
Inter-Office Memorandum

To Mesa Group Date October 25, 1977

From Barbara Koalkin Location Palo Alto

Subject Debugger Interpreter Organization SOD/SO

XEROX

Filed on: [MAXC]<KOALKIN)Dlnterpreter.BRAVO DRAFT

This memo represents a preliminary attempt at specifying what the proposed debugger
interpreter will look like. A full interpreter at this point seems unreasonable and probably
of marginal value. However, a minimal subset of the language would be a valuable
extension to the current· debugger command language.

We have specified the following subset of the Mesa TYPE calculus as being acceptable to
this interpreter:

--dot notation: a.b.c
--assignment: +-
--dereference: t

--indexing: []
--addressing: "@expression"
--LOOPHOLE

With the help of some of the compiler's modules we will be able to enforce strong type
checking in the interpreter.

The proposed interpreter should help to alleviate many of the problems regarding displaying
and assigning values to complicated data structures that now force the user to go down to
octal level debugging.

In terms of the formal Mesa syntax the grammar for the proposed interpreter should include

the following expressions:

XEROX SDD ARCHIVES
Expression ::= AssignmentExpr I Disjunction I have read and understood
AddingOp .. - + I -
AssignmentExpr ::= LeftSide <- RightSide

Pages ______ ---To---------
Conjunction .. - Negation I Conjunction AND Negation Reviewer Date ___ _

Conjunction I Disjunction OR Conjunction Disjunction .. -
Factor .. - - Primary I Primary

of Pages __ Ref., -ttSt)f)-8S7

IndexedAccess .. - (Expression) [Expression] I Variable [Expression]
IndirectAccess .. - (Expression) t I Variable t

LeftSide .. - identifier I -- Call in Statement
IndexedAccess I QualifiedAccess I IndirectAccess I
LOOPHOLE [Expression] I
LOOPHOLE [Expression , TypeSpecification]

Literal "- numericLiteral I -- all defined outside the grammar

Debugger Interpreter

MultiplyingOp

Negation
Not
Primary
Product

".

".
,,-
".
"-

stringLiteral I
characterLiteral

• I / I MOD
Relation I Not Relation
~ I NOT
Variable I Literal I (Expression) I @ LeftSide
Factor I Product MultiplyingOp Factor

QualifiedAccess ::= (Expression) • identifier I Variable • identifier
Relation ". Sum I Sum RelationTaii
RelationalOp ". # I = I < I <= I > I >=
RelationTail ". RelationalOp Sum I Not RelationalOp Sum I

IN SubRange I Not IN Sub range
::= Expression

2

RightSide

Subrange

Sum
Variable

". SubrangeTC I Typeldentifier •• SubrangeTC, Typeldentifier in TypeSpecification

". Product I Sum AddingOp Product
". LeftSide

There are some questions in my mind about including the following expressions (we should

discuss these further):

Expression
IfExpr
BuiltinCall

Component
ComponentList
Constructor
ExpressionList

FunctionCall

::= IfExpr

"- IF Expression THEN Expression ELSE Expression
,,- MIN [ExpressionList] I MAX [ExpressionList] lABS [Expression] I

LENGTH [Expression] I BASE [Expression] I
TypeOp L TypeSpecification] I

.. -
".
.. -
".
".

DESCRIPTOR [Expression] I
DESCRIPTOR [Expression , Expression] I
DESCRIPTOR [Expression , Expression , TypeSpecification]
empty I Expression
KeywordComponentList I PositionalComponentList
OptionalTypeld [ComponentList]

Expression I ExpressionList , Expression

BuiltinCall I Call
KeywordComponent
KeywordComponentList

::= identifier: Component

KeywordComponent I
KeywordComponentList , KeywordComponent

LeftSide ". Call I MEMORY [Expression] I REGISTER [Expression]
PositionalComponentList ...

Component I
PositionalComponentList , Component

FunctionCall I Constructor Primary
TypeOp "- SIZE I FIRST I LAST

The following expressions seem to be of marginal value to consider including:

Expression ::= NewExpr I SelectExpr
NewExpr ,,-
SelectExpr .. -
SelectExprSimple

SelectExprVariant

NEW Variable OptCatchPhrase
SelectExprSimple I SelectExprVariant
.. - SELECT Leftltem FROM -- Leftitem in Statement

ExprChoiceList
ENDCASE = > Expression

.. - WITH Openltem SELECT Tagltem FROM -. Openltem, Tagltem in

ChoiceList ". AdjectiveList => Expression, I •. AdjectiveList in Statement
ChoiceList AdjectiveList => Expression,

Debugger Interpreter 3

ExprChoiceList .. - TestList => Expression, I -- TestList in Statement
ExprChoiceList TestList => Expression,

Remaining Questions:
--whether the interpreter should use the same scanning mechanism as the compiler; the
current thought seems to be to keep it a separate mechanism and have it build its own trees
with information relevant to interpreting the value of expressions
--what sort of user interface to have for the interpreter; whether the present set of Interpet
commands should be replaced simply by one INTERPRET command or accept interpreted
values as input for all commands
--what kind of procedure calls to allow, if any - for instance, how about interpret call of
nested procedures and returning large parameter records
--whether we should allow user-defined temporary variables
--the above specified grammar is an expression evaluator - what about evaluating
statements (and multiple statements)
--what context to evaluate in (current module, current configuration, defs.foo)
--expandint to conditional breakpoints

Distribution:
Mesa Group
Ed Satterthwaite
John Weaver

