/Jm

MAINSAIL® Combined Release Notes
Version 12.10 through 12.15 Releases

11 July 1991

={ xibax

Copyright © 1989, 1990, 1991, by XIDAK, Inc., Palo Alto, California. All rights reserved.

The software described herein is the property of XIDAK, Inc., and is a confidential trade secret of XIDAK. The
software described herein may be used only under license from XIDAK.

MAINSAIL is a registered trademark of XIDAK, Inc. MAINDEBUG, MAINEDIT, MAINMEDIA, MAINPM,
Structure Blaster, Orion, and SQL/D are trademarks of XIDAK, Inc. CONCENTRIX is a trademark of Alliant
Computer Systems Corporation. Amdahl, Universal Time-Sharing System, and UTS are trademarks of Amdahl
Corporation. Acgis, Apollo, DOMAIN, GMR, GPR, and Series 10000 are trademarks of Apollo Computer Inc.
UNIX and UNIX System V are trademarks of AT&T. AViiON, DASHER, DG/UX, ECLIPSE, ECLIPSE
MV/4000, ECLIPSE MV/8000, ECLIPSE MV/10000, and ECLIPSE MV/20000 are trademarks of Data General
Corporation. DEC, PDP, TOPS-10, TOPS-20, VAX-11, VAX, MicroVAX, MicroVMS, ULTRIX-32, and
VAX/VMS are trademarks of Digital Equipment Corporation. The KERMIT File Transfer Protocol was named
after the star of THE MUPPET SHOW television series. The name is used by permission of Henson Associates,
Inc. HP-UX and Vectra are trademarks of Hewlett-Packard Company. Intel is a trademark of Intel Corporation.
CLIPPER, CLIX, Intergraph, InterPro 32, and InterPro 32C are trademarks of Intergraph Corporation. IBM is a
registered trademark of International Business Machines Corporation. AIX, RISC System/6000, and System/370
are trademarks of International Business Machines Corporation. MC68000, M68000, MC68020, and MC68881 are
trademarks of Motorola Semiconductor Products Inc. ORACLE is a registered trademark of Oracle Corporation.
INGRES for DEC VAX/VMS, INGRES for IBM VM/CMS, and INGRES for UNIX are tradémarks of Relational
Technology, Inc. SPARC, Sun Microsystems, Sun Workstation, and the combination of Sun with a numeric suffix
are trademarks of Sun Microsystems, Inc. WIN/TCP is a trademark of The Wollongong Group, Inc. WY-50,
WY-60, WY-75, and WY-100 are trademarks of Wyse Technology.

The use herein of any of the above trademarks does not create any right, title, or interest in or to the trademarks.

-ji-

Table of Contents

1. Introduction. e

1. MAINSAIL(R) Release Notes Version 12.15Release

2., Introduction. 0.

3. Recentand ProposedChanges

3.1.
3.2.

$commandLineArgs No Longer Supported.
24-Bit Mode on IBM’s AIX on IBM System/370 XA

.........

.........

............

............

............

3.3. disconnserver() Should Be Called instead of close() in CRPC Facility

4. Clarification of Documentation

4.1.
42.
43.
44.
45.
4.6.
4.7.
48.
4.9.
4.10.
4.11.
4.12.

The Definition of DIV and MOD with Negative Arguments . .
ArithmeticOverflow
Classes Declared in Different Intmods Are Different Classes .
$waitForDescendants
PDFI/O i e e e e e e e e e e e e
MAINSAIL Swap Files ("swpxxx.tmp™)
PC Monitoringin MAINPM.
The Use of MAINPM’s "TRACECHUNKS" Command . . .

Entering a Debugging Session,

The Easiest Way to Insert a Page Mark in MAINVI.

$characterWrite ParameterctelBits

S. BugsFixed 00000

5.1.
52.
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.

6.1.
6.2,
6.3.
6.4.
6.5.

Language o000 e e

MAINEDIT

7. KnownProblems.

7.1.

Some Versions of UNIX Kill Processes When Low on Memory

............

............

............

.........

.........

.........

............

............

............

............

............

............

...........

oooooooooooo

............

............

............

............

............

............

............

............

............

............

.........

............

.........

............

...........

............

7.2. $descendantKilledExcpt and the MAINSAIL STREAMS Scheduler., .

- {ii -

W Lt th

24

29
30
30
33

36
36
36

7.3.
7.4.
7.5.
7.6.
7.1.

PCMonitoring Status i e e e e e e e e e e e e
SIGFPE on Intergraph’s System V UNIX on Interpro 32C
$userID on Intergraph’s System VUNIX onInterpro32C.
SPARCstation Operating System VersionNumbers
sbikQvs.malloc() L L o L L oo L oL e e e e e e e e

II. MAINSAIL(R) Release Notes Version 12.14Release

8. Introduction. . . .

...............................

9, Recentand ProposedChanges00
Caseof FileNames o v v v v v v v e e
9.2. fileSize Parameterto "open" oo a 0w e
9.3. SupportedPlatforms L0 L L e e e

9.1

10. Release Highlights

...............................

11. Clarification of Documentation. « ¢ . v . 4 e o v e e v
Address Calculation of Modifies and Produces Arguments
Informational Exceptions 0oL
MAINPMPCMORIOTING « « o v e e e e e e e e e e e e e
MM"di"Commandot e e e e e e e e e e
Freeing the MRPCMOD Struct after Calling the _final Function in a C RPC Client .
Specifying the Target System in $moduleInfo
‘Where $copyFile Leaves File Positions e
Detecting When a Child Process Has Exited.
MAINED ".B"and ".F'Commands
cmdMatchand "?" L L L 0L L Lo L L s e e e e e e e e
$dateAndTimeCompare L ..o e e e e
11.12. VAX/VMS File and Directory Manipulation Procedures

11.1.
11.2.
11.3.
114,
11.5.
11.6.
11.7.
11.8.
11.9.
11.10.
11.11.

12. BugsFixed . . .

12.1.
12.2.
12.3.
12.4,
12.5.
12.6.
12.7.
12.8.

MAINEDIT .

13. Enhancements . .

13.1.
13.2.
13.3.
13.4.
13.5.
13.6.
13.7.
13.8.

Language . .
Runtime System
Compiler . .
Utilities . . .

...............................

...............................

...............................

...............................

...............................

...............................

..............................

...............................

...............................

...............................

...............................

..............................

.............................

...............................

...............................

...............................

...............................

...............................

37
37
38
38
38

41

42

43
43
43
43

45
45
46
46
47
47
47
47
43
48
48
48
49

50
50
52
56
57
57
58
58
59

60
60
5
76
76
83
86
90
91

14, KnownProblems o . e e e e e e e 92

14.1. $descendantKilledExcpt and the MAINSAIL STREAMS Scheduler 92
14.2. SOCPRO and PTYPRO on IBM’s ATX on IBM RISC System/6000 Ce 92
143. PCMonitoring Status L L. 0. e e e e e e e e e 92
III. MAINSAIL(R) Release Notes Version 11.30Release. 95
15. Introduction e e e e e e e e e e e e e e e e e e 96
16. Recentand Proposed Changes «t oo oo 97
16.1. $formParagraph. Lo e e 97
17. Clarification of Documentation. « v . v o v 4w e e e e e e 98
17.1. Making a Bootstrapon SPARCSunOS., 98
17.2. pageDisposeo o e e e e e e e e e e e e e e 98
17.3. - Initializing Time Zone Parameters « .« o . 4.4 93
17.4. The SUN3 Display Module and CommandTool 99
17.5. MAINED {#-].{n}[BIF]Commands 99
18. BugsFixed L Lo e e e e e e e e e e e e e 100
18.1. Runtime System. oL L0 e e e e e e e e e e 100
182. Compiler L Lo e e e e e 100
183. Utilities L L ..o e e e e e e e e e e e e e e e e 103
184, MAINEDIT 0 v v v e v et e e e e e e e e e e 103
18.5. STREAMS.« . . o o 0 0 i it d e e e e e e e e e e e 104
19. Enhancements ottt v e e e e e e e e e e e e e e e 105
191, Language vt ot e 105
192, Compiler Lo o s e e e e e e e e 105
193. MAINEDIT 0 b v ittt ittt it e e e e e e e e e e e e 106
194, STREAMS. o i i it e e i e e e e e e e e e e e 108
20. KnownProblems L L0 e e e e e e e e e e e e e 110
20.1. SPARCstation Operating System VersionNumbers. 110
20.2. MAXMEMORYSIZEunder AIX. v o v v v v v v v 110
IV. MAINSAIL(R) Release Notes Version 1128 Release 113
21, Introduction L 0L e e e e e e e e e e e e e e e e 114
22, RecentandProposedChanges 0. 115
23. Clarification of Documentation. 0o 0w e e e e e . i16
23.1. ArnaysDeclared with Constant Bounds 116
232, $imitRand L L. L Lo s s e e e e e e e 116
23.3. MAINPM "LIST" Command e e e e e e 116
23.4. Apollo’s DOMAIN/IX on Apollo PRISM Considerations. 116

-V -

24, BugsFixed L.

24.1.
24.2.

Runtime System.
Compiler

25. Ephancements

25.1.
25.2.
25.3.
25.4.

Language
Runtime System.
MAINEDIT
Structure Blaster L.

................

................

................

................

................

................

................

V. MAINSAIL(R) Inverse Release Notes Version 12.10 - Version 11.27.

25.5.
25.6.
25.7.
25.8.
25.9.
25.10.
25.11.
25.12.
25.13.

Introduction
Language
Runtime System.
Utilities

49-1. Sample "TRACECHUNKS" Session

6.1.6-1.
6.3.2-1.

$memoryManagementlnfo
SUN-Specific Keypad Mapping for MEDT

................
................
................
................
................
................

................

................
................

................

19.3.3-1. A Program to Determine Mapped/Unmapped Key Codes Generated by a Display Module .

194.1-1.

$waitForDescendants (New Generic Instance Only)

................

118
118
118

120
120
122
122
123

125
126
126
128
129
131
131
131
131
132

14
29
31
107
108

List of Tables

6.1.2-1. S$pmextCommandLineArg et e e e e e e 24
13.1.4-1. New File Directory Manipulation Procedures. 62
13.1.5-1. openand $createUniqueFile 68
13.1.9-1. $flush oL L e e e e e e e e e e e e e 71
13.1.10-1. $commandlineArgs e e 71
13.1.11-1. $changeAreaParms u e e e e e e e 72
13.1.12-1. $mergeArea e e e e e e e e e e e e e e e e 72
13.0.13-1. Sreclaim. L L o o e e e e e e e e e e e e e e 73
13.1.15.1-1, $tmlnm L oL L o e e e e e e e e e e e e e e e e e e 74
13.1.15.2.1-1. $lookupSynonym. L 75
13.7.2-1. $waitForDescendants (New Instance Only) 90
13.7.3-1. S$caponicalUserIDo e e e e e 91
25.1.1-1. $length (Generic). e e e e e e e e e e e e e 120
25.1.2-1. $mininteger and $minLongnteger, 121

- Vii -

1. Introduction

This combined release note documents the changes made between Versions 12.10 and 12.15 of MAINSAIL. The
Version 12.10 manual set (the most recently published complete set of documentation) should be used in
conjunction with the following release notes, all included in this combined release note, in order to have a complete
description of the features of Version 12.15:

« "MAINSAIL Inverse Release Notes, Version 12.10 - Version 11.27",

« "MAINSAIL Release Notes, Version 11.28 Release",

"MAINSAIL Release Notes, Version 11.30 Release",
* "MAINSAIL Release Notes, Version 12.14 Release",

and "MAINSAIL Release Notes, Version 12.15 Release".

Because it has been over two years since the last documentation set has been issued, and a large number of features
have been documented since then only in release notes, it has been decided to issue a combined release note with an
index to make it easier to find features added since the Version 12.10 release. The release notes in this combined
note are included in reverse order, from most recent to least recent.

)

MAINSAIL® Release Notes
Version 12.15 Release

=4 XIDAK

2. Introduction p

This release note documents the changes made between Versions 12.14 and 12.15 of MAINSAIL. The Version
12.10 manual set (the most recently published complete set of documentation) should be used in conjunction with
the following release notes in order to have a complete description of the features of Version 12.15:

« "MAINSAIL Inverse Release Notes, Version 12.10 - Version 11.27",

« "MAINSAIL Release Notes, Version 11.28 Release”,

« "MAINSAIL Release Notes, Version 11.30 Release”,

+ "MAINSAIL Release Notes, Version 12.14 Release",

and the current release note.

Version 12.15 object modules cannot be run under previous Version 11 or Version 12 releases, and object modules
from previous Versions cannot be run under Version 12.15; you must rebuild all intmods and recompile all object
modules. In addition, the layout of data structures in memory has changed between Version 11 and Version 12; all
Version 11 (but not older Version 12) Structure Blaster data images must be translated or remade.

3. Recent and Proposed Changes

3.1. $commandLineArgs No Longer Supported

The $commandLineArgs array, introduced as a temporary feature in the last release, is no longer supported. Instead,
use the new procedure $nextCommandLineArg (see Section 6.1.2).

3.2. 24-Bit Mode on IBM’s AIX on IBM System/370 XA

On IBM’s AIX on IBM System/370 XA, 24-bit mode is no longer supported. The only form of the "cc" command
that works to build a MAINSAIL bootstrap is now:

cc -Hxa -0 mainsa mainsa.s <msDir>/m.o<eol>

where <msDir> is the MAINSAIL directory.

3.3. disconnserver() Should Be Called instead of close() in C RPC Facility

When a C program using the RPC (remote procedure call) facility closes its connection, the new function
disconnserver() should be called instead of close(). Its argument should be the value returned from connserver().

4. Clarification of Documentation

4.1. CONF "FOREIGNMODULES" Command

The default foreign modules specified in the system configuration file supplied by XIDAK should always be
included in any "FOREIGNMODULES" command issued by the builder of a MAINSAIL bootstrap. The default
foreign modules, where present, provide services that are needed by the runtime system (on some platforms, there
may not be any default foreign modules). The interfaces to the default modules themselves are not documented and
are subject to change.

To include the default foreign modules in your own list of foreign modules, make the first line of your
"FOREIGNMODULES" argument a string consisting of just an equals sign ("="). For example, to declare the
foreign modules ABC and XYZ:

FOREIGNMODULES<eol>
=<eol>

ABC<eol>

XYZ<eol>

The effect of building a MAINSAIL bootstrap without the default foreign modules is undefined, although on many
systems you will get an error when you attempt to link the bootstrap.

4.2. The Definition of DIV and MOD with Negative Arguments

Hardware designers are divided (no pun intended) about how integer DIV and MOD should work with negative
numbers. Some favor the convention that integer division truncates toward zero, others that it truncates toward
negative infinity. Neither convention is obviously "comect”. The following are examples of DIV operations under
each convention:

Truncate toward zero Truncate toward negative
7 DIV 3 = 2 7 DIV 3 = 2

-7 DIV 3 = -2 -7 DIV 3 = -3

7 DIV -3 = -2 7 DIV -3 = -3

-7 DIV -3 = 2 -7 DIV -3 = 2

The truncate toward zero convention has the advantage of obeying these relations that aiso apply to floating point
numbers:

a DIVDb =~ (-a DIVDb) = - (a DIV -b) = -a DIV -b

The truncate toward negative infinity convention has the advantage that division by positive powers of two can be
implemented as an arithmetic right shift for both positive and negative dividends, since, e.g.:

-1 DIV 4 = -1
the same as the result of a right shift of two bits.
MOD is usually defined in terms of DIV by the relation:
(aDIVb) *b +aMODb=a
ie.:
a MOD b = a - (a DIV b) * b

The following examples show MOD operations obeying this relation under each convention, corresponding to the
DIV operations above:

Truncate toward zero Truncate toward negative
7 MOD 3 =1 7 MOD 3 =1

-7 MOD 3 = -1 =7 MOD 3 = 2

7 MOD -3 =1 7 MOD -3 = -2

-7 MOD -3 = -1 -7 MOD -3 = -1

For reasons of efficiency, XIDAK implements DIV and MOD on each machine with whatever instruction the
hardware provides. This leads to different results for these operations on different machines when negative integers
are involved. XIDAK does not plan to change this behavior, because it would require extra tests that would result in
significantly slower DIV and MOD on some machines (the code generated for DIV and MOD would have to
implement the logic of the routines below, which is non-trivial).

The following inline procedures can be used to implement the truncate toward zero convention:

INLINE INTEGER PROCEDURE iDivZ (INTEGER dividend,divisor):;
BEGIN
IF NOT divisor THEN errMsg("iDivZ: division by zero","%, fatal);
RETURN (
IF dividend > 0 THEN
IF divisor > 0 THEN dividend DIV divisor
EL - (dividend DIV - divisor)
EL IF divisor > 0 THEN - (- dividend DIV diwvisorx)
EL, ~ dividend DIV - divisor);
END;

INLINE INTEGER PROCEDURE iModZ (INTEGER dividend,divisor);
BEGIN
IF NOT divisor THEN errMsg("iModZ: division by zero","",fatal);
RETURN (

IF dividend > 0 THEN dividend MOD abs(divisor)

EL - (- dividend MOD abs{(divisor)));
END;

The following inline procedures can be used to implement the truncate toward negative infinity convention:

INLINE INTEGER PROCEDURE iDivN (INTEGER dividend,divisor);
BEGIN
IF NOT divisor THEN errMsg ("iDivN: division by zero","", fatal);
RETURN (
IF dividend > 0 THEN
IF divisor > 0 THEN dividend DIV divisor
EL - (dividend DIV - divisor) -
(IF dividend MOD - divisor THEN 1 EL 0)
EL 1IF divisor > 0 THEN - (- dividend DIV divisor) -
(IF - dividend MOD divisor THEN 1 EL 0)
EL - dividend DIV - divisor);
END;

INLINE INTEGER PROCEDURE iModN (INTEGER dividend,divisor);
BEGIN
INTEGER i;
IF NOT divisor THEN errMsg("iModN: division by zero","", fatal);
IF dividend > 0 THEN

IF divisor > 0 THEN RETURN (dividend MOD divisor)

EB i := dividend MOD - divisor;

IF i THEN i .+ divisor END

EL IF divisor > 0 THENB

i := - dividend MOD divisor;
IF i THEN i := divisor - i END
EL RETURN (- (- dividend MOD - divisor)):;
RETURN (i) ;

END;
Analogous procedures can be written for long integers.

[UCR 90-470]

4.3. Arithmetic Overflow

MAINSAIL does not support a portable notion of arithmetic exceptions, especially overflow, and particularly
floating-point overflow. The notion of overflow visible to a MAINSAIL program is whatever notion is supported by
. the underlying hardware, with all its quirks. Since different platforms have different notions of overflow, overflow
is not a portable concept. Programs should not be written expecting the rules for overflow to be the same across
different platforms.

In particular, on some platforms, intermediate calculations are done using more precision than can be represented by
variables of the given type. Thus, overflow (as defined by the underlying hardware) might occur only when a result
is finally stored in memory, since the representable range of exponents is smaller for memory operands than for
intermediate operands. Usually results are stored in memory fairly near where they were calculated. But the store
could be far away from the calculation, maybe even in a different procedure.

For example, a value returned by a Return Statement might be too large to be representable in memory, but not too
large for the intermediate representation. It is possible for such a value to be calculated by the processor with no
overflow, and returned to the caller where it is then stored in a variable, at which point overflow would occur. A
programmer expecting overflow to occur when the value was originally calculated would be disappointed.
According to the processor’s notion of overflow, the calculation didn’t overflow at all; overflow occurred only when
the caller eventually stored the result in memory.

The above observations apply to integer overflow as well as to floating point overflow. For example, integers on the
IBM System/370 occupy 16 bits in memory, but all integer intermediate calculations are done using 32 bits. This is
not an arbitrary decision that was made when XIDAK implemented MAINSAIL on the System/370; it is how the
System/370 16-bit instructions behave. An integer procedure could retum the result of multiplying, say, 200 times
200, which is outside the range of integers on the System/370. But because the result is returned in a 32-bit register,
no overflow would occur within the procedure. Overflow would only occur when the caller finally stored the result
in memory as a 16-bit integer, and even then it would only be detected if the ACHECK compiler option were set.

Programs that calculate values that are outside the allowed range of values for a given type just are not legal
programs, and the results of executing such programs are not defined. XIDAK does what it can, within reason, to do
something sensible, but there are no guarantees. Overflow ultimately occurs only when the processor says it occurs.
[UCR 90-125]

4.4. Classes Declared in Different Intmods Are Different Classes
Consider the following three short modules:

BEGIN "fool"™

$DIRECTIVE "SAVEON", "NOGENCODE";

CLASS c;

MODULE e (PROCEDURE d (POINTER(c) p))-;
PROCEDURE d (POINTER(c) p):;;

END "fool"

BEGIN "foo2"

SDIRECTIVE “SAVEON", "NOGENCODE";

CLASS c;

MODULE e (PROCEDURE d (POINTER(c) p)):
END "foo2"

BEGIN "foo3"

RESTOREFROM "fool";

RESTOREFROM "foo2";

POINTER(c) q; # this "c" is foo2Sc
INITIAL PROCEDURE;

d{q);

END "foo3"

-10-

FOO3 includes the definitions of the class ¢ when it restores from FOO1 and FOO2. However, the class ¢ declared
in those two modules is actually two classes: fool$c and foo2$c.

In FOO3, d(q) is compiled as foo1$d(q) rather than e.d(q), since outers take precedence over fields. fool$d’s
parameter p is classified with fool$c, whereas q is classified with foo2$c. Since fool$c and foo2$c come from

different declarations, they are not the same class. Hence, the compiler complains of an argument mismatch when
compiling FOO3.

There are two simple ways to eliminate the error from this code:
« Change the declaration of q to be "POINTER(foo1$c) q".
* Reverse the RESTOREFROM’s (this would classify q with fool$c).

Neither of these simple changes is ideal, since the fundamental problem is the duplicate declarations of ¢ and e in
fool and foo2. A better change is to move the duplicate declarations into a third common module which is restored
from by fool and foo2.

[UCR 91-19]

4.5. $waitForDescendants
The description of $waitForDescendants in the "MAINSAIL STREAMS User’s Guide" says:

If the array {[children] is omitted or nullArray is given,
it waits until all of its children have died.

The wording should be amended to say that it waits for all the children in existence at the time of the call to
$waitForDescendants to die. New children can come into existence during the call for $waitForDescendants.

In order to wait for ALL children of the calling coroutine to die, even those created during a call to
$waitForDescendants, do:

WHILE $thisCoroutine.$down DO $waitForDescendants;

[UCR 90-430]

4.6. PDFI/O

PDF is a format that specifies the representation of individual data types in a file. The individual data in the file are
not "tagged"”, so it is not possible to read the file unless the sequence of data types in the file is known. For example,
if you write one INTEGER, followed by one REAL, followed by one LONG BITS with PDF I/O, you must read the
same data using PDF 1/O with an INTEGER read, followed by a REAL read, followed by a LONG BITS read.
Otherwise, the data will not be correctly interpreted.

-11-

4.6.1. PDFY/O and $storageUnit/$page 1/O

$storageUnit I/O (using the procedures $storageUnitRead and $storageUnitWrite) and $page I/O (using the
procedure $pageRead and $pageWrite) simply copy the bytes at the specified address to a file or vice versa, with no
modification. These procedures do not understand or interpret the data written as MAINSAIL data types: the data
read or written are just a sequence of bytes.

Each procedure performing PDF I/O must know the data type of each value read or written. If a procedure does not
have a way to specify the data type of the datum read or written, it does not know how to do the translation to or
from PDF format, and so cannot support PDF 1/O.

$pageRead, $pageWrite, $storageUnitRead, and $storageUnitWrite do not have any way of specifying the data
type(s) of the data involved. They may be given arbitrary addresses at which any sort of data could be stored.
Therefore, they cannot support PDF translations.

By contrast, read and wiite are generic procedures, so a different instance procedure is called for each data type, and
the appropriate PDF translation for that type can be performed. The other procedures that perform PDF 1/O
(including $characterRead/$characterWrite) all operate on text, and so perform translations to and from the PDF
character set.

4.6.2. PDF /O and $structureRead

In both the dataFile and textFile forms, $pdf is valid in ctrIBits to $structureRead. If this bit is set or if the file is
open for PDF I/O, then $structureRead reads a PDF image from the file. If $pdf is not set in ctrIBits and if the file is
not open for PDF I/O, $structureRead automatically determines the format of the image in the file and reads it
accordingly. This automatic detection introduces some overhead during $structureRead. Also, the heuristic used to
detect what type of image resides in the file is not foolproof and could give the wrong result. For these reasons, the
$pdf bit should be specified if the image is known to be a PDF image.

[UCR’s 91-51, 91-115]

4.7. MAINSAIL Swap Files ("swpxxx.tmp")

If MAINSALIL opens a swap file during execution, it is deleted when MAINSAIL retumns nommally back to the
operating system. The swap file is opened with the delete bit set so that when it is closed, it is deleted.

If MAINSAIL does not exit normally, e.g., if you type CTRL-C or the process is otherwise killed, then the logic that

closes all open files is not executed, and hence the swap file is not deleted. This also happens if execution starts in
foreign code. [UCR 91-111]

-12-

4.8. PC Monitoring in MAINPM
PC monitoring may be disabled during directory manipulations, such as creating, moving, deleting, or renaming
directories. This is due to the inability of the child process that is created on some operating systems to perform

these tasks to handle the PC interrupt. If your program does much directory manipulation, your PC monitoring
results may be inaccurate.

4.9. The Use of MAINPM’s "TRACECHUNKS" Command

Several questions have arisen on the use of the MAINPM "TRACECHUNKS" command, introduced in Version
12.14. These are some clarfications to the documentation in the "MAINSAIL Release Notes, Version 12.14
Release™:

« It is not necessary to issue the "PC" command in order to use the "TRACECHUNKS" command.

« It is not necessary to compile to the modules in which you wish to trace chunks with the "MONITOR"
compiler option.
* If you give either the "NOMONITORLIB" or "NOMONITORMODULE" MAINPM command, or if
information from $KERMOD shows up in your "TRACECHUNKS" listing, you should give the
command "NOMONITORMODULE $KERMOD". Information about SKERMOD (the MAINSAIL
kemel) is unlikely to be useful to the average MAINSAIL user.
A sample session with the "TRACECHUNKS" command is shown in Figure 4.9-1. Note that SAMPLE is compiled
with the "DEBUG" compiler option, which includes instruction maps in the intmod so that the statement text can be
written in the "TRACECHUNKS" listing.

{UCR 91-20]

4.10. Entering a Debugging Session
There are four basic ways to get into a debugging session:
« AnM command to establish a module context, followed by B or T command to set a breakpoint in that
module, followed by an E command to execute a program that (presumably) hits the breakpoint in the
module.

+ A K command to set a count break followed by an E command to run a program (which gives control to
the debugger when the specified number of debuggable procedures have been entered).

« A "DEBUG" response to the "Error response:" prompt.

« A call to $debugExec from a program.

-13-

*compil<eol>

MAINSAIL (R) Compiler

Copyright (c) 1984, 1985, 1986, 1987, 1988, 1989, and 1990
by XIDAK, Inc., Palo Alto, California, USA.

compile (? for help): /p/sample.msl,<eol>

> debug<eol>

> <eol>

Opening intmod for $SYS from
intlib(/std/12/14/sun3/mainsail/sys-um2.ilb)>$sys-um20

/p/sample.msl 1 2
Objmod for SAMPLE stored on sample-umZ.obj
Intmod for SAMPLE stored on sample-um2.int

compile (? for help): <eol>
*mainpm<eol>

MAINPM (tm) (type ? for help)

Copyright (c) 1984, 1985, 1986, 1987, 1988, 1989, and 1990
by XIDAK, Inc., Palo Alto, California, USA.

MAINPM: monitormodule sample<eol>

MAINPM: tracechunks<eol>

MAINPM: execute sample<eol>

Size of hash bucket: 131<eol>

Next key to be hashed (eol to stop): abc<eol>

36

Next key to be hashed (eol to stop): de<eol>
21 '

Next key to be hashed (eol to stop): f<eol>
45

Next key to be hashed (eol to stop): <eol>
Trace data in z29662.tmp

MAINPM: list tty<eol>

Total real time: 12 seconds

Total cpu time: .440 seconds

Total chunk space usage: 480

Total string space usage: 3774

Analyzing trace data...

Deleted z29662.tmp

Printing trace data...

Figure 4.9-1. Sample "TRACECHUNKS" Session {continued)

- 14 -

module{.proc}.offset Sclear/
{file filePos} S$dispose still
{source text} new’s dispose’s collects Area allocated

Opening intmod for SAMPLE from sample-um2.int

Opening intmod for $SYS from
intlib(/std/12/14/sun3/mainsail/sys—um2.ilb)>$sys—um20

SAMPLE.INITIALPROC.280 4 4 0 0 0
/p/sample.msl 2598

IF NOT s := ttyRead THEN DONE;

SAMPLE.INITIALPROC.228 1 1 0 0 0

/p/sample.msl 2512
bucketsize := cvi(ttyRead);

MAINPM: quit<eol>

Figure 4.9-1. Sample "TRACECHUNKS" Session (end)

4.11. The Easiest Way to Insert a Page Mark in MAINVI
The easiest way to insert a page matk in MAIN VI is to issue the command ":swm p". The ":swm" command allows

MAINED-specific commands to be issued (in this case the "P" command to insert a page mark). Thus, all
commands available in MAINED are also available from MAINVI.

4.12. $characterWrite Parameter ctriBits
The correct declaration of the system procedure $characterWrite is:
PROCEDURE ScharacterWrite
(POINTER (textFile) €£;
LONG INTEGER numCharacters;

CHARADR memCharadr;
OPTIONAL BITS ctrlBits);

Previous documentation omitted the ctrlBits parameter.

-15-

5. Bugs Fixed

5.1. Language

5.1.1. $cpuTimeResolution

$cpuTimeResolution was set incorrectly on some UNIX systems. [UCR 90-452]

5.2. Runtime System

5.2.1. $moveCoroutine and Child Coroutines

When $moveCoroutine was called to move a coroutine and its children to someplace else in the coroutine tree, it lost
the children; i.e., they were pruned from the coroutine tree and never reinserted.

The form of $moveCoroutine that moves only a single coroutine and promotes the coroutine’s children to replace
the coroutine being moved (i.e., the form with the $nonRecursive bit set in ctiiBits), worked fine. [UCR 91-43]
5.2.2. Shert-Array Check and newUpperBound

MAINSAIL is supposed to check at runtime when a short array exceeds the allowable bounds when the array is first
allocated and also when its bounds are adjusted by means of newUpperBound. MAINSAIL was doing the check
properly when the array was allocated, but not for calls to newUpperBound. This bug has been fixed;
newUpperBound now enforces the same short array rules as the procedure "new". [91-96]

5.2.3. $strToDateAndTime

$strToDateAndTime got a segmentation violation if no time zone was specified in the input string. [UCR 91-12]
5.2.4. $removeDateAndTime

$removeDate AndTime documentation says it should remove either a date, a time, or a date followed by a time.
However, it did not correctly remove a date by itself. [UCR 90-53]

-16 -

5.2.5. Conversion to (Long) Integer of Values with Fractional Part near .5 on IBM RISC System/6000 UNIX

The MAINSAIL routine that implements rounding on the IBM RISC System/6000 UNIX used to consider only the
high-order 32 bits of a floating point value’s fractional part when deciding whether to round up or down; any
remaining bits were ignored. Thus, if the following were all true:

« the fractional part occupied more than 32 bits, where the high-order bit was set, the next 31 bits were zero,
and the remaining bits were nonzero (so that the fractional part denoted a number that slightly exceeded
.5), and

« the low order bit of the integer part was zero (so that the integer part denoted an even number),

then when the number was rounded to (long) integer, the routine would ignore the nonzero low order bits of the
fractional part, which made the fractional part appear to be exactly .5. IEEE rules for rounding specify that if a
number is exactly halfway between the two closest values it could be rounded to, the number is to be rounded to the
value with low-order bit equal to zero. Thus, 2.5 would be rounded down to 2, whereas 3.5 would be rounded up to
4. [UCR 91-119]

5.3. Compiler

5.3.1. Optimizer Error "changeLoopBBNum: expected invariant CSE"

The optimizer issued the error message "changeL.oopBBNum: expected invariant CSE" when it encountered a loop
containing two or more loop-invariant interface variables of another module, e.g., mod.itfl and mod.itf2. [UCR’s
90-463, 90-466]

5.3.2. Optimizer and Interface Fields Accessed by load/store

The optimizer binds variables to registers over certain regions of a program in order to reduce the number of
memory references and thereby speed up the program’s execution. However, the optimizer was binding interface
fields of the current module to registers even within regions that might have accessed those interface fields by other
paths, or aliases.

For example, consider a loop that accessed interface fields both by their names and by means of the built-in
procedures "load” and "store", using thisDataSection as the base address and the fields’ displacements. Since the
fields were bound to registers over the loop, the changes made by assignments to the fields using the fields’ names
were reflected only in the registers that the fields were bound to, and not in memory (at least until the end of the
region, when the registers were stored if necessary). Meanwhile, the values loaded from memory by means of the
procedure "load" were obsolete, since the fields’ current values existed only in registers. Likewise, the values stored
into memory by means of the procedure "store” weren’t reflected in the registers to which the fields were bound.

The optimizer was fixed so that it no longer binds an interface field of the current module to a register if either:

-17-

« the field is modified within the region and any of its possible aliases are accessed within the region, or
« any of the field’s possible aliases are modified within the region.

[UCR 91-162]

5.3.3. Optimizer and Handle Statements

The optimizer sometimes generated bad code for Handle Statements because it made invalid assumpuons about
what happened when an exception was raised. [UCR 91-83]

5.3.4. Bad Statement Map When Macro SOURCEFILE’s Another File

A bad statement map was generated for a procedure that called a macro that first SOURCEFILE’d another file (to
get statements) and then called another procedure. The bad map eventually elicited a "setPos failed" error when
DISASM was run if the file that was SOURCEFILEd was larger than the file that was originally compiled. [UCR’s
91-109, 91-150]

5.3.5. Bad Code for Floating Point Expressions on MIPS R2000

The MIPS R2000 code generator sometimes generated bad code for complicated floating point expressions because
the code generator had made incorrect assumptions about the registers affected by certain floating point instructions.
[UCR’s 90-464, 90-469]

5.3.6. $collectLock Not Decremented after Return from FLI Call on IBM RISC System/6000 UNIX
$collectLock was not decremented after return from an FLI call on the IBM RISC System/6000 UNIX if the call had
collectable parameters. [UCR 90-461]

5.3.7. Spurious Errors Compiling FLI Modules on PRISM and IBM RISC System/6000

On the PRISM and the IBM RISC System/6000, a series of spurious error messages was issued when an FLI
interface procedure had at least eleven more parameters than the FLI module’s first interface procedure:

passArgsToCallee: expected pred list to be empty
Error Response:

passArgsToCallee: expected succ list to be empty
Error Response:

regName: expected register
Error Response:

-18-

[UCR 91-79]

5.3.8. Code Generator Error "decKeepVal: register not kept"

Several different code generators issued the message "decKeepVal: register not kept" when compiling procedure
calls with many modifies parameters for which were passed field variables of which the pointer part was a
subscripted variable, e.g.:

PROCEDURE p (MODIFIES INTEGER il,i2,...,in);

CLASS ¢ (INTEGER il,i2,...,in; ...):
POINTER (c) ARRAY(*) ary;

INTEGER 1i;
p(ary[i].il,ary[i].i2,...,ary[i}.in);

The code generators have been modified so that this error is less likely to occur, although it is still possible for the
code generator to run out of allocatable registers in certain situations. [UCR’s 90-304, 91-56, 91-73]

5.3.9. ACHECK Compiler Option on CLIPPER

The CLIPPER chip (or at least some versions of it) has a bug in the way it sets the overflow condition code for the
"divw" and "modw" instructions, which are used to implement the MAINSAIL "DIV" and "MOD" operations,
respectively. These instructions are advertised as setting overflow if the dividend is -2A31 and the divisor is -1, but
experimentation has revealed that they set overflow whenever the dividend and divisor have different signs and the
dividend’s absolute value is less than the divisor’s (e.g., -497 divided by 512).

Previously, if ACHECK was set, code was generated to catch overflow after "divw" or "modw" by checking the
overflow condition code. Now, no code is generated after "modw", since overflow can’t occur for a MOD
operation. For "divw", code is generated beforehand to check explicitly for the dividend equal to -2A31 and the
divisor equal to -1, and the overflow condition code is ignored.

[UCR 90-59]
5.3.10. ACHECK Option on Intel 80386

The Intel 80386 code generator now emits code to check for overflow after a (long) integer multiplication if
ACHECK is set. Previously the checking code was omitted.

-19-

5.4. Utilities

5.4.1. MODLIB and INTLIB and Uncleared Pages

MODLIB and INTLIB did not clear partial pages at the ends of modules inserted into libraries. Consequently,
OBJCOM sometimes reported spurious differences between object modules that were identical. MODLIB and
INTLIB now clear trailing partial pages. [UCR 90-488]

5.4.2. DVIEW

DVIEW under MAINSAIL Version 12 had several bugs. These bugs were not present in Version 11.

The bugs were:

» The "w" (write) command should have changed the (long) integer that was most recently displayed, as it
did under Version 11. Instead, it changed the (long) integer immediately following the one that was most
recently displayed.

» If DVIEW was displaying data in reverse order and the unit of data being displayed was switched from
integer to long integer or vice versa, DVIEW should have displayed the new unit immediately preceding
the most recently displayed value. Instead, it began displaying data at a position that was off by the
difference in size between the old unit and the new one. For example, if you were displaying integers in
reverse order and the sequence of locations displayed had been 24, 22, and 20, then switching to long
integers should have caused the data at location 16 to be displayed. Instead, DVIEW displayed the long
integer at location 14.

 If DVIEW was displaying data in reverse order and a file position from which data should have been
displayed was explicitly specified, the first value displayed should have been from the specified location.
Instead, DVIEW displayed data starting at two units earlier. For example, if you were displaying long
integers in reverse order and you specified file position 20 as the new location from which data should be
displayed, DVIEW would display data at location 12, then 8, then 4, etc.

» The "s" (search) command always searched forwards, regardless of the setting of the "direction” toggle. It
should have searched backwards when the "direction” toggle denoted "backwards".

[UCR 91-133]

5.4.3. CONF on Apollo’s DOMAIN/OS on Motorola MC68020/MC68831

On Apollo’s DOMAIN/OS on Motorola MC68020/MC68881, if an environment variable was passed to the
installation script, e.g.:

=20 -

1iix20.com \$MS

CONEF did not properly expand the logical name and was not able to produce the ".bin" file. {UCR 91-38]

5.5. Debugger

5.5.1. Spurious Complaint about $descendantKilledExcpt

The debugger sometimes issued a spurious error message:
MAINSAIL interpreter: unexpected exception.
SexceptionName = MAINSAIL: Coroutine descendant killed

Continue with this exception (Yes or No):

[UCR 91-32]

5.5.2. Breakpoint on a Local Procedure with No Uses or Modifies Parameters on the IBM RISC System/6000
On the IBM RISC System/6000, if a breakpoint were placed on a procedure call with no uses or modifies
parameters, execution would jump to an unpredictable location on return from the procedure call. [UCR 90-465]
5.5.3. Segmentation Violation Due to Cache Problems on the IBM RISC System/6000

On the IBM RISC System/6000, a segmentation violation sometimes occurred when continuing from a breakpoint.
This was because the processor instruction and data caches were not properly synchronized. [UCR 90-465]

5.6. MAINEDIT

5.6.1. Display Module Name Not Updated in "eparms" When Invoked from Another Program

‘When MAINEDIT was invoked from another program that uses the editor (e.g., MAINDEBUG or ISQL/D), and a
display module other than the default specified in "eparms" was given, "eparms” was not updated to make the
specified display module the new default. [UCR 91-102]

5.6.2. MAINED -<n>.B and -<n>.F Commands

The MAINED -<n>.B and -<o>.F commands displayed one line fewer than they were supposed to (i.e., n - 1 lines)
in the new window. [UCR 90-472]

-21-

5.6.3. MAINVI ":1,$ sub /x/y"

A MAINVI command of the form ":1,$ sub /x/y" issued a spurious error message. [UCR 91-24]

5.6.4. MAINVI and Inserting Page Marks
In insert mode, MAINVI normally accepted the CTRL-L key (even when that was the display module’s abort
character, under most circumstances), and inserted a page mark (along with an extra blank line). If the autoIndent

option was set, however, it did not; it inserted a blank line instead.

CTRL-L now behaves as it should, always inserting just the eop character, never the extra blank line. [UCR 91-125]

5.6.5. MAINVI Error Messages from Unsupported Commands in ".exrc"

Errors encountered by MAINVI while reading ".exrc" (and only while reading ".exrc") are now ignored. Such
errors are likely because commands unrecognized by MAINVI are commonly given for real vi. [UCR 90-290]
5.6.6. MEDT SWM Command

The MEDT SWM command without arguments did not work. [UCR 90-259]

5.6.7. FBORRO and FFRAME Display Modules
The FBORRO and FFRAME display modules did not work if they had to prompt for information. GPR_$INIT was

called before the last prompt had been issued, causing FRRAME to abort and FBORRO to hang. [UCR’s 90-23,
90-24]

5.7. MAINPM
5.7.1. Fatal Error When Could Not Find Module

MAINPM got a fatal error if it could not find a module when generating a report file. It now no longer tries to
process statistics collected for the unfindable module. [UCR 90-489]

22,

5.8. STREAMS

5.8.1. Fatal Exceptions from a Remote Module

There was a bug in the routine that handled fatal exceptions from a remote module. The result was that if a fatal
error occurred in the remote module, and the local module handled this error, and fell out of the handler, then any
attempt to dispose the module produced a protocol error. [UCR 91-25]

5.8.2. "server.log" File Problems

"server.log" was sometimes closed twice, resulting in a spurious error message. Also, the last entry in "server.log"
was not always flushed to disk. [UCR 91-30]

-23.

6. Enhancements

6.1. Language

6.1.1. Innocuous Intmod Changes

Certain kinds of "innocuous" changes to intmods no longer necessarily require recompilation of other intmods and
modules that relied on the intmods that were changed. This means, for example, that if an intmod A is used by an
intmod B, and A is later changed in a way that does not affect B, the compiler would be able to use an old version of
B with a newer version of A without blowing up.

Additions of new declarations and definitions to an intmod A are considered “innocuous" to an intmod B, since
declarations and definitions added to A since the last time B was compiled obviously cannot affect B. Any changes
to exisiting definitions or declarations that might be used by B, however, are not innocuous; in particular, adding
new fields to classes or modules (except at the end) or changing the data type of a field or outer used by B is not
innocuous.

The compiler is unable to detect automatically when an intmod change is innocuous. Thus, its default action is to
complain about incompatible intmods as it has always done, although the message issued has been changed from an
error to a waming. If a non-innocuous change were made, e.g., if a field added in the middle of an existing class or
module, then all intmods that rely on the changed intmod would have to be recompiled, as was required before;
however, it is the user’s responsibility to determine when this is necessary.

6.1.2. $nextCommandLineArg

TEMPORARY FEATURE: SUBJECT TO CHANGE

BOOLEAN

PROCEDURE S$nextCommandLineArg
(MODIFIES STRING commandLine;
PRODUCES STRING nextArg):;

Table 6.1.2-1. $nextCommandLineArg

The current implementation of command line arguments does not accommodate null arguments or arguments
containing spaces (unless the application implements its own syntax for these things). MAINSAIL now defines a
syntax for specifying null arguments and arguments that contain blank space (blanks or tabs). If an argument
contains blank space, it must be enclosed in double quotes (it can be enclosed in double quotes even if it does not
contain blank space). Double quotes inside a "quoted" argument must be doubled, as in a MAINSAIL string
constant. Null arguments are specified as a pair of double quotes (like the MAINSAIL null string).

The new procedure $nextCommandLineArg can be used to get the next argument from a command string, e.g., as
obtained from $getCommandLine.

If commandLine is the null string, $nextCommandLineArg returns FALSE. Otherwise, it parses and removes the
next argament from the command line.

Existing programs using $getCommandLine are not affected. However, the $commandLineArgs array, introduced
as a temporary feature in the last release, is no longer supported.

6.1.3. New Global Symbol Facilities

New global symbol facilities have been added so that MAINEX subcommands can be used to set and examine
string-valued global symbols. This makes it easier to establish program parameters in a bootstrap file or in the
"site.cmd" file on the MAINSAIL directory (this file of MAINEX subcommands is always read when MAINSAIL
starts execution).

Note: the global symbols under discussion are the language global symbols, as described by the class
$globalSymbol, not compiler global symbols.

The following facilities have been added to the language (see Section 6.2.1 for the new MAINEX subcommands
related to global symbols):

class for string global symbols
CLASS ($globalSymbol) $stringGlobalSymbol (
STRING Svalue;

)i

STRING PROCEDURE $stringGloballookUp (STRING key) ;

PROCEDURE $stringGlobalEnter (STRING key,value);
$stringGlobalLookUp and $stringGlobalEnter look up and enter records of the class $stringGlobalSymbol, which
has a single string value in the global symbol record. $stringGlobalLookUp verifies that key is the key for a record
of the class $stringGlobalSymbol, and issues an error message if it is a key for a record of some other class. It
returns the null string (without issuing an error message) if no record with that key is found. $stringGlobalEnter
enters a $stringGlobalSymbol record with $key = key and $value = value.

An additional procedure fqr general global symbol use, not related to $stringGlobalSymbol, has also been added:

_925.

POINTER ($globalSymbol) PROCEDURE $globalNext
(POINTER ($globalSymbol) p):;

$globalNext returns the next global symbol in the global symbol table following p. If p is NULLPOINTER, it
returns the first global symbol in the table. If p is the last symbol in the table, it returns NULLPOINTER. The order
in which the $globalSymbol records are retumed is not specified. {UCR 90-17]

6.1.4. Setting/Examining Time Zone Information from a Program

The MAINEX subcommands "DEFINETIMEZONE", "DSTENDRULE", "DSTNAME", "DSTOFFSET",
"DSTSTARTRULE", "GMTOFFSET", and "STDNAME" have been provided in the past to set time zone
information. This information can now be set or examined from a program as well as from MAINEX.

The following procedures are provided:

-26-

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

LONG INTEGER

PROCEDURE

$setGMTOffset
(LONG INTEGER ii);

$setDSTOffset
(LONG INTEGER ii);

$setDSTStartRule
(STRING s);

$setDSTEndRule

(STRING s);

$setStdName (STRING s);

$setDSTName (STRING s);

S$addDefinedTimeZone
(STRING tzName;

LONG INTEGER gmtOffset);

$getGMTOffset
(PRODUCES OPTIONAL
wasSet) ;

LONG INTEGER

PROCEDURE

STRING
PROCEDURE

STRING
PROCEDURE

STRING
PROCEDURE

STRING
PROCEDURE

STRING
PROCEDURE

$getDSTOffset
(PRODUCES OPTIONAL
wasSet) ;

$getDSTStartRule
(PRODUCES OPTIONAL
wasSet) ;

$getDSTEndRule
(PRODUCES OPTIONAL
wasSet) ;

$getStdName (PRODUCES OPTIONAL
wasSet) ;

$getDSTName (PRODUCES OPTIONAL
wasSet) ;

SgetDefinedTimeZones
(PRODUCES OPTIONAL
wasSet) ;

.27 -

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

Their correspondence to the existing MAINEX subcommands is as follows:

MAINEX Subcommand Procedure to Set Procedure to Examine
GMTOFFSET $setGMTOffset $getGMTOffset
DSTOFFSET $s8etDSTOffset $getDSTOffset
DSTSTARTRULE $setDSTStartRule SgetDSTStartRule
DSTENDRULE $setDSTEndRule $getDSTEndRule
STDNAME $setStdName S$getStdName
DEFINETIMEZONE $addbDefinedTimeZone $getDefinedTimeZones

In each "$set” procedure, the value specified replaces the parameter’s existing value. In the case of
$addDefinedTimeZone, tzZName and its offset from GMT are added to the list of known time zones.

The "$get" procedures, except for $getDefinedTimeZones, return the current value of the corresponding parameter.
$getDefinedTimeZones retumns a string describing the information on all known time zones in tabular form.

Calling any of the "$set" procedures causes $timeSubcomandsSet to become true (calling $addDefinedTimeZone
does not, however). In the "$get" procedures, wasSet is set to the value $timeSubcommandsSet. [UCR 89-448]

6.1.5. Recovery from bind/new Errors

It is now possible to handle errors encountered by the system procedure bind and new and have the procedures try to
allocate the module again. To do this, call $raiseReturn at the end of the handler for the $systemExcpt raised by
bind or new. For example, to handle a call to bind that cannot find a module FOO by opening the library where
FOO is supposed to reside and retrying the bind:

SHANDLE bind ("FOO")
SWITH
IF $exceptionName = $systemExcpt THENB -
openLibrary ("1ibWithFoo.0lb") ;
$raiseReturn; # bind will try FOO again
END
EL $raise;

[UCR 91-97]

6.1.6. $memoryManagementInfo

TEMPORARY FEATURE: SUBJECT TO CHANGE

$memoryManagementinfo allows a program to tell the MAINSAIL runtime system that little or no garbage is being
generated during a certain phase of execution. This is useful if a lot of memory is being allocated, but none of the

-28 -

LONG INTEGER
PROCEDURE $memoryManagement Info
(INTEGER info) ;

Figure 6.1.6-1. $memoryManagémentInfo

allocated memory will contain garbage. Allocation of a large amount of memory would normally trigger garbage
collections, but if no garbage is being generated, the collections would serve no purpose. Calling
$memoryManagementInfo reduces the likelihood that such unprofitable garbage collections will occur, although it
does not completely prevent collections, as would incrementing $collectLock. Also, $memoryManagementInfo may
be specified for either chunk or string garbage; $collectLock locks out both kinds of garbage collection.

The parameter info takes one of the following four values, with the meanings shown:

Value Meaning

$noNewChunkGarbage chunks being allocated will not be garbage
- $noNewChunkGarbage undoes $noNewChunkGarbage '
SnoNewStringGarbage strings being allocated will not be garbage

- $noNewStringGarbage undoes $noNewStringGarbage
$memoryManagementInfo actually increments or decrements a counter, so calling it with the value -
$noNewChunkGarbage or - $noNewStringGarbage does not guarantee that normal assumptions about garbage will

resume; to ensure this, $memoryManagementInfo(- $noNewChunkGarbage) must be called exactly as many times
as was $memoryManagement($noNewChunkGarbage); the same is true of $noNewStringGarbage.

6.2. Utilities

6.2.1. MAINEX Subcommands for String-Valued Global Symbols

The changes to the global-symbol-related system procedures are described in Section 6.1.3. This section describes
the MAINEX subcommands that add and remove string-valued global symbols. .

The new MAINEX subcommands are:
GLOBALREMOVE r Undefine global symbol ¢
GLOBALSYMBOL r s Define global symbol string r as s
GLOBALSYMBOL r Show definition of global symbol r
GLOBALSYMBOL Show all defined global symbols

-29-

"GLOBALSYMBOL rs" calls "$stringGlobalEnter(r,s)". r must be quoted using the double quote character if it
contains spaces or tabs; s must be quoted if it contains trailing spaces or tabs or if it is the null string. To include a
double quote character in a quoted string, double it, as in a MAINSAIL string constant.

"GLOBALSYMBOL 1" displays the value of "$stringGlobalLookUp(r)".

"GLOBALSYMBOL" (with no arguments) displays all global symbols. String global symbols (those of the class
$stringGlobalSymbol) are displayed with their values; others are displayed with a note that they are not
$stringGlobalSymbol records.

"GLOBALREMOVE 1" calls "$globalRemove(r)".

[UCR 90-17]

6.2.2. Examining Time Zone Information from MAINEX

The MAINEX subcommands "DEFINETIMEZONE", "DSTENDRULE", "DSTNAME", "DSTOFFSET",
"DSTSTARTRULE", "GMTOFFSET", and "STDNAME" now display the current value of their parameters if no
parameter is specified. [UCR 89-448]

6.3. MAINEDIT

6.3.1. Default MAINVI Key Mappings for FRAME and FFRAME Display Modules
By default, for the FRAME and FFRAME display modules, MAINVI now maps some raw key codes even if there is
no ".mainvirc" file. The codes mapped are for the RETURN, BACKSPACE, and ABORT/EXIT keys, which are

mapped to CTRL-M, DELETE, and ESCAPE, respectively. These defaults are established whether or not there is a
".mainvirc" file, but may be overridden by the “.mainvirc" file, if desired.

6.3.2. SUN-Specific Keypad Mapping for MEDT

A defanlt SUN-specific keypad mapping has been added to MEDT, as shown in Figure 6.3.2-1.

6.4. STREAMS

6.4.1. Child Process Name Syntax

The format of the name passed to $openStream for SOCPRO and PTYPRO streams has been made more flexible to
accommodate the passing of environment variables (on systems that support environment variables). The new
syntax is:

-30-

. upper left corner shows key labels on keypad
. upper right corner shows code returned by dpycRead

. upper label is the default upper (primary) EDT keypad function

lower label is the default lower (alternate) EDT keypad

function

o Fmmm +
|L1 159412 1595}

| DEL L | UP]
| | i
| UND L | |
| | |
Frm e e +
|L3 1596|114 1597
DEL W	DOWN
UND W	
e e +	
LS 1598	16 1599}
DEL C	RIGHT
!	
UND C	
]	
e o —— +	
L7 1600	118 1601
<undef>	LEFT
]
e e ————— +	
L9 1602	L10 1603}
<undef>	<undef>
A	
Fmm Fom +

o o e +
IRl 1610|R2 1611|R3 1612

GOLD	HELP	FNDNXT
		FIND
	I	
e o ———— +		
R4 1613	R5 1614	R6 1615
PAGE	SECT	APPEND
COMMAND	FILL	REPLACE
o o e +		
[R7 1616	RS8 833	R9 1618
ADVANCE	BACKUP	CUT
!		
BOTTOM	TOP	PASTE
fmm e ——— e o +

|R10 836|R11 1620|R12 835
I | | |
| WORD | EOL | CHAR

!
I | I I
|CHNGCASE | DEL EOL | SPECINS |

I

{R13 816|R14 834|R15 818|
| | | |
| LINE | SELECT | ENTER

| | |
|{OPEN LINE| RESET |
| | N
R o +

|
I
sUBs |
|

————————— +

Figure 6.3.2-1. SUN-Specific Keypad Mapping for MEDT

-31-

socpro|[(hostName)] >programName [programArgs]<eol>
[userName] <eol>

[password] <eol>

[startupDirectory]<eol>
[numberOfEnvironmentVariables]<eol>
[environmentVariablel]<eol>

-

[environmentVariableN]
or, in the current release:
socpro>[hostname:]programName [programArgs]...
where the components in square brackets are optional, and trailing blank lines can be omitted.
The meanings of programArgs, userName, password, and startupDirectory are as previously documented.
numberOfEnvironment Variables is the number (in textual form) of environment variable lines that follow. Each
environment variable has the form:
VARIABLENAME=value
For example, to create the process named "thisProgram”, with arguments "hello" and "goodbye", running under the
user ID "george”, connected to "/user/dir", with the environment variables "ENV1" set to "/usr/baz", and "ENV2"
set to "hostname", you would open the following stream:
Sopenstream(st,
"SOCPRO>thisProgram hello goodbye"™ & eol &
"george" & eol &
"george’s password" & eol &
"/user/dir"™ & eol &
. "2m" & eol &
"ENV1l=/usr/baz" & eol &
"ENV2=hostname") ;

In addition, programName itself can be environment variable of the current program if it begins with a dollar sign.
For example, if the environment variable "environVar" is defined as "foo", then:

Sopenstream(st, "SOCPRO>$environvVar®) ;
is equivalent to:
Sopenstream(st, "SOCPRO>foo") ;

NOTE: You must be superuser in order to specify non-null userName and password parameters.

-32.-

6.4.2. Raw Internet Addresses

Raw internet addresses are now accepted wherever a TCP/IP host name would be required. For example, if the host
named "PaloAlto” were at internet address 192.9.200.5, then "192.9.200.5:serviceName" would be accepted
wherever "PaloAlto:serviceName" would be accepted.

6.4.3. Support for STREAMS on Intergraph’s System V UNIX on Interpro 32C
STREAMS is now fully supported on Intergraph’s System V UNIX on Interpro 32C. As on IBM’s AIX on IBM
RISC System/6000, however, all MAINSAIL bootstraps must consequently be linked with the "-lbsd" switch. Since

the gethostbyaddr() system call does not work on Intergraph’s System V UNIX on Interpro 32C, connection names
are reported using raw intemet addresses rather than host names.

6.4.4. $tooManyOpenFilesStr raised by $openStream and $acceptClient
A new exception, $tooManyOpenFilesStr, can be raised by calls to $openStream and $acceptClient. The exception
is raised when it is impossible to open the stream or accept the client because no more stream handles are available.

If the exception is handled by falling out of the handler, the call is aborted; otherwise, an error message is issued as
before.

6.5. MAINKERMIT

A new version of MAINKERMIT, Version 3.1, is introduced in this release. It contains several new commands:

SHOWQUEUE Show current transfer queue
DIAL Edit the dial directory
CALL s Call system s, where s is an entry

in the dial directory
and several new SET options:

SET BLOCKCHECK [1]2]3]

SET ERRORLOG <file name>

SET HALFDUPLEX

SET FULLDUPLEX

SET TRANSLATION <ebcdic char code> <ascii char code>
SET PARITY

SET NOPARITY

SET ESCAPE <new escape character>

The "dial directory"” is a list of host systems and their characteristics. It is maintained in the file "kdiald.ini" in the
user’s home directory. It should be edited only by using the MAINKERMIT "DIAL" command.

-33-

The "DIAL" command enters "dial mode", which provides the following commands:

INSERT Insert new record

DELETE n Delete record

EDIT n Edit record number n

CALL s Call system named s

SAVE Save changes

QUIT Return to Kermit prompt (exit dial mode)
EXIT Return to Kermit prompt (exit dial mode)

Upon entry to dial mode, the current dial directory is displayed. Each entry contains a record number, a system
name (which may be used as an argument to the "CALL" command, either in dial mode or at MAINKERMIT’s top
level), a baud rate to use when calling, a phone number to dial to reach the system, a modem prefix transmitted
before the phone number, a modem suffix transmitted after the phone number, and the name of an optional take file
(a file of MAINKERMIT commands) that is executed before dialing. The dial mode "INSERT" and "EDIT"
commands prompt for the values of each of these parameters.

The new SET options have the following effects:

-34-

SET BLOCKCHECK [112]3]
This has the standard Kermit meaning of setting the
block checksum. 1 is a six—-bit arithmetic checksum, 2
is a 12-bit arithmetic checksum, and 3 is a 16-bit CRC.

SET ERRORLOG <file name>
Save error messages in the specified file.

SET HALFDUPLEX
Set Kermit to echo locally (used when talking to
half-duplex system).

SET FULLDUPLEX
Set Kermit not to echo locally (i.e., echo is remote).
Used with full-duplex systems.

SET TRANSLATION <ebcdic char code> <ascii char code>
Override default EBCDIC-ASCII conversion. Codes are
entered in decimal.

SET PARITY
Indicate that local machine is using parity.

SET NOPARITY
Indicate that local machine is not using parity.

SET ESCAPE <new escape character>
Set the Kermit escape character (the character used to
escape from the terminal emulator). The charater is
typed as CTRL-<character entered>. For example, the
default escape character (CTRL-\) would be entered as
"SET ESCAPE \".

It is now possible to abort a MAINKERMIT file transfer by typing the keyboard interrupt character (CTRL-C on
many systems).

-35-

7. Known Problems

7.1. Some Versions of UNIX Kill Processes When Low on Memory

Some versions of UNIX, including IBM’s ATX on IBM RISC System/6000 and Silicon Graphics’ UNIX on MIPS
R2000, kill processes when system swap space runs short, rather than simply disallowing the allocation of more
memory by existing processes. Care must be taken when running important programs on such systems if there is
any possibility of exhausting swap space.

The versions of UNIX with this problem, mostly UNIX System V R4, generally do not offer much control over the
selection of which process is killed.

On IBM’s AIX on IBM RISC System/6000, there is a setting for each user in the file “/etc/security/limits" that
determines how much memory a user/process is allowed. That parameter is the rss value. The rss value can also be
set using the "SMIT/Security and Users/Users/Change show Characteristics" menu item in the SMIT tool, by
changing the value for Max physical memory (note: this value must be a multiple of 512). To give a user priority
for real memory usage the 1ss value should be set to a number which is larger than what the application will try to
allocate. This will allow that user to keep running when paging becomes low.

On the Silicon Graphics, the "limit" command can be used to limit the amount of virtual memory that will be
allocated to the shell and its child processes. Determine (if possible) the amount of swap and physical memory that
will be available during the execution of your program, then issue the command to specify a value less than that; this
will ensure that no process is killed for lack of swap space. The problem with this strategy is that it requires
predicting the memory requirements of all programs to be run during the execution of your program.

Other versions of UNIX may have similar problems; check your system documentation for more information. We
recommend that you configure systems with this problem with ample swap space to avoid triggering the problem:
figure out the maximum amount of memory that all jobs could reasonably be using at once, double that value for
safety, then subtract the amount of physical memory available on the system, and use the resulting value as the
amount of swap space to configure the system with.

7.2. $descendantKilledExcpt and the MAINSAIL STREAMS Scheduler

At present, it is especially important to handle informational exceptions carefully when running in conjunction with
the MAINSAIL STREAMS Scheduler. In particular, a handler handling $descendantKilledExcpt raised because a
scheduled coroutine is being killed should not attempt any action (such as file I/O) that might invoke the Scheduler.
This is becaunse the Scheduler is in an unusual state during $descendantKilledExcpt. This problem may be corrected
in some future release of MAINSAIL.

-36 -

7.3. PC Monitoring Status

7.3.1. AIX

On AIX on both the IBM System/370 Extended Architecture and the IBM RISC System/6000, PC monitoring is
supported only on recent releases of the operating system. On the IBM System/370 Extended Architecture, the
supported releases are release 1.2.600 and later; on the IBM RISC System/6000, release 03.01.0001.0003 and later.

One way to find out version status and upgrade information on AIX on the IBM RISC System/6000 is to run the
command:

1slpp -h
which generates a table with the columns option name, state, event, date, release number, and user name. Look for a
state of ACTIVE and an event of COMMIT to find the most recent upgrade for that option. For that option there

will be a release number that looks something like 03.01.0001.0003. The 03.01 corresponds to the the AIX version
3.1 that is displayed when you log in. The 0001 and the 0003 correspond to upgrades.

7.3.2. PRISM

Due to a bug in the operating system, PC monitoring does not work on the PRISM. Apollo has been informed of the
problem. Currently, attempting to use PC monitoring on this system has undefined effects and may crash
MAINSAIL.

7.3.3. IBM’s VM/XA SP CMS on IBM System/370

PC monitoring is not yet implemented on IBM’s VM/XA SP CMS on IBM System/370. Currently, attempting to
use PC monitoring on this system has undefined effects and may crash MAINSAIL.

7.3.4. Intergraph’s System V UNIX on Interpro 32C and SCO’s UNIX on HP Vectra with Intel 80386

On Intergraph’s System V UNIX on Interpro 32C and SCO’s UNIX on HP Vectra with Intel 80386, it is not
possible to implement PC monitoring. Attempting to use PC monitoring on these systems issues an error message.

7.4. SIGFPE on Intergraph’s System V UNIX on Interpro 32C
On Intergraph’s System V UNIX on Interpro 32C, when a SIGFPE signal (generated by floating point arithmetic
exceptions) occurs and the user program’s signal handler returns, the UNIX signal handler does not pop off the

correct number of bytes when trying to retumn control to the program where the signal occurred. This may manifest
itself as a bus error, illegal instruction, or by hanging the affected program.

-37 -

7.5. $userID on Intergraph’s System V UNIX on Interpro 32C

On Intergraph’s System V UNIX on Interpro 32C, $userID always returns the login user ID, never the effective user
ID, regardless of whether $login is set in the ctrIBits parameter to $userID. This is because of a bug in the operating
system.

7.6. SPARCstation Operating System Version Numbers

MAINSAIL runs on both versions 3.x and 4.x of the SunOS operating system on SPARC-based workstations.
There are some incompatibilities between these two versions of SunOS that make it more difficult to build a
MAINSAIL bootstrap on networks that contain both versions of the operating system. If you have only one version
of SunOS for the SPARC {either all 3.x or all 4.x) on your network, then you will not have any of the problems
described below, and you do not need to read this section any further.

The incompatibilites are two-fold:
1. MAINSAIL bootstraps built on 3.x will run under 4.x, but not vice versa.

2. All pieces of a bootstrap must be compiled, assembled, and linked under the same version of the operating
system; bootstraps that contain pieces built under different versions of the operating system will not work
correctly.

The first problem means that if you have a MAINSAIL system that will be used from both 4.x and 3.x nodes, then it
must be installed on a 3.x node. The second problem means that when you are building any piece of a MAINSAIL
bootstrap or code that is linked with a MAINSAIL bootstrap, you must always run "as", "cc”, or "1d" (or whatever
the local equivalents of those programs may be called) on the same version of the operating system as on the node
where the MAINSAIL system is installed. If you follow the above recommendation to install your MAINSAIL
systems on 3.x nodes, then you must always issue any bootstrap-making commands on 3.x nodes as well. If you
accidentally build a bootstrap with pieces from different versions, the symptoms are unpredicatble, but are often
manifested as file I/O errors.

7.7. sbrk() vs. malloc()

On SunOS versions 4.1 and later, sbrk() and malloc() are incompatible, and should not both be called from the same
program. MAINSAIL uses sbrk() to allocate memory on SunOS versions before 4.1, and malloc() on versions 4.1
and later. Programmers who link C code with MAINSAIL through a MAINSAIL FLI should be aware that they
should not call sbrk() on SunOS versions 4.1 and later.

On IBM’s AIX on IBM RISC System/6000, there are two malloc()s: the old one and the new one. The new one is
incompatible with sbrk(), which is still used by MAINSAIL on that operating system.

In order to get the new version of malloc(), you must make the following call:

-38-

mallopt (M MXFAST, 0)
* Thus, the old version (which works OK with sbrk()) is the default. Programmers who link C code with MAINSAIL

through a MAINSAIL FLI should be aware that they must not make the above mallopt() call on IBM’s AIX onIBM
RISC System/6000.

-39-

MAINSAIL® Release Notes
Version 12.14 Release

—

=4 XIDAK

8. Introduction

This release note documents the changes made between Versions 11.30 and 12.14 of MAINSAIL, except that it does
not document features that were already described in the "MAINSAIL Release Notes, Version 12.10 Release", even
if those features were not present in Version 11.30 of MAINSAIL. The Version 12.10 manual set (the most recently
published complete set of documentation) should be used in conjunction with the following release notes in order to
have a complete description of the features of Version 12.14:

+ "MAINSAIL Inverse Release Notes, Version 12.10 - Version 11.27", |

+ "MAINSAIL Release Notes, Version 11.28 Release",

» "MAINSAIL Release Notes, Version 11.30 Release",

« and the current release note.
Version 12.14 object modules cannot be run under previous Version 11 or Version 12 releases, and object modules
from previous Versions cannot be run under Version 12.14; you must rebuild all intmods and recompile all object

modules. In addition, the layout of data structures in memory has changed between Version 11 and Version 12; all
Version 11 (but not older Version 12) Structure Blaster data images must be translated or remade. :

42 -

9. Recent and Proposed Changes

9.1. Case of File Names

MAINSAIL now treats all file names (and search paths) as case-sensitive (all uses of $fileNamesAreCaseSensitive
have been eliminated from the runtime system and compiler). The $directory and $fileInfo functions for systems
where file names are not case-sensitive return lowercase names. The $attributes bit $fileNamesAreCaseSensitive is
still defined and applies to the default disk module for that system. [UCR 85-377]

9.2. fileSize Parameter to "open"

The last parameter to open is an optional long integer fileSize. This parameter will be removed in the next release of
MAINSAIL (it has not been examined by any existing device module for a long time; it originally specified the
initial size of the file, but is not relevant on any modem file system).

9.3. Supported Platforms

The following MAINSAIL platforms that were supported under Version 11 are not currently supported under
Version 12:

Platform Platform

Abbreviation Name

aeg Apollo’s Aegis on Motorola M68000

alnt Alliant’s CONCENTRIX on Motorola M68000
cms IBM’s VM/SP CMS on IBM System/370

hpux HP’s HP-UX on Motorola M68000

ipsc2 Intel’s iPSC/2 System V UNIX on Intel 80386
spix Bull’s SPIX on Ridge 32

sun2 Sun Microsystems’ SunOS on Motorola M68000

Note that M68000-based platforms have been dropped in favor of MC68020/MC68881-based platforms on the
assumption that all users have converted to MC68020 and MC68881 or compatible processors, and that VM/SP
CMS support has likewise been dropped in favor of VM/XA CMS (the extended addressing version of CMS).
Apollo’s Aegis operating system has been dropped in favor of Apollo’s DOMAIN/OS.

If the lack of suport for any of the above platforms imposes any hardship, please contact XIDAK immediately.

-43 -

10. Release Highlights

The most important new features introduced at this release are:
* Module names are no longer restricted in length to six characters.
» A new type of variable, the shared variable, is shared by all data sections of a given module.
* A new MAINPM command, "TRACECHUNKS", provides a detailed allocation history of each chunk
allocated in a monitored area. This can be very useful in helping a programmer to determine how a

program is using memory and where improvements in memory usage can be made.

¢ Certain interface procedures with all-constant arguments can be evaluated during compilation instead of at
runtime if declared with the procedure qualifier "COMPILETIME".

« Some system procedures have been added to manipulate file directories (e.g., to create and delete
directories and change the working directory).

11. Clarification of Documentation

11.1. Address Calculation of Modifies and Produces Arguments
It is not specified whether the addresses where modifies and produces procedure arguments are stored are calculated
before or after the procedure call, or both. The address of a modifies argument is computed before the call, and may
be recomputed in whole or in part after the call; the address of a produces argument may be computed before the
call, and may be recomputed in whole or in part after the call.
This means that a procedure body should not change the value of any component of its modifies or produces
arguments, since the address used after the call (to store the value being passed back to the caller) would vary
depending on whether or not the address was calculated before or after the call.
For example, assume the declarations:

CLASS ¢ (INTEGER i; POINTER(c) . next) ;

POINTER (c) PROCEDURE foo (MODIFIES POINTER(c) pl,p2):

PROCEDURE bar (MODIFIES INTEGER i; PRODUCES OPTIONAL INTEGER j);

INTEGER i, j;

POINTER(c) p,q;

INTEGER ARRAY (*) ary;
In the procedure call:

foo (p,p.next)
the "p.next" affected may be calculated based on the value of p before the call to foo, or (since p is passed as a
modifies parameter and is changed by the call) on the value of p after the call to foo; in fact, on input, it may be
calculated based on the value of p before the call, and on output, on the value of p after the call.
In the procedure call:
bar(ary[i .+ 1])

“i .+ 1" may or may not be computed twice. In the call:

bar(ary[i + 31,3

-45-

the altered value of j may be used when storing the first mgument into ary. In:

bar (foo(p,q) .1)
foo‘may wind up being called twice.
In the first two calls to bar above, the effect is undefined if bar disposes ary, even if it subsequently reallocates it.
It is the responsibility of the programmer to avoid passing modifies or produces procedure arguments of which the
address might be altered by the procedure call. One way to do this is to replace subscripted variables and field

variables by simple variables when passed as modifies or produces parameters. Thus, to ensure that the first call to
foo above changes "p.next" based on the original value of p, do:

g := p; foo(p,q.next)
or to ensure that the "p.next" changed is based on the resulting value of p, do:
foo(p,q); p.next := g

[UCR 90-173]

11.2. Informational Exceptions

Exceptions are usually raised when some condition occurs that requires action on the part of a procedure invocation
ancestral to the current one. It is usually expected that an ancestral procedure will either abort the raising procedure
(by falling out of a handler) or will repair the condition that provoked the exceptlon and return to the place of the
exception with $raiseReturn.

Some exceptions, however, do not necessarily require any action, but merely inform the ancestral procedures of
something that has occurred. The system exception $descendantKilledExcpt falls into this category. System
exceptions that are informational can be distinguished because they have both the $cannotReturn and
$cannotFallOut bits set in $exceptionBits.

General-purpose error handlers should be written so as to handle informational exceptions properly, i.e., simply to
call $raise with no parameters to propagate the exception. In the past, some MAINSAIL programmers have written
general-purpose error handlers with the assumption that all exceptions with the $cannotReturn bit set in
$exceptionBits should produce some sort of error message and fall out of the handler if they have not been handied
by the time they are propagated to the general-purpose exception handler. This is not true of informational
exceptions (which also have $cannotFallOut set in $exceptionBits); such exceptions should be propagated even by
the "bottommost" exception handler.

11.3. MAINPM PC Monitoring

The MAINPM PC monitoring facility (invoked with the "PC" command) is a temporary feature subject to change.

-46 -

11.4. MM "di" Command

The MM "di" (descriptor information) command displays information associated with each chunk descriptor in
memory. Information for each descriptor includes the number of allocations, deallocations, and garbage collections
of chunks with that descriptor. However, the number of calls to $disposeArea when a chunk of the given descriptor
is located in the area disposed is NOT included in the deallocation count. This can lead to misleading displays; e.g.,
the "di" command may report 100 allocations and 50 deallocations for a given descriptor, which would normally
mean that 50 objects associated with that descriptor remain in memory, when in fact none currently remain in
memory because they were removed by $disposeArea.

If you need more a detailed history of memory usage (which takes calls to $disposeArea into account), you should
use the new MAINPM "TRACECHUNKS" command; see Section 13.6.1.

11.5. Freeing the MRPCMOD Struct after Calling the _final Function in a C RPC Client
In a C RPC client, the MRPCMOD struct allocated by the _init function should be freed by the calling program after
it passes the pointer to the MRPCMOD struct to the _final function. Previous versions of the documentation
neglected to point this out, so users may have been writing C RPC clients with unnecessary memory leaks.

11.6. Specifying the Target System in $moduleInfo

The procedure $moduleInfo returns information about object modules based on a string, cmdLine, that has a form
similar to the arguments to MODLIB’s "DIRECTORY" command.

A target system must be specified in $moduleInfo calls if the target system is different from the host. Previous
versions of the documentation failed to describe the syntax that allows the target system to be specified in cmdLine,
If a target is specified, its abbreviation follows the library file name, and is separated from the library name by a
comma (spaces are not allowed). So, cmdLine’s syntax is really:

libName{, targetAbbreviation}{=fileName} {modList}
instead of:

libName {=fileName} {modList}

as previously documented.

11.7. Where $copyFile Leaves File Positions

$copyFile leaves the file positions of its arguments at the end of the copied region.

-47 -

11.8. Detecting When a Child Process Has Exited

‘When manipulating a child process with MAINSAIL STREAMS, "$closeStream(child)" kills the child (as
documented), and is in fact the ONLY way to kill a child process. It does not wait for the child to die voluntarily.

The correct way to wait in the parent for the child to exit cleanly is to do a "$readStream(child,s,errorOk)" and look
for an $eos return. The $eos return means that the child has closed its end of the stream, which happens on exit.

EXCEPTION: The above does not work for the VMSMBX protocol, because there is no way to detect the child
exiting on VMSMBX. If you have to run using VMSMBX, you can only run child processes that cooperate with the
parent by returning some prearranged end-of-stream indication.

11.9. MAINED "..B" and "..F" Commands

The MAINED "..B" and "..F"' commands (go to buffer/file and make all windows same size) may be prefixed with
"+" or "-". The meanings of all versions of the commands are:

..B Do a .B, then make all windows same size
+..B Do a +.B, then make all windows same size
-..B Do a —.B, then make all windows same size
..F Do a .F, then make all windows same size
+..F Do a +.F, then make all windows same size
-..F Do a -.F, then make all windows same size

The "+" and "-" versions were inadvertently omitted from previous documentation.

11.10. emdMatch and "?"

‘When the noResponse bit is set, cndMatch normally uses the promptString as the match string, and does not write
any information to logFile or read information from cmdFile. However, if promptString is "?", the contents of the
cmds array are written to logFile, as when noResponse is not set. Therefore, programs that want to suppress this
behavior should check to see if promptString is "?" before calling cndMatch with noResponse set. [UCR’s 90-80,
90-210]

11.11. $dateAndTimeCompare
The explanation of $dateAndTimeCompare in the Version 12.10 manuals of March, 1989 has its description of the
return values backwards. $dateAndTimeCompare returns -1 if the time represented by the date d1 and the time t1 is

before the time represented by the date d2 and the time t2, 0 if the two times are the same, and 1 if the first time is
after the second. [UCR 90-204]

- 48 -

11.12. VAX/VMS File and Directory Manipulation Procedures

The system procedure $delete and the new system procedures $renameDirectory and $copyDirectory sometimes
spawn a process under VAX/VMS. For instance, if the file to be deleted is a directory (e.g., "foo.dir") and the delete
protection bit has not been set (protection is "RWE" by default for directories), a process is spawned to execute the
command "set protection=owner:RWED" before attempting to delete the directory. If the directory still contains
files, VAX/VMS won’t let you delete the directory reguardless of the protection bits. According to the "VMS
User’s Manual" for VMS Version 5.2 (June 1989; Digital Equipment Corporation order number AA-LA98B-TE),
‘the SPAWN command has the following restrictions (page DCL-399):

The RESOURCE WAIT state is required to spawn a process. Requires
TMPMBX or PRMMBX user privilege. The SPAWN command does not
manage terminal characteristics. The SPAWN and ATTACH commands
cannot be used if your terminal has an associated mailbox.

-49 -

12. Bugs Fixed

12.1. Runtime System

12.1.1. Improved Memory Management Heurisitic

Under the old memory management heuristics, if several garbage collections took place early in the life of a
MAINSAIL program but collected no garbage, MAINSAIL’s estimate of the amount of garbage that could be
reclaimed by a collection became very low. This meant garbage collections would not occur until a large amount of
memory had been gotten from the operating system, which sometimes led to unnecessary thrashing. The new
heuristics eventually force a garbage collection if enough extra memory is gotten, even if the previous several
collections did not reclaim any memory. [UCR 90-52]

12.1.2. exit and File Closings

MAINSAIL would loop on exit if an open file could not be closed. If a file close fails, it now removes the file from
the open file list so that it does not try to close it again. {UCR’s 87-369, 87-424]

12.1.3. Conversion to String of Invalid Floating Point Values

Conversion of invalid floating point values to string sometimes went into an infinite loop or produced a garbage
string. It now raises an arithmetic exception. [UCR’s 87-383, 89-87]

12.1.4. $writeCalls Called from an Exception Handler

A bug occurred in $writeCalls if $writeCalls was called directly by an exception handler. It caused $writeCalls to
display all stack frames as suspended.

12.1.5. Opening the Swap File

Inadvertent string space use in the runtime system when attempting to open the swap file could have led to an
infinite loop. [UCR 85-226]

-50-

12.1.6. Counter Overflows

During long executions of MAINSAIL, several different kinds of counters could overflow. These overflows are
now avoided. [UCR’s 90-86, 90-88, 90-108]

12.1.7. copy of a Pointer to a Record with No Fields

‘When the pointer form of copy was passed a pointer to a record with no fields, it erroneously issued the error
message “invalid pointer”. [UCR 90-380]

12.1.8. $intmedInfo and $modulelnfo

$intmodInfo and $moduleInfo blew up in Version 11 when asked to get information about a module that was not in
a library; in Version 12, the "* fileName" syntax did not work as advertised. [UCR’s 90-85, 90-448]

12.1.9. $ranMod

In certain situations at MAINSAIL exit, $ranMod’s final procedure could be called more than once, causing an
error. The final procedure has been changed to prevent this situation. [UCR 90-238]

12.1.10. Invalid CMS File Names

Opening an invalid CMS file name containing more than one "." (e.g., "a.a.a") did not fail. It now issues the error
message "Invalid argument”. [UCR 88-248]

12.1.11. UNIX Terminal Input Buffer Overflow

When a really long line was read from the terminal on UNIX, every 256th character would be doubled due to a
buffer overflow. [UCR’s 89-372, 90-137]

12.1.12. VAX/VMS $directory and errorOK

errorOK passed to $directory on VAX/VMS failed to suppress some error messages. [UCR 90-119]

-51-

12.2. Compiler

12.2.1. Infinite Loop Compiling Generic Procedure with Repeatable Arguments
A bug in the compiler occurred when a procedure call of the form:

p.£(...)
occurred where f is a generic procedure, p is a pointer expression or module name, and “..." contains repeatable
arguments. This caused the compiler to go into an infinite loop. [UCR 89-413]
12.2.2. Trailing Parameters Omitted from Forward or Interface Procedure
If trailing parameters were omitted from the procedure header accompanying the body of a procedure previously
declared as a forward or interface procedure, the compiler did not iSsue an etror message; instead, it generated bad
code. This behavior has been fixed. [UCR’s 90-239, 90-406]
12.2.3. Garbage Collections While Incrementally Compiled Module in Memeory
If a garbage collection occurred while an incrementally compiled module’s data sections were in memory, the
memory manager could get a memory inconsistency. [UCR 90-71]
12.2.4. Extremely Long Series of Compilations
During a very long series of compilations within the same session, the compiler sometimes hung or got a
segmentation violation. [UCR 90-435]
12.2.5. Optimized Case Statements in Inline Procedures
Bad code was generated when compiling optimized if a Case Statement occurred in an inline procedure called from
within an Iterative Statement’s WHILE clause. [UCR 90-84]
12.2.6. Optimizer Bug

An optimizer bug sometimes resulted in the message "substituteFields: expected tree in single basic block". [UCR
90-135]

-52.-

12.2.7. Macro Argument Too Long

If a macro argument were longer than 32K characters (as can happen if a closing parenthesis is missing in a macro
call), the compiler now aborts the current compilation instead of giving a fatal error message. [UCR 90-87]

12.2.8. $classDscrFor

The compiler did not issue an error message if $classDscrFor was called on a class name that had not yet been
declared; instead, it caused a bogus class descriptor to be constructed. [UCR 90-205]

12.2.9. $compile

$compile no longer returns true if the optimizer detects an error. [UCR’s 90-135, 90-306]

12.2.10.- CLIPPER Code Generator

A bug in the CLIPPER entry FLI caused MAINSAIL to go into an infinite loop during initialization when the entry

FLI was used. [90-69]

12.2.11. Intel 30836 Disassembler

Case Statements in inline procedures were disassembled incorrectly on the Intel 30836, [UCR 88-186]

12.2.12. IBM System/370 Code Generator

12.2.12.1. Exponentiation Overflow

Exponentiation with a long real or long integer base could overflow unnecessarily on the IBM. [UCR 90-103]

12.2.12.2. copy of One Character

Bad code was generated for calls to the charadr form of copy of the form "copy(c1,c2,1)".
12.2.13. M68000/MC68020 FLI

Problems with addressing limitations on the M68000/MC68020 prevented valid output from being generated for
foreign modules with large numbers of procedures. [UCR 90-145]

-53-

12.2.14. M68000/MC68020 Entry FLI for C
The entry FLI for C on all M68000/MC68020-based platforms returned address and charadr results in the wrong
register. [UCR 90-73]

12.2.15. MIPS R2000 Code Generator

12.2.15.1. Intermodule Calls with Many Arguments

Intermbdule calls with large numbers of arguments sometimes clobbered some of the arguments. [UCR’s 90-90,
90-99, 90-106, 90-107]

12.2.15.2. cvr(integerConstant)

‘When the argument to cvr or cvir was a (long) integer constant, the code generator sometimes got the error "setEa:
unexpected node, op = 2", [UCR 90-158]

12.2.15.3. NullArray Checking for Array Pseudo-Fields

The MIPS 2000 code generator did not check for nullArray when accessing array pseudo-fields, even when checking
was set. [UCR 90-182]

12.2.15.4. Overflow Checking and Multiplication by Powers of Two

Overflow that resulted when multiplying by a power of two was not always detected even when ACHECK was set.
[UCR 90-201]

12.2.16. PRISM Code Generator

12.2.16.1. NullArray Checking for Array Pseudo-Fields

The PRISM code generator did not check for nullArray when accessing array pseudo-fields, even when checking
was set. [UCR 90-182]

12.2.17. PRISM, SPARC, and M88000 Code Generators

Optimized modules on the PRISM, SPARC, and M88000 sometimes blew up with a bus error because §-byte
variables had not been properly aligned to 8-byte boundaries. [UCR 90-181, 90-222, 90-424]

-54 -

12.2.18.k VAX-11 Code Generator

Bad code could be generated for expressions of the form "x GEQ 1" or "x < 1", where x is a (long) integer. [UCR
90-92]

12.2.19. VAX-11, Intel 80386, and MIPS 2000 Code Generators

Bogus "case statement too large" error messages were sometimes issued for case statements that contained
unreachable code. [UCR 90-240]

12.2.20. VAX/VMS Entry FLI for C

The VAX/VMS entry FLI for C did not convert real procedure results to double precision as expected by C. [UCR
90-70]

12.2.21. Intel 80386 FLI Code Generators

Some of the Intel 80386 FLI code generators produced incorrect entry vectors, resulting in various errors. [UCR
90-325]

12.2.22. IBM RISC System/6000 Code Generator

12.2.22.1. Long Conditional Branches
Conditional branch instructions on the IBM RISC System/6000 can’t branch to targets farther away than 32 Kbytes.
Previously, if a conditional branch within a procedure wound up being farther than this, the code generator issued
the error message "encodeShortBrhOrCallDsp: dspl out of range”. Instead, it now emits an equivalent two-
instruction sequence. [UCR 90-301]
12.2.22.2. Subscripted Variable as Modifies Argument
The code generator error "setReg: expected register” was elicited if:

« a subscripted variable was used as a modifies argument or the left-hand side of a dotted operation,

« the array was one-dimensional with a constant lower bound,

« the array variable’s value happened to be already contained in a register when the subscripted variable’s

address was calculated for the second time (i.e., after the call for a modifies argument or in order to store
the dotted operation’s result).

-55-

[UCR 90-308]

12.2.22.3. Long Real Arguments Passed on the Stack

The code generator error "setReg: expected register” was elicited when a modifies or produces long real argument
to a procedure call was passed on the stack instead of in an argument register. Furthermore, the bug would show up
only if the argument’s stack location happened not to be aligned on an 8-byte boundary. Since there are seven
floating point argument registers that have to be tied up before any (long) real arguments are passed on the stack,
this bug didn’t show up very often. [UCR 90-385]

12.2.22.4. Floating Point Rounding

Reals on the IBM Risc System/6000 were truncated instead of rounded for some arithmetic operations. [UCR
90-444]

12.2.22.5. Procedures with Many Arguments and MAINPM

If a procedure had a lot of arguments and the procedure’s module was compiled with the MAINPM timing options
set, then on entry to or exit from the procedure, some of the arguments’ values were clobbered. [UCR 90-310]

12.3. Utilities

12.3.1. MAINEX "SETFILENAME" Subcommand

The MAINEX "SETFILENAME" subcommand did not work unless the module name was specified in uppercase.
[UCR 90-356]

12.3.2. LINCOM Positions

A bug in LINCOM caused it to be off by one in its line numbering if the differences between two files included an
end-of-page character. The error wasn’t permanent; LINCOM would resync and correct itself when it encountered
the next end-of-page.

12.3.3. INTCOM and OBJCOM

The utilities INTCOM and OBJCOM were inadvertently omitted from many MAINSAIL systems shipped to
customers. [UCR 90-347]

-56-

12.4. Debugger

12.4.1. "@" with No Context
When the debugger "@" command was invoked with no context (e.g., first thing upon entering the debugger), then

after blanking the screen it would complain that it could not find CMDLOG and insisted on getting an existing file
name. It now just enters CMDLOG without prompting. [UCR 87-388]

12.4.2. Misremembered Commands
The line-oriented debugger sometimes misapplied modifiers from previous commands (e.g., treated "N" as ".N" if a

previous command contained a ".") when executing the <eol> (repeat last command) command. [UCR’s 87-445,
88-134]

12.5. MAINEDIT

12.5.1. Strings Written to CMDLOG

Strings written to CMDLOG that were located in reclaimed static space or a disposed area would have caused the
editor to display garbled text. MAINEDIT now ensures that strings written to CMDLOG are copied to $defaultArea
if necessary. [UCR 86-497]

12.5.2. <eol> before a Blank in Insert Mode

‘When in insert mode with a blank immediately to the right of the cursor, an <eol> would break the line but put the
cursor at the first non-blank character on the line. The cursor is now correctly positioned at the blank that begins the
new line. [UCR 88-35]

12.5.3. Undesirable "Replace existing file?" Prompts

The "Replace existing file?" prompt issued when saving a file has now been suppressed for certain kinds of files
where it is irrelevant, e.g., files accessed through the NUL device module. [UCR’s 84-652, 86-812]

12.5.4. MAINVI and Replacement String Problems

In the ":<addressRange>s/<searchString>/<replaceString>/" command, a null <replaceString> was not accepted by

MAINVI. [UCR 89-27] Also, ":<addressRange>s/<searchString>$/<replaceString>/" deleted the end-of-line at the
end of <searchString>, which was inconsistent with real vi. [UCR 89-28]

-57-

12.5.5. MAINVI "dw", "cw" Commands

The MAINVI "dw" and "cw" commands deleted an end-of-line character if it followed the current word,
inconsistently with real vi. [UCR 89-43]
12.5.6. MAINVI ":zA" Command

The MAINVI ":z-" and ":zA" commands are now implemented as in vi. [UCR 88-296]

12.6. Structure Blaster

12.6.1. PDF $structureRead

$structureRead on a file opened for PDF I/O where $charsInArea was set and the specified area was not the default
error blew up with an addressing error. [UCR 90-260]

12.7. STREAMS

12.7.1. $becomeServer

The POINTER($stream) form of $becomeServer was inadvertently killing the coroutine in which it ran when the
module was disposed.

12.7.2. Underscore in Node Names in Service Protocol Table

The underscore character ("_") is now legal in node names in the service protocol table file. [UCR 89-42]

12.7.3. $openStream and Command Line Arguments

$openStream on UNIX passed through at most nine of the command line arguments. It has now been fixed to pass
them all. {UCR 90-291]

12.7.4. $newRemoteModule Errors on UNIX

$newRemoteModule failures were improperly handled on UNIX, triggering further errors. [UCR 89-398]

-58 -

12.8. MAINKERMIT
12.8.1. SUNVIEW and the MAINKERMIT Terminal Emulator

A bug in the MAINKERMIT terminal emulator caused certain systems to drop characters when run under the
SUNVIEW windows.

-59-

13. Enhancements

13.1. Language

13.1.1. Shared Variables

The declaration of an outer (non-interface) variable or local own variable may now be preceded with the keyword
"$SHARED". The value of such a variable is shared among all data sections (both bound and unbound) for the
module during a given execution. Like outer variables, shared variables initially have the value Zero.

Shared variables are allocated when the first data section of the module is allocated. They are allocated ina
structure called the "shared data section”, which is shared by all instances of the module (and is not to be confused
with a normal data section; it contains ONLY the module’s shared variables). The shared data section (and the
shared variable values in it) persists until the end of the MAINSAIL execution or until the module or string form of
dispose is used to dispose the module (disposing or unbinding any single data section of the module does not
deallocate the shared data section).

A local own variable declared with just the keyword "$SHARED" is syntactically like an "OWN" variable; i.e., its
identifier can be used only within the procedure, even though its value persists between invocations of the
procedure. The two keywords "$SHARED OWN" in a variable declaration are equivalent to just "$SHARED".

The Structure Blaster does not write out or read in shared variables when it writes or reads a data section.
Example of shared variable declaration:

$SHARED INTEGER i; # Accessible from all instances of
the current module

13.1.2. User Compiletime Procedures

The way in which the compiler implements compiletime procedures has been enhanced. Before, every compiletime
procedure required special code in the MAINSAIL compiler. Now, though such special code is still needed for
many compiletime procedures, othess can be handled by having the compiler call the procedure in the same manner
that the debugger can be used to call procedures. Users can now provide compiletime procedures by declaring them
with the qualifer "COMPILETIME", as described below.

An example of when special code is needed is for "first(s)", where s is a string constant. The value obtained by

using first(s) on the host machine (on which the compiler is running) gets the host character code for the first
character of s, which must then be converted to the target character code (if the target system has a different

-60 -

character set from the host system). An example of when special code is not needed is "$cvbo(s)" where s is a string
constant, since scanning s for "TRUE" or "FALSE" can be done on the host system.,

If a user-declared compiletime procedure P is invoked with all specified arguments constant (evaluatable at
compiletime), and there is no special code in the compiler to handle P, then the compiler attempts to carry out the
call to P at compiletime. In this case, P must be an interface procedure of some module M. The compiler binds M,
and then calls M.P with the constant arguments. An error occurs if M cannot be bound. Thus for the user to
contribute a compiletime procedure, the procedure must be an interface procedure of a module whose objmod can be
found during compilation (e.g., if it resides in a library, that library must be open). It is the user’s responsibility to
be sure that invoking the procedure on the host system has the desired effect. For example, floating point
computations may not have the same precision on the host as they would on the target.

All modifies and produces arguments must be omitted (and hence optional) in order to qualify as "constants"” (thus,
compiletime procedure calls do not give a way to modify or produce a variable (or macro identifier) at compiletime).

If a compiletime procedure P is typed, the call is replaced with the value returned (this does not work for address,
charadr, or pointer procedures unless the result is discarded, i.e., unless the call is a Procedure Call Statement).

A compiletime procedure can of course also be invoked without all-constant arguments, in which case it behaves as
if it had not been declared compiletime, and so is processed at runtime like any other procedure.

Because compiletime procedures must be invoked in a module other than the one currently being compiled,
compiletime procedures may impose an order in which modules must be compiled, and could lead to an impossible
order. For example, suppose module M1 has a compiletime procedure P1, and module M2 has a compiletime
procedure P2. If M1 makes a compiletime call to P2, and M2 makes a compiletime call to P1, then neither module
can be compiled before the other.

The following system procedures have been changed to be compiletime procedures:

Procedure Comment s

$cvbo

cvs boolean, bits, and (long) bits forms

$length boolean, (long) integer, and (long) bits
forms

$formParagraph

S$hash

compare standard string compare

cves compiletime only if the arg char maps to a

host char which in turn maps to the arg char
$typeName

13.1.3. Long Module Names

Module names are no longer restricted in length to six characters.

-61 -

Since the compiler forms the output file intmod and objmod name from the module name, a long module name
could result in a file name which is too long to be legal on some operating systems. This problem does not arise if
the intmod and objmod are put into a library. Itis the user’s responsibility to deal with this situation if it arises.
(This problem was the reason that the six-character limit was imposed on module names in the first place.)

13.1.4. New File Directory Manipulation Procedures

BOOLEAN

PROCEDURE $createDirectory
(STRING directoryName;
OPTIONAL BITS ctrlBits;
PRODUCES OPTIONAL STRING msg);

BOOLEAN

PROCEDURE SdeleteDirectory
{STRING directoryName;
OPTIONAL BITS ctrlBits;
PRODUCES OPTIONAL STRING msg);

Following is new generic instance of $currentDirectory

STRING

PROCEDURE ScurrentDirectory
(OPTIONAL STRING devModName;
OPTIONAL BITS ctrlBits;
PRODUCES OPTIONAL STRING msg);

BOOLEAN

PROCEDURE $setCurrentDirectory
(STRING directoryName;
OPTIONAL BITS ctrlBits;
PRODUCES OPTIONAIL STRING msg) ;

BOOLEAN

PROCEDURE $renameDirectory
(STRING oldDirName, newDirName;
OPTIONAL BITS ctrlBits;
PRODUCES OPTIONAL STRING msg);

Table 13.1.4-1. New File Directory Manipulation Procedures (continued)

-62-

BOOLEAN

PROCEDURE $copyDirectory
(STRING oldDirName, newDirName;
OPTIONAL BITS ctrlBits;
PRODUCES OPTIONAL STRING msg);

STRING
PROCEDURE ScomposePath
(OPTIONAL STRING
pathPrefix, pathComponents,
devModStr;
OPTIONAL BITS ctrlBits);

BOOLEAN
PROCEDURE $decomposePath

(STRING path;

PRODUCES OPTIONAL STRING
pathPrefix, pathComponents,
devModStr;

OPTIONAL BITS ctrlBits);

STRING
PROCEDURE ScomposeFileName
(STRING base;
OPTIONAL STRING
extension, devModStr, path;
OPTIONAL BITS ctrlBits);

BOOLEAN
PROCEDURE $decomposeFileName
{STRING fileName;
PRODUCES OPTIONAL STRING
base, extension, devModStr, path;
OPTIONAL BITS ctrlBits):;

Table 13.1.4-1. New File Directory Manipulation Procedures (end)

Several new directory-related procedures have been added. These procedures are not guaranteed to work for all
device modules; e.g., they are not supported for INTLIB, MODLIB, CMS DISK, TTY, MEM, etc. All of the
procedures listed below produce an error string; if not supported, the first line of the error string is "not supported":

-63-

Procedure Purpose

$createDirectory create a directory
SdeleteDirectory delete a directory
$currentDirectory new instance of

$ScurrentDirectory:
accepts a device prefix

$setCurrentDirectory change the current directory
$renameDirectory rename a directory
ScopyDirectory copy a directory
$composePath compose a directory name
from its path name
components
$decomposePath reduce a directory name to
its path name components
$composeFileName compose a file name from
its path name components
$decomposeFileName reduce a file name to its

path name components

[UCR’s 85-412, 85-456, 88-269, 88-292]

All the new procedures are subject to change if their interfaces prove unsatisfactory.

13.1.4.1. $createDirectory

TEMPORARY FEATURE: SUBJECT TO CHANGE

$createDirectory creates a directory named directoryName. If the directory is to be created by a device module
other than the default disk device module, the device prefix should be prepended to the directory name and separated
from it by the string $devModB1kStr. For example, if $devModBrkStr is ">" and the directory "foo/bar” is to be
created by a device module D, directoryName should be "D>foo/bar".

S$createDirectory returns true on success, false on failure. If it fails, msg is set to an error message describing the
failure.

Valid ctrIBits bits for $createDirectory are errorOK, alterOK, and $useQriginalFileName. If errorOK is set, then
errMsg is not called when $createDirectory fails. If alterOK is set, then if a file or directory of the specified name
already exists, it is deleted without prompting the user; otherwise, if a file or directory of the specified name exists,
the user is prompted with "OK to delete <name>" before the existing file or directory is replaced. If
$useOriginalFileName is set, no logical file name or file searchpath substitution is performed on directoryName.

13.1.4.2. $deleteDirectory

TEMPORARY FEATURE: SUBJECT TO CHANGE

$deleteDirectory deletes a directory named directoryName. If the directory is to be deleted by a device module
other than the default disk device module, the device prefix should be prepended to the directory name and separated
from it by the string $devModBrkStr. For example, if $devModBikStr is ">" and the directory "foo/bar” is to be
deleted by a device module D, directoryName should be "D>foo/bar".

If directoryName contains files, the files are also deleted. If directoryName contains directories, the directories are
recursively deleted.

$deleteDirectory returns true on success, false on failure. If it fails, msg is set to an error message describing the
failure.

Valid ctrlBits bits for $deleteDirectory are errorOK and $useOriginalFileName. If errorOK is set, then errMsg is not

called when $deleteDirectory fails. If $useOriginalFileName is set, no logical file name or file searchpath
substitution is performed on directoryName.

13.1.4.3. $currentDirectory

TEMPORARY FEATURE: SUBJECT TO CHANGE

The new generic instance of $currentDirectory accepts a string as its first argument, which is a device prefix.
$currentDirectory returns the name of the current directory for the specified device. devModName should be a
device prefix followed by the string $devModBikStr; i.e., to get the directory for a device D on a system where
$devModBrkStr is “>", use the string "D>".

13.1.4.4. $setCurrentDirectory

TEMPORARY FEATURE: SUBJECT TO CHANGE

$setCurrentDirectory sets the current directory to directoryName. If directoryName includes a device prefix, then
the current directory for that device is set; otherwise, the current directory for the default disk device (i.e., the
operating system’s file system) is set. The device prefix, if present, should be prepended to the directory name and

-65 -

separated from it by the string $devModB1kStr. For example, if $devModB1kStr is ">" and the directory "xxx/yyy"
is to become the current directory for a device module D, directoryName should be "D>xxx/yyy".

$setCurrentDirectory returns true on success, false on failure. If it fails, msg is set to an error message describing
the failure.

Valid ctrIBits bits for $setCurrentDirectory are errorOK and $useOriginalFileName. If errorOK is set, then ertMsg

is not called when $setCurrentDirectory fails. If $useOriginalFileName is set, no logical file name or file searchpath
substitution is performed on directoryName.

13.1.4.5. $renameDirectory

TEMPORARY FEATURE: SUBJECT TO CHANGE

$renameDirectory renames a directory named oldDirName to newDirName. If the directory is to be renamed by a
device module other than the default disk device module, the device prefix should be prepended to both oldDirName
and newDirName, separated from the names by the string $devModBrkStr. For example, if $devModBikStr is ">"
and the directory "foo/bar” is to be renamed to "baz/gaz" by a device module D, oldDirName should be "D>foo/bar"
and newDirName should be "D>baz/gaz".

$renameDirectory operates recursively if oldDirName itself contains directories; i.e., those directories also appear in
newDirName after the call to $renameDirectory.

$renameDirectory returns true on success, false on failure. If it fails, msg is set to an error message describing the
failure.

Valid ctrIBits bits for $renameDirectory are errorOK, alterOK, and $useOriginalFileName. If errorOK is set, then

errMsg is not called when $renameDirectory fails. If alterOK is set, then if a file or directory named newDirName

already exists, it is deleted without prompting the user; otherwise, if newDirName exists, the user is prompted with
"OK to delete <newDirName>" before the existing file or directory is replaced. If $useOriginalFileName is set, no
logical file name or file searchpath substitution is performed on oldDirfName or newDirName.

13.1.4.6. $copyDirectory

TEMPORARY FEATURE: SUBJECT TO CHANGE

$copyDirectory copies a directory named oldDirName to newDirName. If the directory is to be copied by a device
module other than the default disk device module, the device prefix should be prepended to both oldDirName and
newDirName, separated from the names by the string $devModBrkStr. For example, if $devModBrkStr is ">" and

- 66 -

the directory "foo/bar" is to be copied to "baz/gaz" by a device module D, oldDirName should be "D>foo/bar" and
newDirName should be "D>baz/gaz".

$copyDirectory copies all the files contained in oldDirName into newDirName. It operates recursively if
oldDirName itself contains directories; i.e., copies of the contained directories also appear in newDirName after the
call to $copyDirectory.

$copyDirectory returns true on success, false on failure. If it fails, msg is set to an error message describing the
failure.

Valid ctrIBits bits for $copyDirectory are errorOK, alterOK, and $useOriginalFileName. If errorOK is set, then
errMsg is not called when $copyDirectory fails. If alterOK is set, then if a file or directory named newDirName
already exists, it is deleted without prompting the user; otherwise, if newDirName exists, the user is prompted with
"OK to delete <newDitName>" before the existing file or directory is replaced. If $useOriginalFileName is set, no
logical file name or file searchpath substitution is performed on oldDirName or newDirName.

13.1.4.7. $composePath

TEMPORARY FEATURE: SUBJECT TO CHANGE

$composePath takes three strings in the (device-specific) format produced by $decomposePath and returns a
syntactically correct (device-specific) directory path name. The pathComponents string is expected to include only
directory components, i.e., is not expected to include the leaf file name; use $composeFileName to compose a file
name including a leaf file name.

The only valid ctrlBits bit for $composePath is errorOK. If set, errMsg is not called when an error occurs.

13.1.4.8. $decomposePath

TEMPORARY FEATURE: SUBJECT TO CHANGE

$decomposePath takes a directory path name and reduces it to a prefix, path components, and a device module string
devModStr. The path string is expected to include only directory components, i.e., is not expected to include the
leaf file name; use $decomposeFileName to decompose a file name including a leaf file name.

The exact format of the decomposed path components is specific to the device, but in a tree-structured file system,
the directories in the path are normally produced in pathComponents separated by spaces. pathPrefix often
represents a node name on file systems where more than one node is accessible; pathComponents usually represents
the directory path name (for tree-structured directories) exclusive of the node name.

-67 -

The only valid ctriBits bit for $decomposePath is errorOK. If set, errtMsg is not called when an error occurs.

13.1.4.9. $composeFileName

TEMPORARY FEATURE: SUBJECT TO CHANGE

$composeFileName takes base, extension, device module, and path strings in a (device-specific) format. The path
format is that produced by $composePath for the device. $composeFileName returns a syntactically correct (device-
specific) file name, such as could be passed to the system procedure "open”.

The only valid ctrlBits bit for $composeFileName is errorOK. If set, errtMsg is not called when an error occurs.

13.1.4.10. $decomposeFileName

TEMPORARY FEATURE: SUBJECT TO CHANGE

$decomposeFileName takes a file name and reduces it to a base, extension, a device module string devModStr, and a..
path. The format of the path is the same one produced by $composePath for the device.

The only valid ctrdBits bit for $decomposeFileName is errorOK. If set, errMsg is not called when an error occurs.

13.1.5. Getting Error Messages from open, close, and $createUniqueFile; New devModStr, path, and
extension Parameters to $createUniqueFile

BOOLEAN »

PROCEDURE open (PRODUCES POINTER (textFile) £;
STRING fileName; BITS openBits;
PRODUCES OPTIONAL STRING msg);

BOOLEAN

PROCEDURE open (PRODUCES POINTER (dataFile) £f;

STRING fileName; BITS openBits;
PRODUCES OPTIONAL STRING msq);

Table 13.1.5-1. open and $createUniqueFile (continued)

- 68 -

BOOLEAN

PROCEDURE close (MODIFIES POINTER (file) ¥f;
OPTIONAL BITS closeBits;
PRODUCES OPTIONAL STRING msg);
BOOLEAN
PROCEDURE $createUniqueFile
(PRODUCES POINTER (textFile) f£;
BITS openBits;
PRODUCES OPTIONAL STRING msg;
OPTIONAL STRING
devModStr,path,extension);
BOOLEAN
PROCEDURE $createUniqueFile

(PRODUCES POINTER {(dataFile) £;

BITS openBits;

PRODUCES OPTIONAL STRING msg;

OPTIONAL STRING
devModStr,path, extension);

Table 13.1.5-1. open and $createUniqueFile (end)

The system procedures open, close, and $createUniqueFile now produce an error string, msg, indicating why the

open or close failed.

The first line of the error string for open and $createUniqueFile is one of the following strings for which identifiers
have been predefined (XIDAK reserves the right to add to this list):

Identifier
$noSuchFileStr
$tooManyOpenFilesStr
$noPermissionStr
$noSpaceStr
$invalidArgumentStr
SotherErrorStr

Value

"no such file"

"too many open files"®
"no permission®

"no space"

"invalid argument™
"other error"”

The error string may contain additional lines which give more detailed information about why the open failed.
When testing for one of these strings, always use the predefined identifiers, since the text of the strings is subject to

change.

close now returns false if and only if an error occurred while closing the file. The format of msg produced by close

is not specified.

-69 -

[UCR’s 84-431, 85-418, 86-48, 86-801, 86-970, 90-297]

TEMPORARY FEATURE: SUBJECT TO CHANGE

$createUniqueFile now allows the caller to specify the device module, path, and extension of the file created. The
meaning of these parameters is device-specific, but is the same as specified to $composeFileName for the device.
Each of these parameters that is non-zero overrides $createUniqueFile’s default value for that parameter. For
example, to cause a temporary file to have the extension "xyz" (instead of the default "tmp" used for most devices):

ScreateUniqueFile (f, output,msg,"", """, "xyz")

The parameters devModStr, path, and extension are considered temporary features subject to change.

13.1.6. Effective User ID and $userID

Some systems distinguish between a login user ID (the user ID under which the current user logged in) and the
effective user ID (if the user ID was somehow changed during the login session). A new ctrIBits bit, $login, is now
allowed in calls to $userld. If $login is specified, the login user ID is returned, if available; otherwise, the effective
user ID is returned, if available.

It is advisable always to check $userID’s return for the null string, since it is fairly common for either the effective
user ID or the login user ID to be unavailable, depending on the operating system.

Because a known bug in the operating system on Intergraph’s System V UNIX on Interpro 32C prevents the

effective user ID from being available if the Yellow Pages is running, the login user ID is always returned in the
current release. [UCR’s 89-234, 90-378]

13.1.7. $hasFileVersions and $fileInfo

The bit $hasFileVersions is now maintained on a per-device-module basis. $hasFileVersions is still set in
$attributes for each system and applies to the default disk device module for that system.

$hasFileVersions may be set in the $fileAttr field of the $fileInfoCls record retumed by $fileInfo if the device on
which the file resides has file versions (note that $fileAttr is considered a temporary feature). Similarly, a new long
bits field, $deviceAttributes, bas been added to the file record. Programs may examine this field to determine
characteristics of the file device; the only bit that is currently set in it is $hasFileVersions.

[UCR’s 86-761, 86-812]

-70 -

13.1.8. $clearFileCache

$clearFileCache now writes the current buffer of its file argument if the file is not cached. Before, it took no action
if the file was not cached. [UCR’s 88-210, 88-238]

13.1.9. $flush

TEMPORARY FEATURE: SUBJECT TO CHANGE

BOOLEAN
PROCEDURE $flush (POINTER (file) £);

Table 13.1.9-1. $flush

$flush writes all dirty buffers for the specified file f, whether or not f is cached.

[UCR 88-254]

13.1.10. $commandLineArgs

TEMPORARY FEATURE: SUBJECT TO CHANGE

system variable
STRING ARRAY (0 TO *) $commandLineArgs;

Table 13.1.10-1. $commandLineArgs

The new system variable $commandLineArgs records the arguments passed to the program from the operating
system command line in a different format from $getCommandLine. $getCommandLine returns all arguments
concatenated into a single string with spaces as separator characters, thereby losing information on some operating
systems (such as UNIX) which permit spaces within a single argument. $commandLineArgs records each argument
as a separate element of the array, starting with the program name (if available) as argument zero.

-71-

Unlike the $getCommandLine mechanism, $commandLineArgs is not modified by prompts given at the MAINEX
asterisk prompt or by calls to $setCommandLine or $invokeModule. It records only the line given in response to the
operating system prompt at which MAINSAIL was invoked.

The effects of ‘changing $commandLineArgs or its contents are undefined. [UCR 88-156]

13.1.11. $changeAreaParms

PROCEDURE $changeAreaParms
(POINTER ($area) area;
LONG BITS attrBitsToSet;
OPTIONAL LONG BITS
attrBitsToClear;
OPTIONAL LONG INTEGER
strSpcChars) ;

Table 13.1.11-1. $changeAreaParms
$change AreaParms changes the area parameters for area. The valid bits for attrBitsToSet and atrBitsToClear are
the same as the valid bits for the attr parameter to $newArea; the resulting attribute bits for the area are given by:
(oldAttrBits IOR attrBitsToSet) CLR attrBitsToClear
The strSpcChars parameter specifies the size of area’s string space and has the same effects as the sttSpcChars

parameter to $newArea.

13.1.12. $mergeArea

PROCEDURE $mergeArea (POINTER($area) dstArea;
MODIFIES REPEATABLE
POINTER ($area) srcArea);

Table 13.1.12-1. $mergeArea

$mergeArea merges the contents of srcArea into dstArea (i.e., all chunks and strings in srcArea wind up in dstArea),
then gets rid of the srcArea area and sets the srcArea parameter to nuliPointer.

-72 -

The attribute bits for dstArea are unaffected by the attribute bits for srcArea, except that the following bits are
cleared in dstArea if they are not set for srcArea:

$noCollectablePtrs
$noCompactablePtrs
$noCollectableStrs

In other words, if either the source or destination area might contain collectable or compactible data before the call
to $mergeArea, the destination area is treated as if it might contain such data after the call to $mergeArea.

13.1.13. $reclaim

SALWAYSINLINE
PROCEDURE S$reclaim (STRING s;
POINTER($Sarea) ap);

Table 13.1.13-1. $reclaim

$reclaim is a low-level string space manipulation procedure that can be used to enhance efficiency in certain
situations. However, incautious use of $reclaim can corrupt MAINSAIL’s string space; this procedure should be
used only by those who have a good understanding of what it does.

$reclaim reclaims the characters of a string s if s is at the top of the area ap’s string space.
The behavior of $reclaim is undefined unless it conforms to the following restrictions:

» The string s must have been constructed using a system procedure that does not take any strings as uses or
modifies arguments (such as non-string forms of cvs). Do not call $reclaim if s has been constructed with,
for example, the concatenation operator ($concat), string forms of cWrite, string forms of scan, or $dup,
since all of these take strings as uses or modifies arguments. If s has been constructed with a procedure
that takes a string uses or modifies argument, it is possible to free strings that were not intended, thereby
corrupting string space.

« The string s must be in a user-created area, not in $defaultArea or in any other area created by the runtime
system. System procedures may put strings in $defaultArea (or other system areas, if any) at
unpredictable times, and reclaiming these strings may have undefined effects. $inArea should be called to
verify that s is in the area ap before $reclaim is called.

Example:

-73-

s := cvs(lr,’0,myArea);

IF $inArea (s,myArea) THEN S$reclaim(s);

13.1.14. Constant Array Pseudo-Fields
The bounds pseudo-fields of an array ary (i.e., ary.1bl, ary.ubl, ary.1b2, etc.) are now evaluated at compiletime if
declared as a constant. This is particularly useful when an array is being allocated in a specified area, since in that
case the bounds must be specified as arguments to new. Before, the constant bounds had to be repeated in the call to
new. If the bounds were changed in the program, all the corresponding calls to new had to be found and changed
also (unless macro constants were used). Now it is possible to do the following:

INTEGER ARRAY (1 TO 10) ary;

new (ary,ary.lbl,ary.ubl,area); # no need to use constants 1 and 10
ary.$arrayType and ary.$dimension are also evaluated at compiletime if the type and number of dimensions,
respectively, are specified in ary’s array declaration. The effect is undefined if an array variable is declared one way

but then made to point to an array with different characteristics.

ary.name is not evaluated at compiletime.
13.1.15. VAX/VMS-Specific Procedures

13.1.15.1. $trnLnm

BOOLEAN
PROCEDURE StrnLnm (LONG BITS attr;
STRING tabNam, logNam;
PRODUCES STRING name;
PRODUCES OPTIONAL STRING msg);

Table 13.1.15.1-1. $tnLom

$trLnm translates a logical name. attr controls the search for the logical name, as documented in the "VAX/VMS
System Services Reference Manual”. tabName is the name of the table to search and logNam is the logical name to
look up. If an error occurs, $trmlnm retumns false and msg is set to indicate the error. Otherwise, $trnLnm returns
true and name is the translation for the logical name.

Example of use:

-74 -

$trnLnm(’ 0L, "LNMSJOB™, "SYSSLOGIN", homeDir,msg)

[UCR’s 86-579, 87-174]
13.1.15.2. CMS-Specific Procedures

13.1.15.2.1. $lookupSynonym

STRING

PROCEDURE S$lookupSynonym
(STRING synonymFile, symbol;
PRODUCES OPTIONAL STRING msg);

Table 13.1.15.2.1-1. $lookupSynonym

$lookupSynonym looks up a symbol in a CMS synonym file. synonymFile is the name of a synonym file to search,
and symbol is the symbol to look up. The synonym file must be a valid synonym file, i.e., one which could be
specified in the CMS "SYNONYM" command. If an error occurs, $lookupSynonym returns the null string and msg
is set to indicate the error. Otherwise, $lookupSynonym returns the translation for the symbol. [UCR’s 86-579,

87-174}
13.2. Runtime System

13.2.1. cvcs

The implementation of cvcs has been changed so that it no longer puts new text into string space (the area parameter
to cvcs is therefore now ignored). This means a call to cvcs cannot cause a garbage collection.

13.2.2. UNIX Shell Variables in File Names

On UNIX, MAINSAIL has been enhanced to allow file names to begin with an environment variable. If the file
name begins with the dollar character ("$"), MAINSAIL scans the file name for either the end of the file name string
or for "/", whichever comes first. It looks up the resulting identifier in the envp array (passed to the C main
program). If the identifier is found, the environment variable specification in the file name is replaced with value of
the environment variable; otherwise, the file name remains unaltered.

-75 -

File names beginning with dollar signs may appear in bootstrap files produced by CONF or in command files so that
a MAINSAIL bootstrap can be made in such a way that it does not need to be reinstalled if moved to another
directory.

[UCR’s 84-630, 86-593, 87-206, 88-23]

13.2.3. MAINSAIL Revision

The MAINSAIL revision time is now displayed as part of the MAINSAIL herald when MAINSAIL comes up. A
new MAINEX subcommand, "REVISION", also displays the current revision time. [UCR 88-258]

13.3. Compiler

13.3.1. Code Generator Errors

Code generator errors now prevent an object module from being produced. Previously, if the only errors during
compilation occurred during the code generation phase, an object module would still be produced even though it
would not run correctly. [UCR’s 89-163, 90-213, 90-215]

13.3.2. VAX/VMS C FLI Labels

The VAX/VMS C FLI no longer prefixes an underscore ("_") to the default label for a C FLI procedure, since the
VAX/VMS C compiler does not prefix an underscore to function names.

13.4. Utilities

13.4.1. MAINEX "DEFINE" Subcommand

A new MAINEX subcommand, "DEFINE", allows a MAINEX command to be defined as a macro. The syntax of
the subcommand is:

DEFINE <identifier> <macroBody>

Whenever the identifier is encountered as the first word of a MAINEX command line, the macro body is substituted
for it. For example:

DEFINE xxx compil

allows the MAINSAIL compiler to be invoked as "xxx". The MAINEX command line:

-76 -

xxx foo.msl
invokes the compiler on the source file "foo.msl".
Since the macro body is just arbitrary text, it can include parameters in addition to the actual module name; e.g.:
DEFINE foo edit foo.msl

would edit the file "foo.msl"” whenever "foo" was typed to the MAINEX "*" prompt. The macro body (with leading
and trailing blank space removed) is substituted in place of the macro name in the original command line (separated
from the rest of the command line by a single space if the command line contains text after the macro name).

For example, with the above definition, the command line "foo wy43" expands to "edit foo.msl wy43". Macro
substitution is recursive, so that if you issue "DEFINE foo bar" and "DEFINE bar baz", then the command line "foo"
ultimately expands to "baz". There is a recursion depth limit (its exact value is subject to change), so that an error
message is issued if an infinite recursion occurs.

The motivation for the introduction of the "DEFINE" command is that there are some XIDAK module names that
have a leading "$", and yet are documented for invocation by users: $DEBUG, $INTCOM, $MM, $OBICOM,
$STAMP, $STRTXT. Without a new mechanism, the user would have to type the full name, including the dollar
sign, to the MAINEX prompt in order to invoke one of these modules. To allow users to continue to type the
familiar names without dollar signs, the "DEFINE" subcommand is introduced. By default, XIDAK includes the
subcommands:

DEFINE debug $debug

DEFINE intcom $intcom

DEFINE mm S$rm

DEFINE objcom $objcom

DEFINE stamp $stamp

DEFINE strtxt $strtxt

in the system subcommand file during standard installation of MAINSAIL.

13.4.2. MAINEX "REVISION" Subcommand

A new MAINEX subcommand, "REVISION", displays the revision time of the current version of MAINSAIL.
[UCR 88-258]

13.4.3. INTLIB/MODLIB DEFINE command

MODLIB and INTLIB each have a new "DEFINE" command:

DEFINE <identifier> <libraryFileName>

-77 -

The defined identifier can later be used anywhere a library file name would be used as part of a MODLIB or INTLIB
command, e.g.:

DEFINE foo /fs3/usr/fxi/fxi74200.40/src/src/fgc.ilb
ADD foo modl mod2 mod3

ADD foo mod4 mod5 modé6

DIR foo

The motivation for these commands should be clear from the above example.

13.4.4. Opening Intmod and Objmod Libraries

XIDAK utility commands that open intmod and objmod libraries (e.g., MAINEX’s "OPENEXELIB"
("OPENLIBRARY"), "OPENINTLIB", and "OPENOBJLIB" commands) now move the library named by their
argument to the front of the library list, if the library is already open. This affects the search order for intmods and
objmods; a module of the same name earlier in the library list hides one later in the list.

13.4.5. MM Area Reference Commands

13.4.5.1. "ri" Command

The new MM command "ri f al ... an" ("reference info") writes information about references to areas with titles al
... anto file f. This command is a debugging aid which shows all pointer and string references into an area from
outside the area. For example, if a program is disposing of an area at a certain point, and the user suspects that this
is causing a "dangling" pointer or string bug, this command, given (e.g., from the debugger) just before the area is
disposed, may help to determine what string or pointer is causing the problem.

If the ai (and possibly f) are omitted, MM prompts for them. If given on the same line as "ri", separate f and ai with
one or more blanks and/or tabs.

The ai are area titles; each title is assumed to be a single "word" (no spaces) unless it starts with a double quote, in
which case it extends to the next double quote (double quote pairs as in string constants are not recognized). If no ai
are specified, MM prompts for them, in which case each response is taken as the area title (blanks and double quotes
play no special role, so that arbitrary titles (except that embedded eols are not allowed) can be specified).

The file f is opened with the bits random!input!output!$unBuffered, so that "TTY" is not suitable. Use ">>f" instead
of just "f" to append to the end of an existing file f (in which case the new info is preceded with an eop character if f
is not initially empty).

MM first marks each area in al ... an, and then finds each pointer and string which references a marked area, but is

not itself in a marked area. The identity of each such pointer or string is written to the file f, one line per reference.
An example of some lines from such a file f is (the formats are subject to change):

-78 -

Pointers and strings which reference the following areas
(from outside these areas):
compilArea

POINTER FIELD KERSTRSPC.S$SAREAREC

POINTER LOCAL $MM.REFINFO.-48

POINTER LOCAL PASS1.GETSTA.S$THISDB

POINTER LOCAL PASS1.BEGINSTA.STHISDB

POINTER LOCAL PASS1.ITERATIVESTA.Q

POINTER LOCAL PASS1.GETPROCEDURE .MP

POINTER LOCAL PASS1.GETPROCEDURE.~134

STRING LOCAL PASS1.GETPROCEDURE.PROCNAME = "INITIALPROC"
STRING LOCAL PASS1.GETDCLS.S = "SYNCHRONIZE"
POINTER LOCAL PASS1.GETDCLS.DCLSYM

POINTER LOCAL PASS1.GETDCLS.-90

POINTER FIELD KERAREA.SNEXTAREA [passlArea]

POINTER OWN TREEIO.STRAREA [passlArea]
POINTER OWN PAKMOD.36 [passlArea]
POINTER OWN PAKMOD.0 [passlAreal

STRING FIELD $PARSENODE.STR [passlArea] = "44"
STRING FIELD SPARSENODE.KEY [passlArea] = "S"

STRING FIELD $PARSENODE.STR [passlArea] = "600 146"
STRING FIELD SPARSENODE.KEY {[passlArea] = "TEXTOPEN"
STRING FIELD SPARSENODE.KEY [passlArea] = "3S"
POINTER FIELD SRECMANAGER.SAREAREC [keptCompilAreal
POINTER FIELD SRECMANAGER. SAREAREC [keptCompilAreal)
POINTER OWN PAKMOD.36 [keptCompilAreal

POINTER IFIELD INTMGR.LASTOPENMODULE [keptCompilAreal]
POINTER IFIELD INTMGR.VISIBLESYMTBLNODELIST [keptCompilAreal]
POINTER OWN INTMGR.STRAREA [keptCompilAreal

Each informational line starts out with "type kindOfVar" where type is POINTER or STRING, and kindOfVar is
LOCAL, OWN, SHARED, FIELD, IFIELD, ARYELEM, or VECELEM. The exact format of the rest of the line
depends on these first two fields.

For all but LOCAL, the title of the area which contains the referencing pointer or string is written in square brackets
after the information identifying the reference (this is omitted if the title is null string).

If type is STRING, the entry ends with = "value", where value is the first 20 characters of text for the referenced
string (if longer than 20 characters, "..." is appended to the end, e.g., "value...").
13.4.5.1.1. LOCAL

kindOfVar is LOCAL for a local variable (more precisely, a value in a stack frame). A local reference has the
following format:

-79-

type LOCAL moduleName.procedureName.frameDspl [referencingCoroutine]
[referencingCoroutine] is omitted if it is the root coroutine "MAINSAIL" in which MAINSAIL starts execution.
An example of a line written for a LOCAL reference is:
POINTER LOCAL SMM.REFINFO.-48

This means that one of the areas was referenced by a local pointer at displacement -48 in a stack frame for the
procedure REFINFO in the module $MM.

The "local" variable $THISDB refers to the data section pointer that is stored in every frame, for example:
POINTER LOCAL SMAINEX.SMAINSAILEXEC.$THISDB
In some rather obscure cases it is possible for <unknown> to be written for moduleName. If the referencing
module’s control section was not in memory when the reference was written, then the procedure name could not be
found, and in its place is written the displacement in the control section to which control will retum to the
referencing procedure. If the displacement is not even known, <unknown> is written for procedureName. Use the
"fr" command (described below) to translate frameDspl to the local variable name; e.g., the first example line above
might be translated to:

POINTER LOCAL SMM.REFINFO.AREALIST

13.4.5.1.2. OWN

kindOfVar is OWN for an own variable (more precisely, a value in a data section (a normal data section, not a
shared data section) that is not an interface field). An own reference has the following format:

type OWN moduleName.dataSecDspl [referencinglArea]
An example of a line written for a OWN reference is:
POINTER OWN PAKMOD .36 [passlAreal

This means that one of the areas is referenced by an own pointer at displacement 36 in a data section for the module
PAKMOD, and the referencing data section is in an area with title "pass1Area”.

Use the "fi" command described below to translate dataSecDspl to the own variable name; e.g., the example line
above might be translated to:

POINTER OWN PAKMOD . THEREC [passlAreal]

-80-

13.4.5.1.3. SHARED

kindOfVar is SHARED for a shared variable (i.e., a value in a shared data section). A shared reference has the
following format: '

type SHARED moduleName.sharedDataSecDspl [referencingAreal
An example of a line written for a SHARED reference is:
POINTER SHARED FOO.20 [passlAreal]

This means that one of the areas is referenced by a shared pointer at displacement 20 in the shared data section for
the module FOO, and the referencing shared data section is in an area with title "pass1Area".

Use the "f" command described below to translate sharedDataSecDspl to the shared variable name; e.g., the
example line above might be translated to:

POINTER SHARED FOO.XRECNEXT [passlArea]

13.4.5.1.4. FIELD
kindOfVar is FIELD for a field of a record or descriptor. A field reference has the following format:
type FIELD className.fieldName [referencingAreal
An example of a line written for a FIELD reference is:
STRING FIELD $PARSENODE.KEY [passlArea)] = "$SRAISEFRAME"
This means that one of the areas is referenced by field KEY of a record of class $PARSENODE, and the referencing
record is in an area with title "pass1Area”. The referenced string is "$RAISEFRAME",
13.4.5.1.5. IFIELD
kindOfVar is IFIELD for an interface field of a data section. An IFIELD reference has the following format:
type IFIELD moduleName.fieldName {referencingArea]
An example of a line written for an IFIELD reference is:
POINTER IFIELD INTMGR.FIRSTOPENMODULE [keptCompilAreal]

This means that one of the areas is referenced by the field FIRSTOPENMODULE of a data section for the module
INTMGR, and the referencing data section is in an area with title "keptCompileArea".

-81-

13.4.5.1.6. ARYELEM

kindOfVar is ARYELEM for an element of an array. An ARYELEM reference has the following format:
type ARYELEM arrayName[il{,i2{,i3}}] [referencingArea]

An example of a line written for an ARYELEM reference is:
STRING ARYELEM MODULENAMEMAP[1] {[compilArea] = "$SYS™

This means that one of the areas is referenced by MODULENAMEMAP(1], and the referencing data section is in an
area with title "compileArea". The referenced string is "$SYS".

13.4.5.1.7. VECELEM

kindOfVar is VECELEM for an element of a vector (an internal data structure used by the runtime system). A
VECELEM reference has the following format:

type VECELEM [index] [referencingAreal
An example of a line written for a VECELEM reference is:
POINTER VECELEM [3] [compilArea]

This means that one of the areas is referenced by a vector element with index 3, and the referencing vector is in an
area with title "compileArea". Note: vectors do not have names.

13.4.5.2. "fr" Command

The command "fr f g" ("fix references") copies the file f (created by "ri f...") to a new file g, except that an attempt is
made to replace local and own displacements with the corresponding variable names. The file f may consist of any
number of pages of output created by separate "1ri" commands (which specified ">>f", i.e., append mode).

This translation is not carried out automatically by the "ri" command since the user may not want to disturb memory
in the midst of program execution to the extent that "fr" does, and the supporting intmods (see below) may not be
available in the execution context.

To replace a local variable displacement for a procedure in some module FOO, or an own variable displacement in
FOO, FOO must have been compiled with the "DEBUG" option and the resulting intmod for module FOO must be
accessible, "fr" complains when it cannot find an intmod or when the intmod has insufficient information, but in
such cases it simply copies the original line from fto g.

There are other situations when a local or own displacement does not correspond to a variable name, in which case
the "fi" command gives a message such as:

-82-

COMPIL.INITIALPROC.-16: no id for it

The original line is copied in this case also. A common case is a local variable inherited from an inline procedure of
which the body was expanded in the calling procedure: the names for such inherited locals are not available from
the intmod. Also, various own pointers are created by the compiler and do not have variable names.

13.4.6. New DVIEW Commands

New DVIEW commands have been added:

Reverse direction

Set value type to integer (default)

Set value type to long integer
Prompt <=> no prompt

W HUD

After the "D" command has been given, the direction moved by the <eol> command changes from forward to
backward or vice versa.

The "I" command causes DVIEW to examine the file one integer at a time; the "L" command, one long integer at a
time.

The "P" command toggles the "DVIEW>" prompt.

Some improvements have also been made to DVIEW’s output format.

13.4.7. MEM Buffer Size
The device module MEM has been generalized to handle different buffer sizes. It§ argument is the buffer size (in

number of characters); i.e., a file name can now be specified as "mem(2048)>foo.msl" to make MEM’s memory
buffers be 2048 characters. The default buffer size is 4096. [UCR 88-117]

13.5. MAINEDIT

13.5.1. Recovery of Strings at Command Line Prompts

Typing <ECM> ("enter command mode") to any prompt on the MAINEDIT command line pops the top element of
the line delete buffer and inserts it at the current place on the message row. If the line buffer is empty, <ECM>
beeps and aborts the prompt. Several <ECM>’s to the same prompt keep popping more text onto the end of the text
so far. You can type your own text before, in between, and after any of the <ECM>-generated text.

For example, suppose you have a bunch of files you want to look at with the editor. Get all the file names in a
buffer, one per line. To look at the next file, delete the line with its name, and issue a ".F" command; at the prompt,

-83-

type <ECM>, which inserts the deleted line onto the message row. Then type <eol> as usual. This works very
nicely as part of macros.

Note: this mechanism works for any command line prompt, even, e.g., in MAINDEBUG when invoked from
MAINEDIT. It does mean that if you have been using <ECM> to abort a prompt, you will have to change to use
<ABORT> for this purpose.

13.5.2. New MAINED Search String Commands
New MAINED commands have been provided for manipulating the search strings used by the "T" command. These

commands allow you to insert the current search strings into a buffer and to set the current search strings from text
in a buffer that has been stored in one of the delete stacks.

13.5.2.1. "RS" (Recall SearchStrings)

The "RS" command inserts the current search strings above the current line, one per line. The search strings are
uppercase.

Example: if you have just issued the command "Tabc<eol>" to search for "abc", then "RS" inserts the string "ABC"
on a new line above the current line.

Example: if you have just issued the command "QTabc<eol>def<eol>ghi<eol><eol>", then the "RS" command
inserts three lines above the current line and sets the first to "ABC", the second to "DEF", and the third to "GHI",
since these are the current three search strings.

13.5.2.2. "+R{C,W,L}" (Recall {Characters, Words, Lines} into Search Strings)
These commands are like the corresponding commands without the "+", except instead of inserting the text into the
buffer, they use it to set the current search strings. The various modifiers that can be used with the standard

"R{C,W,L}" command, such as ".", "Q", and a count, also apply here.

Example: if you have just issued "DL" on a line consisting of "foobar", then "+RL" sets the current search strings to
the single search string "FOOBAR".

Example: if you issue "3DL" to delete three lines, say:
this is the first line
followed by the second line

then the third

then "+RL" results in the three search strings "THIS IS THE FIRST LINE", "FOLLOWED BY THE SECOND
LINE", and "THEN THE THIRD".

Example: "DW" which deletes, say, "THEN", followed by "+RW", makes "THEN" the current search string.

-84 -

Example: Suppose you have two buffers A and B on the screen. A is a buffer of search strings, one per line, that
you want to find in buffer B. Initially, put the cursor at the start of the first search string in A, then use ".B" to move
to buffer B (anywhere in it). The following macro can then be used to find the first occurrence in B of the next word
in the list:

.B<eol>.DW+RW<eol>.B<eol>1G.T<eol>
» ".B<eol>" switches from buffer B to buffer A
« ".DW" stores the next search word in the word delete buffer

* "+RW" pops that word into the search string

<eol> moves the cursor to the next search word in buffer A

« ".B<eol>" switches from buffer A to buffer B

¢ "1G" goes to the start of buffer B

» " T<eol>" searches for the current search string(s), which is the just set up by +RW

Only the final screen is seen after the entire macro has been executed, so the effect is for the cursor to move to the
first occurrence in B of the next search word. Additional occurrences of the same word can be found using
" T<eol>".

13.5.3. Buffer-Specific "INITIALIZE" Macros

If a named macro is given a name of the form "INITIALIZE:...", where "..." represents a pattern that may contain the
wildcard character "*", then the macro is executed whenever a buffer is created with a name that matches the
pattern. The "*" wildcard character matches any sequence of zero or more characters; any other character in the
pattern represents itself. For example, a macro named "INITIALIZE:*. MSL" would be executed upon starting to

. edit any file with a name ending in ".msl". [UCR’s 85-39, 90-32]

13.5.4. Multiple Screens in a Single Edit Session

TEMPORARY FEATURE: SUBJECT TO CHANGE

MAINEDIT now supports multiple screens during an edit session. The motivation for these changes was to allow
users who have applications that use display modules to debug those applications with the display debugger. The
application program can run on one screen and the debug session on another.

-85-

In the editor, when a file or buffer name is followed by a comma, the editor prompts for the front and back end
names to use for the buffer, e.g., ".bfoo,". Now, if you specify an additional comma, e.g., ".bfoo,,” or “.ffoo,,", the
editor prompts for display information in addition to the front and back end names. The display information
includes the name of a display module, the name of a terminal port, and a baud rate. The new buffer is created using
the new display.

‘Whenever you do see the terminal port prompt, just type <eol> to the prompt unless you want to run on another
display. If you do want to run on another display, type the display file name (e.g., something like "/dev/ttya” on
UNIX).

In the debugger, the 'E’ command now has the forms "{-}{.}E". The "." modifier means prompt for display
information before running the module and then run the module on the specified display. The user interacts with the
executed module on its display (and keyboard) and with the debugger on the display from which the debugger was
invoked (the debug display). The debugger can be running either in line or display mode. The "-" modifier means
do not put breakpoints in before running the module. This gives the user control over whether or not breakpoints are
hit when a module is executed. Implementing these new forms of the "E" command has eliminated the need for the
$lineOrientedDebug bit.

The display module interface has changed slightly. The only change that affects user programs is that
initializeTerminal used to take an optional long integer baudrate; it now takes an optional string terminalPortName
followed by the optional long integer baudrate.

13.5.5. Display Module and Baud Rate Prompts

MAINEDIT has been modified so that the default behavior is not to prompt for the terminal port and baud rate (after
prompting for a display module name). In order to get these prompts, you must now type comma after the display
module name (it is OK to have a comma after a display module name in the "eparms” file). The "eparms" keyword
"DONOTPROMPTFORBAUDRATE" is no longer used, but the editor does not complain if it finds the keyword in
the file.

A new "eparms” keyword "PROMPTFORDISPLAYMODULE" has been added. If specified in the "eparms" file,

MAINEDIT always prompts for a display module name (but offers a default if there is one); if the keyword is not
specified, it prompts for a display module name only if "," is specified after the initial file name. [UCR 86-399]

13.6. MAINPM
13.6.1. "TRACECHUNKS" Command
A new MAINPM command, "TRACECHUNKS {f}", traces the allocation history of each chunk (record, array, or

data section) allocated in a monitored area. The resulting printout is an aid in determining the origin of chunks that
are garbage collected or still in existence at program termination.

-86-

f is the name of the output "trace file" into which the trace data are written; if omitted, MAINPM chooses a unique
name. The data in the trace file are not human-readable; it is only for analysis by MAINPM. By default, this
analysis is done upon retum to MAINPM, in which case the trace file is deleted if f was not explicitly specified. The
"NOTRACEREPORT" command suppresses this report so that it can be done in a later run of MAINPM. Since
trace data are written at some sensitive points during memory management, low-level runtime routines are used to
write f on the assumption that f is a normal disk file; therefore, a device prefix should not be specified as part of f’s
file name.

To use MAINPM just to analyze a trace file created during an earlier run, give MAINPM the "TRACECHUNKS {"
command, where f is the name of the trace file created earlier, then give it the "LIST g" command where g is the
name of the output file. The trace file is written in PDF ("portable data format") so that it can be analyzed on a
different kind of computer from that on which the run occurred. This may be necessary since the trace file may
become quite large, in which case creation of the summary report uses a lot of memory, perhaps more than is
available on the traced machine.

Data are written to the trace file every time a traced chunk is allocated, disposed, garbage collected, or reclaimed by
$clearArea or $disposeArea. Data are also written for certain memory management events such as the movement of
a traced chunk or chunk page in a traced area. The potentially large size of the trace file may prevent the use of the
"TRACECHUNKS" command in some cases due to limitations on available disk space. Of course, the exact size
for a given program execution depends on the number of traced events that occur.

An example of part of the report generated by MAINPM from the trace file is:

-87-

module{.proc}.offset $clear/

{file filePos} $dispose still
{source text} new’s dispose’s collects Area allocated
LPIOPR.GENERATE. 7984 67073 0 3936 0 63137
/usr/clark/xp.new/lpiopr.ms 16351

pi := new(layoutPin);

LNIOPR.GENERATE. 8104 ' 36081 0 2120 0 33961
/usr/clark/xp.new/lniopr.ms 16161

ni := new(layoutNode) ;

SPKOPR.GENERATE.13146 16323 0 9261 0 15362

/usr/clark/xp.new/defopr.hdr 2046
newRec := new(defaultClass);

CFGIO.STRUCTUREIN. 4652 11407 133 10353 0 921
/usr/clark/xp.new/cfgio.ms 22604
RETURN ($structureRead (ctlFileAccess.ctlDataFile,

SEMO .OBJECTREAD.1514 4986 754 0 4210 22
/usr/clark/xp.new/sem).ms 7623
RETURN ($structureRead (filePtr, objAddr, objSize,

PCKOPR.GENERATE. 4604 3267 0 193 0 3074
/usr/clark/xp.new/pckopr.ms 13355
pck := new(pckClass):;

PCKOPR.GENERATE. 4722 3266 0 193 0 3073
/usr/clark/xp.new/pckopr.ms 13448
new (pck. subUnit, 0, pck.subUnitCnt) ;

NODLIB.GETNEXTTOKEN. 6954 3177 0 0 3177 0
/usr/clark/xp.new/nodlib.ms 30373
token := new{(tokenClass,processNodelLabelArea);

The entries are separated by a blank line. module.proc.offset shows where the allocations occurred. This point
could have directly caused the allocation of a chunk, such as with new, $createRecord, $newRecords, or
$structureRead, or indirectly, such as with a call to an unmonitored module that caused chunks to be allocated.

file and filePos indicate the source that corresponds to the statement that caused the allocation. source text is the
actual text for the statement (from the start of the statement to the end of the first line of the statement; more of the
statement could be on subsequent lines).

proc, file, filePos, and source text are collectively referred to as the trace source information. An intmod for the
module must be available in order for the trace source information to be computable; source text also requires the
original source file. This information can be suppressed in the trace report by specifying the "NOTRACESRC"
subcommand to MAINEX, e.g., if you know that the intmods or source files are not available. The "TRACESRC"

-88-

command undoes the "NOTRACESRC" command (if you change your mind). IF "NOTRACESRC" is not in effect,
MAINPM leaves out any information it cannot determine; e.g., if the intmod cannot be found, all of the trace source
information is omitted; if the source file cannot be open, the source text is omitted.

Only chunks allocated in monitored areas are traced. Use the "{NO}MONITORAREA" commands to indicate
which areas are to be monitored. By default, all areas are monitored.

Only monitored modules are credited with chunk allocations. Use the "{NO}MONITORMODULE" and
"{NO}MONITORLIB" commands to specify which modules are to be monitored. Whenever a chunk is allocated in
a monitored area, the procedure call stack is traversed to find the first monitored caller, and the chunk allocation is
credited to that caller (if there is no monitored caller, the chunk allocation is not traced). By default, all modules are
monitored. This default is not very useful to a typical user, since it simply shows places in the MAINSAIL runtime
modules that are ultimately responsible for chunk allocations. At the minimum, a typical user should issue a
"NOMONITORLIB s" command, where s is the name of the MAINSAIL runtime library file, or if all the modules
to be monitored are in a single user library, issue a "MONITORLIB s" command where s is the name of that library
file. Be careful to make the file name s exactly match the name of the library file as it is known to MAINSAIL
during execution. The utility module OPENF can be used during an application to see the name of all open files,
including open libraries.

The first line of output in the example shows that 67073 chunks were allocated due to a call at offset 7984 from the
start of module LPIOPR, in procedure GENERATE. The source for the statement that allocated the chunks is in the
file "/usr/clark/xp.new/Ipiopr.ms" at position 16351. The text for the statement is "pi := new(layoutPin);". The
MAINED editor front end can be used to view the source by opening the indicated file and using the command
"V16352" (use 1 greater than the indicated value since MAINED uses 1-origin positions, whereas MAINPM reports
0-origin positions). Alternately, if LPIOPR is compiled debuggable, the source code at this location can be
examined by using the MAINSAIL debugger as follows:

Debugger

Command Description

m LPIOPR set the current module context to be LPIOPR

o 7984 put the cursor at the source code corresponding to the

indicated code displacement

The above debugger "o" command may put the cursor on the statement after the one that caused the allocation since
the offset shown is actually the offset referenced by the return address to the procedure call that caused the chunks to
be allocated, rather than to the call instruction itself. However, it is usually clear from the source which statement is
responsible for the allocation. In order to use the debugger this way to view the source at the indicated offsets, the
modules must have been compiled debuggable. This approach is useful if the "NOTRACESRC" command was in
effect, or the trace source information could not be obtained when the report was generated.

The "new’s" column indicates how many chunks were allocated (directly or indirectly) due to a call at the location
given by the first two columns. The output is sorted by ascending order of this column.,

The "dispose’s" column indicates how many of the chunks were explicitly disposed.

The "collects” column indicates how many of the chunks were reclaimed by the garbage collector. When
"TRACECHUNKS" is in effect, MAINPM triggers a garbage collection (if $collectLock = 0) immediately upon

-89 -

return from the executed program so that this column accurately reflects how many chunks became "garbage"
through the end of program execution.

The “$clear/$disposeArea” column indicates how many of the chunks were deallocated due to their area being
cleared or disposed.

The "still allocated" column indicates how many of the chunks were still allocated upon return to MAINPM (after
the garbage collection forced by MAINPM). This column is just equal to:

new’s — dispose’s - collects - $clear/$disposeArea

13.7. STREAMS

13.7.1. Bound Remote Modules
A new bit, $bindRemoteModules, is valid in the ctrdBits argument to $newRemoteModule. When this bit is used,

calls to remote procedures using the remote module call the bound instance of the remote module rather than an
unbound instance. [UCR 89-425]

13.7.2. New Instance of $waitForDescendants

LONG INTEGER
PROCEDURE SwaitForDescendants
(POINTER ($Scoroutine)
ARRAY (1 TO *) children;
PRODUCES POINTER ($coroutine)
childThatDied;
OPTIONAL LONG INTEGER timeOut):;

Table 13.7.2-1. $waitForDescendants (New Instance Only)

A new instance of $waitForDescendants has been added. This instance of the call returns when any one of the
descendant coroutines in the children array has died; the deceased coroutine is produced in childThatDied. The
other forms wait either for all coroutines in array to die or for a single coroutine to die. [UCR 89-428]

-90-

13.7.3. $canonicalUserID

STRING
PROCEDURE $canonicalUserID
(STRING userIlD,
hostName) ;

Table 13.7.3-1. $canonicalUserID

$canonicalUserID takes a string userID (as returned from the $userID system procedure) and a string hostName (as
returned from the $myHostName STREAMS system procedure) and returns a user ID string unique at the current
site (provided an appropriate entry has been set up in the XIDAK service protocol table). This unique user ID is not
guaranteed to be in a human-readable format.

The user ID is mapped by an entry in the XIDAK service protdcol table. The service protocol table entry format is:

USERID canonicalName userIDl/hostNamel ... userIdN/hostNameN

$canonicalUser]D returns canonicalName if userID equals userIDi and hostName equals hostNamei. If there is no
entry for the userID/hostName pair in the service protocol table, $canonicalUserID returns useriD.

13.8. MAINKERMIT
13.8.1. "SET RETRIES n"

A new "SET" variable, "RETRIES", allows the user to set the number of retries for a bad packet before a transfer
times out. The syntax is: "SET RETRIES n", where n is the new number of retries.

-91-

14. Known Problems

14.1. $descendantKillédExcpt and the MAINSAIL STREAMS Scheduler

At present, it is especiaﬂy important to handle informational exceptions carefully (as described in Section 11.2)
when running in conjunction with the MAINSAIL STREAMS Scheduler. In particular, a handler handling
$descendantKilledExcpt raised because a scheduled coroutine is being killed should not attempt any action (such as

file I/O) that might invoke the Scheduler. This is because the Scheduler is in an unusual state during
$descendantKilledExcpt. This problem may be corrected in some future release of MAINSAIL.

14.2. SOCPRO and PTYPRO on IBM’s AIX on IBM RISC System/6000

Because. of problems with process termination on AIX, the STREAMS facilities SOCPRO and PTYPRO do not
currently work on IBM’s AIX on IBM RISC System/6000. IBM has been informed of the problem.

14.3. PC Monitoring Status

14.3.1. AIX
On AIX on both the IBM System/370 Extended Architecture and the IBM RISC System/6000, PC monitoring is
supported only on recent releases of the operating system. On the IBM System/370 Extended Architecture, the
supported releases are release 1.2.600 and later; on the IBM RISC System/6000, release 03.01.0001.0003 and later.
One way to find out version status and upgrade information on AIX is to run the command:

1slpp ~h
which generates a table with the columns option name, state, event, date, release number, and user name. Look fora
state of ACTIVE and an event of COMMIT to find the most recent upgrade for that option. For that option there
will be a release number that looks something like 03.01.0001.0003. The 03.01 corresponds to the the AIX version
3.1 that is displayed when you log in. The 0001 and the 0003 correspond to upgrades.
14.3.2. PRISM
Due to a bug in the operating system, PC monitoring does not work on the PRISM. Apollo has been informed of the

problem. Currently, attempting to use PC monitoring on this system has undefined effects and may crash
MAINSAIL. :

-92.

14.3.3. IBM’s VM/XA SP CMS on IBM System/370

PC monitoring is not yet implemented on IBM’s VM/XA SP CMS on IBM System/370. Currently, attempting to
use PC monitoring on this system has undefined effects and may crash MAINSAIL.

14.3.4. Intergraph’s System V UNIX on Interpro 32C and SCO’s UNIX on HP Vectra with Intel 80386

On Intergraph’s System V UNIX on Interpro 32C and SCO’s UNIX on HP Vectra with Intel 80386, it is not
possible to implement PC monitoring. Attempting to use PC monitoring on these systems issues an error message.

-93 .

-94 -

MAINSAIL® Release Notes
Version 11.30 Release

={ xipak

15. Introduction

This release note documents the changes made between Versions 11.28 and 11.30 of MAINSAIL. If you have
received the Version 12.10 manual set, you may also wish to consult the document entitled "MAINSAIL Inverse
Release Notes, Version 12.10 - Version 11.27", which describes how the MAINSAIL software described in the
Version 12.10 documentation differs from Versions 11.27 and 11.28 (the differences described for 11.28 apply to
11.30 as well).

It was necessary to change some of the runtime system’s internal interfaces in Version 11.30. This means that 11.30
object modules cannot be run under previous Version 11 releases, and that previous Version 11 object modules
cannot be run under Version 11.30; you must rebuild all intmods and recompile all object modules.

-96 -

16. Recent and Proposed Changes

16.1. $formParagraph

$formParagraph no longer puts eol at the end of the last line of a paragraph. Calls in existing code that depend on an
eol at the end of $formParagraph should therefore be changed to:

$formParagraph(...) & eol

-97-

17. Clarification of Documentation

17.1. Making a Bootstrap on SPARC SunOS

The instructions in the "UNIX MAINSAIL User’s Guide" for assembling bootstraps on the SPARC are wrong. The
correct instructions are:

There are two different "as" commands, one for SunOS
versions before 4.0 and one for 4.0 and after. For
versions before 4.0:

% as -P -DoldRegNames -0 mainsa.o mainsa.s<eol>

For 4.0 and after:

% as -P —o mainsa.o mainsa.s<eol>

17.2. pageDispose

If numPages is not specified to pageDispose, or is less than zero, it defaults to one page.

17.3. Initializing Time Zone Parameters

If there is a problem in MAINSAIL s date and time procedures with conversion from the local time zone to GMT or
vice versa, the first thing to check is whether the MAINEX time zone subcommands have been set properly. You
can check whether they have been set at all by examining the variable $timeSubcommandsSet; e.g., enter the
debugger and issue the command:

v $timeSubcommandsSet

If $timeSubcommandsSet is FALSE, the MAINEX time zone subcommands (DEFINETIMEZONE,
DSTSTARTRULE/DSTENDRULE, DSTNAME, GMTOFFSET, STDNAME) were never issued. These
subcommands should be given the correct arguments for your site (as described in the "MAINSAIL Utilities User’s
Guide"), or conversion to and from GMT will not work correctly on many operating systems. The subcommands
are usually set in a file "site.cnd" on the MAINSAIL directory; if this file exists, it is read automatically by
MAINSAIL whenever MAINSAIL starts. ‘

-98 -

17.4. The SUN3 Display Module and CommandTool

The SUN3 display module must be run in a ShellTool window, not a CommandTool window. Sun may enhance
CommandTool to support display functions in the future, but currently CommandTool does not.

17.5. MAINED [+|-]..{n}[B|F] Commands

In MAINED, "+" or "-" may be prefixed to the "..B" and "..F" commands. The "..{n}B" and "..{n}F" commands
edit the specified buffer or file, making the window 1/mth of the screen, where m is the number of windows (but no
window is allowed to be smaller than n lines). The "+" and "-" versions create a new window, adding it to the
bottom or top of the screen, respectively. Thus, if you are editing three windows, and want to edit a file "foo" in a
fourth window at the top of the screen, and also to adjust each window to occupy a quarter of the screen, you would
issue the command:

—-..Ffoo<eol>

-99.

18. Bugs Fixed

18.1. Runtime System

18.1.1. $ioSize

On 11.28, if $ioSize was used in a module that didn’t explicitly do a RESTOREFROM on PDEMOD’s intmod, the
use of $ioSize would result in the internal macro whichIntmod being undefined. This has been fixed. [UCR 89-417]

18.1.2. Duplicated Character from Terminal Input
The last character of the input buffer was incorrectly duplicated if the TTY input overflowed the buffer. The bug

showed up when running MAINSAIL in batch and the batch file had an input line longer than the size of the TTY
buffer.

18.1.3. Sun Installation Scripts

The Sun installation scripts did not understand more than one minor version number for the Sun operating system
version number; i.e., they could understand "4.0" but not "4.0.3". They now handle the latter format correctly.
[UCR 89-361]

The Sun installation got an undefined symbol error while installing "mainsab”. [UCR 89-433]

18.2. Compiler

18.2.1. Bad Code for RETURN($exceptionStringArgl)

If a handler contains a Return Statement, then before the RETURN can be done, the handler must be terminated as if
it had been fallen out of. There was a bug in which handlers were being terminated before the Return Statement’s
expression (for typed procedures) was evaluated. The handlers shouldn’t have been terminated until after the
RETURN expression was evaluated. This caused, e.g., "RETURN($exceptionStringArg1)"” to return the wrong
value. [UCR 89-382]

- 100 -

18.2.2. Incremental Recompilation of Modules Containing Calls to $createCoroutine

A compiler bug sometimes occurred when modules with calls to $createCoroutine were incrementally recompiled.
The bug would cause the compiler to get confused when reading in the module’s string constants, upon which it
would either blow up with some sort of fatal error or, with no waming, corrupt the string constant space in the new
object module.

18.2.3. MC68020/MC68881 Floating Point Comparison Bug

Bad code was sometimes generated on the MC68020/MC68881 for chained floating point comparisons or two
floating point comparisons connected by "AND", e.g.:

9. GEQ x AND x > 0.L

[UCR’s 89-401, 89-454]

18.2.4. Intel 30386/387 Floating Point Comparison Bug

On the Intel 80386/387, floating point comparisons that should have been equivalent sometimes had different
results, depending on whether or not the operands being compared happened to have been stored in memory and
then reloaded into registers between the time that their values were initially calculated and the time they were
compared.

The problem is that the registers on the 387 (Intel’s floating point chip) have more bits of precision than single or
double precision values in memory. When values are stored in memory, they are rounded to whatever precision the
memory location has. When they are reloaded, this rounding is, of course, preserved. Usually the rounding has no
effect on subsequent comparisons, but if two unrounded numbers are unequal but so close in value that their rounded
values are the same, the results of comparing them would be different.

The fix was to make sure that operands of floating point comparisons are always rounded. To keep from generating
a lot of extraneous rounding code (where the operand being rounded was already rounded), the code generator keeps

track of whether or not each register is known to contain a rounded value. It then generates the extra rounding code
for comparisons only for those operands that aren’t guaranteed to be rounded already. [UCR 90-20]

18.2.5. SPARC Code Generator Bug in Floating Point Absolute Value

The SPARC code generator produced incorrect code for the floating point absolute value function (abs). [UCR
90-26]

- 101 -

18.2.6. MIPS R2000 Overflow Detection

Extra code must be generated on the MIPS R2000 to detect arithmetic overflow for multiplication and division. For
multiplication, if one of the operands is a constant whose binary representation has exactly two 1-bits, the sense of
the conditional branch around the call to the error routine was wrong, so that the error routine was being called when
overflow did NOT occur. [UCR 89-400]

18.2.7. VAX-11 copy of NullCharadr or NullAddress

Bad code was generated for the VAX-11 for the system procedure "copy" if either of its first two arguments was the
constant "NULLCHARADR" or "NULLADDRESS". Bad code could also have been generated for the address and
charadr forms of the system procedures clear, load, and store. [UCR 89-244]

18.2.8. Bad Code for "0 DIV expr" and "0 MOD expr" on PRISM

Bad code was generated on the PRISM when the constant 0 was the first argument to the DIV or MOD operator.
[UCR 89-474]

18.2.9. "countNumBrhsToEachIns: brh target = 0" on PRISM

The code generator issued the error message:

countNumBrhsToEachIns: brh target = 0

if "ACHECK" was set when code was generated for a (long) integer multiplication by a constant power of two.

18.2.10. Optimizer and Unitialized Floating Point

Because of the way code is rearranged by the optimizer, optimized programs sometimes access produces (long) real
parameters even when the source text does not make it appear that it should do so. This resulted in errors on some
systems which trap accesses to invalid floating point values. The optimizer has been changed to initialize produces
(long) real parameters to zero. [UCR 89-385]

18.2.11. Optimizer and Long Arrays

‘When the optimizer replaced a long array common subexpression with an equivalent temporary, it didn’t mark the
temporary as also being a long array. On most machines, this made no difference in the code that was eventually
generated when the long array was subscripted. However, on some machines, such as the MC68020/MC68881, the
bug caused only the low-order 16 bits of the subscript to be used as an index instead of the full 32 bits. [UCR
89-433]

-102 -

18.2.12. MIPS R2000 FLI to C

The MIPS R2000 FLI to C did not pass strings correctly. [UCR 89-409]

18.3. Utilities

18.3.1. $truncateFile on LIB File
LIB sometimes issued the spurious error:

$truncateFile: £ not opened for random!input

18.4. MAINEDIT

18.4.1. MAINVI ":map" Command

":map" and related commands were taking only the first word after the macro key to be defined as the macro body.
Real vi seems to take the entire rest of the line; MAINVI has been changed to work this way too. [UCR §9-394]

18.4.2. DOMAIN/IX FRAME Display Module

The FRAME display module on DOMAIN/IX has had a number of minor bug fixes. The most annoying bugs were
that:

* When the cursor moved out of and then back into the FRAME window, the display module sent the letters
"QN" to the application ("QN" is the MAINED command to refresh the window, but this is not
appropriate when MAINED is not the application using FRAME). FRAME now uses the auto-refresh
mode for its window, which avoids the problem.

* The RETURN key was not treated as end-of-line in CMDLOG from MAINVI, and ABORT/EXIT was
not treated as a synonym of <esc> in MAINVI’s insert mode. This can be fixed by the following entry in
the ".mainvirc" file (see Section 19.3.1):

:mapcode! 148 <esc>
:mapcode! 150 <CTRL-M>

[UCR’s 88-273, 88-297, 89-227, 89-393, 89-394, 89-445]

-103 -

18.5. STREAMS

18.5.1. $openStream of "SOCPRO" File Did Not Fail If File Could Not Be Run

$openStream of "SOCPRO>Node:file" did not return FALSE (failure) if the specified program could not be run.
This has been fixed. [UCR 89-330] '

18.5.2. STREAMS Programs Invoked under SunView

STREAMS programs invoked under SunView often blew up because the version of the select system call under
SunView did not examine the width of the bit array before clearing it (it always cleared 256 bits’ worth, sometimes
clobbering MAINSAIL data structures). MAINSAIL now always allocates at least 256 bits for the file descriptor bit
array. [UCR 89-414]

18.5.3. More than One NETSTR Stream

A spurious error message was issued if an application opened more than one stream using "NETSTR".

18.5.4. Writing a Null String to a Memory Stream

Writing a null string to a memory stream caused a fatal error. It now does nothing. [UCR 89-420]

-104 -

19. Enhancements

19.1. Language

19.1.1. Display Module Code dpyRefreshScreen
The display module interface procedure dpycRead can now return a new code, dpyRefreshScreen, which tells the

caller that the screen needs to be repainted because the display module has discovered that the screen has been
corrupted for some reason (e.g., a system message).

19.2. Compiler

19.2.1. "RPC C" Subcommand

The 11.30 compiler supports the "RPC C" subcommand. However, $compileTimeValue("RPC") was not upgraded
as described in the Version 12.10 manuals. In Version 12, $compileTimeValue("RPC") returns one of ™", "C", or
"MAINSAIL"; under 11.30, $compileTime Value("RPC") returns one of " or "TRUE". [UCR 90-34]

19.2.2. Better Error Message When Combined Field Names of Class Are Too Long

When the name of a class and all its fields could not be fit into a string, the compiler previously generated the
standard "string will be too long" error message, which was not very informative. It now gives the message:

Combined lengths of field names in class <c> are too long

[UCR 88-172]
19.2.3. Larger Procedure Bodies Allowed by PRISM Code Generator

The PRISM code generator now allows procedure bodies to be larger before issuing the "procedure too large" error
message. [UCR 89-416] .

-105 -

19.2.4. Floating Point Overflow Trapped on Intel 387

On systems using the Intel 387 floating point coprocessor, MAINSAIL ’s initialization code has been changed to
force the 387 to trap floating point overflow, division by zero, and invalid operation. Now when these errors occur,
MAINSAIL raises an arithmetic exception. [UCR’s 89-408, 90-9]

19.3. MAINEDIT

19.3.1. New MAINVI Commands

Arbitrary character codes can now be mapped using the ":mapcode" and ":mapcode!" commands, which are like the
“:map" and ":map!" commands, except that the first word is not the keystroke itself that is to be mapped but the
decimal character code of the keystroke to be mapped. In the case of ":mapcode”, this is a code produced by
dpycRead; for ":mapcode!”, by unmappedDpycRead. You can use the program of Figure 19.3.3-1 to determine key
codes produced by a display module; answer "Y" to the initial prompt for mapped (dpycRead) codes or "N" or
unmapped (unmappedDpycRead) codes.

19.3.2. New MAINVI Initialization File

Since the new “:mapcode” and ":mapcode!" commands, along with other MAINVI-specific commands, would not
be compatible with the real vi commands normally placed in a ".exic" file, MAINVI now reads an additional
command file in your home directory (if present). This file is called ".mainvirc". It is read immediately after

1" il

£EXIC .

19.3.3. DOMAIN/IX FRAME Display Module Initialization

You can now create a file called ".framerc" in your home directory to specify the value to be passed to
GPR_$SET_OBSCURED_OPT when the FRAME (or FFRAME) display module is initialized and the key codes
not to be caught by the FRAME display module. If ".framerc" does not exist, the defaults are the values now used
by the display module.

Each line of ".framerc" consists of a keyword followed by one or more arguments. The two keywords now allowed
are "OBSCUREDOPT" and "DONOTCATCH". Case is ignored in keywords. The arguments allowed to these
keywords are:

* OBSCUREDOPT: An integer corresponding to the value to be passed to GPR_$SET_OBSCURED_OPT,
one of:

-106-

gpr_Sok_if obs
gpr_S$error if obs
gpxr_Spop_if obs
gpr_Sblock_if obs
gpr_Sinput ok if obs

w» W N HEH O

*« DONOTCATCH: One or more integers which are the codes of keys not to be caught by the display
module. More than one DONOTCATCH line may appear in the file if there are more codes than is
convenient to place on one line.

For example, a ".framerc" that specifies GPR_$POP_IF_OBS and that codes 1 and 147 (CTRL-A and SAVE/EDIT)
are not to be caught would look like:

OBSCUREDOPT 2
DONOTCATCH 1 147

The reading of ".framerc" stops with the first blank line or with end-of-file.

The program of Figure 19.3.3-1 may be useful in determing the codes generated by various keys. For the purposes
of ".framerc", use the unmapped (N) response. Exit the program by typing "q" or "Q".

BEGIN "keyCod"
REDEFINE $scanName = "dpyHdr"; SOURCEFILE " (system library)";

INITIAL PROCEDURE;

BEGIN

BOOLEAN mapped;

INTEGER ch;

STRING s;

POINTER (dpyCls) dpy;

mapped := confirm("Y for mapped key codes, N for unmapped");

write (logFile, "Display module: "); read(cmdFile,s); dpy := new(s);

dpy.initializeTerminal; dpy.clearScreen;

DOB c¢h := IF mapped THEN dpy.dpyvcRead EL dpy.unmappedDpycRead;
dpy.clearScreen; dpy.setCursorOnScreen(0,0);
dpy.overstrikeChars (cvs(ch)) END UNTIL ch = 'q”" OR ch = 'Q’;

dpy.deInitializeTerminal;

dispose (dpy) ;

END;

END "keyCod"®

Figure 19.3.3-1. A Program to Determine Mapped/Unmapped Key Codes Generated by a Display Module

-107 -

19.3.4. Buffer-Specific Initialization Macros
MAINEDIT now executes a2 named macro of the form form INITIALIZE: <bufferNamePattern> whenever setting up
a buffer whose name matches the specified pattern. The buffer name pattern may include the same wildcards as

used in a MAINEX "SEARCHPATH" subcommand. For example, the macro named "INITIALIZE:* MSS" is
executed every time a buffer name ending in ".MSS" is created.

19.4. STREAMS

19.4.1. New Form of $waitForDescendants

LONG INTEGER
PROCEDURE $waitForDescendants
(POINTER ($coroutine) ARRAY
(1 TO *) children;
PRODUCES POINTER ($coroutine)
childThatDied;
OPTIONAL LONG INTEGER timeOut);

Figure 19.4.1-1. $waitForDescendants (New Generic Instance Only)

The new instance of $waitForDescendants differs from the other instances in that:
« The coroutine array parameter is not optional.

+ The new instance returns as soon as ANY of the specified coroutines dies; the other array instance waits
for ALL specified coroutines to die before returning.

« The new instance sets the parameter childThatDied to the array entry for the coroutine that died, and then
sets that array entry to nullPointer. Since nullPointer array entries are ignored (this is true of the other
array instance of $waitForDescendants as well), this makes it convenient to call the new form of
$waitForDescendants in a loop:

new (ary,1,n);

-

FOR i := 1 UPTO n DOB
$SwaitForDescendants (ary,childThatDied) ;
... code to handle death of childThatDied ... END;

- 108 -

19.4.2. User-Definable Timeouts

TEMPORARY FEATURE: SUBJECT TO CHANGE

Two new user-visible fields, $maxExec and $nto, have been added to $remoteModuleCls. These fields specify
timeouts for the remote module.

$maxExec is the longest expected execution time for the remote procedure. If the remote procedure executes for
longer than $maxExec, the client will time out and abort execution of the remote procedure. The defauit value for
$maxExec is quite long, since it is difficult to predict how long a remote procedure may require in order to finish.

$nto is a short timeout used when setting up a remote procedure call. Programmers will not usually need to adjust
$nto. However, where client-server communication is unexpectedly slow, it is possible that $nto may be
unnecessarily exceeded and the remote procedure call aborted by a timeout. In this case, $nto should be increased to
avoid the timeout.

To set the a timeout, set the appropriate field of $remoteModuleCls immediately after allocating a remote module;
e.g., for $maxExec:

m := $newRemoteModule(...);
m.SmaxExec := <new timeout value>;

You must set the $maxExec field before making any calls to the remote module; the effect of setting it after the first
call is made is undefined.

19.4.3. SOCPRO and Searchpaths
SOCPRO now examines the "ENTER" and "SEARCHPATH" subcommands specified in the parent process to map
the executable file name specified in the SOCPRO stream name. On UNIX, it also uses the parent process’s PATH

environment variable. Note that if a SOCPRO stream is opened through NETSTR, the parent process is the
"gensrv" server process, and not the process opening the NETSTR stream. [UCR 89-78]

- 109 -

20. Known Problems

20.1. SPARCstation Operating System Version Numbers

MAINSAIL runs on both versions 3.x and 4.x of the SunOS operating system on SPARC-based workstations.
There are some incompatibilities between these two versions of SunOS that make it more difficult to built a
MAINSAIL bootstrap on networks that contain both versions of the operating system. If you have only one version
of SunOS for the SPARC (either all 3.x or all 4.x) on your network, then you will not have any of the problems
described below, and you do not need to read this section any further.

The incompatibilites are two-fold:
1. MAINSAIL bootstraps built on 3.x will run under 4.x, but not vice versa.

2. All pieces of a bootstrap must be compiled, assembled, and linked under the same version of the operating
system; bootstraps that contain pieces built under different versions of the operating system will not work
correctly.

The first problem means that if you have a MAINSAIL system that will be used from both 4.x and 3.x nodes, then it
must be installed on a 3.x node. The second problem means that when you are building any piece of a MAINSAIL
bootstrap or code that is linked with a MAINSAIL bootstrap, you must always run "as", "cc", or "1d" (or whatever
the local equivalents of those programs may be called) on the same version of the operating system as on the node
where the MAINSAIL system is installed. If you follow the above recommendation to install your MAINS AIL
systems on 3.x nodes, then you must always issue any bootstrap-making commands on 3.x nodes as well. If you
accidentally build a bootstrap with pieces from different versions, the symptoms are unpredicatble, but are often
manifested as file I/O errors.

20.2. MAXMEMORYSIZE under AIX

In an AIX bootstrap configured to run in 24-bit mode, the system stack starts at the address Ox7fffff and grow
towards low memory. Hence, the amount of memory that can be allocated with sbrk is limited to between 7M and
SM.

We recommend a value of no more than 6M for the CONF parameter, MAXMEMORYSIZE, for boots that run in
24-bit mode. This will prevent your process from growing into the system stack.

On AIX 0.1, to configure your executable boots to run in XA mode instead of 24-bit mode, issue the command:

chmodxza <executableBootFileName>

-110-

chmodxa is an AIX 0.1 command which toggles the execution mode of the specified executable file. When the
command is issued, it prints out information about how the executable file is configured, i.e., 24-bit (370 mode) vs.
31-bit (XA mode).

On AIX 0.2, you must give a "cc" switch, "-Hxa", to specify 31-bit mode when a bootstrap is linked. Otherwise, the
bootstrap will be built in 24-bit mode. For example:

cc —Hxa -0 mainsa mainsa.s /usr/mainsail/11.30/m.o

-111-

4,

MAINSAIL"® Release Notes
- Version 11.28 Release

=a XIDAK

21. Introduction

This release note documents the changes made between Versions 11.27 and 11.28 of MAINSAIL. If you have
received the Version 12.10 manual set, you may also wish to consult the document entitled "MAINSAIL Inverse
Release Notes, Version 12.10 - Version 11.27", which describes how the MAINSAIL software described in the
Version 12.10 documentation differs from Versions 11.27 and 11.28.

It was necessary to change some of the runtime system’s internal interfaces in Version 11.28. This means that 11.28

object modules cannot be run under previous Version 11 releases, and that previous Version 11 object modules
cannot be run under Version 11.28; you must rebuild all intmods and recompile all object modules.

-114 -

22. Recent and Proposed Changes

CMS/EDAC is no longer supported in 11.28.

-115-

23. Clarification of Documentation

23.1. Arrays Declared with Constant Bounds

If an array is declared with constant bounds, then its bounds must always have the values declared. The compiler
may take advantage of the constant bound information, and arrays that do not match their compiletime declarations
at runtime will not be correctly accessed and have undefined effects. In particular, it is the programmer’s
responsibility to ensure that if an array with variable bounds is assigned to (or passed as an argument corresponding
to) an array with constant bounds, the bounds of the variable-bounded array match the declaration of the constant-
bounded array. For example, although the compiler permits the following:

INTEGER ARRAY (1 TO 10) aryl;
INTEGER ARRAY (*) ary2;

new (ary2,0,20) ;
aryl := ary2;

the use of ary1 after the Assignment Statement has undefined effects.

23.2. $initRand

The parameters to $initRand (newX and newX2) constitute a single 56-bit seed for the $rand generator (only the
low-order 28 bits of each are examined). A way to use $initRand to set the seed depending on the current second is:

$initRand ($date, $time)

23.3. MAINPM "LIST" Command

The MAINPM "LIST" command does not immediately close the listing file; the file is not closed until MAINPM
exits.

23.4. Apollo’s DOMAIN/IX on Apollo PRISM Considerations

MAINSAIL on Apollo’s DOMAIN/IX on Apolio PRISM behaves like most other flavors of UNIX, but because the

Apollo operating system must be compatible with Aegis, Apollo’s previous operating system, some special
considerations must be taken into account.

- 116 -

23.4.1. Operating System Environment

MAINSAIL on Apollo’s DOMAIN/IX on Apollo PRISM must be run in a BSD environment. In particular, all
directories on which MAINSAIL writes files must have protections that are consistent with a BSD environment. By
default, a directory’s protection is inherited from its parent directory, which may be inappropriate for BSD.
Observed symptoms of an "inappropriate” protection are the "1d" and "cc" commands failing with the message "Id
fatal: can’t create output file", and occasional, seemingly random MAINSAIL error messages to the effect that a file
cannot be created or opened for output.

A directory’s protection may be made consistent with BSD by means of the "chacl" (change access control list)
command with the "-B" option. Typically, this is necessary only for higher-level directories such as users’ login
directories. Any subdirectories created after their parent directories’ protection have been corrected will also have
the correct protection. Consult the UNIX documentation for further information.

23.4.2. Foreign Language Interface

Calls from MAINSAIL to procedures written in other languages, and from procedures written in other languages to
MAINSAIL, are supported as long as the procedures meet the interface for C procedures without function
prototypes, as described in the "Calling Conventions" chapter of Apollo’s "Series 10000 Assembler Reference"
manual and subsequently corrected in the "prasm Software Release Document, Software Release 10.0.p", dated 13

October 1988.

Calls between MAINSAIL and Pascal are not supported. Contact XIDAK if such support is desired.

-117 -

24. Bugs Fixed

24.1. Runtime System

24.1.1. closeLibrary

A bug in closeLibrary eventually caused a nullPointer data access in $swapln. The bug occurred in the following
situation:

o A module (say, FOO) resided in a library (say, "foo.olb").
« A data section for FOO was allocated.

- FOO was swapped out of memory.

» FOO’s data section was disposed.

» The library "foo.olb" was closed and then reopened.

« A data section for FOO was allocated.
24.1.2. Aegis Runtime System

$filelnfo set the $createDate, $createTime, $modifyDate, and $modifyTime fields in GMT even when local time was
specified. [UCR 89-81]

24.2, Compiler
24.2.1. PRISM Code Generator

Bad code was sometimes generated in accessing elements of one-dimensional string arrays with constant lower
bounds. {UCR 89-269]

-118 -

24.2.2. VAX-11 Code Generator

Bad code was generated for the integer forms of copy and clear and the long integer form of clear if the length
specified was not a constant.* If the length was negative, no storage should have been affected, but instead a non-
zero amount of memory was affected.

-119-

25. Enhancements

25.1. Language

25.1.1. $length

As documented in the "MAINSAIL Inverse Release Notes, Version 12.10 - Version 11.27", the Version 12.10
procedure $length is available in Version 11.28.

INTEGER
PROCEDURE $length (BOOLEAN v) ;
INTEGER
PROCEDURE $length (INTEGER V) ;
INTEGER
PROCEDURE $length (LONG INTEGER v);
INTEGER
PROCEDURE $length (REAL v;

OPTIONAL BITS format);
INTEGER
PROCEDURE $length (LONG REAL v;

OPTIONAL BITS format);
INTEGER
PROCEDURE $length (BITS v;

OPTIONAL BITS format);
INTEGER
PROCEDURE $length (LONG BITS v;

OPTIONAL BITS format);

Table 25.1.1-1. $length (Generic)

$length returns the length of the string representation of v, as specified by format, if applicable. Specifically:

-120-

Slength (v)
returns the same value as:

length(cvs(v))

$length (v, format)
the same as:
length(cvs (v, format))
The difference is that $length does not put characters into string space, and so is more efficient than the equivalent
forms calling length and cvs. However, if the string is actually needed later, it is more efficient to call cvs; i.e.,
instead of:
$length(v,...); ...; 8 = cvs(v,...); <use s8>

do:

length(s := cvs(v,...)); ...; <use s>

25.1.2. $mininteger and $minLongInteger

As documented in the "MAINSAIL Inverse Release Notes, Version 12.10 - Vession 11.27", the Versmn 12.10
identifiers $minlnteger and $minLonglnteger are available in Version 11.28.

COMPILETIME
INTEGER
<macro> $minInteger;

COMPILETIME
LONG INTEGER
<macro> $minLongIntegexr;

Table 25.1.2-1. $minInteger and $minLongInteger

Analogous to $maxInteger and $maxLongInteger, $minInteger and $minLongInteger are the smallest integer and
long integer, respectively, representable on the host processor. An arithmetic expression that attempts to create an
integer value less than $minInteger or a long integer value less than $minLonglInteger may lead to overflow, which
has undefined effects.

-121 -

25.2. Runtime System

25.2.1. New Memory Management Heuristics

As documented in the "MAINSAIL Inverse Release Notes, Versibn 12.10 - Version 11.27", the Version 12.10
memory management heuristics (as governed by "COLLECTMEMORYPERCENT") are available in Version 11.28.

The new memory management heuristics frequently perform better than the old ones. [UCR’s 87-309, 87-313,
87-314, 88-144, 88-217, 88-299] MAINSAIL no longer uses a parameter that tells it what percentage of CPU time is
to be used in memory management; instead, MAINSAIL decides to do memory management if it predicts that n
percent of memory would be reclaimed by doing a garbage collection (where n is the value of the new CONF
parameter "COLLECTMEMORYPERCENT"; the old CONF parameter "ALLOWEDPERCENT" no longer exists).
Thus a higher value for "COLLECTMEMORYPERCENT", such as 10%, means that MAINSAIL collects garbage
less often since more garbage has to build up before a garbage collection occurs. A smaller value, such as 1%,
means more garbage collections since only 1% of memory is allowed to be garbage. The heuristic depends on an
estimate that MAINSAIL makes of how much of memory is garbage; this estimate changes as garbage collections
occur. Use of "COLLECTMEMORYPERCENT" instead of the old "ALLOWEDPERCENT" leads to more
reproducible behavior since garbage collections no longer depend on CPU time, which can be different from one run
to the next even with identical inputs. Note that MAINSAIL might garbage collect regardless of the value of
"COLLECTMEMORYPERCENT" when it cannot get more memory from the operating system.

Large values for "COLLECTMEMORYPERCENT" may lead to unnecessary paging if a process’s virtual size is
larger than the physical memory available. Values for "COLLECTMEMORYPERCENT" larger than about 10%
have not been shown to be useful. A value of about 1% may be reasonable for a large batch job.

The percentage of CPU time spent in memory management overhead is still calculated, and MAINSAIL still exits if
the overhead exceeds $overheadPercentExitValue.

On some operating systems, MAINSAIL now returns memory to the operating system in certain cases, thereby
reducing its process size.

25.3. MAINEDIT

25.3.1. MAINVI

As documented in the "MAINSAIL Inverse Release Notes, Version 12.10 - Version 11.27", most of the bug fixes to
MAINVI documented in the "Version 12.10 Release Notes" are available in Version 11.28.

-122-

25.4. Structure Blaster
25.4.1. $structureCopy

$structureCopy no longer makes duplicates of the string text of a structure; both old and new structures share the
same string text.

-123 -

2,

MAINSAIL’ Inverse Release Notes
Version 12.10 - Version 11.27

11 July 1991

—

=4 XIDAK

25.5. Introduction
This "inverse release note" describes the status of new features in Version 12.10 of MAINSAIL. Some of these
features are present in Version 11.27 and subsequent releases of Version 11, but some are absent. Manual sets
current for Version 12.10 are now being shipped to MAINSAIL users, but Version 12 of MAINSAIL has not yet

. been released to customers. This note is provided so that the Version 12.10 manual set may be used with Version 11
releases of MAINSAIL. ‘
Some minor enhancements made to Version 12.10 of MAINSAIL were omitted from this list; all such enhancements

either do not affect user code or are present in Version 11.27 of MAINSAIL, so that the Version 12.10
documentation is accurate for Version 11.27 for these items.

25.6. Language

25.6.1. New Conditional Compilation Directives

The conditional compilation directives "$EFC", "$CASEC", "$BEGINC", "$DOC", "$DONEC", "$CONTINUEC",
and "$FORC" are all present in Version 11.27 of MAINSAIL.

25.6.2. New Argument to "MESSAGE" Directive

The new optional second arguments to "MESSAGE" ("waming" or "error") are not available in Version 11.27 of
MAINSAIL.

25.6.3. New Compiletime Pseudo-Procedures

The compiletime pseudo-procedures "$TYPEOF", "$CLASSOF", and "$ISCONSTANT" are all present in Version
11.27 of MAINSAIL.

25.6.4. Repeatable Macro Parameters, $numArgs, $arg, and $sArg

Repeatable macro parameters, $numAxrgs, $arg, and $sArg are all present in Version 11.27 of MAINSAIL.

25.6.5. New Arguments to $compileTimeValue

The $compileTimeValue arguments:

-126-

RESTOREFROM <file or module name>

SOURCEFILE

SOURCEFILE <file name>
are not available in Version 11.27 of MAINSAIL. The argument "RPC" is available in Version 11.27 of
MAINSAIL.

25.6.6. New System Procedures and Macros

25.6.6.1. $atan2

$atan2 is not available in Version 11.27 of MAINSAIL.

25.6.6.2. $classDscrFor

$classDscrFor is Dot available in Version 11.27 of MAINSAIL.

25.6.6.3. $cot

$cot is not available in Version 11.27 of MAINSAIL.

25.6.6.4. $def

$def is available in Version 11.27 of MAINSAIL.

25.6.6.5. $disposeDataSecsInArea

$disposeDataSecsInArea is not available in Version 11.27 of MAINSAIL.

25.6.6.6. $length

$length is not available in Version 11.27 of MAINSAIL. However, it will be available in Version 11.28 and

subsequent Version 11 releases of MAINSAIL.

25.6.6.7. $log2

$log2 is available in Version 11.27 of MAINSAIL.

-127 -

25.6.6.8. $mainsailExec

$mainsailExec is available in Version 11.27 of MAINSAIL.

25.6.6.9. $minInteger and $minLonglnteger

$minInteger and $minLongInteger are not available in Version 11.27 of MAINSAIL. However, they will be
available in Version 11.28 and subsequent Version 11 releases of MAINSAIL.

25.6.6.10. Platform Macros

The platform macros $platformNameFull, $platformNameAbbreviation, and $platformNumber are not available in
Version 11.27 of MAINSAIL; neither are the predefined platform identifiers (e.g., $aix, $alnt, ...).

25.6.7. System Procedures with New Parameters and Instances

25.6.7.1. $dateToStr and $dateAnd TimeToStr

The $dateToStr and $dateAndTimeToStr parameter ctriBits2 is not available in Version 11.27 of MAINSAIL.

25.6.7.2. displace

The pointer instance of displace is available in Version 11.27 of MAINSAIL.

25.7. Runtime System

25.7.1. New Memory Management Heuristics

The new memory management heuristics (as govermed by "COLLECTMEMORYPERCENT") are not available in
Version 11.27 of MAINSAIL. However, they will be available in Version 11.28 and subsequent Version 11 releases
of MAINSAIL.

25.7.2. Date and Time Facilities
The restrictions that the number of hours be less than or equal to 24, minutes less than or equal to 60, and seconds

less than or equal to 60 have not been removed for time differences passed to $strToTime in Version 11.27 of
MAINSAIL.

-128 -

The change to $strToDate causing it no longer to prompt:
Do you mean the year to be in the current century?

is available in Version 11.27 of MAINSAIL.

25.7.3. $disposeArea and $clearArea and Data Sections

The prohibition against calling $dispose Area and $clearArea on areas containing data sections has not been lifted in
Version 11.27 of MAINSAIL.

25.7.4. Chunk Alignment
The alignment of chunks remains four times the size of a long integer in Version 11.27 of MAINSAIL (it is twice

the size of a long integer in Version 12.10).

25.7.5. $ttyEofExcpt

The predefined exception $ttyEofExcpt is not available in Version 11.27 of MAINSAIL.

25.7.6. "DEFINETIMEZONE"

The MAINEX subcommand "DEFINETIMEZONE" is not available in Version 11.27 of MAINSAIL.

25.7.7. File Cache Procedure Parameters

The parameter attributes to $queryFileCacheParms and $setFileCacheParms is a long bits in both Version 11.27 and

Version 12.10, not a bits as in previous Version 11 MAINSAIL releases.

25.7.8. VAX/VMS File Formats

- The device prefix "BS(n)", where n is the record size, is available on VAX/VMS in Version 11.27 of MAINSAIL.

25.8. Utilities

25.8.1. CALLS

The command line argument to CALLS is not available in Version 11.27 of MAINSAIL.

-129-

258.2. CONF

258.2.1. "PLATFORM" Command

The CONF "PLATFORM" command is not available in Version 11.27 of MAINSAIL.

25.8.2.2. "COLLECTMEMORYPERCENT" vs. "ALLOWEDPERCENT"

In Version 11.27 and earlier Version 11 releases of MAINSAIL, the old CONF command "ALLOWEDPERCENT"
is supported, but not the new command "COLLECTMEMORYPERCENT". In Version 11.28 and subsequent
Version 11 releases, "COLLECTMEMORYPERCENT" will be available, but not "ALLOWEDPERCENT".

25.8.3. INTCOM

INTCOM is not available in Version 11.27 of MAINSAIL.

25.8.4. MAINEX

25.8.4.1. Long Subcommand Lines

The feature allowing long MAINEX subcommand lines to be continued by ending them with the backslash ("\")

character is available in Version 11.27 of MAINSAIL.

25.8.4.2. "CSUBCOMMANDS <fn>"

The "CSUBCOMMANDS <fn>" subcommand is available in Version 11.27 of MAINSAIL.

25.8.5. MAINKERMIT

The MAINKERMIT command "PTEXT" is available in Version 11.27 of MAINSAIL.

25.8.6. MM

All MM features described in the Version 12.10 documentation are available in Version 11.27 of MAINSAIL.

-130 -

25.8.7. OBJCOM

OBJCOM is not available in Version 11.27 of MAINSAIL.

25.9. Debugger

The "+Q" (unconditional exit) command is not available in Version 11.27 of MAINSAIL.

25.10. MAINEDIT

The display modules WY50, WY5043, WY43, WY75, and HP300H are all available in Version 11.27 of
MAINSAIL.

25.10.1. MAINVI

Most bug fixes and enhancements made to MAINVI over the course of the past year are not available in Version
11.27 of MAINSAIL. However, they will be available in Version 11.28 and subsequent Version 11 releases of
MAINSAIL.

25.11. MAINPM

Neither the "SPACE" nor the "PC" command is available in Version 11.27 of MAINSAIL.

25.12. Structure Blaster

25.12.1. $structureCompare

The procedure $structureCompare is available in Version 11.27 of MAINSAIL.
25.12.2. Structures Written Only from Specified Areas

The temporary feature allowing structures to be written only from areas marked with the $markedArea bit is not
available in Version 11.27 of MAINSAIL.

-131-

25.13. | Summary

The following is a summary of the availability of Version 12.10 features in Versions 11.27 and 11.28:

-132 -

Feature

SEFC, S$CASEC, $BEGINC, DOC, SDONEC,

SCONTINUEC, $FORC

MESSAGE second argument

STYPEOF, S$CLASSOF, S$ISCONSTANT

Repeatable macro parameters,
$numArgs, $arg, $sArg

$compileTimeValue arguments
RESTOREFROM, SOURCEFILE

ScompileTimeValue argument RPC

$atan?

$classDscrFor

Scot

$def

$disposeDataSecsInArea,
$disposeArea and $clearArea when
there are data sections in area

$length

$log2

$mainsailExec

$minInteger, S$minlLongInteger

Platform macros, CONF PLATFORM cmd

$dateToStr/$dateAndTimeToStx
parameter ctrlBits2

Pointer version of displace

New memory management
(COLLECTMEMORYPERCENT)

Time differences > 24 hr or
> 60 min/sec

No more "current century" prompt
from $strToDate

Chunk alignment 2 long integers

SttyEofExcpt

DEFINETIMEZONE MAINEX subcommand

$queryFileCacheParms/
$setFileCacheParms attributes
parameter long integer

BS(n) on VAX/VMS

CALLS command line argument

INTCOM, OBJCOM

MAINEX long lines split with \

CSUBCOMMANDS MAINEX subcommand

MAINKERMIT PTEXT command

MM features

MAINDEBUG +Q command

New MAINEDIT display modules

MAINVI fixes

MAINPM SPACE and PC commands

$structureCompare

Structures written only from marked

areas

-133 -

11.27 11.28
YES YES
NO NO
YES YES
YES YES
NO NO
YES YES
NO NO
NO NO
NO NO
YES YES
NO NO
NO YES
YES YES
YES YES
NO YES
NO NO
NO NO
YES YES
NO YES
NO NO
YES YES
NO NO
NO NO
NO NO
YES YES
YES YES
NO NO
NO NO
YES YES
YES YES
YES YES
YES YES
NO NO
YES YES
NO YES
NO NO
YES YES
NO NO

Index

"site.cmd" file 98
$ in file name on UNIX 75
+Q debugger command 131

framerc file 106
.mainvirc file 106

:mapcode MAINVI command 106
:mapcode! MAINVI command 106
:swm p MAINVI command 15

<ECM> at MAINEDIT prompt 83
[+-]..{n}[BIF] MAINED commands 48, 99
\and MAINEX 130

_in C FLI label on VAX/VMS 76
_final function in C RPC 47

24-bit mode on IBM’s AIX on IBM System/370 XA 5
387 floating point exceptions 106

$acceptClient 33
$addDefinedTimeZone 26
address
calculation of modifies/produces arguments 45
internet 33
advising MAINSAIL about memory usage 29
AIX and MAXMEMORYSIZE 110
alias
for command in MAINEX 76
for library in MODLIB/INTLIB 77
alignment of chunks 129
ALLOWEDPERCENT 122
CONF command 130
Apollo’s DOMAIN/IX on Apollo PRISM 116
area
changing parameters 72

merging 72

-134-

reference into, examining 78
$arg 126
arithmetic overflow 9
arrays with constant bounds 116
$arrayType 74
$atan2 127
$attributes 70

B MAINED commands 48, 99

$BEGINC 126

bind, error recovery 28

$bindRemoteModule 90

BLOCKCHECK MAINKERMIT SET option 34
bootstraps on SPARC SunOS 98

BS(n) device prefix 129

buffer-specific initialization macros 85, 108

C
FLI label on VAX/VMS 76
RPC 105
CRPC
disconnserver 5
freeing MRPCMOD struct 47
CALL
MAINKERMIT command 33
MAINKERMIT dial mode command 34
CALLS module 129
$cannotFallOut 46
$cannotRetum 46
$canonicalUserlD 91
case sensitivity of file names 43
$CASEC 126
change to intmod 24
$changeAreaParms 72
$characterWrite 15
child process name 30
child process, killing 48
chunk alignment 129
chunk usage, tracing with MAINPM 86
$classDscrFor 127
classes and intmods 10
$CLASSOF 126
$clearArea 129
$clearFileCache 71
close, error message from 68
$closeStream 48
closing a connection in CRPC 5

-135-

cmdMatch and ? 48
$collectableChkSpc bit 72
$collectableStrSpe bit 72
COLLECTMEMORYPERCENT 122, 128

CONF command 130
command line arguments 24
$commandLineArgs 5, 71
$compactableChkSpc bit 72
compiletime error message 126
COMPILETIME procedure, user-declared 60
$compileTimeValue 126
$compileTimeValue("RPC") 105
$composeFileName 62
$composePath 62
conditional compilation 126
CONF module 130
constant-bounded arrays 116
$CONTINUEC 126
$copyDirectory 62

on VAX/VMS 49
$copyFile and file positions 47
$cot 127
$createDirectory 62
$createUniqueFile 63
CSUBCOMMANDS MAINEX subcommand 130
$currentDirectory 62
cves 75

D DVIEW command 83
data section, shared 60
$dateAndTimeCompare 48
$dateAndTimeToStr 128
$dateToStr 128
deallocation of string text 73
debugging display modules or graphics applications 85
$decomposeFileName 62
$decomposePath 62
$def 127
DEFINE
INTLIB command 77
MAINEX subcommand 76
MODLIB command 77
DEFINETIMEZONE MAINEX subcommand 26, 30, 98, 129
DELETE MAINKERMIT dial mode command 34
$delete on VAX/VMS 49
$deleteDirectory 62
$descendantKilledExcpt 46

-136 -

and STREAMS Scheduler 36, 92
$deviceAttributes 70
di MM command 47
DIAL MAINKERMIT command 33
$dimension 74
directory

for child process 30

manipulation 62

manipulation and PC MAINPM command 13
disconnserver 5
displace 128
$disposeArea 129

and MM di command 47
$disposeDataSecsInArea 127
disposing of string text 73
DIV 6
$DOC 126
$DONEC 126
DONOTMATCH .framerc keyword 106
dpycRead 105
dpyRefreshScreen 105
DSTENDRULE MAINEX subcommand 26, 30, 98
DSTNAME MAINEX subcommand 26, 30, 98
DSTOFFSET MAINEX subcommand 26, 30
DSTSTARTRULE MAINEX subcommand 26, 30, 98
DVIEW 83

E MAINED commands 85
EDIT MAINKERMIT dial mode command 34
editor windows, creating equal-size 48,99 -
$EFC 126
environment

variables for child process 30

variables in file names 75
$eos 48
ERRORLOG MAINKERMIT SET option 34
ESCAPE MAINKERMIT SET option 34
exception, informational 46
EXIT MAINKERMIT dial mode command 34

F MAINED commands 48, 99
FFRAME
and MAINVI default key mappings 30
display module initialization 106
file names
case sengitivity of 43
UNIX environment variables in 75

-137 -

$fileAttr 70
$fileInfo 70
$fileNamesAreCaseSensitive 43
fileSize parameter to open 43
fixed-point overflow 9
FLIlabel on VAX/VMS 76
floating-point overflow 9
$flush 71
$FORC 126
FOREIGNMODULES CONF command 6
$formParagraph 97
fr MM command 82
FRAME
and MAINVI default key mappings 30
display module initialization 106
freeing MRPCMOD struct in C RPC 47
FULLDUPLEX MAINKERMIT SET option 34

garbage collection and cves 75
$getDefinedTimeZones 26

$getDSTEndRule 26

$getDSTName 26

$getDSTOffset 26

$getDSTStartRule 26

$getGMTOffset 26

$getStdName 26

global symbols and MAINEX 25

$globalNext 25

GLOBALREMOVE MAINEX subcommand 29
$globalRemove 29

GLOBALSYMBOL MAINEX subcommand 29
GMTOFFSET MAINEX subcommand 26, 30, 98

HALFDUPLEX MAINKERMIT SET option 34
$hasFileVersions 70

host name 33

HP300H 131

IDVIEW command 83

informational exception 46
INITIALIZE:<bufferNamePattern> macros 85, 108
$initRand 116

innocuous intmod change 24

INSERT MAINKERMIT dial mode command 34
INTCOM module 130

Intel 387 floating point exceptions 106

internet address 33

-138-

intmod, changes to 24
intmods and classes 10
$invalidArgumentStr 69
$ISCONSTANT 126

key codes, determining 107
KEYCOD module 107
killed processes on UNIX 36
killing a child process 48

L DVIEW command 83

Ibl, ubl, etc. 74

$length 120, 127

library alias in MODLIB/INTLIB 77

LIST MAINPM command 116

$log2 127

$login 70

long module names 61

$lookupSynonym, VAX/VMS-specific procedure 75
low-level string deallocation 73

macro, MAINEX 76
MAINED search strings, recovering/editing 34
MAINEDIT and multiple screens 85
MAINEX
and global symbols 25
long subcommand lines 130
macro 76
module 130
MAINKERMIT 130
MAINPM 131
PC command 46
$mainsailExec 128
MAINVI 122, 131
and (F)FRAME default key mappings 30
mapping character codes 106
MAINVI initialization file, .mainvirc 106
malloc 38
mapped/unmapped key codes, determining 107
mapping character codes in MAINVI 106
$markedArea 131
$maxExec 109
$maxInteger 128
MEDT and SUN default key mappings 30
MEM module 83
memory usage, tracing with MAINPM 86
$memoryManagementInfo 29

-139-

$mergeArea 72
MESSAGE directive, second argument 126
$minlnteger 121, 128
$minLongInteger 121
MM
di command 47
module 130
MOD 6

modifies/produces arguments, address calculation of 45

module names, long 61

$modulelnfo 47

MONITORAREA MAINPM command 89
MONITORLIB MAINPM command 89
MRPCMOD struct, freeing in C RPC 47
multiple screens in single edit session 85

name, child process 30
new, error recovery 28
$nextCommandLineArg 5, 24
$noCollectablePtrs 72

bit 72
$noCollectableStrs 72

bit 72
$noCompactablePtrs 72

bit 72
NOMONITORAREA MAINPM command 89
NOMONITORLIB MAINPM command 89
$noNewChunkGarbage 29
$noNewStringGarbage 29
NOPARITY MAINKERMIT SET option 34
$noPermissionStr 69
$noSpaceStr 69
$noSuchFileStr 69
NOTRACEREPORT MAINPM command 86
NOTRACESRC MAINPM command 88
$nto 109
$numArgs 126

OBJCOM module 131
OBSCUREDOPT .framerc keyword 106
open

error message from 68

fileSize parameter 43

with environment variable in file name 75
OPENEXELIB 78
OPENINTLIB 78
OPENLIBRARY 78

- 140 -

OPENOBILIB 78
$openStream 33
child process name syntax 30
$otherErrorStr 69
overflow, arithmetic 9
own variable vs. $SHARED variable 60

P DVIEW command 83
$page I/O and PDF 12
page marks and MAINVI 15
pageDispose 98
PARITY MAINKERMIT SET option 34
password for child process 30
PC

MAINPM command 37, 46, 92, 131

MAINPM command and directory manipulation 13
PDFI/O 11
PLATFORM CONF command 130
$platformNameAbbreviation 128
$platformNameFull 128
$platformNumber 128
PRISM UNIX 116
procedure, user-declared COMPILETIME 60
procedure call, address calculation of arguments 45
produces/modifies arguments, address calculation of 45
program arguments to child process 30
program parameters, setting in site.cmd file 25
PROMPTFORDISPLAYMODULE eparms keyword 86
PTEXT MAINKERMIT command 130
PTYPRO child process name 30

$queryFileCacheParms 129
QUIT MAINKERMIT dial mode command 34

raw internet address 33
RC commands 84
$readStream 48
$reclaim 73
recovery of string at MAINEDIT prompt 83
references to areas, examining 78
remote module timeouts 109
remote module, binding 90
$remoteModuleCls fields $maxExec and $nto 109
$renameDirectory 62
on VAX/VMS 49
RESTOREFROM $compileTimeValue argument 126
REVISION MAINEX subcommand 76, 77

- 141 -

revision time 76

ri MM command 78

RL commands 84

RPC
C compiler subcommand 105
$compileTime Value argument 126
disconnserver in C 5
freeing MRPCMOD struct in C 47

RS commands 84

RW commands 84

$sArg 126
SAVE MAINKERMIT dial mode command 34
sbrk 38
Scheduler and $descendantKilledExcpt 36, 92
search order for intmods and objmods 78
searchpaths and SOCPRO 109
SET

MAINKERMIT command 33

RETRIES MAINKERMIT command 91
$setCurrentDirectory 62
$setDSTEndRule 26
$setDSTName 26
$setDSTOffset 26
$setDSTStartRule 26
$setFileCacheParms 129
$setGMTOffset 26
$setStdName 26
setting program parameters in site.cmd file 25
$SHARED variables 60
shared data section 60
SHOWQUEUE MAINKERMIT command 33
SIGFPE on Intergraph’s System V UNIX on Interpro 32C 37
site.cmd file, setting program parameters in 25
six-character limit removed from module names 61
SOCPRO

and searchpaths 109

child process name 30
SOURCEFILE $compileTimeValue argument 126
SPACE MAINPM command 131
SPARC SunOS versions 3.x vs. 4.x 38,110
SPARC SunOS, making bootstraps on 98
start directory for child process 30
STDNAME MAINEX subcommand 26, 30, 98
$storageUnit I/O and PDF 12
STREAMS Scheduler and $descendantKilledExcpt 36, 92
string

- 142 -

global symbols 25, 29

low-level deallocation 73
$stringGlobalEnter 25, 29
$stringGlobalL.ookup 25, 29
$stringGlobalSymbol 25, 29
$strToDate 128
$strToTime 128
$stractureCompare 131
$structureCopy 123
$structureRead and PDF 12
SUN and MEDT default key mappings 30
SUNS3 display module 99
swap

file 12

space on UNIX 36
swpxxx.tmp file 12

time

zone information procedures 26

zone parameters 98
timeouts for remote module 109
$timeSubcommandsSet 26, 98
$tooManyOpenFilesStr 33, 69
TRACECHUNKS MAINPM command 13, 86
TRACESRC MAINPM command 88
TRANSLATION MAINKERMIT SET option 34
$trnLnm, VAX/VMS-specific procedure 74
$ttyEofExcpt 129
$TYPEOF 126

UCR
87-0309 122
87-0313 122
87-0314 122
88-0144 122
88-0217 122
88-0299 122
89-0081 118
89-0269 118
UNIX
environment variables in file names 75
swap space 36
user name for child process 30
user-declared COMPILETIME procedure 60
$userID 70
on Intergraph’s System V UNIX on Interpro 32C 38

-143-

variable, SSHARED 60
VAX/VMS
BS(n) device prefix 129
CFLI label on 76

$waitForDescendants 11,90, 108
windows, creating equal-size 48, 99
WY43 131

wWY50 131

WY5043 131

WY75 131

- 144 -

