
HP 1660-Series
100-MHz State/500-MHz Timing
Logic Analyzers

Prograrruner's Guide

Publication number 01660-90902
First edition, August 1992

HP 1660-Series Logic Analyzers

In This Guide

This HP 1660 series programmer's guide is organized in three parts to make
accessing information easy and logical. Part 1 consists of chapters 1 through
7 and contains general information about programming basics, HP-IB and
RS-232C interface requirements, documentation conventions, status
reporting, and error messages. If you are already familiar with IEEE 488.2
programming and HP-IB or RS-232C, you may want to just scan these
chapters. If you are new to programming logic analyzers you should read
part l.

Chapter 1 is divided into two sections. The first section, "Talking to the
Instrument," concentrates on program syntax, and the second section,
"Receiving Information from the Instrument," discusses how queries are sent
and how to retrieve query results from the instrument. Read either chapter
2, "Programming Over HP-IB," or chapter 3, "Programming Over RS-232C"
for information concerning the physical connection between the
HP 1660A-series logic analyzers and your controller. Chapter 4,
"Programming and Documentation Conventions," gives an overview of all
instructions and also explains the notation conventions used in the syntax
definitions and examples. Chapter 5, "Message Communication and System
Functions," provides an overview of the operation of instruments that
operate in compliance with the IEEE 488.2 standard. Chapter 6 explains
status reporting and how it can be used to monitor the flow of your
programs and measurement process. Chapter 7 contains error message
descriptions.

Part 2, chapters 8 through 26, explain each command in the command set
for the logic analyzer. These chapters are organized in subsystems with
each subsystem representing a front-panel menu.

The instructions listed in this part give you access to the measurements and
front-panel features of the logic analyzers. The complexity of your programs
and the tasks they accomplish are limited only by your imagination. This
part is designed to provide a concise description of each instruction.

Part 3, chapter 27, contains program examples of actual tasks that show you
how to get started in programming the HP 1660-series logic analyzers.
These examples are written in HP Basic 6.2; however, the program concepts
can be used in any other popular programming language that allows
communications with either the HP-IB or RS-232C buses.

Contents

1 Introduction to Programming

Introduction 1-2

Talking to the Instrument 1-3
Initialization 1-4
Instruction Syntax 1-5
Output Command 1-5
Device Address 1-6
Instructions 1-6
Instruction Terminator 1-7
Header Types 1-8
Duplicate Keywords 1-9
Query Usage 1-10
Program Header Options 1-11
Parameter Data Types 1-12
Selecting Multiple Subsystems 1-14

Receiving Wonnation from the Instrument 1-15
Response Header Options 1-16
Response Data Formats 1-17
String Variables 1-18
Numeric Base 1-19
Numeric Variables 1-19
Definite-Length Block Response Data 1-20
Multiple Queries 1-21
Instrument Status 1-22

Contents

Contents-!

Contents

2 Programming Over HP-m

Introduction 2-2

Interface Capabilities 2-3
Command and Data Concepts 2-3
Addressing 2-3
Communicating Over the HP-IB Bus 2-4
Local, Remote, and Local Lockout 2-5
Bus Commands 2-6

3 Programming Over RS-232C

Introduction 3-2

Interface Operation 3-3
Cables 3-3
Minimum Three-Wire Interface with Software Protocol 3-4
Extended Interface with Hardware Handshake 3-4
Cable Example 3-6
Configuring the Instrument Interface 3-6
Interface Capabilities 3-7
Communicating Over the RS-232C Bus 3-8
Lockout Command 3-8

4 Programming and Documentation Conventions

Introduction 4-2

Truncation Rule 4-3
Infinity Representation 4-4
Sequential and Overlapped Commands 4-4
Response Generation 4-4
Syntax Diagrams 4-4
Notation Conventions and Definitions 4-5
The Command Tree 4-5
Tree Traversal Rules 4-6
Command Set Organization 4-12
Subsystems 4-13
Program Examples 4-14

Contents-2

5 Message Communication and System Functions

Introduction 5-2

Protocols 5-3
Syntax Diagrams 5-5
Syntax Overview 5-7

6 Status Reporting

Introduction 6-2

Event Status Register 6-4
Service Request Enable Register 6-4
Bit Definitions 6-4
Key Features 6-6
Serial Poll 6-7

7 Error Messages

Introduction 7-2
Device Dependent Errors 7-3
Command Errors 7-3
Execution Errors 7-4
Internal Errors 7-4
Quecy Errors 7-5

8 Common Commands

Introduction 8-2

*CLS (Clear Status) 8-5
*ESE (Event Status Enable) 8-6
*ESR (Event Status Register) 8-7
*IDN (Identification Number) 8-9
*IST (Individual Status) 8-9
*OPC (Operation Complete) 8-11
*OPT (Option Identification) 8-12
*PRE (Parallel Poll Enable Register Enable) 8-13
*RST (Reset) 8-14
*SRE (Service Request Enable) 8-15

Contents

Contents-3

Contents

*STB (Status Byte) 8-16
*TRG (Trigger) 8-17
*TST (Test) 8-18
*WAI (Wait) 8-19

9 Mainframe Commands

Introduction 9-2

BEEPer 9-6
CAPability 9-7
CARDcage 9-8
CESE (Combined Event Status Enable) 9-9
CESR (Combined Event Status Register) 9-10
EOI (End Or Identify) 9-11
LER (LCL Event Register) 9-11
LOCKout 9-12
MENU 9-12
MESE<N> (Module Event Status Enable) 9-14
MESR<N> (Module Event Status Register) 9-16
RMODe 9-17
RTC (Real-time Clock) 9-18
SELect 9-19
SETColor 9-21
STARt 9-22
STOP 9-23

10 SYSTem Subsystem

Introduction 10-2

DATA 10-5
DSP (Display) 10-6
ERRor 10-7
HEADer 10-8
LONGforrn 10-9
PRINt 10-10

, SETup 10-11

Contents-4

11 MMEMory Subsystem

Introduction 11-2

AUToload 11-8
CATalog 11-9
COPY 11-10
DOWNioad 11-11
INITialize 11-13
LOAD [:CONFig] 11-14
LOAD :IASSembler 11-15
MSI (Mass Storage Is) 11-16
PACK 11-17
PURGe 11-17
REName 11-18
STORe [:CONFig] 11-19
UPLoad 11-20
VOLume 11-21

12 INTermodule Subsystem

Introduction 12-2

:INTermodule 12-5
DELete 12-5
HTIMe 12-6
INPort 12-6
INSert 12-7
SKEW <N> 12-8
TREE 12-9
TTIMe 12-10

Contents

Contents-5

Contents

13 MACHine Subsystem

Introduction 13-2

MACHine 13-4
ARM 13-5
ASSign 13-5
LEVelarm 13-6
NAME 13-7
REName 13-8
RESource 13-9
TYPE 13-10

14 WLISt Subsystem

Introduction 14-2
WLISt 14-4
DELay 14-5
INSert 14-6
LINE 14-7
OSTate 14-8
OTIMe 14-8
RANGe 14-9
REMove 14-10
XOTime 14-10
XSTate 14-11
XTIMe 14-11

15 SFORmat Subsystem

Introduction 15-2
SFORmat 15-6
CLOCk 15-6
LABel 15-7
MASTer 15-9
MODE 15-10
MOPQuaI 15-11
MQUal 15-12

Contents-6

REMove 15-13
SETHold 15-13
SLAVe 15-15
SOPQual 15-16
SQUal 15-17
THReshold 15-18

16 STRigger (STRace) Subsystem

Introduction 16-2

Qualifier 16-7
STRigger (STRace) 16-9
ACQuisition 16-9
BRANch 16-10
CLEar 16-12
FIND 16-13
RANGe 16-14
SEQuence 16-16
STORe 16-17
TAG 16-18
TAKenbranch 16-19
TCONtrol 16-20
TERM 16-21
TIMER 16-22
TPOSition 16-23

17 SLISt Subsystem

Introduction 17-2
SLISt 17-7
COLurrm 17-7
CLRPattem 17-8
DATA 17-9
LINE 17-9
MMODe 17-10
OPATtem 17-11
OSEarch 17-12
OSTate 17-13

Contents

Contents-7

Contents

OTAG 17-13
OVERiay 17-14
REMove 17-15
RUNTll 17-15
TAVerage 17-17
TMAXimum 17-17
TMINimum 17-18
VRUNs 17-18
XOTag 17-19
XOTime 17-19
XPATtern 17-20
XSEarch 17-21
XSTate 17-22
XTAG 17-22

18 SWAVeform Subsystem

Introduction 18-2

SWAVeform 18-4
ACCumulate 18-5
ACQuisition 18-5
CENTer 18-6
CLRPattern 18-6
CLRStat 18-7
DELay 18-7
INSert 18-8
RANGe 18-8
REMove 18-9
TAKenbranch 18-9
TPOSition 18-10

Contents-8

19 SCHart Subsystem

Introduction 19-2

SCHart 19-4
ACCumulate 19-4
HAXis 19-5
VA.Xis 19-7

20 COMPare Subsystem

Introduction 20-2

COMPare 20-4
CLEar 20-5
CMASk 20-5
COPY 20-6
DATA 20-7
FIND 20-9
LINE 20-10
MENU 20-10
RANGe 20-11
RUNTil 20-12
SET 20-13

21 TFORmat Subsystem

Introduction 21-2

TFORrnat 21-4
ACQMode 21-5
LABel 21-6
REMove 21-7
THReshold 21-8

Contents

Contents-9

Contents

22 ITR.igger (TTRace) Subsystem

Introduction 22-2

Qualifier 22-6
TTRigger (TTRace) 22-8
ACQuisition 22-8
BRANch 22-9
CLEar 22-12
FIND 22-12
GLEDge 22-14
RANGe 22-15
SEQuence 22-17
SPERiod 22-18
TCONtrol 22-19
TERM 22-20
TIMER 22-21
TPOSition 22-22

23 TWAVeform Subsystem

Introduction 23-2

TWAVeform 23-7
ACCurnulate 23-7
ACQuisition 23-8
CENTer 23-8
CLRPattem 23-9
CLRStat 23-9
DELay 23-9
INSert 23-10
MMODe 23-11
OCONdition 23-12
OPATtern 23-13
OSEarch 23-14
OTIMe 23-15
RANGe 23-16
REMove 23-16
RUNTil 23-17

Contents-I 0

SPERiod 23-18
TAVerage 23-19
TMAXirnum 23-19
TMINirnum 23-20
TPOSition 23-20
VRUNs 23-21
XCONdition 23-22
XOTirne 23-22
XPATtern 23-23
XSEarch 23-24
XTIMe 23-25

24 TLISt Subsystem

Introduction 24-2

TLISt 24-7
COLumn 24-7
CLRPattern 24-8
DATA 24-9
LINE 24-9
MMODe 24-10
OCONdition 24-11
OPATtern 24-11
OSEarch 24-12
OSTate 24-13
OTAG 24-14
REMove 24-14
RUNTil 24-15
TAVerage 24-16
TMAXirnum 24-16
TMINimum 24-17
VRUNs 24-17
XCONdition 24-18
XOTag 24-18
XOTirne 24-19
XPATtern 24-19
XSEarch 24-20

Contents

Contents-11

Contents

XSTate 24-21
XTAG 24-22

25 SYMBol Subsystem

Introduction 25-2

SYMBol 25-4
BASE 25-5
PATTern 25-6
RANGe 25-6
REMove 25-7
WIDTh 25-8

26 DATA and SETup Commands

Introduction 26-2

Data Format 26-3
:SYSTem:DATA 26-4
Section Header Description 26-6
Section Data 26-6
Data Preamble Description 26-6
Acquisition Data Description 26-10
Time Tag Data Description 26-12
Glitch Data Description 26-14
SYSTem:SETup 26-15
RTC_INFO Section Description 26-17

27 Programming Examples

Introduction 27-2

Making a Timing analyzer measurement 27-3
Making a State analyzer measurement 27-5
Making a State Compare measurement 27-9
Transferring the logic analyzer configuration 27-14
Transferring the logic analyzer acquired data 27-17
Checking for measurement completion 27-21
Sending queries to the logic analyzer 27-22
Getting ASCII Data with PRINt? ALL Query 27-24

Contents-12

Reading the disk with the CATalog? ALL query 27-25
Reading the Disk with the CATalog? Query 27-26
Printing to the disk 27-27

Index

Contents

Contents-13

1

Introduction to
Programming

1-1

Introduction

This chapter introduces you to the basics of remote programming and
is organized in two sections. The first section, "Talking to the Logic
analyzer," concentrates on initializing the bus, program syntax and
the elements of a syntax instuction. The second section, "Receiving
Information from the Logic analyzer," discusses how queries are sent
and how to retrieve query results from the logic analyzer.

The programming instructions explained in this book conform to
IEEE Std 488.2-1987, "IEEE Standard Codes, Formats, Protocols, and
Common Commands." These programming instructions provide a
means of remotely controlling the HP 1660-series logic analyzers.
There are three general categories of use. You can:

• Set up the logic analyzer and start measurements
• Retrieve setup information and measurement results
• Send measurement data to the logic analyzer
The instructions listed in this manual give you access to the
measurements and front panel features of the HP 1660-series. The
complexity of your programs and the tasks they accomplish are
limited only by your imagination. This programming reference is
designed to provide a concise description of each instruction.

1-2

Example

Introduction to Programming

Talking to the Instrument

In general, computers acting as controllers communicate with the
instrument by sending and receiving messages over a remote interface, such
as HP-IB or RS-232C. Instructions for programming the HP 1660-series will
normally appear as ASCII character strings embedded inside the output
statements of a "host" language available on your controller. The host
language's input statements are used to read in responses from the
HP 1660-series.

For example, HP 9000 Series 200/300 Basic uses the OUTPUT statement for
sending commands and queries to the HP 1660-series. After a query is sent,
the response can be read in using the ENTER statement. All programming
examples in this manual are presented in HP Basic.

This Basic statement sends a command that causes the logic analyzer's
machine 1 to be a state analyzer:

OUTPUT XXX;":MACHINEl:TYPE STATE" <terminator>

Each part of the above statement is explained in this section.

1-3

Example

Example Program

10 CLEAR XXX

Introduction to Programming
Initialization

Initialization

To make sure the bus and all appropriate interfaces are in a known state,
begin every program with an initialization statement. Basic provides a
CLEAR command that clears the interface buffer. If you are using HP-IB,
CLEAR will also reset the parser in the logic analyzer. The parser is the
program resident in the logic analyzer that reads the instructions you send
to it from the controller.

After clearing the interface, you could preset the logic analyzer to a known
state by loading a predefined configuration file from the disk.
Refer to your controller manual and programming language reference
manual for information on initializing the interface.

This Basic statement would load the configuration file "DEFAULT "(if it
exists) into the logic analyzer.

OUTPUT XXX;":MMEMORY:LOAD:CONFIG 'DEFAULT , "

Refer to chapter 10, "MMEMory Subsystem" for more information on the
LOAD command.

This program demonstrates the basic command structure used to program
the HP 1660-series logic analyzers.

!Initialize instrument interface
20 OUTPUT XXX;":SYSTEM:HEADER ON"
30 OUTPUT XXX;":SYSTEM:LONGFORM ON"

!Turn headers on
!TUrn longform on

40 OUTPUT XXX;":MMEM:LOAD:CONFIG 'TEST E'"
50 OUTPUT XXX;":MENU FORMAT,!"
60 OUTPUT XXX;":RMODE SINGLE"
70 OUTPUT XXX;":START"

1-4

!Load configuration file
!Select Format menu for machine 1
!Select run mode
!Run the measurement

Figure 1-1

Introduction to Programming
Instruction Syntax

Instruction Syntax

To program the logic analyzer remotely, you must have an understanding of
the command format and structure. The IEEE 488.2 standard governs
syntax rules pertaining to how individual elements, such as headers,
separators, parameters and terminators, may be grouped together to form
complete instructions. Syntax definitions are also given to show how query
responses will be formatted. Figure 1-1 shows the three main syntactical
parts of a typical program statement: Output Command, Device Address,
and Instruction. The instruction is further broken down into three parts:
Instruction header, White space, and Instruction parameters.

INSTRUCTION

-
------OU_T_P_U_T_X_.XI x; ": SYSTEMI : MEN~I DI SPLAY' 2"

OUTPUT COMMAND --------'

DEVICE ADDRESS

INSTRUCTION HEADER --------------'

WHITE SPACE

INSTRUCTION PARAMETERS -----------------'

e1eseeae

Program Message Syntax

Output Command

The output command depends on the language you choose to use.
Throughout this guide, HP 9000 Series 200/300 Basic 6.2 is used in the
programming examples. If you use another language, you will need to find
the equivalents of Basic Commands, like OUTPUT, ENTER and CLEAR in
order to convert the examples. The instructions are always shown between
the double quotes.

1-5

Introduction to Programming
Device Address

Device Address

The location where the device address must be specified also depends on
the host language that you are using. In some languages, this could be
specified outside the output command. In Basic, this is always specified
after the keyword OUTPUT. The examples in this manual use a generic
address of XXX. When writing programs, the number you use will depend
on the cable you use, in addition to the actual address. If you are using an
HP-IB, see chapter 2, "Programming over HP-IB.11 If you are using RS-232C,
see chapter 3, "Programming Over RS-232C. 11

Instructions

Instructions (both commands and queries) normally appear as a string
embedded in a statement of your host language, such as Basic, Pascal or C.
The only time a pjll"8.ffieter is not meant to be expressed as a string is when
the instruction's syntax definition specifies <block_data>. There are just a
few instructions which use block data.
Instructions are composed of two main parts: the header, which specifies the
command or query to be sent; and the parameters, which provide additional
data needed to clarify the meaning of the instruction. Many queries do not
use any parameters.

Instruction Header

The instruction header is one or more keywords separated by colons (:).
The command tree in figure 4-1 illustrates how all the keywords can be
joined together to form a complete header (see chapter 4, "Programming
and Documentation Conventions"). ·

The example in figure 1-1 shows a command. Queries are indicated by
adding a question mark (?) to the end of the header. Many instructions can
be used as either commands or queries, depending on whether or not you
have included the question mark. The command and query forms of an
instruction usually have different parameters.

1-6

Introduction to Programming
Instruction Terminator

When you look up a query in this programmer's reference, you'll find a
paragraph labeled "Returned Format" under the one labeled "Query." The
syntax definition by "Returned format" will always show the instruction
header in square brackets, like [:SYSTem:MENU], which means the text
between the brackets is optional. It is also a quick way to see what the
header looks like.

White Space

White space is used to separate the instruction header from the instruction
parameters. If the instruction does not use any parameters, white space
does not need to be included. White space is defined as one or more spaces.
ASCII defines a space to be a character, represented by a byte, that has a
decimal value of 32. Tabs can be used only if your controller first converts
them to space characters before sending the string to the logic analyzer.

Instruction Parameters

Instruction parameters are used to clarify the meaning of the command or
query. They provide necessary data, such as: whether a function should be
on or off, which waveform is to be displayed; or which pattern is to be looked
for. Each instruction's syntax definition shows the parameters, as well as
the range of acceptable values they accept. This chapter's "Parameter Data
Types" section has all of the general rules about acceptable values.

When there is more than one parameter, they are separated by commas(,).
White space surrounding the commas is optional.

Instruction Terminator

An instruction is executed after the instruction terminator is received. The
terminator is the NL (New Line) character. The NL character is an ASCII
linefeed character (decimal 10).

The NL (New Line) terminator has the same function as an EOS (End Of
String) and EOT (End Of Text) terminator.

1-7

Example

Example

Example

Introduction to Programming
Header Types

Header Types

There are three types of headers: Simple Command, Compound Command,
and Common Command.

Simple Command Header

Simple command headers contain a single keyword. START and STOP are
examples of simple command headers typically used in this logic analyzer.
The syntax is: <function><terminator>

When parameters (indicated by <data>) must be included with the simple
command header, the syntax is: <function><white _space><data>
<terminator>

:RMODE SINGLE<terminator>

Compound Command Header

Compound command headers are a combination of two or more program
keywords. The first keyword selects the subsystem, and the last keyword
selects the function within that subsystem. Sometimes you may need to list
more than one subsystem before being allowed to specify the function. The
keywords within the compound header are separated by colons. For
example, to execute a single function within a subsystem, use the following:
:<subsystem>:<function><white_space><data><terminator>

:SYSTEM:LONGFORM ON

To traverse down one level of a subsystem to execute a subsystem within
that subsystem, use the following:
<subsystem>:<subsystem>:<function><white_space>
<data><terminator>

:MMEMORY:LOAD:CONFIG "FILE

1-8

Example

Introduction to Programming
Duplicate Keywords

Common Command Header
Common command headers control IEEE 488.2 functions within the logic
analyzer, such as, clear status. The syntax is:
*<commandheader><terminator>

No white space or separator is allowed between the asterisk and the
command header. *CLS is an example of a conunon command header.

Combined Commands in the Same Subsystem
To execute more than one function within the same subsystem, a semicolon
(;) is used to separate the functions:
:<subsystem>:<function><white
space><data>;<function><whitespace><data><terminator>

:SYSTEM:LONGFORM ON;HEADER ON

Duplicate Keywords

Identical function keywords can be used for more than one subsystem. For
example, the function keyword MMODE may be used to specify the marker
mode in the subsystem for state listing or the timing waveforms:

• : SLIST:MMODE PATTERN - sets the marker mode to pattern in
the state listing.

• : TWAVEFORM: MMODE TIME - sets the marker mode to time in the
timing waveforms.

SLIST and TWA VEFORM are subsystem selectors, and they determine
which marker mode is being modified.

1-9

Example

Introduction to Programming
Query Usage

Query Usage

Logic analyzer instructions that are immediately followed by a question mark
(?)are queries. After receiving a query, the logic analyzer parser places the
response in the output buffer. The output message remains in the buffer
until it is read or until another logic analyzer instruction is issued. When
read, the message is transmitted across the bus to the designated listener
(typically a controller).

Query commands are used to find out how the logic analyzer is currently
configured. They are also used to get results of measurements made by the
logic analyzer.

This instruction places the current full-screen time for machine 1 in the
output buffer.

:MACHINEl:TWAVEFORM:RANGE?

In order to prevent the loss of data in the output buffer, the output buffer
must be read before the next program message is sent. Sending another
command before reading the result of the query will cause the output buffer
to be cleared and the current response to be lost. This will also generate a
"QUERY UNTERMINATED" error in the error queue. For example, when
you send the query : TWAVEFORM: RANGE? you must follow that with an
input statement. In Basic, this is usually done with an ENTER statement.

In Basic, the input statement, ENTER xxx; Range, passes the value across
the bus to the controller and places it in the variable Range.
Additional details on how to use queries is in the next section of this
chapter, "Receiving Information for the Logic analyzer."

1-10

Example

Introduction to Programming
Program Header Options

Program Header Options

Program headers can be sent using any combination of uppercase or
lowercase ASCII characters. Logic analyzer responses, however, are always
returned in uppercase.

Both program command and query headers may be sent in either long form
(complete spelling), short form (abbreviated spelling), or any combination
of long form and short form.

Programs written in long form are easily read and are almost self
documenting. The short form syntax conserves the amount of controller
memory needed for program storage and reduces the amount of 1/0 activity.

The rules for short form syntax are discussed in chapter 4, "Programming
and Documentation Conventions."

Either of the following examples turns on the headers and long form.
Long form:

OUTPUT XXX;":SYSTEM:HEADER ON;LONGFORM ON"

Short form:

OUTPUT XXX;":SYST:HEAD ON;LONG ON"

1-11

Example

Example

Introduction to Programming
Parameter Data Types

Parameter Data Types

There are three main types of data which are used in parameters. They are
numeric, string, and keyword. A fourth type, block data, is used only for a
few instructions: the DATA and SETup instructions in the SYSTem
subsystem (see chapter 6); the CATalog, UPLoad, and DOWNload
instructions in the MMEMory subsystem (see chapter 7). These syntax rules
also show how data may be formatted when sent back from the HP 1660
series as a response.

The parameter list always follows the instruction header and is separated
from it by white space. When more than one parameter is used, they are
separated by commas. You are allowed to include one or more white spaces
around the commas, but it is not mandatory.

Numeric data
For numeric data, you have the option of using exponential notation or using
suffixes to indicate which unit is being used. However, exponential notation
is only applicable to the decimal number base. Tables 5-1 and 5-2 in chapter
5, "Message Communications and System Functions," list all available
suffixes. Do not combine an exponent with a unit.

The following numbers are all equal:

28 = 0.28E2 = 280E-l = 28000m = 0.028K.

The base of a number is shown with a prefix. The available bases are binary
(#B), octal (#Q), hexadecimal (#H) and decimal (default).

The following numbers are all equal:

iBlllOO = iQ34 = iBlC = 28

You may not specify a base in cor\junction with either exponents or unit
suffixes. Additionally, negative numbers must be expressed in decimal.

1-12

Introduction to Programming
Parameter Data Types

When a syntax definition specifies that a number is an integer, that means
that the number should be whole. Any fractional part would be ignored,
truncating the number. Numeric parameters that accept fractional values
are called real numbers.

All numbers are expected to be strings of ASCII characters. Thus, when
sending the number 9, you send a byte representing the ASCII code for the
character "9" (which is 57, or 00111001 in binary). A three-digit number,
like 102, will take up three bytes (ASCII codes 49, 48 and 50). This is taken
care of automatically when you include the entire instruction in a string.

String data

String data may be delimited with either single (') or double (") quotes.
String parameters representing labels are case-sensitive. For instance, the
labels "Bus A" and "bus a" are unique and should not be used
indiscriminately. Also pay attention to the presence of spaces, because they
act as legal characters just like any other. So, the labels "In" and " In" are
also two different labels.

Keyword data

In many cases a parameter must be a keyword. The available keywords are
always included with the instruction's syntax definition. When sending
commands, either the longform or shortform (if one exists) may be used.
Uppercase and lowercase letters may be mixed freely. When receiving
responses, upper-case letters will be used exclusively. The use of longform
or shortform in a response depends on the setting you last specified via the
SYSTem:LONGform command (see chapter 6).

1-13

Example

Introduction to Programming
Selecting Multiple Subsystems

Selecting Multiple Subsystems

You can send multiple program commands and program queries for different
subsystems on the same line by separating each command with a semicolon.
The colon following the semicolon enables you to enter a new subsystem.
<instruction header><data>; :<instruction header><data>
<terminator>

Multiple commands may be any combination of simple, compound and
common commands.

:MACHINEl:ASSIGN2;:SYSTEM:HEADERS ON

1-14

Example

Introduction to Programming
Selecting Multiple Subsystems

Receiving Information from the Instrument

After receiving a query Oogic analyzer instruction followed by a
question mark), the logic analyzer interrogates the requested function
and places the answer in its output queue. The answer remains in the
output queue until it is read, or, until another command is issued.
When read, the message is transmitted across the bus to the
designated listener (typically a controller). The input statement for
receiving a response message from an logic analyzer's output queue
usually has two parameters: the device address and a format
specification for handling the response message.

All results for queries sent in a program message must be read before
another program message is sent. For example, when you send the
query :MACHINE! :ASSIGN?, you must follow that query with an
input statement. In Basic, this is usually done with an ENTER
statement.

The format for handling the response messages is dependent on both
the controller and the programming language.

To read the result of the query command :SYSTEM:LONGFORM? you
can execute this Basic statement to enter the current setting for the
long form command in the numeric variable Setting.

ENTER XXX; Setting

1-15

Examples

Introduction to Programming
Response Header Options

Response Header Options

The format of the returned ASCII string depends on the current settings of
the SYSTEM HEADER and LONGFORM commands. The general format is
<instruction_header><space><data><terminator>

The header identifies the data that follows (the parameters) and is
controlled by issuing a : SYSTEM: HEADER ON I OFF command. If the state of
the header command is OFF, only the data is returned by the query.

The format of the header is controlled by the :SYSTEM:LONGFORM ON/OFF
command. If long form is OFF , the header will be in its short form and the
header will vary in length, depending on the particular query. The separator
between the header and the data always consists of one space.

A command or query may be sent in either long form or short form, or in any
combination of long form and short form. The HEADER and LONGFORM
commands only control the format of. the returned data, and, they have no
affect on the way commands are sent.

Refer to chapter 10, "SYSTem Subsystem" for information on turning the
HEADER and LONGFORM commands on and off.

The following examples show some possible responses for a
:MACHINEl:SFORMAT:THRESHOLD2?query:

with HEADER OFF:

<data><terminator>

with HEADER ON and LONGFORM OFF:

:MACH1:SFOR:THR2 <white_space><data><terminator>

with HEADER ON and LONGFORM ON:

:MACHINEl:SFORMAT:THRESHOLD2 <white_space><data><terminator>

1-16

Examples

Response Data Formats

Introduction to Programming
Response Data Formats

Both numbers and strings are returned as a series of ASCII characters, as
described in the following sections. Keywords in the data are returned in
the same format as the header, as specified by the LONGform command.
Like the headers, the keywords will always be in uppercase.

The following are possible responses to the MACHINE 1: TFORMAT: LAB?

'ADDR' query •

Header on; Longform on

MACHINEl:TFORMAT:LABEL "ADDR ",19,POSITIVE<terminator>

Header on;Longform off

MACHl:TFOR:LAB "ADDR ",19,POS<terminator>

Header off; Longform on

"ADDR ",19,POSITIVE<terminator>

Header off; Longform off

"ADDR ",19,POS<terminator>

Refer to the individual commands in Part 2 of this guide for information on
the format (alpha or numeric) of the data returned from each query.

1-17

Example

Introduction to Programming
String Variables

String Variables

Because there are so many ways to code numbers, the HP 1660 series
handles almost all data as ASCII strings. Depending on your host language,
you may be able to use other types when reading in responses.

Sometimes it is helpful to use string variables in place of constants to send
instructions to the HP 1660 series, such as, including the headers with a
query response.

This example combines variables and constants in order to make it easier to
switch from MACHINE 1 to MACHINE2. In Basic, the & operator is used for
string concatenation.

10 LET Machine$ = ":MACHINE2" !Send all instructions to machine 2
!Make machine· a state analyzer 20 OUTPUT XXX;

30
40 OUTPUT XXX;
50 OUTPUT XXX;
60 OUTPUT XXX;
99 END

Example

Machine$ &

Machine$ &

Machine$ &

Machine$ &

":TYPE STATE"

":SFORMAT:LABEL
":SFORMAT:LABEL
":SFORMAT:LABEL

! Assign all labels to be positive
'CHAN l', POS"
'CHAN 2', POS"
'OUT', POS"

If you want to observe the headers for queries, you must bring the returned
data into a string variable. Reading queries into string variables requires
little attention to formatting.

This command line places the output of the query in the string variable
Result$.

ENTER XXX;Result$

In the language used for this book (HP Basic 6.2), string variables are case
sensitive and must be expressed exactly the same each time they are used.

The output of the logic analyzer may be numeric or character data
depending on what is queried. Refer to the specific commands, in Part 2 of
this guide, for the formats and types of data returned from queries.

1-18

Example

Example

Introduction to Programming
Numeric Base

The following example shows logic analyzer data being returned to a string
variable with headers off:
10 OUTPUT XXX;":SYSTEM:BEADER OFF"
20 DIM Rang$[30]
30 OUTPUT XXX;":MACBINEl:TWAVEFORM:RANGE?"
40 ENTER XXX;Rang$
50 PRINT Rang$
60 END

After running this program, the controller displays: + 1 • O O O O OE- O 5

Numeric Base

Most numeric data will be returned in the same base as shown onscreen.
When the prefix #B precedes the returned data, the value is in the binary
base. Likewise, #Q is the octal base and #H is the hexadecimal base. If no
prefix precedes the returned numeric data, then the value is in the decimal
base.

Numeric Variables

If your host language can convert from ASCII to a numeric format, then you
can use numeric variables. Turning off the response headers will help you
avoid accidently trying to convert the header into a number.

The following example shows logic analyzer data being returned to a
numeric variable.
10 OUTPUT XXX;":SYSTEM:BEADER OFF"
20 OUTPUT XXX;":MACBINEl:TWAVEFORM:RANGE?"
30 ENTER XXX;Rang
40 PRINT Rang
50 END

1-19

Figure 1-2

Introduction to Programming
Definite-Length Block Response Data

This time the format of the number (such as, whether or not exponential
notation is used) is dependant upon your host language. In Basic, the
output will look like: 1. E-5

Definite-Length Block Response Data

De.finite-length block response data, also refered to as block data, allows any
type of device-dependent data to be transmitted over the system interface
as a series of data bytes. De.finite-length blick data is particularly useful for
sending large quantities of data, or, for sending 8-bit extended ASCII codes.
The syntax is a pound sign (#) fallowed by a non-zero digit representing
the number of digits in the decimal integer. Following the non zero digit is
the decimal integer that states the number of 8-bit data bytes to fallow. This
number is followed by the actual data.
Indefinite-length block data is not supported on the HP1660 series.

For example, for transmitting 80 bytes of data, the syntax would be:

NUMBER OF DIGITS
THAT FOLLOW

I ACTUAL DATA

#800000080<eighty bytes of ---NUMBER OF BYTES
TO BE TRANSMITTED

Definite-length Block Response Data

dato><terminatar>

The 11811 states the number of digits that follow, and 110000008011 states the
number of bytes to be transmitted, which is 80.

1-20

Example

Example

Example

Introduction to Programming
Multiple Queries

Multiple Queries

You can send multiple queries to the logic analyzer within a single program
message, but you must also read them back within a single program
message. This can be accomplished by either reading them back into a
string variable or into multiple numeric variables.

You can read the result of the query :SYSTEM:HEADER?;LONGFORM? into
the string variable Results$ with the command:

ENTER XXX; Results$

When you read the result of multiple queries into string variables, each
response is separated by a semicolon.

The response of the query :SYSTEM:HEADER?:LONGFORM? with HEADER
and LONG FORM turned on is:

:SYSTEM:HEADER l;:SYSTEM:LONGFORM 1

If you do not need to see the headers when the numeric values are returned,
then you could use numeric variables. When you are receiving numeric data
into numeric variables, the headers should be turned off. Otherwise the
headers may cause misinterpretation of returned data.

The following program message is used to read the query
:SYSTEM:HEADERS?;LONGFORM? into multiple numeric variables:

ENTER XXX; Resultl, Result2

1-21

Introduction to Programming
Instrument Status

Instrument Status

Status registers track the current status of the logic analyzer. By checking
the logic analyzer status, you can find out whether an operation has been
completed, whether the logic analyzer is receiving triggers, and more.
Chapter 6, "Status Reporting," explains how to check the status of the logic
analyzer.'

1-22

2

Progranuning Over
HP-IB

2-1

Introduction

This section describes the interface functions and some general
concepts of the HP-IB. In general, these functions are defined by
IEEE 488.1 (HP-IB bus standard). They deal with general bus
management issues, as well as messages which can be sent over the
bus as bus commands.

2-2

Programming Over HP-IB
Interface Capabilities

Interface Capabilities

The interface capabilities of the HP 1660-series, as defined by IEEE 488.1
are SHI, AH!, T5, TEO, L3, LEO, SRI, RLl, PPO, DC!, DTl, CO, and E2.

Command and Data Concepts

The HP-IB has two modes of operation: command mode and data mode. The
bus is in command mode when the ATN line is true. The command mode is
used to send talk and listen addresses and various bus commands, such as a
group execute trigger (GET). The bus is in the data mode when the ATN
line is false. The data mode is used to convey device-dependent messages
across the bus. These device-dependent messages include all of the
instrument commands and responses found in chapters 8 through 24 of this
manual.

Addressing

By using the front-panel I/O and SELECT keys, the HP-IB interface can be
placed in either talk only mode, "Printer connected to HP-IB," or in
addressed talk/listen mode, "Controller connected to HP-IB,11 (see chapter
16, "The RS-232/HP-IB Menu" in the HP 1660-series User's Reference). Talk
only mode must be used when you want the.logic analyzer to talk directly to
a printer without the aid of a controller. Addressed talk/listen mode is used
when the logic analyzer will operate in conjunction with a controller. When
the logic analyzer is in the addressed talk/listen mode, the following is true:

• Each device on the HP-IB resides at a particular address ranging from 0 to
30.

• The active controller specifies which devices will talk and which will listen.

• An instrument, therefore, may be talk-addressed, listen-addressed, or
unaddressed by the controller.

2-3

Programming Over HP-IB
Communicating Over the HP-IB Bus (HP 9000 Series 200/300 Controller)

If the controller addresses the instrument to talk, it will remain configured
to talk until it receives:

• an interface clear message (IFC)

• another instrument's talk address (OT A)

• its own listen address (MLA)

• a universal untalk (UNT) command.

If the controller addresses the instrument to listen, it will remain configured
to listen until it receives:

• an interface clear message (IFC)

• its own talk address (MTA)

• a universal unlisten (UNL) command.

Communicating Over the HP-IB Bus (HP 9000 Series
200/300 Controller)

Because HP-IB can address multiple devices through the same interface
card, the device address passed with the program message must include not
only the correct instrument address, but also the correct interface code.

Interface Select Code (Selects the Interface)

Each interface card has its own interface select code. This code is used by
the controller to direct commands and communications to the proper
interface. The default is always "7" for HP-IB controllers.

Instrument Address (Selects the Instrument)

Each instrument on the HP-IB port must have a unique instrument address
between decimals 0 and 30. The device address passed with the program
message must include not only the correct instrument address, but also the
correct interface select code.

2-4

Example

Hint

Programming Over HP-IB
Local, Remote, and Local Lockout

For example, if the instrument address is 4 and the interface select code is
7, the instruction will cause an action in the instrument at device address
704.
DEVICE ADDRESS = (Interface Select Code) X 100 + (Instrument
Address)

Local, Remote, and Local Lockout

The local, remote, and remote with local lockout modes may be used for
various degrees of front-panel control while a program is running. The logic
analyzer will accept and execute bus commands while in local mode, and the
front panel will also be entirely active. If the HP 1660-series is in remote
mode, the logic analyzer will go from remote to local with any front panel
activity. In remote with local lockout mode, all controls (except the power
switch) are entirely locked out. Local control can only be restored by the
controller.

Cycling the power will also restore local control, but this will also reset
certain HP-IB states. It also resets the logic analyzer to the power-on
defaults and purges any acquired data in the acquisition memory.

The instrument is placed in remote mode by setting the REN (Remote
Enable) bus control line true, and then addressing the instrument to listen.
The instrument can be placed in local lockout mode by sending the local
lockout (110) command (see SYSTem:LOCKout in chapter 9, "Mainframe
Commands"). The instrument can be returned to local mode by either
setting the REN line false, or sending the instrument the go to local (GTL)
command.

2-5

Programming Over HP-I B
Bus Commands

Bus Commands

The following commands are IEEE 488.1 bus commands (ATN true). IEEE
488.2 defines many of the actions which are taken when these commands
are received by the logic analyzer.

Device Clear

The device clear (DCL) or selected device clear (SDC) commands clear the
input and output buffers, reset the parser, clear any pending commands, and
clear the Request-OPC flag.

Group Execute Trigger (GET)

The group execute trigger command will cause the same action as the
START command for Group Run: the instrument will acquire data for the
active waveform and listing displays.

Interface Clear (IFC)

This command halts all bus activity. This includes unaddressing all listeners
and the talker, disabling serial poll on all devices, and returning control to
the system controller.

2-6

3

Progranuning Over
RS-232C

3-1

Introduction

This chapter describes the interface functions and some general
concepts of the RS-232C. The RS-232C interface on this instrument
is Hewlett-Packard's implementation of EIA Recommended Standard
RS-232C, ''Interface Between Data Terminal Equipment and Data
Communications Equipment Employing Serial Binary Data
Interchange. " With this interface, data is sent one bit at a time, and
characters are not synchronized with preceding or subsequent data
characters. Each character is sent as a complete entity without
relationship to other events.

3-2

Programming Over RS-232C
Interface Operation

Interface Operation

The HP 1660-series can be programmed with a controller over RS-232C
using either a minimum three-wire or extended hardwire interface. The
operation and exact connections for these interfaces are described in more
detail in the following sections. When you are programming an
HP 1660-series over RS-232C with a controller, you are normally operating
directly between two DTE (Data Terminal Equipment) devices as compared
to operating between a DTE device and a DCE (Data Communications
Equipment) device.

When operating directly between two DTE devices, certain considerations
must be taken into account. For a three-wire operation, XON/XOFF must be
used to handle protocol between the devices. For extended hardwire
operation, protocol may be handled either with XON/XOFF or by
manipulating the CTS and RTS lines of the RS-232C link. For both three
wire and extended hardwire operation, the DCD and DSR inputs to the logic
analyzer must remain high for proper operation.

With extended hardwire operation, a high on the CTS input allows the logic
analyzer to send data, and a low disables the logic analyzer data
transmission. Likewise, a high on the RTS line allows the controller to send
data, and a low signals a request for the controller to disable data
transmission. Because three-wire operation has no control over the CTS
input, internal pull-up resistors in the logic analyzer assure that this line
remains high for proper three-wire operation.

Cables

Selecting a cable for the RS-232C interface depends on your specific
application. The following paragraphs describe which lines of the
HP 1660-series are used to control the operation of the RS-232C relative to
the logic analyzer. To locate the proper cable for your application, refer to
the reference manual for your controller. This manual should address the
exact method your controller uses to operate over the RS-232C bus.

3-3

Programming Over RS-232C
Minimum Three-Wire Interface with Software Protocol

Minimum Three-Wire Interface with Software Protocol

With a three-wire interface, the software (as compared to interface
hardware) controls the data flow between the logic analyzer and the
controller. The three-wire interface provides no hardware means to control
data flow between the controller and the logic analyzer. XON/OFF protocol
is the only means to control this data flow. The three-wire interface
provides a much simpler connection between devices since you can .ignore
hardware handshake requirements.

The logic analyzer uses the following connections on its RS-232C interface
for three-wire communication:

• Pin 7 SGND (Signal Ground)

• Pin 2 TD (Transmit Data from logic analyzer)

• Pin 3 RD (Receive Data into logic analyzer)

The TD (Transmit Data) line from the logic analyzer must connect to the RD
(Receive Data) line on the controller. Likewise, the RD line from the logic
analyzer must connect to the TD line on the controller. Internal pull-up
resistors in the logic analyzer assure the DCD, DSR, and CTS lines remain
high when you are using a three-wire"interface.

Extended Interface with Hardware Handshake

With the extended interface, both the software and the hardware can control
the data flow between the logic analyzer and the controller. This allows you
to have more control of data flow between devices. The HP 1660-series uses
the following connections on its RS-232C interface for extended interface
communication:

• Pin 7 SGND (Signal Ground)

• Pin 2 TD (Transmit Data from logic analyzer)

• Pin 3 RD (Receive Data into logic analyzer)

Programming Over RS-232C
Extended Interface with Hardware Handshake

The additional lines you use depends on your controller's implementation
of the extended hardwire interface.

• Pin 4 RTS (Request To Send) is an output from the logic analyzer which
can be used to control incoming data flow.

• Pin 5 CTS (Clear To Send) is an input to the logic analyzer which
controls data flow from the logic analyzer.

• Pin 6 DSR (Data Set Ready) is an input to the logic analyzer which
controls data flow from the logic analyzer within two bytes.

• Pin 8 DCD (Data Carrier Detect) is an input to the logic analyzer which
controls data flow from the logic analyzer within two bytes.

• Pin 20 DTR (Data Terminal Ready) is an output from the logic analyzer
which is enabled as long as the logic analyzer is turned on.

The TD (Transmit Data) line from the logic analyzer must connect to the RD
(Receive Data) line on the controller. Likewise, the RD line from the logic
analyzer must connect to the TD line on the controller.

The RTS (Request To Send), is an output from the logic analyzer which can
be used to control incoming data flow. A true on the RTS line allows the
controller to send data and a false signals a request for the controller to
disable data transmission.

The CTS (Clear To Send), DSR (Data Set Ready), and DCD (Data Carrier
Detect) lines are inputs to the logic analyzer, which control data flow from
the logic analyzer (Pin 2). Internal pull-up resistors in the logic analyzer
assure the DCD and DSR lines remain high when they are not connected. If
DCD or DSR are connected to the controller, the controller must keep these
lines and the CTS line high to enable the logic analyzer to send data to the
controller. A low on any one of these lines will disable the logic analyzer
data transmission. Pulling the CTS line low during data transmission will
stop logic analyzer data transmission immediately. Pulling either the DSR or
DCD line low during data transmission will stop logic analyzer data
transmission, but as many as two additional bytes may be transmitted from
the logic analyzer.

3-5

Figure 3-1

Programming Over RS-232C
Cable Example

Cable Example

Figure 3-1 is an example of how to connect the HP 1660-series to the
HP 98628A Interface card of an HP 9000 series 200/300 controller. For more
information on cabling, refer to the reference manual for your
specific controller.

Because this example does not have the correct connections for hardware
handshake, you must use the XON/XOFF protocol when connecting the
HP 1660-series logic analyzers.

HP 1660-SER!ES
REAR PANEL

I L ~---~====~=-~ ~~T~~~~~E CARO

~----<OJ~ -
13242N

! MALE-To-MALE>

Cable Example

5061-4216
DCE DPT .002

<FEMALE-TO-FEMALE)

Configuring the fustrument Interface

8te&eb24

The front-panel 1/0 menu key allows you access to the RS-232C
Configuration menu where the RS-232C interface is configured. If you are
not familiar with how to configure the RS-232C interface, refer to the
HP 1660-Series User's Reference.

3-6

Programming Over RS-232C
Interface Capabilities

Interface Capabilities

The baud rate, stop bits, parity, protocol, and data bits must be configured
exactly the same for both the controller and the logic analyzer to properly
communicate over the RS-232C bus. The HP 1660-series RS-232C interface
capabilities are listed below:

• Baud Rate: 110, 300, 600, 1200, 2400, 4800, 9600, or 19.2k

• Stop Bits: 1, 1.5, or 2

• Parity: None, Odd, or Even

• Protocol: None or XON/XOFF

• Data Bits: 8

Protocol

NONE With a three-wire interface, selecting NONE for the protocol
does not allow the sending or receiving device to control data flow. No
control over the data flow increases the possibility of missing data or
transferring incomplete data.

With an extended hardwire interface, selecting NONE allows a hardware
handshake to occur. With hardware handshake, the hardware signals control
data flow.

XON/XOFF XON/XOFF stands for Transmit On/Transmit Off. With
this mode, the receiver (controller or logic analyzer) controls data flow,
and, can request that the sender (logic analyzer or controller) stop
data flow. By sending XOFF (ASCII 19) over its transmit data line, the
receiver requests that the sender disables data transmission. A
subsequent XON (ASCII 17) allows the sending device to resume data
transmission.

Data Bits

Data bits are the number of bits sent and received per character that
represent the binary code of that character. Characters consist of either 7
or 8 bits, depending on the application. The HP 1660-series supports 8 bit
only.

8 Bit Mode Information is usually stored in bytes (8 bits at a time).
With 8-bit mode, you can send and receive data just as it is stored,
without the need to convert 'the data.

3-7

Hint

Programming Over RS-232C
Communicating Over the RS-232C Bus (HP 9000 Series 200/300 Controller)

The controller and the HP 1660-series must be in the same bit mode to
properly communicate over the RS-232C. This means that the controller
must have the capability to send and receive 8 bit data.

For more infonnation on the RS-232C interface, refer to the HP 1660-series
User's Reference. For infonnation o:r:i RS-232C voltage levels and connector
pinouts, refer to the HP 1660-Series Service GuU:le.

Communicating Over the RS-232C Bus (HP 9000
Series 200/300 Controller)

Each RS-232C interface card has its own interface select code. This code is
used by the controller for directing commands and communications to the
proper interface by specifying the correct interface code for the device
address.

Generally, the interface select code can be any decimal value between 0
and 31, except for those interface codes which are reserved by the
controller for internal peripherals and other internal interfaces. This value
can be selected through switches on the interface card. For example, if your
RS-232C interface select code is 9, the device address required to
communicate over the RS-232C bus is 9. For more information, refer to the
reference manual for your interface card or controller.

Lockout Command

To lockout the front panel controls, use the SYSTem command LOCKout.
When this function is on, all controls (except the power switch) are entirely
locked out. Local control can only be restored by sending the command
:LOCKout OFF.

Cycling the power will also restore local control, but this will also reset
certain RS-232C states. It also resets the logic analyzer to the power-on
defaults and purges any acquired data in the acquisition memory.

For more information on this command see chapter 10, "System Commands."

3-8

4

Programming and
Documentation
Conventions

4-1

Introduction

This chapter covers the programming conventions used in
programming the instrument, as well as the documentation
conventions used in this manual. This chapter also contains a detailed
description of the command tree and command tree traversal.

4-2

Table 4-1

Programming and Documentation Conventions
Truncation Rule

Truncation Rule

The truncation rule for the keywords used in headers and parameters is:

• If the longform has four or fewer characters, there is no change in the
shortform. When the longform has more than four characters the
shortform is just the first four characters, unless the fourth character is
a vowel. In that case only the first three characters are used.

There are some commands that do not conform to the truncation rule by
design. These will be noted in their respective description pages.

Some examples of how the truncation rule is applied to various commands
are shown in table 4-1.

Truncation Examples

Long Form Short Form

OFF OFF

DATA DATA

START STAR

LONG FORM LONG

DELAY DEL

ACCUMULATE ACC

4-3

Programming and Documentation Conventions
Infinity Representation

Infinity Representation

The representation of infinity is 9.9E+37 for real numbers and 32767 for
integers. This is also the value returned when a measurement cannot be
made.

Sequential and Overlapped Commands

IEEE 488.2 makes the distinction between sequential and overlapped
commands. Sequential commands finish their task before the execution of
the next command starts. Overlapped commands run concurrently;
therefore, the command following an overlapped command may be started
before the overlapped command is completed. The overlapped commands
for the HP 1660-series are STARt and STOP.

Response Generation

IEEE 488.2 defines two times at which query responses may be buffered.
The first is when the query is parsed by the instrument and the second is
when the controller addresses the instrument to talk so that it may read the
response. The HP 1660-series will buffer responses to a query when it is
parsed.

Syntax Diagrams

At the beginning of each chapter in Part 2, "Commands," is a syntax diagram
showing the proper syntax for each command. All characters contained in a
circle or oblong are literals, and must be entered exactly as shown. Words
and phrases contained in rectangles are names of items used with the
command and are described in the accompanying text of each command.
Each line can only be entered from one direction as indicated by the arrow
on the entry line. Any combination of commands and arguments that can be
generated by following the lines in the proper direction is syntactically
correct. An argument is optional if there is a path around it. When there is
a rectangle which contains the word "space, 11 a white space character must
be entered. White space is optional in many other places.

4-4

Programming and Documentation Conventions
Notation Conventions and Definitions

Notation Conventions and Definitions

The following conventions are used in this manual when describing
programming rules and example.

< > Angular brackets enclose words or characters that are used to symbolize a
program code parameter or a bus command

: : = "is defined as." For example, A::= B indicates that A can be replaced by Bin
any statement containing A.

"or." Indicates a choice of one element from a list. For example, A I B
indicates A or B, but not both.

An ellipsis (trailing dots) is used to indicate that the preceding element may
be repeated one or more times.

[Square brackets indicate that the enclosed items are optional.

{ } When several items are enclosed by braces and separated by vertical bars
(I), one, and only one of these elements must be selected.

xxx Three Xs after an ENTER or OUTPUT statement represent the device
address required by your controller.

<NL> Linefeed (ASCII decimal 10).

The Command Tree

The command tree (figure 4-1) shows all commands in the HP 1660-series
logic analyzers and the relationship of the commands to each other.
Parameters are not shown in this figure. The command tree allows you to
see what the HP 1660-series' parser expects to receive. All legal headers can
be created by traversing down the tree, adding keywords until the end of a
branch has been reached.

Command Types

As shown in chapter 1, "Header Types," there are three types of headers.
Each header has a corresponding command type. This section shows how
they relate to the command tree.

4-5

Programming and Documentation Conventions
Tree Traversal Rules

System Commands The system commands reside at the top level of
the command tree. These commands are always parsable if they occur at
the beg.inning of a program message, or are preceded by a colon. START
and STOP are examples of system commands.

Subsystem Commands Subsystem commands are grouped together
under a common node of the tree, such as the MMEMORY commands.

Common Commands Common commands are independent of the
tree, and do not affect the position of the parser within the tree. *CLS
and *RST are examples of common commands.

Tree Traversal Rules

Command headers are created by traversing down the command tree. For
each group of keywords not separated by a branch, one keyword must be
selected. As shown on the tree, branches are always preceded by colons. Do
not add spaces around the colons. The following two rules apply to
traversing the tree:
A leading colon (the first character of a header) or a <terminator> places
the parser at the root of the command tree.

Executing a subsystem command places you in that subsystem until a
leading colon or a <terminator> is found. The parser will stay at the colon
above the keyword where the last header terminated. Any command below
that point can be sent within the current program message without sending
the keywords(s) which appear above them.

4-6

Example 1

Example2

Example3

Programming and Documentation Conventions
Tree Traversal Rules

The following examples are written using HP Basic 6.2 on a HP 9000 Series
200/300 Controller. The quoted string is placed on the bus, followed by a
carriage return and linefeed (CRLF). The three Xs (XXX) shown in this
manual after an ENTER or OUTPUT statement represents the device
address required by your controller.

In this example, the colon between SYSTEM and HEADER is necessary since
SYSTEM: HEADER is a compound command. The semicolon between the
HEADER command and the LONGFORM command is the required <program
message unit separator>. The LONGFORM command does not need
SYSTEM preceding it, since the SYSTEM: HEADER command sets the parser
to the SYSTEM node in the tree.

OUTPUT XXX;":SYSTEM:HEADER ON;LONGFORM ON"

In the first line of this example, the subsystem selector is implied for the
STORE command in the compound command. The STORE command must be
in the same program message as the INITIALIZE command, since the
<program message terminator> will place the parser back at the root
of the command tree.

A second way to send these commands is by placing MMEMORY: before the
STORE command as shown in the fourth line of this example 2.

OUTPUT XXX;":MMEMORY:INITIALIZE;STORE 'FILE ','FILE
DESCRIPTION'"

or

OUTPUT XXX;":MMEMORY:INITIALIZE"
OUTPUT XXX; ":MMEMORY:STORE 'FILE I I .'FILE DESCRIPTION' ..

In this example, the leading colon before SYSTEM tells the parser to go back
to the root of the command tree. The parser can then see the
SYSTEM: PRINT command.

OUTPUT XXX;":MMEM:CATALOG?;:SYSTEM:PRINT ALL"

4-7

Figure 4-1

Corrrnon
Corrrnonds

*CLS
*ESE
*ESR
*ION
*IST
*OPC
*OPT
*PRE
•RST
*SRE
*STB
*TRG
*TST
*WAI

Programming and Documentation Conventions
Tree Traversal Rules

BEEP er
CAPob i Ii ty
CARDcoge
CESE
CESR
EOI
LER
LOCKout
MENU
MESE<N>
MESR<N>
RMODe
RTC
SELect
SETColor
STARt
STOP

SYSTem:

I
DATA
DSP
ERRor
HEADer
LONG form
PRINt
SET up

I
X=0

MMEMory: ,.
AUTolood
CATolog
COPY
DOWNioad
INITiol ize
LOAD [: CONf i g J
LOAD: IASSemo I er
MSl
PACK
PURge
RE Nome
STORe [: CON f i g J
UP Load
VOLume

SFORmot:
I

STR i gger:
I

SLISt: SWAVeform:
I

SCHort:
I I

INTermodule:

DELete
HTIMe
INPort
INSert
SKEW<N>
TREE
TT I Me

COMPore:

CLOCk
LABel
MAST er
MODE
MOPQuol
MQUol
REMove
SETHold
SLAVe
SOPQuol
SQUol
THReshold

ACQuistion
BRAN ch

COLumn
CLRPottern
DATA

ACCumulote
ACQuisition
CENter
CLRPottern
CLRStot

ACCumulote
HAXis

I
CLE or
CMASk
COPY
DATA
FIND
LINE
MENU
RANGe
RUNTi I
SET

CLE or
FIND
RANGe
SEOuence
STORe
TAG
TAKenbronch
TCONtrol
TERM
TIMER
TPOSition

HP 1660-series Command Tree

4-8

LINE
MMODe
OPATtern
OSEorch
OST ate
OTAG
OVERiay
REMove
RUNTi I
TAVeroge
TMAXimum
TMINimum
VRUNs
XOTog
XOTime
XPATtern
XSEorch
XSTote
XTAG

DE Loy
INSert
RANGe
REMove
TAKenbronch
TPOSition

VAX is

01660836

Figure 4-1 (continued)

...... I
X=1

I
MACHineC1 l2l

TFORmat:
I

ACOMode
LABel
RE Move
THReshold

HP 1660-series Command Tree (continued)

ARM
ASSign
LEVelarm
NAME
TYPE
RE Name
RESource

TTRigger:
I

ACQuisition
BRANch
CL Ear
FIND
GLEDge
RANGe
SEQuence
SPERiod
TCONtro I
TERM
TIMER
TPOSition

Programming and Documentation Conventions
Tree Traversal Rules

i_
WLISt:

I
DE Loy
INSert
LINE
OST ate
OTIMe
RANGe
RE Move
XOTime
XSTote
XTIMe

TWAVeform:
I

ACCumulate
ACQuisition
CENT er
CLRPattern
CLRStot
DE Loy
INSert
MMODe
OCONdition
OPATtern
OSEorch
OTIMe
RANGe
REMove
RUNTi I
SPERiod
TAVeroge
TMAXimum
TMINimum
TPOSition
VRUNs
XCONdition
XOTime
XPATtern
XSEarch
XTIMe

TLISt:
I

COLumn
CLRPa t tern
DATA
LINE
MMODe
OCONdition
OPATtern
OSEorch
OST ate
OTAG
REMove
RUNTi I
TAVerage
TMAXimum
TMINimum
VRUNs
XCONdition
XOTag
XOTime
XPATtern
XSEorch
XSTate
XTAG

SYMBo I:
I

SYMBol
BASE
PATTern
RANGe
REMove
WIDTh

01660837

4-9

Table 4-2

Programming and Documentation Conventions
Tree Traversal Rules

Alphabetic Command Cross-Reference

Command Subsystem Command

ACCumulate SCHart, SWAVeform, TWAVeform DELete

ACQMode TFORmat DOWNioad

ACQuisition STRigger, SWAVeform, TTRigger, DSP
TWAVeform

EOI
ARM MACHine

ERRor
AS Sign MACHine

FIND
AUToload MMEMory

GLEDge
BASE SYMBol

HAXis
BEEP er Mainframe

HEAD er
BRAN ch STRigger, TTRigger

HTIMe
CAPability Mainframe

INITialize
CARD cage Mainframe

IN Port
CATalog MMEMory

INSert
CENT er SWAVeform, TWAVeform

CESE Mainframe LAB el

CESR Mainframe LER

CLEar COMPare, STRigger, TTRigger LEVelarm

CLO Ck SFORmat LINE

CLRPattern SLISt, SWAVeform, TLISt, TWAVeform LOAD

CLRStat SWAVeform, TWAVeform LOCKout

CMASk COM Pare LONGform

COLumn SLISt, TLISt MAST er

COPY COMPare, MMEMory MENU

DATA COM Pare, SLISt, SYSTem, TLISt MESE

DE Lay SWAVeform, TWAVeform, WLISt MESR

4-10

Subsystem

INTermodule

MMEMory

SYSTem

Mainframe

SYSTem

COMPare, STRigger, TTRigger

TTRigger

SCH art

SYSTem

INT ermodule

MMEMory

INTermodule

INTermodule, SWAVeform, TWAVeform,
WLISt

SFORmat, TFORmat

Mainframe

MACHine

COMPare, SLISt, TLISt, WLISt

MMEMory

Mainframe

SYSTem

SFORmat

COMPare, Mainframe

Mainframe

Mainframe

Table 4-2 (continued)

Alphabetic Command Cross-Reference (continued)

Command Subsystem

MMODe SLISt, TLISt, TWAVeform

MODE SFORmat

MOPQual SFORmat

MQUal SFORmat

MSI MMEMory

NAME MACHine

OCONdition TLISt, TWAVeform

OPATtern SLISt, TLISt, TWAVeform

OSEarch SLISt, TLISt, TWAVeform

OST ate SLISt, TLISt, WLISt

OTAG SLISt, TLISt

OTIMe TWAVeform, WLISt

OVERiay SLISt

PACK MMEMory

PATTern SYMBol

PRINt SYSTem

PURGe MMEMory

RAN Ge COM Pare, STRigger, SWAVeform, SYMBol,
TTRigger, TWAVeform, WLISt

RE Move SFORmat, SLISt, SWAVeform, SYMBol,
TFORmat, TLISt, TWAVeform,

REName MACHine

REName MMEMory

RESource MACHine

RMODe Mainframe

RTC Mainframe

Programming and Documentation Conventions
Tree Traversal Rules

Command Subsystem

RUNTil COMPare, SLISt, TLISt, TWAVeform

SELect Mainframe

SEauence STRigger, TTRigger

SET COM Pare

SETColor Mainframe

SETHold SFORmat

SET up SYSTem

SKEW INTermodule

SLAVe SFORmat

SOPQual SFORmat

SPERiod TTRigger, TWAVeform

SQUal SFORmat

STARt Mainframe

STOP Mainframe

STORe MMEMory, STRigger

TAG STRigger

TAKenbranch STRigger, SWAVeform

TAVerage ·sUSt, TLISt, TWAVeform

TCONtrol STRigger, TTRigger

TERM STRigger, TTRigger

THReshold SFORmat, TFORmat

TIMER STRigger, TTRigger

TMAXimum SLISt, TLISt, TWAVeform

TMINimum SLISt, TLISt, TWAVeform

TPOSition STRigger, SWAVeform, TTRigger,
TWAVeform

4-11

Programming and Documentation Conventions
Command Set Organization

Table 4-2 (continued)

Alphabetic Command Cross-Reference (continued)

Command

TREE

TTIMe

TYPE

UPLoad

VAX.is

VOLume

VRUNs

Subsystem Command Subsystem

Intermodule WIDTh SYMBol

INTermodule XCONdition TLISt, TWAVeform

MACHine XOTag SLISt, TLISt

MMEMory XOTime SLISt, TLISt, TWAVeform, WLISt

SCH art XPATtern SLISt, TLISt, TWAVeform

MMEMory XSEarch SLISt, TLISt, TWAVeform

SLISt, TLISt, TWAVeform XSTate SLISt, TLISt, WLISt

Command Set Organization

The command set for the HP 1660-series logic analyzers is divided into 18
separate groups: common commands, mainframe commands, system
commands and 15 sets of subsystem commands. Each of the 18 groups of
commands is described in a seperate chapter in Part 2, "Commands." Each
of the chapters contain a brief description of the subsystem, a set of syntax
diagrams for those commands, and finally, the commands for that subsystem
in alphabetical order. The commands are shown in the long form and short
form using upper and lowercase letters. As an example AUToload indicates
that the long form of the command is AUTOLOAD and the short form of the
command is AUT. Each of the commands contain a description of the
command, its arguments, and the command syntax.

4-12

Programming and Documentation Conventions
Subsystems

Subsystems

There are 15 subsystems in this instrument. In the command tree (figure
4-1) they are shown as branches, with the node above showing the name of
the subsystem. Only one subsystem may be selected at a time. At power on,
the command parser is set to the root of the command tree; therefore, no
subsystem is selected. The 15 subsystems in the HP 1660-series logic
analyzers are:

• SYSTem - controls some basic functions of the instrument.

• MMEMory - provides access to the internal disk drive.

• INTermodule - provides access to the Intermodule bus (IMB).

• MACHine - provides access to analyzer functions and subsystems.

• WLISt - allows access to the mixed (tiffi.inglstate) functions.

• SFORmat - allows access to the state format functions.

• STRigger - allows access to the state trigger functions.

• SLISt - allows access to the state listing functions.

• SW A Veform - allows access to the state waveforms functions.

• SCHart - allows access to the state chart functions.

• COMPare - allows access to the compare functions.

• TFORmat - allows access to the timing format functions.

• TTRigger - allows access to the timing trigger functions.

• TWAVeform - allows access to the timing waveforms functions.

• TLISt - allows access to the timing listing functions.

• SYMBol - allows access to the symbol specification functions.

4-13

Example

Programming and Documentation Conventions
Program Examples

Program Examples

The program examples in the following chapters and chapter 27,
"Programming Examples," were written on an HP 9000 Series 200/300
controller using the HP Basic 6.2 language. The programs always assume a
generic address for the HP 1660-series logic analyzers of XXX.

In the examples, you should pay special attention to the ways in which the
command and/or query can be sent. Keywords can be sent using either the
long form or short form (if one exists for that word). With the exception of
some string parameters, the parser is not case-sensitive. Uppercase and
lowercase letters may be mixed freely. System commands like HEADer and
LONG form allow you to dictate what forms the responses tal<e, but they
have no affect on how you must structure your commands and queries.

The following commands all set the Timing Waveform Delay to 100 ms.

Keywords in long form, numbers using the decimal format.

OUTPUT XXX;":MACHINEl:TWAVEFORM:DELAY .l"

Keywords in short form, numbers using an exponential format.

OUTPUT XXX;":MACHl:TWAV:DEL lE-1"

Keywords in short form using lowercase letters, numbers using a suffix.

OUTPUT XXX;":machl:twav:del 100ms"

In these examples, the colon shown as the first character of the command is
optional on the HP 1660-series. The space between DELay and the argument is
required.

4-14

5

Message
Communication
and System
Functions

5-1

Introduction

This chapter describes the operation of instruments that operate in
compliance with the IEEE 488.2 (syntax) standard. It is intended to
give you enough basic information about the IEEE 488.2 Standard to
successfully program the logic analyzer. You can find additional
detailed information about the IEEE 488.2 Standard in ANSI/IEEE
Std 488.2-1987, ''IEEE Standard Codes, Formats, Protocols, and
Common Commands. "

The HP 1660 series is designed to be compatible with other
Hewlett-Packard IEEE 488.2 compatible instruments. Instruments
that are compatible with IEEE 488.2 must also be compatible with
IEEE 488.1 (HP-IB bus standard); however, IEEE 488.1 compatible
instruments may or may not conform to the IEEE 488.2 standard.
The IEEE 488.2 standard defines the message exchange protocols by
which the instrument and the controller will communicate. It also
defmes some common capabilities, which are found in all IEEE 488.2
instruments. This chapter also contains a few items which are not
specifically defmed by IEEE 488.2, but deal with message
communication or system functions.

The syntax and protocol for RS-232C program messages and response
messages for the HP 1660-series are structured very similar to those
described by 488.2. In most cases, the same structure shown in this
chapter for 488.2 will also work for RS-232C. Because of this, no
additional information has been included for RS-232C.

5-2

Message Communication and System Functions
Protocols

Protocols

The protocols of IEEE 488.2 define the overall scheme used by the
controller and the instrument to communicate. This includes defining when
it is appropriate for devices to talk or listen, and what happens when the
protocol is not followed.

Functional Elements

Before proceeding with the description of the protocol, a few system
components should be understood.

Input Buffer The input buffer of the instrument is the memory area
where commands and queries are stored prior to being parsed and
executed. It allows a controller to send a string of commands to the
instrument which could take some time to execute, and then proceed to
talk to another instrument while the first instrument is parsing and
executing commands.

Output Queue The output queue of the instrument is the memory area
where all output data (<response messages>) are stored until read by
the controller.

Parser The instrument's parser is the component that interprets the
commands sent to the instrument and decides what actions should be
taken. "Parsing" refers to the action taken by the parser to achieve this
goal. Parsing and executing of commands begins when either the
instrument recognizes a <program message terminator> (defined later
in this chapter) or the input buffer becomes full. If you wish to send a
long sequence of commands to be executed and then talk to another
instrument while they are executing, you should send all the commands
before sending the <program message terminator>.

5-3

Message Communication and System Functions
Protocols

Protocol Overview

The instrument and controller communicate using <program message>s and
<response message>s. These messages serve as the containers into which
sets of program commands or instrument responses are placed. <program
message>s are sent by the controller to the instrument, and <response
message>s are sent from the instrument to the controller in response to a
query message. A <query message> is defined as being a <program
message> which contains one or more queries. The instrument will only talk
when it has received a valid query message, and therefore has something to
say. The controller should only attempt to read a response after sending a
complete query message, but before sending another <program message>.
The basic rule to remember is that the instrument will only talk when
prompted to, and it then expects to talk before being told to do something
else.

Protocol Operation

When the instrument is turned on, the input buffer and output queue are
cleared, and the parser is reset to the root level of the command tree.

The instrument and the controller communicate by exchanging complete
<program message>s and <response message>s. This means that the
controller should always terminate a <program message> before attempting
to read a response. The instrument will terminate <response message>s
except during a hardcopy output.

If a query message is sent, the next message passing over the bus should be
the <response message>. The controller should always read the complete
<response message> associated with a query message before sending
another <program message> to the same instrument.

The instrument allows the controller to send multiple queries in one query
message. This is referred to as sending a "compound query." As will be
noted later in this chapter, multiple queries in a query message are
separated by semicolons. The responses to each of the queries in a
compound query will also be separated by semicolons.

Commands are executed in the order they are received.

5-4

Message Communication and System Functions
Syntax Diagrams

Protocol Exceptions

If an error occurs during the information exchange, the exchange may not be
completed in a normal manner. Some of the protocol exceptions are shown
below.

Command Error A command error will be reported if the instrument
detects a syntax error or an unrecognized command header.

Execution Error An execution error will be reported if a parameter is
found to be out of range, or if the current settings do not allow
execution of a requested command or query.

Device-specific Error A device-specific error will be reported if the
instrument is unable to execute a command for a strictly device
dependent reason.

Query Error A query error will be reported if the proper protocol for
reading a query is not followed. This includes the interrupted and
unterminated conditions described in the following paragraphs.

Syntax Diagrams

The example syntax diagram is in this chapter are similar to the syntax
diagrams in the IEEE 488.2 specification. Commands and queries are sent
to the instrument as a sequence of data bytes. The allowable byte sequence
for each functional element is defined by the syntax diagram that is shown.

The allowable byte sequence can be determined by following a path in the
syntax diagram. The proper path through the syntax diagram is any path
that follows the direction of the arrows. If there is a path around an
element, that element is optional. If there is a path from right to left around
one or more elements, that element or those elements may be repeated as
many times as desired.

5-5

Figure 5-1

:MACHine

Message Communication and System Functions
Syntax Diagrams

arrn..source 1-----------i

pod_I ist 1---------~

new_ text

Example syntax diagram

5-6

Message Communication and System Functions
Syntax Overview

Syntax Overview

This overview is intended to give a quick glance at the syntax defined by
IEEE 488.2. It will help you understand many of the things about the syntax
you need to know.

IEEE 488.2 defines the blocks used to build messages which are sent to the
instrument. A whole string of commands can therefore be broken up into
individual components.

Figure 5-1 is an example syntax diagram and figure 5-2 shows a breakdown
of an example <program message>. There are a few key items to notice:

• A semicolon separates commands from one another. Each <program
message unit> serves as a container for one command. The <program
message unit>s are separated by a semicolon.

• A <program message> is terminated by a <NL> (new line). The
recognition of the <program message terminator>, or <PMT>, by the
parser serves as a signal for the parser to begin execution of commands.
The <PMT> also affects command tree traversal (Chapter 4,
"Programming and Documentation Conventions").

• Multiple data parameters are separated by a comma

• The first data parameter is separated from the header with one or more
spaces.

• The header MACHINE !:ASSIGN 2,3 is an example of a compound header.
It places the parser in the machine subsystem until the <NL> is
encountered.

• A colon preceding the command header returns you to the top of the
command tree.

5-7

Figure 5-2

Message Communication and System Functions
Syntax Overview

:TWAVEFORM:OSEARCH 30,TRIGGER DELAY 3.8 ns <NL>

I I

<conmand program header>
TWAVEFORM:OSEARCH

<program header seporator>

\
<program data>

30 , TRIGGER

/\\

<white space>

;~\
<wh 1 le space> <wh 1 te space>

<pragram'mnemonic>
TWA VE FORM

<program mnemonic>
OSEARCH

<decimal

<program message unit seporatar>

<program

r
numeric

30

data> <program data separator> <program data>

7
program data> <program data>

TRIGGER

/f~ <program message terminator>

<white space> <white space> !~ <program message unit>

7~ <wh i te space> NL

<program header> <program header separator> <program data>
DELAY SP 3.8 ns

-------- ~ ------<white space> <decimal program data> <suffix program data> ,, /1~
<white space> <suffix mul tip I ier> <suffix unit>

16500/EIL31
n

<program message> Parse Tree

5-8

Table 5-1

Message Communication and System Functions
Syntax Overview

Upper/Lower Case Equivalence

Upper and lower case letters are equivalent. The mnemonic SINGLE has the
same semantic meaning as the mnemonic single.

<White space>

<white space> is defined to be one or more characters from the ASCII set of
0 - 32 decimal, excluding 10 decimal (NL). <White space> is used by several
instrument listening components of the syntax. It is usually optional, and
can be used to increase the readability of a program.

Suffix Multiplier The suffix multipliers that the instrument will
accept are shown in table 5-1.

<suffix mulb

Value Mnemonic

ma EX

ms PE

1E12 T

1E9 G

1E6 MA

1E3 K

lE-3 M

lE-6 u

lE-9 N

lE-12 p

lE-15 F

lE-18 A

5-9

TableS-2

Message Communication and System Functions
Syntax Overview

Suffix Unit The suffix units that the instrument will accept are shown
in table 5-2.

<suffix unit>

Suffix

v

s

5-10

Referenced Unit

Volt

Second

6

Status Reporting

6--1

Introduction

Status reporting allows you to use information about the instrument
in your programs, so that you have better control of the measurement
process. For example, you can use status reporting to determine
when a measurement is complete, thus controlling your program, so
that it does not get ahead of the instrument. This chapter describes
the status registers, status bytes and status bits defined by IEEE
488.2 and discusses how they are implemented in the HP 1660-series
logic analyzers. Also in this chapter is a sample set of steps you use
to perform a serial poll over HP-IB.

The status reporting feature available over the bus is the serial poll.
IEEE 488.2 defines data structures, commands, and common bit
definitions. There are also instrument-defined structures and bits.

The bits in the status byte act as summary bits for the data structures
residing behind them. In the case of queues, the summary bit is set if
the queue is not empty. For registers, the summary bit is set if any
enabled bit in the event register is set. The events are enabled via the
corresponding event enable register. Events captured by an event
register remain set until the register is read or cleared. Registers are
read with their associated commands. The *CLS command clears all
event registers and all queues except the output queue. If *CLS is
sent immediately following a <program message terminator>, the
output queue will also be cleared.

6-2

Figure 6-1

111111111

111111111
LOGICAL OR

EVENT REGISTER
<MESRl

ENABLE
REGISTER
<MESE>

WL
L EVENT

REGISTERS
<ESRl

NOTE: URO AND ROC NOT IMPLEMENTED

ENABLE
REGISTERS
<ESE l

QUEUES:
0-0UTPUT
M-MESSAGE

STATUS
BYTE
< •STB>

SERVICE
REQUEST
ENABLE
REGISTER
< •SRE l

Status Byte Structures and Concepts

Status Reporting

16500802.

6--3

Status Reporting
Event Status Register

Event Status Register

The Event Status Register is an IEEE 488.2 defined register. The bits in this
register are "latched." That is, once an event happens which sets a bit, that
bit will only be cleared if the register is read.

Service Request Enable Register

The Service Request Enable Register is an 8-bit register. Each1bit enables
the corresponding bit in the status byte to cause a service request. The
sixth bit does not logically exist and is always returned as a zero. To read
and write to this register, use the *SRE? and *SRE commands.

Bit Definitions

The following mnemonics are used in figure 6-1 and in chapter 8, "Common
Commands:"

MA V - message available
Indicates whether there is a response in the output queue.

ESB - event status bit

Indicates if any of the conditions in the Standard Event Status Register are
set and enabled.

MSS - master summary status
Indicates whether the device has a reason for requesting service. This bit is
returned for the *STB? query.

RQS - request service

Indicates if the device is requesting service. This bit is returned during a
serial poll. RQS will be set to 0 after being read via a serial poll (MSS is not
reset by *STB?).

6-4

Status Reporting
Bit Definitions

MSG - message
Indicates whether there is a message in the message queue (Not
implemented in the HP 1660-series).

PON - power on
Indicates power has been turned on.

URQ - user request
Always returns a 0 from the HP 1660-series.

CME - command error

Indicates whether the parser detected an error.

The error numbers and strings for CME, EXE, DOE, and QYE can be read from a
device-defined queue (which is not part of IEEE 488.2) with the query
:SYSTEM:ERROR?.

EXE - execution error
Indicates whether a parameter was out of range, or inconsistent with current
settings.

DDE - device specific error
Indicates whether the device was unable to complete an operation for device
dependent reasons.

QYE - query error
Indicates whether the protocol for queries has been violated.

RQC - request control

Always returns a 0 from the HP 1660-series.

OPC - operation complete
Indicates whether the device has completed all pending operations. OPC is
controlled by the *OPC common command. Because this command can
appear after any other command, it serves as a general-purpose operation
complete message generator.

6-5

Example

Status Reporting
Key Features

LCL - remote to local
Indicates whether a remote to local transition has occurred.

MSB - module summary bit
Indicates that an enable event in one of the modules Status registers has
occurred.

Key Features

A few of the most important features of Status Reporting are listed in the
following paragraphs.

Operation Complete
The IEEE 488.2 structure provides one technique that can be used to find
out if any operation is finished. The *OPC command, when sent to the
instrument after the operation of interest, will set the OPC bit in the
Standard Event Status Register. If the OPC bit and the RQS bit have been
enabled, a service request will be generated. The commands that affect the
OPC bit are the overlapped commands.

OUTPUT XXX;"*SRE 32 ; *ESE l" !enables an OPC service request

Status Byte

The Status Byte contains the basic status information which is sent over the
bus in a serial poll. If the device is requesting service (RQS set), and the
controller serial-polls the device, the RQS bit is cleared. The MSS (Master
Summary Status) bit (read with *STB?) and other bits of the Status Byte are
not be cleared by reading them. Only the RQS bit is cleared when read.

The Status Byte is cleared with the *CLS common command.

6-6

Figure 6-2.

SERVICE
REQUEST

GENERATION

Service Request Enabling

Serial Poll

~STATUS SUMMARY MESSAGES -----

f-T--'-~~.._,._,_.,.......-.--'

5 4

Status Reporting
Serial Poll

}

--- READ BY SERIAL POLL

STATUS BYTE REGISTER

--- READ BY •STB?

SERVICE REQUEST
ENABLE REGISTER

•SRE <NRf>
•SRE?

The HP 1660-series supports the IEEE 488.1 serial poll feature. When a
serial poll of the instrument is requested, the RQS bit is returned on bit 6 of
the status byte.

Status Reporting
Serial Poll

Using Serial Poll (BP-m)

This example will show how to use the service request by conducting a serial
poll of all instruments on the HP-IB bus. In this example, assume that there
are two instruments on the bus: a Logic Analyzer at address 7 and a printer
at address 1.

The program command for serial poll using HP BASIC 6.2 is Stat =
SPOLL(707). The address 707 is the address of the logic analyzer in the this
example. The command for checking the printer is Stat = SPOLL(701)
because the address of that instrument is 01 on bus address 7. This
command reads the contents of the HP-IB Status Register into the variable
called Stat. At that time bit 6 of the variable Stat can be tested to see if it is
set (bit 6 = 1).

The serial poll operation can be conducted in the following manner:

1 Enable interrupts on the bus. This allows the controller to see the
SRQline.

2 Disable interrupts on the bus.

3 If the SRQ line is high (some instrument is requesting service) then
check the instrument at address 1 to see if bit 6 of its status register
is high.

4 To check whether bit 6 of an instruments status register is high, use
the following BASIC statement: IF BIT (stat, 6) THEN

5 If bit 6 of the instrument at address 1 is not high, then check the
instrument at address 7 to see if bit 6 of its status register is high.

6 As soon as the instrument with status bit 6 high is found check the
rest of the status bits to determine what is required.

The SPOLL(707) command causes much more to happen on the bus than
simply reading the register. This command clears the bus automatically,
addresses the talker and listener, sends SPE (serial poll enable) and SPD
(serial poll disable) bus commands, and reads the data. For more
information about serial poll, refer to your controller manual, and
programming language reference manuals.

After the serial poll is completed, the RQS bit in the HP 1660-series Status
Byte Register will be reset if it was set. Once a bit in the Status Byte
Register is set, it will remain set until the status is cleared with a *CLS
command, or the instrument is reset.

6--8

7

Error Messages

7-1

Introduction

This chapter lists the error messages that relate to the HP 1660-series
Logic Analyzers.

7-2

Device Dependent Errors

200 Label not found

201 Pattern string invalid
202 Qualifier invalid
203 Data not available
300 RS-232C error

Command Errors

Error Messages
Device Dependent Errors

-100 Command error (unknown comrnand)(generic error)
-101 Invalid character received

-110 Command header error
-111 Header delimiter error

-120 Numeric argument error
-121 Wrong data type (numeric expected)

-123 Numeric overflow
-129 Missing numeric argument

-130 Non numeric argument error (character,string, or block)
-131 Wrong data type (character expected)

-132 Wrong data type (string expected)
-133 Wrong data type (block type #D required)

-134 Data overflow (string or block too long)
-139 Missing non numeric argument

-142 Too many arguments
-143 Argument delimiter error
-144 Invalid message unit delimiter

7-3

Error Messages
Execution Errors

Execution Errors

-200 Can Not Do (generic execution error)

-201 Not executable in Local Mode

-202 Settings lost due to return-to-local or power on

-203 Trigger ignored

-211 Legal command, but settings conflict

-212 Argument out of range

-221 Busy doing something else

-222 Insufficient capability or configuration

-232 Output buffer full or overflow

-240 Mass Memory error (generic)

-241 Mass storage device not present

-242 No media

-243 Bad media

-244 Media full

-245 Directory full

-246 File name not found

-24 7 Duplicate file name

-248 Media protected

Internal Errors

-300 Device Failure (generic hardware error)

-301 Interrupt fault

-302 System Error

-303 Time out

-310 RAM error

-311 RAM failure (hardware error)

-312 RAM data loss (software error)

-313 Calibration data loss

-320 ROM error

7-4

-321 ROM checksum
-322 Hardware and Firmware incompatible

-330 Power on test failed

-340 Self Test failed

-350 Too Many Errors (Error queue overflow)

Query Errors

-400 Query Error (generic)
-410 Query INTERRUPTED

-420 Query UNTERMINATED

-421 Query received. Indefinite block response in progress

-422 Addressed to Talk, Nothing to Say

-430 Query DEADLOCKED

Error Messages
Query Errors

7-5

8

Common
Commands

8-1

Example

Example

Introduction

The common commands are defined by the IEEE 488.2 standard.
These commands must be supported by all instruments that comply
with this standard. Refer to figure 8-1 and table 8-1 for the common
commands syntax diagram.

The common commands control some of the basic instrument
functions; such as, instrument identification and reset, how status is
read and cleared, and how commands and queries are received and
processed by the instrument.

Common commands can be received and processed by the
HP 1660-series logic analyzers, whether they are sent over the bus as
separate program messages or within other program messages. If an
instrument subsystem has been selected and a common command is
received by the instrument, the logic analyzer will remain in the
selected subsystem.

If the program message in this example is received by the logic
analyzer, it will initialize the disk and store the file and clear the
status information. This is not be the case if some other type of
command is received within the program message.

":MMEMORY:INITIALIZE;*CLS; STORE 'FILE ','DESCRIPTION'"

This program message initializes the disk, selects the module in slot
A, then stores the file. In this example, :MMEMORY must be sent
again in order to reenter the memory subsystem and store the file.
":MMEMORY:INITIALIZE;:SELECT l;:MMEMORY:STORE 'FILE I

'DESCRIPTION'"

8-2

Common Commands

Status Registers

Each status register has an associated status enable (mask) register.
By setting the bits in the status enable register you can select the
status information you wish to use. Any status bits that have not
been masked (enabled in the enable register) will not be used to
report status summary information to bits in other status registers.

Refer to chapter 6, "Status Reporting," for a complete discussion of
how to read the status registers and how to use the status information
available from this instrument.

8-3

Common Commands

Figure 8-1

space

space pre_mask

space

•WAI
16500/SX01

Common Commands Syntax Diagram

8-4

Table 8-1

Command

Example

Common Command Parameter Values

Parameter

mask

pre_mask

Values

An integer, 0 through 255.

An integer, 0 through 65535.

*CLS (Clear Status)

*CLS

Common Commands
*CLS (Clear Status)

The *CLS common command clears all event status registers, queues, and
data structures, including the device defined error queue and status byte. If
the *CLS command immediately follows a <program message terminator>,
the output queue and the MA V (Message Available) bit will be cleared.
Refer to chapter 6, "Status Reporting," for a complete discussion of status.

OUTPUT XXX~"*CLS"

8-5

Command

Common Commands
*ESE (Event Status Enable)

*ESE (Event Status Enable)

*ESE <mask>

The *ESE command sets the Standard Event Status Enable Register bits.
The Standard Event Status Enable Register contains a bit to enable the
status indicators detailed in table 8-2. A 1 in any bit position of the Standard
Event Status Enable Register enables the corresponding status in the
Standard Event Status Enable Register. Refer to Chapter 6, "Status
Reporting" for a complete discussion of status.

<mask> An integer from 0 to 255

Example In this example, the *ESE 32 command will enable CME (Command Error),
bit 5 of the Standard Event Status Enable Register. Therefore, when a
command error occurs, the event summary bit (ESB) in the Status Byte
Register will also be set.

Query

Returned Format

Example

OUTPUT XXX;"*ESE 32"

*ESE?

The *ESE query returns the current contents of the enable register.

<mask><NL>

OUTPUT XXX;"*ESE?"

8-6

Table 8-2

Query

Common Commands
*ESR (Event Status Register)

Standard Event Status Enable Register

Bit Position Bit Weight Enables

7 128 PON - Power On

6 64 URll - User Request

5 32 CME - Command Error

4 16 EXE - Execution Error

3 8 DOE - Device Dependent Error

2 4 llYE - lluery Error

2 RllC - Request Control

0 OPC - Operation Complete

*ESR (Event Status Register)

*ESR?

The *ESR query returns the contents of the Standard Event Status Register.
Reading the register clears the Standard Event Status Register.

Returned Format <status><NL>

<status> An integer from 0 to 255

Example If a command error has occurred, and bit 5 of the ESE register is set, the
string variable Esr_event$ will have bit 5 (the CME bit) set.
10 OUTPUT XXX;"*ESE 32
20 OUTPUT XXX;"*ESR?"
30 ENTER XXX; Esr_event$

!Enables bit 5 of the status register
!Queries the status register
!Reads the query buffer

~7

Table 8-3

Common Commands
*ESR (Event Status Register)

Table 8-3 shows the Standard Event Status Register. The table details the
meaning of each bit position in the Standard Event Status Register and the
bit weight. When you read Standard Event Status Register, the value
returned is the total bit weight of all the bits that are high at the time you
read the byte.

The Standard Event Status Register

Bit Position Bit Weight Bit Name Condition

7 128 PON 0 = register read - not in power up mode
1 =power up

6 64 URQ O = user request - not used - always zero

5 32 CME O = no command errors
1 =a command eror has been detected

4 16 EXE 0 = no execution errors
1 = an execution error has been detected

3 8 ODE 0 = no device dependent error has been detected
1 = a device dependent error has been detected

2 4 QYE O = no query errors
1 = a query error has been detected

2 RQC 0 =request control - not used -always zero

0 OPC 0 = operation is not complete
1 = operation is complete

8-8

Query

*IDN (Identification Number)

*IDN?

Common Commands
*ION (Identification Number)

The *IDN? query allows the instrument to identify itself. It returns the
string:

"BEWLETT-PACKARD,1660A,O,REV <revision_code>"

An *IDN? query must be the last query in a message. Any queries after the
*IDN? in the program message are ignored.

Returned Format HEWLETT-PACKARD, 1660A, o ,REV <revision code>

<revision Four digit-code in the format xx.xx representing the current ROM revision.
code>

Example OUTPUT XXX; "*IDN?"

Query

*IST (Individual Status)

*IST?

The *IST query allows the instrument to identify itself during parallel poll by
allowing the controller to read the current state of the IEEE 488.1 defined
"ist" local message in the instrument. The response to this query is
dependent upon the current status of the instrument.

Figure 8-2 shows the *IST data structure.

Returned Format <id><NL>

<id> 0or1

1 Indicates the "ist" local message is false.

O Indicates the "ist" local message is true.

8-9

Example

Figure 8-2

Common Commands
*IST (Individual Status)

OUTPUT XXX;"*IST?"

DEVICE DEFINED CONDITIONS

l lllll l l
E~6S5r~Y6~~ED l 1sj 14j 13j 12J 11l 10J 91 a J

µ
D

..
• -

"' •
0
_J

<
~
8 --_J

-
..
....

._.

IND I I DUAL
STATUS
•IST?

*IST Data Structure

&

&

&

* &

• &

j

&

• &

j

l isl 14l 13j 12J 11J 10} 9} e J

8-10

SUMMARY MESSAGE

llllllll
l 7 1Mss1EssJMA'1 31 21 1 l 0 J

,
&

&

• &

* Ill &

&

&

&

'!
l7J6JsJ4l3J2l1l0J

STATUS BYTE
REGISTER

•STB?

PARALLEL POLL
ENABLE REGISTER

•PRE
•PRE?

16!'>H/8L20

Command

Example

Query

Returned Format

Example

*OPC (Operation Complete)

*OPC

Common Commands
*OPC (Operation Complete)

The *OPC command will cause the instrument to set the operation complete
bit in the Standard Event Status Register when all pending device operations
have finished. The commands which affect this bit are the overlapped
commands. An overlapped command is a command that allows execution of
subsequent commands while the device operations initiated by the
overlapped command are still in progress. The overlapped commands for
the HP 1660-series are STARt and STOP.

OUTPUT XXX;"*OPC"

*OPC?

The *OPC query places an ASCII 11 l11 in the output queue when all pending
device operations have been completed.

l<NL>

OUTPUT XXX;"*OPC?"

8-11

Query

Common Commands
*OPT (Option Identification)

*OPT (Option Identification)

*OPT?

The *OPT query identifies the software installed in the HP 1660-series. This
query returns nine parameters. The first parameter indicates whether you
are in the system. The next two parameters indicate any software options
installed, and the next parameter indicates whether intermodule is available
for the system. The last five parameters list the installed software for the
modules in slot A through E for an HP 16500A mainframe. However, the
HP 1660-series logic analyzers have only one slot (A); therefore, only the
first parameter of the the last five parameters will be relevant. A zero in any
of the last eight parameters indicates that the corresponding software is not
currently installed. The name returned for software options and module
software is the same name that appears in the field in the upper-left comer
of the menu for each option or module.

Returned Format {SYSTEM}, {<option> IO}, {<option> IO}, {INTERMODULE IO}, {<module> IO},
{<module>IO},{<module>jO},{<module>jO},{<module>IO}<NL>

<option> Name of software option.

<module> Name of module software.

Example OUTPUT XXX; "*OPT?"

8-12

Command

Common Commands
*PRE (Parallel Poll Enable Register Enable)

*PRE (Parallel Poll Enable Register Enable)

*PRE <mask>

The *PRE command sets the parallel poll register enable bits. The Parallel
Poll Enable Register contains a mask value that is ANDed with the bits in the
Status Bit Register to enable an "ist" during a parallel poll. Refer to table 8-4
for the bits in the Parallel Poll Enable Register and for what they mask

<pre_ mask> An integer from 0 to 65535.

Example This example will allow the HP 1660-series to generate an "ist" when a
message is available in the output queue. When a message is available, the
MA V (Message Available) bit in the Status Byte Register will be high.
output XXX;"*PRE 16"

Query *PRE?

The *PRE? query returns the current value of the register.
Returned format <mask><NL>

<mask> An integer from 0 through 65535 representing the sum of all bits that are
set ..

Example OUTPUT XXX; "*PRE?"

8-13

Table 8-4

Common Commands
*RST (Reset)

HP 1660-series Parallel Poll Enable Register

Bit Position Bit Weight Enables

15 ·8 Not used

7 128 Not used

6 64 MSS - Master Summary Status

5 32 ESB - Event Status

4 16 MAV ·Message Available

3 8 LCL- Local

2 4 Not used

2 Not used

0 MSB ·Module Summary

*RST (Reset)

The *RST command is not implemented on the HP 1660-series. The HP
1660-series will accept this command, but the command has no affect on the
logic analyzer.

The *RST command is generally used to place the logic analyzer in a
predefined state. Because the HP 1660-series allows you to store predefined
configuration files for individual modules, or for the entire system, resetting
the logic analyzer can be accomplished by simply loading the appropriate
configuration file. For more information, refer to chapter 11, "MMEMm:y
Subsystem."

8-14

Command

*SRE (Service Request Enable)

*SRE <mask>

Common Commands
*SRE (Service Request Enable)

The *SRE command sets the Service Request Enable Register bits. The
Service Request Enable Register contains a mask value for the bits to be
enabled in the Status Byte Register. A one in the Service Request Enable
Register will enable the corresponding bit in the Status Byte Register. A
zero will disable the bit. Refer to table 8-5 for the bits in the Service
Request Enable Register and what they mask.

Refer to Chapter 6, "Status Reporting," for a complete discussion of status.

<mask> An integer from 0 to 255

Example This example enables a service request to be generated when a message is
available in the output queue. When a message is available, the MA V
(Message Available) bit will be high.

OUTPUT XXX;"*SRE 16"

Query *SRE?

The *SRE query returns the current value.
Returned Format <mask><NL>

<mask> An integer from 0 to 255 representing the sum of all bits that are set.

Example OUTPUT XXX; "*SRE?"

8-15

Table 8-5

Query

Common Commands
*STB (Status Byte)

HP 1660-series Service Request Enable Register

Bit Position Bit Weight Enables

15·8 not used

7 128 not used

6 64 MSS • Master Summary Status (always O)

5 32 ESB· Event Status

4 16 MAV ·Message Available

3 8 LCL· Local

2 4 not used

2 not used

0 MSB ·Module Summary

*STB (Status Byte)

*STB?

The *STB query returns the current value of the instrument's slatus byte.
The MSS (Master Summary Status) bit, and, not the RQS (Request Service)
bit is reported on bit 6. The MSS indicates whether or not the device has at
least one reason for requesting service. Refer to table 8-6 for the meaning of
the bits in the status byte.

Refer to Chapter 6, "Status Reporting" for a complete discussion of status.

Returned Format <value><NL>

<value> An integer from 0 through 255

Example OUTPUT XXX; "*STB?"

8-16

Table 8-6

0 = False = Low
1 =True= High

Command

Example

The Status Byte Register

Bit Position Bit Weight

7 128

6 64

5 32

4 16

3 a

2 4

2

0

*TRG (Trigger)

*TRG

Bit Name

MSS

ESB

MAV

LCL

MSB

Condition

0 =not Used

Common Commands
*TRG (Trigger)

0 = instrument has no reason for service
1 = instrument is requesting service

0 =no event status conditions have occurred
1 =an enabled event status condition has occurred

0 =no output messages are ready
1 =an output message is ready

O =a remote-to-local transition has not occurred
1 =a remote-to-local transition has occurred

not used

not used

0= a module or the system has activity to report
1 =no activity to report

The *TRG command has the same effect as a Group Execute Trigger (GET).
That effect is as if the ST ART command had been sent for intermodule
group run. If no modules are configured in the Intermodule menu, this
command has no effect.

OUTPUT XXX;"*TRG"

8-17

Query

Common Commands
*TST (Test)

*TST (Test)

*TST?

The *TST query returns the results of the power-up self-test. The result of
that test is a 9-bit mapped value which is placed in the output queue. A one
in the corresponding bit means that the test failed and a zero in the
corresponding bit means that the test passed. Refer to table 8-7 for the
meaning of the bits returned by a TST? query.

Returned Format <result><NL>

<result> An integer 0 through 511

Example 10 OUTPUT XXX; "*TST?"
20 ENTER XXX;Tst_value

Table 8-7 Bits Returned by *TST? Query (Power-Up Test Results)

Bit Position Bit Weight Test

8 256 Disk Test

7 128 not used

6 64 not used

5 32 Front-panel Test

4 16 HIL Test

3 8 Display Test

2 4 lnterupt Test

2 RAM Test

0 ROM Test

8-18

Command

Example:

*WAI (Wait)

*WAI

Common Commands
*WAI (Wait)

The *W Al command causes the device to wait until completing all of the
overlapped commands before executing any further commands or queries.
An overlapped command is a command that allows execution of subsequent
commands while the device operations initiated by the overlapped command
are still in progress. Some examples of overlapped commands for the
HP 1660-series are STARt and STOP.

OUTPUT XXX;"*WAI"

8-19

9

Mainframe
Commands

9-1

Introduction

Mainframe commands control the basic operation of the instrument
for the HP 1660-series logic analyzers. The 1660-series logic analyzers
are similar to an HP 16500A logic analysis system with a single logic
analyzer module installed. The main difference in mainframe
commands for the HP 1660-series·logic analyzers is the number of
modules. In the HP 1660 series, module 0 contains the system level
commands and module 1 contains the logic analyzer level corrunands.

The command parser in the HP 1660-series logic analyzers is
designed to accept programs written for the HP 16500A logic analysis
system with an HP 16550A logic analyzer module. The main
difference is how you specify the SELECT command. Remember, the
HP 1660 series is equivalent only to a mainframe with one module;
therefore, if you specify 2 through 10 for the SELECT command in
your program, the command parser will take no action.

This chapter contains the mainframe commands with a syntax
example for each command. Each syntax example contains the
parameters for the HP 1600 series only. Refer to figure 9-1 and table
9-1 for the Mainframe commands syntax diagram.

9-2

Mainframe Commands

Figure 9-1

Mainframe Commands Syntax Diagram

9-3

Mainframe Commands

Figure 9-1 (continued)

1----- space en ab I e_va I ue 1----------1~ .__ __ _,

,__ ___ SING I e o-----~------------

REPetitive

1----- modu I e

SELecl? 0---------------------------------

color

1&1660$06

Mainframe Commands Syntax Diagram (continued)

9-4

Table 9-1

Mainframe Commands

Mainframe Parameter Values

Parameter

value

module

menu

enable_ value

index

day

month

year

hour

minute

second

color

hue

sat

lum

Values

An integer from 0 to 65535.

An integer 0 or 1 (2 through 10 unused).

An integer.

An integer from 0 to 255.

An integer from 0 to 5.

An integer from 1through31

An integer from 1through12

An integer from 1990 through 2089

An integer from 0 through 23

An integer from 0 through 59

An integer from 0 through 59

An integer from 1to7.

An integer from 0 to 100 (always 0 for HP 1660 series).

An integer from 0 to 100 (always 0 for HP 1660 series).

An integer from 0 to 100.

9-5

Command

Example

Query

Returned Format

Example

Mainframe Commands
BEEPer

BEEP er

:BEEPer [{ONll}l{OFFjO}]

The BEEPer command sets the beeper mode, which turns the beeper sound
of the instrument on and off. When BEEPer is sent with no argument, the
beeper will be sounded without affecting the current mode.

OUTPUT XXX;":BEEPER"
OUTPUT XXX;":BEEP ON"

:BEEPer?

The BEEPer? query returns the mode currently selected.

[:BEEPer) {l!O}<NL>

OUTPUT XXX;":BEEPER?"

9-6

Query

Returned Format

Example

Table9-2

CAPability

:CAPability?

Mainframe Commands
CAPability

The CAPability query returns the HP-SL (HP System Language) and lower
level capability sets implemented in the device.

Table 9-2 lists the capability sets implemented in the HP 1660-series.

[:CAPability] IEEE488,1987,SH1,AH1,T5,L4,SR1,RL1,PP1,DC1,
DT1,CO,E2<NL>

OUTPUT XXX;":CAPABILITY?"

HP 1660-series Capability Sets

Mnemonic Capability Name Implementation

SH Source Handshake SHl

AH Acceptor Handshake AHl

T Talker (or TE· Extended Talker) TS

L Listener (or LE· Extended Listener) L4

SR Service Request SRl

RL Remote Local RLl

PP Parallel Poll PPl

DC Device Clear DCl

OT Device Trigger on
c Any Controller co
E Electrical Characteristic E2

9-7

Query

Mainframe Commands
CARDcage

CARDcage

:CARDcage?

The CARDcage query returns a series of integers which identifies the
modules that are installed in the mainframe. For an HP 1660-series, the first
number returned is the card identification number and will always be 32.
The second number returned indicates the module assignment for the logic
analyzer and will always be 1. The possible values for the module
assignment are 0 and 1 where 0 indicates the module software is not
recognized or not loaded.

Returned Format [:CARDcage) <ID>,<ID>,<ID>,<ID>,<ID><assign>,<assign>,
<assign>,<assign>,<assign><NL>

<ID> An integer indicating the card identification number.

<assign> An integer indicating the module assignment.

Example OUTPUT XXX; ":CARDCAGE?"

9-8

Mainframe Commands
CESE (Combined Event Status Enable)

CESE (Combined Event Status Enable)

Command :CESE <value>

The CESE command sets the Combined Event Status Enable register. This
register is the enable register for the CESR register and contains the
combined status of all of the MESE (Module Event Status Enable) registers
of the HP 1660-series. Table 9-3 lists the bit values for the CESE register.

<value> An integer from 0 to 65535

Example OUTPUT XXX; .. :CESE 32"

Que~ :CESE?

Returned Format

Example

Table 9-3

The CESE? query returns the current setting.

(:CESE] <value><NL>

OUTPUT XXX;":CESE?"

HP 1660-series Combined Event Status Enable Register

Bit

2 to 15

0

Weight

2

Enables

not used

logic analyzer

Intermodule

9-9

Query

Mainframe Commands
CESR (Combined Event Status Register)

CESR (Combined Event Status Register)

:CESR?

The CESR query returns the contents of the Combined Event Status
register. This register contains the combined status of all of the MESRs
(Module Event Status Registers) of the HP 1660-series. Table 9-4 lists the
bit values for the CESR register.

Returned Format [:CESRJ <value><NL>

<value> An integer from 0 to 65535

Example OUTPUT XXX;" :CESR?"

Table 9-4 HP 1660-series Combined Event Status Register

Bit Bit Weight Bit Name Condition

2 to 15 0 =not used

2 Logic analyzer 0 = No new status
1 = Status to report

0 Intermodule 0 =No new status
1 = Status to report

9-10

Command

Example

Query

Returned Format

Example

Query

Returned Format

Example

EOI (End Or Identify)

:EOI {{ONll}l{OFFIO}}

Mainframe Commands
EOI (End Or Identify)

The EOI command specifies whether or not the last byte of a reply from the
instrument is to be sent with the EOI bus control line set true or not. If EOI
is turned off, the logic analyzer will no longer be sending IEEE 488.2
compliant responses.

OUTPUT XXX;":EOI ON"

:EOI?

The EOI? query returns the current status of EOI.

(:EOI] {liO}<NL>

OUTPUT XXX;":EOI?"

LER (LCL Event Register)

:LER?

The LER query allows the LCL Event Register to be read. After the LCL
Event Register is read, it is cleared. A one indicates a remote-to-local
transition has taken place. A zero indicates a remote-to-local transition has
not taken place.

[:LER) {O I l}<NL>

OUTPUT XXX;":LER?"

9-11

Command

Example

Query

Returned Format

Example

Command

Mainframe Commands
LOCKout

LOCKout

:LOCKout {{ONll}l{OFFjO}}

The LOCKout command locks out or restores front panel operation. When
this function is on, all controls (except the power switch) are entirely locked
out.

OUTPUT XXX;":LOCKOUT ON"

:LOCKout?

The LOCKout query returns the current status of the LOCKout command.
[:LOCKout) {Ojl}<NL>

OUTPUT XXX;":LOCKOUT?"

MENU

:MENU <module>[,<menu>]

The MENU command puts a menu on the display. The first parameter
specifies the desired module. The optional second parameter specifies the
desired menu in the module (defaults to 0). Table 9-5 lists the parameters
and the menus.

<module> Selects module or system (integer) 0 selects the system, 1 selects the logic
analyzer. -2, -1and2 to 10 unused)

<menu> Selects menu (integer)

9-12

Example

Table 9-5

OUTPUT XXX;":MENU 0,1"

Menu Parameter Values

Parameters Menu

0,0 System RS-232/HP-IB

0,2 System Disk

0,3 System Utilities

0,4 System Test

1,0 Analyzer Configuration

1, 1 Format 1

1,2 Format2

1,3 Trigger 1

1,4 Trigger2

1,5 Waveform 1

1,6 Waveform 2

1,7 Listing 1

1,8 Listing 2

1,9 Mixed

1,10 Compare 1

1, 11 Compare 2

1,12 Chart 1

1, 13 Chart 2

Mainframe Commands
MENU

9-13

Query

Returned Format

Example

Command

Mainframe Commands
MESE<N> (Module Event Status Enable)

:MENU?

The MENU query returns the current menu selection.

(:MENU] <module>,<menu><NL>

OUTPUT XXX;":MENU?"

MESE<N > (Module Event Status Enable)

:MESE<N> <enable value>

The MESE command sets the Module Event Status Enable register. This
register is the enable register for the MESR register. The <N> index
specifies the module, and the parameter specifies the enable value. For the
HP 1660 series, the <N> index 0 and 1 refers to system and logic analyzer
respectively.

<N> An integer 0 or 1 (2 through 10 unused).

<enable value> An integer from 0 through 255

Example OUTPUT xxx; .. : MESE 1 3 ..

Query :MESE<N>?

Returned Format

Example

The query returns the current setting. Tables 9-6 and 9-7 list the Module
Event Status Enable register bits, bit weights, and what each bit masks for
the mainframe and logic analyzer respectively.

(:MESE<N>J <enable value><NL>

OUTPUT XXX;":MESEl?"

9-14

Table 9-6

Table 9-7

Mainframe Commands
MESE<N> (Module Event Status Enable)

HP 1660-series Mainframe (Intermodule) Module Event Status Enable Register

Bit Position Bit Weight Enables

7 128 not used

6 84 not used

5 32 not used

4 16 not used

3 8 not used

2 4 not used

2 RNT - Intermodule Run Until Satisfied

0 MC - Intermodule Measurement Complete

HP 1660-series Logic Analyzer Module Event Status Enable Register

Bit Position Bit Weight Enables

7 128 not used

6 84 not used

5 32 not used

4 16 not used

3 8 Pattern searches failed

2 4 Trigger found

2 RNT - Run Until Satisfied

0 MC - Measurement Complete

9-15

Query

Mainframe Commands
MESR<N> (Module Event Status Register)

MESR<N > (Module Event Status· Register)

:MESR<N>?

The MESR query returns the contents of the Module Event Status register.
The <N> index specifies the module. For the HP 1660 series, the <N> index
0 and 1 refers to system and logic analyzer respectively.

Refer to table 9-8 for information about the Module Event Status Register
bits and their bit weights for the system and table 9-9 for the logic analyzer.

Returned Format [:MESR<N>J <enable_value><NL>

<N> An integer 0 through 10 (2 through 10 unused).

<enable value> An integer from 0 through 255

Example OUTPUT xxx; .. : MESRl? ..

Table9-8 HP 1660-series Mainframe Module Event Status Register

Bit Bit Weight Bit Name Condition

7 128 · 0= not used

6 64 0= not used

5 32 0= not used

4 16 0= not used

3 8 0= not used

2 4 0= not used

2 RNT O = Intermodule Run until not satisfied
1 = Intermodule Run until satisfied

0 MC O = Intermodule Measurement not satisfied
1 = Intermodule Measurement satisfied

9-16

Table 9-9

Command

Example

Mainframe Commands
RMODe

HP 1660-series Logic Analyzer Module Event Status Register

Bit

7

6

5

4

3

2

0

RMODe

Bit Weight

128

64

32

16

8

4

2

Condition

O =not used

0 =not used

O =not used

0 =not used

1 =One or more pattern searches failed
O =Pattern searches did not fail

1 =Trigger found
O = Triggernotfound

0 = Run until not satisfied
1 = Run until satisfied

0 = Measurement not satisfied
1 = Measurement satisfied

:RMODe {SINGlelREPetitive}

The RMODe command specifies the run mode for the selected module (or
Intermodule). If the selected module is in the intermodule configuration,
then the intermodule run mode will be set by this command.

After specifying the run mode, use the STARt command to start the acquisition.

OUTPUT XXX;":RMODE SINGLE"

9-17

Query

Mainframe Commands
RTC (Real-time Clock)

:RMODe?

Returned Format

The query returns the current setting.

[:RMODe] {SINGlelREPetitive}<NL>

Example OUTPUT XXX;":RMODE?"

RTC (Real-time Clock)

Command :RTC {<day>,<month>,<year>,<hour>,<minute>,
<second>IDEFault}

The real-time clock command allows you to set the real-time clock to the
current date and time. The DEFault option sets the real-time clock to 01
January 1990, 12:00:00 (24-hour format).

<day> integer from 1 to 31

<month> integer from 1 to 12

<year> integer from 1990 to 2089

<hour> integer from 0 to 23

<minute> integer from 0 to 59

<second> integer from 0 to 59

Example This example sets the real-time clock for 1January1992, 20:00:00 (8 PM).

OUTPUT XXX;":RTC 1,1,1992,20,0,0"

9-18

Query

Returned Format

Example

Command

:RTC?

The RTC query returns the real-time clock setting.

Mainframe Commands
SELect

[:RTC] <day>,<month>,<year>,<hour>,<minute>,<second>

OUTPUT XXX;":RTC?"

SELect

:SELect <module>

The SELect command selects which module (or system) will have parser
control. SELect defaults to System (0) at power up. The appropriate
module (or system) must be selected before any module (or system)
specific commands can be sent. SELECT 0 selects the System, SELECT 1
selects the logic analyzer (state and timing). Select -2, -1 and, 2 through 10
are accepted but no action will be taken. When a module is selected, the
parser recognizes the module's commands and the System/Intermodule
commands. When SELECT 0 is used, only the System/Intermodule
commands are recognized by the parser. Figure 9-2 shows the command
tree for the SELect command.

The command parser in the HP 1660-series is designed to accept programs
written for the HP 16500A logic analysis system with an HP 16550A logic
analyzer module; however, if the parameters 2 through 10 are sent, the HP
1660-series will take no action.

<module> An integer 0 or 1 (-2, -1, and 2 through 10 unused).

Example OUTPUT xxx; " : SELECT o ..

9-19

Query

Returned Format

Example

Figure 9-2

Mainframe Commands
SELect

:SELect?

The SELect? query returns the current module selection.

[:SELect) <module><NL>

OUTPUT XXX;":SELECT?"

:SELECT

0-- <SELECTS SYSTEM/INTERMODULE)

1-- <SELECTS MODULE IN SLOT Al

2-- <SELECTS MODULE IN SLOT 8)

3-'-- <SELECTS MODULE IN SLOT C>

4-- CSELECTS MODULE IN SLOT Dl,

5-- <SELECTS MODULE IN SLOT E>

6-- CSELECTS MODULE IN SLOT fl

Not Used 7-- <SELECTS MODULE IN SLOT Gl

8 -- <SELECTS MODULE IN SLOT H)

9-- <SELECTS MODULE IN SLOT I)

10-- CSELECTS MODULE IN SLOT J)

-1 -- <SELECTS OPTION 1)

-2 -- <SELECTS OPTION 2 l

Select Command Tree

9-20

Command

Example

Mainframe Commands
SETColor

SETColor

:SETColor {<color>,<hue>,<sat>,<lum>IDEFault}

The SETColor command is used to change one of the selections on the CRT,
or to return to the default screen colors. Because the HP 1660-series display
is monochrome, SETColor controls the grey-scale and brightness only. Four
parameters are sent with the command to change a color:

• Color Number (first parameter)

• Hue (second parameter)

• Saturation (third parameter)

• Luminosity (last parameter)

The command parser in the HP 1660-series is designed to accept programs
written for the HP 16500A logic analysis system with an HP 16550A logic
analyzer module. However, parameters for hue and saturation must be sent so
thatthe parser recognizes the correct number of parameters; but, they are
otherwise ignored by the HP 1660-series.

<color> An integer from 1 to 7

<hue> An integer from 0 to 100. Always 0 when returned by the query.

<sat> An integer from 0 to 100. Always 0 when returned by the query.

<lum> An integer from 0 to 100

Color Number O cannot be changed.

OUTPUT XXX;":SETCOLOR 3,0,0,60"
OUTPUT XXX;":SETC DEFAULT"

9-21

Query

Returned Format

Example

Command

Example

Mainframe Commands
STARt

:SETColor? <color>

The SETColor query returns the luminosity values for a specified grey scale.

[:SETColor] <color>,O,O,<lum><NL>

OUTPUT XXX;":SETCOLOR? 3"

STARt

:STARt

The STARt command starts the selected module (or Inte~odule) running
in the specified run mode (see RMODe). If the specified module is in the
Intermodule configuration, then the Intermodule run will be started.

The STARt command is an overlapped command. An overlapped command is a
command that allows execution of subsequent commands while the device
operations initiated by the overlapped .command are still in progress.

OUTPUT XXX;":START"

9-22

Command

Example

STOP

:STOP

Mainframe Commands
STOP

The STOP command stops the selected module (or Intermodule). If the
specified module is in the Intermodule configuration, then the Intermodule
run will be stopped.

The STOP command is an overlapped command. An overlapped command is a
command that allows execution of subsequent commands while the device
operations initiated by the overlapped command are still in progress.

OUTPUT XXX;":STOP"

9-23

10

SYSTem Subsystem

10-1

Introduction

SYSTem subsystem commands control functions that are common to
both analyzer 1 and analyzer 2, including formatting query responses
and enabling reading and writing to the advisory line of the
instrument. The command parser in the HP 1660-series is designed
to accept programs written for the HP 16500A logic analysis system
with an HP 16550A logic analyzer module.

Refer to figure 10-1 and table 10-1 for the System Subsystem
commands syntax diagram.

10-2

SYSTem Subsystem

Figure 10-1

:SYSTem 1---..- block_dato

1---..- st r in g f------

HEADer >-----il-t

System Subsystem Commands Syntax Diagram

10-3

Figure 10-1

Table 10-1

SYSTem Subsystem

filename

.........

System Subsystem Commands Syntax Diagram (Continued)

SYSTem Parameter Values

Values

Data in IEEE 488.2 format

Parameter

block_data

string A string of up to 68 alphanumeric characters.

10-4

Command

Example

<block data>

<block_length_
specifier>

<length>

<section>

<section
header>

<section data>

DATA

:SYSTem:DATA <block data>

SYSTem Subsystem
DATA

The DATA command allows you to send and receive acquired data to and
from a controller in block form. This helps saving block data for:

• Reloading to the logic analyzer

• Processing data later in the logic analyzer

• Processing data in the controller.

The format and length of block data depends on the instruction being used
and the configuration of the instrument. This chapter describes briefly the
syntax of the Data command and query. Because of the capabilites and
importance of the Data conunand and query, a complete chapter is
dedicated to it. The dedicated chapter is chapter 26, "DATA and SETup
Commands."

OUTPUT XXX;":SYSTEM:DATA" <block data>

<block_length_specifier><section>

#S<length>

The total length of all sections in byte format (must be represented with 8
digits)

<section header><section data>

16 bytes, described in the "Section Header Description" section in chapter
26.

The format depends on the type of data

10-5

Query

Returned Format

Example

Command

SYSTem Subsystem
DSP (Display)

:SYSTem:DATA?

The SYSTem:DATA query returns the block data. The data sent by the
SYSTem:DATA query reflects the configuration of the machines when the
last run was performed. Any changes made since then through either
front-panel operations or programming commands do not affect the stored
configuration.

(:SYSTem:DATA] <block_data><NL>

See "Transferring the logic analyzer acquired data" on page 27-17 in chapter
27, "Programming Examples" for an example.

DSP (Display)

:SYSTem:DSP <string>

The DSP conunand writes the specified quoted string to a device-dependent
portion of the instrument display.

<string> A string of up to 68 alphanumeric characters

Example OUTPUT XXX;" :SYSTEM:DSP 'The message goes here'"

10-6

Query

Returned Formats

ERRor

:SYSTem:ERRor? [NUMericlSTRing]

SYSTem Subsystem
ERR or

The ERRor query returns the oldest error from the error queue. The
optional parameter determines whether the error string should be returned
along with the error number. If no parameter is received, or if the parameter
is NUMeric, then only the error number is returned. If the value of the
parameter is STRing, then the error should be returned in the following form:

<error_number>,<error_message (string)>

A complete list of error messages for the HP 1660A-series is shown in
chapter 7, "Error Messages." If no errors are present in the error queue, a
zero (No Error) is returned.

Numeric:
(:SYSTem:ERRor) <error number><NL>

String:
(:SYSTem:ERRor) <error_number>,<error_string><NL>

<error number> An integer

<error_ string> A string of alphanumeric characters

Examples Numeric:

10 OUTPUT XXX;":SYSTEM:ERROR?"
20 ENTER XXX;Numeric

String:
50 OUTPUT XXX;":SYST:ERR? STRING"
60 ENTER XXX;String$

10-7

Command

Example

Query

Returned Format

Example

SYSTem Subsystem
HEADer

HEAD er

:SYSTem:HEADer {{ONll}l{OFFIO}}

The HEADer command tells the instrument whether or not to output a
header for query responses. When HEADer is set to ON, query responses
will include the command header.

OUTPUT XXX:":SYSTEM:BEADER ON"

:SYSTem:HEADer?

The HEADer query returns the current state of the HEADer command.

[:SYSTem:HEADer] {llO}<NL>

OUTPUT XXX:":SYSTEM:HEADER?"

Headers should be turned off when returning values to numeric variables.

10-8

Command

Example

Query

Returned Format

Example

LONGform

:SYSTem:LONGform {{ON!l}l{OFFIO}}

SYSTem Subsystem
LONGform

The LONGform command sets the longform variable, which tells the
instrument how to format query responses. If the LONGform command is
set to OFF, command headers and alpha arguments are sent from the
instrument in the abbreviated form. If the the LONG form command is set to
ON, the whole word will be output. This command has no affect on the
input data messages to the instrument. Headers and arguments may be
input in either the longform or shortform regardless of how the LONG form
command is set.

OUTPUT XXX;":SYSTEM:LONGFORM ON"

:SYSTem:LONGform?

The query returns the status of the LONGform command.

[:SYSTem:LONGform) {llO}<NL>

OUTPUT XXX;":SYSTEM:LONGFORM?"

10-9

Command

Example

Query

Example

SYSTem Subsystem
PRINt

PRINt

:SYSTem:PRINt {SCReenlALL}[,DISK, <filename>]

The PRINt command initiates a print 'of the screen or listing buffer over the
current PRINTER communication interface to the printer or to a file on the
disk.

This instuctrion prints the screen to the printer:

OUTPUT XXX;":SYSTEM:PRINT SCREEN"

This instruction prints all, for example the state listing, to a file with a
filename STATE:
OUTPUT 707;":SYSTEM:PRINT ALL, DISK,'STATE'"

:SYSTem:PRINt? {SCReenlALL}

The PRINt query sends the screen or listing buffer data over the current
CONTROLLER communication interface to the controller.

The print query should NOT be sent in cortjunction with any other command
or query on the same command line. The print query never returns a header.
Also, since response data from a print query may be sent directly to a printer
without modification, the data is not returned in block mode.

PRINT? ALL is only available in menus that have the "Print All" option available
on the front panel. For more information, refer to the HP 1660-series User's
Guide.

OUTPUT 707;":SYSTEM:PRINT? SCREEN"

10-10

Command

<block data>

<block_length_
specifier>

<length>

<section>

<section
header>

<section data>

Example

SETup

:SYStem:SETup <block data>

SYSTem Subsystem
SET up

The :SYStem:SETup command configures the logic analyzer module as
defined by the block data sent by the controller. This chapter describes
briefly the syntax of the Setup command and query. Because of the
capabilites and importance of the Setup command and query, a complete
chapter is dedicated to it. The dedicated chapter is chapter 26, "DATA and
SETup Commands."

<block_length_specifier><section>

#S<length>

The total length of all sections in byte format (must be represented with 8
digits)

<section header><section data>

16 bytes, described in the "Section Header Description" section in chapter
26.

Format depends on the type of data

The total length of a section is 16 (for the section header) plus the length of
the section data. So when calculating the value for <length>, don't forget
to include the length of the section headers.

OUTPUT xxx USING "i,K";":SYSTEM:SETUP .. <block data>

10-11

Query

Returned Format

Example

SYSTem Subsystem
SET up

:SYStem:SETup?

The SYStem:SETup query returns a block of data that contains the current
configuration to the controller.

[:SYStem:SETup] <block_data><NL>

See "Transferring the logic analyzer configuration" on page 27-14 in chapter
27, "Programming Examples" for an example.

10-12

11

MMEMory
Subsystem

11-1

Introduction

The MMEMory (mass memory) subsystem commands provide access
to disk drive. The HP 1600-series logic analyzers support both LIF
(Logical Information Format) and DOS (Disk Operating System)
formats.

The HP 1660-series logic analyzers have only one disk drive; however,
programs written for the HP l 6500A logic analysis system that
contain the MSI (Mass Storage Is) parameter will be accepted but no
action is taken. Refer to figure 11-1 and table 11-1 for the MMEMory
Subsystem commands syntax diagram. The MMEMory subsystem
commands are:

• AUToload

• CATalog

•COPY

• DOWNioad

• INITialize

•LOAD

• MSI
•PACK

• PURGe

• REName

• STORe

• UPLoad

• VOLume

11-2

MMEMory Subsystem

<msus> refers to the mass storage unit specifier; however, it is not needed for
the HP 1660-series logic analyzers since they have only one drive. The <msus>
parameter is shown in the command syntax examples as a reminder that for
the the HP 16500A logic analysis system can be used on the HP 1660-series
logic analyzers.

If you are not going to store information to the configuration disk, or if the disk
you are using contains information you need, it is advisable to write protect
your disk. This will protect the contents of the disk from accidental damage
due to incorrect commands being mistakenly sent.

11-3

MMEMory Subsystem

Figure 11-1

:MMEMory

DOWNioad space

description

41669897

Mmemory Subsystem Commands Syntax Diagram

11-4

MMEMory Subsystem

Figure 11-1

space

CONF 1 g

module

space
01660$08

Mmemory Subsystem Commands Syntax Diagram (Continued)

11-5

MMEMory Subsystem

Figure 11·1

space

REName 1-----1..i space

UPLood? 1----~ space

space 816S8S89

Mmemory Subsystem Commands Syntax Diagram (Continued)

11-6

Table 11-1

MMEMory Subsystem

MMEMory Parameter Values

Parameter

auto_file

ms us

name

description

type

block_data

ia_name

new_name

module

Values

A string of up to 10 alphanumeric characters for LIF in the
following form: "NNNNNNNNNN"
or
A string of up to 12 alphanumeric characters for DOS in the
following form: "NNNNNNNN.NNN"

Mass Storage Unit specifier (not needed by HP 1660-series. HP
165DOA <msus> is accepted but no action is taken).

A string of up to 10 alphanumeric characters for LIF in the
following form: "NNNNNNNNNN"
or
A string of up to 12 alphanumeric characters for DOS in the
following form: "NNNNNNNN.NNN"

A string of up to 32 alphanumeric characters.

An integer, refer to table 11-2.

Data in IEEE 488.2 format.

A string of up to 10 alphanumeric characters for LIF in the
following form: "NNNNNNNNNN"
or
A string of up to 12 alphanumeric characters for DOS in the
following form: "NNNNNNNN.NNN"

A string of up to 10 alphanumeric characters for LIF in the
following form: "NNNNNNNNNN"
or
A string of up to 12 alphanumeric characters for DOS in the
following form: "NNNNNNNN.NNN"

An integer, 0or1.

11-7

Command

MMEMory Subsystem
AUToload

AUToload

:MMEMory:AUToload {{OFFIO}l{<auto_file>}}[,<msus>]

The AUToload command controls the autoload feature which designates a
set of configuration tiles to be loaded automatically the next time the
instrument is turned on. The OFF parameter (or 0) disables the autoload
feature. A string parameter may be specified instead to represent the
desired autoload tile. If the file is on the current disk, the autoload feature is
enabled to the specified file.

<auto file> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:
NNNNNNNN.NNN

<msus> Mass Storage Unit Specifier (not needed by HP 1660-series. HP 16500A
<msus> is accepted but no action is taken).

Examples OUTPUT XXX; .. :MMEMORY:AUTOLOAD OFF"
OUTPUT XXX;":MMEMORY:AUTOLOAD 'FILEl A'"

Query

Returned Format

OUTPUT XXX;":MMEMORY:AUTOLOAD 'FILE2 ',INTERNALO"

:MMEMory:AUToload?

The AUToload query returns 0 if the autoload feature is disabled. If the
autoload feature is enabled, the query returns a string parameter that
specifies the current autoload file. The appropriate slot designator is
included in the filename and refers to the slot designator A for the logic
analyzser. If the slot designator is_ (underscore) the file is for the system.

[:MMEMory:AUToload] {Oj<auto file>},<msus><NL>

11-8

MMEMory Subsystem
CAT a log

<auto file> A string of up to 10 alphanumeric characters for LIF in the following form:

Example

Query

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN.NNN

OUTPUT XXX;":MMEMORY:AUTOLOAD?"

CATalog

:MMEMory:CATalog? [[All,][<msus>]]

The CATalog query returns the directory of the disk in one of two block data
formats. The directory consists of a 51 character string for each file on the
disk when the ALL option is not used. Each file entry is formatted as follows:

"NNNNNNNNNN TTTTTTT FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"

where N is the filename, Tis the file type (see table 11-2), and Fis the file
description.

The optional parameter ALL returns the directory of the disk in a
70-character string as follows:

"NNNNNNNNNNNN TTTTTTT FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF DDMMMYY
HB:MM:SS"

where N is the filename, Tis the file type (see table 11-2), Fis the file
description, and, D, M, Y, and HH:MM:SS are the date, month, year, and time
respectively in 24-hour format.

The <rnsus> is not needed by HP 1660-series; however, the HP 16500A
<msus> is accepted but no action is taken.

11-9

MMEMory Subsystem
COPY

<msus> Mass Storage Unit Specifier (not needed by HP 1660-series. HP 16500A
<msus> is accepted but no action is taken).

Returned Format c :MMEMory:CATalog] <block_ data>

<block data> ASCII block containing <filename> <file_type>
<file_description>

Example 1 This example is for sending the CATALOG? ALL query:

ExampleZ

Command

OUTPUT 707;":MMEMORY:CATALOG? ALL"

This example is for sending the CATALOG? query without the ALL option.
Keep in mind if you do not use the ALL option with a DOS disk, each
filename entry will be truncated at 51 characters:
OUTPUT 707;":MMEMORY:CATALOG?"

COPY
:MMEMory:COPY <name>[,<msus>],<new_name>[,<msus>]

The COPY command copies one file to a new file or an entire disk's contents
to another disk. The two <name> parameters are the filenames. The first
pair of parameters specifies the source file. The second pair specifies the
destination file. An error is generated if the source file doesn't exist, or if
the destination file already exists.

The <msus> is not needed by HP 1660-series. HP 16500A <msus> is
accepted but no action is taken.

11-10

MMEMory Subsystem
DOWNioad

<name> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN.NNN

<new name> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN.NNN

<msus> Mass Storage Unit Specifier (not needed by HP 1660-series. HP 16500A
<msus> is accepted but no action is taken).

Examples To copy the contents of "FILE 1" to "FILE2:

Command

OUTPUT XXX;":MMEMORY:COPY 'FILE1','FILE2'"

DOWNload

:MMEMory:DOWNload <name>[,<msus>],<description>,
<type>,<block_data>

The DOWNload command downloads a file to the mass storage device. The
<name> parameter specifies the filename, the <description> parameter
specifies the file descriptor, and the <block data> contains the contents
of the file to be downloaded. -

The <msus> is not needed by HP 1660-series. HP 16500A <msus> is
accepted but no action is taken.

Table 11-2 lists the file types for the <type> parameter.

11-11

MMEMory Subsystem
DOWNioad

<name> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN.NNN

<msus> Mass Storage Unit Specifier (not needed by HP 1660-series. HP 16500A
<msus> is accepted but no action is taken).

<description> A string of up to 32 alphanumeric characters

<type> An integer (see table 11-2)

<block data> Contents of file in block data format

Example

OUTPUT XXX;":MMEMORY:DOWNLOAD 'SETUP ',INTERNALO,'FILE CREATED FROM SETUP
QUERY',-16127,#800000643 ••• "

Table 11-2 File Types

File File Type

HP 1660-series System Software -15608

HP 1660-series ROM Software -15609

HP 1660-series System Configuration -15605

HP 1660-series Logic Analyzer Configuration -16095

HP 1660-series Logic Analyzer Software -15607

Autoload File -15615

Inverse Assembler -15614

Text Type (LIFfrom Printto Disk) -5813

11-12

Command

INITialize

MMEMory Subsystem
INITialize

:MMEMory:INITialize [{LIFIDOS}[,<msus>]]

The INITialize command formats the disk in either LIF (Logical Information
Format) or DOS (Disk Operating System). The <msus> is not needed by
HP 1660-series. HP 16500A <msus> is accepted but no action is taken. If
no format is specified, then the initialize command will format the disk in the
LIF format.

<msus> Mass Storage Unit Specifier (not needed by HP 1660-series. HP 16500A
<msus> is accepted but no action is taken).

Examples OUTPUT XXX; .. :MMEMORY: INITIALIZE DOS ..
OUTPUT XXX;":MMEMORY:INITIALIZE LIF,INTERNALO"

Once executed, the initialize command formats the specified disk, permanently
erasing all existing information from the disk. After that, there is no way to
retrieve the original information.

11-13

MMEMory Subsystem
LOAD [:CONFig]

LOAD [:CONFig]

Command :MMEMory:LOAD[:CONfig] <name>[,<msus>] [,<module>]

The LOAD command loads a configuration file from the disk into the logic
analyzer, software options, or the system. The <name> parameter specifies
the filename from the disk. The optional <module> parameter specifies
which module(s) to load the file into. The accepted values are 0 for system
and 1 for logic analyzer. Not specifying the <module> parameter is
equivalent to performing a 'LOAD ALL' from the front panel which loads the
appropriate file for both the system and logic analyzer, and any software
option.

<name> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN.NNN

<msus> Mass Storage Unit Specifier (not needed by HP 1660-series. HP 16500A
<msus> is accepted but no action is taken).

<module> An integer, 0 or I

Examples OUTPUT XXX;":MMEMORY:LOAD:CONFIG 'FILE I H

OUTPUT XXX;":MMEMORY:LOAD 'FILE ',0"
OUTPUT XXX;":MMEM:LOAD:CONFIG 'FILE A',INTERNAL0,1"

11-14

Command

LOAD :IASSembler

MMEMory Subsystem
LOAD :IASSembler

:MMEMory:LOAD:IASSembler <IA_name>[,<msus>],{112}
[, <module>]

This variation of the LOAD command allows inverse assembler files to be
loaded into a module that performs state analysis. The <IA name>
parameter specifies the inverse assembler filename from thedesired
<msus>. The parameter after the optional <msus> specifies which machine
to load the inverse assembler into.

The optional <module> parameter is used to specify which slot the state
analyzer in. 1 refers to the logic analyzer. If this parameter is not specified,
the state analyzer will be selected.

<IA name> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN.NNN

<msus> Mass Storage Unit Specifier (not needed by HP 1660-series. HP 16500A
<ms us> is accepted but no action is taken).

<module> An integer, always 1

Examples OUTPUT XXX;":MMEMORY:LOAD:IASSEMBLER '!68020 IP' ,1"
OUTPUT XXX;":MMEM:LOAD:IASS '!68020 IP',INTERNAL0,1,2"

11-15

Command

MMEMory Subsystem
MSI (Mass Storage Is)

MSI (Mass Storage Is)

:MMEMory:MSI [<msus>]

The MSI command selects a default mass storage device; however it is not
needed by HP 1660-series because it has only one disk drive. If the
HP 16500A <msus> is sent to the HP 1660-series logic analyzer, it is
accepted but no action is taken.

<msus> Mass Storage Unit Specifier (not needed by HP 1660-series. HP 16500A
<msus> is accepted but no action is taken).

Examples OUTPUT XXX; ":MMEMORY:MSI"
OUTPUT XXX;":MMEM:MSI INTERNALO"

Query :MMEMory:MSI?

Returned Format

Example

The MSI? query returns the current MSI setting. Because the
HP 1660-series logic analyzers have only one disk drive, InternalO is
always returned.

[:MMEMory:MSI) <msus><NL>

OUTPUT XXX;":MMEMORY:MSI?"

11-16

Command

PACK

:MMEMory:PACK [<msus>]

MMEMory Subsystem
PACK

The PACK command packs the files on the LIF disk the disk in the drive. If a
DOS disk is in the drive when the PACK corrunand is sent, no action is taken.

<rnsus> Mass Storage Unit Specifier (not needed by HP 1660-series. HP 16500A
<rnsus> is accepted but no action is taken).

Examples OUTPUT XXX; ":MMEMORY:PACK"
OUTPUT XXX;":MMEM:PACK INTERNALO"

Command

PURGe

:MMEMory:PURGe <name>[,<msus>]

The PURGe corrunand deletes a file from the disk in the drive. The <name>
parameter specifies the filename to be deleted.

<name> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN.NNN

<rnsus> Mass Storage Unit Specifier (not needed by HP 1660-series. HP 16500A
<rnsus> is accepted but no action is taken).

11-17

Examples

Command

MMEMory Subsystem
REName

OUTPUT XXX;":MMEMORY:PURGE 'FILEl'"
OUTPUT XXX;":MMEM:PURG 'FILEl',INTERNALO"

Once executed, the purge command permanently erases all the existing
information about the specified file. After that, there is no way to retrieve the
original information.

REN rune

:MMEMory:REName <name>[,<msus>],<new_name>

The RENarne command renames a file on the disk in the drive. The <name>
parameter specifies the filename to be changed and the <new_ name>
parameter specifies the new filename.

You cannot rename a file to an already existing filename.

<name> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN.NNN

<msus> Mass Storage Unit Specifier (not needed by HP 1660-series. HP 16500A
<msus> is accepted but no action is taken).

<new name> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN.NNN

11-18

Examples

Command

MMEMory Subsystem
STORe [:CONFig]

OUTPUT XXX;":MMEMORY:RENAME 'OLDFILE','NEWFILE'"
OUTPUT XXX;":MMEM:REN 'OLDFILE'[,INTERNALl],'NEWFILE'"

STORe [:CONFig]

:MMEMory:STORe [:CONfig]<name>[,<msus>],
<description>[,<module>]

The STORe command stores module or system configurations onto a disk.
The [:CONFig) specifier is optionaJ and has no effect on the command. The
<name> parameter specifies the file on the disk. The <description>
parameter describes the contents of the file. The optionaJ <module>
parameter allows you to store the configuration for either the system or the
logic analyzer. 1 refers to the logic analyzer and 0 refers to the system.

If the optional <module> parameter is not specified, the configurations for
both the system and logic analyzer are stored.

<name> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN.NNN

<msus> Mass Storage Unit Specifier (not needed by HP 1660-series. HP 16500A
<msus> is accepted but no action is taken).

<description> A string of up to 32 alphanumeric characters

<module> An integer, 0 or 1

11-19

Examples

Query

MMEMory Subsystem
UPLoad

OUTPUT XXX;":MMEM:STOR 'DEFAULTS','SETUPS FOR ALL MODULES'"
OUTPUT XXX; " : MMEMORY: STORE: CONFIG 'STATEDATA' , INTERNALO,
'ANALYZER 1 CONFIG',1"

The appropriate module designator ·_x· is added to all files when they are
stored. "X" refers to either an_ (double underscore) for the system or an _A
for the logic analyzer.

UP Load

:MMEMory:UPLoad? <name>[,<msus>]

The UPLoad query uploads a file. The <name> parameter specifies the file
to be uploaded from the disk. The contents of the file are sent out of the
instrument in block data form.

This command should only be used for HP 16550A or HP 1660-series
configuration files.

<name> A string of up to 10 alphanumeric characters for LIF in the following form:

NNNNNNNNNN
or
A string of up to 12 alphanumeric characters for DOS in the following form:

NNNNNNNN.NNN

<msus> Mass Storage Unit Specifier (not needed by HP 1660-series. HP 16500A
<msus> is accepted but no action is taken).

Returned Format [:MMEMory:UPLoad) <block data><NL>

11-20

Example

10 DIM Block$[32000]
20 DIM Specifier$[2]
30 OUTPUT XXX;":EOI ON"
40 OUTPUT XXX;":SYSTEM HEAD OFF"
50 OUTPUT XXX;":MMEMORY:UPLOAD? 'FILEl'"
60 ENTER xxx USING "i,2A";Specifier$
70 ENTER xxx USING "i,SD";Length
80 ENTER XXX USING "-K";Block$
90 END

VOLume

MMEMory Subsystem
VOLume

!allocate enough memory for block data

!send upload query
tread in ·1a
!read in block length
tread in file

Query :MMEMory:VOLume? [<msus>]

TheVOLume query returns the volume type of the disk. The volume types
are DOS or LIF. Question marks (???) are returned if there is no disk, if the
disk is not formatted, or if a disk has a format other than DOS or LIF.

<msus> Mass Storage Unit Specifier (not needed by HP 1660-series. HP 16500A
<msus> is accepted but no action is taken).

Returned Format c :MMEMory :voLume J {DOS I LIF I??? }<NL>

Example OUTPUT XXX; .. :MMEMORY:VOLUME?"

11-21

12

INTermodule
Subsystem

12-1

Introduction

The INTermodule subsystem commands specify intermodule arming
from the rear-panel input BNC (ARMIN) or to the rear-panel output
BNC (ARMOUT). Refer to figure 12-1 and table 12-1 for the
INTermodule Subsystem commands syntax diagram. The
INTermodule commands are:

• DELete

• HTIMe

• INPort

• INSert

•SKEW

•TREE

• TTIMe

12-2

INTermodule Subsystem

Figure 12-1

:INTermodule

INPort

space mod u I e J----t~

Intermodule Subsystem Commands Syntax Diagram

12-3

INTermodule Subsystem

Figure 12-1

1----- sett in g 1--------1-.i ...__ _ __.

1----- space 1----1-.i mod u I e

module

modu I e l----1~

16590/$)(96

Intermodule Subsystem Commands Syntax Diagram (Continued)

12-4

Table 12-1

Selector

Example

INTermodule Subsystem
:INTermodule

INTermodule Parameter Values

Parameter

module

index

setting

:INTermodule

:INTermodule

Value

An integer, 1to10 (2 through 10 unused)

An integer, 1to'10 (2 through 10 unused)

A numeric,-1.0 to 1.0 in seconds.

The INTermodule selector specifies INTermodule as the subsystem the
commands or queries following will refer to. Because the INTermodule
command is a root level command, it will normally appear as the first
element of a compound header.

OUTPUT XXX;":INTERMODULE:HTIME?"

DELete

Command :DELete {ALLjOUTl<module>}

The DELete command is used to delete a module, PORT OUT, or an entire
intermodule tree. The <module> parameter sent with the delete command
refers to the slot location of the logic analyzer which is slot 1.

<module> An integer, 1through10 (2 through 10 unused)

Example OUTPUT xxx; .. : INTERMODULE: DELETE ALL ..
OUTPUT XXX;":INTERMODULE:DELETE l"

12-5

Query

INTermodule Subsystem
HTIMe

HTIMe

:HTIMe?

The HTIMe query returns a value representing the internal hardware skew in
the Intermodule configuration. If there is no internal skew, 9.9E37 is
returned.

The internal hardware skew is only a display adjustment for time-correlated
waveforms. The value returned is the average propagation delay of the trigger
lines through the intermodule bus circuitry. The value is for reference only
because the value returned by TTIMe includes the internal hardware skew
represented by HTIMe.

Returned Format [: INTermodule: HTIMe] <value><NL>

<value> Skew for logic analyzer (real number)

Example OUTPUT XXX; .. :INTERMODULE:HTIME?"

Command

Example

INPort

:INPort {{ONll}l{OFFIO}}

The INPort command causes intermodule acquisitions to be armed from the
Input port.

OUTPUT XXX;":INTERMODULE:INPORT ON"

12-6

Query

Returned Format

Example

:INPort?

The INPort query returns the current setting.

[:INTermodule:INPort] {llO}<NL>

OUTPUT XXX;":INTERMODULE:INPORT?"

IN Sert

INTermodule Subsystem
INSert

Command :INSert {<module>IOUT},{GROUPl<module>}

The INSert command adds PORT OUT to the Intermodu1e configuration.
The first parameter selects the logic analyzer or PORT OUT to be added to
the intermodu1e configuration, and the second parameter tells the
instrument where the logic analyzer or PORT OUT will be located. A 1
corresponds to the slot location of the logic analyzer.

<module> An integer, 1 through 10 (2 through 10 unused)

Examples OUTPUT XXX; H: INTERMODULE: INSERT 1,GROUP"
OUTPUT XXX;":INTERMODULE:INSERT OUT,1"

The following figure shows the resu1t of the example output commands:

Group Run

OUT

12-7

INTermodule Subsystem
SKEW<N>

SKEW<N>

Command : SKEW<N> <setting>

The SKEW command sets the skew value for a module. The <N> index
value is the module number (1 corresponds to the logic analyzer and 2
through 10 unused). The <setting> parameter is the skew setting (- 1.0 to
1.0) in seconds.

<N> An integer, 1 through 10 (2 through 10 unused)

<setting> A real number from-1.0 to 1.0 seconds

Example OUTPUT XXX; .. : INTERMODULE: SKEWl 3. OE-9"

Que~ :SKEW<N>?

Returned Format

Example

The query returns the user defined skew setting.

[INTermodule:SKEW<N>] <setting><NL>

OUTPUT XXX;":INTERMODULE:SKEWl?"

12-8

Command

<module>

Example

TREE

:TREE <module>,<module>

INTermodule Subsystem
TREE

The TREE command allows an intermodule setup to be specified in one
command. The first parameter is the intermodule arm value for module A
(logic analyzer). The second parameter corresponds to the intermodule arm
value for PORT OUT. A-1 means the module is not in the intermodule tree,
a 0 value means the module is armed from the Intermodule run button
(Group run), and a positive value indicates the module is being armed by
another module with the slot location 1 to 10. A 1 corresponds to the slot
location of the module A (logic analyzer) and 2 through 10 are unused.

An integer, -1 through 10 (2 through 10 unused)

OUTPUT XXX~":INTERMODULE:TREE 1,0"

The following figure shows the result of the example output commands:

Group Run

OUT

12-9

Query

Returned Format

Example

Query

INTermodule Subsystem
TTIMe

:TREE?

The TREE? query returns a string that represents the intermodule tree. A
-1 means the module is not in the intermodule tree, a 0 value means the
module is armed from the Intermodule run button (Group run), and a
positive value indicates the module is being armed by another module with
the slot location 1 to 10. A 1 corresponds to the slot location of the module
A (logic analyzer) and 2 through 10 are unused.

[INTermodule:TREEJ <module>,<module><NL>

OUTPUT XXX;":INTERMODULE:TREE?"

TTI1\1e

:TTIMe?

The TTIMe query returns values representing the absolute intermodule
trigger time for all of the modules in the Intermodule configuration. Since
the HP 1660A-series are single module instruments, this query is described
only as a reminder that HP 16500A logic analysis system programs will run
on the HP 1660A-series logic analyzers. The first value is the trigger time
for the module in slot A, the second value is for the module in slot B, the
third value is for slot C, etc.

The value 9.9E37 is returned when:

• The module in the corresponding slot is not time correlated; or

• A time correlatable module did not trigger.

The trigger times returned by this command have already been offset by the
INTermodule:SKEW values and internal hardware skews
(INTermodule:HTI Me).

12-10

Returned Format [:INTermodule:TTIMe) <value l>,<value 2><NL>

<value l> Trigger time for module in slot A (real number)

"<value· 2> · Trigger time for module in slot B (real number)

..
NOT USED .

. : .
<valuel o) Trigger time for module in ·slot J (real number)
'

Example OUTPUT XXX; .. : INTERMODULE; TTIME?"

INTermodule Subsystem
TIIMe

12-11

13

MAC Hine
Subsystem

13-1

Introduction

The MACHine subsystem contains the commands that control the
machine level of operation of the logic analyzer. The functions of
three of these commands reside in the State!I'irning Configuration
menu. These commands are:

• ASSign

•NAME
•TYPE

Even though the functions of the fallowing commands reside in the
Trace menu they are at the machine level of the command tree and
are therefore located in the MACHine subsystem. These commands
are:

•ARM

• LEVelarm
• REName
• RESource

13-2

MACHine Subsystem

Figure 13-1

:MACHi ne space

ASSign space pod_ I is t >-----------

ASSIGN? f----------------------.-

new_ text

REName?

TIMing

165SOS02

Machine Subsystem Syntax Diagram

13-3

Table 13-1

MACHine Subsystem
MACHine

Machine Parameter Values

Parameter

arm_source

pod_list

pod_num

arm_level

machine_name

res_id

new_text

state_terms

res_terms

MACHine

Values

{RUNIINTermodulelMACBine{ll2}}

{NONE I <pod num> [, <pod num>] ••• }

<ll2IJl4ISl6l7IS>

An integer from 1to11 representing sequence level

A string of up to 10 alphanumeric characters

<state terms> for state analyzer or
{<state_terms> IGLEDge{ 1I2>} for timing analyzer

A string of up to 8 alphanumeric characters

<AlslclDIEIFIGIHIIIJIRANGE{ll2>ITIMER{ll2>}

{<res id> (, <res id>) ••• }

Selector :MACHine<N>

The MACHine <N> selector specifies which of the two analyzers (machines)
available in the HP 1660-series the commands or queries following will refer
to. Because the MACHine<N> command is a root level command, it will
normally appear as the first element of a compound header.

<N> { l I 2} (the machine number)

Example OUTPUT XXX; .. :MACHINEl :NAME 'TIMING"'

13-4

ARM

MACHine Subsystem
ARM

Command :MACHine{ll2}:ARM <arm source>

The ARM corrunand specifies the arming source of the specified analyzer
(machine). The RUN option disables the arm source. For example, if you
do not want to use either the intermodule bus or the other machine to arm
the current machine, you specify the RUN option.

<arm source> {RUNIINTermodulelMACHine{ll2}}

Example OUTPUT XXX; ":MACHINEl :ARM MACHINE2"

Que~ :MACHine{ll2}:ARM?

Returned Format

Example

The ARM query returns the source that the current analyzer (machine) wil
be armed by.

[:MACHine{ll2}:ARM] <arm_source>

OUTPUT XXX;":MACHINE:ARM?"

ASSign

Command :MACHine{ll2}:ASSign <pod_list>

The ASSign command assigns pods to a particular analyzer (machine). The
ASSign command will assign two pods for each pod number you specify
because pods must be assigned to analyzers in pairs.

<pod_list> {NONE I <pod >f [, <pod >i] ••• }

<pod># <ll2IJl4ISl6l7ls>

13-5

Example

Query

MACHine Subsystem
LEVelarm

OUTPUT XXX;":MACHINEl:ASSIGN 5, 2, l"

:MACHine{lj2}:ASSign?

The ASSign query returns which pods are assigned to the current analyzer
(machine).

Returned Format c :MACBine{l I 2> :ASSign] <pod_list><NL>

<pod_ list> {NONE I <pod ># [, <pod >#] ••• }

<pod># <ll2IJl4ISl6l7IB>

Example OUTPUT XXX;" :MACBINEl :ASSIGN?"

Command

LEVelann

:MACHine{ll2}:LEVelarm <arm level>

The LEVelann cormnand allows you to specify the sequence level for a
specified machine that will be anned by the IntennoduJe Bus or the other
machine. This conunand is only valid if the specified machine is on and the
arming source is not set to RUN with the ARM command.

<arm level> An integer from 1 to the maximum number of levels specified in the
appropriate trigger menu.

Example OUTPUT XXX;":MACBINEl:LEVELARM 2"

Query :MACHine{l I 2} :LEVelarm?

13-6

MACHine Subsystem
NAME

The LEVelann query returns the current sequence level receiving the arming
for a specified machine.

Returned Format [: MACBine{ l I 2} :LEVelarm) <arm level><N'L>

<arm level> An integer from 1 to 11 representing sequence level

Example OUTPUT XXX; .. :MACBINEl :LEVELARM?"

NAME

Command :MACHine{ll2}:NAME <machine name>

The NAME command allows you to assign a name of up to 10 characters to a
particular analyzer (machine) for easier identification.

<machine name> A string of up to 10 alphanumeric characters

Example OUTPUT XXX; ":MACBINEl :NAME 'DRAMTEST"'

Query : MACHine { l I 2 } : NAME?

The NAME query returns the current analyzer name as an ASCII string.

Returned Format [:MACeine{l I 2> :NAME) <machine_name><NL>

<machine name> A string of up to 10 alphanumeric characters

Example OUTPUT XXX; .. :MACBINEl :NAME?"

13-7

Command

MACHine Subsystem
REN a me

RENarne

:MACHine{ll2}:REName {<res_id>, <new text>
DEFault}

The RENarne command allows you to assign a specific name of up to eight
characters to tenns A through J, Range 1 and 2, and Timer 1and2 in the
state analyzer. In the timing analyzer, GLEDge (glitch/edge) 1 and 2 can be
renamed in addition to the tenns available in the state analyzer. The
DEFault option sets all resource tenn names to the default names assigned
when turning on the instrument.

<res id> <state_ terms> for state analyzer
or
{<state terms> I GLEDge{ l I 2}} for timing analyzer

<new text> A string of up to 8 alphanumeric characters

Example OUTPUT XXX;":MACHINEl:RENAME A,'DATA'"

Query :MACHine{ll2}:RENAME? <res_id>

The RENarne query returns the current names for specified tenns assigned
to the specified analyzer.

Returned Format [:MACHine{l j 2} :RENAME] <res_id>,<new_text><NL>

<res id> <state_ terms> for state analyzer
or
{<state terms> I GLEDge{ l I 2}} for timing analyzer

<new text> A string of up to 8 alphanumeric characters

Example OUTPUT XXX;" :MACHINE! :RENAME? D"

13-8

Command

RESource

:MACHine{ll2}:RESource <res terms>

MACHine Subsystem
RESource

The RESource command allows you to assign resource terms A through J,
Range 1 and 2, and Timer 1 and 2 to a particular analyzer (machine 1or2).

In the timing analyzer only, two additional resource terms are available. These
terms are GLEDge (Glitch/Edge) 1 and 2. These terms will always be assigned
to the the machine that is configured as the timing analyzer.

<res terms> {AIBlclolEIFIGIHIIIJITIMerllTIMer2IRANGellRANGe2}

Example OUTPUT XXX; .. :MACHINEl :RESOURCE A,C,RANGEl ..

Que~ :MACHine{ll2}:RESOURCE?

The RESource query returns the current resource terms assigned to the
specified analyzer.

Returned Format [:MACHine{ 1I2} :RESOURCE] <res _terms>[,<res_ terms>, •••]<NL>

<res terms> {A!BlclolEIFIGIHIIIJITIMerllTIMer2IRANGellRANGe2}

Example OUTPUT xxx; .. : MACHINE 1: RESOURCE? ..

13-9

Command

MACHine Subsystem
TYPE

TYPE

:MACHine{ll2}:TYPE <analyzer_type>

The TYPE command specifies what type a specified analyzer (machine) will
be. The analyzer types are state or timing. The TYPE command also allows
you to tum off a particular machine.

Only one timing analyzer can be specified at a time.

<analyzer_type> {OFFISTATelTIMing}

Example

Query

Returned Format

OUTPUT XXX;":MACHINEl:TYPE STATE"

:MACHine{ll2}:TYPE?

The TYPE query returns the current analyzer type for the specified analyzer.

(:MACBine{ll2}:TYPE] <analyzer_type><NL>

<analyzer_type> {OFFISTATelTIMing}

Example OUTPUT XXX;":MACBINEl:TYPE?"

13-10

14

WLISt Subsystem

14-1

Introduction

The WLISt subsystem contains the commands available for the
Timing/State mixed mode display. The X and 0 markers can only be
placed on the wavefonns in the waveform portion of the Timing/State
mixed mode display. The XSTate and OSTate queries return what
states the X and 0 markers are on. Because the markers can only be
placed on the timing wavefonns, the queries return what state (state
acquisition memory location) the marked pattern is stored in.

In order to have mixed mode, one machine must be a state analyzer with time
tagging on (use MACHine<N>:STRigger:TAG TIME).

• DELay

• INSert

• LINE

• OSTate

• OTIMe

• RANGe

• REMove

• XOTime

• XSTate

• XTIMe

14-2

WLISt Subsystem

Figure 14-1

J----- space

INSert

module_spec

t ime_range

165"40S09

WLISt Subsystem Syntax Diagram

14-3

Table14-1

Selector

Example

WLISt Subsystem
WU St

WUSt Parameter Values

Parameter

delay_value

module_spec

bit_id

label_name

line_num_mid_screen

waveform

time_value

time_range

WIJSt

:WLISt

Value

Real number between -2500 sand +2500 s

<l I 2 I JI 4 IS I 6 I 7IBI9I10} (slot where timing card is
installed, 2 through 10 unused)

An integer from Oto 31

String of up to 6 alphanumeric characters

An integer from -8191 to +8191

String containing <acquisition spec>{ 1 I 2}

Real number

Real number between 10 ns and 10 ks

The WLISt (Waveforms/LISting) selector is used as a part of a compound
header to access the settings normallY found in the Mixed Mode menu.
Because the WLISt command is a root level command, it will always appear
as the first element of a compound header.

The WU St subsystem is only available when one or more state analyzers, with
time tagging on, are specified.

OUTPUT XXX;":WLIST:XTIME 40.0E-6"

14-4

DELay

Command :MACHine{ll2}:WLISt:DELay <delay_value>

WLISt Subsystem
DELay

The DELay command specifies the amount of time between the timing
trigger and the horizontal center of the the timing waveform display. The
allowable values for delay are -2500 s to +2500 s.

<delay_ value> Real number between -2500 sand +2500 s

Example OUTPUT XXX;":MACBINEl:WLIST:DELAY lOOE-6"

Que~ :MACHine{ll2}:WLISt:DELay?

The DELay query returns the current time offset (delay) value from the
trigger.

Returned Format [: MACBine{ l I 2} :WLISt: DELay J <time_ value><NL>

<delay_ value> Real number between -2500 sand +2500 s

Example OUTPUT xxx; .. :MACHINE! :WLIST:DELAY?"

14-5

Command

WLISt Subsystem
IN Sert

IN Sert

:MACHine{ll2}:WLISt:INSert [<module_spec>,]
<label_name>[,{<bit_id>jOVERlaylALL}]

The INSert command inserts waveforms in the timing waveform display.
The waveforms are added from top to bottom up to a maximum of 96
waveforms. Once 96 waveforms are present, each time you insert another
waveform, it replaces the last waveform.

The first parameter specifies from which module the waveform is coming
from; however, the HP 1660A-series logic analyzers are single-module
instruments. Therefore, this parameter is not needed. It is described here
as a reminder that programs for the HP 16500A logic analysis system can be
used. The second parameter specifies the label name that will be inserted.
The optional third parameter specifies the label bit number, overlay, or all.
If a number is specified, only the waveform for that bit number is added to
the screen.

If you specify OVERlay, all the bits of the label are displayed as a composite
overlaid waveform. If you specify ALL, all the bits are displayed
sequentially. If you do not specify the third parameter, ALL is assumed.

<module_ spec> {11213141516171819110} (not needed)

<label name> String of up to 6 alphanumeric characters

<bit id> An integer from 0 to 31

Examples Inserting a logic analyzer waveform:

OUTPUT XXX~":MACHINEl:WLIST:INSERT 3, 'WAVE' ,10"

14-6

Command

<line num mid
screen>

Example

Query

Returned Format

Example

LINE

WLISt Subsystem
LINE

:MACHine{ll2}:WLISt:LINE <line num mid screen>

The LINE command allows you to scroll the state analyzer listing vertically.
The command specifies the state line number relative to the trigger that the
analyzer highlights at the center of the screen.

An integer from -8191 to +8191

OUTPUT XXX;":MACHINEl:WLIST:LINE 0"

:MACHine{ll2}:WLISt:LINE?

The LINE query returns the line number for the state currently in the box at
center screen.

(:MACHine{ll2}:WLISt:LINEJ <line_num_mid_screen><NL>

OUTPUT XXX;":MACHINEl:WLIST:LINE?"

14-7

Query

WLISt Subsystem
OST ate

OSTate

:WLISt:OSTate?

The OSTate query returns the state where the 0 Marker is positioned. If
data is not valid, the query returns 32767.

Returned Format £ :WLISt:osTate] <state_num><NL>

<state num> An integer from -8191 to +8191

Example OUTPUT XXX; .. :WLIST:OSTATE?"

Command

OTThie

:WLISt:OTIMe <time value>

The OTIMe command positions the 0 Marker on the timing waveforms in the
mixed mode display. If the data is not valid, the command performs no
action.

<time value> A real number

Example OUTPUT XXX;":WLIST:OTIME 40.0E-6"

14-8

Query :WLISt:OTIMe?

WLISt Subsystem
RAN Ge

The OTIMe query returns the 0 Marker position in time. If data is not valid,
the query returns 9.9E37.

Returned Format [:WLISt:OTIMe) <time value><NL>

<time value> A real number

Example OUTPUT xxx; 11 :WLIST:OTIME? 11

RANGe

Command :MACHine{ll2}:WLISt:RANGe <time value>

The RANGe command specifies the full-screen time in the timing waveform
menu. It is equivalent to ten times the seconds per division setting on the
display. The allowable values for RANGe are from 10 ns to 10 ks.

<time value> A real number between 10 ns and 10 ks

Example OUTPUT XXX; .. :MACBINEl :WLIST:RANGE lOOE-9"

Query :MACHine{l I 2} :WLISt:RANGe?

The RANGe query returns the current full-screen time.

Returned Format c :MACHine{l I 2> :WLISt:RANGe] <time value><NL>

<time value> A real number between 10 ns and 10 ks

Example OUTPUT xxx; 11 :MACBINEl:WLIST:RANGE?"

14-9

Command

Example

Query

WLI St Subsystem
REMove

REMove

:MACHine{ll2}:WLISt:REMove

The REMove command deletes all waveforms from the display.

OUTPUT XXX;":MACHINEl:WLIST:REMOVE"

XOTime

:MACHine{ll2}:WLISt:XOTime?

The XOTime query returns the time from the X marker to the 0 marker. If
data is not valid, the query returns 9.9E37.

Returned Format (:MACHine{lj 2} :WLISt:XOTime] <time value><NL>

<time value> A real number

Example OUTPUT XXX; .. :MACHINEl :WLIST:XOTIME?"

14-10

Query

XSTate

:WLISt:XSTate?

WU St Subsystem
XSTate

The XSTate query returns the state where the X Marker is positioned. If
data is not valid, the query returns 32767.

Returned Format (:WLISt:XSTate] <state num><NL>

<state nwn> An integer

Example OUTPUT XXX;" :WLIST:XSTATE?"

XTIMe

Command :WLISt:XTIMe <time value>

The XTIMe command positions the X Marker on the timing waveforms in the
mixed mode display. If the data is not valid, the command performs no
action.

<time value> A real number

Example OUTPUT XXX; ":WLIST:XTIME 40.0E-6"

14-11

Query

WU St Subsystem
XTIMe

:WLISt:XTIMe?

The XTIMe quezy returns the X Marker position in time. If data is not valid,
the quezy returns 9.9E37.

Returned Format c :WLISt:XTIMe) <time value><NL>

<time value> A real number

Example OUTPUT XXX; .. :WLIST:XTIME? ..

14-12

15

SFORmat
Subsystem

15-1

Introduction

The SFORmat subsystem contains the commands available for the
State Format menu in the HP 1660A-series logic analyzers. These
corrunands are:

• CLOCk
• LABel
• MASTer
•MODE
• MOPQual
• MQUal
• REMove
• SETHold
• SLAVe
• SOPQual
• SQUal
• THReshold

15-2

SFORmat Subsystem

Figure 15-1

:SFORmat

c lock_spec 1---------------1~

quaLoperation 1---------1..i

clocLid qual_levell-----tM

1&eos10

SFORmat Subsystem Syntax Diagram

15-3

SFORmat Subsystem

Figure 15-1

qual_operation t--~~~~~-..i

qual_level

THReshold<N> space

SFORmat Subsystem Syntax Diagram (continued)

15--4

Table 15-1

SFORmat Subsystem

SFORmat Parameter Values

Parameter

<N>

label_name

polarity

clock_bits

upper_bits

lower_bits

clock_id

clock_spec

clock_pair_id

qual_operation

qual_num

qual_level

pod_num

set_hold_value

value

Values

<<ll2>l<Jl4ISl6>l<7IB>>
String of up to 6 alphanumeric characters

{POSitivelNEGative}

Format (integer from Oto 63) for a clock (clocks are assigned in
decreasing order)

Format (integer from 0 to 65535) for a pod (pods are assigned in
decreasing order)

Format (integer from 0 to 65535) for a pod (pods are assigned in
decreasing order)

{JIKILIMINIP>
{OFFIRISinglFALLinglBOTB}

{112>
{ANDI OR}

{1121314>
{OFFILOWIHIGB}

<ll2l3l4ISl6l7IB>
<Olll2l3l4ISl6l7IBl9>
voltage (real number) -6.00 to +6.00

15-5

Selector

Example

Command

SFORmat Subsystem
SFORmat

SFORmat

:MACHine{ll2}:SFORmat

The SFORmat (State Format) selector is used as a part of a compound
header to access the settings in the State Format menu. It always follows
the MACHine selector because it selects a branch directly below the
MACHine level in the command tree.

OUTPUT XXX;":MACHINE2:SFORMAT:MASTER J, RISING"

CLO Ck

:MACHine{ll2}:SFORmat:CLOCk<N> <clock mode>

The CLOCk command selects the clocking mode for a given pod when the
pod is assigned to the state analyzer. When the MASTer option is specified,
the pod will sample all 16 channels on the master clock. When the SLAVe
option is specified, the pod will sample all 16 channels on the slave
clock. When the DEMultiplex option is specified, only one pod of a pod pair
can acquire data. The 16 bits of the selected pod will be clocked by the
demultiplex master for labels with bits assigned under the Master pod. The
same 16 bits will be clocked by the demultiplex slave for labels with bits
assigned under the Slave pod. The master clock always follows the slave
clock when both are used.

<N> { { l I 2} I { 3 I 4} I { 5 I 6 } I {7 I 8}} 1 through 8 for the HP 1660A, 1
through 6 for the HP 1661A, 1through4 for the HP 1662A, and 1through2
for the HP 1663A.

<clock mode> {MASTerlSLAVelDEMultiplex}

Example OUTPUT XXX; .. :MACHINEl :SFORMAT:CLOCK2 MASTER"

15-6

Query

Returned Format

Example

Command

SFORmat Subsystem
LAB el

:MACHine{ll2}:SFORmat:CLOCk<N>?

The CLOCk query returns the current clocking mode for a given pod.

[:MACHine{ll2}:SFORmat:CLOCK<N>] <clock_mode><NL>

OUTPUT XXX; ":MACHINE1:SFORMAT:CLOCK2?"

LAB el

:MACHine{ll2}:SFORmat:LABel <name>,[<polarity>,
<clock_bits>, <upper_bits>, <lower bits>
[,<upper_bits>,<lower_bits>] •••]

The LABel command allows you to specify polarity and assign channels to
new or existing labels. If the specified label name does not match an
existing label name, a new label will be created.

The order of the pod-specification parameters is significant. The first one
listed will match the highest numbered pod assigned to the machine you're
using. Each pod specification after that is assigned to the next highest
numbered pod. This way they match the left-to-right descending order of
the pods you see on the Format display. Not including enough pod
specifications results in the lowest numbered pod(s) being assigned a value
of zero (all channels excluded). If you include more pod specifications than
there are pods for that machine, the extra ones will be ignored. However, an
error is reported anytime when more than 13 pod specifications are listed.
The polarity can be specified at any point after the label name.

Because pods contain 16 channels, the format value for a pod must be
between 0 and 65535 (216-1). When giving the pod assignment in binary
(base 2), each bit will correspond to a single channel. A "l" in a bit position
means the associated channel in that pod is assigned to that pod and bit. A
"0" in a bit position means the associated channel in that pod is excluded
from the label. For example, assigning #Bl111001100 is equivalent to
entering " **** .. ** .. " from the front panel.
A label can not have a total of more than 32 channels assigned to it.

15-7

SFORmat Subsystem
LAB el

<name> String of up to 6 alphanumeric characters

<polarity> {POSitivejNEGative}

<clock bits> Format (integer from 0 to 63) for a clock (clocks are assigned in decreasing
order)

<upper_ bi ts> Format (integer from 0 to 65535) for a pod (pods are assigned in decreasing
order)

<lower bi ts> Format (integer from 0 to 65535) for a pod (pods are assigned in decreasing
order)

Examples OUTPUT XXX;":MACHINE2:SFORMAT:LABEL 'STAT', POSITIVE,
0,127,40312"
OUTPUT XXX;":MACHINE2:SFORMAT:LABEL 'SIG 1', iBll,
#BOOOOOOOOllllllll,#BOOOOOOOOOOOOOOOO "

Que~ :MACHine{lj2}:SFORmat:LABel? <name>

Returned Format

Example

The LABel query returns the current specification for the selected (by
name) label. If the label does not exist, nothing is returned. The polarity is
always returned as the first parameter. Numbers are always returned in
decimal format.

(:MACHine{ll2}:SFORmat:LABel] <name>,<polarity>
[, <clock_bits>, <upper_bits>, <lower_bits>]<NL>

OUTPUT XXX;":MACHINE2:SFORMAT:LABEL? 'DATA'"

15-8

Command Syntax:

MASTer

SFORmat Subsystem
MAST er

:MACHine{ll2}:SFORmat:MASTer <clock_id>,
<clock_spec>

The MASTer clock command allows you to specify a master clock for a given
machine. The master clock is used in all clocking modes (Master, Slave, and
Demultiplexed). Each command deals with only one clock (J,K,L,M,N,P);
therefore, a complete clock specification requires six commands, one for
each clock. Edge specifications (RISing, F ALLing, or BOTH) are ORed.

At least one clock edge must be specified.

<clock id> {JIKILIMINIP}

<clock_spec> {OFFjRISinglFALLingjBOTH}

Example OUTPUT XXX; .. :MACHINE2 :SFORMAT:MASTER J, RISING"

Que~ :MACHine{ll2}:SFORmat:MASTer? <clock_id>

Returned Format

Example

The MASTer query returns the clock specification for the specified clock.

[:MACHine{ll2}:SFORmat:MASTer)<clock_id>,<clock_spec><NL>

OUTPUT XXX;":MACHINE2:SFORMAT:MASTER? <clock id>"

15-9

Command

SFORmat Subsystem
MODE

MODE

:MACHine{lj2}:SFORmat:MODE <acq_mode>

The MODE command allows you to select the acquistion mode of the state
analyzer. The modes are either full-channel with 4 Kbit of memory depth
per channel or half-channel with 8 Kbit of memory depth per channel.

<acq_mode> {FULLjDEEPmemory}

Example OUTPUT XXX; ":MACHinel :SFORMAT:MODE FULL"

Que~ :MACHine{ll2}:SFORmat:MODE?

Returned Format

Example

The MODE query returns the current acquistion mode.

[:MACHine{ll2}:SFORmat:MODE] <acq_mode><NL>

OUTPUT XXX;":MACHINEl:SFORMAT:MODE?"

15-10

Command

MOPQual

SFORmat Subsystem
MOPQual

:MACHine{ll2}:SFORmat:MOPQual <clock_pair_id>,
<qual_operation>

The MOPQual (master operation qualifier) command allows you to specify
either the AND or the OR operation between master clock qualifier pair 1
and 2, or between master clock qualifier pair 3 and 4. For example, you can
specify a master clock operation qualifer 1 AND 2.

<clock _pair_ id> { 1 I 2}

<qual_ {ANDIOR}
operation>

Example OUTPUT XXX; .. :MACHINE! :SFORMAT:MOPQUAL l ,AND"

Que~ :MACHine{ll2}:SFORmat:MOPQUal? <clock_pair_id>

The MOPQual query returns the operation qualifier specified for the master
clock.

Returned Format:

Example

[:MACHine{ll2}:SFORmat:MOPQUal <clock_pair_id>]
<qual_operation><NL>

OUTPUT XXX;":MACHinel:SFORMAT:MOPQUAL? l"

1&-11

SFORmat Subsystem
MQUal

MQUal

Command :MACHine{ll2}:SFORmat:MQUal
<qual_num>,<clock_id>,<qual_level>

The MQUal (master qualifier) command allows you to specify the level
qualifier for the master clock.

<qual _ nurn> { { 1 I 2} I { 3 I 4}} 1 through 4 for HP 1660A, HP 1661A, HP 1662A; or, 1 or
2 for HP 1663A.

<clock id> {JIKILIMINIP>

<qual_level> {OFFILOWIHIGH}

Example OUTPUT XXX;":MACHINE2:SFORMAT:MQUAL l,J,LOW"

Que~ :MACHine{ll2}:SFORmat:MQUal? <qual num>

Returned Format

Example

The MQUal query returns the qualifier specified for the master clock.

(:MACHine{ll2}:SFORmat:MQUal] <qual_level><NL>

OUTPUT XXX;":MACHINE2:SFORMAT:MQUAL? l"

15-12

Command

REMove

SFORmat Subsystem
REMove

:MACHine{ll2}:SFORmat:REMove {<name>IALL}

The REMove command allows you to delete all labels or any one label for a
given machine.

<name> String of up to 6 alphanumeric characters

Examples OUTPUT XXX; .. :MACHINE2: SFORMAT:REMOVE I A"'

OUTPUT XXX;":MACHINE2:SFORMAT:REMOVE ALL"

Command

SETH old

:MACHine{ll2}:SFORmat:SETHold <pod_num>,
<set hold value>

The SETHold (setup/hold) command allows you to set the setup and hold
specification for the state analyzer.

Even though the command requires integers to specify the setup and hold, the
query returns the current settings in a string. For example, if you send the
integer 0 for the setup and hold value, the query will return 3.5/0.0 ns as an
ASCII string when you have one clock and one edge specified.

15-13

SFORmat Subsystem
SETH old

<pod_ num> { { l I 2} I { 3 I 4} I { S I 6} I { 7 I 8} } 1 through 8 for the HP 1660A, 1 through
6 for the HP 1661A, 1through4 for the HP 1662A, and 1through2 for the
HP 1663A.

<set hold An integer { O I l I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9} representing the setup and hold
value> values in table 15-2.

Table 15-2 Setup and hold values

Example

Query

Returned Format

Example

For one clock and one
edge

0 = 3.5/0.0 ns

1 = 3.0/0.5 ns

2 = 2.5/1.0 ns

3 = 2.0/1.5 ns

4 = 1.5/2.0 ns

5 = 1.0/2.5 ns

6 = 0.5/3.0 ns

7 = 0.0/3.5 ns

N/A
N/A

For one clock and both
edges

0 =4.0/0.0

1=3.5/0.5

2 = 3.0/1.0

3 = 2.5/1.5

4= 2.0/2.0

5=1.5/2.5

6= 1.0/3.0

7 =0.5/3.5

8 = 0.0/4.0

N/A

OUTPUT XXX;":MACBINE2:SFORMAT:SETHOLD 1,2"

For multiple clocks

0= 4.5/0.0

1=4.0/0.5

2= 3.5/1.0

3=3.0/1.5

4= 2.5/2.0

5 = 2.0/2.5

6 = 1.5/3.0

7 = 1.0/3.5

8= 0.5/4.0

9= 0.0/4.5

:MACHine{ll2}:SFORMAT:SETHOLD? <pod_num>

The SETHold query returns the current setup and hold settings.

[:MACBine{ll2}:SFORmat:SETBold <pod num>] <set hold value><NL>

OUTPUT XXX;":MACBINE2:SFORMAT:SETHOLD? 3"

15-14

Command

SLAVe

SFORmat Subsystem
SLAVe

:MACHine{ll2}:SFORmat:SLAVe <clock_id>,<clock_spec>

The SLA Ve clock command allows you to specify a slave clock for a given
machine. The slave clock is only used in the Slave and Demultiplexed
clocking modes. Each command deals with only one clock (J,K,L,M,N,P);
therefore, a complete clock specification requires six commands, one for
each clock. Edge specifications (RISing, F ALLing, or BOTH) are ORed.

When slave clock is being used at least one edge must be specified.

<clock id> {JIKILIMINIP}

<clock_spec> {OFFIRISinglFALLinglBOTH}

Example OUTPUT XXX; .. :MACHINE2 :SFORMAT:SLAVE JI RISING"

Que~ :MACHine{lj2}:SFORmat:SLAVe?<clock id>

Returned Format

Example

The SLA Ve query returns the clock specification for the specified clock.

(:MACHine{lj2}:SFORmat:SLAVe] <clock_id>,<clock_spec><NL>

OUTPUT XXX;":MACHINE2:SFORMAT:SLAVE? K"

15-15

Command

SFORmat Subsystem
SOPQual

SOPQual

:MACHine{ll2}:SFORmat:SOPQual <clock_pair_id>,
<qual operation>

The SOPQual (slave operation qualifier) command allows you to specify
either the AND or the OR operation between slave clock qualifier pair 1 and
2, or between slave clock qualifier pair 3 and 4. For example you can specify
a slave clock operation qualifer 1 AND 2.

<clock_pair_id> {l I 2}

<qual_ {ANDIOR}
operation>

Example OUTPUT XXX; .. : MACHine2: SFORMAT: SOPQUAL 1,AND"

Que~ :MACHine{ll2}:SFORmat:SOPQual? <clock pair id>

Returned Format

Example

The SOPQual query returns the operation qualifier specified for the slave
clock.

[:MACHine{ll2}:SFORmat:SOPQual <clock_Pair_id>]
<qual_operation><NL>

OUTPUT XXX;":MACHiNE2:SFORMAT:SOPQUAL? 1"

15-16

Command

SQUal

SFORmat Subsystem
SQUal

:MACHine{ll2}:SFORmat:SQUal <qual_num>,<clock_id>,
<qual_level>

The SQUal (slave qualifier) command allows you to specify the level qualifier
for the slave clock.

<qual _ num> { { 1 I 2} I { 3 I 4}} 1 through 4 for HP 1660A, HP 1661A, HP 1662A; or, 1 or
2 for HP 1663A.

<clock id> {JIKILIMINIP}

<qual_level> {OFFILoWIHIGH}

Example OUTPUT XXX; .. :MACHINE2 :SFORMAT:SQUAL l ,J ,LOW"

Que~ :MACHine{ll2}:SFORmat:SQUal?<qual_num>

Returned Format

Example

The SQUal queiy returns the qualifier specified for the slave clock.

[:MACHine{ll2}:SFORmat:SQUal] <clock_id>,<qual_level><NL>

OUTPUT XXX;":MACHINE2:SFORMAT:SQUAL? l"

15-17

Command

SFORmat Subsystem
THReshold

THReshold

:MACHine{ll2}:SFORmat:THReshold<N>
{TTLIECLl<value>}

The THReshold command allows you to set the voltage threshold for a given
pod to ECL, TTL, or a specific voltage from -6.00 V to +6.00 Vin 0.05 volt
increments.

<N> { { 1 I 2} I { 3 I 4} I { 5 I 6} I { 7 I 8}} 1 through 8 for the HP 1660A, 1 through
6 for the HP 1661A, 1through4 for the HP 1662A, and 1through2 for the
HP 1663A.

<value> Voltage (real number) -6.00 to +6.00

TTL Default value of +l.6 V

ECL Default value of -1.3 V

Example OUTPUT XXX; .. :MACHINEl :SFORMAT:THRESHOLDl 4. 0"

Que~ :MACHine{ll2}:SFORmat:THReshold<N>?

Returned Format

Example

The THReshold query returns the current threshold for a given pod.

[:MACHine{ll2}:SFORmat:THReshold<N>J <value><NL>

OUTPUT XXX;":MACHINEl:SFORMAT:THRESHOLD4?"

15-18

16

STRigger (STRace)
Subsystem

16-1

Introduction

The STR.lgger subsystem contains the commands available for the
State Trigger menu in the HP 1660A-series logic analyzers. The State
Trigger subsystem will also accept the STRace Command as used in
previous HP 1650-series logic analyzers to eliminate the need to
rewrite programs containing STRace as the Command keyword. The
STRigger subsystem commands are:

• ACQuisition
• BRANch

• CLEar
•FIND

• RANGe

• SEQuence
• STORe
•TAG
• T AKenbranch
• TCONtrol
•TERM
• TIMER
• TPOSition

16-2

STRigger (STRace, Subsystem

Figure 16-1

:STRace ACOuisition space

MANual

ACQuisitian?

BRANch<N> space branch_qual ifier ta_level_num

BRANch<N>?

CL Ear space

RESaurce

space proceed_quol ifier occurrence

label_name start_pattern

stop_pottern

SEQuence space num..af_Jevels

STORe<N> space store_qualifier
16550519

STRigger Subsystem Syntax Diagram

16-3

STRigger (STRace) Subsystem

Figure 16-1 (continued)

st<ite_tag_qua Ii f i er

TAKenbranch?

TCONtral<N> space timer _num

term_ id

term... id

STRigger Subsystem Syntax Diagram (continued)

16-4

SlARt

PAUSe

CONlinue

165~0516

STRigger (STRace) Subsystem

Figure 16-1 (continued)

TIMER<timer_num> space timer _vo I ue ~----------...i

TIMER<t imer _num>? ~---------------------

TPOSition space f---,,--1~ STARl

past_volue

TPOSition?
16550$04

STRigger Subsystem Suntax Diagram (continued)

10-5

Table 16-1

STRigger (STRace) Subsystem

STRigger Parameter Values

Parameter

branch_qualifier

to_lev_num

proceed_qualifier

occurrence

label_name

start_pattern

stop_pattern

num_of_levels

lev_of_trig

store_qualifier

state_tag_qualifier

timer_num

timer_value

term_id

pattern

qualifier

post_ value

16-6

Values

<qualifier>

integer from 1 to last level

<qualifier>

number from 1 to 1048575

string of up to 6 alphanumeric characters

"{#B{O I 1} ••• I
#Q{o111213141s16I'> •• ·I #H{O 1 2 3 4 5 6 7ISl9IAIBICIDIEIF} ••• I
<Olll2IJl4ISl6l7ISl9> ••• }"
"{#B{Oll} •• ·I
iQ< o 111213 I 4 Is I 6 I 1 > ••• I
#H{Ol112131415161718l9IAIBlclDIEIF} •• ·I
{O I 1 2 3 4 5 6 7 8 9} ••• }"

integer from 2 to 12

integer from 1 to (number of existing sequence levels - 1)

<qualifier>

<qualifier>

{112}
400 ns to 500 seconds

<AIBlclolEIFIGIHIIIJ>
"{#B{OlllX} ••• I
#Q{Oll 2 3l4ISl6l7lx} ••• I
#H{Olll2l3l4ISl6l7ISl9IAIBICIDIEIFlx>-··I
<Olll2IJl4ISl6l7l8l9> ••• }"
see "Qualifier" on page 16-7

integer from Oto 100 representing percentage

<qualifier>

<expression>

<expression la>

<expression la_
term>

<expression lb>

<expressionlb_
term>

<expression2a>

<expression2b>

<expression2c>

<expression2d>

<expression2e>

<expression2f>

<expression2g>

<expression2h>

<boolean_op>

<term3a>

STRigger (STRace) Subsystem
Qualifier

Qualifier

The qualifier for the state trigger subsystem can be terms A through J,
Timer 1 and 2, and Range 1 and 2. In addition, qualifiers can be the NOT
boolean function of terms, timers, and ranges. The qualifier can also be an
expression or combination of expressions as shown below and figure 16-2,
"Complex Qualifier," on page 16-11.

The following parameters show how qualifiers are specified in all commands
of the STRigger subsystem that use <qualifier>.

{"ANYSTATE"l"NOSTATE"l"<expression>"}

{<expressionla>l<expressionlb>l<expressionla> OR
<expressionlb>l<expressionla> AND <expressionlb>}

{<expressionla_term>l(<expressionla_term>[OR
<expressionla_term>]* >l<<expressionla_term>[AND
<expressionla_term>]*)}

{ <expression2a>l<expression2b>l<expression2c>l<expression2d>}

{<expressionlb term>IC <expressionlb term>[OR
<expressionlb_term>]* 1lc<expressionlb_term>[AND
<expressionlb_term>]*)}

{<expression2e>l<expression2f>l<expression2g>l<expression2h>}

{<term3a>l<term3b>IC<term3a> <boolean op> <term3b>)}

{<term3c>l<range3a>IC<term3c> <boolean_op> <range3a>)}

{<term3d>}

{<term3e>l<timer3a>IC<term3e> <boolean_op> <timer3a>)}

{<term3f>l<term3g>IC<term3f> <boolean_op> <term3g>)}

{<term3h>l<range3b>lc<term3h> <boolean_op> <range3b>)}

{<term3i>}

{<term3j>l<timer3b>lc<term3e> <boolean_op> <timer3b>)}

{ANDINANDIORINORIXORINXOR}

{AINOTA}

10-7

<term3b>

<term3c>

<term3d>

<term3e>

<term3f>

<term3g>

<term3h>

<term3i>

<term3j>

<range3a>

<range3b>

<timer3a>

<timer3b>

Examples

STRigger (STRace) Subsystem
Qualifier

{BjNOTB}

{CINOTC}

{DjNOTD}

{EjNOTE}

{FjNOTF}

{GINOTG}

{HINOTH}

{IjNOTI}

{JjNOTJ}

{IN_RANGEllOUT_RANGEl}

{IN RANGE2IOUT RANGE2} - -
{TIMERl<ITIMERl>}

{TIMER2<ITIMER2>}

Qualifier Rules

The following rules apply to qualifiers:

• Qualifiers are quoted strings and, therefore, need quotes.

• Expressions are evaluated from left to right.

• Parenthesis are used to change the order evaluation and, therefore, are
optional.

• An expression must map into the combination logic presented in the
combination pop-up menu within the STRigger menu (see figure 16-2 on
page 16-12).

I A'

'(A ORB)'
'((AORB ANDC)'
' ((A OR B) AND C AND IN_ RANGE2) '
' ((A OR B) AND (C AND IN_ RANGE 1)) '
'IN RANGEl AND (A OR B) AND C'

16-8

Selector

Example

Command

Example

Query

Returned Format

Example

STRigger (STRace) Subsystem
STRigger (STRace)

STRigger (STRace)

:MACHine{lj2}:STRigger

The STRigger (STRace) (State Trigger) Command is used as a part of a
compound header to access the settings found in the State Trace menu. It
always follows the MACHine Command because it selects a branch directly
below the MACHine level in the command tree.

OUTPUT XXX;":MACHINEl:STRIGGER:TAG TIME"

ACQuisition

:MACHine{lj2}:STRigger:ACQuisition
{AUTOmaticjMANual}

The ACQuisition command allows you to specify the acquisition mode for
the State analyzer.

OUTPUT XXX;":MACHINEl:STRIGGER:ACQUISITION AUTOMATIC"

:MACHine{lj2}:STRigger:ACQuisition?

The ACQuisition query returns the current acquisition mode specified.

[:MACHine{ll2}:STRigger:ACQuisition] {AUTOmaticjMANual}<NL>

OUTPUT XXX;":MACHINEl:STRIGGER:ACQUISITION?"

16-9

Command

Example

STRigger (STRace) Subsystem
BRAN ch

BRAN ch

:MACBine{ll2}:STRigger:BRANch<N>
<branch_qualifier>,<to_level_number>

The BRANch command defines the branch qualifier for a given sequence
level. When this branch qualifier is matched, it will cause the sequencer to
jump to the specified sequence level.

The terms used by the branch qualifier (A through J) are defined by the
TERM command. The meaning of I:N RANGE and OUT RANGE is
determined by the RANGE command~ -

Within the limitations shown by the syntax definitions, complex expressions
may be formed using the AND and OR operators. Expressions are limited to
what you could manually enter through the State Trigger menu. Regarding
parentheses, the syntax definitions on the next page show only the required
ones. Additional parentheses are allowed as long as the meaning of the
expression is not changed. Figure 16-2 shows a complex expression as seen
in the State Trigger menu.

The following statements are all correct and have the same meaning. Notice
that the conventional rules for precedence are not followed. The
expressions are evaluated from left to right.

OUTPUT XXX;":MACHINEl:STRIGGER:BRANCBl 'C AND DORF OR G', l"
OUTPUT XXX;":MACBINEl:STRIGGER:BRANCBl '((C AND D) OR
(FOR G))', 1"
OUTPUT XXX;":MACBINEl:STRIGGER:BRANCBl 'FOR (C AND D) OR G',1"

<N> An integer from 1 to <number_ of_ levels>

<to level An integer from 1 to <number_ of_ levels>
number>

<number of
levels>

An integer from 2 to the number of existing sequence levels (maximum 12)

<branch <qualifier> see "Qualifier'' on page 16-7
qualifier>

16-10

Examples

Query

Returned Format

Example

Figure 16-2

STRigger (STRace) Subsystem
BRAN ch

OUTPUT XXX;":MACHINEl:STRIGGER:BRANCHl 'ANYSTATE', 3"
OUTPUT XXX;":MACHINE2:STRIGGER:BRANCH2 'A', 7"
OUTPUT XXX;":MACHINEl:STRIGGER:BRANCH3 '((A ORB) OR NOTG)', l"

:MACHine{ll2}:STRigger:BRANch<N>?

The BRANch query returns the current branch qualifier specification for a
given sequence level.

[:MACHine{ll2}:STRigger:BRANch<N>] <branch_qualifier>,
<to level num><NL>

OUTPUT XXX;":MACHINEl:STRIGGER:BRANCH3?"

tn_ran et

llmer I >400ns

1n-ronge2

llmer2>400ns -
Complex qualifier

Figure 16-2 is a front panel representation of the complex qualifier (a OR b)
AND (g ORh).

16-11

Example

Command

Example

STRigger (STRace) Subsystem
CLEar

This example would be used to specify this complex qualifier.

OUTPUT XXX;":MACHINEl:STRIGGER:BRANCHl '((A ORB) AND
(G OR H)) I, 2 ..

Terms A through E, RANGE 1, and TIMER 1 must be grouped together and
terms F through J, RANGE 2, and TIMER 2 must be grouped together. In the
first level, terms from one group may not be mixed with terms from the other.
For example, the expression ((A OR IN_RANGE2) AND (C OR H)) is not allowed
because the term C cannot be specified in the E through J group.

In the first level, the operators you can use are AND, NANO, OR, NOR,
XOR, NXOR. Either AND or OR may be used at the second level to join the
two groups together. It is acceptable for a group to consist of a single term.
Thus, an expression like (BAND G) is legal, since the two operands are both
simple terms from separate groups.

CLEar

:MACHine{ll2}:STRigger:CLEar
{AlllSEQuencelRESource}

The CLEar command allows you to clear all settings in the State Trigger
menu and replace them with the default, clear only the Sequence levels, or
clear only the resource term patterns.

OUTPUT XXX;":MACHINEl:STRIGGER:CLEAR RESOURCE"

16-12

Command

FIND

:MACHine{lj2}:STRigger:FIND<N>
<proceed_qualifier>,<occurrence>

STRigger (STRace) Subsystem
FIND

The FIND command defines the proceed qualifier for a given sequence level.
The qualifier tells the state analyzer when to proceed to the next sequence
level. When this proceed qualifier is matched the specified number of times,
the sequencer will proceed to the next sequence level. In the sequence level
where the trigger is specified, the FIND command specifies the trigger
qualifier (see SEQuence command).

The terms A through J are defined by the TERM command. The meaning of
IN RANGE and OUT RANGE is determined by the RANGe command.
Expressions are limited to what you could manually enter through the State
Trigger menu. Regarding parentheses, the syntax definitions below show
only the required ones. Additional parentheses are allowed as long as the
meaning of the expression is not changed. See figure 16-2 for a detailed
example.

<N> An integer from 1 to (number of existing sequence levels -1)

<occurrence> An integer from 1 to 1048575

<proceed_ <qualifier> see "Qualifier" on page 16-7
qualifier>

Examples OUTPUT XXX;":MACBINEl:STRIGGER:FINDl 'ANYSTATE'' 1"
OUTPUT XXX; " : MACHINE 1 : STRIGGER: FIND3 ' ((NOTA AND NOTB) OR G) ' ,
l"

16-13

Query

Returned Format

Example

Command

STRigger (STRace) Subsystem
RAN Ge

:MACHine{ll2}:STRigger:FIND4?

The FIND query returns the current proceed qualifier specification for a
given sequence level.

(:MACBine{ll2}:STRigger:FIND<N>J <proceed_qualifier>,
<occurrence><NL>

OUTPUT XXX;":MACBINEl:STRIGGER:FIND<N>?"

RAN Ge

:MACHine{ll2}:STRigger:RA,NGE
<label_name>,<start_pattern>,<stop_pattern>

The RANGe command allows you to specify a range recognizer term for the
specified machine. Since a range can only be defined across one label and,
since a label must contain 32 or less bits, the value of the start pattern or
stop pattern will be between (232)-1 and 0.

Because a label can only be defined across a maximum of two pods, a range
term is only available across a single label; therefore, the end points of the
range cannot be split between labels.

When these values are expressed in binary, they represent the bit values for
the label at one of the range recognizers' end points. Don't cares are not
allowed in the end point pattern specifications.

16-14

STRigger (STRace) Subsystem
RAN Ge

<label name> String of up to 6 alphanumeric characters

<start_pattern> "{IB{Ojl} ••• I
IQ{Ojll2l3l4l5l6l7} ••• I
IB{Ojll2l3l4l5l6l7IBl9IAIBICIDIEIF} ••• I
{Ojll2l3l4l5l6l7IBl9} • }"

<stop_pattern> "{iB{O!l} ••• I

Examples

Query

Returned Format

Example

iQ{Ojll2l3l4l5l6l7} • I
iB{Ojll2l3l4l5l6l7IBl9IAIBICIDIEIF} ••• I
{Olll2l3l4l5l6l7IBl9> ••• }"

OUTPUT XXX;":MACBINEl:STRIGGER:RANGE 'DATA', '127', '255' "
OUTPUT XXX;":MACBINEl:STRIGGER:RANGE 'ABC', 'iBOOOOllll',
I iBCF' •

:MACHine{ll2}:STRigger:RANGe?

The RANGe query returns the range recognizer end point specifications for
the range.

[:MACBine{ll2}:STRAce:RANGe] <label_name>,<start_Pattern>,
<stop_Pattern><NL>

OUTPUT XXX;":MACBINEl:STRIGGER:RANGE?"

16-15

Command

<number of
levels>

<level of
trigger>

Example

Query

Returned Format

<number of
levels>

<level of
trigger>

Example

STRigger (STRace) Subsystem
SEQuence

SEQuence

:MACHine{lj2}:STRigger:SEQuence <number_of_levels>,
<level_of_trigger>

The SEQuence command redefines the state analyzer trace sequence. First,
it deletes the current trace sequence. Then it inserts the number of levels
specified, with default settings, and assigns the trigger to be at a specified
sequence level. The number of levels can be between 2 and 12 when the
analyzer is armed by the RUN key.

An integer from 2 to 12

An integer from 1 to (number of existing sequence levels -1)

OUTPUT XXX;":MACHINEl:STRIGGER:SEQUENCE 4,3"

:MACHine{lj2}:STRigger:SEQuence?

The SEQuence query returns the current sequence specification.

(:MACHine{ll2}:STRigger:SEQuence] <number_of_levels>,
<level_of_trigger><NL>

An integer from 2 to 12

An integer from 1 to (number of existing sequence levels -1)

OUTPUT XXX;":MACHINEl:STRIGGER:SEQUENCE?"

16-16

Command

STORe

STRigger (STRace) Subsystem
STORe

:MACHine{ll2}:STRigger:STORe<N> <store qualifier>

The STORe command defines the store qualifier for a given sequence level.
Any data matching the STORe qualifier will actually be stored in memory as
part of the current trace data. The qualifier may be a single term or a
complex expression. The terms A through J are defined by the TERM
command. The meaning of IN RANGE 1 and 2 and OUT RANGE 1 and 2 is
determined by the RANGe command. -

Expressions are limited to what you could manually enter through the State
Trigger menu. Regarding parentheses, the syntax definitions below show
only the required ones. Additional parentheses are allowed as long as the
meaning of the expression is not changed.

A detailed example is provided in figure 16-2 on page 16-12.

<N> An integer from 1 to the number of existing sequence levels (maximum 12)

<store <qualifier> see 11Qualifier11 on page 16-7
qualifier>

Examples OUTPUT XXX;":MACBINEl:STRIGGER:STOREl 'ANYSTATE"'

Query

Returned Format

Example

OUTPUT XXX;":MACBINEl:STRIGGER:STORE2 'OUT RANGEl'"
OUTPUT XXX;":MACBINEl:STRIGGER:STORE3 '(NOTC AND NOTD AND
NOTH) I"

:MACHine{ll2}:STRigger:STORe<N>?

The STORe query returns the current store qualifier specification for a given
sequence level <N>.
[:MACBine{ll2}:STRigger:STORe<N>] <store_qualifier><NL>

OUTPUT XXX;":MACBINEl:STRIGGER:STORE4?"

16-17

Command

STRigger (STRace) Subsystem
TAG

TAG

:MACHine{lj2}:STRigger:TAG
{OFFITIMEl<state_tag_qualifier>}

The TAG command selects the type of count tagging (state or time) to be
performed during data acquisition. State tagging is indicated when the
parameter is the state tag qualifier, which will be counted in the qualified
state mode. The qualifier may be a single term or a complex expression.
The terms A through J are defined by the TERM command. The terms
IN RANGE 1 and 2 and OUT RANGE 1 and 2 are defined by the RANGe
command. -

Expressions are limited to what you could manually enter through the State
Trigger menu. Regarding parentheses, the syntax definitions below show
only the required ones. Additional parentheses are allowed as long as the
meaning of the expression is not changed. A detailed example is provided in
figure 16-2 on page 16-12.

<state_ tag_ <qualifier> see "Qualifier" on page 16-7
qualifier>

Examples OUTPUT XXX; .. :MACHINE! :STRIGGER:TAG OFF"

Query

Returned Format

Example

OUTPUT XXX;":MACHINEl:STRIGGER:TAG TIME"
OUTPUT XXX; ":MACHINE! :STRIGGER:TAG ' (IN RANGE OR NOTF) '"
OUTPUT XXX;":MACHINEl:STRIGGER:TAG '((IN_RANGE OR A) AND E)'"

:MACHine{ll2}:STRigger:TAG?

The TAG query returns the current count tag specification.

[:MACHine{lj2}:STRigger:TAGJ
{OFFjTIMEj<state_tag_qualifier>}<NL>

OUTPUT XXX;":MACHINEl:STRIGGER:TAG?"

16--18

Command

Example

Query

Returned Format

Example

STRigger (STRace) Subsystem
TAKenbranch

TAKenbranch

:MACHine{ll2}:STRigger:TAKenbranch {STORe!NOSTore}

The T AKenbranch command allows you to specify whether the state causing
a sequence level change is stored or not stored for the specified machine.
Both a state that causes the sequencer to proceed or a state that causes the
sequencer to branch is considered a sequence level change. A branch can
also jump to itself and this also considered a sequence level change. The
state causing the branch is defined by the BRANch command.

OUTPUT XXX;":MACBINE2:STRIGGER:TAKENBRANCB STORE"

:MACHine{ll2}:STRigger:TAKenbranch?

The TAKenbranch query returns the current setting.
[:MACBine{ll2}:STRigger:TAKenbranch] {STORelNOSTore}<NL>

OUTPUT XXX;":MACBINE2:STRIGGER:TAKENBRANCB?

16-19

STRigger (STRace) Subsystem
TCONtrol

TCONtrol

Command :MACHine{ll2}:STRigger:TCONtrol<N> <timer_num>,
{OFFISTARtlPAUSe!CONTinue}

The TCONtrol (timer control) command allows you to turn off, start, pause,
or continue the timer for the specified level. The time value of the timer is
defined by the TIMER command. There are two timers and they are
independently available for either machine. Neither timer can be assigned to
both machines simultaneously.

<N> An integer from 1 to the number of existing sequence levels (maximum 12)

<timer num> {112}

Example OUTPUT XXX; ":MACHINE2:STRIGGER:TCONTROL6 1, PAUSE"

Que~ :MACHine{ll2}:STRigger:TCONTROL<N>? <timer_num>

The TCONtrol query returns the current TCONtrol setting of the specified
level.

Returned Format [:MACHine{l 12} :STRigger:TCONTROL<N> <timer nwn>]
{OFFISTARtlPAUSelCONTinue}<NL> -

<N> An integer from 1 to the number of existing sequence levels (maximum 12)

<timer num> {112}

Example OUTPUT XXX; ":MACHINE2 :STRIGGER:TCONTROL?6 l"

lfr20

Command

TERM

STRigger (STRace) Subsystem
TERM

:MACHine{ll2}:STRigger:TERM <term_id>,<label_name>,
<pattern>

The TERM conunand allows you to specify a pattern recognizer term in the
specified machine. Each conunand deals with only one label in the given
term; therefore, a complete specification could require several commands.
Since a label can contain 32 or less bits, the range of the pattern value will
be between 232 - 1 and 0. When the value of a pattern is expressed in
binary, it represents the bit values for the label inside the pattern recognizer
term. Because the pattern parameter may contain don't cares and be
represented in several bases, it is handled as a string of characters rather
than a number.

All 10 terms (A through J) are available for either machine but not both
simultaneously. If you send the TERM conunand to a machine with a term
that has not been assigned to that machine, an error message "Legal
command but settings conflict" is returned.

<term id> {AIBlclolEIFIGIHIIIJ>
<label name> A string of up to 6 alphanumeric characters

<pattern> "{iB{O I l IX} •• • I
#Q{ 0111213 I 4 IS I 6 I 7 IX} ••• I
#H<Olll2l3l4ISl6l7IBl9IAIBlclolEIFIX> ••• I
<Olll2l3l4ISl6l7IBl9} ••• }"

Example OUTPUT XXX;":MACBINEl:STRIGGER:TERM A,'DATA','255' "
OUTPUT XXX;":MACBINEl:STRIGGER:TERM B,'ABC','IBXXXX1101' II

1~21

Query

Returned Format

Example

Command

STRigger (STRace) Subsystem
TIMER

:MACHine{ll2}:STRigger:TERM? <term_id>,<label_name>

The TERM query returns the specification of the term specified by term
identification and label name.

[:MACHine{ll2}:STRAce:TERM]
<term_id>,<label_name>,<pattern><NL>

OUTPUT XXX;":MACHINEl:STRIGGER:TERM? B,'DATA' "

TTh1ER

:MACHine{ll2}:STRigger:TIMER{ll2} <time value>

The TIMER command sets the time value for the specified timer. The limits
of the timer are 400 ns to 500 seconds in 16 ns to 500 µs increments. The
increment value varies with the time value of the specified timer. There are
two timers and they are independently available for either machine. Neither
timer can be assigned to both machines simultaneously.

<time value> A real number from 400 ns to 500 seconds in increments which vary from 16
ns to 500µs.

Example OUTPUT XXX; ":MACHINEl :STRIGGER:TIMERl lOOE-6"

16-22

Query

STRigger (STRace) Subsystem
TPOSition

:MACHine{ll2}:STRigger:TIMER{ll2}?

The TIMER query returns the current time value for the specified timer.

Returned Format (:MACHine{ l I 2> :STRigger:TIMER{l I 2> J <time_ value><NL>

<time value> A real number from 400 ns to 500 seconds in increments which vary from 16
ns to 500µs.

Example OUTPUT XXX; .. :MACHINEl :STRIGGER:TIMERl?"

Command

TPOSition

:MACHine{ll2}:STRigger:TPOSition
{STARtlCENTerlENDIPOSTstore,<poststore>}

The TPOSition (trigger position) command alJows you to set the trigger at
the start, center, end or at any position in the trace (poststore). When
STARt is specified, approximately 16 states are stored before the trigger.
When END is specified, approximately 16 states are stored after the trigger.
Poststore is defined as 0 to 100 percent. When 0 or 100 percent is specified,
the trigger is actualJy the first or last state respectively.

<posts tore> An integer from 0 to 100 representing percentage of poststore.

Examples OUTPUT xxx; ":MACHINEl :STRIGGER:TPOSITION END"
OUTPUT XXX;":MACHINEl:STRIGGER:TPOSITION POSTstore,75"

16-23

Query

Returned Format

Example

STRigger (STRace) Subsystem
TPOSition

:MACHine{ll2}:STRigger:TPOSition?

The TPOSition query returns the current trigger position setting.

[:MACHine{ll2}:STRigger:TPOSition) {STARtlCENTerlENDI
PoSTstore,<poststore>}<NL>

OUTPUT XXX;":MACHINEl:STRIGGER:TPOSITION?"

16-24

17

SLISt Subsystem

17-1

Introduction

The SLISt subsystem contains the commands available for the State
Listing menu in the HP l 660A logic analyzer. These commands are:

• COLumn • RUNTil
• CLRPattern • TAVerage
•DATA • TMAXimum
• LINE • TMINimum
• MMODe • VRUNs
• OPATtern • XOTag
• OSEarch • XOTime
• OSTate • XPATtern
• OTAG • XSEarch
• OVERlay • XSTate
• REMove • XTAG

17-2

SU St Subsystem

Figure 17-1

lobel_patternl--~~~~

XMARker

16650SZ1

SLISt Subsystem Syntax Diagram

17-3

SLISt Subsystem

Figure 17-1 {continued)

state_value

space ca l_num module_num

MACHineC1 l2l I abe l_nome !-----------~

RUNTi I space run_unti l_spec

RUNTil? 1------------------------------11~

TAVeroge? 1-----------------------------1~

TMAXimum? 1-----------------------------1~

TMINimum? 1-----------------------------1~

VRUNs? !------------------------------~

XOTAG? 1------------------------------.-.
16550520

SLISt Subsystem Syntax Diagram (continued)

17-4

SLISt Subsystem

Figure 17-1 (continued)

lobel_nome lobel_pottern

space t ime_vo I ue >--~-----------------

stote_volue

XOTime? i------------------------------~
18550507

SLISt Subsystem Syntax Diagram (continued)

17-5

Table 7-1

SLISt Subsystem

SLISt Parameter Values

Parameter

module_num

mach_num

col_num

line_number

label_name

base

line_num_mid_screen

label__pattern

occurrence

time_value

state_value

run_until_sp ec

value

17-6

Values

{l l2 l3 l4 IS I 6 I 7 IS> (2through 10 not used}

{112>

Integer from 1 to 61

Integer from -8191 to +8191

A string of up to 6 alphanumeric characters

{BINarylHEXadecimallOCTallDECimallTWOSIASCiilSY
MBol I IASSembler} for labels or
{ABSolute I RELative} for tags

Integer from -8191 to +8191

"{#B{OlllX> •• ·I

iQ{0111213141516171X} ••• I
iH{O 1 2 3 4 5 6 7 Sl9IAIBICIDIEIFIX> ••• I
{Olll2IJl4ISl6l7ISl9> ••• }"

Integer from -8191 to +8192

Real number

Real number

{OFFILT,<value>IGT,<value>IINRange,<value>,
<value>IOUTRange,<value>,<value>}

Real number

Selector

Example

Command

SLISt Subsystem
SLISt

SLISt

:MACHine{ll2}:SLISt

The SLISt selector is used as part of a compound header to access those
settings normally found in the State Listing menu. It always follows the
MACHine selector because it selects a branch directly below the MACHine
level in the command tree.

OUTPUT XXX;":MACHINEl:SLIST:LINE 256"

COLumn

:MACHine{ll2}:SLISt:COLumn <col_num>
[,<module_num>, MACHine{ll2}],<label_name>,<base>

The COLumn command allows you to configure the state analyzer
list display by assigning a label name and base to one of the 61 vertical
columns in the menu. A column number of 1 refers to the left most column.
When a label is assigned to a column it replaces the original label in that
column.

When the label name is "TAGS," the TAGS column is assumed and the next
parameter must specify RELative or ABSolute.

A label for tags must be assigned in order to use ABSolute or RELative state
tagging.

17-7

SLISt Subsystem
CLRPattern

<col num> integer from 1to61

<module num> { l I 2 I 3 I 4 I S I 6 I 7 I 8 I 9 I l 0} (2 through 10 not used)

<label name> string of up to 6 alphanumeric characters

<base> {BINarylHEXadecimallocTallDECimallTWoSIASCiilSYMBoll

Example

Query

Returned Format

Example

Command

Example

IASSembler} for labels
or
{ABSolute I RELati ve} for tags

OUTPUT XXX;":MACHINEl:SLIST:COLUMN 4, 'A' ,HEX"

:MACHine{ll2}:SLISt:COLumn? <col_num>

The COLumn query returns the column number, label name, and base for
the specified column.

[:MACHine{ll2}:SLISt:COLumn] <col num>,<module num>,
MACHine{ll2},<label_name>,<base><NL> -

OUTPUT XXX;":MACHINEl:SLIST:COLUMN? 4"

CLRPattern

:MACHine{ll2}:SWAVeform:CLRPattern {XIOIALL}

The CLRPattern command allows you to clear the patterns in the selected
Specify Patterns menu.

OUTPUT XXX;":MACHINEl:SWAVEFORM:CLRPATTERN X"

17-8

SLISt Subsystem
DATA

Query

DATA

:MACHine{ll2}:SLISt:DATA?
<line_number>,<label_name>

The DATA query returns the value at a specified line number for a given
label. The format will be the same as the one shown in the listing display.

Returned Format [:MACBine{l 12}.:SLISt:DATAJ <line_number>,<label_name>,
<pattern_string><NL>

<line number> integer from -8191 to +8191

<label name> string of up to 6 alphanumeric characters

<pattern_ "{iB{OlllX} ••• I

Example

string> fQ{ 0 I l I 2 I 3 I 4 IS I 6 I 71 X} • • • I
fH{Olll2l3l4ISl6l7IBl9IAIBICIDIEIFIX} ••• I
<Olll2l3l4ISl6l7IBl9} ••• }"

OUTPUT XXX;":MACBINEl:SLIST:DATA? 512, 'RAS'"

LINE

Command :MACHine{ll2}:SLISt:LINE <line_num mid_screen>

The LINE command allows you to scroll the state analyzer listing vertically.
The command specifies the state line number relative to the trigger that the
analyzer highlights at the center of the screen.

<line num mid integer from -8191 to +8191
screen>

Example OUTPUT XXX;":MACBINEl:SLIST:LINE 0"

17-9

Query

Returned Format

Example

Command

SLISt Subsystem
MMODe

:MACHine{lj2}:SLISt:LINE?

The LINE query returns the line number for the state currently in the box at
the center of the screen.

(:MACHine{lj2}:SLISt:LINE] <line_num_mid_screen><NL>

OUTPUT XXX;":MACHINEl:SLIST:LINE?"

MMODe

:MACHine{lj2}:SLISt:MMODe <marker mode>

The MMODe command (Marker Mode) selects the mode controlling the
marker movement and the display of marker readouts. When PATTern is
selected, the markers will be placed on patterns. When STATe is selected
and state tagging is on, the markers move on qualified states counted
between normally stored states. When TIME is selected and time tagging is
enabled, the markers move on time between stored states. When MSTats is
selected and time tagging is on, the markers are placed on patterns, but the
readouts will be time statistics.

<marker mode> {OFFIPATTernjSTATejTIMEIMSTats}

Example OUTPUT XXX; .. :MACHINE! :SLIST:MMODE TIME"

Query :MACHine{lj2}:SLISt:MMODe?

Returned Format

Example

The MMODe query returns the current marker mode selected.

[:MACHine{lj2}:SLISt:MMODe] <marker mode><NL>

OUTPUT XXX;":MACHINEl:SLIST:MMODE?"

17-10

Command

OPATtern

:MACHine{ll2}:SLISt:OPATtern
<label_name>,<label_pattern>

SU St Subsystem
OPATtern

The OPATtern command allows you to construct a pattern recognizer term
for the 0 Marker which is then used with the OSEarch criteria when moving
the marker on patterns. Because this command deals with only one label at
a time, a complete specification could require several invocations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern recognizer term. In whatever base is
used, the value must be between 0 and 232 - 1, since a label may not have
more than 32 bits. Because the <label pattern> parameter may contain
don't cares, it is handled as a string of characters rather than a number.

<label name> string of up to 6 alphanumeric characters

<label _pattern> " { #B{ 0 I 1 IX} ••• I
#Q{ 0 I l I 2 I 3 I 4 IS I 6 I 7 IX} ... I
#H{Olll2l3l4ISl6l7ISl9IAIBlclolEIFlx} ••. I
<Olll2l3l4ISl6l7ISl9} ••• }"

Examples OUTPUT XXX;":MACHINEl:SLIST:OPATTERN 'DATA','255' "
OUTPUT XXX;":MACHINEl:SLIST:OPATTERN 'ABC','iBXXXX1101' "

Que~ :MACHine{ll2}:SLISt:OPATtern? <label_name>

Returned Format
The OPATtern query returns the pattern specification for a given label name.

[:MACHine{ll2}:SLISt:OPATtern] <label_name>,<label_Pattern><NL>

Example OUTPUT XXX;":MACHINEl:SLIST:OPATTERN? 'A'"

17-11

Command

SU St Subsystem
OSEarch

OSEarch

:MACHine{ll2}:SLISt:OSEarch <occurrence>,<origin>

The OSEarch command defines the search criteria for the 0 marker, which is
then used with associated OPATtem recognizer specification when moving
the markers on patterns. The origin parameter tells the marker to begin a
search with the trigger, the start of data, or with the X marker. The actual
occurrence the marker searches for is determined by the occurrence
parameter of the OSEarch recognizer specification, relative to the origin. An
occurrence of 0 places the marker on the selected origin. With a negative
occurrence, the marker searches before the origin. With a positive
occurrence, the marker searches after the origin.

<occurrence> integer from -8191 to +8191

<origin> {TRIGgerlsTARtlXMARker}

Example OUTPUT XXX; ":MACHINEl :SLIST:OSEARCH +10,TRIGGER"

Que~ :MACHine{ll2}:SLISt:OSEarch?

Returned Format

Example

The OSEarch query returns the search criteria for the 0 marker.

[:MACHine{ll2}:SLISt:OSEarch] <occurrence>,<origin><NL>

OUTPUT XXX;":MACHINEl:SLIST:OSEARCH?"

17-12

Query

OSTate

:MACHine{ll2}:SLISt:OSTate?

SLISt Subsystem
OST ate

The OSTate query returns the line number in the listing where the 0 marker
resides (-8191 to +8191). If data is not valid, the query returns 32767.

Returned Format [:MACHine{ l I 2> :SLISt:OSTate] <state_num><NL>

<state num> an integer from -8191 to +8191, or 32767

Example OUTPUT XXX; ":MACHINE! :SLIST:OSTATE?"

Command

OTAG

:MACHine{ll2}:SLISt:OTAG
<time_value>l<state_value>}

The OTAG command specifies the tag value on which the 0 Marker should
be placed. The tag value is time when time tagging is on, or states when
state tagging is on. If the data is not valid tagged data, no action is
performed.

<time value> real number

<state value> integer

Example :OUTPUT XXX; .. :MACHINE! :SLIST:OTAG 40.0E-6"

17-13

Query

SLISt Subsystem
OVERiay

:MACHine{lj2}:SLISt:OTAG?

The OTAG query returns the 0 Marker position in time when time tagging is
on or in states when state tagging is on, regardless of whether the marker
was positioned in time or through a pattern search. If data is not valid, the
query returns 9.9E37 for time tagging, or returns 32767 for state tagging.

Returned Format (:MACHine{l j 2} :SLISt:OTAGJ {time_value>l<state_value>}<NL>

<time value> real number

<state value> integer

Example OUTPUT XXX;":MACHINEl:SLIST:OTAG?"

OVERiay

Command :MACHine{lj2}:SLISt:OVERlay <col_num>,<module_nwn>,
MACHine{lj2},<label_name>

The OVERJay command allows you to add time-correlated labels from other
modules or machines to the state listing.

<col num> integer from 1 to 61

<Module num> integer 1 through 10 (2 through 10 unused)

<label name> string of up to 6 alphanumeric characters

Example OUTPUT xxx; ":MACHINE 1: SL I ST: OVERlay, 25, 5, MACHINE2, , DATA, "

17-14

Command

Example

Command

SLISt Subsystem
REMove

REMove

:MACHine{ll2}:SLISt:REMove

The REMove command removes all labels, except the leftmost label, from
the listing menu.

OUTPUT XXX;":MACHINEl:SLIST:REMOVE"

RUNTil

:MACHine{ll2}:SLISt:RUNTil <run_until_spec>

The RUNTil (run until) command allows you to define a stop condition when
the trace mode is repetitive. Specifying OFF causes the analyzer to make
runs until either the display's STOP field is touched, or, when the STOP
command is issued.

There are four conditions based on the time between the X and 0 markers.
Using this difference in the condition is effective only when time tags have
been turned on (see the TAG command in the STRace subsystem). These
four conditions are as follows:

• The difference is less than CL T) some value.

• The difference is greater than (GT) some value.

• The difference is inside some range (INRange).

• The difference is outside some range (OUTRange).
End points for the INRange and OUTRange should be at least 8 ns apart
since this is the minimum time resolution of the time tag counter.

17-15

SU St Subsystem
RUNTil

There are two conditions which are based on a comparison of the acquired
state data and the compare data image. The analyzer can run until one of
the following conditions is true:

• Every channel of every label has the same value (EQUal).

• Any channel of any label has a different value (NEQual).

The RUNTil instruction (for state analysis) is available in both the SLISt and
COMPare subsystems.

<run until {OFFILT,<value>IGT,<value>IINRange,<value>,<value>
spec> loUTRange,<value>,<value>IEQUallNEQual}

<value> real number from -9E9 to +9E9

Example OUTPUT xxx; .. :MACHINE! :SLIST:RUNTIL GT,800 .OE-6"

Que~ :MACHine{ll2}:SLISt:RUNTil?

Returned Format

Example

The RUNTil query returns the curren.t stop criteria.

(:MACHine{lj2}:SLISt:RUNTil] <run_until_spec><NL>

OUTPUT XXX;":MACHINEl:SLIST:RUNTIL?"

17-16

Query

TAVerage

:MACHine{ll2}:SLISt:TAVerage?

SLISt Subsystem
TAVerage

The TA Verage query returns the value of the average time between the X
and 0 Markers. If the number of valid runs is zero, the query returns
9.9E37. Valid runs are those where the pattern search for both the X and 0
markers was successful, resulting in valid delta-time measurements.

Returned Format (:MACBine{l I 2> :SLISt:TAVerage) <time value><NL>

<time value> real number

Example OUTPUT xxx; ":MACBINEl :SLIST:TAVERAGE?"

TMA.Ximum

Query :MACHine{ll2}:SLISt:TMAXimum?

The TMAXimum query returns the value of the maximum time between the
X and 0 Markers. If data is not valid, the query returns 9.9E37.

Returned Format [:MACBine<l I 2> :SLISt:TMAXimumJ <time value><NL>

<time value> real number

Example OUTPUT XXX; ":MACBINEl :SLIST:TMAXIMUM?"

17-17

Query

SU St Subsystem
TMINimum

TMINimum

:MACHine{lj2}:SLISt:TMINimum?

The TMINimum query returns the value of the minimum time between the X
and 0 Markers. If data is not valid, the query returns 9.9E37.

ReturnedFormat [:MACHine{lj2}:SLISt:TMINimum] <time value><NL>

<time value> real number

Example: OUTPUT XXX; .. :MACHINEl :SLIST:TMINIMUM?"

Query

VRUNs

:MACHine{lj2}:SLISt:VRUNs?

The VRUNs query returns the number of valid runs and total number of runs
made. Valid runs are those where the pattern search for both the X and 0
markers was successful resulting in valid delta time measurements.

Returned Format [: MACHine{ 1 j 2}: SL I St :VRUNs] <valid_ runs> ,<total _runs><NL>

<valid runs> zero or positive integer

<total runs> zero or positive integer

Example: OUTPUT XXX; .. :MACHINEl :SLIST:VRUNS?"

17-18

Query

XOTag

:MACHine{ll2}:SLISt:XOTag?

SU St Subsystem
XOTag

The XOTag query returns the time from the X to 0 markers when the
marker mode is time or number of states from the X to 0 markers when the
marker mode is state. If there is no data in the time mode the query returns
9.9E37. If there is no data in the state mode, the query returns 32767.

Returned Format [:MACHine{l I 2> :SLISt:XOTag) {<XO_time> l<xo_states>}<NL>

<XO time> real number

<XO states> integer

Example OUTPUT XXX; ":MACHINEl :SLIST:XOTAG?"

XOTime

Query :MACHine{ll2}:SLISt:XOTime?

The XOTime query returns the time from the X to 0 markers when the
marker mode is time or number of states from the X to 0 markers when the
marker mode is state. If there is no data in the time mode the query returns
9.9E37. If there is no data in the state mode, the query returns 32767.

Returned Format [:MACHine{ l I 2} : SL I St: XOTime J {<XO_ time> I <xo _ states>}<NL>

<XO time> real number

<XO states> integer

Example OUTPUT XXX; ":MACHINEl :SLIST:XOTIME?"

17-19

SLISt Subsystem
XPATtern

XPATtern

Command :MACHine{ll2}:SLISt:XPATtern <label_name>,
<label_pattern>

The XPATtem command allows you to construct a pattern recognizer term
for the X Marker which is then used with the XSEarch criteria when moving
the marker on patterns. Since this command deals with only one label at a
time, a complete specification could require several invocations.
When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern recognizer term. In whatever base is
used, the value must be between 0 and 232 - 1, since a label may not have
more than 32 bits. Because the <label pattern> parameter may contain
don't cares, it is handled as a string of characters rather than a number.

<label name> string of up to 6 alphanumeric characters

<label _pattern> " { #B{ 0 I 1 IX} ••• I
#Q{ 0111213 I 4 IS I 6 I 7 IX} ••• I
#H{Ojll2l3l4ISl6l7ISl9IAIBlclolEIFIX> ••. I
{Ojll2l3l4ISl6l7ISl9> ••• }"

Examples OUTPUT XXX;":MACHINEl:SLIST:XPATTERN 'DATA','255' "
OUTPUT XXX;":MACHINEl:SLIST:XPATTERN 'ABC','#BXXXX1101' "

Que~ :MACHine{ll2}:SLISt:XPATtern? <label_name>

Returned Format

Example

The XPATtem query returns the pattern specification for a given label name.

[:MACHine{lj2}:SLISt:XPATtern] <label_name>,<label_Pattern><NL>

OUTPUT XXX;":MACHINEl:SLIST:XPATTERN? 'A'"

17-20

XSEarch

SLISt Subsystem
XSEarch

Command :MACHine{ll2}:SLISt:XSEarch <occurrence>,<origin>

The XSEarch command defines the search criteria for the X Marker, which is
then with associated XPATtem recognizer specification when moving the
markers on patterns. The origin parameter tells the Marker to begin a
search with the trigger or with the start of data. The occurrence parameter
detennines which occurrence of the XPATtem recognizer specification,
relative to the origin, the marker actually searches for. An occurrence of 0
places a marker on the selected origin.

<occurrence> integer from -8191 to +8191

<origin> {TRIGgerlSTARt}

Example OUTPUT XXX; ":MACHINEl :SLIST:XSEARCH +10,TRIGGER"

Que~ :MACHine{ll2}:SLISt:XSEarch?

Returned Format

Example

The XSEarch query returns the search criteria for the X marker.

[:MACHine{ll2}:SLISt:XSEarch] <occurrence>,<origin><NL>

OUTPUT XXX;":MACHINEl:SLIST:XSEARCH?"

17-21

Query

SU St Subsystem
XSTate

XS Tate

:MACHine{lj2}:SLISt:XSTate?

The XSTate query returns the line number in the listing where the X marker
resides (-8191 to +8191). If data is not valid, the query returns 32767.

Returned Format [:MACHine{l I 2> :SLISt:XSTate] <state_num><NL>

<state nwn> integer from -8191 to +8191, or 32767

Example OUTPUT XXX; .. :MACHINEl :SLIST:XSTATE?"

Command

XTAG

:MACHine{ll2}:SLISt:XTAG
{<time_value>j<state_value>}

The XTAG command specifies the tag value on which the X Marker should
be placed. The tag value is time when time tagging is on or states when
state tagging is on. If the data is not valid tagged data, no action is
performed.

<time value> real number

<state value> integer

Example OUTPUT XXX;":MACHINEl:SLIST:XTAG 40.0E-6"

17-22

Query

Returned Format

Example

:MACHine{ll2}:SLISt:XTAG?

SLISt Subsystem
XTAG

The XTAG query returns the X Marker position in time when time tagging is
on or in states when state tagging is on, regardless of whether the marker
was positioned in time or through a pattern search. If data is not valid
tagged data, the query returns 9.9E37 for time tagging, or retruns 32767 for
state tagging.

[:MACHine{ll2}:SLISt:XTAG] {<time_value>l<state_value>}<NL>

OUTPUT XXX;":MACHINEl:SLIST:XTAG?"

17-23

18

SWAVeform
Subsystem

18-1

Introduction

The conunands in the State Waveform subsystem allow you to
configure the display so that you can view state data as waveforms on
up to 96 channels identified by label name and bit number. The 11
conunands are analogous to their counterparts in the Timing
Waveform subsystem. However, in this subsystem the x-axis is
restricted to representing only samples (states), regardless of
whether time tagging is on or off. As a result, the only conunands
which can be used for scaling are DELay and RANge.

The way to manipulate the X and 0 markers on the Waveform display
is through the State Listing (SLISt) subsystem. Using the marker
conunands from the SLISt subsystem will affect the markers on the
Waveform display.

The conunands in the SWA Veform subsystem are:

• ACCumulate
• ACQuisition
• CENter
• CLRPattern
• CLRStat
• DELay
• INSert
• RANGe
• REMove
• T A.Kenbranch
• TPOSition

18-2

SWAVeform Subsystem

Figure 18-1

:SWAVeform

ACOu is i lion

number_of_sa~ les t-------t-i

label_name bi Lid

ronge_values 1---------

TPOSition

percent

esseesea

SWAVefonn Subsystem Syntax Diagram

lfh1

Table 18-1

Selector

Example

SWAVeform Subsystem
SWAVeform

SWAVeform Parameter Values

Parameter

number_ot_samples

label_name

bit_id

bit_num

range_values

mark_type

percent

SWAVeform

Value

integer from -8191 to +8191

string of up to 6 alphanumeric characters

{OVERlayj<bit num>jALL}

integer representing a label bit from 0 to 31

integer from 10 to 5000 (representing (10 x states/Division))

{XjojxojTRIGger}

integer from 0 to 100

:MACHine{ll2}:SWAVeform

The SWAVeform (State Waveform) selector is used as part of a compound
header to access the settings in the State Waveform menu. It always follows
the MACHine selector because it selects a branch directly below the
MACHine level in the command tree.

OUTPUT XXX;":MACHINE2:SWAVEFORM:RANGE 40"

18-4

Command

Example

Query

Returned Format

Example

Command

Example

SWAVeform Subsystem
ACCumulate

ACCumulate

:MACHine{lj2}:SWAVeform:ACCumulate {{ONll}l{OFFIO}}

The ACCumulate command allows you to control whether the waveform
display gets erased between individual runs or whether subsequent
waveforms are allowed to be displayed over the previous waveforms.

OUTPUT XXX;":MACHINEl:SWAVEFORM:ACCUMULATE ON"

:MACHine{ll2}:SWAVeform:ACCumulate?

The ACCumulate query returns the current setting. The query always shows
the setting as the characters, "0" (off) or "1" (on).

[:MACHine{lj2}:SWAVeform:ACCumulate) {Ojl}<NL>

OUTPUT XXX;":MACHINEl:SWAVEFORM:ACCUMULATE?"

ACQuisition

:MACHine{ll2}:SWAVeform:ACQuisition
{AUTOmaticlMANual}

The ACQuisition command allows you to specify the acquisition mode for
the state analyzer. The acquisition modes are automatic and manual.

OUTPUT XXX;":MACHINE2:SWAVEFORM:ACQUISITION AUTOMATIC"

18-5

Query

Returned Format

Example

SWAVeform Subsystem
CENT er

:MACHine{ll2}:SWAVeform:ACQuisition?

The ACQusition query returns the current acquisition mode.

(:MACHine{ll2}:SWAVeform:ACQuisition] {AUTOmaticlMANual}<NL>

OUTPUT XXX;":MACHINE2:SWAVEFORM:ACQUISITION?"

CENTer

Command :MACHine{ll2}:SWAVeform:CENTer <marker_type>

The CENTer command allows you to center the waveform display about the
specified markers. The markers are placed on the waveform in the SLISt
subsystem.

<marker_ type> {XI o I xo I TRIGger}

Example OUTPUT XXX;":MACHINEl:SWAVEFORM:CENTER X"

Command

Example

CLRPattern

:MACHine{ll2}:SWAVeform:CLRPattern {XIOIALL}

The CLRPattem command allows you to clear the patterns in the selected
Specify Patterns menu.

OUTPUT XXX;":MACHINEl:SWAVEFORM:CLRPATTERN"

18-6

Command

Example

Command

<number of
samples>

Example

Query

Returned Format

<number of
samples>

Example

CLRStat

:MACHine{ll2}:SWAVeform:CLRStat

SWAVeform Subsystem
CLRStat

The CLRStat command allows you to clear the waveform statistics without
having to stop and restart the acquisition.

OUTPUT XXX;":MACHINEl:SWAVEFORM:CLRSTAT"

DELay

:MACHine{ll2}:SWAVeform:DELay <number_of_samples>

The DELay command allows you to specify the number of samples between
the State trtgger and the horizontal center of the screen for the waveform
display. The allowed number of samples is from -8191 to +8191.

integer from -8191 to +8191

OUTPUT XXX;":MACHINE2:SWAVEFORM:DELAY 127"

:MACHine{lj2}:SWAVeform:DELay?

The DELay query returns the current sample offset value.

[:MACHine{lj2}:SWAVeform:DELay] <number_of_samples><NL>

integer from -8191 to +8191

OUTPUT XXX;":MACHINEl:SWAVEFORM:DELAY?"

18-7

Command

SWAVeform Subsystem
IN Sert

IN Sert

:MACHine{ll2}:SWAVeform:INSert
<label_name>,<bit_id>

The INSert command allows you to add waveforms to the state waveform
display. Waveforms are added from top to bottom on the screen. When 96
waveforms are present, inserting additional waveforms replaces the last
waveform. Bit numbers are zero based, so a label with 8 bits is referenced as
bits 0 through 7. Specifying OVERJay causes a composite waveform display
of all bits or channels for the specified label.

<label name> string of up to 6 alphanumeric characters

<bit id> {OVERlayl<bit_nwn>ALL}

<bit num> integer representing a label bit from 0 to 31

Examples OUTPUT XXX;":MACHINEl:SWAVEFORM:INSERT 'WAVE', 19"
OUTPUT XXX;":MACHINEl:SWAVEFORM:INSERT 'ABC', OVERLAY"
OUTPUT XXX;":MACHl:SWAV:INSERT 'PODl', #81001"

Command

<number of
samples>

Example

RAN Ge

:MACHine{lj2}:SWAVeform:RANGe <number_of_samples>

The RANGe command allows you to specify the number of samples across
the screen on the State Waveform display. It is equivalent to ten times the
states per division setting (states/Div) on the front panel. A number
between 10 and 5000 may be entered.

integer from 10 to 5000

OUTPUT XXX;":MACHINE2:SWAVEFORM:RANGE 80"

18-8

Query :MACHine{lj2}:SWAVeform:RANGe?

The RANGe query returns the current range value.

SWAVeform Subsystem
REMove

Returned Format [:MACHine{l I 2> :SWAVeform:RANGe) <number_of_samples><NL>

<number of integer from 10 to 5000
samples>

Example OUTPUT XXX; ":MACHINE2: SWAVEFORM:RANGE?"

Command

Example

Command

Example

REMove

:MACHine{lj2}:SWAVeform:REMove

The REMove command allows you to clear the waveform display before
building a new display.

OUTPUT XXX;":MACHINEl:SWAVEFORM:REMOVE"

TAKenbranch

:MACHine{lj2}:SWAVeform:TAKenbranch {STORejNOSTore}

The TAKenbranch command allows you to control whether the states that
cause branching are stored or not stored. This command is only available
when the acquisition mode is set to manual.

OUTPUT XXX;":MACHINE2:SWAVEFORM:TAI<ENBRANCH STORE"

1~9

Query

Returned Format

Example

Command

SWAVeform Subsystem
TPOSition

:MACHine{ll2}:SWAVeform:TAKenbranch?

The T AKenbranch query returns the current setting.

[:MACHine{lj2}:SWAVeform:TAKenbranch] {STORejNOSTore}<NL>

OUTPUT XXX;":MACHINE2:SWAVEFORM:TAKENBRANCH?"

TPOSition

:MACHine{ll2}:SWAVeform:TPOSition
{STARt!CENTerlENDIPOSTstore,<percent>}

The TPOSition command allows you to control where the trigger point is
placed. The trigger point can be placed at the start, center, end, or at a
percentage of post store. The post store option is the same as the User
Defined option when setting the trigger point from the front panel.

The TPOSition command is only available when the acquisition mode is set
to manual.

<percent> integer from 1 to 100

Example OUTPUT XXX; ":MACHINE2 :SWAVEFORM:TPOSITION CENTER"

18-10

Query :MACHine{ll2}:SWAVeform:TPOSition?

SWAVeform Subsystem
TPOSition

The TPOSition query returns the current trigger setting.

Returned Format [:MACHine{l I 2> :SWAVeform:TPOsition)
{STARtlCENTerlENDIPOSTstore,
<percent>}<NL>

<percent> integer from 1 to 100

Example OUTPUT XXX:":MACHINE2:SWAVEFORM:TPOSition?"

1~11

19

SCHart Subsystem

19-1

Introduction

The State Chart subsystem provides the commands necessary for
programming the Chart display HP 1660A-series logic analyzers. The
commands allow you to build charts of label activity, using data
normally found in the Listing display. The chart's Y-axis is used to
show data values for the label of your choice. The X-axis can be used
in two different ways. In one, the X-axis represents states (shown as
rows in the State Listing display). In the other, the X-axis represents
the data values for another label. When states are plotted along the
X-axis, X and 0 markers are available. Because the State Chart
display is simply an alternative way of looking at the data in the State
Listing, the X and 0 markers can be manipulated through the SLISt
subsystem. Because the programming commands do not force the
menus to switch, you can position the markers in the SLISt subsystem
and see the effects in the State Chart display.

The commands in the SCHart subsystem are:

• ACCumulate

• HAXis

• VAX.is

19-2

SCHart Subsystem

Figure 19-1

:SCHart

s tote_ I ow_vo I ue

stote_high_volue r-----r--oP<

lobel_low_value

label_high_value

lobel_nome low_volue

165185"3

SCHart Subsystem Syntax Diagram

19-3

Table 19-1

Selector

Example

Command

SCHart Subsystem
SCH art

SCHart Parameter Values

Parameter

state_low_value

state_high_value

label_name

label_low_value

label_high_value

low_ value

high_ value

SC Hart

Values

integer from -8191 to +8191

integer from <state_low_ value>to +8191

string of up to 6 alphanumeric characters

string from 0 to 232 - 1 (#HFFFF)

string from <label_low_value> to t 2 - 1 (#HFFFF)

string from 0 to 232 - 1 (#HFFFF)

string from low_value to 232 - 1 (#HFFFF)

:MACHine{ll2}:SCHart

The SCHart selector is used as part of a compound header to access the
settings found in the State Chart menu. It always follows the MACHine
selector because it selects a branch below the MACHine level in the
command tree.

OUTPUT XXX;":MACHINEl:SCHART:VAXIS 'A' I '0' I '9'"

ACCumulate

:MACHine{ll2}:SCHart:ACCumulate {{ONll}l{OFFIO}}

The ACCumulate command allows you to control whether the chart display
gets erased between each individual run or whether subsequent waveforms
are allowed to be displayed over the previous waveforms.

19-4

Example

Query

Returned Format

Example

Command

OUTPUT XXX;":MACHINEl:SCHART:ACCUMULATE OFF"

:MACHine{lj2}:SCHart:ACCwnulate?

SCHart Subsystem
HAXis

The ACCumulate query returns the current setting. The query always shows
the setting as the character "0" (ofO or "1 u (on).

[:MACBine{lj2}:SCHart:ACCumulate) {Ojl}<NL>

OUTPUT XXX;":MACHINEl:SCBART:ACCUMULATE?"

HAXis

:MACHine{lj2}:SCHart:HAXis {STAtes,
<state_low_value>,<state_high_value>j<label_name>,
<label_low_value>,<label_high_value>}

The HAXis command allows you to select whether states or a label's values
will be plotted on the horizontal axis of the chart. The axis is scaled by
specifying the high and low values.

The shortform for STATES is STA. This is an intentional deviation from the
normal truncation rule.

19-5

<state low
value>

SCHart Subsystem
HAXis

integer from -8191 to +8191

<state_high_ integer from <state_low_value> to +8191
value>

<label name> string of up to 6 alphanumeric characters

<label low string from 0 to 232-1 (#HFFFF)
value>

<label_high_ string from <label_low_value> to 232-1 (#HFFFF)
value>

Examples OUTPUT XXX;":MACHINEl:SCHART:HAXIS STATES, -100, 100"
OUTPUT XXX;":MACHINEl:SCHART:HAXIS 'READ', '-511', '511'"

Que~ :MACHine{ll2}:SCHart:HAXis?

Returned Format

Example

The HAXis query returns the current.horizontal axis label and scaling.
[:MACHine{ll2}:SCBart:HAXis) {STAtes,<state_low_value>,
<state_high_value>l<label_name>,<label_low_value>,
<label_high_value>}

OUTPUT XXX;":MACHINEl:SCHART:HAXIS?"

19-6

Command

VAXis

:MACHine{ll2}:SCHart:VAXis
<label_name>,<low_value>,<high_value>

SCHart Subsystem
VAXis

The V AXis command allows you to choose which label will be plotted on the
vertical axis of the chart and scale the vertical axis by specifying the high
value and low value.

<label name> string of up to 6 alphanumeric characters

<low value> string from 0 to 232-1 (#HFFFF)

<high_ value> string from <low_ value> to 232-1 (#HFFFF)

Examples OUTPUT xxx; .. :MACHINE2 :sceART:VAXIS • suMl •, • o •, • 99'"
OUTPUT XXX;":MACHINEl:SCHART:VAXIS 'BUS', 'iHOOFF', 'iH0500'"

Que~ :MACHine{ll2}:SCHart:VAXis?

Returned Format

Example

The V AXis query returns the current vertical axis label and scaling.

[:MACHine{ll2}:SCHart:VAXis] <label_name>,<low_value>,
<high_value><NL>

OUTPUT XXX;":MACHINEl:SCHART:VAXIS?"

19-7

20

COMP are
Subsystem

20-1

Introduction

Corrunands in the state COMPare subsystem provide the ability to do
a bit-by-bit comparison between the acquired state data listing and a
compare data image. The corrunands are:

• CLEar
• CMASk
•COPY
•DATA

• FIND

• LINE
•MENU

• RANGe

• RUNTil
•SET

20-2

COMPare Subsystem

Figure 20-1

:CGAPore

I obe l_nane ear e_spee t-------------<--i

lobel_ncme t------------------------.-i

I i ne_num doio_potlern

dot a_pa t tern t-.-------------i

l 1 ne_num r---------------i

dif ference_occurrence t------------------._,

start_ I ine stop_ I ine

SET ,

COMPare Subsystem Syntax Diagram

20-3

Table 20-1

Selector

Example

COMPare Subsystem
COM Pare

Compare Parameter Values

Parameter

label_name

care_spec

*

line_num

data_pattern

diffe re n c e_occurenc e

start_line

stop_line

COMPare

Values

string of up to 6 characters

string of characters"{* I·} ... "
care

don't care

integer from -8191 to +8191

"{B{OlllX} ••• I

#Q{Oj1l2j3j4jsl6j1jx> ••• I
#H{O 112 3 4 Sl6 7 Sl9IAIBICIDIEIFIX} ••• I
<Olll2l3l4ISl6l7IBl9> ••• }"

integer from 1 to 8192

integerfrom-8191 to +8191

integer from <start_line>to +8191

:MACHine{ll2}:COMPare

The COMPare selector is used as part of a compound header to access the
settings found in the Compare menu. It always follows the MACHine
selector because it selects a branch directly below the MACHine level in the
command tree.

OUTPUT XXX;":MACHINEl:COMPARE:FIND? 819"

20-4

Command

Example

Command

CLEar

:MACHine{ll2}:COMPare:CLEar

COMPare Subsystem
CLEar

The CLEar command clears all "don't cares" in the reference listing and
replaces them with zeros except when the CLEar command immediately
follows the SET command (see SET command).

OUTPUT XXX;":MACHINE2:COMPARE:CLEAR"

CMASk

:MACHine{ll2}:COMPare:CMASk
<label_name>,<care_spec>

The CMASk (Compare Mask) command allows you to set the bits in the
channel mask for a given label in the compare listing image to "compares" or
"don't compares."

<label name> A string of up to 6 alphanumeric characters

<care_ spec> A string of characters "{*I.} ... " (32 characters maximum)

Example

<*> An indicator that tells the logic analyzer that it cares about this bit.

<. > An indicator that tells the logic analyzer that it does not care about this bit
(don't care).

OUTPUT XXX;":MACHINE2:COMPARE:CMASK 'DATA', '*·**··**'"

20-5

Query

COMPare Subsystem
COPY

:MACHine{lj2}:COMPare:CMASk <label_name>?

The CMASk query returns the state of the bits in the channel mask for a
given label in the compare listing image.

Returned Format [:MACBine{ 112} : COMP are :CMASk] <label_ name>, <care _spec>

<label name> A string of up to 6 alphanumeric characters

<care_spec> A string of characters"{*!.} ... " (32 characters maximum)

<*> An indicator that tells the logic analyzer that it cares about this bit.

<. > An indicator that tells the logic analyzer that it does not care about this bit
(don't care).

Example OUTPUT XXX; ":MACHINE2 :COMPARE:CMASK 'DATA'?"

Command

Example

COPY

:MACHine{lj2}:COMPare:COPY

The COPY command copies the current acquired State Listing for the
specified machine into the Compare Reference template. It does not affect
the compare range or channel mask settings.

OUTPUT XXX;":MACHINE2:COMPARE:COPY"

20-6

Command

DATA

COMPare Subsystem
DATA

:MACHine{ll2}:COMPare:DATA {<label_name>,
<line_num>,<data_pattern>l<line_num>,
<data_pattern>[, <data_pattern>] ••• }

The DAT A command allows you to edit the compare listing image for a given
label and state row. When DAT A is sent to an instrument where no compare
image is defined (such as at power-up) all other data in the image is set to
don't cares.

Not specifying the <label_ name> parameter allows you to write data
patterns to more than one label for the given line number. The first pattern
is placed in the left-most label, with the following patterns being placed in a
left-to-right fashion (as seen on the Compare display). Specifying more
patterns than there are labels simply results in the extra patterns being
ignored.

Because don't cares (Xs) are allowed in the data pattern, it must always be
expressed as a string. You may still use different bases; although, don't
cares cannot be used in a decimal number.

<label name> A string of up to 6 alphanumeric characters

<line num> An integer from -8191 to +8191

<data pattern> A string in one of the following forms:
.. {B{ 0111 X} •.• I
iQ{ 0 I l I 2 I 3 I 41SI6 I 7 IX} .•• I
iH{ 0111213 I 4 IS I 6 I 7 I 8 I 9 I A I BI c ID IE IF IX} ••• I
<Olll2l3l4ISl6l7ISl9> .•. }"

Examples OUTPUT XXX;":MACHINE2:COMPARE:DATA 'CLOCK', 42, '#B011Xl01X"'
OUTPUT XXX;":MACHINE2:COMPARE:DATA '0UT3', O, '#HFF40"'
OUTPUT XXX;":MACHINEl:COMPARE:DATA 129, '#BXXOO', '#Bll01',
'#BlOXX'"
OUTPUT XXX; ":MACH2:COMPARE:DATA -511, '4' I '64' I '16' I 256' I
'8' t '16"'

20-7

Query

COMPare Subsystem
DATA

:MACHine{ll2}:COMPare:DATA? <label_name>,<line_num>

The DATA query returns the value of the compare listing image for a given
label and state row.

Returned Format [:MACHine{ 1 j 2} :COMP are: DATA] <label_ name> ,<line _num>,
<data_pattern><NL>

<label name> A string of up to 6 alphanumeric characters

<line num> An integer from -8191 to +8191

<data pattern> A string in one of the following forms:
"{B{OlllX} •.• I
f Q{ 0 I l I 2 I 3 I 4 I S I 6 111 X} • • • I
#H{Olll2l3l4ISl6l7ISl9IAIBICIDIEIFIX} ••. I
<Olll2l3l4ISl6l7ISl9> ••• }"

Example 10 DIM Label$ [6), Response$ [so)
15 PRINT "This program shows the values for a signal's Compare
listing"
20 INPUT "Enter signal label: ", Label$
25 OUTPUT XXX;":SYSTEM:HEADER OFF" !Turn headers off (from
responses)
30 OUTPUT XXX;":MACHINE2:COMPARE:RANGE?"
35 ENTER XXX; First, Last !Read in the range's end-points
40 PRINT "LINE ", "VALUE of 11 ; Label$
45 FOR state = First TO Last !Print compare value for each
state
so OUTPUT XXX;":MACH2:COMPARE:DATA? "' & Label$ & "'," &

VAL$(State)
55 ENTER XXX; Response$
60 PRINT State, Response$
65 NEXT State
70 END

20-8

Query

Returned Format

<difference
occurrence>

FIND

COMPare Subsystem
FIND

:MACHine{ll2}:COMPare:FIND? <difference occurrence>

The FIND query is used to get the line number of a specified difference
occurence (first, second, third, etc) within the current compare range, as
dictated by the RANGe command (see page 20-11). A difference is counted
for each line where at least one of the current labels has a discrepancy
between its acquired state data listing and its compare data image.
Invoking the FIND query updates both the Listing and Compare displays so
that the line number returned is in the center of the screen.

[:MACHine{ll2}:COMPare:FIND] <difference_occurrence>,
<line number><NL>

integer from 1 to 8192

<line number> integer from -8191 to +8191

Example OUTPUT XXX; ":MACHINE2 :COMPARE :FIND? 26"

20-9

COMPare Subsystem
LINE

LlNE

Command :MACHine{ll2}:COMPare:LINE <line num>

The LINE command allows you to center the compare listing data about a
specified line number.

<line num> An integer from -8191 to +8191

Example OUTPUT XXX;":MACHINE2:COMPARE:LINE -511"

Que~ :MACHine{ll2}:COMPare:LINE?

The LINE query returns the current line number specified.

Returned Format (:MACHine{l I 2} :COMPare:LINEJ <line_num>}<NL>

<line num> An integer from -8191 to +8191

Example OUTPUT XXX; ":MACHINE4 :COMPARE:LINE?"

Command

Example

MENU

:MACHine{ll2}:COMPare:MENU {REFerencelDIFFerence}

The MENU command allows you to display the reference or the difference
listings in the Compare menu.

OUTPUT XXX;":MACHINE2:COMPARE:MENU REFERENCE"

20-10

COM Pare Subsystem
RAN Ge

Command

RAN Ge

:MACHine{ll2}:COMPare:RANGe
{FULLIPARTial,<start_line>,<stop_line>}

The RANGe command allows you to define the boundaries for the
comparison. The range entered must be a subset of the lines in the acquire
memory.

<start line> integer from -8191 to +8191

<stop_line> integer from <start_line> to +8191

Examples OUTPUT XXX;":MACHINE2:COMPARE:RANGE PARTIAL, -511, 512"
OUTPUT XXX;":MACHINE2:COMPARE:RANGE FULL"

Que~ :MACHine{ll2}:COMPare:RANGe?

The RANGe query returns the current boundaries for the comparison.

Returned Format (:MACHine{ l I 2> :COMPare:RANGe] {FULL I PARTial ,<start line>,
<stop_line>}<NL>

<start line> integer from -8191 to +8191

<stop_line> integer from <start_line> to +8191

Example OUTPUT 707;":MACHINEl:COMPARE:RANGE?"

20-11

Command

COMPare Subsystem
RUNTil

RUNTil

:MACHine{ll2}:COMPare:RUNTil {OFFI LT,<value>IGT,
<value>IINRange,<value>,<value>IOUTRange,<value>,<va
lue>IEQUallNEQual}

The RUNTil (run until) command allows you to define a stop condition when
the trace mode is repetitive. Specifying OFF causes the analyzer to make
runs until either the display's STOP field is touched or the STOP command is
issued.

There are four conditions based on the time between the X and 0 markers.
Using this difference in the condition is effective only when time tags have
been turned on (see the TAG command in the STRace subsystem). These
four conditions are as follows:

• The difference is less than (LT) some value.

• The difference is greater than (GT) some value.

• The difference is inside some range (INRange).

• The difference is outside some range (OUTRange).
End points for the INRange and OUTRange should be at least 8 ns apart
since this is the minimum time resolution of the time tag counter.

There are two conditions which are based on a comparison of the acquired
state data and the compare data image. You can run until one of the
following conditions is true:

• Every channel of every label has the same value (EQUal).

• Any channel of any label has a different value (NEQual).

The RUNTil instruction (for state analysis) is available in both the SU St and
COMPare subsystems.

<value> real number from -9E9 to +9E9

20-12

Example

Query

OUTPUT XXX;":MACHINE2:COMPARE:RUNTIL EQUAL"

:MACHine{ll2}:COMPare:RUNTil?

COMPare Subsystem
SET

The RUNTil query returns the current stop criteria for the comparison when
running in repetitive trace mode.

Returned Format [:MACHine{ 1I2> :COMPare :RUNTil] {OFF I LT,<value> IGT ,<value>l
INRange,<value>,<value>IOUTRange,<value>,<value>IEQUallNEQual}
<NL>

<value> real number from -9E9 to +9E9

Example OUTPUT XXX; ":MACHINE2 :COMPARE :RUNTIL?"

Command

Example

SET
:MACHine{ll2}:COMPare:SET

The SET command sets every state in the reference listing to "don't cares."
If you send the SET command by mistake you can immediately send the
CLEar command to restore the previous data. This is the only time the
CLEar command will not replace "don't cares" with zeros.

OUTPUT XXX;":MACHINE2:COMPARE:SET"

20-13

21

TFORmat
Subsystem

21-1

Introduction

The TFORmat subsystem contains the commands available for the
Timing Format menu in the HP 1660-series logic analyzers. These
commands are:

• ACQMode

• LABel
• REMove
• THReshold

21-2

TFORmat Subsystem

Figure 21-1

:TFORmat TRANsitional

CONVentionol

GL I fch >-------------

polarity t------

THReshold<N> space

THReshold<N>? !--------------------------"
16~50S1"4

TFORmat Subsystem Syntax Diagram

21-3

Table21-1

Selector

Example

TFORmat Subsystem
TFORmat

TFORmat Paramter Values

Parameter

size

<N>

name

polarity

pod_specification

value

TFORmat

Values

{FULL I HALF}

<ll2l3l4ISl6l7IS>
string of up to 6 alphanumeric characters

{POSitivelNEGative}

format (integerfrom 0 to 65535) for a pod (pods are
assigned in decreasing order)

voltage (real number) -6.00 to +6.00

:MACHine{ll2}:TFORmat

The TFORmat selector is used as part of a compound header to access those
settings normally found in the Timing Format menu. It always follows the
MACHine selector because it selects a branch directly below the MACHine
level in the language tree.

OUTPUT XXX;":MACHINEl:TFORMAT:ACQMODE?"

21-4

TFORmat Subsystem
ACQMode

Command

ACQMode

:MACHine{ll2}:TFORmat:ACQMode {TRANSitional
<size>ICONVentional <size>IGLITch}

The ACQMode (acquisition mode) command allows you to select the
acquisition mode for the timing analyzer. The options are:

• conventional mode at full-channel 250 MHz

• conventional mode at half-channel 500 Mhz

• transitional mode at full-channel 125 MHz

• transitional mode at half-channel 250 MHz

• glitch mode.

<size> {FULLIHALF}

Example OUTPUT XXX; .. :MACHINE2 :TFORMAT:ACQMODE TRANSITIONAL HALF"

Que~ :MACHine{lj2}:TFORmat:ACQMode?

The ACQMode query returns the current acquisition mode.

Returned Format [:MACHine{ l I 2> :TFORmat :ACQMode) {TRANSitional
<size>ICONVentional <size>IGLITch}<NL>

<size> {FULLIHALF}

Example OUTPUT XXX; .. :MACHINE2 :TFORMAT:ACQMODE?"

21-5

Command

TFORmat Subsystem
LAB el

LAB el

:MACHine{ll2}:Tformat:LABel <name>,[<polarity>,
<clock_bits>, <upper_bits>, <lower bits>
[,<upper_bits>,<lower_bits>] •••]

The LABel command allows you to specify polarity and to assign channels to
new or existing labels. If the specified label name does not match an
existing label name, a new label will be created.

The order of the pod-specification parameters is significant. The first one
listed will match the highest numbered pod assigned to the machine you're
using. Each pod specification after that is assigned to the next highest
numbered pod. This way they match the left-to-right descending order of
the pods you see on the Format display. Not including enough pod
specifications results in the lowest numbered pods being assigned a value of
zero (all channels excluded). If you include more pod specifications than
there are pods for that machine, the extra ones will be ignored. However, an
error is reported anytime more than 13 pod specifications are listed.

The polarity can be specified at any point after the label name.

Because pods contain 16 channels, the format value for a pod must be
between 0 and 65535 (216-1). When giving the pod assignment in binary
(base 2), each bit will correspond to a single channel. A 11 111 in a bit position
means the associated channel in that pod is assigned to that pod and bit. A
11011 in a bit position means the associated channel in that pod is excluded
from the label. For example, assigning #B 1111001100 is equivalent to
entering" **** .. ** .. " from the front panel.
A label can not have a total of more than 32 channels assigned to it.

<name> string of up to 6 alphanumeric characters

<po·larity> {Positive jNEGative}

<clock bi ts> format (integer from 0 to 63) for a clock (clocks are assigned in decreasing
order)

<upper_ bi ts> format (integer from 0 to 65535) for a pod (pods are assigned in decreasing
order)

<lower bi ts> format (integer from 0 to 65535) for a pod (pods are assigned in decreasing
order)

21-6

TFORmat Subsystem
REMove

Examples

Query

OUTPUT XXX;":MACHINE2:TFORMAT:LABEL 'STAT', POSITIVE,
0,127,40312"
OUTPUT XXX;":MACHINE2:TFORMAT:LABEL 'SIG 1',
#Bll,#BOOOOOOOOllllllll,
#BOOOOOOOOOOOOOOOO "

:MACHine{ll2}:Tformat:LABel? <name>

The LABel quei:y returns the current specification for the selected (by
name) label. If the label does not exist, nothing is returned. Numbers are
always returned in decimal format.

Returned Format [:MACHine{ 1I2> :Tformat:LABel] <name> ,<polarity>[,
<assignment>] ••. <NL>

<name> string of up to 6 alphanumeric characters

<polarity> {POSitivejNEGative}

Example OUTPUT XXX; ":MACHINE2 :TFORMAT:LABEL? 'DATA'"

Command

REMove

:MACHine{ll2}:TFORmat:REMove {<name>IALL}

The REMove command allows you to delete all labels or any one label
specified by name for a given machine.

<name> string of up to 6 alphanumeric characters

Examples OUTPUT xxx;" :MACHINEl :TFORMAT:REMOVE 'A'"
OUTPUT XXX;":MACHINEl:TFORMAT:REMOVE ALL"

21-7

TFORmat Subsystem
THReshold

THReshold

Command :MACHine{l j 2} :TFORmat:THReshold<N> {TTL jECL !<value>}

The THReshold command allows you to set the voltage threshold for a given
pod to ECL, TTL, or a specific voltage from -6.00 V to +6.00 Vin 0.05 volt
increments.

<N> pod number {112 I 3 I 4 IS I 6 I 7 I 8}

<value> voltage (real number) -6.00 to +6.00

TTL default value of +1.6 V

ECL default value of -1.3 V

Example OUTPUT XXX; ":MACHINEl: TFORMAT:THRESHOLDl 4. 0"

Que~ :MACHine{ll2}:TFORmat:THReshold<N>?

Returned Format

Example

The THReshold query returns the current threshold for a given pod.

(:MACHine{lj2}:TFORmat:THReshold<N>] <value><NL>

OUTPUT XXX;":MACHINEl:TFORMAT:THRESHOLD2?"

21-8

22

TTRigger
(TTRace)
Subsystem

22-1

Introduction

The TTRigger subsystem contains the commands available for the
Timing Trigger menu in the HP 1660-series logic analyzers. The
Timing Trigger subsystem will also accept the TTRace selector as
used in previous HP 1650-series logic analyzers to eliminate the need
to rewrite programs containing TTRace as the selector keyword. The
TTRigger subsystem commands are:

• ACQuisition

• BRANch

• CLEar

• FIND

• GLEDge

• RANGe

• SEQuence

• SPERiod

• TCONtrol

•TERM

• TIMER

• TPOSition

22-2

Figure 22-1

TTR i gger

TIRigger (TIRace) Subsystem

F JND<N>

FJND<N>?

brarich_quo Ii f i er to_level_num

proceed_quol if1er occurrence

lobel_nome g I 1 tch_edge_spec

lobel_namc

stop-pattern

num_o f _I eve ls 1---------------i

somple_period 1-----------------i
SPERiod? >------------------------------.,
TCONtrol<N> timer _num

CONTinue

lTRigger Subsystem Syntax Diagram

22-3

TTRigger (TTRace) Subsystem

Figure 22-1 (continued)

I abe I _name pattern

label_name 1----------~

TPOSi t ion

posLvalue

t ime_vo I

16~50505

TTRigger Subsystem Syntax Diagram (continued)

22-4

Table 22-1

TTRigger (TTRace) Subsystem

TTRigger Parameter Values

Parameter

branch_qualifier

to_lev_num

proceed_qualifier

occurrence

label_name

glitch_edge_spec

sta rt_pattern

stop_pattern

num_of_levels

lev_of_trig

store_qualifier

state_tag_qualifier

timer_num

timer_value

term_id

pattern

qualifier

post_ store

time_val

Values

<qualifier>

integer from 1 to last level

<qualifier>

number from 1to1048575

string of up to 6 alphanumeric characters

string consisting of {RI FIE I GI • } R, F, and E represents
rising, falling, either edge respectively. G represents a glitch and
a period (.) represents a don't care.

"{#B{Oll} ••• 1
ito< o 11 213 I 4IsI6I1} ••• I
#H{Olll2l3l4ISl6l7IBl9IAIBlclolEIF> •• ·I
{Olll2l3l4ISl6l7IBl9> ••• }"
"{#B{Oll} ••• I
ito< o 111213 I 4 IS I 611 > ••• I
#H{Olll2l3l4ISl6 7IBl9IAIBICIDIEIF> ••• j
{Olll2l3l4ISl6l7IBl9} ••• }"
integer from 1 to 10

integer from 1 to (number of existing sequence levels)

<qualifier>

<qualifier>

{112}

400 ns to 500 seconds

{AIBICIDIEIFIGIHIIIJ>
"{#B{OlljX} ••• I
#Q{Olll2l3l4ISl6l7IX} ••• I
iH<Olll2l3l41516l71Bl9IAIBlclolEIFIX> ••• j
{01112131415 6 7j8 9} ••• }"
see "Qualifier" on page 22-6

integer from 0 to 100 representing percentage

integer from 0 to 500 representing seconds

22-5

<qualifier>

<expression>

<expressionla>

<expressionla_
term>

<expression lb>

<expressionlb_
term>

<expression2a>

<expression2b>

<expression2c>

<expression2d>

<expression2e>

<expression2f>

<expression2g>

<expression2h>

<boolean_op>

TTRigger (TTRace) Subsystem
Qualifier

Qualifier

The qualifier for the timing trigger subsystem can be terms A through J,
Timer 1 and 2, and Range 1 and 2. In addition, qualifiers can be the NOT
boolean function of terms, timers, and ranges. The qualifier can also be an
expression or combination of expressions as shown below and rigure 22-2,
"Complex Qualifier," on page 22-11.

The following parameters show how qualifiers are specified in alJ commands
of the TTRigger subsystem that use <qualifier>.

{"ANYSTATE"l"NOSTATE"l"<expression>"}

{<expressionla>j<expressionlb>j<expressionla>OR
<expression lb> I <expressionl:a> AND <expressionlb>}

{<expressionla_term>l<<expressionla_term>[OR
<expressionla_term>]* >l<<expressionla_term>[AND
<expressionla_term>]*)}

{<expression2a>j<expression2b>j<expression2c>I
<expression2d>}

{<expressionlb_term>l<<expressionlb_term>[OR
<expressionlb_term>]* >l<<expressionlb_term>[AND
<expressionlb_term>]*)}

{<expression2e>j<expression2f>j<expression2g>I
<expression2h>}

{<term3a> I <term3b> I (<term3a> <boolean_ op> <term3b>) }

{<term3c>j<range3a>l<<term3c><boolean_op><range3a>)}

{<term3d>j<gledge3aj(<term3d><boolean_op><gledge3a>)}

{<term3e>j<timer3a>j(<term3e><boolean_op><timer3a>)}

{<term3f> I <term3g> I (<term3f> <boolean_ op> <term3g>)}

{<term3h>l<range3b>j(<term3h><boolean_op><range3b>)}

{<term3i>j<gledge3b>j(<term3i><boolean_op><gledge3b>)}

{<term3 j> I <timer3b> I (<term3e> <boolean_ op> <timer3b>) }

{ANDjNANDloRjNORIXORjNXOR}

22-6

<term3a>

<term3b>

<term3c>

<term3d>

<term3e>

<term3f>

<term3g>

<term3h>

<term3i>

<term3j>

<range3a>

<range3b>

<gledge3a>

<gledge3b>

<timer3a>

<timer3b>

{AINOTA}

{BINOTB}

{CINOTC}

{DINOTD}

{El NOTE}

{FINOTF}

{GINOTG}

{HI NOTH}

{IINOTI}

{JINOTJ}

{IN RANGEllOUT RANGEl} - -
{IN RANGE2IOUT RANGE2} - -
{ GLEDge 11 NOT GLEDge 1}

{GLEDge2 l NOT GLEDge2}

{TIMERl<ITIMERl>}

{TIMER2<ITIMER2>}

TIRigger (TIRace) Subsystem
Qualifier

* =is optional such that it can be used zero or more times
+=must be used at least once and can be repeated

Qualifier Rules

The following rules apply to qualifiers:

• Qualifiers are quoted strings and, therefore, need quotes.

• Expressions are evaluated from left to right.

• Parenthesis are used to change the order evaluation and, therefore, are
optional.

• An expression must map into the combination logic presented in the
combination pop-up menu within the TTRigger menu.

22-7

Examples

Selector

Example

Command

Example

TIRigger (TIRace) Subsystem
TIRigger (TIRace)

I A'

'(AORB)'
'((A ORB) AND C)'
I ((A OR B) AND c AND IN_ RANGE2) I

'((A ORB) AND (C AND IN_RANGEl))'
'IN RANGEl AND (A OR B) AND C'

'ITRigger (TTRace)

:MACHine{lj2}:TTRigger

The TTRigger (TTRace) (Trace Trigger) selector is used as a part of a
compound header to access the settings found in the Timing Trace menu. It
always follows the MACHine selector because it selects a branch directly
below the MACHine level in the command tree.

OUTPUT XXX;":MACHINEl:TTRIGGER:TAG TIME"

ACQuisition

:MACHine{ll2}:TTRigger:ACQuisition
{AUTOmaticlMANual}

The ACQuisition command allows you to specify the acquisition mode for
the Timing analyzer.

OUTPUT XXX;":MACHINEl:TTRIGGER:ACQUISITION AUTOMATIC"

22-8

Query

Returned Format

Example

Command

Example

TIRigger (TIRace) Subsystem
BRANch

:MACHine{ll2}:TTRigger:ACQuisition?

The ACQuisition query returns the current acquisition mode specified.

(:MACHine{ll2}:TTRigger:ACQuisition) {AUTomaticlMANual}<NL>

OUTPUT XXX;":MACHINEl:TTRIGGER:ACQUISITION?"

BRAN ch

:MACHine{ll2}:TTRigger:BRANch<N>
<branch_qualifier>,<to_level_number>

The BRANch command defines the branch qualifier for a given sequence
level. When this branch qualifier is matched, it will cause the sequencer
to jump to the specified sequence level.

The terms used by the branch qualifier (A through J) are defined by the
TERM command. The meaning of IN - RANGE and OUT_ RANGE is
determined by the RANGE command.
Within the limitations shown by the syntax definitions, complex expressions
may be formed using the AND and OR operators. Expressions are limited to
what you could manually enter through the Timing Trigger menu. Regarding
parentheses, the syntax definitions on the next page show only the required
ones. Additional parentheses are allowed as long as the meaning of the
expression is not changed. Figure 22-2, on page 22-11 shows a complex
expression as seen in the Timing Trigger menu.

The following statements are all correct and have the same meaning. Notice
that the conventional rules for precedence are not followed. The
expressions are evaluated from left to right.
OUTPUT XXX;":MACHINEl:TTRIGGER:BRANCHl 'C AND DORF OR G', l"
OUTPUT XXX;":MACHINEl:TTRIGGER:BRANCHl '((C AND D) OR (FOR
G)) I, l"

OUTPUT XXX;":MACHINEl:TTRIGGER:BRANCHl 'FOR (C AND D) OR G',l"

22-9

TTRigger (TTRace) Subsystem
BRAN ch

<N> integer from 1 to <number_of_levels>

<to level integer from 1 to <number_of_levels>
number>

<number of integer from 1 to the number of existing sequence levels (maximum 10)
levels>

<branch
qualifier>

Examples

Query Syntax

Returned Format

Example

<qualifier> see "Qualifier" on page 22-6

OUTPUT XXX;":MACHINEl:TTRIGGER:BRANCHl 'ANYSTATE', 3"
OUTPUT XXX;":MACHINE2:TTRIGGER:BRANCH2 'A', 7"
OUTPUT XXX; ":MACHINEl :TTRIGGER:BRANCH3 I ((A OR B) OR NOTG) I I l"

:MACHine{ll2}:TTRigger:BRANch<N>?

'I:he BRANch query returns the current branch qualifier specification for a
given sequence level.

(:MACHine{ll2}:TTRigger:BRANch<N>] <branch_qualifier>,
<to level num><NL>

OUTPUT XXX;":MACHINE1:TTRIGGER:BRANCH3?"

22-10

Figure 22-2

Example

TIRigger (TIRace) Subsystem
BRAN ch

a
b

tn_ran e1

d

gl I lch/edge I

llmer 1 >400ns

r
g

ln_ronge2

Ii lth/ed e2

limer2>400ns

Complex Qualifier
-

Figure 22-2 is a front-panel representation of the complex qualifier (a OR b)
And (g ORh).

This example would be used to specify this complex qualifier.

OUTPUT XXX;":MACHINEl:TTRIGGER:BRANCHl '((A ORB) AND
(G OR H))', 2"

Terms A through E, RANGE l, GLITCH/EDGEl, and TIMER 1 must be grouped
together and terms Fthrough J, RANGE 2, GLITCH/EDGE2, and TIMER 2 must be
grouped together. In the first level, terms from one group may not be mixed
with terms from the other. For example, the expression ((A OR IN_RANGE2)
AND (C OR H)) is not allowed because the term C cannot be specified in the E
through J group.

In the first level, the operators you can use are AND, NANO, OR, NOR,

XOR, NXOR. Either AND or OR may be used at the second level to join the
two groups together. It is acceptable for a group to consist of a single term.
Thus, an expression like (B AND G) is legal since the two operands are both
simple terms from separate groups.

22-11

Command

Example

Command

TIRigger (TIRace) Subsystem
CLEar

CLEar

:MACHine{ll2}:TTRigger:CLEar
{AlllSEQuencelRESource}

The CLEar command allows you to clear all settings in the Timing Trigger
menu and replace them with the default, clear only the sequence levels, or
clear only the resource term patterns.

OUTPUT XXX;":MACHINEl:TTRIGGER:CLEAR RESOURCE"

FIND

:MACHine{ll2}:TTRigger:FIND<N>
<time_qualifier>,<condition_mode>

The FIND command defines the time qualifier for a given sequence level.
The qualifier tells the timing analyzer when to proceed to the next sequence
level. When this proceed qualifier is matched the specified number of times,
the sequencer will proceed to the next sequence level. In the sequence level
where the trigger is specified, the FIND command specifies the trigger
qualifier (see SEQuence command).

The terms A through J are defined by the TERM command. The meaning of
IN RANGE and OUT RANGE is determined by the RANGe command.
Expressions are limited to what you could manually enter through the
Timing Trigger menu. Regarding parentheses, the syntax definitions below
show only the required ones. Additional parentheses are allowed as long as
the meaning of the expression is not changed. See figure 22-2 on page 22-11
for a detailed example.

22-12

TIRigger (TIRace) Subsystem
FIND

<N>

<condition
mode>

integer from 1 to the number of existing sequence levels (maximum 10)

{{GTILT}, <duration_time>joccurrence, <occurrence>}

GT greater than

LT less than

<duration time> real number from 8 ns to 5.00 seconds depending on sample period

<occurrence> integer from 1 to 1048575

<time <qualifier> see "Qualifier" on page 22-6
qualifier>

Examples OUTPUT XXX;":MACHINEl:TTRIGGER:FINDl 'ANYSTATE' I GT, lOE-6"
OUTPUT XXX;":MACHINEl:TTRIGGER:FIND3 '((NOTA AND NOTB) OR G)',
OCCURRENCE, 10"

Que~ :MACHine{lj2}:TTRigger:FIND4?

Returned Format

Example

The FIND query returns the current time qualifier specification for a given
sequence level.

(:MACHine{ll2}:TTRigger:FIND<N>] <condition_mode>,
<occurrence><NL>

OUTPUT XXX;":MACHINEl:TTRIGGER:FIND<N>?"

22-13

Command

TIRigger (TIRace) Subsystem
GLEDge

GLEDge

:MACHine{ll2}:TTRigger:GLEDge<N> <label_name>,
<glitch_edge_spec>

The GLEDge (glitch/edge) command allows you to define edge and glitch
specifications for a given label. Edge specifications can be R (rising), F
(falling), E (either), or 11 • 11 (don't care). Glitch specifications consist ofG
(glitch) or"." (don't care). Edges and glitches are sent in the same string
with the right most string character specifying what the right most bit will be.

The <glitch_edge_spec> string length must match the exact number of bits
assigned to the specified label. If the string length does not match the number
of bits, the "Parameter string invalid" message is displayed.

<N> {112}

<label name> string of up to 6 alphanumeric characters

<glitch_ edge_ string consisting of {RI FIE I GI • I [to total number of bi ts]}
spec>

Example For 8 bits assigned and no glitch:

OUTPUT XXX;":MACHINEl:TTRIGGER:GLEDGEl 'DATA', ' •••• F •• E'"

For 16 bits assigned with glitch:
OUTPUT XXX; ":MACHINEl :TTRIGGER:GLEDGEl 'DATA',
' •••• GGG ••••• F •• R'"

22-14

Query

Returned Format

Example

Command

TIRigger (TIRace) Subsystem
RAN Ge

:MACHine{ll2}:TTRigger:GLEDe<N>? <label_name>

The GLEDge query returns the current specification for the given label.

[:MACHine{ll2}:TTRigger:GLEDe<N>]
<label_name>,<glitch_edge_pattern><NL>

OUTPUT XXX;":MACHINEl:TTRIGGER:GLEDGEl? 'DATA'"

RANGe

:MACHine{ll2}:TTRigger:RANGE <label name>,
<start_pattern>,<stop_pattern>

The RANGe command allows you to specify a range recognizer term for the
specified machine. Since a range can only be defined across one label and,
since a label must contain 32 or less bits, the value of the start pattern or
stop pattern will be between (232)-1 and 0.

Since a label can only be defined across a maximum of two pods, a range term
is only available across a single label; therefore, the end points of the range
cannot be split between labels. ·

When these values are expressed in binary, they represent the bit values for
the label at one of the range recognizers' end points. Don't cares are not
allowed in the end point pattern specifications.

22-15

TTRigger (TTRace) Subsystem
RAN Ge

<label name> string of up to 6 alphanumeric characters

<start_pattern> "{#B{O I l} ••• I
#Q< o 111213 I 4 I s I 6 I 7} . • • I
#H{Olll2l3l4ISl6l7IBl9IAIBICIDIEIF} .•• I
<Olll2l3l4ISl6l7IBl9} ..• }"

<stop_pattern> "{#B{Oll} •.. I
#Q{ 0 I l I 2 I 3 I 4 I SI 6 I 7} . . . I
#H{Olll2l3l4ISl6l7IBl9IAIBlclolEIF> .•• I
<Olll2l3l4ISl6l7IBl9} ••. }"

Examples OUTPUT XXX;":MACHINEl:TTRIGGER:RANGE 'DATA', '127', '255' ..

Query

Returned Format

Example

OUTPUT XXX;":MACHINEl:TTRIGGER:RANGE 'ABC', '#BOOOOllll',
'#HCF' "

:MACHine{ll2}:TTRigger:RANGe?

The RANGe query returns the range recognizer end point specifications for
the range.

(:MACHine{ll2}:STRAce:RANGe] <label_name>,<start_Pattern>,
<stop_pattern><NL>

OUTPUT XXX;":MACHINEl:TTRIGGER:RANGE?"

22-16

Command

SEQuence

TTRigger (TTRace) Subsystem
SEQuence

:MACHine{ll2}:TTRigger:SEQuence <number of levels>

The SEQuence command defines the timing analyzer trace sequence. First,
it deletes the current trace sequence. Then, it inserts the number of levels
specified, with default settings. The number of levels can be between 1 and
10 when the analyzer is armed by the RUN key.

<nwnber of integer from 1 to 10
levels>

Example OUTPUT XXX;":MACHINEl:TTRIGGER:SEQUENCE 4"

Que~ :MACHine{ll2}:TTRigger:SEQuence?

Returned Format

Example

The SEQuence query returns the current sequence specification.

[:MACHine{ll2}:TTRigger:SEQuence] <number_of_levels>,
<level_of_trigger><NL>

OUTPUT XXX;":MACHINEl:TTRIGGER:SEQUENCE?"

22-17

Command

TIRigger (TIRace) Subsystem
SPERiod

SPERiod

:MACHine{ll2}:TTRigger:SPERiod <sample_period>

The SPERiod command allows you to set the sample period of the timing
analyzer in the Conventional and Glitch modes. The sample period range
depends on the mode selected and is as follows:

• 2 ns to 8 ms for Conventional Half Channel 500 MHz

• 4 ns to 8 ms for Conventional Full Channel 250 MHz

• 4 ns for Transitional Half Channel

• 8 ns for Transitional Full Channel

• 8 ns to 8 ms for Glitch Half Channel 125 MHz

<sample _period> real number from 2 ns to 8 ms depending on mode

Example

Query

Returned Format

OUTPUT XXX; ":MACHINE! :TTRIGGER:SPERIOD SOE-9"

:MACHine{ll2}:TTRigger:SPERiod?

The SPERiod query returns the current sample period.

[:MACHine{lj2}:TTRigger:SPERiod] <sample period><NL>

<sample _period> real number from 2 ns to 8 ms depending on mode

Example OUTPUT XXX;":MACHINEl:TTRIGGER:SPERIOD?"

22-18

Command

TCONtrol

TIRigger (TIRace) Subsystem
TCONtrol

:MACHine{lj2}:TTRigger:TCONtrol<N> <timer_num>,
{OFFjSTARtjPAUSe!CONTinue}

The TCONtrol (timer control) command allows you to tum off, start, pause,
or continue the timer for the specified level. The time value of the timer is
defined by the TIMER command.

<N> integer from 1 to the number of existing sequence levels (maximum 10)

<timer nwn> {112}

Example OUTPUT XXX; ":MACHINE2 :TTRIGGER:TCONTROL6 1, PAUSE"

Que~ :MACHine{ll2}:TTRigger:TCONTROL<N>? <timer_num>

The TCONtrol query returns the current TCONtrol setting of the specified
level.

Returned Format

Example

[:MACHine{ll2}:TTRigger:TCONTROL<N> <timer_num>]
{OFFISTARtlPAUSe!CONTinue}<NL>

OUTPUT XXX;":MACHINE2:TTRIGGER:TCONTROL6? 1"

22-19

Command

TIRigger (TIRace) Subsystem
TERM

TERM

:MACHine{ll2}:TTRigger:TERM
<term_id>,<label_name>,<pattern>

The TERM command allows you to a specify a pattern recognizer term in the
specified machine. Each command deals with only one label in the given
term; therefore, a complete specification could require several commands.
Since a label can contain 32 or less bits, the range of the pattern value will
be between 232 - 1 and 0. When the value of a pattern is expressed in
binary, it represents the bit values for the label inside the pattern recognizer
term. Since the pattern parameter may contain don't cares and be
represented in several bases, it is handled as a string of characters rather
than a number.

All 10 terms (A through J) are available to either machine but not both
simultaneously. If you send the TERM command to a machine with a term
that has not been assigned to that machine, an error message ''Legal
command but settings conflict" is returned.

<term id> {AIBlclolEIFIGIHlrlJ}
<label name> string of up to 6 alphanumeric characters

<pattern> "{#B{O I l IX} .•• I
#Q{ 0 111213 I 4 IS I 6 I 7 IX} • . . I
#H{ 0 I l I 2 I 3 I 4 IS I 6 I 7 IS I 9 I A I BI c ID IE IF IX} ••• I
{Olll2l3l4ISl6l7ISl9} ... }"

Example OUTPUT XXX; .. :MACHINEl :TTRIGGER:TERM A, 'DATA' I, 255, ..
OUTPUT XXX;":MACHINEl:TTRIGGER:TERM B,'ABC','#BXXXX1101' "

22-20

Query

Returned Format

Example

TTRigger (TTRace) Subsystem
TIMER

:MACHine{ll2}:TTRigger:TERM? <term_id>,<label_name>

The TERM query returns the specification of the term specified by term
identification and label name.

[:MACHine{ll2}:STRAce:TERM] <term_id>,<label_name>,
<pattern><NL>

OUTPUT XXX;":MACHINEl:TTRIGGER:TERM? B,'DATA' "

TTh1ER

Command :MACHine{ll2}:TTRigger:TIMER{ll2} <time value>

The TIMER command sets the time value for the specified timer. The limits
of the timer are 400 ns to 500 seconds in 16 ns to 500 µs increments. The
increment value varies with the time value of the specified timer.

<time value> real number from 400 ns to 500 seconds in increments which vary from 16
ns to 500µs.

Example OUTPUT XXX; ":MACHINEl :TTRIGGER:TIMERl lOOE-6"

Query :MACHine{ll2}:TTRigger:TIMER{ll2}?

Returned Format

Example

The TIMER query returns the current time value for the specified timer.

[:MACBine{ll2}:TTRigger:TIMER{ll2}] <time_value><NL>

OUTPUT XXX;":MACHINEl:TTRIGGER:TIMERl?"

22-21

TTRigger (TTRace) Subsystem
TPOSition

TPOSition

Command :MACHine{lj2}:TTRigger:TPOSition
{STARtjCENTerjENDjDELay, <time_val>j
POSTstore,<poststore>}

The TPOSition (trigger position) command allows you to set the trigger at
the start, center, end or at any position in the trace (poststore). Poststore is
defined as 0 to 100 percent with a poststore of 100 percent being the same
as start position and a poststore 0 percent being the same as an end trace.

<time val> real number from either (2 x sample period) or 16 ns whichever is greater
to (1048575 x sample period).

<poststore> integer from 0 to 100 representing percentage of poststore.

Examples OUTPUT XXX; .. :MACHINE! :TTRIGGER:TPOSITION END"
OUTPUT XXX;":MACHINEl:TTRIGGER:TPOSITION POSTstore,75"

Query :MACHine{lj2}:TTRigger:TPOSition?

Returned Format

Example

The TPOSition query returns the current trigger position setting.

(:MACHine{lj2}:TTRigger:TPOSition) {STARtjCENTerlENDjDELay,
<time_val>IPOSTstore,<poststore>}<NL>

OUTPUT XXX;":MACHINEl:TTRIGGER:TPOSITION?"

22-22

23

TWAVeform
Subsystem

23-1

Introduction

The TWAVeform subsystem contains the commands available for the
Timing Waveforms menu in the HP 1660A. These commands are:

• ACCumulate • REMove
• ACQuisition • RUNTil
• CENter • SPERiod
• CLRPattern • TAVerage
• CLRStat • TMAXimum
• DELay • TMINimum
• INSert • TPOSition
• MMODe • VRUNs
• OCONdition • XCONdition
• OPATtern • XOTime
• OSEarch • XPATtern
• OTIMe • XSEarch
• RANGe • XTIMe

23-2

lWAVeform Subsystem

Figure 23-1

:TWAVeform

module_spec

TWAVeform Subsystem Syntax Diagram

TWAVeform Subsystem

Figure 23-1 (continued)

OPATtern space label_nome label_pottern

OPATtern? space lobel_name

OSEarch space occurrence

TRIGger

XMARker

OSEorch?

space time_value

RUNTi I space

01660502

TWAVeform Subsystem Syntax Diagram (continued)

23-4

TWAVeforrn Subsystem

Figure 23-1 (continued)

TPOSition space

END

t ime_va I

percent

TPOSition?

VRUNs?

XCONdition space ENT er i ng

EX!Ting

XCONdition?

XOTime?

space label_name

space label_name

XSEarch space occurrence

16SSOS11

lWAVeform Subsystem Syntax Diagram (continued)

23-5

Table 23-1

TWAVeform Subsystem

TWAVeform Parameter Values

Parameter

delay_value

module_spec

bit_id

waveform

acquisition_spec

label_name

label_pattern

occurrence

time_value

label_id

module_num

time_range

run_until_spec

GT

LT

value

time_val

23-6

Value

real number between -2500 sand +2500 s

{ 1 I 2 I 3 I 4 I 5 I 6 I 71 B I 9 I 1 o} 2 through 10 unused

integer from 0 to 31

string containing <acquisition spec>{l I 2>
{A I BI c ID IE IF I GI HI I I J} (slot where acquisition card is located)

string of up to 6 alphanumeric characters

"{#B{O 11 IX> ... I
#Q{Olll2l3l4ISl6l7lx>···I
#H{Olll213141516l71819IAlclolEIFIX>···I {0111213 4 5 6 718 9 X} ... }"
integer

real number

string of one alpha and one numeric character

slot number in which the time base card is installed

real number between 10 ns and 10 ks

{OFFILT,<value>IGT,<value>IINRange<value>,
<value>IOUTRange<value>,<value>}

greater than

less than

real number

real number from Oto 500 representing seconds

Selector

Example

Command

TWAVeform

:MACHine{ll2}:TWAVeform

TWAVeform Subsystem
TWAVeform

The TWA Veform selector is used as part of a compound header to access the
settings found in the Timing Waveforms menu. It always follows the
MACHine selector because it selects a branch below the MACHine level in
the command tree.

OUTPUT XXX; ":MACHINEl :TWAVEFORM:DELAY lOOE-9"

ACCumulate

:MACHine{ll2}:TWAVeform:ACCumulate <setting>

The ACCumulate command allows you to control whether the chart display
gets erased between each individual run or whether subsequent waveforms
are allowed to be displayed over the previous ones.

<setting> { 0 I OFF} or { l I ON}

Example OUTPUT XXX;" :MACHINEl :TWAVEFORM:ACCUMULATE ON"

Que~ :MACHine{ll2}:TWAVeform:ACCumulate?

Returned Format

Example

The ACCumulate query returns the current setting. The query always shows
the setting as the characters, "0" (ofl) or "l" (on).

(:MACHine{ll2}:TWAVeform:ACCumulate] {Oll}<NL>

OUTPUT XXX;":MACHINEl:TWAVEFORM:ACCUMULATE?"

23-7

Command

Example

Query

Returned Format

Example

Command

TWAVeform Subsystem
ACQuisition

ACQuisition

:MACHine{lj2}:TWAVeform:ACQuisition
{AUTOmaticjMANual}

The ACQuisition command allows you to specify the acquisition mode for
the state analyzer. The acquisition modes are automatic and manual.

OUTPUT XXX;":MACHINE2:TWAVEFORM:ACQUISITION AUTOMATIC"

MACHine{lj2}:TWAVeform:ACQuisition?

The ACQuisition query returns the current acquisition mode.

[:MACHine{lj2}:TWAVeform:ACQuisition) {AUTOmaticlMANual}<NL>

OUTPUT XXX;":MACHINE2:TWAVEFORM:ACQUISITION?"

CENTer

:MACHine{lj2}:Twaveform:CENTer <marker_type>

The CENTer command allows you to center the waveform display about the
specified markers.

<marker_type> {XlolxolTRIGger}

Example OUTPUT XXX; .. :MACHINEl :TWAVEFORM:CENTER X"

23-8

Command

Example

Command

Example

Command

lWAVeform Subsystem
CLRPattem

CLRPattern

:MACHine{ll2}:TWAVeform:CLRPattern {XIOIALL}

The CLRPattem command allows you to clear the patterns in the selected
Specify Patterns menu.

OUTPUT XXX;":MACHINEl:TWAVEFORM:CLRPATTERN ALL"

CLRStat

:MACHine{ll2}:Twaveform:CLRStat

The CLRStat command allows you to clear the waveform statistics without
having to stop and restart the acquisition.

OUTPUT XXX;":MACHINEl:TWAVEFORM:CLRSTAT"

DELay

:MACHine{ll2}:TWAVeform:DELay <delay_value>

The DELay command specifies the amount of time between the timing
trigger and the horizontal center of the the timing waveform display. The
allowable values for delay are -2500 s to +2500 s. If the acquisition mode is
automatic, then in glitch acquisition mode, as delay becomes large in an
absolute sense, the sample rate is adjusted so that data will be acquired in
the time window of interest. In transitional acquisition mode, data may not
fall in the time window since the sample period is fixed and the amount of
time covered in memory is dependent on how frequent the input signal
transitions occur.

23-9

TWAVeform Subsystem
IN Sert

<delay_ value> real number between -2500 s and +2500 s

Example OUTPUT XXX; ":MACHINE! :TWAVEFORM:DELAY lOOE-6"

Que~ :MACHine{ll2}:TWAVeform:DELay?

Returned Format

Example

Command

The DELay query returns the current time offset (delay) value from the
trigger.

[:MACHine{lj2}:TWAVeform:DELay] <delay value><NL>

OUTPUT XXX;":MACHINEl:TWAVEFORM:DELAY?"

IN Sert

:MACHine{ll2}:TWAVeform:INSert [<module_spec>,]
<label_name>[,{<bit_id>IOVERlay!ALL}]

The INSert command allows you to add waveforms to the state waveform
display. Waveforms are added from t.OP to bottom on the screen. When 96
waveforms are present, inserting additional waveforms replaces the last
waveform. Bit numbers are zero based, so a label with 8 bits is referenced as
bits 0 through 7. Specifying OVERJay causes a composite waveform display
of all bits or channels for the specified label. If you do not specify the third
parameter, ALL is assumed.

<module_spec> {l I 2 I 3 I 4 IS I 6 l 7IBI9I10} 2through10 unused.

<label name> string of up to 6 alphanumeric characters

<bit id> integer from 0 to 31

Example OUTPUT XXX;":MACHINEl:TWAVEFORM:INSERT 1, 'WAVE' ,10"

23-10

Command

Example

Query

MMODe

:MACHine{ll2}:TWAVeforrn:MMODe
{OFFIPATTernlTIMEIMSTats}

TWAVeform Subsystem
MMODe

The MMODe (Marker Mode) command selects the mode controlling marker
movement and the display of the marker readouts. When PATTern is
selected, the markers will be placed on patterns. When TIME is selected,
the markers move on time. In MSTats, the markers are placed on patterns,
but the readouts will be time statistics.

OUTPUT XXX; ":MACHINEl:TWAVEFORM:MMODE TIME"

:MACHine{lj2}:TWAVeforrn:MMODe?

The MMODe query returns the current marker mode.

Returned Format [:MACHine{l I 2} :TWAVeform:MMODe] <marker mode><NL>

<marker mode> {OFFIPATTernlTIME!MsTats}

Example OUTPUT XXX; .. :MACHINEl :TWAVEFORM:MMODE?"

23-11

Command

Example

Query

Returned Format

Example

TWAVeform Subsystem
OCONdition

OCONdition

:MACHine{ll2}:TWAVeform:OCONdition
{ENTeringlEXITing}

The OCONdition command specifies where the 0 marker is placed. The 0
marker can be placed on the entry or exit point of the OPATtern when in the
PATTern marker mode.

OUTPUT XXX; ":MACHINEl:TWAVEFORM:OCONDITION ENTERING"

:MACHine{ll2}:TWAVeform:OCONdition?

The OCONdition query returns the current setting.

[:MACHine{lj2}:TWAVeform:OCONdition) {ENTeringjEXITing}<NL>

OUTPUT XXX;":MACHINEl:TWAVEFORM:OCONDITION?"

23-12

Command

OPATtem

:MACHine{ll2}:TWAVeform:OPATtern
<label_name>,<label_pattern>

TWAVeform Subsystem
OPATtern

The OPATtern command allows you to construct a pattern recognizer term
for the 0 marker which is then used with the OSEarch criteria and
OCONdition when moving the marker on patterns. Since this command
deals with only one label at a time, a complete specification could require
several invocations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern recognizer term. In whatever base is
used, the value must be between 0 and 232 - 1, since a label may not have
more than 32 bits. Because the <label pattern> parameter may contain
don't cares, it is handled as a string of characters rather than a number.

<label name> string of up to 6 alphanumeric characters

<label_pattern> "{#B{OlllX} ... I
#Q{ 0 111213 I 4 I 5 I 6 I 7 IX} . . . I
#H{Ojll2l3l4l5l6l7l8l9IAIBICIDIEIFIX} ••• I
{Olll2l3l4ISl6l7l8l9} .•. }"

Example OUTPUT xxx; ":MACHINEl:TWAVEFORM:OPATTERN 'A','511'"

Que~ :MACHine{ll2}:TWAVeform:OPATtern? <label_name>

Returned Format

Example

The OPATtern query, in pattern marker mode, returns the pattern
specification for a given label name. In the time marker mode, the query
returns the pattern under the 0 marker for a given label. If the 0 marker is
not placed on valid data, don't cares (X) are returned.

[:MACHine{ll2}:TWAVeform:OPATtern) <label_name>,
<label_pattern><NL>

OUTPUT XXX;":MACHINEl:TWAVEFORM:OPATTERN? 'A'"

23-13

TWAVeform Subsystem
OSEarch

OSEarch

Command :MACHine{ll2}:TWAVeform:OSEarch
<occurrence>,<origin>

The OSEarch command defines the search criteria for the 0 marker which is
then used with the associated OPATtern recognizer specification and the
OCONdition when moving markers on patterns. The origin parameter tells
the marker to begin a search with th~ trigger or with the X marker. The
actual occurrence the marker searches for is determined by the occurrence
parameter of the OPATtern recognizer specification, relative to the origin.
An occurrence of 0 places a marker on the selected origin. With a negative
occurrence, the marker searches before the origin. With a positive
occurrence, the marker searches after the origin.

<origin> {STARtjTRIGgerjXMARker}

<occurrence> integer from -8192 to +8192

Example OUTPUT XXX; .. :MACHINEl :TWAVEFORM:OSEARCH +10 ,TRIGGER"

Que~ :MACHine{lj2}:TWAVeform:OSEarch?

Returned Format

Example

The OSEarch query returns the search criteria for the 0 marker.

[:MACHine{ll2}:TWAVeform:OSEarch] <occurrence>,<origin><NL>

OUTPUT XXX;":MACHINEl:TWAVEFORM:OSEARCH?"

23-14

OTIMe

TWAVeform Subsystem
OTIMe

Command :MACHine{ll2}:TWAVeforrn:OTIMe <time value>

The OTIMe command positions the 0 marker in time when the marker mode
is TIME. If data is not valid, the command performs no action.

<time value> real number -2.5 ks to +2.5 ks

Example OUTPUT XXX; ":MACHINEl:TWAVEFORM:OTIME 30.0E-6"

Query :MACHine{ll2}:TWAVeforrn:OTIMe?

Returned Format

Example

The OTIMe query returns the 0 marker position in time. If data is not valid,
the query returns 9.9E37.

[:MACHine{ll2}:TWAVeform:OTIMe) <time_value><NL>

OUTPUT XXX;":MACHINEl:TWAVEFORM:OTIME?"

23-15

Command

TWAVeform Subsystem
RAN Ge

RAN Ge

:MACHine{ll2}:TWAVeform:RANGe <time value>

The RANGe command specifies the full-screen time in the timing waveform
menu. It is equivalent to ten times the seconds-per-division setting on the
display. The allowable values for RANGe are from 10 ns to 10 ks.

<time_range> real number between 10 ns and 10 ks

Example OUTPUT XXX; .. :MACHINEl :TWAVEFORM:RANGE lOOE-9"

Que~ :MACHine{ll2}:TWAVeform:RANGe?

Returned Format

Example

Command

Example

The RANGe query returns the current full-screen time.

(:MACHine{ll2}:TWAVeform:RANGe] <time_value><NL>

OUTPUT XXX;":MACHINEl:TWAVEFORM:RANGE?"

REMove

:MACHine{ll2}:TWAVeform:REMove

The REMove command deletes all waveforms from the display.

OUTPUT XXX;":MACHINEl:TWAVEFORM:REMOVE"

23-16

Command

RUNTil

lWAVeform Subsystem
RUNTil

:MACHine{ll2}:TWAVeform:RUNTil <run_until_spec>

The RUNTil (run until) command defines stop criteria based on the time
between the X and 0 markers when the trace mode is in repetitive. When
OFF is selected, the analyzer will run until either the STOP touch screen
field is touched, or, the STOP command is sent. Run until time between X
and 0 marker options are:

• Less Than CL T) a specified time value.

• Greater Than (GT) a specified time value.

• In the range (INRange) between two time values.

• Out of the range (OUTRange) between two time values

End points for the INRange and OUTRange should be at least 2 ns apart
since this is the minimum time at which data is sampled.

This command affects the timing analyzer only, and has no relation to the
RUNTil commands in the SLISt and COMPare subsystems.

<run until {OFFILT,<value>IGT,<value>IINRange<value>,<value>I
spec> OUTRange<value>,<value>}

<value> real number

Examples OUTPUT XXX;":MACHINEl:TWAVEFORM:RUNTIL GT, 800.0E-6"
OUTPUT XXX;":MACHINEl:TWAVEFORM:RUNTIL INRANGE, 4.5, 5.5"

Que~ :MACHine{ll2}:TWAVeform:RUNTil?

Returned Format

Example

The RUNTil query returns the current stop criteria

[:MACHine{ll2}:TWAVeform:RUNTil] <run_until_spec><NL>

OUTPUT XXX;":MACHINEl:TWAVEFORM:RUNTIL?"

23-17

Command

TWAVeform Subsystem
SPERiod

SPERiod

:MACHine{ll2}:TWAVeform:SPERiod <sample_period>

The SPERiod command allows you to set the sample period of the timing
analyzer in the Conventional and Glitch modes. The sample period range
depends on the mode selected and is as follows:

• 2 ns to 8 ms for Conventional Half Channel 500 MHz

• 4 ns to 8 ms for Conventional Full Channel 250 MHz

• 8 ns to 8 ms for Glitch Half Channel 125 MHz

<sample_period> real number from 2 ns to 8 ms depending on mode

Example

Query

Returned Format

Example

OUTPUT XXX; ":MACHINEl :TWAVEFORM:SPERIOD SOE-9"

:MACHine{lj2}:TWAVeform:SPERiod?

The SPERiod query returns the current sample period.

(:MACHine{ll2}:TWAVeform:SPERiod] <sample_period><NL>

OUTPUT XXX;":MACHINEl:TWAVEFORM:SPERIOD?"

23-18

TWAVeform Subsystem
TAVerage

Query

TAVerage

:MACHine{ll2}:TWAVeform:TAVeraqe?

The TAVerage query returns the value of the average time between the
X and 0 markers. If there is no valid data, the query returns 9.9E37.

Returned Format [:MACBine{l I 2> :TWAVeform:TAVerage) <time value><NL>

<time value> real number

Example OUTPUT xxx; 11 :MACHINE! :TWAVEFORM:TAVERAGE?"

TMAXimum

Query :MACHine{ll2}:TWAVeform:TMAXimum?

The TMAXimum query returns the value of the maximum time between the
X and 0 markers. If there is no valid data, the query returns 9.9E37.

Returned Format [:MACHine{l 12> :TWAVeform:TMAXimum] <time value><NL>

<time value> real number

Example OUTPUT xxx; 11 :MACHINE! :TWAVEFORM:TMAXIMUM? 11

23-19

Query

TWAVeform Subsystem
TMINimum

TMINimum

:MACHine{lj2}:TWAVeform:TMINimum?

The TMINimum query returns the value of the minimum time between the X
and 0 markers. If there is no valid data, the query returns 9.9E37.

Returned Format [:MACHine{l 12} :TWAVeform:TMINimum) <time value><NL>

<time value> real number

Example OUTPUT XXX; ":MACHINE! :TWAVEFORM:TMINIMUM?"

Command

TPOSition

:MACHine{ll2}:TWAVeform:TPOSition
{STARt!CENTerlENDIDELay,<time_val>j
POSTstore,<percent>}

The TPOSition command allows you to control where the trigger point is
placed. The trigger point can be placed at the start, center, end, at a
percentage of post store, or at a value specified by delay. The post store
option is the same as the User Defined option when setting the trigger
point from the front panel.
The TPOSition command is only available when the acquisition mode is set
to manual.

<time val> real number from 0 to 500 seconds

<percent> integer from 1 to 100

Example OUTPUT XXX; .. :MACHINE2 :TWAVEFORM:TPOSITION CENTER"

23-20

Query :MACHine{ll2}:TWAVeform:TPOSition?

TWAVeform Subsystem
VRUNs

The TPOSition query returns the current trigger setting.

Returned Format [:MACHine{l I 2> :TWAVeform:TPOSition] {STARt ICENTer IEND IDELay,
<time_val>IPOSTstore,<percent>}<NL>

<time val> real number from 0 to 500 seconds

Example OUTPUT xxx; ":MACHINE2 :TWAVEFORM:TPOSition?"

VRUNs

Query :MACHine{ll2}:TWAVeform:VRUNs?

The VRUNs query returns the number of valid runs and total number of runs
made. Valid runs are those where the pattern search for both the X and 0
markers was successful resulting in valid delta time measurements.

Returned Format [:MACHine{l I 2} :TWAVeform:VRUNs] <valid_runs>,<total_runs><NL>

<valid runs> zero or positive integer

<total runs> zero or positive integer

Example OUTPUT XXX; .. :MACHINE! :TWAVEFORM:VRUNS?"

23-21

Command

Example

Query

Returned Format

Example

Query

TWAVeform Subsystem
XCONdition

XCONdition

:MACHine{ll2}:TWAVeform:XCONdition
{ENTeringlEXITing}

The XCONdition command specifies where the X marker is placed. The X
marker can be placed on the entry or exit point of the XPATtern when in the
PATTem marker mode.

OUTPUT XXX; ":MACHINEl:TWAVEFORM:XCONDITION ENTERING"

:MACHine{ll2}:TWAVeform:XCONdition?

The XCONdition query returns the current setting.

[:MACHine{ll2}:TWAVeform:XCONdition) {ENTeringlEXITing}<NL>

OUTPUT XXX;":MACHINEl:TWAVEFORM:XCONDITION?"

XOTime

:MACHine{ll2}:TWAVeform:XOTime?

The XOTime query returns the time from the X marker to the 0 marker. If
data is not valid, the query returns 9.9E37.

Returned Format [:MACHine{ l I 2}: TWAVeform: XOTime J <time value><NL>

<time value> real number

Example OUTPUT XXX; ":MACHINEl :TWAVEFORM:XOTIME?"

23-22

Command

XPATtem

TWAVeform Subsystem
XPATtern

:MACHine{ll2}:TWAVeform:XPATtern <label_name>,
<label_pattern>

The XPATtem command allows you to construct a pattern recognizer term
for the X marker which is then used with the XSEarch criteria and
XCONdition when moving the marker on patterns. Since this command
deals with only one label at a time, a complete specification could require
several iterations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern recognizer term. In whatever base is
used, the value must be between 0 and 232 - 1, since a label may not have
more than 32 bits. Because the <label _pattern> parameter may contain
don't cares, it is handled as a string of characters rather than a number.

<label name> string of up to 6 alphanumeric characters

<label_pattern> "{#B{O I 1 IX} .•• I

Example

Query

Returned Format

Example

#Q{ 0111213 I 4 I 5 I 6 I 7 IX} .•• I
#H{Olll2l3l4l5l6l7l8l9IAIBICIDIEIFIX} ••• I
{O!ll2l3l4l5l6l7l8l9} ..• }"

OUTPUT XXX; ":MACHINEl:TWAVEFORM:XPATTERN 'A','511'"

:MACHine{ll2}:TWAVeform:XPATtern? <label_name>

The XPATtem query, in pattern marker mode, returns the pattern
specification for a given label name. In the time marker mode, the query
returns the pattern under the X marker for a given label. If the X marker is
not placed on valid data, don't cares (x) are returned.

[:MACHine{ll2}:TWAVeform:XPATtern] <label_name>,
<label_pattern><NL>

OUTPUT XXX;":MACHINEl:TWAVEFORM:XPATTERN? 'A'"

23-23

TWAVeform Subsystem
XSEarch

:XSEarch

Command :MACHine{ll2}:TWAVeform:XSEarch
<occurrence>,<origin>

The XSEarch command defines the search criteria for the X marker which is
then used with the associated XPATtern recognizer specification and the
XCONdition when moving markers on patterns. The origin parameter tells
the marker to begin a search with the trigger. The occurrence parameter
determines which occurrence of the XPATtern recognizer specification,
relative to the origin, the marker actually searches for. An occurrence of 0
(zero) places a marker on the origin.

<origin> {TRIGgerlSTARt}

<occurrence> integer from -8192 to +8192

Example OUTPUT XXX; ":MACHINE! :TWAVEFORM:XSEARCH,+10,TRIGGER"

Que~ :MACHine{ll2}:TWAVeform:XSEarch?

Returned Format

Example

<occurrence>,<origin>

The XSEarch quecy returns the search criteria for the X marker.

(:MACHine{ll2}:TWAVeform:XSEarch] <occurrence>,<origin><NL>

OUTPUT XXX;":MACHINEl:TWAVEFORM:XSEARCH?"

23-24

XTIM:e

TWAVeform Subsystem
XTIMe

Command :MACHine{lj2}:TWAVeform:XTIMe <time value>

The XTIMe command positions the X marker in time when the marker mode
is TIME. If data is not valid, the command performs no action.

<time value> real number from -2.5 ks to +2.5 ks

Example OUTPUT XXX; ":MACHINEl:TWAVEFORM:XTIME 40.0E-6"

Que~ :MACHine{ll2}:TWAVeform:XTIMe?

Returned Format

Example

The XTIMe query returns the X marker position in time. If data is not valid,
the query returns 9.9E37.

[:MACHine{ll2}:TWAVeform:XTIMe] <time_value><NL>

OUTPUT XXX;":MACHINEl:TWAVEFORM:XTIME?"

23-25

24

TLISt Subsystem

24-1

Introduction

The TLISt subsystem contains the commands available for the Timing
Listing menu in the HP 1660-series logic analyzers and is the same as
the SLISt subsystem with the exception of the OCONdition and
XCONdition commands. The TLISt subsystem commands are:

• COLumn
• CLRPattern
•DATA
• LINE
• MMODe
• OCONdition
• OPATtern

• OSEarch
• OSTate
• OTAG
• REMove
• RUNTil
• TAVerage

• TMAXimum
• TMINimum
• VRUNs
• XCONdition
• XOTag
• XOTime
• XPATtern
• XSEarch
• XSTate

• XTAG

24-2

TLISt Subsystem

Figure 24-1

:TLISt label_name

COLumn?

label_nome

space

MST a ts

OCONdition

EXITing

OPATtern label_patterni--~~~~

TLISt Subsystem Syntax Diagram

24-3

TLISt Subsystem

Figure 24-1 (continued)

OSEorch space occurrence

XMARker

state_volue

TLISt Subsystem Syntax Diagram (continued)

24-4

TLISt Subsystem

Figure 24-1 (continued)

XCONdition

I abe I _pattern 1--------1~

state_value

XOfime? \--------------------------------'
165!10515

TLISt Subsystem Syntax Diagram {continued)

24-5

Table 24-1

TU St Subsystem

TLISt Parameter Values

Parameter

module_num

mach_num

col_num

line_number

label_name

base

line_num_mid_screen

label_pattern

occurrence

time_ value

state_ value

run_until_spec

value

24-6

Values

{ 1 I 2 I 3 I 4 IS I 6 I 7 I B I 9 I 1 O} 2 through 10 not used

{112}

integer from 1 to 61

integer from -8191 to +8191

string of up to 6 alphanumeric characters

{BINarylHEXadecimallOCTallDECimallTWOSI
ASCii I SYMBol I IASSembler} for labels
or
{ABSolutelRELative}fortags

integer from -8191to +8191

"{ltB{O, 1,X} ... I
iQ{Oll 2 3l4ISl6l7IX} ••• I
iH{Olll2l3l4ISl6l7IBl9IAIBlclolEIFlx> •• ·I
{Olll2l3l4ISl6l7IBl9} ••• }"

integer from -8191 to +8191

real number

real number

{OFFILT,<value>IGT,<value>IINRange,<value>,
<value>IOUTRange,<value>,<value>}

real number

Selector

Example

Command

TU St Subsystem
TLISt

TLISt

:MACHine{ll2}:TLISt

The TLISt selector is used as part of a compound header to access those
settings normally found in the Timing Listing menu. It always follows the
MACHine selector because it selects a branch directly below the MACHine
level in the command tree.

OUTPUT XXX;":MACHINEl:TLIST:LINE 256"

COLumn

:MACHine{ll2}:TLISt:COLumn <col_num>[,<module_num>,
MACHine{ll2}],<label_name>,<base>

The COLumn command allows you to configure the timing analyzer
list display by assigning a label name and base to one of the 61 vertical
columns in the menu. A colunm number of 1 refers to the left most column.
When a label is assigned to a colunm it replaces the original label in that
column.

When the label name is "TAGS," the TAGS colunm is assumed and the next
parameter must specify RELative or ABSolute.

A label for tags must be assigned in order to use ABSolute or RELative state
tagging.

24-7

TLISt Subsystem
CLRPattern

<col num> integer from 1 to 61

<module num> { l I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I l O} 2 through 10 unused

<label name> a string of up to 6 alphanumeric characters

<base> {BINarylHEXadecimallocTallDECimallTWoslAsciilsYMBoll

Example

Query

Returned Format

Example

Command

Example

IASSembler} for labels
or
{ABSolute I RELative} for tags

OUTPUT XXX; " : MACHINE 1 : TL I ST: COLUMN 4, 1 , 'A' 1 HEX"

:MACHine{ll2}:TLISt:COLumn? <col_num>

The COLumn query returns the column number, label name, and base for
the specified column.

[:MACHine{ll2}:TLISt:COLUDUl] <col_num>,<module_num>
,MACHine{ll2},<label_name>,<base><NL>

OUTPUT XXX;":MACHINEl:TLIST:COLUMN? 4"

CLRPattern

:MACHine{ll2}:TLISt:CLRPattern {XIOIALL}

The CLRPattern command allows you to clear the patterns in the selected
Specify Patterns menu.

OUTPUT XXX;":MACHINEl:TLIST:CLRPATTERN O"

24-8

TU St Subsystem
DATA

Query

DATA

:MACHine{ll2}:TLISt:DATA? <line_number>,
<label name>

The DATA query returns the value at a specified line number for a given
label. The format will be the same as the one shown in the Listing display.

Returned Format [:MACBine{l I 2} :TLISt:DATAJ <line_number>,<label_name>,
<pattern_strinq><NL>

<line number> integer from -8191 to +8191

<label name> string of up to 6 alphanumeric characters

<pattern_ "{#B{OlllX} ..• I
string> #Q{ O I l I 2 I 3 I 4 IS I 6 I 7 IX} •• • I

iH<Olll2IJl4ISl6l7IBl9IAIBlclolEIFIX> ••• I
<Olll2l3l4ISl6l7IBl9> ••• }"

Example OUTPUT XXX;":MACHINEl:TLIST:DATA? 512, 'RAS'"

LINE

Command :MACHine{ll2}:TLISt:LINE <line num_mid_screen>

The LINE command allows you to scroll the timing analyzer listing vertically.
The command specifies the state line number relative to the trigger that the
analyzer highlights at the center of the screen.

<line num mid integer from -8191 to +8191
screen>

Example OUTPUT XXX;":MACBINEl:TLIST:LINE 0"

24-9

Query

Returned Format

Example

TLISt Subsystem
MMD De

:MACHine{ll2}:TLISt:LINE?

The LINE query returns the line number for the state currently in the box at
the center of the screen.

[:MACBine{ll2}:TLISt:LINE] <line_num_mid_screen><NL>

OUTPUT XXX;":MACHINEl:TLIST:LINE?"

MMODe

Command :MACHine{l I 2} :TLISt:MMODe <marker mode>

The MMODe command (Marker Mode) selects the mode controlling the
marker movement and the display of marker readouts. When PATTern is
selected, the markers will be placed on patterns. When TIME is selected,
the markers move on time between stored states. When MSTats is selected,
the markers are placed on patterns, but the readouts will be time statistics.

<marker mode> {OFFIPATTernlTIMEIMSTats}

Example OUTPUT XXX; ":MACBINEl :TLIST:MMODE TIME"

Query :MACHine{ll2}:TLISt:MMODe?

Returned Format

Example

The MMODe query returns the current marker mode selected.

[:MACBine{l·l2} :TLISt:MMODe) <marker mode><NL>

OUTPUT XXX;":MACBINEl:TLIST:MMODE?"

24-10

Command

Example

Query

Returned Format

Example

Command

OCONdition

TLISt Subsystem
OCONdition

:MACHine{ll2}:TLISt:OCONdition {ENTeringlEXITing}

The OCONdition conunand specifies where the 0 marker is placed. The 0
marker can be placed on the entry or exit point of the OPATtern when in the
PATTern marker mode.

OUTPUT XXX; ":MACHINEl:TLIST:OCONDITION ENTERING"

:MACHine{ll2}:TLISt:OCONdition?

The OCONdition query returns the current setting.

(:MACHine{ll2}:TLISt:OCONdition) {ENTeringlEXITing}<NL>

OUTPUT XXX;":MACBINEl:TLIST:OCONDITION?"

OPATtern

:MACHine{ll2}:TLISt:OPATtern
<label_name>,<label_pattern>

The OPATtern command allows you to construct a pattern recognizer term
for the 0 Marker which is then used with the OSEarch criteria when moving
the marker on patterns. Since this conunand deals with only one label at a
time, a complete specification could require several iterations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern recognizer term. In whatever base is
used, the value must be between 0 and 232 - 1, since a label may not have
more than 32 bits. Because the dabel_pattern> parameter may contain
don't cares, it is handled as a string of characters rather than a number.

24-11

TU St Subsystem
OSEarch

<label name> string of up to 6 alphanumeric characters

<label "{#B{Oj llX} ••• I
pattern> #Q{ 0 j l j 2 I 3 I 4 IS I 6 I 7 IX} ••• I

#H{Oj1j213l4ISl6l7ISl91AlslclolEIFIX> ••• I
{Ojlj2j3j4j5j6j7j8j9} ••• }"

Examples OUTPUT xxx; ":MACHINEl :TLIST:OPATTERN 'DATA', '255' "
OUTPUT XXX;":MACHINEl:TLIST:OPATTERN 'ABC','#BXXXX1101' "

Que~ :MACHine{ll2}:TLISt:OPATtern? <label_name>

Returned Format

Example

Command

The OPATtern query returns the pattern specification for a given label name.

[:MACHine{lj2}:TLISt:OPATtern] <label_name>,<label_Pattern><NL>

OUTPUT XXX; II :MACHINEl :TLIST:OPATTERN? I A' II

OSEarch

:MACHine{lj2}:TLISt:OSEarch <occurrence>,<origin>

The OSEarch command defines the search criteria for the 0 marker, which is
then used with associated OPATtern recognizer specification when moving
the markers on patterns. The origin parameter tells the marker to begin a
search with the trigger, the start of data, or with the X marker. The actual
occurrence the marker searches for is determined by the occurrence
parameter of the OSEarch recognizer specification, relative to the origin. An
occurrence of 0 places the marker on the selected origin. With a negative
occurrence, the marker searches before the origin. With a positive
occurrence, the marker searches after the origin.

<occurrence> integer from -8191 to +8191

<origin> {TRIGgerjSTARtjXMARker}

24-12

Example

Query

Returned Format

Example

Query

OUTPUT XXX;":MACHINEl:TLIST:OSEARCH +10,TRIGGER"

:MACHine{lj2}:TLISt:OSEarch?

TLISt Subsystem
OST ate

The OSEarch query returns the search criteria for the 0 marker.

[:MACHine{ll2}:TLISt:OSEarch) <occurrence>,<origin><NL>

OUTPUT XXX;":MACHINEl:TLIST:OSEARCH?"

OS Tate

:MACHine{lj2}:TLISt:OSTate?

The OSTate query returns the line number in the listing where the 0 marker
resides (-8191 to +8191). If data is not valid, the query returns 32767.

Returned Format [:MACHine{ 1I2> :TLISt:osTate) <state_num><NL>

<state num> an integer from -8191 to +8191, or 32767

Example OUTPUT XXX; ":MACHINEl :TLIST:OSTATE?"

24-13

Command

TLISt Subsystem
OTAG

OTAG

:MACHine{ll2}:TLISt:OTAG <time value>

The OTAG command specifies the tag value on which the 0 Marker should
be placed. The tag value is time. If the data is not valid tagged data, no
action is performed.

<time value> real number

Example :OUTPUT XXX; ":MACBINEl:TLIST:OTAG 40.0E-6"

Que~ :MACHine{ll2}:TLISt:OTAG?

Returned Format

Example

Command

Example

The OTAG query returns the 0 Marker position in time regardless of
whether the marker was positioned in time or through a pattern search. If
data is not valid, the query returns 9.9E37 for time tagging, or returns 32767
for state tagging.

[:MACBine{ll2}:TLISt:OTAG] <time_value><NL>

OUTPUT XXX;":MACBINEl:TLIST:OTAG?"

REMove

:MACHine{ll2}:TLISt:REMove

The REMove command removes all labels, except the leftmost label, from
the listing menu.

OUTPUT XXX;":MACBINEl:TLIST:REMOVE"

24-14

Command

RUNTil

TLI St Subsystem
RUNTil

:MACHine{ll2}:TLISt:RUNTil <run_until_spec>

The RUNTil (run until) command allows you to define a stop condition when
the trace mode is repetitive. Specifying OFF causes the analyzer to make
runs until either the display's STOP field is touched, or, until the STOP
command is issued.
There are four conditions based on the time between the X and 0 markers as
follows:

• The difference is less than (LT) some value.

• The difference is greater than (GT) some value.

• The difference is inside some range (Uffi.ange).

• The difference is outside some range (OUTRange).

End points for the INRange and OUTRange should be at least 8 ns apart
since this is the minimum time resolution of the time tag counter.

<run until {OFFILT,<value>IGT,<value>IINRange,<value>,<value>I
s~ec> OUTRange,<value>,<value>}

<value> real number from -9E9 to +9E9

Example OUTPUT XXX; .. :MACHINE! :TLIST:RUNTIL GT' 800. OE-6 ..

Que~ :MACHine{ll2}:TLISt:RUNTil?

Returned Format

Example

The RUNTil query returns the current stop criteria.

[:MACHine{ll2}:TLISt:RUNTil] <run_until_spec><NL>

OUTPUT XXX;":MACHINEl:TLIST:RUNTIL?"

24-15

Query

TLISt Subsystem
TAVerage

TAVerage

:MACHine{ll2}:TLISt:TAVerage?

The TA Verage query returns the value of the average time between the X
and 0 Markers. If the number of valid runs is zero, the query
returns 9.9E37. Valid runs are those where the pattern search for both the
X and 0 markers was successful, resulting in valid delta-time measurements.

Returned Format [:MACBine{ll2}:TLISt:TAVerage] <time value><NL>

<time value> real number

Example OUTPUT XXX; .. :MACBINEl :TLIST:TAVERAGE?"

Query

TMAXimum

:MACHine{ll2}:TLISt:TMAXimwn?

The TMAXimum query returns the value of the maximum time between the
X and 0 Markers. If data is not valid, the query returns 9.9E37.

Returned Format [:MACBine{l I 2> :TLISt:TMAXimum] <time value><NL>

<time value> real number

Example OUTPUT XXX; ":MACBINEl :TLIST:TMAXIMUM?"

24-16

TMINimum

Query :MACHine{ll2}:TLISt:TMINimum?

TLISt Subsystem
TMINimum

The TMINimum query returns the value of the minimum time between the X
and 0 Markers. If data is not valid, the query returns 9.9E37.

Returned Format [:MACHine{l I 2> :TLISt:TMINimum] <time value><NL>

<time value> real number

Example OUTPUT XXX;":MACHINEl:TLIST:TMINIMUM?"

VRUNs

Query :MACHine{ll2}:TLISt:VRUNs?

The VRUNs query returns the number of valid runs and total number of runs
made. Valid runs are those where the pattern search for both the X and
0 markers was successful resulting in valid delta time measurements.

Returned Format [:MACHine{l I 2} :TLISt:VRUNs] <valid_runs>,<total_runs><NL>

<valid runs> zero or positive integer

<total runs> zero or positive integer

Example OUTPUT XXX; .. :MACHINE! :TLIST:VRUNS?"

24-17

Command

Example

Query

Returned Format

Example

Query

TLISt Subsystem
XCONdition

XCONdition

:MACHine{ll2}:TLISt:XCONdition {ENTerinqlEXITing}

The XCONdition command specifies where the X marker is placed. The X
marker can be placed on the entiy or exit point of the XPATtem when in the
PATTem marker mode.

OUTPUT XXX; ":MACHINEl:TLIST:XCONDITION ENTERING"

:MACHine{ll2}:TLISt:XCONdition?

The XCONdition queiy returns the current setting.

[:MACHine{ll2}:TLISt:XCONdition) {ENTeringlEXITing}<NL>

OUTPUT XXX;":MACBINEl:TLIST:XCONDITION?"

XOTag

:MACHine{ll2}:TLISt:XOTaq?

The XOTag queiy returns the time from the X to 0 markers. If there is no
data in the time mode the queiy returns 9.9E37.

Returned Format [: MACHine { l I 2} : TL I St: xoTag J <XO time><NL>

<XO time> real number

Example OUTPUT XXX; ":MACBINEl :TLIST:XOTAG?"

24-18

Query

XOTime

:MACHine{ll2}:TLISt:XOTime?

TLISt Subsystem
XOTime

The XOTime query returns the time from the X to 0 markers. If there is no
data in the time mode the query returns 9.9E37.

Returned Format [:MACHine{lj2}:TLISt:XOTime) <XO time><NL>

<XO time> reaJ number

Example OUTPUT XXX; ":MACHINEl :TLIST:XOTIME?"

XPATtern

Command :MACHine{ll2}:TLISt:XPATtern <label_name>,
<label_pattern>

The XPATtem command allows you to construct a pattern recognizer term
for the X Marker which is then used with the XSEarch criteria when moving
the marker on patterns. Since this command deaJs with only one label at a
time, a complete specification could require severaJ iterations.

When the vaJue of a pattern is expressed in binary, it represents the bit
vaJues for the label inside the pattern recognizer term. In whatever base is
used, the vaJue must be between 0 and 232 - 1, since a label may not have
more than 32 bits. Because the <label pattern> parameter may contain
don't cares, it is handled as a string of characters rather than a number.

<label name> string of up to 6 aJphanumeric characters

<label _pattern> " { #B{ 0 I 1 IX} ••• I
#Q{ 0 I l I 2 I 3 I 4 I 5 I 6 I 71 X} • • • I
#H{ 0111213 I 4 I 5 I 6 I 7 I 8 I 9 I A I BI c ID IE IF IX} ••• I
{Olll2l3l4l5l6l7ISl9} ••• }"

24-19

Examples

Query

Returned Format

Example

TU St Subsystem
XSEarch

OUTPUT XXX;":MACHINEl:TLIST:XPATTERN 'DATA','255' "
OUTPUT XXX;":MACHINEl:TLIST:XPATTERN 'ABC','#BXXXX1101' "

:MACHine{ll2}:TLISt:XPATtern? <label_name>

The XPATtern query returns the pattern specification for a given label name.

(:MACHine{lj2}:TLISt:XPATtern) <label_name>,<label_pattern><NL>

OUTPUT XXX;":MACHINEl:TLIST:XPATTERN? 'A'"

XSEarch

Command :MACHine{ll2}:TLISt:XSEarch <occurrence>,<origin>

The XSEarch command de.fines the search criteria for the X Marker, which is
then with associated XPATtern recognizer specification when moving the
markers on patterns. The origin parameter tells the marker to begin a
search with the trigger or with the start of data. The occurrence parameter
determines which occurrence of the XPATtern recognizer specification,
relative to the origin, the marker actually searches for. An occurrence of 0
places a marker on the selected origin.

<occurrence> integer from -8191 to +8191

<origin> {TRIGgerjSTARt}

Example OUTPUT XXX; .. :MACHINE! :TLIST:XSEARCH +10,TRIGGER"

24-20

Query

Returned Format

Example

Query

:MACHine{ll2}:TLISt:XSEarch?

TLISt Subsystem
XSTate

The XSEarch query returns the search criteria for the X marker.

[:MACHine{lj2}:TLISt:XSEarch] <occurrence>,<origin><NL>

OUTPUT XXX;":MACHINEl:TLIST:XSEARCH?"

XSTate

:MACHine{ll2}:TLISt:XSTate?

The XSTate query returns the line number in the listing where the X marker
resides (-8191 to +8191). If data is not valid, the query returns 32767.

Returned Format [:MACHine{l 12> :TLISt:XSTate) <state_num><NL>

<state num> an integer from -8191 to +8191, or 32767

Example OUTPUT XXX; .. :MACHINEl:TLIST:XSTATE?"

24-21

Command

TU St Subsystem
XTAG

XTAG

:MACHine{ll2}:TLISt:XTAG <time value>

The XT AG command specifies the tag value on which the X Marker should
be placed. The tag value is time. If the data is not valid tagged data, no
action is performed.

<time value> real number

Example OUTPUT XXX; .. :MACHINE! :TLIST:XTAG 40.0E-6"

Que~ :MACHine{ll2}:TLISt:XTAG?

Returned Format

Example

The XTAG query returns the X Marker position in time regardless of
whether the marker was positioned in time or through a pattern search. If
data is not valid tagged data, the query returns 9.9E37.

[:MACHine{lj2}:TLISt:XTAG] <time_value><NL>

OUTPUT XXX;":MACHINEl:TLIST:XTAG?"

24-22

25

SYMBol Subsystem

25-1

Introduction

The SYMBol subsystem contains the commands that allow you to
define symbols on the controller and download them to the HP
1660-series logic analyzers. The commands in this subsystem are:

•BASE
• PATTem
• RANGe
• REMove
• WIDTh

25-2

Figure 25-1

:SYMBol space label_nome

PATTern

space lobel_name

SYMBol Subsystem Syntax Diagram

SYMBol Subsystem

pottern_value 1---1""1

s top_va I ue f--------1"'1

w i d t h_vo I ue 1---------'
16510/SXtO

25-3

Table 25-1

Selector

Example

SYMBol Subsystem
SYMBol

SYMBol Parameter Values

Parameter

label_name

symbol_name

pattern_value

start_value

stop_value

width_ value

SYMBol

Values

string of up to 6 alphanumeric characters

string of up to 16 alphanumeric characters

"{#B{OlllX} ••• I
#Q{0111213141516171X} ••• I
#H{O 1 2 3 4 5 6 7 Bl9IAIBICIDIEIFIX} ••• I
{Olll2l3l4ISl617IBl9} ••• }"

"{#B{O I l} ••• I
#Q{Olll2l3l4ISl6l7} ••• I
#H{Ol1l21314ISl6171Sl9IAIBlclolEIF> ••• I
{Oil 2 3 4 516 7 8 9} ••• }"

"{#B{Oll} ••• I
#Q{Ojl 2l3l4ISl6l7} ••• I
#H{Ojll2IJl4ISl6l7IBl9IAIBlclolEIF> •• ·I
{Olll2IJl4ISl6l7IBl9> ••• }"

integer from 1to16

:MACHine{ll2}:SYMBol

The SYMBol selector is used as a part of a compound header to access the
commands used to create symbols. It always follows the MACHine selector
because it selects a branch directly below the MACHine level in the
command tree.

OUTPUT XXX;":MACHINEl:SYMBOL:BASE 'DATA', BINARY"

25-4

Command

BASE

SYMBol Subsystem
BASE

:MACHine{ll2}:SYMBol:BASE <label_name>,<base_value>

The BASE command sets the base in which symbols for the specified label
will be displayed in the symbol menu. It also specifies the base in which the
symbol offsets are displayed when symbols are used.

Bl Nary is not available for labels with more than 20 bits assigned. In this case
the base will default to HEXadecimal.

<label name> string of up to 6 alphanumeric characters

<base value> {BINarylHEXadecimallocTallDECimallASCii}

Example OUTPUT XXX;":MACHINEl:SYMBOL:BASE 'DATA' ,HEXADECIMAL"

25-5

Command

SYMBol Subsystem
PATTern

PA'ITern

:MACHine{ll2}:SYMBol:PATTern <label name>,
<symbol_name>,<pattern_value>

The PATTern command allows you to create a pattern symbol for the
specified label. Because don't cares (X) are allowed in the pattern value, it
must always be expressed as a string. You may still use different bases,
though don't cares cannot be used in a decimal number.

<label name> string of up to 6 alphanumeric characters

<symbol_name> string of up to 16 alphanumeric characters

<pattern_value> "{#B{OlllX} ••• I

Example

Command

#Q{ 0 111213 I 4 I S I 6 111 X} • • • I
#H{Olll2l3l4ISl6l7ISl9IAIBlclolEIFIX} ••• I
<Olll2l3l4ISl6l7ISl9> ••• }"

OUTPUT XXX;":MACBINEl:SYMBOL:PATTERN 'STAT', 'MEM_RD','fBOlXX'"

RAN Ge

:MACHine{ll2}:SYMBol:RANGe <label name>,
<symbol name>,<start value>,<stop value> - - -
The RANGe command allows you to create a range symbol containing a start
value and a stop value for the specified label. The values may be in binary
(#B), octal (#Q), hexadecimal (iH) or decimal (default). You can not use
don't cares in any base.

25-6

<label name> string of up to 6 alphanumeric characters

<symbol_ name> string of up to 16 alphanumeric characters

<start value> "{#B{ 011} .•• I
iQ< o 111213 I 4 IS I 6 I 1 > ••• I
iH<Olll2l3l4lSl6l7IBl9IAIBlclolEIF} ••• I
<Olll2l3l4ISl6l7IBl9> ••• }"

<stop_value> "{iB{O I l} ••• I
iQ{ 0 I ll 2 I 3 I 4 IS I 6 l 7} ••• I
iH{ 0111213 I 4 IS I 6 I 7 I BI 9 I A I BI c ID IE IF} ••• I
<Olll2l3l4ISl6l7IBl9> ••• }"

Example OUTPUT xxx; " : MACHINE 1 : SYMBOL: RANGE I STAT I ,

'IO_ACC','0','iBOOOF'"

REMove

Command :MACHine{ll2}:SYMBol:REMove

SYMBol Subsystem
REMove

The REMove command deletes all symbols from a specified machine.

Example OUTPUT XXX;":MACBINEl:SYMBOL:REMOVE"

25-7

Command

SYMBol Subsystem
WIDTh

WIDTh

:MACHine{ll2}:SYMBol:WIDTh <label_name>,
<width value>

The WIDTh command specifies the width (number of characters) in which
the symbol names will be displayed when symbols are used.

The WI DTh command does not affect the displayed length of the symbol offset
value.

<label name> string of up to 6 alphanumeric characters

<width value> integer from 1 to 16

Example OUTPUT XXX;":MACHINEl:SYMBOL:WIDTH 'DATA' ,9 "

25-8

26

DATA and SETup
Commands

26-1

Introduction

The DATA and SETup commands are SYSTem commands that allow
you to send and receive block data between the HP 1660 series and a
controller. Use the DATA instruction to transfer acquired timing and
state data, and the SETup instruction to transfer instrument
configuration data. This is useful for:

• Re-loading to the logic analyzer

• Processing data later

• Processing data in the controller
This chapter explains how to use these commands.

The format and length of block data depends on the instruction being
used, the configuration of the instrument, and the amount of acquired
data. The length of the data block can be up to 409,760 bytes in the
HP 1660A.

The SYSTem:DAT A section describes each part of the block data as it
will appear when used by the DATA instruction. The beginning byte
number, the length in bytes, and a short description is given for each
part of the block data. This is intended to be used primarily for
processing of data in the controller.

Do not change the block data in the controller if you intend to send the block
data back into the logic analyzer for later processing. Changes made to the
block data in the controller could have unpredictable results when sent back to
the logic analyzer.

26-2

Binary

Decimal

ASCII

Data Format

DATA and SETup Commands
Data Format

To understand the fonnat of the data within the block data, there are four
important things to keep in mind.

• Data is sent to the controller in binary fonn.

• Each byte, as described in this chapter, contains 8 bits.

• The first bit of each byte is the MSB (most significant bit).

• Byte descriptions are printed in binary, decimal, or ASCII depending on
how the data is described.

For example, the first ten bytes that describe the section name contain a
total of 80 bits as follows:

Byte 1
I

Byte 10
I

I I I
0100

I
0100 0100 0001 0101 0100 0100 0001 0010 0000 ••• 0010 0000

I
MSB

I
LSB

68 65 84 65 32 32 32 32 32 32

DATA space space space space space space

26-3

Command

DATA and SETup Commands
:SYSTem:DATA

:SYSTem:DATA

:SYSTem:DATA <block data>

The SYSTem:DATA command transmits the acquisition memory data from
the controller to the HP 1660-series logic analyzer.

The block data consists of a variable number of bytes containing information
captured by the acquisition chips. The information will be in one of three
formats, depending on the type of data captured. The three formats are
glitch, transitional, conventional timing or state. Each format is described
in the "Acquisition Data Description" section later in this chapter. Since no
parameter checking is performed, out-of-range values could cause
instrument lockup; therefore, care should be taken when transferring the
data string into the logic analyzer.

The <block_data> parameter can be broken down into a
<block_length_specifier> and a variable number of <section>'s.

The <block_length_specifier> always takes the form #BDDDDDDDD. Each
D represents a digit (ASCII characters "0" through "9"). The value of the
eight digits represents the total length of the block (all sections). For
example, if the total length of the block is 14522 bytes, the block length
specifier would be "#800014522".

Each <section> consists of a <section header> and <section data>. The
<section data> format varies for each section. For the DATA instruction,
there is only one <section>, which is composed of a data preamble followed
by the acquisition data. This section has a variable number of bytes
depending on configuration and amount of acquired data.

<block data> <block_length_specifier><section>

<block_length_ i8<length>
specifier>

<length> The total length of all sections in byte format (must be represented with 8
digits)

<section> <section header><section dat.a>

<section 16 bytes, described in "Section Header Description," on page 26-6.
header>

<section data> Format depends on the specific section.

26-4

Example

Query

Returned Format

Example

OUTPUT XXX;":SYSTEM:DATA" <block data>

DATA and SETup Commands
:SYSTem:DATA

The total length of a section is 16 (for the section header) plus the length of the
section data. So when calculating the value for <length>, don't forget to
include the length of the section headers.

:SYSTem:DATA?

The SYSTem:DATA query returns the block data to the controller. The data
sent by the SYSTem:DATA query reflect the configuration of the machines
when the last run was performed. Any changes made since then through
either front-panel operations or programming commands do not affect the
stored configuration.

[:SYSTem:DATA] <block_data><NL>

See "Transferring the logic analyzer acquired data" on page 27 -17 in chapter
27, "Programming Examples" for an example.

26-5

Byte Position

DATA and SET up Commands
Section Header Description

Section Header Description

The section header uses bytes 1 through 16 (this manual begins counting at
1; there is no byte 0). The 16 bytes of the section header are as follows:

1 10 bytes - Section name ("DATA space space space space space space" in
ASCII for the DATA instruction).

11 1 byte - Reserved

12 1 byte - Module ID (0010 0000 binary or 32 decimal for the HP 1660 series)

13 4 bytes - Length of section in number of bytes that, when converted to
decimal, specifies the number of bytes contained in the section.

Section Data

For the SYSTem:DATA command, the <section data> parameter consists of
two parts: the data preamble and the acquisition data. These are described
in the following two sections.

Data Preamble Description

The block data is organized as 160 bytes of preamble information, followed
by a variable number of bytes of data. The preamble gives inf onnation for
each analyzer describing the amount and type of data captured, where the
trace point occurred in the data, which pods are assigned to which analyzer,
and other infonnation. The values stored in the preamble represent the
captured data currently stored in this structure and not the current analyzer
configuration. For example, the mode of the data (bytes 21 and 49) may be
STATE with tagging, while the current setup of the analyzer is TIMING.
The preamble (bytes 17 through 176) consists of the following 160 bytes:

17 2 bytes - Instrument ID (always 1660 decimal for HP 1660 series)

19 1 byte - Revision Code

2 o 1 byte - number of acquisition chips used in last acquisition

2<H>

DATA and SETup Commands
Data Preamble Description

The next 40 bytes are for Analyzer 1 Data Information.

Byte Position

21 1 byte - Machine data mode, one of the following decimal values:
-1 =off
0 = state data without tags
1 = state data with each chip assigned to a machine

(2kB memory) and either time or state tags
2 = state data with unassigned pod used to store tag data

(4kB memory)
8 =state data at half channel (8kB memory with no tags)
10 =conventional timing data at full channel
11 = transitional timing data at full channel
12 = glitch timing data
13 = conventional timing data at half channel
14 =transitional timing data at half channel

22 1 byte - Unused.

23 2 bytes - List of pods in this analyzer, where a binary 1 indicates that the
corresponding pod is assigned to this analyzer

bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit9 bit 8

unused unused always 1 unused unused unused unused Pod 81

bit7 bit 6 bit 5 bit4 bit3 bit2 bit 1 bit 0

Podi Pod 62 Pod 52 Pod43 Pod 33 Pod2 Pod 1 unused

1- also unused in the HP 1661A. HP 1662A. and HP 1663A
2- also unused in the HP 1662A and HP 1663A
3-also unused in the HP 1663A

Example xxlO 0000 0001 lllx indicates pods 1through4 are assigned to this
analyzer (x =unused bit).

25 1 byte - This byte returns which chip is used to store the time or state tags
when an unassigned pod is available to store tag data. This chip is available
in state data mode with an unassigned pod and state or time tags on. Byte
21 = 2 in this mode.

26-7

Byte Position

DATA and SETup Commands
Data Preamble Description

2 6 1 byte - Master chip for this analyzer. This decimal value returns which
chip's time tag data is valid in a non-transitional mode; for example, state
with time tags.

1 - also unused in the HP 1663A

5 - pods 1 and 2

4-pods3and41

3 - pods 5 and 62

2-also unused in the HP 1662Aand HP 1663A
3-also unused in the HP 1661A. HP 166ZA. and HP 1663A

27 6 bytes - Unused

2 - pods 7 and 83

1 - unused

0-unused

-1- no chip

3 3 8 bytes - A decimal integer representing sample period in picoseconds
(timing only).

Example The following 64 bits in binazy would equal 8,000 picoseconds or, 8
nanoseconds:

00000000 00000000 00000000 00000000 00000000 00000000 00011111 01000000

41 8 bytes - Unused

4 9 1 byte - Tag type for state only in one of the following decimal values:
0 =off
1 =time tags
2 = state tags

50 1 byte - Unused

51 8 bytes - A decimal integer representing the time offset in picoseconds from
when this analyzer is triggered and when this analyzer provides an output
trigger to the IMB or port out. The value for one analyzer is always zero and
the value for the other analyzer is the time between the triggers of the two
analyzers.

59 2 bytes - Unused

26-8

Byte Position

DATA and SETup Commands
Data Preamble Description

61 40 bytes - The next 40 bytes are for Analyzer 2 Data Information. They are
organized in the same manner as Analyzer 1 above, but they occupy bytes 61
through 100.

1O1 26 bytes - Number of valid rows of data (starting at byte 177) for each pod.
The 26 bytes of this group are organized as follows:
Bytes 1and2 - Unused
Bytes 3 and 4 - Unused.
Bytes 5 and 6 - Unused.
Bytes 7 and 8 - Unused.
Bytes 9 and 10 - Unused.
Bytes 11 and 12 contain the number of valid rows of data for pod 8 of the
HP 1660A only. Unused in the other HP 1660-series logic analyzers.
Bytes 13 and 14 contain the number of valid rows of data for pod 7 of the
HP 1660A only. Unused in the other HP 1660-series logic analyzers
Bytes 15 and 16 contain the number of valid rows of data for pod 6 of the
HP 1660A and HP 1661A only.
Bytes 17 and 18 contain the number of valid rows of data for pod 5 of the
HP 1660A and HP 1661A only.
Bytes 19 and 20 contain the number of valid rows of data for pod 4 of the
HP 1660A, HP 1661A, and HP 1662A only.
Bytes 21 and 22 contain the number of valid rows of data for pod 3 of the
HP 1660A, HP 1661A, and HP 1662A only.
Bytes 23 and 24 contain the number of valid rows of data for pod 2 of all
models of the HP1660-series logic analyzers.
Bytes 25 and 26 contain the number of valid rows of data for pod 1 of all
models of the HP1660-series logic analyzers.

26-9

Byte Position

DATA and SETup Commands
Acquisition Data Description

127 26 bytes - Row of data containing the trigger point. This byte group is
organized in the same way as the data rows (starting at byte 101 above).
These binary numbers are base zero numbers which start from the first
sample stored for a specific pod. For example, if bytes 151 and 152
contained a binary number with a decimal equivalent of +1018, the data row
having the trigger is the 1018th data row on pod 1. There are 1018 rows of
pre-trigger data as shown below.

rowO
row 1

row 1017
row 1018 - trigger row

153 24 bytes - Unused

Acquisition Data Description

The acquisition data section consists of a variable number of bytes
depending on which logic analyzer you are using, the acquisition mode and
the tag setting (time, state, or ofO. The data is grouped in 18-byte rows for
the HP 1660A, in 14-byte rows for the HP 1661A, in 10-byte rows for the
HP 1662A, and in 6-byte rows for the HP 1663A.

The number of rows for each pod is stored in byte positions 101 through
126. The number of bytes in each row can be detennined by the value
stored in byte position 20 which contains the number of acquisition chips in
the instrument. For example, if the value in byte position 20 is 4, the
instrument is an HP 1660A. Values 3, 2, and 1 represent the HP 1661A,
1662A, and 1663A respectively.

26-10

Byte Position

clock Pod 81 Pod71 pod 62

lines

177 2 bytes 2 bytes 2 bytes 2 bytes

195 2 bytes 2 bytes 2 bytes 2 bytes

pod 52

2 bytes

2 bytes

DATA and SET up Commands
Acquisition Data Description

pod 43 pod33 pod 2 pod 14

2 bytes 2 bytes 2 bytes 2 bytes

2 bytes 2 bytes 2 bytes 2 bytes

(x) 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes

1-unused in the HP 1661A. HP 1662A. and HP 1663A
2-also unused in the HP 1662A and HP 1663 A
3-also unused in the HP 1663A
4-The headings are not a part of the returned data.

Row (x) is the highest number of valid rows specified by the bytes in byte
positions 101 through 126 in all modes and when neither analyzer is in glitch
mode. In the glitch mode, row (x) is the larger of:

1. The highest number of valid rows specified by the bytes in byte
positions 101 through 126; or,

2. 2048 + the highest number of valid rows for the pods assigned to
the timing analyzer, when one or more glitches are detected.

The clock-line bytes for the HP 1660A, which also includes 2 additional data
lines (D), are organized as follows:

XXXX XXPN XXDD MLKJ

The clock-line bytes for the HP 1661A and HP 1662A are organized as
follows:

xxxx xxxx xxxx MLKJ

The clock-line bytes for the HP 1663A are organized as follows:
XXXX XXXX XXXX XXKJ

26-11

DATA and SET up Commands
Time Tag Data Description

Time Tag Data Description

The time tag data starts at the end of the acquired data. Each data row has
an 8-byte time tag for each chip (2-pod set). The starting location of the
time tag data is immediately after the last row of valid data (maximum data
byte + 1). If an analyzer is in a non-transitional mode, the master chip (byte
26) is the only chip with valid time-tag data. The time tag data is a decimal
integer representing time in picoseconds for both timing and state time tags.
For state tags in the state analyzer, tag data is a decimal integer
representing the number of states.

Time Tag Block {for the BP 1660A)

Byte 1 through 8 (64 bits starting with the MSB) - First sample tag for pods
1and2.

Byte 9 through 16 (64 bits starting with the MSB) - Second sample tag for
pods 1and2.

Byte (w) through (w + 7) (64 bits starting with the MSB) - Last sample tag
for pods 1 and 2.

Byte (w + 8) through (w + 15) (64 bits starting with the MSB) - First
sample tag for pods 3 and 4.

Byte (w + 16) through (w + 23) (64 bits starting with the MSB) - Second
sample tag for pods 3 and 4.

Byte (x) through (x+ 7) (64 bits starting with the MSB) - Last sample tag
for pods 3 and 4.

26-12

DATA and SETup Commands
Time Tag Data Description

Byte (x + 8) through (x + 15) (64 bits starting with the MSB) - First sample
tag for pods 5 and 6.

Byte (x + 16) through (x + 23) (64 bits starting with the MSB) - Second
sample tag for pods 5 and 6.

Byte (y) through (y+ 7) (64 bits starting with the MSB) - Last sample tag
for pods 5 and 6.

Byte (y + 8) through (y + 15) (64 bits starting with the MSB) - First sample
tag for pods 7 and 8.
Byte (y + 16) through (y + 23) (64 bits starting with the MSB) - Second
sample tag for pods 7 and 8.

Byte (z) through (z+ 7) (64 bits starting with the MSB) - Last sample tag for
pods 7 and 8.

26-13

Byte Position

37041

37059

DATA and SETup Commands
Glitch Data Description

Glitch Data Description

In the glitch mode, each pod has two bytes assigned to indicate where
glitches occur in the acquired data. For each row of acquired data there will
be a corresponding row of glitch data. The glitch data is organized in the
same way as the acquired data. The glitch data is grouped in 18-byte rows
for the HP 1660A. The number of rows is stored in byte positions 101
through 126. The starting byte of the glitch data is an absolute starting
point regardless of the number of rows of acquired data.

A binary 1 in the glitch data indicates a glitch was detected. For example, if
a glitch occurred on bit 1 of pod 8 in data row 1 of an HP 1660A, bytes 37043
and 37044 would contain:

Byte 37043 Byte 37044
I

I I I
0000 0000 0000 0010

I I
Blt15 Bltl

clock Pod 81 Pod 71 pod 62 pod52 pod43 pod33 pod 2 pod 14

lines

2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes

2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes

(x) 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes

1-unused in the HP 1661A. HP 1662A, and HP 1663A
2-also unused in the HP 1662A and HP 1663 A
3- also unused in the HP 1663A
4-The headings are not a part of the returned data.

26-14

Command

DATA and SET up Commands
SYSTem:SETup

SYSTem:SETup

:SYStem:SETup <block_data>

The SYStem:SETup command configures the logic analyzer module as
defined by the block data sent by the controller. The length of the
configuration data block can be up to 350,784 bytes in the HP 1660A.

There are four data sections which are always returned. These are the
strings which would be included in the section header:
"CONFIG
"DISPLAY!
"BIG ATTRIB"
"RTC INFO "

Additionally, the following sections may also be included, depending on
what's available:
"SYMBOLS A "
"SYMBOLS B "
"INVASM A "
"INVASM B
"COMPARE

With the exception of the RTC_INFO section, the block data is not
described. However, the RTC_INFO section contains the real-time clock
time of the acquired data in the data block. This time information can be
meaningful to some measurements.

26-15

<block data>

<block_length_
specifier>

<length>

<section>

<section
header>

<section data>

Example

Query

Returned Format

Example

DATA and SET up Commands
SYSTem:SETup

<block_length_specifier><section>

#B<length>

The total length of all sections in byte format (must be represented with 8
digits)

<section_header><section_data>[<section_data> ••• J

16 bytes in the following format:
10 bytes for the section name
1 byte reserved
1 byte for the module ID code (32 for the HP 1660-series logic analyzer)
4 bytes for the length of section data in number of bytes that, when
converted to decimal, specifies the number of bytes contained in the section.

The RTC_INFO section is described in the "RTC_INFO Section Description."

Format depends on the section.

The total length of a section is 16 (for the section header) plus the length of the
section data. So when calculating the value for <length>, don't forgetto
include the length of the section headers.

OUTPUT XXX;"SETUP" <block data>

:SYStem:SETup?

The SYStem:SETup query returns a block of data that contains the current
configuration to the controller.

[:SYStem:SETup) <block_data><NL>

See "Transferring the logic analyzer configuration" on page 27 -14 in Chapter
27, "Programming Examples" for an example.

26-16

DATA and SET up Commands
RTC_INFO Section Description

RTC_INFO Section Description

The RTC_INFO section contains the real time of the acquired data. Because
the time of the acquired data is important to certain measurements, this
section describes how to find the real-time clock data.

Because the number of sections in the SETup data block depends on the
logic analyzer configuration, the RTC_INFO section will not always be in the
same location within the block. Therefore, the section must be found by
name. Once the section is found, you can find the time by using the
description in the following section:

48<block_length> ••• [<section_name><section_length>
<section_data>] •••

<block_ length> Total length of all sections

<section name> 10 bytes - Section name. "RTC_INFO space space"

<section 4 bytes - Length of section. 8 bytes, decimal, for RTC_INFO section.
length>

<section data> 10 bytes - Contains the real-time clock data described as follows:

Byte Position

1 1 byte - Year. A decimal integer that, when added to 1990, defines the year.
For example, if this byte has a decimal value of 2, the year is 1992.

2 1 byte - Month. An integer from 1 to 12.

3 1 byte - Day. An integer from 1 to 31.

4 1 byte - Unused

5 1 byte - Hour. An integer from 1 to 23.

6 1 byte - Minute. An integer from 1 to 59.

7 1 byte - Second. An integer from 1 to 59.

8 1 byte - Unused.

26-17

27

Programming
Examples

27-1

Introduction

This chapter contains short, usable, and tested program examples
that cover the most asked for examples. The examples are written in
HP Basic 6.0.

• Making a timing analyzer measurement
• Making a state analyzer measurement
• Making a state compare measurement
• Transferring logic analyzer configuration between the logic

analyzer and the controller
• Transferring logic analyzer data between the logic analyzer and the

controller
• Checking for measurement completion
• Sending queries to the logic analyzer
• Getting ASCII data with PRINt? All query
• Reading a disk catalog
• Printing to the disk using PRINT? ALL

27-2

Programming Examples
Making a Timing analyzer measurement

Making a Timing analyzer measurement

This program sets up the logic analyzer to make a simple timing analyzer
measurement. This example can be used with E2433-60004 Logic Analyzer
Training board to acquire and display the output of the ripple counter. It
can also be modified to make any timing analyzer measurement.

10 ****************** TIMING ANALYZER EXAMPLE ******************
20 for the HP 1660A Logic Analyzer
30
40 **
50 Select the module slot in which the logic analyzer is installed.
60 Always a 1 for the HP 1660-series logic analyzers.
70
80 OUTPUT 707;":SELECT 1"
90 I

100 **
110 Name Machine 1 "TIMING," configure Machine 1 as a timing analyzer,
120 and assign pod 1 to Machine 1.
130 I

140 OUTPUT 707;":MACHl:NAME 'TIMING'"
150 OUTPUT 707;":MACHl:TYPE TIMING"
160 OUTPUT 707;":MACHl:ASSIGN 1"
170
180 **
190 Make a label "COUNT," give the label a positive polarity, and
200 assign the lower 8 bits.
210
220 OUTPUT 707;":MACHINE1:TFORMAT:REMOVE ALL"
230 OUTPUT 707; ":MACBl :TFORMAT:LABEL 'COUNT' I POS, 0 I 0 I l!BOOOOOOOOllllllll"
240 I

250 **
260 Specify FF hex for resource term A, which is the default trigger term for
270 the timing analyzer.
280
290 OUTPUT 707;":MACHl:TTRACE:TERM A, 'COUNT', '#HFF'"
300
310 ***
320 Remove any previously inserted labels, insert the "COUNT"
330 label, change the seconds-per-division to 100 ns, and display the
340 waveform menu.
350

27-3

Programming Examples
Making a Timing analyzer measurement

360 OUTPUT 707;":MACHl:TWAVEFORM:REMOVE"
370 OUTPUT 707;":MACHl:TWAVEFORM:INSERT 'COUNT', ALL"
380 OUTPUT 707;":MACHl:TWAVEFORM:RANGE lE-6"
390 OUTPUT 707;":MENU 1,5"
400
410 **
420 Run the timing analyzer in single mode.
430
440 OUTPUT 707;":RMODE SINGLE"
450 OUTPUT 707;":START"
460
470 **
480 Set the marker mode (MMODE) to time so that time tags are available
490 for marker measurements. Place the X-marker on 03 hex and the 0-
500 marker on 07 hex. Then tell the timing analyzer to find the first
510 occurrence of 03h after the trigger and the first occurrence of 07h
520 after the x-marker is found.
530 !

540 OUTPUT 707;":MACHINEl:TWAVEFORM:MMODE TIME"
550
560 OUTPUT 707;":MACHINEl:TWAVEFORM:XPATTERN 'COUNT','#H03'"
570 OUTPUT'707;":MACHINEl:TWAVEFORM:OPATTERN 'COUNT','#H07'"
580 !

590 OUTPUT 707;":MACHINEl:TWAVEFORM:XCONDITION ENTERING"
600 OUTPUT 707;":MACHINEl:TWAVEFORM:OCONDITION ENTERING"
610
620 OUTPUT 707;":MACHINEl:TWAVEFORM:XSEARCH +l, TRIGGER"
630 OUTPUT 707;":MACHINEl:TWAVEFORM:OSEARCH +l, XMARKER"
640
650 ***
660 Turn the longform and headers on, dimension a string for the query
670 data, send the XOTIME query and print the string containing the
680 XOTIME query data.
690
700 OUTPUT 707;":SYSTEM:LONGFORM ON"
710 OUTPUT 707;":SYSTEM:HEADER ON"
720
730 DIM Mtime$[100]
740 OUTPUT 707;":MACHINEl:TWAVEFORM:XOTIME?"
750 ENTER 707;Mtime$
760 PRINT Mtime$
770 END

27-4

Programming Examples
Making a State analyzer measurement

Making a State analyzer measurement

This state analyzer program selects the HP 1660-series logic analyzer,
displays the configuration menu, defines a state machine, displays the state
trigger menu, sets a state trigger for multilevel triggering. This program
then starts a single acquisition measurement while checking for
measurement completion.

This program is written in such a way you can run it with the
HP E2433-60004 Logic Analyzer Training Board. This example is the same
as the "Multilevel State Triggering" example in chapter 9 of the
HP E2433-909 l 0 Logic Analyzer Training Guide.

10 ******************** STATE ANALYZER EXAMPLE *************************
20 for the HP 1660-series Logic Analyzers
30
40 ****************** SELECT THE LOGIC ANALYZER **********************
50 Select the module slot in which the logic analyzer is installed.
60 Always a 1 for the HP 1660-series logic analyzers.
70
80 OUTPUT 707;":SELECT 1"
90 I

100 ******************** CONFIGURE THE STATE ANALYZER **********************
110 Name Machine 1 "STATE," configure Machine 1 as a state analyzer, assign
120 pod 1 to Machine 1, and display system Configuration menu of the
130 logic analyzer.
140 I

150 OUTPUT 707;":MACHINE1:NAME 'STATE"'
160 OUTPUT 707;":MACHINE1:TYPE STATE"
170 OUTPUT 707;":MACHINE1:ASSIGN 1"
180 OUTPUT 707;":MENU 1,0"
190
200 ******************* SETUP THE FORMAT SPECIFICATION *********************
210 Make a label "SCOUNT," give the label a positive polarity, and
220 assign the lower 8 bits.
230 I

240 OUTPUT 707;":MACHINEl:SFORMAT:REMOVE ALL"
250 OUTPUT 707;":MACHINEl:SFORMAT:LABEL 'SCOUNT', POS, 0,0,255"
260
270 ******************* SETUP THE TRIGGER SPECIFICATION ********************
280 The trigger specification will use five sequence levels with the trigger
290 level on level four. Resource terms A through E, and RANGEl will be
300 used to store only desired counts from the 8-bit ripple counter.

27-5

Programming Examples
Making a State analyzer measurement

310
320 Display the state trigger menu.
330
340 OUTPUT 707;":MENU 1,3"
350 !

360 ! create a 5 level trigger specification with the trigger on the
370 fourth level.
380
390 OUTPUT 707;":MACBINEl:STRIGGER:SEQUENCE 5,4"
400
410 Define pattern terms A, B, c, D, and E to be 11, 22, 33, 44 and 59
420 decimal respectively.
430
440 OUTPUT 707;":MACBINEl:STRIGGER:TERM A,'SCOUNT','11'"
450 OUTPUT 707;":MACBINEl:STRIGGER:TERM B,'SCOUNT','22'"
460 OUTPUT 707;":MACBINEl:STRIGGER:TERM C,'SCOUNT','33'"
470 OUTPUT 707;":MACBINEl:STRIGGER:TERM D,'SCOUNT','44'"
480 OUTPUT 707;":MACBINEl:STRIGGER:TERM E,'SCOUNT','59'"
490 !

500 ! Define a Range havinq a lower limit of 50 and an upper limit of 58.
510 !

520 OUTPUT 707;":MACBINEl:STRIGGER:RANGEl 'SCOUNT','50','58'"
530
540 ***************** CONFIGURE SEQUENCE LEVEL 1 ***************************
550 store NOSTATE in level 1 and Then find resource term "A" once.
560
570 OUTPUT 707;":MACHINEl:STRIGGER:STOREl 'NOSTATE'"
580 OUTPUT 707;":MACBINEl:STRIGGER:FINDl 'A',l"
590
600 ***************** CONFIGURE SEQUENCE LEVEL 2 ***************************
610 Store RANGEl in level 2 and Then find resource term "E" once.
620
630 OUTPUT 707;":MACBINEl:STRIGGER:STORE2 'IN_RANGEl"'
640 OUTPUT 707;":MACHINEl:STRIGGER:FIND2 'E',l"
650 !

660 ***************** CONFIGURE SEQUENCE LEVEL 3 ***************************
670 Store NOSTATE in level 3 and Then find term "B" once.
680
690 OUTPUT 707;":MACBINEl:STRIGGER:STORE3 'NOSTATE'"
700 OUTPUT 707;":MACBINEl:STRIGGER:FIND3 'B',l"
710
720 ***************** CONFIGURE SEQUENCE LEVEL 4 ***************************
730 store a combination of resource terms (C or Dor RANGEl) in level 4 and
740 Then Trigger on resource term "E."
750

27-6

Programming Examples
Making a State analyzer measurement

760 OUTPUT 707;":MACHINEl:STRIGGER:STORE4 '(CORD OR IN_RANGEl)'"
770 I

780 ************************ NOTE ***********************
790 The FIND command selects the trigger in the
800 sequence level specified as the trigger level.
810 ***
820 I

830 OUTPUT 707;":MACHINEl:STRIGGER:FIND4 'E',l"
840 I

850 ***************** CONFIGURE SEQUENCE LEVEL 5 ***************************
860 Store anystate on level 5
870
880 OUTPUT 707;":MACHINEl:STRIGGER:STORE5 'ANYSTATE'"
890 I

900 ***************** START ACQUISITION ************************************
910 Place the logic analyzer in single acquisition mode, then determine when
920 the acquisition is complete.
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200

OUTPUT 707;":RMODE SINGLE"
!OUTPUT 707;"*CLS"
OUTPUT 707;":START"
I

****************** CHECK FOR MEASUREMENT COMPLETE **********************
Enable the MESR register and query the register for a measurement
complete condition.

OUTPUT 707;":SYSTEM:HEADER OFF"
OUTPUT 707;":SYSTEM:LONGFORM OFF"
I
Status=O
OUTPUT 707;":MESE1 l"
OUTPUT 707;":MESR1?"
ENTER 707;Status
I
I Print the MESR register status.
I

CLEAR SCREEN
PRINT "Measurement complete status is ";Status
PRINT "0 = not complete, 1 = complete"
I Repeat the MESR query until measurement is complete.
WAIT 1
IF Status=l THEN GOTO 1190
GOTO 1070
PRINT TABXY(30,15);"Measurement is complete"

27-7

1210
1220
1230
1240
1250
1260
1270
1280
1290
1300

Programming Examples
Making a State analyzer measurement

************************ VIEW THE RESULTS *****************************
Display the State Listing and select a line number in the listing that
allows you to see the beginning of the listing on the logic analyer
display.

OUTPUT 707;":MACHINEl:SLIST:COLUMN 1, 'SCOUNT', DECIMAL"
OUTPUT 707;":MENU 1,7"
OUTPUT 707;":MACHINE1:SLIST:LINE -16"

END

27-8

Programming Examples
Making a State Compare measurement

Making a State Compare measurement

This program example acquires a state listing, copies the listing to the
compare listing, acquires another state listing, and compares both listings to
find differences.
This program is written in such a way you can run it with the HP
E2433-60004 Logic Analyzer Training Board. This example is the same as
the "State Compare" example in chapter 3 of the HP E2433-909 l 0 Logic
Analyzer Training Guide.

10 *********** STATE COMPARE EXAMPLE ********************************
20 for the BP 1660-series Logic Analyzers
30
40
50 !************** SELECT THE LOGIC ANALYZER ************************
60 Select the module slot in which the logic analyzer is installed.
70 l Always a 1 for the HP 1660A-series logic analyzers.
80 l
90 OUTPUT 707;":SELECT l"
100 l

110 !************** CONFIGURE THE STATE ANALYZER ***********************
120 Name Machine 1 "STATE," configure Machine 1 as a state analyzer, and
130 l assign pod 1 to Machine 1.
140 I
150 OUTPUT 707;":MACBINEl:NAME 'STATE'"
160 OUTPUT 707;":MACBINE1:TYPE STATE"
170 OUTPUT 707;":MACBINE1:ASSIGN l"
180

190 **
200 Remove all labels previously set up, make a label "SCOUNT," specify
210 positive logic, and assign the lower 8 bits of pod 1 to the label.
220
230 OUTPUT 707;":MACBINEl:SFORMAT:REMOVE ALL"
240 OUTPUT 707;":MACBINEl:SFORMAT:LABEL 'SCOUNT', POS, 0,0,255"
250
260 **
270 Make the "J" clock th~ Master clock and specify the falling edge.
280
290 OUTPUT 707;":MACBINEl:SFORMAT:MASTER J, FALLING"
300
310 **
320 Specify two sequence levels, the trigger sequence level, specify

27-9

Programming Examples
Making a State Compare measurement

330 FF hex for the "a" term which will be the trigger term, and store
340 no states until the trigger is found.
350
360 OUTPUT 707;":MACHINEl:STRIGGER:SEQUENCE 2,1"
370 OUTPUT 707;":MACHINEl:STRIGGER:TERM A,'SCOUNT','iHFF"'
380 OUTPUT 707;":MACHINEl:STRIGGER:STOREl 'NOSTATE'"
390 OUTPUT 707;":MENU 1,3"
400
410 **
420 Change the displayed menu to the state listing and start the state
430 analyzer in repetitive mode.
440
450 OUTPUT 707;":MENU 1,7"
460 OUTPUT 707;":RMODE REPETITIVE"
470 OUTPUT 707;":START"
480
490 **
500 The logic analyzer is now running in the repetitive mode
510 and will remain in repetitive until the STOP command is sent.
520
530 PRINT "The logic analyzer is now running in the repetitive mode"
540 PRINT "and will remain in repetitive until the STOP command is sent."
550 PRINT
560 PRINT "Press CONTINUE"
570 PAUSE
580
590 !***
600 t Stop the acquisition and copy the acquired data to the compare reference
610 t listing.
620 t

630 OUTPUT 707;":STOP"
640 OUTPUT 707;":MENU 1,10"
650 OUTPUT 707;":MACHINEl:COMPARE:MENU REFERENCE"
660 OUTPUT 707;":MACHINEl:COMPARE:COPY"
670
680 The logic analyzer acquistion is now stopped, the Compare menu
690 is displayed, and the data is now in the compare reference
700 listing.
710

720 !***
730 Display line 4090 of the compare listing and start the analyzer
740 t in a repetitive mode.
750 t

760 OUTPUT 707;":MACBINEl:COMPARE:LINE 4090"
770 OUTPUT 707;":START"

27-10

Programming Examples
Making a State Compare measurement

780
790 Line 4090 of the listing is now displayed at center screen
800 in order to show the last four states acquired. In this
810 example, the last four states are stable. However, in some
820 cases, the end points of the listing may vary thus causing
830 a false failure in compare. To eliminate this problem, a
840 partial compare can be specified to provide predicable end
850 points of the data.
860
870 PRINT "Press CONTINUE to send the STOP command."
880 PAUSE
890 OUTPUT 707;":STOP"
900 I

910 !**
920 The end points of the compare can be fixed to prevent false failures.
930 In addition, you can use partial compare to compare only sections
940 of the state listing you are interested in comparing.
950
960 OUTPUT 707;":MACHINEl:COMPARE:RANGE PARTIAL, O, 508"
970
980 I The compare range is now from line O to +508
990 I

1000 !**
1010 I Change the Glitch jumper settings on the training board so that the
1020 ! data changes, reacquire the data and compare which states are different.
1030 PRINT "Change the glitch jumper settings on the training board so that the"
1040 PRINT "data changes, reacquire the data and compare which states are
different."
1050 I

1060 PRINT "Press CONTINUE when you have finished changing the jumper."
1070 I

1080 PAUSE
1090
1100 !**
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210

start the logic analyzer to acquire new data and then stop it to compare
the data. When the acquistion is stopped, the Compare Listing Menu will
be displayed.

OUTPUT 707;":START"
OUTPUT 707;":STOP"
OUTPUT 707;":MENU 1,10"

!**
Dimension strings in which the compare find query (COMPARE:FIND?)

I enters the line numbers and error numbers.

27-11

1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610

Programming Examples
Making a State Compare measurement

DIM Line$[20]
DIM Error$[4]
DIM Comma$[1]
I

Display the Difference listing.

OUTPUT 707;":MACHINEl:COMPARE:MENU DIFFERENCE"

**
Loop to query all 508 possible errors.

FOR Error=l TO 508

I Read the compare differences
I
OUTPUT 707;":MACHINE1:COMPARE:FIND? "&VAL$(Error)

**
Format the Error$ string data for display on the controller screen.

IF Error99 THEN GOTO 1580
IF Error9 THEN GOTO 1550

ENTER 707 USING "ll,1A";Error$
ENTER 707 USING "ll,1A";Comma$
ENTER 707 USING "K";Line$
Error_return=IVAL(Error$,10)
IF Error return=O THEN GOTO 1820
I

GOTO 1610

ENTER 707 USING "ll,3A";Error$
ENTER 707 USING "K";Line$
GOTO 1610

ENTER 707 USING "ll,4A";Error$
ENTER 707 USING "K";Line$

1620 **
1630 Test for the last error. The error number of the last error is the same
1640 as the error number of the first number after the last error.
1650
1660 Error_line=IVAL(Line$,10)

27-12

1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840

IF Error line=Error line2 THEN GOTO 1780
Error line2=Error line
I

Programming Examples
Making a State Compare measurement

**
Print the error numbers and the corresponding line numbers on the
controller screen.

PRINT "Error number ",Error," is on line number ",Error_line

NEXT Error
I

PRINT
PRINT
PRINT "Last error found"
GOTO 1850
PRINT "No errors found"

1850 END

27-13

Programming Examples
Transferring the logic analyzer configuration

Transferring the logic analyzer configuration

This program uses the SYSTern: SETup query to transfer the configuration
of the logic analyzer to your controller. This program also uses the
SYSTern: SETup command to transfer a logic analyzer configuration from
the controller back to the logic analyzer. The configuration data will set up
the logic analyzer according to the data. It is useful for getting
configurations for setting up the logic analyzer by the controller. This query
differs from the SYS Tern: DATA query because it only transfers the
configuration and not the acquired data. The SYS Tern: SETup command
differs from the SYSTern: DATA command because it only transfers the
configuration and not acquired data.

10 ****************** SETUP COMMAND AND QUERY EXAMPLE ********************
20 for the HP 1660-series logic analyzers
30
*** ********************* CREATE TRANSFER BUFFER *************************
50 Create a buffer large enough for the block data. See page 26-9 for
55 maximum block length.
56 1

60 ASSIGN @Buff TO BUFFER (170000]
70
80 I **************** INITIALIZE HPIB DEFAULT ADDRESS *********************
90
100 REAL Address
110 Address=707
120 ASSIGN @comm TO Address
130
140 CLEAR SCREEN
150
160 ************* INTITIALIZE VARIABLE FOR NUMBER OF BYTES *****************
170 The variable "Numbytes" contains the number of bytes in the buffer.
180
190 REAL Numbytes
200 Numbytes=O
210
220 ! ************** RE-INITIALIZE TRANSFER BUFFER POINTERS ******************
230
240 CONTROL @Buff,3;1
250 CONTROL @Buff,4;0
260
270 ! *********************** SEND THE SETUP QUERY **************************

27-14

Programming Examples
Transferring the logic analyzer configuration

280 OUTPUT 707;":SYSTEM:HEADER ON"
290 OUTPUT 707;":SYSTEM:LONGFORM ON"
300 OUTPUT @Comm;"SELECT l"
310 OUTPUT @Comm;":SYSTEM:SETUP?"
320
330 ******************** ENTER THE BLOCK SETUP HEADER *********************
340 Enter the block setup header in the proper format.
350
360 ENTER @Comm USING "i,B";Byte
370 PRINT CHR$(Byte);
380 WHILE Byte<>35
390 ENTER @Comm USING "i,B";Byte
400 PRINT CHR$(Byte);
410 END WHILE
420 ENTER @Comm USING "i,B";Byte
430 PRINT CHR$(Byte);
440 Byte=Byte-48
450 IF Byte=l THEN ENTER @Comm USING "i,D";Numbytes
460 IF Byte=2 THEN ENTER @Comm USING "i,DD";Numbytes
470 IF Byte=3 THEN ENTER @Comm USING "i,DDD";Numbytes
480 IF Byte=4 THEN ENTER @Comm USING "i,DDDD";Numbytes
490 IF Byte=5 THEN ENTER @comm USING "i,DDDDD";Numbytes
500 IF Byte=6 THEN ENTER @comm USING "i,DDDDDD";Numbytes
510 IF Byte=7 THEN ENTER @Comm USING "i,DDDDDDD";Numbytes
520 IF Byte=8 THEN ENTER @comm USING "i,DDDDDDDD";Numbytes
530 PRINT Numbytes
540 1

550 ******************** TRANSER THE SETUP ********************************
560 Transfer the setup from the logic analyzer to the buffer.
570
580 TRANSFER @Comm TO @Buff;COUNT Numbytes,WAIT
600 1

610 ENTER @Comm USING "-K";Length$
620 PRINT "LENGTH of Length string is";LEN(Length$)
630 1

640 PRINT "**** GOT THE SETUP ****"
650 PAUSE
660 ********************* SEND THE SETUP **********************************
670 1 Make sure buffer is not empty.
680 1
690 IF Numbytes=O THEN
700 PRINT "BUFFER IS EMPTY"
710 GOTO 1170
720 END IF
730

27-15

Programming Examples
Transferring the logic analyzer configuration

740 ********************* SEND THE SETUP COMMAND **************************
750 Send the Setup command
760
770 OUTPUT @Comm USING "lf,15A";":SYSTEM:SETUP #"
780 PRINT "SYSTEM:SETUP command has been sent"
790 PAUSE
800
810 ********************* SEND THE BLOCK SETUP ****************************
820 send the block setup header to the logic analyzer in the proper format.
830 !

840 Byte=LEN(VAL$(Numbytes))
850 OUTPUT @comm USING "lf,B";(Byte+48)
860 IF Byte=l THEN OUTPUT @Comm USING "ll,A";VAL$(Numbytes)
870 IF Byte=2 THEN OUTPUT @Comm USING "lf,AA";VAL$(Numbytes)
880 IF Byte=3 THEN OUTPUT @Comm USING "ll,AAA";VAL$(Numbytes)
890 IF Byte=4 THEN OUTPUT @Comm USING "lf,AAAA";VAL$(Numbytes)
900 IF Byte=5 THEN OUTPUT @Comm USING "ll,AAAAA";VAL$(Numbytes)
910 IF Byte=6 THEN OUTPUT @Comm USING "lf,AAAAAA";VAL$(Numbytes)
920 IF Byte=? THEN OUTPUT @Comm USING "ll,AAAAAAA";VAL$(Numbytes)
930 IF Byte=8 THEN OUTPUT @Comm USING "ll,AAAAAAAA";VAL$(Numbytes)
940
950 *********************** SAVE BUFFER POINTERS *************************
960 Save the transfer buffer pointer so it can be restored after the
970 transfer.
980
990 STATUS @Buff,5;Streg
1000 !

1010 ****************** TRANSFER SETUP TO THE HP 16550 *********************
1020 Transfer the setup from the buffer to the HP 1660A.
1030
1040 TRANSFER @Buff TO @Comm;COUNT Numbytes,WAIT
1050
1060 ********************** RESTORE BUFFER POINTERS ***********************
1070 Restore the transfer buffer pointer
1080
1090 CONTROL @Buff,5;Streg
1100 1

1110 ******************** SEND TERMINATING LINE FEED **********************
1120 Send the terminating linefeed to properly terminate the setup string.
1130 I

1140 OUTPUT @Comm;""
1150 I

1160 PRINT "**** SENT THE SETUP ****"
1170 END

27-16

Programming Examples
Transferring the logic analyzer acquired data

Transferring the logic analyzer acquired data

This program uses the SYS Tern: DATA query to transfer acquired data to
your controller. It is useful for getting acquired data for setting up the logic
analyzer by the controller at a later time. This query differs from the
SYS Tern: SETup query because it transfers only the acquired data.

This program also uses the SYS Tern: DATA command to transfer the logic
analyzer data from the controller back to the logic analyzer and load the
analyzer with the acquired data. The SYSTem: DATA command differs from
the SYSTem: SETup command because it transfers both the configuration
and the acquired data.

You should always precede the SYSTem:DATA query and command with the
SYSTem:SETup query and command if the acquired data depends on a specific
configuration. If you are only interested in the acquired data for post
processing in the controller and the data is not dependent on the configuration,
you can use the SYSTem:DATA query and command alone.

10 ****************** DATA COMMAND AND QUERY EXAMPLE ********************
20 for the HP 1660-series logic analyzers
30
40 I ********************* CREATE TRANSFER BUFFER *************************
SO I Create a buffer large enough for the block data. See page 26-1 for
SS I maximum block length.
S6 I

60 ASSIGN @Buff TO BUFFER [170000]
70 I

80 I **************** INITIALIZE HPIB DEFAULT ADDRESS *********************
90
100 REAL Address
110 Address=707
120 ASSIGN @comm TO Address
130 I
140 CLEAR SCREEN
lSO I
160 I ************* INTITIALIZE VARIABLE FOR NUMBER OF BYTES *****************
170 I The variable "Numbytes" contains the number of bytes in the buffer.
180
190 REAL Numbytes

27-17

Programming Examples
Transferring the logic analyzer acquired data

200 Numbytes=O
210 I

220 I ************** RE-INITIALIZE TRANSFER BUFFER POINTERS ******************
230
240 CONTROL @Buff,3;1
250 CONTROL @Buff,4;o'
260
270 I *********************** SEND THE DATA QUERY **************************
280 OUTPUT 707;":SYSTEM:HEADER ON"
290 OUTPUT 707;":SYSTEM:LONGFORM ON"
300 OUTPUT @Comm;"SELECT 1"
310 OUTPUT @Comm;":SYSTEM:DATA?"
320
330 ******************** ENTER THE BLOCK DATA HEADER *********************
340 Enter the block data header in the proper format.
350 I

360 ENTER @Comm USING "ll,B";Byte
370 PRINT CHR$(Byte);
380 WHILE Byte<>35
390 ENTER @Comm USING "#,B";Byte
400 PRINT CHR$(Byte);
410 END WHILE
420
430
440
450
460
470
480
490
500
510
520
530
540

ENTER @Comm USING "l! ,B" ;Byte
PRINT CHR$(Byte);
Byte=Byte-48
IF Byte=l THEN ENTER @Comm USING
IF Byte=2 THEN ENTER @comm USING
IF Byte=3 THEN ENTER @comm USING
IF Byte=4 THEN ENTER @comm USING
IF Byte=5 THEN ENTER @comm USING
IF Byte=6 THEN ENTER @comm USING
IF Byte=7 THEN ENTER @comm USING
IF Byte=8 THEN ENTER @comm USING
PRINT Numbytes

"# ,D" ;Numbytes
"#,DD";Numbytes
"#,DDD";Numbytes
"#,DDDD";Numbytes
"#,DDDDD";Numbytes
"#,DDDDDD";Numbytes
"#,DDDDDDD";Numbytes
"#,DDDDDDDD";Numbytes

550 ******************** TRANSER THE DATA ********************************
560 Transfer the data from the logic analyzer to the buffer.
570
580 TRANSFER @Comm TO @Buff;COUNT Numbytes,WAIT
600 I

610 ENTER @Comm USING "-K";Length$
620 PRINT "LENGTH of Length string is";LEN(Length$)
630 I

640 PRINT "**** GOT THE DATA ****"
650 PAUSE

27-18

Programming Examples
Transferring the logic analyzer acquired data

660 ********************* SEND THE DATA **********************************
670 Make sure buffer is not empty.
680
690 IF Numbytes=O THEN
700 PRINT "BUFFER IS EMPTY"
710 GOTO 1170
720 END IF
730
740 ********************* SEND THE DATA COMMAND **************************
750 Send the Setup conun.and
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050

OUTPUT @Comm USING "i,14A";":SYSTEM:DATA #"
PRINT "SYSTEM:DATA command has been sent"
PAUSE

********************* SEND THE BLOCK DATA ****************************
send the block data header to the logic analyzer in the proper format.

l

Byte=LEN(VAL$(Numbytes))
OUTPUT @Comm USING "i,B";(Byte+48)
IF Byte=l THEN OUTPUT @Comm USING "#,A";VAL$(Numbytes)
IF Byte=2 THEN OUTPUT @Comm USING "i,AA";VAL$(Numbytes)
IF Byte=3 THEN OUTPUT @Comm USING "i,AAA";VAL$(Numbytes)
IF Byte=4 THEN OUTPUT @Comm USING "i,AAAA";VAL$(Numbytes)
IF Byte=5 THEN OUTPUT @Comm USING "#,AAAAA";VAL$(Numbytes)
IF Byte=6 THEN OUTPUT @Comm USING "i,AAAAAA";VAL$(Numbytes)
IF Byte=7 THEN OUTPUT @Comm USING "#,AAAAAAA";VAL$(Numbytes)
IF Byte=8 THEN OUTPUT @Comm USING "i,AAAAAAAA";VAL$(Numbytes)
I

*********************** SAVE BUFFER POINTERS *************************
save the transfer buffer pointer so it can be restored after the
transfer.

STATUS @Buff,5;Streg
I

l

************** TRANSFER DATA TO THE LOGIC ANALYZER *****************
Transfer the data from the buffer to the logic analyzer.

TRANSFER @Buff TO @Comm;COUNT Numbytes,WAIT

1060 ********************** RESTORE BUFFER POINTERS ***********************
1070 Restore the transfer buffer pointer
1080 I

1090 CONTROL @Buff,5;Streg
1100

27-19

1110
1120
1130
1140
1150

Programming Examples
Transferring the logic analyzer acquired data

******************** SEND TERMINATING LINE FEED **********************
Send the terminating linefeed to properly terminate the data string.

OUTPUT @Comm;""

1160 PRINT "**** SENT THE DATA ****"
1170 END

27-20

Programming Examples
Checking for measurement completion

Checking for measurement completion

This program can be appended to or inserted into another program when
you need to know when a measurement is complete. If it is at the end of a
program it will tell you when measurement is complete. If you insert it into
a program, it will halt the program until the current measurement is
complete.

This program is also in the state analyzer example program in "Making a
State Analyzer Measurement" on pages 27-7 and 27-8. It is included in the
state analyzer example program to show how it can be used in a program to
halt the program until measurement is complete.

420 ****************** CHECK FOR MEASUREMENT COMPLETE **********************
430 Enable the MESR register and query the register for a measurement
440 complete condition.
450
460 OUTPUT 707;":SYSTEM:HEADER OFF"
470 OUTPUT 707;":SYSTEM:LONGFORM OFF"
480
490 Status=O
500 OUTPUT 707;":MESE1 l"
510 OUTPUT 707;":MESR1?"
520 ENTER 707;Status
530 I

540 I Print the MESR register status.
550 I

560 CLEAR SCREEN
570 PRINT "Measurement complete status is ";Status
580 PRINT "0 = not complete, 1 = complete"
590 ! Repeat the MESR query until measurement is complete.
600 WAIT 1
610 IF Status=l THEN GOTO 630
620 GOTO 510
630 PRINT TABXY(30,15);"Measurement is complete"
640
650 END

27-21

Programming Examples
Sending queries to the logic analyzer

Sending queries to the logic analyzer

This program example contains the steps required to send a query to the
logic analyzer. Sending the query alone only puts the requested information
in an output buffer of the logic analyzer. You must follow the query with an
ENTER statement to transfer the query response to the controller. When the
query response is sent to the logic analyzer, the query is properly terminated
in the logic analyer. If you send the query but fail to send an ENTER
statement, the logic analyzer will display the error message "Query
Interrupted" when it receives the next command from the controller, and,
the query response is lost.

10 !************************ QUERY EXAMPLE ***********************
20 I for the HP 1660-series Logic Analyzers
30
40 ************************ OPTIONAL ***************************
50 The following two lines turn the headers and longform on so
60 that the query name, in its long form, is included in the
70 query response.
80
90 ************** NOTE ****************
100 If your query response includes real
110 or integer numbers that you may want
120 to do statistics or math on later, you
130 should turn both header and longform
140 off so only the number is returned.
150 *************************************
160
170 OUTPUT 707;":SYSTEM:HEADER ON"
180 OUTPUT 707;":SYSTEM:LONGFORM ON"
190
200 ***
210 Select the slot in which the logic analyzer is located.
220 1 Always a 1 for the HP 1660-series logic analyzers.
230 OUTPUT 707;":SELECT l"
240 I

250 **
260 Dimension a string in which the query response will be entered.
270
280 DIM Query$[100)
290
300 ! **

27-22

Programming Examples
Sending queries to the logic analyzer

310 Send the query. In this example the MENU? query is sent. All
320 queries except the SYSTem:DATA and SYSTem:SETup can be sent with
330 this program.
340
350 OUTPUT 707;"MENU?"
360
370 **
380 The two lines that follow transfer the query response from the
390 query buffer to the controller and then print the response.
400
410 ENTER 707;Query$
420 PRINT Query$
430
440 I

450 END

27-23

10
20
30

Programming Examples
Getting ASCII Data with PRINt? ALL Query

Getting ASCII Data with PRINt? ALL Query

This program example shows you how to get ASCII data from a state listing
using the PRINt? ALL query. There are two things you must keep in mind:

• You must select the logic analyzer, which is always SELECT 1 for the
HP 1660-series logic analyzers.

• You must select the proper menu. The only menus that allow you to use
the PRINt? ALL query are the listing menus and the disk menu.

****** ASCII DATA *******

40 This program gets STATE Listing data from the HP 1660-series logic
50 analyzers in ASCII form by using the PRINT? ALL query.
60
70
80
90
100
110
120
130
140
150
160
170

!**
I

DIM Block$[32000]
OUTPUT 707;"EOI ON"
OUTPUT 707;":SYSTEM:HEAD OFF"
OUTPUT 707;":SELECT 1" Always a 1 for the HP 1660-series logic

analyzers.
I

OUTPUT 707;":MENU 1,7" Selects the Listing 1 menu. Print? All
will only work in Listing and Disk menus.

180 OUTPUT 707;":SYSTEM:PRINT? ALL"
190 ENTER 707 USING "-K";Block$
200
210 !**
220 I Now display the ASCII data you received.
230
240 PRINT USING "K";Block$
250
260 END

27-24

Programming Examples
Reading the disk with the CATalog? ALL query

Reading the disk with the CATalog? ALL query

The following example program reads the catalog of the disk currently in the
logic analyzer disk drive. The CATALOG? ALL query returns the entire
70-character field. Because DOS directory entries are 70 characters long,
you should use the CATALOG? ALL query with DOS disks.

10 ****** DISK CATALOG ******
20 using the CATALOG? query
30 I
40 DIM File$[100]
50 DIM Specifier$[2]
60 OUTPUT 707;":EOI ON"
70 OUTPUT 707;":SYSTEM:HEADER OFF"
80
90
100

I

OUTPUT 707;":MMEMORY:CATALOG? ALL"

110 ENTER 707 USING "ll,2A";Specifier$
120 ENTER 707 USING "ll,8D";Length
130

send CATALOG? ALL query

read in 118
read in block length

140 I Read and print each file in the directory
150 I

160 FOR I=l TO Length STEP 51
170 ENTER 707 USING "ll,51A";File$
180 PRINT File$
190 NEXT I
200 ENTER 707 USING "A";Specifier$
210 END

read in final line feed

27-25

Programming Examples
Reading the Disk with the CATalog? Query

Reading the Disk with the CATalog? Quecy

This example program uses the CATALOG? query without the ALL option to
read the catalog of the disk currently in the logic analyzer disk drive.
However, if you do not use the ALL option, the query only returns a
51-character field. Keep in mind if you use this program with a DOS disk,
each filename entry will be truncated at 51 characters.

10 ****** DISK CATALOG ******
20 1 using the CATALOG? query
30 1

40 DIM File$[100]
50 DIM Specifier$[2]
60 OUTPUT 707;":EOI ON"
70 OUTPUT 707;":SYSTEM:HEADER OFF"
80 1
90 OUTPUT 707;":MMEMORY:CATALOG?"
100 1

110 ENTER 707 USING "#,2A";Specifier$
120 ENTER 707 USING "l,8D";Length
130 1

! send CATALOG? query

! read in #8
read in block length

140 1 Read and print each file in the directory
150 1

160 FOR I•l TO Length STEP 51
170 ENTER 707 USING "#,51A";File$
180 PRINT File$
190 NEXT I
200 ENTER 707 USING "A";Specifier$ read in final line feed
210 END

27-26

Programming Examples
Printing to the disk

Printing to the disk

This program prints acquired data to a disk file. The file can be either on a
LIF or DOS disk. If you print the file to a DOS disk, you will be able to view
the file on a DOS compatible computer using any number of file utility
programs.

10
20
30

********* PRINTING TO A DISK FILE **********

40 This program prints the acquired data to a disk file. I will
50 print to either a LIF or DOS file using the PRINT ALL command.
60
70 !**
80
90
100
110
120
130
140

l

OUTPUT 707;":SELECT l"

OUTPUT 707;":MENU 1,7"

Always a 1 for the HP 1660-series logic
analyzers.

Selects the Listing 1 menu. Print to disk
will only work in Listing and Disk menus.

1.50 OUTPUT 707;":SYSTEM:PRINT ALL, DISK, 'DISKFILE"'
160
170 !**
180 I Now display catalog to see that the file has been saved on the disk.
190
200 DIM File$[100]
210 DIM Specifier$(2]
220 OUTPUT 707;":EOI ON"
230 OUTPUT 707;":SYSTEM:HEADER OFF"
240 OUTPUT 707;":MMEMORY:CATALOG? ALL"
250 ENTER 707 USING "ll,2A";Specifier$
260 ENTER 707 USING "ll,8D";Length
270 FOR I=l TO Length STEP 70
280 ENTER 707 USING "ll,70A";File$
290 PRINT File$
300 NEXT I
310 ENTER 707 USING "A";Specifier$
320 END

27-27

*Cl.S command, 8--5
*ESE command, 8-6
*ESR command, 8-7
*IDN command, 8-9
*IST command, 8-9
*OPC command, 8-11
*OPT command, 8-12
*PRE command, 8-13
*RST command, 8-14
*SRE command, 8-15
*STB command, 8-16
*TRG command, 8-17
*TST command, 8-18
*WAf. command, 8-19
... ,4-5
32767,4-4
9.9E+37, 4-4
::=, 4-5
,4-5
[],4-5
{ }, 4-5
1,4-5

Index

Block length specifier, 26-4, 26-16
Braces, 4-5
BRANch command/query, 16-10 to 16-11,
22-9 to 22-11

c
Cable

RS-232C, 3-3
CAPability command, 9-7
CARDcage command, 9-8
CATalog command, 11-9
CENTer command, 18-6, 23-8
CESE command, 9-9
CESR command, 9-10
chart display, 19-2
CLEarcommand, 16-12,20-5,22-12
Clear To Send (CTS), 3-5
CLOCk command/query, 15-6
CLRPattern command, 17-8, 18-6, 23-9,
24-8
CLRStat command, 18-7, 23-9
CMASk command/query, 20-5
CME, 6-5
COLwnn command/query, 17-7, 24-7

A Combining commands, 1-9
ACCumulate command/query, 18--5, 19-4, Com.ma, 1-12
23-7 Command, 1-6, 1-16
ACQMode command/query, 21-5 *Cl.S, 8--5
ACQuisition command/query, 16-9, 18--5, *ESE, 8-6
22-8,23-8 *OPC,8-11
Addressed talk/listen mode, 2-3 *PRE, 8-13
Analyzer 1 Data Information, 26-7 *RST, 8-14
Analyzer 2 Data Information, 26-9 *SRE, 8-15
Angular brackets, 4-5 *TRG, 8-17
Arguments, 1-7 *WAI, 8-19
ARM command/query, 13-5 ACCumulate, 18-5, 19-4, 23-7
ASSign command/query, 13-5 ACQMode, 21-5
AUToload command, 11-8 ACQuisition, 16-9, 22-8

B
BASE command, 25-5
Bases, 1-12
Basic, 1-3
Baud rate, 3-7
BEEPer command, 9-6
Bit definitions, 6-4 to 6-5
Block data, 1-6, 1-20, 26-4
Block length specifier, 26-4
Block length specifier, 10-5, 10-11

ARM, 13-5
ASSign, 13-5
AUToload, 11-8
BASE, 25-5
BEEPer, 9-6
BRANch, 16-10,22-9
CENTer, 18-6, 23-8
CESE, 9-9
CLEar, 20-5
CLOCk, 15-6
CLRPattem, 17-8, 18-6, 23-9, 24-8

CLRStat, 18-7, 23-9
CMASk,20-5
COLwnn, 17-7, 24-7
COMPare, 20-4
COPY, 11-10, 20-6
DATA, 10-5, 20-7, 26-4
DELay, 14-5, 18-7, 23-9
DELete, 12-5
DOWNload, 11-11
DSP, 10-6
EOI, 9-11
FIND, 16-13,22-12
GLEDge, 22-14
HAXis, 19-5
HEADer, 1-16, 10-8
INITialize, 11-13
INPort, 12-6
INSert, 12-7, 14-6, 18-8, 23-10
LABel,15-7,21-6
LEVelarm, 13-6
LINE, 14-7, 17-9,20-10,24-9
LOAD:CONFig, 11-14
LOAD:IASSembler, 11-15
LOCKout, 3-8, 9-12
LONGfonn, 1-16, 10-9
Machine, 13-4
MASTer, 15-9
MENU,9-12,20-10
MESE,9-14
MMODe, 17-10, 23-11, 24-10
MSI, 11-16
NAME, 13-7
OCONdition, 23-12, 24-11
OPATtern, 17-11,23-13,24-11
OSEarch, 17-12,23-14,24-12
OTAG, 17-13, 24-14
OT!Me, 14-8, 23-15
OVERlay, 17-14
PACK, 11-17
PATTem, 25-6
PRINt, 10-10
PURGe, 11-17
RANGe, 14-9, 16-14, 18-8,20-11,22-15,
23-16,25-6
REMove, 14-10, 15-13, 17-15, 18-9, 21-7,
23-16,24-14,25-7
REName, 11-18, 13-8
RESource, 13-9
RMODe,9-17

lndex-1

Index

RUNTil, 17-15,20-12,23-17,24-15
SCHa.rt, 19-4
SELect, 9-19
SEQuence, 16-16, 22-17
SET, 20-13
SETColor, 9-21
SETup,10-11,26-15
SFORmat, 15-6
SKEW, 12-8
SLAVe, 15-15
SLISt, 17-7
SPERiod,22-18,23-18
STARt, 9-22
STOP,9-23
STORe, 16-17
STORe:CONFig, 11-19
SWAVeform, 18-4
SYMBol, 25--4
SYStem:DATA, 10-5, 26-2, 26-4
SYStem:SETup, 10-11, 26-2, 26-15
TAG, 16-18
TAKenbranch, 16-19,18-9
TCONtrol, 16-20, 22-19
TERM, 16-21, 22-20
TFORmat, 21-4
THReshold, 15-18, 21-8
TIMER, 16-22, 22-21
TLlSt, 24-7
TPOSition, 16-23, 18-10, 22-22, 23-20
TREE, 12-9
TYPE, 13-10
VAXis, 19-7
WID'Ih, 25-8
WLISt, 14-4
XCONdition, 23-22, 24-18
XPATtern,17-20,23-23,24-19
XSEarch, 17-21,23-24,24-20
XTAG, 17-22, 24-22
XTlMe,14-11,23-25

Command eITOrs, 7 -3
Command mode, 2-3
Command set organization, 4-12
Command structure, 1-4
Command tree, 4-5

SELect, 9-20

Index-2

Command types, 4-5
Common commands, 1-9, 4-6, 8-2
Communication, 1-3
compare

D

program example, 27-9
COMPare selector, 20-4
COMPare Subsystem, 20-1, 20-3
to 20-13
Complex qualifier, 16-11, 22-11
Compound commands, 1-8
Configuration file, 1-4
Controller mode, 2-3
Controllers, 1-3
Conventions, 4-5
COPY command, 11-10, 20-6

DATA, 10-5, 26-4
command, 10-5
State (no tags, 26-10 to 26-11

Data and Setup Commands, 26-1,
26-3 to 26-17
Data bit.s, 3-7

8-Bit mode, 3-7
Data block

Analyzer 1 data, 26-7
Analyzer 2 data, 26-9
Data preamble, 26-6
Section data, 26-6
Section header, 26-6

Data Carrier Detect (DCD), 3-5
DATA command/query, 10-5, 20-7 to
20-8
Data Communications Equipment, 3-3
Data mode, 2-3
Data preamble, 26-6 to 26-9
DATA query, 17-9, 24-9

RS- 232C, 3-8
Device clear, 2-6
Device dependent eITOrs, 7-3
Documentation conventions, 4-5
DOWNioad command, 11-11
DSP command, 10-6
DTE,3-3
Duplicate keywords, 1-9

E
Ellipsis, 4-5
Embedded strings, 1-3, 1-6
Enter statement, 1-3
EOI command, 9-11
ERRor command, 10-7
En-or messages, 7-2
ESB, 6-4
Event Status Register, 6-4
Examples

program, 27-2
EXE, 6-5
Execution eITOrs, 7-4
Exponents, i-12
Extended interface, 3-4

F
File types, 11-12
FIND command/query, 16-13, 22-12 to
22-13
FIND query, 20-9
Fractional values, 1-13

G
GET,2-6
GLEDge command/query, 22-14
Group execute trigger, 2-6

Data Set Ready (DSR), 3-5 H
Data Terminal Equipment, 3-3 HAXis command/query, 19-5 to 19-6
Data Terminal Ready (DTR), 3-5 HEADer command, 1-16, 10-8
DCE, 3-3 Headers, 1-6, 1-8, 1-11
DCL, 2-6 Host language, 1-6
DOE, 6-5 HP-IB 2-2 to 2-3 6-8
Definite-length block response data, 1-20 HP-IB, address, 2-'s
DELay command/query, 14-5, 18-7, 23-9 HP-IB device address, 2-4
DELete command, 12-5
Device address, 1-6

HP-IB, 2-4

HP-IB interface, 2--3
HP-IB interface code, 2--4
HP-IB interface functions, 2-2
HTIMe query, 12-6

I
IEEE 488.1, 2-2, &-2
IEEE 488.1 bus commands, 2-6
IEEE 488.2, &-2
IFC, 2-6
Infinity, 4-4
Initialization, 1-4
INITialize command, 11-13
INPort command, 12-6
Input buffer, &-3
INSert command, 12-7, 14-6, 1~.
23-10
Instruction headers, 1-6
Instruction parameters, 1-7
Instruction syntax, 1-5
Instruction tenninator, 1-7
Instructions, 1-5
Instrument address, 2-4
Interface capabilities, 2--3

RS-232C, 3-7
Interface clear, 2-6
Interface code

HP-IB, 2-4
Interface select code

RS-232C,3-8
INTermodule subsystem, 12-2
Internal eJTOrs, 7-4

K
Keyword data, 1-13
Keywords, 4-3

L
LABel command/query, 1&-7 to 15-8,
21-6
LCL, 6-6
LER command, 9-11
LEVelarm command/query, 13-6
LINE command/query, 14-7, 17-9,
20--10,24-9
Linefeed, 1-7, 4--5
LOAD:CONFig command, 11-14
LOAD:IASSembler command, 11-15

Local, 2-5
Locallockout,2-5
LOCKout command, 3-8, 9-12
Longform, 1-11
LONGform command, 1-16, 10--9
Lowercase, 1-11

M
Machine selector, 13-4
MACHine Subsystem, 13-1, 13~ to
13-10
Mainframe commands, 9-2
MASTer command/query, l&-9
MAV, 6-4
measurement complete

program example, 2'i'.-21
MENUcommand,9-12,20--10
MESE command, 9-14
MESR command, 9-16
MMEMory subsystem, 11-2
MMODe command/query, 17-10, 23-11,
24-10
Mnemonics, 1-13,4-3
MSB,6-6
MSG, 6-5
MSicommand, 11-16
MSS,6-4
Msus, 11~
Multiple numeric variables, 1-21
Multiple program commands, 1-14
Multiple queries, 1-21
Multiple subsystems, 1-14

N
NAME command/query, 13-7
New Line character, 1-7
NL, 1-7, 4--5
Notation conventions, 4-5
Numeric base, 1-19
Numeric bases, 1-12
Numeric data, 1-12
Numeric variables, 1-19

0
OCONdition command/query, 23-12,
24-11
OPATtern conunand/query, 17-11, 23-13,
24-11

Index

OPC, 6-5
Operation Complete, 6-6
OR notation, 4--5
OSEarch command/query, 17-12, 23-14,
24-12
OSTate query, 14-8, 17-13, 24-13
OTAG conunand/query, 17-13, 24-14
OT!Me command/query, 14-8, 23-15
Output buffer, 1-10
Output queue, &-3
OUTPUT statement, l~
Overlappedcommand,S-ll,S-19,9-22to
9-23
Overlappedcommands,4-4
OVERlay command/query, 17-14

p
PACK command, 11-17
Parameter syntax rules, 1-12
Parameters, 1-7
Parity, 3-7
Parse tree, 5-8
Parser, &-3
PATTern command, 25-6
PON, 6-5
Preamble description, 26-6
PR!Ntconunand, 10--10
Printer mode, 2--3
program example

checking for measurement complete,
27-21
compare, 27-9
getting ASCII data with PR!Nt ALL query,
27-24
sending queries to the logic analyzer,
27-22
state analyzer, 27-5
SYSTem:DATA command, 27-17
SYSTem:DATA query, 27-17
SYSTem:SETup command, 27-14
SYSTem:SETup query, 27-14
timing analyzer, 27~
transferring configuration to analyzer,
27-14
transferring configuration to the
controller, 27-14
transferring setup and data to the
analyzer, 27-17

lndex-3

Index

transfening setup and data to the
controller, 27-17

Program examples, 4-14, 27-2
Program message syntax, 1-5
Program message terminator, 1-7
Program syntax, 1-5
Programming conventions, 4-5
Protocol, 3--7, 5-4

None, 3--7
XON/XOFF, 3--7

Protocol exceptions, 5--5
Protocols, 5-3
PURGe command, 11-17

Q
Query, 1--6, 1-10, 1-16

*ESE, 8--6
*ESR, 8-7
*IDN, 8-9
*IST, 8-9
*OPC, 8-11
*OPT, 8-12
*PRE, 8-13
*SRE, 8-15
*STB, 8-16
*TST,8-18
ACCumulate, 18-5, 19-5, 23--7
ACQMode, 21-5
ACQuisition, 16-9, 22--9
ARM, 13-5
ASSign, 13--6
AUToload, 11-8
BEEPer, 9-6
BRANch, 16-11,22-10
CAPability, 9-7
CARDcage, 9-8
CATalog, 11-9
CESE, 9-9
CESR, 9-10
CLOCk, 15-7
CMASk,20-6
COLumn, 17-8, 24-8
DATA, 10--6, 17-9,20--8,24-9,26-5
DELay, 14-5, 18-7,23--10
EOI, 9-11
ERRor, 10-7
FIND, 16-14,20-9,22--13
FTIMe, 12--6

Index-4

GLEDge, 22-15
HAXis, 19-6
HEADer, 10--8
INPort, 12--7
LABel, 15-8, 21-7
LER, 9-11
LEVelann, 13--7
IJNE, 14-7, 17-10,20-10,24-10
LOCKout, 9-12
LONGfonn, 10-9
MASTer, 15-9
MENU,9-14
MESE, 9-14
MESR, 9-16
MMODe, 17-10, 23--11, 24-10
MSI, 11-16
NAME, 13--7
OCONdition, 23--12, 24-11
OPATtein, 17-11,23--13,24-12
OSEarch, 17-12,23--14,24-13
OSTate, 14-8, 17-13,24-13
OTAG, 17-14,24-14
OTIMe, 14-9, 23--15
PR!Nt, 10-10
RANGe, 14-9, 16-15, 18-9,20-11,
22--16,23--16
REName, 13-8
RESource, 13--9
RMODe,9-18
RUNTil, 17-16,20-13,23--17,24-15
SELect, 9-20
SEQuence, 16-16, 22--17
SETColor, 9-22
SETup, 10-12, 26-16
SKEW, 12-8
SLAVe, 15-15
SPERiod,22-18,23--18
STORe, 16-17
SYSTem:DATA, 10-6, 26-5
SYStem:SETup, 10-12, 26-16
TAG, 16-18
TAKenbranch, 16-19, 18-10
TAVerage, 17-17,23--19,24-16
TCONtrol, 16-20, 22-19
TERM, 16-22,22--21
THReshold, 15-18,21-8
TIMER, 16-23,22-21
TMAXimum, 17-17,23--19,24-16

TMIN"unum, 17-18,23--20,24-17
TPOSition, 16-24, 18-11, 22--22, 23--21
TREE, 12--10
'ITIMe, 12--10
TYPE, 13--10
UPLoad, 11-20
VAXis, 19-7
VRUNs, 17-18,23--21,24-17
XCONdition, 23--22, 24-18
XOTag, 17-19, 24-18
XOTime,14-10, 17-19,23--22,24-19
XPATtein, 17-20,23--23,24-20
XSEarch, 17-21,23--24,24-21
XSTate, 14-11, 17-22, 24-21
XTAG, 17-23, 24-22
XTIMe, 14-12, 23--25

Query errors, 7-5
query program example, 27-22
Query responses, 1-15, 4-4
Question mark, 1-10
QYE, 6-5

R
RANGe command, 25--6
RANGe command/query, 14-9, 16-14 to
16-15, 18-8, 20-11, 22--15 to 22--16, 23--16
real-time clock

section data, 26-17
Receive Data (RD), 3--4 to 3-5
Remote, 2-5
Remote enable, 2-5
REMove command, 14-10, 15-13, 17-15,
18-9,21-7,23-16,24-14,25-7
REN,2-5
REName command, 11-18
REName command/query, 13-8
Request To Send (R'IS), 3-5
RESource command/query, 13--9
Response data, 1-20
Responses, 1-16
RMODe command, 9-17
Root, 4--6
RQC, 6-5
RQS, 6-4
RS-2320, 3--2, 3-8, 5-2
RUNTil command/query, 17-15to17-16,
20-12,23--17,24-15

s
SCHart selector, 19-4
SCHart Subsystem, 19-1, 19-3 to 19-7
SDC, 2-6
Section data, 26-6
Section data fonnat, 26-4
Section header, 26-6
SELectcommand,9-19
Select command tree, 9-20
Selected device clear, 2-6
SEQuence command/query, 16-16,
22-17
Sequential commands, 4-4
Serial poll, 6-7
Service Request Enable Register, 6-4
SET command, 20-13
SETColor command, 9-21
SETup, 10-11, 26-15
SETup command/query, 10-11to10-12
SFORmat selector, 15-6
SFORmat Subsystem, 15-1, 15-3 to
15-18
Shortfonn, 1-11
Simple commands, 1-8
SKEW command, 12-8
SLAVe command/query, 15-15
SLISt selector, 17-7
SLISt Subsystem, 17-1, 17-3to17-23
Spaces, 1-7
SPERiod command/query, 22-18,
23-18
Square brackets, 4-5
STARtcommand,9-22
state analyzer

program example, 27-5
Status, 1-22,6-2,8-3
Status byte, 6-6
Status registers, 1-22, 8-3
Status reporting, 6-2
Stop bits, 3-7
STOP command, 9-23
STORe command/query, 16-17
STORe:CONFig command, 11-19
STRace Command, 16-9
STRigger Command, 16-9
STRigger/STRace Subsystem, 16-1, 16-3
to 16-24
String data, 1-13

String variables, 1-18
STTRace selector, 22-8
Subsystem

COMPare, 20-2
INTennodule, 12-2
MACHine, 13-2
MMEMory, 11-2
SCHart, 19-2
SFORmat, 15-1, 15-3 to 15-18
SLISt, 17-1, 17-3to 17-23
STRigger/STRace, 16-1, 16-3to
16-24
SWAVefonn, 18-2
SYMBol, 25-1, 25-3 to 25-8
SYSTem, 10-2
TFORmat, 21-1, 21-3 to 21-8
TLISt, 24-1, 24-3 to 24-22
TTRigger/I'I'Race,22-l,22-3to
22-22
TWAVefonn, 23-1, 23-3 to 23-25
WLISt, 14-1, 14-3 to 14-12

Subsystem commands, 4-6
Suffix multiplier, 5-9
Suffix units, 5-10
SWAVefonn selector, 18-4
SWAVefonn Subsystem, 18-1, 18-3 to
18-11
SYMBol selector, 25-4
SYMBol Subsystem, 25-1, 25-3 to 25-8
Syntax diagram

Commoncommands,8-4
COMPare Subsystem, 20-3
INTennodule subsystem, 12-3 to 12-4
MACHine Subsystem, 13-3
Mainframe commands, 9-3 to 9-4
MMEMory subsystem, 11-4 to 11-5,
11-7
SCHart Subsystem, 19-3
SFORmat Subsystem, 15-3
SLISt Subsystem, 17-3
STRigger Subsystem, 16-3
SWAVefonn Subsystem, 18-3
SYMBol Subsystem, 25-3
SYSTem subsystem, 10-3
TFORmat Subsystem, 21-3
TLISt Subsystem, 24-3
TTRigger Subsystem, 22-3
TWAVefonn Subsystem, 23-4 to 23-5

WLISt Subsystem, 14-3
Syntax diagrams

IEEE 488.2, 5-5
System commands, 4-6

Index

SYSTem subsystem, 10-2
SYSTem:DATA, 26-4 to 26-5
SYSTem:DATA command program
example, 27-17
SYSTem:DATA query program example,
27-17
SYStem:SETup, 26-15 to 26-16
SYSTem:SETup command program
example, 27-14
SYSTem:SETup query program example,
27-14

T
TAG command/query, 16-18
TAKenbranch command/query, 16-19,
18-9
Talk only mode, 2-3
TAVerage query, 17-17, 23-19, 24-16
TCONtrol command/query, 16-20, 22-19
TERM command/query, 16-21, 22-20
Terminator, 1-7
TFORmat selector, 21-4
TFORmat Subsystem, 21-1, 21-3 to 21-8
Three-wire Interface, 3-4
THReshold command/query, 15-18, 21-8
time tag data description, 26-12 to 26-13
TIMER command/query, 16-22, 22-21
timing analyzer

program example, 27-3
TLISt selector, 24-7 .
TLISt Subsystem, 24-1, 24-3 to 24-22
TMAXimum query, 17-17, 23-19, 24-16
TMIN"unum query, 17-18, 23-20, 24-17
TPOSition command/query, 16-23 to
16-24, 18-lOtolS-ll,22-22,23-20
Trailing dots, 4-5
Transmit Data (TD), 3-4 to 3-5
TREE command, 12-9
Truncation rule, 4-3
TT!Me query, 12-10
TTRigger , 22-8
TTRiggerfITRace Subsystem, 22-1, 22-3
to22-22

lndex-5

Index

'IW AVeform selector, 23-7
'IWAVeform Subsystem, 23-1, 23-3 to
23-25
TYPE command/query, 13-10

u
Units, 1-12
UPLoad command, 11-20
Uppercase, 1-11
URQ, 6-5

v
VAXis command/query, 19-7
VRUNs query, 17-18, 23-21, 24-17

w
White space, 1-7
WIDTh command, 25-8
WLISt selector, 14-4
WLISt Subsystem, 14-1, 14-3 to 14-12

x
XCONdition command/query, 23-22, 24-18
XOTag query, 17-19, 24-18
XOTune query, 14-10, 17-19, 23-22, 24-19
XPATtem command/query, 17-20, 23-23,
24-19
XSEarch command/query, 17-21, 23-24,
24-20
XSTate query, 14-11, 17-22, 24-21
XTAG command/query, 17-22to17-23,
24-22
XT!Me command/query, 14-11 to 14-12,
23-25
XXX,4-5,4-7
XXX (meaning of), 1-6

lndex-6

@ Copyright Hewlett
Packard Company 1992
All Rights Reserved.

Reproduction, adaption, or
translation without prior
written permission is
prohibited, except as
allowed under the copyright
laws.

Warranty
The information contained
in this document is subject
to change without notice.
Hewlett-Packard makes
no warranty of any kind
with regard to this
material, including, but
not limited to, the
implied warranties of
merchantability or
fitness for a particular
purpose.
Hewlett-Packard shall not
be liable for errors
contained herein or for
damages in connection with
the furnishing,
performance, or use of this
material.
This Hewlett-Packard
product has a warranty
against defects in material
and workmanship for a
period of one year from
date of shipment. During
the warranty period,
Hewlett-Packard Company
will, at its option, either
repair or replace products
that prove to be defective.
For warranty service or
repair, this product must be
returned to a service facility
designated by
Hewlett-Packard.
For products returned to
Hewlett-Packard for
warranty service, the Buyer
shall prepay shipping
charges to Hewlett-Packard
and Hewlett-Packard shall
pay shipping charges to
return the product to the

Hewlett-Packard
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901

Buyer. However, the Buyer
shall pay all shipping
charges, duties, and taxes
for products returned to
Hewlett-Packard from
another country.

Limitation of Warranty
The foregoing warranty
shall not apply to defects
resulting from improper or
inadequate maintenance by
the Buyer, Buyer-supplied
software or interfacing,
unauthorized modification
or misuse, operation outside
of the environmental
specifications for the
product, or improper site
preparation or maintenance.
No other warranty is
expressed or implied.
Hewlett-Packard
specifically disclaims
the implied warranties
of merchantability or
fitness for a particular
purpose.

Exclusive Remedies
The remedies provided
herein are the buyer's sole
and exclusive remedies.
Hewlett-Packard shall not
be liable for any direct,
indirect, special, incidental,
or ·consequential damages,
whether based on contract,
tort, or any other legal
theory.

Assistance
Product maintenance
agreements and other
customer assistance
agreements are available for
Hewlett-Packard products.
For any assistance, contact
your nearest
Hewlett-Packard Sales Office.

Safety
Do not install substitute
parts or perform any
unauthorized modification
to the instrument.

Wani•I

The Warning symbol calls
attention to a procedure,
practice, or the like, which,
if not correctly performed
or adhered to, could result
in personal injury. Do not
proceed beyond a Warning
symbol until the indicated
conditions are fully
understood and met.

Ca1tlt1

The Caution symbol calls
attention to an operating
procedure, practice, or the
like, which, if not correctly
performed or adhered to,
could result in damage to or
destruction of part or all of
the product. Do not
proceed beyond a Caution
symbol until the indicated
conditions are fully
understood or met.

AIJiout this edition
This is the first edition of
the HP 01660-90902
Progranuner's Guide for the
HP 1660-Series Logic
Analyzers. Edition dates
are as follows:

1st edition, August 1992.

New editions are complete
revisions of the manual.
Update packages, which are
issued between editions,
contain additional and
replacement pages to be
merged into the manual by
you. The dates on the title
page change only when a
new edition is published.
Many product updates and
fixes do not require manual
changes; and, conversely,
manual corrections may be
done without accompanying
product changes.
Therefore, do not expect a
one-to-one correspondence
between product updates
and manual updates.

The following list of pages
gives the date of the
current edition and of any
changed pages to that
edition. Within the
manual, any page changed
since the last edition is
indicated by printing the
date the changes were
made on the bottom of the
page. If an update is
incorporated when a new
edition of the manual is
printed, the change dates
are removed from the
bottom of the pages and the
new edition date is listed on
the title page.

August 1992: All pages
original edition

F//dl HEWLETT
i.!/.!a PACKARD

Hewlett-Packard
Printed in the USA

	00001
	00002
	00003
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	16-17
	16-18
	16-19
	16-20
	16-21
	16-22
	16-23
	16-24
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12
	17-13
	17-14
	17-15
	17-16
	17-17
	17-18
	17-19
	17-20
	17-21
	17-22
	17-23
	17-24
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	18-09
	18-10
	18-11
	18-12
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	20-11
	20-12
	20-13
	20-14
	21-01
	21-02
	21-03
	21-04
	21-05
	21-06
	21-07
	21-08
	22-01
	22-02
	22-03
	22-04
	22-05
	22-06
	22-07
	22-08
	22-09
	22-10
	22-11
	22-12
	22-13
	22-14
	22-15
	22-16
	22-17
	22-18
	22-19
	22-20
	22-21
	22-22
	23-01
	23-02
	23-03
	23-04
	23-05
	23-06
	23-07
	23-08
	23-09
	23-10
	23-11
	23-12
	23-13
	23-14
	23-15
	23-16
	23-17
	23-18
	23-19
	23-20
	23-21
	23-22
	23-23
	23-24
	23-25
	23-26
	24-01
	24-02
	24-03
	24-04
	24-05
	24-06
	24-07
	24-08
	24-09
	24-10
	24-11
	24-12
	24-13
	24-14
	24-15
	24-16
	24-17
	24-18
	24-19
	24-20
	24-21
	24-22
	25-01
	25-02
	25-03
	25-04
	25-05
	25-06
	25-07
	25-08
	26-01
	26-02
	26-03
	26-04
	26-05
	26-06
	26-07
	26-08
	26-09
	26-10
	26-11
	26-12
	26-13
	26-14
	26-15
	26-16
	26-17
	26-18
	27-01
	27-02
	27-03
	27-04
	27-05
	27-06
	27-07
	27-08
	27-09
	27-10
	27-11
	27-12
	27-13
	27-14
	27-15
	27-16
	27-17
	27-18
	27-19
	27-20
	27-21
	27-22
	27-23
	27-24
	27-25
	27-26
	27-27
	27-28
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	x-01
	x-02
	xBack

