into one MDS. I have 
come up with the fol1owing numbers for this cost: 

The fixed components of an MDS, namely the system dispatch table, the allocation 
vector, and the global frame table require two pages of real memory. It is remotely 
conceivable that this could be reduced to one, but I doubt it. In a single MDS 
system, al1 of the functions would share the same resident tables. 

Each MDS must have its own frame h.eap, a portion ··of which is very warm if not 
'always' resident. This is likely to cost at least one page, perhaps several, over the 
single MDS system, in which both Pilot and applications share the same frame heap. 

Unless we have a cross-MDS procedure call, there will have to be global frames for 
Pilot in both the application and the Pilot MDS's. These are necessarily in different 
pages, and during any call upon Pilot will be resident. This probably costs at least 
one extra page of resident memory, perhaps more. 

In addition to these, there may be other intangible real memory cost which we 
cannot identify at this time. 

The total of all of this comes to at least four pages of real memory, perhaps more, to 
support an extra, active MDS. Although this does not sound like much, it represents 16% 
of our resident memory budget for Pilot, which is already too small. 

Recommendation 

recommend the following position: 

That Pilot not support multiple MDS's before release 4.0. 

That individual workstation of the Janus product line not support multiple active 
MDS's at any time; multiple swapped MDS's with only one MDS active at a time be 
supported in release 4.0. 

The larger system elements of the Janus line, including servers, gateways, and 
multiuser units, be configured with enough real memory to support multiple active 
MDS's. 

We will specify the interface to Pilot to be independent, as far as possible, of the 
multiple-MDS problem so that in the future we can embed portions of it in separate MDS's 
if we choose. 

Other issues to keep in mind 



Multiple ,MOS's in Pilot 3 

Multiple MDS's impose an interesting problem with respect to object style programming. If 
a record object, for example, is r~ssed between MDS's, there had better be very stylized 
rules or practices about embedding: procedure variables in it. In particular, the descriptor 
of a procedure dedared in one' MOS i~ of IlU value to a proce~s in another MDS. As a 
matter of policy and style in the Pilot functional specifications. this should pose no 
problem (because Pilot will not be calling application or user provided procedures). But it 
is an area in which caution must be excercised. 

e: Redell 
MeJones 
Gifford 
Crowther 
Jarvis 


