
Getting the Bugs Out
Ross M. Greenberg

Two debugging tools:

Is AT Probe worth $1500

more than Periscope Ill?

Your project is due in a week. All beta
test sites have been calling dutifully, indi
cating no major problems. Suddenly, one
site after another calls with the same
problem. It seems their hard disk dis
solved, and your program was the only
one running when it occurred. Time to
start debugging.

Either of two hardware-assisted debug
ging systems, AT Probe ($2495) f ram
Atron and Periscope III ($995) from The
Periscope Company, may be able to help.
Both. provide a means of isolating their
respective debugging programs from
"normal" code space. They offer some
unique features as well, including the
ability to stop your code in the middle of
anything, debug it, and then continue
processing; real-time tracing, which only
ICEs (in-circuit emulators) could do until
now; the ability to breakpoint in real
time, based on access to any component
within the machine; and displaying and
experimenting with the pref etch buffer.
(For a discussion of debugging, see
"Finding the Culprit'' on page 154.)

During the review process, I used the
boards to solve a variety of bugs: a write
access by a terminate-and-stay-resident
(TSR) program outside its data space;
problems with the initialization routines
in two different device drivers; timing
problems between incoming characters in
an interrupt-driven TSR concurrent
serial-communications program; spe
lunking through the innards of MS-DOS
to determine real-time DOS usage of the
PSP (Program Segment Prefix) and FCB
(File Control Block) records; and using

150 8 YT E • APRIL 1988

breakout switches to enter the debugger
on an apparent total-system lockup. I
might have been able to solve some of
these problems without a hardware
assisted debugging board, but it would
have taken significantly longer.

I tested the boards on a variety of high
speed AT clones with and without EGA
displays. The EGA causes a problem with
AT Probe because the debugger's 128K
byte RAM footprint conflicts with the
memory space normally allocated for the
EGA BIOS. (This problem is docu
mented in the manual.) You can select an
other area, but the 128K-byte footprint is
pretty large. At 64K bytes, Periscope
Ill's DOS footprint is smaller than AT
Probe 's, so it ran on my EGA system
without any modifications.

AT Probe
AT Probe 2.0 is a full-height, full-length,
IBM PC AT card with 1 megabyte of
write-protected on-board memory and
the ability to be used in protected mode.
It comes with a cable that plugs into the
80287 socket on the AT motherboard.
Your 80287 plugs into the cable's piggy
back socket. The debugger has both hard
ware and software components. Most of
the software loads directly into AT
Probe's own memory, but 128K bytes of
system RAM is also required. Installation
is easy; it takes only moments. (An XT
version of the board is also available.)

A switchbox comes with AT Probe and
is an intrinsic part of the package. It con
tains a Stop button, which you can use to
break out to the debugger, and a Reset
button, which you can optionally install
to let you reset the computer. To install
the Reset button, you crimp a connector
(which is provided) to the power-supply
reset wire (not available on all AT
clones). This is a permanent change, and
I'm surprised Atron didn't use a less in-

Hardware-assisted debuggers like AT
Probe (top) and Periscope Ill (bottom)
can significantly reduce debugging
time-for a price.

trusive method. However, if you need to
remove AT Probe from your system, you
simply pull its reset wire out of the con
nector, which then remains attached to
the power-supply wire.

Various add-ons to AT Probe are avail
able: AT Source Probe ($395) lets you
debug at the source code level in addition
to the symbolic level; AT Software Per
formance and Timing Analyzer ($395)
adds timing and performance measure
ment tools to the debugger; and Win
probe ($495) enables you to debug soft
ware designed to run under Microsoft
Windows 2.0.

Three options are also available to opti
mize AT Probe for specific applications.
The /ISO option ($395) lets you run the
entire debugging process in the 80286's
protected mode using no system mem
ory. There are certain relatively obscure
disadvantages to running the /ISO version
(most having to do with the keyboard),
but the beauty of running in protected
space, where the debugger is almost in
visible to your own code, is worth it.

The /PL option ($125) supports
Plink86 Plus, a linker from Phoenix
Technologies that resembles the standard
Microsoft Linker but lets you use over
lays in a more powerful way. The /PL op
tion lets you set breakpoints in overlays

continued

A~ Probe 2.0

Type ..,
Hardware-assisted debugger ,, .

· • Company
A tr on
12950 Saratoga Ave.
Saratoga, CA 95070
(408) 253-5933

Features
2K bus-cycle traceback buffer; 4

, hardware breakpoints with 1 megabyte of
• on-board memory; 660K-byte symbol

table space; multiple software tools;
breakout switch Reset button; 12-inch
80287 cable (longer lengths available);
2-foot cable on breakout switch

' Size
5 by 13112 inches

1

Hardware Needetl
IBM PC AT or compatible with 8-MHzl

" 10-M Hz AT hardware-compatible bus
structure (one 16-bit slot required); one
wait state required; 128K bytes of
available memory

Software Needed
DOS 2.0 or higher; DOS 3.0 or higher
recommended

Documentation
220-page AT Probe/AT Source Probe
Manual

Options
AT Source Probe: $395
AT Software Performance aned-T,imirig

Analyzer: $395
Winprobe: $495
IPL (Plink86 Plus) extension:· $125
/ISO (protected-mode debugger): $395
/ISO and /PL extension: $495
/PRO (protected-mode operation): $975
/PRO and IPL extension: $1075

Price
i $2495

386 Probe: $4 1 95

• Inquiry 887.
•

-

that you haven't yet loaded from disk.
Another option, /PRO ($975), lets you
run in protected mode in memory above

·the first megabyte. Combinations of these
options are also available: /ISO with /PL
($495), and /PRO with /PL ($1075). The
particular software configuration I tested
included the /ISO and /PL options and
the AT Source Probe.

Probing for Bugs
Using AT Probe is straightforward. The
command structure of the debugger re
quires a considerable learning curve be-

152 B YT E • APRIL 1988

GETTING THE BUGS OUT

•
Perisc~pe Ill 3 .1

Type •
Hardware-assisted debugger

r rt •
••• Company

' The Periscope Company
1197 Peachtree St., Plaza Level
Atlanta, GA 30361
(404) 875-8080
(800) 722-7006

Features
BK bus-event traceback buffer; 64K
bytes of on-board memory with 32
hardware breakpoints; ability to use
alternate display device; multiple software
tools; 15-inch 80x87 cable (longer
lengths available on request); 5-foot cable
on breakout switch

Size • •
4 Vs by 131/.1 inches '
Hardware Needed
IBM PC, XT, AT, or compatible (16-bit
bus slot required on AT), operating with
one wait state at up to 1 O MHz; 64K
bytes of available RAM

•

Software Needed -..
DOS 2.0 or higher; DOS 3.0 or higher
recommended

Documentation
218-page Periscope Manual; Quick
Reference card

Price
8-MHz version: $995
10-M Hz version: $1095

Inquiry 888. •

. .
,.

• •

• •

cause it is not similar to DOS DEBUG;
however, the on-screen help facility in
two command windows makes the pro
cess less painful than it would be if you
had to turn to the manual all the time. The
user interface, however, is simply a com
mand-line interface.

When invoked, AT Probe looks for its
configuration file, PROBE. CFG, which
contains the base address at which to load
the software, as well as the cursor- and
screen-addressing information required
to use a remote-serial device as if it were a
local console.

When you first load the debugger, it
also looks for an !NIT .MAC file, which
can contain user-defined macros con
cerned with initialization. (An AT Probe
macro contains a series of AT Probe com
mands.) As with any macro library, you
eventually end up with your own set of
specially designed tools, but AT Probe
comes with a good set in PROBE.MAC to
use for your initial debugging sessions.
This set includes such macros as sector
read, sector write, display program pre
fix segment, display registers, and
display stack data.

Once within the debugger, you can
specify the name of the file you want to
debug and its associated symbol tables,
as well as any additional macro files you
wish to load. You can examine the code in
its disassembled state, and symbol names
are shown after their actual addresses to
aid in your debugging. From past experi
ence, I find that actually replacing the
hexadecimal address with the symbol
name is a bit more comfortable and clos
er to the original source code, but that's a
matter of personal preference.

Debugging an application without a
symbol table is more difficult, but since
AT Probe lets you enter symbol names at
specific addresses and thereafter displays
those symbol names, exploring code
fragments (even DOS itself) is easier than
before. The board devotes 660K bytes to
keeping your symbol table in its write
protected memory so that it won't be
overwritten.

The heart of debugging, the setting of
breakpoints, is an easy task with AT
Pro be. You can set them to occur when
execution reaches a given location; when
a particular range of memory is read,
written, or fetched by the CPU; or when a
specified 1/0 port (or a particular value
for that port) is read from or written to.

The real power of AT Probe shows in
its macros. The macro capability lets you
execute an intelligent breakpoint request,
such as: "Breakpoint when an area out
side of this bounded area is written to, if
and only if the code segment is within this
range and the data value at this address is
greater than a particular value and less
than this value." You can make a macro
just about any length you like, and it can
call other macros (up to a nesting level of
5) with parameter passing.

The macro processing speed isn't as
fast as I'd like. An intelligent breakpoint
request runs at full speed on AT Probe,
but once it reaches a breakpoint and starts
executing in the CPU, processing slows
down. When you know this, you will find
yourself setting breakpoints a bit more
sparsely.

You can have a total of only four hard
continued

GETTING THE BUGS OUT

Finding the Culprit
F ixing a bug, once found, usually science; being able to set breakpoints to

takes only minutes; finding it, how- stop execution of the current program
ever, can take minutes or weeks. A great and enter debug mode makes the process
number of software-only debuggers are easier. The number of breakpoints a
available, all of which let you examine, particular debugger allows is an impor
step-by-step, each instruction the CPU tant consideration, since the number and
executes, and compare the actual results different types of breakpoints you use let
with the results you expected. But, for a you execute more of your code and less
variety of reasons, hardware-assisted · single-step tracing. The ability to issue
debuggers can make the process go breakpoints when your program reads or
much more quickly than software-only writes to a particular area of memory,
debuggers can. when a register equals a certain value or

One of the most common software de- range of values, or when your program
buggers is DEBUG, included with MS- accesses a particular I/O port is an im-
DOS up to version 3.3. DEBUG is very portant aid to debugging.
useful for examining small assembly However, if the problem you' re trying
language programs or for resolving sim- to find stems from the interaction of var
ple problems. However, it's woefully in- ious hardware components over which
adequate for any but the most rudimen- you have no control (such as a timer tick
tary debugging. To debug program code occurring every 1I18 second or a con
easily, you need to be able to examine it flict of serial-port interrupts), then even
with a symbolic listing; for example, the niceties of Microsoft's CodeView (a
INC [TIMElL.TICK] is inherently clearer full-screen symbolic debugger) may not

, than INC [ODCA]. The first conveys at suffice. It's not that software debuggers
least part of the meaning the original don't have the ability-most do; it's
programmer intended. To debug easily, simply that tracing or single-stepping
you need to see the source code, or at through your code can be terribly slow,
least the symbol map. Many symbolic because the CPU is executing perhaps
debuggers contain options to enter these hundreds of debugger instructions each
symbols as required. time it executes one of your program's

Other capabilities also affect the de- instructions. Trying to use the same
bugging process. When single-stepping · CPU chip to process all these "intelli
through your code, for instance, a de- · gent" breakpoints, to manage a trace
bugger needs to be able to set the "sin- back buffer, and to protect your code
gle-step" bit in the processor flag word. and the debugger code from each other
!his bit .generat~s an interrupt after each is a difficult, if not impossible, task.
instruction, which the debugging pro- Finally, sometimes the software de-
gram then processes, and it usually re- bugger itself has an adverse effect on
sults in a display of the next instruction what you're debugging (since the posi
to execute (or the previous one) and the ti on of your program in memory may de
~urrent s~ttin~ of each ~egister. If this pend on where the debugger is placed).
information is stored in a traceback Debugging may even be impossible,
bu~fer, then you can se~ how your code since the errant pointer causing your
arnved at the current point of execution. problem may actually modify a portion
The larger the traceback buffer, the of the memory space occupied by the de
mo~e instruct~ons you can see, and the bugger-thus causing the debugger to
easier debugging becomes. crash mysteriously. In these situations

Determining when to examine that hardware-assisted debuggers like th~
traceback buffer is more of an art than a ones reviewed here are your only choice.

ware breakpoints active at any given
time. I found that this wasn't sufficient in
many cases, especially when I was trying
to trace carefully through the many dif
ferent cases on a C case/switch state
ment. I don't like havjng to outsmart lim
itations a debugger places on me.

Fetch and Carry
For the CPU to be as fast as possible, it
automatically reads the next few instruc-

154 BYTE • APRIL 1988

tions into a small on-board buffer while it
executes its current instruction. In most
programs, after a given instruction has
run, the instruction most likely to run
next is the one that follows it; since that
instruction is already in the pref etch
queue, little access time is needed except
to read or write the operands.

Since pref etch is used only for instruc
tion execution, it might be useful to set a
breakpoint on prefetch into any area of

memory that should never be executed
but can be read or written to, such as your
data-segment area or your low-memory
interrupt table.

AT Probe's traceback buffer is 2K bus
cycles, or events, in length. Atron calls
this a dequeued buffer. You won't see in
structions that have been fetched but not
executed unless you specifically ask to
see them. This is an important consider
ation when looking at the traceback
buffer; it can be confusing to see instruc
tions that were never executed.

A few features of note are AT Probe's
ability to debug using Microsoft C's local
stack referencing, its complete 80287
support, an on-line editor and notepad (in
AT Source Probe), the ability to follow a
nested calling convention backward on
the stack, and the ability to re-enter data
items by data type instead of hexadeci
mally, byte by byte.

One caveat, however, regarding AT
Probe: One of the manual's appendixes
contains a note about executing break
points while in a non-reentrant BIOS call,
such as the keyboard- or monitor-service
routines. Atron says that since AT Probe
uses these routines, you could crash the
system if you breakpoint within them.

Writing a Wrong .
I used AT Probe to find a write access by
a TSR outside of its data and code space.
First, I defined aw rite-to-memory break
point for each of two memory-address
ranges: one before the initial TSR code
segment, and one after the last TSR seg
ment. Both DOS and foreground pro
grams, such as COMMAND. COM, normally
access these areas of memory. Therefore,
the debugger had to filter out all such
valid write accesses.

Using a macro to set the breakpoints, I
checked the code segment after each
breakpoint to see if it fell within the TSR
range. If it didn't, I resumed program
execution; if it did, I knew I had found the
culprit and could use the real-time trace
back buffer to determine how I had gotten
to the instruction causing the problem.
Again, the macro didn't execute as fast as
I'd like, but with some fine-tuning of its
logic, I managed to speed it up.

I

Periscope III
Periscope III 3 .1 is a full-length hard
ware-assisted debugging card with 64K
bytes of write-protected RAM, an 8K
bus-event real-time traceback buffer, 32
hardware breakpoints, and a remote
breakout switch. It requires an IBM PC
XT, AT, or compatible with 64K bytes of
available RAM. (Since the board is not a
full-height card, it runs in the XT as well
as the AT.) Periscope III comes in two

continued

models: an 8-MHz version ($995) and a
I 0-MHz version ($1095). It requires
DOS 2.0 or higher, but DOS 3.0 or high
er is recommended because DOS 2.0 and
2.1 contain some bugs involving improp
er changes to the stack; The Periscope
Company warns that if your breakpoint
happens to occur at just the right-or
wrong-moment, you may have trouble.
Note that this is true for AT Probe, too.

Like AT Probe, Periscope III has a
cable that plugs into the 80287 socket on
the motherboard, and an existing 80287
plugs into the cable's piggyback socket.
A plug socket at the end of the card at
taches to a breakout button that immedi
ately enables the debugger.

Once you install the hardware (which
takes about 5 minutes), you must install
the software-also a rapid and straight
forward process. You can run the soft
ware portion of the debugger without the
hardware. After you install the software,
you' re ready to run a TSR called PS. COM,
which takes command-line or indirect
file switches. One switch lets you specify
which area of memory the board is to use.
Other switches let you specify the size of
the symbol table, various window sizes,
and other setup parameters.

No software extensions are available at

output to a port occurs (you can specify
up to 16 different ports). These break
points can be set directly on Periscope
III' s board. Finally, you can set a pass
count, which breaks out only after the
breakpoint has been executed a certain
number of times; for example, "break on
the fifth write to this screen location."

You can also set software breakpoints.
Aside from those breakpoints that are put
in Periscope III hardware for speed, you
can set additional interrupts when a par
ticular byte, word, or register meets cer
tain tests (less than, equal to, or greater
than a specified value), as well as when a
particular interrupt executes, when a par
ticular line of source code runs, when re
turning from the currently executing rou
tine, or when a user-supplied (and
previously loaded) assembly language
routine returns a certain value.

With Periscope Ill's "go using moni
tor" mode (GM command), some of these
software breakpoints can work in combi
nation with the hardware breakpoints.
Thus, the program can run at full speed
until it reaches a breakpoint on the board.
Control then transfers to the board to de
termine if the specific condition exists,
such as "break on register value" (BR
breakpoint). If not, the code resumes exe-

GETTING THE BUGS OUT

this time, including those that allow for
protected-mode oper~tion; thus, most of
the symbol table is visible in system
memory. Although the debugger pro
gram itself is write-protected and is there
fore safe from typical programming mis
takes, the symbol table and other
important tables are not protected. And
since these tables are stored in system
memory, you may not have enough mem
ory to debug a large program with a large
symbol table. This was not a problem in
my testing, however.

Up Periscope
Once you load PS.COM, it sits quietly in
the background until you call it. You can
access it in either of two ways: through
the breakout switch, or through RUN. COM,
which automatically loads your program
and its symbol table. Once your program
is loaded, you are in the debugger, ready
to debug your code.

Part of Periscope Ill's power is, sur
prisingly enough, in its user interface.
You can choose from a variety of screen
windows. I found that having two data
windows, one stack window, a register
window, and a disassembly window usu
ally sufficed for my needs. Changing
window sizes is an easy operation; for ex-

GETTING THE BUGS OUT

cution immediately. If the conditions are
met, the breakpoint executes, and you
can start debugging.

One real disappointment is that "break
on register value" allows only one break
point test for each register. Thus, testing
for a write access to a range of memory
with a double range check on the CS reg
ister isn't as easy to accomplish on Peri
scope III as on AT Probe. (AT Probe 's
macro capability can handle this.)

Periscope III lacks macro capability,
but, with its USEREXIT capability, you
can make tests as arbitrarily complex as
you wish. A USEREXIT is user-written as
sembly language code (USEREXIT.ASM)
with which Periscope III can interface. It
is loaded as a memory-resident program,
called USEREXIT. COM, that uses an avail
able interrupt. Of course, you '11 have to
debug the assembly language routines
that make up the USEREXIT routine itself.

Like AT Probe, Periscope III has
trace back-buffer ca pa bili ties. However,
Periscope Ill's traceback buffer is 8K bus
events long (a bus-event record is 48 bits
wide), so it can hold substantially more
information than AT Probe 's 2K-bus
cycle buffer. You can set up the buffer to
capture 8K events before the breakpoint,
4K events before and 4K events after the

ample, if you want two data windows
with lengths of 4 lines and 6 lines, respec
tively, you enter /W D:4 D:6.

There is a not-so-subtle difference be
tween Periscope III and AT Probe: AT
Probe feels as if it were designed for pro
grammers, while Periscope III feels as if
it were designed by programmers. This
shows through not just in the display of
the various windows, but also in the com
mand set and options, designed for pro
grammers who want ultimate control over
their debugging environment. For exam
ple, to issue a breakpoint when the byte,
COUNT, equals 08, you would enter BB
COUNT EQ 08. For AT Probe, the com
mand would be BP l=.COUNT W DATA 08.

Periscope III provides breakpoints on
byte, code, interrupt, line, memory,
port, register, user test, word, and exit.
AT Probe has many of these abilities, but
its interface uses a less intuitive format.

The myriad breakpoints that Periscope
III allows also reflect this philosophy:
You can set up to 16 hardware break
points, allowing read, write, execute, and
fetch breaks, and including breakpoints
above the first megabyte of memory for
AT-class machines. You can also set
breakpoints when the data on the bus
meets a particular value, or when input or

breakpoint, or 8K events after the break
point. However, much of Periscope Ill's
traceback information consists of pre
f etch instructions. As such, except for the
obvious ones, like j mp, call, ret, and
int, the trace buffer contains instruc
tions that may not have been executed but
were only in the prefetch buffer. This
makes debugging more difficult.

Periscope III comes with a number of
auxiliary programs, including one to let
you use the map-file output from Plink86
Plus, and another to run through assem
bly language source code and make each
symbol public. Since the more symbols
you have, the easier the debugging be
comes, the PUBLIC program should be a
welcome addition to any library.

Driving Devices Crazy
Debugging a device driver can be diffi
cult, especially since the device driver is
loaded before you can load your debug
ger. Periscope III' s distribution disk con
tains a program, SYSLOAD, that lets you
load the important parts of Periscope III
as device drivers so you can debug the de
vice-driver initialization routine. When I
combined this with Periscope Ill's ability

I •
to perform a "short boot" (which usually

continued

leaves the interrupt vectors loaded), de
bugging a device driver became as easy as
debugging any other program.

The problem I had was that the serial
communications device driver was crash
ing the system somewhere in the initial
ization routine-sometimes. At other
times, and at high data transfer rates,
characters were being dropped. The
worst kind of bug is the kind that isn't al
ways repeatable.

By setting breakpoints on input or out
put instructions to ranges of ports, I
found that the device-driver initialization

158 B Y TE • APRIL 1988

GETTING THE BUGS OUT

routine was turning interrupts on too
soon. By using Periscope III' s user-exit
capability, I found that the time used to
return after a polling loop and before gen
erating the End-of-Interrupt instruction
was sufficient for a character to arrive
when receiving at 115K bytes per second.
Without a hardware-assisted debugging
board, either condition would have been
difficult, if not impossible, to discover.

The Competitive Edge
Determining which debugger is better is a
difficult task. There is no clear and sim-

Circle 284 on Reader Service Card

ple benchmark that you can base a judg
ment on. Once you find a bug with one
debugger, it 's gone, and it's impossible
to replicate the problem . (But, sadly, an
other bug always lurks around the corner;
there's never a shortage of them.)

If you're developing Microsoft Win
dows programs; if you' re using the over
lay capability of Plink86 Plus substan
tially; if your code is very large (greater
than 400K bytes); if you have a huge
number of symbols; or if you ' re writing a
protected-mode application (and with
OS/2 on the horizon, protected-mode op
erations are going to become increasingly
important) , then you need the suppor t of
fered as options for AT Probe 2. 0.

However, the interface on Periscope
III is easier to work with than AT Probe
2 .0 's ; the capabilities, such as the num
ber and type of breakpoints, are substan
tially better; and the command summary
is , to my way of thinking, closer to the de
bugging needs of a programmer. And if
you 're a small developer with limited
funds, Periscope Ill's lower price be
comes paramount.

But all this is changing. New releases
on both products are forthcoming. The
features in the new releases clearly
indicate how acutely each company is
aware of the competitive edge the other
has to offer.

The Periscope Company says that Peri
scope III 4 .0 (due out this month) will
support Microsoft Windows, Plink86
Plus 's overlays, and Microsoft C's local
symbols . Periscope IV, due out this
spring, is planned to support the 80386 as
well as the 80286. Atron says that the next
release of AT Pro be, also due out this
month, will contain a user interface simi
lar to tha t of Microsoft Code View.
Atro n's 386 Probe for 80386 systems has
recently been released. It's an interesting
race to watch.

Both AT Probe and Periscope III serve
admirably as debuggers. Each does quite
a bit more than its advertising represents,
and each also has major enhancements in
the works. But does AT Probe make up
the $1500 difference in price (almost
$2000 if you include AT Source Probe)
with added programmer productivity?

The answer isn't as clear-cut as I'd
wish. If you don't need the special capa
bilities AT Probe has that Periscope III
doesn't have, then, no, AT Probe isn't
worth the difference in price. If, how
ever, you do need them, and you need
them badly, then the price doesn't matter
as much. •

Ross M. Greenberg, owner and chief ex
ecutive officer of Software Concepts De
sign in New York, is a computer consul
tant and software designer.

