
BUG BUSTERS

State of the Art Debugging Tools
Optimized for the Software Engineer

SOFTWARE SOURCE
PROBE

20665 FOURTH STREET* SARATOGA, CA 95070 * (408) 741-5900

Contents 1

TABLE OF CONTENTS

CHAPTER 1. INSTALLING THE STOP/RESET
SWITCH BOX

Section Page

INTRODUCTION ... 1-2
SWITCH BOX INSTALLATION (HALF-SIZE CARD) 1-2

INST ALLING THE RESET WIRE .. 1-3
SWITCH BOX INSTALLATION (8088) ... 1-5

CHAPTER 2. GETTING STARTED

Section Page

INTRODUCTION ... 2-2
HOW TO ST ART PROBE ... 2-2

MORE ON PROBE.CFG ... 2-2
INITIALIZATION MACRO ... 2-3
MENU WINDOWS ... 2-4
ENTERING COMMANDS ... 2-5
ERROR MESSAGES .. 2-5
CONSOLES ... 2-6
LIST DEVICES ... 2-6
FILES ON YOUR SOFTWARE SOURCE PROBE

DISKETTES .. 2-7
VERSIONS OF SOFTWARE SOURCE PROBE SOFTWARE 2-7

/PL VERSIONS ... 2-7
/87 VERSIONS .. 2-7

Last revised 5/14/86

Contents 2

CHAPTER 3.
GENERATING AND USING SYMBOLS

Section Page

INTRODUCTION .. 3-2
GENERATING SYMBOLIC DEBUGGING INFORMATION 3-2
USING C WITH PROBE .. 3-3

C SOURCE DEBUGGING ... 3-3
SINGLE STEPPING PROGRAMS BY C SOURCE

ST A TEMENTS .. 3-6
GENERATING AC LIST FILE WITH LINE NUMBERS 3-7

USING PASCAL WITH PROBE ... 3-9
USING ASSEMBLY LANGUAGE WITH PROBE 3-9
USING THE DOS LINKER WITH PROBE .. 3-9
USING PLINK86 WITH PROBE .. 3-9
SYMBOLIC DEBUGGING .. 3-10

LOADING SYMBOL TABLE FILES .. 3-10
SYMBOL TABLE OVERFLOW ... 3-10

Selectively Loading Symbols 3-11
Stripping Symbols from the Map File 3-11

USING SYMBOLS IN COMMANDS ... 3-13
SYMBOL TABLE MAP FORMATS ... 3-13

CHAPTER 4. USING PROBE COMMANDS
Section Page

INTRODUCTION .. 4-2
DISPLAY AND CHANGE MEMORY .. .4-3

BYTES, WORDS, POINTERS, and FLOATING POINT 4-3
MEMORY NOVERIFY CONDITION .. 4-5

DISPLAY AND CHANGE IO PORTS .. 4-6
DISPLAY AND CHANGE REGISTERS AND FLAGS4-7

INITIALIZING REGISTERS AND FLAGS 4-10
BLOCK OPERATIONS ON MEMORY .. .4-10
ASSEMBLE AND UNASSEMBLE MEMORY 4-12
LOADING PROGRAMS AND SYMBOL TABLE4-13
ST AR TING PROGRAM EXECUTION AND SETTING

BREAKPOINTS .. 4-14
SINGLE STEP PROGRAM EXECUTION4-15

WINDOWS .. 4-17

Contents 3

CHAPTER 4. USING PROBE COMMANDS, continued
Section Page

MACRO COMMANDS .. 4-17
EXECUTING MACROS ... 4-18
LOADING, SAVING, AND DELETING MACROS 4-19
PRINTING FROM WITHIN MACROS ... 4-19
CONDITIONAL MACRO EXECUTION 4-20

EVALUATE EXPRESSIONS ... 4-21

CHAPTER 5. DEBUGGING APPLICATIONS

Section Page

INTRODUCTION ... 5-2
A SAMPLE DEBUGGING SESSION ... 5-2

DEMO PROGRAM LISTING ... 5-3
EXERCISING THE DEMO ... 5-7

ADVANCED DEBUGGING TECHNIQUES 5-18
DEBUGGING A DEVICE DRIVER INVOKED FROM

COMMAND.COM or a QUIT AND ST A Y RESIDENT
PROGRAM .. 5-18

LOADING THE SYMBOL TABLE WHEN PROBE DOES
NOT LOAD THE PROGRAM ... 5-18

DEBUGGING ROUTINES WHICH TAKE OVER THE
KEYBOARD ... 5-19

DEBUGGING INTERRUPT DRIVEN SOFTWARE 5-20
ADDITIONAL APPLICATIONS INFORMATION 5-20

Contents 4

CHAPTER 6. COMMAND REFERENCE

Section Page

INTRODUCTION .. 6-3
COMMON PARAMETERS AND DEFINITIONS 6-3
DATA REFERENCING WITH THE@ OPERATOR 6-6
ASSEMBLE .. 6-8
ASIGN ... 6-11
BREAKPOINT .. 6-13
BYTE .. 6-15
COMP ARE ... 6-17
CONSOLE .. 6-18
DELETE ... 6-20
DIR .. 6-21
ECH0 ... 6-22
EDIT ... 6-23
EVALUATE ... 6-29
FILL .. 6-31
FLAGS ... 6-32
FLOAT .. 6-33
G0 ... 6-35
IF .. 6-37
INITIALIZE ... 6-38
INTERRUPT .. 6-39
LIST .. 6-42
LOAD ... 6-43
LOOP .. 6-46
MACRO COMMANDS ... 6-48
MENU .. 6-60
MODULE ... 6-61
MORE .. 6-62
MOVE .. 6-63
NEST .. 6-64
NOVERIFY ... 6-65
NUMERIC FLAGS .. 6-66
NUMERIC REGISTERS ... 6-67
POINTER ... 6-68
PORT ... 6.,.70
PRINT ... 6-71

Contents 5

CHAPTER 6. COMMAND REFERENCE, continued

Section Page

QUIT .. 6-74
REGISTERS ... 6-75
SAVE ... 6-76
SCREEN ... 6-77
SEARCH .. 6-79
SELECT .. 6-80
SOURCE STEP ... 6-81
STEP ... 6-83
SYMBOL .. 6-85
UN ASSEMBLE .. 6-88
WINDOW .. 6-89
WORD .. 6-90

APPENDICES
Appendix

A
B
c

D
E
F
G
H
I

Title Page

PROBE ERROR MESSAGES ... A-1
SOFTWARE/MAINFRAME COMPATIBILITY ... B-1
CONFIGURATION FILE AND EXTERNAL

CONSOLE CONNECTION ... C-1
USER PROCESSED NMI ... D-1
FILES ON YOUR PROBE DISKETTES E-1
PROBE/MS DOS INTERFACE DESCRIPTION .. F-1
SYMBOL TABLE MAP FORMATS G-1
USING PLINK86 WITH PROBE H-1
TECHNICAL REPORTS .. I-1

Contents 6

Figure

1-1
1-2
1-3

Table

4-1
B-1
B-2

FIGURES

Title Page

Reset Wire Install a ti on .. 1-4
Removing the 8088 .. 1-5
PROBE Plug ... 1-6

TABLES

Title Page

80287 Data Types ... 4-3
Software Compatibility .. B-1
Hardware Compatibility .. B-1

Introduction 1

INTRODUCTION

Thank you for purchasing an Atron debugging tool. This manual
describes the SOFTWARE SOURCE PROBE. The SOFTWARE
SOURCE PROBE is a powerful debugging tool for programmers
developing with high level languages. The main features of the
Atron software debugging tools are listed as follows:

1. Symbolic debugging capabilities let you display and change your
variables symbolically. The symbolic information can be used
anywhere an absolute value can be used. In addition, when using
commands to display information, the symbolic information
which matches your program is also included in the display.

2. External STOP /RESET switch box. When your program is locked
up, pressing the STOP button lets your regain control of the
system. When your program has wiped out DOS, the RESET
button lets you reboot.

3. Isolation between use of the console for the debugger and the
applications program. Atron Probes give you three options:

a. Screen switching
b. Dual video monitors
c. A totally separate console interface to the debugger.

4. The PROBE menu interface makes it possible to start using
PROBE without the need to refer to this manual.

5. The MAcro command in PROBE lets you define your own
complex command sequences and save them away for future use.

Introduction 2

ORGANIZATION OF THIS MANUAL

CHAPTER 1 contains the installation procedures.

CHAPTER 2 describes how to start the PROBE software. It also
describes the PROBE menu driven human interface.

CHAPTER 3 describes the compiler and linker controls that you will
need to use when you generate your code so that symbolic or source
level debugging information can be passed to PROBE.

CHAPTER 4 presents an overview for the first time user on how to
use the PROBE commands.

CHAPTER S contains a sample debugging session which also resides
on the PROBE diskettes. This chapter also covers the more advanced
debugging techniques such as debugging device drivers, interrupt
routines, quit and stay resident routines, and boot loaders.

CHAPTER 6 is the Command Reference section which contains
definitions and examples for each PROBE command.

APPENDICES contain additional information about the AT PROBE.
The appendices also include a useful group of technical reports
regarding common issues that arise during debugging.

INDEX indicates where to look for information based on key words
or concepts.

Installing the Switch Box Chapter 1-1

CHAPTER 1
INSTALLING THE STOP/RESET SWITCH BOX

INTRODUCTION ... 1-2
SWITCH BOX INSTALLATION (HALF-SIZE CARD) 1-2

INSTALLING THE RESET WIRE .. 1-3
SWITCH BOX INSTALLATION (8088) ... 1-5

Chapter 1-2 Installing the Switch Box

INTRODUCTION

If you have purchased the Crash recovery switch box, then you
should read this chapter to learn how to install the switch box in
your system. If you do not have the switch box then skip this
chapter. There are two versions of the switch box. One version
plugs a half-size card into the card cage of either an XT, PC, or AT,
and the second version plugs into the 8088 socket of the PC or XT.

SWITCH BOX INSTALLATION (HALF-SIZE CARD)

Carefully unpack your PROBE, and inspect the PROBE plug and
printed circuit card for damage. If they are damaged, please contact
the PROBE dealer from which you purchased the PROBE. This
version should contain the following components:

I. Half-size printed circuit card

2. Floppy disks
3. STOP /RESET switch box.

To install the switch box and half-size card proceed as follows:

I. Disconnect power and remove the top cover of your computer.
2. Insert the half-size printed circuit card into the computer chassis.

3. If your computer is an XT or a PC and there is no 8087 in the
system, then verify that SWITCH #l POSITION #2 on the system
board is set to "On." If this is not done, then the STOP button
will not work.

4. If your system is an AT and if you need the reset capability from
the switch box, then install the reset wire. See the instructions
given in the following section, "Installing the Reset Wire," to
install this wire.

5. Plug the external STOP/RESET switch box cable into the PROBE
STOP/RESET connector at the rear of the PROBE. Note that it
can be plugged in, in either direction.

6. Replace the top cover, and connect power to the computer.

7. If an external CRT is to be connected to PROBE, then see
Appendix C.

Installing the Switch Box Chapter 1-3

INST ALLING THE RESET WIRE ON AN AT

The following procedure should be used only on the AT and not on a
PC or XT. The RESET button is used to reset the AT when the Ctrl
Alt Del reset does not work. The following installation instructions
for the reset connection are only necessary if you need the reset
capability from the switch box. Otherwise, do not make this
installation. This installation connects the RESET button through
the PROBE circuit board to the power supply reset. Proceed as
follows to install the reset assembly and reset wire in the AT.

1. Place the reset wire from the AT power supply into the reset
assembly like a hot dog into a bun. This wire from the AT power
supply is normally orange. For and IBM A T,this wire connects to
the motherboard along with the other power supply wires. Insure
that this wire is the one which connects to the AT motherboard
closest to the rear of the computer. See Detail A of Figure 1-1.

2. Fold the assembly around the power supply reset wire and clamp
the assembly shut with pliers (Detail B).

3. Slide one end of the reset wire onto the pin in the reset assembly.
The finished assembly looks like (Detail C).

4. Slide the other end of the reset wire onto the reset pin of the
half-size card (Detail D).

If the SOFTWARE SOURCE PROBE must be removed from the
system, the reset wire can be disconnected from this assembly by
simply pulling the wire out of the reset assembly and leaving the
remainder of the assembly attached to the orange power supply wire.
If the RESET button fails, then make sure that the Atron reset wire
that goes from the half-size card to the reset assembly is connected.
Also verify that the reset assembly is completely closed on the orange
power supply wire.

Chapter 1-4

DETAIL A
AT power supply wire

Lay the run-wire in remaining section,
fold over to meet base.

DETAIL B

Squeeze with ordinary pliers
until latch locks.

Installing the Switch Box

DETAIL C

Half -size Card

Figure 1-1. Reset Wire Installation

Installing the Switch Box Chapter 1-5

SWITCH BOX INSTALLATION (8088)
Carefully unpack your PROBE and inspect the probe plug and
printed circuit card for damage. If they are damaged, please contact
the PROBE dealer from which you purchased the PROBE. This
version should contain the following components:

1. PROBE plug

2. Floppy disks

3. STOP /RESET switch box

4. 8088 extraction tool.

To install the switch box follow these steps:

1. Disconnect power, and remove the top cover of your computer.
2. Using the extraction tool provided, slip the tool under the 8088

processor and pry up gently to remove the processor from the
socket (Figure 1-2). Be careful not to bend the 8088 pins.

Figure 1-2. Removing the 8088

Chapter 1-6 Installing the Switch Box

3. Insert the 8088 into the socket provided on the PROBE plug
(Figure 1-3). Ensure that PIN 1 of the 8088 matches the red mark
on the PROBE plug. If this is not done, damage will occur to the
8088 when power is applied.

4. Plug the external STOP /RESET switch box cable into the PROBE
plug. Note that the cable can be inserted in either direction.

Figure 1-3. PROBE Plug

5. Insert the PROBE plug into the vacant 8088 socket. Ensure that
the red mark on the PROBE plug is on the same end of the 8088
socket as pin 1 of the 8088. Pin I of the 8088 is normally
indicated by a small niche in the 8088 socket. For an IBM PC or
XT this results in placing the red mark on the PROBE plug
toward the back of the system. In a COMPAQ, place the red
mark towards the back of the COMPAQ. If the red mark of the
PROBE plug is not on the same end as pin I of the 8088 socket,
damage to the PROBE plug may result when power is applied.

Installing the Switch Box Chapter 1-7

6. Verify that SWITCH #l POSITION #2 on the PC system board is
set to "On" if no 8087 is present in the system. If this is not done,
then the STOP button will not work.

7. Replace the top cover, and connect power to the computer.
8. If an external CRT is to be connected to the computer, then see

Appendix C.
9. Power up the computer. If the computer does not power up, then

check the fallowing:

a. Verify that the PROBE plug is not offset in the 8088
socket.

b. Are the 8088 notch and the PROBE plug notch matching
and facing the rear of the chassis?

If you cannot get the PROBE to work, contact A TRON technical
support (408) 741-5400.

Getting Started

CHAPTER 2
GETTING STARTED

Chapter 2-1

INTRODUCTION ... 2-2
HOW TO ST ART PROBE ... 2-2

MORE ON PROBE.CFG ... 2-2
INITIALIZATION MACRO ... 2-3
MENU WINDOWS ... 2-4
ENTERING COMMANDS ... 2-5
ERROR MESSAGES .. 2-5
CONSOLES ... 2-6
LIST DEVICES ... 2-6
FILES ON YOUR SOFTWARE SOURCE PROBE

DISKETTES .. 2-7
VERSIONS OF SOFTWARE SOURCE PROBE SOFTWARE 2-7

/PL VERSIONS ... 2-7
/87 VERSIONS .. 2-7

Chapter 2-2 Getting Started

INTRODUCTION

This chapter tells you how to start the SOFTWARE SOURCE
PROBE. It also describes the operation of the SOFTWARE SOURCE
PROBE user interface including information on commands, error
messages, choosing a console, and how to redirect list devices. This
chapter also includes information about the files on your disks and a
summary of the different versions of SOFTWARE SOURCE PROBE.

HOW TO START PROBE

To start the SOFTWARE SOURCE PROBE, enter:

SWSOURCE (/path spec] (\]

(/path spec] is the path for the additional PROBE files required to
run the selected PROBE product. If (/path spec] is not included in
the command line and these files cannot be found in the current
system directory, then PROBE queries you for the current path.

EXAMPLE: This command loads the SOFTWARE SOURCE PROBE
software from directory A TRON on drive A, even if
this is not the current drive and directory.

A:\ATRON\SWSOURCE I A:\ATRON\

If you want to walk through an example, go to Chapter 5 at this
point. Otherwise keep reading for more background information.

MORE ON PROBE.CFG

The file PROBE.CFG contains configuration information which will
be used by SOFTWARE SOURCE PROBE. The details on each
configuration parameter are given in Appendix C. The default
configuration parameters in this file are:

Getting Started Chapter 2-3

1. External console cursor motion: Set for VT 100 terminal.
2. Do not overflow the symbol table into system memory.
3. Do not use system memory for screen switching with a color

monitor.

These may need to be changed if:

1. An external console is to be used with PROBE.
2. Symbol table overflow requires allocating memory from the

system memory space.
3. The screen swapping command will be used during debug and a

color monitor is attached to the PC.

INITIALIZATION MACRO

When the PROBE software is loaded, the [path spec] is searched for
the !NIT.MAC file. If no [path spec] was specified, the current
default directory is searched for the !NIT.MAC file. If found, this
file is loaded as a macro automatically by PROBE. If the file
contains a macro named INITIALIZE, that macro is executed
automatically. It is useful to create this custom file and macro to set
up PROBE completely for a debugging session. An example
initialization macro is given below. The user can create the
!NIT.MAC file and put the text exactly as shown below into it.

MAC INITIALIZE =
LOA M PROBE.MAC
EM INIT FTOCNEW
END

This macro loads the additional macros from the PROBE.MAC file,
then executes the macro called INIT. The macro INIT has a
parameter called FTOCNEW which is the sample file to be loaded
and debugged. See Chapters 4 and 6 for more information on
macros.

Chapter 2-4 Getting Started

MENU WINDOWS

The user interface to all PROBE products is designed to minimize
the need to refer to this manual; although, reading it once is highly
recommended. A menu of commands is provided on the bottom two
lines of the screen. The MORe command switches between the two
alternate menus. Example menus are shown below:

MENU 1

Asign BP BYt COMpar CONsol DEiete Dir DMa ECho EDit EMacro EVal Fil

FLag Go IF INit INTrupt List LOAd LOOp MAcro MEnu MODule MORe

MENU 2

MOVe NEst NOVerify POrt PRint PTr Quit Register SAve SCreen

SEarch SSource STep SYmbol Unassemble Window WOrd MO Re

When you type a command, the first unique characters (those shown
in capital letters) are all that are needed to specify the command.
When these first unique characters are recognized by PROBE as a
unique command, the syntax for that command appears in the menu
window. Since fields following the unique command name can be
symbolic expressions, a space is needed between the command name
and the first parameter to follow it. The menu window can be
turned off and on with the MEnu command.

Getting Started Chapter 2-5

ENTERING COMMANDS

In order to simplify command line editing and avoid learning a new
editor, the DOS command line editing has been implemented in
PROBE. A description of the DOS editing keys is described as
follows:

Fl or -->
F2
F3
F4

F5
Ins
Del
Esc

Copy and display one character from retained line
Copy all characters up to specified character
Copy all remaining characters from retained line
Skip all characters to specified character of retained
line
Accept edited line for more editing as retained line
Toggle - insert characters
Skip one character in retained line
Cancel current line.

Commands which dump data to the screen can be terminated with
the Ctrl Break (Ctrl C) key or the STOP button on the external
switch box. The screen dump will pause if Ctrl S is typed.

ERROR MESSAGES

When a command or command parameter is not recognized by
PROBE, an error message is printed to indicate the problem.
Appendix A contains a summary of these error messages.

Chapter 2-6 Getting Started

CONSOLES

When PROBE is first started, command entry is done through the
resident console. However, you have several choices for console IO.
The simplest choice creates two virtual screens and isolates the
PROBE screen from the application screen. This is done with the
following SCreen switching command:

SC S

If you have two video controller boards in your system, you can
move the PROBE display to the screen other than the one which is
the current default. This is done with the following CONsole
command:

CON Other

A third choice is to switch to an entirely separate CRT which you
connect to the RS232 port of the PROBE. This is done with the
following CONsole command:

CON Remote

The description on how to connect a remote console and set up its
configuration parameters is shown in Appendix C. The keys for
command line editing are different for a remote console keyboard
(since it may not be a PC). More information on the editing keys is
also given in Appendix C.

For more details on the other options for these commands and
connections, refer to the specific command in Chapter 6, COMMAND
REFERENCE.

LIST DEVICES

You may want to save the results of a debugging session. The
following List command directs a copy of the information sent to the
console to a list device such as LPT I or a filename.

LI listdevice

For more details on the other options for this command, ref er to the
List command in Chapter 6, COMMAND REFERENCE.

Getting Started Chapter 2-7

FILES ON YOUR SOFTWARE SOURCE PROBE
DISKETTES

There are several files on your PROBE product diskettes which may
or may not be needed depending upon what you are doing. A list of
these files and a description of each is given in Appendix E. Only
those used for "running" are required for the actual execution of
PROBE software.

VERSIONS OF SOFTWARE SOURCE PROBE
SOFTWARE

This manual describes the standard versions of SOFTWARE SOURCE
PROBE. Other versions of this software product are available which
are optimized for specific applications. These other versions are
summarized as follows:

/PL VERSIONS

The SOFTWARE SOURCE PROBE/PL version supports the overlay
manager of the PLINK86 linker. The commands that are affected by
this version are discussed in Appendix H.

/87 VERSIONS

The SOFTWARE SOURCE PROBE/87 version adds full support for
the 8087 numeric data processor to PROBE. Memory and 8087
registers can be displayed and changed via all floating point data
types. The commands that are affected by this version are the
Numeric Registers command, the Numeric Flag command, and the
FLOat command. See each command for more information.

Generating and Using Symbols Chapter 3-1

CHAPTER 3
GENERATING AND USING SYMBOLS

INTRODUCTION ... 3-2
GENERA TING SYMBOLIC DEBUGGING INFORMATION 3-2
USING C WITH PROBE .. 3-3

C SOURCE DEBUGGING .. 3-3
SINGLE STEPPING PROGRAMS BY C SOURCE

ST A TEMENTS ... 3-6
GENERA TING A C LIST FILE WITH LINE NUMBERS ... 3-7

USING PASCAL WITH PROBE .. 3-9
USING ASSEMBLY LANGUAGE WITH PROBE 3-9
USING THE DOS LINKER WITH PROBE ... 3-9
USING PLINK86 WITH PROBE ... 3-9
SYMBOLIC DEBUGGING .. 3-10

LOADING SYMBOL TABLE FILES ... 3-10
SYMBOL TABLE OVERFLOW .. 3-10

Selectively Loading Symbols ... 3-11
Stripping Symbols from the MAP File 3-11

USING SYMBOLS IN COMMANDS .. 3-13
SYMBOL TABLE MAP FORMATS .. 3-13

Chapter 3-2 Generating and Using Symbols

INTRODUCTION

Before debugging your program, the steps of assembling, compiling,
and linking must have already been completed. This chapter
discusses important points regarding the use of assemblers, compilers,
and linkers which are compatible with PROBE. It describes how to
generate symbolic debugging information and how to pass this
information to the PROBE. Also included is a summary of the
commands which let you load, use, redefine or delete these symbols.

GENERATING SYMBOLIC DEBUGGING
INFORMATION

SOFTWARE SOURCE PROBE allows you to use the symbolic
information from your program during debugging instead of absolute
numbers. The symbolic debugging information is passed to the
PROBE from the compiler using controls which are discussed next in
this chapter. This symbolic information consists of public variables,
public procedures, functions, subroutines, modulenames, and high
level language line numbers. Using symbols greatly simplifies the
debugging process. In addition, source level debugging can be
achieved.

To maximize the availability of symbols to be used during
debugging, it is suggested that the following approach be used during
program development. When debugging individual program modules,
maximize the number of variables declared PUBLIC or statically
allocated since this will pass the maximum number of symbols to the
symbol table. Then, when the module has been debugged, remove
extraneous PUBLICS.

The sections which follow describe the things that need to be
considered when using PROBE with C, Pascal, and Assembly
language. You may want to go directly to the section which applies
to you.

Generating and Using Symbols Chapter 3-3

USING C WITH PROBE

Symbolic debugging records can be passed from the C compiler
through the linker to the .MAP file if the appropriate compiler and
linker controls are specified. The available symbolic debugging
information consists of linenumbers and global symbols. Currently,
no local records (i.e. stack based variables) are passed from these
compilers.

C SOURCE DEBUGGING

In order to do source level debugging with the SOFTWARE SOURCE
PROBE, a modulename must be associated with the line numbers for
that module. A module is a single unit of compilation and has a
name called the mod ulename. The mod ulename is matched to the
appropriate source file using the ASign command. The following
examples show how the modules are named for various versions of
the compilers and linkers.

I) Lattice C Version 2.14
DOS Link Version 2.20 (or 2.00)

A) lcl ... -d small code; small data
lc2 .. .
link ... /m /1

The modules are all named PROG as a default by the compiler.
During the loading of the symbol table, PROBE finds all of the
modulenames are the same. PROBE then looks for a high line
number to low line number transition. When PROBE finds
this, it automatically changes the modulenames which are in
the PROBE symbol table to PROG, PROGi, PROG2 ... The
appropriate source files must be assigned to the modulenames
in the order they were linked as shown below. This is done
using the ASlgn command as follows:

ASI PROG firstsourcefile
ASI PROG I secondsourcef ile
ASI PROG2 thirdsourcef ile

Chapter 3-4 Generating and Using Symbols

B) lei ... -d -mD small code; large data
lc2 .. .
link ... /m /1

The modules are all named CODE as a default by the compiler.
During the loading of the symbol table, PROBE finds all of the
modulenames are the same. PROBE then looks for a high line
number to low line number transition. When PROBE finds
this, it automatically changes the modulenames which are in
the PROBE symbol table to CODE, CODEI, CODE2 ... The
appropriate source files must be assigned, using the ASign
command, to the modulenames in the order they were linked.

ASI CODE firstsourcefile
ASI CODEI secondsourcefile
ASI CODE2 thirdsourcefile

C) lei ... -d -mP large code; small data
lc2 ... -smodulename
link ... /m /1

The modules are named with the -smodulename control in the
compiler. The appropriate source files must be assigned to the
modulenames in the order they were linked as shown below.

ASI firstmodulename firstsourcefile
ASI secondmodulename secondsourcefile
ASI thirdmodulename thirdsourcefile

D) lei ... -d -mL large code; large data
lc2 ... -smodulename
link ... /m /1
Modulenames are the same as C above.

Generating and Using Symbols Chapter 3-5

II) Lattice C Version 2.14
DOS Link Version 2.30 (DOS 3.1)

A) lcl ... -d small code; small data
lc2 .. .
link ... /m /1
Modules have the same name as their respective object files.

B) lcl ... -d -mD small code; large data
lc2 .. .
link ... /m /1
Modules have the same name as their respective object files.

C) le 1 ... -d -mP large code; small data
lc2 .. .
link ... /m /1
Modules have the same name as their respective object files.

D) lcl ... -d -mL large code; large data
lc2 .. .
link ... /m /1
Modules have the same name as their respective object files.

III) MicroSof t C compiler Version 3.00
Microsoft Linker Version 3.01 (shipped with compiler)
(Note: /map and /linenumbers must be spelled out below)

A) msc ... /Zd /Od /AS small code; small data
link ... /map /linenumbers
Modules have the same name as their respective object files.

B) msc ... /Zd /Od /AM large code; small data
link ... /map /linenumbers
Modules have the same name as their respective object files.

C) msc ... /Zd /Od /AL large code; large data
link ... /map /linenumbers
Modules have the same name as their respective object files.

Chapter 3-6 Generating and Using Symbols

IV) Computer Innovations C compiler Version 2.30
Dos Linker Version 3.01

A) CC f ilename.c -x2 ...
link ... /map /linenumbers
Modules have the same name as their respective object files.

SINGLE STEPPING PROGRAMS BY C SOURCE STATEMENTS

This section applies to using the SOFTWARE SOURCE PROBE with
the Lattice C compiler.

1. In order to get line numbers that correspond to "}" statements you
must put a ';' after the '}'. If this is not done, no line number
record is output by the compiler for this source line. In other
words, you must have:

while (expression) {
statements;
if (expression) {

statements;
};

};

2. Also, functions that return by just "falling out the bottom" should
include a return statement before the final '}' for the same
reason.

return;}

3. For the last case in a switch statement, do not include the final
"break;"

switch () {
case 0: statements; break;

case 1: statements; break;

case n: statements; (no break here)
};

Generating and Using Symbols Chapter 3-7

Note that none of these recommendations produce additional code in
the .exe file. They each just produce more line number records from
the compiler.

GENERATING A C LIST FILE WITH LINE NUMBERS

This utility is provided as a convenience. It is not necessary for use
by PROBE software. The CLIST program found on the PROBE
diskette accepts an input "C" source file and produces a listing file.
It also expands tabs into spaces from the source file so that the file
may be printed on any line printer.

FORMAT: CLIST [sourcefile [,destinationfile [,spaces per tab]]] [options)

If the files are not listed, then the user is prompted for
the file names. Source lines are transferred to the
destinationfile in the format specified later. All tabs
are expanded to spaces with tab stops every specified
number of columns. The two options which can be
specified are i and c:
-i<include drive>
I specifies the drive to be searched for all include files.
example-ia (no intervening spaces)
-c
C specifies that comments do not nest. An * / ends all
comments currently in effect, no matter how many /*
have occurred.

Chapter 3-8 Generating and Using Symbols

This is the LISTING FORMAT which is produced:

c ***** 00000. xx

c

00000

xxxxx

Is a comment indicator. The 'C' is placed in this
column if the first character in the source line is
considered to be inside a comment.

Is the include nesting level from the include files
which are currently being used. Each include file
which includes another file will add one more * to this
field. There are a maximum of 5 *.
Is the line number of the line in the current file. Each
<CR> in the file increments the line count. The line
count starts at 1 in each file.

Is the line of source code.

EXAMPLES: Produce a listing in ftocm.lst with tabs set every 8
spaces. Include files are on the default drive and
comments nest.
clist f tocm.c, f tocm.lst, 8

Produce a listing directly to the line printer with tabs
set every 4 spaces. Include files are on the default
drive and comments nest.
clist ftocm.c, lptl:, 4

Produce a listing directly to the line printer with tabs
set every 4 spaces. In addition, all include files exist
on drive C, and comments do not nest.
clist f tocm.c, lpt I:, 4 -ic -c

You are prompted for the destination file and for the
number of spaces per tab. All include files exist on
drive A, and comments nest.
clist f tocm.c -ia

Generating and Using Symbols Chapter 3-9

USING PASCAL WITH PROBE
The IBM or Microsoft Pascal compiler will always generate symbolic
information into the object files and no special compiler controls are
necessary. The modulenames are derived from one of the following
in the Pascal source code:

Program statement
Module statement
Implementation statement

The symbols from the Pascal runtime library generally are of no use
and consume too much symbol table space. Therefore, it is
recommended that the STRIP utility be used to eliminate these
symbols. The /l/m control should be used in the DOS linker to
include symbols and linenumbers in the MAP file. The Pascal
compiler run-time libraries do a special move of the data for some
segments at the beginning of the program. See Appendix G for more
inf or ma ti on.

USING ASS EMBLY LANGUAGE WITH PROBE
In the Macro Assembler, public symbols are available as symbols.
The /m control in the linker must be used to pass these symbols to
the MAP file.

USING THE DOS LINKER WITH PROBE
The DOS linker will pass symbolic information generated by the
compiler or assembler from the .obj file to a MAP file if the /l/m
linker controls are applied. See the DOS LINK command for details.

USING PLINK86 WITH PROBE

If you are using the PLINK86 linker, ref er to Appendix H. Special
versions of PROBE software are available to support this linker. The
standard versions of PROBE software can also be used by using the
STRIPPE utility to convert the symbol table MAP file. See Appendix
H for details.

Chapter 3-10 Generating and Using Symbols

SYMBOLIC DEBUGGING

LOADING SYMBOL TABLE FILES

Once you have generated the symbolic information and you are
under control of the PROBE software, you can load the symbol table
into the write protected 1 megabyte address space of the PROBE.
This is done with the following command.

LOA S symboltablefile {options}

EXAMPLE: Load the MAP file for the program FTOCNEW.EXE.
LOA S FTOCNEW.MAP

This is the simplest form of the load symbol table command. See
Chapter 6, COMMAND REFERENCE for the many options which
can occur for the LOAd symbols command.

Another way to load symbols into the PROBE symbol table is to
specifically define them. This can be done with the SYmbol
command as follows:

SY .symbolname = symbolvalue

EXAMPLE: Define a symbol equal to the current CS:IP.
SY .ST ART = CS:IP

The symbols in the symbol table can be displayed by simply typing:

SY <enter>

SYMBOL TABLE OVERFLOW

When the symbol table for the program is too large to be loaded into
the allocated PROBE memory, there are two choices:

I. Use the SELect command to load only line numbers from
specified modules when loading the symbol table.

2. Use the symbol stripping utility to strip out symbols from the
MAP file before loading the program.

Generating and Using Symbols Chapter 3-11

Selectively Loading Symbols

If you know the symbol table is too large to be loaded into PROBE
you can eliminate linenumber records for all modules except for
those you specifically select. This is done with the following SELect
command.

SEL [modulenamel, modulename2]

EXAMPLE: Load all line number records for the two modules
shown here:
SEL FTOCM_CODE, FTOCIO_CODE

If you had a symbol table overflow, and you wanted to try the load
again with selected modules, be sure to delete all of the symbols
currently in the PROBE symbol table. This is done with the DElete
Symbols ALL command.

DES ALL

Or, you can delete a single symbol using the following command:

DES .symbolname

Stripping Symbols from the MAP File

The second alternative to reducing the number of symbols loaded is
to prestrip them from the MAP file. The STRIP utility on the
PROBE disk will strip symbols from the MAP file generated by the
linker.

strip inputfile.map outputfile.mpl, datafile
or
STRIP

The strip utility is executed after the linker generates a link map for
the user's program. inputfile.map is your MAP file generated by the
linker. Outputfile.mpl is the new MAP file named by you with the
requested symbols and line numbers stripped out. Datafile is a file
containing the list of symbols and modules to be stripped from
inputf ile.map. Once created, dataf iles are not normally changed
until the program symbols overflow the symbol table space. You may
also want to change the datafile if you change the version of your

Chapter 3-12 Generating and Using Symbols

compiler. To create a datafile, start with a MAP file and use your
favorite text editor to delete the following:

1. Remove the symbols from this MAP file which are to be included
in the final symbol table (i.e. outputfile.mpl). The remaining
symbols are the ones to be stripped from the new MAP file
created with the linker.

2. Delete all linenumbers.
3. Delete segment map.
4. Delete group map.

5. Delete "Address Publics by Line".
6. Delete the modulename statements which are in the MAP file as:

"Linenumbers for module modulename" for all linenumbers which
are to be included in the final symbol table.

What remains is a file of symbols and "Linenumbers for module
modulename" statements which will be stripped from the
inputfile.map to produce the outputfile.mpl.

Sample dataf iles are included on the SOFTWARE SOURCE PROBE
disk for stripping symbols and module line numbers for several
standard high level language libraries. The symbols found in these
libraries are of little use during debugging. If the STRIP utility is
invoked without specifying additional files, then the utility will
prompt for the file names before execution.

EXAMPLE: strip userprog.map, b:userprog.mpl, strip.pas

The format for symbols in the MAP file is given in
Appendix G, Symbol Table Map Format.

Generating and Using Symbols Chapter 3-13

USING SYMBOLS IN COMMANDS

A symbol can be used any place an expression or value is expected in
PROBE commands. A symbol can be in either of two forms:

.symbol name
or
.. modulename#linenumber

Procedure names and function names are treated the same as symbol
names. A single dot in front of a symbolname distinguishes it from
a hex character. A double dot in front of a module name
distinguishes it from a symbolname. If no .. modulename is specified
when you use a linenumber as a symbol, then the current default
modulename is used. After the symbol table is first loaded, the
default modulename is simply the first loaded module. You can
specify the default modulename with the MODule command:

MOD modulename

EXAMPLES: This is an example Go command which uses both
symbolnames and modulenames. ST ART is a symbol
which represents the starting address in the Go
command. STOPI, STOP2, and MAIN#38 are symbols
which represent instruction execution breakpoints.
G =.START, .STOPl, .STOP2, .. MAIN#38

This example displays the bytes between TEMP
and TEMP+lO:
BYTE .TEMP .TEMP+lO

SYMBOL TABLE MAP FORMATS

A description of the symbol table formats, which are found in the
MAP file, are described in Appendix G. If the executable code is
linked by a non-DOS linker, then a utility must be written by the
user to convert the information produced by the user's linker to the
standard DOS formats. The details in Appendix G will aid you in
this process.

Using PROBE Commands Chapter 4-1

CHAPTER 4
USING PROBE COMMANDS

INTRODUCTION ... 4-2
DISPLAY AND CHANGE MEMORY .. 4-3

BYTES, WORDS, POINTERS, and FLOATING POINT 4-3
MEMORY NO VERIFY CONDITION ... 4-5

DISPLAY AND CHANGE IO PORTS .. 4-6
DISPLAY AND CHANGE REGISTERS AND FLAGS 4-7

INITIALIZING REGISTERS AND FLAGS 4-10
BLOCK OPERATIONS ON MEMORY .. 4-10
ASSEMBLE AND UNASSEMBLE MEMORY 4-12
LOADING PROGRAMS AND SYMBOL TABLE 4-13
ST AR TING PROGRAM EXECUTION AND SETTING

BREAKPOINTS .. 4-14
SINGLE STEP PROGRAM EXECUTION .. 4-15

WINDOWS .. 4-17
MACRO COMMANDS .. 4-17

EXECUTING MACROS ... 4-18
LOADING, SAVING, AND DELETING MACROS 4-19
PRINTING FROM WITHIN MACROS ... 4-19
CONDITIONAL MACRO EXECUTION 4-20

EVALUATE EXPRESSIONS ... 4-21

Chapter 4-2 Using PROBE Commands

INTRODUCTION

This chapter presents an overview on using PROBE commands for
the first time user. If you are familiar with PROBE, you may wish
to skip this chapter and go directly to Chapter 6, COMMAND
REFERENCE. This chapter describes the PROBE commands in the
following functional groups:

DISPLAY AND CHANGE MEMORY
DISPLAY AND CHANGE IO
DISPLAY AND CHANGE REGISTERS AND FLAGS
BLOCK OPERATIONS ON MEMORY
ASSEMBLE AND UNASSEMBLE MEMORY
LOADING PROGRAMS AND SYMBOL TABLE
ST AR TING PROGRAM EXECUTION AND SETTING

BREAKPOINTS
SINGLE STEP PROGRAM EXECUTION
MACRO COMMANDS
EV ALU ATE EXPRESSIONS

The commands associated with each of these functional groups are
briefly described in this chapter. The interaction of some commands
in setting parameters for other commands is also described. In the
discussion which follows, several common terms and definitions are
used. If they are not self-obvious, definitions can be found in the
first few pages of Chapter 6, COMMAND REFERENCE.

Using PROBE Commands Chapter 4-3

DISPLAY AND CHANGE MEMORY

BYTES, WORDS, POINTERS, and FLOATING POINT

You can display a block of memory in byte, word, pointer data, or
floating point types with the following commands:

BY [range]
WO [range]
PT [range]
FLO [type] [range]*

Range specifies the area of memory to be displayed. There are two
ways to express range:

startaddress endaddress
or

startaddress L length

If range is not specified in these commands, then a default block
length of memory is displayed. The PgDn key will also display the
next block of memory after one of these commands has been
executed.

*NOTE: Only applies to /87 versions. If you have the /87
version of the PROBE software, then you can display
floating point numbers in memory in all of the data
types shown in Table 4-1. An 8087 or 80287 must be
present in the system before any of the floating point
commands will operate. The default for [type] is R in
this command.

Table 4-1. 8087 or 80287 Data Types

TYPE DESCRIPTION #BYTES

I 32 BIT INTEGER 4
L LONG 64 BIT INTEGER 8
P PACKED DECIMAL 10
S SHORT 32 BIT REAL 4
R REAL 64 BITS 8
T TEMP REAL 80 BITS 10

Chapter 4-4 Using PROBE Commands

There are two methods that can be used to change memory. The first
method lets you specify a string of data which will be deposited in
memory when you enter it. The formats are:

BY start address = value (,] value (,] value .. .
WO start address = value (,] value (,] value .. .
PT start address = value (,] value (,] value .. .
FLO (type] start address = value (,] value (,] ...

In the second method, you get to look at each memory location
before changing it. After the new data is entered, the next location
is displayed and can be changed. Typing <enter> alone on a line
ends the changes.

BY start address = <enter>
WO start address = <enter>
PT start address = <enter>
FLO (type] start address = <enter>

The following examples use these display and change memory
commands.

EXAMPLES: This BYte command stores a list of bytes.
BY .START= 50,51,52

The next 3 bytes can be displayed with the following
command. Since no length was specified, PROBE uses
the previously specified length of 3.
BY <enter>
3000:0003 40 41 42 *@AB*

This WOrd command stores a list of words but lets you
look at each one before changing it.
WO .START=
3000:0000 0000 - 0001 <enter>
3000:0002 0001 - 0002 <enter>
3000:0004 0002 - 0003 <enter>
3000:0006 0004 - <enter>

Registers can also provide the start address.
WO SS:SP = 0, 0, 0, 0
WO SS:SP+BP L 3

Using PROBE Commands

EXAMPLES, continued

ASCII strings can also be stored.
BY .ST ART = 'THIS IS A LINE'

Chapter 4-5

This pointer command puts pointer values on the stack.
PT SS:SP = 3000:AEFO

MEMORY NOVERIFY CONDITION

When PROBE changes memory with commands like BYte, WOrd, and
PTr, it does an automatic read after write verification to ensure that
the change really occurred. Some peripheral devices, which are
addressed as memory, will malfunction if a read after write occurs.
The NOVerify command given below lets you suppress all read after
write activity.

NOV Noread

Chapter 4-6 Using PROBE Commands

DISPLAY AND CHANGE 10 PORTS

The PC or AT IO ports can be displayed and changed with the
following POrt command.

PO [Word] portnumber

By including Word in this command you can read 16 bit rather than
8 bit ports. You can also write a byte or word value to a port with
the command below.

PO [Word] portnumber = value

EXAMPLES: To display the port addressed by the symbol PORTS:
PO .PORTS
AE

To change the port:
PO .PORTS = AA ;in hex
PO .PORTS = 'A' ;in ASCII
PO .PORTS= lOT ;in decimal

Using PROBE Commands Chapter 4-7

DISPLAY AND CHANGE REGISTERS AND FLAGS

You can display the registers and flags of the 8088 or 80286 and
8087 or 80287 with the following register and flag commands:

Reg [8088 registername]
FLA
NR [{S I T} (#)]
NF [CISJ

The first two commands display 8088 or 80286 registers or flags. The
second two commands display 8087 or 80287 stack and tag registers
or control and status flags. If no register is specified in the
commands, then all registers are displayed. The register and flag
names are shown in the tables below.

8088 or 80286 REGISTERS

AX CS SS DS ES AH AL
BX IP SP SI DI BH BL
ex BP CH CL
DX FL DH DL

8087 or 80287 REGISTERS

ST (0) Tag 0
ST (l) Tag l
ST (2) Tag 2
ST (3) Tag 3
ST (4) Tag 4
ST (5) Tag 5
ST (6) Tag 6
ST (7) Tag 7

Chapter 4-8

8088 or 80286 FLAGS

FLAG NAME

Overflow
Direction
Interrupt
Trap
Sign
Zero
Aux carry
Parity
Carry

SET

01
Dl
11
Tl
Sl
Zl
Al
Pl
Cl

8087 or 80287 FLAGS

Control
Status
Instruction
Operand

Using PROBE Commands

CLEAR

00
DO
IO
TO
so
zo
AO
PO
co

The registers and flags can be changed to a specified value using the
following commands. If a value is not specified, then the register or
flag is displayed along with a prompt to let you change it.

R registername = [value]
FLA flagname = flagvalue
NR {SIT} (#) = [value]
NF {CIS} = [value]

Using PROBE Commands Chapter 4-9

EXAMPLES: To display all 8088 or 80286 registers type:

AX= 1234

BX= 0104

CX= 0002

DX=ABAB

R

CS= 0000

IP= 1000

SS= 1000

SP= 5000

BP= 4000

DS= 0011

SI= 0000

FL= 00 DI El SO Zl Al PO CO

ES= 0100

DI= 0000

To change the 8088 or 80286 IP register to 2000:
RIP=
IP = 1000 - 2000 (the 2000 was entered by the user)

To put an ASCII value into the 8088 or 80286 AL
register:
R AL= 'Q'

To set 8087 or 80287 tag register 4 to a 2:
NR t (4) =2

To display 8088 or 80286 stack register 0:
NR s 0
ST (0)=-0.1859660090 E 16363

To display 8088 or 80286 flags:
FLA
00 D 1 IO TO SO Z 1 A 1 P 1 C 1

To set the 8088 or 80286 interrupt flag:
FLA I= 1

To change the 8087 or 80287 control word to OFFF:
NFC= OFFF

Chapter 4-10 Using PROBE Commands

INITIALIZING REGISTERS AND FLAGS

When a .EXE file is loaded, the SS:SP, CS:IP, DS, and ES registers are
set by the loader and operating system to initial conditions. It may
be desirable to reinitialize the registers to these conditions when
restarting program execution if a program or procedure has left the
stack and registers in an indeterminate state. This can be done using
the INitialize command shown below. See Chapter 6, COMMAND
REFERENCE for a discussion on the restrictions for this command.

INI

BLOCK OPERATIONS ON MEMORY

PROBE provides you with a flexible set of commands to move and
compare blocks of memory. In the MOYe command, the block of
memory specified by the range is moved to a location starting at
destinationaddress. The memory is moved on a byte by byte basis
starting with the first address of range. With the PROBE COMpare
command, the contents of the block of memory specified by range is
compared to the same size block starting at the location specified by
destinationaddress. The entire block is compared, and the
mismatches are displayed.

MOY range destinationaddress
COM range destinationaddress

EXAMPLES: To compare the 100 locations starting at DS:200 to the
locations at 1000:100:
COM 200 L lOOT 1000:100

To compare the 257 locations starting at TEMP
to NEWTEMP:
COM .TEMP .TEMP+lOO .NEWTEMP

To compare the 32 locations starting at LOOP to
1 OOH in the CS segment:
COM .LOOP L 20 CS:lOO

To move the 32 locations starting at LOOP to lOOH in
the CS segment:
MOY .LOOP L 20 CS:lOO

Using PROBE Commands Chapter 4-11

Memory can be filled with the Fill command. If the number of
items in list is fewer than the number of bytes in range, then list is
repeated until the end of the range is reached. If list contains more
items than there are bytes in range, then the excess list items are
ignored. With the SEArch command, the block of memory indicated
by range is searched for the string indicated by list. All locations
within range which match list are displayed.

FI range list
SEA range list

EXAMPLE: To fill the 33 locations starting at CS:FFOO with 100:
FI CS:FFOO FF20 1 OOT

To fill the 257 locations starting at TEMP with the
string "ZERO":
FI .TEMP .TEMP+IOO "ZERO"

To search the stack for the string 'ST ACK':
SEA SS:SP-FF L FF 'ST ACK'

Chapter 4-12 Using PROBE Commands

ASSEMBLE AND UNASSEMBLE MEMORY

The PROBE provides an on-line symbolic assembler and disassembler.
You can start assembling instructions into memory using standard
8088 or 80286 and 8087 or 80287 mnemonics. Symbols from the
PROBE symbol table can be used in place of absolute numbers. The
Assemble command is given below:

ASM [start address) <enter> <assy language stmt>
<enter> only to stop assembly

If [start address) is not specified, then the assembly starts where the
most recent assemble command ended. The description of the
assembly language options are given in the ASSEMBLE command
section found in Chapter 6, COMMAND REFERENCE.

The Unassemble command displays memory as 8088 or 80286 and
8087 or 80287 assembly language instructions (or near assembly
language when more clarity is needed in the disassembly). The
format for the Unassemble command is:

U range

The specified range of memory is unassembled to the next highest
whole instruction. The PgDn key will unassemble the next screen
full of instructions. The start of range must correspond to the first
byte of an instruction or all of the unassembled instructions which
follow may be incorrect. All indirect references to memory are
specified as word or byte in the unassembly to simplify the
understanding of the data type which is being addressed. All
relative jumps and calls show the absolute offset rather than the
relative offset for ease of determining the target address. The target
addresses are also shown with a symbol comment at the end of the
instruction. If a matching symbol does not exist, then the nearest
previous symbol plus an offset is used. Data operands also show
symbols as a comment if base or index registers are not involved.

Using PROBE Commands Chapter 4-13

LOADING PROGRAMS AND SYMBOL TABLE

Normally, the first thing you do after starting PROBE is load the
program to be debugged. The command format below loads the
applications program named by the filespec into system memory.
[Optional parameters] in the LOAd command are passed to the loaded
program in its program prefix segment in the normal manner. The
load command should be used to load the program before the LOAd S
command is used to load the symbol table.

FORMAT: LOA filespec [optional parameters]

After loading the program, the symbol table can be loaded to give
you symbolic and source level debugging capability. If PROBE loads
the program, then it automatically adjusts the symbol table to
correspond to the loaded program. If PROBE did not load the
program to be debugged as in the case of an installed device driver
or boot loader, then refer to the LOAD command in Chapter 6, and
the section in Chapter 5 called "Debugging a Device Driver Invoked
from Command.com or a Quit and Stay Resident Program" for more
information.

LOA Symbols filespec

If you cannot remember the name of the files you want to load, use
the Directory command given below. All of the standard DOS
pathname and wildcard options are supported with the Directory
command.

DI [filespec]

EXAMPLES: These commands load a standard .EXE file and pass a
parameter called LPT 1 to the program. Then a symbol
table file is loaded.
LOA DUMP.EXE LPTI:
LOA S DUMP.MAP

To display all macro files in the current directory of
drive B with a .MAC extension:
DI B:*.MAC
!NIT.MAC
SOURCE.MAC

Chapter 4-14 Using PROBE Commands

STARTING PROGRAM EXECUTION AND
SETTING BREAKPOINTS

As with most debuggers, program execution with PROBE can start
with the Go command. You have the option of specifying a start
address in this command. If you do not, then the current CS:IP is
used. In addition, you can set breakpoints in the command which
starts program execution. The format of the Go command is:

G [=address,] breakpoint, breakpoint ...

Breakpoints in the Go command are non-sticky. This means you
have to specify them again when you issue another Go command.
Another way of setting breakpoints is with the BP command.
Breakpoints set by the BP command are sticky, that is, they are
automatically inserted for each Go command. Sticky breakpoints are
deactivated with the DEiete BP command. The format of a
breakpoint is:

BP breaknumber = breakpoint

Breaknumber is from I to 8 and breakpoint matches the definitions
shown next. Symbols, registers, etc. are interpreted as absolute values
and are substituted into the breakpoint definition when program
execution starts. In other words, breakpoints are evaluated when the
Go command is executed. A total of 19 breakpoints may exist
between sticky and non-sticky breakpoints. The format for
breakpoint is:

address

Address is a memory address. Once a breakpoint has been defined
you can display its definition with:

BP [breaknumber]

EXAMPLES: This command starts at the current cs:ip and stops at
the procedure .FOO.
G.FOO

This execution breakpoint occurs at location CS:lO.
BP 2 = 10

Using PROBE Commands Chapter 4-15

EXAMPLES, continued

This breakpoint occurs when the instruction at location
1000:0000 is about to be executed.
BP 3 = 1000:000

SINGLE STEP PROGRAM EXECUTION
PROBE lets you single step your program execution by 8088 or 80286
assembly language instructions as well as by high level language
source statements. While single stepping, a window can be defined to
appear at the bottom of the display that lets you watch anything else
in your program you want to see. The assembly language single step
command has this format:

ST [=start address) [P) [0) [A)

Single stepping will start at the current CS:IP if you do not include
[::start address). The command starts by displaying the next several
instructions. The cursor is positioned to the right of the instruction
to be executed. Typing the enter key will cause the program to
execute the displayed instruction.

There are two parameters which give you control of how the single
step command operates. While you are stepping, typing P will treat a
call procedure as a single step. Typing 0 will treat a software
interrupt procedure as a single step. If the P or 0 option is used
when the STep command is invoked, then the options apply globally
to all procedures.

Typing PgDn will single step a screen full of instructions. Typing
any other key will cause the program stepping to stop and will not
execute the instruction to the left of the cursor. The current CS:IP
location and instruction are displayed after each step. The contents
of the operands for each instruction are displayed at each single step,
so you don't have to exit the command to view the contents of the
operands.

If the A option is specified, single stepping occurs automatically on
the screen. The Ctrl S key lets you pause the stepping. Any other
key bails you out.

Chapter 4-16 Using PROBE Commands

EXAMPLE: To execute a single step starting at location 100:20 and
continuing until a non-enter key is typed:
-st

0671:0010 MOY
0671:0014 MOY
0671:0016 XOR
0671:0018 TEST
0671:001A JNZ
0671:001C JMP

SI,WORD PTR [BP+Ol 14] -- ,OOE6
AL,BYTE PTR [SI] -- ,SA
AH,AH
AX,AX
OOlF ; .. FTOCIO_CODE#57+0198 -will jump
0117 ; .. FTOCIO_CODE#57+0290

The other type of single stepping which you can do if you are
operating the SOFTWARE SOURCE PROBE is by high level
language statement number. Chapter 3 describes the compiler
controls you must use to generate the needed information for source
level single stepping. The format for this command is:

SS [= start address) [A) [M modulename)

The single step operation is similar to the assembly language
version as are the [=start address) and [A] parameters. If
[M modulename) is specified in this command, only lines in
modulename are stepped, and all other code executes at full speed.
With this type of single stepping, you can use the keys below to move
around in the file you are currently stepping through.

PG UP ("U)
PG DN ("D)
<Ctrl> PG UP ("T)
<Ctrl> PG DN ("B)
HOME ("H)
<enter>

up arrow ("P)
down arrow ("L)
<any other>

display the previous page
display the next page
display the top page of the file
display the bottom page of the file
reposition screen to the current CS:IP
reposition screen to current CS:IP and
take a single step
no effect
no effect
exit step mode.

EXAMPLE: To start stepping the program at the source level from
location .MAIN.
SS =.MAIN

Using PROBE Commands Chapter 4-17

WINDOWS

While you are single stepping, a window which displays anything you
want can be displayed. To create the contents of this window,
define a macro which contains PROBE commands and PRint
statements (described later). Then simply assign the macro to the
window with the command below. The window is automatically
updated after each single step.

WI = macroname

MACRO COMMANDS
In case the PROBE commands are not exactly what you want, you
can use the MAcro command capability of PROBE to define your
own custom commands. MAcro commands use the PROBE commands
as primitives. Parameters can be passed to macro commands when
you execute them. Parameters are then filled into the PROBE
commands within the macro. The format for a macro command is:

MA macroname =
M- COMMAND[%parameternumber)
M- COMMAND[%parameternumber)
M-....
M-END

PROBE commands can be entered until the END is specified.
Parameters with parameternumbers ranging from 0 to 9 may be
passed to the macro. This is done by specifying %parameternumber
in the COMMAND where the parameter is to be substituted.
Parameters may be any ASCII string. Once defined, you can display
your macros with:

MA macroname

If you do not specify a macroname, then all defined macros are
displayed.

Chapter 4-18 Using PROBE Commands

EXECUTING MACROS

When the macro is invoked, the parameters are passed to the macro.
Each parameter is assigned a number starting on the left with 0 in
the EM command. The parameter can be a string and is separated
from the next parameter by a comma. The parameters are then
substituted in the macro for the parameternumber specified in the
macro definition. Now you can execute your macro commands with:

EM macro name parameter, parameter,

EXAMPLES: This is an initialization macro called INIT which could
save many user keystrokes when starting up a
debugging session.

MAC INIT =
M-LOA %0.EXE
M-LOA S %0.MAP
M-R
M-U
M-END

This macro definition can be displayed by typing:
MAC INIT

This macro can be used to start a debugging session by
loading the program b:myprog.
EM INIT B:MYPROG

A much more exhaustive discussion of macros with more examples is
given in Chapter 6, COMMAND REFERENCE.

While a macro executes, the commands which make up the macro are
displayed. This can be suppressed or enabled with the following
ECHO command:

EC ON/OFF

Using PROBE Commands Chapter 4-19

LOADING, SA YING, AND DELETING MACROS

Once you have defined your macros, you can save them in a file.
Then you can reload the macros in subsequent debugging sessions.
This is done using the following commands:

SA M filespec
LOA M filespec

If you want to delete a single macro or all macros you have loaded
or defined, use one of the following commands:

DE M macroname
or

DEM ALL

PRINTING FROM WITHIN MACROS

One very useful command to put in a macro is the PRint command.
The PRint command lets you create formatted screens which display
information in the appropriate data type. It also lets you include
labels and messages about the display. The format for the PRint
command is:

PR {'string' I [type] expression},

The PRint command can be used much like a high-level language
WRITE statement. It accepts strings in either single quotes (') or
double quotes (") and echoes them to the console. It evaluates
expressions which are not within quotes and prints their value on the
console in one of several different data types. For a more detailed
discussion of the PRint command operation, see Chapter 6,
COMMAND REFERENCE.

Chapter 4-20 Using PROBE Commands

CONDITIONAL MACRO EXECUTION

Macro commands can be defined which conditionally and/or
repetitively execute the commands in the macro. This can be done
by using LOOp and IF commands within the macro definitions.
Putting a LOOp command within a macro looks like this:

MA macroname =
M-(PROBE Commands]
M-LOO (count expressionlWhile boolean expression]
M-(PROBE Commands]
M-ELO
M-(PROBE Commands]
M-END

The PROBE commands between LOO and ELO commands are
executed repetitively as controlled by the loop expression. There are
two types of loop expressions: count expressions and while boolean
expressions.

Count expression. This is the number of times the loop should
execute. If no number is specified in this form of the LOOp
command, then a loop forever function is implemented.

While boolean expression. The commands within the loop are
executed repetitively as long as the boolean expression is true. See
the beginning of Chapter 6, COMMAND REFERENCE, for the
definition of a boolean expression.

EXAMPLES: This macro is defined to execute until a procedure is
called with a certain parameter.

MA L2 =
M- LOO While @W.TEMP <> %0
M-G.PROCEDURE START
M-ELO
M-END

To execute the program until PROCEDURE ST ART is
executed and the word at .TEMP is equal to IOO:
EM L2 IOOT

Using PROBE Commands Chapter 4-21

The other type of conditional macro execution is the IF condition.
The IF command can be used inside a macro to allow a series of
commands to be executed conditionally. The end of the IF command
is specified by EIF. The ELSE portion of the IF command is
optional. The format for a macro containing an IF command is as
follows:

MA macroname =
M- [PROBE COMMANDS]
M- IF boolean expression
M- [PROBE COMMANDS]
M- [ELSE
M- (PROBE COMMANDS]]
M- EIF
M-END

See Chapter 6, COMMAND REFERENCE, for more IF command
examples.

EVALUATE EXPRESSIONS

PROBE provides an on-line hex calculator, base converter, and
expression processor. There are two forms for the £Valuate
command:

EV expression
EV pointer

In the first form of this command expression is evaluated and
displayed in the bases shown below. A non-printing ASCII character
is shown as a period. This command serves as a hex calculator and
base converter.

HEX DECIMAL INTEGER BINARY ASCII

In the second form of this command, pointer is evaluated to a 5 hex
character number. This command serves to calculate real addresses
in the same way as the 8088 or 80286.

Chapter 4-22 Using PROBE Commands

EXAMPLES: The following expressions are evaluated:
EV ss:sp+5
30005

EV (((AX-5)*2)/10)
0200H 512T +512T lOOOOOOOOOY '.'

EV 'a'
0061 H 97T +97T 1100001 Y 'a'

EV AAAA:FFFF
BAA9FH

Debugging Applications Chapter 5-1

CHAPTER 5
DEBUGGING APPLICATIONS

INTRODUCTION ... 5-2
A SAMPLE DEBUGGING SESSION ... 5-2

DEMO PROGRAM LISTING ... 5-3
EXERCISING THE DEMO ... 5-7

ADV AN CED DEBUGGING TECHNIQUES 5-18
DEBUGGING A DEVICE DRIVER INVOKED FROM

COMMAND.COM or a QUIT AND ST A Y RESIDENT
PROGRAM .. 5-18

LOADING THE SYMBOL TABLE WHEN PROBE DOES
NOT LOAD THE PROGRAM ... 5-18

DEBUGGING ROUTINES WHICH TAKE OVER THE
KEYBOARD ... 5-19

DEBUGGING INTERRUPT DRIVEN SOFTWARE 5-20
ADDITIONAL APPLICATIONS INFORMATION 5-20

Chapter 5-2 Debugging Applications

INTRODUCTION
This chapter contains two sections of application examples for using
the SOFTWARE SOURCE PROBE:

A SAMPLE DEBUGGING SESSION
ADV AN CED DEBUGGING TECHNIQUES.

The first section exercises many of the PROBE commands on an
example program which has been included on the PROBE diskettes.
The second section is more advanced and contains many world
debugging scenarios which have been used by previous SOFTWARE
SOURCE PROBE users. The second section assumes a thorough
understanding of the PROBE commands.

A SAMPLE DEBUGGING SESSION
The commands are listed alphabetically in Chapter 6, COMMAND
REFERENCE, and no attempt is made to duplicate the complete
explanation of each command as it is being used in these examples.
If the short explanation of the command is not sufficient in the
example, please turn to Chapter 6, COMMAND REFERENCE, for
more information. The program to be debugged is a C program and
the source, object, and MAP files for the program are included on
your disk, so you can actually try the example in real time. The
example is not a trivial one, and it demonstrates debugging a
program which is interactive with the operating system and other PC
or AT facilities. The example is taken from the C Programming
Manual by Kernighan and Ritchie, but it has been broken into two
modules to demonstrate debugging a multiple module program. If
you are using Assembler, Pascal, or some other language in your
application, you will still find this tutorial useful from a procedural
point of view. The following is a listing of this sample program.

Debugging Applications Chapter 5-3

DEMO PROGRAM LISTING

/*--
Main test program for: Calculation of Fahrenheit
to Celsius Table. Based on the Kernighan and
Ritchie text
--*/
extern Prompt ();
extern GetVal ();
typedef int temp; /* temperatures are integers
*/
int lower, upper, step;
temp fahr, celsius;
main ()
{

/*--
Initialize lower bound, upper bound, and step.

--*/
Init (&lower, &upper, &step);

/*--
Print table header.

--*/
printf (" F C\n");

/*--
Print table.

--*/
fahr = lower;
while (fahr <= upper) {

/*--
Compute celsius temperature.

--*/
Compute (fahr, &celsius);

/*--
Print line of table.

--*/
printf("%5d %5d\n", fahr, celsius);

/*--
Go to next line of table.

--*/

Chapter 5-4

fahr = fahr + step;
} ;

return;}

Debugging Applications

/*--
procedure name: Init
function:

1) Initialize Lower bound, upper bound, and
step.
inputs:

1 lower bound
u -- upper bound
s -- step

outputs:
1, u, s set.

called:
init (&l, &u, &s);

--*/
Ini t (1, u, s)
int *l, *u, *s;
{

/*---
Get lower limit.
--*/
Prompt ("\nFahrenheit lower limit?");
*l = GetVal () ;
/*--
Get upper limit
--*/
Prompt ("Fahrenheit upper limit?");
*U = GetVal ();
/*--
Get step.
--*/
Prompt ("Fahrenheit step value? ");
*s = GetVal () ;

return;}
/*--

Debugging Applications Chapter 5-5

procedure name: Compute
function:

1) Compute the celsius temperature from the
input

fahrenheit temperature.
inputs:

f temp fahrenheit temperature
outputs:

c_temp equivalent celsius temperature

c = (f-32) * (5/9)

called:
Compute (f temp, &c temp);

--------------=--------=----------------------*/
Compute (f temp, c temp)
temp f_temp, *c_temp;
{

*c temp = f temp - 32;
*c-temp = *c temp * 5;
*c=temp = *c=temp / 9;

return;}
/*--
IO module for:

Calculation of Fahrenheit to Celsius Table.
Based on p.8 of the Kernighan and Ritchie

text.
--*/ /*--
procedure name: Prompt
function:

1) Output the character string to the console.
inputs:

str -- string to be output
outputs:

none
called:

Prompt ("Prompt string");
--*/

Chapter 5-6

Prompt (s tr)
char str [];
{
int i;

i = O;
while (str [i] != '\O') {

putch (str [i++]);
} ;

return;}

Debugging Applications

/*--
procedure name: GetVal
function:

1) Get decimal value from the standard input
device
inputs:

none
outputs:

return decimal value.
called:

value = GetVal ();
--*/
GetVal ()
{
int in val;

}

scanf ("%d", &in val);
return (in_val);-

Debugging Applications Chapter 5-7

EXERCISING THE DEMO

In this example, the input you provide from the keyboard is shown
in bold print, so you can identify it from the PROBE output. First
invoke the SOFTWARE SOURCE PROBE.

SWSOURCE <enter>

PROBE has macro commands which are similar to batch files.
Macros let you create your own commands which you can substitute
for groups of other PROBE commands. Use the LOAd Macro
command to load a macro file called PROBE.MAC. This macro file
has been previously created and could prove useful for many
different debug sessions.

-loa m probe.mac <enter>

To take a look at the names of the macros you have just loaded from
this file, use the following MAcro command.

-ma <enter>
MEM
INITIALIZE
Abs Write
PPS
PPS2
AArmsBArmsCResetDSS
21
R

Chapter 5-8 Debugging Applications

Now execute the previously constructed macro INITIALIZE. This
macro will assign modulenames to sourcefile names, load the demo
program and its symbol table, define a symbol, and open a window.
The macro displays as it executes. To execute the initialize macro,
use the EM command.

-em initialize <enter>
-asi f to cm code f tocm.c
-asi Hocio - code f tocio.c
-loa ftocnew.exe
-loa s ftocnew.mpl
Reading symbols.
Reading lines.

-symbol .start = cs:ip
-wi = r

Since this macro has loaded the symbol table for us, we can now look
at symbols in the symbol table. This symbol table has been
previously stripped of symbols in the C library and only program
symbols remain. The symbol table shows the segment:offset for each
symbol as it now applies to the loaded program. The segment values
may be different when you load the program since this depends upon
the version of DOS and other drivers you may have installed in your
system. The module names and high level language statement
numbers are also displayed in the symbol table. To look at all
symbols use the SYmbol command.

Debugging Applications

-SY <enter>
Address
09BD:OOD8
0647:00B7
09BD:OOD6
0654:0042
0647:006D
09BD:OODO
0647:000C
0654:000C
0624:0002
09BD:OOD4
09BD:OOD6

Symbol name
CELSIUS
COMPUTE
FAHR
GETVAL
INIT
LOWER
MAIN
PROMPT
START
STEP
UPPER

Line numbers for module .. FTOCM CODE

#21=0647:0012 # 26=064 7 :0024 #31=0647:002F

#36=064 7 :003E #41=0647:004C #46=0647:005F

#49=0647:0068 #74=0647:0073 #75=0647:007E

#81=0647:0093 #86=0647:0090 #87=0647:00A8

#112=0647:00BO #113=0647:00C8 #114=0647:00CF

Line numbers for module .. FTOCIO CODE

#30=0654:0012

#35=0654:0030

#31=0654:0017

#56=0654:0048

#32=0654:0027

#57=0654:0057

Chapter 5-9

#32=0647:0035

#47=0647:0066

#80=064 7:0088

#89=0647:00B2

#116=0647:0007

#33=0654:003B

Chapter 5-10 Debugging Applications

The CS:IP registers are set to the start of program execution when
the program is loaded. You can now start single stepping the
program from the start.

-ST <enter>
.START:
OAOF:0002 CLI
OAOF:0003 MOY
OAOF:0006 MOV
OAOF:0008 MOV
OAOF:OOOB MOV
OAOF:OOOD MOV

AX,ODA8
DS,AX
AX,OE3C
SS,AX
SP,0080

CS=OAOF SS=OE3C
IP=0002 SP=0080

BP=OOOO

DS=09FF
Sl=OOOO

AX=OOOO
BX=OOOO
CX=OOOO
DX=OOOO
OE3C:0080

FL=OO DO IO TO SO ZO AO PO CO
0000 0000 0000 0000-0000 0000 0000 0000

ES=09FF
Dl=OOOO

Note the window display for the registers and the stack data at the
bottom of the screen. A single step is taken and the window is
updated after each <enter key> is typed. This is happening because
the INITIALIZE macro executed the PROBE Window command.
This Window command assigned a macro named r to the window.
The macro r displays registers and the bottom of the stack. Type any
other key to terminate single stepping. You can do source level
single stepping, but first, change the window to show the program
variables which are printed from the MEM macro:

wi = mem <enter>

Now you can source step with the Source Step command.

Debugging Applications Chapter 5-11

-ss <type enter twice to get this display>

21. Init (&lower, &upper, &step);
22.
2 3. I*---
24. Print table header.
25. ---*I
26. printf (" F C\n");

Fahr= 0
Celsius= 0
Upper= 0
Step= O

While you are source stepping, you can type PgUp and PgDn keys to
scroll forward and backward through the source code to see what is
happening. Type any other key to stop stepping.

Since this program is going to write to the screen, you should isolate
the PROBE screen where you are now typing from the applications
screen which the program will use. This is done with the screen
switching command SC.

sc on <enter>

Now you can go from the current CS:IP and set a breakpoint at the
instruction located at COMPUTE. The program prompts you for
Upper Limit, Lower Limit, and Step values. Supply the values shown
in the display below.

-g .compute <enter>
Execution begun.
FAHRENHEIT LOWER LIMIT? 0
FAHRENHEIT UPPER LIMIT? 100
FAHRENHEIT STEP VALUE ? 10

F C

Software breakpoint encountered at 09E2:00B7=.COMPUTE.

Fahr= 0
Celsius= 0
Upper= 100
Step= 10

Chapter 5-12 Debugging Applications

The breakpoint at COMPUTE has been encountered. The window
pops up after the breakpoint and displays the information specified
by the "MEM" macro. This program takes the input you supplied to
its prompts, converts the data, and stores the results in program
symbols. It might be a good idea at this point to see if the
conversion happened correctly. One example of doing this is to look
at the contents of the variable UPPER. You can do this with the
display WOrd command with a starting address of UPPER.

-wo .upper <enter>
OD58:00D2 0064 OOOA OOOA FFEF-2020 4620 2020 2020

Since no length or end address was given to the WOrd command, the
default display is one line full of words. Since the starting address
of this command was UPPER, the first word in the display is the
value of UPPER. You see that the value of UPPER is now 64 hex.
However, this program interpreted the keyboard input as an ASCII
decimal number. Let's see if they are the same. The value you typed
in for UPPER limit was 100 decimal. Use the EValuate command to
display 100 decimal in several different bases. Note the t subscript
indicates base ten or decimal to PROBE.

-ev 100t <enter>
0064H lOOT +lOOT llOOlOOY 'd'

This command shows the 100 decimal in hex, decimal, integer, binary
and ASCII. Note that you could also have evaluated the contents of
UPPER with the following command. (To see an explanation of the
@operator see Chapter 6, COMMAND REFERENCE.)

-ev @.upper <enter>
0064H lOOT +lOOT l lOOlOOY 'd'

Next you can try macro commands. First define a macro which sets
a breakpoint and prints a variable in an integer base after break a
breakpoint. Macros are simply groups of PROBE commands which
can be invoked by executing the macroname. Parameters can be
passed to macros by including a %number as a place holder in the
macro definition. A %0 in this macro will be used to pass a
breakpoint to the macro when it is executed. The %1 will be used to
pass a location in memory to be printed. Now here is the macro.

Debugging Applications

-mac s = <enter>
M- g %0 <enter>
M- print "VALUE = ",%i @ w %1 <enter>
M- end <enter>

Chapter 5-13

The %i in the PRint command is not a parameter to be passed to the
macro but an indication of the data type to be printed. It indicates
the data is to be printed in an integer format. The @ w in the PRint
command indicates that the data to be printed is at the word pointed
to by the %1 parameter. The "VALUE =" in the PRint command will
print a label. Since this is a short explanation of one of the more
complex commands in PROBE, you should review the PRINT
command in Chapter 6, COMMAND REFERENCE, for more details.

If you were to execute this macro now, you would see its commands
during execution. You normally want to do this when you are first
testing a macro. Since this one already works, you can suppress the
display of the macro commands while the macro executes. Do this by
turing off the ECho with this command:

-ec off <enter>

Since the window is still on, it will display when the breakpoint is
encountered. This is also not needed at this point. Therefore, close
the window.

-wi c <enter>

The previous two commands were not necessary to execute this
macro, they simply reduce what is happening while this macro is
executing to make things simpler for this example.

Now use the macro to set a breakpoint at linenumber 46 and print
the contents of F AHR again.

-em s #46, .fahr <enter>

Software breakpoint encountered at
09E2:005F= .. FTOCM CODE#46
VALUE= 20

This macro can be repetitively executed by simply typing
<F3><enter>. Since the screen switching is still on, the program is
writing to the other virtual screen. You can view what the program

Chapter 5-14 Debugging Applications

is doing to this screen by using the SCreen command. When the
application screen is displayed, type any key to return to the PROBE
screen.

-sc s <enter>

All of the above breakpoints were non-sticky, that is, they have to be
specified each time you execute a Go command. Another way to
define a breakpoint is with the BP command. This allows a
breakpoint to be defined which is automatically included in each Go
command. It also lets you define breakpoints without starting
program execution. Define the following breakpoint which occurs
when the instruction at linenumber 46 is about to be executed.

-hp 1 = #46 <enter>

Now execute a Go command from the current CS:IP. The sticky
breakpoint is automatically set.

-g <enter>
Breakpoint encountered at 09E2:0035= .. FTOCM_CODE#46

As you can see, the breakpoint occurred. Now you can delete this
sticky breakpoint with the DE command.

de hp 1 <enter>

Now define a macro which will let you stop on the nth occurance of
a breakpoint. The number of times to hit the breakpoint will be
passed as parameter %0. The breakpoint will be passed as parameter
%1.

-MAC L = <enter>
M- LOO %0
M- G %1
M-ELO
M-END

Now execute this macro and pass parameters to stop on the 3rd
occurrence of reaching linenumber 46. This type of operation is
sometimes ref erred to as "pass count on break."

-EM L 3, #46 <enter>

Debugging Applications Chapter 5-15

Execution begun.
Breakpoint encountered at 09E2:0035= .. FTOCM_CODE#46
Execution begun.
Breakpoint encountered at 09E2:0035= .. FTOCM_CODE#46
Execution begun.
Breakpoint encountered at 09E2:0035= .. FTOCM_CODE#46

When programs execute, procedures may call other procedures to
several levels of nesting. It is useful to know what the procedure
calling sequence has been when you are in a given procedure.
PROBE can show you the calling sequence of the procedures by
analyzing the stack. Try the NEst command at this point to show the
stack nesting.

-NE S <ENTER>
CS:IP is 09E2:0035 near .. FTOCM CODE#46
Called from OA33:01CE near .GETVAL

Another common need is to determine the values of local variables
on the stack which are only active when a procedure is invoked.
Since the DOS languages currently do not pass stacked based symbols
and automatic variables to the symbol table, you must look at the
stack to figure this out for yourself. The macro command capability
of PROBE simplifies this process by letting you define a complex
command to reference variables on the stack. Even though you must
create the macro first, which can be difficult for complex arrays and
chained pointers, the macro saves you a lot of time when you want to
look at the variable several times during a debugging session. The
macro which prints the automatic variable i on the stack is defined
as:

MAC I=
M-PR 'I=', %I@WSS:SP+4
END

Now assign this macro to the window so you can see the variable
after each step or breakpoint.

WI =I <enter>

To get back to the point where this variable is activated in the
program, reload the program.

-Ioa ftocnew.exe <enter>

Chapter 5-16 Debugging Applications

Now single step again by source code statements as you did at the
start.

-ss <enter>

Note that once the procedure which activates i on the stack is
entered, that i changes as you step through the While structure in the
program.

SOFTWARE SOURCE PROBE has an on-line editor. The editor lets
you open a file for display and then edit lines of the file. However,
the changed lines do not get stored in the file. They go instead to a
side file called a log file. You can then use your favorite text editor
after the debugging session to move the changes from the log file
into your source files. This procedure helps minimize the exposure
of your source files during debugging. It also gives you a history of
changes you have made to your program since the log file was
updated. First invoke the editor with the command shown on the
following page. Note that since a filename to be editied is not
specified, then the default is the file which matches the current
CS:IP. PROBE finds this file by finding which module is associated
with the current linenumber. Then PROBE finds which source file
has been assigned to this modulename (done with the ASign
command).

Debugging Applications

-ed <enter>

101.
102.
103.

outputs:
c_temp -- equivalent celsius temperature

104. c = (f-32) * (5/9)
105.
106. called:
107. Compute (f _temp, &c_temp);
108.
--*/
109. Compute (f temp, c temp)
110. temp f _temp, *c_temp;
111. {
112. *c temp = f temp - 32;
113. *c-temp = *c temp * 5·
114. *c-temp = *c=temp I 9~
115.
116. return;}

Chapter 5-17

When the editor is entered, it is in Display mode, and the menu
window shows you the keys for scrolling through the source file.
Press the Pg Up key to move to the start of the file. Now type the
ESC key which puts you in the Command mode of the editor. A new
menu of editor commands is displayed in the menu window. You
can note a change to a line of code by using the Change command.
In this case change line 114.

FTOCM.C-c 114 <enter>
Enter file for log of changes: a:log.tmp

Since this is the first time the editor has been entered, it prompts
you for the file to put the logged changes in. The file name which
has been chosen is a:log.tmp. This editor provides line editing using
the basic edit keys as defined for DOS. Recall line 114 in to the edit
area by typing the F3 key. Use the ins, del, rubout, and DOS edit
keys to make the desired changes to this line. Typing <enter> will
log the changes into the log file. Type E to exit the editor. Note
that the source file has not been changed; the change has only been
recorded in the log file. This is only a sample of using the PROBE
commands and more examples are contained throughout the
remainder of this manual.

Chapter 5-18 Debugging Applications

ADVANCED DEBUGGING TECHNIQUES

This section shows more advanced examples of using PROBE. These
debugging procedures have been arrived at by previous users in real
applications.

DEBUGGING A DEVICE DRIVER INVOKED FROM
COMMAND.COM OR A QUIT AND STAY RESIDENT PROGRAM

If a device driver or quit and stay resident program is invoked from
from DOS, then use the following procedure.

1. Load PROBE, and then execute a quit and stay resident - Q R.

2. You are now in DOS. Press the STOP button.
3. You are now back in PROBE running as a quit and stay resident

program. You can now load the symbol table using the procedure
in the next section.

4. Go back into DOS with the Go command. You may want to set a
hardware breakpoint first. Don't set an execute breakpoint which
will get overwritten by the load of the device driver or quit and
stay resident program - use a Read or Fetch breakpoint instead.

5. Now invoke the device driver while you are in DOS.
6. The breakpoint or STOP button will get you back into PROBE.

LOADING THE SYMBOL TABLE WHEN PROBE DOES NOT LOAD
THE PROGRAM

Some applications such as boot loaders and installed device drivers
must be loaded by DOS or the system and not by PROBE. To get the
symbol table into PROBE for these types of programs, you must use
the absolute form of the load symbols command.

LOA S symboltablefile segmentvalue:O A

This will adjust symbol values to match the loaded program before
they are stored in the PROBE symbol table. Since PROBE did not
load the program, it will not know the segment value for the load
address. To find this value, use the following procedure.

Debugging Applications Chapter 5-19

Put a jump to self loop at the start of the program to be debugged
for debugging purposes. When the program is loaded, it will not
begin to execute but will stay in its current code segment. Next press
the STOP button.

If your program was written in Assembly language and the ES
register has not been changed by your program between the time it
was loaded and the time the STOP button was pressed, then:

segmentvalue is = ES+lO

If your program was written in a high level language like C, then the
program initializations which come from the language run-time
libraries will execute between the time your program is loaded and
the STOP button is pressed. This cannot be prevented. First put a
public label called TEMP in your program at the jump to self loop.
When you press the STOP button, look at the CS register. Next look
at the segment value specified by the linker in the MAP file for the
public label you inserted into your program. The segmentvalue
which is used in the PROBE command is:

segmentvalue = CS - Segment value of TEMP in Link Map

Now the symbol table can be loaded using:

LOA S filespec segmentvalue:O A

DEBUGGING ROUTINES WHICH TAKE OVER THE KEYBOARD

Routines which take over the keyboard are tricky to debug because
the BIOS keyboard routines are not reentrant. If a breakpoint is set
inside this routine or inside your keyboard routine which takes over
the keyboard interrupt, a lock of the system may occur because of
the reentrancy problem. If this happens, switch to the external
console.

Chapter 5-20 Debuggin:g Applications

DEBUGGING INTERRUPT DRIVEN SOFTWARE

Debugging programs which are running in an interrupt driven
environment normally happens in one of the following ways: locking
out all interrupts while in PROBE or using concurrent process
debugging.

Locking out all Interrupts While in PROBE

When first bringing up interrupt routines, it is most useful to lock
out all interrupts while in the PROBE software. This is because an
interrupt from a device which happens while in the PROBE software
could potentially never return or crash the system if it is allowed to
be serviced. To lock out interrupts while in the PROBE software,
use the INTerrupt command as described in Chapter 6, COMMAND
REFERENCE. This allows masking any or all of the interrupts from
the system interrupt controller from being processed while in the
PROBE software. This is especially necessary if a breakpoint has
been set inside a non-reentrant interrupt routine in which periodic
interrupts will continue to happen. If the keyboard interrupts must
be locked out, then use the external console option with PROBE.

Using Concurrent Process Debugging

In some systems it necessary to allow well-behaved interrupts to
continue to process in the background even while the PROBE
software has control of the system. For debugging this type of
system, use the INTerrupt command as described in Chapter 6,
COMMAND REFERENCE, to allow some interrupts to take control
of the system whenever they happen.

ADDITIONAL APPLICATIONS INFORMATION

For additional applications information, see Appendix I.

COMMAND REFERENCE Chapter 6-1

CHAPTER 6
COMMAND REFERENCE

INTRODUCTION ... 6-3
COMMON PARAMETERS AND DEFINITIONS 6-3
DAT A REFERENCING WITH THE @ OPERA TOR 6-6
ASSEMBLE ... 6-8
ASIGN ... 6-11
BREAKPOINT .. 6-13
BYTE ... 6-15
COMPARE .. 6-17
CONSOLE .. 6-18
DELETE ... 6-20
DIR ... 6-21
ECH0 ... 6-22
EDIT .. 6-23
EVALUATE ... 6-29
FILL ... 6-31
FLAGS .. 6-32
FLOAT .. 6-33
GO ... 6-35
IF ... 6-37
INITIALIZE ... 6-38
INTERRUPT ... 6-39
LIST .. 6-42
LOAD .. 6-43
LOOP ... 6-46
MACRO COMMANDS .. 6-48
MENU ... 6-60
MODULE ... 6-61
MORE .. 6-62
MOVE .. 6-63
NEST .. 6-64
NO VERIFY .. 6-65
NUMERIC FLAGS ... 6-66
NUMERIC REGISTERS .. 6-67
POINTER .. 6-68
PORT ... 6-70
PRINT ... 6-71

Chapter 6-2 COMMAND REFERENCE

QUIT .. 6-74
REGISTERS .. 6-7 5
SAVE .. 6-76
SCREEN ... 6-77
SEARCH ... 6-79
SELECT .. 6-80
SOURCE STEP .. 6-81
STEP ... 6-83
SYMBOL ... 6-85
UN ASSEMBLE .. 6-88
WINDOW .. 6-89
WORD .. 6-90

COMMAND REFERENCE Chapter 6-3

INTRODUCTION

This chapter contains a detailed description and examples for each
PROBE command. The commands are listed alphabetically. This
chapter also defines the common terms and parameters that are used
in the PROBE command text.

COMMON PARAMETERS AND DEFINITIONS
The following definitions apply to the commands found in
SOFTWARE SOURCE PROBE.

PARAMETER DEFINITION

value

expression

address

A numerical value. This can be:
-- a numeric constant (e.g. 1234)
-- a register (e.g. AX)
-- dereferenced data (e.g. @w 1234:5678)
-- a symbol

A value calculated by combining a series of values
with operators.

{ + , - , * , I , -, & , I , % }.

Normal precedence of operators is assumed: (*, / ,% ,&)
are higher than (+, -, I) and evaluation proceeds left to
right on operators with equal precedence. Precedence
may be overridden by the use of '(' and ')'. Note that
& is AND, I is OR, - is NOT bit by bit, % is modulo.

An address can be represented as:

expression:expression
or

expression

In the latter case, the expression is assumed to be the
offset, and the default segment is used.

Chapter 6-4 COMMAND REFERENCE

PARAMETER DEFINITION

range

boolean
expression

base

filespec

{ }

module

A range of memory values which can be specified by
either of two forms:

start address L length
start address end address

where start address can be any of these forms:

segment expression:offset expression
default segment:offset expression

and where end address is:

offset expression (start address seg assumed)

When using the first form for range, a space must be
placed after the L. The maximum length for range is
FFFF.

An evaluated 16 bit expression resulting in TRUE or
FALSE if bit 0 is 1 or 0. Or, an evaluated 16 bit
expression of the form:
expression { >, <, =, <=, >=, <> } expression
resulting in TRUE or FALSE.

The default base for numbers is hex. The base can be
decimal if a T subscript is used. Use quotes for ASCII
characters.

[drive] [path] [name of file] If these are not specified,
then the default drive/path is used.

The brackets indicate that this is an optional part of
the command and may be left out.

The curly brackets enclose a number of choices for the
command and one choice must be made.

A module is a single unit of compilation and produces
an object file. The module typically has a name which
is assigned through a compiler control.

COMMAND REFERENCE Chapter 6-5

PARAMETER DEFINITION

modulename A modulename can be assigned to the module by some
compilers. This associates a modulename with a group
of linen umbers in the MAP file of the linker.

linenumber A linenumber is a number passed from the compiler to
the linker as a symbol which points to the first
instruction in a line of executable source code. Not all
line numbers generate executable code, and therefore
are not passed to the linker.

Chapter 6-6 COMMAND REFERENCE

DATA REFERENCING WITH THE@ OPERATOR

The @operator works on an address by using the format:

@ {WIP} address

The @ operator indicates that address contains the value to be used.
{WIP} indicates the type of value contained at address. P is a full 32
bit pointer and W is a 16 bit value. If W or P is not specified, then a
byte is assumed with the upper byte set to 0. The @ operator can be
used for several levels of indirection with the indirection evaluated
right to left.

In the examples below, a command along with its results are shown.
You may get a feel of how to use this operator in commands by
making the assignments shown below, then trying out the command
examples which use the @ operator. More examples of this operator
are shown in the PRint command examples.

ASSIGNMENTS

BYTE 8000: I 0 = 20,00,00,30,30,00,97 ,42
BYTE 3000:20 = 05,32
BYTE 3000:24 = 72
BYTE 2000:3205 = 22
BYTE 4297:30 = AA
BYTE 2000:24 = 34
SY .START= 8000:10
RDS= 2000

COMMAND REFERENCE

COMMAND/RESULT

BYTE .START

8000:10 20

BYTE @P .ST ART

3000:0020 05

EXPLANATION

where .START = 8000:10

8000:10 = 20

where .START = 8000:10

8000: 10 = 3000:20
3000:20 = 05

BYTE (@W.ST ART +2):(@W.ST ART)
3000:20 05 where .START = 8000:10

BYTE @P .ST ART +4
4297:30 =AA

8000:12 = 3000

8000:10 = 20
3000:20 = 05

where .ST ART = 8000: 10
8000:14 = 4297:30
4297:30 =AA

BYTE (@W.ST ART +2):(@W.ST AR T)+4
3000:24 = 72

BYTE DS:@W .ST ART

2000:0020 34

BYTE DS:@W@P.START
2000:3205 22

where .START = 8000:10
8000: 12 = 3000

8000:10 = 20
3000:24 = 72

where .START = 8000:10

8000:10 = 20
the current DS register

is 2000
2000:20 = 34

where .START = 8000:10

8000: 10 = 3000:20
3000:20 = 3205

the current DS register
is 2000

2000:3205 contains 22

Chapter 6-7

Chapter 6-8 ASSEMBLE

ASSEMBLE

PURPOSE: To enter instructions in 8088 or 80286 assembly
language mnemonics into memory.

FORMAT: ASM [start address] <enter> <assy language stmt>
<enter> only to stop assembly

REMARKS: You can enter instructions into memory starting at the
start address. If [start address] is not specified, then
the assembly starts where a previous assemble command
ended. The default segment for start address is CS:
unless another segment or value is specified. The
standard assembly language syntax is supported with
the guidelines below.

1. Numbers are in hex (decimal if suffixed by the
letter T). Symbols in the symbol table may also be
used in expressions. If a symbol is used as an
address in a reference only, the offset will be used.
If a symbol is used in a reference specified as FAR,
then both the symbol's segment and offset values
are used.

EXAMPLE:
ASM .LOOP
ASM 4000T:O

2. Prefix mnemonics are entered on a separate line.

EXAMPLE:
0642:0000 REP
0642:0001 MOVSB
0642:0002 LOCK
0642:0003 XCHG BYTE PTR[.TEMP],AL

3. Segment override mnemonics are cs:, ds:, es:, and ss:

EXAMPLE:
0642:0000 MOY AX,CS:[.LOOPST ART]

ASSEMBLE Chapter 6-9

4. The assembler will automatically assemble short or
near jumps and calls depending on byte
displacement to the destination address. The FAR
prefix must be specified for intersegment jumps or
calls, otherwise, the current segment is used.

EXAMPLE:
0642:0000 JMP .LOOP ;A 2 BYTE SHORT JUMP
0642:0005 JMP FAR .ST ART ;A FAR JUMP

5. When a byte or word location cannot be determined
by the operand, the data type of the operand must
be specified with the prefix BYTE PTR or WORD
PTR.

EXAMPLE:
0642:0004 DEC WORD PTR [SI]

6. An immediate operand is distinguished from a
memory location by enclosing the latter in square
brackets.

EXAMPLE:
0642:0000 MOY CX,100 ;LOAD ex WITH IOOH
0642:0005 MOY CX,[100] ;LOAD ex WITH THE

;CONTENTS OF MEMORY
;LOCATION DS:IOO

0642:0007 MOY AL,CS:[.BUFFER]

Chapter 6-10 ASSEMBLE

7. All forms of register indirect commands are
supported.

EXAMPLE:
ADD AX,[BP+SI+34]
POP [BP+DI]
PUSH [SI]

8. All opcode synonyms are supported.

EXAMPLE:
LOOPZ .LOOPONRDY
LOOPE .LOOPONRDY
JA .LOOPONRDY
JNBE .LOOPONRDY

ASIGN Chapter 6-11

ASIGN*

PURPOSE: To assign a filespec to a module name for use in single
STep, Trace, and EDit commands.

FORMAT: ASI .. modulename filespec

REMARKS: To do source level single stepping, the symbol table
must have line numbers and each group of line
numbers must have a unique modulename. The
modulename is assigned when the program is compiled.
See chapter 3. To find the lines of source code from
the modulenames which are in the symbol table,
PROBE must know the f ilespec for the source code
which generated the module. This command assigns
modulenames to filespecs.

FORMAT: ASI

REMARKS: Displays all modulename/filespec assignments.

FORMAT: ASI .. modulename

REMARKS: Displays the filename assigned to modulename.

FORMAT: ASI .. modulename NULL

REMARKS: This effectively deletes the filespec assignment to the
modulename.

*NOTE: Yes, we know it is spelled wrong - but it has a less
offensive abbreviation.

Chapter 6-12 ASIGN

EXAMPLES: To assign modulename FTOCM_CODE to the
file B:FTOCM.C:
ASI .. FTOCM CODE B:FTOCM.C

To check assignment of module FTOCM_CODE:
ASI .. FTOCM CODE
Module .. FTOCM_CODE is assigned to file B:FTOCM.C

To remove assignment of module MY _MODULE:
ASI .. MY MODULE NULL

To check assignment of all modules:
ASI
Module .. FTOCM CODE is assigned to file B:FTOCM.C
Module .. FTOCIO _CODE is assigned to file
B:FTOCIO.C
Module .. MY _MODULE is not assigned to a file

BREAKPOINT Chapter 6-13

BREAKPOINT

PURPOSE: To define or display sticky breakpoints.

FORMAT: BP breaknumber = breakpoint condition

REMARKS: Breaknumber is from 1 to 8 and breakpoint condition
matches the definitions shown next in breakpoint
formats. Breakpoints defined with the BP command
are sticky breakpoints and are automatically included
with each Go command. Sticky breakpoints are
deactivated with the DElete BP command. Defining a
sticky breakpoint which already has a definition will
redefine the breakpoint condition and display the old
definition. Symbols, registers, etc. are interpreted as
absolute values and are substituted into the breakpoint
definition when program execution starts. In other
words, BPs are evaluated when the Go command is
executed. Since the syntax of a sticky breakpoint is
not interpreted until it is used, a syntax error in the
breakpoint will not be found until the Go command is
executed. Breakpoints set with the Go command are
not sticky breakpoints. The format for breakpoint
condition is:

address

Address is a memory address and may be a symbol or
absolute location.

FORMAT: BP [breaknumber]

REMARKS: Displays the definition of the breakpoint assigned to
breaknumber. If [breaknumber] is left out then all
sticky breakpoints are displayed.

EXAMPLES: This breakpoint occurs when the instruction at the
location specified by the symbol TEST is about to be
executed.
BP 1 =.TEST

This execution breakpoint occurs at location CS:lO.
BP 2 = 10

Chapter 6-14 BREAKPOINT

This breakpoint occurs when the instruction at location
1000:0000 is about to be executed.
BP 3 = I 000:000

Now these breakpoints can be displayed with the BP
command. ·

BP
BP l=.TEST
BP 2=10
BP 3= I 000:000

Special Notes on Breakpoints

If no breakpoint is detected, you can regain control by pressing the
STOP button on the external switch box.

A parity error will cause a breakpoint.

The breakpoints are implemented via a software interrupt of type 3.
A maximum of 19 breakpoints may be active when program
execution begins including both STICKY and NON-STICKY
breakpoints. PROBE will report an error if an attempt is made to
activate more than 19 break po in ts.

Since execution breakpoints are implemented via software interrupts,
they may not be used for causing a break in prom memory. The
SOFTWARE SOURCE PROBE uses the NMI (non-maskable interrupt)
to cause a breakpoint with the STOP button. If the applications
program is going to modify the NMI vector when it runs, you must
follow the sequence described in "USER PROCESSED NMI" in
Appendix D to restore the vector. If the applications hardware uses
the IOCHK line, then the SOFTWARE SOURCE PROBE can
determine which source the NMI came from. Example situations
when the application may modify the NMI vector are:

I. If the applications program uses a numeric run-time library
which changes the NMI vector at run-time.

2. If an 8087 is plugged into the system and the user has written
routines to process the 8087 exceptions which cause an NMI.

BYTE Chapter 6-15

BYTE
PURPOSE: To display or change the bytes in memory.

FORMAT: BY [range]

REMARKS: The bytes in memory specified by range are displayed
in hex and ASCII. If no segment register or segment
value is specified in range, then the segment value
from the previous BYte command will be used. If no
length is specified in range then the default is the
previous length. If no range is specified at all, then a
block of bytes starting at the end of the previous block
is shown with a length equal to the previous length.
The PgDn key will also display the next screen full of
bytes.

FORMATS: BY start address = value [,] value [,] value ...
or

BY start address = <enter>

REMARKS: In the first format, bytes in memory are changed to the
list of values to the right of the equal sign. In the
second format, the current byte at the address is
displayed and a prompt waits for a new data value at
this location. After the new data is entered, the next
location is displayed and can be changed. Typing
<enter> alone on a line ends the changes. When data is
written to memory it is read back for verification
unless the NOVerify condition is Noread. Errors are
reported accordingly.

EXAMPLES: This command stores a list of bytes.
BY .ST ART = 50,51,52

This command stores the same list of bytes but looks at
each one before changing it.

BY .START=
3000:0000 40 - 50 <enter>
3000:0001 43 - 51 <enter>
3000:0002 44 - 52 <enter>
3000:0003 40 - <enter>

Chapter 6-16 BYTE

EXAMPLES, continued

Now the data can be displayed.
BY .START L 3
3000:0000 50 51 52 *PQR *

The next 3 bytes can be displayed. Since no length was
specified, PROBE uses the previously specified length
of 3.
BY <enter>
3000:0003 40 41 42 *@AB*

Registers can also provide the start address.
BY SS:SP = 0, 0, 0, 0
BY SS:SP+BP L 3

ASCII strings can also be stored.
BY .ST ART = 'THIS IS A LINE'

COMPARE Chapter 6-17

COMPARE
PURPOSE: To compare the contents of two blocks of memory.

FORMAT: COM range destinationaddress

REMARKS: The contents of the block of memory specified by
range is compared to the same size block starting at the
location specified by destinationaddress. The entire
block is compared and the mismatches are displayed in
the following format:

Source address byte byte Destina ti on address

The Source address corresponds to the range block of
memory and the first byte is the mismatched byte in
the range block. The second byte is the contents of the
destination address.

The COMpare command uses the DS segment value
unless there is another segment register or segment
value specified.

EXAMPLES: To compare the 100 locations starting at DS:200 to the
locations at I 000: 100:
COM 200 L IOOT 1000:100

To compare the 32 locations starting at SS:SP to the
locations starting at ES:DI:
COM SS:SP L 20 ES:DI

To compare the 257 locations starting at TEMP to
NEWTEMP:
COM .TEMP .TEMP+IOO .NEWTEMP

To compare the 32 locations starting at LOOP to IOOH
in the CS segment:
COM .LOOP L 20 CS: I 00

Chapter 6-18 CONSOLE

CONSOLE

PURPOSE: To change the console for the PROBE.

FORMATS: CON Local
CON Remote [1121
CON Other

REMARKS: CONsole Local restores the communication to the
PROBE from the AT or PC keyboard and monitor.
This is the default when PROBE first signs on. If you
have switched the console to one of the other choices
shown below, you can switch back to the local console
with this command.

Remote 1 specifies using the COMl port and Remote 2
specifies using COM2. This frees up the keyboard and
the monitor on the AT or PC for applications programs.
It also eliminates the use of all DOS and ROM BIOS
calls (except for disk use) since the software driver for
this port is contained in the PROBE software. This is
very useful for debugging routines which steal DOS
interrupts.

The connection to the SOFTWARE SOURCE PROBE,
COMl or COM2 RS232 ports is described in Appendix
C. The external CRT configuration parameters are also
described in Appendix C. When this command is
executed and PROBE begins to use the external CRT,
the menu is not "ON" for the external CRT. The user
must execute the "MEnu On" command to display the
menu window. The user must ensure that the
PROBE.CFG file contains the proper CRT
configuration parameters before turning on the MENU
window, since sending cursor motion strings which do
match the CRT may lock it up.

CONSOLE Chapter 6-19

The baud rate and port configuration for the COMl
and COM2 ports is set by the system MODE command.
PROBE does not change this, and uses the port as is.

CONsole Other allows the screen display for PROBE
commands to appear on an alternate video monitor
driven from an alternate video display controller board
plugged into the PC or AT. A system which uses a
monochrome monitor may have a graphics monitor
installed also. In this case, the monochrome monitor
would be used for your program output and the
graphics monitor would be used for PROBE output. If
the system normally uses the graphics monitor and also
has a monochrome monitor, then your program output
is put on the graphics monitor and PROBE output is
put on the monochrome monitor.

If Console Other is being used, the user should not
invoke screen switching with the SCreen switching
command since this will cause needless switching of the
screen.

Chapter 6-20

DELETE

PURPOSE: To delete symbols, macros, or breakpoints.

FORMATS: DE S .symbolname
or

DES ALL

DELETE

REMARKS: Deletes the symbol described by symbolname or deletes
all symbols in the symbol table.

FORMATS: DE M macroname
or

DEM ALL

REMARKS: Deletes the macro described by macroname, or deletes
all macros in the macro table.

FORMATS: DE B breaknumber
or

DEB ALL

REMARKS: Deletes the breakpoint referenced with breaknumber,
or deletes all the breakpoints.

EXAMPLES: To delete the symbol TEST:
DES .TEST

To delete the macro INIT:
DE M INIT

To delete breakpoint number 7:
DEB 7

DIR Chapter 6-21

DIR
PURPOSE: To display the names of files in a directory.

FORMAT: DI [filespec]

REMARKS: If filespec is not listed, '*.*' is used. All standard DOS
wildcard options for filenames are available with the
Dir command.

EXAMPLES: To display all files in the current directory of drive A:
DI A:*.*
COMMAND.COM
SOURCE.EXE
SRMNHW.EXE
PROBE.CFG

To display all macro files in the current directory of
drive B with a .MAC extension:
DI B:*.MAC
!NIT.MAC
SOURCE.MAC

To display all files in the current drive and path of
\USER\PROG with a .C extension:
DI \USER \PROG\ *.C
FTOCM.C
FTOCIO.Cl

Chapter 6-22 ECHO

ECHO

PURPOSE: To display or suppress the commands inside a macro on
the screen.

FORMAT: EC ON/OFF

REMARKS: If echo of macro commands is ON, then the commands
are displayed on the screen as they are executed. If
echo is OFF, then only the output of the commands
within the macro are displayed on the screen, and the
commands are not displayed. Turning off the
command display makes the macro execute faster and
leaves a "cleaner" looking screen.

FORMAT: EC

REMARKS: The status of echo will be displayed.

EXAMPLES: To enable display of macro commands:
ECON

To disable display of macro commands:
EC OFF

To display state of macro command echoing:
EC
Do Not Echo Macro Commands.

EDIT Chapter 6-23

EDIT
PURPOSE: Edit lets you display files. Changes to files can be

noted in a log file. This command greatly reduces the
need for program listings.

There are two different edit modes: a DISPLAY mode
and a COMMAND mode. A submenu of commands is
displayed in the menu window while in each mode.

DISPLAY mode. This mode lets you display and page
through a file. Edit begins in DISPLAY mode. To
move from the DISPLAY mode to the COMMAND
mode, press <esc>.

COMMAND mode. Edit commands operate on the
displayed file. In addition, the standard DOS edit keys
are used to operate on specified lines in the displayed
file.

The following diagram illustrates how to move between
SOFTWARE SOURCE PROBE command level, edit
Display Mode, and edit Command Mode.

edit command----:--11 ~~~~~El.
Exit _ • Exit command]

r----"-------DISplay ______ _,------.,
DISPLAY
MODE

COMMAND
MODE

'-------....t------~<ESC> ---------.~--------..1

PGUP
PGDN
<Ctrl>PG UP
<Ctrl>PG DN
HOME
up arrow
down arrow

Change command
DIR command

Insert command
Line command

Search command

Chapter 6-24 EDIT

FORMAT: ED [filespec]

REMARKS: The file is opened and displayed in Display mode. The
display starts at the same point where the previous
display of this file ended from the previous edit
command. If this file has never been edited, it is
displayed starting at the top page. If filespec is not
specified, the file addressed by the current CS:IP is
displayed on the screen. The cursor is placed on the
line associated with the current CS:IP.

The editor keeps track of the line number position in
10 different files. This provides quick repositioning of
displayed files when switching between several files
for display. If a request is made to display an eleventh
file, you are prompted for a file to be "closed" so the
the new file may be "opened. "Note that this
open/closed status applies only to the internal
file/linenumber table and does not reflect whether the
file is actually an open DOS file. The currently
displayed file is the only file that is an open DOS file.

The currently displayed file, the log file, and the list
file are the only files that are ever opened by
SOFTWARE SOURCE PROBE. This means that
SOFTWARE SOURCE PROBE will have a maximum of
3 files open under DOS at one time.

EXAMPLES: To edit the source file B:FTOCM.C:
ED B:FTOCM.C

EDIT Chapter 6-25

Display Mode

PURPOSE: This mode opens a file for display and scrolling. You
are in this mode when you invoke the editor.

REMARKS: While in display mode, the following keys have effect:

Pg Up
PgDn
Ctrl PgUp
Ctrl PgDn
HOME

up arrow

down arrow

E
<eSC>

displays the previous page
displays the next page
displays the top page of the file.
displays the bottom page of the file.
moves to the line that was first

displayed in this file. This will
either be the first line or the line
containing the current CS:IP.

displays the page ending one line
before the line currently at the
bottom of the screen (up one line).

displays the next line (down one
line).

exits edit mode.
moves to edit COMMAND mode.

EXAMPLES: To edit the file which is pointed to by the
current CS:IP:
ED

To go to the end of this file:
Ctrl PgDn

To move back to the line which was displayed when
this file was first edited:
HOME

To switch to command mode:
<esc>

Chapter 6-26 EDIT

Command Mode

While in the COMMAND mode an alternate menu of
edit subcommands is displayed. A description of each
of the following subcommands is given in this section:

Change
Insert
Line
Search
DIR
DIS play
Exit.

FORMAT: Change [linen umber]

REMARKS: Perform line editing on a line from the current file. If
a linenumber is listed, it may be edited using the
standard DOS edit keys Fl-F5. The editing area for
the line to be edited is the line below the Change
command on the screen. Use the function keys to copy
the line from the screen to this area. When the line has
been edited with the function keys, the enter key will
write the line to a log file. If no log file has been
previously specified, the SOFTWARE SOURCE PROBE
will prompt the user for the name of a log file.
Commands append output to the end of the log file.
Each change writes the following information to the
log file:

1. A blank line.
2. The current file name.
3. The edited linenumber and line.

EXAMPLE: Assume the line of text at line number 116 looks like
this:
116. *c_temp = f_temp - 35;

First go to line 116. The file is positioned to display
this line on the screen.
c 116 <enter>

EDIT Chapter 6-27

Command Mode, continued

Now recall the line into the line editing area:
<F3>

To replace the 35 with 32 move the cursor left with the
left arrow key twice then type 2. Then type <F3>
again to display:
116. *c_temp = f _temp - 32;

FORMAT: Insert [linenumber]

REMARKS: Copies keyboard input directly to the log file. The
input lines may be edited using the standard Fl-F5
keys. Line editing is terminated by typing <enter> as
the only character on a line.

If this is the first Change/Insert command, you are
prompted for the log file name. Every insert command
from this point on, puts its output into this file. Each
insert writes the following information to the log file:

1. A blank line.

2. The current file name, followed by the linenumber
if listed.

3. The input lines.

Chapter 6-28 EDIT

Command Mode, continued

FORMAT: Line [linen umber]

REMARKS: The requested linenumber is displayed in the middle of
the screen. If linenumber is omitted, the line at the
bottom of the screen is moved to the middle of the
screen.

FORMAT: Search [linenumber] "string"

REMARKS: The text file is searched for "string" starting at
linenumber. If linenumber is omitted, the search
begins at the line at the bottom of the screen. If
"string" is not found from linenumber to the end of the
file, the search continues from the beginning of the
file. The "string" is case-less. That is, lower and
upper-case strings will match.

EXAMPLE: To search for the function COMPUTE:
S "Compute"
Found in line 154

FORMAT: DIR

REMARKS: Same as Dir command at SOFTWARE SOURCE
PROBE command level.

FORMAT: DIS [filespec]

REMARKS: Switches back to edit DISPLAY mode, and displays the
specified file. If f ilespec is omitted, the current file is
redisplayed.

FORMAT: Exit

REMARKS: Exits editing mode and returns to the SOFTWARE
SOURCE PROBE command menu.

EVALUATE Chapter 6-29

EVALUATE

PURPOSE: To evaluate an expression or pointer in several bases.

FORMATS: EV expression
EV pointer

REMARKS: In the first form of this command, expression is
evaluated and displayed in the bases shown below. A
non-printing ASCII character is shown as a period.
This command serves as a hex calculator and base
converter.

HEX DECIMAL INTEGER BINARY ASCII

In the second form of this command, pointer is
evaluated to a S hex character number. This command
serves to calculate real addresses in the same way as
done by the 8088 or 80286.

EXAMPLES: To evaluate the symbol PORTS:
EVA .PORTS
3SH S3T +S3T 110101 Y 'S'

The following expressions are evaluated:
EV ss:sp+S
3000S

EV (((AX-S)*2)/10)
0200H Sl2T +Sl2T lOOOOOOOOOY '.'

EV 'a'
0061H 97T +97T llOOOOlY 'a'

EV lOT
OOOAH lOT +lOT lOlOY '.'

EV -1
FFFF 6SS35T -1 T 1111111111111111 Y ' .. '

Chapter 6-30

EXAMPLES, continued

EV AAAA:FFFF
BAA9FH

EV .. LIST#25
0775

EVALUATE

FILL Chapter 6-31

FILL

PURPOSE: To fill a range of memory locations with values in a
list.

FORMAT: FI range list

REMARKS: If the number of items in list is fewer than the number
of bytes in range, then list is repeated until the end of
range is reached. If list contains more items than there
are bytes in range, then the excess list items are
ignored. The Fill command uses the DS segment value
unless there is another segment register or segment
value specified. The data which is written is read
back for verification unless the NOVerify condition is
set to N oread.

EXAMPLES: To fill the 100 locations starting at DS:200 with A5:
FI 200 L lOOT A5

To fill the 33 locations starting at CS:FFOO with 100:
FI CS:FFOO FF20 1 OOT

To fill the 257 locations starting at TEMP with the
string "ZERO":
FI .TEMP .TEMP+lOO "ZERO"

To zero out 256 bytes on the stack:
FI SS:SP-100 L 100 0

Chapter 6-32 FLAGS

FLAGS

PURPOSE: To display or change 8088 or 80286 flags.

FORMAT: FLA

REMARKS: The following 8088 or 80286 flags are displayed.

FLAG NAME

Overflow
Direction
Interrupt
Sign
Zero
Aux carry
Parity
Carry

SET

01
Dl
Il
Sl
Zl
Al
Pl
Cl

FORMAT: FLA flagname = flagvalue

CLEAR

00
DO
IO
so
zo
AO
PO
co

REMARKS: The flagnames as listed above are set equal to 0 or 1.

EXAMPLES: To display flags:
FLA
00 Dl IO TO SO Zl Al Pl Cl

To set the interrupt flag:
FLA I= 1

FLOAT Chapter 6-33

FLOAT

PURPOSE: To display or change floating point numbers in
memory. Note that this command is only available in
the /87 version of SOFTWARE SOURCE PROBE.

FORMAT: FLO [type] [range]

REMARKS: [type] specifies one of the following:

TYPE

I
L
p
s
R
T

DESCRIPTION

32 BIT INTEGER
LONG 64 BIT INTEGER
PACKED DECIMAL
SHORT 32 BIT REAL
REAL 64 BITS
TEMP REAL 80 BITS

#BYTES

4
8
10
4
8
10

If not specified, [type] defaults to the type used in the
last FLOat command. The initial default is R. If no
register or segment value is specified in range, then the
segment value of the previous FLOat command will be
used. If no length is specified in range, then the
default length is 15.

FORMATS: FLO [type] start address = value [,] value [,] ...
FLO [type] start address = <enter>

REMARKS: In the first format, floating point numbers are changed
to the list of values to the right of the equal sign. In
the second format, the current number at the address is
displayed and a prompt waits for a new data value at
this location. After the new data is entered, the next
location is displayed and can be changed. Typing
<enter> alone on a line ends the changes. When data is
written to memory it is read back for verification
unless the NOVerify condition is Noread. Errors are
reported accordingly.

Chapter 6-34 FLOAT

EXAMPLES: This command stores a list of floating point numbers.
FLO .ST ART = 150 E 25, 1234.3334 E -66

This command stores a list of floating point numbers
but looks at each one before changing it.
FLO .START=
3000:0000 9.999 e 13 - 1000.0 e 10 <enter>
3000:0009 1.0000062 e -14 - <enter>

These commands display floating point numbers based
at the address of the variable .fahr. The number is
shown in different formats.
-flo .f ahr I 1
OD58:00D6 6.3879640332419039 E 29
-flo i .fahr
OD58:00D6 1.7040260000000000 E 6
-flo p .fahr
OD58:00D6 2.0462020200020006 E 17
-flo s .fahr
OD58:00D6 0.0238784901696956 E-37
-flo r .fahr
OD58:00D6 6.3879640332419039 E 29
-flo t .fahr
OD58:00D6 0.43145083913 70397 E-2456

GO Chapter 6-35

GO

PURPOSE: To execute the program being debugged. Stops
execution when a specified breakpoint occurs.

FORMAT: G [=address,] breakpoint, breakpoint, ...

REMARKS: [=address,] indicates the location to start program
execution. The comma is required if [=address,] is
specified. If [=address,] is not included, then program
execution starts at the current CS:IP. If [=address,]
specifies only an offset, then the current code segment
value is used. If a breakpoint is set at the current
CS:IP, the PROBE single steps the first instruction then
sets the breakpoint. Breakpoint definitions are
described in the BreakPoint command. A maximum of
8 breakpoints can exist.

If after you execute the Go command and you program
does not encounter a breakpoint, you may recover
control of the program by a) pressing the Stop Button
if you have an Atron Stop/Reset switch box or b)
typing AltDel. The latter approach will not work if
you program has disabled interrupts.

EXAMPLES: This command starts in the current module at line 25
and sets a breakpoint at line 3 7.
G =#25, #37

This command starts at the current CS:IP and stops
at CS:lOO.
G 100

This command starts program execution at the location
specified by the symbol ST ART and sets three non
sticky breakpoints.
g =.start ,.#43 , .proca , .procb

This command starts at the current CS:IP and sets a
breakpoint after TEST has been read.
G .TEST R

Chapter 6-36 GO

Sticky and Non-sticky Breakpoints

Breakpoints which are defined in the Go command are activated for
the duration of program execution and then are removed once
control has been returned to the PROBE. These are commonly
referred to as "NON-STICKY BREAKPOINTS." Breakpoints which
are previously defined and assigned a break number by the BP
command remain activated when program execution is terminated.
This means these breakpoints will still be in effect when a new Go
command is issued, even if they are not specified in the new Go
command. These are commonly called "STICKY BREAKPOINTS."
Sticky breakpoints are deleted with the DEiete BP command.

IF Chapter 6-37

IF

PURPOSE: To allow conditional execution of macro commands.

FORMAT: MA macroname =
M- [PROBE Commands]
M- IF boolean expression
M- [PROBE Commands]
M- [ELSe
M- [PROBE Commands]]
M- EIF
M- [PROBE Commands]
M-END

REMARKS: The IF command can be defined inside a macro to
allow a series of commands to be executed
conditionally. The end of the IF command is specified
by EIF. The ELSe portion of the IF command is
optional.

Boolean expression is defined at the start of this
chapter in the section called Common Parameters and
Definitions. ELS and EIF must be in the same macro
which invoked IF.

EXAMPLE: This macro prints a message if a procedure is called
with an out-of-range value.

MA I=
M-G.PROCEDURE START
M- IF @W.TEMP > %0
M- PR "Temp is out of range! Temp= ", @W.TEMP
M- EIF
M- END

To execute this macro:
EM I 1000

If TEMP is greater than 1000, the following warning
message is issued:
Temp is out of range! Temp = 1010

Chapter 6-38 INITIALIZE

INITIALIZE

PURPOSE: To restore register values which were set by the most
recent program load.

FORMAT: INI

REMARKS: When a .EXE file is loaded, the SS:SP, CS:IP, DS, and
ES registers are set by the loader and operating system.
It may be desirable to reinitialize the registers to these
conditions when restarting program execution if a
program or procedure has left the stack and registers in
an indeterminate state. If a high level language
program has executed its last executable statement,
then it has informed the operating system it has
finished, and memory has been deallocated for the
program. In this case, if an INitialize command is
issued, an error condition will be reported. The
program must be reloaded before it can be executed.
This will not be a problem if the program is stopped
before executing its last executable statement or if the
program was written in assembly language which does
not deallocate memory with the last executable
statement. However, an assembly language operating
system call to EXIT (INT 20H) will deallocate memory.
This command may not work properly for all programs,
since only registers are re-initialized. This means that
programs with load-time initialized data (such as C
which guarantees that all variables are initialized to 0)
will not have their data values restored. For these
cases, the program must be reloaded even if it has not
yet terminated.

INTERRUPT Chapter 6-39

INTERRUPT

PURPOSE: To enable or disable interrupt masks in the 8259
interrupt controller while in PROBE software.

FORMAT: INT [#] [state]

REMARKS: state = OFF means the interrupt is masked
state = ON means the interrupt is unmasked

is the level of the interrupt on the 8259
or

is ALL for all interrupt levels

Individual interrupt lines on the system 8259
programmable interrupt controller can be masked or
unmasked while the PROBE software has control of
the PC or AT. The background interrupts such as the
real time clock, disk controller operations, and
keyboard servicing will continue to request servicing
while the PROBE software is executing. However, if
the routines which service these requests are not
working, they could prevent PROBE from operating.
This could happen if they never return to the PROBE
software. This could also happen if PROBE took
control via a breakpoint you set within a non-reentrant
interrupt routine, and then a new interrupt tried to
take control away from PROBE. To prevent this from
occurring, use the INTerrupt command to mask off the
selected interrupts after entry into PROBE software.
You would normally execute this command after you
had just loaded your program and before executing it
for the first time.

The INTerrupt command sets the state of the 8259
interrupt mask register while in the PROBE software.
The mask change occurs as soon as the INTerrupt
command is executed. This does not affect your
program since the mask is always restored to the value
it had when PROBE was entered from a breakpoint.
There are two cases when this mask is then changed
again.

Chapter 6-40 INTERRUPT

I. ENTERING THE APPLICATION CODE. When the
applications program is started with the Go
command, this mask register is set to the state it
was in when the last breakpoint occurred. For the
first Go command, the mask register is not changed.

2. ENTERING PROBE SOFTWARE. When PROBE
software is entered from a breakpoint in the user's
program, it sets the mask to the state which was
specified by the INTerrupt command. If no
INTerrupt command has ever been issued, it sets the
mask to the state it was in when the PROBE
software was loaded.

The keyboard interrupt can only be masked from a
remote CRT. If the disk controller interrupts are
masked, then commands which use the disk such as
LO Ad, SA ve, and EDit cannot be executed. The
following are the interrupt #'s which you use for this
command:

Interrupt Level Description

O .•••......•..•••......•••••••...........••••••........... Timer
I ... Keyboard
2 ... Reserved
3 ... Com2
4 ... Coml
5 ... Fixed disk
6 ... Floppy disk
7 ... LPTl

INTERRUPT Chapter 6-41

The AT has two interrupt controllers. In this case the
INTerrupt command can disable interrupt lines on either controller.
The interrupt numbers and the appropriate description for each
interrupt line is shown below.

Interrupt Line Description

O ... Timer
! ... Keyboard
2 ... Slave

20 Realtime clock
21.. Software directed to INT OA
22•... Reserved
23 Reserved
24 Reserved
25 8087 or 80287
26 Fixed disk
27 Reserved

3 ... Com2
4 ... Coml
5 ... LPT2
6 ... Floppy
7 ... LPTI

FORMAT: INT

REMARKS: Displays the state of the interrupt mask. 'On' means
the level is unmasked, 'Off' means masked.

EXAMPLES: To display the state of the interrupt mask:
INT
0 On, I On, 2 Off, 3 Off, 4 Off, 5 On, 6 On, 7 Off

To unmask the COMI, interrupt while in PROBE:
INT 4 ON

To mask all interrupts off while in PROBE:
INT ALL OFF

To reset the interrupt mask to the state it was in when
PROBE was first started:
INT ALL Default

Chapter 6-42 LIST

LIST

PURPOSE: To copy the output of PROBE commands to another
list device. This gives you a history of your debugging
session.

FORMAT: LI

REMARKS: Displays the current list device, if one is active.

FORMAT: LI = {filespec I LPTl: I CO Ml:}

REMARKS: All PROBE output is copied to LPTl, COMI, or a file.
The output continues to be sent to the current PROBE
console.

FORMAT: LI Close

REMARKS: Stop sending a copy of the PROBE output to the list
device. If the list device was a file, it must be closed
before exiting PROBE and going back to DOS or the
information in this file will be lost.

EXAMPLES: To set the list device to the line printer:
LI= LPTl:

To display the current list device:
LI
LPTI:

To end list output:
LI C

LOAD Chapter 6-43

LOAD

PURPOSE: This command loads application programs, symbol
tables, or macro files.

FORMAT: LOA filespec [optional parameters)

REMARKS: This command loads the applications program named
by filespec into system memory. If the file is a .EXE
file, the PROBE establishes the load address and
initializes the necessary CPU registers. If the file is
one produced by the SA ve command, then the file is
not in the .EXE format and is loaded at CS: 100.
[Optional parameters] in the load command are passed
to the loaded program in the program prefix segment
of the loaded program in the normal manner. The load
command should be used to load the program before the
LOAd S command is used to load the symbol table.

FORMAT: LOA Symbols filespec [address [Absolute])

REMARKS: This command loads the internal symbol table space of
the PROBE with information from filespec. This file
is one produced by the linker and is the link map.
When the symbols are loaded, their values are adjusted
to match the previously loaded applications program.
Therefore, the applications program should normally be
loaded before the symbol table is loaded. If the symbol
table is loaded before a program is loaded, the symbol's
segment value will be set as though the program was
loaded at 0. If the symbol table already contains
symbols, loading a new symbol file will add to the
current symbols. If it is desired to remove these
symbols, use the DElete Symbols ALL command.

Chapter 6-44 LOAD

If [address] is included in this LOAd command, then
this is also added to the symbols at load time. This
form of the LOAd symbol command should be used for
.COM files. Each symbol is determined by the
equation:

program load address + address + symbol

If [address [A)] is included in this LOAd command,
then the address is interpreted as an absolute location.
Here, the symbols are determined by:

address + symbol

This is very useful for attaching symbols to loaded
device drivers, quit and stay resident programs, or
programs running on non-DOS operating systems.

FORMAT: LOA Mac filespec

REMARKS: This command loads the internal macro table space of
the PROBE with macros which are defined in the file.
This file could have been created with the PROBE
previously and saved with the SAve command or could
have been created with a text editor. The format of
the macro file is the same as that of the macros
themselves. Loading macros adds to the macros which
have already been defined or loaded into PROBE.

LOAD Chapter 6-45

EXAMPLES: These commands load a standard .EXE file and pass a
parameter called LPT 1 to the program. Then a symbol
table file is loaded.
LOA DUMP.EXE LPTl:
LOA S DUMP.MAP

This command loads a .COM file. When a symbol table
for a .COM file is loaded, it must be adjusted for a
relative offset of negative lOOH bytes.
LOA DUMP.COM
LOA S DUMP.MAP 0-10:0

This command loads the symbol table for an installed
device driver or a resident program in memory which
has its starting code segment at 0632.
LOA S MYDRIVER.MAP 0632:0 A

This command loads the standard PROBE macro file.
LOA M PROBE.MAC

Chapter 6-46 LOOP

LOOP

PURPOSE: To allow command sequence loops to be executed
within a macro. The macro can be exited
con di tionall y.

FORMAT: MA macroname =
M-[PROBE Commands]
M-LOO [count expressionlWhile boolean expression]
M-[PROBE Commands]
M-ELO
M-[PROBE Commands]
M-END

REMARKS: The LOOp command can only be executed inside a
macro. All of the PROBE Commands between LOO
and ELO are executed. Each time the LOOp command
is executed, the expression for continuing execution of
the loop is tested. There are two types of loop
expressions: count expressions and while boolean
expressions.

count expression. This is simply a number. If no
number is specified then the loop continues forever
until the STOP button is pressed.

while boolean expression. Boolean expressions were
defined previously in the section called "Common
Parameters and Definitions." The loop continues while
the boolean expression is true.

Loops can be nested 5 deep; however, ELO must be
within the macro which invoked the loop and not in a
nested macro.

EXAMPLES: This is an example of a macro which counts the
number of breakpoints before stopping. First define
the loop inside the macro.
MAL=
M- LOO %0
M- Go %1
M- ELO
M- END

LOOP Chapter 6-47

EXAMPLES, continued

To execute this program until the 10th time it hits the
breakpoint at line 58:
EM L IOT, #58

This macro causes program execution to continue as
long as the value of TEMP is not equal to the value
you pass the macro as a parameter.
MA L2 =
M- LOO While @W.TEMP <> %0
M-G.PROCEDURE START
M-ELO
M- END

To execute this program until PROCEDURE START
is executed and the word at .TEMP is equal to 100:
EM L2 IOOT

This macro displays the value of TEMP and the first 5
bytes of the stack each time the procedure start is
executed.
MAC L3 =
M-LOO
M-GO.PROCEDURE START
M- W .TEMP
M- W SS:SP L 5
M-ELO
M-END

Now, each time PROCEDURE START is executed, the
word at TEMP and the 5 words on the top of the stack
are output.

Chapter 6-48 MACRO COMMANDS

MACRO COMMANDS
PURPOSE: User commands can be created through the definition

of macros. These macros can be saved and included in
future debugging sessions.

FORMAT: MA macroname =
M- COMMAND[%parameternumber]
M- COMMAND[%parameternumber]
M-••••
M-END

REMARKS: Macroname has a maximum of 20 ASCII characters.
PROBE commands can be entered until the END
terminator is specified. Up to IO parameters with
parameter numbers ranging from 0 to 9 may be passed
to the macro by specifying %parameternumber in the
COMMANDS where the parameter is to be substituted.
Parameters may be any ASCII string. Macros may be
nested within macros up to a level of 5. See notes on
nesting later in this description to determine how to
pass parameters to nested macros. Since macro names
are distinguished from symbol names by the way they
are used, there is no conflict in defining macros which
have the same name as a symbol. Maximum length of a
macro is 255 characters. Note that the M- in the macro
definition is printed as a prompt by the PROBE and
only the COMMANDS are entered to define the macro.

FORMATS: MA macroname
or

MA <enter>

REMARKS: The first command displays the definition for
macroname. The second command displays all macro
names.

MACRO COMMANDS Chapter 6-49

FORMATS: EM macroname parameter, parameter,

REMARKS: This command invokes the macro and passes
parameters to the macro if they are included in the
command. The parameters are assigned parameter
numbers of 0 to 9 from left to right in the EM
command. The parameter can be a string and is
separated from the next parameter by a comma. The
parameters are then substituted in the macro for the
parameter number specified in the macro definition.

INITIALIZATION MACROS

When PROBE is first loaded, the current path name is searched for
the file !NIT.MAC. If found, this file is loaded automatically. If
the file defines a macro called INITIALIZE, then that macro is
automatically executed. It is useful to create this custom file and
macro to set up for a debugging session. A sample initialization
macro is included on the PROBE diskette.

NESTING MACROS

Macros can call other macros or can be recursive and call themselves
to a depth of 5. The user can create a modular set of macro
primitives which can be used in the definition of other macro
commands. This can also be used to save space in the macro table if
many different macro commands have common parts. The
parameters within a macro have a local scope and are substituted
from the command line invocation of the macro. Parameters can be
passed to nested macros by specifying the parameter number of the
outer macro in the invocation line of the inner macro. The following
diagram describes the flow of parameters between macros.

Chapter 6-50 MACRO COMMANDS

:~c:::::e ~;]eter ,paral meter,paraieter ,parameter ,parameter

M-COMMAND %2 <

M-EM nested macroname %1, %3 ----------~

M-COMMAND %0 -<-' I
M-COMMAND %1 ~
M-END

M-COMMAND %4 +--------------------'

M-END

MACRO COMMAND EXAMPLES

INITIALIZATION MACRO

This is an initialization macro called INIT which could save many
user keystrokes when starting up a debugging session.

MAC INIT =
M-LOA %0.EXE
M-LOA S %0.MAP
M-R
M-U
M-END

This macro definition can now be displayed by typing:

MAC INIT

This macro can now be used to start a debugging session by loading
the program b:myprog.

EM INIT B:MYPROG

MACRO COMMANDS Chapter 6-51

GO FROM ST ACK ADDRESS

This macro starts program execution from the current return address
on the stack.

MAC QW=
M- G @PSS:SP
END

PRINT A STRUCTURE

This macro prints out an element of a complex array of structures.
Here is an example C structure.

define NameSize 50
struct E _Rec {
Int EmpNum;
char EmpName [Name Size];
};
#define NumEmpRecs 1000
struct E_Rec EmpRecs [NumEmpRecs];

This macro is defined to print the nth element of the structure.

Mac EMPRECS =
M- PRI "Employee name=",%S .EmpRecs+(%0t*52)+2
M- PRI "Employee # =", %D @W .EmpRecs + (%0t*52)
M- END

This macro can now be used to print the 10th employee record.

EM EMPRECS, 10

Chapter 6-52 MACRO COMMANDS

NESTING MACROS

This example shows passing parameters between macros.

MAC MACI =
BY %0
BY %2
EM MAC2 %1, %3
BY %4
END

MAC MAC2 =

BY %0
BY %1
END

To execute MACI and pass parameters to it:
EM MACl 0,1,2,3,4

This macro expands as follows:
BY 0
BY 2
BY 1
BY 3
BY 4

MACRO COMMANDS Chapter 6-53

STANDARD MACROS SUPPLIED BY ATRON

The following list of macros are contained on your SOFTWARE
SOURCE PROBE diskette in a file called PROBE.MAC. Following
the list is a an explanation of each macro and how it is used.

SECTOR READ MACRO
SECTOR WRITE MACRO
DISPLAY PROGRAM PREFIX SEGMENT MACRO
CHAINED BREAKPOINTS
DETECT A ST ACK SEGMENT CHANGE BREAKPOINT
DEMO SET UP MACRO
DISPLAY REGISTERS AND ST ACK DAT A MACRO
TRAP INT21 MACRO

Chapter 6-54 MACRO COMMANDS

SECTOR READ MACRO

This macro reads 1 sector from the disk into system memory at
location 2000:100. You may want to change this address or make it a
parameter.

MAC AbsRead=
r cs=2000
r ip=O
r ds=cs
asm cs:ip
mov al, 0%0
mov dx, 0%1
mov ex, 1
mov bx, 100
int 25
jmp d

g cs:d
by ds:lOO I 100
END

This macro is executed with:

em AbsRead DriveNumber, SectorNumber

DriveNumber is a parameter which specifies which drive is to be
read. SectorNumber specifies which sector is to be read.

MACRO COMMANDS Chapter 6-55

SECTOR WRITE MACRO

This macro writes 1 sector from the disk into system memory at
location 2000:100. You may want to change this address or make it a
parameter.

MAC AbsWrite=
r CS=2000
r ip=O
r ds=cs
asm cs:ip
mov al, 0%0
mov dx, 0%1
mov ex, 1
mov bx, 100
int 26
jmp d

g cs:d
END

The macro is executed with:

em AbsWrite DriveNumber, SectorNumber

Chapter 6-56 MACRO COMMANDS

DISPLAY PROGRAM PREFIX SEGMENT MACRO

This macro displays the data in the Program Prefix Segment. The ES
register must be set to the value it had when the program was loaded
(start of PPS).

MAC PPS=
ec off
pr "MemTop = ", @wes:2
pr "Terminate Address = ", @wes:c,':',@wes:a
pr "CtrlC Address = ", @wes:lO,':',@wes:e
pr "Hard Error Address = ", @wes:l4,':',@wes:l2
em PPS2
END
MAC PPS2=
pr "FCB 0 ="
by es:5c 1 10
pr "FCB 1 ="
by es:6c 1 10
pr "Command line = "
by es:8 l 1 @bes:80
econ
END

This macro is executed with:

em PPS

MACRO COMMANDS Chapter 6-57

CHAINED BREAKPOINTS

This macro lets you detect the sequential execution of three separate
breakpoints. This macro is set up to restart the sequence detection
when a fourth breakpoint is detected. The parameters passed to the
macro are the segments and offsets for each of the breakpoints. For
example Aseg and AOffset are the segment and offset values
respectively for the first breakpoint in the chain.

MAC AArmsBArmsCResetD=
sy .AtC=O:O
loop w .AtC=O

elo
END

g %0:%1
g %2:%3, %6:%7
if CS=%2
if ip=%3

eif
eif

g %4:%5, %6:% 7
if CS=%4
if ip=%5

eif
eif

sy .AtC=O:FFFF

The breakpoint is executed with:

em AArmsBArmsCResetD ASeg,AOff set, BSeg,BOff set,
CSeg,COffset, DSeg,DOffset

Chapter 6-58 MACRO COMMANDS

DETECT A STACK SEGMENT CHANGE BREAKPOINT

This macro single steps a program until the stack segment is about to
be loaded.

MAC SS=
ec off
st
loop w ((@wcs:ip) & 38ff) <> 108e
st
elo
econ
END

It is executed with:

em ss

DEMO SET UP MACRO

This macro loads the demo program and does the proper assignments
for source level debugging.

MAC INITIALIZE=
asi ftocm code %0ftocm.c
asi ftocio - code %Of tocio.c
loa %0ftocnew.exe
loa s %0ftocnew.mpl
symbol .start = cs:ip
wi = mem
END

It is executed with:

em initialize

MACRO COMMANDS Chapter 6-59

DISPLAY REGISTERS AND STACK DATA MACRO

This macro displays all registers and stack data. It is useful to assign
this macro to the window during assembly language single stepping.

MAC RR=

pr '---'
r
wo ss:sp
END

This is done with the following command:

WI= RR

TRAP INT21 MACRO

This macro sets a break point at the first instruction of the INT 21
system call.

MAC 21=
loo %0
go @p0:21*4
r
elo
END

It is executed with:

em 21

Chapter 6-60 MENU

MENU
PURPOSE: To enable or disable the display of commands in the

menu window.

FORMATS: ME ON
or

ME OFF

REMARKS: The first command prompts the user with a display of
PROBE commands in the menu window. The second
command disables the display of the menu window.
The menu window is defined as lines 23 and 24 on the
console. When switching to an external console, the
menu is initially off, and must be turned on.

MODULE Chapter 6-61

MODULE
PURPOSE: Assigns the current default module name prefix for

line numbers in the symbol table.

FORMAT: MOD modulename

REMARKS: The module command assigns the default modulename
for line numbers. If a line number is used as a symbol
and no modulename is specified, then the default
modulename is used. The default modulename after a
LOA S command is the first modulename in the symbol
table. Specifying the modulename along with the line
number overrides the default module name.

FORMAT: MOD

REMARKS: The current default module selection and status is
displayed followed by the names of all modules in the
symbol table. A module is the result of a single
compilation. See Chapter 3 and the ASIGN command
in this chapter for more information on naming
modules.

EXAMPLES: To assign the default modulename to MAIN:
MOD MAIN

Now line numbers in the module MAIN may be
described without specifying the modulename as
follows:
SY #233

To override the default modulename specify the
module as demonstrated by this general format and
specific example:
SY .. modulename#linenumber

SY .. SECOND#233

Chapter 6-62 MORE

MORE
PURPOSE: To display alternate fields of commands in the menu

window.

FORMAT: MOR

REMARKS: There are two sets of commands which may appear in
the menu window. The MORe command pulls up the
other set of commands for display in this window.
This set continues to be the default set of displayed
command prompts until another MORe command is
executed. This is simply a display function and all
commands are available from either menu.

MOVE Chapter 6-63

MOVE
PURPOSE: To move a block of memory to a new location.

FORMAT: MOV range destinationaddress

REMARKS: The block of memory specified by range is moved to a
location starting at destina tionaddress. The memory is
moved on a byte by byte basis starting with the first
address of range. Each location is read back after it
has been written and error conditions are reported
unless the NOVerify condition is set to NOread. The
MOVe command uses the DS segment value unless there
is another segment register or segment value specified.

EXAMPLES: To move the 100 locations starting at DS:200 to the
locations at 1000:100:
MOV 200 L lOOT 1000:100

To move the 32 locations starting at SS:SP to the
location starting at ES:DI:
MOV SS:SP L 20 ES:DI

To move the 257 locations starting at TEMP
to NEWTEMP:
MOV .TEMP .TEMP+ 100 .NEWTEMP

To move the 32 locations starting at LOOP to lOOH in
the CS segment:
MOV .LOOP L 20 CS:lOO

Chapter 6-64

NEST

PURPOSE: To display the calling sequence of procedures by
analyzing the stack.

FORMAT: NE [SJ

NEST

REMARKS: The BP is assumed to point to its old value. If the [SJ
option is not used, the return address is assumed to be
located directly under the old BP value on the stack
(i.e. each procedure begins with PUSH BP; MOY
BP,SP). If the [SJ option is used, the procedure is
assumed to start with PUSH BP; SUB SP,XX; MOY
BP,SP. In this mode, memory is searched from CS:IP to
a PUSH BP instruction. The SUB SP,XX instruction is
emulated to get back to the return address. The
memory search continues backwards from the return
address to another PUSH BP instruction. Do not use
the S option with the Microsoft Pascal or C compilers.
Use the S option only with the Lattice C compiler.

EXAMPLE: NE
CS:IP IS 0624:01CC NEAR .. MEMORY TESTER#l03
CALLED FROM 0624:020D NEAR
.. MEMORY TESTER#ll4
CALLED FROM 0780:00FC NEAR .. START

NOVERIFY Chapter 6-65

NOVERIFY

PURPOSE: To disable or enable the read after write verification
for certain commands.

FORMATS: NOV Read
NOV Noread

REMARKS: The following commands are affected by the NOVerify
command:

BYte
WO rd
PTr
MOVe
Fill

If the NOVerify condition is Read (which is the
default), then a read after write verification is
performed when the commands above, change memory.
If the value read does not match the value written,
then an error is reported. If the NOVerify condition is
N oread, then no check is performed. This command is
useful if memory mapped Input/Output devices are
being addressed with these commands. They may
function incorrectly if the read after write is
performed; therefore, you may want to set the
NOVerify condition to Noread for these cases.

FORMAT: NOV <enter>

REMARKS: Displays the current status of the NOVerify condition.

EXAMPLES: To set the NOVerify condition to Noread:
NOVN

To set NOVerify condition to Read:
NOV R

Chapter 6-66 NUMERIC FLAGS

NUMERIC FLAGS

PURPOSE: To display or change 8087 or 80287 flags. The 8087 or
80287 must be present for this command to operate.
This command is only available in the /87 versions of
PROBE.

FORMAT: NF [CIS]

REMARKS: This command displays the 8087 or 80287 flags, which
include control and status words, instruction address,
opcode, and operand address. If the [CJ or [SJ option is
specified, then only the control word or status word
respectively are displayed.

FORMAT: NF {CIS} = [value]

REMARKS: If value is specified, the selected control or status
register is given the new value. If value is not
specified, the current status or control word is
displayed, and you are prompted for a new value.

EXAMPLES: This example displays all 8087 or 80287 flags.
NF
Control word=03FF
Status word=4100
Instruc addr=OOOOO. Opcode=OOOO
Operand addr=OOOOO

This example changes the control word to OFFF.
NFC= OFFF

NUMERIC REGISTERS Chapter 6-67

NUMERIC REGISTERS
PURPOSE: To display or change 8087 or 80287 registers. The 8087

or 80287 must be present. This command is only
available in the /87 versions of PROBE.

FORMAT: NR ({SIT} (#)]

REMARKS: S or T selects the stack or tag register # of the 8087 or
80287 for display. If the ({S I T} (#)] is not specified,
then all 8087 or 80287 registers are displayed.

FORMAT: NR {SIT} (#) = [value]

REMARKS: The specified 8087 or 80287 stack or tag register is
changed to value. If [value] is not specified, then the
register is displayed along with a prompt. A value may
be entered at this point.

EXAMPLES: This command displays all 8087 or 80287 registers.
NR
ST (0)= 3.141592 E 00 Tag O=Valid=O
ST (I)= 0.000000 E 00 Tag 1=Zero=1
ST (2)= ************* Tag 2=Empty=3
ST (3)= ************* Tag 3=Empty=3
ST (4)= ************* Tag 4=Empty=3
ST (5)= ************* Tag 5=Empty=3
ST (6)= ************* Tag 6=Empty=3
ST (7)= ************* Tag 7=Empty=3

To set tag register 4 to a 2:
-nr t (4) =2

To display tag register 4:
-nr t (4)
Tag 4=NAN/Infinity/Denormal=2

To display stack register 0:
-nr s 0
ST (0)=-0.1859660090 E 16363

Chapter 6-68 POINTER

POINTER

PURPOSE: To display or change 32 bit pointers in memory.

FORMAT: PT [range]

REMARKS: The pointers in memory specified by range are
displayed in hex. If no segment register or segment
value is specified in range, then the segment value
from the previous PoinTer command will be used. If
no length is specified in range then length defaults to
the previous length. If no range is specified at all,
then a block of pointers starting at the end of the
previous block is shown with a length equal to the
previous length. The PgDn key will also display the
next screen full of pointers.

FORMATS: PT start address = value [,] value [,] value ...
or

PT start address = <enter>

REMARKS: In the first format, pointers in memory are changed to
the list of values to the right of the equal sign. In the
second format, the current pointer at the address is
displayed, and a prompt waits for a new data value at
this location. After the new data is entered, the next
location is displayed and can be changed. Typing
<enter> alone on a line ends the changes. When data is
written to memory it is read back for verification
unless the NOVerify condition is Noread. Errors are
reported accordingly.

POINTER Chapter 6-69

EXAMPLES: This command stores a list of pointers.
PT .ST ART = 0000:0000, FFFF:OOOO, AEF0:0008

To display the data:
PT .START L 3
0624:0003 0000:0000 FFFF:OOOO AEF0:0008

To display the next 3 pointers:
PT
0624:000F AACC:DDDD AEFF:AACE AEFF:COCO

Registers can also provide the start address.
PT SS:SP = 3000:AEFO

Chapter 6-70 PORT

PORT
PURPOSE: To display or modify the contents of an IO port.

FORMAT: PO [Word] portnumber

REMARKS: Display the byte contents of the IO port addressed by
portnumber. If Word is specified in the command, then
a word read occurs.

FORMAT: PO [Word] portnumber = value

REMARKS: The byte value is written to the port addressed by
portnumber. If Word is specified, then a word write
occurs.

EXAMPLES: To display the port addressed by the symbol PORTS:
PO .PORTS
AE

To change the port:
PO .PORTS = AA ;in hex
PO .PORTS ='A' ;in ASCII
PO .PORTS = I OT ;in decimal

PRINT Chapter 6-7 1

PRINT

PURPOSE: To print information in a formatted fashion on the
console.

FORMAT: PR {'string' I [type) expression}, .•...

REMARKS: The PRint command can be used much like a high
level language WRITE statement. It accepts strings in
either single quotes (') or double quotes (") and echoes
them to the console. It evaluates expressions which are
not within quotes and prints their value on the console
in one of the data types specified below.

%a display expression as ASCII
O/ob display expression as a hex byte
%w display expression as a hex word ** Default**
O/od display expression as an unsigned decimal
O/oi display expression as a signed decimal integer
O/os expression is an address. The data at the

address is displayed as ASCII until a
terminating 0

Note that expression is treated as a value in all cases
above except the O/os case. The @ operator can be used
to get the expression which is pointed to by an address.
The examples will demonstrate this.

EXAMPLES: To print the word pointed to by the symbolname
.FAHR:
PR "F AHR = ", @w .Fahr
FAHR = 2000

where: .FAHR = 1000:10
1000:10 contains the word 2000

To print the word pointed to by the pointer at the
symbolname .F AHR:
PR "F AHR = ", @w@p .Fahr
FAHR = 0010

where: .FAHR = 1000:10
1000:10 contains the pointer 2000:20
2000:20 contains the word 0010

Chapter 6-7 2 PRINT

EXAMPLES, continued

To print the integer pointed to by the pointer at the
symbolname .FARR:
PR "F AHR = ", %i @w@p .Fahr
FARR= 16

where: .FARR= 1000:10
I 000: I 0 con ta ins the pointer 2000:20
2000:20 contains the integer 16

To print the word pointed to by the symbolname
CELCIUS as an integer:
PR 'CELSIUS = ', %i @w.celsius
CELSIUS = -17

where: celcius = 3000:30
3000:30 contains the word FFEF
FFEF expressed as an integer is -17

To print the 0 terminated string which begins at
BUFFER:
PR "The buffer is: ", %s .buffer
The buff er is: Hello, world.

where .buff er is 3000:30
3000:30 contains "Hello,world"

PR 'THE OTHER BUFFER IS: ',%s @p.buffer
THE OTHER BUFFER IS: Whole nuther world

where: .buffer =2000:10
2000:10 contains 4000:87
4000:87 contains "Whole nuther world"

The structure is pointed to by the pointer in
.STRUCTURE. To print the third byte of a structure:
SY .TEMP = @P.STRUCTURE
PR "STRUCTURE BYTE=",%b @b.TEMP+2
STRUCTURE BYTE IS= 22

where: STRUCTURE= 8000:50
8000:50 contains 3000:10
3000:12 contains 22

PRINT

EXAMPLES, continued

To print the ASCII char at .ST ART:
PR "START =',%a
p

where: .START= 8000:10
8000: I 0 con ta ins the byte 50

Chapter 6-7 3

Chapter 6-7 4 QUIT

QUIT
PURPOSE: To leave the PROBE and return to the operating

system.

FORMAT: Q

REMARKS: PROBE restores the user's screen and returns control to
the operating system. This also removes the PROBE
program pref ix segment and restores all interrupt
vectors to their original value.

FORMAT: QR

REMARKS: PROBE returns control to the operating system but the
program prefix segment and interrupt vectors l, 2, and
3 remain in memory. Note that there is a space
between the Q and R.

The Quit Remain command may only be issued once
and the PROBE will exist in memory until the next
RESET. In order to re-enter the PROBE you must
press the STOP button. From then on, the Go
command should be used to return to the DOS
command level.

Q R is useful whenever the PROBE LOAd command
cannot be used to load a program. For instance, it can
be used when debugging installed device drivers, and
user quit and stay resident programs. The PROBE
LOAd command cannot be used to load a program
after a Q R. It can, however, be used to load a symbol
table.

Sticky breakpoints are not set with the Q R. They are
only set with the Go command. Therefore, after doing
a Q R, press the STOP button then do a Go command
to continue execution with sticky breakpoints set.

REGISTERS Chapter 6-7 5

REGISTERS

PURPOSE: To display or change cpu registers.

FORMAT: R [registername]

REMARKS: The contents of the specified 8088 or 80286 register as
described by the registernames below are displayed. If
no registername is specified, then all registers are
displayed.

FORMAT: R registername = [value]

REMARKS: The specified register is changed to value. If value is
not specified, then the register is displayed along with
a prompt to let you change the value. The 8088 or
80286 register names are listed as follows:

EXAMPLES:

AX= 1234

BX= 0104

CX= 0002

DX=ABAB

AX cs SS DS ES AH
BX IP SP SI DI BH
ex BP CH CL
DX FL DH DL

To display all registers:
R
CS= 0000

IP= 1000

SS= 1000

SP= 5000

BP= 4000

DS= 0011

SI= 0000

FL= 00 Dl El SO Zl Al PO CO

To change the IP register to 2000:
RIP=

AL
BL

ES= 0100

DI= 0000

IP = 1000 - 2000 (you enter the 2000 in response)

To display the AX register:
RAX
AX= 1234

To move the value of a register into another register:
RAX= BX

To put an ASCII value into a register:
R AL= 'Q'

Chapter 6-76 SAVE

SAVE

PURPOSE: To save blocks of memory or macros in a file.

FORMAT: SA range filespec

REMARKS: The block of memory specified by range is written to
the file specified by filespec. The SA ve command uses
the CS segment register unless there is another segment
register or segment value specified. The file is saved
as a direct memory image and is not a .EXE or .HEX
file.

FORMAT: SA M filespec

REMARKS: The macros which are currently active for this
debugging session are saved in filespec. The definition
of active macros are those which were created with the
MAcro command or loaded with the LOAd command
and are recognized when their macro names are
specified during the debugging session. If it is desired
to save symbols, a macro can be created that defines
the symbols and this macro can be saved.

EXAMPLES: To save the 100 locations starting at CS:200 to a file:
SA 200 L 1 OOT B:myprog.hex

To save the 32 locations starting at DS:FFOO to a file:
SA DS:FFOO FF 1 F myprog.hex

To save the 256 locations starting at TEMP:
SA .TEMP .TEMP+FF myprog.hex

To save the 32 locations starting at LOOP:
SA .LOOP L 20 myprog.hex

To save the on-line macros in a file:
SA M myprog.mac

SCREEN Chapter 6-77

SCREEN

PURPOSE: Screen switching isolates the application screen from
PROBE's screen by creating two virtual screens.

FORMAT: SC

REMARKS: Displays the current state of screen switching.

FORMAT: SC {ON I OFF}

REMARKS: Enables or disables screen switching in Go, STep, and
Source Step commands. If screen switching is enabled,
the application screen is displayed whenever your
program is executing. In this manner, output from the
program is not confused with output from PROBE.
When PROBE has gained control from the application
program after a breakpoint or after each single step,
the application screen is saved and the PROBE screen
is displayed.

FORMAT: SC Show

REMARKS: Shows the current user screen. After a breakpoint has
been reached, this command may be used to display the
current state of the application screen. The application
screen remains displayed until any key is pressed.

Screen switching commands may only be used from the
local console. They have no meaning from the remote
console or other console since the application screen is
always displayed on the PC or AT console.

Chapter 6-78 SCREEN

EXAMPLES: To enable screen switching in Go and STep commands:
SC ON

To display screen switching state:
SC
Switch screens

This command displays the application screen. Once it
is displayed, type any key to return to the PROBE
screen.
SC S

SEARCH Chapter 6-79

SEARCH

PURPOSE: To search a block of memory for a list of values.

FORMAT: SEA range list

REMARKS: The block of memory indicated by range is searched
for a list of values. The list of values may be in any
data type. If no segment register or segment value is
specified for range, the DS segment value is used. All
locations within range which match list are displayed.
If no match is found the message "NO MATCH
FOUND" is reported.

EXAMPLES: To search the 100 locations starting at DS:200 for A5:
SEA 200 L 1 OOT A5

To search the 32 locations starting at CS:FFOO for
lOOT:
SEA CS:FFOO FF 1 F 1 OOT

To search the 256 locations starting at TEMP for the
string "ZERO":
SEA .TEMP .TEMP+FF "ZERO"

To search the stack for the string 'ST ACK':
SEA SS:SP-FF L FF 'ST ACK'

Chapter 6-80 SELECT

SELECT

PURPOSE: To limit the number of linenumbers loaded from the
MAP file into the PROBE symbol table to those in
selected modulenames.

FORMAT: SEL [.. modulenamel, •. modulename2 ..•••)

REMARKS: The linenumbers for the specified modulenames are
selected during the loading of the symbol table. All
linenumbers for all other modules are not loaded. If
modulename is not specified in this command, then the
command displays all currently selected modules. This
command limits only linenumbers and not symbolnames
since they are associated with a modulename.

EXAMPLE: Using the following command, the symbol table will
only receive lines from the three specified modules.

SEL .. main, .. consoleio, . .intprocedure

The selected modules can now be displayed.

SEL <enter>
.. main
.. consoleio
. .in tproced ure

FORMAT: SEL ALL

REMARKS: The linenumbers for all modules are selected. This is
the ini tializa ti on de fa ult.

EXAMPLE: SEL ALL

SOURCE STEP Chapter 6-81

SOURCE STEP

PURPOSE: To single step program execution by source statements.

FORMAT: SS [= start address] [A] [M moduleoame]

REMARKS: Source lines are displayed on the screen and executed
one at a time as the <enter> key is pressed. If start
address is not specified, then the current CS:IP is used.
Typing <enter> will cause the program to execute the
displayed line.

Before source level stepping of a program is started,
the ASign command should have been used to assign
modulenames to sourcefiles. You only need to make
the assignments for files you want to step through.
Assignments can normally be done with an
initialization macro, while single stepping. If the
current modulename is not assigned to a file with the
ASign command, the source line is not displayed but
the symbol value (.. modulename#linenumber) will be
displayed.

Several lines of upcoming source code are displayed
with each single step. If the A option is specified, the
stepping will occur automatically. Single stepping can
be terminated by pressing any key (except <enter>) or
the STOP button. If M modulename is specified, only
lines in the specified modulename are stepped, all other
code executes at full speed.

While you are in the Source Step command, you can use
the keys below to move around in the file you are
currently in.

Chapter 6-82

PG UP ("'U)
PG ON ("'D)
<Ctrl> PgUp ("'T)
<Ctrl> PgDn ("'B)
HOME ("'H)

<enter>

up arrow ("'P)
down arrow ("'L)
<any other>

SOURCE STEP

displays the previous page
displays the next page
displays the top page of the file
displays bottom page of the file
repositions screen to the current
CS:IP
repositions screen to current CS:IP
and takes a single step
no effect
no effect
exits step mode.

EXAMPLES: To start stepping the program at the source level from
location .MAIN:
SS =.MAIN

To source step only through module FTOCM CODE:
SS M .. FTOCM CODE -

To automatically step each line:
SS A

Notes on Source Level Single Stepping

For source level single stepping, the modulenames and linenumbers
for each module must be in the symbol table for the module which is
to be single stepped. See Chapter 3 for a discussion of the compiler
and linker controls which generate symbol table information.

If the line numbers for a particular module are not in the symbol
table and if source level stepping enters that module, then the
program will run real time until it returns to a module which has
linenumbers and modulenames in the symbol table. When source
level single stepping through portions of a run-time library or
assembly language which also does not have linenumbers, the
program will run real-time until it returns to an area which has the
linen umbers.

If the program to be single stepped is written in Lattice C, review
"Single Stepping Programs by C Source Statements" in Chapter 3
before proceeding.

STEP Chapter 6-83

STEP

PURPOSE: To single step program execution at the assembly
language level.

FORMAT: ST [=start address] [P] [0] [A]

REMARKS: If [=start address] is not specified, then the first step
starts at the current CS:IP. The command starts by
displaying the next several instructions. The cursor is
positioned to the right of the instruction to be
executed. Typing the enter key will cause the program
to execute the displayed instruction.

Typing P will treat a call procedure as a single step.
Typing 0 will treat a software interrupt procedure as a
single step. If the P or 0 option is used when the STep
command is invoked, then the options apply globally to
all procedures. The P and 0 options are implemented
by setting a software breakpoint after the next
instruction to be stepped. If while stepping with the P
or 0 option, the program starts running and single
stepping fails, it is probably because the program did
not return to the instruction after the single stepped
instruction.

Typing PgDn will single step a screen full of
instructions. Typing any other key will cause the
program stepping to stop and will not execute the
instruction to the left of the cursor. The current CS:IP
location and instruction are displayed after each step.
The contents of the operands for each instruction are
displayed at each single step so you don't have to exit
the command to view the contents of the operands.

If the A option is specified, single stepping occurs
automatically on the screen until any key is pressed.

The trap flag is used to take each single step.

If the Window command has a window currently
assigned, the window is updated after each single step.

Chapter 6-84 STEP

EXAMPLE: To execute a single step starting at location 100:20 and
continuing until a non-enter key is typed:

ST
0671:0010 MOY SI,WORD PTR [BP+Ol 14] -- ,OOE6
0671:0014 MOY AL,BYTE PTR [SI] -- ,8A
0671:0016 XOR AH,AH
0671:0018 TEST AX,AX
0671:001A JNZ OOlF ; .. FTOCIO_CODE#57+0198 -will jump
0671:001C JMP 0117 ; .. FTOCIO_CODE#57+0290

SYMBOL Chapter 6-85

SYMBOL

PURPOSE: To define or display the values of the symbols which
were loaded into the PROBE symbol table space.

FORMATS: SY .symbolname = symbolvalue
SY (.. modulename]#linenumber = linenumbervalue

REMARKS: Symbols can be used in place of address values in
PROBE commands and expressions. Symbols are
variable length ASCII strings up to a maximum of 80
characters. If no segment value is specified when
defining a symbol, then the DS segment value will be
used. The symbols are stored in protected memory on
the SOFTWARE SOURCE PROBE card. The number
of symbols which can be stored is determined by the
sum total of the length of each symbol as well as how
many macros exist since they are stored in the same
area in memory. Symbols may be defined in terms of
other symbols. If a symbol already exists, its value is
changed in the symbol table, and the previous symbol
value and a warning message are displayed. A symbol
can be set to a 16 bit value by defining it with a
segment value of 0.

If the symbol table overflows, the user may allocate
more symbol table space in system memory with the T
parameter in PROBE.CFG. See Appendix C.

FORMATS: SY .symbolname
or

SY (.. modulename]#linenumber

REMARKS: The value of the symbol represented by the symbol
name or the line number is displayed. The line
numbers of a high level language program as they are
passed from the LINK.MAP file are also symbols in the
symbol table. Since all modules may have duplicate
line numbers, the modulename is also stored in the
PROBE symbol table. Two periods preceding the
module name specifies the name as a module name,
otherwise the default module name is used. Lower case
ASCII is treated as uppercase in symbol table searches.

Chapter 6-86 SYMBOL

A wildcard character * may be added to the end of a
symbol name for symbol table searches. An * may be
added to the end of a module name to display all line
numbers in a module.

FORMAT: SY [address]

REMARKS: If address is not specified, then all symbols in the
symbol table are displayed. If address is specified,
then the symbol which matches that address is
displayed.

EXAMPLES: This command displays all symbols.
SY
VALUE

FBFC:EF48

FBFC:EEE2

FBFC:FlD6

SYMBOL NAME

BUFFER

FILENAME

LINE NUMBERS FOR MODULE TESTER

#15=0634:003C

#20=0634:0089

#16=0634:0045

#21=0634:0092

#17=0634:005B

#23=0634:00A3

This command displays the symbol start.
SY .START
.START= lOOO:OOAE

This command def in es the symbol LOOP.
SY .LOOP= 2000:0050

This command displays the line 122 of module PASI.
SYM .. PAS1#122
.. PAS I# l 22=0624:00 3C

SYMBOL Chapter 6-87

EXAMPLES, continued

To display the symbol which matches the current CS:IP:
SY CS:IP
.. PASl#l9

To define a symbol based on the current stack segment:
SY .SS= O:SS

To define a symbol in terms of this symbol:
SY .MY VAR= .SS:BP+6

To list all symbols starting with PAS:
SY .PAS*

To list all line numbers for the module FTOC:
SY .. FTOC*

Chapter 6-88 UN ASSEMBLE

UNASSEMBLE
PURPOSE: To unassemble memory into 8088 or 80286 assembly

language instructions (or near assembly language when
more clarity is needed in the disassembly).

FORMAT: U range

REMARKS: The specified range of memory is unassembled to the
next highest whole instruction. If no length is
specified, then the default is the length specified in
the previous U command. If no segment value or
segment register is specified in range, then the segment
value from the previous U command is used. The
PgDn key will unassemble the next screen full of
instructions. The start of range must correspond to the
first byte of an instruction or all of the unassembled
instructions which follow may be incorrect. All
indirect references to memory are specified as word or
byte in the unassembly to simplify the understanding
of the data type which is being addressed. All relative
jumps and calls show the absolute offset rather than
the relative offset for ease of determining the target
address. The target addresses are also shown with a
symbol comment at the end of the instruction. If there
is no matching symbol, then the nearest previous
symbol plus an offset is used. Data operands also show
symbols as a comment if there are no base or index
registers involved.

EXAMPLE: To unassemble four instructions starting at the symbol
.START: (Note that Length 4 in this command refers
to lines of code not bytes of code.)

U .START L 4

.. MEMORYTESTER#82

0624:0000 OBIEB2F5

0624:0004 268B2F

0624:0007 7E05

0624:0009 9A00000020

MOY BX, WORD PTR [F5B2) ;MEMADDER+oo2

MOY BP,WORD PTR ES:[BX)

JLE OOOD ;MEMTEST#99+36

CALL 2000:0000 ;TESTMEMORY

WINDOW Chapter 6-89

WINDOW

PURPOSE: To open a window to display user defined data after
each Go, STep, or Source Step command.

FORMAT: WI = macroname

REMARKS: Opens the window and executes the macro macroname
after each Go command and after each step in the
STep and Source Step commands. The output of the
macro command is displayed in the window. The size
of the window is automatically adjusted to fit the
amount of data output by the macro.

FORMAT: WI

REMARKS: Displays the name of the current window macro.

FORMAT: WI Close

REMARKS: Closes the window at the bottom of the screen.

EXAMPLE: The following commands define a macro to display all
register values and the contents of a buffer, and then
open a window to show this data after each single step.

MAC R =
-R
-BY .BUFFER L .BUFFERLENGTH
-END

WI= R

Chapter 6-90 WORD

WORD

PURPOSE: To display or change the words in memory.

FORMAT: WO [range]

REMARKS: The words in memory specified by range are displayed
in hex. If no segment register or segment value is
specified in range, then the segment value from the
previous WOrd command will be used. If no length is
specified in range, then the default is the previous
length. If no range is specified, then a block of words
starting at the end of the previous block is shown with
a length equal to the previous length. The PgDn key
will display the next screen full of words.

FORMATS: WO start address = value [,] value [,] value ...
or

WO start address = <enter>

REMARKS: In the first format, words in memory are changed to
the list of values to the right of the equal sign. In the
second format, the current word at the address is
displayed and a prompt waits for a new data value at
this location. After the new data is entered, the next
location is displayed and can be changed. Typing
<enter> alone on a line ends the changes. When data is
written to memory, it is read back for verification
unless the NOVerify condition is Noread. Errors are
reported accordingly.

EXAMPLES: This command stores a list of words.
WO .START= 0000,0001,0002

This command stores the same list of words but looks
at each one before changing it.
WO .START=
3000:0000 0000 - 0001 <enter>
3000:0002 0001 - 0002 <enter>
3000:0004 0002 - 0003 <enter>
3000:0006 0004 - <enter>

WORD Chapter 6-91

EXAMPLES, continued

To display the data:
WO .START L 3
3000:0000 0000 000 I 0002

The next 3 words can be displayed with the following
command. PROBE remembers the last length, and
therefore the length defaults to 3.
WO <enter>
3000:0006 0004 AAAA BBBB

Registers can also provide the start address.
WO SS:SP = 0, 0, 0, 0
WO SS:SP+BP L 3

Appendices Appendix 1

APPENDICES

APPENDIX TITLE

A
B
c

D
E
F
G
H
I

PROBE ERROR MESSAGES ... A-1
SOFTWARE/MAINFRAME COMPATIBILITY ... B-1
CONFIGURATION FILE AND EXTERNAL

CONSOLE CONNECTION ... C-1
USER PROCESSED NMI ... D-1
FILES ON YOUR PROBE DISKETTES E-1
PROBE/MS DOS INTERFACE DESCRIPTION .. F-1
SYMBOL TABLE MAP FORMATS G-1
USING PLINK86 WITH PROBE H-1
TECHNICAL REPORTS .. I-1

PROBE Error Messages Appendix A-1

APPENDIX A
PROBE ERROR MESSAGES

Initialization error messages

"In valid in vocation."
The command line after SOURCE was invalid. Probably
missing the "\" before the path specification.

"Cannot allocate memory for screen swapping"
"Cannot allocate memory for symbol table"

General

This indicates that DOS did not have enough memory to
allocate to PROBE to satisfy the W or T parameters in the
PROBE.CFG file. See Appendix C.

"Syntax Error."
The command syntax is not recognizable.

"DOS Critical Error #xx"
A critical DOS error occurred.

"Unrecognized command."
"Unrecognized edit command."

The first 2 or 3 letters typed do not match a command.

"Invalid expression."
The expression is invalid. (e.g. no operator between
operands, 2 operators between operands, ...)

"Attempted division by O."
An attempt was made to divide by 0 in the expression.

"Too many ('s."
There were more '(' than could be parsed.

"Symbol not found."
The symbol in the command line could not be found in the
symbol table.

"File not found."
The requested file could not be found.

Appendix A-2 PROBE Error Messages

"Path not found."
An element of the path does not exist.

"Too many open files in DOS."
There are too many DOS files open for SOURCE PROBE
to open another file. Source opens a maximum of 3 files.

"Access denied to file."
The file could not be opened for reading or writing.

"Disk is full."
The disk is full and the file could not be written.

"Must enable disk interrupt to use disk."
The disk interrupts must be enabled to use the disk.
See the INTERRUPT command.

"File system error."
A DOS file system error occurred.

BREAKPOINT Command.

"Must be: 1 <= BP number <= 8"
Breakpoint numbers are 1 to 8.

"BP > 40 characters."
Breakpoints must be less than 40 characters long.

"Warning -- BP already exists: "
The BP already existed and has been redefined. Its old
value is printed as a warning.

BYTE, WORD, POINTER, MOVE, FILL commands.

"Cannot write in location xxxx:yyyy"
The location xxxx:yyyy is not RAM. This message will
only occur if NOVerify = Read.

PROBE Error Messages Appendix A-3

CONSOLE Command.

"Must enable keyboard to go to local console."
The keyboard must be enabled in order to use the local
console.

DIR Command.

"File not found."
The requested directory or target file was not found.

EDIT Command.

"No filename assigned to current CS:IP"
There is not a filename assigned to the module
associated with the current CS:IP. Use the ASlgn
command to make the association or use the EDIT
FI LEN AME command.

"Enter file for log of changes:"
Enter the file that will contain a log of changes. This
prompt will occur only for the first CHANGE command.

"Enter file to be "closed" (<enter> for none): "
The SOURCE PROBE file table is full and a file must be
"closed" in order to "open" a new file.

"File not in table."
The file to be "closed" so that another may be "opened"
is not a currently "open" file.

EMACRO Command.

"Macro nesting > 5."
Macros may only nest to a level of 5.

"Loop nesting > 5."
Loops may only nest to a level of 5.

Appendix A-4 PROBE Error Messages

GO Command.

"Parity Error."
A parity error occurred in the IBM AT RAM memory and
ca used an NMI.

"8087 or 80287 Co-processor error, status=xxxx"
An 8087 or 80287 error occurred and caused an NMI.

"Cannot set breakpoint at xxxx:yyyy"
The location xxxx:yyyy is not RAM and an execution
breakpoint cannot be written there.

"Too many execution breakpoints."
There are 8 execution breakpoints.

"Verb must be R, W, A"
These are the only allowable verbs.

"1/0 verb must be R, W, or A"
Must have Read, Write, or All verb for IO operations.

"1/0 address cannot contain segment"
May not have a segment value on the port number.

IF Command.

"Loop/If only allowed in macro."
IF is only allowed from within a macro.

INITIALIZE Command.

"Program has terminated. Must be re-loaded."
The program has terminated and released its memory back
to the DOS memory manager. It must be re-loaded.

INTERRUPT Command.

"Cannot disable keyboard from local console."
The keyboard interrupt may only be disabled from the
remote console.

PROBE Error Messages Appendix A-5

LOAD Command.

"File not found."
The file to be loaded could not be found.

"Insufficient memory"
The file to be loaded was too large to fit in available
memory.

"Invalid Filename"
The filename to be loaded is not a valid DOS filename.

"Internal error during load"
There was a DOS internal error during the load of the
file.

"Could not find 'Publics by' in file."
The line 'Publics by' denotes the file as a valid symbol
file when loading symbols.

LOOP Command.

"Loop/If only allowed in macro."
Loop is only allowed from within a macro.

"Loop nesting > 5."
Loops may only nest to a level of 5.

MACRO Command.

"Macro does not exist."
The macro to be displayed does not exist.

"Macro already exists."
The macro to be defined is already defined in the symbol
table.

"Symbol table full."
The symbol table is full and the macro definition cannot
be saved.

"Macro definition too long for macroname"
Macros must be less than 255 characters long.

Appendix A-6 PROBE Error Messages

QUIT Command.

"Have already done a QR. Must now do a GO."
May only do QR once.

"Warning -- List file has been closed. Open another one."
The list file is closed for a Q R. You must open
another file if you wish listing to continue.

REGISTER Command.

"Unknown register name."
The only valid register names are:
ax, bx, ex, dx, ah, al, bh, bl, ch, cl, dh, dl
si, di, sp, bp, cs, ds, es, ss

"Unknown flag name."
The only valid flag names are:
0, D, I, T, S, Z, A, P, C

SA VE Command.

"Invalid file name."
The filename to be saved is not a valid DOS filename.

SCREEN SWITCH Command.

"Must be at local console for screen switching"
Cannot perform SCreen Show from remote console since
data is already on the PC or AT console.

PROBE Error Messages Appendix A-7

SYMBOL Command.

"Symbol not found."
The symbol to be displayed is not in the symbol table.

"Symbol table full."
The symbol table is full and no more symbols can be
defined. See T option in Appendix C.

"Warning: Redefining symbol. Old value was ... "
The symbol already existed and has been redefined.

Software/Mainframe Compatibility Appendix B-1

APPENDIX B
SOFTWARE/MAINFRAME COMPATIBILITY
The PROBE is compatible with the software and versions shown in
Table B-1.

Table B-1. Software Compatibility

SOFTWARE

PCDOS/MSDOS

PASCAL

c

ASSEMBLER

FORTRAN

VERSION

2.0/2.1/3.0/3.1

MANUFACTURER

IBM/MICROSOFT

IBM/MICROSOFT

MICROSOFT /LATTICE

COMPUTER INNOVATIONS

AZTEC with DOS linker

Wizard with DOS linker

IBM/MICROSOFT

MICROSOFT

The PROBE is compatible with the systems shown in Table B-2.*

SYSTEM

Table B-2. Hardware Compatibility

MANUFACTURER

PC

XT
COMPAQ PORTABLE

PC 1200

PC 150,151

NCR PC

SPERRY PC

LEADING EDGE

FARADAY BOARD

IBM

IBM

COMPAQ

TANDY

ZENITH

NCR

SPERRY

LEADING EDGE

FARADAY ELECTRONICS

*Compatibility with other systems will be added in the future.
Contact Atron for more details.

Configuration File

APPENDIX C
CONFIGURATION FILE AND EXTERNAL
CONSOLE CONNECTION

Appendix C-1

The configuration file is an ASCII file named PROBE.CFG, and the
file provides PROBE system information and is used during some
commands. PROBE.CFG specifies:

1. Console configuration parameters for the external console.
2. Whether the symbol table space has been expanded.
3. Whether screen switching with a color monitor will be used.

If the PROBE.CFG file is not present in the default pathname, then
the default setting is the same as the VTlOOSW.CFG file. The
PROBE.CFG parameters are described later.

CONNECTING AN EXTERNAL CRT TO COMl OR COM2 PORT

For the COMI and COM2 ports, the transmission parameters are set
from DOS software using the MODE command, and PROBE uses
these parameters as they are set.

PROBE.CFG PARAMETERS

When PROBE writes to the screen it uses cursor and screen control
parameters for editing and for the Menu window. When an external
CRT is used, these parameters must be put into the PROBE.CFG file
to tell PROBE how to work with the CRT you are using. A
description of these parameters is shown below. The A parameter
has a different use.

Appendix C-2 Configuration File

A segment address of SOFTWARE SOURCE PROBE board. This
must be first.

H Home cursor and clear screen sequence.

L Clear line from cursor to end.
M Move cursor to row Y, column X (see X, and Y defined below).

Move cursor to row W, column V (see W,and V defined below).

0 Set offset to be added to V or W (definitions below).

T Select n 64k blocks of memory from the system's memory for use
when the PROBE symbol table overflows. If not specified, the
de fa ult is 0.

W If set to Y for yes (not the same Y as defined below), then 12K
of system memory is used to save the screen memory for a color
graphics adapter when the SCreen switch command is used. The
default does not reserve memory in system memory space.

The format for each parameter is:
<id letter> = HexChar [VIWIXIY]* HexChar [VIWIXIY]*
HexChar ... 00
(id letter is A,H,L,M,O,T, or W)
Hex Characters specify ASCII characters in sequence for example,
the sequence <esc>H is represented as lB 48.

DEFINITIONS OF X,Y,V,W

X an ASCII X. PROBE will translate the column number to ASCII
and place the two resulting ASCII characters at this position in
the sequence.

Y an ASCII Y. PROBE will translate the row number to ASCII and
place the two resulting ASCII characters at this position in the
sequence.

V an ASCII V. PROBE will add the column number to the input
offset and send the resulting ASCII character at this position in
the sequence.

W an ASCII W. PROBE will add the row number to the input offset
and send the resulting ASCII character at this position in the
sequence.

Conj iguration File Appendix C-3

Below are some examples of configuration files for the indicated
terminals. Some of these are included on the SOFTWARE SOURCE
PROBE diskettes so that they can be easily copied to PROBE.CFG.

The first example is for using a PC as a terminal which uses the
TERMCOM terminal emulator supplied with the SOFTWARE
SOURCE PROBE diskettes.

PC TERMINAL EMULATOR

H=lB 31

L=lB 32

M=lB 33 WV

0=00

R=9600

WY-30

H=lE lA 00

M=lB 30 WV 00

L=lB S4 00

0=1F

VTS2:

H=lB 48 lB 4A 00

L=lB 4B 00

M=lB S9 W V 00

0=1F

ADM-3A:

H=lB S9 20 20 OC 00 H=lE IA 00

L=lB 4B 00 L=OO

M=lB S9 W V 00

0=1F

HAZELTINE 15IO:

H=7E 12 7E 18 00

L=7B OF 00

M=7E 11 Y X 00

0=00

M=lB 3D WV 00

0=1F

DUMB TERMINAL

H= 0

L= 0

M=O

0= 0

VTlOO: (factory default)

H=lB 5B 31 3B 48 1B 5B 32 4A 00

L=lB SB 30 4B 00

M=lB SB Y 3B X 48 00

0=00

HP

H=lB 48 lB 4A

M=lB 26 61 X 63 Y S9

L=lB 4B

O=FF

QUME QVTI02

H=lE 1B 79 00

M=lB SB W 1B 50 V 00

L=lB S4 00

O=lF

TELEVIDEO 92S

H= IE IAOO

L= 1B S4 00

M= 1B 3D WV 00

0= lF

IBM 3101

H= lB 48 lB 4C

L= 00

M= lB S9 V W 00

O= lF

Appendix C-4 Configuration File

EXAMPLE: This shows what PROBE will send to the CRT when it
wants to move the cursor to row 5 column 10 for two
different types of CR T's (i.e. two different
PROBE.CFG files).

On a VTlOO:<eSC> [05; 10 H
On an ADM-3A:<esc> = $){ 5 + IF = 24 = '$'10 + IF = 29 = ')' }

NOTE: Terminals which do not support L will not clear the
line on the screen when the line is being edited.
However, the image of the line in PROBE memory is
cleared. To avoid the command line recall, use the
Dumb terminal configuration.

USING THE PC AS A TERMINAL EMULATOR

Another PC can be used as an intelligent terminal by using the
Termcom program provided on the PROBE diskette. In this case
connect pins 5-6-20 on the PC. Termcon is a terminal emulator
program which makes the COMI port of a second PC look like an
intelligent terminal to PROBE.

1. First copy PC.CFG to PROBE.CFG to configure PROBE to work
with Termcom.

2. On the PC which is acting like a terminal, use the mode command
to set the baud rate.

mode com 1: 9600,n,8,2

3. Connect an RS232 cable between the PROBE com port and the
COMI port of the PC terminal emulator.

4. On the PC terminal emulator type: termcom

5. Once PROBE has been brought up, switch to the external console
with the CONsole R command.

6. The menu is not on when the switch is made to the terminal
emulator. To get the menu back, type: ME ON

Con/ iguration File Appendix C-5

EDITING KEYS ON REMOTE CONSOLE

The previous DOS editing keys can be mapped to the external CRT.
The special keys on the IBM PC or AT keyboard can all be mimicked
from the external CRT by using the following conversion. Note that
the character, '"', is used as a special lead-in for these keys. This
character may be obtained on the IBM PC or AT keyboard as
<shift>6 but may be at a different location on your remote terminal.
If you are using a PC as a remote console, it would be useful to use
Borland International's Superkey to remap these keys to the function
they would have on a PC keyboard.

IBM Key Function Special two-key sequence

Fl Same as DOS. "1
F2 See above. "2
F3 See above. "3
F4 See above. "4
F5 See above. "5

Ins See above. "I or "i
Del See above. "Kor "k (Kill character)

Pg Up Up one page "U or "u
PgDn Down one page "Dor "d

<Ctrl>PgUp Top page "Tor "t
<Ctrl>PgDn Bottom page "B or "b

HOME Home page "Hor "h

Up arrow up one line "P or "p
Down arrow down one line "L or "l

Commands which dump data to the screen can be terminated with
the Ctrl C key or the STOP button on the external switch box. The
screen dump will pause with the Ctrl S key.

User Processed NM! Appendix D-1

APPENDIX D
USER PROCESSED NMI

The PROBE uses the non-maskable (NMI) interrupt to generate the
breakpoint. This will cause special processing to be needed when the
NMI is used by other system elements such as user generated NMI on
the IOCHK line on the bus or software modifications to the NMI
vector at location 8.

If the applications program intends to change the NMI vector at
location 8 then control will not return to PROBE when a hardware
breakpoint occurs. However, this can be remedied by the following
procedure.

Start the user program and set an execution breakpoint at the point
in the applications program sometime after the NMI vector has been
changed by the applications program. When this breakpoint has been
detected and control has returned to PROBE, the PROBE will inspect
the vector to see if it has changed. If it has, PROBE stores this new
vector away and then restores location 8 to its breakpoint vector.
Hence forward, when an NMI occurs, PROBE checks to see what
type of NMI has occurred: hardware breakpoint, parity error, or
user NMI. If a user NMI or parity error, PROBE continues executing
the user NMI routine. If the NMI was caused by a hardware
breakpoint, then PROBE retains program control. The sequence of
stopping the processor with an execution breakpoint and fixing up
the PROBE vector is necessary each time the vector changes.
However, this normally occurs only once at the start of the user's
program such as in the initialization code of a numeric run-time
library.

Files on your PROBE Diskettes Appendix E-1

APPENDIX E
FILES ON YOUR PROBE DISKETTES

There are several files on your PROBE diskettes, which may or may
not be needed depending upon what you are doing. Only those used
for "EXECUTING PROBE SOFTWARE" are required. A list of these
files and their purpose is given below: FILES ON sw

DESCRIPTION OF FILE

CURRENT VERSION

EXECUTING PROBE SOFTWARE

EXECUTING PROBE SOFTWARE

EXECUTING PROBE SOFTWARE

PROBE DIAGNOSTIC SOFTWARE

PROBE DIAGNOSTIC SOFTWARE

STRIP SYMBOLS FROM MAP

STRIP DATA FILE Vl.O PASCAL

STRIP DATA FILE V3.11 PASCAL

STRIP DATA FILE LATTICE C

STRIP DATA FILE MICROSOFT C

STRIP SYMBOLS FROM PLINK86

A FILE OF SAMPLE MACROS

EXECUTABLE DEMO FILE

PRESTRIP SYMTABLE FOR DEMO

SOURCE FILE DEMO MODULE #1

SOURCE FILE DEMO MODULE #2

PROBE CONFIGURATION FILE

CFG FILE FOR VTlOO TERMINAL

CFG FILE FOR ADM3A TERMINAL

CFG FILE FOR TV925 TERMINAL

CFG FILE FOR DUMB CRT

CFG FILE FOR TERMCOM

PC TERMINAL EMULATOR

PRODUCE C LIST FILE

FILES ON SOURCE

SWSOURCE PROBE/PL

1.13 1.13

SW SOURCE.EXE SWSRCPL.EXE

STRIP.EXE STRIP.EXE

STRIPlO.P AS STRIPlO.PAS

STRIP31.P AS STRIP31.P AS

STRIP.C STRIP.C

STRIP.MSC STRIP.MSC

STRIPPE.EXE STRIPPE.EXE

PROBE.MAC PROBE.MAC

FTOCNEW .EXE FTOCNEW .EXE

FTOCNEW .MPl FTOCNEW .MPl

FTOCM.C FTOCM.C

FTOCIO.C FTOCIO.C

PROBE.CFG PROBE.CFG

VTlOOSW.CFG VTlOOSW.CFG

ADM3ASW .CFG ADM3ASW.CFG

TV925SW.CFG TV925SW .CFG

DUMBSW.CFG DUMBSW.CFG

PC.CFG PC.CFG

TERM COM.EXE TERM COM.EXE

CLIST.EXE CLIST.EXE

Appendix E-2

DESCRIPTION OF FILE

CURRENT VERSION

EXECUTING PROBE SOFTWARE

EXECUTING PROBE SOFTWARE

EXECUTING PROBE SOFTWARE

PROBE DIAGNOSTIC SOFTWARE

PROBE DIAGNOSTIC SOFTWARE

STRIP SYMBOLS FROM MAP

STRIP DATA FILE Vl.O PASCAL

STRIP DATA FILE V3.11 PASCAL

STRIP DATA FILE LATTICE C

STRIP DATA FILE MICROSOFT C

STRIP SYMBOLS FROM PLINK86

A FILE OF SAMPLE MACROS

EXECUTABLE DEMO FILE

PRESTRIP SYMTABLE FOR DEMO

SOURCE FILE DEMO MODULE #1

SOURCE FILE DEMO MODULE #2

PROBE CONFIGURATION FILE

CFG FILE FOR VTlOO TERMINAL

CFG FILE FOR ADM3A TERMINAL

CFG FILE FOR TV925 TERMINAL

CFG FILE FOR DUMB CRT

CFG FILE FOR TERMCOM

PC TERMINAL EMULATOR

PRODUCE C LIST FILE

Files on your PROBE Diskettes

FILES ON SW

SOURCE/87

1.13

SWSRC87.EXE

STRIP.EXE

STRIPlO.PAS

STRIP31.PAS

STRIP.C

STRIP.MSC

STRIPPE.EXE

PROBE.MAC

FTOCNEW .EXE

FTOCNEW.MPl

FTOCM.C

FTOCIO.C

PROBE.CFG

VTlOOSW.CFG

ADM3ASW.CFG

TV925SW .CFG

DUMBSW.CFG

PC.CFG
TERM COM.EXE

CLIST.EXE

Interface Description Appendix F-1

APPENDIX F
PROBE/MS DOS INTERFACE DESCRIPTION

These interrupt vectors are taken over at all times by PROBE. They
are restored to their original value after a Quit command.

INTERRUPT LEVEL 1
Operation

SINGLE STEP

INTERRUPT LEVEL 2
Operation

NMI

INTERRUPT LEVEL 3
Operation

SW trap

When Used

SINGLE STEP

When Used

STOP button

When Used

Execution breakpoints

These interrupt vectors are taken over only when PROBE is
accepting command input. They are restored to their original value
for each Go, STep, and Quit commands.

INTERRUPT LEVEL lBH
Operation

<Ctrl> Break sense

INTERRUPT LEVEL 24H
Operation

Critical error

When Used

Whenever <Ctrl> Break is
pressed while in
PROBE command mode

When Used

Whenever a DOS Critical
error occurs while in
PROBE command mode

Appendix F-2 Interface Description

The following DOS V2.0 calls are made by PROBE only at
initialization.

INTERRUPT LEVEL 21H
Function
code AH=

OlH
02H, 09H
3DH
3EH
3FH
4AH
4BH

4CH

Operation

Console input
Console output
Open a file
Close a file
Read from a file
Set block size
Load a program (AL = 3 = load
overlay)
Terminate process (exit)

These DOS calls are used only for console communication to Remote
console I or 2.

INTERRUPT LEVEL 14H
Function
code AH=

OIH
02H
3DH

Operation

Remote I or 2 console input
Remote I or 2 console output
Remote I or 2 console input

Interface Description Appendix F-3

The following DOS V2.0 / IBM ROM BIOS calls are made by PROBE
while it is running.

INTERRUPT LEVEL lOH
Function
code AH=

0
2
3
5
6
9

14
15

Operation

Set video state
Move cursor
Read cursor
Select page
Scroll up
Write attribute
& character
Write character
Get video state

INTERRUPT LEVEL llH
Operation

Get equipment type

INTERRUPT LEVEL 16H
Function
code AH=

0
1

Operation

Read key
Key ready check

INTERRUPT LEVEL 20H
Operation

Program terminate

When used

Screen switching and init
LOCAL console I/0
LOCAL console I/O
Screen switching and init
LOCAL console I/0
LOCAL console I/O

LOCAL console output
Screen Switching and init

When used

Screen switching and init
If bits 4 and 5 are set,
then assume video memory is
at BOOO:O, else at B800:0.

When used

LOCAL console input
LOCAL console input

When used

Quit command

Appendix F-4 Inter face Description

INTERRUPT LEVEL 21H
Function
Code AH=

IAH

29H

30H

31H

3CH

3DH

3EH

Operation When used

Set DT A Dir command

Parse filename LO Ad command

Get DOS Version LOAd command

Terminate process Quit Remain command
& remain resident

Create file

Open file

Close file

SA ve command
SA ve Macros command
EDit - CHANGE command
List command (unless LPTI:
or COM!: which use DOS
default handles)

LOAd command
LOAd Macros command
LOAd Symbols command
EDit - DISPLAY command
STep command

SA ve command
SA ve Macros command
EDit - CHANGE command
LOAd command
LOAd Macros command
LOAd Symbols command
EDit - DISPLAY command
STep command
List command (unless LPTl:
or COMl:

Inter face Description Appendix F-5

INTERRUPT LEVEL 21H, continued
Function Operation When used
Code AH=

3FH Read from file LOAd command
LOAd Macros command
LOAd Symbols command
EDit - DISPLAY command
STep command

40H Write to file SA ve command
SA ve Macros command
EDit - CHANGE command
List command active

42H Seek in file EDit - DISPLAY command
(AL= O; 0:0)
STep command
(AL= O; 0:0)
EDit - CHANGE command
(AL= 2; 0:0)

48H Allocate memory LOAd command

49H Deallocate
memory LOAd command

4BH Load file LO Ad command (AL = 1)

4CH Terminate
program LOAd command

4DH Retrieve exit
code End of program.

4EH Find first file Dir command
4FH Find next file Dir command

Appendix F-6 Interface Description

OTHER RESOURCES USED BY PROBE

I. 58H paragraphs of memory just above DOS are used when
PROBE is first being loaded.

2. lOH paragraphs (PROBE's program segment prefix) are used
while PROBE is running.

3. When a user enters a LOAd command, PROBE loads the program
and sets its termination address to point to PROBE.

Symbol Table MAP Formats Appendix G-1

APPENDIX G
SYMBOL TABLE MAP FORMATS

This is a description of the format of the MAP file which is read
into PROBE by the LOAd S filespec command. The MAP file is used
to create the PROBE symbol table and must conform to this format
to be interpreted properly.

In the following description this short hand notation is used:
<S> means any number of spaces (0-80)
<C> means any number of characters

Characters in quotes must be typed as is, including their upper /lower
case.

1. Any number of lines of data.
2. A line of the form:

<C> 'Publics by' <C>
3. A blank line.

4. Any number of symbol lines of the form:
<S> segment:offset <S> symbol name <CR>

5. A blank line. This denotes the end of symbols.
6. Any number of lines of data.
7. A line of the form:

<C> 'Line n' <C> modulename. (Note: Modulename must
start in column 18)

8. A blank line.
9. Any number of line number lines of the form:

<S> line number <S> segment:offset <S> line number <S> ...
10. A blank line.
11. Steps 7, 8, 9, and 10 may be repeated any number of times.

Appendix G-2 Symbol Table MAP Formats

SPECIAL NOTES:

If the symbol ' INIXQQ ' (the spaces inside the quotes are
required) is found beforethe line containing 'Publics by' then it is
assumed to be a Microsoft Pascal module which will move DGroup.
Therefore, the following information is used on the lines before
'Publics by':

If ' ST ACK', ' DAT A', ' COMADS', or ' CONST' exist on the
line-:-then the size of the segment is added to DGroupSize. The size
of the segment is assumed to be a hex number starting in column 16
of this line.

When a line is found with '_DGROUP' on it, the DGroupStart
address is picked up from the same line. The start address must be
in column 2.

Once the 'Publics by' line is read, the following formula is evaluated
for symbols whose segment value is the same as DgroupStart:

SSV == Symbol's new segment value
DGS == DGroupStart
SS == 'ST ACK' class size
DS == 'DAT A' class size
CS == 'CONST' class size
MS == 'COMADS' class size
MT == Top of memory in PC

SSV := DGS + I - (SS + DS + CS + MS)

16

if (SSV + I OOOH) > MT then SSV := MT - I OOOH

Using PLINK86 with PROBE Appendix H-1

APPENDIX H
USING PLINK86 WITH PROBE

If the PLINK86 linker is used instead of the standard DOS linker,
the SYMT ABLE option must be specified in the link command to
produce symbolic debugging records. If the modules to be linked
have been produced with Microsoft Pascal or Fortran, the users
compiled program will move the DGroup to higher memory. In order
to work correctly, the "G" flag must be specified in the MAP
command to PLINK86 for these compilers.

This linker places the symbolic debugging information into the .exe
file instead of the .MAP file. There are two methods for PROBE to
get the symbolic information from the .exe file instead of the MAP
file. If you are using the standard versions of PROBE software, the
STRIPPE utility described next should be used. If you are using the
/PL versions of PROBE software, go to the next section.

A utility called STRIPPE.EXE is included on the PROBE diskette to
take the symbolic debugging information from the .exe file and
create a standard DOS MAP file. The syntax for this utility is:

strippe.exe [/] inputexefile, outputlinkmap, datafile

The inputexefile is the .exe file produced by PLINK86. The
outputlinkmap file created by this utility is in the standard DOS
.map format and will be read in by PROBE as the symbol table using
the LOA S command. If the symbol table is too large, symbols may
be stripped before they are placed in the outputlinkmap. The
symbols in the datafile are stripped from the outputlinkmap file. See
"STRIPPING SYMBOLS FROM THE MAP FILE" in Chapter 3 for
information on how to create this datafile.

SUPPORT FOR PLINK86 USING /PL VERSIONS

Special versions of PROBE software called /PL extensions are
available which support debugging programs linked with PLINK86.
Contact Atron for information on these versions. The /PL versions
track the overlay loader of PLINK86 so that breakpoints can be set
in overlays which are not yet loaded. These versions wait until the
overlay is loaded before setting the actual breakpoint. Descriptions

Appendix H-2 Using PLINK86 with PROBE

of the changes in the commands for the /PL versions are given in the
following sections.

LOAD COMMAND for PLINK86

The format for the LOAd command does not change. The difference
is that the symbol table load is from the .exe file.

EXAMPLE: loa test.exe ; loads program
loa s test.exe ; loads symbol table

SYMBOL COMMAND for PLINK86

The format of the SYmbol command which displays symbols does not
change. The difference is that the display also shows the overlay
number for the overlay which contains the symbol.

EXAMPLES: This command displays all symbols:

SY
Overlay
0
I
2
3

Address
3186:0200
31FE:OOOO
31FE:OOOO
31FF:OOOO

To display the symbol .ST ART:
sy .START
.START=3182:0000

Symbol name
$LDEX$
FOO
FOOi
F002

(Note that if the symbol is in the root overlay the
overlaynumber is not displayed.)

To display the symbol .TEMP which is in overlay #l:
sy .TEMP
.TEMP=31FE:OOOO, overlay #l

Using PLINK86 with PROBE Appendix H-3

The format of the SYmbol command which defines symbols has been
changed to include the overlay number associated with the symbol.

FORMAT: SY .symbolname = address [, overlay _number)

REMARKS: Symbolname is the name of the symbol and may also
include the .. modulename. Overlaynumber assigns the
symbol to the specified overlay. If no overlaynumber is
specified, then the default is 0 (root).

EXAMPLE: To define the symbol .FOO in overlay 3:
sy .FOO = 3128:0030 , 3

To define the symbol .FOOi in the root overlay, use
the following command. Note that defining symbols in
the root overlay does not require an overlay number.
sy .FOO I = 3128:0030

INVOKING THE /PL VERSIONS

To start up the /PL version of software which you have, type the
following:

VERSION OF PROBE SOFTWARE START UP COMMAND

SOURCE PROBE/PL SWSPL

GENERAL ERROR MESSAGES FOR PLINK VERSIONS

A new error message has been added in the /PL versions of PROBE.
If you use a symbolic reference in a command to PROBE for a
symbol which is in an overlay that has not yet been loaded, the
following error message will appear:

Symbol not loaded.

Technical Reports

APPENDIX I
TECHNICAL REPORTS

Appendix I-1

This section provides technical information, potential problem areas,
and bug reports for the PROBE. It will be updated periodically if
you send in your registration card.

This appendix contains the following Technical Reports:

INTERRUPT 3
ST ACK USAGE DURING BREAKPOINT
GETTING TO DOS COMMANDS FROM PROBE
JUMPING INTO THE PROBE SOFTWARE FROM THE

APPLICATIONS PROGRAM
INTERRUPTING CRITICAL CODE SECTIONS IN PC DOS
ASSORTED COMMON QUESTIONS AND ANSWERS.

Last revised: 4/25/86

Appendix 1-2 Technical Reports

INTERRUPT 3

Software interrupt 3 is used by the PROBE for the generation of
software breakpoints and should not be used by the user's program.

ST ACK USAGE DURING BREAKPOINT

After a breakpoint has been detected, 24 bytes of information are
pushed onto the stack. However, after control is received by PROBE,
the stack pointer is adjusted to remove this data. When starting
program execution again, the stack is also restored correctly.

GETTING TO DOS COMMANDS FROM PROBE

To execute DOS commands under the watchful eye of PROBE, do the
following:

1. Load PROBE.
2. Now do a quit and stay resident command from PROBE - Q R.

3. PROBE can now be reentered by using the STOP button as long
as its vectors have not been modified.

INTERRUPTING CRITICAL CODE SECTIONS IN PC DOS

If the STOP button on the external switch box is pressed or a
breakpoint occurs while the executing user's program is inside a non
re-entrant BIOS call such as the keyboard or monitor service routines
(INT 10), then the absolute locations which these routines address
will be modified and the results will be indeterminate (the system
may appear to lock up). This is because the PROBE software uses
BIOS calls to do console IO. To eliminate this from happening,
switch to the external console where no BIOS calls are made by
PROBE software since the external console routines are in the
PROBE software.

Technical Reports

ASSORTED COMMON QUESTIONS AND ANSWERS

"WHY DOESN'T MY EXTERNAL CONSOLE WORK?"

Appendix I-3

Ensure that 5-6-20 are connected on the COMl or COM2
connector.

"How can I force single stepping and avoid the screen update from
the instruction preview feature of the single STep command?"

Use the ST A (step automatic) option and then use Ctrl S to
pa use the screen.

"@ in a symbolname does not give me the right value for the symbol."

The @ in the symbolname is interpreted as the indirection
operator.

INDEX

Other Entries

16 bit symbols 6-85
8259 6-39
8087 or 80287 1-7, 4-3, 4-12,

6-33, 6-66, 6-67
@ 6-3, 6-6
* 6-23
% 4-18,6-51,6-71
{ } 6-4
[] 6-4
/l/m 3-9
/path spec 2-2
/pl 2-7, H-1
/87 2-7' 4-3, 6-33, 6-66, 6-67

A
Absolute address load 6-43
Absolute symbols 6-44
Address 4-14, 6-3, 6-6, 6-13
Address Publics by Line 3-12
Address to symbol 6-86
All 3-11
ASCII 6-71
ASI command 6-11, 6-81
Asign command 6-11
Assemble command 4-12, 6-8
At operator 6-3, 6-6

Base 6-4
Baud C-4

B

Bios 5-19, 6-18
Block memory 4-10, 6-17
Block operations 4-10, 6-1 7
Boolean expression 4-20, 6-4,

6-37
Braces { } 6-4
Brackets [] 6-4
Breaknumber 4-14, 6-13

Index 1

Breakpoint 6-13, 6-35
command 4-14, 6-13
con di ti on 6-13
delete 6-20
non-sticky 6-36
notes 6-14
number of 6-14, 6-35
sticky 6-36

Byte command 4-3, 6-15

c
c 3-3

Computer Innovations 3-6
Lattice 3-3
list file 3-7
Microsoft 3-5
single stepping 3-6
structure 6-51

Cables C-4
Chained breakpoints 6-57
Change memory 4-3
CLIST 3-7
CODE 3-4
Color monitor 6-19
.com 6-44
Com 1 6-18, 6-42, C-1
Com 2 6-18, C-1
Command mode 6-23
Compaq 1-6
Compare command 6-1 7
Compatibility B-1
Concurrency 5-20
Conditional macros 4-20
Console 2-6, C-1, C-5

baud rate C-4
command 6-18
Coml, Com2 6-18, C-1
other 6-19
remote 1-7, 6-60
using a PC C-4

Index 2

Control words 6-66
Count 4-20, 6-46
Crash 1-2, 5-20, D-1
CRT 6-18
Ctrl C 2-5, C-5
Ctrl S 2-5, 4-15, C-5

Datafile 3-11
Decimal 6-71

D

De fa ult segment 6-15, 6-17,
6-31, 6-63, 6-68

Defaults 2-2, 2-3
Probe.cf g 2-2, C-3

Delete command 6-20
Delete macro 6-20
Delete symbols 3-11, 6-20
Device drivers 5-18
Dgroup H-1
Directory (DI) command 4-13,

6-21, 6-23, 6-28
Disassembly 6-88
Display files 6-24
Display mode 6-23
DOS commands I-2
Down arrow 6-25, C-5
Drive 6-21

E
Echo command 6-22
Edit command 6-23
Edit keys 2-5, C-5
Else 6-37
End address 6-4
Error messages A-1
Evaluate command 4-21, 6-29
Execute macros 4-18
.exe 4-10, 6-38, 6-43, 6-76
Exit 6-28
Expression 4-21, 6-3, 6-29
External console 1-7, 6-60

False 6-4
Far 6-8

F

Field service Index-7
Files 2-7, E-1

.exe 4-10, 6-38, 6-43, 6-76
edit 6-24
number of 6-24
PROBE E-1

Filespec 4-13, 6-4, 6-11, 6-21,
6-24, 6-42, 6-43, 6-76

Filespec definition 6-4
Fill command 4-11, 6-31
Flag command 6-32
Flags 4-7, 4-10, 6-32
Float 6-33
Float command 4-3, 6-33
Floating point 6-70
Function keys 6-25

G
Go command 4-14, 6-35

H
Hex 6-8, 6-15, 6-29, 6-71, 6-76
Home 6-25, 6-82

If command 6-37
Indirect 6-3, 6-6
Initialization macro 2-3, 6-50
Initialize command 4-10, 6-38
Initialize macro 5-8, 6-50, 6-58
init.mac 2-3
Insert 6-27
Installation 1-2, 1-5
Int 3 6-14, I-2
Int IO I-2
Int 19 5-20
Int 20 6-38
Int 21 6-59
Integer 6-33, 6-71
Integer data 4-3

Interrupt mask 6-39
Interrupt command 6-39
Interrupts 5-20, F-1
IO 6-70
IOCHK 6-14, D-1
IO ports 4-6

K
Kernighan and Ritchie 5-2
Keyboard 5-20

L
Length 6-4
Linenumbers 3-7, 3-9, 3-11,

3-12, 3-13, 6-5, 6-61, 6-85
Linker 3-13

/l/m 3-9
DOS 3-9
Map 3-9
Plink86 3-9

List 4-11, 6-69
command 6-42
device 2-6
file 3-7

Lpt 1 6-42
Load absolute 6-43
Load .com file 6-45
Load command 4-19, 6-43
Load macros 6-19, 6-44
Load Plink H-2
Load stack segment 6-58
Load symbols 3-10, 4-13, 6-43
Loading programs 4-13, 6-43
Long 6-33
Loop command 6-46

M
.map 3-3
Map file 3-9, 3-12, 6-5, G-1

Macro 4-2
command 6-48
delete 6-20
echo 6-22
initialize 2-3
load 6-44
maximum size 6-48
nested 6-49
save 6-76
window 4-17, 6-89

Memory

Index 3

conflicts 1-5, 1-9, 1-14
mapped IO 6-65
Save 6-76

Menu 2-4, 6-18, C-4
Menu command 6-18, 6-60, C-4
Module 3-2, 6-4
Module command 6-61
Module "prog" 3-3
Module select 6-80
Modulename 3-3, 3-9, 3-11,

3-13, 4-16, 6-5, 6-11, 6-61,
6-80, 6-81

More command 6-62
Move command 6-63
.mpl file 3-11

N
Nest command 6-64
Nested loops 6-46
Nested macros 6-49
Non-execution 6-14
Non-reentrant 5-20
Non-sticky 6-14
non-sticky breakpoints 6-36
Noverify command 4-5, 6-31,

6-65
Null 6-11
Number of breakpoints 6-14,

6-35
Number of files 6-24
Numeric flags command 6-66
Numeric registers 6-67

Index 4

0
Operand 6-9. 6-88
Operator precedence 6-3
Operators 6-3
Optional parameters 4-13
Overflow symbols 2-3. 3-10
Overlays H-1

p
Parameter list 6-43
Parameters 6-3. 6-51
PASCAL 3-9
Pa th name 6-4
PgDn key 4-3. 4-12, 4-15, 6-15,

6-23, 6-82. 6-83
PgUp key 6-23, 6-82
PLINK86 3-9. H-1
Pointer 4-21, 6-29
Pointer command 4-3. 6-68
Port command 6-70
Portnumber 6-70
Prefix 6-8
Prefix segment 6-56, 6-74
Print command 6-71
Print within macros 4-19
Probe.cfg 1-7, 2-3, A-1,

Appendix C
Probe.mac 2-3
PROG 3-3
Prom 6-14
Publics G-1

Q
Quit F-1
Quit command 6-7 4
Quit and Remain 6-74
Quit and stay resident 5-18
Quotes 4-19

R
Range 4-3, 4-10, 6-4
Real data 4-3
Red mark 1-6

Register command 6-75
Registernames 6-75
Registers 4-7, 6-59
Relative jumps 4-12
Remote 6-18
Reset wire 1-3
Return:} 3-6
Return via stack 6-51
RS232 2-6, 6-18, C-4

s
Save command 4-19, 6-76
Save macros 6-76
Save memory 6-76
Screen command 6-77
Screen switching 6-19
Search 6-28
Search command 4-11, 6-79
Sector read 6-54
Sector write 6-55
Select command 6-80
Short 6-9
Single step 4-15
Single step command 6-83
Single step in C 3-6
Single step source 6-11, 6-81
Source step 6-11
Source step command 6-81
Stack frames 6-64
Stack register 6-67
Stack usage 1-2
Start address 4-12. 4-17, 6-4
Status words 6-66
Step around interrupts 4-15
Step around procedures 4-15
Step automatic 4:.15
Step command 6-83
Sticky breakpoint 6-13. 6-36
STOP button 6-14, 6-74
String 6-71
String search 4-11, 6-28
Strip symbols 3-10, 3-11
Strippe H-1

Structures 6-51
Suppress macro 6-22
Switch statement 3-6
Symbol command 6-85
Symbols 3-13

16 bit 6-85
Assembly 6-8
c 3-3
delete 3-11, 6-20
load 3-10, 4-13, 6-43
Map file 3-9
Pascal 3-9, G-2
Plink H-2
selection 3-10
Strip 3-10, 3-11
table 3-13, 5-18, G-1
table overflow 3-10, 6-80

Symbolname 6-85
Symboltable 3-10
Symbolvalue 3-10, 6-85
System crash 5-20

T
T 6-4, 6-8
Tag register 6-67
Technical Support 1-7
Temp real 6-33
Termcom C-4
Terminal emulator C-4
Terminals C-3
To address 4-15, 6-13
Trap flag 6-83
True 6-4
Type 6-33

u
Unassemble command 4-12,

6-88
Up arrow 6-25, C-5

v
Value 6-3
Versions 2-7, E-1
Version numbers E-1
Video boards 6-19
Virtual screens 6-77

w

Index 5

While 4-20, 6-46
Wildcard 4-13, 6-21
Window 4-17, 6-83
Window command 6-89
Word 6-71
Word command 4-3, 6-90

Index 6

ATRON REPAIR SERVICE POLICY

Atron will provide service repair of the SOFTWARE SOURCE
PROBE on the following basis.

SOFTWARE SOURCE PROBE within 90 day warranty period

Atron will send a new board to customer, and customer will return
failed board to Atron. Atron will pay for UPS surface freight to
customer. Customer pays for upgraded freight service. Customer
pays for return freight of failed board to Atron. A PO # will be
required in advance of sending new board to customer for the price
of a new system and is automatically cancelled upon arrival of the
failed board to Atron.

SOFTWARE SOURCE PROBE outside 90 day warranty period

Atron will send a new board to customer, and customer will return
failed board to Atron. Customer pays for freight service in both
directions. A PO # will be required in advance of sending new
board to customer for the price of a new system. Upon receipt of
the returned board, Atron will invoice customer in the amount of
Atron's then fixed repair cost for the board. If the failed board is
not received by Atron within 15 days after sending customer a new
board, then the PO is due and payable.

LIMITED WARRANTY

Atron Corporation warrants this product to be in good working order
for a period of 90 days from the date of purchase from Atron or an
authorized Atron dealer. Should this product fail to be in good
working order at any time during this 90 day warranty period, Atron
will, at its option repair or replace this product at no additional
charge except as set forth below. Repair parts and replacement
products will be furnished on an exchange basis and will be either
reconditioned or new. All replaced parts and products become the
property of Atron. This limited warranty does not include service to
repair damage to the product resulting from accident, disaster,
misuse, abuse, or non-Atron modifications of the product.

Index 7

Limited warranty service may be obtained by delivering the product
during the 90 day period to Atron. If this product is delivered by
mail, you agree to insure the product or assume the risk of loss or
damage in transit, to prepay shipping charges to Atron, and to ensure
the product is adequately packed.

ALL WARRANTIES FOR THIS PRODUCT, WHETHER EXPRESS
OR IMPLIED, ARE LIMITED IN DURATION TO A PERIOD OF 90
DAYS FROM THE DATE OF PURCHASE, AND NO WARRANTIES,
WHETHER EXPRESS OR IMPLIED, WILL APPLY AFTER THIS
PERIOD.

A TRON HEREBY DISCLAIMS ALL OTHER EXPRESS AND
IMPLIED WARRANTIES FOR THIS PRODUCT INCLUDING THE
WARRANTIES OF MERCHANT ABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. SOME ST A TES DO NOT ALLOW THE
EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE
LIMITATIONS MAY NOT APPLY TO YOU.

IF THIS PRODUCT IS NOT IN GOOD WORKING ORDER AS
WARRANTED ABOVE, YOUR SOLE REMEDY SHALL BE REPAIR
OR REPLACEMENT AS PROVIDED ABOVE. IN NO EVENT WILL
ATRON BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING
ANY LOST PROFITS, LOST SA VIN GS OR OTHER INCIDENT AL
OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF
OR INABILITY TO USE SUCH PRODUCT.

SOFTWARE LICENSE AGREEMENT

All Atron software is protected by both United States Copyright Law
and International Treaty provisions. Therefore, you must treat this
software just like a book with the following exception: Atron Corp
authorizes you to make archival copies of the software for the sole
purpose of backing up your software and protecting your investment
from loss.

This means that this software may be used by any number of people
and may be freely moved from one computer location to another so
long as there is no possibility of it being used at one location while
it is being used at another - just like a book.

