
To: Distribution

From: Dick Sweet

XEROX
BUSINESS SYSTEMS

System Development Division
November 9, 1977

Subject: Mesa Language Working Group minutes

lEtOX SDD ARCHIVES
, d and understood

1 have rea
To __ --

l'ages_-------
Date_---

RevieVler----_-;-ef _:JPDO <)1S,
f of l'ages ___ ---

The Language Working Group met on 4 November, 1977. The items considered were inline
procedures and monitors.

Inline Procedures

For inline procedures, syntax is needed in three cases: at the declaration of the procedure in
a program, at the declaration of a procedure in a defs module, in an implementing module
that provides an out-of-line body for a procedure declared in a defs module, and at the
point of call.

All declarations of inline-ness goes on the body of the procedure. The choices of syntax
and their meanings are:

foo: PROCEDURE [•••] = INLINE BEGIN ••• END;

The default method of calling is inline, no body is generated. In a program
module, this implies that the only way of calling is inline.

foo: PROCEDURE [•..] = USUALLY INLINE BEGIN '" END;

The default method of calling is inline, but a body is also generated. This is
presumably illegal in a definitions module, although it could determine
whether or not the procedure goes into the interface.

foo: PROCEDURE [•••] = OPTIONALLY INLINE BEGIN ••• END;

The default method of calling is out-of-line. In a definitions module, this
certainly generates a slot in the interface, which some implementing module
must provide an instance of the body to fill.

If a procedure is declared USUALLY or OPTIONALLY INLINE in a defs module, an implementing
module can instantiate a body by the declaration:

foo: PROCEDURE [•••] = BODY;

At the call site, the default method of calling may be overridden by the statements:

INLINE foo[...]; and OUTOFLINE foo[...];

This has ramifications of the current syntax for MACHINE CODES. The old and new syntax are
as follows:

baz: MACHINE CODE [•••] = INLINE [byte, byte]; -- old

baz: PROCEDURE [•••] = MACHINE CODE BEGIN byte; byte END; new

Monitors

The following topics were listed for consideration

1. I ndependen t FORK

2. Return type of a FORK

3. Questions of scope

4. Initialization of Monitors and condition variables

5. Monitor priority

6. Condition timeout

7. Aborts

8. Interaction with SIGNALS

Items 1 and 2 could probably be handled by having the FORK construct return a procedure
that is called when one wishes to JOIN the process. There are potential troubles with item 7
from this proposal, although a system routine could figure out from the procedure who to
kill.

Item 3, scope, was considered at some length. First, three styles of monitor declaration were
given.

Basic Style

M: MONITOR [args] =
BEGIN

p: ENTRY PROCEDURE [...] =

END.

Pack Style

M: MONITOR [args] LOCKS arg=
BEGIN

where arg is a POINTER TO MONITORED RECORD

p: ENTRY PROCEDURE [•••] =

END.

2

Object Style

M: MONITOR [•••] LOCKS f(obj) =
BEGIN

the function. f, would be expanded in the context
of the entry procedure

p: ENTRY PROCEDURE [obj •... J =

END.

There was a proposed alternative form:

M: MONITOR [•••] =
BEGIN

p: ENTRY PROCEDURE [obj, ...] LOCKS f(obj) =

END.

The remammg discussion concerned allowing multiple monitors within a single module.
First the current uses of modules were given

Scope
Global Frame
Source code - compilation unit
Object code - swap unit

Some of these uses are being changed with other changes for Mesa 4.0, such as swap unit.

Pros and cons of sharing global frames by monitors were considered

Pro

Saves 3 wds/monitor
Allows local calls
Saves gft entry

Con

Worse code generated
Bad for structure with current language

The concensus seemed to be that it was not worth the trouble.

3

