
Inter-Office Memorandum 

To Bill Lynch Date October 25, 1977 

From Peter Bishop Location Palo Alto 

Subject Comments on Pilot File System Organization SDD 

XEROX XEROX SOD ARCHIVES 
I have read and understood 

PageS ___________ To ________ _ 

Filed on: <Bishop>fi1erec.memo Reviewer Date ------
I of Pa,es Ref.!1160D~ 35," 

The following are a set of thoughts and recommendations on the Pilot File System. They 
range from specific proposals to continuing discussions on various points. 

1. Making Files Objects 

I think that there will be several pieces of software on OIS that will need to treat files as 
objects. In particular, the CopyDisk operation will define a Copy operation on every type of 
file that must correct any filelDs kept within the file. Plans seem to be solidifying to make 
documents reside in a single file. Documents will be treated as objects by the desktop. A 
sophisticated scavenger needs to treat files as objects so that when a single page is lost, the 
rest of the information in the file can be saved. 

If files are to be treated as objects, then it would be valuable to have one of the attributes of 
a file be its type. This would be an 8 or 16 bit number that would be carefully allocated to 
various subsystems so that no two subsystems would have the same type of file unless the 
software to manipulate the file was interchangeable. In order for the scavenger to be able to 
use this type, however, it is necessary for the type of the file to be placed in the page header 
in addition to the filelD and the page number within the file. This protects against loss of 
the page that contains the attributes of a file. 

2. Owner Counts 

The original Concepts and Facilities suggested that each file should have a reference count. I 
do not believe that files should have reference counts, but I think that it would be valuable 
for files to have owner counts. Directories own the files contained in the directory. Similarly, 
the desktop owns any file that is currently sitting on the desktop in iconic form or as an 
enlarged window. It should be possible for the same file to be in a directory and on the 
desktop at the same time. When a directory removes an entry from itself, ordinarily it would 
delete the corresponding file. I am suggesting that the directory should merely decrement the 
owner count. When the owner count is decremented to zero, the file is deleted. Each copy of 
an immutable file has its own copy of the owner count. Thus it is necessary to specify the 
location of the file whose owner count is to be decremented. 

Another use of the owner count is for identifying temporary files. Files are initially created 
with an owner cOLlnt of zero. Whenever the system is brought up. all files with owner counts 
of zero are immediately deleted. When a program constructs a permanent file, it creates a 
file with a zero owner count, initializes the file, and then increments its owner count to one. 
At this point, the filelD of the file has been stored in some sort of directory that resides on 
disk so that even if the system crashes, the system will know that it is responsible for this 
file without performing a garbage collection. This feature can drastically reduce the need for 
garbage collection during crash recovery. 



Comments on Pilot File System 2 

3. File Location Handles 

I noted that Hugh suggested that we scrap Volume Capabilities in favor of Volume IDs. I 
liked Volume Capabilities for the following reasons. 

There are basically two kinds of software that use a file: the programs that do not care 
where the file is stored and those that do. Most of the software that manipulates the 
contents of a file is not concerned with the location of the file, and so it uses a File 
Capability to manipulate the file. A directory, however, such as a file cabinet, is responsible 
for the storage used by the file and so is very concerned about the location of the file. A 
directory, therefore, does not really want merely a File Capability for the file, it would 
prefer to have a File Location Capability that specifies not only the FileID but also the 
Volume ID on which the file resides (a FileID does not uniquely determine a particular copy 
of a file). Directories need to deal with the Volume itself, however, (Creating new files on 
the volume.) so it is necessary to have some sort of Volume Handle anyway. 

I thought that the purpose of the Volume Capability was to provide a Volume Handle that, 
when used in conjunction with a File Capability formed a File Location Capability. It seems 
clear to me that the delete operation should be specified in the File Location Capability 
instead of in the File Capability (the owner of a file has a File Location Capability for the 
file with the delete permission turned on). That is, only a piece of software that is 
responsible for storage should be deleting files and all software that is responsible for 
storage must at least know what volume the file is on. Thus it seemed clear to me that the 
File Capability should not contain a delete permission, and that the delete permission in the 
Volume Capability was conceptually the delete permission that properly belongs in the File 
Location Capability. I did not find it particularly disturbing that a File Location Capability 
never really existed, it merely consisted of passing both a File Capability and a Volume 
Capability to Pilot. This reflects the fact that a single directory will probably be responsible 
for files on a single volume, and so the directory only needs to store one copy of the 
Volume Capability instead of including it in every File Location Capability. Once we get to 
card catalogs that are concerned about the locations of files on many volumes, then File 
Capabilities will naturally be stored next to Volume Capabilities. 

This analysis also suggests that a Volume Capability should be specified even when deleting 
mutable files even though this is not strictly necessary. 

4. Clearinghouses and Pilot 

Hugh's memo suggests that if Pilot cannot find a file, that there is no point in allowing the 
computation to proceed. This is not true, however, if a higher level piece of software exists 
that is able to bring a copy of the file that Pilot tried to find onto the local system. It seems 
to me that the problem of finding files is a difficult problem on distributed systems and so 
it is quite possible that a piece of software that is able to run on top of Pilot may be able to 
find and obtain a file that Pilot was unable to find. On the other hand, we will not need this 
feature immediately. As long as we realize that it may be necessary to put hooks into Pilot 
in the future to allow a clearinghouse to look for a file, I do not object to removing mention 
of the clearinghouse from Pilot. I think that it will probably be easy to add this feature to 
Pilot in the future. Since no one will depend upon the feature, it need not be described until 
someone wants to use it. 

5. FilelDs 

Hugh's recent memo is now the second memo that he has prepared that talked in vague 
terms about problems with FilelDs without proposing any solutions. The memos that other 
people have prepared, however, have dealt with specific proposals. I do not think that it is 
fair for Hugh to write into the Functional Specs his first draft of a proposal for FilelDs 
when other people have shown by example how difficult it is to arrive at a satisfactory 
SoluLion to this problem (I don't know that Hugh was going to write his proposal into the 



Comments on Pilot File System 3 

Function Spec, but why hasn't he given a written proposal that other people can criticize?). 
It is not fair for Hugh to be able to shoot down concrete and well-thought-out proposals 
with vague problems when it is not clear that .he can solve as many problems as do the 
solutions that he is criticizing. 

Size: Hugh claims that my recent proposal for creating IDs assumed a 20-bit processor serial 
number. In fact, I did not suggest that the IDs allocated to a processor have any 
relationship to the processor serial number. I did suggest that we be able to perform a 
total of 224 allocations of filelDs to processors. 

Generation: A little while ago, Paul McJones suggested to me that if we have rigid disk on 
the system, it might be reliable enough to store the 10 allocator that exists within the 
processor on the rigid disk. It would be cheap to fotore three or four copies of the 
allocator on the disk to protect against disk crashes. Thus we may not need any non
volatile memory in the DO. This technique could at least be used as an interim 
measure since even if it wastes too many IDs we could afford to use up 10% of the 
total FilelD space on early versions of the system. 

Maintenance: In my memo on 64-bit filelDs I suggested that there is a significant cost 
savings in using small FileIDs. Any discussion of maintenance costs must take into 
account these cost savings. I suggested that the maintenance cost could be made 
arbitrarily small by making the need for it very infrequent. Hugh argues that if the 
maintenance operation is very infrequent then the maintenance people will forget 
how to service the problem. The problem of diagnosing the problem can be solved by 
having the system explicitly tell the maintenance man what the problem is. The 
problem of forgetting how to perform the maintenance can be handled by having the 
system tell the maintenance man where to find the directions for performing the 
maintenance. There is no question that the fact that this problem is very rare will 
increase the maintenance cost of the operation, but I doubt that the cost will mNe 
than double, which can be offset by reducing the frequency of the operation by a 
factor of two. Hugh further suggests that the return for solving the problem will not 
be significant. I disagree. For one thing, there is a savings in storage for all of our 
customers. Second, Hugh's comment makes me wonder if it will be possible for 
Hugh's scheme to overflow. If so, then if we do not perform an equivalent 
maintenance operation then the customer will either start reusing filelDs which will 
eventually conflict with one of the user's own files (making Xerox look very foolish) 
or the customer will be forced to buy another system, which will enrage the customer. 
These possibilities all result in extreme customer dissatisfaction with our product, 
which has a very high cost indeed. 

Binding: I find it difficult to understand why Hugh is so afraid of the possibility of 
Universal File IDs and why he insists on conducting his education on this point in 
print. Isn't there a more amicable way to conduct our affairs? 

Hugh raises the question of how one file will refer to another file. I think that 
whenever a file wants to refer to another specific file, the first file will contain not 
only a File Capability but also a character string that is meaningful to the people who 
read it and which identifies to those people the file that is specified by the File 
Capability. In other words, the File Capability is the system representation for that 
character string. Implicit in this scheme is the idea that a particular file, A, should be 
bound to another specific file, B, if the name of B is present in A. In my memo on 
the theory of names, I tried to suggest that the File Capability that is storeJ in A 
should have the exact same meaning as the character string name that it is associated 
with. This means that it never becomes necessary to modify the File Capability stored 
in A unless it is also necessary to change the character string name. All problems of 
binding the File Capability for B to the appropriate file should be considered to be 
B's problem (or at least the problem of the person in charge of defining the value of 
the File Capability for B that was stored in A). 



Comments on Pilot File System 4 

What is the character string that is stored next to the File Capability used for? Most 
of the time it is just used to display to the user which file is meant, since File 
Capabilities are never displayed to the user. If, however, the low level software cannot 
find the file given its File Capability, then this character string becomes useful in 
allowing the user to find the file. The user must at this point perform an information 
retrieval task to find the file. The character string name assists him in performing the 
information retrieval task, partially because the name contains some information 
about the file, but also because the name identifies the file to the user who may know 
some additional information about the file. The information retrieval task consists of 
going to libraries of various types and trying to find the file in these libraries. At this 
point, the presence of the File Capability greatly assists the information retrieval 
task, since if the library has that particular file, then we can be sure that the right file 
has been obtained. It may be, however, that the exact version of the file that is 
needed is no longer available, in which case the File Capability may not be of 
assistance, but if the information retrieval task is completed by the user then it may 
find a similar version of the same file. The user is in a position to determine whether 
this version is acceptable since the character string name of the file identified the file 
to the user. The justification for having these two names, the character string name 
and the File Capability is that the character string name can only be understood if 
one understands the context in which it is being used. Since the system is not very 
good at dealing with contexts in which words are used, while people are very good at 
it, it seems to be advantageous to convert a word to a Universal Name Space while we 
are still in the appropriate context. It is then easy to communicate information 
between two different contexts. If the English discription is no longer adequate, then 
the user can merely specify a different set of words that, in the new context, has the 
same meaning as the old set of words had in the old context. 

Thus we see Hugh's comments on binding in a new light. The only reason for looking 
up a character string in a "directory" is when the user is really performing an 
inform~don retrieval task. Such tasks are most appropriate for large data bases, such 
as the card catalog of a library. For such a data base, it would be very helpful if the 
File Capabilities were within a Universal File ID space for two reasons: 1) they may 
well point to files on different systems and 2) they allow the File Capability that the 
user has to be used to reduce the work for the user involved in the information 
retrieval task (by searching the entire Card Catalog for that File Capability before 
really beginning the information retrieval task). 

The problems that Hugh predicts for handling different versions of a file is a 
common problem when constructing object code, but it is a less serious problem in 
the world of documents. Cross-references from one document to another should 
never be changed, just as typos in an immutable document should not be corrected. 
Most of the time when one document refers to another document, this reference 
should not be changed when a new version of the document is created because the 
part of the document that was changed is likely to be the part that was discussed in 
the first document. In those few cases when a document should refer to a mutable 
object that may change state, the File Capability should identify the exact mutable 
object that the document wishes to refer to. The problems of binding this File 
Capability to the appropriate file can then be solved without needing to modify an 
immutable document. 

Both the problems of constructing data bases capable of sophisticated information 
retrieval and of binding File Capabilities to other files are problems that have been 
recognized, but these problems have been seen as being problems that need not be 
solved immediately. Both of these problems probably cannot be solved as nicety as we 
would like because we notice that current filing systems and offices have these 
problems and have not found nice solutions to these problems. This suggests to me 
that it is not necessary to arrive at total solutions, it is sufficient to arrive at 
solutions that are as good as the solutions that current filing systems and offices 



Comments on Pilot File System 5 

already have. It should not be difficult to provide such limited solutions. 

Recommendation: Proceed with Universal FileIDs because there is no pit to fall into. 

c: Liddle 
Shultz 
Redell 
McJones 
Lauer 
Horsley 
Gifford 
Moore 


