89520 CONTENTS
‘Chapter Page

1 INTRODUCTION AND OVERVIEW. o o o o o o o s o o o s o o s « o o o o o 1=1

GENERAL DESCRIPTION 4 & ¢ o o s o o o o s s o o o s o a o « 2 « 1=

HARDWARE FEATURES AND CAPABILITIESe « o o o o ¢ o s o s o s o o 1=1

Processor Board « « ¢ o o o o o o o 2 o o s o s o o » s o o 1=1

Power Suppiye o o o o o o o 2o s o o o o o o o o s a o o o o 1=1

Disk Drives o « o o o o o o o o 5 o o 8 s o o o s o o s o » 1=1

Display Terminale o o ¢ ¢ o o ¢ 5 o o o o o s s s o = » o o 1=1

SOFTWARE FEATURES o ¢ ¢ ¢ o o ¢ o o- 6 a o s ¢ o o s s o« o a s o 1=3

Overview of Software REeSOUrCESe « o « o o o s o o s o o s o 1%3

User INTerfac@. « « o o o o o o ¢ s o« 5 o 2 ¢ s s« a o o o o 1=3

Software Packaginge « o s o o o o ¢ o o 2 o s s s o o« o o o 1=3

Operating System Envircnmente « ¢ ¢« o « ¢ s o o ¢ ¢« ¢« ¢« o o 14

System UtilitieSe « ¢« o o o o« o o o o o o ¢ o & 2 o s s s o 1=5

Language Trans!ator « « o « ¢« « o ¢ ¢ o s o o 5 ¢ o o » o« o 1=5

System DiagnosticCSe « o o & o o o o o o 5 o o o o » o o o o 1=5

2 SPECIFICATIONS o ¢ o o o o o s o o a o « 2 s o a o s s « o s o s o & 2=1

GENERAL ¢ ¢ ¢ o ¢ o o o o o o o a 5 s s = o a s s a o o« o o s o 2=1

§520 PHYSICAL CHARACTERISTICS ¢ o 4 ¢ o ¢ o o o 6 s o o s o o o 2=1

Cabinet Dimensions and Weight « ¢ ¢ ¢ ¢« o« o ¢ ¢ ¢« o« o o s » 2=1

Envircnmental LimitSe « o o o o o ¢ 2 « s o o ¢ o o o o o o 2=1

Cooling e o o o o o o o o o ¢ o o o o o o a o s « a s o o & 2=1

AC Power Requirements « « ¢ o« « o v o ¢ o s ¢ o = o s o o & 2=1

Front Panei ControlSe o o« o o o o « 2 o o o s o s o s s o o 2=2

I nput/Output Rear Panel Ports and SwitcheSe e« « ¢ o o o o & 2=2

Power Supply Specifications « « « o ¢ o o o e« o ¢ o ¢ o o o 2=3

Disk Drive Specifications + ¢« ¢ « o ¢ ¢ o ¢ o« o ¢ o o ¢ o » 24

Functional Specifications « « « o « o o s°s s o o o o o o o« 2-4

9501 DISPLAY TERMINAL CONSOLE « ¢ & e ¢ o o o « o o o s s o o & 2=4

Display Cabinet Dimensionse « o o ¢ ¢ ¢ o o o ¢ ¢ o 2 s o o 24

Keybcard Dimensions « « o o « ¢« o o ¢ 2 o o o o o ¢ « o s o 2-5
Environmental LimitTse « ¢ o o o o o o o o s o ¢ o o s o o & 2=5

AC Power Requirements « « « « ¢« o s o o « o o s o s o o s o 2=5

Display Terminal Controls « « o o ¢ o « o c o ¢ s o s o o « 2=6

3 INSTALLATION AND CHECKOUT. « & e v e o v e v o v ot o v v v o s s . 3=

GENERAL v -s o o o o o o o o« » « o e 6 o s s s s s a s e s e o 3=

- UNPACKING AND VISUAL INSPECTION s s s s s o e o o s s o a o¥s o 3=

" .MAINTENANCE AND SERVICE POLICIES. « « ¢ o 4o ¢ & 0 s ¢ o o o o o 3-2

T ST AC INPUT REQUIREMENTS ¢ o o aie o o o o 6 o s s o o o o s o o o 3=2

=" INTERFACE SWITCH SETTINGS « "4 . . e o o o s s s s s s s s s s 33
T VV_BaVUdkRafeVSWifcho ® ® ® o 6 & o 5 ® e ° B e & o o o -003-3'

- Device Address SWitTCh « « o o ¢ o o ¢ o o o a o s s o o o« o 3=3

., Disk Diagnostic SwitChe « & ¢ ¢ o ¢ ¢ o ¢ o o ¢ o s o s o o 37

" PREPARATION OF EQUIPMENT FOR USE. . e o a a8 s o =2 s s s e o 34

© . 9520 Development System Preparafuon and Set UPe o o o o o o 3=4

9501 Display Terminal Preparation and Set UPe o o o « « ¢ o 34

"External Cable Connectionse o o« o« o s ¢ o o s s o s s v o o 3=5

CONTENTS

poempr—
Chapter Page
3 INSTALLATION AND CHECKOUT (Continued) _ _
POWER ON CHECK.s & ¢ 4 o o & o o s o o o o o 5 s o s s s s o s o« 3=6
Initial Start Up of SystemMe o« &« ¢ o o o 5.0 ¢ o ¢ ¢« ¢ s s o 36
Resolving Start Up Problems « ¢ « ¢ o ¢ o ¢ ¢ « ¢ o &« o o« «» 3-8
Restarting System OperationSe « o« ¢ ¢ ¢« o o o ¢« o s « ¢« o o 3=9
System Shutdown OperationsSe ¢ o+ ¢ « o o o o 2 ¢ o o = o « « 3=9
CHANGING AND HANDLING DISKETTES « & ¢ o ¢ o ¢ o o o s « o s o« o 3-9
Disk Drive Particularse o o o ¢ o o« o« o o o ¢ o « s s « o« o« 3=9
Inserting Diskette inDrive « ¢« ¢ « o o o ¢« o « o o o« » « o« 3=10
Removing Diskette from Drives « ¢ o« ¢« o o s o o o o s o o & 3=10
Care of Diskettes o o o o ¢ o o s o o o s » « s s o o o o & 3=10
4 THEORY OF OPERATIONe o o o o o o o o o s o s o o s-6 o o o o o » o o 4-1
GENERAL ¢ o v ¢ o o o o e 5 o ¢ s o ¢ s o o ¢ 5 o o o s o o o o 4=
SYSTEM HARDWARE CONFIGURATION « & o o o o o o o o o o o o o o o 4=1
ZBOA CPUe & ¢ o o o o o o o o o s o o o o 5 6 s o o o o s o « o« 4=2
CPU REGISTEIrS « o o o ¢ o o s o o o o o o o 2 s s s « o » o 42
Accumulator and Flag Registerse « « o o s o o o o o o ¢ o o 4=2
General Purpose Registers o « o ¢ o o ¢« o o 2 2 o o o s o o 4=2
Irterrupt Vector (1)e o o o o o ¢ ¢ o ¢ e ¢ o o o o o o o « 4=3
Memory Refresh (R)e o o o o o ¢ o o« o o o o o ¢ o o a o « » 43
I1X and 1Y (index Registers) « o o o ¢ « o ¢ o o o o o o « « 44
Stack Pointer (SP)e « ¢ ¢ o o s o o o s o o s o o o o « » o 44
Program Counter (PC)e « o ¢ o o o ¢ o « o o o o« o » o o o« « 4=4
ZB0A Instruction SUMMArye o o o o o o o o o s s o o o o « o 44
FlagsS o o o o o o o o o « o @ 5 o s o o o s 0 s s o a o o 44
64K-BYTE DYNAMIC RAM MEMORY ARRAY . e s s s o s s s o e s s o 4-18
~FLOPPY DISK CONTROLLER AND [MA CONTROLLER e o s o o s s o s s o 4-18
Floppy Disk Controller. « « o o « ¢« o o o« o o o o o o o o o 4=18
DMA Controllere o« o ¢« o ¢ o o o o o o o s ¢ « ¢ o o o o o o 4=22
Z80-Dual Asynchronous Receiver/Transmitters (DARTS) « . . . 4-22
IEEE=488 PORT /0 CONTROLLERe « « o o o o o o o o o o s o s « « 4=23
DISKDRIVES ¢ ¢« ¢ o o o o o o o o o o o o s o o s o o o o o o o 4=23
.5 . SOFTWARE DESCRIPTION o« o o ¢ o o s e o s o o e o « s o 2 » o o 2 o o« 5=1
- GENERAL ¢ o ¢ e o o o 3 « o o ¢ o 5 2 8 o o ¢ s o a o o a s o o 5=1
SOFTWARE ORGANIZATION o & ¢ o o o o o o o o o o s s o o s o« & o« 5=1
‘Software Support Functions. o o ¢« ¢ ¢ ¢ ¢ ¢ ¢ o ¢ o s o o o 5-1
‘Dperating System Generation « % « ¢ ¢ ¢ ¢ ¢ ¢« o 2 s o « « « 54
FUNCT1ONAL -DESCRIPTION OF PROCESSING FUNCTIONS. « « « o o « & « 54
Process Dispatching FUnctions « o« « ¢ « o ¢ ¢ s ¢ o o s o & 5=5
Queue Management FUNRCTIONSe o ¢ o« ¢ o o o ¢ o ¢ s o o ¢ o o 5=5
Flag Management FUNCTiONS o « o ¢ ¢ ¢ o o« ¢ ¢ o o o o o « & 5=5
Memory Management Functions « ¢« ¢« « « o ¢ o o« ¢ o s o & o« & 5=5
. System Timing FUNCTIONS o o o ¢ ¢ ¢ o ¢ « o« o o o o o o & « 5=6
"CONSOLE COMMANDSe 4 o o o o o o o o o 2 o s s s ¢ s s s o s o« 56
USER {DENTIFICATION COMMANDSe ¢ o = o o o ¢ o o o o o o a o o & 56
 GET/SET USER CODE & « o o s » s o o s o s s s s o s o o o o 56
CONSOLE-QOo-”on.-.;no--oo..oooo.o-'s""?
« o o o o 4 o s s e s s s s e s & 5-7

DSKRESETI 2 ®» & e e e e &=

CONTENTS

Chaptar

5 SOFTWARE DESCRIPTION (Continued)
FILE MANIPULATION COMMANDS.

ERASE F‘LE. * [] L] L J [] - L]) L]
TYPE A F”_E ® & . 8 ¢ & o o s @
FILE D‘RECTORYQ e ®» @ o o & o
RENAME FILE o ¢ o o o o o o o
STATUS. * L] [] [] * L] [] * [] L] *
GEI\MOD.V. L] [] [] * “ ® [] * [[
G:WEX. [] L] L] L [) .. [] [] - ® L
pp‘ (‘m - (Y L] L] L L ' [] [] L]
SYSTEM CPERATION c:MMANDs « o o o

PERIPHERAL INTERCHANGE PROGRAM
ASSEMBLER ¢ o o ¢ o »

d ¢ 0°0 o o ¢ 06 ¢ ¢ o 0 06 8 06 0 0 @

SU&'T. @ 6 @ @ & © & & © o ° ° o o o
DLMP. e @6 & o & © & @ ° @ o ° o o 0 e
LOADO e ® ® & ® @ 0 @ @ o & ® ° o o o
575‘54 STATUS e &6 o 6 o & ¢ ° o ¢ o ¢
SPOOLQ ‘e o e e o e @ ®© o & o o o o
PROGRAM OPERAT'ON CG\NANDS. e ¢ o o o o o
TEXT E'TOR e @ o @ @ © 0 o ° o o o o
DYNAMIC CESUGGING TOOLe ¢ o o ¢ o o o
DATE AND T"‘E ®e &6 ®» 0 @ o ¢ o o o 0o o
SCHEDULER e &6 ® & @ @& o o & o o o o o
ABG?T e © @ &6 o o ¢ @ 0 ¢ & @ & o s o
SYSTE4 UT'L‘T‘ES. e & & @ & ¢ o o @ o o o
FLOPPY DISK ¢ ¢ ¢« ¢ ¢ ¢ ¢ ¢ 6 6 ¢ o o
BALD RATE e 6 o ¢ @ @ 0 ° o s ® o o
CONVERT ¢ @ & o o o o ° @ o ¢ o o 0 o
DONNLOAD. e &6 ® o @ 96 o ¢ o 8 o & @

. UPLOAD. e o & @& o © & & o & b & & s o

" THE ASS_MBLE e -8 ® & @ ® o & 6 o o & o @
. THE LlNKERo e o 8.8 8 3 85 6 0 0 0 6 s o »

I nveking the Linkeri'”"‘ o v e
Essentials for Entering L:nker'C:mmand
l‘ﬂVd‘. SIW]C Linkers s~ - . o""

® ® ® O 0 & @ o & © & & 0 O 8 6 b B 2 B 0 0 5 O & 0o & o .0 6 0 > & o ® @ & & & o o o
® o 6 ¢ 5 & & 5 © & 6 p o & 0O ® & 8 ©® 0 6 0 ¢ & & 0 @ & o 9 & ® O 6 o S & o o & & & o
e & & » 5 & 5 o o o @ 0o o & o .. ® & 8 & 6 8 ® 8 6 5 ° S 85 @ 0 & ° 6 ¢ & o & o o O > [}
e ® ® 6 o & ¢ & & o & 0o & & & S 0 .. e ®© 6 © % & & O & o &6 o ° O o o & 0o ¢ & o O [
e 6 ® @ o ©® @ ¢ 8 ® o @ © o 5 ° O &5 8 & ° & 6 6 o 0 O 0o o o o e & o *® o ¢ o o = []
® & ® © ® © © & & o & 6 o o s o ¢ e o @ o o o o ¢ O ® o ¢ ¢ ¢ o o O ¢ ° o 0 o O []

ooo.ooooo-u.oocooooooooo

1 nvoke 1hteractive Commande o v s o o
{nvoke L1nker Command File. « s s o &
- COMMAND PROCESSING ERRORS ¢ ¢ ¢ o o o o o

1]Nm mcm 'ON. ® ®» & & & & o o [> & o

Progl‘am SectTionSe o« o o ¢ ¢ % o o &

The Default SGC""OH e 8 o 5 s o 0 0 o
ASYSTB“ D'AG“OST'CS. ¢ s 0w s s o s o o

Diagms‘r‘c Monitor. . e 9 5 @ 5 o

Opera*ion and Running Tesfs i o o s s

6 TEXT EDITOR, DYNAMIC DEBUGGER AND RELOCATABLE DEBUGGER UTILITY

}
PROWS..oooo.oocoooooooooo.oooooo
TEXT EDITOR UTILITY PROGRAM ¢ « ¢ ¢ ¢ ¢ o o o« o « o » o o
lﬂVQkiﬁg WordSTar o ¢ o« o ¢« ¢ o o o o e o & o ¢ ¢ o o

e ®© 6 &6 & & & 6 © 8 & & & 0 0 0 0 & o & & 9 & b 0 0 o 8 o o 0 o o© o @ [e e o o o []
e 0 6 & @ © & 9 06 B @ ¢ & 0 o © o » & o 6 09 0 0o & » o e @ 0 ¢ o © & & 8 5 06 & o 0+ 0

Pags

S=10
S=11
S-11
5-12
=12 _
. 9=13
$=13
S-13
3«14
S=15
5-15
S=17
=17
5217
=19
$=20
5-20
7-20
s=-21
S=21
5-22
3-22
5-22
S-24
S$=-26
S5=27
5-28
$=-25
5=30
S=3i
S=3
S=32
9=32
=33
S-3%
5-36

=37
342
542
542

CONTENTS

Chapter

§ TEXT ZDITOR, DYNAMIC CEBUGGEZR AND RELOCATABLE DEZUGGER

PROGRAMS (Continued)

Ne=File CommandSe « o s o o o o o o o o0 o
I1lustrative Examplaes of No=File Commands
Help Lavals o ¢« ¢ o ¢ ¢ ¢ ¢ ¢ o o o o
DYNAMIC DEBUGGER AND RELOCATABLE DEBUGGER
Oynamic Debuggere « « « ¢ ¢« o o &

Relocatable Debugger. « « « &
CommandSe o« o « o« o ¢ ¢ o o @
IMPLEMENTATION NOTESe o o o o o o

7 SYSTE‘ @NER\TION. L] L L] * o. 0 e o @

GENWL . * - L L L] L [] L L ¢ o L]
GENSYS PROGRAM DESCRIPTION. « o &

MODIFYING SYSTEM CONFIGURATION.

BANK SWITCHED MEMCORY CONFIGURATION.

Memory Segment Tabl@e « o o o

8 SYSTEM OPERATION « ¢ ¢ ¢ ¢ o ¢ ¢ » ¢ &
INTRODUCTIONe o « ¢ o o o o o o o

TERMINAL KEYBCARD AND KEY FUNCTIONS

Da‘f‘aEn‘h‘yKeys.......

Program Control Character Keys.

Text Control Character Keys .

USER 'NTE.QACT‘ON. [] [] [] * -* * [] .
Sys‘!’em lni?ia*'oﬂ * o & e o @
Entaring Commands « ¢« ¢ ¢ o o
Document Conventionse « « « »
Immediate Command Mode. « « «

-~ Interactive Command Mode. . .

RUNN’NG A PROGQAM s o 3 % 8 ® ® &

ABORTING AN ATTACHED PROGRAM. . .

DETACHING FROM A RUNNING PROGRAM.

ATTACHING TO A DETACHED PROGRAM .

9 SYSTEM DlAGNOST!C FROGRAM. e a0 e o o

GENERALO‘O’OOOQOOJQQ

DlAGNOSTlC EXECUT'ONO s » &8 8 ¢ @

COMMANDS. ¢ o o .0 o o o s e nTe »

FUNCTIONAL TEST DESCRIPTION « « &

¥ 6. &6 & o e © 5 o O o

4.6 6 6 @ 8 6 o & ¢ ¢ o0 0 0 »

¢ © o o @6 8 o ® & 8% o 8 8 0 0 @

o ¢ & ® o ¢ ® & ¢ o o o & & & o
@ ©° 90 © & o o & & * 5 & & ° o @

UTiLITy

® @& & ®& o & & & & & & o » s & 0

Pége

6<2

6=

§-10
§-12
=12
6-12
=13
§=20

Figure ;g B e , Page

1-2V 9820 Softwaras DevelopmenTvSysfem .

2'1 9501 KQYGoardo @ © 5 e 5 6 e @ & 8 06 & ¢ @ o & & ® @ © ® & ® e ® o o 2"5
2-2 $501 D[sal ay Terminal ’ Rear Panele « ¢« o« o« o« @ o ¢ o« o 06 06 6 2 0 & & 2=7
3‘1 | nsardi ng DiskatTe in DFiv@s o « ¢ ¢« o o o o @« s ¢« « « o o o s o ‘s 3-1 i
3‘2 Dfskeﬁ‘a Writa P!‘Q"'ec‘l' Tab ¢ 6 6 6 o 6 6 8 & ® &6 8 6 &6 &6 6 & 8 o a ® 3"‘2
4= 0520 Printad Circuit Bcard Block Dfagram ® o e o o o o 0 0 0 a s s s d=1A
4-2 zso Regfs‘?ers. @ & o ® & & 6 % & 2 & 6 8 ® 6 © 6 8 ® ® & 06 e 8 8 e @ 4-3
4‘3 Opef’a‘ﬂng and Bank MEmMOri@%e « o o ¢ ¢« ¢ s s ¢« o o o o o a o e o« o o 4-18
-1 Davelopment System Software Organization « « « o « ¢« o 2 o o o o o o =2
S5=2 Cross Suppor? Interfacs with Remota StatTioNe ¢ o ¢ o ¢ o o « o a o o 5=3
§=1 Screen Showi ng Nc=File Menu. ® 6.8 o ® 8 8 8 @ o s 8 s o o s s s o o 8=2
o0=< 0O Cormang Display. e @ © & ® 6 ¢ 8 & @ O & © 6 66 @ ® &6 6 % s ° e 0 @ 6‘5
=3 Y Coemmand Display. © & 6 o & o 6 e ¢ o 5 6 o s &6 6 & e o ® e o s & . 8-7
-4 L Command Display. o ¢ 6 6 o o & 8 o 6 @ ® o 6 &6 & o a 6 8 o o o e ¢ B=8
6’5 E Ccmaﬂd Dfsp!ay. ® & ¢ o 0 6 0 & 6 0 ¢ & 8 0 ® & 0 06 0 8 e s s s @ -8
§=5 R Command Dfsplay. ® o & o o &6 2 6 6 & ¢ o 6 0 8 8 v o s 0 0 0 0 e o B=8
§=7 0 Command Dfspl 2Ye. e o o o o s o o o 6 a o s s o s s s e e s o B=10
§-3 Help Level Command D‘Splay e o & o 8 o o e o s ot 6 s e 0 o s o o 8=11
8-1 TYP 'ca‘ KeYboard Arrangemenf ' ® & @ ® 9 8§ 6 © ® & & o & & & o & & @ 8"2

Table | Page .

2-1 Host Interfacs Connector Configuration « ¢ « ¢ o o « o . 2-10

2=2 Printer Connector Ccnﬂgur‘a‘ﬂcn. o ¢ o & o 4 o & & o % o e e o e s o 2=10
3=1 Packaged |tems for Standard 5520 System ConfigurationNe « « o « o o o 3=2
4 -1 SQMW ot Fi ag Opera?fcns © o o6 e 8 & ¢ 0 06 0 8 o 8 8 06 e s o8 o o485
4=2 821+ Lead Group ® ® o & 6 6 o o 6 e 6 8 06 6 6 8 8 s ¢ e o s e 0 s od=T"
4-3 16-8Bi+ Load G"cup. © © ¢ & s e 8 6 e o s o o ¢ o 8 8 s & o ¢ s o o ¢ 4-8
4-4 Exchange Group and Block Transfer and Search Group « o « o ¢« o« o o « 49
4-5 8-8i+ Arithmatic and Logical G"OUD ® ¢ o o ¢ e s s s v a e e 0 e o o 4-10
45 General Purpose ArithmetTic and CPU Control GroupsSe « o o o o o o o o 4=i1
. 4-7~ 16-531‘/\" j+hmetic Gt‘oupo ® ® e & @ 6 6 & 6 & & & © 6 6 6 6 6 & 8 e e 4"‘2 '
4-3 ~R°1‘aﬂ .and Shiftt Grcup ® @ 8 @ 8 & 6 ® © o 5 & 8 o o 6 & 6 6 6 a o o 413
45 - Bit+ -Se+, RQSO"' and Test Group. LR I Y Y I R I I R S 4-14
) 40 Jump Gl"oup l e e 5 8 s o @ .;: . c‘c ® 6 ¢ o o & o s e e s 0 e e e o 4-‘5
B .3! Caij and Re‘h.ll’n Group. o”o ERE) - oi a #.%. 8 8 8 o « o o o e e« o s o 4=16
. "‘2 1npu+ aﬂd Oufpuf Gt‘cup » e . o: e ‘o . . bo‘io ® 8 o 6 06 0 8 o o 0 o d=17
‘-13 ficppy D'Sk Controller Ragfsfers -5 o e & 8 e o o o o e e s s 06 0 o 4=19
"‘!‘ Sfams Rﬂglmr sam. - e o o o e s e o e s o o e o 8 o 0 0o 0 o o« 4-19
415 "Status tor Type | Commands « o o o ¢ ¢ s o o o o« ¢« ¢ s ¢ ¢ 6 a o o« « 4=19
4-16 Status for Type 11 and Type {1} COMANAS « o ¢ o o ¢ e ¢« ¢ ¢ o o o o 4=20
4-17 -Command Summary. 4 8 @ 4 o e 9 & 8 8 0 o 0 a0 o 8 s 8 e s e 08 0 0 o 4=20
“8 FlagSumary........'.....'..... e o ¢ 8 8 s o 0 ¢ o 8=21
-19 Flag Summary ® © o 5 o 8 8 ® & & 8 6 0 06 8 6 s 6 e e 0 s 0 e 0 0 s « 4-21
-20 Flag Summary ® 2 % 2 0 % 0 e 0o 6 0 0 o e s 2 0 0 o e o6 o 0 o v o e o 4222
4.21 RS=232 Por+t Addt‘esses and Fum‘rloﬂs. ® ¢ 0 & & & 5 5 0 5 06 08 8 8 o s 4=22
. ‘-22 9914 Regls‘fers ® © 0 0 & @ 6 v 6 o 6 2 8 06 0 6 6 6 6 8 6 % ¢ 8 e o s 423
6‘1 NQ‘FI'Q Comands ® 6 © & & 6 0 e 0 s e 4 8 0 6 6 2 0 e e & 0 68 e o 6‘3
9=1 Val id Dfagnos‘fic CormandSe « o« o ¢ o @ o s o« o o ¢ a » & o * ¢ o o o 9=2

Chapter 1

INTRODUCTION AND OVERVIEW

GENERAL DESCRIPTION

Millennium System's 9520 Software Development System (figure 1-1) is a general
purpose, low-cost, user-oriented Z80A microcomputer system that is designed to
meet the needs of the programmer in a program development environment. The user
can furnish his own display terminal console or a display terminal console can
be supp!ied with the system, at the users option. The 9520 is a self-contained
(less display terminal console) system that provides all of the capabilities for
the development of user programs. Assemblers, compilers, editors, and document
creation packages are available. The 9520 is a Z80A based system with 64K
memory standard (and additional 48K of memory is an available option) and two
in+sgmal cish+-inch, double densitv floppy Aisk drives. Interface connections
are fhree RS 232-C ports, one RS- 422 port and an |EEE-488 port. These interfaces
allow the 9520 to connect with a display terminal console, a printer, a hardware
emulator (such as the companion 9508j), as wel! as any other compatible peripher-
als.

HARDWARE FEATURES AND CAPABILITIES
- Processor Board

The single printed circuit processor board (figure 1-2) in the software develop-
ment system contains all the circuits necessary fto perform the data manipula-
tions required to develop software. In addition, the printed circuit board has
line drivers and receivers for two-way communication with the display terminal,
and To upload and download software to a debugging system. The processor board
also has a self-test feature, which tests the on-bhoard memory array, baud-rate
and interrupts, the two asynchronous receiver/transmitters, the DMA capability,
the floppy disk controller and the |EEE-488 port.

Power Supply

The power supply furnishes the +5 VDC and +12 VOC required by the processor
board plus the +5 VDC and +24 VDC used by the disk drives.

Disk Drives

The disk drives for the 9520 Software Development System .al lows data to be for-
matted in single or double density on standard 8-inch floppy disks. The reading
or writing of single or double density (FM or MPM respectively) is controlled by
the user (as selected at format time).

Display Terminal

The display terminal may be user furnished or a Millennium 9501 Display Terminal
Console be supplied with the 9520 Software Development System. The only prere-
quisite for a user supplied display terminal is it must be able to display 80
character lines and be compatible with the RS-232C interface.

1-1.

INTRODUCTION AND OVERVIEW

9520 Software Development System

Processor [EEE 488 8-Bit Parallel
' Disk Drives Board =—=====—== |nterface
l _ - 14 PORT
RS-422 High-Speed
| [I --------- > Serial Interface
J13 PORT
' To
RS=232-C Software/Hardware
| [--------- > Debug System
\ J11 PORT
l | | i To
. RS-232-C Optional
| =========> Printer
’ J12 PORT
I RS=-232-C
) ' J10 PORT
| POWER SUPPLY
9501 ,
Display Terminal :
(OR
USER
OPTION)
Figure 1-2.

INTRODUCTION AND OVERVIEW

SOFTWARE FEATURES

This section presents a description of the 9520 software features. [t provides
an overview of the disk operating facilities.

Overview of Software Resources

Two operating systems may be used with the 9520, MP/M™ or CP/M™. MPM is a
priority-driven, disk operating system that provides the user with a multi-
tasking software environment. CP/M is a single-user operating system. These
operating systems provide the following capabilities:

o Creating and editing user source program files using the Edit utility.
o Storage and management of files in source and object format.

o Asseméling and linking of object files for conversion into executable
load modules.

- o Checkout and dynamic debug of source programs originating in the MP/M
and CP/M environment. .

o) Upload'and downioad intersystem communication for the transfer of
" data between the 9520 Development System and a remote hardware/software
in-circuit-emulator station. - .o

User Interface

The user communicates with the software development system by entering input
data and commands at the display terminal keyboard. The keyboard commands are
entered as a single-line character string. These commands access the edit util-
ity, file utilities, !/0 utilities, assembler/cross-assembler and other soft-
ware routines. The system responds by displaying data and messages at the
terminal which prompt the user for additional input, as necessary, to enable
processing to be completed.

The user programs originated at the 9520 Software Development System can be
downloaded to a remote In-circuit emulator station (e.g. Millennium's 9508 or
9516). The users program can then be executed to locate and correct programming

errors and/or detect and correct malfunctions in the microprocessor system cir-
cuits that are subjected to hardware/software integration tests.

Software Packaging

The system programs reside on three standard floppy diskettes. Two of the
diskettes contain the operating system program along with one- or more additional
sets of programs as indicated below. The remaining diskette contains the system
diagnostics.

" MPM, CP/M are Trade Marks of Digital Research of Pacific Grove, CA 93950
1=3

INTRODUCTION AND OVERVIEW

Diskette #1 (SYSTEM).. Operafiﬁg System and Utilities
#2 (LANGUAGE TRANSLATOR).. Cross-Assembler, Linker
#3 (DIAGNOSTIC).. System Diagnostic Monitor and Test Routines

Separate diskettes are available for optional high-level programming languages
(such as C Compiler and PASCAL Compiler). These compilers are used to generate
ob ject code output for 8080, 8085 and Z80 microprocessor-based systems.

The WOEdsfar' Text Editor utility is a standard software feature provided with
the operating system diskette.

The operating details for programming elements of the MPM (Multi-Programming
Moni+cr Contrc! Program) and CP/M (Single-Console Operating Systen) are pro-
vided in separate Users Guide manuals that are shipped with the 9520 Software
Development System.

Information in this manual describes how the MPM, CP/M Operating: System is
used. With this knowledge, the user learns how to invoke the Millennium System
Utility modules to originate and assembie user programs on the 9520 Software
Development System and build load modules that can be downloaded ‘and executed on
a remote software/hardware debugging station.

Operating System Environment
The development system software consists of the following sets of programs:

o Operating System

o System Utilities

o Language Translator

o System Diagnostics
The operating system is based on a memory resident Executive that provides a
variety of services to the system and user programs. The Executive provides all
of the interaction between the hardware and software, and between the system and
the user. All queries to the input/output devices are processed through the
Executive. The Executive includes Interrupt handling, -1/0 processing, super-
visor call processing, user communications and disk file management routines.
The MP/M operating system is easily configured with optional user memory segment
sizes, resident process modules, relocatable modules, and quantity of terminals.

The description of the system generation procedure for MP/M is given in chapter
7. The CPM operating system requires no system generation.

™ Trade Mark of MicroPro International Corporation, San Rafael, CA 94901

1-4°

INTRODUCTION AND- OVERVIEW

System Utilities

The utility programs provide various file management functions such as editing,
renaming, deleting, copying and displaying existing files. The utilities also
include programs which allow the user to access and change certain system para-
meters (e.g. baud rate, BRATE utility) and submit a series of commands from a
tile for batch processing, rather than entry from the keyboard (e.g. SUBMIT
utility). The FDISK utility allows a user to format the diskette for single or
double density applications, duplicate a complete diskette and copy systems
tracks from one diskette to another. ‘

Except for the Text Editor (EDIT) and Dynamic Debugging Tool (DDT) utilities,
+he description aof utility programs are described in chapter 5. -The text editor
and debugging utilities are described in chapter 6.

Language Transiator

The language franslator utility is a relocatable macro assembler which trans-
lates the target microprocessor assembly language programs into object code which
is executable in the users remote microprocessor system. The following micro-
processors are supported via the cross-assemblers: E

o Z80A ’ o 8048/49/41/21/35/39
o 8086/88 o 6800/01/02/03/09
o 8080/85A

Each cross-assembler program is described in a separate publication suppiement
that is listed in the preface. The diskette containing the cross-assembier util-
ity also includes the linker and formatter/downloader software. The linker is
described in chapter 5.

The language franslator utility operates to accept the source program files that
are written in ZBOA assembly language with the Text Editor and converts these
source files into *object files that can be input to the linker program.

*NOTE: Except for the 8048 family cross-assemblers, all cross-assemblers 'Bro-
duce relocatable’ code.

The linker utility links relocatable object files into executable load modules
by resolving all external references to the file while building the load module.

System Diagnostics

The 9520 System Diagnostic program provides the user with a comprehensive set of
programs to diagnose and test system components. |t is designed so that the
user can determine whether a malfunction is caused by a program error or a

fault in the hardware.

The System Diagnostic programs are contained on a separate diskette. The
diagnostic monitor and test routines are described in a separate publication's
supp lement that is tisted in the preface.

1=5

Chapter 2

SPECIF ICATIONS

GENERAL

Millennium System's 9520 Software Development System provides a compact software
development tool housed in a single module consisting of dual-floppy disk drives,
a single power supply and a Z80 based, single board CPU with integral |/0
controller and memory resources.

9520 PHYSICAL CHARACTERISTICS

Dimensions
Height - 13 5/16 inches (33.3325 Cm)
Width = 19 3/16 inches (48.4475 Cm)

- Depth = 24 1/8 inches (61.085 Cm)

Weight - 74 Ibs (33.6 kilogms)

Environmental Limits Operating Storage’
Ambient Temperatures = 40° to 104°F (4.4° to 40°C) -8°F to 117°F
Relative Humidity = 20% to 80% 1% to 95%
Maximum Wet Bulb = 78°F (25°C) No Condensation
Cooling

System cooling is provided by two, AC operated fans, mounted at the rear of the
enclosure, that draws cool air through the disk drives, over the power supply
and accross the single printed circuit board.

#ER% CAUT ION e

The system top cover must be replaced before AC power is applied. Operation
without the top cover will defeat the cooling function of the fans and damage to
the disk drives, power supply and/or the printed circuit board may occur.

AC Power Requirements

50/60 Hz + 0.5 Hz
100/115 + 108 VAC
200/230 + 10% VAC

SPECIF ICATIONS

Fuses for Rated Voltage

Voltage Power Supply and Fan | Disk Drives
(F1) (F2)
B .
100/115 VAC 3AG, 5 Amp 3AG, 1.0 Amp
200/230 3AG, 2.5 Amp 3AG,0.75 Amp
—

Front Panel Controls

POWER
PUSH ON/OFF

DIAG INT

RESET

The power on/off switch is illuminated (red) when AC power is
app!ied to the Software Development System. When the push-
switch is illuminated, this indicates not only the presence
of AC voltage but also the presence of +5 VDC.

The DIAG INT (diagnostic interrupt) push-switch is used when
the diagnostic disk is Inserted in the disk drive. The
switch must not be used when the Software Developmeént System

is operating.

When activated, the RESET push switch reinitializes the
internal microprocessor and forces the system to jump to the
on-board self-test program. ‘

Input/Output Rear Pane! Ports and Switches

J10-CONSOLE

J11-RS=232-1

J12-RS-232-2

J13-RS-422

J14-|EEE 488

Standard RS-232C, thypé, 25-pin (DCE configuration) female
connector. Connector J10 is generally connected fo the
Display Terminal.

Standard RS-232C, D-type, 25-pin (DCE or DTE configuration
option) female connector. Connector J11 is generally con-
nected to the software/hardware debug system.

Standard RS-232C, D-type, 25-pin (DCE configuration) femaie
connector. Connector J12 is generally connected to the
printer.

Standard RS-422A, D-type, 37-pin female connector. Connector
J13 is generally connected to a unit with serial, high~speed
input/output transfer requirements. (Corresponds to RS-449
configuration.)

This connector is a standard, 24-pin, female, high=-speed
parallel transfer |/0 port. The port provides eight-data/
address l|ines, eight control lines and eight signal and
frame ground lines.

SPECIF ICATIONS

J15 POWER ON Standard AC, male, connector for power input.

S5 BAUD RATE S5 is an eight-position rotary switch used to select the
Positions: desired baud rate. The switch position is read by the system
0 110 and can be changed each ftime the system is reset.

1 300

2 600

3 1200

4 2400

5 4800

6 9600

7 19200

- R

Q -

S6 DEVICE ADDRESS The DEVICE ADDRESS switch is a five-position DIP switch that
controls addressing of the peripherals connected to the |EEE-
488 (GPIB interface) port. ,

Power Supply Specifications

The 9520 power supply provides the four DC operating voltages necessary for the
operation of the single processor board and the disk drives. The specifications
for the power supply are as follows: :

AC Input
90 +o 130 volts or 180'+o 260 volts AC
47 to 63 Hz, single-phase
(Power Supply input is adjusted at Millennium in accordance with user
requirements.)
DC Qutputs
Voltage Current
+5 volts 20A max.
+12 volts 5A max.
-12 volts 3A max.
+24 volts 3.5A max.

Maximum Output Power 150 Watts
Regulation Characteristics

Line: +0.1% for a full line change of 90-130 VAC or 180-260 VAC.
Load: +0.1% for a 100% load change.

Hold=up Time
20 milliseconds minimum after AC input voltage is lost.
Output Noise

50 mv PK-PK maximum
2-3

SPECIFICATIONS

Disk Drive Specifidafions

The specifications for the disk drives are as fol lows:

Performance Specifications

Capacity

Unformatted
Per Disk
Per Track
IBM Format
Per Disk
Per Track
Transfer Rate
Latency (average)
Access Time
Track to Track
Average
- Settling Time
Head Load Time

Functional Specifications

Single Density

Rotational Speed
Recording Density
(inside track)

Flux Density
Track Density
Tracks
Physical Sectors
SA800
SA801
index
Encoding Method
Media Requirements
SA800
SA801

9501 Display Terminal Console

3.2 megabits
41.7 kilobits

2.0 megabits
26.6 kilobits
250 kilobits/sec
83 ms

8 ms
260 ms
8 ms
35 ms

Singie Density
360 fpm |

3200 bpi
6400 fci
48 +pi
77

0
32/16/8
1

™

SA100/1BM Diskette
SA101

Double Density

6.4 megabits
83.4 kilobits
n/a
n/a

500 kilobits/sec
8 ms

8 ms
260 ms
8 ms
35 ms

Double Deénsity

360 rpm

6400 bpi
6400 fcik

48 tpi

77

0
32/16/8
1 2

MFM /M“FM

SA102/1BM Diskette
SA103

The 9500 Family.Software Development System can be purchased with an optional

display terminal.

The following paragraphs

the 9501 Display Terminal Console.

Display Cabinet Dimensions

Height - 14.0 inches (35.6 Cm)
Width = 16 1/2 inches (41.9 Cm)

Depth - 14 1/4 inches (36.2 Cm)

2-4

list the physical characteristics of

SPECIF ICATIONS

Keyboard Dimensions

Height - 3.0 inches (7.6 Cm)
Width = 16 1/2 inches (41.9 Cm).
Depth = 7 1/2 inches (19.0 Cm) |

Cabinet Weight - 30 Ibs (13.6 kilogms)
Keyboard Weight ~ 4.5 Ibs (2.3 Kilogms)

Environmental Limits .+ Operating

Ambient Temperature 32°F to 122°F
5 (0°C +o 50°C)

Relative Humidity . 10% to 95%

S+crage
-40°F to 149°F
(-40°C to 65°C)

N/A

(Non Condensing) {(No Restriction)

AC Power Réquiremenfs

50/60 Hz + 0.5 Hz
100/115 + 10% VAC"
200/230 ¥ 10% VAC

Fuses for Rated Vol tage

VOLTAGE

FUSE

" —100/115 VAC

3AG, 1 Amp

200/230 VAC

3AG, 0.5 Amp
SLO-BLO

SPECIF ICATIONS

9501 Display Terminal Controis

Front Pane! Controls

Other than the movable keyboard, as shown in figure 2-1, there are no front

panel controls. The keyboard interfaces with the display ferminal via an expan-
sion cable (similar to a telephone cable).

SPECIFICATIONS

Rear Panel Controls and Connectors (figure 2-2)

The controls on the 9501 Display Terminal rear pane! are the POWER switch,
CONTRAST control, the FUSE holder, the BAUD RATE setup switch and the FUNCTION

setup switch.

2-7

SPECIF ICATIONS

POWER Switch

CONTRAST Switch

S1 BAUD RATE
(S1P) Switch

S2 FUNCTION
Select Switch
(SIP)

The POWER switch is a rocker-type switch. When the end of
the switch with the white dot is pressed, AC power is applied
to the 9501 Display Terminal. Pressing the unmarked end of
the rocker switch removes AC power. One second after the
white-dotted end of the POWER Switch is depressed, an inter-
nal beeper will beep indicating the presence of AC power.

The CONTRAST switch is a rotary switch that controls the
white to biack intensity of the visible display. The switch
can be set fo the users satisfaction.

The S1 BAUD RATE select switch is a 10-position, bit selec-
tion switch. The bit selection positions determine the baud
rate input into the display terminal, the baud rate output
from the display terminal, number of stop bits and word
length. The following illustration (figure 2-3) shows the
bit allocations and the baud rate select bit configurations.

The S2 FUNCTION select switch is a 10-position, bit selection
switch. The bit selection positions select operational func-
tions for the display terminal. The following illustration
(figure 2-4) shows the bit allocations, the 1/0 mode and the
parity selection. :

SPECIF ICATIONS

SEL SW The position of this lef+/right switch must coincide with the -
115/230 VAC primary AC source voltage. The left position of the switch
indicates the 115 VAC source; the right position of the
SWITCH switch indicates the 230 VAC source. The SWITCH BLOCKING
BLOCKING STRIP prevents the inadvertent changing of the switch.
STRIP

FUSE 115 VIA/ The FUSE holder contains the fuse that protects the internal
230 0.5 A circuits.

303636 36 36 3030 36 36 3636 96 36 303 636 26 38 3638 36 366 36 36 36 26 36 96 36 36 96 3636 36 336 36 38 3636 3 36 3636 636 36 % 3%

- CAUTION -

The Iintent of the fuse should never be
ignored, nor should any attempt be made
to defeat the intention of this protec-
tive device, as damage to the equipment
may occur.

X K Kk &k kK Xk ¥k Xk Xk
* K K Kk K K kK Xk X

3 3636 36 36 96 36 3696 36 36 36 36 3636 3 36 36 3 3636 36 36 36 I 36 I 36 36 3696 I6 36 3 6 36 I 636 3696 6 6 I I I3 %

SPECIF ICATIONS

P3 (RS-232) This is a 25-pin, female, RS-232C connector port that is
generally connected to the host source. The internal con-
figuration of the connector is shown in table 2-1.

Table 2-1. Host Interface Connector Configuration

PIN No. SIGNAL NAME

Frame Ground

Transmit Data OQutput
Receive Data Input

Request To Send Output
Clear To Send Input

Data Set Ready Input (opt.)
Signal Ground

Carrier Detect Input

Data Terminal Ready Qutput
20 mA source (+12V, no load)
20 mA source (+12V, no load)
Detected current loop data
Current Loop -+, Transmit*
Current Loop -, Transmit¥*
Current Loop +, Receive*
Current Loop -, Receive*

N=—=RN==0ONO~JOANEWN—
AN UWUO S [«]

P3 (PRINTER) This is a 25-pin, female, RS=232C connector port+ that may be
connected to an optional printer. The internal configuration
of the connector is shown in table 2-2.

Table 2-2. Printer Connector Configuration

PIN No. ' SIGNAL NAME

Protect Ground
Transmit Data
Receive Data
Request To Send
Clear To Send

Data Set Ready
Signal Ground

Data Carrier Connect
0 Data Terminal Ready

NO~-NNODH WN —

2-10

SPECIF ICAT IONS

Power Cord

P6

The power cord applies the AC power to the 9501 Display
Terminal. One end of the power cord is permanently affixed
to the 9501. The free end is a standard 3-prong connector.
| the equipment is used for international applications,
remove the U.S.-style connector from the power cord and
install a connector that will mate with the local power
receptacie. Power cord wires are color-coded as follows:

green = earth ground,
black = primary power (hot),
white = primary power return (neutral).

The P6 receptacle accents the expansion cord fram the key-
board. T[he receptacle is configured as a snap-type modular
receptacle.

2=-11

Chapter 3

INSTALLATION AND CHECKOUT

GENERAL

This chapter describes the procedures for installing the 9520 Development System
components at the users site. The user may install his own display terminal or
the optional 9501 Display Terminal that is availiable for use with the equipment.
Installation involves the inspection and set up of components, connecting the
Display Terminal Console to the 9520 Development System and conducting the
system power on check to verify the operational readiness of equipment.

UNPACKING AND VISUAL INSPECTION

All of the hardware and software items that are required to install and operate
the equipment at the users site is shipped in packaged units. External cables
are included for connecting the display terminal to the 9520 Development System.
All items shipped for the standard system configuration are described in table
3-1.

The 9520 Development System (and optional 9501 Display Terminal Console, if
provided) was thoroughly inspected and checked out at the factory prior to
packaging for-shipment to a customer. After removing the equipment from it's
box, inspect for scratches, dents or other damage that might have occurred
during shipping. Refer to the shipping papers to verify that all the -components
are present. - - -

| f physical damage is evident when received, do not operate the equipment. File
a claim with the shipping firm immediately and notify Millennium System's
Customer Service department at once. Millennium will arrange for repair or
replacement of the equipment without waiting for settlement of the claim against
The carrier. '

[f the equipment must be returned to Millennium, attach a +ag showing the owner,
address, serial number, and a description of the failure. The original shipping
carton and packing material should be reused with the RMA (Returned Material
Authorization) .number prominently displayed. An RMA number can be obtained by
calling Customer Service on the toll-free, hot-line numbers listed in the pre-
face.

Millennium System's Technical Support Representatives and Customer Engineers are
available to provide consultation and assistance on request.

INSTALLATION AND CHECKOUT

Table 3-1. Packaged !tems for Standard 9520 System Configuration

QTY ITEM DESCRIPTION

1 9520 Development System Unit
1 AC Power Cord

1 RS-232 Interface Signal Cable
(for Display Terminal)

1 (User Option) 9501 Display Terminal Keyboard Unit
(TeleVideo Model #950)

3 Standard Diskettes which contain the
following software:

“a) Operating System Software
b) Language Translator Software
¢) System Diagnostic Software

1 Pkg Document Package which consists of the
following manuals:

a) MPM™, CP/M™ User Guide

b) WordStar™ Text.Editor User Guide

c) 9520 Development System Users Manual

d) 9501 Display Terminal Operators
Manual (provided with optional
Display Terminal)

.

MAINTENANCE AND SERVICE POLICIES

Unless notified to the contrary, any claims for operations assistance and/or
service will be provided by Millennium Systems, Inc., from its plant in
Cupertino, California. Should assistance be required, call Customer Service.

AC INPUT REQUIREMENTS

The 9520 Development System is wired by the manufacturer to accept AC power
input for 100V/115V and 200V/230V at 50 or 60 Hz. Before installing the equip-
ment, check the power specification label on the back panel to ensure that AC
input requirements for the equipment coincides with the facility supply level.
If a discrepancy is noted, do not attempt to make adjustments and contact the -
Millennium Customer Service Representative.

INSTALLATION AND CHECKOUT

INTERFACE SWITCH SETTINGS

The development system employs three hardware interface switches, SW1, S5 and S6
that adapt the system for the users operating requirements.

Two of the switches, S5 (Baud Rate) and S6 (Device Address), are located at the
rear of the development system chassis. The settings for these switches is
determined by the system operating characteristics as described in subsequent
paragraphs.

The Disk Alignment Switch (SW=1) is located on the processor printed circuit

board inside the Development System chassis. This switch adapts the system for
compatibility with the tvpe of display terminal interfaced by the user and

enabie aisk aritgnment aid diagnostics.

Baud Rate Switch

The Baud Rate Switch (S5) is an eight-position, rotary switch. Each position of -
the switch selects a specified baud rate within the range of 110 through 19,200

as indicated. by the label and associated calibration marks for each switch
position.

All other baud rates can be selected by the software after the system is ini-
tialized. - The BRATE utility program permits a user to examine and modify the
baud rate or status line usage for the assigned port. The BRATE utility is -
described in chapter 5.

Device Address Switch

The Device Address switch (S6) is a five-position DIP switch that is used to
assign the hexadecimal, 1/0 device, address for the |EEE-488 parallel port at
connector -J14. The user can position the bit switches to select one out of a

possible 32 combinations (,5) tor the address assignment.

Disk Diagnostic Switch

The Disk Diagnostic Switch (SW1) is a four-position DIP switch that Is used to
select the type of display terminal interfaced with the system and to enable the
Disk Alignment Diagnostic program. The switch positions SWi-1 through SW1-4
must be set as follows to interface the display terminal to the 9520:

NOTE: The positioning of SW1 to enable the Disk Al ignment Diagnostic is not

required for installation, but is described in the 9520 System Diagnostic
Manual.

3=3

INSTALLATION AND CHECKOUT

SWi1-=1 SW1-2 SW1-3 SWi1-4" FUNCTION

OFF OFF OFF OFF BOOT, TELEVIDEQO 950 TERMINAL

OFF OFF OFF ON BOOT, ANY OTHER TERMINAL TYPE

OFF X OFF X BOOT, CHECK SYSTEM IDENTI!FICATION BYTES SINGLE
DENSITY

OFF X ON X BOOT, NO CHECK SYSTEM IDENTIFI!CATION BYTES
SINGLE DENSITY

OFF ON OFF OFF

OFF OFF X X PRESENTLY NOT USED

OFF OFF ON OFF

ON X X X ENABLE DISK ALIGNMENT AID PROGRAM

ON OFF OFF OFF SEEK TRACK 00

ON OFF OFF ON ALTERNATELY SEEK TRACKS 00 AND Ot

ON OFF ON QOFF READ TRACK 1

ON OFF ON ON READ TRACK 37

ON ON OFF OFF READ TRACK 38

ON ON QFF ON READ TRACK 39

ON ON ON OFF READ TRACK 76

ON ON ON ON WRITE TRACK 76

PREPARATION OF EQUIPMENT FOR USE

Use the following procedures to set up the equipment and complete the external
cable connections. ’

9520 Development System Preparation and Set Up

1. Open the disk drive access doors and remove the cardboard Shipping Disk that
is installed for packing purposes. The shipping disk is installed by the
manufacturer to avoid possible damage to read/write heads when the equipment
is either transported or stored for long periods. This shipping disk must
be inserted by the user (with the heads positioned at track 76) whenever the
equipment is packaged for reshipment.

2. Verify that the Baud Rate and Device Address switches (S5 and S6) located on
the rear of the chassis, "are adjusted as described in previous paragraphs.
|f the |EEE-488 |/0 port at connector J14 is not used, it is not necessary
to adjust the Device Address Switch (S6).

9501 Display Terminal Preparation and Set Up

The preparation and set up requirements for the 9501 Display Terminal are
described in the Operators Manual that is shipped with the equipment. Refer to
the manual for the various switch settings, configuring of interface connectors
and setting the desired baud rates, work lengths and stop bits.

The 9501 Display Terminal Console is equipped with an internal self-test
diagnostic, which can be conducted in a stand-alone mode, i.e., without the need
for connecting the terminal to other equipment.

3-4

INSTALLATION AND CHECKOUT

The RS=232 cable that is shipped with the 9520 Development System is used for
tThe test connections as described in the procedure which follows. The self test
diagnostic performs a check of the video attribute functions and the com-
munications path between the printer output port and terminal input port. The
self test is to be conducted as follows:

1. Connect the power cable to the facility AC source.

2. Position the four Terminal Baud Rate switch positions (on S1 Baud Rate) 7,
8, 9, 10 to be identical to the Print Baud Rate at switch positions 1, 2, 3,
4, respectively. This sets the Baud Rate for the printer output port to the
same rate as the RS-232 Input port.

3. Switch positions 5 and 6 (of S1) are not to be changed for the Self-Test.

4. Connect the RS-232 Cable from the connector labeled P3 to P4.

5. Turn on the Display Terminal power switch. Allow 10 to 15 seconds for the
screen to warm up and dlsplay the cursor in the upper left-hand corner of
screen. .

6. Press and hold 'H\e SHIFT key while pressnng the SET-UP/NO-SCROLL key.
7. Press and release the | key.

The screen:should display all available characters and atiributes for
reverse video, grey shade, blinking line and underscore.

8. Press and release the Z key.
a) All but the bottom line of the screen should be cleared.

b) After approximately 3 seconds, the word PASS should be displayed in the)
upper left-hand corner of the screen to indicate the test was successful.

c) |f FAIL 2 appears, verify that Baud Rate switches are set the same for
both ports. Also verify that the RS-232 cable is securely connected be-
tween P3 and P4 and repeat the test.

d) If the problem still persists, refer unit/problem to Millennium Customer
Service personnel.

External bable Connections

External cable connections for interfacing the users peripherals'fo the 9520
Development System are given In the following table.

FROM: CONNECTOR ON TO: USERS EXTERNAL
9520 CHASSIS | /0 PORT DESCRIPTION PER | PHERAL
J10 RS~232-C Interface Display Terminal Unit
J11 RS=232-C Interface . Software/Hardware Debug
System Unit

INSTALLATION AND CHECKOUT

(continued)
J12 RS=-232-C Interface Users Optional Printer Unit

J13 RS=-422 |nterface Users Optional High=-Speed
Serial 1/0 Interface Device

J14 |EEE-488 - Users Optional Parallel
Interface |/0 Device

POWER ON CHECK

CAUTION: The diskette should not be engaged with the disk drive during any
initial power-up sequence as damage to the diskette may result.

The power on check is performed by the system to verify the operational readi-
ness of hardware components whenever the system Is powered up or restarted. The
power on check Is implemented by a self-test, bootstrap program that is per-
manently stored in the 2716 EPROM firmware on the printed circuit board. The
program diskette should always be removed from the disk drives (or if the
diskette is installed, the access door should remain open) whenever AC power is
applied to, or removed from the system.

The 9520 Boot PROM diagnostic is automatically initiated when-the POWER switch
is furned ON to power up the system from a cold start, or when the RESET switch
is operated to reset system operations. The Self Test diagnostic performs an
operational check of on-board circuit functions. The status of the test is-pre-
sented to the operator by means of eight LED indicators that are located on the
printed circuit board and a message that is displayed on the terminal screen.

Initial Start Up of System
Use the following procedure to power up'fhe system from a cold start:

1. Turn on the POWER switch at the display terminal. The physical location of
this switch will vary with different terminals, and may be located at the
front, rear or side of the terminal chassis.

The terminal response when power is applied will also vary with different
terminals. A typical response is as follows: -

a. The terminal bell will beep within 1 second to indicate power is on.

b. After 10 to 15 seconds, the cursor will appear in the upper left-hand
corner of the screen.

At this time, the operator can adjust the contrast (or intensity) contro! to -
obtain the desired brilliance for the screen.

2. Verify the diskette is not mounted on the disk drives and turn on the POWER
switch at the 9520 development system control panel.

3. Observe the terminal display which presents the following message line to
indicate the Boot PROM diagnostic is running.

9520 SELF TEST VERS 2.0 CO
3-6 ‘

INSTALLATION AND CHECKOUT

The diagnostic routine runs for approximately three seconds. A total of
eight circuit functions are checked by the program. Each circuit function
is coupled with an LED which illuminates to provide status to the operator.
The displayed message !ine spells out the word C-Q0-M-P-L-E-T-E as each cir-
cuit function passes its test. The LEDs are numbered 1 fthrough 8, beginning
at the rear of the chassis and counting forward.

NOTE: The LEDs are located under the top cover of the 9520 chassis on the

top edge of the printed circuit board. I+ is not necessary fo remove.
the top cover unless a malfunction is detected by the diagnostic (see
step 5).

The follawina cir~nit+ funet+ions are tested in sequence with the correspond-
ing LEDs and display message providing status for the test results:

DISPLAY TEST SEQUENCE
MESSAGE LED # ON-BOARD CIRCUIT TESTED

1 Baud Rate Generator and Interrupt Controller
(Z80-CTC Counter/Timer)

co 2 Serial RS=232 1/0 Port+ Dual Asynchronous Receiver/
’ Transmitter (DART 2) :

CcM 3 Serial RS-232 |/0 Port Dual Asynchronous Receéiver/
- Transmitter (DART 1)

cavwpP 4 Floppy Disk Control I'__er

COMPL 5 Parallel |EEE-488 |/0 Port Controller

COMPLE 6 - RAM Memory Locations 8000H - FFFFH

COMPLET 7 RAM Memory Locations Q000H - ?FFFH

COMPLETE 8 OMA Control ler

All of the LEDs are turned on initially when the system is powered up or
reset. As the diagnostic steps through each circuit under test, the vali-
dity of each circuit function is verified. The LED is turned off, and one
of the message characters is displayed, if the circuit passes the test. The
diagnostic then advances to test the next circuit in sequence. This testing
sequence is repeated for each of the tests. +the program will then read the
state of the SW1 DIP switch on the printed circuit board to verify the
switch is off. The off position indicates the Disk Alignment Aid routine is

. not selected and the operating sysfem program can be booted into memory from

the system diskette.

If no malfunction of the hardware is detected by the diagnostic, the
following message is displayed on the terminal screen to notify the operator
that the system diskette can be installed and loaded into memory to generate
the system parameters and begin system operations as described in chapters 7
and 8.

9520 SELF TEST VERS 2.0 COMPLETE

INSTALLATION AND CHECKOUT

Resolving Start Up Problems

If a malfunction is detected by the self test diagnostic, the LED associated
with the failed circuit remains iliuminated, the displayed message line is not
comp leted, and the program will halt on the error. One of the following error
messages is displayed at the terminal screen to notify the operator that a

mal function is present at startup:

[ERROR MESSAGE LED # DISPLAY CHARACTER
CKSWM ERROR
NO STACK ERROR 1
TIMER ERROR
’_
RDR/PUN ERROR 5 o
CONSOLE ERROR
RS422 ERROR 5 "
~ REM10 ERROR
INVALID INT ERROR 4 P
5 T
RAM 8XXXH ERROR 5 e
RAM CXXXH ERROR
. .
RAM OXXXH ERROR ; .
RAM 4XXXH ERROR
!—
DMA TST BAD DATA
UNEXPECTED [MA INT 8 c
UNEXPECTED IEEE-488 INT
UNEXPECTED 60 Hz INT

The presence of a malfunction makes it necessary to turn off AC power at the
system and remove the top cover from the 9520 chassis to examine the LEDs. Turn
on AC power to repeat the self-test diagnostic and check the LEDs and the
display. The LED associated with the failed task will be illuminated along with
corresponding LEDs for any remaining tests that were interrupted. The cause of
the malfunction will be indicated by the displayed error message and the missing
characters in the C-0-M-P-L-E-T-E string.

INSTALLATION AND CHECKOUT

At this point, rather than run system diagnostics, turn off AC power and check
the printed circuit board connections to ensure the contacts are firmly seated

in the back panel socket. Also, check the board interface harness and cable
connectors to ensure that all connections are tight, as these connections can
become loose if the equipment has been subjected to rough handling. Turn on AC
power to repeat the diagnostic with board connections secured. Verify that the
test is completed without malfunction, and that the message described in step 4
is displayed on the terminal screen to indicate that the system can be placed in
operation as described in chapters 7 and 8.

If the malfunction is still present, it will be necessary to load the System
Diagnostics diskette to isolate and correct the problem. Contact the
Millennium Svstem's Customer Service Representative via the telephone numbers
listed in the preface.

Restarting System Operations
CAUTION: The RESET switch should not be acfi§a+ed during any system cpera+fon.

System operations can be restarted by pressing the RESET pushbutfon switch
located on the control panel. Operation of this switch ferminates the current
process operation-and places the system in a reset state.. This state causes the
sysfem to wait until the next command entry is issued from the terminal keyboard
prlor ‘o beglnnlng execution. . .

System Shutdown Operations

The system is shut down by first waiting for the current process operation to be
completed so that the system is waiting for an input command from the keyboard.
Next, open the disk access door (as described in Changing and Handling
Diskettes) and remove the diskette. Operate the respective POWER switches on
the development system control panel and at the display terminal to remove AC
power from both units which comp |letes the shutdown operation.

CHANGING AND HANDLING DISKETTES
Disk Drive Particulars

The two disk drives (figure 3-1) are mounted vertically on the front .pane! of

- the development system chassis. Drive A Is located at the far left of the panel
and Orive B is located near the center. Changing a diskette Involves inserting
and removing the diskette at a specified drive, and relocating a dlske++e from
one drive to the other.

The latch bar on the drive access doors contain LED indicators which illuminate
during system operations to show that data is being read from, or written to the
diskette. These indicators must be turned off to show that read/write opera-
tions are completed before a diskete can be removed. Also, the system must be
in the input mode (i.e. waiting for the next command entry from the keyboard
before the diskette is removed.

3-9

INSTALLATION AND CHECKOUT

963696 36 36 36 36 36 36 3 I J 3 36 36 3636 36 3 3 6 36 I I 36 36 3 36 36 36 I 26 36 36 J6 I I 36 3 I 36 9 3 3 36 3 e I J I I I 36 I 3 %

- CAUTION -

*

*

*

* |t is considered good practice fo completely remove the
* diskette from the drive, or to open the drive access

* door (if the diskette is installed) prior to removing

* and applying AC power to the system. This will avoid

* possible disruption of recorded data which might occur
* if the diskette is in contact with the drive spindle

* during the power up/shutdown operation.

%*
*

* kK K Kk Kk kK K K X XK X

636 36 236 36 36 3 I 36 6 36 36 36 3 6 e 36 36 36 36 6 I 6 36 363 36 6 I I I 96 36 36 I I 3636 36 36 36 6 3 36 36 36 6 36 36 3636 3 36 36 6 9636 3 %

Inserting Diskette in Drive

The diskette can be inserted in the disk drive with all power on and the drive
spindle rotating. Use the following procedure (see figure 3-1).

1. Press the latch bar to open the access door at the selected drive. (The
-access door is spring-loaded to swing open when the latch bar is pressed.)

2. Position the diskette so that its Label Index Access Hole faces to the right

(see figure 3-1) and the write protect tab is toward the top; fhen push fhe
diskette into the opening as far as it will go.

3. Move the latch handle to the left to close the opening and lock the diskette
on the drive spindle to compliete the insertion procedure.

Removing Diskette from Drive

The diskette can be removed frqm the disk drive with al! power on and the drive
spindle rotating. Any read or write operation in process should be terminated
before removing the diskette from the drive. Likewise, any data in memory that

is to be saved shouid be written to the disk before it is removed. Use the
following procedure (see figure 3-1):

1. Verify that all read/write operations have been completed at the selected
drive (i.e. the LEDs on the latch handle should be turned off).

2. Press the latch bar to open the access door at the selected drive. (The
access door Is spring-loaded to swing open and eject the diskette from the
spindle when the latch bar Is pressed.)

3. Pull the diskette from the drive to complete the removal procedure.

Care of Diskette

The floppy diskette is a flexible disk enclosed in a permanent jacket. The
interior of the jacket is lined with a wiping material which cleans the disk of
foreign matter. the diskette should be stored in an envelope when it is removed
from the drive.

3-10

INSTALLATION AND CHECKOUT

Figure 3-1. Inserting Diskette in Drive

3=-11

INSTALLATION AND CHECKOUT

Handliné and Storage: Special precau+idns should be used, as follows, Yo pro-
tect the diskette during handling and storing:

1. Return the diskette to its storage envelope whenever it is removed from the
disk drive.

2. Keep diskette away from magnetic fields.and from ferromagnetic materials
which might become magnetized. Strong magnetic fields can distort recorded
data on the diskette.

3. Replace storage envelopes when thy becqhe worn, cracked or distorted.
Envelopes are designed to protect the diskette.

4. Do ot write on the plastic jacket wiTH a lead pencii or ball-point pen. Use
a felt tip pen.

5. Heat and contamination from a carelessly dropped tobacco ash can damage the
diskette.

6. Do not expose diskette to heat or sunlight.

7. Do not fouch or attempt to clean the diskette face. Abrasions may cause
loss of stored data.)

Write Protect Feature: The diskette has the capability of being write protected.
(i.e. writing o the diskette can be Inhibited so that a read-only condition is
present. This feature is partieularly useful when a diskette contains master
programs, text or other data intended for read-only purposes, and the need exits
for preventing inadvertent writing to the disk that would destroy the data.

The write protect feature is enabled by the small hole located near the outside
edge of the jacket (see figure 3-2). When the hole is open, writing is
inhibited. '

The capability for writing to the disk is enabled by covering the hole. The

hole is covered by placing a paper tab over the front of the hole and folding
the tab over the edge of the jacket to cover the rear of the hole. The tab can

be removed from the hole at anytime to restore the write protect condition.

Figure 3-2. Diskette Wite Protect Tab

Chapter 4

THEORY OF OPERATION

GENERAL

The 9520 Microprocessor Software Development System is a software development
system with 64K bytes of memory. This 64K bytes of memory is expandable to 112K
bytes by the addition of an optional 48K-byte RAM board. The 9520 system also
has two floppy disk drives that provide one megabyte of mass storage. Adding
the optional memory converts the 9520 into a dual user system. :

Operating the 9520 with the MPM operating system allows the user to accompiish
several software tasks simultaneously. For exampl!e, the user can assemble,
edit, and spool to a printer, one or more text files.

The 9520 system provides a quick, easy human interface between the user and the
computer. A full screen display furnishes access to large blocks of data at one
time. ;

Interface between the 9520 Software Development System and peripherails Is
accomp | ished by three RS-232C ports, one high-speed serial RS-422 por+ and an
eight-bit, parallel |EEE-488 port. These port configurations allow the 9520 to
directly interface with a-host computer and a hardware/software debug sysfem
providing a complete development system.]

SYSTEM HARDWARE CONF |GURATION

The 9520 Software Development System hardware consists of five basic functional
units (figure 4-1) that are located on"a single, printed circuit board. The
five units are as follows:

1. The central processing unit (CPU) is a Z80A hicroprocessor.

2. A 64K-byte dynamic RAM array, consisting of 32 2118 RAM chips. The RAM
array is expandable to 112K-bytes with the 48K-byte option.

3. The direct memory access (DMA) and floppy disk controllers are Z80-DMA and
WD1797 chips, respectively.

4. The two dual asynchronous receiver/transmitters (DARTs) are Z80-DART chips,
that communicate with the four serial |/0 ports.

5. The |EEE-488 port 1/0 controiler is a 9914 GPIB device that provides 8-bit
paralliel communications with an 8-bit computer system.

The following paragraphs wiil highlight functions of the components comprising
the specified basic units. The location for additional details pertinent to the
individual units will be referenced in each discussion.

Z 30A
c P k
A
LYK RAH -
L]
! !
1
I TgeK AW
-y A RRAY
T L(oeTiN) |

8-R1T CARALLEL DATA

o
FLoPPY
DIsKS
——>1 CoNTROUER

FRON

F2ks

F-](" \)(@, L/‘) . ‘)\ngl\’ P’(‘ I\L/.-L'Céﬂ (/‘q\ C\’l‘; &’O*L\"Ul B)DQKNJ}(‘&C (o

o DART

Da Ry

JETF-488

L ;I [ETZE-4g8 |

POy
tr /O
CoNTRoLIFR

)

ARALLEL
I/o PoRT

-7 —1
oz

THEORY OF OPERATION

Z80A CPU

The Z80A microprocessor is the heart of the 9520 system. It functions to obtain
instructions from memory and perform the requested operations. Memory is used
to retain instructions and in most cases data that will be manipulated. For
example, an instruction sequence may be read data from a peripheral device,
store the data in a memory location, check parity, and write the data to another
peripheral device. Thus, all necessary components are interfaced in a manner
requiring minimal external logic. This CPU and its associated circuits enable
the user to concentrate his efforts on software development. A brief descrip-
tion of the Z80A registers and their functions plus the instruction set by func-
tion are contained in this paragraph.

CPU Registers

Figure 4-2 illustrates how the registers are configured within the Z80A. These
registers provide 208 bits of programmer accessible storage. There are two sets
~of 8-bit accumulators and flags, two sets of six 8=bit+ general purpose registers
and six-special purpose registers, fwo that are 8-bit and four that are 16-bit.

Accumulator and Flag Registers

There are two independent 8-bit ‘flag registers. The programmer selectfs the
accumulator and flag pair with a single instruction. The accumulator holds the
results of 8-bit arithmetic or logic operations and the flag register indicates
specific conditions for 8- or 16-bit operations. Each of the two flag registers
contains six bits of information that are set or reset by various CPU opera-
tions. Four of these bits - carry flag, zero flag, sign flag, and parity/over-
flow flag - are testable.- The two non-testable bits, both used in BCD
arithmetic, are half-carry and subtract flag. Two bits are unused.

General Purpose Registers

There are two matched sets of general purpose registers. Each set contains six
8-bit registers. These registers may be used individually as 8=-bit registers or
as 16-bit register pairs. One set of register pairs is called BC, DE and HL,
the comp lementary set is callied BC', DE' and HL'.

At any time, the programmer can select one or the other bank of general purpose
registers. He can exchange one bank with the other bank by a single exchange
command. ’

In systems where fast interrupt response is required, one set of general purpose
registers, with an accumulator and flag register, may be reserved for fast
routines. Only a simpie exchange command needs to be executed to go between
routines. This reduces interrupt service time by eliminating the requirement of
saving and then retrieving register contents in the externa! stack during
inferrupt or subroutine processing. '

THEORY OF OPERATION

Interrupt Vector (1)

The Z80 can be operated with an indirect cal! to any addressable memory location
in response to an interrupt. The | register is used to store the high order
8-bits of the indirect address while the interrupting device provides the lower
8 bits of the address. This allows interrupt routines to be located throughout
memory.

Memory Refresh (R)

This register allows the Z80 to automatically refresh dynamic memories.

Seven bits of this memory refresh (R) register are incremented after each
instruction fetch cycle. The eighth bit will remain as loaded with a LD R, A
instruction. The data in the R register is sent out of the lower portion of the
address bus (A0-A7) along with the RFSH (refresh) control signal while the Z80

is decoding and executing the instruction in the instruction register. The con-
tents of the | (interrupt) register are placed on the upper 8 bits of the address
bus (A8-A15).

The programmer can load the R register for testing purposes, but it is normally
not used. The refresh is transparent to the user.

ACCWULATOR FLAGS ACCUMULATOR FLAGS
- A . F A!' . E!'
GENERAL
B c B! c!
PURPOSE
D E D' E' REGISTERS
L H L H' L'
Interrupt Memory
Vector Refresh
| | R SPECIAL
Index Register 1X PURPOSE
|-
REGISTERS
Index Register 1Y
Stack Pointer SP
l.LiPr'ogr'a\m Counter PC

Figure A-2. Z80 Registers
4-3

THEORY. OF OPERATION

IX AND 1Y (INDEX REGISTERS)

Each independent index register (IX and 1Y) holds a 16-bit base address used for
indexed addressing. The index register is used as a base to point to a region
in memory. An additional byte is included in all indexed instructions to spe-
cify a displacement from this base address. This displacement is specified as a
two's complement signed integer.

STACK POINTER (SP)

The 16-bit address of the current top of a stack, located anywhere in the exter-

nal RAM system memory, is held in the SP register. The external RAM system

memory is organized as a last-in, first-out (LIFO) file. Data can be pushed onto the
stack or popped off of the stack, using specific CPU registers, through the exe-
cution of PUSH or POP instructions. The data popped from the stack is always

the last data pushed onto it.

PROGRAM COUNTER (PC)

The 16-bit+ address of the current instruction being fetched from memory is held
in the PC. The PC is incremented after its contents have been transferred to
the address -lines. When a program jump. occurs the new value is placed in the
PC.

Z80A INSTRUCTION SUMMARY

The foilowing pages con+éin a summary of the Z80A instruction set. The instruc-
tions are tabulated by function and are self-explanatory. Also included is a
table showing the affect on flag information for the various Z80A instructions.

FLAGS

Table 4-1 shows how each flag is affected by Z80A instructions, tables 4-2
tThrough 4-12 also provide flag information.

Each of the two Z80 flag registers have four testable bits, two non-testable
bits and two unused bits. The four testable bits are:

l. Carry-Flag (C) - This flag is the carry from the highest order bit of the
accumulator. For example, the carry flag will be set during an add instruc-
tion where a carry from the highest bit of the atcumulator is generated.
This flag is also set if a borrow is generated during a subtraction instruc-
tion. Shift and rotate instructions also affect this flag.

2. Zero Flag (Z) - This flag is set if the result of the operation loaded a
» zero .into the accumulator. This flag is also used with the block Search
and block 1/0 instructions.

3. Sign Flag (S) - This flag stores the state of accumulator bit 7. This flag
is intended to be used with signed numbers and it is set if the results of
the operation was negative (bit 7 will be set to 1 with a negative number).

THEORY OF OPERATION

4. Parity/Overflow (P/V) - This is a dual purpose flag. |t indicates the
parity of the result in the accumulator when logical operations are per-
formed (set to 1 = even parity). It indicates an overflow when a signed
two's complement arithmetic operation exceeds the maximum possible (+127)
or the minimum possible (-128).

The two non-testable bits in the flag register, both used for BCD arithmetic,
are:

1. Half Carry (H) - This is the BCD carry or borrow result from the least
significant four bits of operation. When using DAA (decimal adjust
instruction) this flag is used to correct the result of a previous packed
decimal add or subtract.

2. Subtract Flag (N) - Since the algorithm for correcting BCD operations is
different for addition or subtraction, this flag is used to indicate what
type of instruction was executed last so the DA operation will be correct
for addition or subtraction.

Notice -the relationship of the Z flag and the P/V flag with the block search,
block transfer and block |/0 instructions.” This relationship is given in table
4-1 and is summarized below. : ’

Block Search ‘Block Transfer Block 1/0
Z=1 } it A= (HL) don't care ifB=0
Z2=0 if A = (HL) . don't care ifB=20
P/v=1 if BC =0 : if 8 =0 don't care’
P/V=0 if BC =0 if BC =0 don't care

When the block 1/0 transfer is complete, the Z flag will be set to one; when the
block transfer is complete, the P/V flag. is set to zero; when the block search
is complete (fails to find a match) the P/V flag is set to zero.

The following pages contain tables 4-1 through 4-12, which provide a summary of
the Z80OA instruction set.

THEORY OF OPERATION

Table 4-1. Summary of Flag Operations

]

Instruction ! ciZ ‘II Si{N|HI Comments
ADD A, 3:ADCA. s frfrfvit]o]]| a-bitaoa orage with carry
SUB 3:SBC 4.5, CP 3, NEG l t] |VEir] 1]t 8bit subtract. subtract with carry, compare and

! negate accumuiator
AND s 0t 1P}110}1 |} Logical operations
ORs. XORs l 0|1 |{P]1]|0]0| Ang set’s difterent flags
INCs e |t iV]1]0]:]| 8Dbitincrement
DECm ejt|V|{1|1]1| B-bitdecrsment
ADD DD, ss 1|ele]ei0|X| 16-bit aad
ADC HL 33 v [s]0|X]| 18-bit agd with carry
SBCHL ss t1t Vi1 X] 16-bit subtract with carry
ALA: RLCA. RRA, RRCA t|ele|e]0]|0| Rotate accumuiator
RLmMALC m AR m-RAC. m ttr Pl 1010} Rotate ang shift location m

SLAmM; SRAm: SAL M)
RLD, ARD ieli|P|1]0]0]| Rotatedigit iett and rignt
DAA 11 |Plt] et | Decimat agjust accumuiator
CcPL e|e|lefe|lt1]t} C P 1t ACCL
SCF 1|ef{eielQ|0]| Setcarry
CCF tfe|e]s{0|X| Compiement carry
IN? (C) «{1|P|1]0]10] Inputregister ndirect
INI; IND: OUTI:OUTD e |1 IXiX|1IX } Block input ana output
INIR; INDR: OTIR; OTDR e [1IX[{X|1{X'Z20it8400tnerwiseZ =1
LD\, LOD e {X |1t |Xx]|0]0] Block transter instructions
LDIR. LDDR e |X|0|{X|0{0|}PIV=1iIBC=.otherwise PIV=0
CPi. CPMR. CPD, CPDR eltj1|1]1]X]| Block sesrch instructions
Z=1il A=(HL). otherwise Z=0
’ P/V=1it BC$0, otherwise PIV =0
LOA LLDAR ol 1 IFF 1 |0| 0] The content of the interrupt enatie flip-tiop (IFF)
is copied into the P/V tlag

8iTb. s . Jeft)IX|X]0]1] The state of bit b of location s is copied into the Z tlag
NEG tj1iV]t]1]1] Negste accumuistor

The following notation is used in this tabie:

Sign tiag. S = 1 it the MSB of the resuit 1s one.

it the resuil of INe ODETAtION DrOCUCEd N Overtiow
-ait-carry fiaQ. M = 11t the a00 or

Operation

Camytink tlag. C = 1 il the operation produced a Cary trom the MSEB of the coeranda or resuit
Zero 11ag. 2 = 1 if the 1esUit Of the ODEration IS Zero.

Panty or overtiow tlag. Panty (P and overfiow (V) share the same Hag LOGICa Operations aftect ths tiag
wit?: the Darity of 1NG result witie anthMeNC DOErations altect 1N 1iag with the avertiow of this rasuit. it PV
noIas Danty, PV = 1 if the resuit of the CDETRLION 1S aven. PIV = 0 if r@suit 13 00d. it PIV hoids overtlow PV = 1

accumuiator.

o 2 CaTY INTO OF DOFTOW LrOM INtO DIt 4 Of the

M ana N flags Me used in o with the

AOOSudIrsct 11ag. N = 1 1 the D was a

o gacred 8CO format or

agjust instnuction (DAA) (0 praperly correct the resuit

The flag is Qe Oy the
The fiag 15 re8et Dy the CORANON.
The tiag is 301 Dy the Operation.
The flag is 3 “don't care.”

Anyone ol the CPUregisters A.8.C. D. E. H. L

using with 8CD tormat

The tiag 18 2HECIST SCCOMNNG 10 the resuit Of I1he COEraNON.

PrV fiag aHecIet SCCORING 1O the Svertiow result of the DEraton.
VY fiag a118CI80 SCCOMIING 10 the Darity Tesull Of the ODSration.

g!:a:'u~‘<~—°- z b 4 ¥MNni

Any S0 for sl the ¥'Q MOTRS AHOWEd 10f 1NG PEFMCANET INSITUCTION.
Any 1600 bon for ol the ¥ng Mmodes for thet

Any one of The two index regieters (X or IY.

Aetvesh counter.

501 value it range <0.253>

- 1000t valug in range < 0. 68535 >

Any S0 for okt the X Mooes for the par

THEORY OF OPERATION

Table 4-2. 8-Bit+ Load Group

Flags Op-Coge |
Symbolie 7 j o | ofi o
Mnemonic Operstion CiZIVISINIMI 76 843290+ Bvies Cycles States | Commoents
Lorr Pt ole|ofejealelOt ¢r r 1 1 4 rnr Reg.
Lﬁr.n faft o|lesiesjefo]|e} 00 r 110 2 2 7 000 B
. ’ - p - 001 c
LD r (ML) re= (ML) slesjelefejel @1 r 110 1 2 7 00 DO
LOr(iXed) | re(iXea) erelefefajel 11 011 10 3 H 19 01 E
01 r 110 00 M
- ¢ = 104 L
LOn(tYed) | r=(lY+q) *|lejeje|efel 11 111 101 3 H 19 111 A
01 r 110
- 8 -
LOHL. ¢ (ML) sofefefelo|e|0t 190 r 1 2 b4
LO(Xea)r | (IXed)=r etefelelejef 11 011 101] 10
01 119 r ¢
. -9 -
LD(Y<a)r | (IYed)=r sfefole|efel 1 191100 3 5 19
01 110 ¢
- 8 =
WM. | (H=n ofletejolefelon 190 190 2 3 10
- nl =
LDOXa)n | X g)=n elejolelelol 11 011101 & [] 19
. 00 110 110
= - - e -
. - ” -
LDOYd)n | Yo d)=n elelejojoleftr 111101 « L] 19
00 110 110 |
- a -
- n -
LD A.(BC) A=(8C) ®teje|ejele] QO 001 010 1 2 7
LD A, (DE) A=(DE) ¢j*1e|e1eie]| 00 011 010 1 2 7 -
LD A (nn} A={nn) eteleolelelel 00 111 010 4 13
- - [, —
. - n -
LD(BC), A (BC)= A olelefelele{0n 000 010} 1 2 7
LD (DE). A {OE)=A o|eyerejeateion 0100105 1 2 7
LD (nn).-A (nn)=A steleleleolef{00 110 010 4 13
- n -
- N -
‘WA A=i eltiPR1{0[0| 11 101 10%} 2 2 9
01 010 111
LOAR A=R elt®F 1101011 108 01] 2 2 9
) . 01 011 111
LDIA l—A elejefelofel11r 901 100 2 2 9
. 01 000 111
LODR A RaeA elejolo|ejel 11 101 101 2 2 9
01 001 111

Notes: r.rmanyonmmnmxa.c.o.au.l. .
{FF the content of the interrupt enadie flip-tiop (FF) is copied into the PIV flsg

Flag Notation: ¢« = tl.gnmanmoc.o-ﬂagmﬂ.1-lhguv.x,:thgismmn.
I = !Iaois-ﬁmodmdinglommmwﬂhomm :

4-7

THEORY OF OPERATION

Table 4-3. 16-8it Load Group

] Flags Op-Code
i SR TYER "
o | Srmoouc lpilisl '
Mnemonic | Operstion c{2!visinin! re sa3 210 ¢
Doc ag-nn efeioielejeioo aeo 00t
i e n =
' !
. n -
LI X nn IX=nn v foie -.-g- 11 011 101
{ | loo 100 0ot -
I L LEE ! !
RN N
2! an 1Y = an . .:.!.;.,. AR AR RT.01 4 ;4 14 .
1 |00 100 oGt . . !
I P | ' :
| 1 i- n - | f
DALMY | He(nne) cfeqvierere 00 W LIC 3 s ' 18 ;
L=tnn) ! - n = : ' i
! - n = ! i i
WD g2 (nm Ao =inn e {0 (oie sreceltt 101100 2 .8 -] ’
| GG =(nm Cy 48 lot garor i i 5
N - A = :
i N - n -) [
LO IX_(nn} Xpy=innat1) jolojeleleralrr o171 100 & 16 i 20 |
X = nm i loe 101 012 ! l
| -0 = | }
. i P | i
. Lo 1Y inmy y—tnnae 1) [o (o laleje]|e |11 111 101 & [] 20 I
) 1YY —(rn) - {00 101 010 '
- n - i .
M :
Dom L | innen-M [ololela]aio]oo 0000} 3 s w |-
(nm=L_ PR W .
I el |
- LD nny. 0o M 1)=OBy [0 fofojolofellt 101 101 @ [20 [A
tnm—ady 01 aa0 011 |
coon -
. - n -]
LD tnm). IX (PMet)miXy {ofotejafolelry 011 900! « s 20 1
e)— 1%, © |00 100 01¢ | ;
i =8 = :
! { - nr = : .
LD oy 1Y (e =Yy, -i- . .i.'. "ot s 6 L 20 '
LSS I v 100 010 ! :
. | - A i
A " - : ‘
[RE-X-1 1N SP. ML . 'I"' e, o 1y 11100 . P 6
LDSP.1X SP~1x eieieioisielyr 01y 997 2 2 T
[EEELERIIR: 0 : .
LOSP. 1Y SP. 1y slefeleiojetnr o’ 2 12 , 10
RN AIERELY ; | | Pair
PUSH ag {SP-2-aa |« jele|eiofof11 a0 r0t) 1 3 i1 o se
(SP - 1)=aam : ! © 01 DE
PUSH (X BP-2=ix | litaiafoles1 on mi 2 s 15 10 M
(SP - 1= iXy 11 100 101 I . " AF
PUSH IY BP-A-t¥ lejolojeloielrr tev 101! 2 4 15
SP-N-lvy 1 100 101‘
POP g =8Pt |[ole]aja|oie |1y mml! 1 3 10
Q- (3P ! :
POPIX .| Xy (8Pet) [0 [o]ofofe]e 1y oty 100 2 4 R
Xy <SP 11100 001
POPIY Y=@Ps1) |ofolejofeioty 111101 2 4 14
¥y, 3P 11100 001 |

Neows: ad is any of the register pairs BC. DE, My, SP
QQ i8 any of the regrster pairs AF. BC. DE. ML
(PAIRIy. (PAIRY reter 10 Migh Order ana low OrGer et Dits of 1he regisier Darr respectively
€9 BC =C. AFy=A
Flog Nowtion: « = tlag not atfected. O = fiag reset. 1 = 1tag 381 X = 1ag 13 unnown
! = 118015 AH16C1eq 2CCONING 1O the resuit ¢! The J0evano™

4-8

THEORY OF OPERATION

Table 4-4. Exchange Group and Block Transfer and Search Group

I Eie Op-Code
] Ne. iNe. No.
| Symbelie i of iolM of ¥
Mssmeree Opersuon ClZIVISININ 78 §43 21 Svtes | Cveien Swates | Comments
EXDE L DE~mL o|ejejofeote {11 101 OV1 1 i1 4
EXAS AF : ARLAR efoleejeiejoo 00rO00| 1 |1 4 .
x | eletejejeie it 011 001] B 4 Register bank ana
'(o€)=(OF ' suziliary register
AT L bank exchange
SN I RSP |efefefefeielrn 0001]| 1 s 1]
I | =(3M
XM X | Ky=SPet)felofofefotefrr g11 01| 2 [2
) 19 100 011
FXSPLIY I¥pai@Poet)|efefefelele |11 191 101 2 [] 2
{ Y —am 11 100 011
‘: O
DI ! OE=mu eletrfei0jofit 101101 2 . * Losd (HL) imo
! DE=DEe1 10 100 000 t (OE), mcrement the
. MiaMLet ; DoInters and
: BC=B8C-1 : cecrement the byte
| : coumer t8C} ’
LDw c OF=Ml) (efei0fe|0j0]t 10t 0t] 2 s n HBC=0
| DE~DE-1 1 10000 2 ¢ 1 #8C=0
ML=l et
BC-8C-1
RAepeat until
8Cal
])
LDD OB =ML elejr{e{010]11 103 10v{ 2 4 10
OE=-DF -1 10 101 000 :
L TR TR]
8C~8C-1
LDOA OB =ML efe10e1010]11 101 101 2 L) 4 HOC=0
Of=DE-1 0000 20 .46 1% HCm0
MLeML-1 |
C=0C-1
Aspsst umil -
=0
@ .
om Ay etrfstrfrfrfe sov i 2 . 1)
MLeHLe) 10 100 001
8C=8C-1
. d _
com AaiHy sletsfatsla]1r 1w0v100| 2 s n 1t BC=0and A=(ML)
Hi=MLot - 0 10001] 2 ¢ 11 HBC=OorAas(ri)
BC=8C-1 -
until
A (ML) or
a0
) .
[) A=MiL) elrprje|1lsg1t 10t 00} 2 4 "
ML=ML -1 10 101 O
=01
- D .
CFDR Aty efsfefa{v)afjer vov woe| 2 s] #BC =0 an0 Amrily
[TR] wImo| 2 4 " HEC=O0orAmi)
C=8C-1
Rupant unet
* amer - -
" | 1] : S

Semx 8 mmbonnwdlc-ho.mmn
Zh.bldadﬂl.mznﬂ

Mg Mowtiarc o-hmMD-hm!-h.ﬂ.x-Mhm
1 = ling o 6MeCIs 20sriing 10 the reswit of The Cosrstien.

4-9

THEORY OF OPERATION

4-10

Table 4-5. 8-Bit Arithmetic and Logical Group
Fiags Op-Code
-] No. | Neo. No.
Symboiic ! of of M of T

Mnemonic QOperation ClZIVISINIH| 76 543 210 Bytes| Cycies States | C t

ADDA.r Ae ot tlifv]ijoli10|000f r 1 1 4 . Reg.

ADDA.n A-A+n s{vitjolryn @O 10| 2 2 7 000 8

- _n - 001 c

ADDAMLU [A—aA-mu{:|1lv]i]ofi|10 OB 110| 2 7 010 o

ADDA(IX+a) | A=A{IX+d)}| t |: [V]I][O]2]|11 011 10 3] 19 on E

10 [gog) 110 100 "

-9 - 101 L

ADDAYY-d) | A~A~(IY+d) SIVEjer |1 11 10t 3 5 19 111 a
f 10 food 11w
. -— d -

ADCA.s A—A«s+CY |t} |VIt]O]1 sisanyotr.n,

SUBs A-A-3 tlsfvir 1] (ML), (IX « Q).

SB8CA. s AcA-s-CY ||V]|} (1Y « d) as shown for

ANDs A=AA S 0tt{Pjtjol . ADD instruction

ORs A-AVsSs oj{tP(r 010 The indicated bits

XORs A-Aes oftiPfriolQ repiace the 000 in

COs A-s ERAATEREE the ADD set apove.

INC r—tel e|lt|v]|:t|ol:jo0 r (8] 1 1 4 ’ -

INC (HL) MLO—(HL« 1f e|:iviiiofi]|00 13000 1 3 1"

INClIXeq) | (IXed)— efrdvisjolr]nn om0} 3 8 2

Xehat| 00 110309)
- [-
INC (Y - a) Y « 9= efr|vitiofrfir 111 101 3 6 23
aY +dys 1 oo 10{iod
- d = .

DECm M—m-1 [ERRLASRR RN mis any of r. (HL).
(IXeQ) (IY+O)as
shown tor INC
Same format and
states as INC
Repiaces 100 with
101 m OP coge.

Notes:

The V symbol in the PV flag column indicates that the PV fiag contains the overtiow of the resuit

of the operation. Similarly the P symboi indicates parity. V = 1 means overfiow. V =0 means not

thﬂm e = fiag not aftected. 0 = fllag reset. 1 = flag set. X = flag is unknown.

1 = flag is atfected according 10 the resuit of the operation.

overtiow. P = 1 means parity of the result is even, P =0 means parity of the result is odd.

THEORY OF OPERATION

Table 4-6. General Purpose Arithmetic and CPU Control Groups

Flags Op-Cooe
[4 No. No. No.
Symboiic ! ot ot M of T
Mnemonic | - Operation CIZIVISINIH! 76 543 210 Bvies! Cvcies | Stiates | Comments
DAA Conventsace. |1 |1 |P]1[e]1]| 00 100 111 1 1 '} Decimai adjus!
conent into accumulator
toliowing acd
with pached
8CD operancs
cPL A=r sjejefetr]1]00 101 111 | 1 1 4 Compiement
accumulator
(one’'s compiemant)
NEG A=0=A (vt 11 10t 101 2 2 8 Negate acc. (iwo's
0t 000 100 compiement)
cCcF cy -Cv tlefele10]X{00 191 111 | 1 1 4 'C‘:;nplomomcaﬂ'y
SCF CY-1 1]etete)l0]0l00 110 111 1] 4 Set carry tiag
NOP NoODerstion {» fefefefo|{ei00 000 000]| 1 1 4
HALT CPU halted *lejejefele] 01 110 110 1 1 4
ot IFF =0 ejejoleteiel 1 110 OM 1 1 4
Bl IPF -1 ejesleteiafel 11 111 oM 1 1 4
MO Setimerrupt |+ |s e lefefei11 101 101 | 2 2 8
| mode0 01 000 110
YR Setimerrupt [+ felelefefeal 1y 101 101 | 2 2 8
mode 1 01 010 110
M2 Setinterrupt {e je (e je|e|e]| 11 109 101 2 2 8
mode 2 01 011 110

Noves: IFF indicates the interrupt enabie flip-tiop
CY ingicates the.carry tlip-flop.

_ FlagNowtior: + = luqnma"mﬂ.o-'honut.1:lhoau.x:mgismmn.
1 = mgnmnctoummwtuwmummm.

4-11

THEORY OF OPERATION

Table 4-7. 16-Bit+ Arithmetic Group
Flags Op-Code
P No. No. No.
Symbaolic [of of M of T
Mnemonic Operstion VIS|NIH! 78 543 210 Bytesi Cycies | Siates| Comments
ADDHL ss | HL ~HiLoss . 0O{X[00 ss1001| 1 3 n s Reg.
00 8C
ADCHL 38 | HL-HL.ss vitio|x]11 s01 100 | 2 4 15 0 DE
-CY 01 ss1 010 10 HL
SBCHL ss | HL-HL-ss Vit x}1r 101100 | 2 4 15 n sP
-CY 0t ss0 010
ADD IX. pp IX ~iX«pp ele 10| X| 11 011 100 2 4 15] Reg.
) 00 pp1 001 00 8C
' 01 be
10 1X
1" SP
ADDIY. Y =i¥Yorr elelO}X1t 111 101 2 4 18 114 Reg.
. 00 1 001 00 BC
1 01 OE
: 10 Iy
: n sP
INC ss ss'— 85 . 1 efo(efei00 880011] 1 1 6
INC 11X IX_-IX- 1 ef(eotelef11 011.101 2 2 10
’ 00 100 011
INCIY IY =i¥Yst *jefeie 11 111 100 2 2 10
00 100 011
DECss 88 —3S~ 1 ele{e] e 00 ss1 011 1 1 []
-| DECIX X ~iX-1 eleget e} 11 011 101 2 2 10
00 101 011
DECIY 1Y =Y~ 1 elejefe| 11 111101 2 2 10
00 10t 011
Notes: $S 1S any of the register pairs 8C, DE, HL. SP

PO 18 any of the register pairs BC, DE. IX. SP
. T is any of the register pairs BC, DE. IY. SP.

Flag Notwstion: » = flag not atfected. 0 = fiag reset. 1 = flag set. X = flag is unknown.
= flag is attecied according 10 the result of the operation.

4-12

Vs

' THEORY OF OPERATION

Table 4-8. Rotate and Shift Group

1 Fisgs Op-Cooe
i P | No. Neo. No.
i Sanoue I 1 of of M of T .
Mnemonic . Operation ClZIVIS INIMI 78 543 210 Bvtesi Cvcies States | Comments
RLCA i ——1it{*|*{*j0joloo 000 111 1 1 4 Rotate left circular
; =, o accumulator
RLA :---oeoomom 1 1 4 Rotate left
A accumulator
RACA @ tlelele {0 |0jO0 001 111 1 1 ¢ Rotate rigm circular
A i accumuiator
) ..Jf_ﬁ__ i
RRA b7 —mQbadCYE | ;[0 |0 e i0{0{00 O11 113 1 1 ' . Rotate rignt
N _ : ! accumuiator
RCr) l: s1P{ijotof1r oot 011 2 2 ! 8 Rotate iett Circutar
- i 00 [000] -r : | registere
RLC (ML) . ctef(Pielojof v 001 01 2 | 15
00 (000} 110 ' Reg.
mux.qygv}- .szxOOHO‘nﬂh s 6 2 000 8
ey e 11 001 011 001 c
- 4 = 010 D
. 00 000} 10| - - on E
RLC(Y«q) t{t|Plijoloft 11110 o & 23 |00 L
. % : BRI T 10 L
- 4 - m A
. 00 {000] 110 - -
RLm tiltlPis|o|o (010} Instruction format ana|
I WIS com Y oo o stales are shown
for RLC. m. To torm
new OP-cooe replace
ARC m @-@ i{ifeli]ojo| [o01] @Bot RLC. m with
0 22 vLs ol @ W WY -t) - Shown code
AR m crpl s j1{pl:lelo
L2 RET WY TL I N TL B N
sum B G
-ah.ul..q “v .ol g H P H ° o
SRAm @'@ if1irlijolo
’.’“l”n‘n‘-ﬁ}
SALm P
. e meal 1 1lP|i|0fo] [T . : -
R AE@N sjilPli]olof1y w1100 2 | 7] Rotaie digit left and
01 101 1My . rignt between the
. asccumuiator
. angd iocation (ML),
L) 57_{@”,- i|Pf:fojolr 10r108] 2 |s 18 The content of the
01 100 111 : uoper hatf of the
|) accumuiator is

FlagNowtion: "+ = Iuonuut“o:llnm1-lhgmx-mgum
1 = mn-mmnmmmmmm

4-13

THEORY OF OPERATION

4-14

Table 4-9. Bit Set, Reset and Test Group

Flags Op-Code
P No. No. No.
Symbolic | of of M ot T
Mnemonic Operation ClZIVISIN|H| 76 543 210 Bytes | Cycies | States | Comments
BITD, r Z Ty efr|x{xfol1}11 001011 2 2 8 r Reg.
01 b r 000 8
BITb, (MY | Z -{AL) sft|xi{xjoj1f1n 00101n| 2 |3 12 001 c
. 0t b 110 010)
BITL.OX-d) | Z~{IXaalp |o|:|x|xlOf1]11 013 101| 4 5 20 on E
11 001 O 100 H
- d - 101 L
0t b 110 111 A
BITD.(Y<d) | Z-0¥«dly |=|:|x{x]O|1]{11 111 101| 4 5 20 b Bit Tested
11 001 Q11 T
- 4 - 001 1
01 b 110 010 2
011 3
SETb.r b =1 efefofelelefnn 0oron| 2 |2 8 s .
’ o - 10 | s
SETb. (HL) (MU <. ole|ejefeiel 11 001 011 2 4 15 11 7
GO o 110 -
SETL. X+ IXed)g=1 [o[e|aleje]|e]l i1 011 101 « 6 23
11 001 011]
R -d -
. 01 o 110 .-
SETB.(Y+)| (iY<Og~ 1 [e|e|efe|oflef 11 111 101| 4 6 23
11 001 ON
- g =
G3 o 10
RESb.m sp-0 : To torm new OP-
mar, (HL). code reptace(ly]
(1X « d). of SET b. m with
(1Y ~q) (30, Flags and time
states for SET
instruction
b

Notes: The notation sy, indicates bit b (0 10 7) or location s.

Flag Notation:

* = flag not affected. 0 = flag reset. 1 = flag set. X = Hag is unknown

1 = flag is affected according to the result of the operation

THEORY OF OPERATION

Table 4-10. Jump Group_

Flags Op-Code
P No. | Nea. Na,
Symbolic ! of ot M ol T
| Mnemenic | Operstien lclz1vis|ninl 76 843210 | Buies! Svcles | Stoves | | Comments |
JP nn PC «nn slejejejeie]rr 000 011 3 3 10
. - A - ce Condition
- N - 000 | NZ non zero
JPce nn Heconationce] e je e je{eje ity ec 010] 3 3 10 001 | Z 2er0
is true PC—nn| - N - 010 | NC non carry
otherwise 011 | C camy
continue - n - 100 | PO parity odd
101 PE parity even
110 | P sign positive
JRe PC-PC+0------oqo11ooo 2 3 12 111 | M sign negative
- Qw2 -
JRC. e HC=0. Slejejejete {00 111 000 2 2 7 1t condition not met
continue - ged -
HC=1,] 2 3 12 1t condition is met -
PC=PCse x
JRNC e, HC =1, ejejelejele |00 110 000 2 2 7 1f condition not met
continue - 0e2 =
HC = 0. 2 3 12 1 condition is met
PC—-PC + e N :
JRZ e Z=20 |elefelelelefoo w0r1000] 2 |2 7 1f congition not met
continue - el -
2 =1, 2 3 12 it condition is met -
PC-PC e+ e
JANZ ¢ 2 =1, elelejejielei 00 Y00 00O 2 2 7 It condition not met
continue - gul =
$Z = 0. 2 3 12 I congition met
PC=PC e e
JP (ML) PC = HL ef{ejsjo|efe 11 101 00V 1] 4 -
JP Xy PC =iX e|ojejesiele]| 11 011 101 2 2 8
11 101 001
JPaN PC ~1Y stejelelofe] 1t 111 11 2 2 8
11 101 OO1
DUNZe 8-8-1 “feo]ef|efefelefon oroo0| 2 |2 |s HB =0
H8 = 0. - ge2 =
continue
He=o, TT T T2 “ls 193 T B0 o -
° PC = PC + @

News: ommmhmmmm
ohmm%mwmmm<-1a. 129>

--znmmm»mmuu eas PCis
incremented Dy 2 pnor 10 the a0ditin of ¢. *

Pogemtiex = m-&mo.mmummx-mum
1 = fag is aftecien accoming 10 the result of the operation. ’

THEORY OF OPERATION

Table 4-11.

Call and Return Group

! Fiags Qp-Code
' P No. Ne. Noa.
Symbolic 1 of of M of T
{Mnemonic Operstion o] ViS 78 543 210 Bytes| Cycies | States | Comments
ICALLAn . (SP- n-PCy |« ole 1001 101 3 5 17
(8P =Zi-PC - n -
PC-nn - n =
ICALL z¢. v it condition | e ofe 11 cc 100{ 3 3 10 it ceis faise
cc is faise - n -
continue.
otnerwise - n = 3 5 17 tceis true
same as
- CALL nn
RET PCy ~(SP) . o e 11001001 | 1 3 10
i PDy—~(SP + 1
1
RET cc Hfcondition | o|e 11 cc 000 1 1 5 ccis faise
ccis faise
continue,
‘otherwise 1 3 - " ifceis true
same as
AET ee Condition
000 | NZ non zero
RET! Rétumn from |« o|e 11 101 101 2 4 14 001 | Z zero
interrupt 01 001 101 010 | NC non carry
: 011 | C camy
lreTn Returnfrom | « ofe 117101 101 | 2° 4 14 100 | PQ ‘parity ood
mnum g 01 000 101 101 | PE parity.even
RST o (SP=1-PCy|e{efel]e 1M 0 1| o 3 n 110 | P 3ign positive
(SP-ZI—PCL 11 M sign negative
PC.,-0
PCL-P
e
000 | OOM
. 001 [0 1]
010 104
011 | 18M
i 100 | 20M
i 101 | 28M
110 | 30M
1 . 111 | 38M

Flag Notation: + = fiag not attected, 0 = flag reset. 1 = flag set. X = {lag is unknown.

: = fiag is aflected according 10 the result of the operation.

THEORY OF OPERATION

Table 4-12. Input and Output Group

Flags Op-Code
P No. No. No.
Symbolic [ot of M of T
Mnemonic Operation ciZiv NiMW| 78 543 210 Bytes [Cycies States | Comments
INA (0 Ae=(n) eolais joje]e] 11 011 Q11 2 3 11 ntoAg-~ Ay
-0 - ACC O Ag~ Agg
INr, (C) r={C) ol |P|1{0]s] 11 101 101 2 3 12 C!vo-Ay
it r= 110 only 01 r 000 BloAg- A,
the flags will
be atfected
: D
NI (HL)=(C) X {X{1{X | 11 101 101 2 4 16 CtoAg=~Ay
8~B-1 10 100 010 BloAg~Ayg
HL=ML+ 1
INIR (HL)~(C) el1ixX[Xf1[X} 11101 101] 2) 21 CloAg-aAy
8-8-1 10 110 010 118=0) BloAg-Aqg
HL=HL«+1 2 4 16
Repeat until (1tB=0)
B=0 *
D .
IND (HL}=(C) S IXIX{ViX| 11101101 | 2 4 16 CtoAg- A,y
B-B-1 10 101 010 - ' BtoAg~ A
HL=-HL=-1 . I
INDR - | HL—(C) ejrxixit{x]| 11 10t901| 2 5 2 CtoAg-Ay
8-8-1 10 111 010 | 1820 T | BloAg~Asyg
HL=HL=1 2 4 16
Repeat until (1tB=0) - "
B=a0 N -
QUT (n), A (M=A elelojerefe 11010017 2 3 1 ntoAg-~ Ay
! - n = ACC 10 Ag~ Aqg
OouT(C).r C=r ejotejefeiof 11101101 2 3 12 CoAg~ Ay
’ . 01 r 001 BloAg~ Ay
KD) .
joum (C)=(HL) el iX|X[1{X| 11101 101} 2 4 16 CtoAg~ Ay -
B8-B-1 10 100 011 : B1oAg~Ag
HL=HL + 1)
OTIR (C)=iHL) e UIXIX|1{X]| 11101 101 2 S 3 CtoAg-~ Ay
B-B-1 10 110 011 (B2 BtoAg~Aqs
HL=—ML + 1 2 4 16
1 Repeat uniil 1MB8=0)
B=0 ! :
@ .
ouTD ©)=(HL) eltX|xXttix]| 11101101 2 4 16 CtoAg=-Ar
8-8-1 . 10 101 011 _ BloAg-Ayy
T - HL=HL=1 Tt = "
OTOR ©—(HL) o TIX|X|1|X| 11101 101] 2 5 21 CioAg- A,
BeBat 10 111 011 (ItB=0) BtoA.-Aqg
_HL=HL -1 . 2 4 16 :
Repest until B=0)
B8=0

Notwes: (D Iftheresult of B~ 1is 2er0 the 2 flag is set. otherwise it is reset.

Filag Notation: ¢ = uqnon"oefoa.thﬂqnul.1sﬂagm.x-ﬂagisunknown.
1 = flag is atfected according 1o the result of the operation.

4-17

THEORY OF OPERATION

64K-BYTE DYNAMIC RAM MEMORY ARRAY

The 64K-byte dynamic RAM consists of 36 16K x 1 bit, 2118 RAM chips. This RAM
array is configured in 4 rows and eight data columns, plus an additional four (1
row) 2118 RAM chips that provide an odd parity check for the memory array.
Memory access is provided by an internal control!ler that selects the row and
column requestd by the CPU. The 9520 common operating system memory is located
at addresses COOOH through FFFFH (16K bytes) (see figure 4-3). User memory is
located at addresses 0000H through BFFFH (48K bytes). The optional 48K bytes of
additional memory are located in a second memory bank also addressed at loca-
tions 0000H through BFFFH. Bahk selection is determined by the bank select 1/0
port address F8H. The bank select 1/0 port bit configuration is: BO = CPU bank
select, B4 = DMA bank select. Bits 1, 2, 3, 5, 6, and 7 are not used and are
reserved for future use.

FFFF
OPERATING SYSTEM COMMON MEMORY
C000
BFFF BFFF
BANK BANK
0 1

L S L S 0

Figure 4-3. Operating and Bank Memories

FLOPPY DISK CONTROLLER AND OMA CONTROLLER

Floppy Disk Controller

The floppy disk controller is a Western Digital 1797 device that contains all
the circuits necessary to provide the interface between the microprocessor and
the floppy diskettes. The 1797 device performs parallel-to-serial and serial-
to-parallel conversions, CRC generation and checking, the stepper motor inter-
face and write procompensation, as well as recognizing interrupts and DMA
requests. Associated circuits provide a VCO data separator. The controller is
capable of reading and writing both single-density P and double-density MFM
encoded diskettes. The floppy disk controller has seven registers, which are
used for the operation of the device, as shown in tabie 4-13. Tables 4-14
through 4-20 provide status register and command register summaries. For addi-
tional data refer to Western Digital Corporation Data Sheet.

THEORY OF OPERATION

Table 4-13. Floppy Disk Controller Registers

REGISTER DATA .
HEX ADDRESS DIRECTION REGISTER NAME
28 INPUT : STATUS
29 INPUT /OUTPUT TRACK
2A INPUT/OUTPUT SECTOR
28 INPUT/OUTPUT DATA
28 ONTPUT COMMAND

Table 4-14. Status Register Summary

- ALL TYPE | | READ READ READ WRITE WRITE .
rBIT COMMANDS ADDRESS SECTOR TRACK SECTOR TRACK
S7 NOT READY NOT -READY NOT READY NOT READY NOT READY NOT READY
S6. WRITE 0 0 0 . | WRITE WRITE
PROTECT PROTECT PROTECT
S5 HEAD LOADED | O RECORD TYPE | O WRITE FAULT | WRITE FAULT
S4 SEEK ERROR | RNF RNF 0 RNF .
S3 |. CRC ERRCR CRC ERROR CRC ERROR 0 CRC ERROR |0
S2 TRACK 0 LOST DATA LOST DATA LOST DATA LOST DATA LOST DATA
S1 INDEX DRQ DRQ DRQ DRQ DRQ
SO BUSY BUSY BUSY BUSY BUSY BUSY
Table 4-15. Status for Type | Commands
| BIT NAME MEAN | NG
S7 NOT READY This DIT when seT indicates the drive |s not ready. When reset
it indicates that the drive is ready. This bit is an inverted
copy of the Ready input and logically 'ored' with MR.
56 PROTECTED | When sef, Indlicates Wrlife Profect 1s activated. This bIT Is an

inverted copy of WRPT input.

"S5 TEAD LOADED

When set, indicates the head is loaded and engaged. This bit
is a logical "and" of HLD and HLT signals. :

'S4 SEEK ERROR
ST CRC ERROR

When set, the desired track was not verified. This bit is
reset to 0 when updated.

CRC encountered in ID field.

S$2 TRACK 00 When set, indicates Read/Write head is positioned to Track 0.
This bit is an inverted copy of the TROO input. _
ST INDEX When set, indicates index mark detected from drive. This bit
is an inverted copy of the IP input.
'S0 BUSY When set command is in progress. When reset no command is in

progress.

4-19

THEORY OF OPERATION

Table 4-16. Status for Type Il and i1l Commands

BIT NAME

MEANING

S7 NOT READY

This biT when set indicates the drive is not ready. When
reset, it indicates that the drive is ready. This bit is an
inverted copy of the Ready input and 'ored' with MR. The Type
!l and ||| Commands will not execute unless the drive is ready.

| S6 WRITE
PROTECT

On Read Record: Not Used. On Read Track: Not Used. On any
Write: |t indicates a Write Protect. This bit is reset when
updated.

S5 RECORT TYPE/
WRITE FAULT

On Read Record: It indicates the record-type code from data
field address mark. 1 = Deleted Data Mark. O = Data Mark. On
any Write: |t indicates a Write Fault. This bit is reset when
updated.

"S2 RECORD NOT
FOUND (RNF)
$3 CRC_ERROR

When set, it indicates that the desired track, sector, or side
were not found. This bit is reset when updated.

If S4 is set, an error is found in one or more ID fields; other-
wise it indicates error in data field. This bit is reset when
updated.

§2 LOST DATA

When set, it indicates the computer did not respond to DRQ in
one byte time. This bit is reset to.zero when updated.

S1 DATA REQUEST

This bit is a copy of the DRQ output. When set, it indicates
the DR is full on a Read Operation or the DR is empty on a
Write operation. This bit is reset to zero when updated.

'S0 BUSY

When set, command is under execution. When reset, -no command
. is under execution. - -
Table 4-17. Cowmand Summary
—____BITS
TYPE | COMMAND 7 6 5 4 3 2 1 . 0
| - | Restore 0 0 0 0 h v r1 ro
| Seek 0o 0 0 1 h v r r
1 0
| Step 0 0 1 u h v r r
1 0
| Step In 0 1 0 u h v r1 ro
l Step Out 0 1 1 u h v r‘r r0
Il Read Sector 1 0 0 m F2 E F1 0
Il Write Sector 1 0 1 m F E F a
2 1 0
i Read Address 1 1 0 0 0 E 0 0
11 Read Track 1 1 1 0 0 E 0 0
1 Write Track 1 1 1 1 0 E 0 0
) Force Interrupt 1 1 0 1 I | I I
3 2 1 0
u

4-20

THEORY OF OPERATION

Table 4-18. Flag Summary

TYPE | COMMANDS
Load Flag (Bit 3)
1, Load head at beginning
0, Unload head at beginning

ify flag (Bit 2)
1, Verify on destination track
0, No verify

= Stepping motor rate (Bits 1-0)
efer tn Table 1 for rate summary

“170 &
= Update flag (Bit 4)
u 1, Update Track register
u 0, No update

Table 4-19. Flag Summary

TYPE 11 & 111 COMMANDS
m= Mulflple Record flag (Bit &)
m = 0 Single Record
m =1, Multiple Records
= Data Address Mark (Bit 0)
% a, = 0, FB (Data Mark)
aO = 1, F8 (Deleted Data Mark)
E = 15 ms Delay (2 MHz)
E=1, 15 ms delay
=0, no 15 ms delay
(FZ) S = Side Select Flag (1791/3 only)
S =0, Compare for Side 0
S =1, Compare for Side 1.
(F,) C = Side Compare Flag (1791/3 only)
C =0, disable side select compare
C =1, enable side select compare
(F)) § = Side Select Flag (BIit. 1, 1795/7 only)
S = 0 Update SSO to O
S = 1 Update SSO to 1
(Fz) b = Sector Length Flag (Bit+ 3, 1975/7 only)
Sector Length Field
00 01 10 11
b=0 256 512 1024 128
b =1 128 256 512 1024

4-21

THEORY OF OPERATION

Table 4-20. Flag Summary

TYPE 1V _COMMANDS
1T = TnferrupT Condition flags (Bifs 3-0)

I0 = 1, Not-Ready to Ready Transition
i1 =1, Ready to Not-Ready Transition
12 =1, Index Pulse

13 =1, Immediate interrupt

'S-IO = 0, Terminate with no Interrupt

|

DMA Controller

The Z80-DMA circuit is a programmable, single channel device that provides all
address, timing, and control signals to effect the transfer of blocks of data
between two ports within the Z80-CPU based system. These ports may be system
main memory or any system peripheral |/0 device. The DMA can also search a
block of data for a particular byte (bit maskable), with or without a simulta-
neous transfer. The address of the DMA controller port is 18H. For additional
data on the DMA controller, refer to the Zilog Corporation or Mostek Corporation
Data Books for the Z80-DMA device.

Z80-Dual Asynchronous Receiver/Transaitters (DARTS)

The two Z80-DART devices provide the serial |/0 interface between the 9520
Software Development System, the three RS=232-C ports and the one RS-422 port.
The DARTs are dual asynchronous format controllers capable of operation up to
19,200 baud for the RS-232 ports. The four ports connected to the DARTs support
the primary and secondary handshake signals necessary to prevent data overrun.
These DARTs operate in the Z80 CPU mode 2 interrupt structure and suppl!y vec-
tored interrupts for character fransmission, reception and changes in status
signals. Each DART has nine registers, which control the two ports. Higher
registers are addressed by the lower 3 bits of register 0. Register name, func-
tion and address for each of the RS-232 port pairs are listed in table 4-21:

Table 4=21. RS=232 Port Addresses and Functions

REGISTER
HEX ADDRESS DIRECTION : REGISTER
02 1/0 REM(ote) | /0 data
03 1/0 REM(ote) | /0 read register 0
08 1/0 RDR/PCH DATA
09 1/0 . ROR/PCH read register 0
0A 1/0 Console data
0B 1/0 Console read/write register 0

4-22

THEORY OF OPERATION

The high-speed RS-422 serial port is capablie of speeds up to 750,000 baud. The
port assignments are as follows:

HEX ADDRESS DIRECTION REGISTER NAME
00 1/0 RS-422 data
01 1/0 ~ RS=422 read/write register 0

Additional data pertinent to the Z-80 DART devices is available in Zilog
Corporation Z=-80 SI10 Technical Manual.

IEEE-488 PORT 1/0 CONTROLLER

The 9520 system provides a high-speed, general purpose interface bus (GPIB).
This GPIB, 8=bit paralle! interface enhances the system by permit+ting com-
munication -with any similarly configured system. The GPIB interface is
interrupt driven, similarly to the serial |1/0 ports. The GPIB port is
controlled by a Texas Instrument 9914 that handles the bus protocol for command
and data fransfer. Switch S6, on the system rear panel, is read at power-on or
reinitialization and assigns the peripheral address for port communication. The
9914 device has the capability of being a talker, listener, or controller. The
interface drivers between the controller -and the physical GPIB bus are con=<’ -
figured for tristate operation, permitting a higher data transfer speed. The
9914 controller has 14 registers that control the device, table 4-15 provides
the register hex address, register name and direction.

Table 4-22. 9914 Registers

REGISTER :

HEX ADDRESS DIRECTION REGISTER NAME
30 - 1/0 Interrupt Status O / Mask 0
31 1/0 Interrupt Status 1 / Mask 1
32 ! Address Status
33 1/0 Bus Status/Auxilliary Command
34 1/0 Address Switch/Address Register
35 o] Serial Pol!l
36 1/0 Command Pass Thru/Parallel Poll
37 1/0 Data’

Additional information relative to the IEEE-488 Port 1/0 Controller is available
in the Texas Instruments, Inc. TMS9914 GPIB Adapter Data Manual.

DISK DRIVES
The 9520 Software Development System contains two eight-inch floppy disk drives

installed within the cabinet. All circuits necessary to interface and interpret
the disk drive inputs and outputs are on the CPU processor board.

4-23

Chapter 5

SOFTWARE DESCRIPTION

GENERAL

Software for the 9520 Development System is based upon the MPM Operating
System. MP/M incorporates command formats, conventions, syntax and file struc-
tures that support the following types of programming capabilities:

0 Text editor to prepare and manipulate the users source program files.

o A variety of assemblers that translate source program files into target
object files for different types of microprocessors.

o Linker fo link object brograms together 1o produce the executable load module.

o Utility programs to download and up load executable load modules between the
9520 Development System and a remote debug/emulator station.

o Floppy disk utility to format, duplicafé and copy information on diskettes.
o 1/0 Baud Rate utility to display and set baud rate values for the 9520 1/0

ports.

The 9520 Software is contained on *three system diskettes:
(1) System D}ske++e, Part #XXXXXXXX

(2) *Language Translator Diskette, Part #MOXXXXXXX

(3) System Diagnostic Diskette, Part #AXXXXXXX

*NOTE: Separate Language Translator diskettes are available for the various
assemblers and cross assemblers that are used to support the preparation
of object files for different types of microprocessors.

SOFTWARE ORGAN!IZATION

The 9520 Development System software is organized around the operating system
and applications software as shown in figure 5-1. The operating system is
described in the MP/M Users Manual. The applications software can be divided
into two functional groups: (1) Host Support Functions, and (2) Cross Support
Functions.

Software Support Functions

Host support functions contain all program files that are made available to the
9520. Cross support functions contain specific program files that can be
accessed by a remote debug/emulator station to establ!ish communications with,
and issue commands to the host system for upload, download and conversion opera-
tions as shown in figure 5-2.

5-1

SOFTWARE DESCRIPTION

Both the host support and cross support software is further divided into memory

and disk resident programs.

This distinction (memory/disk) is merely to dif-

ferentiate between programs that are permanently resident in the system memory

from those that are accessed from the disk.

classified as program relocatable modules (PRLs). The
host support and cross support functions are shown in figure 5-2.

MP /M
OPERATING
SYSTEM
64K
STANDARD
X10S
112K OPTION
BDOS .
X10S
XDOS
0oDOS
RSPs
L XDOS
RSPs
BNK-
BDOS
Figure 5-1.

DEVELOPMENT SYSTEM
SOFTWARE PACKAGE

HOST SUPPORT
FUNCT IONS

A

DISK
PRLs

Programs that reside in memory are

PRLs associated with the

APPLICATIONS
SOFTWARE

CROSS SUPPORT
FUNCT IONS

MEMORY
RSPs

DISK
PRLs

Development System Software Organization

SOFTWARE DESCRIPTION

Iys

CONSOLE‘

9520 (Host)
MP/M 0S
X10S
RSPs
XDOS REMOTE
DEBUG/EMULATOR
STATION
PRLs } 1 D ==
a T
l
REMOTE A ----|—---l
SUPPORT WHE X
HOST " OPERAT IONS | VUPLOAD Ql
SUPPORT (REMOTE WRITE | |
OPERATIONS | TO HOST) | |
;E .i;> RHEX
DONNLOAD I I
(REMOTE READ
FROM HOST) : | |

HOST SUPPORT

TEXT EDITOR
FDISK
BRATE

GENHEX
GENMODE

PIP

000 000O0O0O
r
=
g

Figure 5-2.

CROSS SUPPORT
APPLICATION

o CROSS ASSEMBLER
o CROSS LINKER

o CONVERT

o DOWNLOAD

o UPLOAD

| CONSOLE |

L__-_1

Cross Support Interface with Remote Station

SOFTWARE DESCRIPTION

Operating System Generation

The resident system processes are configured by the user when the system is ini-
tialized for system generation (GENSYS). The procedure for using the GENSYS
program is described in chapter 7. The GENSYS parameters are loaded from the
system diskette whenever the system is powered up or reset. These parameters
define the software operating characteristics that differentiate one system from
another. For example, which resident processes can be available, the amount of
memory segment space provided, the number of consoles assigned, etc. The allo=
cation of memory segments to accommodate the various operating system con-
figurations as described in the MPM Users Manual.

The standard, 64K memory system is configured with the following modules:
X10S =-- Basic and Extended |/0 System File
BDOS -- Basic Disk Operating System File
XDOS — Extended Disk Operating System File
RSPs -- Resident System Processes Fi[e

The expanded 112K memory operation provides more space to accomocdate the
extended processing modules which are as fol lows:

X10S =-- Basic and Extended | /O System File

0DOS ~-- BDOS with resident portion of BNKBDOS File
XDOS =-- Extended Disk Operating System File

RSPs -- Resident System Processes File

BNKBDOS =-- Bank Switched BDOS File

FUNCTIONAL DESCRIPTION OF PROCESSING FUNCTIONS
QN

The operating system is based upon 2 real-time, multi-tasking nucleus. The
nucleus provides the following software function controls:

o Process Dispatching

o Quete Management

o Flag Management

o Memory Management

o System Timing Functions

SOFTWARE DESCRIPTION

Process Dispatching Functions

Each process in the system has a process descriptor which contains all of the
information needed by the system to define a process. This information is used
during dispatching to save the state of the process that is currently being run,
to determine which process is to be run, and then to restore that processing
state. '

The process descriptor contains all primitives for manipuiation of system queues
(Task Control Blocks) that are waiting for some event to occur. The Task
Control Block (TCB) is actually an executing program. [t is not the program
itself that makes a task, but rather, its execution on the processor. The same
program can be executed by any number of tasks, each with its own TCB. A task
s 1nerefore the state of executing a body of code.

Process dispatching is performed at each system cail, at each interrupt and at
each clock pulse of the system clock. Processes containing the same priority
are scheduled for equal slices of CPU time.

The primary purpose of the process dispatcher is to assign the CPU to the next
available task. When the task becomes available, it is given control of the CPU
by the process dispatcher. The task maintains control of the CPU until it
either gives up the control voluntarily, or requests an operating system service
function that causes the task to wait for some event to occur. In either case,
the tasks operating registers are saved in the TCB, the task is placed on-an
appropriate queue and control is returned to the process dispatcher to look -for
the next task top dispatch.

Queue Management Functions

Queues perform several critical functions in a real-time multi-tasking environ-
ment. The queues are used for controlling the order in communicating messages
between processes, mutual exclusion of processes and to synchronize processes
for the order, time and priority of servicing. The queue controls a first-in
first-out list of messages, a list of processes awaiting messages, and the
sequencing for sending each message.

F lag Management Functions

F lag Management is used to synchronize processes by signaling a specific event. -
The flags provide a logical interrupt system which is independent of the physi-
cal interrupt system. The flag interrupt therefore maps an arbitrary physical
interrupt environment into a dynamic structure.

Memory Management Functions

Memory is managed by pre-defined segments. The MP/M System can accept up to
eight memory segmenfs of 48K. The extended 48K memory option of the 9520
Development System is supported by the banked-switched, memory allocation
feature.

SOFTWARE DESCRIPTION

System Timing Functions

System Timing functions provide the time-of-day clock in addition to the capabil-
ity to schedule programs that are loaded into memory from the disk fo be exe-
cuted. The timing functions also provide a capability to delay the execution of
a process within a specified period of time. A special command can be issued at
the console to read and set the date and time.

CONSOLE COMMANDS

This section describes the commonly used console commands that are issued by the
operator to communicate with the software. The commands available at the con-
sole are established by resident system process (RSP) programs that are spe-
cified by the user during system generation (see chapter 7) and by program
relocatable (PRL) modules that reside on the diskette.

The MPM system does not use a system-defined, or built-in command structure
that conatins a fixed number of commands. Each available command coincides with
a specific RSP or PRL program that is configured by the user during the system
generation process. These commands can be categorized into four groups as

fol lows: '

1. User ldentification Commands
2. File Manipulation Commands
3. System Operation Commands
4. Program Operation Commands

Details of individual commands associated with each cafegory are described in
subsequent paragrapsh and the MP/M Users Guide Manual that is shipped with the
system.

USER IDENTIFICATION COMMANDS

The user identification commands permit a user to perform the following
functions:

o Display current user 1D code and/or se?ﬂa user code value
o Display user console |D number
o Reset Disk Drives

Command Name: GET/SET USER CODE

Function: The GET/SET USER CODE Command is used fo dlsplay the current user
code as well as to set a user code value.

The command is invoked as follows:

SOFTWARE DESCRIPTION

.To Disptay User Code: Entering the command, USER, followed by a <cr> will
display the current user code. (Observe that the current user code is always
displayed in the prompt.)

Entry: 0A> USER cr
Syntax: 0A> <USER> <cr>
System Response: USER = 0

To Set the User Code to a Specified Number: Entering the command, USER,
followed in sequence by a space, user code and then a <cr> will set the user
code to the specified user code number. The example which follows assigns a
user code value of 2

Entry: 0A> USER 2 cr
Syntax: 0A> <USER> <z> <cr>
System Response: USER = 2

' 27>

where: Legal user code numbers must be within the range of 0 - 15.
Ccmménd Name: CONSOLE

Function: The CONSOLE command is used to display the console ID number at the
location where the command is being entered. The console number thus displayed,
allows the user to examine system status to determine which processes are

detached from consoles:

The command is invoked as follows:

Entry: OA CONSOLE cr
Syntax: 0A> <CONSOLE> <cr>
System Response: CONSOLE = 0

where: Console = 0 is displayed to indicate the assigned console ID
number. :

Command Name: DSKRESET

Function: The DSKRESET (Disk Reset) command is used to allow the operator to
change disks. |f there are open files on any of the drives to be reset, the
disk reset is not aliowed, and the cause of the rejection is displayed in an
error message. Open files (i.e., in processof being written to the diskette)
will lose their updated information if they are not closed prior to issuing the
disk reset command.

The command is invoked as follows:

SOFTWARE DESCRIPTION

To reset all drives: Entering the DSKRESET command followed by a <cr> allows
all drives-to be reset:

Entry: OA DSKRESET cr
Syntax: 0A> <DSKRESET> <cr>

Error Message: |f a file is open on a drive, the following message is
displayed:

Disk reset denied, Drive x: Console y Program z

where: x = Drive where program is being executed
y = Console where program is attached
z = Program Name that is sTili execuTing

To reset a specific drive: Entering the DSKRESET command, followed in sequence
by a space, the drive descripter and a <cr> allows a specific drive to be reset.
The following example describes how to reset Drive B:

Entry: OA> DSKRESET B: cr
Syntax: : OA> <DSKRESET> <B:> <cr>

where: DSKRESET = Disk reset command :
B = Drive descriptor with semicolon fto denote 1/0 device

Error Message: Same as given for Reset all Drives.

FILE MANIPULATION COMMANDS

The File Manipulation Commands allow the user to perform the following opera-
tions on system files:

o Erase‘a File

o Display Contents of Source File

o List all Filenames

o Change Filenames

o Provide Status of File Storage

o Produce Hexadecimal Type Files from COM type files

© Produce COM Type Files from PRL Type files
The parameter that is entered in a command fo reference the filename consists of
two parts, primary name and secondary name (which is an extension of the primary
name). The primary name is a 1-8 character, user-assigned name for the file.
The secondary name is a 1-3 character extension name for the file type that may
be assigned by the user or, under certain circumstances, a utility that is

assigned by defaulft.
5-8

SOFTWARE DESCRIPTION

A period (.) is used to separate the primary filename from the secondary exten-
sion, and is used in a command in the following forms to specify the type of
processing search that will be performed on files:

where: Variations of the parameter entry are:

<*¥> < ,*> = Process all system files (filename and extension parame-
ters do not define a specific filename or file type).

<*> <,ASM> = Process only those files that are assigned with the ASM

file type descriptor.

Process only the file that is referenced by the W filename

and ASM file type descriptors.

<W> <.*> = Process only those files that are assigned the W filename
) descriptor.

<W> < ASM>

Command Name: ERASE FILE

Function: Two commands, ERA (erase) and ERAQ (erase Query), are used to delete
files. The ERA command is an immediate entry which allows the user to delete a
specified file or all files. The ERAQ command is an interactive entry which
initially displays a list of specified files in the system; the user is prompted
by a query fo respond with Y or N (for a yes or no confirmation). to delete each
file contained in the list. :

To delete all files: Entering the ERA command followed in sequence by two para-
‘meters (*.,*) for filename and extension, and a <cr> will delete all files
assigned for the user code.

Entry: OA> ERA *.,* cr
Syntax: OA> <ERA> <*> <, *> cr

where: ERA Erase Command

* = first parameter (required) which defines 8 characters or

less for all primary filenames.

.* = sacond parameter (required) which defines 3 characters or
less for all secondary filename extensions.
cr = carriage return (required)

System Response Message: Confirm delete all user files (Y/N)?

“where: User must type a Y (for yes) or N (for no) in order 1o delefe
. all files.

To display list of all files and seiectively delete various filename(s) from
list: Entering the ERAQ command followed by two parameters for filename and
extension (*.*) causes the system to display the list for all fiulenames con-
tained in the directory; the user is then prompted to respond with a Y (for yes)
or N (for no) to delete or save each filename as it appears in the display.

Entry: O0A> ERAQ *.* cr
Syntax: 0A> <ERAQ> <¥> <, %> <cr>

where: Definition of parameters is given in previous command.

SOFTWARE DESCRIPTION

To display specific files and delete from |ist: Entering the ERAQ command
followed by the specified filename parameters allows the user fto delete only
those files that match the filename reference.

Entry: OA> ERAQ *,LST cr
Syntax:: 0A> <ERAQ> <*> <.LST> <cr>

command for selective deletion of file.‘

first parameter (required) which defines 8 characters or
less for primary filenames.

where: ERAQ
*

.LST = second parameter (required) which defines 3 characters
or less for the secondary filename (extension) of each
file associated with the .LST paramefer.

cr = carriage return.
System Response: A:X10S LST? Y

A:MYFILE LST? N

where: -The selected files -are displayed with a query. requesting the
user to respond with a Y (yes) or N (no) to.delete or save the
specified file.

Error Message: The message, NO FILE, is displayed if the filename can-
not be found on the specified diskette.

Command-Name: TYPE A FILE

Function: The TYPE command displays the contents of a specified ASC!! source
file on the screen. The user can specify the number of Iines of data to be

displayed on a page. The TYPE command automatically expands tabs at every
eighth-column location.

The filename must be specified with two parameters following the TYPE command.
The TYPE command has an optional pause mode.-to halt the display after the spe-
cified number of lines appear on the screen. The pause mode is set by entering

a P, followed by two decimal digits (to indicate line count) after the filename
extension entry. The pause mode will cause the display to halt until the <cr>

key is pressed; the additional lines will then be displayed etc., until the end
of file is reached.

In the following example, the primary filename, DUMP distinguishes a category
name of source files and the extension filename; ASM disfinguushes the type of
file for a particular category.

NOTE: The peripheral Interface Command (PIP) may also be used to display source
files. The description of the PIP command is described under System
Operation Commands.

Entry: 0A> TYPE DUMP.ASM P23 cr
Syntax: 0A> <TYPE> <DWMP> <,ASM> <P23> cr

where: TYPE = Command to display source file.

DWP = Primary filename.
+.ASM = Secondary file name extension.
P23 = Pause after 23 lines are displayed.
cr = Carriage return (advance to the next 23 lines and pause).

SOFTWARE DESCRIPTION

Command Name: FILE DIRECTORY

Function: The DIR (directory) command causes a list of the filenames that are
stored in a diskette to be displayed at the terminal. The command can be
invoked to list all filenames stored on the currently assigned disk drive, or
all filenames stored on a specific disk drive, or list particular filenames
stored on a specific disk drive. An error message is displayed if a requested
filename cannot be found on the addressed disk drive.

The parameter field that is entered in the command string to identify the disk
drive name (e.g., A: or B:) must be followed by a semicolon (;). |f the drive
name is not specified in the commands the system will address the last drive
that was assigned.

To list all filenames on the currently assigned disk drive: Entering the com-
mand, DIR, followed by a <cr> wil! display all filenames on the currently
assigned drive. .

Entry: . 0A> DIR ¢r

Syntax: O0A> <DIR> <cr>

System Response: Al| filenames on the logged-on disk drive will be .
displayed. ;

To list filenames stored on a specific disk drive:- Entering the command, -DIR,
followed in sequence by the parameter for a specified disk drive, and a <cr>
will cause the specified disk drive to be addressed and a search conducted to
list all filenames stored on the diskette.

Entry: 0A> DIR B: cr
Syntax: 0A> -DIR> B:> <cr>

where: Parameter B: indicates the specified drive.

-Sysfem Response: All filenames on the specified drive will be
disp layed.

To list a particular filename on specified diskette: Entering the command, DIR,
followed in sequence by the parameter for a specific disk drive, the two parame-
ters for filename and/or extension, and a <cr> will cause the specified file to

be displayed.

Entry . OA> DIR- B: <*> ,ASM cr
b OA> <DIR> B:> <*> <,ASM> <cr>
where parameters: * = fjlename

+ASM = extension (file type)

Error Message: The message, NOT FOUND is displayed if the file is not
~stored on the specified disk.

Command Name: RENAME FILE

5-11

SOFTWARE DESCRIPTION

Function: The REN (rename) command allows the user to change the name of files
stored on the disk. |t is assumed that the currently assigned disk contains the
old filename that is to be changed to a new filename.

To change existing filename, MYFILE.ASM to read YY.ZZ: Entering the REN command
followed in sequence by (1) The existing filename and extension parameters, (2)
An equal sign (=), (3) The new filename and extension parameters, and (4) A <cr>
will initiate the change. -

Examp le: OA> REN MYFILE.ASM = Y.Y.ZZ cr
Syntax: 0A> REN <MYFILE> <.ASM> <=> <YY> <.ZZ> <cr>

where: The filename and extension parameters must be specified in the
command string for both the current filename and new filiename.

The optional disk drive name (e.g., A: or B:) may be used in the command string
to identify the file location. {|f the current filename is assigned to a spe-
cified drive, then the new filename is expected to reside on the same drive.
Likewise if the new filename is assigned to a specified drive, then the current
filename is expected to reside on the same drive as indicated in the following
examp les: T '

B:YY

Example Entry: (1) OA> REN B: MYFILE.ASM .
YY.2Z

(2) OA> REN B: MYFILE.ASM

ZZ cr
cr
where: Both examples (1) and (2) indicate the filename, MYF ILE.ASM is .
changed to YY.ZZ on drive B.

(3) OA> REN A: BAL.M
(4 OA> REN A: BAL.M

BAT.M cr
A: BAT.M cr

where: Both examples (3) and (4) indicate the filename BAL.M is
changed to BAT.M on drive A.

Command Name: STATUS

Function: The STAT (Status) gommand provides statistical information about file
storage and device assignments. The STAT command is invoked as follows:

Entry: O0A> STAT cr
Syntax: : 0A> <STAT> <cr>

Full details and variations for entering the STAT command are described in the
MP/M and CPM users manuals that are shipped with the system.

Command Name: GENMOD

Function: The GENMOD command accepts a file which contains two concatenated
files of type HEX which are offset from each other by 0100H bytes, and produces

a file of type PRL (program relocatable module). The GENMOD command is invoked
in the following form:

Entry: OA> GENMOD G: (filename) (.extension) B: (filename).PRL $1000
Syntax: OA> <GENMOD> <B:> <file> <.hex> <B:> <file> <.PRL> <$1000>

SOFTWARE DESCRIPTION

where: The first parameter = filename which contains fwo concatenated
files of type HEX extension.

The second parameter = the name of the destination file of type
PRL extension.

The optional third parameter = the specification for additional
memory space required by the program beyond the explicit code
space. The form of this parameter is the dollar sign ($)
followed by four hex ASCI!| digits. For example, if the the
program has been written fo use all available memory for buf-
fers, the specificaiton of the third parameter will ensure that
a minimum buffer allocation is provided.

Command Name:; GENHEX

Function: The GENHEX command is used to produce a file of type HEX from a file
of type COM. This capability allows the user to generate HEX files for GENMOD
input. The GENHEX command has two parameters which consist of the COM filename
and the foffset value fo the HEX file. The GENHEX command is invoked in the
following form: ’

Entry: O0A> GENHEX PROG.COM 100
Syntax: O0A> GENHEX <PROG> <.COM> <100>

Command Name: PRLCOM

Function: The PRLCOM command accepts a file of type PRL (program relocatable

. module) -and produces a file of type COM (memory resident). 1f the
destination COM file already exists, a query is made fto determine if the file
should be deleted before continuing the command processing. The PRLCOM command
is invoked in the following form:

Entry: OA> PRLCOM B: (program) .PRL A: (program) .COM
Syntax: OA> <PRLCOM> <B:> <program name> <PRL.> <A:> <program name> <.COM>
SYSTEM OPERATION COMMANDS

The system operation commands permit the user to perform the following
functions:

o Transfer data files from one peripheral |/0 device to another via the
peripheral interchange program command.

O Assemble the users program and store the result on diskette.

o0 Select a file of commands for automatic batch processing vialfhe sub-
mit command. !

(o]

Display the contents of a specified disk file on the screen in hexa-
decimal form via the dump command.

SOFTWARE DESCRIPTION

o0 Load a specified disk file with hexadecimal machine code and produce
a memory image file which can be executed.

o Display run-time status of the MP/M Operating System via the system
status command.

(o} Transfer ASCI! text files to a list device via the spoo! command.
Command Name: PERIPHERAL INTERCHANGE PROGRAM

Function: The PIP (peripheral interchange program) command allows the user to
initate data transfer operations between the disk file and other peripheral
devices. The PIP command may be invoked by specifying the Interactive Response
mode cr Immediate Response mode. variarions ror using The FIP are described in
the CP/M Users Guide Manual.

To invoke PIP for Interactive Response: Entering the command PIP followed by a
<er> willgcall out the program

Entry: OA> PIP cr
Syntax: 0A> <PIP> <er>
The system will respond by displaying an as+erisk.(8) character which serves as

a prompt for.the user to begin entering one or more command lines at the con-
sole. The form of each command line entry is as follows:

¥

* <destination> <=> <source #1> <,Source #2> ... <Source #n> <cr>

where: <destination> is the name of the file or peripheral -device that
will receive the specified source information.

<=> equal symbol is a delimiter

<source #1> through <source #n> represents a series of one or
more files (or devices) that are copied from left to right and
sent to the specified destination.

EXAMPLE COMMAND LINE ENTRY:

B: = *.COM cr -- Copy all files which have the secondary exten-
sion name, COM to drive B from the current
drive. _

Each command |ine entry causes some type of transfer function to occur as
defined by the content in the command line.

The * prompt will continue to appear requesting input for a command !ine entry

until a <cr> is issued immediately after the * prompt. This will cause the PIP
To terminate.

5-14

SOFTWARE DESCRIPTION

To invoke PIP for Immediate Response: Entering the command PIP, followed in
sequence by the command line entry and a <cr> will call out the program and exe-
cute the command without the need for user interaction. The program automati-
cally terminates after execution is completed.

Entry: O0A> PIP (command line)
Syntax: 0A> <P{P> <destination> <=> <source #1> <source #2> ...
<source #n> <cr>

where: description of parameters for command line entry is the same as
’ given for Interactive response.

Command Name: ASSEMBLER

Function: The ASM (assembler) command allows the user to assemble a specified
program on a disk. The MP/M assembler is invoked as follows:

Entry: OA> ASM (filename) (flags) cr
Syntax: 0A> <ASM> <filename> [F1 F2 F31] <cr>

where: The command ASM means assemble. The filename is t+he name of
the source file to be assembled. The file type extension is
not included in the command. MPM uses the file name to
generate:

- The source filename by appending .ASM
- The list filename by appending-.PRN
- The object file name by appending .HEX

The three flags (F1, F2, F3) are optional. The first flag is associated with
the source file, the second flag with the ob ject file, the third flag with the
list file. the flags are one character each and have the following meaning:

A through P - Logical disk drives
Z - Do not produce a file

X - Applies only to Flag 3 (F3) and means put the Listing on the con-
sole.

NOTE: |If the filename has a logical drive designator (A:filename) and

the flag specifies a different logical drlve, the flag takes
precedence.

Command Name: SUBMIT

Function: The SUBMIT command allows a user to combine several commands into a

single file for automatic batch processing. The SUBMIT function creates a file
of substituted commands with the name, $$3$.SUB. The SUBMIT command is invoked

as follows:

5-15

SOFTWARE DESCRIPTION

Entry: OA> SUBMIT (filename) (parameter #1 ... parameter #n) cr

Syntax: OA> <SUBMIT> <filename> <.extension> <parameter #1> <parameter
#n> <cr>

where: Filename is the name of a file that exists on the currently
assigned disk which contains an extension of .SUB. The
comp lete filename is of the form, ASM.SUB.

A filename with the .SUB extension, type descriptor is therefore identified by
the SUB file. The SUB file contains prototype commands with possible parameter
substitution to accomp!ish batch processing.

{}OCE .
The actual parameters #1 ... parameter #n entered in the command string repre-
senT commands contained in the prototype file. The prototype command file i»
created using the Editor program with interspersed ($) symbols for formal para-
meters of the form: $1 $2 $3 ... $n.

These formal parameters ($1 $2 $3 ... n$) correspond to the number of actual
parameters (parameter #1 ... parameter #n) entered in the command string and are
substituted into the prototype commands.

When the SUBMIT command is executed, the actual parameters (parameter #1 ...
parameter #n) are paired with the formal parameters ($1 $2 $3) in the prototype
commands. -)

Ff the number of formal and actual parameters correspond, batch proi:es:sing is
initiated and the file of substituted commands are executed in sequence.

| f the number of formal and actua! parameters does not correspond, then the
SUBMIT function is aborted with an error message displayed at the console.

Command processing is also aborted if the system detects an error in any of the
commands. The user can abort command processing at any time by typing a rubout
when the command is read or echoed.

Examp le:

Let us assume the file ASMBL.SUB exists on disk and contains the following pro-
totype commands

ASM $1

DIR $1.%

ERA *.BAK

PIP $2:=$1.PRN
ERA $1.PRN

and the SUBMIT command is issued by the operator:
SUBMIT ASMBL X PRN cr

The SUBMIT program reads the ASMBL.SUB file, substituting "X" for all occurren-
ces of $§1 and "PRN" for all occurrences of $2, resulting in a $$3.SUB file con-
taining the following commands which are executed in sequence.

5-16

SOFTWARE DESCRIPTION

ASM X

DIR X.*

ERA *.BAK

P1P PRN:=X.PRN
ERA X.PRN

The SUBMIT function can also access a SUB file which is stored on an alternate
drive by preceding the filename by a drive name. Submitted files are nly acted
upon, however, when they appear on drive A. Thus, it Is possible to create a
submitted file on a drive B diskette which is executed at a later t+ime when the
diskette is inserted in drive A.

command Name: UUMP

Function: The DUIMP command types the contents of the specified disk file at the
console in hexadecimal form. The contents are listed 16-bytes as a time, with
the absolute by+e address listed in hexadecimal to the left of each line. The
DWP command is invoked as follows:)

Entry: : 0A> DWP (filename) cr
Synatax: ~ 0A> <DWMP> <filename> <.extension> <cr>

where: Filename and extension s of the form: BOT.ASM

Long listings can be aborted by pressing the rubout key while printing is in
process.

Command Name: LOAD

Function: The LOAD command reads the specified filename, which is assumed to
contain hexadecimal format machine code ard produces a memory-image file that
can be subsequentiy executed. The LOAD command is invoked as follows:

Enfry: OA> LOAD (filename) cr
* Syntax: 0A> <LOAD> <filename> <.extension> <cr>

where: Filename and extension is of the form: ALPA.HEX
Command Name: SYSTEM STATUS

Function: The MPMSTAT (MPM System Status) command allows the user to display
the run-time status of the MP/M operating system. The MPMSTAT command is
invoked as follows: .

Entry: OA> MPMSTAT cr
Syntax: 0A> MPMSTAT> <cr>

The system status is displayed on the screen in the following format:

5-17

SOFTWARE DESCRIPTION

¥xxxE% MP/M Status Display *#ax*x

Top of memory = FFFFH

Number of consoles = 02

Debugger breakpoint restart # = 06

Stack is swapped on BDOS calls

Z80 comp lementary registers managed by dispatcher
Ready Process(es):

MPMSTAT Idle
Process(es) DQing:
[Sched 1 Sched
(ATTACH 1 ATTACH
(C1iQ 1 cli

Process(es) NQing:
Delayed Process(es):
Polling Process(es):
PIP
Process(es) Flag Waiting:
01 - Tick
02 - Clock
Flag(s) Set:
03
Queue(s): -
MPMSTAT Sched CliQ ATTACH MXParse
MXList [(TmpO 1 MXDisk
Process(es) Attached to Consoles:
0] - MPMSTAT)
(11 - T™MP1
Memory Al location:
Base = 0000H Size
Base = 4000H Size
Base = 6000H Size

4000H Allocated to PIP (11
2000H * Free *

1100H Allocated to DIR (01

The information presented in the status display is to be interpreted as fotlows:

Ready Process(es): The ready processes are those processes which are ready to

run and are waiting for the CPU. The list of ready processes is ordered by the
priority of the processes and includes the console number at which the process

was initiated. The highest priority ready process is the running process.

Process(es) DQing: The processes DQing are those processes which are waiting
for messages to be written to the specified queue. The queue name is in
brackets followed by the names of processes, in priority order, which have exe-
cuted read queue operations on the queue.

Process(es) NQing: The processes NQing are those processes which are waiting
for an availlable buffer to write a message to the specified queue. the queue
name is in brackets followed by the names of the processes, in priority order,
which are waiting for buffers.

Delayed Process(es): The delayed processes are those which are delaying for a
specified number of ticks of the system time unit.

5-18

SOFTWARE DESCRIPTION

Polling Process(es): The polling processes are those which are polling a spe-
cified 1/0 device for a device ready status.

Process(es) Flag Waiting: The processes flag waiting are listed by flag number
and process name.

Flag(s) Set: The flags which are set are displayed.

Queue(s): Al!l the queues in the system are listed by queue name. Queue names
which are all in capital letters are accessible by command line interpreter
input. For example, the SPOOL queue can be sent a message to spool a file by
entering 'SPOOL' followed by a filename. Processaes DQing from queues which have
a name that matches the process name are given the console resource when they
receive a message. Queue names that begin with 'MX' are called mutual exclusion
queues. The display of a mutual exclusion queue includes the name of the pro-
cess, if any, which has the mutual exclusion message.

Process(es) Attached to Consoles:: The péocess attached to each console is
listed by console number and process name.

Process(es) Waiting for Consoles: The processes waiting for each console are

| isted by console number and process name in priority order. They are processes
which have detached from the console and are then waiting for the console before
they can continue execution.

Memory Allocation: The memory allocation meap shows the base, size, bank, and
allocation of each memory segment. Segments which are not allocated are shown
as '* Free *', while allocated segments are identified by process name and the
console in brackets associated with the process. Memory segments which are set
as pre-allocated during system generation by spec:fynng an attribute of OFFH are
shown as '* Reserved *'.

Command Name: SPQOLER

Function: The SPOOL command allows the user to transfer (spool) ASCI!| text
files to the list device. Multiple filenames may be specified in the command
tail. The spooler expands tabs (cti-| characters), assuming tab positions are
set at every eighth column.

The spooler queue can be purged at any time by using the STOPSPLR command.

The SPOOL command is invoked as fol lows:

Entry: OA> SPOOL (filename), (filename) cr
Syntax: OA> <SPOOL> <LOAD> <.LST> <,> LETTER> <.PRN> <cr>

where: SPOOL the command entry

LOAD.LST = the first filename with extension
Character (,) = a delimiter to separate filenames
LETTER.PRN = the second filename in command string

5-19

SOFTWARE DESCRIPTION

The non-resident version of the spooler (SPOOL.PRL) differs in its operation
from the SPOOL.RSP as follows: it uses al! of the memory available in the
memory segment in which it is running for buffer space; it displays a message
indicating its status and then detaches from the console; it may be aborted from

a console other than the initiator only by specifying the console number of the
initiator as a parameter of the STOPSPLR command, which is invoked as follows:

Entry: 0A> STOPSPLR 0 cr
Syntax: 0A> <STOPSPLR> <0> <cr>

where: STOPSPLR
0

the command entry
the console # of intiator

PROGRAM OPERATION COMMANDS

The program operation commands allow the user to perform the following
functions:

o Invoke the MPM Text Editor Utility

-0 Invoke the Dynamie Debugger Ufility
o] Examiﬁe and Set the System Date and Time Parameter
o Schedule Programs for Execution '

o Aborf a Running Program

Command Name: TEXT EDITOR

Function: The ED (editor) command allows }he user to create and edit ASCI| text
files using the MP/M editor.

The alternate ftext editor program that is described in chapter 6 may be used to

provide an extended ASCI| text processing capability for 9520 Software
Development System applications. '

Comp lete details for using the MPM ED utility are described in the CPM Editor
Users Manual that is shipped with the system. -

The MPM ED command is invoked as follows:

Entry: 0A> ED cr
Syntax: 0A> <ED> <cr>

Command Name: DYNAMIC DEBUGGING TOOL

Function: The DDT (dynamic debhgging tool) command loads and executes the MPM
debugger.

The description for using the DDT is presented in chapter 6 of this manual.

Additional information on the DDT is conatined in the MP/M Users Manual that is
shipped with the system.

5-20

SOFTWARE DESCRIPTION

The DDT command is invoked as follows:

Entry: 0A> DDT cr
Syntax: 0A> <DDT> <cr>

Command Name: DATE AND TIME

Function: The TOD (+ime of day) command allows the user to read and set the
date and time. Entering 'TOD' followed by a <cr> will cause the current date
and time to be displayed on the console. Entering 'TOD' followed by a date and
time will set the date and time when a <cr> is entered following the prompt o
strike a key. Each of these TOD commands is illustrated below:

To Display the Curi eui Date and iime:

Entry: 0A> cr
Syntax: 0A> <TOD> <cr>

System Response: The screen will display the following information:

Wed 04/29/81 : 08:15:37
L_year" L_;econd
day minutes
month : hour (24 hr clock) .

day of week

To Set the Date and Time:

1) Entry: 0A> <TOD> (date) (t+ime)
Syntax:) OA> <TOD> <04/29/91> <10:30:00> <cr>
2) System Response message: STIKE KEY TO SET TIME
3) User Response: press <cr> key -
4) System Response: New Timé and Date is displayed as follows:

WED 04/29/81 10:30:00

NOTE: Entering TOD P will cause the current time and date to be displayed con-
: tinuously until a key is struck at the console.

Command Name: SCHEDULER

Function: The SCHED (scheduler) command allows the user to schedule a program

for execution. Entering 'SCHED' followed by a date, time and command line will
cause the command !ine to be executed when the specified date and time is
reached.

In the example shown below, the program 'SAMPLE' will be loaded from disk and
executed on April 18, 1981 at 10:30 PM. Note that only hours and minutes are
specified, not seconds. Programs are scheduled to the nearest minute.

5=21

SOFTWARE DESCRIPTION

The command is invoked as follows:

Entry: OA> SCHED (date) (time) (program name) cr
Syntax: OA> <SCHED> <4/18/81> <22:30> <SAMPLE> <cr>

Command Name: ABORT

Function: The ABORT command allows the user to abort a running program. The
program to be aborted is entered as a parameter in the ABORT command.

The command in invoked as fo!llows:

Entry: 0A> ABORT (program name) cr
Syntax: 0A> <ABORT> <RDT> <cr>

A program that is initiated from another console may only be aborted by
including its console number as a parameter of the ABORT command. The console
entry is as follows:

Entry: OA> ABORT (program name) (console #) cr
Syntax: ~0A> <ABORT> <RDT> <2> <cr>

SYSTEM UTILITIES

System Utilities is a collective name for programs which provide various system.
overhead operation such as formatting diskettes, setting baud rates, converting
absolute object files to a suitable format for downloading to a remote

emu | ator/debugger, downloading a program from the 9520 Software Development
System to the 9508 Emulator/Debugger and uploading a program from the 9508

Emu lator/Debugger to the 9520 Software Development System.

The following utility programs are used to accomp!ish the above operations:
o FDISK (Floppy Disk)

o BRATE (Baud Rate)

o CONVERT
o DOWNLOAD
o UPLOAD

There are two types of utilities command entries: immediate (single entry) com-
mands, and interactive (user response) commands. The Immediate and Interactive
modes of command entries are described in chapter 8, System Operations.

Utility Name: FLOPPY DISK

5-22

SOFTWARE DESCRIPTION

Function: The FDISK (floppy disk) ulility allows a user to perform the
following functions:

o FORMAT a floppy diskette
O Duplicate a floppy diskette
o Copy the system fracks from one diskette onto another diskette

The FDISK utility may be invoked using the interactive mode which prompts the
user for a response, or using the immediate mode which Initiates the execution
and comp letion of the program.

To iavuke the TDIGK utility using the interactive mode:

Entry: OA> FDISK cr
Syntax: 0A> <FDISK> <er>
System Response: FDISK will prompt the user in the following manner:

F) ormat? D) uplicate? C) opy System? Q) uit?

The user should respond by typing the characfer F for formatting the disk, D for
dup.licating the disk, C for copying the system tracks, and Q for abor?nng the
FDISK program.- ..

Upon reception of a valid charac+e?, FDISK will prompt the user according to the
response entered. For the F character response, FDISK will prompt with:

Diskette to format - A, B, C, or D?

The user may choose the diskette to format by striking the letter A for the
diskette in drive A, B for the diskette in drive B, and so on...

FDISK will then respond with:
D) ouble Density? S) ingle Density?

The user may choose double density with the D character or single density with S
character. Upon receiving either one of these characters, FDISK will format the
appropriate floppy diskette and then respond with the first prompt again.

When the D chartacter is chosen from the first prompt issued by FDISK, the uti-
lity will again prompt with:

Source diskette - A, B, C or D?

The user may choose the diskette to be dupliicated by striking the letter A -for
the diskette in drive A or B for the diskette in drive B and so on . . .

FDISK will then prompt with:
Destination diskette - A, B, C, or D?
- 5-23

+ SOFTWARE DESCRIPTION

The user may choose the new disk that will receive the duplicated data by
striking the letter A for the diskette in drive A, B for the diskette in drive
B, and soon . . .

FDISK will then duplicate the destination diskette with the kcontents of the
source diskette and then respond with the first prompt again.

When the C character is chosen from the first prompt issued by FDISK, the uti-
lity will perform the same action as that taken for the duplicate function
except that only the first two iracks of the source diskette will be updlicated
onto the first two tracks of the destination diskette.

To _invoke the FDISK utility using the immediate command mode:

Entry: O0A> FDISK (function) (flag #1) (flag #2) cr
Syntax: 0A> <FDISK> <function> <flag #1> <flag #2> <cr>

where: Function means:
FORMAT
DUPE
CPYSYS

and FLAG # means:

DRIVE = for the FORMAT indicator.
FROM = for the DUPE and CPYSYS indicators.

and FLAG #2 means:

DENSE = for the FORMAT indicator.
TO = for the DUPE and CPYSYS indicators.

These parameters to FDISK will cause the utility fo execute without prompting
the user. Also, these parameters may appear on the command line in any order or
sequence. That is to say:

There may be 6 variations of the command |ine for the FORMAT indicator. For
examp le:

FDISK FORMAT DRIVE =B DENSE =D
FDISK FORMAT DENSE = D DRIVE =8B
FDISK DENSE = D FORMAT DRIVE =8B
FDISK DENSE =D DRIVE =8B FORMAT

FDISK DRIVE =8B FORMAT DENSE =D

Of course A, B, C or D characters may follow the equal symbol (=) for the DRIVE,
FROM, and TO indicators and S, or D characters may follow the = sign for the
DENSE indicator.

Utility Name: BAUD RATE

5-24

SOFTWARE DESCRIPTION

Function: The BRATE (baud rate) utility program will allow the user to display
and set baud rates for the 9520 Development System ! /0O devices. These devices
include RS-422 1/0, Remote |/0, Reader/Punch |/0 and Console |/0 communication
ports. '

The BRATE utility may be inviked using the interactive mode which prompts the
user for a response, or by using the immediate mode which initiates the execu-
tion and compietion of thé program.

To invoke the BRATE utility using the interactive mode:

Entry: 0A> BRATE cr
Syntax: 0A> <BRATE> <cr>

System Response: The BRATE program will then display the current baud
rate status for each 1/0 device and then prompt the
user as follows:

1/0 device:

The user may respond with the ASCI! description of the 1/0 device and enter a
<cr> after each response:

RS-449 <cr>
REMOTE <er>
PRINTER <cr>
CONSOLE <er>

The baud rate program will then prompt the user for the baud rate that is
desired:

BAUD RATE:
The user may respond by entering the following values for the baud rate.
where: Valid Baud Rate Values are:

110
134.5
150
300
600
1200
2400
4800
9600
19200
38400
56000
76800
187500
375000
750000

5-25

SOFTWARE DESCRIPTION

NOTE: Error messages will be displayed for specifying those baud rates that are
invalid for a particular |/0 device.

A control - C character may be entered to abort thge baud rate program at any
time.

To _invoke the BRATE Utility using the immediate mode: All information is pro-
vided in the parameters of the command string and immediate execution occurs to
comp lete the processing.

Entry: OA> BRATE (1/0 device) = (Baud Rate) cr
Syntax: 0A> <BRATE> <|/0 device> = <Baud Rate> <cr>

where: 1/0 device is the ASCI| description for one of the following
1/0 ports:

RS-422
REMOTE
PRINTER
CONSOLE

The equal symbol (=) is a delimiter

Bau&_Ra+e is one of the following values shown in the preceding table
of "Valid Baud Rate Values".

Utility Name: CONVERT

Function: The CONVERT utility converts an absoiute object file, which has been
produced by the Millennium Assembler or Linker, to a file which is suitable for
downloading to a 9508 for debugging, or to a PROM programmer. The format of the
output file can be either Millennium Binary or TEKHEX. Note that PROM
Programmers only support the TEKHEX format.

The CONVERT utility is invoked as follows:

Entry: O0A> CONVERT (d:) (fn) (.f+) (/A) cr
Syntax: OA> <CONVERT> <drive:> <filename> <.file type extension>
Lcr>

where:

drive: |s the disk drive letter. A, B, C, or D. The default is
the drive which is currently logged on.

filename: |s the filename.

filetype: |s the filetype extension of the object file. The default
is 0BJ.

/A Instructs the CONVERT program fo create TEKHEX records.

In this case, the file type of the output file will be .ASC. The default format
is Millennium Binary, and the corresponding file type is .BIN.

5-26

SOFTWARE DESCRIPTION

System Response: |If no errors are encountered, the CONVERT will
display

FILE CONVERTED. NO ERRORS
and return to the operating system.
Warning Messages:
If the input file contains records which have relocation information the CONVERT
program will display a warning message and continue with its conversion. The

message will be one of the following:

INPUT MODULE HAS UNRESOLVED EXTERNAL REFERENCE
INPUT MODULE 1S NOT ABSOLUTE. |T CONTAINS RELOCATION INFO

Fatal Errors:
If the switch parameter, /A, is not typed correctly, the program will display
INVALID PARAMETER. EXPECTING A SWITCH

If an error occurs while reading the .input file or writing the output file, the
error message will consist of two lines. The first line will always be:.

FATAL ERROR nn fn.ft. RECORD = rr
where: nn is the error number
fn is the filename
f+ 1is the file type. For input errors, it will be the file
type of the input file. For ocutput errors, it will be the
file type of the output file.

rr is the physical record number in the File Control Block
(FCB)

The second message and their corresponding error codes are

CODE MESSAGE

66 CHECKSUM DOES NOT MATCH

77 INPUT FILE HAS A SHORT BLOCK
XX OQUTPUT ERROR

XX CANNOT OPEN FILE

XX CANNOT CLOSE FILE

xx is the code which is returned by MPM for an OPEN, ERASE, MAKE,
READ, WRITE, or CLOSE BDOS call.

Utility Name: DOWNLOAD

5-27

SOFTWARE DESCRIPTION

Function: This utility program downloads a program from a file on the 9520
Development System to the 9508 Emulator/Debug system so that it can be debugged.
The input file must be in Millennium Binary or TEKHEX format. The link must be
connected to a CONSOLE PORT on the 9520.

The DOWNLOAD utility is invoked in the following manner:

Entry: OA> DOWNLOAD (d:) (fn) (.ft) cr
Syntax: OA> <DOWNLOAD> <drive:> <filename> <.file type extension> <cr>

where:

drive: is the disk drive letter. A, B, C, or D. The default is
the current logged on drive.

filename: 1is the filename of the input file.
file-type: is the file type extension. The default is BIN.

NOTES: This program usesi 1) Start-Synchronization Handshake
) 2) Ack/Nak Protocol

Utility Name: UPLOAD

Function: The UPLOAD utility is used to upload a program from the 9508
Emulator/Debug System to a disk file on the 9520 Development System. |t assumes
that the link from the 9508 is connected to a CONSOLE PORT.

The UPLOAD utility is invoked in the following manner:

Entry: O0A> UPLOAD (d:) (fn) (.ft+) cr
Syntax: O0A> <UPLOAD> <drive:> <filename> <.file type extension> <cr>

where:

drive: is the disk drive letter. A, B, C, or D. The default is
the current logged-on disk.

filename: 1is the filename of the output file.

file type: is the file type extension. Normally BIN for Binary format
and- ASC for TEKHEX format. The default is BIN.

NOTES: This program uses: 1) Start-Synchronization Handshake
2) Ack/Nak Protocol

THE ASSEMBLER

The Assembler is a 9520 Development System utility that assembles assembly
language source programs into ob ject moduies for execution (after suitable link
operation and downloading has been completed) at the remote 9508 Emulator/Debug
System.

5-28

SOFTWARE DESCRIPTION

A separate assembler utility is used for each microprocessor type. In some
cases, one assembler will be used to support a family of processor types.
Assembler directives in the source program will be used to specify the par-
ticular microprocessor family member. The details of the assembler directives
can be found in the assembler manuals. ‘A separate user manual and language
translator diskette is provided for each assembler/cross-assembler to suppor the
various microprocessors. The available assembler manuals are listed in the pre=-
face.

The assembler is invoked in the following manner:

Entry: (assembler specifier) (filename) (.file type) (>flags) cr
Syntax: <assembler specifier> <filename> <.file type> (>flags) <ar>

where parameters in the command entry indicates the following
information:

(Assembler Specifier Parameter) is defined by the following entry
A8080 - The 8080 and 8085 assembler

A6800 - The 6800 assembler

A6801 - The 6801, 6802, and 6803 assembler

A6809 - The 6809 assembler (future capability)

A8048 - The 8048, 8049, 8021, and 8041 assembler (planned)

AZ80 - The Z80 assembler

AZ8001 - The 28601 assembler (future capability)

AZ8002 - The Z8002 assembler

A8086 - The 8086 and 8088 assembler-(fufure capability)

A68000 - The 68000 assembler (future capability)

(filename parameter) is used by the command processor to specify the primary
name of the source file (.SRC), the object fiel (.0BJ), the list file (.LST) by
appending the appropriate file type name.

Notice that the file type name selected are different than the MPM file type
names. This is necessary to avoid mixing the Millennium object files with those
of Digital Research. The object file formats are not compatible. A biank must
separate all fields in the command.

NOTE: The Symbol Table file will not be generated in the first release . 0
(>flags) is an optional field that is used to specify flags to be applied to the
source, |ist, object and symbol table files in the foregoing order. The flags

are the same ones used in the MPM ASM command.

5=29

SOFTWARE DESCRIPTION

A, B, C, D - Logical drive designéfors

Z -no file is fo be produced

T - Applies only to the list file and means use the sys?em printer instead of a
file

X = Applied only to the list file and means use the console instead of a file

The assembly command allows one source file to be specifieds At times the user
may want to concatenate several source files and submit them as one source
program. This is accomplished by building a file that has INCLUDE statements.
For example, assume the user has three source files (B:FILEA.SRC, A:FILEB.SRC,
EILEC.SRC) that contains the following statements:

ORG 100H

INCLUDE B:FILEA.SRC
INCLUDE A:FILE.SRC
INCLUDE FILEC.SRC

In the assemble command, the name SOURCE.SRC is given for the source filename.
The assembler will open the file SOURCE.SRC, find the first INCLUDE statement,

" then--open B:FILEA.SRC and process it, find the second INCLUDE, then process
A:FILEB.SRC. The third INCLUDE statement specifies FILEC.SRC. The default
Logical drive designator A will be prefixed, making i+ A:FILEC.SRC.

NOTE: Include files can not be nested; that is one Include file cannot call
another Include file.

THE LINKER

The linker is a 9520 Development System utility program. |t produces an execu-
tabie load module by linking relocatable object modules produced by the 9520
assemblers and compilers. The Linker input therefore comes from the assembler.

The ob ject modules output from the Assembler consists of Text Blocks, Relocation
Blocks, and Global Symbol Directory Blocks. Text Blocks from an independently
assembled program section consist ofﬂfhree types of information.

1. Constants and machine instructions whose values are independent of their
position in memory;

2. Addresses or address constants whose values are relative to the starting
location (base) of a section; and

3. Global references to other object modules whose values cannot be determined
until all sections are assigned memory locations.

Relocation Blocks contain information necessary to update and relocate bytes of

program text. Global Symbol Directory Blocks define global symbols and sec-
tions.

5-30

SOFTWARE DESCRIPTION

The Linkef supports the unique qualififeslof each of the microprocessors sup-
ported by the 9520 Development System. The Linker's outward appearance and its
operational method remain the same, regardliess which microprocessor is sup-
ported.

To prepare ob ject modules for the CONVERT utility command, the Linker performs
three specific functions for each module, in the order of entry:

1. Allocates memory space for each section of the load file;
2. Establishes a reference table of global symbols; and

3. When necessary, relocates address-dependenf locations to correspond to allo-
cated space.

In addition, the Linker generates a listing that indicates where sections are
allocated and states the values of all globa[symbolis.
Invoking the Linker
* The linker may be invoked by one of three availabré methods:

o |Invoke Simple Linker

o0 Invoke Linker |nteractive Command

o Invoke Linker Command File
The method used +to Invéke Simple Linker requires the entry of filenames only.
All other parameters are set to reasonable default valiues. This method is

usually adequate for most linking situations.

The Interactive Command method for invoking the linker causes the program to
issue prompts to the user for supplying the required input.

The Command File method for invoking the Linker requires the user fo specify a
filename that contains a |inker command series designator.

Essentials for Entering Linker Commands

Extensive use is made of title names in the |linker commands. A brief summary of
filename conventions will be given here to facilitate describing the Linker com-
mands. A filename has three parts:

1. Logical drive designator - The first character, followed by a colon (:)
specifies a logical drive. The letters A, B, C, and D specify logical
drives. If a logical drive Is not specified the system defaults to logical
drive A.

2. Filename - This specifies the actual primary name of the file. A filename
has a maximum of eight (8) characters. (See the MP/M Manual for details.)

5-31

SOFTWARE DESCRIPTION

3.

File type - File type is the secondary name extension of a file and is pre-
ceded by a period (.). File type is specified with three characters. The
file types that are of interest with regard to the linker are:

a. O0BJ -Means object file. Object files are produced by the assemblers
and the Linker.

be LST - Means a list file. These are files that will be listed on the
printer.

Invoke Simple Linker

The

With

simple form of invoking the LINK command is:

Entry: OA> LINK (filename) =S1 S2 > flags cr
Syntax: OA> <LINK> <filename> = <S1> <S2> (> FLAGS) <cr>

where:

1. LINK invokes the Linker

2. Fjlename'-#--spedifies the names of the two (2) files to be produced..
where:
The Loa& File name is produced by appending .0BJ
The .Load File name is produced by appending .LST

3. S1, S2 — Specifies the filenames of the relocatable files that are
to be used as input. :

4. > FLAGS -- Specifies flags that are fo be applied to the Load File
name and the List File, respectively.

The flags are:
a) A through P - Logical drive designators
b) Z - No file.is to be prodﬁced

simple invocation, all of the command must appear on one line.

Invoke Interactive Command -

The

5-32

Interactive Command Link is invoked as follows:
Entry: 0A> LINK cr
Syntax: 0A> <LINK> <cr>

SOFTWARE DESCRIPTION

System Response: The Linker responds with a prompt character (*), to
indicate that Linker commands will be accepted. Each command is ter-
minated with a carriage return. Commands are accepted until the END
command is received. The END command directs the Linker to discontinue
command entry and to begin processing the object files. See Linker
Commands for a list of legal commands.

| nvoke Linker Command File
The Linker Command File is invoked as follows:

Entry: OA> LINK @ filename cr
Syntax: 0A> <LINK> <@> <filename> <cr>

System Response: The Linker opens the file specified by (filename) and
reads commands from the file untii an end-of-file or and END command is
encountered. End-of-file or END directs the Linker to begin processing
the object modules. |f errors have been generated, the Linker aborts
with the message:

ERROR [N INDIRECT FILE, LINK ABORTED
See Linker Commands for a list of legal commands.

The following commands may be used in invoking the interactive or command file
modes:

LOG

Print messages to the console and log commands on the |list file,Aif'one has been
specified. All commands are echoed to the Linker |ist file after LOG has been
indicated.

NOLOG
Do not log Linker messages on the console.

MAP

Generate a memory map in the linker list file. A memory mep |ists module names,
section names and attributers, entry points within sections, and undefined glo-
bal symbols. (See the Linker Output description in this section.)

NOMAP
Do not generate a memory map.

LIST (filename)
(device:)

Generate a Linker List file named filename. See the listing file description
for contents of the Linker list file. "Filename" is any valid file specifica-
tion. Instead of a filename, the printer or console may Be designated with a
(T:) or (X:), respectively.

5-33

SOFTWARE DESCRIPTION

LOAD (filename)

Generate a load file named "filename". The file will contain the executable
output of the Linker and can be downloaded using the DLOAD command.

DEFINE (symboll = value) (,symbol2 = value) . . .

Define symbols, symboll and symbol2 ... are names of global symbols. Value is a
hexadecimal number.

LINK filename, filename, filename, - - Link object files. This command directs
the Linker to include the specified object modules in the download file.

_ _ |7 .pace
LOCATE » BASE (starting address) » INPAGE
(section name) _ » RANGE (starting address, ending address)_|| _ ,BYTE _

Locate a section and/or redefine its relocation type. Note that redefining the
relocation type of a section may cause the linked code to execute differently
than intended. :

where:.

section name is the name of the section to be allocated.

BASE - is the hexadecimal starting address.

RANGE - - is the hexadecimal starting and ending addresses. |f
there is not enough space within the specified range,
the -section will not be linked.

PAGE - is relocation type causing relocation on any page boun-
dary. The size of a page is microprocessor dependent.

| NPAGE - Is a relocation type; causing relocation on any byte
" address, provided the section does not extend across
page boundaries.

BYTE - is a relocation type; causing relocation at any byte
address.

éf i lename

Indicates indirect command file. This command directs the Linker to obtain sub-
sequent commands from filename. Commands are read from filename unti! an end of
file or an END command is encountered. Indirect commands are echoed on the con-
sole as they are read, if LOG is specifieds Nested indirect command files are
illegal; a command file may not contain t+he @filename command.

5-34

SOFTWARE DESCRIPTION

TRANSFER (symbol)
(value)

Specify load module transfer address. Symbol is a global symbol and value is a
hexadecimal number with a leading character ranging from 0 through 9. This
transfer value supersedes any fransfer address encountered in linking ob ject
modu les.

END

End command entry mode. |f no errors have been generated in command file invo-
cation, this command will terminate command entry mode and initiate the pro-
cessing of object modules. |f errors are detected, an appropriate message is
issued and control is returned tn the system console.

COMMAND PROCESSING ERRORS

. Extranecus Information |gnored

Extra characters:are on a command |ine that only requires an instruction (e.g.,
LOG, NOLOG, MAP). The Linker performs the appropr|a+e action for the command,
ignoring extra characters on the line.

11legal Command

. The command was not recognized.

. Syntax Error

Statement syn%ax is invalide This error occurs when a command is Incorrectly
formed. For example, unmatched parentheses are found in the LOCATE command, or
an operand is missing after the equals sign in the DEFINE command.

" Indirect File Depth Exceeded

A filename command was found during processing of an indirect command file. The
command is ignored.

invalid Filename

The file in a LIST, ULOAD, or LINK command contains illegal file characters.
(See the MP/M Manua!l for filename details.)

NOTE: Processing of the coomand |ine ceases when an invalid filename Is
encountered. All files up to the invalid filename, in the case of the
LINK command, are added to the list of files to be linked.

Invalid Range Specified

The range (starting address through ending address) in the LOCATE command is

invalide The ending address must be greater than the starting address.

5=35

SOFTWARE DESCRIPTION

LINKER EXECUTION

Program Sections

A section is a collection of object code that has been assembled with the same
location counter. An object code module may consist of several sections. These
sections are treated separateiy by the Linker and each seciton is independently
_relocatable. No limit is placed on the number of sections per link, but no more
than 255 sections or globals may exist in any one ob ject module.

A section has five attributes that provide the Linker with information regarding
memory allocation and where to link the section. These attributes are name,
section type, size, relocation type, qu‘mempry location.

NAME

A section has a name consisting of up to eight characters, assigned by the sec-
tin directives, SECTION, RESERVE, or COMMON at assembly time. The name must-be
a valid identifier. The section name is entered into the Linker's symbol table
and is a valid external symbol.

SECTION TYPE

A section may be either a Section, Reserve, or Common. The specification is
made through use of the SECTION, RESERVE, or.COMMON directive at assembly time.

Each Section name must be unique. Multiple Sections with the same name will be
flagged as errors, and only the first one will be linked.

Reserve sections with the same name are concatenated by the Linker. The length
of a Reserve sectin in a load module is the sum of all Reserve sections with the
same name.

Common sections with the same name are allocated the same space in memory. The
length of the linked Common is that of the largest Common section.

SIZE

The size of each section in an object module is determined at assembly time.
Section size is the number of program memory bytes that the section may occupy.

RELOCATION TYPE

A section may be absolute (non-relocatable), byte-relocatable, page-boundar-
relocatable, or inpage-relocatable.

An absolute section is not reloacted by the Linker. Memory locations in an
absolute section where code has been generated, or where locations have been
explicitly reserved by the Assembler BLOCK directive, are not allocated to any
relocatable section at link time. However, if two or more absolute sections
have code at the same address, the contents of those memory locations after
linking are undefined. These memory conflicts, if they occur, are noted on the
Linker memory map.

5-36

SOFTWARE DESCRIPTION

A byte-relocatable section can be placed anywhere in memory.

MEMORY LOCATION

AT link time the user may specify a relocatable section location, in the form of
either a base address or an address range where the section may be placed. The
default range for a relocatable section is the entire address space of the
microprocessor. |f the user elects not fo specify a location for a section, the
Linker will locate the section. An absolute section cannot be moved at |ink
time.

The Default Section

¥ no SECTION directive is entered before assembly, the entire module is con-
sidered fo be a byte-relocatable section with the same name as the object
module.

Memory Al location of Seé+i9ns

The Linker allocates memory in the following sequence:

1. Absolute sections.

2. Based sections. Based means a program section starting location las been
specified by a LOCATE command.

3. Ranged page-relocatable section*. Ranged means the user has explicity
declared a RANGE (starting address, ending address) with the LOCATE command
at link time.

4. Ranged inpage-relocatable sections*.

5. Ranged byte-relocatable sections*.

6. Page boundary-relocatable section¥*.

7. Inpage-relocatable section.

8. Byte-relocatable sections.

*Range was declared at link time.

Absolute and based sections are linked even if conflicts occur. A conflict
exists when two or more sections have bytes at the same address. Other section
types are not linked If a conflict occurs. |f any memory conflict occurs during
al location, the conflict is noted on the memory map. The content of memory in
the conflicting area is undefined. :

5-37

SOFTWARE DESCRIPTION

ENDREL

ENDREL is a pre-defined symbol whose value is assigned at link time. After
memory is allocated, ENDREL is assigned the value of the first memory address
available for use. This address is one greater than the highest address used by
a non-based relocatable section. All relocatable secitons are located below the
value of ENDREL. Absolute sections, or sections relocated using the LOCATE com-
mand with a BASE specified, may or may not be located above the ENDREL address.

The user can override the value of ENDREL by assigning any other value to
ENDREL. |f ENDREL is neither defined nor referenced, no value is assigned.

L INKER OUTPUT
Linker Listing File

The listing file may be output either to a flexible disc file or to the console,
line printer, or other output device.

The following information may be included in a Linker output listing:

Command File Simple Linker
Qutput Content Listed I nvoked | nvoked
Global Symbol List Yes Yes
Internal Symbol List If specified Yes
Map If specified Yes
Linker Statistics Yes : Yes
Error Message If specified Yes
Global Symbol List
A global symbol list is an alphabetical list of all global symbols (sections and

symbols) and their assigned values. |f a symbol is undefined, its value field
contains asterisks.

Internal Symbol List

The internal symbol list contains all symbols in the source file and their
actual values. The Ilist consists of three parts:

1. Scalars.))
2. Alphabetical list of labels for each section.
3. Alphabetical list of labels for each unbound global.

If there are no labels for a section or global, then no list for that section or
global is output.

The internal symbol list will be displayed only if the DBG parameter was entered
with the LIST directive before assembly.

5-38

SOFTWARE DESCRIPTION

Linker Statistics

The Linker Statistics include the number of errors, the number of undefined sym-
bols, the number of sections, the number of modules, and the transfer address.

1 ERROR 1 UNDEFINED SYMBOL
3 MODULES 6 SECTIONS
TRANSFER ADDRESS IS 0040
The TRANSFER ADDRESS identifies program starting location.
Error Messages
Three clacsae ~f & (w1 > can ve generated during Linker execution.
WARNING (W)
A problem may exist but the linked program can probably be exeéu+ed.
ERRORS (E)
Linked program probably will not execute properly.
FATAL ERRORS (F) |

Error directly affecting the Linker's execution. The Linker closes all files
and returns control to MPM. -

All errors cause message to be output to the LOG and LIST file or device. A
fatal error will be output to the console even if NOLOG was specified.

In the following list, each error message is indicated as being Warning (W), an
Error (E), or a Fatal Error (F).

F. LINKER INTERNAL ERROR AT nnnn

An error occurred in the Linker. Try linking again. |f this error persists,

careful ly dodument the incldent.and submit an Software Performance Report to
Millennium. -

E. NO ROOM IN RANGE nnan=nnnn FOR SECTION name

The section length is greater than available contiguous memory in range nnnn-
nnnn_of allocated section memory.

W. SECTION name CHANGED FROM INPAGE TO (BYTE) RELOCATABLE
. (PAGE)

Section length is greater than the page size of the microprocessor. This could
occur if several inpage reserve secitons were linked together and their total
size exceeded the page size of the microprocessor. A section declared to be

inpage relocatable, in a LOCATE command, wil! generate this error if the section
exceeds microprocessor page size. If section size exceeds available page size,
relocation wi!l then be to a byte boundary.

5-39

SOFTWARE DESCRIPTION

F. |INVALID OBJECT CODE FORMAT FOR FILE name
LOCATION = nnnn

The information in file is not valid input object format. Make certain that all
files to be linked have been assembled. Location is the internal Linker address
where the object file error was detected.

F. UNABLE TO ASSIGN file or device name

A filename specified as an input object module does not exist, or file/device is
unavailable.

F. MEMORY FULL

Linker memory is totally allocated and |linking has been terminated. The total
number of globals, sections, or object modules must be reduced in order fto link
in the available memory.

W. TRANSFER ADDRESS UNDEF INED

No transfer address was specified to the Linker either through the TRANSFER com-
mand or by specifying "END (expression)" during assembly. When no fransfer
address is specified, the Linker creates transfer address 0.

W. TRANSFER ADDRESS MULTIPLY. DEFINED IN MODULE -name FILEname

The module has attempted to redefine the transfer address previously specified
by a linked module or by the TRANSFER command. The Linker uses the first
encountered transfer address to generate a transfer address for the load module.
If no transfer address is specified, a transfer address of 0 is generated.

W. RELOCATION TYPE OF 'SECTION name MULTIPLY DEFINED IN MODULE name FILEname

An attempt was made to redefine the section relocation type (byte, page, inpage,
or absolute). This occurs when the LOCATE command defined a relocation type
differing from that specified at assembly time. The error aiso occurs when
relocation attributes of a OCMMON or RESERVE section differ between modules.
The Linker uses the first encountered relocation attribute to define the sec-
tion.

E. Symbol name MULTIPLY DEFINED IN MODULE name F|LEname

Indicates that an attempt was made to redefine a global symbol or section. This
error occurs when two modules both define a global of the same name or when two
sections have the same name. Code section names must be unique. In the event
of multiply defined sections, the Linker will only include +he first one in the
load file.

W. TRUNCATION ERROR AT nnnn IN MODULE name FlLEname

The relocated value computer for LO byte relocation is too large or too small to
fit into one byte.

5-40

SOFTWARE DESCRIPTION

E. UNRESOLVED REFERENCE AT nnnn MODULE name FiLEname

A reference to an undefined global or section was specified at this point in the
ob ject code. This occurs when a giobal is used in one module but was never
defined. The unresolved reference is filled with zeros in the load file.

W. MACHINE REDEFINED FROM micfoprocessor IN MODULE name FlLEname

The current input module has been generated for a different microprocessor than
the provious object modules. Differences between microprocessor definitions may
cause incompatabilities during linking (e.g., page length, alignment, etc.)

E. SECTION name EXCEEDS MAXIMW SIZE

Section length i1s greater than the éddress space of the microprocessor. The
section is not included in the load file. This error may occur when a Reserve
is too long.

W. IMPLICIT REORIGIN TO 0 IN SECTION name IN MODULE name FILEname

The Linker processed an object module where code in an absolute Section wrapped
around from location FFFFH to 0.

W.. SECTION name CHANGED FROM PAGE TO BYTE RELOCATABLE
Either:

1) The section was declared to be page-relocatable and the Linker does not sup-
port paging for that microprocessor; or

2) There was insufficient room for a paged section in available memory. The
Linker will attempt to allocate memory for the Section on a Byte Relocatable
Boundary.

F. (LIST FILE)
(LOAD FILE)
(CONSOLE)
(COMMAND FILE)

(OBJECT FILE)

|/0 ERROR #nn

This error indicates that the Linker was unable fo read to or write from the
specified file or device.

W. ATTEMPT TO REFEFINE FILE TYPE FOR filename

Filename was specified twice: Once as an object file and once as a library
file. The Linker uses the first file type specified.

LOAD FILE

The primary output from Linker processing is the Load file. A Load file is a
subset of the Linker input object modules with all references and relocation
resolved.

5-41

SOFTWARE DESCRIPTION

SYSTEM DIAGNOSTICS

The 9520 Development System Diagnostics are stored on a separate diskette. The
diagnostic system provides the user with a comprehensive set of programs and
test routines to diagnose and test the 9520 Development System components to
isolate malfunctions.

Diagnostic Monitor

The Diagnostic Monitor program is the operating system for the Diagnostic
System. It provides the main control for loading and executing test programs.
The functions performed by the Diagnostic Monitor are:

o Loads test programs from diskette into memory.

© Provides the keyboard interface routines for selecting and running
subtests.

o Provides 1/0 routines for output to the peripheral port interfaces. -

o Provides the option fo run tests in sequence or fo repeat individual
tests. :

o] Provfdes genéral purpose routines used by all of the Diagnostic
System programs.
Operation and Running Tests

The description and procedure for loading the system diagnostics and running the
various test.routines is presented in chapter 9. Refer to this information for
using the system diagnostic programs.

5-42

Chapter 6

TEXT EDITOR, DYNAMIC DEBUGGER AND RELOCATABLE DEBUGGER UTILITY PROGRAMS

TEXT EDITOR UTILITY PROGRAM

The text editor utility for the 9520 Software Devel!opment System is WordStar™.
In conjunction with the multi-programming monitor control program (MP/M™)
operating system, WordStar provides the user with a versatile text editor util-
ity that enhances the 9520 and the user text processor capability for devel-
oping, editing, and storing programs. To invoke WordStar, the MP/M operating
system must be installed (booted) into the 9520 Development System and the
operating system has indicated its readiness with the prompt "0A>" (or 0B> if
the user has changed the logged drive to B) dispiayed on the display terminal.
The nramat 1o ~tuven zé+or "hoot!ing" at system turn-on, after exiting from
Wordstar, or after completion of an operating system command.

Invoking WordStar

Once the system prompt "OA>" has been obtained, there are three methods of
invoking WordStar:

1. Basic Method: at the prompt "OA>" type:
wse

where @ indicates pressing the RETURN key. This starts WordStar with no
file being edited; a copyright message appears for several seconds, then the
no-file menu (as described in the next subsection) is displayed. Example
(underlined text typed by computer):

OA>Wse
This basic method is sufficient for initial use.

2. To go directly fo editing a document: type WS, a space, and the name of the

file, including disk drive and type as appropriate. WordStar will proceed
to editing this file as though the "edit a document™ command had been

given from the no-file menu as described below. Examples (underiined text
typed by computer, & indicates carriage return entered by user):

OA>WS LETTER.DOC®
OA>WS B:ABC.XYXE

3. To go directly to editing a document file with the new file on a different
disk drive. This method is for revising exiremely long files, where the new
file must be placed on a different diskette because of diskette space {imi-
tations. Type WS, a space, the name of the file to be edited, another
space, and the DRIVE NAME and colon only of the disk drive to receive the
edited version of the document. Don't type anything after the destination
drive name and colon. Example:

OA>WS A:BOOK.DOC B:

TEXT EDITOR, DYNAMIC DEBUGGER AND RELOCATABLE DEBUGGER UTILITY PROGRAMS

The preceding example says fto edit file BOOK.DOC on the diskette in drive A
and place the new version on file BOOK.DOC on drive B. When the save is
comp leted, the file on drive A will have been renamed fo BOOK.BAK. If a

"save and continue edit" command is given, the continuing edit will edit
BOOK.DOC from drive B onto drive A; each successive "save and continue edit"
will alternate drives.

4. To edit a non-document file, like a file con+aining program source. Example:
wse
Then type N at the no-file menu.
NOTE: |If, when you invoke WordStar, you get the following message:

You are frying to run an uniNSTALLed WordStar.
Please run INSTALL first.

then your WOrdear has not yet been instalied o work with your terminal and
printer. Refer to the WordStar User's Guide, Section 14, Installation for
installation instructions.

No=Fi le Commands

When started without a file name, or whenever editing of a file is terminated,
WordStar displays the "no-fi.le menu": the words "editing no file" are disp!ayed
at the top of the screen, and a "menu" of commands that may be entered is shown.
Below the menu, WordStar displays the directory (the names of all files on the
diskette) of the logged drive if the file directory display is ON. Figure 6-1
shows a typical screen display with the no-file menu: -

editing no file

D=create or edit a Document file H=set Help level
N=create or edit a Non-document file X=eXit to system
M=Merge-print a file P=Print a file
F=File directory off (ON) Y=delete
L=change Logged disk drive O=cOpy a file
R=Run a program E=rEname a file 4

DIRECTORY of disk A:
CHAPTR1.DOC CHAPTR1.BAK CHAPTR2.DOC CHAPTRZ.BAK

CONTENTS FILE1.DOC FILE1.BAK FILE2.DOC
LETTER.DOC LETTER.BAK -~ MERGPRIN.OVR TEST.DOC
WS.COM WSMSGS.OVR WSOVLY1.0VR

Figure 6-1. Screen Showing No-File Menu
(The symbol ﬂ represents the cursor position)

TEXT EDITOR, DYNAMIC DEBUGGER AND RELOCATABLE DEBUGGER UTILITY PROGRAMS

To invoke one of the functions shown on the no-file menu, enter the single
letter shown for that function. The letter may be entered in upper or lower
case, or with the CTRL key depressed. Unrecognized characters are ignored. No
RETURN or other key is used after the command letter. When a command is
entered, the letter is displayed in the upper left hand corner of the screen and
further action is taken depending on the command.

Table 6-1 briefly &escribes each command; the illustrative exampies after the
table give further explanation.

Table 6-1. No—-File Commands

Command
| attar Funetinan Description

D EDIT A Asks for file name, then initiates editing of the specified

DOCWMENT file. The file specified may be an existing file or a new
file.)
To place the new version of the file on a different drive:
enter the file name, a space, and the destination drive
name followed by a: colon.

-N EDIT A Same as D éxcepf file is edited as a "nondocument", with-
" NON- out dynamic pagination and with different defaults.

DOCUMENT ’

X EXIT TO Exit to MPM or whatever operating system you are using.
SYSTEM Use when you are through with WS and wish to use a system

command. The system prompt "A>" will appear next. ~

H SET HELP Asks for the new "help level™ (0 to 3) which determines the
LEVEL degree of menu display and other prompting supplied by

WordStar as will be detailed shortly. Unless the help
level is already 0, an explanation of the help levels is
displayed.

Y DELETE Asks for file name, then erases file. Performs the same
A FILE function as the MPM ERAse console command.

L CHANGE Displays the name of the current logged disk drive and
LOGGED allows selection of a new logged disk drive. - Use fto allow
DISK display of directory of a different drive, or for conven-
DRIVE ience before working with files on a different drive.

F FILE Controls display of file directory (names of all files on
DIRECTORY diskette in logged disk drive). First F command turns
DISPLAY directory display off, second F turns directory display on
OFF /ON again, etc. To display directory of a different drive,

change logged disk with L command.

P PRINT A FILE The P command has three possible effects; depending on
STOP PRINT whether printing is inactive, a file is being printed, or
CONTINUE PRINT printing is suspended. The P line in the menu changes as

appropriate.

6-3

TEXT EDITOR, DYNAMIC DEBUGGER AND RELOCATABLE DEBUGGER UTILITY PROGRAMS

Command
Letter

Function

Table 6-1. No-File Commands (continued)

Description

M

E

MERGE-
PRINT
A FILE

RUN A
PROGRAM

COPY A
FILE

RENAME

In order to use the Merge-Print feature of WordStar, the
MERGPRIN.OVR file must be present on the disk in drive A.
The M command allows merging data from a data file into
text at print time for production of form letters, and per-
forms other enhanced print functions. |F MERGPRIN.OVR IS
NOT PRESENT, AN ERROR MESSAGE WILL BE DISPLAYED.

The R command allows you to run a program without exiting
from WordStar. For example, the amount of disk space could
be checked by using the MPM program STAT.COM. After R is
entered, the following prompt will be displayed:

COMMAND?

Enter the name of the program to be run and press RETURN.
The program name may be followed by file name(s) or other
arguments to be used by the program where appropriate.

The 0. command allows you to make & copy of a specified file
without having to use the MPM program PIP.COM. You may
copy files from or Yo different disks as long as both disks
are on-|ine at the same time. When O is entered, the -
following prompts are displayed:

‘ NAME OF FILE TO COPY FROM? -
NAME OF FILE TO COPY TO ?

Enter the name of the file to be copied and press RETURN,
followed by the name of the file where the copy is to be
stored. Specify the disk drive with a drive letter and
colon (A:,B:, etc.) preceding the filename.

The E command alliows you to change the name of a file. (E
functions |ike the MP/M command REN.) Enter the_name of
the file to be renamed followed by the new name in response
to the appropriate prompts:

Enter NAME OF FILE TO RENAME?
NEW NAME?

|l lustrative Examples of No-File Commands

D Command: Wth the no-file menu on the screen, as shown in figure 6-1, type a
"D" (or a d or D) to invoke editing of a file. WordStar then displays an expla-
nation and a request to enter the file name as follows:)

TEXT EDITOR, DYNAMIC DEBUGGER AND RELOCATABLE DEBUGGER UTILITY PROGRAMS

D editing no file

Use this command to create a new document file, or to initiate
alteration of an existing document file.

A file name is 1 to 8 letters/digits, a period, and an
optional 1=3 character type.

File name may be preceded by disk drive letter A-D and
colon, otherwise current logged disk is used.

g=dzta+e character Y=delete entry F=File directory
D=restore character R=Restore entry U=cancel| command

NAME OF FILE TO EDIT? 4

partial DIRECTORY of disk A: Z=scroll up
CHAPTR1.DOC CHAPTR1.BAK CHAPTR2.DOC CHAPTR2.BAK .
CONTENTS FILET.DOC FILE1.BAK FILE2.00C

Figure 6-2. D Command Display
¢The symbol 9 represents the cursor position)

You may then type the desired file name, terminated with a carriage return. The
form of a file name is summarized on the screen as a reminder. For example, you

might- type
LETTER.DOC@
to edit file LETTER.DOC on the logged drive, or
B:LETTER.DOCE '
to edit the file LETTER.DOC on the diskette in drive B.

To edit file BOOK.DOC on drive A and place the new version of BOOKDOC on
drive B, type:

A:B0OK.DOC B:@

After the carriage return, WordStar proceeds to editing the file, you may then
proceed to enter text into the document and/or use WordStar's editing commands.
1f the file does not exist, NEW FILE is displayed for several seconds. |I|f the
NEW FILE appears when you intended to edit an existing file, you probably typed
the name wrong or have the wrong diskette in the drive. Abandon the edit (KQ)
to get back to the no-file menu.

6-5

TEXT EDITOR, DYNAMIC DEBUGGER AND RELOCATABLE DEBUGGER UTILITY PROGRAMS

In figure 6-2 (and also in the screen display of many other WordStar commands)
the two |ines

AS=delete character AY=delete entry AFile direéfory
AD=restore character AR=Restore entry AU=cancel command

remind you of the control characters which may be used to correct typing errors
and for other purposes while entering the file name (or other answer). These
characters may be used at any time while typing the answer before RETURN is hit.
The two display lines appear only at "help levels" 2 and 3, and do not appear
unti| about two seconds have elapsed without a keystroke (this delay is so
WordStar will respond faster to fast typists).

To correct a typing error, use control-S (or control-H, DELETE, or BACKSPACE) to
delete (erase) characters one at a time. After retyping the desired charac-
ters, the control-D key may be used to restore (un-erase) following characters
one at a time. For convenience, control-Y erases the entire answer entered, and
control-R restores the entire answer or previous answer. For example, if
control-R is the first key hit, the name of the last file edited, if any, will
-appear; it may then be revised (control-S's, re*ype characters, control-R) if
you wish to edit anofher file with a similar name.

Control-F may be;ﬁsed to invoke the file directory display; Control=F alter-
nately turns the file directory on or off. Control-U may be used to cancel (or
abort or interrupt the D command and return to the no-file menu. .

NOTE: If the "help level" is zero, the explanatory material shown in figure is
omitted from the screen display; only the question "NAME OF FILE TO EDIT"
will appear. |f you start typing the file name before display of the
exp lanatory material, WordStar will omit some or al! of the explanation.

Partial Directory Dispiay: notice that in. figure 6-2 the screen shows only part
of the disk directory, as indicated by the word "partial". Partial directory
display occurs whenever there are more file names than will fit on your screen.
To view additional file names, use control-Z to move (scroll) the file directory
display up a line, and/or control-W to move the file directory display down a

| ine. Reminders about these control characters -- "AZ=scroll up" and/or
"AW=scrol| down" -- appear in the line above the directory whenever these
characters can be entered and will bring more file names onto the screen.

Y Command. With the No-file menu (figure 6-1) on the screen, type a Y to ini-
tiate deletion of a file. The screen display then changes to the following (at
help level 3):

TEXT EDITOR, DYNAMIC DEBUGGER AND RELOCATABLE DEBUGGER UTILITY PROGRAMS

Y editing no file

AS=delete character AY=delete entry AF=File directory
AD=restore character AR=Restore entry AU=cancel command

NAME OF FILE TO DELETE? ¢

DIRECTORY of disk A: . 4 ’
CHAPTR1.D0C CHAPTR1.BAK CHAPTR2.DOC CHAPTR2.BAK

CONTENTS FILE1.DOC FILE1.BAK FILE2.DOC
~2TTER.DOC LETTER.BAK =~ MERGPRIN.OVR TEST.DOC
WS.COM WSMSGS.OVR WSOVLY1.0VR

Figure 6-3. Y Command Display
(The symbol ¥ represents the cursor position)

Enter the name of the file ‘o delefe; followed by RETURN. The form of a file .
‘name and usage of control characters to correct typing errors, etc. is the same
as for the D command (previous example).

After the file is erased, the no-file menu reappears on the screen and another

command may be entered. If you enter a Y, then decide not to delete a fule, you
may cancel the command with AU, or by h|++ing RETURN only.

X Command. The X command is. used to exit to the operating system MP/M. When an

X is typed at the no-file menu, the MPM prompt+ (A>) appears at the bottom of
the screen.

F Command. The F command turns the file directory display off and on. The
first F entered turns the directory display off, the next F restores it, etfc.
No additional information need be entered, and no screen changes take place
except that when directory display is off, the no-file menu item for F changes .
to read

F=File directory on (OFF)

To display the directory of the diskette in a different disk drive, change the
logged drive with the L command (next example). To cause the directory on the
screen to be udpated after putting a new diskette in a drive, re-log the same

drive with the L command, or press F twice.

L Command. The L command allows changing the logged disk drive. Typing an L at
the no-file menu changes the screen dispiay to the following:

TEXT EDITOR, DYNAMIC DEBUGGER AND RELOCATABLE DEBUGGER UTILITY PROGRAMS

L editing no file
The LOGGED DISK (or Current Disk or Default Disk) is the disk
drive used for files except those files for which you enter a
disk drive name as part of the file name. WordStar displays
the File Directory of the Logged Disk.
THE LOGGED DISK DRIVE IS NOW A:
NEW LOGGED DISK DRIVE (letter, colon, RETURN)?

DIRECTORY of disk A:
CHAPTR1.D0C CHAPTR1.BAK CHAPTR2.D0C CHAPTR2.BAK

CONTENTS FILE1.DOC FILE1.BAK FILE2.DOC
LETTER.DOC LETTER.BAK MERGPRIN.OQVR TEST.DOC
WS.COM WSMSGS.OVR WSOVLY1.0VR

Figure 6-4. L Command Display

To log a different drive, type the letter (A or B; C, D, etc. also acceptable if
you have that many drives), a colon, and RETURN.- To leave the logged drive
unchanged, type controi-U, or just hit RETURN. ’)

E Command. The E Command allows you to rename files without having to exit from
WORDSTAR. This command performs the same function as the CP/M REN command.
Typing an E at the no~file menu will cause the following displayed:

E editing no file

AS=delete character AY=delete entry AF=File directory
AD=restore character AR=Restore entry AU=cancel! command

NAME OF FILE TO RENAME? %

DIRECTORY of disk A: : .
CHAPTR1.DOC CHAPTR1.BAK CHAPTR2.DOC CHAPTR2.BAK

CONTENTS FILE1.DOC FILE1.BAK FILE2.00C
LETTER.DOC LETTER.BAK MERGPRIN.OVR TEST.DOC
WS.COM WSMSGS.OVR WSOVLY1.0VR

Figure 6-5. E Command Display

You may rename a file on another drive by specifying the drive before the name
of the file to be renamed (e.g. B:FILENAME.TXT). The NEW NAME? prompt is
displayed after the name of the file to be renamed has been entered.

6-8

TEXT EDITOR, DYNAMIC DEBUGGER AND RELOCATABLE DEBUGGER UTILITY PROGRAMS

R Command. The R command allows the user to run a different program without
exiting from WordStar. This command is especially useful for determining the
amount of available disc space by running the CP/M program STAT.COM. When R is:
entered at the no-file menu, the following prompt is displayed:

R editing no file

Enter name of program you wish fo Run, optionally followed by
appropriate arguments.

Examp le (shows disk spacel): STAT

AS=delete character AY=delete entry AF=File directory
AD=restore character AR=Restore entry AU=cance! command

COMMAND 1

DIRECTORY of disk A: '
CHAPTR1.D00C- CHAPTR1.BAK CHAPTR2.D0C CHAPTR2.BAK -

CONTENTS FILE1.DOC FILE1.BAK FILE2.DOC
LETTER.DOC LETTER.BAK MERGPRIN.OVR TEST.DOC
WS.CoM WSMSGS.OVR WSOVLY1.0VR

Figure 6-6. R Command Display

Enter the name of the program to be run (e.g. STAT, to display the amount of
space left on a diskette) and press RETURN. Only executable programs (file type
.COM) should be specified. An attempt to run a non-executable file may result
in an error message, or may or lock up your system making it necessary fo re-
boot. When the program has completed, the following prompt is displayed:

. Hit any key to return fo WordStar:

This allows you to view any results displayed by the program before returning to
the WordStar no-file menu.

The R command will handle any CP/M console command (CCP command) command except
the resident commands (TYPE, DIR, ERA, REN, and SAVE). File names or other
arguments may follow the program name, as in CP/M commands. For example:

STAT LETTER.DOC

shows the size of file LETTER.DOC on the logged drive. Asterisks and question
marks can be used to form "wild card™ file names, as in CP/M console commands.
For example:

STAT B:#.DOC

shows the size of all files of type .DOC on the diskette in drive B. (#'s and
?'s are not allowed in file names entered in other WordStar commands).

In order fo use the R command, you must have WS.COM (or other name as specified
during INSTALLation) on the disk in drive A or the current logged drive.

6-9

TEXT EDITOR, DYNAMIC DEBUGGER AND RELOCATABLE DEBUGGER UTILITY PROGRAMS

0-Command. The O command provides a way to copy files without exiting from
WordStar. When O is entered, WordStar displays the following prompts:

0 editing no file

AS=delete character AY=delete entry AF=File directory
AD=restore character AR=Restore entry AU=cancel command

NAME OF FILE TO COPY FROM? ¢
NAME OF FILE TO COPY TO ?

DIRECTORY of disk A:
CHAPTR1.DOC CHAPTR1.BAK CHAPTR2.DOC CHAPTR2.BAK

CONTENTS FILE1.DOC FILE1.BAK FILE2.D00C
LETTER.DOC LETTER.BAK MERGPRIN.OVR TEST.DOC
WS.COM WSMSGS.OVR WSOVLY1.0VR

Figure 6-7. O Command Display

If the name of an existing file is entered as the ;iIeAfo-copy to, WordStar
displays the prompt

FILE d:name.typ EXISTS -=— OVERWRITE? (Y/N): 9

Press Y (or y or AY) to proceed with the copy, destroying the present contents

of the copy-to file. Pressing any other key will cause the NAME OF FILE TO COPY
TO? question to be reasked; press RETURN or AU- to abort the copy command.

You may copy files from and/or to drives other than the logged drive by spe-
cifying a drive before the file name (e.g. B:FILENAME.TXT). The exact filename
to be copied must be entered; you may not use asterisks (*) nor question marks.
You may use -'s in the file names (with htis or any other WordStar command) if
-soft-hyphen entry is OFF (OFF is the default) or by entering the - as *P-.

Helﬁ Levels

The Help Level setting controls the amount of explanatory material automatically
displayed by WordStar, and determines whether and when part of the screen is
used while editing to display a "menu™ of command keys which may be entered.

The Help Level is initially set to 3, the most helpful level. As you gain
experience with WordStar, you will want to reduce the help level in order to
have more of the screen available for file display.

The Help Level is changed with the H command on the no-file menu (above), or
with the AJH command while editing a file. Either command displays an explana-
tion of help levels and current help l!evel, and requests a new help level, as
shown in figure 6-8.

6-10

TEXT EDITOR, DYNAMIC DEBUGGER AND RELOCATABLE DEBUGGER UTILITY PROGRAMS

H editing no file

HELP LEVELS

3 all menus and explanations displayed

2 main editing menu (1-control-char commands) suppressed
1 prefix menus (2-character commands) also suppressed

0 command expl!anations (including this) also suppressed

CURRENT HELP LEVEL IS 3
ENTER Space OR NEW HELP LEVEL (0, 1, 2, R 3): 1

partial DIRECTORY of. disk A: *Z=scroll up

CHAPTR1.DOC CHAPTR1.BAK CHAPTR2.00C CHAPTR2.BAK
CONTENTS FILE1.DOC FILE1.BAK FILE2.DOC
LETTER.DOC LETTER.BAK MERGPRIN.OVR TEST.DOC

Figure 6-8. Help LeQeI Command Disp lay

Unlike the "FILE NAME?" ques*ions asked by the D and Y commands, this question
takes a single-key response; no RETURN is needed. Pressing any key. other thean
0, 1, 2, or 3 leaves the help level unchanged. -

NOTE: |f you enter the digit (or press any key) before the explanation displays,
some or all of the explanation will be oomitted. This provides rapid

response for the user that knows what he wants and types, for example,
"sz" - -

The difference between help levels 3, 2, and 1 are manifest primarily when
editing a file. Level 0 differs from the higher levels ihn that extra explana-
tions associated with several commands are skipped. The explanations ommitted
at help level 0 inlucde, for example, the explanation of the help levels (figure
6-8), the explanations displayed by the D command (6-2), and the explanation of
the logged disk drive for the L command (figure 6-4).

The two lines that remind you of the control characters which may be used while
answer ing any question whose prompt ends in a question mark,

AS=delete character AY=delete entry AFile directory
AD=restore character AR=Restore entry AU=cancel command

are displayed above such questions ohly at help leve! 2 or 3; the control
characters nevertheless work at all help levels.

In addition to the automatically displayed information affected by the help
level, WordStar has explicit commands that can be invoked while editing which
display information on various subjects. For example, the command *JD (entered
while editing) invokes a sequence of screen displays describing the print
directives.

Additional information relative to WordStar can be obtained in the WordStar
User's Manual.

6~11

TEXT EDITOR, DYNAMIC DEBUGGER AND RELOCATABLE DEBUGGER UTILITY PROGRAMS

DYNAMIC DEBUGGER AMD RELOCATABLE DEBUGGER™

Dynamic Debugger

The Dynamic Debugger Tool (DDT) program allows dynamic interactive testing and
debugging of programs generated in the MPM environment. The debugger is ini-
tiated by typing one of the following commands at the MP/M Console Command !evel

oDT
DDT filename.HEX
DDT filename.COM

where '""filename" is +he name of the program to be loaded and tested. In both
cases, the DDT program is brought intfo main memory in the place of the Console
Command Processor (refer to the CP/M Interface Guide for standard memory
organization), and thus resides directly below the Basic Disk Operating System
portion of MPM. The BDOS starting address, which is located in the address
field of the MP instruction at location 5H, is altered to reflect the reduced
transient program area size.

The second and third forms of the DDT command shown above perfdfm the same
actions as the first, except there is a subsequent automatic load of The spe-
cified HEX or COM file. The action is identical to the sequence of commands

DOT

Ifilename.HEX or |filename.COM
R

where the | and R commands set up and read the specified program to test (see
the explanation of the | and R commands below for exact details).-

Upon initiation, DDT prints a sign-on message in the format

nnK DDT-s VER m.m

where nn is the memory size (which must match the CPM system being used), s is
the hardware system which is assumed, corresponding to the codes

- Digital Research standard version
- MDS version

' IMSA| standard version

Omron systems

Digital Systems standard version

no—-—=xo
'

and m.m. is the revision number.
Relocatable Debugger
In addition to the non-relocatable debugging tool (DDT.COM), there is a reloca-

table debugging tool (RODT.COM). The valid commands for RDT and DDT are the same.

6-12

TEXT EDITOR, DYNAMIC DEBUGGER AND RELOCATABLE DEBUGGER UTILITY PROGRAMS

Commands

Following the sign on message, DDT prompts the operator with the character "-"
and waits for input commands from the console. The operator can type any of sev-
eral single character commands, fterminated by a carriage return to execute the
command. Each !ine of input can be line-edited using the standard MP/M controls

rubout remove the last character typed
ctl=U remove the entire line, ready for re-typing
cti-C system reboot

Any command can be up to 32 characters in length (an automatic carriage return

is inserted as the 33rd character), where the first character determines the
command type '

enter assembly language mnemonics with operands
al lows update of bitmap of page relocatable file
display memory in hexadecimal and ASC!I

fill memory with constant data

begin execution with optional breakpoints

set up a standard input file control block

list memory using assembler mnemonics

move a memory segment from source to destination
relocate a page relocatable file

read program for subsequent testing

substitute memory values

trace program execution

untraced program monitoring

compute the parameter to follow the W (Write Disk) Command
examine and optionally alter the CPU state

write a patched program to diskette

EX<C~OLVIVZIr—ENMoOom>»

The command character, in some cases, is followed by zero, one, two, or three

hexadecimal values which are separated by commas or single blank characters.
Alil DDT numeric output is in hexadecimal form. I[n all cases, the commands are
not executed until| the carriage return is typed at the end of the command.

At any point in the debug run, the operator can stop execution of DDT using
either a ct!-C or GO (jmp to location 0000H), and save the current memory image
using a SAVE command of the form i

SAVE n filename.COM

where n Is the number of pages (256-byte blocks) to be saved on disk. The
number of blocks can be determined by taking the high-order byte of the top load
address and converting this number to decimal. For example, if the highest
address In the transient program area is 1234H then the number of pages is 12H,
or 18 in decimal. Thus the operator could type a cti-C during the debug run,
returning to the Conscole Processor level, followed by

SAVE 18 X.COM

6-13

" TEXT EDITOR, DYNAMIC DEBUGGER AND RELOCATABLE DEBUGGER UTILITY PROGRAMS

The memory imége is saved as X.COM on the diskette, and can be directly executed
by simply typing the name X. |f further festing is required, the memory image
can be recalled by typing

DDT X.COM

which reloads previously saved program from location 100H through page 18
(12FFH). The machine state is not a part of the OCM file, and thus the program
must be restarted from the beginning in order to properly test it.

The individual commands are given below in some detail. In each case, the
operator must wait for the promp+ character (-) before entering the command. |If
control is passed to a program under test, and the program has not reached a
breakpoint, control can be returned to DDT by executing a RST 7 from the front
panel (note that the rubout key should be used instead if the program is exe-
cuting a T or U command). In the explanation of each command, the command
letter is shown; in some cases, with numbers separated by commas, where the num-
bers are represénted by lower case letters. These numbers are always assumed to
be in a hexadecimal radix, and from one to four digits in length (longer numbers
will be automatically truncated on the right).

Many of the commands operate upon a "CPU state'" which corresponds to the program
under test. The CPU state holds the registers of the program being debugged,
and initially contains zerces for all registers and flags except for the program
counter (P) and stack pointer (S), which default to 100H. The program counter’
is subsequently set to the starting address given in the last record of a HEX
file if a file of this form is loaded (see the | and R commands)

1« A (Assemble) Command - DDT allows'inline assembly language to be inserted
in to the current memory image using the A command which takes the form

As

where s is. the hexadecimal starting address for the inline assembly. ODT

prompts tThe console with the address of the next instruction to fill, and

reads the console, looking for assembly language mnemonics (see the Intel

8080 Assembly Language Reference Card for a list of mnemonics) followed by
register references and operands in absolute hexadecimal form. Each suc-

cessive load address is printed before reading the console. The A command
terminates when the first empty line is input from the console.

Upon completion of assembly language input, the operator can review the
memory segment using the DDT disassembler (see the L command).

Note that the assembler/disassembler portion of DDT can be overlayed by the

transient program befng tested, in which case the DDT program responds with
an error condition when the A and L commands are used.

2. B (Bitmap Bit Set/Reset) Command - The purpose of the BITMAP BIT SET/RESET
command is to enable the user fto update the bitmap of a page relocatable
filee. To edit a PRL file the user would read the file in, make changes to
the code, and then determine the bytes which needed relocation (e.g., the
high order address bytes of jump instructions). The 'B' command would then
be used to update the bit map. There are two parameters specified, the
address to be modified (0100H is the base of the program segment), followed
by a zero or a one. A value of one specifies bit setting.

6-14

TEXT EDITOR, DYNAMIC DEBUGGER AND RELOCATABLE DEBUGGER UTILITY PROGRAMS

3.

5.

D (Display) Command - The D command allows the operator to view the con-
tents of memory in hexadecimal and ASCI| formats. The forms are

D
Ds
Ds,f

in the first case, memory is displayed from the current display address

(initially 100H) and continues for 16 display lines. Each display line
takes the form shown below

aaaa bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb ccceceeceecccccece

where aaaa is the display address in hexadecimal, and bb represents data
present in memory starting at asaa. The ASCII characters starting at aaaa
are given to the right (represented by the sequence of c's), where non-
graphic characters are printed as a period (.) symbcl. Note that both upper
and lower case alphabetics dre displayed, and thus will appear as upper case
symbols on a console device that supports only upper case. Each display
line gives the values of 16 bytes of- data, except that the first line
displayed is truncated so that +he next line beglns at an address which IS a
muitiple of 16. ;

The second form of the D command shown above is similar to the first, except
that the display address is first set +o address s. The third -form causes
the display to continue from address s through address f. In all cases, the
display address is set to the first address not dlsplayed in this command,

so that a continuing display can be accomplished by issuing successive D
commands with no expl-icit addresses.

Excessively long displays can be aborted by pushing the rubout key.
F (Fill) Command - The F command takes the form
Fs,f,c

where s is the starting address, f is the final address, and c is a hexade-
cimal byte constant. The effect is as follows: DDT stores the constant ¢
at address s, increments the value of s and tests against f. If s exceeds f
then the operation terminates, otherwise the operation is repeated. Thus,
the fill command can be used to set a memory block to a specific constant
value. .

G (Go) Command - Program execution is started using the G command, with

up to two optional breakpoint addresses. The G command takes one of the
forms

G

Gs

Gs,b
Gs,b,c.
G,b
G,b,c

6-15

TEXT EDITOR, DYNAMIC DEBUGGER AND RELOCATABLE DEBUGGER UTILITY PROGRAMS

6.

The first form starts execution of the program under test at the current
value of the program counter in the current machine state, with no break-
points set (the only way fo regain control in DDT is through a RST 7
execution). The current program counter can be viewed by typing an X or XP
command. The second form is similar to the first except that the program
counter in the current machine state is set to address s before execution
begins. The third form is the same as the second, except that program exe-
cution stops when address b is encountered (b must be in the area of the
pgoram under test). The instruction at location b is not executed when the
breakpoint is encountered. The fourth from is identical to the third,
except that two breakpoints are specified, one at b and the other at c.
Encountering either breakpoint causes execution to stop, and both break-
points are subsequently cleared. The last two forms take the program
counter from the current+ machine state, and set one and two breakpoints,
respectively.

Execution continues from the starting address in real-time to the next
breakpoint. That is, there is no intervention between the starting address
and the break address by DDT. Thus, if the program under test does not
reach a breakpoint, control cannot return to DDT without executing a RST 7
instruction. Upon encountering a breakpoint, DDT stops execution and types

*d

where d is the stop address. The machine state can be examined- at” this
point using the X (Examine) command. The operator must specify breakpoints,
which differ from the program counter address at the beginning of the G com-
mand. Thus, if the current program counter is 1234H, then the commands

G,1234
and
G400, 400

both produce an immediate breakpoint, without executing any instructions
whatsoever.

| (Input) Command - The | command allows the operator to insert a file
name into the default file control block at 5CH (t+he file control block
created by MP/M for transient programs is placed at this location; see the
CP/M Interface Guide). The default FCB can be used by the program under
test as if it had been passed by the consaqle. Note that this file name is
also used by DDT for reading additional HEX and COM files. The form of the
| command is

1 filename
or
Ifilename.filetype

If the second form is used, and the filetype is either HEX or COM, then sub-
sequent R commands can be used to read the pure binary or hex format machine
code (see the R command for further details).

TEXT EDITOR, DYNAMIC DEBUGGER AND RELOCATABLE DEBUGGER UTILITY PROGRAMS

7.

8.

10.

L (List) Command - The L command is used to l|ist assembly [anguage mnemonics
in a particular program region. The forms are

L
Ls
Ls,f

The first command |ists twelve lines of disassembled machine code from the
current |ist address. The second form sets the |ist address fto s, and then
lists twelve lines of code. The last from lists disassemblied code from s
through address f. In al!l three cases, the list address is set to the next
unlisted location in preparation for a subsequent L command. Upon encoun-

of rhe program counter (see the G and T commands). Again, long typeouts can
be aborted using the rubout key during the list process.

M (Move) Command - The M command al lows block movement of program or data
areas from one location to another in memory. The form is

Ms,f,d

where s is the start address of the move, f is the final address of the
move, and d is the destination address. Data is first moved from s to d,
and both addresses are incremented. I|f s exceeds f then the move operation
stops, otherwise the move operation is repeated.

N (Normalize) Command - The purpose of the NORMAL|ZE command is to relocate
a page relocatable file which has been read into memory by the debugger. To
debug a PRL program the user would read it in with 'R' command and then use
the 'N' command to relocate it within the memory segment the debugger is
executing. :

R (Read) Command - The R command is used in conjunction with the | com-
mand to read COM and HEX files from the diskette into the fransient program
area in preparation for the debug run. The forms are

R
Rb

where b is an optional bias address which is added to each program or data
address as it is loaded. The load operation must not overwrite any of the
system parameters from 000H through OFFH (i.e., the first page of memory).
I1f b is omitted, then b=0000 is assumed. The R command requires a previous
| conmand, specifying the name of a HEX or COM file. The load address for
each record is obtained from each individual HEX record, while an assumed
load address of 100H is taken for COM files. Note that any number of R com-
mands can be Issued following the | command to again read the program under
test, assuming the tested program does not destroy the default area at 5CH.
Further, any file specified with the filetype "COM" |s assumed to contain
machine code in pure binary form (created with the LOAD or SAVE command),
and all others are assumed to contain machine code in Intel hex format
(produced, for example, with the ASM command). ’

6=-17

TEXT EDITOR, DYNAMIC DEBUGGER AND RELOCATABLE DEBUGGER UTILITY PROGRAMS

1.

Recal! that the command
DOT filename.filetype

which initiates the DDT program is equivalent to the commands

0oT
-lfilename.filetype
-R

Whenever the R command is issued, DDT responds with either the error indica-

tor "?" (file cannot be opened, or a checksum error occurred in a HEX file),
or with a load message taking the form

NEXT PC

nnnn pppp
where nnnn is the next address following the loaded program, and pppp is the
assumed program counter (100H for COM files, or taken from the last record
If a HEX file is specified).

S (Set) Command - The S command allows memory locations to be examined

. and optionally altered. The form of the command is

12.

Ss

where s is the hexadecimal starting address for examination and alteration
of memory. ODT responds with a numeric prompt, giving the memory location,
along with the data currently héld in the memory location. |f the operator
types a carriage return, then the data is not altered. |f a byte value is
typed, then the value is stored at the prompted adress. In either case, DODT
continues o prompt with successive addresses and values until either a
period (.) is typed by the operator, or an invalid input value is detected.

T (Trace) Command - The T command al lows selective tracing of program
execution for 1 to 65535 program steps. The forms are

T
Tn

In the first case, the CPU state is displayed, and the next program step is

executed. The program terminates immediately, with the ftermination address
displayed as ' :

*hhhh

where hhhh Is the next address to execute. The display address (used in

the D command) is set to the value of H and L, and the list address (used in
the L command) is set to hhhh. The CPU state at program termination can
then be examined using the X command.

6-18

TEXT EDITOR, DYNAMIC DEBUGGER AND RELOCATABLE DEBUGGER UTILITY PROGRAMS

13.

14,

15.

The second form of the T command is similar fo the first, except that execu-
tion is fraced for n steps (n is a hexadecimal value) before a program
breakpoint occurs. A breakpoint can be forced in the trace mode by typing a
rubout character. The CPU state is displayed before each program step is
taken in trace mode. The format of the display is the same as described in
the X command.

Note that program tracing is discontinued at the interface to MP/M, and
resumes after return from MPM to the program under test. Thus, MPM func-
tions which access |1/0 devices, such as the disk drive, run in real-time,
avoiding |/0 timing problems. Programs running in trace mode execute
approximately 500 times slower then real time since DDT gets control after
each user instruction is executed. Interrupt processing routines can be
traced, but it must be noted that commands which use the breakpoint facility
(G, T, and U) accompliish the break using a RST 7 instructin, which means
that the tested program connot use this interrupt location. Further, the
trace mode always runs the tested program with interrupts enabled, which may
cause problems if asynchronous interrupts are received during tracing.

Note also that the. operator should use the rubout key to get éon+ro| back to
ODT during tfrace, rather than executing a RST 7, to ensure that the trace
for the current instruction is completed before interruption.

U (Untrace) Command - The U command is identical to the T command except
that intermediate program steps are not displayed: The untrace mode al lows
from 1 to 65535 (OFFFFH) steps to be executed in monitored mode, and is used
principally to retain control of an executing program while it reaches
steady state conditions. All conditions of the T command 2pply to the U
command.

V (Value) Command - The purpose of the VALUE command is to facilitate use of
the WRITE DISK command by computing the parameter to follow the 'W'. A
single.parameter immediately follows the 'V' which is the NEXT location
fotlowing the last byte to be written to disk.

X (Examine) Command - The X command allows selective display and alteration
of the current CPU state for the program under test. The forms are

X
Xr

where r is one of the 8080 CPU registers

C Carry Flag 0/1)
Z Zero Flag 0/1)
M Minus Flag (0/1)
E Even Parity Flag (0/1)
| Interdigit Carry (0/1)
A Accumulator (0-FF)
B BC register pair (0-FFFF)
D DE register pair (0-FFFF)
H HL register pair (O-FFFF)
S Stack Pointer (0-FFFF)
P Program Counter (0-FFFF)

6-19

TEXT EDITOR, DYNAMIC DEBUGGER AND RELOCATABLE DEBUGGER UTILITY PROGRAMS

In the first case, the CPU register state is displayed in the format
CfZfMfEfIf A=bb B=dddd D=dddd H=dddd S=dddd P=dddd inst

where f is a0 or 1 flag value, bb is a byte value, and dddd is a double
byte quantity corresponding to the register pair. The "inst" field contains
the disassembled instruction which occurs at the location addressed by the
CPU state's program counter.

The second form allows display and optional alteration of register values,
where r is one of the registers given above (C, Z, M, E, |, A, B, D, H, S,
or P). . In each case, the flag or register value is first displayed at the
console. The DDT program then accepts input from the console. If a
carriage return is typed, then the flag or register value is not altered.
If a value in the proper range is typed, then the flag or register value is
altered. Note that BC, DE, and HL are displayed as register pairs. Thus,
the operator types the entire register pair when B, C, or the BC pair is
altered.

16 W (Write Disk) Command - The purpose of the WRITE DISK command is to provide
the capability to write a patched program to disk. A single parameter imme-
diately follows the 'W' which is the number of sectors (128 bytes/sector) to
be written. This parameter is entered in hexadecimal.)

IMPLEMENTATION NOTES

The organization of DDT allows certain non-essential portions to be overlayed in
order to gain a larger transient program area for debugging large programs. The
DOT program consists of two parts: the DDT nucleus and the assembler/disassembler
module. The DOT nucleus is loaded over. the Console Command Processor, and,
although !oaded with the DDT nucleus, the assembler/disassembler can be

overlayed unless used to assembie or disassemble.

In particular, the BDOS address at location 6H (address field of the MP
instruction at location 5H) is modified by DOT to adress the base location of
the DDT nucleus which, in turn, contains a JMP instruction to the BDOS. Thus,
programs which use this address field to size memory see the logical end of
memory at the base of the DDT nucleus rather than the base of the BDOS.

The assembler/disassembler module resides directly below the DDT nucleus in the
transient program area. |f the A, L, T, or X commands are used during the
debugging process then the DDT program again alters the address fiel!d at 6H to
include this module, further reducing the logical end of memory. |f a program
loads beyond the beginning of the assembler/disassembler module, the A and L
commands are lost (their use produces a "?" in response), and the trace and
display (T and X) commands list the "inst" field of the display in hexadecimal,
rather than as a decoded instruction.

6-20

Chapter 7

SYSTEM GENERATION

GENERAL

This chapter describes how to modify the MP/M operating system configuration to
meet specific needs for the users application environment.

The need for generating a new system configuration arises when the current space
that is allocated for memory segment bases does not accommodate the size of the
-users program and could result in a possible overlap of memory partitioning for
the fransient program area. Also, the system operating requirements, such as,
the need for additional resident programs, or the add-on of optional extended
memory capability would make it necessary to change parameters and generate a
new system configuration. .

CAUTION: Prior to performing the steps in this chapter, Millennium recommends
that the user duplicate the system diskette provided with the 9520.
After the 9520 has been power-up (refer to chapter 3), insert the
system diskette into the disk drive and press the 9520 front panel
RESET switch to reinitialize the 9520 so the software on the diskette
is pulled into the system. When the prompt OA> is displayed on the
display terminal, insert the diskette in the unused disk drive, enter
the command .FDISK <cr> and the diskette dup!ication procedure wil! be
invoked. :

GENSYS PROGRAM DESCRIPTION

The MP./M system generation process employs the GENSYS program which is invoked
by the GENSYS command. The program is interactive and displays a table of the
current system parameters. The user is prompted to provide inputs which modify
the existing system parameters and establish a new system configuration.

The GENSYS program aufomaficafly builds a system program file which contains the
assigned parameters and writes this program fo the system diskette so that the
information can be loaded into memory whenever the system is started up from a

power-on or reset state.
The system configurafion'fhus established by the GENSYS program remians effec-
tive until another GENSYS is performed by the user.
MODIFYING SYSTEM CONF IGURAT ION
GENSYS is invoked by keying

OA <GENSYS> <cr>
The system will respond by disblaying the following table (Example #1) which
reflects the current parameters that were assigned for the system when the last
GENSYS was performed. (The example is presented for a Non-Bank Switched
System.) The user is prompted to respond to each line item and enter the para-

meter data shown in brackets.

7-1

SYSTEM GENERATION

NOTE: Angle brackets are presented in the example to clarify the user response
and are not included in the actual display.

Examp le #t, System without Bank Switched Memory
OA> GENSYS

MP/M System Generation

Top page of memory
Number of consoles = <2> or <1>
Breakpoint RST # <6>
Add system call user stacks (Y/N)?<y>
Z80 CPU (Y/N)?y »
Bank switched memory (Y/N)?<n>
Memory segment bases, (ff terminates list)
:<00> ;
:<50>
:<a0>
1 <ff>
Select Resident System Processes: (Y/N)
ABORT <n>
SPOOL <n>
MPMSTAT 72<y>
SCHED y>
MP /M
" 0A>

<ff> or <0>

The description of each line item response entered during system generation is
as follows:

(1) Top Page of Memory

Two hexadecimal ASCI| digits are to be entered giving the top page’ of memory. A
value of O can be entered in which case the MPM l|oader will determine the size
of memory at load time by finding the top page of RAM.

(2) Number of Consoles

Each console specified will require 256-bytes of memory. The 9520 Development
System supports up to two consoles. .

(3) Breakpoint RST #

The breakpoint restart number to be used by the SID (Symbolic Instruction

Debugger) and DDT (Dynamic Debugging Tool) debuggers is- specified. Restart 0 is
not al lowed.

SYSTEM GENERATION

(4) Add System Call User Stacks (Y/N)?

If you desire to execute CP/M *.COM files then your response should be Y. The Y
response forces a stack switch with each system call from a user program. MP/M
requires more stack space than CP/M.

(5) Bank Switched Memory (Y/N)?

I f your system does not have bank switched memory than you should respond with a
N. Otherwise respond with a Y along with the additional questions and responses
~ (as shown in the Example #2 table) which will be required.

(6) Memory Segment Bases
/Memory segmentation is defined by the entries which are made. Care must be

taken in the entry of memory bases as all entries must be made with successively
higher bases. y - :

(7) Select Resident System Processes (RSPs)

A directory search is made for all files of type RSP. Each file found is listed
and included in the generated system file if.you respond with a Y.

" where: ABORT: Allows fhe~user to abort a running program
' SPOOL: Allows the user to spool- ASCI| text files to the -list device

MPMSTAT: Al lows the user to display the run-time status of the
operating system

SCHED: Allows the user to schedule a program for execution .

After the last user response is keyed, the GENSYS program produces the MPM.SYS
file which contains the new parameters assigned for the system configuration.

The MPM.SYS file is then written fo the system diskette and is booted into
memory whenever the system is started up from a power-on or reset state.

The updated MPM System Generation Table is displayed on the screen and the
prompt (OA>) is presented so that operator commands can be issued.
BANK SWITCHED MEMORY CONF IGURATION

Bank switched memory is the condition whereifhe add-on, 48K expansion memory
bank is available to operate in paraltel with the base memory bank. The user
can specify the segmenting of transient spaces in both memory banks.

SYSTEM GENERATION

When the system is configured with the Bank Switched Memory and Banked BDOS
(Basic Operating System) File manager, the user is prompted to provide addi-
tiona! inputs to satisfy these configuration requirements.

This procedure requires an initial GENSYS and MPMLDR execution to determine the
exact size of the operating system, followed by a second GENSYS.

The system will display the following table (Example #2) so that the user can
specify the bank switched memory requirements. The ftable in Example #2 is
abbreviated to emphasize system prompts for the bank switched memory. (Note:
Angle brackets are presented in the example to clarify the user responses and
are not included in the actual display.)

Examp le #2, System Generation with Bank Switched Memory
0A> GENSYS

MP/M System Generation

Bank switched memory (Y/N)?<y>

Banked BDOS file manager (Y/N)?<y>

Enter memory segment table: (ff terminates list)
Base,size,attrib,bank = <0,50,0,0>
Base,size,attrib,bank = <ff>

SCHED 7 <y>
MP /M
0A>

The description of each Iine item response entered for Bank Switched Memory
~during system generation is as follows:
(1) Bank Switched Memory

Respond with a Y if the system hardware is configured with the add-on, 48K
expansion memory.

SYSTEM GENERATION

(2) Bank Switched BDOS File Manager

Always respond with a Y to include the bank switched BDOS. This will provide an
additional OCOOH bytes of common area for some RSPs (resident system processes).
The banked BDOS is slower than the non-banked because FCBs (file control blocks)
must be copied from the bank of the calling program +o common and then back
again each time a BDOS disk function is invoked.

Memory Segment Table

When bank switched memory has been specified, you are prompted for the base,
size, attributes, and bank for each memory segment. Extreme care must be taken
when making these entries as there is no error checking donc by GENSYS regarding
this function. :

The first entry made will determine the bank in which the banked BDOS is to
reside. It is further assumed that the bank specified in the first entry is the
bank which is switched in at the t+ime the MPMLDR is executed.

The attribute byte is normally defined as 00.

The bank byte value is hardware dependent and is 0 for bank O and 1 for bank 1.

Next, execute the MPMLDR in order to obtain the base address of the operating
system. The base address in this example will be the address of BNKBDOS.SPR
(BCOOH) as shown in Example #3 table.

Examp le #3, Base Address Assignment for Bank Switched Memory

0A>MPMLDR
MP/M Loader
Number of consoles = 2
Breakpoint RST #° = 6
280 CPU
Banked BDOS file manager
Top of memory = FFFFH

Memory Segment Table:

SYSTEM DAT FFOOH O0100H
CONSOLE DAT FDOOH 0200H
USERSYS STK FCQOH 0100H
X108 SPR F600H 0600H
BDOS SPR EEOOH 0800H
XDOS SPR CFOOH 1FOOH
Sched RSP CAQOH 0S500H
BNKBDOS SPR BAOOH OEOOH

Memseg Usr 0000H 5000H Bank OOH

SYSTEM GENERATION

Using the information obtained from the initial GENSYS and MPMLDR .execution the
following GENSYS can be executed to reflect the bank switched memory configura=-

tion:
0A> <GENSYS> <cr>

MP/M System Generation

Top page of memory = <ff>

Number of consoles = <2>

Breakpoint RST # = <6>

Add system cal! user stacks (Y/N)?<y>
Z80 CPU (Y/N)7<y>

Bank switched memory (Y/N)?<y>

Banked BDOS file manager (Y/N)?<y>
Enter memory segment table: (ff terminates list)
Base,size,attrib,bank = <0,ba,0,0>
Base,size,attrib,bank = <0,c0,0,1>
Base,size,atfrib,bank = <ff>

Seiect Resident System Processes: (Y/N)

ABORT ?<n>
SPOOL ?<n>"
MPMSTAT ?<n>
SCHED 7<y>
MPM
0A>

7-6

Chapter 8

SYSTEM OPERATION

INTRODUCT ION

Operation of the 9520 Development System generally involves the following types
of user activity:

1. Applying AC power at the equipment to begin system operations.
2. Inserting the system diskette and loading the MPM operating system.

3. Entering commands at the Keyboard to load and execute desired programs from
tThe system diskette and user diskette as appropriate.

t

4, Creating and maintaining source files for user programs.
5. Aborting and detaching from a running program.
6. Closing out files and removing diskettes to shut down system operations.

User input and interaction is implemented through the terminal console keyboard
and display screen. The commands and data entered at the keyboard are con-
currentiy displayed on the screen along with system responses.

The system generates output to the various system devices, floppy disk drives,
display terminal ard 1/0 interface channels at the RS-232, RS-422, ‘and |EEE-488
ports. ‘ :

TERMINAL KEYBOARD AND KEY FUNCTIONS

The terminal keyboard is generally arranged like that of a typewriter, except
for a number of additional keys. The placement and labels on keys will vary for
different keyboards. A typical keyboard arrangement showing all essential keys
for using the 9520 Development System is shown in figure 8-1. These keys can be
grouped into three functional categories as follows:

o Data Entry Keys
o0 Program Control Character Keys

o Text Control Character Keys

Data Entry Keys

Data Entry keys are used to provide user input to, and interaction with the
system. After keying in the desired input, the RETURN key must be pressed —
only then does the system accept the input. There are some exceptions, however,
such as control character inputs to certain system responses which do not
require the RETURN input.

SYSTEM OPERATION

The EDIT utility program accepts both upper and lowercase AéCII characters as
input from the keyboard. Single letter commands such as control characters may
also be typed as either lower or upper case.

The data entry keys are similar fto a standard typewriter keyboard. These keys

provide 96 ASCI| characters including upper and lower case English alphanumeric
and special characters. |+ also includes the control keys for DEL, CTRL, ESC
and RETURN functions. . ’

The DEL key is used to delete the last character which was typed at the

keyboard. The DEL key may also be labeled DELETE, RUB or RUBOUT and may, or may
not, be shared with the underscore key and may, or may not, require SHIFT to
activate. The BACKSPACE key or the key's control-H may be used for the same pur-
pose. ,

The escape key will have no effect on MP/M or CPM.

The RETURN key may be labeled CARRIAGE RETURN or ENTER and causes the cursor to
be moved to column 1 of the current line.

Note that the space bar is for entering spaces. Unlike on a typewriter, the
space bar cannot be used to move across characters already displayed on the
screen,

Figure 8-1. Typical Keyboard Arrangement

8-2

SYSTEM OPERATION

The CTRL key is used like a shift key to enter alphabetic control characters.

To type a control character, hold the CTRL key down while typing the letter. In
this manual, a caret (A) character is used in front of the letter to indicate a
control character. For example, AD indicates control-D, which is typed by
holding down the CTRL key and typing a D; AB means Control-B, etc. Control

characters are used fo enter commands for program control and fext control
during data entry. |t is not necessary to use the RETURN key after entering a

control character.

A number of additional keys may be present for use in data entry which include
the following:

BACKSPACE: Same as control character, AH which is used for backspacing
The cursor orn 2 fine.

TAB: Same as control character, Al which is used with the Text
Editor Utility for tabbing.

L INEFEED: Same as control! character, AJ thch is used o terminate the
current input and cause the cursor to move down one line on
the screen.

‘REPEAT: Used to automatically send the same charac+er continuously.
Some keyboards will repeat any character whose key is held
down 1/2 second. Other keyboards require the REPEAT key to

be held down while another key is pressed to send the
character string.

CURSOR DIRECTION: Consists of four keys with arrows to indicate the four direc-
tions of cursor motion. Pressing the key causes the curso
to move in the direction indicated by the arrow. '

Cursor motion can also be initiated by control characters
used in the WordStar Text Editor Utility as follows:

AD: Moves cursor to the right -- to the next character in a
line. .

AS: Moves cursor to the left == to the previous character in
a line.

AE: Moves cursor up to preceeding line on screen.

AX: Moves cursor down to next line on screen.

Program Control Character Keys

The program control characters provide |imited user control over the program
operation processes, such as:

o Aborting a Program
o Detaching from a Runniﬁg Program

8-3

SYSTEM OPERATION

o Terminating the Current Input

o Deleting and Inserting a Line

o Obtaining Exclusive use of a Listing (printer) Device

o Stopping the Display Output Before Continuing with Execution

The program control characters also permit limited editing functions of a line
entry while typing in a command !ine at the keyboard:

The following control characters are used in the MPM or CP/M system:

MP/M, CP/M

CONTROL CHARACTER

AC
AD
AE

AH

AJ
;o AM
AR

AU

AX

AZ

- DESCRIPTION OF CONTROL FUNCTION

Abort program in process and ferminate execution
Detach from a running program (MP/M only)

Physical end of line.

Delete the last character typed at keyboard and backspace
one character position

Terminate current input (same as line teed)
Terminate input (same as carriage return)

Retype current command l|ine to provide a clean line follow-
ing character detetion with rubouts

Remove current line after new l!ine

Delete entire line typed at keyboard and backspace to the
beginning of current line

End input from keyboard

(Control characters AP, AQ and AS affect the console output as follows:)

AP

AQ

Copy all remaining keyboard outputs to the list (printer)
device. Output is sent to both the |ist device and dis-
play device unti! the next AP is typed. |If the list device
is not available, a PRINTER BUSY status message is
displayed on the screen.

Obtain ownership of the PRINTER BUSY status message (MP/M
only). Attaching the printer via this command prevents
other terminal consoles from gaining access to the printer
by issuing AP, AQ, PIP, or SPOOLER commands. The printer
is thus owned by the console which issued the AQ command
until another AP or AQ command is entered to release the
printer.

SYSTEM OPERAT ION

Control Characters in the MP/M, CP/M System, continued

MP/M, CP/M
CONTROL CHARACTER DESCRIPTION OF CONTROL FUNCTION

The AP command should be used on!y when a program (such as
CP/M *,COM file) is executed which does not cause the
PRINTER BUSY status message to occur prior to accessing
the printer. |f the printer is not available, a PRINTER
BUSY message is displayed on the screen (MP/M only).

AS Temporarily stops the display motion. The program execu-
tion and display motion will resume after any character is
typed on the keyboard.

This control is used to halt the dispiay motion on high-
speed displays so that the operator can view a segment of
the output data before continuing the processing.

Text Control Character Keys

The WOrdSTar Text Editor Utility provndes an array of +ex+ control characters
that are fully described in chapter 6.

These text control characters- are used in conjunction with the CTRL key to
issue a specific command that controls the processing for text inputs, such as,
creating a new document file, editing an existing document file, manipulating
the display, and listing of document files. Text control functions involve the
following categories of commands that can be executed by the text con+rol
characters:

o Cursor Motion -- Forward, Backward, Upward and Downward directions

o Scrolling == Single line, full screen, continuous, up/down and fast/slow
motion

o Text Entry -- Insertion, tabbing and tabulating

o "Text Deletion on a Page -- Individual characters, words, lines and blocks of
data

o Saving and Deleting -- Updated files, original files and old files

©. QOn-Screen Text Formatting -- Set margins, line spacing, tabs and paragraphs
o:.Find and Replace -- Global File, Word, Phrase, Character Strings

o Place Markers -- Set mark locations in a file for future reference

o Block Csmmands -- Moving paragraphs, sentences, copying and deleting blocks

o Document or non-document files

SYSTEM OPERATION

Help Commands -- Display learning aids and reference user information on
screen

Miscellaneous Commands -- Repeat a command, interrupt a command/printing and
display file directory

USER INTERACTION

Thi
t+ia
and

s section describes user interaction with the 9520 Development System to ini-
te the system from a cold start, load the operating system from the diskette
enter commands at the terminal keyboard. This information is divided into

the following subsections:

o System initiation
o Command Interpreter State
o Immediate Command Mode

.0 Interactive Command Mode

System Initiation -

-sta

1.

2.

Use the following step-by-step procedures to initialize +he éysfem ~from a_cold

rt:
Turn on the POWER switch at the display terminal.

3. On some terminals a bell will beep within 1 second to indicate power is

on. ,
b. After 10 to 15 seconds, the cursor will appear in the upper left-hand
corner of the screen and the status line will appear across the bottom

of the screen. At this time, the operator can adjust the contrast to
obtain the desired brilliance for the screen.

Verify the diskette is not mounted on the disk drives and turn on the POWER
switch at the 9520 Development System control panel.

a. After a few seconds, the terminal screen will display the following
message to indicate the 9520 Boot PROM, Self Test dlagnostic is running:

9520 SELF TEST VERS 2.0 CO
b. After the diagnostic test Is completed, the following message is
displayed on the terminal screen to inform the operator that system soft-
ware can be loaded:

9520 SELF TEST VERS 2.0 COMPLETE

SYSTEM OPERATION

Insert the system diskette in either of the disk drives (Drive A or Drive B).
a. Press the latch bar to open the drive access door at the selected drive.

b. Position the diskette as shown in figure 3-1 and push the diskette
forward until a click is heard.

€. Close the drive access door to lock the diskette on the drive spindle.

NOTE: The subsequent reset procedure need not be performed when the 9520 SELF

4.

5.

TEST VERS 2.0 COMPLETE message Is displayed. -

Press the RESET switch on the 9520 Development System control panel to start
up system operarions and load the operating system from the diskette.

a. The system will perform the se!f-test diagnostic and then load the
bootstrap loader program from the diskette, which in turn loads the
operating system from the diskette.

b. After a few seconds, loading is completed and the following message
appears on the display screen:

MPM
YA >

where: XA shown in prompt:

X = User code and console assignment number. For exaﬁ\ple, console #0
is initialized to user #0 for a single user/console system con-
figuration and would be presented as:

A >

Variations for assigning multiple users and consoles to the system
are described in section 1.3 of the MP/M Users Manual.

A = Default for the disk drive (A or B) that is currently logged to the
console and can be changed at any console as described in section
1.3 of the MPM Users Manual.

The specified default disk must contain the utility files, such
as, DIR, REN, ERA, etc.

After the inital loading of the MPM operating system is completed, perform
the System Generation Procedure described in chapter 7 to select the
operating system parameters. This will place the system in the Command
Interpreter State, so that the system is ready to accept and interpret com-
mands that are issued from a local console keyboard or process UPLOAD/

- DOWNLOAD commands that are issued from a remote emulator/debug station.

All keyboard commands are entered as a single-line entry in one of two modes
which follow. :

8-7

SYSTEM OPERATION

Enter ing Commands

the command may be keyed as an explicit entry (for the Immediate Command Mode)
by specifying all of the parameters in the command prior to execution; or the
command may be keyed as an implicit entry (for the Interactive Command Mode) so
that the user can interact with, and respond to queries issued by the system to
provide parameter inputs during the execution. Both types of command entries
are described in subsequent paragraphs along with examples.

Document Conventions

The following documentation conventions are used in this manual for describing
the command entry syntax -

o Angle Bracket: < > Item inside angle bracket is a required entry

o Bracket: [1 Item inside bracket is optionhal entry

o Logic OR Symbol: |tems on either side of symbol may be used in the
entry

o Three consecutive Dots: ... Indicates multiple occurrences of a preceding item

Command In+érpre+er State is the operating state that allows the system to
accept user commands for interpretation and subsequent action.

The Command Line Interpreter is invoked whenever:

o The system is initiated or reset

o The user/system program completes processing a command or terminates execution
due to an error

In most cases, the Command Line Interpreter State is indicated by the presence of the
prompt character, XA>, followed by the cursor in column 2 of the current line on
the display screen. The X equals any number from 1 through 15.

Once the system has prompted the user, commands can be entered in one of the
following modes - '

1. Immediate Command Mode

2. Interactive Command Mode

SYSTEM OPERATION

Immediate Command Mode

The Immediate Command Mode al lows entry of one-line commands. The parameters
are included in the line entry to identify operators and operands that are
required to complete the program execution without prompting the user for addi-
tional input.

Syntax for an Immediate command is as follows:
<command> <parameter-1>...<parameter-n> <cr>
where:

<command> -~ identifies a 9520 system utility name, an MP/M or CPM
system utility name, or a user program name (e.g.,
utility name could be BRATE)

<parameter-1> -- defines parameters required to run the program. Each
+hru parameter may consisf of a file name, a function, a
<parameter-n> device name, an indicator or an assigned value.
(e.g., function parameter #1 could be 1/0 device:
PRINTER, parameter #2 could be arithmetic indicator: =
parameter #3 could be value for Baud Rafe)

<cr> -- indicates a carriage return is required fo complefe
the command entry

Entering |mmediate Command .

The !mmediate Command can be keyed by using the following +echn|ques for making
tThe entry:

o Use data entry keys to kéy in characters (all data entry keys are operative).
o Corrections may be made at any time before pressing the RETURN key.

O Make corrections, if necessary, by erasing (using the DELETE, RUB, RUBOUT,
BACKSPACE or control H character key) each of the characters up to, and
including the first erroneous character in the command, and then re-entering
them correctly. The control X character may be used to erase the entire line
and start a new |line entry.

© Enter each parameter to define operators and operands for the program.

o Press the RETURN key. This initiates execution of the selected program com-
mand.

8-9

SYSTEM OPERATION

EXAMPLE: Use of single-line Immediate Command entry to call out the Baud Rate
Utility and assign a new Baud Rate value for 1/0 device.

Syntax: <BRATE> <I|/0 Device> <=> <BAUD Rate> <cr>

L__(S) carriage return,
execute command

(4) BAUD Rate Value assigned = 300

___(3) Parameter for arithmetic indicator

| (2) Name of device fto be changed = PRINTER

| (1) Name of Utility = BRATE
Keyboard Entry: BRATE PRINTER = 300 <cr>

Interactive Command Mode

The Interactive Command Mode allows the user to call out a utility and respond
to prompts issued by the system after the program begins execution. Each of the
prompts will query the user to provide additional input information so that exe-
cution can be resumed and/or completed.)

The following types of input information is requested by the system prompts,
each of which is followed by a carriage return:

o Parameter #1'(device name, file name, type of function)
o Parameter #2 (Indicator, Operator)
o Parameter #3 (Value, address location operand)
Syntax for the Interactive Command sequenced by steps is as follows:
Step 1. Call out program: <command> <cr>

Step 2. Respond to prompt, <parameter #1> <cr>
enter 1st parameter:

Step 3. Respond to prompt, <parameter #2> <cr>
enter 2nd parameter: ‘

Step 4. Respond to prompt, <parameter #n> <cr>
enter last parameter:

SYSTEM OPERATION

Where each entry step performs the following functions:

(1) <command> <cr> -~ identifies a 9520 System Utility name, an MPM or
CP/M System Utility, or a user program name that
begins executing when carriage return is entered.

(2) <parameter #1> <cr> -- prompts the user to input specific information to
"~ satisfy program processing requirements and resume
’ execution.

(3) <parameter #2> <cr> —— prompts the user to input addifioﬁal information ‘o

satisfy program processing requirements and resume
execution.

(4) <parameter #n> <cr> — prompts the user to input final information so that
processing will be completed.

Entering Interactive Command

The Interactive Command can be keyed by using the following techniques for
mak ing the entry:

o Use data entry Keys to key im characters (all data entry keys are operative.)
o Corrections may be made at any time before pressing the RETURN key..

o Make corrections in the same manner described for |Immediate Command EnTry.
The C character may be used to abort the program at any time.

o Enter each paramefer'as requested by the various prompts to define specific
operators and operands for the program. Always press the RETURN key after each
parameter entry to resume or complete the execution.

EXAMPLE: Use the multiple-!ine, Interactive Command Entry to call out the Baud
Rate Utility and assign a new Baud Rate value for |/0 device:

SYSTEM PROMPT SYNTAX: USER ENTRY
(1) 0A> <BRATE> <cr>

| carriage return, begin execution

. Name of Utility, BRATE

(2) 1/0 DEVICE:> <PRINTER> <er>
L_.carriage return, resume execution

| 1/0 device selected

(3) BAUD RATE:> <300> <er>
L__carriage return, complete execution

| Baud Rate Value assigned

Keyboard Entry BRATE <cr>
> PRINTER <cr>
> 300 <cr>

8-11

SYSTEM OPERATION

RUNNING A PROGRAM

Starting the execution of a program is initated by keying the Program Name
followed by a carriage return <cr>. Some programs contain one or more parame-
ters which follow the program name on the !ine entry. The programs that are
provided with MP/M are described in sections 1.4 and 1.5 of the MP/M Users
Manual.

ABORTING AN ATTACHED PROGRAM

A program can be aborted by keying a control C (C) character at the console.
The C terminates execution of the program which was initated (and thereby
attached) by the console. A detached program (i.e., initated from another
console) cannot be aborted with the C. A detached program must first be
attached and then aborted. A running program may also be aborted using the
ABORT command as described in section 1.5 of the MPM Users Manual.

DETACHING FROM A RUNNING PROGRAM

Detaching from a running program may be Invoked by keying a control D (D)
chafacfer at the console.

In order to detach a program ﬁsing the D character, the executing program must
be performing a check console status to observe the detach request.”
ATTACHING TO A DETACHED PROGRAM

A detached program (i.e., the program is not owned by a console) may be attached

to a console by keying: ATTACH, followed by the program name. A program may
only be re-attached to the console form which it was detached.

Chapter 9

SYSTEM DIAGNOSTIC PROGRAM

GENERAL

In addition to the boot PROM, self-test feature permanentily installed in the
9520 Software Development System (refer to chapter 3), a diagnostic program is
provided on a separate diskette. This paragraph describes the functions of the
system diagnostic program.

The Diagnostic Diskette contains software that will thoroughly test all func-
tions of the system. In the event a subassembly fails the diagnostic test, the
diagnostic program will cause an error message to be displayed. The error
message will identify the cause of failure.

DIAGNOSTIC EXECUTION

Insert the Diagnostic Diskette in disk drive A or B. The contents of Diagnostic
Diskette are loaded into the 9520 System by entering the command, DIAG on the
console. After the diagnostic is loaded and initialized, i+ will log on to the
display fterminal and display:

9520 DIAGNOSTIC VERSION 1.0
and then the prompt -
0A>

The user can now communicate with the monitor and direct the flow of events by

using the commands provided to invoke the various test routines. All commands
have the generalized format:

Xx<=
xxddo . od<=
xxdde. . . d: xxdddd: xx<=

where:

xx = Command mnemonic
dd = Individual data field commands
< = Carriage return

Format - The format xx<= is used when the user requires additional information
to implement the command (i.e., the command SD<= will display all tests
available for execution) or no data field is necessary (i.e., LT<= will invoke
the loop-on-test option).

General Operator Control - The user may temporarily suspend message output (or
test execution whenever a message is encountered) by pressing the console
SPACEBAR. Testing and message display can be resumed by pressing the SPACE BAR
again. The user may terminate test execution by entering x on the console

keyboard. This comand causes the diagnostic to return control to the diagnostic
monitor program. The prompt OA> is displayed on the display terminal.

-9=1

SYSTEM DIAGNOSTIC PROGRAM

NOTE: There may be a delay before the monitor prompt appears after entering the
x command.

COMMANDS

HP (Help) Command - The help command will cause a menu of valid diagnostic moni-
tor commands to be displayed. The help command format is:

HP <=

Table 9-1 lists the résponse to the HP command, as displayed on the display ter-
minal.

Table 9-1. Vallid Diagnostic Commands

MNEMONIC DEFINITION

HP Help-Display Commands

WS Warm Start

SD Select Diagnostic

DR) Drive Select

LT Set Loop-on-Test (S) Option
M Set No Messages Option

LE Loop on Error

SO Set Operator Intervention Tests Option
HE ' Set Halt on Error Option

TL Set Long Test Option

bP Display Pass and Error Counts
Co Continue Testing

0A> (Prompt)

WS Command - The warm start command will re-initialize the diagnostic fo the
default conditions with all options reset, and Disc Drives A and B selected for
testing. Al|"PASS and ERROR COUNT fields are cleared to zero.
The command format is:

WS <=
Terminal- display response is

9520 DIAGNOSTIC VERSION 1.0
0A>

SYSTEM DIAGNOSTIC PROGRAM

SD (SELECT DIAGNOSTIC Test) Command - This command allows the operator to either
queue a test (or tests) for execution or have a display of all possiblie fests.

The command format is:
SD <=

The display terminal responds with

1D TEST

01==—====-RAM TEST-FIXED PATTERNS

02=~=~- ---RAM TEST-ADDRESS PATTERN
03-—===--=-SERIAL 1/0 PORT 1 TEST

e SEPIAL !/0 PORT 2 TEST
05-==---==SERIAL |/0 PORT 3 TEST

06========60 Hz TIMER TEST

oy e DISC RESTORE TEST

08---———--D1SC SEEK TEST

09—-—-----DISC FIXED PATTERNS TEST
1Q=======-D|SC TRACK AND SECTOR DATA TEST
(RS DISC RANDOM TRACK=-SECTOR-DATE TEST
{2emmmm e DISC INTERRUPT NOT READY-READY TEST
1 3mmmmmmm -DISC INTERRUPT READY-NOT READY TEST
14======—-D|SC WRITE PROTECT TEST

0A> ‘

NOTE: The SO command option must be enabled to perforh test 12, 13, and 14.

When the SD command is followed by an asterisk (*), the diagnostic moni-
tor selects and executes all available tests.

When the SD command is followed by nn, the user selects the test (nn) for
execution.

The command SD nnl nn2 nn3 nn5 nnd...nnn <= depicts that any number and/or
sequence of tests may be queued for execution.

NOTE: |f the SD command is part of 2a miitiple command line string, it must be
the last command in the line. ‘

DR (DRIVE SELECT) Command - This command allows the operator to select which
disc drive(s) will be used for testing.

SYSTEM DIAGNOSTIC PROGRAM

The command formats are:
DR A <=
Selects Drive A

"DRIVE A SELECTED"
0A>

is displayed.
OR B <=
Selects Drive B

"DRIVE B SELECTED"
0A>

is displayed.
DR * <=
Selects both Drive A and B

“WDRIVE A AND B SELECTED"
0A>

is displayed.
LT (LOOP on TEST(s) Command - The LT command sets the loop-on-test(s) options
and causes the test(s) to be executed continuously unti! the operator suspends
execution or an error is encountered if the Halt-on-Error option is set.
The command format is:
LT <=
The display terminal responds with the prompt
0A>

SM (SUSPEND MESSAGES) Command - The SM command suspends all messages except the
header message of the test(s) selected. This command Iis intended to be used in
conjunction with the loop-on-test or loop-on-error options for troubleshooting
purposes. :
The command format is:

SM <=
The display terminal responds with the prompt

0A>

9-4

SYSTEM DIAGNOSTIC PROGRAM

SO (SET OPERATOR intervention test(s)) Command - This command allows the execu-
tion of tests requiring operator intervention within the fest(s) selected. The
SO command must be set for tests 12, 13, and 14.

The command format is:
SO <=

The display +ermiéal responds with the prompt
0A>

LE (LOOP-ON-ERROR) Command - The LE command will cause the test selected to loop
on an error condition (when encountered) without changing any parameters that
caused the error. This option is valid only in tests 01, 02, 03, 04, and 05.

The command format is:

LE <=
The display terminal responds with the prompT.
- 0A>

HE (HALT on ERROR option) Command - The HE command causes the selected test exe-
cution to halt when an error is encountered. The test execution will continue
when the operator types " <= " on console. ‘

The command format is:
HE <=

The display terminal responds with the prompt
0A>

TL (LONG TEST option) Command - When +he TL command is set, the DISC FIXED
PATTER tests are executed in long form by testing all tracks.

The command format is:
TL <=A

The display terminal responds with the prompt
0A>

DP (DISPLAY PASS and ERROR COUNT) Command -~ This command al lows the operator to A
have the PASS and ERROR COUNT tally displayed on the terminal.

The command format is:
DP <=

9-5

SYSTEM DIAGNOSTIC PROGRAM

The display terminal responds with

<TEST> <PASS> <T E> <DRV A> <DRV B> <S E> <RNF E> <CRC E> <DATA E>

01 0000 00

02 0000 00

03 0000 00

04 0000 00

05 0000 00

06 0000 00

07 0000 00 00 - 00 00 00 00 00
08 0000 00 = 00 00 00 00 00 00
09 0000 00 00 00 00 00 00 00
10 0000 00 00 00 00 00 00 00
11 0000 00 00 00 00 00 00 00
0A>

The label definitions are

<T E> = Total Errors

<DRY A> = Total Errors, Drive A only
<DRV B> = Total Errors, Drive B only
<S B> = Seek Errors ,

<RNF E>) = Record-not-found Error
<CRC E> = CRC Error

<DATA E> = Data Mismatch Error

All counters are in Hex.
All error counters terminate count at OFF (hex).
All pass counters terminate count at OFFF (hex).

CO (CONTINUE Execution of Suspended Test) Command - The CO command will cause
the monitor to resume execution of a selected test that was terminated
(suspended) by the user implementing the "X" (EXIT) funciton.

The command format is:
Co <=

The display terminal responds with the prompt
0A>

FUNCTIONAL TEST DESCRIPTION
Test ID 01 RAM TEST - Fixed Pattern

A write/read/verify operation os performed on all available memory using the
following fixed patterns and a "Walking 1's" pattern

9-6

SYSTEM DIAGNOSTIC PROGRAM

00

FF (Hex)
55 (Hex)
AA (Hex)

| f the system contains the optional expansion memory option, it will be tested
also. .
Test ID 02 RAM TEST - Address Pattern
All available memory is written with data which is equal to the address HI BYTE
LOW BYTE. After a period of delay, to ensure refresh is functional, the memory
is read and verified. Expansion memory option (if installed) is tested also.
Test ID 03 SERIAL |/0 Port 1 Test
Serial Port 1 is tested by enabling the wrap-back function on the 9520 control
board and writing the fixed patterns as described in Test 01 (RAM TEST). The
Serial port is then read and verified. |In addition to the data .
write/read/verify, the baud rate is tested by measuring the time between
‘received character available.
This test is performed using the following baud rates.
75, 110, 134.5, 150, 300, 600, 1, 2k, 2.4k, 4.8k, 9.6k, 19.2k, 38.4k,
56k, 76.8k
Test ID 04 SERIAL 1/0 Port 2 Test

Essentially the same as Port 1 with exception of different baud rates of:

75, 110, 134.5, 150, 300, 600, 1.2k, 2.4k, 4.8k, 9.6k

Test ID 05 SERIAL 1/0 Port 3 Test

Essentially the same as Port 2 except that Port 3 is tested.

Test ID 06 60 Hz TIMER Test

A software timing measurement is performed on the 60 Hz timer interrupt.

Disc Drive/Controller Tests

NOTE: All Disc Tests are performed on Drive A or Drive B or both as specified
by operator input. Refer to the "DR"™ command.

SYSTEM DIAGNOSTIC PROGRAM

Test ID 07 DISC RESTORE Test

The floppy controller is issued a RESTORE/VERIFY command and the controller sta-

tus and frack register is checked to ensure that track 0 was reached and the
track record was read correctly.

Test ID 08 DISC SEEK Test

" Using the STEP-IN and STEP-OUT commands, the SEEK operation is performed from
TRACK 0 to TRACK 76, sequentially, with a verify performed at each Track. The
test then performs SEEKs in the following sequences.

TRACK 76 to 1
TRACK 1 to 75
TRACK 75 to 2, etc.
TRACK 38 to 39
Test ID 09 DISC FIXED PATTERNS Write/Read

All-tracks and sectors are written and then verified with the following fixed
patterns: 00; FF; 55; AA. '

In the long test, the fracks are written sequentially trom 0 to 76.

Test ID 10 DISC WRITE-READ TRACK/SECTOR Data Test

All tracks/sectors are written with a 2-byte "word" equal fto the track_and sec-
tor "address". All tracks are written sequenflally from Track 0 to Track 76.
After all tracks/sectors are written, the disc is read and verified.

Test ID 11 DISC RANDOM TRACK/SECTOR Data Test

This test performs a Write/Read/Verify operation to a random Track/Sector selec~
tTion with Random data. This sequence is performed 256 times per test pass.
Test ID 12 DISC INTERRUPT on NOT READ/READY Test

This is an operator intervention test which verifies that an interrupt is
generated when a drive goes from a NOT READY to READY state. This should occur
whenever the operator places a diskette in the drive-under-test and closes the
drive door.

Test ID 13 DISC INTERRUPT on READY/NOT READY Test

Essentially the same as above except that the interrupt tested is that which is
generated when the operator opens the drive-under-test door and causes the NOT

READY condition (interrupt).

9-8

SYSTEM DIAGNOSTIC PROGRAM

Test 1D 14 DISC WRITE PROTECT Test

This is an operator intervention test that requires that a write-protected
diskette is placed into the drive-under-test. An attempted WRITE SECTOR is per-
formed and a Write-Protected Status shoul!d be generated. The same sector is
then read to verify that the sector (data) was not written to disc.

Error Messages

RAM Tests
*##% BANK x ADDRESS = xxxx DATA SB = xx IS = xx

*%% RAM PARITY ERROR

SERIAL 1/0 Tests

*#% NO SERIAL |/0 RECEIVE DATA INTERRUPT

*#% RECEIVE CHARACTER NOT AVAILABLE IN ALLOWED TIME
##% RECE|VE CHARACTER EARLY

*##% TRANSMITTER BUFFER NOT EMPTY -

*#% RECEIVE DATA S$/B xx IS xx

#%#% BAUD RATE xx (See Note)

*#% SERIAL 1/0 PORT STATUS = xx

NOTE: Message displayed-wifh any Serial 1/0 Test error.

60 Hz Timer Test

*%% 60 Hz TIMER IS TOO SLOW
**% 60 Hz TIMER IS TOO FAST
**%* NO 60 Hz TIMER INTERRUPT

DISC Tests

For each disc error, the controller command which produced the error will be
displayed. Possible command messages are:

*##% RESTORE COMMAND

*#% SEEK COMMAND

#% STEP-IN COMMAND

*%% STEP-OUT COMMAND

*#% WRITE MULTIPLE SECTOR COMMAND
*¥% READ MULTIPLE SECTOR COMMAND
*%% WRITE SECTOR COMMAND

*%% READ SECTOR COMMAND

9-9

SYSTEM DIAGNOSTIC PROGRAM

Additional possible error messages are;

*%% D|SC CONTROLLER STATUS = xx

¥% TRACK UNDER TEST = xx (See Note 1)
*%% TRACK REGISTER = xx

*#% SECTOR xx DATA = xx SB = xx

*%% SECTOR BYTE xx (See Note 2)

*%% DATA WAS WRITTEN ON PROTECTED DISC
NOTE 1: Displayed with all Disc Errors.

NOTE 2: Displayed with all Disc (Data) Errors.

General Error Messages

*%% UNEXPECTED DISC CONTROLER INTERRUPT
*%% UNEXPECTED DMA INTERRUPT

. *%% UNEXPECTED GPIB INTERRUPT

%% [NVALID TEST 1D %¥**

%*%% INVALID COMMAND **x

9-10

ADDENDUM TO 9520 MANUAL
CONVERT UTILITY PROGRAM
PUBLICATION NO. 87000087
REV. JANUARY 1982

ADDENDUM TO 9520 MANUAL

CONVERT UTILITY PROGRAM

Convert Utility Program

To enhance the universality of the Millennium 9520 Software Development Sys+tem,
Millennium has installed a CONVERT utility program in the 9520 +o run under the
CP/M or MP/M operating system. The CONVERT u+tility enables the user to create a
new file that will contain reformatted data from a specified file type. The
following table denotes the available conversions.

Table 1

Conversions
TO

F BIN | HEX | TEK

R IBIN| = X X

0 HEX | X * X

M 0BJ | X X X

TEK | X X *

Legend: BIN = Millennium Binary Format Code

HEX = Intel Hexadecimal Format Code
TEK = Tektronix Hexadecimal Format Code
0BJ = Tektronix Ob ject Code

X = Allowable Conversions

* =

Not+ applicable

The CONVERT utility is invoked by entering the following instructions at the
console terminal.

OA>CONVERT [d:1Fnt1.F+1 [d:1Fn2.F+2 <cr>

Syntax
OA>CONVERT [drive:loutput filename.file type extension
[drive:linput filename.file type extension
where:
[drivel = the disk drive A, B, C, or D. The default is the drive

current!y logged on.

output file name the actual file name of the file +hat will contain t+he

converted data.

file type extension = one of the conversion extensions (e.g., .BIN, <HEX,

.0BJ, or .TEK).

-

-l-

CONVERT UTILITY PROGRAM (cont'd)

input file name

the file name of the file containing the data to be
converted.

space delimiter

The Convert utility program flow and file name manipulation performs as follows:
a. Verify specified input and output file type extension.

b. Open specified input file (Id:1Fn2.Ft2), erase working output file
({d:1Fn1.%88), and open working output file ([d:1Fn1.38%5).

c. Input data from specified input file ([d:1Fn2.F+2), convert t+he data and
output converted data to the working output file ({d:1Fn1.83%3%).

d. Close specified Input file (ld:1Fn2.F+2) and close working outout file
([d:1Fn1.83%%).

e. |f errors or warnings occur during the conversion, then proceed to step 6;
If not, erase specified output file ([{d:1Fnl1.F+1), rename working output
file ([d:1Fn1.3%%) to specified output file ([d:1Fni.F+1), output to the

console "FILE CONVERTED, NO ERRORS", and return control to the operating
system.

f. Output to the console "FILE CONVERTED, REMAINS ".$33"," and return control to
the operating system.

In the event conversion is not accomplished without errors, the CONVERT utility
will cause (an) error message(s) to be displayed. There are two types of error

conditions with associated error messages, warning error messages and fatal
error messages.

Warning Error Messages. When the CONVERT utility encounters any impropiety in
the input file that is not a fatal error, an error message is displayed and file

conversion continues. The warning messages, as they are displayed on the con-
solg terminal, are as follows:

1. ERROR: CHECKSUM DOES NOT MATCH

CHECKSUM IN FILE: XX, CHECKSUM COMPUTED: XX
RECORD LOAD ADDRESS: XXXX

(XX=Hexadecimal value) (XXXX=Hexadecimal address value)

" 2. ERROR: [INPUT MODULE IS NOT ABSOLUTE, IT CONTAINS RELOCATION INFO
-~ RECORD LOAD ADDRESS: XXXX

3. ERROR: iNPUT FILE HAS SHORT BLOCK
RECORD LOAD ADDRESS: XXXX

4. ERROR: [NPUT MODULE HAS UNRESOLVED EXTERNAL REFERENCE
RECORD LOAD ADDRESS: XXXX

-2-

CONVERT UTILITY PROGRAM (cont'd)

5.

6.

T

8.

10.

1.

12.

13.

14.

15.

ERROR:

ERROR:

NOTE:

NOTICE:

WARNING:

WARNING:

NOTICE:

WARNING:

ERROR:

ERROR:

UNDEF INED ERROR
RECORD LOAD ADDRESS: XXXX

INTEL RECORD MARK (™:") EXPECTED,
FILE CONTAINS: XXX========XXX
XXX XXX
RECORD LOAD ADDRESS: XXXX

For ERROR 6, XXX====ee==e=XXX (to 80 column width) represents the
data read from the file until the next record mark was encountered.
When converting Millennium Binary files, unprintable b.inary data
is represented by a period ("."). In addition, spaces between
data are also represented by a period (".").

INTEL RECORD TYPE 02 (EXTENDED ADDRESS RECORD) ENCOUNTERED
RECORD LOAD ADDRESS: XXXX

INTEL RECORD TYPE 02 CONTAINS RECORD LENGTH OF XX
RECORD LOAD ADDRESS: XXXX

EOF RECORD TYPE CONTAINED A NON-ZERO RECORD LENGTH OF XX
RECORD LOAD ADDRESS: XXXX

INTEL RECORD TYPE 03 (START ADDRESS RECORD) ENCOUNTERED
RECORD LOAD ADDRESS: XXXX

INTEL RECORD TYPE 03 CONTAINS A RECORD LENGTH OF XX
RECORD LOAD ADDRESS: XXXX '

UNEVEN NUMBER OF BYTES TO CONVERT TO BINARY
RECORD LOAD ADDRESS: XXXX

BAD RECORD TYPE (MRLLDADRT)
RECORD LOAD ADDRESS: XXXX

where = M=record mark (":" =|NTELHEX record mark)

- ERROR:

ERROR:

RL=record length
LDAD=load address
RT=record type

TEK RECORD MARK ("/" or " ") EXPECTED

FILE CONTAINS: XXX =XXX

XXX XXX

RECORD LOAD ADDRESS: XXXX

(see ERROR 6 for definition of XXX====XXX for ERRORS 14,15,16,17.)

BAD EXTEND-TEK RECORD TYPE: /XX
FILE CONTAINS: XXX======XXX
XXX XXX
RECORD LOAD ADDRESS: XXXX

CONVERT UTILITY PROGRAM (cont'd)

16. ERROR: BAD EXTENDED-TEK SEGMENT ADDRESS: BCOOOORTSSSS
FILE CONTAINS: XXX======XXX

XXX ' XXX
RECORD LOAD ADDRESS: XXXX

where - BC=byte count
0000=10ad address
RT=record type
SSSS=segment or offset address

17. ERROR: BAD EXTENDED-TEK OFFSET ADDRESS: BCOOOORTSSSS
FILE CONTAINS: XXX===mw==- XXX
XXX XXX
RECORD LOAD ADDRESS: XXXX
(BCOOOORTSSSS=same as ERROR 16)

18. NOTICE: EOF RECORD PROCESSED, BUT INPUT FILE STILL CONTAINS
UNPROCESSED DATA

19. ERROR: EOF REACHED WITHOUT PROCESSING EOF RECORD

Fatal Error Messages. The following messages are output to the console display

terminal when the CONVERT utility is aborted and program control is returned to
the operating system. .

1. ERROR: INVALID PARAMETER(S)
2. ERROR: INVALID INPUT FILE TYPE

3 ERROR: INVALID OUTPUT FILE TYPE

NOTE: ERROR 1, 2 and 3 is displayed when the .file-type-extension is not
one of the previously mentioned file type extension(s), or when
the file type extension(s) entered do not correspond to the types
of conversions enumerated in the conversion table.

4. FATAL ERROR nn Fn.Ft+ RECORD=rr
OUTPUT ERROR

NOTE: The following definition is also valid for all remaining fatal
errors. -

where: nn the error number

Fn = the file name

F+ = the file type. For Input errors, i+ will be the file type of
input file. For output errors, it will be the file type of
t+he output file.

rr =

the physical record number in the File Control BRlock (FCB).

5. FATAL ERROR nn Fn.F+ RECORD=rr
CANNOT OPEN FILE

6. FATAL ERROR nn Fn.F+ RECORD=rr
' OUTPUT ERROR

CONVERT UTILITY PROGRAM (cont'd)

7. FATAL ERROR nn Fn.Ft RECORD=rr
INVALID BLOCK OR RECORD TYPE

8. FATAL ERROR nn Fn.F+ RECORD=rr
FILE NOT OPEN

9. FATAL ERROR nn Fn.F+ RECORD=rr
CANNOT CLOSE FILE

10. FATAL ERROR nn Fn.F+ RECORD=rr
CANNOT RENAME FILE

	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	1-04
	1-05
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-01
	4-01a
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05

