
XEROX

Xer(DX System Integration Standard

FILING PROTOCOL

XNSS 108605
Ma)f 1986

Notice

This Xerox System Integration Standard describes the Filing Protocol.

This document is being provided for informational purposes only. Xerox makes no warranties or
representations of any kind relative to this document or its use, including the implied warranties of
merchantability and fitness for a particular purpose. Xerox does not assume any responsibility or liabilit~,
for any errors or inaccuracies that may be contained in the document, or in connection with the use of this
document in any way.

The information contained herein is subject to change without any obligation of notice on the part of
Xerox.

All text and graphics prepared on the Xerox 8010 Information System.

Copyright © 1986, Xerox Corporation. All rights reserved.
XEROX ®, XNS, and 8010 are trademarks of XEROX CORPORATION.
Printed in U.S.A. Publication number: 610PS0679

PREFACE

This document is CIne of the family of publications that describe the network protocols
underlying Xerox Network Systems (XNS).

Xerox Network Systems comprise a variety of digital processors interconnected by means of
a variety of transmissi·on media. System elements communicate both to transmit
information between users and to economically share resources. For system elements to
communicate with lone another, certain standard protocols must be observed

Comments and suggestions on this document and its use are encouraged. Please address
communications to:

Xerox Corporation
Xerox Systems Institute (XSI) Office
475 Oakmead Parkway, Bldg. 5
Sunnyvale, California 94086

XEROX SYSTEM INTEGRATION STANDARD iii

PREFACE

iv FILING PROTOCOL

TABLE OF CONTENTS

1. Introduction

2. Ov~erview

1.1 Purpose

1.2 Relationship to other protocols

1.3 Document organization

1.4 Document conventions

1.4.1 Notation

1.4.2 Notation for examples

2.1 Clients and services

2.2 Users, authentication, and sessions

2.3 Files, content, and attributes

2.4 Directories

2.5 Handles and controls

2.6 Creating, deleting, and accessing files

2.7 Enumerating and locating files in directories

2.8 Serializing and deserializing files

2.9 Transferring data

3. Rernote procedures
3.1 Logging on and off

3.1.1 Credentials

3. 1. 2 Sessi ons

3.1.3 Logon

3.1.4 Logoff

3.1.5 Continue

3.2 Opening and closing files

3.2.1 File handles

3.2.2 Opening files

3.2.3 Closing files

3.3 Accessing and rnodifying controls

3.3. 1 Controls

3.3.2 Accessing controls

3.3.3 Modifying controls

3.4 Accessing and modifying attributes

XEROX SYSTEM INTEGRATION STANDARD

2

2

2

2

5

5

5

6

7

7

8

8

9

9

11

11

11

14

14

15

15

16

16

17

19

19

19

22

22

23

v

TABLE OF CONTENTS

3.4.1 Attributes 23

3.4.2 Accessing attributes 24
----------~------------------------------------
3.4.3 Modifying attributes 25

3.5 Locating and listing files in directories 26

3.5.1 Scopes 26

3.5.2 Locating files 31

3.5.3 Listing files 31

3.6 Accessing and modifying the content of files 33

3.6.1 Uninterpreted file format 33
----------~------------------------------------
3.6.2 Storing files 33 --
3.6.3 Retrieving files 34
----------~------------------------------------
3.6.4 Replacing files 35

3.6.5 Random access to files 35

3.7 Creating and deleting files 37

3.7.1 Creating files 37

3.7.2 Deleting files 38

3.8 Copying and moving files 38

3.8.1 Copying files 39

3.8.2 Moving files 39
--------~--------------------------------------

3.9 Serializing and de'serializing files 40
----------~----------~~--------------------------------------

3.9.1 Serialized file format 40 --
3.9.2 Serialize 41

3.9.3 Deserialize 41

3.10 Procedures and attributes 43

4. Attributes 59 --
4.1 Classes of attributes 59

4.1.1 Interpreted vs. uninterpreted 59
--------~----------~--------------------------
4.1.2 Environment vs. data 60

4.1.3 Primary vs. derived 61

4.2 Definition of attributes 61

4.2.1 How attributes are defined 61

4.2.2 Identification-related attributes 62 ---
4.2.3 Content-related attributes 65 ---
4.2.4 Parent-related attributes 66 --
4.2.5 Event-related attributes 67 ---
4.2.6 Directory-related attributes 69
----------~-------------------------------------
4.2.7 Access-related attri butes 71

vi FILING PROTOCOL

TABLE OF CONTENTS

5. Remote errors 75

5. 1 Access errors 75

5.2 Argument errors 77

5.3 Authentication errors 78

5.4 Connection errors 80

5.5 HandlE~ errors 81

5.6 Insertion errors 81

5.7 Range errors 82

5.8 Service errors 83

5.9 Session errors 84

5.10 Space errors 84

5. 11 Transfer errors 85

5.12 Undefined errors 86

Appendices
A. References 87

B. Type assignment procedures 89

B.l Common file types 89

c. Program declaration 91

D. Examples 103

E. FilingSubset 109

E.l Overview 109

E.2 Definition 110

E.3 Procedures 11 1

E.4 A ttri butes 116

E.S Remote errors 119

E.6 Procedures and attributes 119

E.7 Program declaration 123

F. Pathname syntax 129

XEROX SYSTIEM INTEGRATION STANDARD vii

TABLE OF CONTENTS

viii FILING PROTOCOl.

LIST OF TABLES

3.0 Primary and secondary credentials combinations 13

3.1 ChangeAttributes 44

3.2 Copy 45

3.3 Create 46

3.4 Delete 47

3.5 Deserialize 48

3.6 Move 49

3.7 Open 50

3.8 Replace 51

3.9 ReplaceBytes 52

3.10 Retrieve 53

3.11 Retri eve Bytes 54

3.12 Serialize 55

3.13 Store 56

3.14 UnifyAccessLists 57

E. 1 Relationship of FilingSubset

and Filing attribute classes 116

E.2 List 120

E.3 Open 121

E.4 Store 122

XEROX SYSTEM INTEGRATION STANDARD i)(

LIST OF TABLES

)(FILING PROTOCOL.

INTRODUCTION

In any information handling system, storage of information is one of the most basic
functions. A component of the system may store information in order to protect it from
certain failures, release a more crucial storage area, or communicate the information to
some other part of the system. [n a distributed system, these goals are even more
fundamental. Storage of information in another physical location can protect it against even
catastrophic failures at the original location, and communication of information to other
parts of the system is crucial.

In a distributed system, filing functionality is provided by a file service. A file service is
similar to a conventional file system, the principal difference being that it offers its services
to clients residing in other system elements. The file service defined here provides such
features as:

• storage and retrieval of files
• hierarchically structured directories
• searching and sorting by arbitrary file attributes
• operations on subtrees of files
• recording of file activity

1.1 Purpose

This document defines the Xerox Filing Protocol, the protocol for interaction between clients
and file services. It is both a guide for using a file service, and a specification for the
implementation of such a service. It does not describe any particular implementation of the
protocol.

Typically a file service is associated with other support mechanisms such as backup and
archival features. These features are considered to be invisible to the network client, and are
not addressed in this specification.

This protocol provides a general filing facility to support a wide variety of applications.
However, it is not intended to directly support network administration function's, printing,
electronic mail, or other distributed acti vities. These are subjects of other specifications.

1.2 Relationship to othE~r protocols

The protocol defined in this document is an application-level protocol. It employs several
other protocols. Requests of a file service are communicated using the request-reply or
transaction discipline defined by Courier [61. E:very type of request is modeled as a remote
procedure as defined in Courier; every exceptional condition that may arise is modeled as a

XEROX SYSTEM INTEGRATION STANDARD

INTRODUCTION

remote error. All parameters transferred between the client and the file service obey the
conventions described in the Courier specification. This present specification, therefore,
constitutes a Courier remote program.

The contents of files and other large data items are transferred using the protocol described
in the Bulk Data Transfer Protocol addendum [3].

The Filing Protocol also depends upon the standard time format defined in the Time Protocol
[8], and on the Clearinghouse Protocol [5] and the Authentication Protocol [2].

1.3 Document organization

Chapter 2 of this document gives an overview of the concepts defined in the standard.
Chapter 3 defines the remote procedures needed to interact with a file service. Chapter 4
defines the meaning and use of the attributes that are interpreted by the file service.
Chapter 5 defines the remote errors reported by the file service when exceptional conditions
occur.

Appendix A lists other documents which supplement the specification. Appendix B describes
the administrative procedures for obtaining ranges of file types and attribute types.
Appendix C lists the Filing remote program in its entirety. Appendix D gives examples of
interactions between a client and a file service. Appendix E defines a subset of the Filing
Protocol. Appendix F defines a common syntax for the expression of file path names.

1.4 Document conventions

Courier text and examples are depicted in special fonts, and generally conform to a certain
style. The rules. and style are set forth below.

1.4.1 Notation

Throughout this document, special fonts are used to depict Courier text instead of using
quote marks or other delimiters. This convention also aids the eye in discriminating
between Courier text and the exposition. Items in THIS FONT indicate elements of the Courier
language and are almost always in upper case. This font indicates items that are defined
using the Courier language.

Identifiers that are defined in this protocol (as opposed to being defined by Courier) will have
their first letter capitalized if they are the name of a type, error, or procedure; identifiers
with a lowercase first letter are usually the names of variables, arguments, or results.

1.4.2 Notation for examples

2

In the examples that follow, a call to a remote procedure is denoted by the name of the
procedure followed by the arguments supplied to it. A return from a remote procedure is
denoted simply by the results, preceded-when confusion might otherwise result-by the

FILING PROTOCOL

INTRODUCTION

keyword RETURNS, The argument or result list is modeled as a record; the arguments or
results as the record's components. Accordingly, Courier's standard notation for record
constants is used to specify argument and result lists.

For example, if the procedure Add is defined as:

Add: PROCEDURE [fi rst, second: CARDINAL]

RETURNS [sum: CARDINAL] • 99;

then a call to that procedure would be denoted by:

Add [first: 7, second: 5]

and the call would yield thE! result:

[sum: 12] or RETURNS [sum: 121

Fine point: The above notation for procedure calls should not be confused with the standard notation for a record
constant selected by means ofa choice data type. The two are similar in appearance but otherwise unrelated.

Examples of remote errors are either just the name of the error, if it is defined without
arguments:

Overflow

or the same as a procedure call if it is defined with arguments. For example, if Overflow
were defined as:

Overflow: ERROR [carry: CARDINAL] • 99;

then an example of its use might be:

Overflow [carry: 1]

indicating that Overflow was reported with argument carry having the value 1.

Courier requires values for a SEQUENCE OF UNSPECIFIED to be a sequence of numbers. So as to
retain readability in examples, the content of a SEQUENCE OF UNS~ECIFIED is described w~ing
Courier notation. The reader should understand that the numeric representation of these
types is what should be used as the content of the sequence.

XEROX SYSTEM INTEGRATION STANDARD 3

INTRODUCTION

4 FILING PROTOCOL.

2. OVERVIEW

To better understand the description of the flIp; service, it is necessary to understand a
number of concepts and terms. Most of the coneepts described below will be familiar as those
of conventional file systems, but there are a few that are considerably different.

2.1 Clients and services

This standard defines a protocol for the communication of filing requests. Requests to store a
file, to delete a file, or to list a directory are all examples of filing requests.

A service is an entity (software or hardware) that accepts and responds to submitted requests
for some type of service. A file service is a service that handles filing requests. A client of a
service is an entity that submits requests to that service. In this document, where the service
is not otherwise specified, the service is assumed to be a file service. A client mayor may not
be operating on behalf of a human being.

All interaction between the client and the service is initiated by the client. The service never
spontaneously interacts with a client.

2.2 Users, authentication, and sessions

A client always interacts with a service on behalf of a user. The user may be a human being,
or may be some other entity (such as another service). In any event, the user has a user name
that distinguishes him from other users.

Before making use of a file service a client must log on. The client presents credentials which
identify him to the file service. The service responds by establishil1g a session and returning
a session handle which is used to identify the client (and the state of this interaction) in
future requests.

Credentials represent the client's proof of identity and permit the service to identify the
party initiating the interaction. Where only a Clearinghouse distinguished name is required
to identify the initiator, the standard mechanisms of the Authentication Protocol [21 are
used. Credentials that resolve a client's identity to a Clearinghouse name are the client's
primary credentials.

A file service implemented on a host whose authentication requirements go beyond tho!::)e
satisfied by the primary authentication mechanisms of the Authentication Protocol may
require additional authentication information. This additional authentication information

XEROX SYSTEM INTEGRATION STANDARD 5

OVERVIEW

is referred to as secondary credentials. A host requiring secondary credentials is a hybrid
host.

Once appropriate credentials have been provided by the client, a session is established. A
session encapsulates the state of the client with respect to the interaction then being'
initiated. For example, the session keeps track of files that are open, locks that are held, and
the name of the user on whose behalf the client is operating. The session handle is included
in all subsequent requests in order to identify the client and its state. When interaction is
complete, the client logs off This terminates the session, freeing any allocated resources and
invalidating the session handle. The client must log on again before any further interaction
may occur.

Sessions may vary greatly in duration. In some patterns of use a session is established to
perform a single operation and then terminated. In others, a session may last a very long'
time even though it is largely inactive. The file service reserves the right to terminate a.
session at any time that a remote procedure call is not in progress. This might occur if a
session remains inactive for a long period, or if the system element supporting the file
service has to be shut down.

There may be several sessions simultaneously in existence for the same user whether or not.
they were established by the same client.

2.3 Files, content, and attributes

6

The file service stores and operates on files. A file is a body of data that has been grouped and
provided to the file service for the purpose of short- or long-term storage. Every file is either
temporary or permanent. A permanent file resides in a directory and exists until it is
explicitly deleted. A temporary file does not reside in a directory. It exists only until it is
closed by all sessions that have opened it.

A file consists of two types of information, content and attributes. The content of a file is the
data actually contained within the file. Usually, the content is the file's reason for existence.
The content is a series of eight-bit bytes, uninterpreted by the file service. The content of a.
file is obtained or modified only by explicit action.

Attributes are data items that identify the file, describe its content, or are in some other way
associated with the file. Attributes vary widely in purpose, structure, and behavior. Some
attributes have a particular meaning to the file service, and specifying such an attribute
results in a defined behavior in the file service. These attributes are said to be interpreted.
All other attributes are uninterpreted. Such attributes, if specified, are associated with the
file and, when requested, are returned unchanged.

Every attribute is identified by its attribute type. A number of attribute types are defined by
this standard. All attributes having these types must be interpreted by every tile service
implementing this standard. A client may also define attributes that are useful in its.
particular application.

A number of procedures accept arbitrary attributes. However, not all attributes are allowed.
in all contexts. Where an attribute is allowed, and the default behavior when it is.
unspecified are gi ven in chapter 3.

FILING PROTOCOl.

OVERVIEW

Attributes may be obtained or modified by explicit action. In addition, attributes are
obtained when a directory is listed, and interpreted attributes are modified implicitly by
many procedures.

Attributes are described in detail in chapter 4, but in order to give some of the flavor of them,
a few are mentioned here.

The filelD attribute uniquely names the file within the file service (no other file stored in the
file service has the same value of fileID), and may therefore be used to identify the file to file
service procedures. This attribute is not human-sensible, and its structure is private to the
particular implementation of the file service. For a given file, the value of this attribute
remains constant fOlr the duration of a session.

The name attribute associates a human-sensible string name with a file. This attribute may
be used to identify a file (as in conventional file systems), or it may merely be a descriptive
string. Several files may have the same name, even within the same directory. The version,
also an attribute, is .a number that is assigned to the file in such a way that the name-version
pair is unique within the file's containing directory.

The type attribute is intended to describe the nature of the content or attributes of the file in
order to communicate how this file is to be interpreted by potential users of the file. The type
of a given file is specified. by the client when the file is created. The file service does not
enforce any interpretation of the type on the content or attributes. Several frequently-used
types are defined in this standard. A client may also assign types of its own.

2.4 Directories

Every file is either a directory or a non-directory. A directory is a special type of file which
can reference other files. A directory also has all of the characteristics of a non-directory in
that it can have content and attributes. However, a directory cannot be temporary.

Within a file service, files exist in a hierarchical structure. Every permanent file resides at
some level in this hierarchy. The files directly referenced by a directory are its children. The
descendants of a directory include its children and the children of its descendants. The
directory which directly references a file is that file's parent. The ancestors of a file include
its parent and the parents of its ancestors. In each file service, there is a root file which is the
file that has no parent and is an ancestor of all other permanent files.

2.5 Handles and controls

To manipulate a file, a client must open that file. The file is then said to be open within the
session, and will stay open until the session ends or the file is explidtly closed. Opening a file
marks it as "in use" (so that other clients cannot delete it, for example), and indicates that
the file will be used in some way in the near future. Closing a file clears this "in use" mark
and indicates that the file will not be used in the near future.

The tile to be opened may be specified by giving either its fileID or its name. Since a tile's
tileID is unique within the file service, no other qualification is necessary. The name-version
pair, however, is directory-.relative. Therefore, the ID of the parent must also be specified

XEROX SYSTIEM INTEGRATION STANDARD 7

OVERVIEW

when opening a file with a name-version pair. A file may also be opened by specifying some
condition on the attributes of the file.

When a new file is created or an existing file is opened, the file service returns a handle. The
structure of a handle is private to the implementation of the file service. This handle is
presented in subsequent operations to identify this file to the file service, and remains valid
until either the session ends or the file is closed using this handle. The handle is relative to
the session and so cannot be used in conjunction with any session other than the one used to
obtain it.

A client may wish to explicitly specify certain characteristics of its intended interaction with
the file. These characteristics are called controls. For example, a client may obtain a share!
lock, specifying that no other clients are allowed to modify the file while it is in use. Or, ell

client may specify that if the file is in use in a way that conflicts with its own use, it wishes to
be notified immediately rather than waiting for access to the file. Controls persist only as
long as the handle exists; they are lost when the file is closed.

If a file is opened several times, several handles result. These handles are distinct, and the
file remains open within the session until all handles have been presented in requests to
close the file. Controls applied to a file are associated with a particular handle.- If severall
handles for the same file exist, a change to the controls of one handle does not affect the
others. Also, locks obtained on multiple handles to a file within the same session do not;
conflict with one another. However, for a session, the effective lock for a file is the most
restrictive one obtained for that file within the session.

2.6 Creating, deleting, and accessing files

A number of procedures exist for creating new files, deleting files that are no longer needed"
and modifying files in various ways.

A file can be created without storing its content. This is especially useful for the creation of
directories. A file can also be created and filled with data transferred to the file service.
Finally, a file can be created that is a copy of an existing file.

An existing file may be deleted. The attributes of a file may be accessed or modified, and the
content of a file may be accessed, modified, or replaced. In addition, a file may be moved to
another directory.

Since directories are also files, all of these procedures may be applied to directories as well as
non-directories. When directories are copied, moved or deleted, all descendants are copied"
moved or deleted as well.

2.7 Enumerating and locating files in directories

8

Several procedures enumerate files in a directory, performing some action when tiles are
encountered that satisfy some criteria. The procedures differ in the action taken. [f the client
lists liles in a directory, the attributes of all files that satisfy the criteria are furnished to the
client. If the client searches for a file, the first file that satisfies the criteria is opened and its
handle returned to the client.

FILING PROTOCOl.

OVERVIEW

The arguments that describe how enumeration is to proceed, and the criteria to be satisfied,
are scopes. Scopes include the direction of enumeration (front-to-back or back-to-front), a
condition on the attributes of the files, and the maximum number of files that may satisfy
the condition.

2.8 Serializing and deserializing files

The subtree of files consisting of a particular file and all of its descendants is sometimes a
useful entity with which to work, and the file service's procedures are designed to make it
easy to operate on such subtrees. However, there are times when it is useful to encapsulate
all of the information in such a subtree so that the information can be stored or manipulated
outside the file service.

A serialized file is a series of eight-bit bytes that encapsulates a file's content, its attributes,
and its descendants. The file service provides a procedure that serializes a file, producing
such a series of bytes, and another procedure that deserializes the series of bytes,
reconstructing the file's content, attributes, and descendants.

2.9 Tlransferring data

For those filing procedures that intrinsically require the transmission of a large amount of
data, the Bulk Data Transfer Protocol [3] is employed. Basically it works as follows: between
the call to a remote procedure and the return from that procedure, the sender (either client
or service) uses the bulk data transfer mechanism to send to the receiver the attributes or
the content of the designated file(s). Note that the Bulk Data Transfer Protocol allows the
data to be sent to, or retrieved from, a system element different than that of the client.

XEROX SYSTEM INTEGRATION STANDARD 9

OVERVIEW

10 FILING PROTOCOL

3. REMOTE PROCEDURES

The Filing Protocol is a Courier-based definition of a file service. It defines the data
structures and procedures that constitute the Filing remote program. To be considered a file
service, an implementation must implement each of these procedures.

Each procedure description includes a declaration of the procedure in Courier's standard
notation, a description of the procedure's arguments and results, and frequently an example
of its use. The interaction of these procedures with attributes is described in chapter 4, and
the errors these pro(!edures report are described in chapter 5.

The following definition gives the program and version numbers of the Filing Protocol and
lists all other Courier-based protocols which are referenced from this program.

Filing: PROGRAM 10 VERSION 6 a

BEGIN

END.

DEPENDS UPON

BulkData (0) VERSION 1,
Clearinghouse (2) VERSION 3,
Authenticat~on (14~ VERSION 3,
Time (15) VERSION 2;

This indicates that Filing is program number 10. This document; defines version 6. Filing
references some types and constants that are defined in other protocols as shown in the
above declaration. These protocols are documented in the Authentication Protocol [2], the
Bulk Data Transfer Protocol [31, the Clearinghouse Protocol [51, and the Time Protocol [81.

Fine Point: The Filing Protocol definition depends upon the Clearinghouse and Authentication remote program
declarations only for types defined by these programs. AJi of the references to the Clearinghouse and Authentication
Protocols within t.he Filing Protocol are compatible with earlier versions ofthose protocols.

3.1 Logging on and off

Before making use of a file service, a client must log on. When interaction is complete, it logs
off. After logging on, a client is given a session handle which identifies the state of its
interaction with the file service.

3.1.1 Credentials

When a client makes use of an application protocol such as Filing, the client is required to
present credentials to the service. Credentials represent the client's proof of identity and
permit the service to identify the initiator of the interaction. Where only a Clearinghouse

XEROX SYSTEM INTEGRATION STANDARD 11

REMOTE PROCEDURES

distinguished name is required to identify the initiator, the standard mechanisms of the
1.1uthentication Protocol [21 are used. Credentials that resolve a client's identity to a
Clearinghouse name are the client's primary credentials.

Services implemented on hosts whose authentication requirements go beyond those satisfied
by the primary authentication mechanisms of the Authentication Protocol may require
additional authentication information. This additional authentication information is
referred to as secondary credentials. A host requiring secondary credentials is a hybrid host.

Credentials: TYPE = RECORD [

primary: PrimaryCredentials,
secondary: SecondaryCredentials];

Credentials are used by the client to communicate primary and secondary authentication
information to a service. The primary portion of Credentials is used by the client to supply
primary credentials, as specified in the Authentication Protocol. The secondary portion of
Credentials permits additional secondary authentication information to be supplied.

3.1.1.1 Primary credentials

Primary credentials resolve a client's identity to a Clearinghouse name. This form of
authentication information is defined in the Authentication Protocol (2]. The definition of
PrimaryCredentials reflects this relationship.

PrimaryCredentials: TYPE = Authentication.Credentials;
nullPrimaryCredentials: PrimaryCredentials • Authentication.nuIlCredentials;

Two levels of authentication security are defined for primary credentials, simple and strong.
Simple credentials encapsulate an identity using straightforward encoding and hashing
functions. Encryption is used in creating strong credentials to provide a much greater level
of security. Strong credentials make it impossible for one client to impersonate another.
Refer to the Authentication Protocol documentation for a more complete explanation of these
credentials forms. The primary credentials constant nuliPrimaryCredentials is used to
denote that no primary credentials information is being specified.

3.1.1.2 Secondary credentials

12

Secondary credentials are used to communicate host-specific authentication information.
They are similar to primary credentials in that a strength corresponding to each primary
authentication level is defined. The strength of an instance of secondary credentials is
linked to the authentication level of the associated primary credentials.

Strength: TYPE = {none(O). simple(1), strong(2)};
SecondaryCredentials: TYPE = CHOICE Strength OF {

none = > RECORD n.
simple = > Secondary.
strong = > EncryptedSecondary};

SecondaryCredentials defines the data type for secondary authentication information.
Secondary credentials of strength none are defined to permit a client to avoid the

specification of any secondary authentication information, if that is appropriate or desired.

FILING PROTOCOL

REMOTE PROCEDURES

A secondary of simple strength represents the most basic form of secondary authentication
information. The secondary authentication information is encoded in a straightforward way
using Courier conventions. No encryption is used (see further details below), therefore
information contained in a simple secondary is not immune to eavesdropping threats. A
simple secondary may only be specified if the acompanying primary credentials are simple
or null.

Secondaries of strength strong are used to encapsulate secondary authentication
information in a secure manner. Strong secondary credentials are identical to corresponding
simple secondary credentials except that the authentication information is encrypted after
being encoded using standard Courier conventions. A strong secondary may only be
specified if the accompanying primary credentials are also strong. The conversation key
supplied with the associated primary credentials is used to encrypt the secondary
authentication information contained within the strong secondary.

Secondary
none simple strong

Primary

nullPrimaryCredentials legal legal illegal

simplE~ legal legal illegal

strong legal illegal legal

Table 3.0 Primary and secondary credentials combinations

Table 3.0 summarizes the valid combinations of primary and secondary credentials
information which may appear in Credentiais.

SecondaryType: TYPIE = SEQUENCE 10 OF SecondaryltemType;
SecondaryltemType: TYPE :: LONG CARDINAL;

The secondary authentication requirements of a hybrid host are described by a value of
SecondaryType. A secondary type is made up of a set of item types. Individual secondary
item types are used to define the structure and interpretation of an element of secondary
authentication information. Well-known secondary item types are described in Secondary
Credentials Formats [101 along with the administrative procedure used to define new item
types.

Secondary: TYPE = SEQUENCE 10 OF Secondaryltem;
Secondaryltem: TYPE ::I RECORD [

type: SecondaryltemType,
value: SEQUENCE OF UNSPECIFIED];

Secondary defines the struc:ture of secondary authentication information. A secondary value
comprises a set of secondary items, each designating an item type and a corresponding value
of that type. Clients are expected to supply a hybrid host an appropriate set of secondary
authentication items. A hybrid service which does not receive the correct set of secondary
items indicates the nature of the problem and the secondary item types required by
reporting AuthenticationError (see section 5.3).

XEROX SYSTEM INTEGRATION STANDARD 13

REMOTE PROCEDURES

EncryptedSecondary: TYPE = SEQUENCE OF Authentication.Block;

EncryptedSecondary is an encrypted form of a secondary. An encrypted secondary is
obtained by padding an unencrypted secondary with an appropriate number of zero bits and
encrypting using the algorithm outlined in the Authentication Protocol (the unencrypted
value must be a multiple of 64 bits, hence the zero-padding). The key to be used in the
encryption process is the conversation key supplied in the associated strong primary
credentials,

3.1.2 Sessions

3.1.3 Logon

14

The Logon procedure returns a session handle which is then used as a parameter in calls to
almost all other Filing procedures. This structure identifies the state of the client's
interaction with the file service.

Session: TYPE =- RECORD [token: ARRAY 2 OF UNSPECIFIED, verifier: Verifier];

Verifier: TYPE = Authentication. Verifier;

token identifies the session to the file service, thereby identifying the user and the state of
his interaction with the file service. It does not change during the life of the session and is
uninterpretable by the client. Verifier is defined by the Authentication Protocol [2]. It is
included in order to substantiate that all procedure calls using the session handle originated
from the same client that established the session and are not replays of previous calls. Note
that while the token remains unchanged within a session, the verifier may change with each
new call.

A session is used to access the files of a file service. Logon is called to begin a session. The
client identifies a particular service to be accessed by supplying the distinguished name of
the service as an argument. When an explicit service is not specified (the supplied name is
null), the distinguished default service provided by the system element is assumed. In either
case, the file service verifies that the request is valid, creates a session, and returns the
session handle.

Logon: PROCEDURE [

service: Clearinghouse.Name, credentials: Credentials, verifier: Verifier]
RETURNS [session: Session]
REPORTS [AuthenticationError, ServiceError, Session Error, UndefinedError] :a 0;

Arguments: service is the distinguished name of the service to be accessed with the session;
credentials identify the client to the service (~ee section 3.1.1); verifier is described in the
Authentication Protocol [21.

Results: session is a session handle. session.token is to be used in subsequent calls to the file
service within this session. If session. verifier is a simple verifier, then a simple verifier must
he used in all subsequent interactions with the tile service within this session.

FILING PROTOCOL.

REMOTE PROCEDURES

Example:

A typical log-on call might be the following:

Logon [service: [organization: "Xerox", domain: "Office Systems", object: "TestFS"],
credentials: [credentials-object], verifier: simpleVerifier]

RETURNS [session: [token: [11 a, 27734B], verifier: simpleVerifier]]

The specific value for the credentials argument would be of type Credentials (which can take
several forms). The result of this call is that the client is logged on, a session is created, and a
session handle is returned to the client. The token of the session handle has the value [11B,
27734B] (the numbers here have no intrinsic meaning; they are provided for illustrative
purposes only). The verifier argument is either created as defined in the Authentication
Protocol [2], or obtained from an authentication service. The verifier result is used
throughout the rest of the session as a means of continuing the authentication of the session.
This and the remaining examples denote this verifier value as simpleVerifier. The session
handle result is used in all subsequent calls to the file service until a logoff request is made.

3.1.4 Logoff

Logoff is called to end a session. The file service verifies that the request is valid, destroys
the session, releases any allocated resources, and invalidates the session handle.

Logoff: PROCEDURE [session: Session]
REPORTS [Authentication Error, ServiceError, Ses:sionError, UndefinedError] • 1;

Arguments: session identifies the session to be ended.

Example:

To end the session that was created in the Logon example, the client would make the
request:

Logoff [session: [token: [11 B, 27734B], verifier: simpleVerifier]]

Notice that the same session handle token is specified that was returned by the Logon
request. The effect of the logoff for the client is that the session handle is no longer an
acceptable argument for file service requests. To obtain another valid session handle, the
client must log on again.

3.1.5 Continue

Continue registers interest in a session. A client who wishes a session to remain in existence
through some period of inacti vity may call Continue to prevent the file service from
terminating it due to inactivity.

Continue: PROCEDURE: [session: Session]
RETURNS [continuance: CARDINAL]

REPonTS [Authentication Error, Session Error, UndefinedError] = 19;

XEROX SYSTEM INTEGRATION STANDARD 15

REMOTE PROCEDURES

Arguments: session refers to the session that is to be continued.

Results: continuance is in seconds. Under normal conditions, the file service will not
terminate the session unless it has been inactive for longer than this number of seconds. The
call to Continue, as well as all other remote procedure calls, registers as activity.

Example:

If a client wanted to discover what the timeout period for a file server was, it could make the
following request:

Continue [session: [token [11 B, 27734B], verifier: simpleVerifier]]

RETURNS [continuance: 600]

The returned value of 600 (seconds) indicates the frequency with which the client must poll
or make file service requests to avoid the session being terminated due to inactivity. In this
example, to avoid timing out a file service request must be made at least every 10 minutes.

3.2 Opening and closing files

A file must be opened before it can be used. It should be closed when it is no longer needed.
While open, a file handle is used to refer to it. The file handle encapsulates the state of the
file within the session.

3.2.1 File handles

16

The file service returns a file handle when a file is opened.

Handle: TYPE = ARRAY 2 OF UNSPECIFIED;

The handle identifies the file to the file service. It is relative to the session. A handle created
during one session cannot be used in conjunction with any other session. A handle remains
valid until it is explicitly destroyed (by presenting the handle in a request to close or delete
the file) or until the session ends, whichever comes first.

null Handle: Handle ::I [0,0];

The constant nullHandle is a reserved value of Handle. In certain procedures where a
directory file may be specified, nullHandle is used to imply the root file (the file within a file
service which has no parent and is an ancestor of all other permanent files).

Specific mention will be made where null Handle is allowed as a procedure parameter.
Unless otherwise indicated, it is disallowed.

The client may hold several handles for the same file in the same session. Each handle is
distinct and has its own state; destroying one leaves the others intact. A file is not closed
until all handles for it are destroyed.

FILING PROTOCOL

REMOTE PROCEDURES

3.2.2 Opening 'files

Open makes a file available for use .. The attributes identify the desired file. The file service
prepares it for use,. applies the specified controls, and creates and returns a file handle for
the file. The file iB also marked "in use" so that it cannot be moved or deleted in other
sessions.

Open: PROCEDURE [attributes: AttributeSequence, directory: Handle,
controls: ControlSequlence, session: Session]

RETURNS [file: Handle]
REPORTS [Access Error, AttributeTypeError, AttributeValueError,

AuthenticationError, ControlTypeError, ControlValueError, HandleError,
SessionError, lIndefinedError] .. 2;

Arguments: attributes identifies the file as described below; directory specifies a starting
directory in which to look for the file (it may be the null handle); controls specifies the
controls to be applied to the new handle; session is the client's session handle. Only the
following interpreted attributes may be included in attributes:

parentlD: the starting directory is the directory which has this filelD; if omitted, the starting
directory is the root directory. Specifying a directory handle is equivalent to specifying its
fileID as parentlD in the attribute list. If both are explicitly specified, the corresponding
fileIDs must be equal;

filelD: open the file which has this filelD. If pcuentlD or directory is specified, the file must
be a child of the starting directory (but if neithnr is specified, the file may be anywhere);

name: open the file which has this name and is a child of the starting directory;

pathname: open the file which has the specified pathname. The first component of the
pathname must be a child of the starting directory (if the starting directory is omitted, the
root directory is used). Every file included in the path except the last must be an accessible
directory. The version attribute may also be specified, but is ignored if the last file named by
pathname includes an explicit version specification.

type: open the file with the specified type;

version: open the file which has this version number; if omitted, the file with the highest
version is opened.

Uninterpreted attributes are ignored. The attribute sequence may not include more than
one of filelD, name~ or pathname. If none are present, the root file is opened and parentlD
and directory must have null values or be omitted; otherwise an error will be reported. The
version attribute may only he specified if name or pathname is specified. In summary, the
attribute sequence must b.~ equi valent to one of the following (where optional attributes are
designated with brackets):

a) filelD [parentlD] [type]
b) name [parentlD] (typell [version]
c) pathname [parEmtlD] [type] [version]

Results: file is the file handle for the file being opened.

XEROX SYS-rEM INTEGRATION STANDARD 17

REMOTE PROCEDURES

18

Examples:

If a client wanted to open a file for which it already had the filelD, it might make the
request:

Open [attributes: ([type: filelD, value: [178,338, 7448,68,2258]]],
directory: null Handle,
controls: [],
session: [token: [118,277348], verifier: simpleVerifier))

RETURNS [file: [72448,3528]]

The file is specified by a fil,elD attribute (type = filelD) where the filelD was [178, 338,
744B, 6B, 225B1 (here again the numbers are only illustrative). No controls were specified.
The session handle came from a previous Logon request (in this case, from the Logon
example). The file service returned a file handle, [7244B, 352B], that must be used when
accessing this file in other file service requests.

To open a file named "Letters" within the directory opened in the above exa.mple, the
following remote procedure call could be made:

Open [
attri butes: [

[type: parentlD, value: [178,338, 7448, 68, 2258]),
[type: name, value: "Letters"]],

directory: null Handle,
controls: [],
session: [token: [118,277348), verifier: simpleVerifier]]

RETURNS [file: [72478, 18n

Here the directory file was specified by a parentlD attribute, and the file name by a name
attribute. Again, no controls were specified. The file service located at least one file name
"Letters" in the designated directory, opened the one with the highest version number, and
returned its file handle. Note that exactly the same effect could be achieved by specifying a
value for directory instead of specifying a parentlD attribute, as in the following call:

Open [
attributes: [[type: name, value: "Letters"]],
directory: [72448,3528],
controls: [],
session: [token: [118,277348], verifier: simpleVerifier]]

The value used for directory was taken from the first Open example.

If the client wished to open a file for which it could provide an access path, it could make the
request:

Open [
attributes: [type: pathname, value: "FinancelllCorrespondence! + IMemo!4"],
directory: null Handle,
controls: [],
session: [token: [118,2773481, verifier: simpleVerifier]]

RETURNS [file: [1709568,38]]

FILING PROTOCOL

REMOTE PROCEDURES

In this example, the client has supplied an access path (pathname) to the file named
"Memo". The null value supplied for directory implies that the path is relative to the root
directory. Implicitly, the service searches for a directory within the root named "Finance",
the highest version of a directory within "Finance" named "Correspondence", and finally
the file itself.

3.2.3 Closing files

Close is called to indicate that a handle to a file is no longer needed in the specified session.
The file service releases acquired resources (such as locks associated with the handle) and
invalidates the file handle. If the file is temporary and no other file handle exists for it, the
file is deleted.

Close: PROCEDURE [file: Handle, session: Session]
REPORTS [Authentication Error, HandleError, Session Error, UndefinedError] ::I 3;

Arguments: file is the handle to be closed; session is the client's session handle.

3.3 Accessing and modifyin~1 controls

A client may specify controls which characterize its intended use of a file handle. Controls
may be specified when or after a file is opened. They apply only to a single file handle.

3.3.1 Controls

When a file is opened, a file handle is returned which has some assumed characteristics. For
example, possession of a handle by one client prevents other clients from moving or deleting
a file, but does not prevent them from reading or modifying the file. This characteristic of a
handle is an example of a control. Controls define the nature of file access that a handle
gives to the client who holds it.

ControlType: TYPE = {lock(O), timeout(1), access(2)};
ControlTypeSequence: TYPE = SEQUENCE 3 OF ControlType;

Control: TYPE ~ CHOICE Control Type OF {

lock ::I > Lock,
ti meout :=J > Ti meout,
access ::I > AccessSequence};

ControlSequence: TYPE = SEQUENCE 3 OF Control;

Controls may be specified in any procedure that returns a file handle. The specified controls
apply only to the returned handle. There exist procedures to obtain and modify controls
applying to a specific handle.

XEROX SYSTEM INTEGRATION STANDARD 19

REMOTE PROCEDURES

3.3.1.1 Locks

A lock on a file is a restriction on the use of the file by other sessions. A client might specify a
lock if it wishes to prevent certain types of access to the file while it is operating on it:

Lock: TYPE = {none(O), share(1), exclusive(2)};

An exclusive lock is more restrictive than a share lock, which is more restrictive than a none
lock.

[f a session has opened a file but no lock has been applied, then other sessions are prevented
from moving or deleting the file.

[f a session has opened a file and a share lock has been applied, then other sessions are
prevented from moving or deleting the file, and from acquiring an exclusive lock on the file.

If a session has opened a file and an exclusive lock has been applied, then other sessions are
prevented from moving or deleting the file, and from acquiring a share or exclusive lock on
the file.

The file service acquires the locks that it needs to ensure correct execution of procedures
called by the client. It always acquires a share lock when a client explicitly reads the content
of a file, and an exclusive lock when a client explicitly changes the content or attributes of a
file, or when children are added to or removed from a directory. Depending on the
implementation, it may also acquire other locks as necessary to ensure its own correct
operation. Since the file service guarantees it will obtain the locks it requires, the client
never needs to explicitly acquire locks unless it wants additional protection. For example, if
a client wishes to prevent modification of a file by other sessions during execution of a
procedure that reads the file, it need not acquire a lock. The file service acquires a share lock
and holds it for the duration of the procedure. However, if the client wishes to prevent
modification of a file between calls to two procedures that read the file, a share lock should be
obtained before the first procedure is called and released after the second procedure returns.

Locks are maintained on a per-session basis; the lock effecti vely held by a session is the most
restrictive lock held on any handle to a file within the session. For example, if two handles to
a file exist in the same session and a share lock is applied to one while an exclusive lock is
applied to the other, then an exclusive lock for the file is held by the session. These locks do
not provide any protection between file accesses made in the same session. The client must
provide such protection if it is needed, although the file service will prevent conflicting
requests from damaging data (for example, by serializing requests within a session where
necessary).

A lock on a file provides no protection for the path to that file. Without specifically
protecting the path, it is possible for a separate session to modify an ancestor of a locked file.

If no lock is specified, none is assumed.

3.3.1.2 Timeouts

.20

When a client requests a lock that is unavailable, the file service waits until it becomes
available or until the timeout expires, whichever occurs first. If the lock becomes available.
it is acquired and execution continues. If the timeout expires, an error is reported. The

FILING PROTOCOL

3.3.1.3 Access

REMOTE PROCEDURES

length of the wait is ordinarily an implementation-dependent constant. However, clients
who wish to specify a particular value may do so.

Ti meout: TYPE = CARDINAL;

The timeout value is given in seconds. The timeout associated with a handle applies to any
request to acquire a lock on that handle. If a tiIneout of zero is specified, the file service does
not wait. In this case if the requested lock is unavailable, an error is immediately reported.
Conversely, a very large timeout may cause the file service to wait a very long time for a lock
to become available. Such timeouts should be used with care.

If defaultTimeout is specified, an implementation-dependent default is applied. When the
current timeout value is requested from the file service, the actual timeout value, rather
than defaultTimeout, is returned:

defaultTimeout: Timeout III 1777778;

Ifno timeout is specified, defaultTimeout is assumed.

Access determines what operations are allowed for a particular file handle. An Access is a
set of permissions, each of which enables a particular form of access to a file (or its children).
If a particular access has not been enabled, the handle may not be used in any operation
which would require that access to the file.

AccessType: TYPE. {

_ .. all files -- read(O), write(1), owner(2),
-- directories -- add(3), remove(4),
-- full access -- fuIlAccess(177777B)};

AccessSequence: TYII)E = SEQUENCE 5 Of AccessType;

Each type of access enables particular forms of access to a file as follows:

read

write

owner

add

remove

fullAccess

The client may read the fil(~'s content and attributes. If the file is a
directory, the client may also enumerate its children and search for files in
the directory.

The client may change the file's content and data attributes, and may
delete thH file. If the file is a directory, the client may also change
environment attributes and access lists of the directory's children.

The client may change the file's access list.

If the file is a directory, the client may add children to it (using any of the
opHrations that create files).

lfthe file is a directory, the client may remove children from it.

A shorthand access type denoting combined read, write, owner, add, und
rernove access permissions. This value may not be used in combination
with any other access type.

XEROX SYSTIEM INTEGRATION STANDARD 21

REMOTE PROCEDURES

The effective access available to a client is the logical AND of the access last specified for the
handle (with ChangeControls or in the operation which returned the handle) and the access
allowed by the file's access control list (see section 4.2.7). A client's effective access may be
empty. The access type fullAccess, when specified as a control value, requests that all access
permissions be permitted. In operations which return handles, fuliAccess is assumed if a
specification of access is omitted.

3.3.2 Accessing controls

GetControls returns the controls in effect for a given handle. Only the values of the specific
controls requested are returned. Since different controls may be obtained with varying
degrees of difficulty, the client should request only those controls that it needs.

GetControls: PROCEDURE [

file: Handle, types: ControlTypeSequence, session: Session]
RETURNS [controls: Control Sequence)
REPORTS [AccessError, AuthenticationError, ControlTypeError,

HandleError, Session Error, UndefinedError] • 6;

Arguments: file is the file handle of interest~ types is a sequence of the types of control items
that are desired~ session is the client's session ha.ndle.

Results: controls is a sequence of control items corresponding one-for-one with the items
specified in types.

Example:

To obtain the values for timeout and lock for a file the following request should be made:

GetControls [file: [7244B, 352B], types: [timeout, lock],
session: [token: [11 B, 27734B], verifier: simpleVerifier]]

RETURNS [controls: [timeout 60, lock none]]

The file handle has a timeout value of one minute and a lock of none. The file service could
also have returned the results:

[controls: [lock none, timeout 60]]

The order of both types and controls is not significant and, in particular, they do not have to
match.

3.3.3 Modifying controls

22

ChangeControls modifies the controls that apply to a given handle. The specified control
values are changed. If a lock is specified, the file service attempts to acquire it, and if
successful, any prior lock is released.

ChangeControls: PROCEDURE (

file: Handle, controls: Control Sequence, session: Session]

FILING PROTOCOL

REPORTS [Access Error , AuthenticationError, ControlTypeError,
ControlValueError, HandleError, SessionError, UndefinedError] II 7;

REMOTE PROCEDURES

Arguments: file is the file handle whose controls are to be modified; controls is a sequence of
the control items to be set; session is the client's session handle.

3.4 Accessing and modifying attributes

Attributes are data that describe a file or are otherwise associated with it. They arc obtained
when a directory is listed, and may be modified implicitly by many procedures. In addition,
they may be obtained or modified by explicit action. Attribute!!) vary widely in purpose,
structure, and behavior.

3.4.1 Attributes

An attribute is a data itenl that is associated with a file. Attributes may identify the file,
describe its structure, record historical activity, or perform any other desired function. Some
attributes have a particular meaning to the file service and specifying such an attribute
results in a defined behavior in the file service. Such attributes are said to be interpreted.
All other attributes are un interpreted. Uninterpreted attributes, when specified, are stored
with the file and, when requested, returned unchanged.

AttributeType: TYPE = LONG CARDINAL;

AttributeTypeSequEmce: TYPE = SEQUENCE OF AttributeType;
aliAttributeTypes: AttributeTypeSequence • [37777777777B];

Attribute: TYPE = RECORD [

type: AttributeType, value: SEQUENCE OF UNSPECIFIED);

AttributeSequence: TYPE = SEQUENCE OF Attribute;

Attributes may be specified when a file is created and explicitly changed at any time. In
addition, some procedures allow certain attributes to be specified. For example, when a file
is copied, the resulting file may be given a different name.

Every attribute has an attribute type which identifies the purpose and structure of the
attribute. Some attribute types are defined by this standard. All attributes having these
defined types must be interpreted by every file service. Chapter 4 contains a comprehensi ve
discussion of interpreted attributes. A customer or vendor may also define attributes that
are of use in his particular application. Such attributes have types allocated from a range
assigned to the customer or vendor.

An attribute's value should be a Courier representation appropriate to the type ()f the
attribute. The file service enforces this for interpreted attributes. ~'or example, an attribute
~equence containing a name and a version might appear as follows:

[[type: name~ value: "Annual Report"1, [type: version, value: 1]]

Conceptually, every file has a value for every attribute. If the attribute is uninterpreted and
it has never been set, or if an interpreted attribute is not meaningful for the file, then the
value is [], a zero-length sequenc~. By convention, this is taken to mean the attribute is not

XEROX SYSTEM INTEGRATION STANDARD 23

REMOTE PROCEDURES

set and the attribute is said to be null. The attribute can be explicitly put in this state by
specifying a value of n. The constant allAttributeTypes, when a parameter to a procedure
that returns the attributes of a file, requests that all attributes that are not null be returned.
Attributes that are zero-length sequences are not returned. However, an attribute whose
type has been named in an attribute type sequence is returned, even if it is null.

Many procedures take an AttributeSequence as an argument. However, the set of allowed
attributes in the sequence varies from procedure to procedure. The restrictions on the
various attributes are described for each procedure.

3.4.2 Accessing attributes

24

GetAttributes returns attributes of the specified file. The file service obtains the requested
attributes and returns them to the client. Since different attributes may be obtained with
varying degrees of difficulty, the client should request only those attributes that it needs.

GetAttributes: PROCEDURE [file: Handle,
types: AttributeTypeSequence, session: Session]

RETURNS [attributes: AttributeSequence]
REPORTS [AccessError, AttributeTypeError,

AuthenticationError, HandleError, Session Error, UndefinedError] • 8;

Arguments: file is a file handle for the file whose attributes are to be examined; types is a
sequence of the types of attributes that are desired; session is the client's session handle.

Results: attributes is a sequence of attributes corresponding one-for-one with the items
specified in types (or containing all non-null attributes iftypes is allAttributeTypes).

Access: read access to file (or to file's parent).

Examples:

To obtain a file's name and isDirectory attributes, the following request would be made:

GetAttributes [file: [7244B, 352B], types: [name, isDirectory],
session: [token: [11 B, 27734B], verifier: simpleVerifier]]

RETURNS [

attri butes: [
[type: name, value: "Old Letters"],
[type: isDirectory, value: TRUE]]]

The name of the file turned out to be "Old Letters", and it is a directory-type file. :.'-Iote that
the components of attributes could have been returned in either order.

To obtain the un interpreted attribute whose type is 7338, the following request would be
made:

GetAttributes [file: [72448,3528], types: [73381,
session: [token: [118,2773481, verifier: simpleVerifier]]

RETURNS [attributes: [[type: 7338, value: []]]]

FILING PROTOCOL

REMOTE PROCEDURES

The result indicates that the value of the attribute was null; that is, it had never been set.

3.4.3 Modifying attributes

3.4.3.1 ChangeAttributes

ChangeAttributes modifies attributes of the specified file. The changes may have other
effects on the file depending on the attribute.

ChangeAttributes: IPROCEDURE [file: Handle,
attributes: AttributeSequence, session: Session]

REPORTS [Access Error, AttributeTypeError, AttributeValueError,
AuthenticationlError, HandleError, InsertionError, Session Error, SpaceError,
UndefinedError] • 9;

Arguments: file is a file handle for the file to be modified; attributes is a sequence of the
attributes to be modified; session is the client's session handle.

Access: write access is required for file if only data attributes are changed; write access to
file's parent is required for environment attribute changes. If access list attributes are
changed,write access to file's parent or owner access to file is required as well.

Example:

To change a file's name to "Design Memo", and the value of an uninterpreted attribute type
733B to the two words [6448,32178], the following request would be made:

ChangeAttributes [file: [7244B, 1 B],
attri butes: [

[type: name, value: IBOesign Memoli],
[type: 733Bu value: [644B, 3217B]]],

session: [token:: [11 B, 27734B], verifier: simpleVerifier]]

3.4.3.2 UnifyAccessLists

Access attributes (accessLUst and defaultAccessList) may be modified for a given file using
ChangeAttributes, but it is sometimes necessary or useful to unify the effective access lists
of an entire subtree of files. UnifyAccessLists is used for this purpose.

UnifyAccessLists: PROCEDURE [directory: Handle, session: Session1
REPORTS [Access Error, AuthenticationError, HandleError, SessionError,

UndefinedError] = 20;

Arguments: A handle to the subtree of files whose access lists are to be unified is given by
directory; session is the client's session handle.

Access: Write access is required to directory.

XEROX SYS1'EM INTEGRATION STANDARD 2S

REMOTE PROCEDURES

The accesslist and defaultAccessList attributes of each descendant file within the subtree
rooted by directory are given defaulted values. The cumulative result is that all files within
the subtree obtain the same effective access controls as those in place for directory.

Changes to a file's access list attributes, whether by ChangeAttributes or UnifyAccessLists,
take immediate effect for all handles to the file within the client's session and all new
handles acquired by the client's session or other sessions. Access list changes within one
session are not guaranteed to affect clients of other existing sessions until those sessions end.

3.5 Locating and listing files in directories

A client may examine the files in a directory. Scope information describes the files of
interest, and how they are to be examined. Depending on the specific procedure called, either
the attributes of files of interest are returned to the client or the first file of interest is
opened.

3.5.1 Scopes

3.S.1.1 Count

26

Scope items determine what files in a directory are of interest to the client and how they are
to be examined. The client may specify: the direction of listing or searching, what files are to
be examined, and in the case of listing, the maximum number of files. Scope-type
parameters are effective only in the procedure to which they are arguments.

ScopeType: TYPE :I (count(O), direction(1), filter(2), depth(3)};

Scope: TYPE := CHOICE ScopeType OF {

count • > Count,
depth • > Depth.
direction. > Direction.
filter. > Filter};

ScopeSequence: TYPE = SEQUENCE 4 OF Scope;

Count specifies the maximum number of files the client wishes to see.

Count: TYPE = CARDINAL;

For example, if a directory is being listed and the client specifies a Count of five, no more
than five sequences of attributes will be returned, even if there are more than five tiles in
the directory. The constant unlimitedCount should be used if no restriction is desired (the
client wishes to see all files that satisfy the other criteria).

unlimitedCount: Count liI 1777778;

FILING PROTOCOL.

3.5.1.2 D«!pth

REMOTE PROCEDURES

If count is not specified, unlimitedCount is assumed. When searching for a file, count is
ignored.

Depth specifies to what depth the client wishes descendant files to be considered.

Depth: TYPE = CARDINAL;

Specifying a Depth of one includes only the immediate descendants of the directory being
enumerated; a depth of two includes the immediate descendants of directory files referenced
by the directory being enumerated. In general, a file is included in the enumeration if fewer
than depth ancestors separate it from the directory being enumerated. A descendant
directory is always (~onsidered before its descendants within the enumeration.

aliDescendants: Depth = 1'77777B;

The constant aliDescendants should be used if no restriction is desired <the client wishes to
consider all descendants).

If no enumeration depth is specified, a Depth of one is assumed.

3.5.1.3 Direction

3.5.1.4 Filters

Direction specifies whether enumeration of the directory is to proceed from beginning to end
or from end to beginning. The actual order offiles is determined by the ordering attribute:

Direction: TYPE = (forward(O), backward(1)};

If the direction is forward, enumeration starts with the first file in the ordering. If the
direction is backward, enumeration starts with the last file. Direction affects both listing
(files are listed in the specified direction) and searching (the first encountered file that
matches the specified criteria is returned).

If no direction is specified, forward is assumed.

Fi Iter specifies a condition that distinguishes files of interest from other files in the directory.
The (!ondition is one of: the constants TRUE or FALSE; a relation between an attribute and u
constant; a logical combination of conditions.

FilterType: TYPE = {
-- relations --

less(O), lessOrEqual(1), equal(2),
notEqual(3), greaterOrEqual(4), greater(5),

-- logical --
and(6), or(7), not(8),

-- constants --
none(9), all(1 0),

XEROX SYSTEM INTEGRATION STANDARD 27

REMOTE PROCEDURES

28

-- patterns -
matches(11)};

Filter: TYPE = CHOICE FilterType OF {

less, lessOrEqual, equal, notEqual, greaterOrEqual, greater :I >
RECORD [attribute: Attribute, interpretation: Interpretation],

and, or • > SEQUENCE of Filter,
not. > Filter,
none, all • > RECORD [],

matches :I > [attribute: Attribute]};

Interpretation: TYPE :I {none(O), boolean(1), cardinal(2), longCardinal(3),
time(4), integer(5), longlnteger(6), string(7)};

A filter whose value is and [filteq, filter2, ... , filtern] is satisfied only if all of (ilteq, filter2, ... ,
filtern are satisfied.

A filter whose value is or [filterl, filter2, ... , filtern] is satisfied when at least one of filteq,
filter2, ... , filtern is satisfied.

A filter whose value is not filter is satisfied when filter is not satisfied.

A filter whose value is none [] is never satisfied, while a filter whose value is all [] is always
satisfied.

A filter whose value is matches [] is satisfied if the corresponding string attribute of a file
satisfies the string pattern of the filter. Two wildcard characters are defined: asterisk (*) and
sharp sign (#). An asterisk within a string pattern matches zero or more characters within a
string attribute~ a sharp sign matches any single character. Wildcard characters meant to be
interpreted literally within a pattern must be escaped. A wildcard character is escaped by
preceding it with the apostrophe character ('). To include the escape character literally in a
string pattern, it must be escaped as well.

For example, consider a directory that references five files with the following attributes:

name version

1 Alpha 1
2 Beta 1
3 Beta 2
4 Delta 1
5 Gamma 6

The following filters will select the files mentioned in the comment:

matches [attribute: [type: name, value: "B*"]]
-- files 2 and 3 --

matches [attribute: [type: name, value: "#####"])
-- files 1, 4 and 5 --

Within a pathname attribute, the above wildcard characters may be used to specify :;tring
pattern matches of individual pathname components; the wildcard characters are used to
match only the name portion of a pathname component. Two consecuti ve a::;terisk characters
within a wildcarded pathname match multiple components. In both cases, all versions of a

FILING PROTOCOL

REMOTE PROCEDURES

file with a given name are considered to match. Explicit version specifications may be
included using any of the version designators (see section 4.2.2.5), Pathname syntactical
characters may be included in pathname filters with appropriate escaping (preceding
individual characters with the escape character),

For example, consider a subtree often files with the following attributes:

1
2

·3
4
5
6
7
8
9
10

name

Profit-Loss Statements
Fiscal 1983

First Quarter
Second Quarter
Third Quarter
Fourth Quarter
Fourth Quarter

Fiscal 1984
First Quarter
Second Quarter

version

1

1
2
2
1

The following filters will select the files mentioned in the comment:

matches [attribute: [type: pathname, value: "Profit-Loss Statemelnts/*"]]
-- files 2 and 8--

matches [attribute: [type: pathname, value: "I)rofit-Loss Statements/**"]]
-- files 2, 3, 4, 5,6, 7,8,9, and 10--

matches [attribute: [type: pathname, value: "Profit-Loss Statements/**First*"]]
-- files 3 and 9--

matches [attribute: [type: pathname, value: "'I)rofit-Loss Statements/**F*!- tI]]
-- files 2, :1, 6, 8, and 9···

All other filters are relations between a constant attribute value and the corresponding
attribute of a file. Each of these filters is satisfied if the file's attribute, when interpreted in
an appropriate way and compared to the constant value given in the filter, satisfies the
specified relation.

The interpretation component provides the file service with the information it needs to
properly compare the attribute in the file to the constant value. The file service needs this
information only for uninterpreted attributes. For attributes that the file service itself
interprets the standard interpretation is used, and any specified interpretation is ignored l if
the standard interpretation is not one of the values of Interpretation, it is assumed to he
none). Attribute values with the given interpretation are compared as follows:

none

boolean

Values are compared word-by-word, starting with the first. That is,
cor.responding sixteen-bit words are compared as though they were of type
CARDINAL, starting with the first, until an unequal pair is found. The
relationship of this unequal pair is considered to be the relationship of the
two attributes, If the attributes are equal up to the length of the shorter,
the longer attribute is considered to be greater.

TRUE is greater than FALSE.

XEROX SYSTEM INTEGRATION STANDARD 29

REMOTE PROCEDURES

30

cardinal Values are compared as unsigned sixteen-bit numbers.

longCardinal Values are compared as unsigned thirty-two-bit numbers.

time Values are compared as points in a linear time span where a later time is
considered to be greater than an earlier time. Because of the time
encoding, this comparison is not the same as for 10ngCardinal.

integer Values are compared as signed sixteen-bit numbers.

longlnteger Values are compared as signed thirty-two-bit numbers.

string Values are compared according to an implementation-dependent string
sorting algorithm. It is recommended that strings be sorted in a way that
allows direct presentation of strings to human users (for example, in
alphabetical order) and that essentially equivalent strings (for example,
strings that differ only in case) be considered to be equal.

If the value of an attribute is not a valid representation of a value of the stated
interpretation, that attribute is considered to be less than any attributes that- are valid
representations.

If no filter is specified, null Filter is assumed.

nullFilter: Filter :I all [];

Example:

Consider a directory that references five files with the following attributes:

name version

1 Alpha 1
2 Beta 1

3 Beta 2
4 Delta 1

5 Gamma 6

The following filters will select the files mentioned in the comment:

a II [] -- all five of the files --

none [] -- none of the five files --

equal [attribute: [type: name, value: "Beta "], interpretation: string]
_ .. files 2 and 3: note that interpretation is ignored --

greaterOrEqual [attribute: [type: version, value: 21, interpretation: none]
~- fiLes 3 and 5; note that interpretation is ignored--

not or [equal [attribute: [type: name, value: "Beta"], interpretation: string],
greater [attribute: [type: version, value: 11, interpretation: cardinal]]
_. files 1 and 4; note that interpretations are ignored --

FILING PROTOCOL

REMOTE PROCEDURES

An implementation is not required to support all possible attributes in filters. If a particular
value of a filter is not supported then the implementation may report ScopeVaJueError
[unimplemented, filter] when that value is specified. However, every implementation must
support all possible combinations of relations on the name, position, and version attributes.

3.5.2 Locating files

Find is called to locate and open a particular file in a directory. The file service enumerates
the directoryis children in the specified direction (the ordering is determined by the orderi ng
attribute of the directory) and opens the first file that meets the specified criteria, reporting
an error if there is none.

Find: PROCEDURE [directory: Handle, scope: ScopeSequence,
controls: Control Sequence, session: Session]

RETURNS [file: Handle]
REPORTS [Access Error, AuthenticationError, ControlTypeError, ControlValueError,

HandleError, ScopeTypeError, ScopeValueError, SessionError, UndefinedError] • 17;

Arguments: directory is a file handle for the directory whose children are to be enumerated
(the null handle may be s1Pecified)~ scope specifies characteristics of the enumeration and
the search criteria; controls specifies the controls to be applied to the new handle; session is
the client's session handle.

Results: file is a file handle for the file that was found.

Access: Read access is required to directory.

Example:

If one wanted to find in a directory the last occurring file whose name attribute is "Notice",
the following call would be made:

Find [directory: [7244B, 3528],
scope: [direction backward,

filter equal
[attribute: [type: name, value: OINotice"], interpretation: string)),

controls: [],
session: [token: [11 B, 27734B], verifier: simpleVerifier]]

RETURNS [file: [31 B, 6435B]]

The scope specifies that the directory is to be searched from the end to the beginning looking
for a file whose name equals "~otice". No controls are to be applied. Such a file was found; it
was opened and its handle was returned.

3.5.3 Li~5ting files

List enumerates the files in a directory, returning some of their attributes. The tile service
enumerates the directory in the specified direction <the ordering is determined by the
ordering attribute of the directory), and sends the requested attributes for tiles that meet

XEROX SYSTEM INTEGRATION STANDARD 31

REMOTE PROCEDURES

32

the specified criteria. Since different attributes may be obtained with varying degrees of
difficulty, the client should request only the attributes that are needed.

The files in the directory may change while the operation is in progress so that the set of
attributes returned may not reflect the state of the directory at any single point in time. The
client may prevent such changes, if necessary, by acquiring a share lock on the directory
before calling List. Also, the client may call other procedures while listing, but if one of these
procedure calls affects the directory being listed, the effects mayor may not be reflected in
the remainder of the list. Note that if a depth greater than one has been specified,
descendants of the directory being listed must also be considered.

List: PROCEDURE [directory: Handle, types: AttributeTypeSequence,
scope: ScopeSequence.listing: 8ulkData.Sink, session: Session]

REPORTS [AccessError, AttributeTypeError, AuthenticationError,
Connection Error. HandleError, ScopeTypeError,
ScopeValueError, Session Error, TransferError, UndefinedError] • 18;

Arguments: directory is a file handle for the directory to be enumerated (the null handle
may be specified); types is a sequence of the types of attributes that are desired; scope
specifies characteristics of the enumeration and the search criteria; listing specifies the sink
that is to receive the requested attributes in accordance with the Bulk Data Transfer
Protocol [3); session is the client's session handle.

Access: Read access is required to directory.

The transferred bulk data is a single object of type StreamOfAttributeSequence.

StreamOfAttributeSequence: TYPE • CHOICE OF {

nextSegment (0) • > RECORD [

segment: SEQUENCE OF AttributeSequence,
restOfStream: StreamOfAttributeSequence],

lastSegment (1) • > SEQUENCE OF AttributeSequence};

There is one AttributeSequence for each file listed, and each AttributeSequence is a
sequence of attributes, corresponding one-for-one with the items specified in types or
containing all non-null attributes if aliAttributeTypes was specified.

Example:

If a client wants to enumerate the children of a directory back ward, obtaining name and
version attributes for files whose version attribute is greater than 1, it would make the
following call:

List [directory: [72448,3528], types: [name, version1,
scope:

[direction backward,
filter greater
[attribute: [type: version, value: 11, interpretation: cardinal],

listing: sampleSink,
session: [token: [118,2773481, verifier: simpleVerifier11

Before List returns, the list of files ~atisfying the criteria would be sent via bulk datu
tran!:ifer as a StreamOfAttributeSequence from the file service. The de::;tination of the datu
would be determined by the sampleSink. The datu might have the following form:

FILING PROTOCOL

REMOTE PROCEDURES

nex"tSegment [
segment: [[

[type: name, value: "Report To Management"],
[type: version, value: 3]]],

restOfStream:

nextSegment [
segment: [[

[type: name, value: "Quarterly Performance"],
[type: version, value: 2)]],

restOfStrea m :

lastSegmel,t [[

]]

[type: name, value: "Personnel Summary"],
[type: "ersion, value: 2111

3.6 Accessing and modifying the content of files

The content of a file may be set to a value by storing it or replacing it. The content may be
obtained by retrieving it.

3.6.1 Uninterpreted file format

Procedures in this section transfer the content of a file using the bulk data transfer
mechanism. The transferred data is a single uninterpreted data object consisting of a
sequence of eight-bit bytes. The length of the file is exactly the number of bytes transferred.

3.6.2 Storing files

Store creates a file with a specified content. When a new file is created with the specified
attributes in the specified directory, it is filled with data sent by the client using bulk data
transfer, and a file handle for the file is returned.

Store: PROCEDURE [directory: Handle, attributes: AttributeSequence,
controls: Control Sequence, content: BulkData.Source, session: Session]

RETURNS [file: Handle1
REPORTS [AccessError, AttributeTypeError, AttributeValueError,

AuthenticationError, Connection Error, ControlTypeError, ControlValueError,
HandleError,lnsertionError,
Session Error, Space Error, TransferError, UndefinedError] ::I 12;

Arguments: directory is a file handle for the directory into which the new file is to be placed
(the null handle may be specified); attributes specifies the characteristics of the new file;
controls specifies the controls to be applied to the returned handle; content specifies the
source that is to supply the content of the file in accordance with the Bulk Data Transfer
Protocol [31; session is the client's session handle.

XEROX SYSTEM INTEGRATION STANDARD 33

REMOTE PROCEDURES

Results: file is a file handle for the newly created file. Between the call to the remote
procedure and the return, the file service uses the bulk data transfer mechanism to retrieve
the content of the new file.

Access: Add access is required to directory (if it is not the null handle).

Example:

A client wanting to store the data obtained from a source into a file called "Document" in a
directory, and to acquire an exclusive lock on the returned file handle, would make the call:

Store [directory: [7244B, 352B1,
attri butes: [

[type: name, value: "Document"],
[type: dataSize, value: 275B]],

controls: [lock exclusive),
content: sampleSource,
session: [token: [11 B, 27734B], verifier: simpleVerifier]]

Before the procedure returned to the client the file service would retrieve the -data from
sampleSource using bulk data transfer and store it in the file:

... 275B eight-bit bytes transferred to the file ...

RETURNS [file: [71 B, 2133B]]

The file handle returned has an exclusive lock applied to it.

3.6.3 Retrieving files

34

Retrieve transfers to the client the content of an existing file.

Retrieve: PROCEDURE [file: Handle, content: BulkOata.Sink, session: Session)
REPORTS [Access Error, AuthenticationError, ConnectionError, HandleError,

Session Error, TransferError, UndefinedError] • 13;

Arguments: file is a file handle for the file whose content is being retrieved~ content specifies
the sink that is to receive the content of the file in accordance with the Bulk Data Transfer
Protocol [3]; session is the client's session handle.

Access: Read access is required to file.

Example:

To reverse the process of the previous example and retrieve a file from the file service, a
typical call would be:

Retrieve [file: [71 B, 2133B1,
content: sampleSink,
session: [token: [11 B, 27734B1, verifier: simpleVerifier]]

FILING PROTOCOL.

REMOTE PROCEDURES

Before the file service returns from the remote procedure call it transfers the requested data
via bulk data transfer from the file server to the destinations specified by sampleSink:

... 275B eight-bit bytes transferred to sampleS ink ...

3.6.4 Replacing files

Replace replaces the content of an existing file with data received from the specified source.

Replace: PROCEDURE [file: Handle, attributes: AttributeSequence,
content: BulkData.SouW'ce, session: Session]

REPORTS [Access Error, AttributeTypeError, AttrilbuteValueError,
AuthenticationError, ConnectionError, HandleError,
SessionError, SpaceErrc)f, TransferError, UndefinedError] • 14;

Arguments: file is a file handle for the file whose content is being replaced; attributes
specifies characteriEitics of the resulting file; content specifies the source that is to supply the
new content of the file in accordance with the Bulk Data Transfer Protocol [3); session is the
client's session handle.

Access: Write access is required to file.

3.6.5 Random access to files

3.6.5.1 Byte ranges

A byte range specifies a contiguous sequence of bytes within the content of a file. A range is
defined by a byte offset within the content of the file and a count of the bytes in the range.

ByteAddress: TYPE :8 LONG CARDINAL;

ByteCount: TYPE • LONG CARDINAL;

A ByteAddress specifies a byte offset within the content of a file. A ByteAddress is valid for a
given file if included in the interval [O .. dataSize-ll, where dataSize is the value of the file's
dataSize attribute as returned by the GetAttributes operation. A ByteCount is a non-zero
count used to specify a number of bytes.

endOfFile: LONG CARDINAL :8 37777777777B;

The constant endOflFile is defined for use in referring to the logical end of a file. As a byte
address, endOfFile is used to refer to the byte position at the end of a file where new data can
be appended. As a byte count, endOfFile can he used to represent a count of bytes ending
with the last byte defined for a file, regardless of the file's exact size.

ByteRange: TYPE = RECORD [firstByte: ByteAddress, count: ByteCount];

A contiguous sequence ofhytes within a file is defined by a ByteRange; firstByte specifies the
starting byte of this sequence: count specifies the number ofhytes in the sequence.

XEROX SYSTIEM INTEGRATION STANDARD 35

REMOTE PROCEDURES

3.6.5.2 RetrieveBytes

RetrieveBytes allows clients to read a range of bytes within a file. The requested bytes of file
content are returned as a result of the call.

RetrieveBytes: PROCEDURE [file: Handle, range: ByteRange,
sink: BulkData.Sink, session: Session]

REPORTS [AccessError, HandleError, RangeError, SessionError, UndefinedError] =- 22;

Arguments: file is a handle to the file whose data is to be read; range defines the sequence of
bytes to be returned; sink specifies the sink that is to receive the requested data bytes in
accordance with the Bulk Data Transfer Protocol [31; session is the client's session handle.

Access: Read access is required to file.

Example:

To obtain the ten bytes of a file's content beginning with its fifteenth byte, the client could
make the request:

RetrieveBytes [
file: [4117B, 256B],
range: [firstByte: 14, count: 10],
sink: sampleSink,
session: [token: [11 B, 27734B], verifier: simpleVerifier]]

The data is transferred by means of bulk data transfer to the specified sink.

3.6.5.3 ReplaceBytes

36

ReplaceBytes is used to change the content of a file. The operation may be used to overwrite
existing data of a file or append new data to a file.

ReplaceBytes: PROCEDURE [

file: Handle, range: ByteRange, source: BulkData.Source, session: Session]
REPORTS [Access Error, HandleError, RangeError. Session Error, SpaceError,

UndefinedError] =- 23;

Arguments: file is a handle to the file whose data is to be replaced; range specifies the region
of the file to be written; source specifies the source that is to supply the data bytes which are
to be used to replace or extend those of the file; session is the client's session handle.

Access: Write access is required to file.

The range argument and the data supplied via source must be consistent: otherwise, an
error is reported. If the firstByte component of range is equal to endOfFile, the supplied data
is appended to the file; otherwise, the supplied data replaces data within the specified byte
range of the file. In case of append, ReplaceBytes must guarantee that all of the supplied
data is appended successfully, or none of it is.

FILING PROTOCOL

REMOTE, PROCEDURES

Examples:

To overwrite the first nine bytes of data within a file, a client would make the request:

ReplaceBytes[
file: [4117B, 256B],
range: [firstByte: 0, count: 9],
source: sampleSource,
session: [token: 11 B, 277348], verifier: simpleVerifier]]

To append six bytes of new data to a file, a client would make the request:

Replace8ytes[
file: [41178.2568],
range: [first8yte: endOfFile, count: 6],
source: sampleSource,
session: [token: 11 B, 2'7734B), verifier: simpleVerifier]]

3.7 Creating and deleting files

A file may be created without transferring any data. Any existing file may be deleted,
freeing the resources assigned to the file and removing any association with a directory.

3.7.1 Creating files

Create creates a file. A new file is created with the specified attributes in the specified
directory and a handle for' the file is returned. Create is particularly useful for creating
directories. Usually, a non-directory has content, making Store a more appropriate
operation.

Create: PROCEDURE [directory: Handle, attributes: AttributeSequence,
controls: ControlSequEmce, session: Session]

RETURNS [file: Handle]
REPORTS [Access Error, AttributeTypeError, AttributeValueError, AuthenticationError,

ControlTypeError, ControlValueError, HandleError, InsertionError, Session Error,
SpaceError, UnciefinedError] = 4;

Arguments: directory is a .file handle for the directory into which the created file is placed
(the null handle may be specified); attributes specifies the characteristics of the new file;
controls specifies the controls to be applied to the returned handle; session is the client's
session handle.

Results: file is a file handle for the newly-created file.

Access: Add access is required to directory,

XEROX. SYSTEM INTEGRATION STANDARD 37

REMOTE PROCEDURES

Examples:

To create a temporary tile with default values for all attributes, the following call would be
made:

Create [directory: null Handle, attributes: [[type: isTemporary, value: TRUE]], controls: [],
session: [token: [11 B, 27734B], verifier: simpleVerifier]]

RETURNS [file: [4661 B, 361 Bn

To create a new directory with a name attribute of "Financial Documents" and a children
UniquelyNamed attribute of FALSE, a client would make the call:

Create [directory: [7244B, 352B],
attri butes: [

[type: name, value: "Financial Documents"],
[type: iSDirectory, value: TRUE],

[type: childrenUniquelyNamed, value: FALSE]),

controls: [lock share],
session: [token: [11 B, 27734B], verifier: simpleVerifier))

RETURNS [file: [4661B, 3728)]

The resulting file handle has a share lock applied to it.

3.7.2 Deleting files

Delete deletes an existing file. The file is closed and deleted, freeing the resources allocated
to the file and removing any association with a directory. If the file is a directory, all
descendants are also deleted.

Delete: PROCEDURE [file: Handle, session: Session]
REPORTS [AccessError, AuthenticationError, HandleError, SessionError,

UndefinedError] • 5;

Arguments: file is a file handle for the file to be deleted (it must be the session's only file
handle for this file); session is the client's session handle.

Access: Remove access to file's parent is required; write access to file (and each descendant).

3.8 Copying and moving files

38

A file which is identical to an existing file may be created by copying the existing file. The
new file may be temporary, or it may be inserted in a directory. An existing file may also be
moved to a directory. The tile is removed from its old directory if it resided in one.

FILING PROTOCOL.

REMOTE PROCEDURES

3.8.1 Copying files

Copy creates a file which .is a copy of an existing one. If the existing file has descendants,
they are copied as well. The file service creates a set of files which are copies of the specified
file and all of its descendants, and inserts the new structure into the specified directory. A
file cannot be copied into itselfor any of its descendants.

Copy: PROCEDURE [file, destinationDirectory: Handle, attributes:
AttributeSequence, controls: ControlSequence, session: Session]

RETURNS [newfile: Handle]
REPORTS [AccessErroH", AttributeTypeError, AttributeValueError,

AuthenticationError, ControlTypeError, ControlValueError, HandleError,
InsertionError, SessionError, SpaceError, UndefinedError] • 10;

Arguments: file is a file handle for the file to be copied; destinationDirectory is a file handle
for the directory into which the copy is to be placed (the null handle may be specified);
attributes specifies the characteristics of the new file and overrides those of the original file;
controls specifies the controls to be applied to the returned handle; session is the client's
session handle. -

Results: newfile is a file handle for the newly-created file.

Access: Add access to destinationDirectory is required, and read access to file (and each
descendant offile).

Example:

The following call will copy a file along with any of its descendants, changing its name to
"Summary, Section 2":

Copy [file: [4661 B, 361 B],
destinationDiredory: ['7244B, 352B],
attributes: [[typ,e: name, value: "SummarYf Section 2"]],
controls: [],
session: [token: [11 B, 27734B], verifier: simpleVerifierJ]

RETURNS [newFile: [3'7B, 1627B]]

3.8.2 Moving files

Move changes the directory structure of the file service without creating or deleting any
files. The file service moves the specified file into the specified directory. If it was previously
a child of another directory, it is removed from that directory. If the file was temporary, it
becomes permanent. If the file has descendants, they are moved as well (that is, they remain
descendants of the file). A file may not be moved into itself or any of its descendants.

Move: PROCEDURE [file, destinationDirectory: Handle,
attributes: AttributeSequence, session: Session]

REPORTS [AccessError, AttributeTypeError, AttributeValueError, AuthenticationError,
HandleError, InsertionError, SessionError, SpaceError, UndefinedError] = 11;

Arguments: file is a file handle for the tile to be moved (it must be the session's only tile
handle for this file); destinationDirectory is a file handle for the directory into which the file

XEROX SYSTEM INTEGRATION STANDARD 39

REMOTE PROCEDURES

is to be placed (the null handle may not be specified); attributes modify the characteristics of
the file; session is the client's session handle.

Access: Read and write access are required to file; remove access is required for file's parent
and add access is required to destinationDirectory.

Example:

To move a file and all of its descendants to a new directory, make the call:

Move [file: [37B, 1627B],
destinationDirectory: [46618,3728],
attributes: [[type: 3518, value: TRUE]],

session: [token: [11 B, 277348), verifier: simpleVerifier]]

This call will change attribute 351 B of the file to TRUE in the process.

3.9 Serializing and deserializing files

At times, it is useful to compress all of the information contained in a file and all of its
descendants into a series of eight-bit bytes, in order to transfer it to another file service,
store it on some other medium, or manipulate it in some other way. The format of data in
this series of bytes is the serialized file format. Serializing a file produces a series of bytes
which contains all of the information in the file and its descendants, while de serializing such
a series of bytes recreates a file and its descendants.

3.9.1 Serialized file format

40

Procedures in this section transfer a serialized file to a sink or from a source using the bulk
data transfer mechanism. The data is a single object of type SerializedFHe, encoded in its
standard representation. A serialized file starts with the version number of the serialized
format to distinguish it from other versions of serialized files.

SerializedFile: TYPE. RECORD [version: LONG CARDINAL, file: SerializedTreel;

currentVersion: LONG CARDINAL • 3;

Each file consists of its attributes, its content, and all of its children. The attribute sequence
contains attributes that apply to this file, in arbitrary order. The sequence of children is in
the order of the directory.

SerializedTree: TYPE • RECORD [

attributes: AttributeSequence,
content: RECORD (data: BulkData.StreamOfUnspecified.

lastBytelsSignificant: BOOLEAN!.

children: SEQUENCE OF SerializedTree];

FILING PROTOCOl.

REMOTE PROCEDURES

The content of a file is represented as a stream of sixteen-bit words followed by an indication
of whether or not the last byte of the last word is significant (that is, whether or not the
length in bytes is even). Ifnot, the last byte has the value zero and should be ignored.

3.9.2 Serialize

Serial ize encodes all of the information of a file and its descendants into a series of bytes. The
file (including its attributes and content) and all descendants are serialized into a series of
bytes.

Serialize: PROCEDURE [file: Handle, serializedFile: BulkData.Sink, s«~ssion: Session]
REPORTS [Access Error, AuthenticationError, Connection Error, HandleError, SessionError,

TransferError, UndefinedError] • 15;

Arguments: file is a file handle for the file which is being serialized; serializedFile specifies
the sink that is to receive the serialized file in accordance with the Bulk Data Transfer
Protocol [31; session is the client's session handle.

Access: Read access is required to file and each of its descendants.

Example:

To transfer a file in serialized form to another system element, make the call:

Serialize [file: [71 B, 2133B],
serializedFile: sampleSink, session: [token: [11 B, 27734B], verifier: simpleVerifier]]

The file is transferred as a Serialized File by means of bulk data tra.nsfer to the specified sink.
It has the following form:

[version: 3, file: [
attri butes: [

[type: checksum, value: 27451676B],
... other attributes ...
[type: modifiedOn, value: 22635230000B]),

content: [data: lastSegment [... 276 bytes ...], lastBytelsSigni'ficant: FALSE],

children: []]]

The file was 275 bytes long, and notice that there were no descendants of the specified file.

3.9.3 Deserialize

Deserialize rcconstl'llcts a tile and its descendants from a serialized representation. A new
tile is created in the specified directory, its attributes, content and descendants are
constructed from the serialized tile, and a file handle for the file is returned. During
deserialization, some attributes (for example, numberOfChi/dren) are ignored because the
attribute duplicates information that is implicit in the rest of the data. If the deserialized file
duplicates an existing file (in name), the deserialized file is created with an appropriate
version number. It does not replace the existing file.

Deserialize: PROCEDURE [directory: Handle, attributes: AttributeSequence,
controls: Control Sequence, serializedFile: BulkData.Source, session: Session]

XERO.X SYSTEM INTEGRATION STANDARD 41

REMOTE PROCEDURES

42

RETURNS [file: Handle]
REPORTS [AccessError, AttributeTypeError, AttributeValueError,

AuthenticationError, Connection Error, ControlTypeError, ControlValueError.
HandleError, InsertionError, SessionError, SpaceError, TransferError,
UndefinedError] • 16;

Arguments: directory is a file handle for the directory into which the file is to be placed (the
null handle may be specified); attributes specify the characteristics of the new file
(overriding corresponding attributes specified in the serialized file); controls specifies the
controls to be applied to the returned handle; serializedFile specifies the source that is to
supply the file in accordance with the Bulk Data Transfer Protocol [31; session is the client's
session handle.

Deserialize ignores attributes in the serialized file that are not allowed to be specified rather
than reporting an error. Attributes that are not specified are given default values.

Results: file is a file handle for the newly created file.

Access: Add access is required to directory (ifit is not the null handle).

Example:

To deserialize a serialized file. and in the process. change its name to "Old Letters", the
client should make the call:

Deserialize [directory: [72448,3528],
attributes: [[type: name, value: "Old Letters"]],
controls: [],
serializedFile: sampleSource,
session: [token: [118,277348], verifier: simpleVerifier)]

The serialized file is transferred as a SerializedFile via bulk data transfer from the source
specified by sampleSource to the file service:

[version: 3, file:
[attributes: [

[type: checksum, value: 0],
... other attributes ...
[type: modifiedOn, value: 226352371128)],

content: [data: lastSegment [] ,last8ytelsSignificant: TRUE],

children:
[attributes: [

[type: checksum, value: 5473753338],
... other aUrihlltes ...
[type: modifiedOn, value: 2263522457B]],

content: [data: lastSegment [... 24B bytes ...], lastBytelsSignificant: TRUE],

children: []]]]

RETURNS [file: [41178, 256B)]

The serialized file was a directory that had one child.

FILING PROTOCOL

REMOTE PROCEDURES

3.10 Procedures and attributes

The tables on the following pages show the effects that the procedures described above have
on the interpreted attributes. The tables are in alphabetical order by procedure name. If a
procedure never modifies interpreted attributes, no table is given. If an entry in the table is
empty, the corresponding attribute is never changed. Otherwise, a brief indication of the
change is given. The tables do not attempt to describe the restrictions on specifying various
combinations of attributes.

XEROX SYSTEM INTEGRATION STANDARD 43

t

."

r=
Z
G'\
~
;;0

a
-4
a
n
~

Attribute
accessList

checksum

chiidrenUnlquelyNamed

creat~dBy

createdOn

dataSlze

defdultAcc.essl!st

fil~ID

IsDlrectory

IsTemporary

modlfll:?dBy

modd~dOn

name

numberOfChiidren

ordering

parentlD

pathname

pOSition

readBy

readOn

st0r~dS,ze

subtreeSlze

subtree$,zeLlm It

type

untnterpreted

version

Effects of Filing Operations on Attributes

Table 3.1 ChangeAttributes

If a Parameter If not a Parameter
set

set

set

set

set

set

set

Illegal

Illegal

Illegal

illegal currently logged-In user

illegal current date and time

set

Illegal

set

Illegal

illegal con51Stent With ancestry

at specified pomt If key In parent's ordermg changed

illegal

Illegal

illegal

Illegal

set

set

set

set

Descendants

If parent's ordering changed

:a
m
~
a
-4
m
~
;;0

o
n
m
o
c:
;;0
m

'"

X
m
:xl o
X
VI
-<
VI
-t
m
!:
Z
-t
m
C\
:xl
1>
-t
o
Z
VI
-t
1>
Z
o
1>
:xl o

~
(II

Attribute

accessList

checksum

childrenUniquelyNamed

created By

createdOn

dataSlze

defaultAccessList

fllelD

IsDlrectory

IsTemporary

modlfledBy

modifedOn

name

numberOfChildren

ordering

parentlD

pathname

POSition

readSy

readOn

storedSlze

subtreeSlze

subtreeSlzeLlm It

type

LJnlOterpret~d

version

If a Parameter

set

Illegal

Illegal

illegal

illegal

illegal

set

illegal

illegal

set

illegal

Illegal

set

illegal

Illegal

Illegal

set

at speufled POlOt

Illegal

Illegal

Illegal

Illegal

set

"I~gdl

~d

set

Effects of Filing Operations on Attributes

Table 3.2 Copy

If not a Parameter Descendants Dest. Parent

system-assigned value system-assigned value

fALSE FALSE

currently logged-m user currently logged-in user currently logged-m user

current date and time current date and time current date and time

incremented

filelD of resulting parent filelD of resulting parent

conSIStent With new ancestry consistent with ancestry

depends on parent's ordering same relative point
un It.,

nuliTime nuliTime

total content 10 subtree

next dVdllable

Source File Source File Descend.

(urrently logged-in user currently logged-m user

current date and time current date and time

I

i

:xl
m
!: o
~
m
-a
:xl
o
n
m
C
C
:xl
m

'"

~
01

."
;=
z
C\
~
::a
o o
n
o
r

Attribute
accessList

checksum

childrenUnlquelyNamed

createdBy

createdOn

dataSlze

defaultAccesslist

filelO

1501 rectory

IsTemporary

modlfledBy

modlfedOn

name

numberOfChlldren

ordering

parentlO

pathname

position

read By

readOn

storedSlze

subtreeSlze

subtreeSlzeLlmlt

type

ulllnterpreted

version

Effects of Filing Operations on Attributes

Table 3.3 Create

If a Parameter Ifnot a Parameter

set set to (defaulted: TRUE)

set unknownChecksum

set implementation dependent

set currently logged-In user

set current date and time

set 0

set set to [defaulted: TRUE)

Illegal system-assigned value

set FALSE

set FALSE

Illegal currently logged-in user

Illegal current date and time

set implementation dependent

Illegal 0

set defaultOrdering

illegal filelD of resulting parent

set consistent with ancestry

at specified pomt depends on parent's ordering

illegal " ..

Illegal nuliTime

illegal 0

illegal 0

set 0

set tUnspecified or tDirectory

set null

set next available

Parent

currently logged-In user

current date and time

Incremented

new total content In subtree

::a
m
!: o·
m
~
::a
o
n
m
o
C
::a
m
u.

X
m
::;g
o
X
VI
-<
VI
-t
m
~
Z
-i
m
C\
::;g
~
-i o
Z
VI
-t
~
Z
o
~
::0
C

~

"

Effects of Filing Operations on Attributes

3.4 Delete

Attribute Parent

accessList

checksum

chlldrenUniquelyNamed

created8y

createdOn

dataSize

defaultAccessList

filelD

isDlrectory

IsTemporary

modified8y currently logged-in user

modifedOn current date and time

name

numberOfChildren decremented

ordering

parentlD

pathname

position

read8y
--

readOn

storedSlze

subtreeSlze new total content In subtree

subtreeSizeLimit

type

uninterpreted

version

::;g
m
~ o
-t
m
"'0
::;g
o
n
m
C
c:
::;g
m
VI

$:a
co

'TI

r=
Z
C\
~ ::a
o
-t
o n
~

Attribute

accessLlst

checksum

childrenUniquelyNamed

created By

createdOn

dataSlze

defaultAccessLlst

flielD

IsDlfectory

IsTemporary

modifledBy

modlfedOn

name

numberOfChlldren

ordering

parentlD

pathnam~

position

readBy

readOn

storedSlze

subtreeSlze

subtreeSlzeLlm It

type

unlnterpreted

verslun

If a Parameter

set

illegal

illegal

Illegal

Illegal

Illegal

s~t

Illegal

Illegal

set

illegal

Illegal

set

illegal

Illegal

III~gal

~-=t

at specified pOint

Illegal

Illegal

Illegal

Illegal

set

dlt::gal

set

set

Effects of Filing Operations on Attributes

3.5 Deserialize

If not a Parameter Descendants

set appropriately set appropriately

system-assigned value system-assigned value

FALSE FALSE

currently logged-In user currently logged-In user

current date and time current date and time

filelD of resulting parent filelD of resulting parent

consistent With new ancestry conSistent With new ancestry

depends on parent's ordering same relative pOint
.. "
nuliTime nullTime

nullSubtreeSizelimit

1

next available

Parent

currently logged-in user

current date and time

incremented

new total content in subtree

::a
"' 3: o
-t

"' "l:I ::a o
n
"' C
c:
::a
"' 11\

X
rn
::a o
x
'" <
U\
-i
rn
3:
Z
~
rn
C\
::a
l>
~ o
z
U\
~
l>
Z
o
l>
::a
o

"'" .0

Attribute

accessList

checksum

chlldrenUnlquelyNamed

created By

createdOn

dataSize

defaultAccessLlst

fdelD

IsDirectory

isTemporary

modlfledBy

moddedOn

name

numberOfChddren

ordering

parentiD

pathname

position

readBy

readOn

storedSlze

subtreeSlze

subtreeSizellmlt

type

unillterpreted

vdSlon

If a Parameter

set

illegal

Illegal

illegal

Illegal

IIlegai

set

illegal

Illegal

must be fALSE

Illegal

Illegal

set

Illegal

Illegal

illegal

Illegal

at sIJ€cifled pomt

Illegal

Illegal

Illegal

Illegal

set

Illegal

Sd

set

Effects of Filing Operations on Attributes

3.6 Move

If not a Parameter Source Parent

fALSE

currently logged-In user currently logged-in user

current date and time current date and time

decremented

filelD of resulting parent

consistent with new ancestry

depends on parent's order 109

new total content of subtree

ne)(t available

Destination Parent

currently logged-in user

current date and time

Incremented

new total content of subtree ::a
rn
3:
o
~
rn
~
::a
o
n
rn
o
c:
::a
rn
U\

U1
o

"TI

i=
Z
C\
'1:1
:D
o
~
o
n
o
r

Attribute
accessList

checksum

childrenUniquelyNamed

created By

createdOn

dataSlze

def aultAccesslist

flielD

IsDlrectory

isTemporary

modifledBy

modlfedOn

name

numberOfChlldren

ordering

parentlD

pathname

pOSition

readS}'

readOn

storedSlze

subtreeSlze

subtreeSlzellmit

type

un Interpreted

version

Effects of Filing Operations on Attributes

Table 3.7 Open

If a Parameter Ifnot a Parameter
illegal

illegal

illegal

illegal

illegal

illegal

illegal

file with this value is opened

illegal

illegal

illegal

Illegal

file with this value is opened

Illegal

illegal

filelD of directory to search

file with this value is opened

illegal

Illegal

Illegal

illegal

illegal

Illegal

file with this value IS opened

Ignored

file with this value IS opened

:D
m
s:
o
~
m
"Q
:D
o n
m
C c
:::a
m
&I'l

X
m
;:g
o
x

'" -<
'" -t
m
s::
Z
-t
m
C\
;:g
J:o
-t
o
Z

'" -t
J:o
Z
C
J:o
;:g
C

VI .-

Attribute
accessLlst

checksum

chlldrenUnlquelyNamed

created By

createdOn

dataSlze

defaultAccessLlst

fJlelD

IsDlrectory

IsTemporary

modtfll::dBy

modlfedOn

name

numberOfChddren

ordering

parentlD

pathname

pOSition

read By

readOn

storedSlze

subtr~eSlze

subtreeSlzeLlmlt

type

unmterpreted

version

Effects of Filing Operations on Attributes

3.8 Replace

If a Parameter If not a Parameter
illegal

set set appropriately

Illegal

set currently logged-in user

St;!t current date and time

initial allocation number of bytes transferred

Illegal

Illegal

dlegal

iliegai

Illegal currently logged-in user

illegal current date and time

Illegal

Illegal

Illegal

Illegal

Illegal

Illegal

Illegal

Illegal

illegal set appropriately

Illegal set appropriately

illegal

Illegal

illegal

Illegal

Parent

new total content In subtree I

I

;:g
m
3: o
-t
m
"tI
;:g
o
n
m
C
c::
;:g
m

'"

VI
IV

."
;=
z
C\
"a
;q
o
-i
o
n
~

Attribute

accessList

checksum

childrenUnlquelyNamed

created By

createdOn

dataSize

defaultAccessList

fdelD

IsDlrectory

IsTemporary

modlfledBy

modifedOn

name

numberOfChddren

ordering

parentlD

pathname

position

reauB"

readOn

storedSlze

subtreeSlze

subtree$lzeLlmlt

type

unmterpreted

verSion

Effects of Filing Operations on Attributes

Table 3.9 ReplaceBytes

File Parent

unknownCheck sum

currently logged-in user

current date and time

increased by elrtenSlon amount

currently logged-In user

current date and time

set appropriately

new total content In subtree new total content In subtree

:»
m s:
o
m
"a
;q
o
n m
o
c:
;q
m

'"

X
m
::a o
x
U\
-<
VI
-t
rn
3:
Z
-t
m
C\
::a »
-t
o
Z
VI
-t » z
o » ::a
o

VI
eN

Effects of Fiiing Operations on Attributes

Table 3.10 Retrieve

Attribute File

accesslist

checksum set If previously unknown

childrenUniquelyNamed

created8y

createdOn

dataSize

defaultAccessllst

filelD

iSDirectory

isTemporary

modified8y

modifedOn

name

numberOfChildren

ordering

parentlD

pathname

position

read By currently logged-in user

readOn current date and time

storedSlze

subtreeSize

subtreeSlzelimlt

type

unlOterpreted

versIOn I

::a
m
3: o
-t
m
'lJ ::a
o
n
m
o
c:
::a
m
U\

U1
~

"TI

r=
Z
C\
~
:D o
-t o
n
~

Effects of Filing Operations on Attributes

Table 3.11 RetrieveBytes

Attribute File

accessList

checksum

childrenUniquelyNamed

created By

createdOn

data$ize

defaultAccesslist

filelD

iSDirectory

isTemporary

modifiedBy

modlfedOn

name

numberOfChildren

ordering

parentlD

pathname

position

read By currently logged-in user

readOn current date and time

storedSlze

subtreeSlze

subtreeSlzelimit

type

unmterpreted

verSIOn

;;0
m
~ o
-t
m
"'1:1
;a
o
n
m
o
c:
:D
m
'"

X
m
::0
o
X
U\
-<
VI
-f
ffl

~
Z
-f
m
C\
::0 »
-f

5 z
U\
-I
» z
o »
::0 o

VI
VI

Attribute
accessLlst

ched-,sum

children Uniquely Named

createdBy

createdOn

datdSlze

deTduitAccessLlst

fdelD

IsDlrectory

IsTemporary

modifiedBy

modifedOn

name

numberOfChildren

ordering

parentlD

pathname

position

read By

readOn

storedSlze

subtreeSize

subtreeSizeLimit

type

unlnterpreted

lIerSlon

Effects of Fiiing Operations on Attributes

Table 3.12 Serialize

File Descendants

set if previously unknown set if prevIOusly unknown

currently logged-In user currently logged-in user

current date and time current date and time

::0
m
~
o
-f
m
~
::0 o
f"I
m
o
C
::0
m
U\

Ion
01

-n
r=
Z
C'\
"Q

= o
-4
o
n
o ,...

Attribute
accessLlst

checksum

chddrenUnlquelyNamed

created By

createdOn

dataSlze

dt:f dultAccessLlst

ftlelD

IsDlrectory

isTemporary

modlfledBy

modlfedOn

name

numberOfChtldren

oraeflng

parentlD

pathname

lJ()sltlon

readBt

readOn

storedSlze

subtreeSize

subtreeSlzeLlmlt

type

unlnterpreted

version

Effects of Filing Operations on Attributes

Table3.13 Store

If a Parameter If not a Parameter
set set to (defaulted: TRUE]

set set appropriately

set implementation dependent

set currently logged-m user

set current date and time

initial allocation number of bytes transferred

set set to [defaulted: TRUE]

illegal system-assigned valul:'

set FALSE

set FALSE

Illegal currently logged-In user

Illegal current date and time

set Implementation dependent

illegal 0

set defaultOrdering

illegal filelD of resulting parent

set conSIStent with ancestry

at speCified POlllt depends on parent's ordering

Illegal
Illegal nuliTime

Illegal set appropriately

Illegal set appropriately

set nuliSubtreeSizelimit

set tUnspecified or tDirectory

set null

set next available

Parent

currently logged-in user

current date and time

Incremented

new total content In subtree

I

;;0
m s:
o
-4
m
"g = o
n
m
C
c: = m

'"

x
",

::0 o
X
VI
-<
VI
~
",

3:
Z
~
",

C\
::0
~
~ o
z
VI
~
l>
Z
o
~
::0
o

U1
~

Attribute
accessList

checksum

childrenUnlquelyNamed

created By

createdOn

dataSize

defaultAccessLlst

filelD

IsDirectory

IsTemporary

modlfledBy

moddedOn

name

numberOfChlldren

ordermg

parentlD

pathname

position

read By

readOn

storedSlze

subtreeSize

subtreeSlzeLlmit

type

unlOterpreted

v.;:r Sion

Effects of Filing Operations on Attributes

Table 3.14 UnifyAccessLists

File Descendants
Set to [defaulted: TRUE]

Set to [defaulted: TRUE]

currently logged-in user (if changed)

current date and time (if changed)

::0
",

3: o
-I
",

"'0
::0 o
n
rn
o
C
::0
rn
VI

REMOTE PROCEDURES

58 FILING PROTOCOl.

4. ATTRIBUTES

An attribute is a data item that is associated with a file. Any information associated with a
file, but which is not a part of the file's content, is contained in the file's attributes.
Attributes may help to identify the file so that it can be distinguished from other files,
describe the structure or behavior of the file, record information about certain events in the
life of the file, or perform any other desired function.

Every attribute has an attribute type (or simply type) which identifies the attribute. Certain
types are defined in this standard. Other types may be defined by customers or vendors.
Types to be defined in this way must be allocated by means of the administrative procedures
described in appendix B. A customer or vendor is the type owner of attribute types that have
been assigned to him.

Every interpreted attribute has a data type which can be described in the language of
Courier, and every instance of such an attribute should be a well-formed Courier
representation of a value of that data type. To promote sharing of information.
uninterpreted attributes should also be represented according to Courier conventions;
however, this is not mandatory.

Not every attribute! is meaningful for all files. For example, directory-related attributes
'have no meaning for files that are not directories. Such attributes may not be specified when
they are inappropriate, and are always null when examined.

A file service may set an implementation-dependent limit on the total amount of attribute
data which may be stored in a single file. This Hmit must not be less than 32,768 sixteen-bit
words. A file service may also set an implementation-dependent limit on the total number of
attributes which may be stored in a single file. This limit must not be less than 128
attributes. Clients should not expect to be able to store more than 32,768 words of attribute
data, nor more than 128 attributes, on a single file.

4.1 Classes of attributes

Since attributes serve a wide variety of purposes, their behavior varies a great deal. Certain
classifications, however, are helpful in pointing out similarities between attributes.

4.1.1 Interpreted vs. uninterpreted

Many attributes have a particular meaning to the file service and specifying such an
attribute results in a defined behavior in the file service. These attributes are said to be
interpreted. All other attributes are Ilninlf!rpreted, or client-defined. The set of interpreted

XEROX SYSTEM INTEGRATION STANDARD 59

ATTRIBUTES

attributes varies among file services. This section specifies attributes that must be
interpreted and attributes that cannot be interpreted.

An interpreted attribute has a Courier data type that is defined in a standard such as this
one, and all values of the attribute conform to that data type. The file service enforces thiB
constraint. When an interpreted attribute is specified during a procedure call, it results in
some defined behavior on the part of the file service, and this behavior may affect other
attributes or even other files. The value of an interpreted attribute may change, even when
it has not been specified during a procedure call, as a side-effect of that procedure. Various
restrictions may be imposed on the use of an interpreted attribute in certain procedures. In
general, a client cannot always expect an interpreted attribute to remain unchanged durin~:
arbitrary procedure calls.

An uninterpreted attribute should have a defined data type, but the file service does not
know what this data type is and, therefore, cannot enforce it. When an uninterpretedl
attribute is specified during a procedure call, it is stored with the file but causes no other
action. In particular, other attributes are unaffected except those that indicate file activity
(modifiedBy, modifiedOn) or position within a parent (position). The val ues of
uninterpreted attributes do not change except when they are changed explicitly.
U ninterpreted attributes may be passed to any procedure that expects a sequence of
attributes. The value of an uninterpreted attribute is always exactly the value to which it
was explicitly set by the client.

A file service must interpret any attribute type described as interpreted in this standard. A
file service may not interpret any attribute type that is considered to be uninterpreted by the
type owner. In practice, this means that a file service shouldn't ordinarily interpret any
attribute type other than those defined in this standard, since the implementor would not.
normally know whether or not the attribute type's owner considers it to be interpreted.

As a result of these rules, a client is guaranteed that any attribute type described as
interpreted in this standard is always interpreted, and that any attribute type considered to
be uninterpreted by the type owner is always uninterpreted. In particular, the client's own
uninterpreted types are guaranteed to be uninterpreted by any file service. The client would
not normally know whether the owner of some other attribute type considers it to be
uninterpreted.

4.1.2 Environment vs. data

60

An environment attribute describes the relationship of a file to its environment, such as its
name or parent directory. A data attribute describes aspects of the file that are contained
entirely within the file. This distinction is useful because it determines many of the
differences in attribute behavior.

A data attribute is tightly bound to the file. Data attributes may he thought of as extensions
of the file's content. Data attributes are always carried along when a file is moved, copied. or
deserialized. Data attributes may not be explicitly changed during those procedures which
change the context in which a file resides but not the file itself. [n addition, data attributes
may not be used to identify a file when opening it. Examples of data attributes are:
checksum, type, and numberOfChildren.

An environment attribute is much more loosely bound to the file. Environment attributes
may be thought of as part of the lile's parent directory. It is common to want to change these
attributes when a file's context changes, as in moving, copying, or deserializing. Some

FILING PROTOCOL

ATTRIBUTES

environment attributes may be used to identify a file when opening it. For example, filelD,
name, and version are environment attributes. An uninterpreted attribute may be
considered to be a data or an environment attribute depending on the client's use of the
attribute.

4.1.3 Primary vs. derived

A primary attribute is an attribute that carries information for which the attribute is the
only source. name and ordering are primary attributes.

A derived attribute carries information that is derived from other characteristics of the file.
For example, dataSize records the length of the file's content, and numberOfChildren
records the number of children in a directory.

4.2 Definition of attributes

The attributes in this standard are defined in a standard format. Certain attributes are
related and use common definitions.

4.2.1 How attributes are defined

Each attribute definition includes a description of the meaning and purpose of the attribute,
a declaration in Courier notation of the attribute type and of the attribute's data type, a
description of the use of the attribute, a declaration in Courier notation of significant values
of the attribute, a description of those values, and a statement of where it is legal to specify
the attribute.

Several attributes record the date and time at which some event occurred. Time and date
values arc encoded in conformance with the Time Protocol [8].

Time: TYPE = Time.Time;

Time attributes can be set to null with the value:

nuliTime: Time = Time.earliestTime;

For each date-and-time attribute, there is a corresponding u~er attribute. This attribute
records the name of the user on whosf~ behalf the client was operating when the particular
event occurred (the name pre~)Cnted when the session began).

User: TYPE = Clearinghouse.Name;

User names are always fully-qualified clearinghouse names. These names conform to the
conventions described in the Clearinghouse Protocol/51.

XEROX SYSTEM INTEGRATION STANDARD 61

ATTRIBUTES

4.2.2 Identification-related attributes

4.2.2.1 filelD

Identification-related attributes are used to identify the file or to describe major
characteristics of the file.

filelD is an environment attribute that unambiguously and uniquely identifies the file
within the file service.

filelD: AttributeType :II 4;
FilelD: TYPE. ARRAY 5 OF UNSPECIFIED;

This attribute names a file within a file service, independent of its parent directory. Th€~
value for a given file is guaranteed to remain constant as long as the file remains in the file
service. The attribute is human-insensible, and its interpretation is implementation ..
dependent. [n general, clients cannot understand its internal structure. The fact that it is
small and fixed in length makes it more convenient than a conventional string name in
many applications. The distinguished value, nuliFilelD, of this attribute is never assigned to
any file.

nuliFilelD: FilelD • [0,0,0,0,0];

4.2.2.2 isDirectory

isDirectory is a data attribute that indicates whether the file is a directory or a non··
directory. Certain procedures may not be applied to a file that is a non-directory. Directories
cannot be temporary files.

isDirectory: AttributeType • 5;
IsDirectory: TYPE. BOOLEAN;

4.2.2.3 isTemporary

4.2.2.4 name

62

isTemporary is an environment attribute that indicates whether the file is temporary 0('

permanent. A temporary file, which can never be a directory, has no parent directory, and it
is deleted as soon as all file handles are closed. A permanent tile resides in a directory and is
not deleted until there is an explicit request to do so.

isTemporary: AttributeType :I 6;
IsTemporary: TYPE = BOOLEAN;

name is an environment attribute thal cont.ains a human-sensible string name for the file.

FILING PROTOCOl.

name: AttributeType • 9;
Name: TYPE" STRING;

ATTRIBUTES

This attribute may identify a file or it may be merely a description of the file. The name of a
file is not necessarily unique within its parent. However, the name-version pair is always
'unique within its parent. No name attribute may have a length of zero, and the length of the
Courier representation must not exceed 100 bytes (depending on the character
representation in the attribute, the maximum number of characters may be considerably
more or less). Capitalization is ignored when names are compared.

It is strongly recommended that file names not contain the characters: apostrophe ('),
asterisk (*), sharp sign (#), comma (,), diagonal slash (/), or exdamation point (1). These
characters are intended for use within filter specifications and file pathnames (see appendix
F).

4.2.2.5 pathname

pathname is an environment attribute specifying an access path to the file relative to the
root file of the service.

pathname: AttributeType • 21;
Pathname: TYPE. STRING;

A pathname specifies a hierarchical access path to a file by encoding the name and version
attributes of a set of the file's ancestors. It describes an access path to the file relative to an
assumed base directory, The order of the encoded name-version pairs is significant; the first
specifies the file's ancestor which is a child of the base directory, the second pair identifies a
file whose parent is named by the first, and so forth. The last name and version pair names
the file itself. The pathname attribute of a file is a pathname which assumes the root file as
a base directory.

Name and version portions within a pathname are distinguished by an exclamation
character (!). On retrieval, reserved character's within each name portion are escaped by
preceding them with an escape character, the apostrophe (') (see section 4.2.2.4 for the
complete list of reserved characters), As with the name attribute, a name portion may not
have a length of zero or exceed 100 bytes in the Courier representation of its unescaped
form.

A version is specified using a numeric constant, the plus (+) character (designating the
highest version of a file), or the minus (-) character (designating the lowest version). If
omitted, a designation of highest version is assumed. Each name-version pair is delimited
from the next by a diagonal slash character (f).

The following grammar summarizes the syntax of path name ::3trin~;s:

Pathname : = NameVersionPairList

NameVersionPairList: :: NameVersionPair I NameVersionPair/NameVersionPairList

NameVersionPair: = Name I Name!Version

Name: = [string with reserved characters escaped not exceeding 100 bytes In
unescaped form J

XEROX SYSTEM INTEGRATION STANDARD 63

ATTRIBUTES

4.2.2.6 type

4.2.2.7 version

64

Version: = [string of digits with numeric value in the range (0 .. 65535)]
I' + --i. e. highestVersion
I' - --i. e. lowestVersion

It is recommended that the notation for qualified pathnames defined in appendix F be used
at any human interface with the file service, such as at an administrative console.

type is a data attribute that describes the nature of the content or attributes of the file in
order to communicate to potential users of the file how this file is to be interpreted.

type: AttributeType =- 17;
Type: TYPE • LONG CARDINAL;

A customer or vendor may define types for files of his own that he wishes to distinguish.
Types to be defined in this way must be allocated by means of the administrative procedures
described in appendix B.

The file service interprets neither the type nor the content of a file. In particular, the type
may not be used to determine whether a file is a directory or a non-directory. This
information is determined by the isDirectory attribute.

Several commonly-used type values are defined in this standard. Clients are encouraged to
use these types to identify files that have the specified characteristics in order to promote
information sharing. However, the file service does not enforce the specified semantics. See
appendix B for details.

version is an environment attribute that distinguishes different files· that have the same
name attribute within the same directory. The name-version pair is always unique across
the children of a directory.

version: AttributeType • 18;
Version: TYPE = CARDINAL;

This attribute may be specified by the client when a new file is created. Ordinarily, however,
it is omitted, and the new file acquires the next version number. If there are files in the
specified directory with the same name as the new file, the next version number is one
greater than the highest version number associated with any of those files. If there are no
such files, the next version number is 1.

If lowestVersion or highestVersion is ~pecitied, the file to be accessed is the one having the
specified name and the lowest or highest version number within the directory, respecti vely:

lowestVersion: Version = 0;
highestVersion: Version ::I 1777778;

Because an error is reported when the client attempts to create a tile with a non-unique
name-version pair, a client should not ordinarily specify either lowestVersion or
highestVersion when creating a file. \Vithin a tilter, lowestVersion and highestVersion may

FILING PROTOCOL

ATTRIBUTES

be specified only when the order of enumeration (in procedures Find or List) is by the name
attribute.

4.2.3 Content-related attributes

Content-related attributes describe the content of the file.

4.2.3.1 checksum

checksum is a data attribute that helps to verify the validity of the content of the file. It is
intended to detect file damage that may occur while the file is stored by a file service.

checksum: AttributeType III 0;
Checksum: TYPE • CARDINAL.;

The file service computes a checksum whenever the content of a file is transferred. This
occurs in Store, Retrieve, Replace, Serialize and Deserialize. When the content is transferred
to the file service, the computed value is saved in the checksum attribute. If the client has
specified a value for the attribute, it is compared to the computed value and an error is
reported if there is a mismatch. When the content is transferred from the file service, the
computed value is compared with the checksum attribute and an error is reported if there is
a mismatch.

If the checksum is not known because, for example, the file has been damaged while stored
by the file service, the value of the checksum attribute is set to unknownChecksum. The
client may also set this value explicitly via ChangeAttributes. Any computed value of
checksum is always considered to match unknownChecksum. A client might explicitly set
the value to unknownChecksum if the checksum attribute does not match the file's content
due to file damage and the client wishes to retrieve the file without checksum validation:

unknownChecksum: Checksum. 1777778;

The checksum is a one's complement, add-and-cycle checksum that is computed over the
sixteen-bit words comprising the file's contento Specifically, the checksum is calculated by
initializing it to zero and then, for each successive data word, adding the word (using one's
complement addition) and performing a left cycle of the result. If an odd number of bytes is
transmitted, a last byte of zero is assumed for purposes of the checksum computation. [f the
result is the ones-complement value minus zero (1777778), it must be converted to plus zero
(oB) so it won't be interpreted as the unknownChecksum value.

4.2.3.2 dataSize

dataSize is a data attribute that records the number of eight-bit bytes in the content of the
file.

dataSize: AttributeType :I 16;
DataSize: TYPE :I LONG CARDINAL;

XEROX SYSTEM INTEGRATION STANDARD 65

ATTRIBUTES

This attribute is not intended to describe the total amount of physical space occupied by the
file when stored in the file service. For example, it does not include the space required to
store attributes, or space overhead required by the file service.

4.2.3.3 storedSize

storedSize is an attribute that records the number of eight-bit bytes occupied by the file
when stored in the file service. The attribute includes the space required to store attributes
and any other overhead associated with storing the file in the service.

storedSize: AttributeType = 26;
StoredSize: TYPE = LONG CARDINAL;

Note that the value of this attribute will normally be a multiple of a service's underlying'
unit of allocation.

4.2.4 Parent-related attributes

Parent-related attributes describe a file's relationship to its parent directory. These
attributes are always null in a file which has no parent (for example, a temporary file).

4.2.4.1 parentlD

parentlD is an environment attribute that is equal to the filelD attribute of the file's parent.

parentlD: At1ributeType • 12;
ParentlD: TYPE =- FilelD;

4.2.4.2 position

66

position is an environment attribute that specifies a file's position within its parent
directory. It is used to indicate starting and ending points for listing and locating files in a
directory, and to specify the insertion point when creating a file in a directory that is ordered
by position (q.v.).

position: AttributeType =- 13;
Position: TYPE = SEQUENCE 100 OF UNSPECIFIED;

A position defines a point within the linear :ipan of a directory at which there is at most one
file. A file's position attribute specifies that tile's position within its parent directory.

A position value remains valid even if the file to which it applies is moved or deleted. The
position then refers to the point where the tile resided. However, a position value is tied tOo
the ordering of the directory into which it points; therefore, it cannot be used after the
directory has been reordered (by changing its ordering attribute), and it cannot be used to
specify a position within any other directory.

FILING PROTOCOl.

ATTRIBUTES

A position value is uninterpretable by the client. Its internal structure is implementation
dependent. Because the file service may embed arbitrary infornlation in the position, the
client may not compare positions, even for equality.

Two special values identify distinguished points within a directory. The constant
firstPosition specifies a point before the first file in the directory, and lastPosition specifies a
point after the last file. "First" and "last" are determined by the directory's ordering.

firstPosition: Position =- [0];
lastPosition: Position =- [177777B];

4.2.5 Event-related attributes

Event-related attributes record the date and time of significant events in the life of a file,
and the name of the user on whose behalf an eVEmt occurred.

For performance reasons, the file service does not necessarily change these times and names
exactly when the related event occurs. Rather, it may cache changes for later appHcation, or
may group several changes together. The file service guarantees that if an event occurs
during a session, then the times and names will be updated appropriately sometime during
that session. The file servi(:e also guarantees that explicitly-requested changes to times and
names, where allowed, occur immediately.

4.2.5.1 created By

createdBy is a data attribute that records the creator of the file's content. It is the name of
the user who last modified the content of the file.

createdBy: AttributeType • 2;
CreatedBy: TYPE • User;

If the client does not specify this attribute during Create, Store or Replace, the file service
will set it to the name of the current user. However, since the attribute is intended to be the
name of the creator. of the content of the file (rather than the physical file itself), it is
strongly recommended that all clients maintain this name with the file and specify it when
transferring the file to a file service.

4.2.5.2 createdOn

created On is a data attribute that records the time of creation of the tile's content. This
attribute is u!-;ed to maintain the g-eneration time of the file in order to determine the
relati ve ages of similar files.

createdOn: AttributeType a 3;
CreatedOn: TYPE = Time;

If the client does not specify this attribllte during Create, Store or Replace, the tile service
will set it to the current date and time. However, since the attribute is intended to be the
time of creation of the content of the file (rather t:han the physical tile itself), it is strongly

XEROX SYSTEM INTEGRATION STANDARD 67

ATTRIBUTES

4.2.5.3 readBy

4.2.5.4 readOn

recommended that all clients maintain this time with the file and specify it when
transferring the file to a file service.

read By is a data attribute that records the name of the user who last examined the content of
the file.

readBy: AttributeType • 14;
ReadBy: TYPE. User;

When a new file is created, this attribute is set to empty strings to indicate that the file has
never been read. Subsequently, the file service maintains the attribute.

readOn is a data attribute that records the time at which the content of the fife was last
examined.

readOn: AttributeType :I 15;
ReadOn: 'TYPE. Time;

When a new file is created, this attribute is set to nuliTime to indicate that the file has never
been read. Subsequently, the file service maintains the attribute.

4.2.5.5 modifiedBy

modifiedBy is a data attribute that records the name of the last user who changed the file in
any way.

modifiedBy: AttributeType :I 7;
ModifiedBy: TYPE :I User;

When a new file is created, this attribute is set to the name of the current user.
Subsequently, the file service maintains the attribute.

4.2.5.6 modifiedOn

68

modifiedOn is a data attribute that records the time at which the file was la~t changed in
any way.

modifiedOn: AttributeType :I 8;
ModifiedOn: TYPE :I Time;

When a new file is created, this attribute is set to the current time. Subsequently, the file
service maintains the attribute.

FILING PROTOCOL.

ATTRIBUTES

4.2.6 Directory-related attributes

Directory-related attributes describe certain aspects of directories. In non-directories,
directory-related attributes are always null.

4.2.6.1 childrenUniquelyNamed

childrenUniquelyNamed is a data attribute that specifies whether the children of this
directory are constrained to have distinct name attributes. The default value of this
attribute is implementation dependent.

childrenUniquelyNamed: AttributeType :I 1;
ChildrenUniquelyNamed: TYPE. BOOLEAN;

When this attribute is TRUE, no two children of the directory may have the same name
attribute, and the file service rejects any attempt to add a file with the same name attribute
as an existing file. When this attribute is FALSE, this restriction is not enforced. _Files that
ha ve the same nam'e attribute are di.stinguished by their version attributes. Comparison of
name attributes is described in section 3.5.1.4.

4.2.6.2 numberOfChildren

numberOfChildren is a data attribute that is a count of the directory's children. Note that
this is not a count of the directory's descendants.

numberOfChildren: AttributeType :I 10;
NumberOfChildren: TYPE :I CARDINAL;

4.2.6.3 ordering

ordering is a data attribute that specifies the order of enumeration of files in the directory
during certain procedures.

ordering: AttributeType :I 11;
Ordering: TYPE :I RECORD [

key: AttributeType, asc:ending: BOOLEAN, interpretation: Interpretation];

Except when ordering by position (described below), the placement of files in a directory is
determined by the relative values of a particular attribute. The component key specifies
which attribute is to be used for ordering. ascending determines whether ordering is to be in
ascending order of the attribute. and interpretation specifies how the file set'vice should
interpret the attribute if there is not a standard interpretation for the attribute. For
example, a value of

[key: createdOn, ascending: FALSE, interpretation: time)

specifies that when the directory is listed, the first tile to be delivered should be the one that
has the highest (most recent) createdOn value.

XEROX. SYSTEM INTEGRATION STANDARD 69

ATTRIBUTES

70

When the attribute used for ordering is an un interpreted one, the interpretation to be u::;ed
must be specified so that the file service can determine the relative placement of files. If a
file's attribute value is not a valid Courier representation of the type specified in
interpretation, then it is placed before those files that do have valid values. When the
attribute is an interpreted one, the interpretation specified in the ordering attribute is
ignored; the file service uses the standard interpretation for the attribute. The comparison
rules for various interpretations are described in section 3.5.1.4. Interpreted attributes with
standard interpretations other than those defined in this section are ordered as though the
interpretation were none.

The behavior of a directory is somewhat different when the specified key is the position
attribute. In all other cases, the relative placement of files is determined entirely by the
value of the specified attribute. When ordering is by position, however, the relativf~

placement of files is explicitly determined by the client. When adding a file to the directory,
the client specifies the position at which it would like the file to reside. The followin~~
constants specify ordering by position:

byAscendingPosition: Ordering ::I [

key: position, ascending: TRUE, interpretation: none];
byDescendingPosition: Ordering. [

key: position, ascending: FALSE, interpretation: none];

If ordering is by ascending position, a file that is added without specifying its position is
placed at the end of the directory. If ordering is by descending position, a file that is added
without specifying its position is placed at the beginning. Otherwise, there is no difference
between these values.

When the ordering of a directory is changed to an ordering by position, the re lati ve
placement of files in the directory is not affected. In other words, when ordering by position,
the files are initially placed according to their placement in the previous ordering.
Subsequent additions need not conform to the previous ordering.

After a number of additions at the same point within a directory ordered by position, tht:~

density of files in that area may become too great to allow further additions. When this
condition occurs, a procedure attempting to insert a file reports:

InsertionError [problem: positionUnavailable]

The client should call ChangeAttributes specifying an ordering that is the same as the
current ordering. This action redistributes the files without changing their relative
placement.

When no ordering is specified during creation of a new directory, defaultOrdering is used ..
When the ordering attribute hu~ this value, or the corresponding value with ascendingl
equal to FALSE, the ordering is actually based on ascending or descending values of first, the
name attribute, and second, the version attribute, rather than just the name alone:

defaultOrdering: Ordering = [key: name, ascending: TRUE, interpretation: string];

File service implementation::; are not required to support all possible values of this attribute:,
however, every file service implementation must support defaultOrdering.

FILING PROTOCOl.

ATTRIBUTES

4.2.6.4 subtreeSize

subtreeSize is a data attribute that records the number of eight-bit bytes occupied by a
directory and all its descendants.

subtreeSize: AttributeType = 27;
SubtreeSize: TYPE = LONG CARDINAL;

This attribute is equivalent to the sum of the storedSize attributes of a directory and each of
its descendants.

4.2.6.5 subtreeSizeLimit

subtreeSizeLimit records the maximum number of eight-bit bytes which may be allocated to
a directory and all files it directly or indirectly contains.

subtreeSizeLimit: AttributeType = 28;
SubtreeSizeUmit: TYPE = LONG CARDINAL;

This attribute is equivalent to the sum of the storedSize attributes of a directory and each of
its descendants. An operation is rejected if it would cause the value of a directory's subtree
size to exceed the limit specified by t.he directory's subtreeSizeLimit attribute. The client is
permitted to change the value of a directory's subtreeSizeLimit attribute at any time even if
this would cause it to obtain a value less than the current value of the directory's
subtreeSize attribute.

nuliSubtreeSizeLimit: SubtreeSizeLimit = 377777777778;

When a directory is created and no subtreeSizeLimit is specified, nuliSubtreeSizeLimit is
assumed. This value is used to specify that a directory has no cumulative limit on the
amount of physical space the directory and its descendants may require.

4.2.7 Access-related attributes

Access-related attributes are used to control aecess to a file, its content and attributes, and
descendants. Every file has an accessList attribute, which may be defaulted. In addition,
each directory file has a defaultAccessList attribute, which specifies the access for files
within the directory having explicitly defaulted access lists. The ability to modify a file's
access attributes is subject to the access granted the client by the access list in effect for the
file.

When a file is created, it receives defaulted values for its access lists or those specified by the
client, if supplied. When a file is inserted into a directory, the file receives access lists as
specified by the cl ient; if an access I ist or default access list is not :-;peeitied during the
insertion, the respective access list remains unchanged. Access lists of descendants of the
inserted file are not Llffected by the insertion.

When the access list of a file must be determined, the accessList attribute of the tile is
consulted. If this value has been defaulted. then the defaultAcces~)List attribute of the tile's
parent directory is retrieved. If the defaultAccesslist attribute of the parent is defaulted. t.he
parent's access list is used .. The method of determining the access list of the parent is the

XEROX SYSTEM INTEGRATION STANDARD 71

""'(lDU'I:;)

same as for the original file; this process proceeds recursively until a non-defaulted list is
encountered or the root directory is reached.

4.2.7.1 accessList

accessList is an environment attribute that specifies the access permissions to be granted to
particular clients. Each enabled permission permits particular types of access to the
specified client. Clients not represented in the access list of a file are denied any access to the
file. The access granted a particular client with respect to a file is the union of the
permissions specified in all entries containing a key representing the client.

accessList: AttributeType :. 19;
AccessList: TYPE. RECORD [entries: SEQUENCE OF AccessEntry, defaulted: BOOLEAN];

AccessEntry: TYPE=- RECORD [key: Clearinghouse.Name, access: AccessSequence);

An access list is comprised of a set of key/access permission pairs. [f a session's user can be
identified with the key portion of an entry, then the permissions specified by the- entry are
granted to the session. During retrieval, the defaulted component of a file's accessList
attribute specifies whether the attribute was explicitly set with the file or was defaulted to
that of its parent. On input, the defaulted component is used to explicitly default the value
of an access list attribute, and in that case, entries must be empty.

The key portion of an individual AccessEntry will typically denote the name of a user or
group of users defined via the Clearinghouse [5\. A limited form of wildcarding is also
permitted within the key of an access list entry with the use of the asterisk character (*). A
wildcard may replace the object portion, the object and domain portions, or all three portions
of a key. These specifications imply respectively: all users within a domain and organization;
all users within all domains of an organization; and all clients.

If the access list for a file has no entries, it is said to be empty and no access to the file is
allowed to any client. If the accessList attribute of a file is explicitly defaulted, access to the
file is determined by the defaultAccessList attribute of the file's parent directory (see below).
See section 3.3.1.3 for an explanation of the access permissions.

Example:

The following access list specifies read and write access to the user ".John Q. Public" of the
"Office Systems" organization within "Xerox"; read access for the group of users designated
by the Clearinghouse group "UserGroupl"; add access for the user whose alias is
"UserAliasl "; and read access to any user within the "Xerox" organization.

AccessList [entries: [
[key: ["Xerox", "Office Systems", "John Q. Public"], access: [read, write1],
[key: ["Xerox", "Office Systems", "UserGroupl"], access: [read)),
[key: ["Xerox", "Office Systems", "UserAlias1"], access: [add]],
[key: ["Xerox", "*", "*"], access: [read1]],

4.2.7.2 defaultAccessList

72

defaultAccessList is an environment attribute that applies only to directories. This attribute
specifies the access controls for files wi thin the directory which have expl icitly defaulted

FILING PROTOCOL

ATTRIBUTES

accessList values. If the defaultAccessList of a. directory is given the defaulted value, then
the directory's accessList value is used instead.

defaultAccessList: AttributeType .20;
DefaultAccessList: "YPE • AccessList;

XEROX SYSTEM INTEGRATION STANDARD 73

ATTRIBUTES

74 FILING PROTOCOL.

REMOTE ERRORS

When a remote procedure completes successfully, it returns results as specified in the
definition of the procedure. However, conditions can arise before or during execution of the
procedure that make successful completion of the request impossible. For example, the client
may have specified incorrect arguments in a remote procedure cali, or some required
resource may be unavailable.

When such conditions occur, an error is reported to communicate to the client the nature of
the problem. Each error encompasses an entire class of possible conditions and the specific
problem is further described by the arguments of the error. For example, HandleError
indicates that something is wrong with a file handle specified in the arguments of a
procedure. The particular problem with the file handle is specified by the argument which is
of type HandleProblem.

When an exceptional condition arises during execution of a remote procedure, t.he file
service makes every effort to undo the effects of the partial execution so that the file :-;ervice
appears to the client as though the procedure had never been called. However, the file
service does not guarantee that such effects ean always be reversed. Therefore, when an
error is reported, the client must be prepared for the possibility that the procedure was
partially executed. (n any event, no files are lost unless deletion was requested.

Each error definition includes a declaration of the error in Courier notation, a description of
its arguments, and examples of conditions that cause the error to be reported.

5.1 Access errors

AccessError may be reported by any procedure that requires access to a file. It indicates that
access to the file is not possible. The inaccessible file is not necessarily the one whose handle
was specified as an argument to the procedure call because some procedures operate on
additional files. For example, Delete deletes the descendants of a specified file as well as the
file itself.

AccessError: ERROR [problem: AccessProblem] ~ 6;

The argument problem describes the problem in greater detail.

AccessProblem: TYPE ::I {

accessRightslnsufficient(O), -- the user do~s not have the access rights needed to satisfy
the request; consult description of' individual procedures for specific requirements --

XEROX SYST'EM INTEGRATION STANDARD 75

nl;lYIU I I; I;nnun~

76

accessRightslndeterminate(1), -- the file service could not determine whether the user
has the access rights needed to satisfy the request; consult description of individual
procedures for specific requirements --

fileChanged(2), -- while the procedure was executing, the file changed in such a way
that execution could not continue; this condition can occur during List if the ordering
of the directory changes --

fileOamaged(3), -- a file was found to be internally damaged in :;ome way, but not
badly enough to require shutdown of the file service --

filelnUse(4), -- even after expiration of the timeout, the file service could not acquire a
lock it needed to satisfy the request --

fileNotFound(S), -- a file was not found in the context in which it was expected --

fileOpen(6)}; -- during an attempt to move or delete a file, another file handle /iJr the
file was found to exist in the same session --

Examples:

If one session calls Retrieve while another session is calling Replace for the same tile, and
the timeout on the Retrieve procedure expires before the Replace procedure completes, the
following error is reported:

AccessError [problem: filelnUse]

If List is called and during the execution of List some other session changes the ordering
attribute of the directory being listed, the following error is reported:

AccessError [problem: fileChanged]

If Open is called specifying a parentlD and a name and there is no file with that name in the
directory identified by parentlD, the following error is reported:

AccessError [problem: fileNotFound]

If Open is called specifying a filelD and there is no file in the file service with that filelD, the
following error is reported:

AccessError [problem: fileNotFound]

If Delete is called specifying a file handle for a directory and the client ha~ opened bUl not
yet closed a descendant of that directory, the following error is reported:

AccessError [problem: fileOpenJ

If Delete is called ::;pecifying a file handle for a directory and the client of' another session has
opened but not yet closed a descendant of that directory, the following error is reported:

AccessError [problem: filelnUse]

FILING PROTOCOL

REMOTE ERRORS

5.2 Argument errors

There are argument errors for each class of Filing procedure argument: attributes, controls,
and scopes. A given argument error may be reported by any procedure that has an argument
of the corresponding type. Each class contains two errors. The type-related error indicates
that specifying that attribute type resulted in a problem; the value-related error indicates
that the attribute type was legitimate, but the specified value caused a problem.

AttributeTypeError is reported whenev(er the attribute type specified in an
AttributeTypeSequence or an AttributeSequence causes some kind of problem.
Attri buteVal ueEnor is reported whenever the a ttribu te val ue spec ified in an
AttributeSequence causes a problem. The argument type indicates the offending attribute
type or the type of the offending attribute value.

AttributeTypeError: ERROR [

problem: ArgumentProblem, type: AttribUlteType] ::I 0;

AttributeValueError: ERROR [

problem: ArgumentProblem, type: AttribUlteType] ::I 1;

ControlTypeError is reported when a control type specified in a ControlTypeSequence or
Control Sequence causes a problem. ControlValueError is reported when a control value
specified in a Control Sequence causes a problem. The argument type indicates the offending
control type or the type of the offending control value.

ControlTypeError: ERROR [

problem: ArgumentProblem, type: ControlType] ::I 2;

ControlValueError: ERROR [

problem: ArgumentProblem, type: Contro~Type] :I 3;

ScopeTypeError is reported when a scope type specified in a ScopeSequence causes a
problem. ScopeValueError is reported when a scope value specified in a ScopeSequence
causes a problem. The argument type indicates the offending scope type or the type of the
offending scope value.

ScopeTypeError: ERROR [

problem: ArgumentProblem, type: ScopeType] :I 4;

ScopeValueError: ERROR [

problem: ArgumentProblem, type: ScopeType] :I 5;

In all of the above errors, the argument problem describes the problem in g-reater detail.

ArgumentProblem: TYPE :I {

illegal{O), -- this value is never alluwf!.d; lhis condition can only occur (or attribute
values --

disallowed(1), .. - this type or value is somf'times allowed. but is nf'.ver allowf'd by this
remote procedure .. this condition can occur lor attribute types and values --

XEROX SYSTEM INTEGRATION STANDARD 77

REMOTE ERRORS

unreasonable(2), -- this type or value is sometimes allowed by this procedure, but not
in the context in which it was supplied; for example, it may conflict with other
arguments; this condition can occur for attribute types and values --

unimplemented(]), -- this type or value is not supported by this implementation of the
file service; this condition can only occur for certain values of the filter scope and the
ordering attribute, but never occurs for types --

duplicated(4), -- this type is specified more than once in a sequence: this condition
never occurs for values --

missing(S)}; -- this type or value is missing in a context in which it is rpquired; this
condition can occur for certain attribute types in Open --

Examples:

If the name attribute is specified in Create and the specified string contains a character that.
is illegal in names, the following error is reported:

AttributeValueError [problem: illegal. type: name]

If the dataSize attribute is specified in Copy, the following error is reported:

AttributeTypeError [problem: disallowed, type: dataSize]

If the ordering attribute is specified in Create and the isDirectory attribute has not been
specified (and therefore defaults to FALSE), the following error is reported:

AttributeTypeError [problem: unreasonable. type: ordering]

If a filter based on the value of the filelD attribute is specified in List and the file service doe5,
not support this value of filter, the following error is reported:

ScopeValueError [problem: unimplemented, type: filter]

If the lock control is specified twice in the sequence of controls that is an argument to Store,
the following error is reported:

ControlTypeError [problem: duplicated, type: lock]

If no attributes are specified in Open, the following error is reported:

AttributeTypeError [problem: missing, type: filelD]

If only the version attribute is specified in Open, the following error is reported:

AttributeTypeError [problem: missing. type: name]

5.3 Authentication errors

78

AuthenticationError may be reported by any procedure. The most common occurancc of thi~,
error is in response to a logon operation. The service may detect some problem with the

FILING PROTOCOl.

REMOTE ERRORS

client's primary or secondary credentials. Later in the interaction, AuthenticationError is
used to report a problem with the authentication verifier contained in the session handle.

AuthenticationError: ERROR [

problem: AuthenticationProblem, type: SecondaryType] • 7;

The argument problem describes the problem in greater detail. The argument type
describes the format of secondary credentials information expected by the service. Details of
specific secondary types is documented in Secondary Credentials Formats [10 I. Where no
interpretation for the type field is indicated, this error argument has the null value and
should be ignored by the client.

AuthenticationProblem: TYPE • {

primaryCredentialslnvalid{O), -- decryption failed or Clearinghouse name was invalid --

verifierlnvalid{'1), -- decryption failed or simple password was invalid --

verifierExpired(2), -- a strong verifier was too old --

verifierReused(3), -- service has either seen the same strong verifier before or on{J
generated more recently--

primaryCredentialsExpired(4), -,- expiration date and time of the supplied primary
credentials has been exceeded--

inappropriatePlrimaryCredentials(S). -- primary credentials were not of the appropriate
strength (strong may be required where simple were supplied) --

secondaryCredentialsRequired(6), -- secondary authentication information required but
none was supplied; type indicates the type of secondary credentials required --

secondaryCredentialsTypelnvalid(7), -- the type of the supplied secondary credentials
was incorrect or the secondary credentials value was improperly formatted for
the specified type; type indicates the type of secondary credentials required --

secondaryCredentialsValuelnvalid(8)}; -- the specified secondary authentication
information was not acceptable to the service; type indicates the type of secondary
credentials required--

Examples:

If the service requires that clients supply strong primary credentials and only simple
credentials are supplied, the following error is reported:

AuthenticationError [problem: inappropriatePrimaryCredentials, type: []]

If a client specifies null primary credentials with a strong secondary credentials value In

Logon, the following error is reported:

AuthenticationError [problem: inappropriatePrimaryCredentials. type: []]

XEROX SYSl'EM INTEGRATION STANDARD 79

REMOTE ERRORS

If a file service requires its clients to supply secondary authentication information and none
is supplied during a Logon request, the following error is reported:

AuthenticationError [problem: secondaryCredentialsRequired, type: [2B, 3B]]

Note that the type argument in the error report indicates the expected formal of the
required secondary credentials information.

If a client supplies secondary credentials in a call to Logon, but their format is not that
required by the service, the following error is reported:

AuthenticationError [problem: secondaryCredentialsTypelnvalid, type: [2B, 3B, 8B]]

Note that the type argument in the error report indicates the expected format of the
required secondary credentials information.

5.4 Connection errors

80

Connection Error may be reported by any procedure that takes an argument of type
BulkData.Source or BulkData.Sink. It indicates that there is a problem with establishing the
connection for transferring the bulk data.

ConnectionError: ERROR [problem: ConnectionProblem) ~ 8;

ConnectionProblem: TYPE • (

-- communication problems --

noRoute(O), -- no route to the other party could be found -
noResponse(1), -- the other party neuer answered --
transmissionHardware(2), -- some local transmission hardware was inoperable -
transportTimeout(3), -- the other party responded but later failed to respond --

-- resource problems --

tooManyLocaIConnections(4), -- no additional connection is possible -
tooManyRemoteConnections(S), -- the other party rejected the connection attempt --

-- remote program implementation problems --

missingCourier(6), -- the other party had no Courier implementation -
missingProgram(7), -- the other party did not implement the bulk data program -
missingProcedure(8), -- the other party did not implement the procedure -
protocoIMismatch(9), -- the two parties haue no Courier version in com mOlt -
parameterlnconsistency(10), -- a protocol violation occurred in parameters -
invalidMessage(11), -- a protocol violation occurred in messa!4e format -
returnTimedOut(12), -- the procedure call never returned --

FILING PROTOCOL

REMOTE ERRORS

--------,--.---------------------------------------
-- miscellaneous --

otherCaIlProblem(177777B) }; -- some other protocol violation during a call --

5.5 Handle errors

HandleError may be reported by any procedure that takes an argument of type Handle. It
indicates that there is a problem with the specified file handle.

HandleError: ERROR [problem: HandleProblem] :II 9;

The argument problem describes the problem in greater detail.

HandleProblem: TYPE • {

invalid(O), -- an invalid file handle was specified; it may be an obsolete handle in the
current session or it may be a valid file handle in another session --

nuIlDisallowed(1), -- the null handle was specified as a value for an argument that
requires a valid handle to a file--

directoryRequired(2)}; -- the null handle or a handle to a non-directory was specified as a
value for an argument that requires a handle to a directory···

Examples:

If a handle to a non-directory is specified as the value of destinationDirectory in Move, the
following error is reported:

HandleError [problem: directoryRequired]

If a null handle is specified as the value offile in Copy, the following error is reported:

HandleError [problem: nullDisallowed]

5.6 Insertion errors

InsertionError may be reported by any procedure that inserts a file into a directory whether
the file being inserted is a new file or is being moved from somewher'e else. It indicates that
the directory eouid not accommodate the file.

InsertionError: ERROR [prob~em: InsertionProblemJ :II 10;

The argument problem describes the problem in greater detail.

InsertionProblem: TYPE = {

XEROX SYSTEM INTEGRATION STANDARD 81

REMOTE ERRORS

positionUnavailable(O), -- the directory is ordered by position, and the density of files
in the area surrounding the specified position is so great that no point lor insertion is
available: the directory must be reorganized as described in section 4.2.6.3 --

fileNotUnique(1), -- the directory already references a file with the same name (if the
directory s chiidrenUniquelyNamed attribute is TRUE) or the same name and version
(if the directory s chiidrenUniquelyNamed attribute is FALSE) --

looplnHierarchy(2)}; -- the directory is a descendant of the file beinf5 moved or cupied-

Examples:

If many files are inserted at the same point in a directory that is ordered by position and an
attempt is made to insert another file at a point at which there is no position available, the
following error is reported:

InsertionError [problem: positionUnavailable]

If a directory whose childrenUniquelyNamed attribute is TRUE references a file named.
"Product Specification" and an attempt is made to insert another file with the s~me name,
the following error is reported:

InsertionError [problem: fileNotUnique]

If directory A is a child of directory B and an attempt is made to move directory B into
directory A, the following error is reported:

InsertionError [problem: looplnHierarchy]

5.7 Range errors

82

RangeError may be reported by the random al:!cess procedures RetrieveBytes and
ReplaceBytes. It indicates an inconsistency or other problem with the range argument.
specified by the client.

RangeError: ERROR [problem: ArgumentProblem] 11116;

RangeError results if an improper range specification is supplied to a random access.
procedure. Two problem types are reported: illegal (such a range can never be specified), and
unreasonable (a range was not valid for a given file).

Examples:

If the client supplies a range with the value [EndOfFile, EndOfFilel to a random acces~
operation, the service reports the error:

RangeError [problem: illegal]

FILING PROTOCOL.

REMOTE ERRORS

If the client supplie.s a byte range for a given file with a firstByte specification that exceeds
the size of the file, the service reports the error:

RangeError [problem: unreasonable]

5.8 Service errors

ServiceError may be reported by logon or logoff. It indicates that the service encountered a
problem while attempting to create or destroy a session.

ServiceError: ERROR [problem: ServiceProblemJ • 11;

The argument problem describes the problem in greater detail.

ServiceProblem: TYPE. {

cannotAuthenticate(O), -- the client may not log on because the file service is unahlp to
determine whether the user s credentials are valid; this could occur if the lile si?rvice
needs to contact some service that is unavailable --

servicefull(1), -- the client may not log on because creation of another session would
cause the number ofsessions to exceed an implementation-dependent limit --

serviceUnavailable(2), -- the file service is cu.rrently unavailable for use by new clients -

sessionlnUse(3), -- the client may not log off because a remote procedure is still
executing --

serviceUnknown(4)}; .. - the requested service is not supported by this system
element -q

Examples:

If the file service must contact another system to determine whether or not the user's
credentials are valid and that system is unavailable, the following error is reported:

ServiceError (problem: cannotAuthenticatel

[f the file service allows a maximum of ten concurrent sessions and a client tries to log ()11

when there are already ten sessions, the following error is reported:

ServiceError [problem: servicefull]

[f the file service operator has entered a command to prevent further use of the file ~ervice
and a client tries to log on, the following error iH reported:

ServiceError [problem: serviceUnavailable)

If the client has called List and then tries to log off while execution of the procedure is in
progress, the following error is reported:

ServiceError {problem: sessionlnUse]

XEROX SYSTEM INTEGRATION STANDARD 83

REMOTE ERRORS

If the client attempts a Logon specifying a name of a service which a given system element
does not support, the following error is reported:

Service Error [problem: serviceUnknown]

5.9 Session errors

Session Error may be reported by any procedure. It indicates that the session handle is
invalid.

Session Error: ERROR [problem: SessionProblem] :. 12;

The argument problem describes the problem in greater detail.

SessionProblem: TYPE • {

tokenlnvalid(O)}; -- the token component of the session handle does not specify a currently
valid session on this file service; the client may have already called Logoff or the
session may have been forcibly terminated by the file service --

Examples:

If the client calls a procedure that requires a session handle and the specified token val ue
was never issued by logon, the following error is reported:

Session Error [problem: tokenlnvalid]

5.10 Space errors

84

SpaceError may be reported by any procedure that must allocate physical space for the
storage of information. It indicates that the request for space could not be satisfied.

SpaceError: ERROR [problem: SpaceProblem] :. 13;

The argument problem describes the problem in greater detail.

SpaceProblem: TYPE ::a {

aliocationExceeded(O), -- the space required by the procedure caused a directory:-; space
limit to be exceeded (the total space occurpied by the directory and all of its
descendants would have exceeded the directory's subtreeSizeLimit attributf~) --

attributeAreaFull(1), -- there was not enough space in the attribute area to satisfy the
request; the limits described in chapter 4 would have been exceeded --

mediumFull(2)}; -- there was not enol.lL{h space in the file service to .';atisj'y the request --

FlUNG PROTOCOL

REMOTE ERRORS

Examples:

If the client tries to store a file and its size causes an allocation limit to be exceeded even
though enough physical space is available in the file service, the following error is reported:

SpaceError [problem: allocation Exceeded]

If the client tries to store a file and there is physically no space available in the file service
even though no allocation limit has been exceeded, the following error is reported:

SpaceError [problem: mediumFull]

If a file has 128 attributes that are set and the client tries to set another attribute, the
following error is reported:

SpaceError [problem: attributeAreaFull]

5.11 Transfer errors

TransferError may be reported by any procedure that sends data to a sink or receives data
from a source. It indicates that a problem occurred during the transfer.

TransferError: ERROR [problem: TransferProblern] = 14;

The argument problem describes the problem in greater detail.

TransferProblem: TYPE. {

aborted(O), -- the bulk data transfer was aborted by the party at the other end ot'the
connection --

checksumlncorrect(1), -- after transfer of a file s content to a sink, the checksum
computed over the data did not match the file's stored checksum attribute --

formatlncorrect(2), -- the bulk data received from the source did not have the expected
. format--

noRendezvous(3), -- the identifier from the other party never appeared--

wrongDirection(4)}; -- the other party wanted to transfer the data in the wrong
direction --

Examples:

If the client calls List and then aborts the bulk data transfer because it has already recei ved
enough data, the following error is reported:

TransferError (problem: aborted1

XEROX SYSTEM INTEGRATION STANDARD 85

REMOTE ERRORS

If the client calls Retrieve and the checksum computed over the data transferred from thl~

file service does not match the file's checksum attribute, the following error is reported:

TransferError [problem: checksumlncorrect]

If the client calls Deserialize and the transferred data is not a valid serialized file, the
following error is reported:

TransferError [problem: formatlncorrect]

5.12 Undefined errors

86

UndefinedError may be reported by any procedure. It indicates that some implemcntation
dependent problem occurred that is not covered by another error. This error is normally
reported only when the file service is malfunctioning. The client has no way of recoverin~~
from undefined errors.

UndefinedError: ERROR [problem: UndefinedProblem] =- 15;

The argument problem describes the problem in greater detail. The meanings of specifie
values of this argument are implementation-dependent.

UndefinedProblem: TYPE. CARDINAL;

Examples:

If the file service encounters a disk error in directory structures and it has assigned the
value 7 to this error condition, the following error is reported:

UndefinedError [problem: 7]

FILING PROTOCOL

A. REFERENCES

The following documents supplement this protocol specification. References [l and 71 are
informational: they contain helpful motivational and explanatory material, but the Filing
Protocol can be understood without them. References [2-6, 81 are mandatory; they describe
other protocols upon which the Filing Protocol depends.

[11 Digital Equipment Corporation; Intel Corporation; Xerox Corporation. The Ethernet, A
Local Area Network: Data Link Layer and Physical Layer Specifications. September
1980; Version l.0.
This reference contains the data link and physical layer specifications for the Ethernet,
the transmission medium for which Courier's standard representations are optimized.

[21 Xerox Corporation. Authentication Protocol. Xerox System Integration Standard.
Stamford, Connecticut; .May 1986; XNSS 098605.
This reference defines the Authentication Protocol upon which the Filing Protocol
relies for authentication.

[3] Xerox Corporation. Bulk Data Transfer. Xerox System Integration Standard.
Stamford, Connecticut; April 1984; XNSS 038112 (XSIS 038112); Addendum la.
Augments [61.
This reference defines the Bulk Data Transfer Protocol upon which the Filing Protocol
relies for bulk data transfer.

[4] Xerox Corporation. Character Code Standard. Xerox System Integration Standard.
Stamford, Connecticut; May 1986; XNSS 058605.
This reference defines the character set and the string format which provide the basis
for Courier's string data type.

[5] Xerox Corporation. Clearinghouse Protocol. Xerox System Integration Standard.
Stamford, Connecticut; April 1984; XNSS 078404 (XSIS 078404).
This reference defines the structure of user names which appear as various file
attributes.

[61 Xerox Corporation. Courier: The Remote Procedure Call Protocol. Xerox System
Integration Standard. Stamford, Connecticut; December 1981; XNSS 038112 (XSIS
038112).
This reference defines the Courier language, in terms of which the Filing Protocol lS

defined.

[71 Xerox Corporation. Internet Transport Protocols. Xerox System [ntegration Standard.
Stamford, Connecticut; December 1981; XNSS 028112 (XSIS 028112).
This reference defines t.he Sequenced Packet Protocol upon which Courier relies for
data tranSpOl't.

XEROX SYSTEM INTEGRATION STANDARD 87

REFERENCES

[81 Xerox Corporation. Time Protocol. Xerox System Integratio'n Standard. Stamford,.
Connecticut; October 1982; XNSS 088210 (XSIS 088210).
This reference defines the Time Standard upon which the Filing Protocol relies for the~
definition of the format of time and date quantities.

[91 American National Standards Institute. American National Standard Code for
Information Interchange. X3.4-1977.
This reference defines the character code assignments useful for text file interchange.

[10J Xerox Corporation. Secondary Credentials Formats. Xerox System Integration
Standard. Stamford, Connecticut; May 1986; XNSS 258605.
This reference documents specific type assignments and data formats for secondary
credentials. Implementations of Filing or FilingSubset on hybrid hosts may require
secondary authentication information.

88 FILING PROTOCOL

TYPE ASSIGNMENT PROCEDURES

As stated in this document, file types and file attributes are assJlgned 32-bit numbers that
are unique throughout the distributed system. These file type and attribute number spaces
are administered by Xerox Corporation. To obtain a block of numbers, submit a written
request to:

Xerox Corporation
Xerox Systems Institute (XSn Office
475 Oak mead Parkway, Bldg. 5
Sunnyvale, California 94086

Filing Protocol implementors are encouraged to apply for unique blocks of numbers for their
particular applications. Uniqueness allows systems to freely interconnect without having to
worry about overlapping values for critical fields.

Both file type and file attribute numbers should be used with economy as the total number of
blocks is limited. If a Filing Protocol client or implementation is us'ing a large quantity of
either of these type numbers, the designer has probably misunderstood their utility.

B.1 Common file types

Commonly-used values of the type file attribute are defined in this appendix. Clients are
encouraged to use these types to identify files that have the specified characteristics in order
to promote information sharing. However, the file service does not enforce the specified
semantics.

Files that have a format private to a single client, or for which the format is unknown or
uninteresting, are conventionally given type:

tUnspecified: Type :. 0;

Files that are directories with no additional semantics (and no content) are conventionally
given type:

tDirectory: Type ::II 1;

N on-directory files containing text conforming to the Character Code Standard [41.
including the Xerox String Encoding defined there (except that no length information is in
the content), are conventionally given type:

tText: Type ::II 2;

XEROX SYSTEM INTEGRATION STANDARD 89

TYPE ASSIGNMENT PROCEDURES

90

Files that are non-directories containing a single data structure of type SerializedFile are
conventionally given type:

tSerialized: Type :I 3;

Files consisting of attribute information only and no content are conventionally given the
type:

tEmpty: Type. 4;

Non-directory text files whose content can be interpreted as standard ASCII [91 are conven·,
tionally given the type:

tAscii: Type = 6;

StreamOfAsciiText defines a standard encoding for line-oriented ASCII textual information.
In this approach to text encoding, individual lines are distinguished by the encoding syntax
and not by specific codes embedded within the strings. This implies that line delimiter
characters are absent from the text encoding; structural information is conveyed entirely by
the encoding.

StreamOfAsciiText: TYPE :II CHOICE OF {

nextLine (0) :II > RECORD [

line: AsciiString.
restOfText: StreamOfAsciiText],

lastLine (1) :I > AsciiString};

AsciiString: TYPE :I RECORD [

lastByteSignificant: BOOLEAN,

bytes: SEQUENCE OF UNSPECIFIED];

AsciiString is used to represent a series of codes from the ASCII character set [91 as a
sequence of sixteen-bit entities. Each sixteen-bit unspecified value contains two eight-bit
ASCII codes. The boolean lastByteSignificant indicates whether or not the last byte of the
last unspecified value is significant (that is, whether or not the length of the ASCII string in
bytes is even). If lastByteSignificant is FALSE, then the last byte has a zero value and should
be ignored.

Files whose content conforms to the StreamOfAsciiText definition are given the type:

tAsciiText: Type :I 7;

FILING PROTOCOL.

c. PROGRAM DECLARATION

The complete declaration of the Filing remote program is given below.

Filing: PROGRAM 10 VERSION 6 III

BEGIN

DEPENDS UPON

BulkData (0) VERSION 1,
Clearinghouse (2) VERSION 3,
Authentication (14) VERSION 3,
Time (15) VERSION 2;

~- TYPES AND CONSTANTS --

-- Attributes (individual attributes defined later) --

AttributeType: TYPE. LONG CARDINAL;

AttributeTypeSequence: TYPE. SEQUENCE OF AttributeType;
aliAttributeTypes: AttributeTypeSequence :II [:37777777777B);
Attribute: TYPE. RECORD [type: AttributeType, value: SEQUENCE OF UNSPECIFIED);

AttributeSequence: TYPE III SEQUENCE OF Attribute;

-- Controls --

ControlType: TYPE III {lock(O), timeout(1), access(2)};
ControlTypeSequence: TYPE III SEQUENCE 3 OF ControlType;
Control: TYPE III CHOICE Control Type OF {

lock III > lock,
ti meout :0 > Ti meout,
access III > AccessSequence};

ControlSequence: TYPE III SEQUENCE 3 OF Control;

Lock: TYPE III {none(O), share(1), exclusive(2)};

Timeout: TYPE III CARDINAL; -- in seconds Q-

defaultTimeout: Timeout := 1777778; -- actualualue is implementation-dependent--

AccessType: TYPE = {
-- all files -- read(O), write(1), owner(2),
-- directories -- add(3), remove(4),
-- full access -- fuIiAccess(177777B)};

AccessSequence: TYPE = SEQUENCE 5 OF AccessType;

.- Scopes --

ScopeType: TYPE = {count(O), direction(1), filter(2), depth(3)};
Scope: TYPE = CHOICE ScopeType OF {

count = > Count,
depth = > Depth,

XEROX SYSTEM INTEGRATION STANDARD 91

PROGRAM DECLARATION

92

direction • > Direction,
filter :I > Filter};

ScopeSequence: TYPE ::I SEQUENCE 4 OF Scope;

Count: TYPE :I CARDINAL;

unlimitedCount: Count. 1777778;

Depth: TYPE • CARDINAL;

aliDescendants: Depth :I 1777778;

Direction: TYPE :I {forward(O), backward(1)};

FilterType: TYPE :I {

-- relations --
less(O), lessOrEqual(1), equal(2), notEqual(3), greaterOrEqual(4), greater(S),
-- logical --
and(6), or(7), not(8),
-- constants -
none(9), all(10),
-- patterns -
matches(11)};

Filter: TYPE :I CHOICE FilterType OF {

less, lessOrEqual, equal, notEqual, greaterOrEqual, greater :I >
RECORD [attribute: Attribute, interpretation: Interpretation), -- interpretation

ignored if attribute interpreted by implementor -
and, or :I > SEQUENCE OF Filter,
not :I > Filter,
none, all :I > RECORD [],

matches :I > RECORD [attribute: Attribute]};
Interpretation: TYPE :I {none(O), boolean(1), cardinal(2), longCardinal(3),

time(4), integer(S), longlnteger(6), string(7)};
null Filter: Filter :I all [);

-- Handles and Authentication --

Credentials: TYPE = RECORD [

primary: PrimaryCredentials,
secondary: SecondaryCredentials];

PrimaryCredentials: TYPE = Authentication.Credentials;
nuliPrimaryCredentials: PrimaryCredentials :I Authentication.nuIiCredentials;

Strength: TYPE = {none(O), simple(1), strong(2)};
SecondaryCredentials: TYPE = CHOICE Strength OF {

none = > RECORD [],

simple = > Secondary.
strong = > EncryptedSecondary};

SecondaryltemType: TYPE = LONG CARDINAL;

SecondaryType: TYPE = SEQUENCE 10 OF SecondaryltemType;

Secondary: TYPE = SEQUENCE 10 OF Secondaryltem;

FILING PROTOCOL

PROGRAM DECLARA TION

Secondaryltem: TYPE • RECORD [

type: SecondaryltemType,
value: SEQUENCE OF UNSPECIFIED];

EncryptedSecondary: TYPE = SEQUENCE OF Authentication.Block;

Handle: TYPE. ARRAY 2 OF UNSPECIFIED;

nuliHandle: Handle=- [0, 0]; -- meaning depends on operation --

Session: TYPE. RECORD [token: ARRAY 2 OF UNSPECIFIED. verifier: Verifier];

Verifier: TYPE • Authenticaltion. Verifier;

-- Random access .-

ByteAddress: TYPE. LONG CARDINAL;

ByteCount: TYPE • LONG CARDINAL;

endOfFile: LONG CARDINAL. 37777777777B; --logical end of file --

ByteRange: TYPE. RECORD [firstByte: ByteAddress, count: ByteCollnt];

-- REMOTE PROCEDURES --

-- Logging On and Off --

Logon: PROCEDURE [

service: Clearinghouse.Name, credentials: Credentials, verifier: Verifier]
RETURNS [session: Session]
REPORTS [Authentication Error, ServiceError, Ses!sionError, UndefinedError] • 0;

Logoff: PROCEDURE [session: Session]
REPORTS [AuthenticationError, ServiceError, SessionError, UndefinedError] =- 1;

Continue: PROCEDURE [session: Session]
RETURNS [continuance: CARDINAL]

REPORTS [Authentication Error, Session Error, UndefinedError] :::I 19;

-- Opening and Closing Files --

Open: PROCEDURE [attributes: AttributeSequence, directory: Handle,
controls: Control Sequence, session: Session]

RETURNS [file: Handle]
REPORTS [Access Error, AttributeTypeError, AttributeValueError,

AuthenticationError, ControlTypeError, ControlValueError, HandleError,
SessionError, UndefinedError] :::I 2;

Close: PROCEDURE [file: Handle, session: Session]
REPORTS [Authentication Error, HandleError, Session Error, UndefinedError] = 3;

-- Creating and Deleting f1'ile8 --

Create: PROCEDURE [directory: Handle. attribute!): AttributeSequence,
controls: Control Sequence, session: Session]

RETURNS [file: Handle]
REPORTS [AccessErrof', AttributeTypeError, AttributeValueError,

XEROX SYSTEM INTEGRATION STANDARD 9]

PROGRAM DECLARA TION

94

AuthenticationError, ControlTypeError. ControlValueError, HandleError,
InsertionError, SessionError, SpaceError, UndefinedError] :I 4;

Delete: PROCEDURE [file: Handle, session: Session]
REPORTS [Access Error, AuthenticationError, HandleError, SessionError,

UndefinedError) :I 5;

-- Getting and Changing Controls (Transient) --

GetControls: PROCEDURE [file: Handle, types: ControlTypeSequence,
session: Session)

RETURNS [controls: ControlSequence]
REPORTS [AccessError, AuthenticationError, ControlTypeError, HandleError,

SessionError, UndefinedError] :I 6;

ChangeControls: PROCEDURE [file: Handle, controls: Control Sequence,
session: Session]

REPORTS [AccessError, AuthenticationError, ControlTypeError,
ControlValueError, HandleError, Session Error, UndefinedErrorJ :I 7;

-- Getting and Changing Attributes (Permanent) --

GetAttributes: PROCEDURE [file: Handle, types: AttributeTypeSequence,
session: Session]

RETURNS [attributes: AttributeSequence]
REPORTS [AccessError, AttributeTypeError, AuthenticationError, HandleError,

SessionError, UndefinedError) • 8;

ChangeAttributes: PROCEDURE [file: Handle, attributes: AttributeSequence.
session: Session]

REPORTS [Access Error, AttributeTypeError, AttributeValueError,
AuthenticationError, HandleError, InsertionError, SessionError, SpaceError,
Unde'finedError] :I 9;

UnifyAccessLists: PROCEDURE [directory: Handle. session: Session]
REPORTS (Access Error, AuthenticationError, HandleError, Session Error,

UndefinedError] • 20;

-- Copying and Moving Files --

Copy: PROCEDURE [file, destinationDirectory: Handle.
attributes: AttributeSequence. controls: ControlSequence, session: Session]

RETURNS [newFile: Handle]
REPORTS [Access Error, AttributeTypeError, AttributeValueError,

AuthenticationError. Control Type Error, ControlValueError, HandleError,
InsertionError, Session Error, SpaceError, UndefinedError] :I 10;

Move: PROCEDURE [file, destinationDirectory: Handle,
attributes: AttributeSequence. session: Session]

REPORTS [AccessError. AttributeTypeError, AttributeValueError,
AuthenticationError, HandleError, InsertionError, Session Error, SpaceError.
UndefinedError] :I 11;

FILING PROTOCOL

PROGRAM DECLARATION

_a Transferring Bulk Data (File Content) --

Store: PROCEDURE [directory: Handle, attributes: AttributeSequence,
controls: Control Sequence, content: BulkData.Source, session: Session]

RETURNS [file: Handle]
REPORTS [Access Error, AttributeTypeError, AttributeValueError,

AuthenticationError, ConnectionError, COr1ltrolTypeError, ControlValueError,
HandleError, InsertionError, SessionError, Space Error, TransferError,
UndefinedError] • 12;

Retrieve: PROCEDURE [file: Handle, content: BulkData.Sink, session: Session]
REPORTS [Access Error, AuthenticationError, ConnectionError, HandleError,

Session Error, TransferError, UndefinedError] • 13;

Replace: PROCEDURE [file: Handle, attributes: AttributeSequence,
content: BulkData.Source, session: Session]

REPORTS [Access Error, AttributeTypeError, AttrilbuteValueError,
AuthenticationError, ConnectionError, HandleError, Session Error, SpaceError,
TransferError, UndefinedError] II 14;

-- Transferring Bulk Data (Serialized Files) --

Serialize: PROCEDURE [file: Handle, serializedFile: BulkData.Sink,
session: Session]

REPORTS [Access Error, AuthenticationError, ConnectionError, HandleError,
Session Error, TransferError, UndefinedError] • 15;

Deserialize: PROCEDURE [directory: Handle, attributes: AttributeSequence,
controls: ControlSequence, serializedFile: BulkData.Source, session: Session]

RETURNS [file: Handle]
REPORTS [AccessError, AttributeTypeError, AttributeValueError,

AuthenticationError, ConnectionError, ControlTypeError, ControlValueError,
HandleError, InsertionError, SessionError, SpaceError, TransferError,
UndefinedError] • 16;

-- Random Access to File Data --

RetrieveBytes: PROCEDURE [file: Handle, range: 9yteRange,
sink: BulkData.Sink, session: Session)

REPORTS [AccessError', HandleError, RangeError, SessionError, UndefinedError] • 22;

ReplaceBytes: PROCEDURE [

file: Handle, range: ByteRange, source: BulkData.Source, session: Session]
REPORTS [Access Error, HandlieError, RangeError, SessionError, SpaceError.

UndefinedError] = 23;

-- Locating and Listing Files in a Directory --

Find: PROCEDURE [directory: Handle, scope: ScopeSequence,
controls: Control Sequence, session: Session1

RETURNS [file: Handle]
REPORTS [AccessError, AuthenticationError, ControlTypeError,

ControlValueError, HandleError, ScopeTypeError, ScopeValuelError,
SessionError, UndefinedError) = 17;

XEROX SYSTEM INTEGRATION STANDARD 95

PROGRAM DECLARATION

96

List: PROCEDURE [directory: Handle, types: AttributeTypeSequence,
scope: ScopeSequence, listing: BulkData.Sink, session: Session]

REPORTS [Access Error, AttributeTypeError, AuthenticationError,
ConnectionError, HandleError, ScopeTypeError, ScopeValueError, Session Error,
TransferError, UndefinedError] =- 18;

-- REMOTE ERRORS --

-- problem with an attribute type or value --

AttributeTypeError: ERROR [problem: ArgumentProblem,
type: AttributeType] =- 0;

AttributeValueError: ERROR [problem: ArgumentProblem,
type: AttributeType] :I 1;

-- problem with a control type or value --

ControlTypeError: ERROR [problem: ArgumentProblem, type: ControlType] =- 2;
ControlValueError: ERROR [problem: ArgumentProblem, type: ControlType] =- 3;

-- problem with a scope type or value --

ScopeTypeError: ERROR [problem: ArgumentProblem, type: ScopeType) =- 4;
ScopeValueError: ERROR [problem: ArgumentProblem, type: ScopeType] =- 5;

ArgumentProblem: TYPE ::I (

iliegal(O), -- this type or value is never allowed --
disallowed(1), -- this type or value is not allowed in this procedure ~
unreasonable(2). -- this type or value does not make sense in this context -
unimplemented(3). -- this type or value is not supported in this implementation -
duplicated(4), -- this type or value is specified twice --
missing(S)}; -- this type or value is required but not specified --

-- problem in obtaining access to a file --

AccessError: ERROR [problem: AccessProblem] ::I 6;
AccessProblem: TYPE =- (

accessRightslnsufficient(O). -- the user doesn't have access -
accessRightslndeterminate(1), -- cannot determine whether the user has access -
fileChanged(2). -- in such a way that the procedure cannot continue .
fileDamaged(3), -- this file should not be used --
filelnUse(4), -- file is still unavailable after expiration of timeout -
fileNotFound(S), -- the file does not exist in the specified context -
fileOpen(6)}; -- file cannot be moved or deleted while another handle exists -.

-- problem wlth a credentials or verifier --

AuthenticationError: ERROR [problem: AuthenticationProblem, type: SecondaryType] = 7;
AuthenticationProblem: TYPE = (

primaryCredentialslnvalid(O), -- <i,Jcryption (ailp.ci or Clearinghouse name was invalid -
verifierlnvalid(1), -- decryptwn /cziled or simple password was invalid -
verifierExpired(2), -- (I, .'itnlf'l4 L'eri/ler was too old --
verifierReused(3), -- ('eri(itlr has hppn rp.used or is out o(sequence -..
primaryCredentialsExpired(4), -- validity o(primary cn'>dentials has lapsed -
inappropriatePrimaryCredentials(S), -- primary credentials were too weak --

FILING PROTOCOL

PROGRAM DECLARATION

secondaryCredentialsRequired(6), -- secondary authentication information required but
none was supplied,; type indicates the type of secondary credentials required -

secondaryCredentialsTypelnvalid(7), -- the specified secondary credentials type was
incorrect or the secondary credentials value was improperly formatted for tite
specified type; type indicates the type of secondary credentials required-

secondaryCredentialsValuelnvalid(8)}; -- the specified secondary authentication
information was not acceptible to the service; type indicates the type of secondary
credentials required --

-- problem with a bulk data transfer --

ConnectionError: ERROR [problem: ConnectionProblem] ~ 8;
Connection Problem : TYPE • {

-- communication problems --

noRoute(O), -- no route to the other party could be found -
noResponse(1), -- the other party never answered --
transmissionHardware(2), -- some local transmission hardware was inoperable -
transportTimeout(3), -- the other party responded but later failed to respond --

-- resource problems --

tooManyLocaIConnections(4), -- no additional connection is possible -
tooManyRemoteConnections(5), -- the other party rejected the connection attempt u_

-- remote program implementation problems -q

missingCourier(6), -- the other party had no Courier implementation -
missingProgram(7), -- the other party did not implement the bulk data program -
missingProcedure(8), -- the other party did not implement the procedure -
protocoIMismatch(9), -- the two parties have no Courier version in common -
parameterlnconsistency(10), -- a protocol violation occurred in parameters -
invalidMessage(11), -- a protocol violation occurred in message format -
returnTimedOut(12), -- the procedure call never returned --

-- miscellaneous --

otherCallProblem(177777B) }; -- some other protocol violation during a call --

-- problem with a file handle --

HandleError: ERROR [problem: HandleProblem] ~ 9;
HandleProblem: TYPE = (

invalid(O), -- this file handle is not valid --
nullOisallowed(1), -- the null handle is not allowed h~re -
directoryRequired(2)};: -- the handle must designate a directory --

-- problem during insertion in directory (or changing attributes) --

InsertionError: ERROR [problem: InsertionProblem] = 10;
InsertionProblem: TYPE = {

positionUnavailable(O), -- no "point" at which to insprt in urder-hy-position -.

XEROX SVS'TEM INTEGRATION STANDARD 97

PROGRAM DECLARA TION

98

fileNotUnique(1), -- identifying information (e.g. name) is not unique -
looplnHierarchy(2)}; -- cyclic directory structures are illegal --

-- problem during random access operation --

RangeError: ERROR [problem: ArgumentProblem] .16;

-- problem during logon or logoff --

Service Error: ERROR [problem: ServiceProblem] :I 11;
ServiceProblem: TYPE • {

cannotAuthenticate(O), -- cannot reach authentication service, for example -
serviceFull(1), -- no more logons can be accepted --
serviceUnavailable(2), -- logons are not being accepted --
sessionlnUse(3)}; -- cannot logoff while an operation is in progress --

-- problem with a session --

SessionError: ERROR [problem: SessionProblem] • 12;
SessionProblem: TYPE • {

tokenlnvalid(O)}; -- the token is invalid --

-- problem obtaining space for file content or attributes --

SpaceError: ERROR [problem: SpaceProblem] :I 13;
SpaceProblem: TYPE • {

aliocationExceeded(O), -- specifically-allocated file space exceeded -
attributeAreaFull(1), -- no more attributes may be stored with file -
mediumFull(2)}; -- no more room is available on the storage medium --

-- problem during bulk data transfer --

TransferError: ERROR [problem: TransferProblem] • 14;
TransferProblem: TYPE :I {

aborted(O), -- the transfer was aborted by the source or sink -
checksumlncorrect(1), -- after transfer of a file's content to a sink, the checksum

computed over the data did not match the file's stored checksum attribute -
formatlncorrect(2), -- bulk data received from source did not have the expected format-
noRendezvous(3), -- the identifier from the other party never appeared -
wrongDirection(4)}; -- other party wanted to transfer the data in the wrong direction--

-- some undefined (and implementation-dependent) problem occurred --

UndefinedError: ERROR [problem: UndefinedProblem] = 15;
UndefinedProblem: TYPE :I CARDINAL; -- implementation-dependent --

--INTERPRETED ATTIURUTP.: DEFTNl'rJONS --

accessList: AttributeType = 19;
AccessEntry: TYPE :I RECORD [key: Clearinghouse.Name, access: AccessSequence];
AccessList: TYPE = RECORD [entries: SEQUENCE OF AccessEntry, defaulted: BOOLEAN];

-- specification of access perml.';sions .-

fiLING PROTOCOL

PROGRAM DECLARA TION

checksum: AttributeType :II 0; -- checksum over content offile -
Checksum: TYPE. CARDINAL;

unknownChecksum: Checksum. 177777B;

childrenUniquelyNamed: AttributeType • 1; -Q all children uniquely named -
ChildrenUniquelyNamed: TYPE. BOOLEAN; -- default value is implementation-dependent --

createdBy: AttributeType a 2; -- name of user whose action changed createdOn 0_

CreatedBy: TYPE. User;

createdOn: AttributeType • 3; -- date file's content was created -
CreatedOn: TYPE :I Time;

dataSize: AttributeType = '16; -- number of bytes of data in file's content -
DataSize: TYPE = LONG CARDINAL;

defaultAccessList: AttributeType • 20;
-- access inherited by children with defaulted access lists -

DefaultAccessList: TYPE • AccessList;

filelD: AttributeType • 4; ·,-ID offile--
FilelD: TYPE. ARRAY 5 OF UNSPECIFIED; -- implementation-dependent ,.
nullFilelD: FilelD • [0,0,0,0,0];

isDirectory: AttributeType :I 5; -- file is a directory (potentially has children) -
IsDirectory: TYPE =- BOOLEAN;

isTemporary: AttributeType • 6; -- file is temporary (cannot be a directory) -
IsTemporary: TYPE • BOOLEAN;

modifiedBy: AttributeType • 7; -- name of user whose action changed modifiedOn -
ModifiedBy: TYPE =- User;

modifiedOn: AttributeType • 8; -- date file was last modified -
ModifiedOn: TYPE =- Time;

name: AttributeType • 9; .,- descriptive name of/He (relative to parent) -
Name: TYPE. STRING; -- must not exceed 100 bytes (not characters) -"

numberOfChildren: AttributeType =- 10; -- number of children in this directory -
NumberOfChildren: TYPE :I CARDINAL;

ordering: AttributeType :I 11; .- order of children for Find, List -
Ordering: TYPE :I RECORD [

.key: AttributeType, ascending: BOOLEAN, interpretation; Interpretation];
-- interpretation iltnored i/'attrihllte interpreted by implementor --

defaultOrdering: Ordering ::a [key: name, ascending: TRUE, interpretation: string];
byAscendingPosition: Ordering = [key: position, ascending: TRUE, interpretation: none];
byDescendingPosition: Ordering = [key: position, ascending: FALSE, interpretation: none];

parentlD: AttributeType = 12; .. In o/,parent directory o{this file .. n

ParentlD: TYPE = FilelD;

XEROX SYSTEM INTEGRATION STANDARD 99

PROGRAM DECLARATION

100

pathname: AttributeType a 21; -- access path to file relative to root file -~
Pathname: TYPE a STRING;

position: AttributeType =- 13; -- reference to position within directory -
Position: TYPE=- SEQUENCE 100 OF UNSPECIFIED;

firstPosition: Position. [0];
lastPosition: Position. [1777778];

readBy: AttributeType • 14; -- name of user whose action changed readOn-
Read8y: TYPE • User;

readOn: AttributeType :I 15; -- date file's content was last read-
ReadOn: TYPE :I Time;

storedSize: AttributeType a 26; -- number of bytes physically allocated to stored file -
StoredSize: TYPE a LONG CARDINAL;

subtreeSize: AttributeType = 27;
-- number of content bytes in directory and all descendants -

SubtreeSize: TYPE = LONG CARDINAL;

nuliSubtreeSizeLimit: SubtreeSizeLimit = 377777777778;

subtreeSizeLimit: AttributeType = 28;
-- limitation on number content bytes in directory and all descendants -

SubtreeSizeLimit: TYPE = LONG CARDINAL;

type: AttributeType • 17; -- file type; assigned by client -
Type: TYPE • LONG CARDINAL;

version: AttributeType a 18; -- version number offile (relative to parent) -
Version: TYPE :I CARDINAL;

lowestVersion: Version :I 0;
highestVersion: Version a 1777778;

-- Common Definitions --

Time: TYPE a Time.Time; -- seconds --

nuliTime: Time a Time.earliestTime;
User: TYPE :I Clearinghouse.Name;

-- BULK DATA FORMATS--

-- Serialized File Format, used in Serialize and Deserialize --

SerializedFile: TYPE := RECORD [version: LONG CARDINAL. file: SerializedTree);

currentVersion: LONG CARDINAL := 3;

SerializedTree: TYPE :I RECORD (

attributes: AttributeSequence,
content: RECORD [data: BulkData.StreamOfUnspecified,

lastBytelsSignificant: BOOLEAN],

children: SEQUENCE OF SerializedTree);

FILING PROTOCOl.

PROGRAM DECLARA TJON

---------,--.---------------------
-- Attribute Series Format, used in List --

StreamOfAttributeSequence: TYPE. CHOICE OF {

nextSegment (0) a > RECORD [

segment: SEQUENCE OF AttributeSequence,
restOfStream: StreamOfAttributeSequence],

iastSegment (1) a > SEQUENCE OF AttributeSequence};

-- Line-oriented ASCII text file format, used in file interchange --

StreamOfAsciiText: TYPE. CHOICE OF {

nextLine (0) a > RECORD [

line: AsciiString,
restOfText: StreamOfAsciiText],

lastLine (1) a > AsciiString};

AsciiString: TYPE :I RECORD [

lastByteSignificant: BOOLEAN,

bytes: SEQUENCE OF UNSPECIFIED];

-- FILE TYPES --

-- Clients are encouraged to use these predefined types to identify files that have the specified
characteristics, to p,.omote information sharing --

tUnspecified: Type :I 0; -- nothing is known about the content or attributes ofa file of this
type; it is useful for files that have a private format --

tDirectory: Type a '1; -- this file is a directory, and it has no content (only children) --

tText: Type. 2; -- this file is not a directory, and its content conforms to the string encoding
described in the Character Code Standard --

tSerialized: Type :I 3; -- this file is not a directory, and its content conforms to the serialized
file format --

tEmpty: Type :I 4; -- this file is not a directory, and is comprised of attribute information only
and no content --

tAscii: Type :II 6; -- this tile is not a directory, and its content is comprised of ASCll data --

tAsciiText: Type :I 1; -- this file is not a directory, and its content conforms to the stream of
ASCll text definition --

END. -- of Filing --

XEROX SYSTEM INTEGRATION STANDARD 101

PROGRAM DECLARATION

102 FILING PROTOCOl.

D. EXAMPLES

This appendix gives an example of a complete session of interaction with the file service,
annotated with the purpose of each procedure, the task to be performed, and the section of
this document in which the procedure is explained. In this session, the client

• opens and lists the directory "Letters" within the directory "Development"

• retrieves a file and changes one of its attributes

• deletes all files that meet a certain characteristic

• stores a new file, and copies it to a different directory

• moves the retrieved file to the same directory

• lists the two directories

First, the client logs on to the file service (section 3.1.3), The constant userCredentials
denotes a value of credentials appropriate for this client to log on to the file service (obtained
from an authentication service or by other means). A session handle is returned which is
used in subsequent operations.

Logon [service: [organization: "Xerox," domain: "Office Systems," object: "TestFS"],
credentials: userCredentials, verifier: simpleVerifier]

RETURNS [session: [token: [41 B, 38], verifier: simpleVerifier]]

Most clients wish to remain logged on to the file service until an explicit logoff occurs even if
there are periods of inactivity. To "remind" the file service that the client is still interested
in the session, the client probes the file service (section 3.1.5).

Continue [session: [token: [41B, 3B), verifier: simpleVerifier]]

RETURNS [continuanc,e: 600]

Because the client just logged on, the first Continue has little effect (the session is unlikely
to be terminated so soon), but it does let the client know that it should Continue again before
ten minutes (600 seconds) have elapsed. A client would typically instruct some background
process to call Continue again within that period, however, in this example it is assumed
that this session is logged off before the next Continue is necessary ..

~ext, the client opens a directory which resides in the root directory and has the name
"Development" (section 3.2.2), The file service opens a tile within the root directory because
no parentlD attribute was specified.

Open [
attributes: [[type: name, value: "Development"]],
directory: nuliHandle,

XEROX SYSTIEM INTEGRATION STANDARD 103

EXAMPLES

104

(ontrols: n.
session: [token: [418,38). verifier: simpleVerifier11

RETURNS [file: [3658,21 B]]

The client needs the filelD attribute of this directory for use in future procedure calls so it
specifies that attribute in a call to GetAttributes (section 3.4.2).

GetAttributes [file: [3658,21 B), types: [fileID],
session: [token: [418,38], verifier: simpleVerifier]]

RETURNS [attributes: [[type: filelD, value: [08,08,28,338,63348]]]]

The client again calls Open (section 3.2.2), this time to open the directory "Letters" within
the directory "Development." The parentlD attribute is specified to indicate that the file
being opened must be inside "Development. "

Open [
attri butes: [

[type: name, value: "Letters"],
[type: parentlD, value: [OB, OB, 28, 338,63348]]],

directory: null Handle,
controls: n.
session: [token: [41 B, 38), verifier: simpleVerifierJ]

RETURNS [file: [214B, 228]]

Again, the filelD is determined for future reference.

GetAttributes [file: [214B, 228], types: [fileID],
session: [token: [41B, 38], verifier: simpleVerifierJ]

RETURNS [attributes: [[type: filelD, value: [08,08,4778, 11628, 5B]]]]

Now, the client lists the files in "Letters" starting at the last file and moving toward the
beginning. It is assumed that the directory's ordering is defaultOrdering. The attributes to
be returned are filelD, name, version, and type. Notice that the attributes of the three files
are sent to the client as bulk data. Before calling List (section 3.5.3) the client must have
constructed bulkDataSink1, a Bulk Data Transfer Sink, and this may have required making
a remote procedure call according to the Bulk Data Transfer specification.

List [directory: [2148, 22B], types: [fileID, name, version. type],
scope: [direction backward1, listing: bulkDataSink1,
session: [token: [41B, 38), verifier: simpleVerifier11

-- the following record is transferred as bulk data --

nextSegment [
segment: [[

[type: filelO. value: [OB, OB, 658, 117438, 2634B]],
[type: name, value: "Recent Purchases"1,
[type: version, value: 2],
[type: type, value: tUnspecified]]],

restOfStream:

FILING PROTOCOL

nextSegment [
segment: [[

[type: filelD, value: [08,08, 17628, 1538, 77758]],
[type: name, value: "Information Requestll],
[type: version, value: 1],
[type: type, value: tText]]],

restOfStream:

lastSegment [[

]]

[type: filelD, value: [08,08,36338,11028,58]],
[type: name g value: "Expense Report"1,
[type: version, value: 1],
[type: type, value: tUnspecified]]]

EXAMPLES

The client now wishes to retrieve the content of the file named "Recent Purchases. It To open
it the client can directly specify the filelD obtained in the previous procedure (along with the
parentlD to make sure that the file has not moved in the meantime). The client also specifies
a lock since the subsequent procedures need to proceed without interruption.

Open [attributes: [
[type: filelD, value: [08,08,658, 117438,26348]],
[type: parentlD, value: [08,08,4778, 11628,58]]],

directory: null Handle,
controls: [lock exclusive],
session: [token: [418,38], verifier: simpleVerifier]]

RETURNS [file: [6028,248]]

The client now wishes to retrieve the content of the file. Before calling Retrieve (section
3.6.3) the client must have constructed bulkDataSink2, a Bulk Data Transfer Sink, and this
may have required making a remote procedure call according to the Bulk Data Transfer
Protocol.

Retrieve [file: [6028,248], content: bulkDataSink2,
session: [token: [418, :~8], verifier: simpleVerifier]]

-- the data is transferred as bulk data --

It is assumed that attribute type 4416B is assigned to the client and that this attribute is
used as a "marker" to indicate that the file has been retrieved. Since the file has now been
retrieved, the client proceeds to set the attribute to TRUE using ChangeAttributes (section
3.4.3).

ChangeAttributes [file: [602B, 248],
attributes: [[type: 4416B, value: TRUE]],

session: [token: [41 B, 38), verifier: simple\lerifier]]

The client doesn't yet close the file (in case it is needed later), but the exclusive lock is no
longer needed so the lock is changed (section 3.:3.3),

ChangeControls [file: [602B, 248], controls: [lock none},
session: [token: [41 B, :38}, verifier: simpleVerifierJ]

XEROX SYSTEM INTEGRATION STANDARD 105

EXAMPLES

106

Now the client deletes all files that have types other than tUnspecified. This is done by
repeatedly calling Find (section 3.5.2) with the appropriate criteria and deleting the result,
until Find no longer succeeds. If there are many files in a directory, List (section 3.5.3) might
be a more appropriate procedure for this purpose.

Find [directory: [2148,228],
scope: [filter notEqual

[attribute: [type: type, value: tUnspecified], interpretation: 10ngCardinal]],
controls: [],
session: [token: [418.38], verifier: simpleVerifier]]

RETURNS [file: [7108,278]]

Now that the file has been found (the returned file handle refers to the file named
"Information Request"), the client deletes it (section 3.7.2).

Delete [file: [7108,278], session: [token: [41 B, 38], verifier: simpleVerifier]]

The client tries again to find a file that satisfies the criteria. This time, however, no such file
exists. All files left in the directory are of type tUnspecified.

Find [directory: [2148,228],
scope: [filter notEqual

[attribute: [type: type, value: tUnspecified], interpretation: 10ngCardinal]],
control s: [],
session: [token: [41 B, 38], verifier: simpleVerifier))

REPORTS AccessError [problem: fileNotFound]

The next step is to store a new file in the "Letters" directory. The type is tText and the name
is "August Progress Report." The creator and the date of creation are also specified. ThE~
specified dataSize is a hint. It could have been omitted or even specified incorrectly (within
the available space on the file service) without affecting anything but performance. :--.iotice
that the file's content is sent to the file service as bulk data. Before calling Store (section
3.6.2) the client must have constructed bulkDataSource1, a Bulk Data Transfer Source, and
this may have required making a remote procedure call according to the Bulk Data Transfer
Protocol.

Store [directory: [2148,228],
attributes: [

[type: name, value: "August Progress Report"],
[type: type, value: tText],
[type: createdBy: value:

[organization: "Xerox," domain: "Office Systems," object: "Kabcenell"],
[type: createdOn: value: 2263526570B],
[type:dataSize, value: SOB]),

controls: [], content: buJkDataSource1,
session: [token: [41 B, 3B], verifier: simpJeVerifier))

-- the data is transferred as bulk data --

RETURNS [file: [717B, 23B))

FILING PROTOCOL

EXAMPLES

The client then copies this file just stored in "Letters" into "Development" giving the copy
the name "Current Progress" (section 3.8.1),

Copy [file: [717B, 23B], destinationDirectory: [365B, 21 BI,
attributes: [[type: name, value: "Current Progress"]),
controls: [], session: [token: [41 B, 3B], verifier: simpleVerifier]]

RETURNS [file: [3104B, 20B])

The client then closes both the stored file and its copy (section 3.2.3).

Close [file: [717B, 23B],
session: [token: [41 B, 3B], verifier: simpleVerifierJ]

Close [file: [3104B, 20B],
session: [token: [41 B, 3B], verifier: simpleVerifier]]

The file retrieved earlier ("Recent Purchases"), which is still open, is now moved from
"Letters" to "Development" without specifying any attributes (section 3.8.2).

Move [file: [602B, 24B), destinationDirectory: [3658,21 B),
attributes: [], session: [token: [41 B, 3B], verifier: simpleVerifier]]

Finally, the files in directories "Development" and "Letters" are listed, from beginning to
end this time. Notice that "Recent Purchases" has acquired a version number of 1: version
numbers are not preserved when moving between directories. Also notice that the filelO of
"Recent Purchases" has not changed.

-- "bulkDataSink3" is established for the bulk data transfer--

List [directory: [3658,21 B), types: [fileIO, name, version, ty.pe],
scope: [],
listing: bulkOataSink3,
session: [token: [41 B, 3B], verifier: simpleVerifier]]

-- bulk data for "Development"--

nextSegment [
segment: [[

[type: filel0 8 value: [OB, OB, 47103B, 51'1 B, 60B]],
[type: name, value: "Current Progress"]
[type: version, value: 1],
[type: type, value: tText]]l,

restOfStream:

nextSegment [
segment: [[

[type: filelD, value: rOB, OB, 477B, 1162B, 5B]],
[type: name, value: "Letters"],
[type: version, value: 1],
[type: type, value: Type tOirectory]]],

restOfStream:

lastSegment [[

XEROX SYSTIEM INTEGRATION STANDARD

[type: filelO, value: [OB, OB, 658, 117438,26348]],
[type: name, value: "Recent Purchases"],

107

EXAMPLES

108

[type: version, value: 1],
[type: type, value: tUnspecified]]

]]

-- "bulkDataSink4" is established for the bulk data transfer--

List [directory: [214B, 22B], types: [fileID, name, version, type],
scope: [], listing: bulkDataSink4,
session: [token: [41 B, 3B], verifier: simpleVerifier]]

-- bulk data for "Letters"--

nextSegment [
segment: [[

[type: filelD, value: [OB, OB, 42678, 315B, 5516B)],
[type: name, value: "August Progress Report"],
[type: version, value: 1],
[type: type, value: tText]]],

rest Of Stream :

lastSegment [[
[type: filelD, value: rOB, OB, 3633B, 1102B, 5B]],
[type: name, value: "Expense Report"],
[type: version, value: 1],
[type: type, value: tUnspecifiedll]

The session is then logged off (section 3.1.4). Termination of a session closes all remaining
file handles opened within the session so it is not necessary to close them explicitly.

logoff [session: [token: [41 B, 3B], verifier: simpleVerifier]]

FILING PROTOCOL

E. FILING SUBSET

E.1 Overview

The FilingSubset Protocol defines a minimal capability to store, retrieve, enumerate, and
delete files of a remote service. Hosts whose primary role is not that of a network file service
may support this protocol in order to provide a limited file transfer and file management
capability.

Because the native file system interfaces of many systems may not easily support the
general features of the Filing Protocol, the FilingSubset Protocol has also been designed to
facilitate straightforward implementation on heterogeneous systems. "

E.1.1 Motivation

The Filing Protocol provides a standardized means of accessing and transferring named
collections of data between cooperating system elements in an internetwork. This protocol
offers an exceedingly rich functionality; however, the extent of this richness may make the
full protocol too difficult and expensive in development cost to justify in a host whose
primary role is not that of a network file service.

In distributed processing applications, it is also desirable to enable two hosts to exchange
files, even though it is not intended that either system provide a comprehensive f:le service.
Fu~ther, it is often desirable to provide network access to files residing on heterogeneous
systems, if the addition of' this feature does not require changes to native tile system
interfaces.

In summary, a number of desires motivate the definition of a simple filing capability:

• support file exchange without requiring an exceedingly rich functionality

• provide XNS file access to the native file systems of heterogeneous network hosts

• facilitate network access to the files on a system whose primary purpose is not that of a
file service

• ease the difficulty in supporting the Filing Protocol on native operating systems

• permit implementation on di verse systems in a straightforward way

E.1.2 Requirements and goals

The definition of the FilingSubset Protocol is guided by a set of requirements and goals. [n
general, the requirement is to provide a minimal but useful level of service within the

XEROX SYSTEM INTEGRATION STANDARD 109

FILING SUBSET

context of the Filing Protocol. Specific requirements guiding the definition of thE!
FilingSubset Protocol are:

• provide the common file system functions of storage, retrieval, enumeration and deletion

• foster compatibility by remaining a proper subset of the Filing Protocol

• facilitate implementation on heterogeneous systems

• ensure round-trip equality of file data

A set of goals is also defined which, although not required nor guaranteed, are important to
the overall usefulness for elements implementing the subset. The following goals are
desirable in the definition of the Filing Subset:

• ease of implementation of service provider and client software on a variety of systems

• round-trip preservation of attributes (the ability to store a file on a remote system and
retrieve it at a later date with all attributes intact)

• the ability to perform common processing activities on a file regardless of which system
it currently resides on (for example, text editing, data base listing, and backup/restore)

E.2 Definition

110

The FilingSubset Protocol specifies a mi.nimal level of file service which subset client and.
service implementations must support. Maximum interconnecti vity is ensured when both
client and service implementations support this minimum level of service and make no
assumptions regarding the availability of a broader functionality. However, increasing
levels of functionality may be supported by individual FilingSubset implementations.
Corresponding client implementations must always be prepared to deal with only the
minimum functionality defined here; in this way, the client achieves the greatest level of
compatibility with differing subset implementations, all of which support at least the
minimum.

FilingSubset is defined as a subset of the Filing Protocol. This guarantees that the style of
interaction between a subset client and service is consistent with that of the Filing Protocol.
This method of definition also guarantees that clients who implement the subset may
interact with a service implementing the Filing Protocol by issuing calls with the different
Courier program number and specifying appropriate parameter values. [n addition, a client.
using the Filing Protocol can interact with a FilingSubset service hy restricting its use of
remote operations and arguments to those defined here (again by using the appropriate
Courier program number and specifying appropriate parameter values).

[n all cases, the operations, arguments, and errors defined in the subset are identical to.
those in the Filing Protocol. In providing a minimal level of service, the subset does!
however, restrict the choices available for argument and error values.

The complete Courier definition of the FilingSubset Protocol is presented in E.?

FILING PROTOCOl.

FILING SUBSET

E.3 Procedures

The FilingSubset supports those Filing operations which provide the essential functions
required for file storage, retrieval, enumeration, and deletion. These procedures are Logon,
Logoff, Continue, Open, Close, Retrieve, Store, List, and Delete.

The FilingSubset Protocol also requires that all impleme"ntations permit file identification
to be performed through the use of the pathname attribute. The syntax and interpretation of
pathname attribute values is service-dependent.

E.3.1 SE!ssion support

The Logon, Logoff, and Continue operations are included in the FilingSubset and are
identical to the corresponding operations of the Filing Protocol.

Note: Clients should not assume that an arbitrary FilingSubset service implementation will
support multiple Courier connections for a single session; a serviee may not allow a session
obtained on one connection to be used on any other connection.

Note: In order to foster compatibility between different FilingSubset client and service
implementations, it is recommended that implementations avoid terminating the
connection supporting their interaction too quickly or unnecessarily. Short periods of
inactivity should not result in termination of the connection.

E.3.2 OlPening and closing files

The Open operation is included in the FilingSubset and is identical to the corresponding
operation of the Filing Protocol. All implementations must permit use of the pathname
attribute for file identification in Open. The parentlD, type, and version attribute:; must be
supported in conjunction with the pathname attribute; however, the set of required values
for each of these attributes may be limited (nuHFilelD for parentlD; tUnspecified, tAsciiText,
and tDirectory for type, and lowestVersion and highestVersion for version). This implies
that a subset service implementation may not return an AttributeTypeError if the parentlD,
type or version attributes are specified on an Open; instead, an AttributeValueError may be
returned if the value of the attribute is not one of the above.

The Open procedure may be rejected if controls is not the empty sequence or directory is not
the null Handle.

The Filing Protocol specifies that while a client has a file open, the file may not be deleted by
other clients. The F'ilingSubset Protocol does not require this behavior; that is, a service
implementation need not prevent a previously-opened file from being deleted by other users,
regardless of whether they are general interactive users or other network clients. The error
to be reported by the service in this case is HandleProblem[problem: invalid1. Subset clients
should be prepared to deal with directories or files which cannot be accessed even after a
valid handle is obtained.

The Close procedure is defined to he identical to the Filing protocol.

XEROX SYSTEM INTEGRATION STANDARD 111

FILING SUBSET

E.3.3 Enumerating files

E.3.3.1 Scopes

The FilingSubset Protocol defines a minimal file enumeration capability based on the
pathname attribute. Attribute types and values are handled in a manner consistent with
the Filing Protocol.

The FilingSubset Protocol requires a minimum level of support for the scope types defined in
Filing. Specifically, only the count and filter scope types must be supported. However, not
all scope values for these types need be supported. At a minimum the filter scope type must
permit the matches filter type and permit its use for at least the pathname attribute type.

Example:

The following is an example of the required matches filter type (assuming the Filing
pathname syntax):

filter [matches [attribute: [type: pathname. value: IIDocument Archivel··"]]]
-- all files contained in the 'Document Archive" directory--

E.3.3.2 Attributes

A FilingSubset implementation of the List operation must return a value for each of th€~
attribute types requested by a client. Non-null values must always be returned for th€~

attribute types createdOn, dataSize, isDirectory, isTemporary, modifiedOn, pathname and
type. An appropriate non-null value must also be returned for the childrenUniquelyNamecl
attribute type, if the listed file is a directory (a null value for this attribute is appropriate fo[,
non-directories).

Appropriate null values must be returned for all attribute types not supported by an.
implementation. Note that this behavior is consistent with Filing in that each attribute
requested by a client is represented in the results of a List call, whether or not the service can.
supply a meaningful value for the attribute.

Example:

An implementation which did not support the position attribute would return the following'
in response to a client request for this attribute's value:

attribute: [type: position, value: SEQUENCE 0 OF UNSPECIFIED]

-- an appropriate null value response to an unsupported attribute --

E.3.3.3 Bulk data

112

Two Bulk Data Transler [31 choices, BulkData.immediateSink and BulkData.nuIlSink, must
be ~upported by all FilingSubset implementations of List. Other bulk data choices may be

FILING PROTOCOL

FILING SUBSET

supported, but are not required. In response to the use of an unsupported bulk data choice by
a client, a subset service must report the error TransferError [problem: aborted],

E.3.4 Storing files

The FilingSubset Store procedure is defined to be identical to the eorresponding operation in
Filing. At a minimum, all implementations must permit the use of the pathname attribute
for file identification. The type and version attributes must be permitted in conjunction with
the pathname attribute; however, the set of required values for each of these attribute types
is small: tUnspecified, tAsciiText, and tDirectory must be permitted for type, highestVersion
for version.

Treatment of other client-supplied a.ttributes depends on which attributes a subset service
implements. A FilingSubset service must not reject a Store operation wi th an
AttributeTypeError, if the createdOn, dataSize, isDirectory, pathname, type, or version
attributes are specified. An AttributeValueError may result, if the accompanying value for
any of these attributes is invalid.

Similarly, a FilingSubset service may not reject a Store operation with an
AttributeTypeError, if the accessList, chHdrenUniqueJyNamed, defaultAccessList,
isTemporary, ordering, or subtreeSizeLimit attributes are specified. The service must not
report an AttributeValueError, if the value of one of these attributes is as shown in the
attribute tables of E.6. If other values are supplied and these are not supported by the subset
implementation, then an appropriate AttributeValueError must be reported.

A service implementation may support more than this minimal attribute capability, but it is
not required to do so.

The Store procedure may be rejected if the controls argument is not the empty sequence or
the directory argument is not the null Handle.

The semantics of the Store operation permit both non-directory and directory fi:es to be
created. In the Filing Protocol, a directory represents a special kind of file that may
reference other files; a directory in Filing also has all of the characteristics of a non-directory
file, namely attributes and content" FilingSubset implementations are not required to
support this entire functionality.

A subset service supporting directory creation is not required to support directory files
ha ving data content. To reject a request to create a directory with content, a service should
report the error Attr-ibuteValueError [problem: unreasonable, type: isDirectory].

A subset service may allow or refuse to allow directory files to be ereated by its clients at its
discretion. If directory file creation is not permitted, the error AccessError [problem:
accessRightslnsuffic:ientj must be reported.

Note: The Store operation must alway:;; result in the creation of a new file or an error report;
existing files are never overwritten by this operation.

Example:

A FilingSubset client attempting to create a new directory might specify (assuming the
Filing Protocol pathname syntax):

XEROX SYSTEM INTEGRATION STANDARD 113

FILING SUBSET

Store [directory: nullHandle,
attri butes: [

[type: pathname, value: "Projects/Correspondence/Pending"],
[type: isDirectory, value: TRUE],

[type: type, value: tDirectory]],
controls: [],
content: BulkData.nuIiSource,
session: [token: [11 B, 27734B], verifier: simpleVerifier]]

Note that the specification of BulkData.nuliSource for content is equi valent to the
specification of BulkData.immediateSource, with zero bytes transferred.

E.3.4.1 Bulk data

Two Bulk Data Transfer [3] choices, BulkData.immediateSource and BulkData.nuIISource"
must be supported by all FilingSubset implementations of Store. Other bulk data choicesl
may be supported, but are not required. In response to the use of an unsupported bulk data
choice by a client, a subset service must report the error TransferError [problem: aborted].

E.3.S Retrieving files

The FilingSubset Retrieve operation is identical to the Filing Protocol equivalent. This
operation transfers the content of an existing file to the client.

E.3.S.1 Bulk data

Two Bulk Data Transfer [31 choices, BulkData.immediateSink and BulkData.nuIiSink, must
be supported by all FilingSubset implementations of Retrieve. Other bulk data choices may
be supported, but are not required. In response to the use of an unsupported bulk data choice
by a client, a subset service must report the error TransferError [problem: aborted].

E.3.6 Deleting files

The FilingSubset Delete operation is identical to the Filing Protocol equivalent. This.
operation permits a client to delete existing files.

The Filing Protocol specifies that a Delete operation applied to a directory file will result in.
the deletion of the directory and all its descendants. This behavior is not required of all
subset implementations, although consistency with Filing is desirable. If a subset service
implementation does not support the Filing behavior, then it should report the error'
AccessError [problem: accessRightslnsufficient). Client implementations should always be
prepared to deal with this failure report.

E.3.7 Summary of remote procedure restrictions

114

The FilingSubset Protocol defines the minimum capabilities which all implementations
must provide. A subset client may attempt to use more than the minimum functionality

FILING PROTOCOl.

FILING SUBSET

required of a subsE~t service, but should not assume that the additional procedure or
argument capabilities will be available. Similarly, a subset service implementation may
support greater capabilities than those defined here, but must always provide the support
expected by a client obeying the restrictions defined here.

This section summarizes the restrictions which govern the expected beha vior of
FilingSubset client and service implementations. The intent is to provide a convenient list of
the argument values whi(!h must be allowed by all subset implementations and those
exceptions which may validly result in an error response to the client. To assure maximum
compatibility, clients are advised to restrict their use of protocol capabilities to those listed
here.

A subset implementation may report an appropriate error for a given procedure if any of the
stated conditions is observed:

Open

• directory specifies a handle other than null Handle

• controls is not the empty sequence

• attributes does not contain the pathname attribute type

• attributes contains an attribute type other than parentlD, pathname, type, or
version

• the parentlD attribute specifies a value other than nuliFilellD

• the type attribute specifies a type other than tAsciiText, tDirectory, or tUnspecified

• the version attribute specifies a value other than lowestVersion or highestVersion

Store

• directory specifies a handle other than null Handle

• controls is not the empty sequence

• content spedfies a bulk data source type other than BulkData.immediateSource or
BulkData.nuliSoufce

.. attributes does not contain the pathnarne attribute type

• attributes contains one of the attributes: filelD, modifiedBy, modifiedOn, name,
numberOfChildren, parentlD, readBy, readOn, storedSize,. or subtreeSize

• the type attribute specifies a type other than tAsciiText, tDirectory, or tUnspecified

• the version attribute specifies a value other than highestVersion

Retrieve

• content specifies a bulk data sink type other than BulkData.immediateSink or
BulkData.nullSink

XEROX SYSTEM INTEGRATION STANDARD 115

FILING SUBSET

List

• directory specifies a handle other than null Handle

• scope includes a scope type other than filter or count

• filterType specifies a filter type other than matches

• a matches filter specifies an attribute type other than pathname

• listing specifies a bulk data sink type other than BulkData.immediateSink or
Bul kData. null Si nk

E.4 Attributes

116

The Filing Protocol distinguishes two classes of attributes, namely interpreted and
uninterpreted attributes. A service implementing Filing must support any attrjbute type
described as interpreted in the standard and is required to preserve the values of
uninterpreted attributes as explicitly set by the client. FilingSubset implementations are
not required to conform to these requirements.

In order to specify the attribute requirements of FilingSubset implementations, it is useful
to distinguish three attribute classes rather than the two used by Filing. The FilingSubset
attribute classes are mandatory, implied, and optional. The relationship of the attribute
classes of the FilingSubset Protocol and those of the Filing Protocols is shown in Table E.l.

Table E.1 Relationship of FilingSubset and Filing attribute classes

Filing Attribute FilingSubset

created On
data Size

iSDirect0u,
modified n

Mandatory
pathname

type
~------------------

accessList
childrenUniquelyNamed

defa ultAccessList Implied isTemp~)fary
orderm~

Interpreted subtreeSize imit
version

~------------------
checksum
createdBy

filelD
modifiedBy

name
num berOfChildren

orderin8 Optional parenti
position
readBy
readOn

storedSlze
subtreeSize ------------------

U ni nterpreted uninterpreted

FILING PROTOCOL

FILING SUBSET

E.4.1 Mandatory attributes

Mandatory attributes are those attributes which must be interpreted by all FilingSubset
implementations. These attributes are guaranteed to be retained by any service
implementing the FilingSubset and must also be accepted on specific procedure calls, to the
extent that they are legal arguments of the corresponding procedure of the Filing Protocol.

FilingSubset implementations must support the following mandatory attributes:
createdOn, dataSize. isDirectory, modifiedOn, pathname, and type. Support for an
attribute means that a service implementation will accept the attribute on a Store
procedure, if properly specified, and will return the appropriate non-null value when
requested with a List procedure.

E.4.1.1 createdOn

The createdOn attribute is as defined in the Filing Protocol.

E.4.1.2 dataSize

The Filing Protocol states that a file's dataSize attribute specifies the number of eight-bit
bytes in the content of the file. The FilingSubset Protocol recognizes that it may not be
straightforward for specific implementations to determine the actual content size of a file;
therefore, FilingSubset clients should regard the value of a file's dataSize attribute as an
estimate of the file's size rather than the actual size itself.

E.4.1.3 is()irectory

The isDirectory attribute iB as defined in the Filing Protocol. Typically, this attribute need
not be stored since it can be derived from context.

E.4.1.4 modifiedOn

The modifiedOn attribute is as defined in the Filing Protocol.

E.4.1.S pathname

The FilingSubset Protocol requires that all implementations support the path name
attribute. This is the primary means by which a client may identify a file of interest. The
value of the pathname attribute must specify the access path to a remote file in a form which
is recognized by the particular service. This means that a FilingSubset client should make
no assumptions regarding the syntax of this attribute, ~ince it may vary from service to
servlce.

[t should also be noted that the Filing Protocol permits its clients to make use of directory
relative pathnames in various operations. i\ FilingSubset client may not assume that this
support will be provided by a given subset service: it is not required. All FilingSubset

XEROX SYSTEM INTEGRATION STANDARD 117

FILING SUBSET

E.4.1.6 type

operations which accept directory handle arguments may report an error if a non-null
directory handle is specified.

The syntax of the pathname attribute values returned by the List procedure should a1 wayB
be of an absolute form, so that they may be used directly in subsequent operations.

All FilingSubset implementations must support at least the following values of the tYPE!
attribute: tAsciiText, tOirectory, and tUnspecified (refer to E.7 or appendix B for the
definition of these types). The type attribute describes the nature of the content or attributes
of a file in order to communicate to potential users of the file how the file is to be interpreted.

A service implementing the Filing Protocol interprets neither the type nor the content of a.
file. In order to facilitate the convenient interchange of text files between systems having
different text file representations, the FilingSubset Protocol relaxes this behavior of the
Filing Protocol.

A client may request that a file be transferred in a particular format by specifying the tYPE~
attribute in the Store operation or in an Open call preceding a Retrieve. The type attribute
value tUnspecified implies that the file content should be transferred uninterpreted. Round·,
trip data equality must be guaranteed by a subset service if the client specifies tUnspecified
on storing and again on retrieval of a given file~ this applies even to text files which the
client designates as tUnspecified.

The type attribute value tAsciiText is used to indicate that a file's content should be
interpreted as text and transferred using the StreamOfAsciiText encoding. This may require'
interpretation by the client or service to or from a native text representation. FilingSubset
implementations should attempt to honor requests to interpret files as text files, since the
mapping to and from native text format permits native mode text manipulation within each
system. There are cases where round-trip data equality cannot be guaranteed for files of type
tAsciiText; retrieving a file that has been stored as tAsciiText using the tUnspecified type
may not have predictable results.

E.4.2 Implied attributes

118

Implied attributes are those non-mandatory attributes that obtain an implicit value when a
new file is created using the Filing Protocol. To maintain consistency in the attribute
behaviors defined in the Filing Protocol for this class of attribute, all subset
implementations are required to permit the specification of the implied (default) value for
each of these attributes (see E.6). The implied attribute types are: accessList,
childrenUniquelyNamed, defaultAccessList, isTemporary, ordering, subtreeSizeLi mit and
version.

A FilingSubset implementation of the Store procedure must always permit the specification
of implied attributes. Specification of an unsupported (non-default) value, however, may
validly be rejected with the error AttributeValueError.

FILING PROTOCOL.

FILING SUBSET

E.4.3 Optional attributes

Optional attributes are those attributes which are uninterpreted by the Filing Protocol or
which are not otherwise specified as mandatory or implied. If an implementation provides
support for any of these additional attributes, that support must conform to the definition of
the attribute in the Filing Protocol.

E.S Remote errors

All errors from the Filing Protocol are similarly defined in the FilingSubset Protocol.

E.6 Procedures and attributes

The tables on the following pages describe the effects of FilingSubset procedures on
attributes. If a procedure does not modify interpreted attributes, no table is shown. When a
procedure modifies an attribute, a brief indication of the change is gi ven. Where
specification of an attribute will result in an error condition, the appropriate error is
identified.

In the case of List, the table specifies the attribute values a service must return. Although
this procedure does not modify attributes, its behavior is defined by the FilingSubset.

XEROX SYSTEM INTEGRATION STANDARD 119

FILING SUBSET

120

Table E.2 List

Attribute If Requested!

accessList returned

checksum returned

childrenUniquelyNamed returned (null for non-directory)

createdBy returned

createdOn non-null value must be returned

data$ize non-null value must be returned 2

defaultAccessList returned

filelD returned

isDirectory non-null value must be returned

isTemporary non-null value must be returned

modifiedBy returned

modifiedOn non-null value must be returned

name returned

numberOfChildren returned

ordering returned

parentlD returned

pathname non-null value must be returned

position returned

read By returned

readOn returned

storedSize returned

subtreeSize returned

subtreeSizeLimit returned

type non-null value must be returned

unlnterpreted returned

versIon returned

An appropriate value for each attribute supported by a FilingSubset implementation
must be returned if requested. Even if an attribute is not supported, an appropriate null
value must be returned (see E.3.3.2).

The value returned for the dataSize attribute should be interpreted by the client as a
close approximation of the actual content size.

FILING PROTOCOL

FILING SUBSET

Table E.3 Open

Attribute If Requested 1

accessList illegal

checksum illegal

childrenUniquelyNamed illegal

created By illegal

createdOn illegal

dataSize illegal

defaultAccessList Illegal

filelD open if type supported 2

isDirectory illegal

isTemporary Illegal

modified By illegal

modifiedOn illegal

name open If type supported2

numberOfChildren illegal

ordering illegal

parentlD open if type supported3

pathname file with this value is opened

position illegal

readBy illegal

readOn illegal

storedSize illegal

subtreeSize illegal

subtreeSizeLimit illegal

type open if value supported4

uninterpreted ignored

version open if type supported3

A FilingSubset service implementation should report an AttributeTypeError if any of
the attribute types designated as "illegal" is supplied in the arguments to Open.

FilingSubset implementations may support this attribute type, but are not required to
do so; if support is not. provided, an AttributeTypeError should be reported when the
client specifies the attribute.

FilingSubset implementations may report AttributeValueErr()r if parentlD is not equal
to nuliFilelD, or version is not lowestVersion or highestVersion and the implementation
does not support the attribute value.

The type attribute may be used to indicate a desired transfer format. This may imply a
transformation of the actual tile content as the file is transferred. If a specified type is
not supported by the implementation, an AttributeValueError ~;hould be reported.

XEROX SYSTEM INTEGRATION STANDARD 121

FILING SUBSET

122

Table E.4 Store

Attribute If a Parameter l Supported Values If not a Parameter"'

accessList set if value supported (defaulted: TRue) set to (defaulted: TRUE]

checksum set If type supported unknownChecksum set appropriately

chlldrenUniquelyNamed set if value supported implementation dependant

createdBy set if type supported currently logged-in user

createdOn set current date and time

data Size initial allocation (hint) approximate file size

defa ultAccesslist set If value supported (defaulted: TRue) set to [defaulted: TRUE]

filelD illegal. AttributeTypeError system-assigned value

isDirectory set FALSE

isTemporary set If value supported FALSE

modifiedBy illegal. AttributeTypeError currently logged-In u,ser

modifiedOn illegal. AttributeTypeError current date and time

set if type supported2 -
name implementation dependant

numberOfChlldren illegal. AttributeTypeError 0

ordering set if value supported defaultOrdering defa ultOrdering

parentlD illegal. AttributeTypeError filelD of resulting parent

pathname set consistent with ances:ry

position set If type supported depends on parent's

ordering

readBy illegal, AttributeTypeError ""

readOn illegal. AttributeTypeError nuliTime

storedsize illegal. AttributeTypeError set appropriately

subtreesize illegal. AttributeTypeError set appropriately

subtreesizeLimit set If value supported nuliSubtreeSizeLimit nuliSubtreeSizeLimit

type set If value supported] tUnspecified • tAsciiText. tUnspecified or tDirectory

or tDirectory

uninterpreted set If type supported null

verSion set If value sUDDorted highestVersion next available

FilingSubset implementations must treat attributes in one of four ways: 1) "illegal"
attributes must be rejected with AttributeTypeError; 2) attributes designated "set" must
not be rejected with AttributeTypeError and must normally accept non-null values
(although an invalid value should be rejected, such as a string which is too long); 3) An
attribute marked "set if value supported" must not result in an AttributeTypeError; the
value of such an attribute may not result in an AttributeValueError if the value is one of
the supported values shown above. Other values for these attributes may result in
AttributeValueError; 4) An attrihute designated "set if type supported" must be rejected
with AttributeTypeError or AttributeValueError if the implementation does not fully
support the type or value, respectively.

The name attribute, ifsupported, may not be specified with the pathname attribute.

The type attribute values tAsciiText, tDirectory, and tUnspecified must be supported.

These values must be assumed if the attribute type is supported by the implementation.

FILING PROTOCOL

--

FILING SUBSET

E.7 Program declaration

The complete declaration of the FilingSubset remote program is given below. All
FilingSubset Courier definitions are identical to the corresponding definitions of the Filing
Protocol.

FilingSubset: PROGRAM 1500 VERSION 1 =
BEGIN

DEPENDS UPON
BulkData (0) VERSION 1,
Clearinghouse (2) VERSION 3,
Filing (10) VERSION 6,
Authentication (14) VERSION 3;

-- TYPES AND CONSTANTS --

-- Attributes (individual attributes defined later) --

AttributeSequence: TYPE ::I Filing.AttributeSequence;
AttributeTypeSequence: TYPE=- Filing.AttributeTypeSequence;
allAttributeTypes: Handle=- Filing.aIlAttributeTypes;

-- Controls --

Control Sequence: TYPE :I Filing.ControISequence;
ControlTypeSequence: TYPE=- Filing.ControITypeSequence;

-- Handles and Authentication --

Credentials: TYPE. Filing.Credentials;

SecondaryType: TYPE :I Filing.SecondaryType;

Handle: TYPE • Filing.Handle;
null Handle: Handle. Filing.nuIiHandle;

Session: TYPE • Filing.Sess~on;

Verifier: TYPE • Authentication. Verifier;

-- Scopes --

ScopeSequence: TYP'E :I Filing.ScopeSequence;

-- REMOTE PROCEDURES -.

-- Logging On and Orr a.

Logon: PROCEDURE [
service: Clearinghouse.Name, credentials: Credentials, verifier: Verifier]

RETURNS [session: Session]
REPORTS [AuthenticationError. ServiceError, Session Error, UndefinedError] ::I

Filing.Logon;

XEROX SYSTEM INTEGRATION STANDARD 123

FILING SUBSET

124

Logoff: PROCEDURE [session: Session)
REPORTS [AuthenticationError, ServiceError, Session Error, UndefinedError) :=II

Filing.Logoff;

Continue: PROCEDURE [session: Session]
RETURNS [continuance: CARDINAL]

REPORTS [Authentication Error, SessionError, UndefinedError] • Filing.Continue;

-- Opening and Closing Files .-

Open: PROCEDURE [attributes: AttributeSequence, directory: Handle,
controls: Control Sequence, session: Session]

RETURNS [file: Handle]
REPORTS [AccessError, AttributeTypeError, AttributeValueError, AuthenticationError,

ControlTypeError, ControlValueError, HandleError, SessionError, UndefinedError) :=II

Filing.Open;

Close: PROCEDURE [file: Handle, session: Session]
REPORTS [AuthenticationError, HandleError, Session Error, UndefinedError] =

Filing.Close;

-- Deleting Files --

Delete: PROCEDURE [file: Handle, session: Session]
REPORTS [AccessError, AuthenticationError, HandleError, SessionError, UndefinedError] =

Filing.Delete;

-- File Transfer --

Store: PROCEDURE [directory: Handle, attributes: AttributeSequence,
controls: Control Sequence, content: BulkData.Source, session: Session]

RETURNS [file: Handle]
REPORTS [Access Error, AttributeTypeError, AttributeValueError, AuthenticationError,

ConnectionError, ControlTypeError, ControlValueError, HandleError, Insertion Error,
Session Error, SpaceError, TransferError, UndefinedError] =- Filing.Store;

Retrieve: PROCEDURE [file: Handle, content: BulkData.Sink, session: Session)
REPORTS [Access Error, AuthenticationError, Connection Error, HandleError, Session Error,

TransferError, UndefinedError] =- Filing.Retrieve;

-- Listing Files in a Directory --

List: PROCEDURE [directory: Handle, types: AttributeTypeSequence,
scope: ScopeSequence, listing: BulkData.Sink, session: Session]

REPORTS (Access Error, AttributeTypeError, AuthenticationError, C;onnectionError.
HandleError, ScopeTypeError, ScopeValueError, Session Error, TransferError,
UndefinedError] :I Filing.List;

-- REMOTE ERRORS --

-- problem with an attribute type or value --

AttributeTypeError: ERROR [problem: ArgumentProblem,type: AttributeType] :I

Filing.AttributeTypeError;

FILING PROTOCOL

FILING SUBSET

AttributeValueError: ERROR [problem: ArgumentProblem,type: AttributeType] •
Filing.AttributeValueError;

-- problem with a control type or value --

ControlTypeError: ERROR [problem: ArgumentProblem, type: ControlType] :II

Filing.ControITypeError;
ControlValueError: ERROR [problem: ArgumentProblem, type: Control Type] •

Filing.ControIValueError;

-- problem with a scope type or value --

ScopeTypeError: ERROR [problem: ArgumentProblem, type: ScopeType] :II

Filing.ScopeTypeError;
ScopeValueError: ERROR [problem: ArgumentProblem, type: ScopeType] ::I

Filing.ScopeValueError';

ArgumentProblem: TYPE. Filing.ArgumentProblem;

-- problem in obtaining access to a file --

AccessError: ERROR [problem: AccessProblem] :1 Filing.AccessError;
AccessProblem: TYPE :II Filing.AccessProblem;

-- problem with a credentials or verifier --

AuthenticationError: ERROR [problem: Authentication.Problem, type: SecondaryType] :I

Filing.AuthenticationError;

-- problem with a bulk data transfer _ ..

ConnectionError: ERIROR [problem: ConnectionProblem] :II Filing.ConnectionError;
ConnectionProblem: TYPE=- Filing.ConnectionProblem;

-- problem with a file handle --

HandleError: ERROR [problem: HandleProblem] :II Filing.HandleError;
HandleProblem: TYPE • Filing.HandleProblem;

-- problem during insertion in directory (or changing attributes) --

InsertionError: ERROR [prob~em: InsertionProblem] • Filing.lnsertionError;
InsertionProblem: TYPE :I Filing.lnsertionProblem;

-- problem during random access operation --

RangeError: ERROR [problem: ArgumentProblem] = Filing.RangeError;

-- problem during logon or logoff --

ServiceError: ERROR [problem: ServiceProblem] :I Filing.ServiceError;
ServiceProblem: TYPE = Filing.ServiceProblem;

XEROX SYSTEM INTEGRATION STANDARD 125

fiLING SUBSET

126

-- problem with a session --

Session Error: ERROR [problem: SessionProblem] :I Filing.SessionError;
SessionProblem: TYPE. Filing.SessionProblem;

-- problem obtaining space for file content or attributes --

SpaceError: ERROR [problem: SpaceProblem] :I Filing.SpaceError;
SpaceProblem: TYPE. Filing.SpaceProblem;

-- problem during bulk data transfer --

TransferError: ERROR [problem: TransferProblem1 :I Filing. TransferError;
TransferProblem: TYPE :I Filing.TransferProblem;

-- some undefined (and implementation-dependent) problem occurred --

UndefinedError: ERROR [problem: UndefinedProblem] • Filing.UndefinedError;
UndefinedProblem: TYPE = Filing.UndefinedProblem;

--INTERPRETED ATTRIBUTE DEFINITIONS --

accessList: AttributeType :I Filing.accessList;
AccessList: TYPE :I Filing.AccessList;

checksum: AttributeType :I Filing.checksum;
Checksum: TYPE :I Filing.Checksum;

childrenUniquelyNamed: AttributeType :I Filing.childrenUniquelyNamed;
ChildrenUniquelyNamed: TYPE :I Filing.ChildrenUniquelyNamed;

createdBy: AttributeType :I Filing.createdBy;
CreatedBy: TYPE :I Filing.CreatedBy;

createdOn: AttributeType :I Filing.createdOn;
CreatedOn: TYPE :I Filing.CreatedOn;

dataSize: AttributeType :I Filing.dataSize;
DataSize: TYPE :I Filing.DataSize;

defaultAccessList: AttributeType :I Filing.defaultAccessList;
DefaultAccessList: TYPE :I Filing.DefaultAccessList;

filelD: AttributeType :I Filing.fileID;
FilelD: TYPE :I Filing.FileID;
nuliFilelD: FilelD :I [0,0,0,0,0];

iSDirectory: AttributeType :I Filing.isDirectory;
IsDirectory: TYPE :I Filing.lsDirectory;

isTemporary: AttributeType :::I Filing.isTemporary;
IsTemporary: TYPE :::I Filing.lsTemporary;

FILING PROTOCOl.

modifiedBy: AttributeType • Filing.modifiedBy;
ModifiedBy: TYPE • Filing.ModifiedBy;

modifiedOn: AttributeType • Filing.modified()n;
ModifiedOn: TYPE. Filing.ModifiedOn;

name: AttributeType II Filing.name;
Name: TYPE. Filing.Name;

numberOfChildren: AttributeType • Filing.nurnberOfChildren;
NumberOfChildren: TYPE. Filing.NumberOfChildren;

ordering: AttributeType • Filing.ordering;
Ordering: TYPE II Filing.Ordering;

pathname: AttributeType :. Filing.pathname;
Pathname: TYPE. Filing.Pathname;

parentlD: AttributeType II Filing.parentID;
ParentlD: TYPE • Filing.ParentID;

position: AttributeType :I Filing.position;
Position: TYPE II Filing.Position;

readBy: AttributeType :I Filing.readBy;
ReadBy: TYPE. Filing.ReadBy;

readOn: AttributeType II Filing.readOn;
ReadOn: TYPE. Filing.ReadOn;

storedSize: AttributeType II Filing.storedSize;
StoredSize: TYPE. Filing.StoredSize;

subtreeSize: AttributeType • Filing.subtreeSize;
SubtreeSize: TYPE. Filing.SubtreeSize;

subtreeSizeLimit: AttributeType II Filing.subtreeSizeLimit;
SubtreeSizeLimit: TYPE. Filing.SubtreeSizeLimit;

type: AttributeType II Filing.type;
Type: TYPE II Filing.Type;

version: AttributeType • Filing.version;
Version: TYPE :I Filing.Version;
lowestVersion: Version :I 0;
highestVersion: Version :I 177777B;

-- BULK DATA FORMATS --

-- Attribute Series Format, used in List --

StreamOfAttributeSequence: TYPE = CHOICE OF {

nextSegment (0) = > RECORD [

segment: SEQUENCE OF AttributeSequence.

XEROX SYSTEM INTEGRATION STANDARD

FILING SUBSET

127

FILING SUBSET

128

restOfStream: StreamOfAttributeSequence],
lastSegment (1) ::I > SEQUENCE OF AttributeSequence};

'"- Line-oriented ASCI] text file format, used in file interchange --

StreamOfAsciiText: TYPE. CHOICE OF {

nextLine (0) • > RECORD [

line: AsciiString,
restOfText: StreamOfAsciiText),

lastLine (1) • > AsciiString};

AsciiString: TYPE = RECORD [

lastByteSignificant: BOOLEAN,

bytes: SEQUENCE OF UNSPECIFIED];

-- FILE TYPES --

-- Clients are encouraged to use these predefined types to identify files that have the specified
characteristics, to promote information sharing --

tUnspecified: Type:. 0; -- nothing is known about the content or attributes ofa file of this
type; it is useful for files that have a private format --

tDirectory: Type:. 1; -- this file is a directory, and it has no content (only children) --

tAsciiText: Type ::I 7; -- this file is not a directory, and its content is comprised of line-orientpd
ASCI] data --

END; -- of FilingSubset--

FILING PROTOCOL

F. PATHNAME SYNTAX

In many applications it is necessary or useful to identify files by their user-sensible names
and not file identifiers. A pathname specifies a hierarchical access path to a file by encoding
the name and version attributes of its ancestors. A qualified pathname is a pathname
prefixed by a designation of its network location.

In order to promote information sharing, it is strongly recommended that the following
syntax be used in any user interface involving qualified pathnames (pathnames which
include a service designation).

QualifiedPathname: = Service Pathname

Service: = (ClearinghouseName)

ClearinghouseName: = ObjectString:DomainString:OrganizationString

ObjectName: = Clearinghouse.ObjectName

DomainName: = Clearinghouse.DomainName

OrganizationName: = Clearinghouse.OrganizationName

Pathname : = NameVersionPairList

NameVersionPairList: :: NameVe'rsionPair I NameVersionPair/NameVersionPairList

NameVersionPair : = Name I Name!Version

Name : = [-- string with reserved characters escaped not exceeding 10() hytes in
unescaped form ~-]

Version: :: [-- string of digits with numeric value in the range (0 .. 666;]6) -- J

I' + -- i.e. highestVersion --
1'- -- i.e. lowestVersion --

Note that the syntax defined for pathnames IS consistent with the definition of the
pathname attribute in section 4.2.2.5.

Example:

(Development:Office Systems:Xerox)Fiiing/ProtocoI/Pathname Syntax Definition! +

This pathname identifies the highest version of the file having the name "Pathname Syntax
Definition" within the "Protocol" subdirectory of the "Filing" directory. The named tile i:-i
stored with the "Development:Office Systems:Xerox" file service.

XEROX SYSTEM INTEGRATION STANDARD 129

PATHNAME SYNTAX

130 FILING PROTOCOL

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	000a
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130

