
To: Metcalfe 

From: Crowther 

Subject: DO Simulator status. 

XEROX 
SYSTEM DEVELOPMENT DIVISION 

Communications Systems 
August 13, 1977 

XEEex SDD ARCHIVES 
I have read and understood 

Pages _________ To ________ _ 

Reviewer Date ___ _ 

'* of Pages ___ Ref.:-t1<::'OD - :'03 

The DO simulator and its associated ddt now exist as mesa programs on 
(Crowther) dzeroSi mulator.i mage. 

The simulator has been tested on two sections of microcode provided by Don Charnley -
the first is a routine to do unsigned multiply, and the second a fragment of the emulator. 
The latter was successfully run on a tiny mesa program which fitted in a single 
quadword. The mesa program computed a series of triangular numbers, exercising both 
main memory access and the hardware stack features. The DO mechanism for accessing 
more than a single quadword is yet to be specified. 

At the present time there is no microcode assembler for the DO. Thus the load and dump 
commands probably don't work (although the load will load the output of a dump), and 
extensive testing of the simulator is awful work. (It took hours to get Charnley's 
programs correctly assembled.) In these circumstances one must expect a rash of minor 
bugs still to be found. 

The ddt is a crude version of standard PDP-I0 ddt. It is meant to be self documenting, 
but probably succeeds only for people with some experience with other ddt's, or those 
who have at least read the DEC ddt manual. 

The simulator tries to mimic the actual DO design at the hardware register level, and is 
thus at least partially documented by the DO manual itself. The help commands for the 
ddt provide further information about the simulator and its control. 

The simulator and the ddt are really two quite separate entities. The only communication 
between the two is a pair of routines called ReadSimulator and WriteSimulator, which 
deal with a 32 bit address and a 32 bit contents, plus a number of signals which come up 
from the simulator when the user tries to do illegal or non-implemented things. 

The simulator has a register for each DO hardware register (more or less), and keeps two 
copies of each register, one for the start of a 70 ns simulated cycle and one for the 
output of that cycle. At each simulated clock tick the start registers are loaded from the 
output registers of the preceding cycle. Unlike the registers. there .is no attempt to 
simulate the DO gates. Whenever a gating function is required the simulator computes it 
in the most convenient fashion. 

All of the simulated hardware registers plus many of the gating functions are accessible 
to the ddt to aid in microcode debugging and general understanding of what is going on. 

The simulator does not simulate 110, memory faults or the hardware to cope with then, 
and the maintenance panel or other start up hardware. It does simulate the task 
mechanism, although there are probably errors remaining in that section since there is 
nothing to test it with. It does not simulate those sections of the mesa-help hardware 



which have not yet been finalized. although it does simulate some functions (nextlnst and 
NextOp) not described in the DO manual. 

The simulator may be run in single cycle or single instruction mode. as well as the 
normal continuous mode. It may also be run in a non-overlapped mode, which is exactly 

''like the regular mode except that the next instruction is not started until the current one 
is finished. This mode is particularly helpful for microcode debugging - otherwise it is 
rather confusing to know where you are when you stop. 

I have done no timing measurements. We had guessed that the simulator would run 1000 
times slower than real time. and nothing so far has altered that estimate. The only 
"measurement" that exists is that executing 1000 instructions in non-overlap mode causes 
a noticeable pause - perhaps a second - before control returns. 

I would especially like to thank Chuck Thacker. Brian Rosen. and Don Charnley. who 
patiently answered a lot of dumb questions while I came to understand how a DO works. 
I sincerely hope the DO I have simulated is at least in the spirit of the one they tried to 
describe to me. and perhaps also true in most of the detail. 

There is a great deal of detail left to describe, of the sort "operation so and so was 
inplemented under the assumption xxx because at the time several hardware 
implementations were being considered. and xxx seemed like the eventual winner." These 
details are important but dull, and will be described in another memo. There will 
inevitably be wrong choices here - a penalty of simulating a machine while the final 
stages of design are still going on. For example, there are 100 codes which describe the 
cycle/masker operation. For the hardware this amounts to patterns in a prom. and is to 
first order irrelevant. There will surely be second order reasons to pick a particular 
pattern, but that decision has yet to be made. The simulator has chosen a particular 
mapping because it had to have some mapping or it would not function. Some day when 
the correct mapping is chosen the simulator will need to catch up. 

2 


